Science.gov

Sample records for exact discrete breather

  1. Discrete breathers in an array of self-excited oscillators: Exact solutions and stability.

    PubMed

    Shiroky, I B; Gendelman, O V

    2016-10-01

    We consider dynamics of array of coupled self-excited oscillators. The model of Franklin bell is adopted as a mechanism for the self-excitation. The model allows derivation of exact analytic solutions for discrete breathers (DBs) and exploration of their stability in the space of parameters. The DB solutions exist for all frequencies in the attenuation zone but lose stability via Neimark-Sacker bifurcation in the vicinity of the bandgap boundary. Besides the well-known DBs with exponential localization, the considered system possesses novel type of solutions-discrete breathers with main frequency in the propagation zone of the chain. In these regimes, the energy irradiation into the chain is balanced by the self-excitation. The amplitude of oscillations is maximal at the localization site and then exponentially approaches constant value at infinity. We also derive these solutions in the closed analytic form. They are stable in a narrow region of system parameters bounded by Neimark-Sacker and pitchfork bifurcations.

  2. Discrete breathers in an array of self-excited oscillators: Exact solutions and stability

    NASA Astrophysics Data System (ADS)

    Shiroky, I. B.; Gendelman, O. V.

    2016-10-01

    We consider dynamics of array of coupled self-excited oscillators. The model of Franklin bell is adopted as a mechanism for the self-excitation. The model allows derivation of exact analytic solutions for discrete breathers (DBs) and exploration of their stability in the space of parameters. The DB solutions exist for all frequencies in the attenuation zone but lose stability via Neimark-Sacker bifurcation in the vicinity of the bandgap boundary. Besides the well-known DBs with exponential localization, the considered system possesses novel type of solutions—discrete breathers with main frequency in the propagation zone of the chain. In these regimes, the energy irradiation into the chain is balanced by the self-excitation. The amplitude of oscillations is maximal at the localization site and then exponentially approaches constant value at infinity. We also derive these solutions in the closed analytic form. They are stable in a narrow region of system parameters bounded by Neimark-Sacker and pitchfork bifurcations.

  3. Discrete breathers in crystals

    NASA Astrophysics Data System (ADS)

    Dmitriev, S. V.; Korznikova, E. A.; Baimova, Yu A.; Velarde, M. G.

    2016-05-01

    It is well known that periodic discrete defect-containing systems, in addition to traveling waves, support vibrational defect-localized modes. It turned out that if a periodic discrete system is nonlinear, it can support spatially localized vibrational modes as exact solutions even in the absence of defects. Since the nodes of the system are all on equal footing, it is only through the special choice of initial conditions that a group of nodes can be found on which such a mode, called a discrete breather (DB), will be excited. The DB frequency must be outside the frequency range of the small-amplitude traveling waves. Not resonating with and expending no energy on the excitation of traveling waves, a DB can theoretically conserve its vibrational energy forever provided no thermal vibrations or other perturbations are present. Crystals are nonlinear discrete systems, and the discovery in them of DBs was only a matter of time. It is well known that periodic discrete defect-containing systems support both traveling waves and vibrational defect-localized modes. It turns out that if a periodic discrete system is nonlinear, it can support spatially localized vibrational modes as exact solutions even in the absence of defects. Because the nodes of the system are all on equal footing, only a special choice of the initial conditions allows selecting a group of nodes on which such a mode, called a discrete breather (DB), can be excited. The DB frequency must be outside the frequency range of small-amplitude traveling waves. Not resonating with and expending no energy on the excitation of traveling waves, a DB can theoretically preserve its vibrational energy forever if no thermal vibrations or other perturbations are present. Crystals are nonlinear discrete systems, and the discovery of DBs in them was only a matter of time. Experimental studies of DBs encounter major technical difficulties, leaving atomistic computer simulations as the primary investigation tool. Despite

  4. Exact solutions for discrete breathers in a forced-damped chain.

    PubMed

    Gendelman, O V

    2013-06-01

    Exact solutions for symmetric on-site discrete breathers (DBs) are obtained in a forced-damped linear chain with on-site vibro-impact constraints. The damping in the system is caused by inelastic impacts; the forcing functions should satisfy conditions of periodicity and antisymmetry. Global conditions for existence and stability of the DBs are established by a combination of analytic and numeric methods. The DB can lose its stability through either pitchfork, or Neimark-Sacker bifurcations. The pitchfork bifurcation is related to the internal dynamics of each individual oscillator. It is revealed that the coupling can suppress this type of instability. To the contrary, the Neimark-Sacker bifurcation occurs for relatively large values of the coupling, presumably due to closeness of the excitation frequency to a boundary of the propagation zone of the chain. Both bifurcation mechanisms seem to be generic for the considered type of forced-damped lattices. Some unusual phenomena, like nonmonotonous dependence of the stability boundary on the forcing amplitude, are revealed analytically for the initial system and illustrated numerically for small periodic lattices.

  5. Nonintegrable Schrodinger discrete breathers.

    PubMed

    Gómez-Gardeñes, J; Floría, L M; Peyrard, M; Bishop, A R

    2004-12-01

    In an extensive numerical investigation of nonintegrable translational motion of discrete breathers in nonlinear Schrödinger lattices, we have used a regularized Newton algorithm to continue these solutions from the limit of the integrable Ablowitz-Ladik lattice. These solutions are shown to be a superposition of a localized moving core and an excited extended state (background) to which the localized moving pulse is spatially asymptotic. The background is a linear combination of small amplitude nonlinear resonant plane waves and it plays an essential role in the energy balance governing the translational motion of the localized core. Perturbative collective variable theory predictions are critically analyzed in the light of the numerical results.

  6. Dissipative discrete breathers: periodic, quasiperiodic, chaotic, and mobile.

    PubMed

    Martínez, P J; Meister, M; Floría, L M; Falo, F

    2003-06-01

    The properties of discrete breathers in dissipative one-dimensional lattices of nonlinear oscillators subject to periodic driving forces are reviewed. We focus on oscillobreathers in the Frenkel-Kontorova chain and rotobreathers in a ladder of Josephson junctions. Both types of exponentially localized solutions are easily obtained numerically using adiabatic continuation from the anticontinuous limit. Linear stability (Floquet) analysis allows the characterization of different types of bifurcations experienced by periodic discrete breathers. Some of these bifurcations produce nonperiodic localized solutions, namely, quasiperiodic and chaotic discrete breathers, which are generally impossible as exact solutions in Hamiltonian systems. Within a certain range of parameters, propagating breathers occur as attractors of the dissipative dynamics. General features of these excitations are discussed and the Peierls-Nabarro barrier is addressed. Numerical scattering experiments with mobile breathers reveal the existence of two-breather bound states and allow a first glimpse at the intricate phenomenology of these special multibreather configurations.

  7. Discrete breathers in hexagonal dusty plasma lattices

    SciTech Connect

    Koukouloyannis, V.; Kourakis, I.

    2009-08-15

    The occurrence of single-site or multisite localized vibrational modes, also called discrete breathers, in two-dimensional hexagonal dusty plasma lattices is investigated. The system is described by a Klein-Gordon hexagonal lattice characterized by a negative coupling parameter epsilon in account of its inverse dispersive behavior. A theoretical analysis is performed in order to establish the possibility of existence of single as well as three-site discrete breathers in such systems. The study is complemented by a numerical investigation based on experimentally provided potential forms. This investigation shows that a dusty plasma lattice can support single-site discrete breathers, while three-site in phase breathers could exist if specific conditions, about the intergrain interaction strength, would hold. On the other hand, out of phase and vortex three-site breathers cannot be supported since they are highly unstable.

  8. Discrete breathers for a discrete nonlinear Schrödinger ring coupled to a central site.

    PubMed

    Jason, Peter; Johansson, Magnus

    2016-01-01

    We examine the existence and properties of certain discrete breathers for a discrete nonlinear Schrödinger model where all but one site are placed in a ring and coupled to the additional central site. The discrete breathers we focus on are stationary solutions mainly localized on one or a few of the ring sites and possibly also the central site. By numerical methods, we trace out and study the continuous families the discrete breathers belong to. Our main result is the discovery of a split bifurcation at a critical value of the coupling between neighboring ring sites. Below this critical value, families form closed loops in a certain parameter space, implying that discrete breathers with and without central-site occupation belong to the same family. Above the split bifurcation the families split up into several separate ones, which bifurcate with solutions with constant ring amplitudes. For symmetry reasons, the families have different properties below the split bifurcation for even and odd numbers of sites. It is also determined under which conditions the discrete breathers are linearly stable. The dynamics of some simpler initial conditions that approximate the discrete breathers are also studied and the parameter regimes where the dynamics remain localized close to the initially excited ring site are related to the linear stability of the exact discrete breathers.

  9. Localization in finite vibroimpact chains: Discrete breathers and multibreathers.

    PubMed

    Grinberg, Itay; Gendelman, Oleg V

    2016-09-01

    We explore the dynamics of strongly localized periodic solutions (discrete solitons or discrete breathers) in a finite one-dimensional chain of oscillators. Localization patterns with both single and multiple localization sites (breathers and multibreathers) are considered. The model involves parabolic on-site potential with rigid constraints (the displacement domain of each particle is finite) and a linear nearest-neighbor coupling. When the particle approaches the constraint, it undergoes an inelastic impact according to Newton's impact model. The rigid nonideal impact constraints are the only source of nonlinearity and damping in the system. We demonstrate that this vibro-impact model allows derivation of exact analytic solutions for the breathers and multibreathers with an arbitrary set of localization sites, both in conservative and in forced-damped settings. Periodic boundary conditions are considered; exact solutions for other types of boundary conditions are also available. Local character of the nonlinearity permits explicit derivation of a monodromy matrix for the breather solutions. Consequently, the stability of the derived breather and multibreather solutions can be efficiently studied in the framework of simple methods of linear algebra, and with rather moderate computational efforts. One reveals that that the finiteness of the chain fragment and possible proximity of the localization sites strongly affect both the existence and the stability patterns of these localized solutions.

  10. Localization in finite vibroimpact chains: Discrete breathers and multibreathers

    NASA Astrophysics Data System (ADS)

    Grinberg, Itay; Gendelman, Oleg V.

    2016-09-01

    We explore the dynamics of strongly localized periodic solutions (discrete solitons or discrete breathers) in a finite one-dimensional chain of oscillators. Localization patterns with both single and multiple localization sites (breathers and multibreathers) are considered. The model involves parabolic on-site potential with rigid constraints (the displacement domain of each particle is finite) and a linear nearest-neighbor coupling. When the particle approaches the constraint, it undergoes an inelastic impact according to Newton's impact model. The rigid nonideal impact constraints are the only source of nonlinearity and damping in the system. We demonstrate that this vibro-impact model allows derivation of exact analytic solutions for the breathers and multibreathers with an arbitrary set of localization sites, both in conservative and in forced-damped settings. Periodic boundary conditions are considered; exact solutions for other types of boundary conditions are also available. Local character of the nonlinearity permits explicit derivation of a monodromy matrix for the breather solutions. Consequently, the stability of the derived breather and multibreather solutions can be efficiently studied in the framework of simple methods of linear algebra, and with rather moderate computational efforts. One reveals that that the finiteness of the chain fragment and possible proximity of the localization sites strongly affect both the existence and the stability patterns of these localized solutions.

  11. Discrete breathers in nonlinear magnetic metamaterials.

    PubMed

    Lazarides, N; Eleftheriou, M; Tsironis, G P

    2006-10-13

    Magnetic metamaterials composed of split-ring resonators or U-type elements may exhibit discreteness effects in THz and optical frequencies due to weak coupling. We consider a model one-dimensional metamaterial formed by a discrete array of nonlinear split-ring resonators where each ring interacts with its nearest neighbors. On-site nonlinearity and weak coupling among the individual array elements result in the appearance of discrete breather excitations or intrinsic localized modes, both in the energy-conserved and the dissipative system. We analyze discrete single and multibreather excitations, as well as a special breather configuration forming a magnetization domain wall and investigate their mobility and the magnetic properties their presence induces in the system.

  12. Energy Criterion for the Spectral Stability of Discrete Breathers.

    PubMed

    Kevrekidis, Panayotis G; Cuevas-Maraver, Jesús; Pelinovsky, Dmitry E

    2016-08-26

    Discrete breathers are ubiquitous structures in nonlinear anharmonic models ranging from the prototypical example of the Fermi-Pasta-Ulam model to Klein-Gordon nonlinear lattices, among many others. We propose a general criterion for the emergence of instabilities of discrete breathers analogous to the well-established Vakhitov-Kolokolov criterion for solitary waves. The criterion involves the change of monotonicity of the discrete breather's energy as a function of the breather frequency. Our analysis suggests and numerical results corroborate that breathers with increasing (decreasing) energy-frequency dependence are generically unstable in soft (hard) nonlinear potentials.

  13. Transverse discrete breathers in unstrained graphene

    NASA Astrophysics Data System (ADS)

    Barani, Elham; Lobzenko, Ivan P.; Korznikova, Elena A.; Soboleva, Elvira G.; Dmitriev, Sergey V.; Zhou, Kun; Marjaneh, Aliakbar Moradi

    2017-02-01

    Discrete breathers (DB) are spatially localized vibrational modes of large amplitude in defect-free nonlinear lattices. The search for DBs in graphene is of high importance, taking into account that this one atom thick layer of carbon is promising for a number of applications. There exist several reports on successful excitation of DBs in graphene, based on molecular dynamics and ab initio simulations. In a recent work by Hizhnyakov with co-authors the possibility to excite a DB with atoms oscillating normal to the graphene sheet has been reported. In the present study we use a systematic approach for finding initial conditions to excite transverse DBs in graphene. The approach is based on the analysis of the frequency-amplitude dependence for a delocalized, short-wavelength vibrational mode. This mode is a symmetry-dictated exact solution to the dynamic equations of the atomic motion, regardless the mode amplitude and regardless the type of interatomic potentials used in the simulations. It is demonstrated that if the AIREBO potential is used, the mode frequency increases with the amplitude bifurcating from the upper edge of the phonon spectrum for out-of-plane phonons. Then a bell-shaped function is superimposed on this delocalized mode to obtain a spatially localized vibrational mode, i.e., a DB. Placing the center of the bell-shaped function at different positions with respect to the lattice sites, three different DBs are found. Typically, the degree of spatial localization of DBs increases with the DB amplitude, but the transverse DBs in graphene reported here demonstrate the opposite trend. The results are compared to those obtained with the use of the Savin interatomic potential and no transverse DBs are found in this case. The results of this study contribute to a better understanding of the nonlinear dynamics of graphene and they call for the ab initio simulations to verify which of the two potentials used in this study is more precise.

  14. Pressure induced breather overturning on deep water: Exact solution

    NASA Astrophysics Data System (ADS)

    Abrashkin, A. A.; Oshmarina, O. E.

    2014-08-01

    A vortical model of breather overturning on deep water is proposed. The action of wind is simulated by nonuniform pressure on the free surface. The fluid motion is described by an exact solution of 2D hydrodynamic equations for an inviscid fluid in Lagrangian variables. Fluid particles rotate in circles of different radii. Formation of contraflexure points on the breather profile is studied. The mechanism of wave breaking and the role of flow vorticity are discussed.

  15. Discrete breathers in alpha-uranium

    NASA Astrophysics Data System (ADS)

    Murzaev, Ramil T.; Babicheva, Rita I.; Zhou, Kun; Korznikova, Elena A.; Fomin, Sergey Yu.; Dubinko, Vladimir I.; Dmitriev, Sergey V.

    2016-07-01

    Uranium is an important radioactive material used in the field of nuclear energy and it is interesting from the scientific point of view because it possesses unique structure and properties. There exist several experimental reports on anomalies of physical properties of uranium that have not been yet explained. Manley et al. [Phys. Rev. Lett. 96, 125501 (2006); Phys. Rev. B 77, 214305 (2008)] speculate that the excitation of discrete breathers (DBs) could be the reason for anisotropy of thermal expansion and for the deviation of heat capacity from the theoretical prediction in the high temperature range. In the present work, with the use of molecular dynamics, the existence of DBs in α-uranium is demonstrated and their properties are studied. It is found that DB frequency lies above the phonon band and increases with DB amplitude. DB is localized on half a dozen of atoms belonging to a straight atomic chain. DB in uranium, unlike DBs in fcc, bcc and hcp metals, is almost immobile. Thus, the DB reported in this study cannot contribute to thermal conductivity and the search for other types of DBs in α-uranium should be continued. Our results demonstrate that even metals with low-symmetry crystal lattices such as the orthorhombic lattice of α-uranium can support DBs.

  16. Impulse-induced generation of stationary and moving discrete breathers in nonlinear oscillator networks

    NASA Astrophysics Data System (ADS)

    Cuevas-Maraver, J.; Chacón, R.; Palmero, F.

    2016-12-01

    We study discrete breathers in prototypical nonlinear oscillator networks subjected to nonharmonic zero-mean periodic excitations. We show how the generation of stationary and moving discrete breathers are optimally controlled by solely varying the impulse transmitted by the periodic excitations, while keeping constant the excitation's amplitude and period. Our theoretical and numerical results show that the enhancer effect of increasing values of the excitation's impulse, in the sense of facilitating the generation of stationary and moving breathers, is due to a correlative increase of the breather's action and energy.

  17. Impulse-induced generation of stationary and moving discrete breathers in nonlinear oscillator networks.

    PubMed

    Cuevas-Maraver, J; Chacón, R; Palmero, F

    2016-12-01

    We study discrete breathers in prototypical nonlinear oscillator networks subjected to nonharmonic zero-mean periodic excitations. We show how the generation of stationary and moving discrete breathers are optimally controlled by solely varying the impulse transmitted by the periodic excitations, while keeping constant the excitation's amplitude and period. Our theoretical and numerical results show that the enhancer effect of increasing values of the excitation's impulse, in the sense of facilitating the generation of stationary and moving breathers, is due to a correlative increase of the breather's action and energy.

  18. Discrete breathers in a mass-in-mass chain with Hertzian local resonators

    NASA Astrophysics Data System (ADS)

    Wallen, S. P.; Lee, J.; Mei, D.; Chong, C.; Kevrekidis, P. G.; Boechler, N.

    2017-02-01

    We report on the existence of discrete breathers in a one-dimensional, mass-in-mass chain with linear intersite coupling and nonlinear, precompressed Hertzian local resonators, which is motivated by recent studies of the dynamics of microspheres adhered to elastic substrates. After predicting theoretically the existence of discrete breathers in the continuum and anticontinuum limits of intersite coupling, we use numerical continuation to compute a family of breathers interpolating between the two regimes in a finite chain, where the displacement profiles of the breathers are localized around one lattice site. We then analyze the frequency-amplitude dependence of the breathers by performing numerical continuation on a linear eigenmode (vanishing amplitude) solution of the system near the upper band gap edge. Finally, we use direct numerical integration of the equations of motion to demonstrate the formation and evolution of the identified localized modes in energy-conserving and dissipative scenarios, including within settings that may be relevant to future experimental studies.

  19. Discrete breathers in a mass-in-mass chain with Hertzian local resonators.

    PubMed

    Wallen, S P; Lee, J; Mei, D; Chong, C; Kevrekidis, P G; Boechler, N

    2017-02-01

    We report on the existence of discrete breathers in a one-dimensional, mass-in-mass chain with linear intersite coupling and nonlinear, precompressed Hertzian local resonators, which is motivated by recent studies of the dynamics of microspheres adhered to elastic substrates. After predicting theoretically the existence of discrete breathers in the continuum and anticontinuum limits of intersite coupling, we use numerical continuation to compute a family of breathers interpolating between the two regimes in a finite chain, where the displacement profiles of the breathers are localized around one lattice site. We then analyze the frequency-amplitude dependence of the breathers by performing numerical continuation on a linear eigenmode (vanishing amplitude) solution of the system near the upper band gap edge. Finally, we use direct numerical integration of the equations of motion to demonstrate the formation and evolution of the identified localized modes in energy-conserving and dissipative scenarios, including within settings that may be relevant to future experimental studies.

  20. Excitation of gap discrete breathers in an A3B crystal with a flux of particles

    NASA Astrophysics Data System (ADS)

    Zakharov, P. V.; Starostenkov, M. D.; Eremin, A. M.; Korznikova, E. A.; Dmitriev, S. V.

    2017-02-01

    The generation of discrete breathers in an A3B crystal has been modeled by the method of molecular dynamics using Pt3Al as an example via the application of random unidirectional momenta, which simulate the action of a particle flux, to atoms. Two possible mechanisms of the excitation of gap discrete breathers with a soft type of nonlinearity have been revealed depending on the energy of particles in a flux. If a particle is able to transfer energy of more than 1.4 eV to the Al atom, a discrete breather can be excited by the only particle. Otherwise, a discrete breather is formed upon numerous particle-Al atom collisions, which are possible only at a sufficiently high density of particles, as each following particle must transfer its momentum to the Al atom before its oscillations provoked by previous particles attenuate.

  1. From Discrete Breathers to Many Body Localization and Flatbands

    NASA Astrophysics Data System (ADS)

    Flach, Sergej

    Discrete breathers (DB) and intrinsic localized modes (ILM) are synonymic dynamical states on nonlinear lattices - periodic in time and localized in space, and widely observed in many applications. I will discuss the connections between DBs and many-body localization (MBL) and the properties of DBs on flatband networks. A dense quantized gas of strongly excited DBs can lead to a MBL phase in a variety of different lattice models. Its classical counterpart corresponds to a 'nonergodic metal' in the MBL language, or to a nonGibbsean selftrapped state in the language of nonlinear dynamics. Flatband networks are lattices with small amplitude waves exhibiting macroscopic degeneracy in their band structure due to local symmetries, destructive interference, compact localized eigenstates and horizontal flat bands. DBs can preserve the compactness of localization in the presence of nonlinearity with properly tuned internal phase relationships, making them promising tools for control of the phase coherence of waves. Also at New Zealand Institute of Advanced Study, Massey University, Auckland, New Zealand.

  2. CONDENSED MATTER: STRUCTURAL, MECHANICAL, AND THERMAL PROPERTIES: Different Kinds of Discrete Breathers in Three Types of One-Dimensional Models

    NASA Astrophysics Data System (ADS)

    Lü, Bin-Bin; Tian, Qiang

    2010-10-01

    The dynamics of different kinds of discrete breathers in three types of one-dimensional monatomic chains with on-site and inter-site potentials are investigated. The existence and evolution of symmetric breather, antisymmetric breather, and multibreather in one-dimensional models are proved by using rotating wave approximation, local anharmonic approximation, and the numerical method. The linear stability of these breathers is investigated by using Lyapunov stable analysis. The localization and stability of breathers in three types of models correlate closely to the system nonlinear parameter β.

  3. Breather Solutions of the Discrete p-Schrödinger Equation

    NASA Astrophysics Data System (ADS)

    James, Guillaume; Starosvetsky, Yuli

    We consider the discrete p-Schrödinger (DpS) equation, which approximates small amplitude oscillations in chains of oscillators with fully-nonlinear nearest-neighbors interactions of order α = p - 1> 1 . Using a mapping approach, we prove the existence of breather solutions of the DpS equation with even- or odd-parity reflectional symmetries. We derive in addition analytical approximations for the breather profiles and the corresponding intersecting stable and unstable manifolds, valid on a whole range of nonlinearity orders α. In the limit of weak nonlinearity (α → 1+), we introduce a continuum limit connecting the stationary DpS and logarithmic nonlinear Schrödinger equations. In this limit, breathers correspond asymptotically to Gaussian homoclinic solutions. We numerically analyze the stability properties of breather solutions depending on their even- or odd-parity symmetry. A perturbation of an unstable breather generally results in a translational motion (traveling breather) when α is close to unity, whereas pinning becomes predominant for larger values of α.

  4. Growth and decay of discrete nonlinear Schrodinger breathers interacting with internal modes or standing-wave phonons

    PubMed

    Johansson; Aubry

    2000-05-01

    We investigate the long-time evolution of weakly perturbed single-site breathers (localized stationary states) in the discrete nonlinear Schrodinger equation. The perturbations we consider correspond to time-periodic solutions of the linearized equations around the breather, and can be either (i) spatially localized or (ii) spatially extended. For case (i), which corresponds to the excitation of an internal mode of the breather, we find that the nonlinear interaction between the breather and its internal mode always leads to a slow growth of the breather amplitude and frequency. In case (ii), corresponding to interaction between the breather and a standing-wave phonon, the breather will grow provided that the wave vector of the phonon is such that the generation of radiating higher harmonics at the breather is possible. In other cases, breather decay is observed. This condition yields a limit value for the breather frequency above which no further growth is possible. We also discuss another mechanism for breather growth and destruction which becomes important when the amplitude of the perturbation is non-negligible, and which originates from the oscillatory instabilities of the nonlinear standing-wave phonons.

  5. Interactions and collisions of discrete breathers in two-species Bose-Einstein condensates in optical lattices.

    PubMed

    Campbell, Russell; Oppo, Gian-Luca; Borkowski, Mateusz

    2015-01-01

    The dynamics of static and traveling breathers in two-species Bose-Einstein condensates in a one-dimensional optical lattice is modelled within the tight-binding approximation. Two coupled discrete nonlinear Schrödinger equations describe the interaction of the condensates in two cases of relevance: a mixture of two ytterbium isotopes and a mixture of (87)Rb and (41)K. Depending on their initial separation, interaction between static breathers of different species can lead to the formation of symbiotic structures and transform one of the breathers from a static into a traveling one. Collisions between traveling and static discrete breathers composed of different species are separated into four distinct regimes ranging from totally elastic when the interspecies interaction is highly attractive to mutual destruction when the interaction is sufficiently large and repulsive. We provide an explanation of the collision features in terms of the interspecies coupling and the negative effective mass of the discrete breathers.

  6. Interactions and collisions of discrete breathers in two-species Bose-Einstein condensates in optical lattices

    NASA Astrophysics Data System (ADS)

    Campbell, Russell; Oppo, Gian-Luca; Borkowski, Mateusz

    2015-01-01

    The dynamics of static and traveling breathers in two-species Bose-Einstein condensates in a one-dimensional optical lattice is modelled within the tight-binding approximation. Two coupled discrete nonlinear Schrödinger equations describe the interaction of the condensates in two cases of relevance: a mixture of two ytterbium isotopes and a mixture of 87Rb and 41K. Depending on their initial separation, interaction between static breathers of different species can lead to the formation of symbiotic structures and transform one of the breathers from a static into a traveling one. Collisions between traveling and static discrete breathers composed of different species are separated into four distinct regimes ranging from totally elastic when the interspecies interaction is highly attractive to mutual destruction when the interaction is sufficiently large and repulsive. We provide an explanation of the collision features in terms of the interspecies coupling and the negative effective mass of the discrete breathers.

  7. Discrete Breathers in a Forced-Damped Array of Coupled Pendula: Modeling, Computation, and Experiment

    NASA Astrophysics Data System (ADS)

    Cuevas, J.; English, L. Q.; Kevrekidis, P. G.; Anderson, M.

    2009-06-01

    In this work, we present a mechanical example of an experimental realization of a stability reversal between on-site and intersite centered localized modes. A corresponding realization of a vanishing of the Peierls-Nabarro barrier allows for an experimentally observed enhanced mobility of the localized modes near the reversal point. These features are supported by detailed numerical computations of the stability and mobility of the discrete breathers in this system of forced and damped coupled pendula. Furthermore, additional exotic features of the relevant model, such as dark breathers are briefly discussed.

  8. CONDENSED MATTER: STRUCTURE, THERMAL AND MECHANICAL PROPERTIES: Discrete gap breathers in a two-dimensional diatomic face-centered square lattice

    NASA Astrophysics Data System (ADS)

    Lü, Bin-Bin; Tian, Qiang

    2009-10-01

    In this paper we study the existence and stability of two-dimensional discrete gap breathers in a two-dimensional diatomic face-centered square lattice consisting of alternating light and heavy atoms, with on-site potential and coupling potential. This study is focused on two-dimensional breathers with their frequency in the gap that separates the acoustic and optical bands of the phonon spectrum. We demonstrate the possibility of the existence of two-dimensional gap breathers by using a numerical method. Six types of two-dimensional gap breathers are obtained, i.e., symmetric, mirror-symmetric and asymmetric, whether the center of the breather is on a light or a heavy atom. The difference between one-dimensional discrete gap breathers and two-dimensional discrete gap breathers is also discussed. We use Aubry's theory to analyze the stability of discrete gap breathers in the two-dimensional diatomic face-centered square lattice.

  9. q-breathers in discrete nonlinear Schrödinger lattices

    NASA Astrophysics Data System (ADS)

    Mishagin, K. G.; Flach, S.; Kanakov, O. I.; Ivanchenko, M. V.

    2008-07-01

    q-breathers (QBs) are exact time-periodic solutions of extended nonlinear systems continued from the normal modes of the corresponding linearized system. They are localized in the space of normal modes. The existence of these solutions in a weakly anharmonic atomic chain explained essential features of the Fermi-Pasta-Ulam (FPU) paradox. We study QBs in one-, two- and three-dimensional discrete nonlinear Schrödinger (DNLS) lattices—theoretical playgrounds for light propagation in nonlinear optical waveguide networks, and the dynamics of cold atoms in optical lattices. We prove the existence of these solutions for weak nonlinearity. We find that the localization of QBs is controlled by a single parameter which depends on the norm density, nonlinearity strength and seed wave vector. At a critical value of that parameter QBs delocalize via resonances, signaling a breakdown of the normal mode picture and a transition into the strong mode-mode interaction regime. In particular, this breakdown takes place at one of the edges of the normal mode spectrum, and in a singular way also in the center of that spectrum. A stability analysis of QBs supplements these findings. We relate our findings to previous studies of time-periodic multibreather standing waves. For three-dimensional lattices, we find QB vortices which violate time reversal symmetry and generate a vortex ring flow of energy in normal mode space.

  10. Discrete breathers in a realistic coarse-grained model of proteins.

    PubMed

    Luccioli, Stefano; Imparato, Alberto; Lepri, Stefano; Piazza, Francesco; Torcini, Alessandro

    2011-08-01

    We report the results of molecular dynamics simulations of an off-lattice protein model featuring a physical force-field and amino-acid sequence. We show that localized modes of nonlinear origin, discrete breathers (DBs), emerge naturally as continuations of a subset of high-frequency normal modes residing at specific sites dictated by the native fold. DBs are time-periodic, space-localized vibrational modes that exist generically in nonlinear discrete systems and are known for their resilience and ability to concentrate energy for long times. In the case of the small β-barrel structure that we consider, DB-mediated localization occurs on the turns connecting the strands. At high energies, DBs stabilize the structure by concentrating energy on a few sites, while their collapse marks the onset of large-amplitude fluctuations of the protein. Furthermore, we show how breathers develop as energy-accumulating centres following perturbations even at distant locations, thus mediating efficient and irreversible energy transfers. Remarkably, due to the presence of angular potentials, the breather induces a local static distortion of the native fold. Altogether, the combination of these two nonlinear effects may provide a ready means for remotely controlling local conformational changes in proteins.

  11. Discrete breather and its stability in a general discrete nonlinear Schrödinger equation with disorder.

    PubMed

    Bai, Xiao-Dong; Xue, Ju-Kui

    2012-12-01

    By considering a general discrete nonlinear Schrödinger model with arbitrary values of nonlinearity power and disorder, the existence and stability of a discrete breather (DB) in a general nonlinear lattice are discussed. It is found that nonlinearity and disorder play important roles in determining the existence and stability of the DB. Nonlinearity (expressed by the interparticle interaction) and disorder can enhance the stability of the DB. Remarkably, we find that the DB is most stable when the nonlinearity power is equal to a critical value. The effects of nonlinearity, nonlinearity power, and disorder on the stability of the DB are strongly coupled.

  12. Effects of competing short- and long-range dispersive interactions on discrete breathers.

    PubMed

    Kevrekidis, P G; Gaididei, Y B; Bishop, A R; Saxena, A

    2001-12-01

    The discrete nonlinear Schrödinger equation with competing short-range and long-range interactions is considered in spatial dimensions d> or =2. This model equation is derived for a situation of two linearly coupled excitations (independently of dimension), and we analytically and numerically study its properties in 2+1 dimensions. We analyze theoretically and demonstrate numerically the dependence of the discrete breather solutions on the amplitude and range of the interactions. We find that complete suppression of the existence thresholds obtained recently for short-range interactions can be achieved beyond a critical value of the amplitude or of the range of the long-range kernel. For supercritical values of the corresponding parameters, staggered branches of solutions are obtained both in theory as well as in the numerical experiment.

  13. Unidirectional transport of wave packets through tilted discrete breathers in nonlinear lattices with asymmetric defects

    NASA Astrophysics Data System (ADS)

    Bai, Xiao-Dong; Malomed, Boris A.; Deng, Fu-Guo

    2016-09-01

    We consider the transfer of lattice wave packets through a tilted discrete breather (TDB) in opposite directions in the discrete nonlinear Schrödinger model with asymmetric defects, which may be realized as a Bose-Einstein condensate trapped in a deep optical lattice, or as optical beams in a waveguide array. A unidirectional transport mode is found, in which the incident wave packets, whose energy belongs to a certain interval between full reflection and full passage regions, pass the TDB only in one direction, while in the absence of the TDB, the same lattice admits bidirectional propagation. The operation of this mode is accurately explained by an analytical consideration of the respective energy barriers. The results suggest that the TDB may emulate the unidirectional propagation of atomic and optical beams in various settings. In the case of the passage of the incident wave packet, the scattering TDB typically shifts by one lattice unit in the direction from which the wave packet arrives, which is an example of the tractor-beam effect, provided by the same system, in addition to the rectification of incident waves.

  14. Breathers in a locally resonant granular chain with precompression

    NASA Astrophysics Data System (ADS)

    Liu, Lifeng; James, Guillaume; Kevrekidis, Panayotis; Vainchtein, Anna

    2016-09-01

    We study a locally resonant granular material in the form of a precompressed Hertzian chain with linear internal resonators. Using an asymptotic reduction, we derive an effective nonlinear Schrödinger (NLS) modulation equation. This, in turn, leads us to provide analytical evidence, subsequently corroborated numerically, for the existence of two distinct types of discrete breathers related to acoustic or optical modes: (a) traveling bright breathers with a strain profile exponentially vanishing at infinity and (b) stationary and traveling dark breathers, exponentially localized, time-periodic states mounted on top of a non-vanishing background. The stability and bifurcation structure of numerically computed exact stationary dark breathers is also examined. Stationary bright breathers cannot be identified using the NLS equation, which is defocusing at the upper edges of the phonon bands and becomes linear at the lower edge of the optical band.

  15. Breathers in a locally resonant granular chain with precompression

    SciTech Connect

    Liu, Lifeng; James, Guillaume; Kevrekidis, Panayotis; Vainchtein, Anna

    2016-09-01

    Here we study a locally resonant granular material in the form of a precompressed Hertzian chain with linear internal resonators. Using an asymptotic reduction, we derive an effective nonlinear Schrödinger (NLS) modulation equation. In turn, this leads us to provide analytical evidence, subsequently corroborated numerically, for the existence of two distinct types of discrete breathers related to acoustic or optical modes: (a) traveling bright breathers with a strain profile exponentially vanishing at infinity and (b) stationary and traveling dark breathers, exponentially localized, time-periodic states mounted on top of a non-vanishing background. Moreover, the stability and bifurcation structure of numerically computed exact stationary dark breathers is also examined. Stationary bright breathers cannot be identified using the NLS equation, which is defocusing at the upper edges of the phonon bands and becomes linear at the lower edge of the optical band.

  16. Breathers in a locally resonant granular chain with precompression

    DOE PAGES

    Liu, Lifeng; James, Guillaume; Kevrekidis, Panayotis; ...

    2016-09-01

    Here we study a locally resonant granular material in the form of a precompressed Hertzian chain with linear internal resonators. Using an asymptotic reduction, we derive an effective nonlinear Schrödinger (NLS) modulation equation. In turn, this leads us to provide analytical evidence, subsequently corroborated numerically, for the existence of two distinct types of discrete breathers related to acoustic or optical modes: (a) traveling bright breathers with a strain profile exponentially vanishing at infinity and (b) stationary and traveling dark breathers, exponentially localized, time-periodic states mounted on top of a non-vanishing background. Moreover, the stability and bifurcation structure of numerically computedmore » exact stationary dark breathers is also examined. Stationary bright breathers cannot be identified using the NLS equation, which is defocusing at the upper edges of the phonon bands and becomes linear at the lower edge of the optical band.« less

  17. Breathers and multibreathers in a periodically driven damped discrete nonlinear Schrödinger equation.

    PubMed

    Kollmann, M; Capel, H W; Bountis, T

    1999-08-01

    We study an integrable discretization of the nonlinear Schrödinger equation (NLS) under the effects of damping and periodic driving, from the point of view of spatially localized solutions oscillating in time with the driver's frequency. We locate the equilibrium states of the discretized (DNLS) system in the plane of its dissipation gamma and forcing amplitude H parameters and use a shooting algorithm to construct the desired solutions psi(n)(t)=phi(n) exp(it) as homoclinic orbits of a four-dimensional symplectic map in the complex phi(n),phi(n+1) space, for -infinitydiscrete (multi-) breathers found in a wide variety of one-dimensional nonlinear lattices.

  18. Modulational instability and localized breather modes in the discrete nonlinear Schrödinger equation with helicoidal hopping

    NASA Astrophysics Data System (ADS)

    Stockhofe, J.; Schmelcher, P.

    2016-08-01

    We study a one-dimensional discrete nonlinear Schrödinger model with hopping to the first and a selected Nth neighbor, motivated by a helicoidal arrangement of lattice sites. We provide a detailed analysis of the modulational instability properties of this equation, identifying distinctive multi-stage instability cascades due to the helicoidal hopping term. Bistability is a characteristic feature of the intrinsically localized breather modes, and it is shown that information on the stability properties of weakly localized solutions can be inferred from the plane-wave modulational instability results. Based on this argument, we derive analytical estimates of the critical parameters at which the fundamental on-site breather branch of solutions turns unstable. In the limit of large N, these estimates predict the emergence of an effective threshold behavior, which can be viewed as the result of a dimensional crossover to a two-dimensional square lattice.

  19. Exciting discrete breathers of two types in a computer 3D model of Pt3Al crystal

    NASA Astrophysics Data System (ADS)

    Medvedev, N. N.; Starostenkov, M. D.; Zakharov, P. V.; Dmitriev, S. V.

    2015-10-01

    The possibility of exciting discrete breathers (DBs) with both soft and hard nonlinearity in a threedimensional crystal has been shown for the first time using molecular dynamics simulation by example of an ordered Pt3Al crystal model. The oscillation frequencies of DBs of the first (soft) type fall in the gap of the phonon spectrum and decrease with increasing amplitude. For DBs of the second type, the oscillation frequencies are above the phonon spectrum and increase with the amplitude, i.e., exhibit hard nonlinearity. An example of the transformation of a hard DB into a set of gap (soft) DBs with soft nonlinearity is presented. The influence of various factors on the lifetime of interacting DBs is considered.

  20. Discrete breather and soliton-mode collective excitations in Bose-Einstein condensates in a deep optical lattice with tunable three-body interactions

    NASA Astrophysics Data System (ADS)

    Alakhaly, Galal Ahmed; Dey, Bishwajyoti

    2015-05-01

    We have studied the dynamic evolution of the collective excitations in Bose-Einstein condensates in a deep optical lattice with tunable three-body interactions. Their dynamics is governed by a high order discrete nonlinear Schrödinger equation (DNLSE). The dynamical phase diagram of the system is obtained using the variational method. The dynamical evolution shows very interesting features. The discrete breather phase totally disappears in the regime where the three-body interaction completely dominates over the two-body interaction. The soliton phase in this particular regime exists only when the soliton line approaches the critical line in the phase diagram. When weak two-body interactions are reintroduced into this regime, the discrete breather solutions reappear, but occupies a very small domain in the phase space. Likewise, in this regime, the soliton as well as the discrete breather phases completely disappear if the signs of the two-and three-body interactions are opposite. We have analysed the causes of this unusual dynamical evolution of the collective excitations of the Bose-Einstein condensate with tunable interactions. We have also performed direct numerical simulations of the governing DNLS equation to show the existence of the discrete soliton solution as predicted by the variational calculations, and also to check the long term stability of the soliton solution.

  1. Simulation of the interaction between discrete breathers of various types in a Pt{sub 3}Al crystal nanofiber

    SciTech Connect

    Zakharov, P. V.; Starostenkov, M. D.; Dmitriev, S. V.; Medvedev, N. N.; Eremin, A. M.

    2015-08-15

    It is known that, in a molecular dynamics model of Pt{sub 3}Al crystal, a discrete breather (DB) with soft type nonlinearity (DB1) can be excited, which is characterized by a high degree of localization on a light atom (Al), stationarity, as well as a frequency that lies in the gap of the phonon spectrum and decreases with increasing amplitude of the DB. In this paper, it is demonstrated that a DB with hard type nonlinearity (DB2) can be excited in a Pt{sub 3}Al nanofiber; this DB is localized on several light atoms, can move along the crystal, and has a frequency that lies above the phonon spectrum and increases with the DB amplitude. It is noteworthy that the presence of free surfaces of a nanofiber does not prevent the existence of DB1 and DB2 in it. Collisions of two DBs counterpropagating with equal velocities, as well as a collision of DB2 with a standing DB1, are considered. Two colliding DBs with hard type nonlinearity are repelled almost elastically, losing only insignificant part of their energy during the interaction. DB2 is also reflected from a standing DB1; in this case, the energy of the breathers is partially scattered into the Al sublattice. The results obtained indicate that DBs can transfer energy along a crystal over large distances. During the collision of two or more DBs, the energy localized in space can be as high as a few electron-volts; this allows one to raise the question of the participation of DBs in structural transformations of the crystal.

  2. Breathers on quantized superfluid vortices.

    PubMed

    Salman, Hayder

    2013-10-18

    We consider the propagation of breathers along a quantized superfluid vortex. Using the correspondence between the local induction approximation (LIA) and the nonlinear Schrödinger equation, we identify a set of initial conditions corresponding to breather solutions of vortex motion governed by the LIA. These initial conditions, which give rise to a long-wavelength modulational instability, result in the emergence of large amplitude perturbations that are localized in both space and time. The emergent structures on the vortex filament are analogous to loop solitons but arise from the dual action of bending and twisting of the vortex. Although the breather solutions we study are exact solutions of the LIA equations, we demonstrate through full numerical simulations that their key emergent attributes carry over to vortex dynamics governed by the Biot-Savart law and to quantized vortices described by the Gross-Pitaevskii equation. The breather excitations can lead to self-reconnections, a mechanism that can play an important role within the crossover range of scales in superfluid turbulence. Moreover, the observation of breather solutions on vortices in a field model suggests that these solutions are expected to arise in a wide range of other physical contexts from classical vortices to cosmological strings.

  3. Breathers on Quantized Superfluid Vortices

    NASA Astrophysics Data System (ADS)

    Salman, Hayder

    2013-10-01

    We consider the propagation of breathers along a quantized superfluid vortex. Using the correspondence between the local induction approximation (LIA) and the nonlinear Schrödinger equation, we identify a set of initial conditions corresponding to breather solutions of vortex motion governed by the LIA. These initial conditions, which give rise to a long-wavelength modulational instability, result in the emergence of large amplitude perturbations that are localized in both space and time. The emergent structures on the vortex filament are analogous to loop solitons but arise from the dual action of bending and twisting of the vortex. Although the breather solutions we study are exact solutions of the LIA equations, we demonstrate through full numerical simulations that their key emergent attributes carry over to vortex dynamics governed by the Biot-Savart law and to quantized vortices described by the Gross-Pitaevskii equation. The breather excitations can lead to self-reconnections, a mechanism that can play an important role within the crossover range of scales in superfluid turbulence. Moreover, the observation of breather solutions on vortices in a field model suggests that these solutions are expected to arise in a wide range of other physical contexts from classical vortices to cosmological strings.

  4. Comparison between discrete dipole implementations and exact techniques

    NASA Astrophysics Data System (ADS)

    Penttilä, Antti; Zubko, Evgenij; Lumme, Kari; Muinonen, Karri; Yurkin, Maxim A.; Draine, Bruce; Rahola, Jussi; Hoekstra, Alfons G.; Shkuratov, Yuri

    2007-07-01

    The use of the discrete dipole approximation (DDA) method in wave optical scattering simulations is growing quite fast. This is due to the fact that the current computing resources allow to apply DDA to sufficiently large scattering systems. The advantage of DDA is that it is applicable to arbitrary particle shape and configuration of particles. There are several computer implementations of the DDA method, and in this article we will compare four of such implementations in terms of their accuracy, speed and usability. The accuracy is studied by comparing the DDA results against results from either Mie, T-matrix or cluster T-Matrix codes with suitable geometries. It is found that the relative accuracy for intensity is between 2% and 6% for ice and silicate type refractive indices and the absolute accuracy for linear polarization ratio is roughly from 1% to 3%.

  5. Exact numerical solutions for dark waves on the discrete nonlinear Schrödinger equation.

    PubMed

    Sánchez-Rey, Bernardo; Johansson, Magnus

    2005-03-01

    In this paper we study numerically existence and stability of exact dark waves on the (nonintegrable) discrete nonlinear Schrödinger equation for a finite one-dimensional lattice. These are solutions that bifurcate from stationary dark modes with constant background intensity and zero intensity at a site, and whose initial state translates exactly one site each period of the internal oscillations. We show that exact dark waves are characterized by an oscillatory background whose wavelength is closely related with the velocity. Faster dark waves require smaller wavelengths. For slow enough velocity dark waves are linearly stable, but when trying to continue numerically a solution towards higher velocities bifurcations appear, due to rearrangements in the oscillatory tail in order to make possible a decreasing of the wavelength. However, in principle, one might control the stability of an exact dark wave adjusting a phase factor which plays the role of a discreteness parameter. In addition, we also study the regimes of existence and stability for stationary discrete gray modes, which are exact solutions with phase-twisted constant-amplitude background and nonzero minimum intensity. Also such solutions develop envelope oscillations on top of the homogeneous background when continued into moving phase-twisted solutions.

  6. Exact static solutions for discrete phi4 models free of the Peierls-Nabarro barrier: discretized first-integral approach.

    PubMed

    Dmitriev, S V; Kevrekidis, P G; Yoshikawa, N; Frantzeskakis, D J

    2006-10-01

    We propose a generalization of the discrete Klein-Gordon models free of the Peierls-Nabarro barrier derived in Spreight [Nonlinearity 12, 1373 (1999)] and Barashenkov [Phys. Rev. E 72, 035602(R) (2005)], such that they support not only kinks but a one-parameter set of exact static solutions. These solutions can be obtained iteratively from a two-point nonlinear map whose role is played by the discretized first integral of the static Klein-Gordon field, as suggested by Dmitriev [J. Phys. A 38, 7617 (2005)]. We then discuss some discrete phi4 models free of the Peierls-Nabarro barrier and identify for them the full space of available static solutions, including those derived recently by Cooper [Phys. Rev. E 72, 036605 (2005)] but not limited to them. These findings are also relevant to standing wave solutions of discrete nonlinear Schrödinger models. We also study stability of the obtained solutions. As an interesting aside, we derive the list of solutions to the continuum phi4 equation that fill the entire two-dimensional space of parameters obtained as the continuum limit of the corresponding space of the discrete models.

  7. An exact and consistent adjoint method for high-fidelity discretization of the compressible flow equations

    NASA Astrophysics Data System (ADS)

    Subramanian, Ramanathan Vishnampet Ganapathi

    Methods and computing hardware advances have enabled accurate predictions of complex compressible turbulence phenomena, such as the generation of jet noise that motivates the present effort. However, limited understanding of underlying physical mechanisms restricts the utility of such predictions since they do not, by themselves, indicate a route to design improvement. Gradient-based optimization using adjoints can circumvent the flow complexity to guide designs. Such methods have enabled sensitivity analysis and active control of turbulence at engineering flow conditions by providing gradient information at computational cost comparable to that of simulating the flow. They accelerate convergence of numerical design optimization algorithms, though this is predicated on the availability of an accurate gradient of the discretized flow equations. This is challenging to obtain, since both the chaotic character of the turbulence and the typical use of discretizations near their resolution limits in order to efficiently represent its smaller scales will amplify any approximation errors made in the adjoint formulation. Formulating a practical exact adjoint that avoids such errors is especially challenging if it is to be compatible with state-of-the-art simulation methods used for the turbulent flow itself. Automatic differentiation (AD) can provide code to calculate a nominally exact adjoint, but existing general-purpose AD codes are inefficient to the point of being prohibitive for large-scale turbulence simulations. We analyze the compressible flow equations as discretized using the same high-order workhorse methods used for many high-fidelity compressible turbulence simulations, and formulate a practical space--time discrete-adjoint method without changing the basic discretization. A key step is the definition of a particular discrete analog of the continuous norm that defines our cost functional; our selection leads directly to an efficient Runge--Kutta-like scheme

  8. Exactly solvable potentials with finitely many discrete eigenvalues of arbitrary choice

    NASA Astrophysics Data System (ADS)

    Sasaki, Ryu

    2014-06-01

    We address the problem of possible deformations of exactly solvable potentials having finitely many discrete eigenvalues of arbitrary choice. As Kay and Moses showed in 1956, reflectionless potentials in one dimensional quantum mechanics are exactly solvable. With an additional time dependence these potentials are identified as the soliton solutions of the Korteweg de Vries (KdV) hierarchy. An N-soliton potential has the time t and 2N positive parameters, k1 < ⋯ < kN and {cj}, j = 1, …, N, corresponding to N discrete eigenvalues lbrace -k_j^2rbrace. The eigenfunctions are elementary functions expressed by the ratio of determinants. The Darboux-Crum-Krein-Adler transformations or the Abraham-Moses transformations based on eigenfunction deletions produce lower soliton number potentials with modified parameters lbrace c^' }_jrbrace. We explore various identities satisfied by the eigenfunctions of the soliton potentials, which reflect the uniqueness theorem of Gel'fand-Levitan-Marchenko equations for separable (degenerate) kernels.

  9. Quantum breathers in lithium tantalate ferroelectrics

    NASA Astrophysics Data System (ADS)

    Biswas, Arindam; Adhikar, Sutapa; Choudhary, Kamal; Basu, Reshmi; Bandyopadhyay, A. K.; Bhattacharjee, A. K.; Mandal, D.

    2013-08-01

    Lithium tantalate is technologically one of the most important ferroelectric materials with a low poling field that has several applications in the field of photonics and memory switching devices. In a Hamiltonian system, such as dipolar system, the polarization behavior of such ferroelectrics can be well-modeled by Klein-Gordon (K-G) equation. Due to strong localization coupled with discreteness in a nonlinear K-G lattice, there is a formation of breathers and multi-breathers that manifest in the localization peaks across the domains in polarization-space-time plot. Due to the presence of nonlinearity and also impurities (as antisite tantalum defects) in the structure, dissipative effects are observed and hence dissipative breathers are studied here. To probe the quantum states related to discrete breathers, the same K-G lattice is quantized to give rise to quantum breathers (QBs) that are explained by a periodic boundary condition. The gap between the localized and delocalized phonon-band is a function of impurity content that is again related to the effect of pinning of domains due to antisite tantalum defects in the system, i.e., a point of easier switching within the limited amount of data on poling field, which is related to Landau coefficient (read, nonlinearity). Secondly, in a non-periodic boundary condition, the temporal evolution of quanta shows interesting behavior in terms of `critical' time of redistribution of quanta that is proportional to QB's lifetime in femtosecond having a possibility for THz applications. Hence, the importance of both the methods for characterizing quantum breathers is shown in these perspectives.

  10. Quantum Two-breathers Formed by Ultracold Bosonic Atoms in Optical Lattices

    NASA Astrophysics Data System (ADS)

    Tang, Bing

    2016-06-01

    Two-discrete breathers are the bound states of two localized modes that can appear in classical nonlinear lattices. I investigate the quantum signature of two-discrete breathers in the system of ultracold bosonic atoms in optical lattices, which is modeled as Bose-Hubbard model containing n bosons. When the number of bosons is small, I find numerically quantum two-breathers by making use of numerical diagonalization and perturbation theory. For the cases of a large number of bosons, I can successfully construct quantum two-breather states in the Hartree approximation.

  11. Discretization error estimation and exact solution generation using the method of nearby problems.

    SciTech Connect

    Sinclair, Andrew J.; Raju, Anil; Kurzen, Matthew J.; Roy, Christopher John; Phillips, Tyrone S.

    2011-10-01

    The Method of Nearby Problems (MNP), a form of defect correction, is examined as a method for generating exact solutions to partial differential equations and as a discretization error estimator. For generating exact solutions, four-dimensional spline fitting procedures were developed and implemented into a MATLAB code for generating spline fits on structured domains with arbitrary levels of continuity between spline zones. For discretization error estimation, MNP/defect correction only requires a single additional numerical solution on the same grid (as compared to Richardson extrapolation which requires additional numerical solutions on systematically-refined grids). When used for error estimation, it was found that continuity between spline zones was not required. A number of cases were examined including 1D and 2D Burgers equation, the 2D compressible Euler equations, and the 2D incompressible Navier-Stokes equations. The discretization error estimation results compared favorably to Richardson extrapolation and had the advantage of only requiring a single grid to be generated.

  12. Orbital stability and asymptotic stability of mKdV breather-type soliton solutions

    NASA Astrophysics Data System (ADS)

    Wang, Juan; Tian, Lixin; Zhang, Yingnan

    2017-04-01

    In this paper, we study the stability of modified Korteweg-de Vries equation breather. By using variable separation method, we obtain the exact breather-type soliton solutions. Moreover, this kind of solutions are globally stable in H2 topology, and we describe a simple, mathematical proof of the orbital stability and asymptotic stability of breather-type soliton solutions under a class of small perturbation.

  13. Exact static solutions of a two-dimensional discrete ϕ4 model

    NASA Astrophysics Data System (ADS)

    Khare, Avinash; Suchkov, Sergey V.; Dmitriev, Sergey V.

    2011-09-01

    For a two-dimensional scalar discrete ϕ4 model we obtain several exact static solutions in the form of the Jacobi elliptic functions (JEF) with arbitrary shift along the lattice. The Quispel-Roberts-Thompson-type quadratic maps are identified for the considered two-dimensional model by using a JEF solution. We also show that many of the static solutions can be constructed iteratively from these quadratic maps by starting from an admissible initial value. The kink solution, having the form of tanh , is numerically demonstrated to be generically stable.

  14. Coherent Backscattering by Polydisperse Discrete Random Media: Exact T-Matrix Results

    NASA Technical Reports Server (NTRS)

    Mishchenko, Michael I.; Dlugach, Janna M.; Mackowski, Daniel W.

    2011-01-01

    The numerically exact superposition T-matrix method is used to compute, for the first time to our knowledge, electromagnetic scattering by finite spherical volumes composed of polydisperse mixtures of spherical particles with different size parameters or different refractive indices. The backscattering patterns calculated in the far-field zone of the polydisperse multiparticle volumes reveal unequivocally the classical manifestations of the effect of weak localization of electromagnetic waves in discrete random media, thereby corroborating the universal interference nature of coherent backscattering. The polarization opposition effect is shown to be the least robust manifestation of weak localization fading away with increasing particle size parameter.

  15. Experimental long term evolution of breathers in water waves

    NASA Astrophysics Data System (ADS)

    Chabchoub, Amin

    2014-05-01

    Oceanic rogue waves may occur, due to the modulation instability, also referred to as the Benjamin-Feir instability. This instability can be also discussed within the framework of the nonlinear Schrödinger equation (NLS), which describes the dynamics of unstable packets in deep-water. In particular, through exact breather solutions of the NLS. Breathers are currently under intensive study, since their recent experimental observation in optics, water waves and in plasma proved the validity of the NLS to describe strong localizations in nonlinear dispersive media. We present evolution characteristics of breather, propagating over a long propagation distance in deep-water. In addition, we present several analytical and promising techniques, based on the theory of nonlinear wave theory, how an early stage of breather dynamics may be detected, before the occurrence of strong wave focusing.

  16. Event-driven Monte Carlo: Exact dynamics at all time scales for discrete-variable models

    NASA Astrophysics Data System (ADS)

    Mendoza-Coto, Alejandro; Díaz-Méndez, Rogelio; Pupillo, Guido

    2016-06-01

    We present an algorithm for the simulation of the exact real-time dynamics of classical many-body systems with discrete energy levels. In the same spirit of kinetic Monte Carlo methods, a stochastic solution of the master equation is found, with no need to define any other phase-space construction. However, unlike existing methods, the present algorithm does not assume any particular statistical distribution to perform moves or to advance the time, and thus is a unique tool for the numerical exploration of fast and ultra-fast dynamical regimes. By decomposing the problem in a set of two-level subsystems, we find a natural variable step size, that is well defined from the normalization condition of the transition probabilities between the levels. We successfully test the algorithm with known exact solutions for non-equilibrium dynamics and equilibrium thermodynamical properties of Ising-spin models in one and two dimensions, and compare to standard implementations of kinetic Monte Carlo methods. The present algorithm is directly applicable to the study of the real-time dynamics of a large class of classical Markovian chains, and particularly to short-time situations where the exact evolution is relevant.

  17. Tracking Breather Dynamics in Irregular Sea State Conditions.

    PubMed

    Chabchoub, Amin

    2016-09-30

    Breather solutions of the nonlinear Schrödinger equation (NLSE) are known to be considered as backbone models for extreme events in the ocean as well as in Kerr media. These exact deterministic rogue wave (RW) prototypes on a regular background describe a wide range of modulation instability configurations. Alternatively, oceanic or electromagnetic wave fields can be of chaotic nature and it is known that RWs may develop in such conditions as well. We report an experimental study confirming that extreme localizations in an irregular oceanic Joint North Sea Wave Project wave field can be tracked back to originate from exact NLSE breather solutions, such as the Peregrine breather. Numerical NLSE as well as modified NLSE simulations are both in good agreement with laboratory experiments and highlight the significance of universal weakly nonlinear evolution equations in the emergence as well as prediction of extreme events in nonlinear dispersive media.

  18. Tracking Breather Dynamics in Irregular Sea State Conditions

    NASA Astrophysics Data System (ADS)

    Chabchoub, Amin

    2016-09-01

    Breather solutions of the nonlinear Schrödinger equation (NLSE) are known to be considered as backbone models for extreme events in the ocean as well as in Kerr media. These exact deterministic rogue wave (RW) prototypes on a regular background describe a wide range of modulation instability configurations. Alternatively, oceanic or electromagnetic wave fields can be of chaotic nature and it is known that RWs may develop in such conditions as well. We report an experimental study confirming that extreme localizations in an irregular oceanic Joint North Sea Wave Project wave field can be tracked back to originate from exact NLSE breather solutions, such as the Peregrine breather. Numerical NLSE as well as modified NLSE simulations are both in good agreement with laboratory experiments and highlight the significance of universal weakly nonlinear evolution equations in the emergence as well as prediction of extreme events in nonlinear dispersive media.

  19. Calculating complete and exact Pareto front for multiobjective optimization: a new deterministic approach for discrete problems.

    PubMed

    Hu, Xiao-Bing; Wang, Ming; Di Paolo, Ezequiel

    2013-06-01

    Searching the Pareto front for multiobjective optimization problems usually involves the use of a population-based search algorithm or of a deterministic method with a set of different single aggregate objective functions. The results are, in fact, only approximations of the real Pareto front. In this paper, we propose a new deterministic approach capable of fully determining the real Pareto front for those discrete problems for which it is possible to construct optimization algorithms to find the k best solutions to each of the single-objective problems. To this end, two theoretical conditions are given to guarantee the finding of the actual Pareto front rather than its approximation. Then, a general methodology for designing a deterministic search procedure is proposed. A case study is conducted, where by following the general methodology, a ripple-spreading algorithm is designed to calculate the complete exact Pareto front for multiobjective route optimization. When compared with traditional Pareto front search methods, the obvious advantage of the proposed approach is its unique capability of finding the complete Pareto front. This is illustrated by the simulation results in terms of both solution quality and computational efficiency.

  20. Numerical computation of travelling breathers in Klein Gordon chains

    NASA Astrophysics Data System (ADS)

    Sire, Yannick; James, Guillaume

    2005-05-01

    We numerically study the existence of travelling breathers in Klein-Gordon chains, which consist of one-dimensional networks of nonlinear oscillators in an anharmonic on-site potential, linearly coupled to their nearest neighbors. Travelling breathers are spatially localized solutions having the property of being exactly translated by p sites along the chain after a fixed propagation time T (these solutions generalize the concept of solitary waves for which p=1). In the case of even on-site potentials, the existence of small amplitude travelling breathers superposed on a small oscillatory tail has been proved recently [G. James, Y. Sire, Travelling breathers with exponentially small tails in a chain of nonlinear oscillators, Commun. Math. Phys., 2005, in press (available online at http://www.springerlink.com)], the tail being exponentially small with respect to the central oscillation size. In this paper, we compute these solutions numerically and continue them into the large amplitude regime for different types of even potentials. We find that Klein-Gordon chains can support highly localized travelling breather solutions superposed on an oscillatory tail. We provide examples where the tail can be made very small and is difficult to detect at the scale of central oscillations. In addition, we numerically observe the existence of these solutions in the case of non-even potentials.

  1. Discrete nonlinear Schrödinger approximation of a mixed Klein Gordon/Fermi Pasta Ulam chain: Modulational instability and a statistical condition for creation of thermodynamic breathers

    NASA Astrophysics Data System (ADS)

    Johansson, Magnus

    2006-04-01

    We analyze certain aspects of the classical dynamics of a one-dimensional discrete nonlinear Schrödinger model with inter-site as well as on-site nonlinearities. The equation is derived from a mixed Klein-Gordon/Fermi-Pasta-Ulam chain of anharmonic oscillators coupled with anharmonic inter-site potentials, and approximates the slow dynamics of the fundamental harmonic of discrete small-amplitude modulational waves. We give explicit analytical conditions for modulational instability of travelling plane waves, and find in particular that sufficiently strong inter-site nonlinearities may change the nature of the instabilities from long-wavelength to short-wavelength perturbations. Further, we describe thermodynamic properties of the model using the grand-canonical ensemble to account for two conserved quantities: norm and Hamiltonian. The available phase space is divided into two separated parts with qualitatively different properties in thermal equilibrium: one part corresponding to a normal thermalized state with exponentially small probabilities for large-amplitude excitations, and another part typically associated with the formation of high-amplitude localized excitations, interacting with an infinite-temperature phonon bath. A modulationally unstable travelling wave may exhibit a transition from one region to the other as its amplitude is varied, and thus modulational instability is not a sufficient criterion for the creation of persistent localized modes in thermal equilibrium. For pure on-site nonlinearities the created localized excitations are typically pinned to particular lattice sites, while for significant inter-site nonlinearities they become mobile, in agreement with well-known properties of localized excitations in Fermi-Pasta-Ulam-type chains.

  2. Discrete nonlinear Schrödinger equations with arbitrarily high-order nonlinearities.

    PubMed

    Khare, Avinash; Rasmussen, Kim Ø; Salerno, Mario; Samuelsen, Mogens R; Saxena, Avadh

    2006-07-01

    A class of discrete nonlinear Schrödinger equations with arbitrarily high-order nonlinearities is introduced. These equations are derived from the same Hamiltonian using different Poisson brackets and include as particular cases the saturable discrete nonlinear Schrödinger equation and the Ablowitz-Ladik equation. As a common property, these equations possess three kinds of exact analytical stationary solutions for which the Peierls-Nabarro barrier is zero. Several properties of these solutions, including stability, discrete breathers, and moving solutions, are investigated.

  3. Exact meta-analysis approach for discrete data and its application to 2 × 2 tables with rare events

    PubMed Central

    Liu, Dungang; Liu, Regina Y.

    2014-01-01

    This paper proposes a general exact meta-analysis approach for synthesizing inferences from multiple studies of discrete data. The approach combines the p-value functions (also known as significance functions) associated with the exact tests from individual studies. It encompasses a broad class of exact meta-analysis methods, as it permits broad choices for the combining elements, such as tests used in individual studies, and any parameter of interest. The approach yields statements that explicitly account for the impact of individual studies on the overall inference, in terms of efficiency/power and the type I error rate. Those statements also give rises to empirical methods for further enhancing the combined inference. Although the proposed approach is for general discrete settings, for convenience, it is illustrated throughout using the setting of meta-analysis of multiple 2 × 2 tables. In the context of rare events data, such as observing few, zero or zero total (i.e., zero events in both arms) outcomes in binomial trials or 2 × 2 tables, most existing meta-analysis methods rely on the large-sample approximations which may yield invalid inference. The commonly used corrections to zero outcomes in rare events data, aiming to improve numerical performance can also incur undesirable consequences. The proposed approach applies readily to any rare event setting, including even the zero total event studies without any artificial correction. While debates continue on whether or how zero total event studies should be incorporated in meta-analysis, the proposed approach has the advantage of automatically including those studies and thus making use of all available data. Through numerical studies in rare events settings, the proposed exact approach is shown to be efficient and, generally, outperform commonly used meta-analysis methods, including Mental-Haenszel and Peto methods. PMID:25620825

  4. Breather soliton dynamics in microresonators

    NASA Astrophysics Data System (ADS)

    Yu, Mengjie; Jang, Jae K.; Okawachi, Yoshitomo; Griffith, Austin G.; Luke, Kevin; Miller, Steven A.; Ji, Xingchen; Lipson, Michal; Gaeta, Alexander L.

    2017-02-01

    The generation of temporal cavity solitons in microresonators results in coherent low-noise optical frequency combs that are critical for applications in spectroscopy, astronomy, navigation or telecommunications. Breather solitons also form an important part of many different classes of nonlinear wave systems, manifesting themselves as a localized temporal structure that exhibits oscillatory behaviour. To date, the dynamics of breather solitons in microresonators remains largely unexplored, and its experimental characterization is challenging. Here we demonstrate the excitation of breather solitons in two different microresonator platforms based on silicon nitride and on silicon. We investigate the dependence of the breathing frequency on pump detuning and observe the transition from period-1 to period-2 oscillation. Our study constitutes a significant contribution to understanding the soliton dynamics within the larger context of nonlinear science.

  5. Breather soliton dynamics in microresonators

    PubMed Central

    Yu, Mengjie; Jang, Jae K.; Okawachi, Yoshitomo; Griffith, Austin G.; Luke, Kevin; Miller, Steven A.; Ji, Xingchen; Lipson, Michal; Gaeta, Alexander L.

    2017-01-01

    The generation of temporal cavity solitons in microresonators results in coherent low-noise optical frequency combs that are critical for applications in spectroscopy, astronomy, navigation or telecommunications. Breather solitons also form an important part of many different classes of nonlinear wave systems, manifesting themselves as a localized temporal structure that exhibits oscillatory behaviour. To date, the dynamics of breather solitons in microresonators remains largely unexplored, and its experimental characterization is challenging. Here we demonstrate the excitation of breather solitons in two different microresonator platforms based on silicon nitride and on silicon. We investigate the dependence of the breathing frequency on pump detuning and observe the transition from period-1 to period-2 oscillation. Our study constitutes a significant contribution to understanding the soliton dynamics within the larger context of nonlinear science. PMID:28232720

  6. The role of superregular breathers in the development of modulation instability

    NASA Astrophysics Data System (ADS)

    Gelash, Andrey

    2016-04-01

    The integrable model of modulation instability (MI) - the one-dimensional nonlinear Schrodinger equation (NLSE) is in the focus of research for many years. Recently a significant progress has been made in the understanding of MI long time consequences (nonlinear stage of MI). Namely, the role of continuous spectrum was studied in the work [1], another two works are devoted to integrable turbulence formation [2] and to the Fermi-Pasta-Ulam recurrence [3]. We proposed so-called superregular breathers scenario of MI in [4]. In this scenario instability evolves from small localized perturbations of the condensate to N pairs of breathers which moves in opposite directions leaving a nonperturbed condensate with changed phase behind them. Recently we observed superregular breathers in hydrodynamics and optics experiments [5]. Here we discuss the role of superregular breathers in general scenario of MI. Furthermore we study another important question - the formation of freak waves from the perturbed condensate. To date two possible scenarios in the frame of NLSE have been described: 1) the collisions of Akhmediev breathers and 2) the rational solutions, such as Peregrine breather. In the first case the initial conditions usually include breathers of quite large amplitude. In the case of rational scenario the solution is pure homoclinic, i.e. completely returns to initial unperturbed condensate. Meanwhile, results of numerical modeling of freak waves formation in more exact models like Euler equation and NLSE with higher nonlinearities demonstrate formation of breathers. We present a new model of freak waves formation caused by particular collisions of superregular breathers. In the frame of this scenario extreme waves appear from small perturbations of the condensate and leave breathers, which never disappear. We study special two-pair superregular breathers scenario as well as randomly distributed N pairs solution. The latter case can be considered as a kind of integrable

  7. Fundamental Characteristics of Breather Hydrodynamics

    NASA Astrophysics Data System (ADS)

    Chabchoub, Amin

    2014-05-01

    The formation of oceanic rogue waves can be explained by the modulation instability of deep-water Stokes waves. In particular, being doubly-localized and amplifying the background wave amplitude by a factor of three or higher, the class of Peregrine-type breather solutions of the nonlinear Schrödinger equation (NLS) are considered to be appropriate models to describe extreme ocean wave dynamics. Here, we present an experimental validation of fundamental properties of the NLS within the context of Peregrine breather dynamics and we discuss the long-term behavior of such in time and space localized structures.

  8. Exact solutions of the nonlinear differential—difference equations associated with the nonlinear electrical transmission line through a variable-coefficient discrete (G'/G)-expansion method

    NASA Astrophysics Data System (ADS)

    Saïdou, Abdoulkary; Alidou, Mohamadou; Ousmanou, Dafounansou; Serge Yamigno, Doka

    2014-12-01

    We investigated exact traveling soliton solutions for the nonlinear electrical transmission line. By applying a concise and straightforward method, the variable-coefficient discrete (G'/G)-expansion method, we solve the nonlinear differential—difference equations associated with the network. We obtain some exact traveling wave solutions which include hyperbolic function solution, trigonometric function solution, rational solutions with arbitrary function, bright as well as dark solutions.

  9. 14 CFR 125.141 - Engine breather lines.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... Requirements § 125.141 Engine breather lines. (a) Engine breather lines must be so arranged that condensed water vapor that may freeze and obstruct the line cannot accumulate at any point. (b) Engine breathers... 14 Aeronautics and Space 3 2014-01-01 2014-01-01 false Engine breather lines. 125.141 Section...

  10. Transition behavior of the discrete nonlinear Schrödinger equation.

    PubMed

    Rumpf, Benno

    2008-03-01

    Many nonlinear lattice systems exhibit high-amplitude localized structures, or discrete breathers. Such structures emerge in the discrete nonlinear Schrödinger equation when the energy is above a critical threshold. This paper studies the statistical mechanics at the transition and constructs the probability distribution in the regime where breathers emerge. The entropy as a function of the energy is nonanalytic at the transition. The entropy is independent of the energy in the regime of breathers above the transition.

  11. Internal breather transformation in shallow sea

    NASA Astrophysics Data System (ADS)

    Talipova, Tatiana; Kurkina, Oxana; Rouvinskaya, Ekaterina; Soomere, Tarmo; Tyugin, Dmitry

    2016-04-01

    We address the propagation and transformation of internal breather - like wave in the shallow sea with taking into account the Earth rotation and variable background. He study is done numerically using an idealised three-layer stratification under the inclined bottom and the average summer density stratification and bathymetry in the southern part of the Baltic Sea. The focus is the changes in the breather properties when the water depth increases. The simulations are performed in parallel in the framework of the weakly nonlinear Gardner equation and the fully nonlinear Euler equations. The amplitudes of breathers in these frameworks are slightly differed one to another when the Earth's rotation is neglected, whereas a decrease in the amplitude is faster in the fully nonlinear simulation. The impact of the Earth's rotation substantially depends on the spectrum of the initial breather. The evolution of narrow-banded breathers is almost the same for rotating and non-rotating cases but amplitude of breatherswith a wide spectrum substantial changes in a case of the background rotation. The propagation of a narrow-banded breather along a path in the Baltic Sea over a location where the cubic nonlinear term in the Gardner equation changes its sign reveals fast disintegration of the breather into a precursor soliton and a transient dispersive wave group.

  12. Higher-order vector discrete rogue-wave states in the coupled Ablowitz-Ladik equations: Exact solutions and stability.

    PubMed

    Wen, Xiao-Yong; Yan, Zhenya; Malomed, Boris A

    2016-12-01

    An integrable system of two-component nonlinear Ablowitz-Ladik equations is used to construct complex rogue-wave (RW) solutions in an explicit form. First, the modulational instability of continuous waves is studied in the system. Then, new higher-order discrete two-component RW solutions of the system are found by means of a newly derived discrete version of a generalized Darboux transformation. Finally, the perturbed evolution of these RW states is explored in terms of systematic simulations, which demonstrates that tightly and loosely bound RWs are, respectively, nearly stable and strongly unstable solutions.

  13. Higher-order vector discrete rogue-wave states in the coupled Ablowitz-Ladik equations: Exact solutions and stability

    NASA Astrophysics Data System (ADS)

    Wen, Xiao-Yong; Yan, Zhenya; Malomed, Boris A.

    2016-12-01

    An integrable system of two-component nonlinear Ablowitz-Ladik equations is used to construct complex rogue-wave (RW) solutions in an explicit form. First, the modulational instability of continuous waves is studied in the system. Then, new higher-order discrete two-component RW solutions of the system are found by means of a newly derived discrete version of a generalized Darboux transformation. Finally, the perturbed evolution of these RW states is explored in terms of systematic simulations, which demonstrates that tightly and loosely bound RWs are, respectively, nearly stable and strongly unstable solutions.

  14. 14 CFR 121.243 - Engine breather lines.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 14 Aeronautics and Space 3 2011-01-01 2011-01-01 false Engine breather lines. 121.243 Section 121... REQUIREMENTS: DOMESTIC, FLAG, AND SUPPLEMENTAL OPERATIONS Special Airworthiness Requirements § 121.243 Engine breather lines. (a) Engine breather lines must be so arranged that condensed water vapor that may...

  15. 14 CFR 125.141 - Engine breather lines.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 14 Aeronautics and Space 3 2011-01-01 2011-01-01 false Engine breather lines. 125.141 Section 125... Requirements § 125.141 Engine breather lines. (a) Engine breather lines must be so arranged that condensed water vapor that may freeze and obstruct the line cannot accumulate at any point. (b) Engine...

  16. 14 CFR 125.141 - Engine breather lines.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 14 Aeronautics and Space 3 2012-01-01 2012-01-01 false Engine breather lines. 125.141 Section 125... Requirements § 125.141 Engine breather lines. (a) Engine breather lines must be so arranged that condensed water vapor that may freeze and obstruct the line cannot accumulate at any point. (b) Engine...

  17. 14 CFR 121.243 - Engine breather lines.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 14 Aeronautics and Space 3 2012-01-01 2012-01-01 false Engine breather lines. 121.243 Section 121... REQUIREMENTS: DOMESTIC, FLAG, AND SUPPLEMENTAL OPERATIONS Special Airworthiness Requirements § 121.243 Engine breather lines. (a) Engine breather lines must be so arranged that condensed water vapor that may...

  18. 14 CFR 121.243 - Engine breather lines.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 14 Aeronautics and Space 3 2013-01-01 2013-01-01 false Engine breather lines. 121.243 Section 121... REQUIREMENTS: DOMESTIC, FLAG, AND SUPPLEMENTAL OPERATIONS Special Airworthiness Requirements § 121.243 Engine breather lines. (a) Engine breather lines must be so arranged that condensed water vapor that may...

  19. 14 CFR 125.141 - Engine breather lines.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 14 Aeronautics and Space 3 2013-01-01 2013-01-01 false Engine breather lines. 125.141 Section 125... Requirements § 125.141 Engine breather lines. (a) Engine breather lines must be so arranged that condensed water vapor that may freeze and obstruct the line cannot accumulate at any point. (b) Engine...

  20. 14 CFR 121.243 - Engine breather lines.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 14 Aeronautics and Space 3 2010-01-01 2010-01-01 false Engine breather lines. 121.243 Section 121... REQUIREMENTS: DOMESTIC, FLAG, AND SUPPLEMENTAL OPERATIONS Special Airworthiness Requirements § 121.243 Engine breather lines. (a) Engine breather lines must be so arranged that condensed water vapor that may...

  1. 14 CFR 125.141 - Engine breather lines.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 14 Aeronautics and Space 3 2010-01-01 2010-01-01 false Engine breather lines. 125.141 Section 125... Requirements § 125.141 Engine breather lines. (a) Engine breather lines must be so arranged that condensed water vapor that may freeze and obstruct the line cannot accumulate at any point. (b) Engine...

  2. 14 CFR 121.243 - Engine breather lines.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... REQUIREMENTS: DOMESTIC, FLAG, AND SUPPLEMENTAL OPERATIONS Special Airworthiness Requirements § 121.243 Engine breather lines. (a) Engine breather lines must be so arranged that condensed water vapor that may freeze... 14 Aeronautics and Space 3 2014-01-01 2014-01-01 false Engine breather lines. 121.243 Section...

  3. Multi-dimensional, fully-implicit, spectral method for the Vlasov-Maxwell equations with exact conservation laws in discrete form

    NASA Astrophysics Data System (ADS)

    Delzanno, G. L.

    2015-11-01

    A spectral method for the numerical solution of the multi-dimensional Vlasov-Maxwell equations is presented. The plasma distribution function is expanded in Fourier (for the spatial part) and Hermite (for the velocity part) basis functions, leading to a truncated system of ordinary differential equations for the expansion coefficients (moments) that is discretized with an implicit, second order accurate Crank-Nicolson time discretization. The discrete non-linear system is solved with a preconditioned Jacobian-Free Newton-Krylov method. It is shown analytically that the Fourier-Hermite method features exact conservation laws for total mass, momentum and energy in discrete form. Standard tests involving plasma waves and the whistler instability confirm the validity of the conservation laws numerically. The whistler instability test also shows that we can step over the fastest time scale in the system without incurring in numerical instabilities. Some preconditioning strategies are presented, showing that the number of linear iterations of the Krylov solver can be drastically reduced and a significant gain in performance can be obtained.

  4. Damped-driven granular chains: An ideal playground for dark breathers and multibreathers

    NASA Astrophysics Data System (ADS)

    Chong, C.; Li, F.; Yang, J.; Williams, M. O.; Kevrekidis, I. G.; Kevrekidis, P. G.; Daraio, C.

    2014-03-01

    By applying an out-of-phase actuation at the boundaries of a uniform chain of granular particles, we demonstrate experimentally that time-periodic and spatially localized structures with a nonzero background (so-called dark breathers) emerge for a wide range of parameter values and initial conditions. We demonstrate a remarkable control over the number of breathers within the multibreather pattern that can be "dialed in" by varying the frequency or amplitude of the actuation. The values of the frequency (or amplitude) where the transition between different multibreather states occurs are predicted accurately by the proposed theoretical model, which is numerically shown to support exact dark breather and multibreather solutions. Moreover, we visualize detailed temporal and spatial profiles of breathers and, especially, of multibreathers using a full-field probing technology and enable a systematic favorable comparison among theory, computation, and experiments. A detailed bifurcation analysis reveals that the dark and multibreather families are connected in a "snaking" pattern, providing a roadmap for the identification of such fundamental states and their bistability in the laboratory.

  5. Avalanches, breathers, and flow reversal in a continuous Lorenz-96 model.

    PubMed

    Blender, R; Wouters, J; Lucarini, V

    2013-07-01

    For the discrete model suggested by Lorenz in 1996, a one-dimensional long-wave approximation with nonlinear excitation and diffusion is derived. The model is energy conserving but non-Hamiltonian. In a low-order truncation, weak external forcing of the zonal mean flow induces avalanchelike breather solutions which cause reversal of the mean flow by a wave-mean flow interaction. The mechanism is an outburst-recharge process similar to avalanches in a sandpile model.

  6. q-Breathers and the Fermi-Pasta-Ulam problem.

    PubMed

    Flach, S; Ivanchenko, M V; Kanakov, O I

    2005-08-05

    The Fermi-Pasta-Ulam (FPU) paradox consists of the non-equipartition of energy among normal modes of a weakly anharmonic atomic chain model. In the harmonic limit each normal mode corresponds to a periodic orbit in phase space and is characterized by its wave number q. We continue normal modes from the harmonic limit into the FPU parameter regime and obtain persistence of these periodic orbits, termed here q-breathers (QB). They are characterized by time periodicity, exponential localization in the q-space of normal modes and linear stability up to a size-dependent threshold amplitude. Trajectories computed in the original FPU setting are perturbations around these exact QB solutions. The QB concept is applicable to other nonlinear lattices as well.

  7. Long time stability of small-amplitude Breathers in a mixed FPU-KG model

    NASA Astrophysics Data System (ADS)

    Paleari, Simone; Penati, Tiziano

    2016-12-01

    In the limit of small couplings in the nearest neighbor interaction, and small total energy, we apply the resonant normal form result of a previous paper of ours to a finite but arbitrarily large mixed Fermi-Pasta-Ulam Klein-Gordon chain, i.e., with both linear and nonlinear terms in both the on-site and interaction potential, with periodic boundary conditions. An existence and orbital stability result for Breathers of such a normal form, which turns out to be a generalized discrete nonlinear Schrödinger model with exponentially decaying all neighbor interactions, is first proved. Exploiting such a result as an intermediate step, a long time stability theorem for the true Breathers of the KG and FPU-KG models, in the anti-continuous limit, is proven.

  8. Breather management in the derivative nonlinear Schrödinger equation with variable coefficients

    SciTech Connect

    Zhong, Wei-Ping; Belić, Milivoj; Malomed, Boris A.; Huang, Tingwen

    2015-04-15

    We investigate breather solutions of the generalized derivative nonlinear Schrödinger (DNLS) equation with variable coefficients, which is used in the description of femtosecond optical pulses in inhomogeneous media. The solutions are constructed by means of the similarity transformation, which reduces a particular form of the generalized DNLS equation into the standard one, with constant coefficients. Examples of bright and dark breathers of different orders, that ride on finite backgrounds and may be related to rogue waves, are presented. - Highlights: • Exact solutions of a generalized derivative NLS equation are obtained. • The solutions are produced by means of a transformation to the usual integrable equation. • The validity of the solutions is verified by comparing them to numerical counterparts. • Stability of the solutions is checked by means of direct simulations. • The model applies to the propagation of ultrashort pulses in optical media.

  9. Transformation of internal breathers in the idealised shelf sea conditions

    NASA Astrophysics Data System (ADS)

    Rouvinskaya, Ekaterina; Talipova, Тatyana; Kurkina, Oxana; Soomere, Tarmo; Tyugin, Dmitry

    2015-11-01

    We address the propagation and transformation of long internal breather-like wave in an idealised but realistic stratification and in the conditions matching the average summer stratification in the southern part of the Baltic Sea. The focus is on changes in the properties of the breather when the water depth increases and the coefficient at the cubic nonlinear term changes its sign, equivalently, the breather cannot exist anymore. The simulations are performed in parallel in the framework of weakly nonlinear Gardner equation and using fully nonlinear Euler equations. The amplitudes of breathers in these frameworks have slightly different courses in idealised conditions (when Earth's rotation is neglected) whereas a decrease in the amplitude is faster in the fully nonlinear simulation. The impact of the background (Earth's) rotation substantially depends on the spectral width of the initial breather. The evolution of narrow-banded breathers is almost the same for rotating and non-rotating situations but amplitudes of breathers with a wide spectrum experience substantial changes in realistic situation with the background rotation. The propagation of a narrow-banded breather along a path in the Baltic Sea over a location where the cubic nonlinear term changes its sign reveals fast disintegration of the breather into a precursor soliton and a transient dispersive wave group.

  10. Transfer of dipolar gas through the discrete localized mode

    NASA Astrophysics Data System (ADS)

    Bai, Xiao-Dong; Zhang, Ai-Xia; Xue, Ju-Kui

    2013-12-01

    By considering the discrete nonlinear Schrödinger model with dipole-dipole interactions for dipolar condensate, the existence, the types, the stability, and the dynamics of the localized modes in a nonlinear lattice are discussed. It is found that the contact interaction and the dipole-dipole interactions play important roles in determining the existence, the type, and the stability of the localized modes. Because of the coupled effects of the contact interaction and the dipole-dipole interactions, rich localized modes and their stability nature can exist: when the contact interaction is larger and the dipole-dipole interactions is smaller, a discrete bright breather occurs. In this case, while the on-site interaction can stabilize the discrete breather, the dipole-dipole interactions will destabilize the discrete breather; when both the contact interaction and the dipole-dipole interactions are larger, a discrete kink appears. In this case, both the on-site interaction and the dipole-dipole interactions can stabilize the discrete kink, but the discrete kink is more unstable than the ordinary discrete breather. The predicted results provide a deep insight into the dynamics of blocking, filtering, and transfer of the norm in nonlinear lattices for dipolar condensates.

  11. Superposed Akhmediev breather of the (3+1)-dimensional generalized nonlinear Schrödinger equation with external potentials

    SciTech Connect

    Dai, Chao-Qing; Zhu, Hai-Ping

    2014-02-15

    The one-to-one correspondence between a (3+1)-dimensional variable-coefficient nonlinear Schrödinger equation with linear and parabolic potentials and a standard nonlinear Schrödinger equation is given, and an exact superposed Akhmediev breather solution in certain parameter conditions is obtained. These precise expressions for the peak, width, center and phase indicate that diffraction and chirp factors influence the evolutional characteristics such as phase, center and width, while the gain/loss parameter only affects the evolution of the peak. Moreover, by modulating the relation between the terminal accumulated time T{sub e} or the maximum accumulated time T{sub m} and the accumulated time T{sub 0} based on the maximum amplitude of Akhmediev breather, the controllability for the type of excitation such as postpone, maintenance and restraint of the superposed Akhmediev breather is discussed. -- Highlights: • Exact superposed AB solution in certain parameter conditions is obtained. • The controllable factors for AB are discussed. • The controllable behaviors for superposed AB are studied in PDAS and DDM.

  12. Ventilation of neck breathers undergoing a diagnostic procedure or surgery.

    PubMed

    Brook, Itzhak

    2012-06-01

    Receiving sedation while undergoing a diagnostic procedure or general anesthesia for surgery is challenging for neck breathers including laryngectomees. Unfortunately, most medical personnel including nurses, medical technicians, surgeons, and anesthesiologists caring for laryngectomees before, during, and after surgery are not familiar with their unique anatomy, how they speak, and how to manage their airways during and after the operation. Methods to improve the care are discussed. Educating medical personnel about these issues can improve the care of neck breathers.

  13. Instabilities, breathers and rogue waves in optics

    NASA Astrophysics Data System (ADS)

    Dudley, John M.; Dias, Frédéric; Erkintalo, Miro; Genty, Goëry

    2014-10-01

    Optical rogue waves are rare, extreme fluctuations in the value of an optical field. The term 'optical rogue wave' was first used in the context of an analogy between pulse propagation in an optical fibre and wave group propagation on deep water, but has since been generalized to describe many other processes in optics. This Review provides an overview of the field, concentrating primarily on propagation in optical fibre systems that exhibit nonlinear breather and soliton dynamics, but also discussing other optical systems in which extreme events have been reported. Although statistical features such as long-tailed probability distributions are often considered to be the defining feature of rogue waves, we emphasize the underlying physical processes that drive the appearance of extreme optical structures.

  14. Controlled dynamics of sine-Gordon breather in long Josephson junctions

    NASA Astrophysics Data System (ADS)

    Gulevich, D. R.; Gaifullin, M. B.; Kusmartsev, F. V.

    2012-01-01

    We describe a method of controlled creation and detection of breathers in long Josephson Junctions. We show how a breather can be detected and investigated by measuring switching of the current biased Josephson junction to a resistive state. The complete theoretical description of the switching events associated with the decay of a breather into a fluxon-antifluxon pair is developed. Eventually, we propose several designs of the systems where breathers can be observed.

  15. Breather-like structures in modified sine-Gordon models

    NASA Astrophysics Data System (ADS)

    Ferreira, L. A.; Zakrzewski, Wojtek J.

    2016-05-01

    We report analytical and numerical results on breather-like field configurations in a theory which is a deformation of the integrable sine-Gordon model in (1  +  1) dimensions. The main motivation of our study is to test the ideas behind the recently proposed concept of quasi-integrability, which emerged from the observation that some field theories possess an infinite number of quantities which are asymptotically conserved in the scattering of solitons, and periodic in time in the case of breather-like configurations. Even though the mechanism responsible for such phenomena is not well understood yet, it is clear that special properties of the solutions under a space-time parity transformation play a crucial role. The numerical results of the present paper give support for the ideas on quasi-integrability, as it is found that extremely long-lived breather configurations satisfy these parity properties. We also report on a mechanism, particular to the theory studied here, that favours the existence of long lived breathers even in cases of significant deformations of the sine-Gordon potential. We also find numerically that our breather-like configurations decay through the gradual increase of their frequency of oscillations.

  16. On exactly conservative integrators

    SciTech Connect

    Bowman, J.C.; Shadwick, B.A.; Morrison, P.J.

    1997-06-01

    Traditional explicit numerical discretizations of conservative systems generically predict artificial secular drifts of nonlinear invariants. These algorithms are based on polynomial functions of the time step. The authors discuss a general approach for developing explicit algorithms that conserve such invariants exactly. They illustrate the method by applying it to the truncated two-dimensional Euler equations.

  17. Lifetime and decay of seeded breathers in the FPU system

    NASA Astrophysics Data System (ADS)

    Westley, Matthew; Demeglio, Nicholas; Sen, Surajit; Mohan, T. R. Krishna

    2014-03-01

    The Fermi-Pasta-Ulam problem consists of a chain of N oscillators with linear and nonlinear nearest neighbor interactions. Using velocity-Verlet integration, we study the evolution of the system after a perturbation that consists of a single stretched bond at the center of the chain. This perturbation results in the localization of most of the system's energy in the center particles in the form of a ``breather'' up to reasonably long times, which leaks energy at a rate depending on the potential parameters and the perturbation amplitude. The breather eventually undergoes a catastrophic breakdown, releasing all of its energy into acoustic noise and solitary waves. We explore the conditions on the amplitude and the parameters α, β for which a seeded breather will be most or least stable. Also we show how the overlap or lack thereof between the breather's primary frequencies and the acoustic frequencies influences its long-time stability. Research supported by a US Army Research Office STIR grant.

  18. Internal wave breather propagation under the influence of the Earth rotation

    NASA Astrophysics Data System (ADS)

    Talipova, Tatiana; Rouvinskaya, Ekaterina; Kurkina, Oxana

    2015-04-01

    The internal wave breather propagation under the influence of the Earth rotation is studied in the frames of the asymptotic model based on the Gardner equation as well as the fully nonlinear Euler equations. It is obtained that the amplitude and shape of short breathers depend on the Earth rotation very weakly but the wide breathers change the amplitude and shape sufficiently. This effect is studied in the model situation adapted to the Baltic Sea hydrological conditions. The rate of the breather amplitude damping upon the even bottom is shown.

  19. Maximal intensity higher-order Akhmediev breathers of the nonlinear Schrödinger equation and their systematic generation

    NASA Astrophysics Data System (ADS)

    Chin, Siu A.; Ashour, Omar A.; Nikolić, Stanko N.; Belić, Milivoj R.

    2016-10-01

    It is well known that Akhmediev breathers of the nonlinear cubic Schrödinger equation can be superposed nonlinearly via the Darboux transformation to yield breathers of higher order. Surprisingly, we find that the peak height of each Akhmediev breather only adds linearly to form the peak height of the final breather. Using this peak-height formula, we show that at any given periodicity, there exists a unique high-order breather of maximal intensity. Moreover, these high-order breathers form a continuous hierarchy, growing in intensity with increasing periodicity. For any such higher-order breather, a simple initial wave function can be extracted from the Darboux transformation to dynamically generate that breather from the nonlinear Schrödinger equation.

  20. Extreme events in discrete nonlinear lattices.

    PubMed

    Maluckov, A; Hadzievski, Lj; Lazarides, N; Tsironis, G P

    2009-02-01

    We perform statistical analysis on discrete nonlinear waves generated through modulational instability in the context of the Salerno model that interpolates between the integrable Ablowitz-Ladik (AL) equation and the nonintegrable discrete nonlinear Schrödinger equation. We focus on extreme events in the form of discrete rogue or freak waves that may arise as a result of rapid coalescence of discrete breathers or other nonlinear interaction processes. We find power law dependence in the wave amplitude distribution accompanied by an enhanced probability for freak events close to the integrable limit of the equation. A characteristic peak in the extreme event probability appears that is attributed to the onset of interaction of the discrete solitons of the AL equation and the accompanied transition from the local to the global stochasticity monitored through the positive Lyapunov exponent of a nonlinear map.

  1. Rogue waves and breathers in Heisenberg spin chain

    NASA Astrophysics Data System (ADS)

    Mukhopadhyay, Aritra K.; Vyas, Vivek M.; Panigrahi, Prasanta K.

    2015-07-01

    Following the connection of the non-linear Schrödinger equation with the continuum Heisenberg spin chain, we find the rogue soliton equivalent in the spin system. The breathers are also mapped to the corresponding space or time localized oscillatory modes, through the moving curve analogy. The spatio-temporal evolution of the curvature and torsion of the curve, underlying these dynamical systems, are explicated to illustrate the localization property of the rogue waves.

  2. Instability dynamics and breather formation in a horizontally shaken pendulum chain.

    PubMed

    Xu, Y; Alexander, T J; Sidhu, H; Kevrekidis, P G

    2014-10-01

    Inspired by the experimental results of Cuevas et al. [Phys. Rev. Lett. 102, 224101 (2009)], we consider theoretically the behavior of a chain of planar rigid pendulums suspended in a uniform gravitational field and subjected to a horizontal periodic driving force applied to the pendulum pivots. We characterize the motion of a single pendulum, finding bistability near the fundamental resonance and near the period-3 subharmonic resonance. We examine the development of modulational instability in a driven pendulum chain and find both a critical chain length and a critical frequency for the appearance of the instability. We study the breather solutions and show their connection to the single-pendulum dynamics and extend our analysis to consider multifrequency breathers connected to the period-3 periodic solution, showing also the possibility of stability in these breather states. Finally we examine the problem of breather generation and demonstrate a robust scheme for generation of on-site and off-site breathers.

  3. Exact milestoning

    SciTech Connect

    Bello-Rivas, Juan M.; Elber, Ron

    2015-03-07

    A new theory and an exact computer algorithm for calculating kinetics and thermodynamic properties of a particle system are described. The algorithm avoids trapping in metastable states, which are typical challenges for Molecular Dynamics (MD) simulations on rough energy landscapes. It is based on the division of the full space into Voronoi cells. Prior knowledge or coarse sampling of space points provides the centers of the Voronoi cells. Short time trajectories are computed between the boundaries of the cells that we call milestones and are used to determine fluxes at the milestones. The flux function, an essential component of the new theory, provides a complete description of the statistical mechanics of the system at the resolution of the milestones. We illustrate the accuracy and efficiency of the exact Milestoning approach by comparing numerical results obtained on a model system using exact Milestoning with the results of long trajectories and with a solution of the corresponding Fokker-Planck equation. The theory uses an equation that resembles the approximate Milestoning method that was introduced in 2004 [A. K. Faradjian and R. Elber, J. Chem. Phys. 120(23), 10880-10889 (2004)]. However, the current formulation is exact and is still significantly more efficient than straightforward MD simulations on the system studied.

  4. Quantum signatures of breathers in a finite Heisenberg spin chain.

    PubMed

    Djoufack, Z I; Kenfack-Jiotsa, A; Nguenang, J P; Domngang, S

    2010-05-26

    A map of a quantum Heisenberg spin chain into an extended Bose-Hubbard-like Hamiltonian is set up. Within this framework, the spectrum of the corresponding Bose-Hubbard chain, on a periodic one-dimensional lattice containing two, four, and six bosons shows interesting detailed band structures. These fine structures are studied using numerical diagonalization, and nondegenerate and degenerate perturbation theory. We also focus our attention on the effect of the anisotropy and Heisenberg exchange energy on the detailed band structures. The signature of the quantum breather is also set up by the square of the amplitudes of the corresponding eigenvectors in real space.

  5. Exactly conservative integrators

    SciTech Connect

    Shadwick, B.A.; Bowman, J.C.; Morrison, P.J.

    1995-07-19

    Traditional numerical discretizations of conservative systems generically yield an artificial secular drift of any nonlinear invariants. In this work we present an explicit nontraditional algorithm that exactly conserves invariants. We illustrate the general method by applying it to the Three-Wave truncation of the Euler equations, the Volterra-Lotka predator-prey model, and the Kepler problem. We discuss our method in the context of symplectic (phase space conserving) integration methods as well as nonsymplectic conservative methods. We comment on the application of our method to general conservative systems.

  6. Breather and double-pole solutions for the Benjamin-Ono equation in a stratified fluid

    NASA Astrophysics Data System (ADS)

    Sun, Wen-Rong; Tian, Bo; Zhong, Hui; Liu, Rong-Xiang

    2016-04-01

    The Benjamin-Ono equation is hereby investigated, which arises in the context of long internal gravity waves in a stratified fluid. With the Hirota method and symbolic computation, breather solutions are derived. Propagation of the breather and elastic collisions between the breather and soliton are graphically analyzed. The collision period and the bunch number in a wave packet are relevant to the ratio of the real part to the imaginary of the wavenumber. Through the coalescence of wavenumbers in the two-soliton solutions, we obtain the double-pole solutions.

  7. Breather turbulence versus soliton turbulence: Rogue waves, probability density functions, and spectral features

    NASA Astrophysics Data System (ADS)

    Akhmediev, N.; Soto-Crespo, J. M.; Devine, N.

    2016-08-01

    Turbulence in integrable systems exhibits a noticeable scientific advantage: it can be expressed in terms of the nonlinear modes of these systems. Whether the majority of the excitations in the system are breathers or solitons defines the properties of the turbulent state. In the two extreme cases we can call such states "breather turbulence" or "soliton turbulence." The number of rogue waves, the probability density functions of the chaotic wave fields, and their physical spectra are all specific for each of these two situations. Understanding these extreme cases also helps in studies of mixed turbulent states when the wave field contains both solitons and breathers, thus revealing intermediate characteristics.

  8. Breather turbulence versus soliton turbulence: Rogue waves, probability density functions, and spectral features.

    PubMed

    Akhmediev, N; Soto-Crespo, J M; Devine, N

    2016-08-01

    Turbulence in integrable systems exhibits a noticeable scientific advantage: it can be expressed in terms of the nonlinear modes of these systems. Whether the majority of the excitations in the system are breathers or solitons defines the properties of the turbulent state. In the two extreme cases we can call such states "breather turbulence" or "soliton turbulence." The number of rogue waves, the probability density functions of the chaotic wave fields, and their physical spectra are all specific for each of these two situations. Understanding these extreme cases also helps in studies of mixed turbulent states when the wave field contains both solitons and breathers, thus revealing intermediate characteristics.

  9. Rogue waves: from nonlinear Schrödinger breather solutions to sea-keeping test.

    PubMed

    Onorato, Miguel; Proment, Davide; Clauss, Günther; Klein, Marco

    2013-01-01

    Under suitable assumptions, the nonlinear dynamics of surface gravity waves can be modeled by the one-dimensional nonlinear Schrödinger equation. Besides traveling wave solutions like solitons, this model admits also breather solutions that are now considered as prototypes of rogue waves in ocean. We propose a novel technique to study the interaction between waves and ships/structures during extreme ocean conditions using such breather solutions. In particular, we discuss a state of the art sea-keeping test in a 90-meter long wave tank by creating a Peregrine breather solution hitting a scaled chemical tanker and we discuss its potential devastating effects on the ship.

  10. Interactions between impurities and breather-pairs in a nonlinear lattice

    NASA Astrophysics Data System (ADS)

    Lin, Han; Chen, Weizhong; Lu, Lei; Wei, Rongjue

    2003-09-01

    Based on the Frenkel-Kontorova (FK) model with a δ-impurity, this Letter investigates the interactions between impurities and breather-pairs in a nonlinear pendulum chain driven by a vertical vibration. The numerical results show that a long impurity in pendulum length can absorb more energy into the chain and upgrade the energy level of the breather-pair, when the driving frequency is slight lower than that of parametric resonance of the perfect pendulums, while a short one plays a counteractive role. As the chain is driven at a higher frequency, the effect of impurities turns reverse, which shows a clear symmetry and equivalency between long and short impurities. The main results including the effect and the symmetry of impurities generalize the conclusion on the single breather to the breather-pair.

  11. Quantum breathers in Heisenberg ferromagnetic chains with Dzyaloshinsky-Moriya interaction

    SciTech Connect

    Tang, Bing; Tang, Yi; Li, De-Jun

    2014-06-15

    We present an analytical study on quantum breathers in one-dimensional ferromagnetic XXZ chains with Dzyaloshinsky-Moriya interaction by means of the time-dependent Hartree approximation and the semidiscrete multiple-scale method. The stationary localized single-boson wave functions are obtained and these analytical solutions are checked by numerical simulations. With such stationary localized single-boson wave functions, we construct quantum breather states. Furthermore, the role of the Dzyaloshinsky-Moriya interaction is discussed.

  12. From NLS breathers to sea-keeping tests

    NASA Astrophysics Data System (ADS)

    Onorato, M.; Proment, D.; Clauss, G.; Klein, M.

    2012-04-01

    Nowadays there is a general consensus on the existence of rogue waves in the ocean. During the last years many efforts in the community of physicists and oceanographers have been devoted to the understanding of their origin. At the same time, engineers and naval architectures have been interested on the consequences of the impact of rogue wave on offshore structures and ships. Recently, in the Technical University of Berlin (TUB) breather solutions of the Nonlinear Schrödinger (NLS) equation have been successfully produced and used for the first time in sea-keeping tests, opening up new perspectives in the methodology of examining offshore structures and ships against rogue waves. Results on a LNG carrier and a chemical tanker will be presented.

  13. Evaluation of Respiratory Muscle Strength in Mouth Breathers: Clinical Evidences

    PubMed Central

    Andrade da Cunha, Renata; Andrade da Cunha, Daniele; Assis, Roberta Borba; Bezerra, Luciana Ângelo; Justino da Silva, Hilton

    2013-01-01

    Introduction The child who chronically breathes through the mouth may develop a weakness of the respiratory muscles. Researchers and clinical are seeking for methods of instrumental evaluation to gather complementary data to clinical evaluations. With this in mind, it is important to evaluate breathing muscles in the child with Mouth Breathing. Objective To develop a review to investigate studies that used evaluation methods of respiratory muscle strength in mouth breathers. Data Synthesis  The authors were unanimous in relation to manovacuometry method as a way to evaluate respiratory pressures in Mouth Breathing children. Two of them performed with an analog manovacuometer and the other one, digital. The studies were not evaluated with regard to the method efficacy neither the used instruments. Conclusion There are few studies evaluating respiratory muscle strength in Mouth Breathing people through manovacuometry and the low methodological rigor of the analyzed studies hindered a reliable result to support or refuse the use of this technique. PMID:25992108

  14. Discrete density of states

    NASA Astrophysics Data System (ADS)

    Aydin, Alhun; Sisman, Altug

    2016-03-01

    By considering the quantum-mechanically minimum allowable energy interval, we exactly count number of states (NOS) and introduce discrete density of states (DOS) concept for a particle in a box for various dimensions. Expressions for bounded and unbounded continua are analytically recovered from discrete ones. Even though substantial fluctuations prevail in discrete DOS, they're almost completely flattened out after summation or integration operation. It's seen that relative errors of analytical expressions of bounded/unbounded continua rapidly decrease for high NOS values (weak confinement or high energy conditions), while the proposed analytical expressions based on Weyl's conjecture always preserve their lower error characteristic.

  15. Discretization of the Schwarzian derivative

    NASA Astrophysics Data System (ADS)

    Itoh, Toshiaki

    2016-10-01

    Numerical treatment of the Schwarzian derivatives from the exact discretization point is useful for many applications. Since we found the discrete counterpart of Schwarzian derivative is the Cross-ratio, we can regard the Cross-ratio to the discrete conformal mapping function instead of the Schwarzian derivative. By this approach we found some integrable system of special functions are derived by the classical treatment of 2nd order ODE and difference equations. Such discrete integrable system is composed of simultameous equation of the two Möbius transformations or discrete Riccati's eqautions.

  16. Integrable discrete PT symmetric model.

    PubMed

    Ablowitz, Mark J; Musslimani, Ziad H

    2014-09-01

    An exactly solvable discrete PT invariant nonlinear Schrödinger-like model is introduced. It is an integrable Hamiltonian system that exhibits a nontrivial nonlinear PT symmetry. A discrete one-soliton solution is constructed using a left-right Riemann-Hilbert formulation. It is shown that this pure soliton exhibits unique features such as power oscillations and singularity formation. The proposed model can be viewed as a discretization of a recently obtained integrable nonlocal nonlinear Schrödinger equation.

  17. Intrinsic Energy Localization Through Discrete Gap Breathers in One-Dimensional Diatomic Granular Crystals

    DTIC Science & Technology

    2010-05-01

    chanical resonators 12, superconducting Josephson junc- tions 13, Bose -Einstein condensation 14, electrical lat- tices 15, and more. In...Press, San Diego, CA, 2003. 10 M. Peyrard, Nonlinearity 17, R1 2004. 11 M. Sato, B. E. Hubbard , and A. J. Sievers, Rev. Mod. Phys. 78, 137

  18. Energy transfer in strained graphene assisted by discrete breathers excited by external ac driving

    NASA Astrophysics Data System (ADS)

    Evazzade, Iman; Lobzenko, Ivan P.; Korznikova, Elena A.; Ovid'ko, Ilya A.; Roknabadi, Mahmood Rezaee; Dmitriev, Sergey V.

    2017-01-01

    In the present molecular-dynamics study, external ac driving is used at frequencies outside the phonon spectrum to excite gap DBs in uniformly strained graphene nanoribbon. Harmonic displacement or harmonic force is applied to a zigzag atomic chain of graphene. In the former case, nonpropagating DBs are excited on the atoms next to the driven atoms, while in the latter case the excited DBs propagate along the nanoribbon. The energy transfer along the nanoribbon assisted by the DBs is investigated in detail, and the differences between harmonic displacement driving and harmonic force driving are discussed. It is concluded that the amplitude of external driving at out-of-phonon spectrum frequencies should not necessarily be large to obtain a noticeable energy transfer to the system. Overall, our results suggest that external harmonic driving even at relatively small driving amplitudes can be used to control excitation of DBs and consequently the energy transfer to the system.

  19. Integrability Test and Spatiotemporal Feature of Breather-Wave to the (2+1)-Dimensional Boussinesq Equation

    NASA Astrophysics Data System (ADS)

    Luo, Hong-Ying; Wang, Chuan-Jian; Liu, Jun; Dai, Zheng-De

    2013-06-01

    Painlevé integrability has been tested for (2+1)D Boussinesq equation with disturbance term using the standard WTC approach after introducing the Kruskai's simplification. New breather solitary solutions depending on constant equilibrium solution are obtained by using Extended Homoclinic Test Method. Moreover, the spatiotemporal feature of breather solitary wave is exhibited.

  20. Breather dynamics in the nonlinear Schrödinger regime of perturbed sine-gordon systems

    NASA Astrophysics Data System (ADS)

    Taki, M.; Spatschek, K. H.; Fernandez, J. C.; Grauer, R.; Reinisch, G.

    1989-11-01

    A possible route to temporal chaos with coherent stable spatial structures is proposed for the driven damped sine-Gordon equation. For near-conservative perturbations, the dynamics of a breather is investigated numerically and semi-analytically in the presence of an ac driver and a simple damping term. For moderate driver strengths, a flat (space-independent) attractor exists whereas above a threshold a phase-locked breather co-exists. The latter can undergo a period-doubling route to temporal chaos as is shown here for a certain parameter regime. Relations to other works which operate in a different parameter regime are discussed. The near-conservative perturbations and the low driver strengths allow to interpret the results within a simple model originating from the so-called nonlinear Schrödinger limit. In fact, within this limit (small amplitude breather), the chaotic (or not) transitions are dominated by interactions between breather-like solutions and radiation (mostly k=0 mode). Therefore, three collective coordinates, i.e. the amplitude of the phase-locked breather, its phase, as well as the complex amplitude of the linear k=0 mode, are sufficient to construct a system of four ordinary differential equations of first order which reveal the basic features of the partial differential equations in a satisfactory manner.

  1. Weak-light rogue waves, breathers, and their active control in a cold atomic gas via electromagnetically induced transparency

    NASA Astrophysics Data System (ADS)

    Liu, Junyang; Hang, Chao; Huang, Guoxiang

    2016-06-01

    We propose a scheme to demonstrate the existence of optical Peregrine rogue waves and Akhmediev and Kuznetsov-Ma breathers and realize their active control via electromagnetically induced transparency (EIT). The system we suggest is a cold, Λ -type three-level atomic gas interacting with a probe and a control laser fields and working under EIT condition. We show that, based on EIT with an incoherent optical pumping, which can be used to cancel optical absorption, (1+1)-dimensional optical Peregrine rogue waves, Akhmediev breathers, and Kuznetsov-Ma breathers can be generated with very low light power. In addition, we demonstrate that the Akhmediev and Kuznetsov-Ma breathers in (2+1)-dimensions obtained can be actively manipulated by using an external magnetic field. As a result, these breathers can display trajectory deflections and bypass obstacles during propagation.

  2. On the nonlinear dynamics of breathers waves in electronegative plasmas with Maxwellian negative ions

    NASA Astrophysics Data System (ADS)

    El-Tantawy, S. A.; Wazwaz, A. M.; Ali Shan, S.

    2017-02-01

    Theoretical investigations depending on the observation data are carried out for the nonlinear amplitude modulation of ion-acoustic waves propagating in an unmagnetized plasma composed of Maxwellian electrons and light negative ions in addition to mobile cold positive ions. The basic set of fluid equations is reduced to a nonlinear Schrödinger equation (NLSE) for describing the modulational instability process. The regions of the stable and unstable wavepackets have been confined precisely for various regimes. Moreover, the criteria for the existence of the breathers have been obtained. Analytical solutions of the NLSE in the forms of Akhmediev breathers, Kuznetsov-Ma (KM) solitons, and rogue waves are obtained. The characteristics of the profile of Akhmediev breathers, KM solitons, and freak waves are examined depending on the relevant physical parameters of the observed data.

  3. Long-time stability of breathers in Hamiltonian { P }{ T }-symmetric lattices

    NASA Astrophysics Data System (ADS)

    Chernyavsky, Alexander; Pelinovsky, Dmitry E.

    2016-11-01

    We consider the Hamiltonian version of a { P }{ T }-symmetric lattice that describes dynamics of coupled pendula under a resonant periodic force. Using the asymptotic limit of a weak coupling between the pendula, we prove the nonlinear long-time stability of breathers (time-periodic solutions localized in the lattice) by using the Lyapunov method. Breathers are saddle points of the extended energy function, which are located between the continuous bands of positive and negative energy. Despite not rendering the energy minima, the breathers are shown to admit an approximate Lyapunov function which helps us to estimate evolution of perturbations on a long but finite time interval. The nonlinear stability analysis becomes possible for the { P }{ T }-symmetric lattice only because of the existence of a Hamiltonian structure.

  4. Manipulating matter rogue waves and breathers in Bose-Einstein condensates.

    PubMed

    Manikandan, K; Muruganandam, P; Senthilvelan, M; Lakshmanan, M

    2014-12-01

    We construct higher-order rogue wave solutions and breather profiles for the quasi-one-dimensional Gross-Pitaevskii equation with a time-dependent interatomic interaction and external trap through the similarity transformation technique. We consider three different forms of traps: (i) the time-independent expulsive trap, (ii) time-dependent monotonous trap, and (iii) time-dependent periodic trap. Our results show that when we change a parameter appearing in the time-independent or time-dependent trap the second- and third-order rogue waves transform into the first-order-like rogue waves. We also analyze the density profiles of breather solutions. Here we also show that the shapes of the breathers change when we tune the strength of the trap parameter. Our results may help to manage rogue waves experimentally in a BEC system.

  5. Interaction of sine-Gordon kinks and breathers with a parity-time-symmetric defect

    NASA Astrophysics Data System (ADS)

    Saadatmand, Danial; Dmitriev, Sergey V.; Borisov, Denis I.; Kevrekidis, Panayotis G.

    2014-11-01

    The scattering of kinks and low-frequency breathers of the nonlinear sine-Gordon (SG) equation on a spatially localized parity-time-symmetric perturbation (defect) with a balanced gain and loss is investigated numerically. It is demonstrated that if a kink passes the defect, it always restores its initial momentum and energy, and the only effect of the interaction with the defect is a phase shift of the kink. A kink approaching the defect from the gain side always passes, while in the opposite case it must have sufficiently large initial momentum to pass through the defect instead of being trapped in the loss region. The kink phase shift and critical velocity are calculated by means of the collective variable method. Kink-kink (kink-antikink) collisions at the defect are also briefly considered, showing how their pairwise repulsive (respectively, attractive) interaction can modify the collisional outcome of a single kink within the pair with the defect. For the breather, the result of its interaction with the defect depends strongly on the breather parameters (velocity, frequency, and initial phase) and on the defect parameters. The breather can gain some energy from the defect and as a result potentially even split into a kink-antikink pair, or it can lose a part of its energy. Interestingly, the breather translational mode is very weakly affected by the dissipative perturbation, so that a breather penetrates more easily through the defect when it comes from the lossy side, than a kink. In all studied soliton-defect interactions, the energy loss to radiation of small-amplitude extended waves is negligible.

  6. Nonexistence of small, odd breathers for a class of nonlinear wave equations

    NASA Astrophysics Data System (ADS)

    Kowalczyk, Michał; Martel, Yvan; Muñoz, Claudio

    2016-11-01

    In this note, we show that for a large class of nonlinear wave equations with odd nonlinearities, any globally defined odd solution which is small in the energy space decays to 0 in the local energy norm. In particular, this result shows nonexistence of small, odd breathers for some classical nonlinear Klein Gordon equations, such as the sine-Gordon equation and φ ^4 and φ ^6 models. It also partially answers a question of Soffer and Weinstein (Invent Math 136(1): 9-74, p 19 1999) about nonexistence of breathers for the cubic NLKG in dimension one.

  7. Breather solutions of the integrable quintic nonlinear Schrödinger equation and their interactions.

    PubMed

    Chowdury, A; Kedziora, D J; Ankiewicz, A; Akhmediev, N

    2015-02-01

    We present breather solutions of the quintic integrable equation of the Schrödinger hierarchy. This equation has terms describing fifth-order dispersion and matching nonlinear terms. Using a Darboux transformation, we derive first-order and second-order breather solutions. These include first- and second-order rogue-wave solutions. To some extent, these solutions are analogous with the corresponding nonlinear Schrödinger equation (NLSE) solutions. However, the presence of a free parameter in the equation results in specific solutions that have no analogues in the NLSE case. We analyze new features of these solutions.

  8. Breather and rogue wave solutions of a generalized nonlinear Schrödinger equation.

    PubMed

    Wang, L H; Porsezian, K; He, J S

    2013-05-01

    In this paper, using the Darboux transformation, we demonstrate the generation of first-order breather and higher-order rogue waves from a generalized nonlinear Schrödinger equation with several higher-order nonlinear effects representing femtosecond pulse propagation through nonlinear silica fiber. The same nonlinear evolution equation can also describe the soliton-type nonlinear excitations in classical Heisenberg spin chain. Such solutions have a parameter γ(1), denoting the strength of the higher-order effects. From the numerical plots of the rational solutions, the compression effects of the breather and rogue waves produced by γ(1) are discussed in detail.

  9. Multisolitons, breathers, and rogue waves for the Hirota equation generated by the Darboux transformation.

    PubMed

    Tao, Yongsheng; He, Jingsong

    2012-02-01

    The determinant representation of the n-fold Darboux transformation of the Hirota equation is given. Based on our analysis, the 1-soliton, 2-soliton, and breathers solutions are given explicitly. Further, the first order rogue wave solutions are given by a Taylor expansion of the breather solutions. In particular, the explicit formula of the rogue wave has several parameters, which is more general than earlier reported results and thus provides a systematic way to tune experimentally the rogue waves by choosing different values for them.

  10. Discrete dislocations in graphene

    NASA Astrophysics Data System (ADS)

    Ariza, M. P.; Ortiz, M.

    2010-05-01

    In this work, we present an application of the theory of discrete dislocations of Ariza and Ortiz (2005) to the analysis of dislocations in graphene. Specifically, we discuss the specialization of the theory to graphene and its further specialization to the force-constant model of Aizawa et al. (1990). The ability of the discrete-dislocation theory to predict dislocation core structures and energies is critically assessed for periodic arrangements of dislocation dipoles and quadrupoles. We show that, with the aid of the discrete Fourier transform, those problems are amenable to exact solution within the discrete-dislocation theory, which confers the theory a distinct advantage over conventional atomistic models. The discrete dislocations exhibit 5-7 ring core structures that are consistent with observation and result in dislocation energies that fall within the range of prediction of other models. The asymptotic behavior of dilute distributions of dislocations is characterized analytically in terms of a discrete prelogarithmic energy tensor. Explicit expressions for this discrete prelogarithmic energy tensor are provided up to quadratures.

  11. Breathers and localized solitons for the Hirota–Maxwell–Bloch system on constant backgrounds in erbium doped fibers

    SciTech Connect

    Guo, Rui Hao, Hui-Qin

    2014-05-15

    In nonlinear erbium doped fibers, the Hirota–Maxwell–Bloch system with higher order effects usually governs the propagation of ultrashort pulses. New soliton solutions for this system are constructed on the constant backgrounds including one and two breathers and first and higher order localized soliton solutions. Considering the influence of higher order effects, propagation properties of those soliton solutions are discussed. -- Highlights: •The AB and Ma-breathers are derived on the constant backgrounds. •Dynamic features of two-breathers are discussed. •Localized solutions are generated from two different ways.

  12. Breather-to-soliton conversions described by the quintic equation of the nonlinear Schrödinger hierarchy.

    PubMed

    Chowdury, A; Kedziora, D J; Ankiewicz, A; Akhmediev, N

    2015-03-01

    We analyze the quintic integrable equation of the nonlinear Schrödinger hierarchy that includes fifth-order dispersion with matching higher-order nonlinear terms. We show that a breather solution of this equation can be converted into a nonpulsating soliton solution on a background. We calculate the locus of the eigenvalues on the complex plane which convert breathers into solitons. This transformation does not have an analog in the standard nonlinear Schrödinger equation. We also study the interaction between the new type of solitons, as well as between breathers and these solitons.

  13. Lubrication System 2. Service the Crankcase Breather. Student Manual. Small Engine Repair Series. First Edition.

    ERIC Educational Resources Information Center

    Hill, Pamela

    This student manual on servicing the crankcase breather is the third of three in an instructional package on the lubrication system in the Small Engine Repair Series for handicapped students. The stated purpose for the booklet is to help students learn what tools and equipment to use and all the steps of the job. Informative material and…

  14. Quantum Breathers in Anisotropy Ferromagnetic Chains with Second-Order Coupling

    NASA Astrophysics Data System (ADS)

    Tang, Bing

    2016-08-01

    Under considering the next-nearest-neighbor interaction, quantum breathers in one-dimensional anisotropy ferromagnetic chains are theortically studied. By introducing the Dyson-Maleev transformation for spin operators, a map to a Heisenberg ferromagnetic spin lattice into an extended Bose-Hubbard model can be established. In the case of a small number of bosons, by means of the numerical diagonalization technique, the energy spectrum of the corresponding extended Bose-Hubbard model containing two bosons is calculated. When the strength of the single-ion anisotropy is enough large, a isolated single band appears. This isolated single band corresponds to two-boson bound state, which is the simplest quantum breather state. It is shown that the introduction of the next-nearest-neighbor interaction will lead to interesting band structures. In the case of a large number of bosons, by applying the time-dependent Hartree approximation, quantum breather states for the system is constructed. In this case, the effect of the next-nearest-neighbor interaction on quantum breathers is also analyzed.

  15. Nonlinear instabilities of multi-site breathers in Klein-Gordon lattices

    DOE PAGES

    Cuevas-Maraver, Jesus; Kevrekidis, Panayotis G.; Pelinovsky, Dmitry E.

    2016-08-01

    Here, we explore the possibility of multi-site breather states in a nonlinear Klein–Gordon lattice to become nonlinearly unstable, even if they are found to be spectrally stable. The mechanism for this nonlinear instability is through the resonance with the wave continuum of a multiple of an internal mode eigenfrequency in the linearization of excited breather states. For the nonlinear instability, the internal mode must have its Krein signature opposite to that of the wave continuum. This mechanism is not only theoretically proposed, but also numerically corroborated through two concrete examples of the Klein–Gordon lattice with a soft (Morse) and amore » hard (Φ4) potential. Compared to the case of the nonlinear Schrödinger lattice, the Krein signature of the internal mode relative to that of the wave continuum may change depending on the period of the multi-site breather state. For the periods for which the Krein signatures of the internal mode and the wave continuum coincide, multi-site breather states are observed to be nonlinearly stable.« less

  16. Nonlinear instabilities of multi-site breathers in Klein-Gordon lattices

    SciTech Connect

    Cuevas-Maraver, Jesus; Kevrekidis, Panayotis G.; Pelinovsky, Dmitry E.

    2016-08-01

    Here, we explore the possibility of multi-site breather states in a nonlinear Klein–Gordon lattice to become nonlinearly unstable, even if they are found to be spectrally stable. The mechanism for this nonlinear instability is through the resonance with the wave continuum of a multiple of an internal mode eigenfrequency in the linearization of excited breather states. For the nonlinear instability, the internal mode must have its Krein signature opposite to that of the wave continuum. This mechanism is not only theoretically proposed, but also numerically corroborated through two concrete examples of the Klein–Gordon lattice with a soft (Morse) and a hard (Φ4) potential. Compared to the case of the nonlinear Schrödinger lattice, the Krein signature of the internal mode relative to that of the wave continuum may change depending on the period of the multi-site breather state. For the periods for which the Krein signatures of the internal mode and the wave continuum coincide, multi-site breather states are observed to be nonlinearly stable.

  17. Microscopic derivation of discrete hydrodynamics.

    PubMed

    Español, Pep; Anero, Jesús G; Zúñiga, Ignacio

    2009-12-28

    By using the standard theory of coarse graining based on Zwanzig's projection operator, we derive the dynamic equations for discrete hydrodynamic variables. These hydrodynamic variables are defined in terms of the Delaunay triangulation. The resulting microscopically derived equations can be understood, a posteriori, as a discretization on an arbitrary irregular grid of the Navier-Stokes equations. The microscopic derivation provides a set of discrete equations that exactly conserves mass, momentum, and energy and the dissipative part of the dynamics produces strict entropy increase. In addition, the microscopic derivation provides a practical implementation of thermal fluctuations in a way that the fluctuation-dissipation theorem is satisfied exactly. This paper points toward a close connection between coarse-graining procedures from microscopic dynamics and discretization schemes for partial differential equations.

  18. An Exact Formulation of Bradford's Law.

    ERIC Educational Resources Information Center

    Leimkuhler, Ferdinand F.

    1980-01-01

    Demonstrates, with an example, a relatively simple method for fitting Bradford's law to empirical data to estimate the number of journals and articles in a subject collection. An exact discrete formulation illustrates Bradford's law as a special case of the Zipf-Mandlebrot "rank frequency" law. (Author/RAA)

  19. Peak-height formula for higher-order breathers of the nonlinear Schrödinger equation on nonuniform backgrounds

    NASA Astrophysics Data System (ADS)

    Chin, Siu A.; Ashour, Omar A.; Nikolić, Stanko N.; Belić, Milivoj R.

    2017-01-01

    Given any background (or seed) solution of the nonlinear Schrödinger equation, the Darboux transformation can be used to generate higher-order breathers with much greater peak intensities. In this work, we use the Darboux transformation to prove, in a unified manner and without knowing the analytical form of the background solution, that the peak height of a high-order breather is just a sum of peak heights of first-order breathers plus that of the background, irrespective of the specific choice of the background. Detailed results are verified for breathers on a cnoidal background. Generalizations to more extended nonlinear Schrödinger equations, such as the Hirota equation, are indicated.

  20. Peak-height formula for higher-order breathers of the nonlinear Schrödinger equation on nonuniform backgrounds.

    PubMed

    Chin, Siu A; Ashour, Omar A; Nikolić, Stanko N; Belić, Milivoj R

    2017-01-01

    Given any background (or seed) solution of the nonlinear Schrödinger equation, the Darboux transformation can be used to generate higher-order breathers with much greater peak intensities. In this work, we use the Darboux transformation to prove, in a unified manner and without knowing the analytical form of the background solution, that the peak height of a high-order breather is just a sum of peak heights of first-order breathers plus that of the background, irrespective of the specific choice of the background. Detailed results are verified for breathers on a cnoidal background. Generalizations to more extended nonlinear Schrödinger equations, such as the Hirota equation, are indicated.

  1. Breathers and rogue waves for an eighth-order nonlinear Schrödinger equation in an optical fiber

    NASA Astrophysics Data System (ADS)

    Hu, Wen-Qiang; Gao, Yi-Tian; Zhao, Chen; Lan, Zhong-Zhou

    2017-02-01

    In this paper, an eighth-order nonlinear Schrödinger equation is investigated in an optical fiber, which can be used to describe the propagation of ultrashort nonlinear pulses. Lax pair and infinitely-many conservation laws are derived to verify the integrability of this equation. Via the Darboux transformation and generalized Darboux transformation, the analytic breather and rogue wave solutions are obtained. Influence of the coefficients of operators in this equation, which represent different order nonlinearity, and the spectral parameter on the propagation and interaction of the breathers and rogue waves is also discussed. We find that (i) the periodic of the breathers decreases as the augment of the spectral parameter; (ii) the coefficients of operators change the compressibility and periodic of the breathers, and can affect the interaction range and temporal-spatial distribution of the rogue waves.

  2. Multi-soliton, multi-breather and higher order rogue wave solutions to the complex short pulse equation

    NASA Astrophysics Data System (ADS)

    Ling, Liming; Feng, Bao-Feng; Zhu, Zuonong

    2016-07-01

    In the present paper, we are concerned with the general analytic solutions to the complex short pulse (CSP) equation including soliton, breather and rogue wave solutions. With the aid of a generalized Darboux transformation, we construct the N-bright soliton solution in a compact determinant form, the N-breather solution including the Akhmediev breather and a general higher order rogue wave solution. The first and second order rogue wave solutions are given explicitly and analyzed. The asymptotic analysis is performed rigorously for both the N-soliton and the N-breather solutions. All three forms of the analytical solutions admit either smoothed-, cusped- or looped-type ones for the CSP equation depending on the parameters. It is noted that, due to the reciprocal (hodograph) transformation, the rogue wave solution to the CSP equation can be a smoothed, cusponed or a looped one, which is different from the rogue wave solution found so far.

  3. Exactly solvable chaos in an electromechanical oscillator

    NASA Astrophysics Data System (ADS)

    Owens, Benjamin A. M.; Stahl, Mark T.; Corron, Ned J.; Blakely, Jonathan N.; Illing, Lucas

    2013-09-01

    A novel electromechanical chaotic oscillator is described that admits an exact analytic solution. The oscillator is a hybrid dynamical system with governing equations that include a linear second order ordinary differential equation with negative damping and a discrete switching condition that controls the oscillatory fixed point. The system produces provably chaotic oscillations with a topological structure similar to either the Lorenz butterfly or Rössler's folded-band oscillator depending on the configuration. Exact solutions are written as a linear convolution of a fixed basis pulse and a sequence of discrete symbols. We find close agreement between the exact analytical solutions and the physical oscillations. Waveform return maps for both configurations show equivalence to either a shift map or tent map, proving the chaotic nature of the oscillations.

  4. Numerical investigation of stability of breather-type solutions of the nonlinear Schrödinger equation

    NASA Astrophysics Data System (ADS)

    Calini, A.; Schober, C. M.

    2014-06-01

    In this article we conduct a broad numerical investigation of stability of breather-type solutions of the nonlinear Schrödinger (NLS) equation, a widely used model of rogue wave generation and dynamics in deep water. NLS breathers rising over an unstable background state are frequently used to model rogue waves. However, the issue of whether these solutions are robust with respect to the kind of random perturbations occurring in physical settings and laboratory experiments has just recently begun to be addressed. Numerical experiments for spatially periodic breathers with one or two modes involving large ensembles of perturbed initial data for six typical random perturbations suggest interesting conclusions. Breathers over an unstable background with N unstable modes are generally unstable to small perturbations in the initial data unless they are "maximal breathers" (i.e., they have N spatial modes). Additionally, among the maximal breathers with two spatial modes, the one of highest amplitude due to coalescence of the modes appears to be the most robust. The numerical observations support and extend to more realistic settings the results of our previous stability analysis, which we hope will provide a useful tool for identifying physically realizable wave forms in experimental and observational studies of rogue waves.

  5. Simulation of the interaction of electromagnetic waves with dispersed particles in the propagation of breather in the surface layer of a liquid medium

    SciTech Connect

    Zabolotin, V.V.; Uvarova, L.A.

    2015-03-10

    A numerical simulation of the interaction of laser radiation with dispersed particles in the course of propagation of breather in the surface layer of the liquid breather was performed. The shape and amplitude of the acoustic signal formed in this interaction were obtained. Two acoustic signals, before and after the impact of a breather on the process of optical sound generation, were compared. Results of the comparison showed that the breather spreading over the surface of the liquid medium affecst the acoustic signal and its effect must be considered in the measurements.

  6. Observation of Fermi-Pasta-Ulam Recurrence Induced by Breather Solitons in an Optical Microresonator.

    PubMed

    Bao, Chengying; Jaramillo-Villegas, Jose A; Xuan, Yi; Leaird, Daniel E; Qi, Minghao; Weiner, Andrew M

    2016-10-14

    We present, experimentally and numerically, the observation of Fermi-Pasta-Ulam recurrence induced by breather solitons in a high-Q SiN microresonator. Breather solitons can be excited by increasing the pump power at a relatively small pump phase detuning in microresonators. Out of phase power evolution is observed for groups of comb lines around the center of the spectrum compared to groups of lines in the spectral wings. The evolution of the power spectrum is not symmetric with respect to the spectrum center. Numerical simulations based on the generalized Lugiato-Lefever equation are in good agreement with the experimental results and unveil the role of stimulated Raman scattering in the symmetry breaking of the power spectrum evolution. Our results show that optical microresonators can be exploited as a powerful platform for the exploration of soliton dynamics.

  7. Observation of Fermi-Pasta-Ulam Recurrence Induced by Breather Solitons in an Optical Microresonator

    NASA Astrophysics Data System (ADS)

    Bao, Chengying; Jaramillo-Villegas, Jose A.; Xuan, Yi; Leaird, Daniel E.; Qi, Minghao; Weiner, Andrew M.

    2016-10-01

    We present, experimentally and numerically, the observation of Fermi-Pasta-Ulam recurrence induced by breather solitons in a high-Q SiN microresonator. Breather solitons can be excited by increasing the pump power at a relatively small pump phase detuning in microresonators. Out of phase power evolution is observed for groups of comb lines around the center of the spectrum compared to groups of lines in the spectral wings. The evolution of the power spectrum is not symmetric with respect to the spectrum center. Numerical simulations based on the generalized Lugiato-Lefever equation are in good agreement with the experimental results and unveil the role of stimulated Raman scattering in the symmetry breaking of the power spectrum evolution. Our results show that optical microresonators can be exploited as a powerful platform for the exploration of soliton dynamics.

  8. Amplification of matter rogue waves and breathers in quasi-two-dimensional Bose-Einstein condensates

    NASA Astrophysics Data System (ADS)

    Manikandan, K.; Senthilvelan, M.; Kraenkel, R. A.

    2016-02-01

    We construct rogue wave and breather solutions of a quasi-two-dimensional Gross-Pitaevskii equation with a time-dependent interatomic interaction and external trap. We show that the trapping potential and an arbitrary functional parameter that present in the similarity transformation should satisfy a constraint for the considered equation to be integrable and yield the desired solutions. We consider two different forms of functional parameters and investigate how the density of the rogue wave and breather profiles vary with respect to these functional parameters. We also construct vector localized solutions of a two coupled quasi-two-dimensional Bose-Einstein condensate system. We then investigate how the vector localized density profiles modify in the constant density background with respect to the functional parameters. Our results may help to manipulate matter rogue waves experimentally in the two-dimensional Bose-Einstein condensate systems.

  9. Anatomy of the Akhmediev breather: Cascading instability, first formation time, and Fermi-Pasta-Ulam recurrence

    NASA Astrophysics Data System (ADS)

    Chin, Siu A.; Ashour, Omar A.; Belić, Milivoj R.

    2015-12-01

    By invoking Bogoliubov's spectrum, we show that for the nonlinear Schrödinger equation, the modulation instability (MI) of its n =1 Fourier mode on a finite background automatically triggers a further cascading instability, forcing all the higher modes to grow exponentially in locked step with the n =1 mode. This fundamental insight, the enslavement of all higher modes to the n =1 mode, explains the formation of a triangular-shaped spectrum that generates the Akhmediev breather, predicts its formation time analytically from the initial modulation amplitude, and shows that the Fermi-Pasta-Ulam (FPU) recurrence is just a matter of energy conservation with a period twice the breather's formation time. For higher-order MI with more than one initial unstable mode, while most evolutions are expected to be chaotic, we show that it is possible to have isolated cases of "super-recurrence," where the FPU period is much longer than that of a single unstable mode.

  10. Darboux Transformation for Coupled Non-Linear Schrödinger Equation and Its Breather Solutions

    NASA Astrophysics Data System (ADS)

    Feng, Lili; Yu, Fajun; Li, Li

    2017-01-01

    Starting from a 3×3 spectral problem, a Darboux transformation (DT) method for coupled Schrödinger (CNLS) equation is constructed, which is more complex than 2×2 spectral problems. A scheme of soliton solutions of an integrable CNLS system is realised by using DT. Then, we obtain the breather solutions for the integrable CNLS system. The method is also appropriate for more non-linear soliton equations in physics and mathematics.

  11. [The role of tympanometric examination in the orthodontic study of mouth breathers].

    PubMed

    Staffolani, N; Guerra, M; Pugliese, M; Cervini, M

    1990-10-01

    The mouth breathing is a multidisciplinary problem; in fact, when the orthodontist finds a patient with altered dento-skeletal growth due to this abnormal mode of breathing, to establish a correct treatment planning, he needs to be supported [correction of comforted] by ear, nose and throat examinations. Among these, the tympanogram, because of its simple execution and of the interesting data obtained, has a very important role in the orthodontic approach of the oral breather.

  12. NLS breathers, rogue waves, and solutions of the Lyapunov equation for Jordan blocks

    NASA Astrophysics Data System (ADS)

    Chvartatskyi, Oleksandr; Müller-Hoissen, Folkert

    2017-04-01

    The infinite families of Peregrine, Akhmediev and Kuznetsov–Ma breather solutions of the focusing nonlinear Schrödinger (NLS) equation are obtained via a matrix version of the Darboux transformation, with a spectral matrix of the form of a Jordan block. The structure of these solutions is essentially determined by the corresponding solution of the Lyapunov equation. In particular, regularity follows from properties of the Lyapunov equation.

  13. Exactly solvable birth and death processes

    SciTech Connect

    Sasaki, Ryu

    2009-10-15

    Many examples of exactly solvable birth and death processes, a typical stationary Markov chain, are presented together with the explicit expressions of the transition probabilities. They are derived by similarity transforming exactly solvable 'matrix' quantum mechanics, which is recently proposed by Odake and the author [S. Odake and R. Sasaki, J. Math. Phys. 49, 053503 (2008)]. The (q-) Askey scheme of hypergeometric orthogonal polynomials of a discrete variable and their dual polynomials play a central role. The most generic solvable birth/death rates are rational functions of q{sup x} (with x being the population) corresponding to the q-Racah polynomial.

  14. ExactPack Documentation

    SciTech Connect

    Singleton, Jr., Robert; Israel, Daniel M.; Doebling, Scott William; Woods, Charles Nathan; Kaul, Ann; Walter, Jr., John William; Rogers, Michael Lloyd

    2016-05-09

    For code verification, one compares the code output against known exact solutions. There are many standard test problems used in this capacity, such as the Noh and Sedov problems. ExactPack is a utility that integrates many of these exact solution codes into a common API (application program interface), and can be used as a stand-alone code or as a python package. ExactPack consists of python driver scripts that access a library of exact solutions written in Fortran or Python. The spatial profiles of the relevant physical quantities, such as the density, fluid velocity, sound speed, or internal energy, are returned at a time specified by the user. The solution profiles can be viewed and examined by a command line interface or a graphical user interface, and a number of analysis tools and unit tests are also provided. We have documented the physics of each problem in the solution library, and provided complete documentation on how to extend the library to include additional exact solutions. ExactPack’s code architecture makes it easy to extend the solution-code library to include additional exact solutions in a robust, reliable, and maintainable manner.

  15. Three-dimensional electromagnetic breathers in carbon nanotubes with the field inhomogeneity along their axes

    NASA Astrophysics Data System (ADS)

    Zhukov, Alexander V.; Bouffanais, Roland; Fedorov, Eduard G.; Belonenko, Mikhail B.

    2013-10-01

    We study the propagation of extremely short electromagnetic three-dimensional bipolar pulses in an array of semiconductor carbon nanotubes. The heterogeneity of the pulse field along the axis of the nanotubes is accounted for the first time. The evolution of the electromagnetic field and the charge density of the sample are described by Maxwell's equations supplemented by the continuity equation. Our analysis reveals for the first time the possibility of propagation of three-dimensional electromagnetic breathers in CNTs arrays. Specifically, we found that the propagation of short electromagnetic pulse induces a redistribution of the electron density in the sample.

  16. Breathers and rogue waves excited by all-magnonic spin-transfer torque

    NASA Astrophysics Data System (ADS)

    Li, Zai-Dong; Li, Qiu-Yan; Xu, Tian-Fu; He, Peng-Bin

    2016-10-01

    In terms of Darboux transformation we investigate the dynamic process of spin wave passing through a magnetic soliton. It causes nonlinear excitations, such as Akhmediev breathers solution and Kuznetsov-Ma soliton. The former case demonstrates a spatial periodic process of a magnetic soliton forming the petal with four pieces. The spatial separation of adjacent magnetic petals increases rapidly, while one valley splits into two and the amplitude of valley increases gradually with the increasing amplitude of spin wave. The other case shows a localized process of the spin-wave background. In the limit case, we get rogue waves and clarify its formation mechanism.

  17. Breathers and rogue waves excited by all-magnonic spin-transfer torque.

    PubMed

    Li, Zai-Dong; Li, Qiu-Yan; Xu, Tian-Fu; He, Peng-Bin

    2016-10-01

    In terms of Darboux transformation we investigate the dynamic process of spin wave passing through a magnetic soliton. It causes nonlinear excitations, such as Akhmediev breathers solution and Kuznetsov-Ma soliton. The former case demonstrates a spatial periodic process of a magnetic soliton forming the petal with four pieces. The spatial separation of adjacent magnetic petals increases rapidly, while one valley splits into two and the amplitude of valley increases gradually with the increasing amplitude of spin wave. The other case shows a localized process of the spin-wave background. In the limit case, we get rogue waves and clarify its formation mechanism.

  18. Controllable Akhmediev breather and Kuznetsov-Ma soliton trains in PT-symmetric coupled waveguides.

    PubMed

    Dai, Chaoqing; Wang, Yueyue; Zhang, Xiaofei

    2014-12-01

    The PT-symmetric and PT-antisymmetric Akhmediev breather (AB) and Kuznetsov-Ma (KM) soliton train solutions of a (2+1)-dimensional variable-coefficient coupled nonlinear Schrödinger equation in PT-symmetric coupled waveguides with gain and loss are derived via the Darboux transformation method. From these analytical solutions, we investigate the controllable behaviors of AB and KM soliton trains in a diffraction decreasing system with exponential profile. By adjusting the relation between the maximum Zm of effective propagation distance and the peak locations Zi of AB and KM soliton trains, we can control the restraint, maintenance and postpone excitations of AB and KM soliton trains.

  19. Combining Exact and Heuristic Approaches for Discrete Optimization

    DTIC Science & Technology

    2009-02-18

    XPRESS . This success has stimulated the need for methodology to solve even much larger problems and the desire to solve problems in real-time. We...problems that cannot be solved to optimalitv using the leading commercial solvers such as CPLEX and XPRESS . These problems are either too large or too...an improved solution is found then Update the global solution end if end while The key to making this approach work is problem dependent. We

  20. Photoexcited breathers in conjugated polyenes: an excited-state molecular dynamics study.

    PubMed

    Tretiak, S; Saxena, A; Martin, R L; Bishop, A R

    2003-03-04

    pi-conjugated polymers have become an important class of materials for electronic devices. Design of these devices requires understanding such processes as photochemical reactions, spatial dynamics of photoexcitations, and energy and charge transport, which in turn involve complex coupled electron-vibrational dynamics. Here we study nonlinear photoexcitation dynamics in the polyene oligomers by using a quantum-chemical method suitable for the simulation of excited-state molecular dynamics in extended molecular systems with sizes up to hundreds of atoms. The method is based on the adiabatic propagation of the ground-state and transition single-electron density matrices along the trajectory. The simulations reveal formation of a self-localized vibronic excitation ("breather" or multiquanta bound state) with a typical period of 34 fs and allows us to identify specific slow and fast nuclear motions strongly coupled to the electronic degrees of freedom. The effect of chain imperfections and chemical defects on the dynamics is also investigated. A complementary two-dimensional analysis of corresponding transition density matrices provides an efficient way to monitor time-dependent real-space localization of the photoexcitation by identifying the underlying changes in charge densities and bond orders. Possible correlated electronic and vibrational spectroscopic signatures of photoexcited breathers are predicted, and generalizations to energy localization in complex macromolecules are discussed.

  1. Traveling waves and breathers in an excitatory-inhibitory neural field

    NASA Astrophysics Data System (ADS)

    Folias, Stefanos E.

    2017-03-01

    We study existence and stability of traveling activity bump solutions in an excitatory-inhibitory (E-I) neural field with Heaviside firing rate functions by deriving existence conditions for traveling bumps and an Evans function to analyze their spectral stability. Subsequently, we show that these existence and stability results reduce, in the limit of wave speed c →0 , to the equivalent conditions developed for the stationary bump case. Using the results for the stationary bump case, we show that drift bifurcations of stationary bumps serve as a mechanism for generating traveling bump solutions in the E-I neural field as parameters are varied. Furthermore, we explore the interrelations between stationary and traveling types of bumps and breathers (time-periodic oscillatory bumps) by bridging together analytical and simulation results for stationary and traveling bumps and their bifurcations in a region of parameter space. Interestingly, we find evidence for a codimension-2 drift-Hopf bifurcation occurring as two parameters, inhibitory time constant τ and I-to-I synaptic connection strength w¯i i, are varied and show that the codimension-2 point serves as an organizing center for the dynamics of these four types of spatially localized solutions. Additionally, we describe a case involving subcritical bifurcations that lead to traveling waves and breathers as τ is varied.

  2. Breathers and 'black' rogue waves of coupled nonlinear Schrödinger equations with dispersion and nonlinearity of opposite signs

    NASA Astrophysics Data System (ADS)

    Li, Jin Hua; Chan, Hiu Ning; Chiang, Kin Seng; Chow, Kwok Wing

    2015-11-01

    Breathers and rogue waves of special coupled nonlinear Schrödinger systems (the Manakov equations) are studied analytically. These systems model the orthogonal polarization modes in an optical fiber with randomly varying birefringence. Studies earlier in the literature had shown that rogue waves can occur in these Manakov systems with dispersion and nonlinearity of opposite signs, and that the criterion for the existence of rogue waves correlates closely with the onset of modulation instability. In the present work the Hirota bilinear transform is employed to calculate the breathers (pulsating modes), and rogue waves are obtained as a long wave limit of such breathers. In terms of wave profiles, a 'black' rogue wave (intensity dropping to zero) and the transition to a four-petal configuration are elucidated analytically. Sufficiently strong modulation instabilities of the background may overwhelm or mask the development of the rogue waves, and such thresholds are correlated to actual physical properties of optical fibers. Numerical simulations on the evolution of breathers are performed to verify the prediction of the analytical formulations.

  3. Localized excitations in discrete nonlinear Schrödinger systems: Effects of nonlocal dispersive interactions and noise

    NASA Astrophysics Data System (ADS)

    Rasmussen, K. Ø.; Christiansen, P. L.; Johansson, M.; Gaididei, Yu. B.; Mingaleev, S. F.

    1998-03-01

    A one-dimensional discrete nonlinear Schrödinger (DNLS) model with the power dependence, r- s on the distance r, of dispersive interactions is proposed. The stationary states of the system are studied both analytically and numerically. Two kinds of trial functions, exp-like and sech-like are exploited and the results of both approaches are compared. Both on-site and inter-site stationary states are investigated. It is shown that for s sufficiently large all features of the model are qualitatively the same as in the DNLS model with nearest-neighbor interaction. For s less than some critical value, scr, there is an interval of bistability where two stable stationary states exist at each excitation number. The bistability of on-site solitons may occur for dipole-dipole dispersive interaction ( s = 3), while scr for inter-site solitions is close to 2.1. In the framework of the DNLS equation with nearest-neighbor coupling we discuss the stability of highly localized, “breather-like”, excitations under the influence of thermal fluctuations. Numerical analysis shows that the lifetime of the breather is always finite and in a large parameter region inversely proportional to the noise variance for fixed damping and nonlinearity. We also find that the decay rate of the breather decreases with increasing nonlinearity and with increasing damping.

  4. Second-order rogue wave breathers in the nonlinear Schrödinger equation with quadratic potential modulated by a spatially-varying diffraction coefficient.

    PubMed

    Zhong, Wei-Ping; Belić, Milivoj; Zhang, Yiqi

    2015-02-09

    Nonlinear Schrödinger equation with simple quadratic potential modulated by a spatially-varying diffraction coefficient is investigated theoretically. Second-order rogue wave breather solutions of the model are constructed by using the similarity transformation. A modal quantum number is introduced, useful for classifying and controlling the solutions. From the solutions obtained, the behavior of second order Kuznetsov-Ma breathers (KMBs), Akhmediev breathers (ABs), and Peregrine solitons is analyzed in particular, by selecting different modulation frequencies and quantum modal parameter. We show how to generate interesting second order breathers and related hybrid rogue waves. The emergence of true rogue waves - single giant waves that are generated in the interaction of KMBs, ABs, and Peregrine solitons - is explicitly displayed in our analytical solutions.

  5. Exact folded-band chaotic oscillator.

    PubMed

    Corron, Ned J; Blakely, Jonathan N

    2012-06-01

    An exactly solvable chaotic oscillator with folded-band dynamics is shown. The oscillator is a hybrid dynamical system containing a linear ordinary differential equation and a nonlinear switching condition. Bounded oscillations are provably chaotic, and successive waveform maxima yield a one-dimensional piecewise-linear return map with segments of both positive and negative slopes. Continuous-time dynamics exhibit a folded-band topology similar to Rössler's oscillator. An exact solution is written as a linear convolution of a fixed basis pulse and a discrete binary sequence, from which an equivalent symbolic dynamics is obtained. The folded-band topology is shown to be dependent on the symbol grammar.

  6. Exact Relativistic `Antigravity' Propulsion

    NASA Astrophysics Data System (ADS)

    Felber, Franklin S.

    2006-01-01

    The Schwarzschild solution is used to find the exact relativistic motion of a payload in the gravitational field of a mass moving with constant velocity. At radial approach or recession speeds faster than 3-1/2 times the speed of light, even a small mass gravitationally repels a payload. At relativistic speeds, a suitable mass can quickly propel a heavy payload from rest nearly to the speed of light with negligible stresses on the payload.

  7. Exact probability distribution functions for Parrondo's games

    NASA Astrophysics Data System (ADS)

    Zadourian, Rubina; Saakian, David B.; Klümper, Andreas

    2016-12-01

    We study the discrete time dynamics of Brownian ratchet models and Parrondo's games. Using the Fourier transform, we calculate the exact probability distribution functions for both the capital dependent and history dependent Parrondo's games. In certain cases we find strong oscillations near the maximum of the probability distribution with two limiting distributions for odd and even number of rounds of the game. Indications of such oscillations first appeared in the analysis of real financial data, but now we have found this phenomenon in model systems and a theoretical understanding of the phenomenon. The method of our work can be applied to Brownian ratchets, molecular motors, and portfolio optimization.

  8. Real-time measurements of spontaneous breathers and rogue wave events in optical fibre modulation instability

    PubMed Central

    Närhi, Mikko; Wetzel, Benjamin; Billet, Cyril; Toenger, Shanti; Sylvestre, Thibaut; Merolla, Jean-Marc; Morandotti, Roberto; Dias, Frederic; Genty, Goëry; Dudley, John M.

    2016-01-01

    Modulation instability is a fundamental process of nonlinear science, leading to the unstable breakup of a constant amplitude solution of a physical system. There has been particular interest in studying modulation instability in the cubic nonlinear Schrödinger equation, a generic model for a host of nonlinear systems including superfluids, fibre optics, plasmas and Bose–Einstein condensates. Modulation instability is also a significant area of study in the context of understanding the emergence of high amplitude events that satisfy rogue wave statistical criteria. Here, exploiting advances in ultrafast optical metrology, we perform real-time measurements in an optical fibre system of the unstable breakup of a continuous wave field, simultaneously characterizing emergent modulation instability breather pulses and their associated statistics. Our results allow quantitative comparison between experiment, modelling and theory, and are expected to open new perspectives on studies of instability dynamics in physics. PMID:27991513

  9. Superregular Breathers in Optics and Hydrodynamics: Omnipresent Modulation Instability beyond Simple Periodicity

    NASA Astrophysics Data System (ADS)

    Kibler, B.; Chabchoub, A.; Gelash, A.; Akhmediev, N.; Zakharov, V. E.

    2015-10-01

    Since the 1960s, the Benjamin-Feir (or modulation) instability (MI) has been considered as the self-modulation of the continuous "envelope waves" with respect to small periodic perturbations that precedes the emergence of highly localized wave structures. Nowadays, the universal nature of MI is established through numerous observations in physics. However, even now, 50 years later, more practical but complex forms of this old physical phenomenon at the frontier of nonlinear wave theory have still not been revealed (i.e., when perturbations beyond simple harmonic are involved). Here, we report the evidence of the broadest class of creation and annihilation dynamics of MI, also called superregular breathers. Observations are done in two different branches of wave physics, namely, in optics and hydrodynamics. Based on the common framework of the nonlinear Schrödinger equation, this multidisciplinary approach proves universality and reversibility of nonlinear wave formations from localized perturbations for drastically different spatial and temporal scales.

  10. Real-time measurements of spontaneous breathers and rogue wave events in optical fibre modulation instability

    NASA Astrophysics Data System (ADS)

    Närhi, Mikko; Wetzel, Benjamin; Billet, Cyril; Toenger, Shanti; Sylvestre, Thibaut; Merolla, Jean-Marc; Morandotti, Roberto; Dias, Frederic; Genty, Goëry; Dudley, John M.

    2016-12-01

    Modulation instability is a fundamental process of nonlinear science, leading to the unstable breakup of a constant amplitude solution of a physical system. There has been particular interest in studying modulation instability in the cubic nonlinear Schrödinger equation, a generic model for a host of nonlinear systems including superfluids, fibre optics, plasmas and Bose-Einstein condensates. Modulation instability is also a significant area of study in the context of understanding the emergence of high amplitude events that satisfy rogue wave statistical criteria. Here, exploiting advances in ultrafast optical metrology, we perform real-time measurements in an optical fibre system of the unstable breakup of a continuous wave field, simultaneously characterizing emergent modulation instability breather pulses and their associated statistics. Our results allow quantitative comparison between experiment, modelling and theory, and are expected to open new perspectives on studies of instability dynamics in physics.

  11. Real-time measurements of spontaneous breathers and rogue wave events in optical fibre modulation instability.

    PubMed

    Närhi, Mikko; Wetzel, Benjamin; Billet, Cyril; Toenger, Shanti; Sylvestre, Thibaut; Merolla, Jean-Marc; Morandotti, Roberto; Dias, Frederic; Genty, Goëry; Dudley, John M

    2016-12-19

    Modulation instability is a fundamental process of nonlinear science, leading to the unstable breakup of a constant amplitude solution of a physical system. There has been particular interest in studying modulation instability in the cubic nonlinear Schrödinger equation, a generic model for a host of nonlinear systems including superfluids, fibre optics, plasmas and Bose-Einstein condensates. Modulation instability is also a significant area of study in the context of understanding the emergence of high amplitude events that satisfy rogue wave statistical criteria. Here, exploiting advances in ultrafast optical metrology, we perform real-time measurements in an optical fibre system of the unstable breakup of a continuous wave field, simultaneously characterizing emergent modulation instability breather pulses and their associated statistics. Our results allow quantitative comparison between experiment, modelling and theory, and are expected to open new perspectives on studies of instability dynamics in physics.

  12. Exact Lattice Supersymmetry

    SciTech Connect

    Catterall, Simon; Kaplan, David B.; Unsal, Mithat

    2009-03-31

    We provide an introduction to recent lattice formulations of supersymmetric theories which are invariant under one or more real supersymmetries at nonzero lattice spacing. These include the especially interesting case of N = 4 SYM in four dimensions. We discuss approaches based both on twisted supersymmetry and orbifold-deconstruction techniques and show their equivalence in the case of gauge theories. The presence of an exact supersymmetry reduces and in some cases eliminates the need for fine tuning to achieve a continuum limit invariant under the full supersymmetry of the target theory. We discuss open problems.

  13. Kinematics of foldable discrete space cranes

    NASA Technical Reports Server (NTRS)

    Nayfeh, A. H.

    1985-01-01

    Exact kinematic description of a NASA proposed prototype foldable-deployable discrete space crane are presented. A computer program is developed which maps the geometry of the crane once controlling parameters are specified. The program uses a building block type approach in which it calculates the local coordinates of each repeating cell and then combines them with respect to a global coordinates system.

  14. Discrete Mathematics and the Secondary Mathematics Curriculum.

    ERIC Educational Resources Information Center

    Dossey, John

    Discrete mathematics, the mathematics of decision making for finite settings, is a topic of great interest in mathematics education at all levels. Attention is being focused on resolving the diversity of opinion concerning the exact nature of the subject, what content the curriculum should contain, who should study that material, and how that…

  15. Approximation of small-amplitude weakly coupled oscillators by discrete nonlinear Schrödinger equations

    NASA Astrophysics Data System (ADS)

    Pelinovsky, Dmitry; Penati, Tiziano; Paleari, Simone

    2016-08-01

    Small-amplitude weakly coupled oscillators of the Klein-Gordon lattices are approximated by equations of the discrete nonlinear Schrödinger type. We show how to justify this approximation by two methods, which have been very popular in the recent literature. The first method relies on a priori energy estimates and multi-scale decompositions. The second method is based on a resonant normal form theorem. We show that although the two methods are different in the implementation, they produce equivalent results as the end product. We also discuss the applications of the discrete nonlinear Schrödinger equation in the context of existence and stability of breathers of the Klein-Gordon lattice.

  16. Second-order nonlinear Schrödinger equation breather solutions in the degenerate and rogue wave limits.

    PubMed

    Kedziora, David J; Ankiewicz, Adrian; Akhmediev, Nail

    2012-06-01

    We present an explicit analytic form for the two-breather solution of the nonlinear Schrödinger equation with imaginary eigenvalues. It describes various nonlinear combinations of Akhmediev breathers and Kuznetsov-Ma solitons. The degenerate case, when the two eigenvalues coincide, is quite involved. The standard inverse scattering technique does not generally provide an answer to this scenario. We show here that the solution can still be found as a special limit of the general second-order expression and appears as a mixture of polynomials with trigonometric and hyperbolic functions. A further restriction of this particular case, where the two eigenvalues are equal to i, produces the second-order rogue wave with two free parameters considered as differential shifts. The illustrations reveal a precarious dependence of wave profile on the degenerate eigenvalues and differential shifts. Thus we establish a hierarchy of second-order solutions, revealing the interrelated nature of the general case, the rogue wave, and the degenerate breathers.

  17. Nonautonomous solitons, breathers and rogue waves for the Gross-Pitaevskii equation in the Bose-Einstein condensate

    NASA Astrophysics Data System (ADS)

    Su, Chuan-Qi; Gao, Yi-Tian; Xue, Long; Wang, Qi-Min

    2016-07-01

    Under investigation in this paper is the Gross-Pitaevskii equation which describes the dynamics of the Bose-Einstein condensate. Lax pair, conservation laws and Darboux transformation (DT) are constructed. Nonautonomous solitons and breathers are derived based on the DT obtained. A kind of modulation instability process is generated. Nonautonomous rogue waves are obtained via the generalized DT. Influence of the nonlinearity, linear external potential, harmonic external potential, and spectral parameter on the propagation and interaction of the nonautonomous solitons, breathers and rogue waves is also discussed. Amplitude of the first-order nonautonomous soliton is proportional to the imaginary part of the spectral parameter and inversely proportional to the nonlinearity parameter. Linear external potential parameter affects the location of the first-order nonautonomous soliton. Head-on interaction, overtaking interaction and bound-state-like nonautonomous solitons can be formed based on the signs of the real parts of the spectral parameters. Quasi-periodic behaviors are exhibited for the nonautonomous breathers. If the harmonic external potential parameter is negative, quasi-period decreases along the positive time axis, with an increase in the amplitude and a compression in the width. Quasi-period decreases with the increase of the nonlinearity parameter. The second-order nonautonomous rogue wave can split into three first-order ones. Nonlinearity parameter has an effect on the amplitude of the rogue wave. Linear external potential parameter influences the location of the rogue wave, while harmonic external potential parameter affects the curved direction of the background.

  18. Dark solitons, breathers, and rogue wave solutions of the coupled generalized nonlinear Schrödinger equations.

    PubMed

    Priya, N Vishnu; Senthilvelan, M; Lakshmanan, M

    2014-06-01

    We construct dark-dark soliton, general breather (GB), Akhmediev breather (AB), Ma soliton (MS), and rogue wave (RW) solutions of a coupled generalized nonlinear Schrödinger (CGNLS) equation. While dark-dark solitons are captured in the defocusing regime of the CGNLS system, the other solutions, namely, GB, AB, MS, and RW, are identified in the focusing regime. We also analyze the structures of GB, AB, MS, and RW profiles with respect to the four-wave mixing parameter. We show that when we increase the value of the real part of the four-wave mixing parameter, the number of peaks in the breather profile increases and the width of each peak shrinks. Interestingly, the direction of this profile also changes due to this change. As far as the RW profile is concerned the width of the peak becomes very thin when we increase the value of this parameter. Further, we consider the RW solution as the starting point, derive AB, MS, and GB in the reverse direction, and show that the solutions obtained in both directions match each other. In the course of the reverse analysis we also demonstrate how to capture the RW solutions directly from AB and MS.

  19. What Exactly Do Numbers Mean?

    ERIC Educational Resources Information Center

    Huang, Yi Ting; Spelke, Elizabeth; Snedeker, Jesse

    2013-01-01

    Number words are generally used to refer to the exact cardinal value of a set, but cognitive scientists disagree about their meanings. Although most psychological analyses presuppose that numbers have exact semantics ("two" means exactly two), many linguistic accounts propose that numbers have lower-bounded semantics (at least two), and…

  20. Exact approaches for scaffolding

    PubMed Central

    2015-01-01

    This paper presents new structural and algorithmic results around the scaffolding problem, which occurs prominently in next generation sequencing. The problem can be formalized as an optimization problem on a special graph, the "scaffold graph". We prove that the problem is polynomial if this graph is a tree by providing a dynamic programming algorithm for this case. This algorithm serves as a basis to deduce an exact algorithm for general graphs using a tree decomposition of the input. We explore other structural parameters, proving a linear-size problem kernel with respect to the size of a feedback-edge set on a restricted version of Scaffolding. Finally, we examine some parameters of scaffold graphs, which are based on real-world genomes, revealing that the feedback edge set is significantly smaller than the input size. PMID:26451725

  1. Uranus - Discrete Cloud

    NASA Technical Reports Server (NTRS)

    1986-01-01

    This false-color Voyager picture of Uranus shows a discrete cloud seen as a bright streak near the planet's limb. The picture is a highly processed composite of three images obtained Jan. 14, 1986, when the spacecraft was 12.9 million kilometers (8.0 million miles) from the planet. The cloud visible here is the most prominent feature seen in a series of Voyager images designed to track atmospheric motions. (The occasional donut-shaped features, including one at the bottom, are shadows cast by dust in the camera optics; the processing necessary to bring out the faint features on the planet also brings out these camera blemishes.) Three separate images were shuttered through violet, blue and orange filters. Each color image showed the cloud to a different degree; because they were not exposed at exactly the same time, the images were processed to provide a correction for a good spatial match. In a true-color image, the cloud would be barely discernible; the false color helps bring out additional details. The different colors imply variations in vertical structure, but as yet is not possible to be specific about such differences. One possibility is that the Uranian atmosphere contains smog-like constituents, in which case some color differences may represent differences in how these molecules are distributed. The Voyager project is managed for NASA by the Jet Propulsion Laboratory.

  2. Internal breather-like wave generation by the second mode solitary wave interaction with a step

    NASA Astrophysics Data System (ADS)

    Terletska, Kateryna; Jung, Kyung Tae; Talipova, Tatiana; Maderich, Vladimir; Brovchenko, Igor; Grimshaw, Roger

    2016-11-01

    The transformation of an internal second mode solitary wave over a bottom step in a computational tank filled with a three-layer stratified fluid was studied. The convex waveforms were generated by a collapse mechanism for stratification with a thin mid-layer. The wave transformation depends on the blocking parameter B which is a ratio of the amplitude of the incident wave to the thickness of the lower water layer over the step. Three regimes of second mode wave transformation over the step are identified. In regime I (2 < B < 6) this wave generates a breather-like internal wave (BLIW) packet behind the wave of mode-2 due to the impulse-like effect of the step and a long wave of mode-1 ahead of the wave. The BLIW degenerates into a dispersive wave packet at large B > 6. In regime II (0.5 < B < 2) the mode-2 wave is permanently disintegrated, generating a chain of waves of mode-1 ahead of wave of mode-2 and tail of short waves of mode-1 behind the wave. In regime III (B < 0.5) only waves of elevation of mode-1 penetrate into the fluid layer over the step.

  3. The exact fundamental solution for the Benes tracking problem

    NASA Astrophysics Data System (ADS)

    Balaji, Bhashyam

    2009-05-01

    The universal continuous-discrete tracking problem requires the solution of a Fokker-Planck-Kolmogorov forward equation (FPKfe) for an arbitrary initial condition. Using results from quantum mechanics, the exact fundamental solution for the FPKfe is derived for the state model of arbitrary dimension with Benes drift that requires only the computation of elementary transcendental functions and standard linear algebra techniques- no ordinary or partial differential equations need to be solved. The measurement process may be an arbitrary, discrete-time nonlinear stochastic process, and the time step size can be arbitrary. Numerical examples are included, demonstrating its utility in practical implementation.

  4. Breather-to-soliton transitions, nonlinear wave interactions, and modulational instability in a higher-order generalized nonlinear Schrödinger equation.

    PubMed

    Wang, Lei; Zhang, Jian-Hui; Wang, Zi-Qi; Liu, Chong; Li, Min; Qi, Feng-Hua; Guo, Rui

    2016-01-01

    We study the nonlinear waves on constant backgrounds of the higher-order generalized nonlinear Schrödinger (HGNLS) equation describing the propagation of ultrashort optical pulse in optical fibers. We derive the breather, rogue wave, and semirational solutions of the HGNLS equation. Our results show that these three types of solutions can be converted into the nonpulsating soliton solutions. In particular, we present the explicit conditions for the transitions between breathers and solitons with different structures. Further, we investigate the characteristics of the collisions between the soliton and breathers. Especially, based on the semirational solutions of the HGNLS equation, we display the novel interactions between the rogue waves and other nonlinear waves. In addition, we reveal the explicit relation between the transition and the distribution characteristics of the modulation instability growth rate.

  5. Rogue Wave and Breather Structures with "High Frequency" and "Low Frequency" in 𝒫𝒯-Symmetric Nonlinear Couplers with Gain and Loss

    NASA Astrophysics Data System (ADS)

    Yu, Dang-Jun; Zhang, Jie-Fang

    2016-10-01

    Based on the modified Darboux transformation method, starting from zero solution and the plane wave solution, the hierarchies of rational solutions and breather solutions with "high frequency" and "low frequency" of the coupled nonlinear Schrödinger equation in parity-time symmetric nonlinear couplers with gain and loss are constructed, respectively. From these results, some basic characteristics of multi-rogue waves and multi-breathers are studied. Based on the property of rogue wave as the "quantum" of pattern structure in rogue wave hierarchy, we further study the novel structures of the superposed Akhmediev breathers, Kuznetsov-Ma solitons and their combined structures. It is expected that these results may give new insight into the context of the optical communications and Bose-Einstein condensations.

  6. The Neglected Exactness

    NASA Astrophysics Data System (ADS)

    Endom, Joerg

    2014-05-01

    negligible any more. Locating for example the exact position of joints, rebars on site, getting correct calibration information or overlaying measurements of independent methods requires high accuracy positioning for all data. Different technologies of synchronizing and stabilizing are discussed in this presentation. Furthermore a scale problem for interdisciplinary work between the geotechnical engineer, the civil engineer, the surveyor and the geophysicist is presented. Manufacturers as well as users are addressed to work on a unified methodology that could be implemented in future. This presentation is a contribution to COST Action TU1208.

  7. What exactly do numbers mean?

    PubMed Central

    Huang, Yi Ting; Spelke, Elizabeth; Snedeker, Jesse

    2014-01-01

    Number words are generally used to refer to the exact cardinal value of a set, but cognitive scientists disagree about their meanings. Although most psychological analyses presuppose that numbers have exact semantics (two means EXACTLY TWO), many linguistic accounts propose that numbers have lower-bounded semantics (AT LEAST TWO), and that speakers restrict their reference through a pragmatic inference (scalar implicature). We address this debate through studies of children who are in the process of acquiring the meanings of numbers. Adults and 2- and 3-year-olds were tested in a novel paradigm that teases apart semantic and pragmatic aspects of interpretation (the covered box task). Our findings establish that when scalar implicatures are cancelled in the critical trials of this task, both adults and children consistently give exact interpretations for number words. These results, in concert with recent work on real-time processing, provide the first unambiguous evidence that number words have exact semantics. PMID:25285053

  8. Qualitative study of the BREATHER trial (Short Cycle antiretroviral therapy): is it acceptable to young people living with HIV?

    PubMed Central

    Bernays, Sarah; Paparini, Sara; Seeley, Janet; Namukwaya Kihika, Stella; Gibb, Diana; Rhodes, Tim

    2017-01-01

    Objectives A qualitative study of the BREATHER (PENTA 16) randomised clinical trial, which compared virological control of Short Cycle Therapy (SCT) (5 days on: 2 days off) with continuous efavirenz (EFV)-based antiretroviral therapy (CT) in children and young people (aged 8–24) living with HIV with viral load <50 c/mL to examine adaptation, acceptability and experience of SCT to inform intervention development. Setting Paediatric HIV clinics in the UK (2), Ireland (1), the USA (1) and Uganda (1). Participants All BREATHER trial participants who were over the age of 10 and aware of their HIV diagnosis were invited to participate. 49 young people from both arms of the BREATHER trial (31 females and 18 males; 40% of the total trial population in the respective sites; age range 11–24) gave additional consent to participate in the qualitative study. Results Young people from both trial arms had initial concerns about the impact of SCT on their health and adherence, but these decreased over the early months in the trial. Young people randomised to SCT reported preference for SCT compared with CT pre-trial. Attitudes to SCT did not vary greatly by gender or country. Once short-term adaptation challenges were overcome, SCT was positively described as reducing impact of side effects, easing the pressure to carry and remember medication and enabling more weekend social activities. Young people on both arms reported frequent medication side effects and occasional missed doses that they had rarely voiced to clinical staff. Participants liked SCT by trial end but were concerned that peers who had most problems adhering could find SCT disruptive and difficult to manage. Conclusions To realise the potential of SCT (and mitigate possible risks of longer interruptions), careful dissemination and communication post-trial is needed. SCT should be provided alongside a package of monitoring, support and education over 3 months to allow adaptation. Trial registration number

  9. Characteristics of the breathers, rogue waves and solitary waves in a generalized (2+1)-dimensional Boussinesq equation

    NASA Astrophysics Data System (ADS)

    Wang, Xiu-Bin; Tian, Shou-Fu; Qin, Chun-Yan; Zhang, Tian-Tian

    2016-07-01

    Under investigation in this work is a generalized (2+1)-dimensional Boussinesq equation, which can be used to describe the propagation of small-amplitude, long wave in shallow water. By virtue of Bell's polynomials, an effective way is presented to succinctly construct its bilinear form. Furthermore, based on the bilinear formalism and the extended homoclinic test method, the breather wave solution, rogue-wave solution and solitary-wave solution of the equation are well constructed. Our results can be used to enrich the dynamical behavior of the generalized (2+1)-dimensional nonlinear wave fields.

  10. Patterns of deformations of Peregrine breather of order 3 and 4 solutions to the NLS equation with multi parameters

    NASA Astrophysics Data System (ADS)

    Gaillard, Pierre; Gastineau, Mickaël

    2016-06-01

    In this article, one gives a classification of the solutions to the one dimensional nonlinear focusing Schrödinger equation (NLS) by considering the modulus of the solutions in the ( x, t) plan in the cases of orders 3 and 4. For this, we use a representation of solutions to NLS equation as a quotient of two determinants by an exponential depending on t. This formulation gives in the case of the order 3 and 4, solutions with, respectively 4 and 6 parameters. With this method, beside Peregrine breathers, we construct all characteristic patterns for the modulus of solutions, like triangular configurations, ring and others.

  11. Management of a severe forceful breather with Rett syndrome using carbogen.

    PubMed

    Smeets, Eric E J; Julu, Peter O O; van Waardenburg, Dick; Engerström, Ingegerd Witt; Hansen, Stig; Apartopoulos, Flora; Curfs, Leopold M G; Schrander-Stumpel, Connie T R M

    2006-11-01

    We have used a novel neurophysiological technique in the NeuroScope system in combination with conventional electroencephalography (EEG) to monitor both brainstem and cortical activity simultaneously in real-time in a girl with Rett syndrome. The presenting clinical features in our patient were severe sleep disturbances, irregular breathing in the awake state dominated by Valsalva's type of breathing followed by tachypnoea and very frequent attacks of seizures and vacant spells. Our novel neurophysiological data showed that the patient was a Forceful Breather according to the breathing categories in Rett syndrome. She had frequent abnormal spontaneous brainstem activation (ASBA) preceded by severe attacks of hypocapnoea, which was caused by a combination of Valsalva's type of breathing and tachypnoea and all these together were responsible for the seizures and non-epileptic vacant spells. The ASBA was not detectable in conventional EEG and there were no epileptiform changes in the EEG during the seizures and vacant spells caused by the hypocapnic attacks, therefore these were pseudo-seizures. The record of brainstem activity confirmed that these were autonomic events, a kind of "brainstem epilepsy". We successfully treated the sleep disturbance with Pipamperone, a 5-hydroxytryptophan antagonist of receptor type 2 and we prevented the severe hypocapnoea during Valsalva's type of breathing and during tachypnoea using carbogen (a mixture of 5% carbon dioxide and 95% oxygen), which we gave by inhalation. Our treatment drastically reduced the autonomic events, promoted whole night sleep and significantly improved the quality of life in our patient. She can now participate in normal family activity which was previously impossible before treatment.

  12. Natural discretization in noncommutative field theory

    NASA Astrophysics Data System (ADS)

    Acatrinei, Ciprian Sorin

    2015-12-01

    A discretization scheme for field theory is developed, in which the space time coordinates are assumed to be operators forming a noncommutative algebra. Generic waves without rotational symmetry are studied in (2+1) - dimensional scalar field theory with Heisenberg-type noncommutativity. In the representation chosen, the radial coordinate is naturally rendered discrete. Nonlocality along this coordinate, induced by noncommutativity, accounts for the angular dependence of the fields. A complete solution and the interpretation of its nonlocal features are given. The exact form of standing and propagating waves on such a discrete space is found in terms of finite series. A precise correspondence is established between the degree of nonlocality and the angular momentum of a field configuration. At small distance no classical singularities appear, even at the location of the sources. At large radius one recovers the usual commutative/continuum behaviour.

  13. Natural discretization in noncommutative field theory

    SciTech Connect

    Acatrinei, Ciprian Sorin

    2015-12-07

    A discretization scheme for field theory is developed, in which the space time coordinates are assumed to be operators forming a noncommutative algebra. Generic waves without rotational symmetry are studied in (2+1) - dimensional scalar field theory with Heisenberg-type noncommutativity. In the representation chosen, the radial coordinate is naturally rendered discrete. Nonlocality along this coordinate, induced by noncommutativity, accounts for the angular dependence of the fields. A complete solution and the interpretation of its nonlocal features are given. The exact form of standing and propagating waves on such a discrete space is found in terms of finite series. A precise correspondence is established between the degree of nonlocality and the angular momentum of a field configuration. At small distance no classical singularities appear, even at the location of the sources. At large radius one recovers the usual commutative/continuum behaviour.

  14. Modulational instability, nonautonomous breathers and rogue waves for a variable-coefficient derivative nonlinear Schrödinger equation in the inhomogeneous plasmas

    SciTech Connect

    Wang, Lei Li, Min; Qi, Feng-Hua; Xu, Tao

    2015-03-15

    Under investigation in this paper is a variable-coefficient derivative nonlinear Schrödinger (vc-DNLS) equation modeling the nonlinear Alfvén waves in the inhomogeneous plasmas. The modulation instability is examined for this inhomogeneous nonlinear model. The nonautonomous breather and rogue wave solutions of the vc-DNLS equation are obtained via the modified Darboux transformation. It is found that the velocity and amplitude of the breather can be controlled by the inhomogeneous magnetic field and nonuniform density. Such novel phenomena as breather amplification and nonlinear Talbot effect-like property are demonstrated with the proper choices of the inhomogeneous parameters. Furthermore, dynamics of the fundamental rogue wave, periodical rogue wave, and composite rogue wave are graphically discussed. The trajectories and amplitudes of the rogue waves can be manipulated by the inhomogeneous magnetic field and nonuniform density. In addition, the nonlinear tunneling of the rogue waves and breathers is studied. As an application, a sample model is treated with our results, and the graphical illustrations exhibit the compressing, expanding, and fluctuating phenomena of the Alfvén rogue waves.

  15. Principles of Discrete Time Mechanics

    NASA Astrophysics Data System (ADS)

    Jaroszkiewicz, George

    2014-04-01

    1. Introduction; 2. The physics of discreteness; 3. The road to calculus; 4. Temporal discretization; 5. Discrete time dynamics architecture; 6. Some models; 7. Classical cellular automata; 8. The action sum; 9. Worked examples; 10. Lee's approach to discrete time mechanics; 11. Elliptic billiards; 12. The construction of system functions; 13. The classical discrete time oscillator; 14. Type 2 temporal discretization; 15. Intermission; 16. Discrete time quantum mechanics; 17. The quantized discrete time oscillator; 18. Path integrals; 19. Quantum encoding; 20. Discrete time classical field equations; 21. The discrete time Schrodinger equation; 22. The discrete time Klein-Gordon equation; 23. The discrete time Dirac equation; 24. Discrete time Maxwell's equations; 25. The discrete time Skyrme model; 26. Discrete time quantum field theory; 27. Interacting discrete time scalar fields; 28. Space, time and gravitation; 29. Causality and observation; 30. Concluding remarks; Appendix A. Coherent states; Appendix B. The time-dependent oscillator; Appendix C. Quaternions; Appendix D. Quantum registers; References; Index.

  16. Discrete Modeling of the Worm Spread with Random Scanning

    NASA Astrophysics Data System (ADS)

    Uchida, Masato

    In this paper, we derive a set of discrete time difference equations that models the spreading process of computer worms such as Code-Red and Slammer, which uses a common strategy called “random scanning” to spread through the Internet. We show that the derived set of discrete time difference equations has an exact relationship with the Kermack and McKendrick susceptible-infectious-removed (SIR) model, which is known as a standard continuous time model for worm spreading.

  17. On the Number of Discrete Eigenvalues of a Discrete Schrödinger Operator with a Finitely Supported Potential

    NASA Astrophysics Data System (ADS)

    Hayashi, Yusuke; Higuchi, Yusuke; Nomura, Yuji; Ogurisu, Osamu

    2016-11-01

    On the d-dimensional lattice Z^d and the r-regular tree {T^r}, an exact expression for the number of discrete eigenvalues of a discrete Laplacian with a finitely supported potential is described in terms of the support and the intensities of the potential on each case. In particular, the number of eigenvalues less than the infimum of the essential spectrum is bounded by the number of negative intensities.

  18. Interaction of the strongly nonlinear internal solitary wave of second mode with the bottom step: breather formation

    NASA Astrophysics Data System (ADS)

    Terletska, Kateryna; Maderich, Vladimir; Talipova, Tatiana; Brovchenko, Igor; Jung, Kyung Tae; Grimshaw, Roger

    2014-05-01

    Second mode internal waves are widespread in offshore areas, and they frequently follow the first mode internal waves on the oceanic shelf. To study the main properties of interaction of second mode internal waves with a bottom features we consider simple configuration of numerical tank with a bottom step. The tank is filled by symmetricaly stratified three-layer fluid. Depending on the parameter of blocking B (ratio of the lower layer depth over the step to incident wave amplitude [1]) a several regimes can be separated. If B > 4, that means that the lower layer is deep enough in comparison with amplitude of the incident wave, then the second mode internal wave pass the step without significant changes. At the range of 0< B<0.5, that corresponds to the case when amplitude of the incident wave is greater than the depth of the lower layer over the step, incident second mode wave completely transforms into a solitary wave of the first mode and into reflected wave of the second mode. These transformations are opposite to the well-known mechanism of formation of the second mode wave in result of the first mode wave interaction with bottom relief. The most interesting is the transitional regime with the range of blocking parameter 0.5breathers are generated after the step. Thus in the frame of numerical modeling new mechanism of the breather generation was found: in the case of three-layer stratification internal wave-breather can occur due to interaction of the second mode internal wave with abrupt changes of the bottom topography. The dependencies for transformation coefficients (reflection and transmission) on the parameter of blocking are similar for incident long and intermediate waves

  19. Exact reconstruction with directional wavelets on the sphere

    NASA Astrophysics Data System (ADS)

    Wiaux, Y.; McEwen, J. D.; Vandergheynst, P.; Blanc, O.

    2008-08-01

    A new formalism is derived for the analysis and exact reconstruction of band-limited signals on the sphere with directional wavelets. It represents an evolution of a previously developed wavelet formalism developed by Antoine & Vandergheynst and Wiaux et al. The translations of the wavelets at any point on the sphere and their proper rotations are still defined through the continuous three-dimensional rotations. The dilations of the wavelets are directly defined in harmonic space through a new kernel dilation, which is a modification of an existing harmonic dilation. A family of factorized steerable functions with compact harmonic support which are suitable for this kernel dilation are first identified. A scale-discretized wavelet formalism is then derived, relying on this dilation. The discrete nature of the analysis scales allows the exact reconstruction of band-limited signals. A corresponding exact multi-resolution algorithm is finally described and an implementation is tested. The formalism is of interest notably for the denoising or the deconvolution of signals on the sphere with a sparse expansion in wavelets. In astrophysics, it finds a particular application for the identification of localized directional features in the cosmic microwave background data, such as the imprint of topological defects, in particular, cosmic strings, and for their reconstruction after separation from the other signal components.

  20. Discrete Element Modeling

    SciTech Connect

    Morris, J; Johnson, S

    2007-12-03

    The Distinct Element Method (also frequently referred to as the Discrete Element Method) (DEM) is a Lagrangian numerical technique where the computational domain consists of discrete solid elements which interact via compliant contacts. This can be contrasted with Finite Element Methods where the computational domain is assumed to represent a continuum (although many modern implementations of the FEM can accommodate some Distinct Element capabilities). Often the terms Discrete Element Method and Distinct Element Method are used interchangeably in the literature, although Cundall and Hart (1992) suggested that Discrete Element Methods should be a more inclusive term covering Distinct Element Methods, Displacement Discontinuity Analysis and Modal Methods. In this work, DEM specifically refers to the Distinct Element Method, where the discrete elements interact via compliant contacts, in contrast with Displacement Discontinuity Analysis where the contacts are rigid and all compliance is taken up by the adjacent intact material.

  1. Mixed-symmetry localized modes and breathers in binary mixtures of Bose-Einstein condensates in optical lattices

    SciTech Connect

    Cruz, H. A.; Brazhnyi, V. A.; Konotop, V. V.; Alfimov, G. L.; Salerno, M.

    2007-07-15

    We study localized modes in binary mixtures of Bose-Einstein condensates embedded in one-dimensional optical lattices. We report a diversity of asymmetric modes and investigate their dynamics. We concentrate on the cases where one of the components is dominant, i.e., has a much larger number of atoms than the other one, and where both components have the numbers of atoms of the same order but different symmetries. In the first case we propose a method of systematically obtaining the modes, considering the 'small' component as bifurcating from the continuum spectrum. A generalization of this approach combined with the use of the symmetry of the coupled Gross-Pitaevskii equations allows for obtaining breather modes, which are also presented.

  2. Synchronous Discrete Harmonic Oscillator

    SciTech Connect

    Antippa, Adel F.; Dubois, Daniel M.

    2008-10-17

    We introduce the synchronous discrete harmonic oscillator, and present an analytical, numerical and graphical study of its characteristics. The oscillator is synchronous when the time T for one revolution covering an angle of 2{pi} in phase space, is an integral multiple N of the discrete time step {delta}t. It is fully synchronous when N is even. It is pseudo-synchronous when T/{delta}t is rational. In the energy conserving hyperincursive representation, the phase space trajectories are perfectly stable at all time scales, and in both synchronous and pseudo-synchronous modes they cycle through a finite number of phase space points. Consequently, both the synchronous and the pseudo-synchronous hyperincursive modes of time-discretization provide a physically realistic and mathematically coherent, procedure for dynamic, background independent, discretization of spacetime. The procedure is applicable to any stable periodic dynamical system, and provokes an intrinsic correlation between space and time, whereby space-discretization is a direct consequence of background-independent time-discretization. Hence, synchronous discretization moves the formalism of classical mechanics towards that of special relativity. The frequency of the hyperincursive discrete harmonic oscillator is ''blue shifted'' relative to its continuum counterpart. The frequency shift has the precise value needed to make the speed of the system point in phase space independent of the discretizing time interval {delta}t. That is the speed of the system point is the same on the polygonal (in the discrete case) and the circular (in the continuum case) phase space trajectories.

  3. Synchronous Discrete Harmonic Oscillator

    NASA Astrophysics Data System (ADS)

    Antippa, Adel F.; Dubois, Daniel M.

    2008-10-01

    We introduce the synchronous discrete harmonic oscillator, and present an analytical, numerical and graphical study of its characteristics. The oscillator is synchronous when the time T for one revolution covering an angle of 2π in phase space, is an integral multiple N of the discrete time step Δt. It is fully synchronous when N is even. It is pseudo-synchronous when T/Δt is rational. In the energy conserving hyperincursive representation, the phase space trajectories are perfectly stable at all time scales, and in both synchronous and pseudo-synchronous modes they cycle through a finite number of phase space points. Consequently, both the synchronous and the pseudo-synchronous hyperincursive modes of time-discretization provide a physically realistic and mathematically coherent, procedure for dynamic, background independent, discretization of spacetime. The procedure is applicable to any stable periodic dynamical system, and provokes an intrinsic correlation between space and time, whereby space-discretization is a direct consequence of background-independent time-discretization. Hence, synchronous discretization moves the formalism of classical mechanics towards that of special relativity. The frequency of the hyperincursive discrete harmonic oscillator is "blue shifted" relative to its continuum counterpart. The frequency shift has the precise value needed to make the speed of the system point in phase space independent of the discretizing time interval Δt. That is the speed of the system point is the same on the polygonal (in the discrete case) and the circular (in the continuum case) phase space trajectories.

  4. Exact models for isotropic matter

    NASA Astrophysics Data System (ADS)

    Thirukkanesh, S.; Maharaj, S. D.

    2006-04-01

    We study the Einstein-Maxwell system of equations in spherically symmetric gravitational fields for static interior spacetimes. The condition for pressure isotropy is reduced to a recurrence equation with variable, rational coefficients. We demonstrate that this difference equation can be solved in general using mathematical induction. Consequently, we can find an explicit exact solution to the Einstein-Maxwell field equations. The metric functions, energy density, pressure and the electric field intensity can be found explicitly. Our result contains models found previously, including the neutron star model of Durgapal and Bannerji. By placing restrictions on parameters arising in the general series, we show that the series terminate and there exist two linearly independent solutions. Consequently, it is possible to find exact solutions in terms of elementary functions, namely polynomials and algebraic functions.

  5. Exact controllability of complex networks

    PubMed Central

    Yuan, Zhengzhong; Zhao, Chen; Di, Zengru; Wang, Wen-Xu; Lai, Ying-Cheng

    2013-01-01

    Controlling complex networks is of paramount importance in science and engineering. Despite the recent development of structural controllability theory, we continue to lack a framework to control undirected complex networks, especially given link weights. Here we introduce an exact controllability paradigm based on the maximum multiplicity to identify the minimum set of driver nodes required to achieve full control of networks with arbitrary structures and link-weight distributions. The framework reproduces the structural controllability of directed networks characterized by structural matrices. We explore the controllability of a large number of real and model networks, finding that dense networks with identical weights are difficult to be controlled. An efficient and accurate tool is offered to assess the controllability of large sparse and dense networks. The exact controllability framework enables a comprehensive understanding of the impact of network properties on controllability, a fundamental problem towards our ultimate control of complex systems. PMID:24025746

  6. Exact dynamics of finite Glauber-Fock photonic lattices

    SciTech Connect

    Rodriguez-Lara, B. M.

    2011-11-15

    The dynamics of Glauber-Fock lattice of size N is given through exact diagonalization of the corresponding Hamiltonian; the spectra {l_brace}{lambda}{sub k}{r_brace} is given as the roots of the Nth Hermite polynomial, H{sub N}({lambda}{sub k}/{radical}(2))=0, and the eigenstates are given in terms of Hermite polynomials evaluated at these roots. The exact dynamics is used to study coherent phenomena in discrete lattices. Due to the symmetry and spacing of the eigenvalues {l_brace}{lambda}{sub k}{r_brace}, oscillatory behavior is predicted with highly localized spectra, that is, near complete revivals of the photon number and partial recovery of the initial state at given waveguides.

  7. More on exact state reconstruction in deterministic digital control systems

    NASA Technical Reports Server (NTRS)

    Polites, Michael E.

    1988-01-01

    Presented is a special form of the Ideal State Reconstructor for deterministic digital control systems which is simpler to implement than the most general form. The Ideal State Reconstructor is so named because, if the plant parameters are known exactly, its output will exactly equal, not just approximate, the true state of the plant and accomplish this without any knowledge of the plant's initial state. Besides this, it adds no new states or eigenvalues to the system. Nor does it affect the plant equation for the system in any way; it affects the measurement equation only. It is characterized by the fact that discrete measurements are generated every T/N seconds and input into a multi-input/multi-output moving-average (MA) process. The output of this process is sampled every T seconds and utilized in reconstructing the state of the system.

  8. Exact results for models of multichannel quantum nonadiabatic transitions

    DOE PAGES

    Sinitsyn, N. A.

    2014-12-11

    We consider nonadiabatic transitions in explicitly time-dependent systems with Hamiltonians of the form Hˆ(t)=Aˆ+Bˆt+Cˆ/t, where t is time and Aˆ,Bˆ,Cˆ are Hermitian N × N matrices. We show that in any model of this type, scattering matrix elements satisfy nontrivial exact constraints that follow from the absence of the Stokes phenomenon for solutions with specific conditions at t→–∞. This allows one to continue such solutions analytically to t→+∞, and connect their asymptotic behavior at t→–∞ and t→+∞. This property becomes particularly useful when a model shows additional discrete symmetries. Specifically, we derive a number of simple exact constraints and explicitmore » expressions for scattering probabilities in such systems.« less

  9. Exact results for models of multichannel quantum nonadiabatic transitions

    SciTech Connect

    Sinitsyn, N. A.

    2014-12-11

    We consider nonadiabatic transitions in explicitly time-dependent systems with Hamiltonians of the form Hˆ(t)=Aˆ+Bˆt+Cˆ/t, where t is time and Aˆ,Bˆ,Cˆ are Hermitian N × N matrices. We show that in any model of this type, scattering matrix elements satisfy nontrivial exact constraints that follow from the absence of the Stokes phenomenon for solutions with specific conditions at t→–∞. This allows one to continue such solutions analytically to t→+∞, and connect their asymptotic behavior at t→–∞ and t→+∞. This property becomes particularly useful when a model shows additional discrete symmetries. Specifically, we derive a number of simple exact constraints and explicit expressions for scattering probabilities in such systems.

  10. What Exactly is Space Logistics?

    DTIC Science & Technology

    2011-01-01

    information on the space shuttle in the news and have inferred by now that resupply missions to the International Space Sta- tion, Hubble Space ... Telescope repair missions, and satellite deployment missions are space logistics—and you would be technically correct. The science of logistics as applied...What Exactly is Space Logistics? James C. Breidenbach Report Documentation Page Form ApprovedOMB No. 0704-0188 Public reporting burden for the

  11. Field theories and exact stochastic equations for interacting particle systems

    SciTech Connect

    Andreanov, Alexei; Lefevre, Alexandre; Biroli, Giulio; Bouchaud, Jean-Philippe

    2006-09-15

    We consider the dynamics of interacting particles with reaction and diffusion. Starting from the underlying discrete stochastic jump process we derive a general field theory describing the dynamics of the density field, which we relate to an exact stochastic equation on the density field. We show how our field theory maps onto the original Doi-Peliti formalism, allowing us to clarify further the issue of the 'imaginary' Langevin noise that appears in the context of reaction-diffusion processes. Our procedure applies to a wide class of problems and is related to large deviation functional techniques developed recently to describe fluctuations of nonequilibrium systems in the hydrodynamic limit.

  12. The Discrete Hanging Cable

    ERIC Educational Resources Information Center

    Peters, James V.

    2004-01-01

    Using the methods of finite difference equations the discrete analogue of the parabolic and catenary cable are analysed. The fibonacci numbers and the golden ratio arise in the treatment of the catenary.

  13. Idea Exchange: On Discrete.

    ERIC Educational Resources Information Center

    Crisler, Nancy; Froelich, Gary

    1990-01-01

    Discussed are summary recommendations concerning the integration of some aspects of discrete mathematics into existing secondary mathematics courses. Outlines of course activities are grouped into the three levels of prealgebra, algebra, and geometry. Some sample problems are included. (JJK)

  14. Partitioning technique for discrete quantum systems

    SciTech Connect

    Jin, L.; Song, Z.

    2011-06-15

    We develop the partitioning technique for quantum discrete systems. The graph consists of several subgraphs: a central graph and several branch graphs, with each branch graph being rooted by an individual node on the central one. We show that the effective Hamiltonian on the central graph can be constructed by adding additional potentials on the branch-root nodes, which generates the same result as does the the original Hamiltonian on the entire graph. Exactly solvable models are presented to demonstrate the main points of this paper.

  15. Exact analytic solutions for a Dirac electron moving in graphene under magnetic fields.

    PubMed

    Kuru, S; Negro, J; Nieto, L M

    2009-11-11

    Exact analytical solutions for the bound states of a graphene Dirac electron in various magnetic fields with translational symmetry are obtained. In order to solve the time-independent Dirac-Weyl equation the factorization method used in supersymmetric quantum mechanics is adapted to this problem. The behavior of the discrete spectrum, probability and current densities are discussed.

  16. Generalized computer-aided discrete time domain modeling and analysis of dc-dc converters

    NASA Technical Reports Server (NTRS)

    Lee, F. C.; Iwens, R. P.; Yu, Y.; Triner, J. E.

    1977-01-01

    A generalized discrete time domain modeling and analysis technique is presented for all types of switching regulators using any type of duty-cycle controller, and operating in both continuous and discontinuous inductor current. State space techniques are employed to derive an equivalent nonlinear discrete time model that describes the converter exactly. The system is linearized about its equilibrium state to obtain a linear discrete time model for small signal performance evaluations, such as stability, audiosusceptibility and transient response. The analysis makes extensive use of the digital computer as an analytical tool. It is universal, exact and easy to use.

  17. Exact analytical solutions for ADAFs

    NASA Astrophysics Data System (ADS)

    Habibi, Asiyeh; Abbassi, Shahram; Shadmehri, Mohsen

    2017-02-01

    We obtain two-dimensional exact analytic solutions for the structure of the hot accretion flows without wind. We assume that the only non-zero component of the stress tensor is Trϕ. Furthermore, we assume that the value of viscosity coefficient α varies with θ. We find radially self-similar solutions and compare them with the numerical and the analytical solutions already studied in the literature. The no-wind solution obtained in this paper may be applied to the nuclei of some cool-core clusters.

  18. Exact finite elements for conduction and convection

    NASA Technical Reports Server (NTRS)

    Thornton, E. A.; Dechaumphai, P.; Tamma, K. K.

    1981-01-01

    An appproach for developing exact one dimensional conduction-convection finite elements is presented. Exact interpolation functions are derived based on solutions to the governing differential equations by employing a nodeless parameter. Exact interpolation functions are presented for combined heat transfer in several solids of different shapes, and for combined heat transfer in a flow passage. Numerical results demonstrate that exact one dimensional elements offer advantages over elements based on approximate interpolation functions. Previously announced in STAR as N81-31507

  19. Exact finite elements for conduction and convection

    NASA Technical Reports Server (NTRS)

    Thornton, E. A.; Dechaumphai, P.; Tamma, K. K.

    1981-01-01

    An approach for developing exact one dimensional conduction-convection finite elements is presented. Exact interpolation functions are derived based on solutions to the governing differential equations by employing a nodeless parameter. Exact interpolation functions are presented for combined heat transfer in several solids of different shapes, and for combined heat transfer in a flow passage. Numerical results demonstrate that exact one dimensional elements offer advantages over elements based on approximate interpolation functions.

  20. Discrete Driver Assistance

    NASA Astrophysics Data System (ADS)

    Klette, Reinhard; Jiang, Ruyi; Morales, Sandino; Vaudrey, Tobi

    Applying computer technology, such as computer vision in driver assistance, implies that processes and data are modeled as being discretized rather than being continuous. The area of stereo vision provides various examples how concepts known in discrete mathematics (e.g., pixel adjacency graphs, belief propagation, dynamic programming, max-flow/min-cut, or digital straight lines) are applied when aiming for efficient and accurate pixel correspondence solutions. The paper reviews such developments for a reader in discrete mathematics who is interested in applied research (in particular, in vision-based driver assistance). As a second subject, the paper also discusses lane detection and tracking, which is a particular task in driver assistance; recently the Euclidean distance transform proved to be a very appropriate tool for obtaining a fairly robust solution.

  1. Time Discretization Approach to Dynamic Localization Conditions

    NASA Astrophysics Data System (ADS)

    Papp, E.

    An alternative wavefunction to the description of the dynamic localization of a charged particle moving on a one-dimensional lattice under the influence of a periodic time dependent electric field is written down. For this purpose the method of characteristics such as applied by Dunlap and Kenkre [Phys. Rev. B 34, 3625 (1986)] has been modified by using a different integration variable. Handling this wavefunction one is faced with the selection of admissible time values. This results in a conditionally exactly solvable problem, now by accounting specifically for the implementation of a time discretization working in conjunction with a related dynamic localization condition. In addition, one resorts to the strong field limit, which amounts to replace, to leading order, the large order zeros of the Bessel function J0(z), used before in connection with the cosinusoidal modulation, by integral multiples of π. Here z stands for the ratio between the field amplitude and the frequency. The modulation function of the electric field vanishes on the nodal points of the time grid, which stands for an effective field-free behavior. This opens the way to propose quickly tractable dynamic localization conditions for arbitrary periodic modulations. We have also found that the present time discretization approach produces the minimization of the mean square displacement characterizing the usual exact wavefunction. Other realizations and comparisons have also been presented.

  2. Exact Bremsstrahlung and effective couplings

    NASA Astrophysics Data System (ADS)

    Mitev, Vladimir; Pomoni, Elli

    2016-06-01

    We calculate supersymmetric Wilson loops on the ellipsoid for a large class of mathcal{N} = 2 SCFT using the localization formula of Hama and Hosomichi. From them we extract the radiation emitted by an accelerating heavy probe quark as well as the entanglement entropy following the recent works of Lewkowycz-Maldacena and Fiol-Gerchkovitz-Komargodski. Comparing our results with the mathcal{N} = 4 SYM ones, we obtain interpolating functions f ( g 2) such that a given mathcal{N} = 2 SCFT observable is obtained by replacing in the corresponding mathcal{N} = 4 SYM result the coupling constant by f ( g 2). These "exact effective couplings" encode the finite, relative renormalization between the mathcal{N} = 2 and the mathcal{N} = 4 gluon propagator and they interpolate between the weak and the strong coupling. We discuss the range of their applicability.

  3. Exact propagators in harmonic superspace

    NASA Astrophysics Data System (ADS)

    Kuzenko, Sergei M.

    2004-10-01

    Within the background field formulation in harmonic superspace for quantum N = 2 super-Yang-Mills theories, the propagators of the matter, gauge and ghost superfields possess a complicated dependence on the SU(2) harmonic variables via the background vector multiplet. This dependence is shown to simplify drastically in the case of an on-shell vector multiplet. For a covariantly constant background vector multiplet, we exactly compute all the propagators. In conjunction with the covariant multi-loop scheme developed in arxiv:hep-th/0302205, these results provide an efficient (manifestly N = 2 supersymmetric) technical setup for computing multi-loop quantum corrections to effective actions in N = 2 supersymmetric gauge theories, including the N = 4 super-Yang-Mills theory.

  4. High Resolution Thermometry for EXACT

    NASA Technical Reports Server (NTRS)

    Panek, J. S.; Nash, A. E.; Larson, M.; Mulders, N.

    2000-01-01

    High Resolution Thermometers (HRTs) based on SQUID detection of the magnetization of a paramagnetic salt or a metal alloy has been commonly used for sub-nano Kelvin temperature resolution in low temperature physics experiments. The main applications to date have been for temperature ranges near the lambda point of He-4 (2.177 K). These thermometers made use of materials such as Cu(NH4)2Br4 *2H2O, GdCl3, or PdFe. None of these materials are suitable for EXACT, which will explore the region of the He-3/He-4 tricritical point at 0.87 K. The experiment requirements and properties of several candidate paramagnetic materials will be presented, as well as preliminary test results.

  5. Exact solutions to model surface and volume charge distributions

    NASA Astrophysics Data System (ADS)

    Mukhopadhyay, S.; Majumdar, N.; Bhattacharya, P.; Jash, A.; Bhattacharya, D. S.

    2016-10-01

    Many important problems in several branches of science and technology deal with charges distributed along a line, over a surface and within a volume. Recently, we have made use of new exact analytic solutions of surface charge distributions to develop the nearly exact Boundary Element Method (neBEM) toolkit. This 3D solver has been successful in removing some of the major drawbacks of the otherwise elegant Green's function approach and has been found to be very accurate throughout the computational domain, including near- and far-field regions. Use of truly distributed singularities (in contrast to nodally concentrated ones) on rectangular and right-triangular elements used for discretizing any three-dimensional geometry has essentially removed many of the numerical and physical singularities associated with the conventional BEM. In this work, we will present this toolkit and the development of several numerical models of space charge based on exact closed-form expressions. In one of the models, Particles on Surface (ParSur), the space charge inside a small elemental volume of any arbitrary shape is represented as being smeared on several surfaces representing the volume. From the studies, it can be concluded that the ParSur model is successful in getting the estimates close to those obtained using the first-principles, especially close to and within the cell. In the paper, we will show initial applications of ParSur and other models in problems related to high energy physics.

  6. Discrete surface solitons.

    PubMed

    Makris, Konstantinos G; Suntsov, Sergiy; Christodoulides, Demetrios N; Stegeman, George I; Hache, Alain

    2005-09-15

    It is theoretically shown that discrete nonlinear surface waves are possible in waveguide lattices. These self-trapped states are located at the edge of the array and can exist only above a certain power threshold. The excitation characteristics and stability properties of these surface waves are systematically investigated.

  7. Generalized Detectability for Discrete Event Systems

    PubMed Central

    Shu, Shaolong; Lin, Feng

    2011-01-01

    In our previous work, we investigated detectability of discrete event systems, which is defined as the ability to determine the current and subsequent states of a system based on observation. For different applications, we defined four types of detectabilities: (weak) detectability, strong detectability, (weak) periodic detectability, and strong periodic detectability. In this paper, we extend our results in three aspects. (1) We extend detectability from deterministic systems to nondeterministic systems. Such a generalization is necessary because there are many systems that need to be modeled as nondeterministic discrete event systems. (2) We develop polynomial algorithms to check strong detectability. The previous algorithms are based on observer whose construction is of exponential complexity, while the new algorithms are based on a new automaton called detector. (3) We extend detectability to D-detectability. While detectability requires determining the exact state of a system, D-detectability relaxes this requirement by asking only to distinguish certain pairs of states. With these extensions, the theory on detectability of discrete event systems becomes more applicable in solving many practical problems. PMID:21691432

  8. Exact law of live nature

    NASA Astrophysics Data System (ADS)

    Azbel, Mark Ya.

    2005-07-01

    Exact law of mortality dynamics in changing populations and environment is derived. It includes no explicit characteristics of animal- environment interactions (metabolism etc) which are a must for life; it is universal for all animals, from single cell yeast to humans, with their drastically different biology, evolutionary history, and complexity; it is rapidly (within few percent of life span) reversible. Such law is unique for live systems with their homeostatic self-adjustment to environment (cf. thermodynamics of liquids and glasses). The law which is valid for all live, and only live, systems is their specific natural law. Mortality is an instrument of natural selection and biological diversity. Its law, which is preserved in evolution of all species, is a conservation law of mortality, selection, evolution, biology. The law implies new kind of intrinsic mortality and adaptation which dominate in evolutionary unprecedented protected populations and, in contrast to species specific natural selection, proceed via universal stepwise rungs and reduce to universal cellular mechanism. The law demonstrates that intrinsic mortality and at least certain aspects of aging are disposable evolutionary byproducts, and directed genetic and/or biological changes may yield healthy and vital Methuselah lifespan. This is consistent with experiments. Universality implies that single cell yeast may provide a master key to the cellular mechanism of universal mortality, aging, selection, evolution, and its regulation in all animals. One may look for its manifestations in animal cells also, e.g., in their replicative senescence and cancer. Evolutionary origin and genetic nature of universality are suggested.

  9. Breather transition dynamics, Peregrine combs and walls, and modulation instability in a variable-coefficient nonlinear Schrödinger equation with higher-order effects

    NASA Astrophysics Data System (ADS)

    Wang, Lei; Zhang, Jian-Hui; Liu, Chong; Li, Min; Qi, Feng-Hua

    2016-06-01

    We study a variable-coefficient nonlinear Schrödinger (vc-NLS) equation with higher-order effects. We show that the breather solution can be converted into four types of nonlinear waves on constant backgrounds including the multipeak solitons, antidark soliton, periodic wave, and W -shaped soliton. In particular, the transition condition requiring the group velocity dispersion (GVD) and third-order dispersion (TOD) to scale linearly is obtained analytically. We display several kinds of elastic interactions between the transformed nonlinear waves. We discuss the dispersion management of the multipeak soliton, which indicates that the GVD coefficient controls the number of peaks of the wave while the TOD coefficient has compression effect. The gain or loss has influence on the amplitudes of the multipeak soliton. We further derive the breather multiple births and Peregrine combs by using multiple compression points of Akhmediev breathers and Peregrine rogue waves in optical fiber systems with periodic GVD modulation. In particular, we demonstrate that the Peregrine comb can be converted into a Peregrine wall by the proper choice of the amplitude of the periodic GVD modulation. The Peregrine wall can be seen as an intermediate state between rogue waves and W -shaped solitons. We finally find that the modulational stability regions with zero growth rate coincide with the transition condition using rogue wave eigenvalues. Our results could be useful for the experimental control and manipulation of the formation of generalized Peregrine rogue waves in diverse physical systems modeled by vc-NLS equation with higher-order effects.

  10. Evaluation of the mineralization degree of the vestibular surface of the upper central incisors with a 655-nm diode laser in mouth breathers: preliminary results

    NASA Astrophysics Data System (ADS)

    Pinheiro Ladalardo, Thereza C. C. G.; Cappellette, Mario, Jr.; Zanin, Fatima A. A.; Brugnera, Aldo, Jr.; Anthero de Azevedo, Ramiro; Pignatari, Shirley; Weckx, Luc L. M.

    2003-06-01

    Mouth breathing unbalances the physiological mechanisms of the dental surface hydration by compromising lip closure, and, very often, causing the vestibular positioning of upper incisors. That variance leads to the interruption of the dental demineralization and remineralization feedback, prevailing a demineralized condition of the dental surface which increases caries risk. The laser fluorescence examination allows an early demineralization diagnosis, thus it makes possible through preventive measures to minimize the risk factor - dental mineral structure loss - in the bacterial infection of the demineralized area, and hence, preventing invasive therapeutical procedures. A DIAGNOdent apparatus was used to evaluate the mineralization degree of the upper central incisors in 40 patients - twenty of them with a mouth breathing diagnosis; the remaining twenty were nasal breathers (control group). Age ranging from 6 to 12 years, both male and female. To measure the vestibular surface of the incisors, it was divided into 3 segments: cervical, medial and incisal. The average of the results pertaining to the mouth breathing patients was as follows: tooth 11 cervical third - 5.45, medial third - 7.15, incisal third - 7.95, and tooth 21 - cervical third - 5.95, medial third - 7.25, incisal third - 8.15. The control patients, nasal breathers, presented the following results: tooth 11 cervical third - 1.75, medial third - 2.30, incisal third - 1.85, and tooth 21 - cervical third - 1.80, medial third - 2.20, incisal third - 2.15. The mouth breathing patients showed demineralization in the teeth examined at the initial stage, subclinical, comparing with the control patients, nasal breathers, who did not present any mineral deficit in these teeth.

  11. Breather transition dynamics, Peregrine combs and walls, and modulation instability in a variable-coefficient nonlinear Schrödinger equation with higher-order effects.

    PubMed

    Wang, Lei; Zhang, Jian-Hui; Liu, Chong; Li, Min; Qi, Feng-Hua

    2016-06-01

    We study a variable-coefficient nonlinear Schrödinger (vc-NLS) equation with higher-order effects. We show that the breather solution can be converted into four types of nonlinear waves on constant backgrounds including the multipeak solitons, antidark soliton, periodic wave, and W-shaped soliton. In particular, the transition condition requiring the group velocity dispersion (GVD) and third-order dispersion (TOD) to scale linearly is obtained analytically. We display several kinds of elastic interactions between the transformed nonlinear waves. We discuss the dispersion management of the multipeak soliton, which indicates that the GVD coefficient controls the number of peaks of the wave while the TOD coefficient has compression effect. The gain or loss has influence on the amplitudes of the multipeak soliton. We further derive the breather multiple births and Peregrine combs by using multiple compression points of Akhmediev breathers and Peregrine rogue waves in optical fiber systems with periodic GVD modulation. In particular, we demonstrate that the Peregrine comb can be converted into a Peregrine wall by the proper choice of the amplitude of the periodic GVD modulation. The Peregrine wall can be seen as an intermediate state between rogue waves and W-shaped solitons. We finally find that the modulational stability regions with zero growth rate coincide with the transition condition using rogue wave eigenvalues. Our results could be useful for the experimental control and manipulation of the formation of generalized Peregrine rogue waves in diverse physical systems modeled by vc-NLS equation with higher-order effects.

  12. Discrete Variational Optimal Control

    NASA Astrophysics Data System (ADS)

    Jiménez, Fernando; Kobilarov, Marin; Martín de Diego, David

    2013-06-01

    This paper develops numerical methods for optimal control of mechanical systems in the Lagrangian setting. It extends the theory of discrete mechanics to enable the solutions of optimal control problems through the discretization of variational principles. The key point is to solve the optimal control problem as a variational integrator of a specially constructed higher dimensional system. The developed framework applies to systems on tangent bundles, Lie groups, and underactuated and nonholonomic systems with symmetries, and can approximate either smooth or discontinuous control inputs. The resulting methods inherit the preservation properties of variational integrators and result in numerically robust and easily implementable algorithms. Several theoretical examples and a practical one, the control of an underwater vehicle, illustrate the application of the proposed approach.

  13. Steerable Discrete Fourier Transform

    NASA Astrophysics Data System (ADS)

    Fracastoro, Giulia; Magli, Enrico

    2017-03-01

    Directional transforms have recently raised a lot of interest thanks to their numerous applications in signal compression and analysis. In this letter, we introduce a generalization of the discrete Fourier transform, called steerable DFT (SDFT). Since the DFT is used in numerous fields, it may be of interest in a wide range of applications. Moreover, we also show that the SDFT is highly related to other well-known transforms, such as the Fourier sine and cosine transforms and the Hilbert transforms.

  14. The Discrete Wavelet Transform

    DTIC Science & Technology

    1991-06-01

    Split- Band Coding," Proc. ICASSP, May 1977, pp 191-195. 12. Vetterli, M. "A Theory of Multirate Filter Banks ," IEEE Trans. ASSP, 35, March 1987, pp 356...both special cases of a single filter bank structure, the discrete wavelet transform, the behavior of which is governed by one’s choice of filters . In...B-1 ,.iii FIGURES 1.1 A wavelet filter bank structure ..................................... 2 2.1 Diagram illustrating the dialation and

  15. Discrete minimal flavor violation

    SciTech Connect

    Zwicky, Roman; Fischbacher, Thomas

    2009-10-01

    We investigate the consequences of replacing the global flavor symmetry of minimal flavor violation (MFV) SU(3){sub Q}xSU(3){sub U}xSU(3){sub D}x{center_dot}{center_dot}{center_dot} by a discrete D{sub Q}xD{sub U}xD{sub D}x{center_dot}{center_dot}{center_dot} symmetry. Goldstone bosons resulting from the breaking of the flavor symmetry generically lead to bounds on new flavor structure many orders of magnitude above the TeV scale. The absence of Goldstone bosons for discrete symmetries constitute the primary motivation of our work. Less symmetry implies further invariants and renders the mass-flavor basis transformation observable in principle and calls for a hierarchy in the Yukawa matrix expansion. We show, through the dimension of the representations, that the (discrete) symmetry in principle does allow for additional {delta}F=2 operators. If though the {delta}F=2 transitions are generated by two subsequent {delta}F=1 processes, as, for example, in the standard model, then the four crystal-like groups {sigma}(168){approx_equal}PSL(2,F{sub 7}), {sigma}(72{phi}), {sigma}(216{phi}) and especially {sigma}(360{phi}) do provide enough protection for a TeV-scale discrete MFV scenario. Models where this is not the case have to be investigated case by case. Interestingly {sigma}(216{phi}) has a (nonfaithful) representation corresponding to an A{sub 4} symmetry. Moreover we argue that the, apparently often omitted, (D) groups are subgroups of an appropriate {delta}(6g{sup 2}). We would like to stress that we do not provide an actual model that realizes the MFV scenario nor any other theory of flavor.

  16. Exact law of live nature

    NASA Astrophysics Data System (ADS)

    Azbel‧, Mark Ya.

    2005-08-01

    The exact law of mortality dynamics in changing populations and environment is derived. It includes no explicit characteristics of animal-environment interactions (metabolism, etc.) which are a must for life; it is universal for all animals, from single-cell yeast to humans, with their drastically different biology, evolutionary history, and complexity; it is rapidly (within few percent of life span) reversible. Such a law is unique for live systems with their homeostatic self-adjustment to environment (cf. thermodynamics of liquids and glasses). The law which is valid for all live, and only live, systems is their specific natural law. Mortality is an instrument of natural selection and biological diversity. Its law, which is preserved in evolution of all species, is a conservation law of mortality, selection, evolution, biology. The law implies new kinds of intrinsic mortality and adaptation which dominate in evolutionary unprecedented protected populations and, in contrast to species-specific natural selection, proceed via universal stepwise rungs and reduce to universal cellular mechanism. The law demonstrates that intrinsic mortality and at least certain aspects of aging are disposable evolutionary byproducts, and directed genetic and/or biological changes may yield healthy and vital Methuselah lifespan. This is consistent with experiments. Universality implies that single-cell yeast may provide a master key to the cellular mechanism of universal mortality, aging, selection, evolution, and its regulation in all animals. One may look for its manifestations in animal cells also, e.g., in their replicative senescence and cancer. Evolutionary origin and genetic nature of universality are suggested.

  17. Quasi-exactly solvable quasinormal modes

    SciTech Connect

    Ho, C.-L.; Cho, H.-T.

    2007-11-20

    We consider quasinormal modes with complex energies from the point of view of the theory of quasi-exactly solvable (QES) models. We demonstrate that it is possible to find new potentials which admit exactly solvable or QES quasinormal modes by suitable complexification of parameters defining the QES potentials. Particularly, we obtain one QES and four exactly solvable potentials out of the five one-dimensional QES systems based on the sl(2) algebra.

  18. Exact computations for the coherence estimate.

    PubMed

    Nadarajah, Saralees; Kotz, Samuel

    2007-07-01

    The recent paper by Miranda de Sa et al. [10] developed methods for computing the sampling distribution of the coherence estimate between two signals. However, the methods were based on some approximations because it was claimed that exact calculations required extensive computations. In this technical note, we provide analytical expressions and 1-line programs for the exact computation of various measures of the sampling distribution. Besides being exact, our programs have several advantages over the methods suggested in [10].

  19. Exact significance test for Markov order

    NASA Astrophysics Data System (ADS)

    Pethel, S. D.; Hahs, D. W.

    2014-02-01

    We describe an exact significance test of the null hypothesis that a Markov chain is nth order. The procedure utilizes surrogate data to yield an exact test statistic distribution valid for any sample size. Surrogate data are generated using a novel algorithm that guarantees, per shot, a uniform sampling from the set of sequences that exactly match the nth order properties of the observed data. Using the test, the Markov order of Tel Aviv rainfall data is examined.

  20. A paradigm for discrete physics

    SciTech Connect

    Noyes, H.P.; McGoveran, D.; Etter, T.; Manthey, M.J.; Gefwert, C.

    1987-01-01

    An example is outlined for constructing a discrete physics using as a starting point the insight from quantum physics that events are discrete, indivisible and non-local. Initial postulates are finiteness, discreteness, finite computability, absolute nonuniqueness (i.e., homogeneity in the absence of specific cause) and additivity.

  1. Factorization of the Discrete Noise Covariance Matrix for Plans,

    DTIC Science & Technology

    1991-02-01

    rapport prdsente la formulation exacte de la matrice de covariance Qk necessaire pour la propagation de la matrice de covariance du filtre Kalman ...approximation la d6composition necessaire pour utiliser la formulation Biermann-Agee-Turner du filtre Kalman . Cette decomposition approximative est...form of the discrete driving noise covariance matrix Qk which is needed to propagate the covariance matrix in the Kalman filter used by PLANS. It is

  2. Two-flavor QCD simulation with exact chiral symmetry

    SciTech Connect

    Aoki, S.; Fukaya, H.; Hashimoto, S.; Kaneko, T.; Yamada, N.; Ishikawa, K-I.; Okawa, M.; Kanaya, K.; Matsufuru, H.; Okamoto, M.; Onogi, T.; Ukawa, A; Yoshie, T.

    2008-07-01

    We perform numerical simulations of lattice QCD with two flavors of dynamical overlap quarks, which have exact chiral symmetry on the lattice. While this fermion discretization is computationally demanding, we demonstrate the feasibility to simulate reasonably large and fine lattices by a careful choice of the lattice action and algorithmic improvements. Our production runs are carried out on a 16{sup 3}x32 lattice at a single lattice spacing around 0.12 fm. We explore the sea quark mass region down to m{sub s}/6, where m{sub s} is the physical strange quark mass, for a good control of the chiral extrapolation in future calculations of physical observables. We describe in detail our setup and algorithmic properties of the production simulations and present results for the static quark potential to fix the lattice scale and the locality of the overlap operator.

  3. A three-level BDDC algorithm for Mortar discretizations

    SciTech Connect

    Kim, H.; Tu, X.

    2007-12-09

    In this paper, a three-level BDDC algorithm is developed for the solutions of large sparse algebraic linear systems arising from the mortar discretization of elliptic boundary value problems. The mortar discretization is considered on geometrically non-conforming subdomain partitions. In two-level BDDC algorithms, the coarse problem needs to be solved exactly. However, its size will increase with the increase of the number of the subdomains. To overcome this limitation, the three-level algorithm solves the coarse problem inexactly while a good rate of convergence is maintained. This is an extension of previous work, the three-level BDDC algorithms for standard finite element discretization. Estimates of the condition numbers are provided for the three-level BDDC method and numerical experiments are also discussed.

  4. Quantum walks and non-Abelian discrete gauge theory

    NASA Astrophysics Data System (ADS)

    Arnault, Pablo; Di Molfetta, Giuseppe; Brachet, Marc; Debbasch, Fabrice

    2016-07-01

    A family of discrete-time quantum walks (DTQWs) on the line with an exact discrete U(N ) gauge invariance is introduced. It is shown that the continuous limit of these DTQWs, when it exists, coincides with the dynamics of a Dirac fermion coupled to usual U(N ) gauge fields in two-dimensional spacetime. A discrete generalization of the usual U(N ) curvature is also constructed. An alternate interpretation of these results in terms of superimposed U(1 ) Maxwell fields and SU(N ) gauge fields is discussed in the Appendix. Numerical simulations are also presented, which explore the convergence of the DTQWs towards their continuous limit and which also compare the DTQWs with classical (i.e., nonquantum) motions in classical SU(2 ) fields. The results presented in this paper constitute a first step towards quantum simulations of generic Yang-Mills gauge theories through DTQWs.

  5. Probabilistic flood forecast: Exact and approximate predictive distributions

    NASA Astrophysics Data System (ADS)

    Krzysztofowicz, Roman

    2014-09-01

    For quantification of predictive uncertainty at the forecast time t0, the future hydrograph is viewed as a discrete-time continuous-state stochastic process {Hn: n=1,…,N}, where Hn is the river stage at time instance tn>t0. The probabilistic flood forecast (PFF) should specify a sequence of exceedance functions {F‾n: n=1,…,N} such that F‾n(h)=P(Zn>h), where P stands for probability, and Zn is the maximum river stage within time interval (t0,tn], practically Zn=max{H1,…,Hn}. This article presents a method for deriving the exact PFF from a probabilistic stage transition forecast (PSTF) produced by the Bayesian forecasting system (BFS). It then recalls (i) the bounds on F‾n, which can be derived cheaply from a probabilistic river stage forecast (PRSF) produced by a simpler version of the BFS, and (ii) an approximation to F‾n, which can be constructed from the bounds via a recursive linear interpolator (RLI) without information about the stochastic dependence in the process {H1,…,Hn}, as this information is not provided by the PRSF. The RLI is substantiated by comparing the approximate PFF against the exact PFF. Being reasonably accurate and very simple, the RLI may be attractive for real-time flood forecasting in systems of lesser complexity. All methods are illustrated with a case study for a 1430 km headwater basin wherein the PFF is produced for a 72-h interval discretized into 6-h steps.

  6. Exact adler function in supersymmetric QCD.

    PubMed

    Shifman, M; Stepanyantz, K

    2015-02-06

    The Adler function D is found exactly in supersymmetric QCD. Our exact formula relates D(Q(2)) to the anomalous dimension of the matter superfields γ(α(s)(Q(2))). En route we prove another theorem: the absence of the so-called singlet contribution to D. While such singlet contributions are present in individual supergraphs, they cancel in the sum.

  7. Exact Analytical Solutions for Elastodynamic Impact

    DTIC Science & Technology

    2015-11-30

    ARL-RP-0559 ● NOV 2015 US Army Research Laboratory Exact Analytical Solutions for Elastodynamic Impact by George A Gazonas...ARL-RP-0559 ● NOV 2015 US Army Research Laboratory Exact Analytical Solutions for Elastodynamic Impact by George A Gazonas...

  8. Efficient and exact maximum likelihood quantisation of genomic features using dynamic programming.

    PubMed

    Song, Mingzhou; Haralick, Robert M; Boissinot, Stéphane

    2010-01-01

    An efficient and exact dynamic programming algorithm is introduced to quantise a continuous random variable into a discrete random variable that maximises the likelihood of the quantised probability distribution for the original continuous random variable. Quantisation is often useful before statistical analysis and modelling of large discrete network models from observations of multiple continuous random variables. The quantisation algorithm is applied to genomic features including the recombination rate distribution across the chromosomes and the non-coding transposable element LINE-1 in the human genome. The association pattern is studied between the recombination rate, obtained by quantisation at genomic locations around LINE-1 elements, and the length groups of LINE-1 elements, also obtained by quantisation on LINE-1 length. The exact and density-preserving quantisation approach provides an alternative superior to the inexact and distance-based univariate iterative k-means clustering algorithm for discretisation.

  9. Solitons, breathers and rogue waves for a sixth-order variable-coefficient nonlinear Schrödinger equation in an ocean or optical fiber

    NASA Astrophysics Data System (ADS)

    Jia, Shu-Liang; Gao, Yi-Tian; Zhao, Chen; Lan, Zhong-Zhou; Feng, Yu-Jie

    2017-01-01

    Under investigation in this paper is a sixth-order variable-coefficient nonlinear Schrödinger equation in an ocean or optical fiber. Through the Darboux transformation (DT) and generalized DT, we obtain the multi-soliton solutions, breathers and rogue waves. Choosing different values of α( x), β( x), γ( x) and δ( x), which are the coefficients of the third-, fourth-, fifth- and sixth-order dispersions, respectively, we investigate their effects on those solutions, where x is the scaled propagation variable. When α( x), β( x), γ( x) and δ( x) are chosen as the linear, parabolic and periodic functions, we obtain the parabolic, cubic and quasi-periodic solitons, respectively. Head-on and overtaking interactions between the two solitons are presented, and the interactions are elastic. Besides, with certain values of the spectral parameter λ, a shock region between the two solitons appears, and the interaction is inelastic. Interactions between two kinds of the breathers are also studied, and we find that the interaction regions are similar to those of the second-order rogue waves. Rogue waves are split into some first-order rogue waves when α( x), β( x), γ( x) and δ( x) are the periodic or odd-numbered functions.

  10. Exact encounter times for many random walkers on regular and complex networks.

    PubMed

    Sanders, David P

    2009-09-01

    The exact mean time between encounters of a given particle in a system consisting of many particles undergoing random walks in discrete time is calculated, on both regular and complex networks. Analytical results are obtained both for independent walkers, where any number of walkers can occupy the same site, and for walkers with an exclusion interaction, when no site can contain more than one walker. These analytical results are then compared with numerical simulations, showing very good agreement.

  11. COMPARISON OF THE ACCURACY OF VARIOUS SPATIAL DISCRETIZATION SCHEMES OF THE DISCRETE ORDINATES EQUATIONS IN 2D CARTESIAN GEOMETRY

    SciTech Connect

    Sebastian Schunert; Yousry Y. Azmy; Damien Fournier

    2011-05-01

    We present a comprehensive error estimation of four spatial discretization schemes of the two-dimensional Discrete Ordinates (SN) equations on Cartesian grids utilizing a Method of Manufactured Solution (MMS) benchmark suite based on variants of Larsen’s benchmark featuring different orders of smoothness of the underlying exact solution. The considered spatial discretization schemes include the arbitrarily high order transport methods of the nodal (AHOTN) and characteristic (AHOTC) types, the discontinuous Galerkin Finite Element method (DGFEM) and the recently proposed higher order diamond difference method (HODD) of spatial expansion orders 0 through 3. While AHOTN and AHOTC rely on approximate analytical solutions of the transport equation within a mesh cell, DGFEM and HODD utilize a polynomial expansion to mimick the angular flux profile across each mesh cell. Intuitively, due to the higher degree of analyticity, we expect AHOTN and AHOTC to feature superior accuracy compared with DGFEM and HODD, but at the price of potentially longer grind times and numerical instabilities. The latter disadvantages can result from the presence of exponential terms evaluated at the cell optical thickness that arise from the semianalytical solution process. This work quantifies the order of accuracy and the magnitude of the error of all four discretization methods for different optical thicknesses, scattering ratios and degrees of smoothness of the underlying exact solutions in order to verify or contradict the aforementioned intuitive expectation.

  12. Necessary and sufficient conditions for stabilizability of discrete-time systems via delayed feedback control

    NASA Astrophysics Data System (ADS)

    Zhu, Jiandong; Tian, Yu-Ping

    2005-08-01

    In this Letter, the stabilizability problem for single-input chaotic discrete-time systems under delayed feedback control (DFC) is completely solved. Necessary and sufficient conditions for stabilizability via DFC are obtained, which reveal the limitation of DFC more exactly than the odd number limitation. A nonlinear DFC is analytically designed for stabilizing a class of discrete-time systems at an unknown fixed point.

  13. First-principles modeling of electromagnetic scattering by discrete and discretely heterogeneous random media

    NASA Astrophysics Data System (ADS)

    Mishchenko, Michael I.; Dlugach, Janna M.; Yurkin, Maxim A.; Bi, Lei; Cairns, Brian; Liu, Li; Panetta, R. Lee; Travis, Larry D.; Yang, Ping; Zakharova, Nadezhda T.

    2016-05-01

    A discrete random medium is an object in the form of a finite volume of a vacuum or a homogeneous material medium filled with quasi-randomly and quasi-uniformly distributed discrete macroscopic impurities called small particles. Such objects are ubiquitous in natural and artificial environments. They are often characterized by analyzing theoretically the results of laboratory, in situ, or remote-sensing measurements of the scattering of light and other electromagnetic radiation. Electromagnetic scattering and absorption by particles can also affect the energy budget of a discrete random medium and hence various ambient physical and chemical processes. In either case electromagnetic scattering must be modeled in terms of appropriate optical observables, i.e., quadratic or bilinear forms in the field that quantify the reading of a relevant optical instrument or the electromagnetic energy budget. It is generally believed that time-harmonic Maxwell's equations can accurately describe elastic electromagnetic scattering by macroscopic particulate media that change in time much more slowly than the incident electromagnetic field. However, direct solutions of these equations for discrete random media had been impracticable until quite recently. This has led to a widespread use of various phenomenological approaches in situations when their very applicability can be questioned. Recently, however, a new branch of physical optics has emerged wherein electromagnetic scattering by discrete and discretely heterogeneous random media is modeled directly by using analytical or numerically exact computer solutions of the Maxwell equations. Therefore, the main objective of this Report is to formulate the general theoretical framework of electromagnetic scattering by discrete random media rooted in the Maxwell-Lorentz electromagnetics and discuss its immediate analytical and numerical consequences. Starting from the microscopic Maxwell-Lorentz equations, we trace the development of

  14. Manpower Analysis Using Discrete Simulation

    DTIC Science & Technology

    2015-12-01

    building using Discrete Event Simulation (DES) and experimentation using Design of Experiments (DOE). We derived five metamodels to identify the most...objectives were met. 14. SUBJECT TERMS manpower policy analysis, discrete event simulation, Simkit 15. NUMBER OF PAGES 85 16. PRICE CODE 17. SECURITY...using Discrete Event Simulation (DES) and experimentation using Design of Experiments (DOE). We derived five metamodels to identify the most

  15. Thermodynamics of discrete quantum processes

    NASA Astrophysics Data System (ADS)

    Anders, Janet; Giovannetti, Vittorio

    2013-03-01

    We define thermodynamic configurations and identify two primitives of discrete quantum processes between configurations for which heat and work can be defined in a natural way. This allows us to uncover a general second law for any discrete trajectory that consists of a sequence of these primitives, linking both equilibrium and non-equilibrium configurations. Moreover, in the limit of a discrete trajectory that passes through an infinite number of configurations, i.e. in the reversible limit, we recover the saturation of the second law. Finally, we show that for a discrete Carnot cycle operating between four configurations one recovers Carnot's thermal efficiency.

  16. Discrete Pearson distributions

    SciTech Connect

    Bowman, K.O.; Shenton, L.R.; Kastenbaum, M.A.

    1991-11-01

    These distributions are generated by a first order recursive scheme which equates the ratio of successive probabilities to the ratio of two corresponding quadratics. The use of a linearized form of this model will produce equations in the unknowns matched by an appropriate set of moments (assumed to exist). Given the moments we may find valid solutions. These are two cases; (1) distributions defined on the non-negative integers (finite or infinite) and (2) distributions defined on negative integers as well. For (1), given the first four moments, it is possible to set this up as equations of finite or infinite degree in the probability of a zero occurrence, the sth component being a product of s ratios of linear forms in this probability in general. For (2) the equation for the zero probability is purely linear but may involve slowly converging series; here a particular case is the discrete normal. Regions of validity are being studied. 11 refs.

  17. Discrete bisoliton fiber laser

    PubMed Central

    Liu, X. M.; Han, X. X.; Yao, X. K.

    2016-01-01

    Dissipative solitons, which result from the intricate balance between dispersion and nonlinearity as well as gain and loss, are of the fundamental scientific interest and numerous important applications. Here, we report a fiber laser that generates bisoliton – two consecutive dissipative solitons that preserve a fixed separation between them. Deviations from this separation result in its restoration. It is also found that these bisolitons have multiple discrete equilibrium distances with the quantized separations, as is confirmed by the theoretical analysis and the experimental observations. The main feature of our laser is the anomalous dispersion that is increased by an order of magnitude in comparison to previous studies. Then the spectral filtering effect plays a significant role in pulse-shaping. The proposed laser has the potential applications in optical communications and high-resolution optics for coding and transmission of information in higher-level modulation formats. PMID:27767075

  18. Discrete Reliability Projection

    DTIC Science & Technology

    2014-12-01

    Defense, Handbook MIL - HDBK -189C, 2011 Hall, J. B., Methodology for Evaluating Reliability Growth Programs of Discrete Systems, Ph.D. thesis, University...pk,i ] · [ 1− (1− θ̆k) · ( N k · T )]k−m , (2.13) 5 2 Hall’s Model where m is the number of observed failure modes and d∗i estimates di (either based...Mode Failures FEF Ni d ∗ i 1 1 0.95 2 1 0.70 3 1 0.90 4 1 0.90 5 4 0.95 6 2 0.70 7 1 0.80 Using equations 2.1 and 2.2 we can calculate the failure

  19. Discrete anti-gravity

    SciTech Connect

    Noyes, H.P. ); Starson, S. )

    1991-03-01

    Discrete physics, because it replaces time evolution generated by the energy operator with a global bit-string generator (program universe) and replaces fields'' with the relativistic Wheeler-Feynman action at a distance,'' allows the consistent formulation of the concept of signed gravitational charge for massive particles. The resulting prediction made by this version of the theory is that free anti-particles near the surface of the earth will fall'' up with the same acceleration that the corresponding particles fall down. So far as we can see, no current experimental information is in conflict with this prediction of our theory. The experiment crusis will be one of the anti-proton or anti-hydrogen experiments at CERN. Our prediction should be much easier to test than the small effects which those experiments are currently designed to detect or bound. 23 refs.

  20. Discrete anti-gravity

    NASA Astrophysics Data System (ADS)

    Noyes, H. Pierre; Starson, Scott

    1991-03-01

    Discrete physics, because it replaces time evolution generated by the energy operator with a global bit-string generator (program universe) and replaces fields with the relativistic Wheeler-Feynman action at a distance, allows the consistent formulation of the concept of signed gravitational charge for massive particles. The resulting prediction made by this version of the theory is that free anti-particles near the surface of the earth will fall up with the same acceleration that the corresponding particles fall down. So far as we can see, no current experimental information is in conflict with this prediction of our theory. The experiment crusis will be one of the anti-proton or anti-hydrogen experiments at CERN. Our prediction should be much easier to test than the small effects which those experiments are currently designed to detect or bound.

  1. Discrete bisoliton fiber laser

    NASA Astrophysics Data System (ADS)

    Liu, X. M.; Han, X. X.; Yao, X. K.

    2016-10-01

    Dissipative solitons, which result from the intricate balance between dispersion and nonlinearity as well as gain and loss, are of the fundamental scientific interest and numerous important applications. Here, we report a fiber laser that generates bisoliton – two consecutive dissipative solitons that preserve a fixed separation between them. Deviations from this separation result in its restoration. It is also found that these bisolitons have multiple discrete equilibrium distances with the quantized separations, as is confirmed by the theoretical analysis and the experimental observations. The main feature of our laser is the anomalous dispersion that is increased by an order of magnitude in comparison to previous studies. Then the spectral filtering effect plays a significant role in pulse-shaping. The proposed laser has the potential applications in optical communications and high-resolution optics for coding and transmission of information in higher-level modulation formats.

  2. Immigration and Prosecutorial Discretion.

    PubMed

    Apollonio, Dorie; Lochner, Todd; Heddens, Myriah

    Immigration has become an increasingly salient national issue in the US, and the Department of Justice recently increased federal efforts to prosecute immigration offenses. This shift, however, relies on the cooperation of US attorneys and their assistants. Traditionally federal prosecutors have enjoyed enormous discretion and have been responsive to local concerns. To consider how the centralized goal of immigration enforcement may have influenced federal prosecutors in regional offices, we review their prosecution of immigration offenses in California using over a decade's worth of data. Our findings suggest that although centralizing forces influence immigration prosecutions, individual US attorneys' offices retain distinct characteristics. Local factors influence federal prosecutors' behavior in different ways depending on the office. Contrary to expectations, unemployment rates did not affect prosecutors' willingness to pursue immigration offenses, nor did local popular opinion about illegal immigration.

  3. Steerable Discrete Cosine Transform

    NASA Astrophysics Data System (ADS)

    Fracastoro, Giulia; Fosson, Sophie M.; Magli, Enrico

    2017-01-01

    In image compression, classical block-based separable transforms tend to be inefficient when image blocks contain arbitrarily shaped discontinuities. For this reason, transforms incorporating directional information are an appealing alternative. In this paper, we propose a new approach to this problem, namely a discrete cosine transform (DCT) that can be steered in any chosen direction. Such transform, called steerable DCT (SDCT), allows to rotate in a flexible way pairs of basis vectors, and enables precise matching of directionality in each image block, achieving improved coding efficiency. The optimal rotation angles for SDCT can be represented as solution of a suitable rate-distortion (RD) problem. We propose iterative methods to search such solution, and we develop a fully fledged image encoder to practically compare our techniques with other competing transforms. Analytical and numerical results prove that SDCT outperforms both DCT and state-of-the-art directional transforms.

  4. Steerable Discrete Cosine Transform.

    PubMed

    Fracastoro, Giulia; Fosson, Sophie M; Magli, Enrico

    2017-01-01

    In image compression, classical block-based separable transforms tend to be inefficient when image blocks contain arbitrarily shaped discontinuities. For this reason, transforms incorporating directional information are an appealing alternative. In this paper, we propose a new approach to this problem, namely, a discrete cosine transform (DCT) that can be steered in any chosen direction. Such transform, called steerable DCT (SDCT), allows to rotate in a flexible way pairs of basis vectors, and enables precise matching of directionality in each image block, achieving improved coding efficiency. The optimal rotation angles for SDCT can be represented as solution of a suitable rate-distortion (RD) problem. We propose iterative methods to search such solution, and we develop a fully fledged image encoder to practically compare our techniques with other competing transforms. Analytical and numerical results prove that SDCT outperforms both DCT and state-of-the-art directional transforms.

  5. Immigration and Prosecutorial Discretion

    PubMed Central

    Apollonio, Dorie; Lochner, Todd; Heddens, Myriah

    2015-01-01

    Immigration has become an increasingly salient national issue in the US, and the Department of Justice recently increased federal efforts to prosecute immigration offenses. This shift, however, relies on the cooperation of US attorneys and their assistants. Traditionally federal prosecutors have enjoyed enormous discretion and have been responsive to local concerns. To consider how the centralized goal of immigration enforcement may have influenced federal prosecutors in regional offices, we review their prosecution of immigration offenses in California using over a decade's worth of data. Our findings suggest that although centralizing forces influence immigration prosecutions, individual US attorneys' offices retain distinct characteristics. Local factors influence federal prosecutors' behavior in different ways depending on the office. Contrary to expectations, unemployment rates did not affect prosecutors' willingness to pursue immigration offenses, nor did local popular opinion about illegal immigration. PMID:26146530

  6. Discrete Minimal Surface Algebras

    NASA Astrophysics Data System (ADS)

    Arnlind, Joakim; Hoppe, Jens

    2010-05-01

    We consider discrete minimal surface algebras (DMSA) as generalized noncommutative analogues of minimal surfaces in higher dimensional spheres. These algebras appear naturally in membrane theory, where sequences of their representations are used as a regularization. After showing that the defining relations of the algebra are consistent, and that one can compute a basis of the enveloping algebra, we give several explicit examples of DMSAs in terms of subsets of sln (any semi-simple Lie algebra providing a trivial example by itself). A special class of DMSAs are Yang-Mills algebras. The representation graph is introduced to study representations of DMSAs of dimension d ≤ 4, and properties of representations are related to properties of graphs. The representation graph of a tensor product is (generically) the Cartesian product of the corresponding graphs. We provide explicit examples of irreducible representations and, for coinciding eigenvalues, classify all the unitary representations of the corresponding algebras.

  7. Dipolar matter-wave solitons in two-dimensional anisotropic discrete lattices

    NASA Astrophysics Data System (ADS)

    Chen, Huaiyu; Liu, Yan; Zhang, Qiang; Shi, Yuhan; Pang, Wei; Li, Yongyao

    2016-05-01

    We numerically demonstrate two-dimensional (2D) matter-wave solitons in the disk-shaped dipolar Bose-Einstein condensates (BECs) trapped in strongly anisotropic optical lattices (OLs) in a disk's plane. The considered OLs are square lattices which can be formed by interfering two pairs of plane waves with different intensities. The hopping rates of the condensates between two adjacent lattices in the orthogonal directions are different, which gives rise to a linearly anisotropic system. We find that when the polarized orientation of the dipoles is parallel to disk's plane with the same direction, the combined effects of the linearly anisotropy and the nonlocal nonlinear anisotropy strongly influence the formations, as well as the dynamics of the lattice solitons. Particularly, the isotropy-pattern solitons (IPSs) are found when these combined effects reach a balance. Motion, collision, and rotation of the IPSs are also studied in detail by means of systematic simulations. We further find that these IPSs can move freely in the 2D anisotropic discrete system, hence giving rise to an anisotropic effective mass. Four types of collisions between the IPSs are identified. By rotating an external magnetic field up to a critical angular velocity, the IPSs can still remain localized and play as a breather. Finally, the influences from the combined effects between the linear and the nonlocal nonlinear anisotropy with consideration of the contact and/or local nonlinearity are discussed too.

  8. Discrete and Continuum Elastic Properties of Interfaces.

    NASA Astrophysics Data System (ADS)

    Alber, Elliott Solomon

    The microstructure of defects in solids, e.g. interfaces, is heterogeneous and, consequently, so are the elastic properties. The complete anisotropic fourth-order tensors of both the discrete and the effective elastic moduli are defined in the interfacial region. To examine the meaning of discrete elastic constants, (i) a piecewise-continuous medium is considered where individual phases occupy the Voronoi polyhedra and have the elastic moduli associated with individual atoms, and (ii) the relationship between natural vibrations of the discrete systems and continuum waves is explored. Questions of local energy changes and stability are addressed in terms of continuum properties of the moduli, particularly positive definiteness and strong ellipticity. Comparisons between the atomistic results (exact effective moduli) and those for the continuum analog (bounds) establish the validity of the definition of elastic properties for heterogeneous structures at atomic scales and lead to criteria to assess the stability of a given microstructure. Homogenization of interfacial properties gives heterogeneous transition zone (or interphase) model. Interface phenomena in macrosystems (composites) and microsystems (grain boundaries) is explained by inner layer conditions between homogeneous bulk regions. Dynamical membrane and spring models of the imperfect interfaces are shown to be limiting models (similar to Reuss and Voigt bounding approximations in multiphase composite mechanics) for asymptotic expansions of stress and strain fields, respectively. Asymptotic expansion of both fields (in terms of small parameter h -thickness of the layer) produces mixed-type, exact approximation of the first order in h. Derived models of imperfect interface are used for investigation of interface waves in anisotropic bicrystals and for comparison with corresponding acoustical modes in phonon spectra. Localized interface waves are explained as general inhomogeneous plane waves in subsonic

  9. Discrete and continuum elastic properties of interfaces

    NASA Astrophysics Data System (ADS)

    Alber, Elliott Solomon

    1993-06-01

    The microstructure of defects in solids, e.g. interfaces, is heterogeneous and, consequently, so are the elastic properties. The complete anisotropic fourth-order tensors of both the discrete and the effective elastic moduli are defined in the interfacial region. To examine the meaning of discrete elastic constants, (1) a piecewise-continuous medium is considered where individual phases occupy the Voronoi polyhedra and have the elastic moduli associated with individual atoms, and (2) the relationship between natural vibrations of the discrete systems and continuum waves is explored. Questions of local energy changes and stability are addressed in terms of continuum properties of the moduli, particularly positive definiteness and strong ellipticity. Comparisons between the atomistic results (exact effective moduli) and those for the continuum analog (bounds) establish the validity of the definition of elastic properties for heterogeneous structures at atomic scales and lead to criteria to assess the stability of a given microstructure. Homogenization of interfacial properties gives heterogeneous transition zone (or interphase) model. Interface phenomena in macrosystems (composites) and microsystems (grain boundaries) is explained by inner layer conditions between homogeneous bulk regions. Dynamical membrane and spring models of the imperfect interfaces are shown to be limiting models (similar to Reuss and Voigt bounding approximations in multiphase composite mechanics) for asymptotic expansions of stress and strain fields, respectively. Asymptotic expansion of both fields (in terms of small parameter h-thickness of the layer) produces mixed-type, exact approximation of the first order in h. Derived models of imperfect interface are used for investigation of interface waves in anisotropic bicrystals and for comparison with corresponding acoustical modes in phonon spectra. Localized interface waves are explained as general inhomogeneous plane waves in subsonic

  10. Noncommutativity from exact renormalization group dualities

    NASA Astrophysics Data System (ADS)

    Gangopadhyay, Sunandan; Scholtz, Frederik G.

    2014-08-01

    Here we demonstrate, first, the construction of dualities using the exact renormalization group approach and, second, that spatial noncommutativity can emerge as such a duality. This is done in a simple quantum mechanical setting that establishes an exact duality between the commutative and noncommutative quantum Hall systems with harmonic interactions. It is also demonstrated that this link can be understood as a blocking (coarse graining) transformation in time that relates commutative and noncommutative degrees of freedom.

  11. A semi-discrete integrable multi-component coherently coupled nonlinear Schrödinger system

    NASA Astrophysics Data System (ADS)

    Zhao, Hai-qiong; Yuan, Jinyun

    2016-07-01

    A new integrable semi-discrete version is proposed for the multi-component coherently coupled nonlinear Schrödinger equation. The integrability of the semi-discrete system is confirmed by existence of Lax pair and infinite number of conservation laws. With the aid of gauge transformations, explicit formulas for N-fold Darboux transformations are derived whereby some physically important solutions of the system are presented. Furthermore, the theory of the semi-discrete system including Lax pair, Darboux transformations, exact solutions and infinite number of conservation laws are shown for their continuous counterparts in the continuous limit.

  12. Discrete Mathematics and Its Applications

    ERIC Educational Resources Information Center

    Oxley, Alan

    2010-01-01

    The article gives ideas that lecturers of undergraduate Discrete Mathematics courses can use in order to make the subject more interesting for students and encourage them to undertake further studies in the subject. It is possible to teach Discrete Mathematics with little or no reference to computing. However, students are more likely to be…

  13. Strongly nonlinear waves in locally resonant granular chains

    NASA Astrophysics Data System (ADS)

    Liu, Lifeng; James, Guillaume; Kevrekidis, Panayotis; Vainchtein, Anna

    2016-11-01

    We explore a recently proposed locally resonant granular system bearing harmonic internal resonators in a chain of beads interacting via Hertzian elastic contacts. In this system, we propose the existence of two types of configurations: (a) small-amplitude periodic traveling waves and (b) dark-breather solutions, i.e. exponentially localized, time-periodic states mounted on top of a non-vanishing background. A remarkable feature distinguishing our results from other settings where dark breathers are observed is the complete absence of precompression in the system, i.e. the absence of a linear spectral band. We also identify conditions under which the system admits long-lived bright breather solutions. Our results are obtained by means of an asymptotic reduction to a suitably modified version of the so-called discrete p-Schrödinger (DpS) equation, which is established as controllably approximating the solutions of the original system for large but finite times (under suitable assumptions on the solution amplitude and the resonator mass). The findings are also corroborated by detailed numerical computations. Long-lived bright breathers are proved to exist over long but finite times, after which numerical simulations indicate that the breathers disintegrate. In line with these results, we prove that the only exact time-periodic bright breathers consist of trivial linear oscillations, without contact interactions between discrete elements.

  14. Discreteness inducing coexistence

    NASA Astrophysics Data System (ADS)

    dos Santos, Renato Vieira

    2013-12-01

    Consider two species that diffuse through space. Consider further that they differ only in initial densities and, possibly, in diffusion constants. Otherwise they are identical. What happens if they compete with each other in the same environment? What is the influence of the discrete nature of the interactions on the final destination? And what are the influence of diffusion and additive fluctuations corresponding to random migration and immigration of individuals? This paper aims to answer these questions for a particular competition model that incorporates intra and interspecific competition between the species. Based on mean field theory, the model has a stationary state dependent on the initial density conditions. We investigate how this initial density dependence is affected by the presence of demographic multiplicative noise and additive noise in space and time. There are three main conclusions: (1) Additive noise favors denser populations at the expense of the less dense, ratifying the competitive exclusion principle. (2) Demographic noise, on the other hand, favors less dense populations at the expense of the denser ones, inducing equal densities at the quasi-stationary state, violating the aforementioned principle. (3) The slower species always suffers the more deleterious effects of statistical fluctuations in a homogeneous medium.

  15. Treatment of waste gas from the breather vent of a vertical fixed roof p-xylene storage tank by a trickle-bed air biofilter.

    PubMed

    Chang, Shenteng; Lu, Chungsying; Hsu, Shihchieh; Lai, How-Tsan; Shang, Wen-Lin; Chuang, Yeong-Song; Cho, Chi-Huang; Chen, Sheng-Han

    2011-01-01

    This study applied a pilot-scale trickle-bed air biofilter (TBAB) system for treating waste gas emitted from the breather vent of a vertical fixed roof storage tank containing p-xylene (p-X) liquid. The volatile organic compound (VOC) concentration of the waste gas was related to ambient temperature as well as solar radiation, peaking at above 6300 ppmv of p-X and 25000 ppmv of total hydrocarbons during the hours of 8 AM to 3 PM. When the activated carbon adsorber was employed as a VOC buffer, the peak waste gas VOC concentration was significantly reduced resulting in a stably and efficiently performing TBAB system. The pressure drop appeared to be low, reflecting that the TBAB system could be employed in the prolonged operation with a low running penalty. These advantages suggest that the TBAB system is a cost-effective treatment technology for VOC emission from a fixed roof storage tank.

  16. Discrete parametric oscillation and nondiffracting beams in a Glauber-Fock oscillator

    NASA Astrophysics Data System (ADS)

    Oztas, Z.; Yuce, C.

    2016-09-01

    We consider a Glauber-Fock oscillator and show that diffraction can be managed. We show how to design arrays of waveguides where light beams experience zero diffraction. We find an exact analytical family of nondiffracting localized solution. We predict discrete parametric oscillation in the Glauber-Fock oscillator.

  17. Classes of exact Einstein Maxwell solutions

    NASA Astrophysics Data System (ADS)

    Komathiraj, K.; Maharaj, S. D.

    2007-12-01

    We find new classes of exact solutions to the Einstein Maxwell system of equations for a charged sphere with a particular choice of the electric field intensity and one of the gravitational potentials. The condition of pressure isotropy is reduced to a linear, second order differential equation which can be solved in general. Consequently we can find exact solutions to the Einstein Maxwell field equations corresponding to a static spherically symmetric gravitational potential in terms of hypergeometric functions. It is possible to find exact solutions which can be written explicitly in terms of elementary functions, namely polynomials and product of polynomials and algebraic functions. Uncharged solutions are regainable with our choice of electric field intensity; in particular we generate the Einstein universe for particular parameter values.

  18. Exact coherent structures for the turbulent cascade

    NASA Astrophysics Data System (ADS)

    Eckhardt, Bruno; Zammert, Stefan

    2016-11-01

    The exact coherent structures that are connected with the transition to turbulence in interior flows usually extend across the full height of the domain. Using exact coherent states that are localized in the shear direction together with scaling ideas for the Navier-Stokes equation that combine length and Reynolds number, we show how such large scale structures can be morphed into smaller scale coherent structures. As the Reynolds number increases, more of these states with ever smaller scales appear, all the way down to the Kolmogorov scale. We present the structure and dynamical properties of several families of exact coherent solution in plane Couette flow, with different degrees of spatial localization: Some of them remain localized in the center and help to built the turbulence cascade, others are localized near the walls and contribute to shaping the boundary layer profile.

  19. Linearly exact parallel closures for slab geometry

    NASA Astrophysics Data System (ADS)

    Ji, Jeong-Young; Held, Eric D.; Jhang, Hogun

    2013-08-01

    Parallel closures are obtained by solving a linearized kinetic equation with a model collision operator using the Fourier transform method. The closures expressed in wave number space are exact for time-dependent linear problems to within the limits of the model collision operator. In the adiabatic, collisionless limit, an inverse Fourier transform is performed to obtain integral (nonlocal) parallel closures in real space; parallel heat flow and viscosity closures for density, temperature, and flow velocity equations replace Braginskii's parallel closure relations, and parallel flow velocity and heat flow closures for density and temperature equations replace Spitzer's parallel transport relations. It is verified that the closures reproduce the exact linear response function of Hammett and Perkins [Phys. Rev. Lett. 64, 3019 (1990)] for Landau damping given a temperature gradient. In contrast to their approximate closures where the vanishing viscosity coefficient numerically gives an exact response, our closures relate the heat flow and nonvanishing viscosity to temperature and flow velocity (gradients).

  20. A Legendre-Fourier spectral method with exact conservation laws for the Vlasov-Poisson system

    NASA Astrophysics Data System (ADS)

    Manzini, G.; Delzanno, G. L.; Vencels, J.; Markidis, S.

    2016-07-01

    We present the design and implementation of an L2-stable spectral method for the discretization of the Vlasov-Poisson model of a collisionless plasma in one space and velocity dimension. The velocity and space dependence of the Vlasov equation are resolved through a truncated spectral expansion based on Legendre and Fourier basis functions, respectively. The Poisson equation, which is coupled to the Vlasov equation, is also resolved through a Fourier expansion. The resulting system of ordinary differential equation is discretized by the implicit second-order accurate Crank-Nicolson time discretization. The non-linear dependence between the Vlasov and Poisson equations is iteratively solved at any time cycle by a Jacobian-Free Newton-Krylov method. In this work we analyze the structure of the main conservation laws of the resulting Legendre-Fourier model, e.g., mass, momentum, and energy, and prove that they are exactly satisfied in the semi-discrete and discrete setting. The L2-stability of the method is ensured by discretizing the boundary conditions of the distribution function at the boundaries of the velocity domain by a suitable penalty term. The impact of the penalty term on the conservation properties is investigated theoretically and numerically. An implementation of the penalty term that does not affect the conservation of mass, momentum and energy, is also proposed and studied. A collisional term is introduced in the discrete model to control the filamentation effect, but does not affect the conservation properties of the system. Numerical results on a set of standard test problems illustrate the performance of the method.

  1. A Legendre–Fourier spectral method with exact conservation laws for the Vlasov–Poisson system

    SciTech Connect

    Manzini, Gianmarco; Delzanno, Gian Luca; Vencels, Juris; Markidis, Stefano

    2016-04-22

    In this study, we present the design and implementation of an L2-stable spectral method for the discretization of the Vlasov–Poisson model of a collisionless plasma in one space and velocity dimension. The velocity and space dependence of the Vlasov equation are resolved through a truncated spectral expansion based on Legendre and Fourier basis functions, respectively. The Poisson equation, which is coupled to the Vlasov equation, is also resolved through a Fourier expansion. The resulting system of ordinary differential equation is discretized by the implicit second-order accurate Crank–Nicolson time discretization. The non-linear dependence between the Vlasov and Poisson equations is iteratively solved at any time cycle by a Jacobian-Free Newton–Krylov method. In this work we analyze the structure of the main conservation laws of the resulting Legendre–Fourier model, e.g., mass, momentum, and energy, and prove that they are exactly satisfied in the semi-discrete and discrete setting. The L2-stability of the method is ensured by discretizing the boundary conditions of the distribution function at the boundaries of the velocity domain by a suitable penalty term. The impact of the penalty term on the conservation properties is investigated theoretically and numerically. An implementation of the penalty term that does not affect the conservation of mass, momentum and energy, is also proposed and studied. A collisional term is introduced in the discrete model to control the filamentation effect, but does not affect the conservation properties of the system. Numerical results on a set of standard test problems illustrate the performance of the method.

  2. A Legendre–Fourier spectral method with exact conservation laws for the Vlasov–Poisson system

    DOE PAGES

    Manzini, Gianmarco; Delzanno, Gian Luca; Vencels, Juris; ...

    2016-04-22

    In this study, we present the design and implementation of an L2-stable spectral method for the discretization of the Vlasov–Poisson model of a collisionless plasma in one space and velocity dimension. The velocity and space dependence of the Vlasov equation are resolved through a truncated spectral expansion based on Legendre and Fourier basis functions, respectively. The Poisson equation, which is coupled to the Vlasov equation, is also resolved through a Fourier expansion. The resulting system of ordinary differential equation is discretized by the implicit second-order accurate Crank–Nicolson time discretization. The non-linear dependence between the Vlasov and Poisson equations is iterativelymore » solved at any time cycle by a Jacobian-Free Newton–Krylov method. In this work we analyze the structure of the main conservation laws of the resulting Legendre–Fourier model, e.g., mass, momentum, and energy, and prove that they are exactly satisfied in the semi-discrete and discrete setting. The L2-stability of the method is ensured by discretizing the boundary conditions of the distribution function at the boundaries of the velocity domain by a suitable penalty term. The impact of the penalty term on the conservation properties is investigated theoretically and numerically. An implementation of the penalty term that does not affect the conservation of mass, momentum and energy, is also proposed and studied. A collisional term is introduced in the discrete model to control the filamentation effect, but does not affect the conservation properties of the system. Numerical results on a set of standard test problems illustrate the performance of the method.« less

  3. Exact integrability in quantum field theory

    SciTech Connect

    Thacker, H.B.

    1980-08-01

    The treatment of exactly integrable systems in various branches of two-dimensional classical and quantum physics has recently been placed in a unified framework by the development of the quantum inverse method. This method consolidates a broad range of developments in classical nonlinear wave (soliton) physics, statistical mechanics, and quantum field theory. The essential technique for analyzing exactly integrable quantum systems was invested by Bethe in 1931. The quantum-mechanical extension of the inverse scattering method and its relationship to the methods associated with Bethe's ansatz are examined here. (RWR)

  4. DFT calculations with the exact functional

    NASA Astrophysics Data System (ADS)

    Burke, Kieron

    2014-03-01

    I will discuss several works in which we calculate the exact exchange-correlation functional of density functional theory, mostly using the density-matrix renormalization group method invented by Steve White, our collaborator. We demonstrate that a Mott-Hubard insulator is a band metal. We also perform Kohn-Sham DFT calculations with the exact functional and prove that a simple algoritm always converges. But we find convergence becomes harder as correlations get stronger. An example from transport through molecular wires may also be discussed. Work supported by DOE grant DE-SC008696.

  5. Exact solution of the robust knapsack problem☆

    PubMed Central

    Monaci, Michele; Pferschy, Ulrich; Serafini, Paolo

    2013-01-01

    We consider an uncertain variant of the knapsack problem in which the weight of the items is not exactly known in advance, but belongs to a given interval, and an upper bound is imposed on the number of items whose weight differs from the expected one. For this problem, we provide a dynamic programming algorithm and present techniques aimed at reducing its space and time complexities. Finally, we computationally compare the performances of the proposed algorithm with those of different exact algorithms presented so far in the literature for robust optimization problems. PMID:24187428

  6. Theory of the Lattice Boltzmann Equation: Symmetry properties of Discrete Velocity Sets

    NASA Technical Reports Server (NTRS)

    Rubinstein, Robert; Luo, Li-Shi

    2007-01-01

    In the lattice Boltzmann equation, continuous particle velocity space is replaced by a finite dimensional discrete set. The number of linearly independent velocity moments in a lattice Boltzmann model cannot exceed the number of discrete velocities. Thus, finite dimensionality introduces linear dependencies among the moments that do not exist in the exact continuous theory. Given a discrete velocity set, it is important to know to exactly what order moments are free of these dependencies. Elementary group theory is applied to the solution of this problem. It is found that by decomposing the velocity set into subsets that transform among themselves under an appropriate symmetry group, it becomes relatively straightforward to assess the behavior of moments in the theory. The construction of some standard two- and three-dimensional models is reviewed from this viewpoint, and procedures for constructing some new higher dimensional models are suggested.

  7. Large quantum Fourier transforms are never exactly realized by braiding conformal blocks

    SciTech Connect

    Freedman, Michael H.; Wang, Zhenghan

    2007-03-15

    Fourier transform is an essential ingredient in Shor's factoring algorithm. In the standard quantum circuit model with the gate set {l_brace}U(2), controlled-NOT{r_brace}, the discrete Fourier transforms F{sub N}=({omega}{sup ij}){sub NxN}, i,j=0,1,...,N-1, {omega}=e{sup 2{pi}}{sup i} at {sup {approx}}{sup sol{approx}} at {sup N}, can be realized exactly by quantum circuits of size O(n{sup 2}), n=ln N, and so can the discrete sine or cosine transforms. In topological quantum computing, the simplest universal topological quantum computer is based on the Fibonacci (2+1)-topological quantum field theory (TQFT), where the standard quantum circuits are replaced by unitary transformations realized by braiding conformal blocks. We report here that the large Fourier transforms F{sub N} and the discrete sine or cosine transforms can never be realized exactly by braiding conformal blocks for a fixed TQFT. It follows that an approximation is unavoidable in the implementation of Fourier transforms by braiding conformal blocks.

  8. Lattice fluid dynamics from perfect discretizations of continuum flows

    SciTech Connect

    Katz, E.; Wiese, U.

    1998-11-01

    We use renormalization group methods to derive equations of motion for large scale variables in fluid dynamics. The large scale variables are averages of the underlying continuum variables over cubic volumes and naturally exist on a lattice. The resulting lattice dynamics represents a perfect discretization of continuum physics, i.e., grid artifacts are completely eliminated. Perfect equations of motion are derived for static, slow flows of incompressible, viscous fluids. For Hagen-Poiseuille flow in a channel with a square cross section the equations reduce to a perfect discretization of the Poisson equation for the velocity field with Dirichlet boundary conditions. The perfect large scale Poisson equation is used in a numerical simulation and is shown to represent the continuum flow exactly. For nonsquare cross sections one can use a numerical iterative procedure to derive flow equations that are approximately perfect. {copyright} {ital 1998} {ital The American Physical Society}

  9. Chaos in Periodic Discrete Systems

    NASA Astrophysics Data System (ADS)

    Shi, Yuming; Zhang, Lijuan; Yu, Panpan; Huang, Qiuling

    This paper focuses on chaos in periodic discrete systems, whose state space may vary with time. Some close relationships between some chaotic dynamical behaviors of a periodic discrete system and its autonomous induced system are given. Based on these relationships, several criteria of chaos are established and some sufficient conditions for no chaos are given for periodic discrete systems. Further, it is shown that a finite-dimensional linear periodic discrete system is not chaotic in the sense of Li-Yorke or Wiggins. In particular, an interesting problem of whether nonchaotic rules may generate a chaotic system is studied, with some examples provided, one of which surprisingly shows that a composition of globally asymptotically stable maps can be chaotic. In addition, some properties of sign pattern matrices of non-negative square matrices are given for convenience of the study.

  10. Discrete field theories and spatial properties of strings

    SciTech Connect

    Klebanov, I.; Susskind, L.

    1988-10-01

    We use the ground-state wave function in the light-cone gauge to study the spatial properties of fundamental strings. We find that, as the cut-off in the parameter space is removed, the strings are smooth and have a divergent size. Guided by these properties, we consider a large-N lattice gauge theory which has an unstable phase where the size of strings diverges. We show that this phase exactly describes free fundamental strings. The lattice spacing does not have to be taken to zero for this equivalence to hold. Thus, exact rotation and translation invariance is restored in a discrete space. This suggests that the number of fundamental short-distance degrees of freedom in string theory is much smaller than in a conventional field theory. 11 refs., 4 figs.

  11. Haydock's recursive solution of self-adjoint problems. Discrete spectrum

    NASA Astrophysics Data System (ADS)

    Moroz, Alexander

    2014-12-01

    Haydock's recursive solution is shown to underline a number of different concepts such as (i) quasi-exactly solvable models, (ii) exactly solvable models, (iii) three-term recurrence solutions based on Schweber's quantization criterion in Hilbert spaces of entire analytic functions, and (iv) a discrete quantum mechanics of Odake and Sasaki. A recurrent theme of Haydock's recursive solution is that the spectral properties of any self-adjoint problem can be mapped onto a corresponding sequence of polynomials {pn(E) } in energy variable E. The polynomials {pn(E) } are orthonormal with respect to the density of states n0(E) and energy eigenstate | E > is the generating function of {pn(E) } . The generality of Haydock's recursive solution enables one to see the different concepts from a unified perspective and mutually benefiting from each other. Some results obtained within the particular framework of any of (i) to (iv) may have much broader significance.

  12. Discrete localized modes supported by an inhomogeneous defocusing nonlinearity

    NASA Astrophysics Data System (ADS)

    Gligorić, Goran; Maluckov, Aleksandra; Hadžievski, Ljupčo; Malomed, Boris A.

    2013-09-01

    We report that infinite and semi-infinite lattices with spatially inhomogeneous self-defocusing (SDF) onsite nonlinearity, whose strength increases rapidly enough toward the lattice periphery, support stable unstaggered (UnST) discrete bright solitons, which do not exist in lattices with the spatially uniform SDF nonlinearity. The UnST solitons coexist with stable staggered (ST) localized modes, which are always possible under the defocusing onsite nonlinearity. The results are obtained in a numerical form and also by means of variational approximation (VA). In the semi-infinite (truncated) system, some solutions for the UnST surface solitons are produced in an exact form. On the contrary to surface discrete solitons in uniform truncated lattices, the threshold value of the norm vanishes for the UnST solitons in the present system. Stability regions for the novel UnST solitons are identified. The same results imply the existence of ST discrete solitons in lattices with the spatially growing self-focusing nonlinearity, where such solitons cannot exist either if the nonlinearity is homogeneous. In addition, a lattice with the uniform onsite SDF nonlinearity and exponentially decaying intersite coupling is introduced and briefly considered. Via a similar mechanism, it may also support UnST discrete solitons. The results may be realized in arrayed optical waveguides and collisionally inhomogeneous Bose-Einstein condensates trapped in deep optical lattices. A generalization for a two-dimensional system is briefly considered.

  13. Discrete solitons in graphene metamaterials

    NASA Astrophysics Data System (ADS)

    Bludov, Yu. V.; Smirnova, D. A.; Kivshar, Yu. S.; Peres, N. M. R.; Vasilevskiy, M. I.

    2015-01-01

    We study nonlinear properties of multilayer metamaterials created by graphene sheets separated by dielectric layers. We demonstrate that such structures can support localized nonlinear modes described by the discrete nonlinear Schrödinger equation and that its solutions are associated with stable discrete plasmon solitons. We also analyze the nonlinear surface modes in truncated graphene metamaterials being a nonlinear analog of surface Tamm states.

  14. Concurrency and discrete event control

    NASA Technical Reports Server (NTRS)

    Heymann, Michael

    1990-01-01

    Much of discrete event control theory has been developed within the framework of automata and formal languages. An alternative approach inspired by the theories of process-algebra as developed in the computer science literature is presented. The framework, which rests on a new formalism of concurrency, can adequately handle nondeterminism and can be used for analysis of a wide range of discrete event phenomena.

  15. Exact Solutions to Time-dependent Mdps

    NASA Technical Reports Server (NTRS)

    Boyan, Justin A.; Littman, Michael L.

    2000-01-01

    We describe an extension of the Markov decision process model in which a continuous time dimension is included in the state space. This allows for the representation and exact solution of a wide range of problems in which transitions or rewards vary over time. We examine problems based on route planning with public transportation and telescope observation scheduling.

  16. Exact propagators for some degenerate hyperbolic operators

    NASA Astrophysics Data System (ADS)

    Beals, Richard; Kannai, Yakar

    2006-10-01

    Exact propagators are obtained for the degenerate second order hyperbolic operators ∂2 t - t 2 l Δ x , l=1,2,..., by analytic continuation from the degenerate elliptic operators ∂2 t + t 2 l Δ x . The partial Fourier transforms are also obtained in closed form, leading to integral transform formulas for certain combinations of Bessel functions and modified Bessel functions.

  17. Verbal Interference Suppresses Exact Numerical Representation

    ERIC Educational Resources Information Center

    Frank, Michael C.; Fedorenko, Evelina; Lai, Peter; Saxe, Rebecca; Gibson, Edward

    2012-01-01

    Language for number is an important case study of the relationship between language and cognition because the mechanisms of non-verbal numerical cognition are well-understood. When the Piraha (an Amazonian hunter-gatherer tribe who have no exact number words) are tested in non-verbal numerical tasks, they are able to perform one-to-one matching…

  18. Exact Vlasov Solutions of Kinetic Flux Ropes

    NASA Astrophysics Data System (ADS)

    Ng, C. S.

    2014-12-01

    Small-scale magnetic flux ropes have been observed to form within the diffusion region in three-dimensional (3D) kinetic simulations of magnetic reconnection. Such 3D structures and the 2D version of them (plasmoids, secondary islands) could have important dynamical effects on the reconnection physics itself. Small-scale flux ropes have also been observed within the interplanetary space. We have found exact time-steady solutions of kinetic flux ropes by generalizing exact solutions of 2D Bernstein-Greene-Kruskal (BGK) modes in a magnetized plasma with finite magnetic field strength [Ng, Bhattacharjee, and Skiff, Phys. Plasmas 13, 055903 (2006)] to cases with azimuthal magnetic fields so that these structures carry electric current as well as steady electric and magnetic fields. Such fully nonlinear solutions now satisfy exactly the Vlasov-Poisson-Ampere system of equations. Solutions like these could describe small-scale flux ropes observed in reconnection diffusion regions or in the interplanetary space. They are also exact nonlinear solutions that can be used to validate numerical schemes for kinetic simulations. This work is supported by a National Science Foundation grant PHY-1004357.

  19. Th Matching Paradigm: An Exact Test Procedure.

    ERIC Educational Resources Information Center

    Gillett, Raphael

    1985-01-01

    Provides a framework based on rook methodology for constructing exact unweighted tests in the matching paradigm. This paradigm tests whether a one-to-one pairing configuration between objects in two arrays contains more pairings of a particular kind than expected under the null hypothesis. The procedure is particularly useful for small samples.…

  20. A mass, energy, enstrophy and vorticity conserving (MEEVC) mimetic spectral element discretization for the 2D incompressible Navier-Stokes equations

    NASA Astrophysics Data System (ADS)

    Palha, A.; Gerritsma, M.

    2017-01-01

    In this work we present a mimetic spectral element discretization for the 2D incompressible Navier-Stokes equations that in the limit of vanishing dissipation exactly preserves mass, kinetic energy, enstrophy and total vorticity on unstructured triangular grids. The essential ingredients to achieve this are: (i) a velocity-vorticity formulation in rotational form, (ii) a sequence of function spaces capable of exactly satisfying the divergence free nature of the velocity field, and (iii) a conserving time integrator. Proofs for the exact discrete conservation properties are presented together with numerical test cases on highly irregular triangular grids.

  1. An exactly conservative integrator for the n-body problem

    NASA Astrophysics Data System (ADS)

    Kotovych, Oksana; Bowman, John C.

    2002-09-01

    The two-dimensional n-body problem of classical mechanics is a non-integrable Hamiltonian system for n > 2. Traditional numerical integration algorithms, which are polynomials in the time step, typically lead to systematic drifts in the computed value of the total energy and angular momentum. Even symplectic integration schemes exactly conserve only an approximate Hamiltonian. We present an algorithm that conserves the true Hamiltonian and the total angular momentum to machine precision. It is derived by applying conventional discretizations in a new space obtained by transformation of the dependent variables. We develop the method first for the restricted circular three-body problem, then for the general two-dimensional three-body problem and finally for the planar n-body problem. Jacobi coordinates are used to reduce the two-dimensional n-body problem to an (n - 1)-body problem that incorporates the constant linear momentum and centre-of-mass constraints. For a four-body choreography, we find that a larger time step can be used with our conservative algorithm than with symplectic and conventional integrators.

  2. Hidden algebra method (quasi-exact-solvability in quantum mechanics)

    SciTech Connect

    Turbiner, Alexander

    1996-02-20

    A general introduction to quasi-exactly-solvable problems of quantum mechanics is presented. Main attention is given to multidimensional quasi-exactly-solvable and exactly-solvable Schroedinger operators. Exact-solvability of the Calogero and Sutherland N-body problems ass ociated with an existence of the hidden algebra slN is discussed extensively.

  3. An Exact Dual Adjoint Solution Method for Turbulent Flows on Unstructured Grids

    NASA Technical Reports Server (NTRS)

    Nielsen, Eric J.; Lu, James; Park, Michael A.; Darmofal, David L.

    2003-01-01

    An algorithm for solving the discrete adjoint system based on an unstructured-grid discretization of the Navier-Stokes equations is presented. The method is constructed such that an adjoint solution exactly dual to a direct differentiation approach is recovered at each time step, yielding a convergence rate which is asymptotically equivalent to that of the primal system. The new approach is implemented within a three-dimensional unstructured-grid framework and results are presented for inviscid, laminar, and turbulent flows. Improvements to the baseline solution algorithm, such as line-implicit relaxation and a tight coupling of the turbulence model, are also presented. By storing nearest-neighbor terms in the residual computation, the dual scheme is computationally efficient, while requiring twice the memory of the flow solution. The scheme is expected to have a broad impact on computational problems related to design optimization as well as error estimation and grid adaptation efforts.

  4. Exact solutions for nonlinear foam drainage equation

    NASA Astrophysics Data System (ADS)

    Zayed, E. M. E.; Al-Nowehy, Abdul-Ghani

    2017-02-01

    In this paper, the modified simple equation method, the exp-function method, the soliton ansatz method, the Riccati equation expansion method and the ( G^' }/G)-expansion method are used to construct exact solutions with parameters of the nonlinear foam drainage equation. When these parameters are taken to be special values, the solitary wave solutions and the trigonometric function solutions are derived from the exact solutions. The obtained results confirm that the proposed methods are efficient techniques for analytic treatments of a wide variety of nonlinear partial differential equations in mathematical physics. We compare our results together with each other yielding from these integration tools. Also, our results have been compared with the well-known results of others.

  5. Exact cumulant Kramers-Moyal-like expansion

    NASA Astrophysics Data System (ADS)

    Morgado, W. A. M.

    2015-11-01

    We derive an exact equation, a Cumulant Kramers-Moyal Equation (CKME), quite similar to the Kramers-Moyal Equation (KME), for the probability distribution of a Markovian dynamical system. It can be applied to any well behaved (converging cumulants) continuous time systems, such as Langevin equations or other models. An interesting but significant difference with respect to the KME is that their jump-moments are proportional to cumulants of the dynamical variables, but not proportional to central moments, as is the case for the KME. In fact, they still obey a weaker version of Pawula's theorem, namely Marcinkiewicz's theorem. We compare the results derived from the equations herein with the ones obtained by computing via Gaussian and biased, and unbiased, Poisson Langevin dynamics and a Poisson non-Langevin model. We obtain the exact CKME time-evolution equation for the systems, and in several cases, those are distinct from the Fokker-Planck equation or the KME.

  6. Exact solutions for nonlinear foam drainage equation

    NASA Astrophysics Data System (ADS)

    Zayed, E. M. E.; Al-Nowehy, Abdul-Ghani

    2016-09-01

    In this paper, the modified simple equation method, the exp-function method, the soliton ansatz method, the Riccati equation expansion method and the ( G^' }/G) -expansion method are used to construct exact solutions with parameters of the nonlinear foam drainage equation. When these parameters are taken to be special values, the solitary wave solutions and the trigonometric function solutions are derived from the exact solutions. The obtained results confirm that the proposed methods are efficient techniques for analytic treatments of a wide variety of nonlinear partial differential equations in mathematical physics. We compare our results together with each other yielding from these integration tools. Also, our results have been compared with the well-known results of others.

  7. Exact computation of the unwrapped phase of a finite-length time series

    NASA Technical Reports Server (NTRS)

    Long, David G.

    1988-01-01

    McGowan and Kuc (1982) showed that a direct relationship between a time series and its unwrapped phase exists. They proposed an algorithm for computing the unwrapped phase by counting the number of sign changes in a Sturm sequence generated from the real and imaginary parts of the discrete Fourier transform. Their algorithm is limited to relatively short sequences by numerical accuracy. An extension of their algorithm is proposed which, by using all-integer arithmetic, permits exact computation of the number of multiples of pi required to determine the unwrapped phase for rational-valued time sequences of arbitrary length. Since the computation is exact, the extended numerical algorithm should be of interest when accurate phase unwrapping is required.

  8. Multi-dimensional, fully implicit, exactly conserving electromagnetic particle-in-cell simulations in curvilinear geometry

    NASA Astrophysics Data System (ADS)

    Chen, Guangye; Chacon, Luis

    2015-11-01

    We discuss a new, conservative, fully implicit 2D3V Vlasov-Darwin particle-in-cell algorithm in curvilinear geometry for non-radiative, electromagnetic kinetic plasma simulations. Unlike standard explicit PIC schemes, fully implicit PIC algorithms are unconditionally stable and allow exact discrete energy and charge conservation. Here, we extend these algorithms to curvilinear geometry. The algorithm retains its exact conservation properties in curvilinear grids. The nonlinear iteration is effectively accelerated with a fluid preconditioner for weakly to modestly magnetized plasmas, which allows efficient use of large timesteps, O (√{mi/me}c/veT) larger than the explicit CFL. In this presentation, we will introduce the main algorithmic components of the approach, and demonstrate the accuracy and efficiency properties of the algorithm with various numerical experiments in 1D (slow shock) and 2D (island coalescense).

  9. On exact statistics and classification of ergodic systems of integer dimension

    SciTech Connect

    Guralnik, Zachary Guralnik, Gerald; Pehlevan, Cengiz

    2014-06-01

    We describe classes of ergodic dynamical systems for which some statistical properties are known exactly. These systems have integer dimension, are not globally dissipative, and are defined by a probability density and a two-form. This definition generalizes the construction of Hamiltonian systems by a Hamiltonian and a symplectic form. Some low dimensional examples are given, as well as a discretized field theory with a large number of degrees of freedom and a local nearest neighbor interaction. We also evaluate unequal-time correlations of these systems without direct numerical simulation, by Padé approximants of a short-time expansion. We briefly speculate on the possibility of constructing chaotic dynamical systems with non-integer dimension and exactly known statistics. In this case there is no probability density, suggesting an alternative construction in terms of a Hopf characteristic function and a two-form.

  10. Discrete solitons in electromechanical resonators.

    PubMed

    Syafwan, M; Susanto, H; Cox, S M

    2010-02-01

    We consider a particular type of parametrically driven discrete Klein-Gordon system describing microdevices and nanodevices, with integrated electrical and mechanical functionality. Using a multiscale expansion method we reduce the system to a discrete nonlinear Schrödinger equation. Analytical and numerical calculations are performed to determine the existence and stability of fundamental bright and dark discrete solitons admitted by the Klein-Gordon system through the discrete Schrödinger equation. We show that a parametric driving can not only destabilize onsite bright solitons, but also stabilize intersite bright discrete solitons and onsite and intersite dark solitons. Most importantly, we show that there is a range of values of the driving coefficient for which dark solitons are stable, for any value of the coupling constant, i.e., oscillatory instabilities are totally suppressed. Stability windows of all the fundamental solitons are presented and approximations to the onset of instability are derived using perturbation theory, with accompanying numerical results. Numerical integrations of the Klein-Gordon equation are performed, confirming the relevance of our analysis.

  11. Distributed Relaxation for Conservative Discretizations

    NASA Technical Reports Server (NTRS)

    Diskin, Boris; Thomas, James L.

    2001-01-01

    A multigrid method is defined as having textbook multigrid efficiency (TME) if the solutions to the governing system of equations are attained in a computational work that is a small (less than 10) multiple of the operation count in one target-grid residual evaluation. The way to achieve this efficiency is the distributed relaxation approach. TME solvers employing distributed relaxation have already been demonstrated for nonconservative formulations of high-Reynolds-number viscous incompressible and subsonic compressible flow regimes. The purpose of this paper is to provide foundations for applications of distributed relaxation to conservative discretizations. A direct correspondence between the primitive variable interpolations for calculating fluxes in conservative finite-volume discretizations and stencils of the discretized derivatives in the nonconservative formulation has been established. Based on this correspondence, one can arrive at a conservative discretization which is very efficiently solved with a nonconservative relaxation scheme and this is demonstrated for conservative discretization of the quasi one-dimensional Euler equations. Formulations for both staggered and collocated grid arrangements are considered and extensions of the general procedure to multiple dimensions are discussed.

  12. Exact axisymmetric Taylor states for shaped plasmas

    SciTech Connect

    Cerfon, Antoine J. O'Neil, Michael

    2014-06-15

    We present a general construction for exact analytic Taylor states in axisymmetric toroidal geometries. In this construction, the Taylor equilibria are fully determined by specifying the aspect ratio, elongation, and triangularity of the desired plasma geometry. For equilibria with a magnetic X-point, the location of the X-point must also be specified. The flexibility and simplicity of these solutions make them useful for verifying the accuracy of numerical solvers and for theoretical studies of Taylor states in laboratory experiments.

  13. Exact quantization conditions for cluster integrable systems

    NASA Astrophysics Data System (ADS)

    Franco, Sebastián; Hatsuda, Yasuyuki; Mariño, Marcos

    2016-06-01

    We propose exact quantization conditions for the quantum integrable systems of Goncharov and Kenyon, based on the enumerative geometry of the corresponding toric Calabi-Yau manifolds. Our conjecture builds upon recent results on the quantization of mirror curves, and generalizes a previous proposal for the quantization of the relativistic Toda lattice. We present explicit tests of our conjecture for the integrable systems associated to the resolved {{{C}}3}/{{{Z}}5} and {{{C}}3}/{{{Z}}6} orbifolds.

  14. Exact solutions and singularities in string theory

    SciTech Connect

    Horowitz, G.T. ); Tseytlin, A.A. )

    1994-10-15

    We construct two new classes of exact solutions to string theory which are not of the standard plane wave of gauged WZW type. Many of these solutions have curvature singularities. The first class includes the fundamental string solution, for which the string coupling vanishes near the singularity. This suggests that the singularity may not be removed by quantum corrections. The second class consists of hybrids of plane wave and gauged WZW solutions. We discuss a four-dimensional example in detail.

  15. High order discontinuous Galerkin discretizations with discontinuity resolution within the cell

    NASA Astrophysics Data System (ADS)

    Ekaterinaris, John; Panourgias, Konstantinos

    2016-11-01

    The nonlinear filter of Yee et al. and used for low dissipative well-balanced high order accurate finite-difference schemes is adapted to the finite element context of discontinuous Galerkin (DG) discretizations. The performance of the proposed nonlinear filter for DG discretizations is demonstrated for different orders of expansions for one- and multi-dimensional problems with exact solutions. It is shown that for higher order discretizations discontinuity resolution within the cell is achieved and the design order of accuracy is preserved. The filter is applied for inviscid and viscous flow test problems including strong shocks interactions to demonstrate that the proposed dissipative mechanism for DG discretizations yields superior results compared to the results obtained with the TVB limiter and high-order hierarchical limiting. The proposed approach is suitable for p-adaptivity in order to locally enhance resolution of three-dimensional flow simulations.

  16. Exact results for parallel-chain kinetic models of biological transport

    NASA Astrophysics Data System (ADS)

    Kolomeisky, Anatoly B.

    2001-10-01

    In order to describe the observed behavior of single motor proteins moving along linear molecular tracks, a class of stochastic models is studied which recognizes the possibility of parallel biochemical pathways. Extending the theoretical analysis of Derrida [J. Stat. Phys. 31, 433 (1983)], exact results are derived for the velocity and dispersion of a discrete one-dimensional kinetic model which consists of two parallel chains of N states and M states, respectively, with arbitrary forward and backward rates. Generalizations of this approach for g>2 parallel chains models are briefly sketched. These results and other properties of parallel-chain kinetic models are illustrated by various examples.

  17. Exact solutions of the derivative nonlinear Schrödinger equation for a nonlinear transmission line.

    PubMed

    Kengne, E; Liu, W M

    2006-02-01

    We consider the derivative nonlinear Schrödinger equation with constant potential as a model for wave propagation on a discrete nonlinear transmission line. This equation can be derived in the small amplitude and long wavelength limit using the standard reductive perturbation method and complex expansion. We construct some exact soliton and elliptic solutions of the mentioned equation by perturbation of its Stokes wave solutions. We find that for some values of the coefficients of the equation and for some parameters of solutions, the graphical representations show some kinds of symmetries such as mirror symmetry and rotational symmetry.

  18. Exact and Approximate Sizes of Convex Datacubes

    NASA Astrophysics Data System (ADS)

    Nedjar, Sébastien

    In various approaches, data cubes are pre-computed in order to efficiently answer Olap queries. The notion of data cube has been explored in various ways: iceberg cubes, range cubes, differential cubes or emerging cubes. Previously, we have introduced the concept of convex cube which generalizes all the quoted variants of cubes. More precisely, the convex cube captures all the tuples satisfying a monotone and/or antimonotone constraint combination. This paper is dedicated to a study of the convex cube size. Actually, knowing the size of such a cube even before computing it has various advantages. First of all, free space can be saved for its storage and the data warehouse administration can be improved. However the main interest of this size knowledge is to choose at best the constraints to apply in order to get a workable result. For an aided calibrating of constraints, we propose a sound characterization, based on inclusion-exclusion principle, of the exact size of convex cube as long as an upper bound which can be very quickly yielded. Moreover we adapt the nearly optimal algorithm HyperLogLog in order to provide a very good approximation of the exact size of convex cubes. Our analytical results are confirmed by experiments: the approximated size of convex cubes is really close to their exact size and can be computed quasi immediately.

  19. Exact tests for Hardy-Weinberg proportions.

    PubMed

    Engels, William R

    2009-12-01

    Exact conditional tests are often required to evaluate statistically whether a sample of diploids comes from a population with Hardy-Weinberg proportions or to confirm the accuracy of genotype assignments. This requirement is especially common when the sample includes multiple alleles and sparse data, thus rendering asymptotic methods, such as the common chi(2)-test, unreliable. Such an exact test can be performed using the likelihood ratio as its test statistic rather than the more commonly used probability test. Conceptual advantages in using the likelihood ratio are discussed. A substantially improved algorithm is described to permit the performance of a full-enumeration exact test on sample sizes that are too large for previous methods. An improved Monte Carlo algorithm is also proposed for samples that preclude full enumeration. These algorithms are about two orders of magnitude faster than those currently in use. Finally, methods are derived to compute the number of possible samples with a given set of allele counts, a useful quantity for evaluating the feasibility of the full enumeration procedure. Software implementing these methods, ExactoHW, is provided.

  20. A hierarchical exact accelerated stochastic simulation algorithm

    NASA Astrophysics Data System (ADS)

    Orendorff, David; Mjolsness, Eric

    2012-12-01

    A new algorithm, "HiER-leap" (hierarchical exact reaction-leaping), is derived which improves on the computational properties of the ER-leap algorithm for exact accelerated simulation of stochastic chemical kinetics. Unlike ER-leap, HiER-leap utilizes a hierarchical or divide-and-conquer organization of reaction channels into tightly coupled "blocks" and is thereby able to speed up systems with many reaction channels. Like ER-leap, HiER-leap is based on the use of upper and lower bounds on the reaction propensities to define a rejection sampling algorithm with inexpensive early rejection and acceptance steps. But in HiER-leap, large portions of intra-block sampling may be done in parallel. An accept/reject step is used to synchronize across blocks. This method scales well when many reaction channels are present and has desirable asymptotic properties. The algorithm is exact, parallelizable and achieves a significant speedup over the stochastic simulation algorithm and ER-leap on certain problems. This algorithm offers a potentially important step towards efficient in silico modeling of entire organisms.

  1. Integrable structure in discrete shell membrane theory

    PubMed Central

    Schief, W. K.

    2014-01-01

    We present natural discrete analogues of two integrable classes of shell membranes. By construction, these discrete shell membranes are in equilibrium with respect to suitably chosen internal stresses and external forces. The integrability of the underlying equilibrium equations is proved by relating the geometry of the discrete shell membranes to discrete O surface theory. We establish connections with generalized barycentric coordinates and nine-point centres and identify a discrete version of the classical Gauss equation of surface theory. PMID:24808755

  2. Discretization errors in particle tracking

    NASA Astrophysics Data System (ADS)

    Carmon, G.; Mamman, N.; Feingold, M.

    2007-03-01

    High precision video tracking of microscopic particles is limited by systematic and random errors. Systematic errors are partly due to the discretization process both in position and in intensity. We study the behavior of such errors in a simple tracking algorithm designed for the case of symmetric particles. This symmetry algorithm uses interpolation to estimate the value of the intensity at arbitrary points in the image plane. We show that the discretization error is composed of two parts: (1) the error due to the discretization of the intensity, bD and (2) that due to interpolation, bI. While bD behaves asymptotically like N-1 where N is the number of intensity gray levels, bI is small when using cubic spline interpolation.

  3. Exact solutions for unsteady unidirectional flows of a generalized second-order fluid through a rectangular conduit

    NASA Astrophysics Data System (ADS)

    Kang, Jianhong; Xu, Mingyu

    2009-04-01

    The exact solutions are obtained for unsteady unidirectional flows of a generalized second-order fluid through a rectangular conduit. The fractional calculus in the constitutive relationship of a non-Newtonian fluid is introduced. We construct the solutions by means of Fourier transform and the discrete Laplace transform of the sequential derivatives and the double finite Fourier transform. The solutions for Newtonian fluid between two infinite parallel plates appear as limiting cases of our solutions.

  4. Exact, zero-energy, square-integrable solutions of a model related to the Maxwell's fish-eye problem

    SciTech Connect

    Makowski, Adam J.

    2009-12-15

    A model, which admits normalizable wave functions of the Schroedinger equation at the energy of E = 0, is exactly solved and the solutions are compared to the corresponding classical trajectories. The wave functions are proved to be square-integrable for discrete (quantized) values of the coupling constant of the used potential. We also show that our model is a specific version of the well-known Maxwell's fish-eye. This is performed with the help of a suitably chosen conformal mapping.

  5. Exact solution of the one-dimensional J sup 2 model of superconducting networks in a magnetic field

    SciTech Connect

    Griffiths, R.B. Service de Physique Theorique, Centre d'Etudes Nucleaires de Saclay, 91191 Gif-sur-Yvette ); Floria, L.M. )

    1992-05-01

    A simplified one-dimensional model of certain nonperiodic networks of superconducting wires in a magnetic field, introduced by Grest, Chaikin, and Levine, is solved exactly by reducing it to a mathematical problem involving Fourier transforms of one-dimensional sequences. Explicit results are obtained for some particular cases including that of the Fibonacci sequence'' considered by them. Inflation symmetry appears to play no significant role; the crucial question is the existence and structure of a discrete spectrum in the Fourier transform.

  6. Quantum q-breathers in a finite Bose-Hubbard chain: The case of two interacting bosons

    SciTech Connect

    Nguenang, Jean Pierre; Pinto, R. A.; Flach, Sergej

    2007-06-01

    We study the spectrum and eigenstates of the quantum discrete Bose-Hubbard Hamiltonian in a finite one-dimensional lattice containing two bosons. The interaction between the bosons leads to an algebraic localization of the modified extended states in the normal-mode space of the noninteracting system. Weight functions of the eigenstates in the space of normal modes are computed by using numerical diagonalization and perturbation theory. We find that staggered states do not compactify in the dilute limit for large chains.

  7. Discrete cloud structure on Neptune

    NASA Technical Reports Server (NTRS)

    Hammel, H. B.

    1989-01-01

    Recent CCD imaging data for the discrete cloud structure of Neptune shows that while cloud features at CH4-band wavelengths are manifest in the southern hemisphere, they have not been encountered in the northern hemisphere since 1986. A literature search has shown the reflected CH4-band light from the planet to have come from a single discrete feature at least twice in the last 10 years. Disk-integrated photometry derived from the imaging has demonstrated that a bright cloud feature was responsible for the observed 8900 A diurnal variation in 1986 and 1987.

  8. Quasiclassical asymptotics and coherent states for bounded discrete spectra

    SciTech Connect

    Gorska, K.; Penson, K. A.; Horzela, A.; Blasiak, P.; Duchamp, G. H. E.; Solomon, A. I.

    2010-12-15

    We consider discrete spectra of bound states for nonrelativistic motion in attractive potentials V{sub {sigma}}(x)=-|V{sub 0}| |x|{sup -}{sigma}, 0<{sigma}{<=}2. For these potentials the quasiclassical approximation for n{yields}{infinity} predicts quantized energy levels e{sub {sigma}}(n) of a bounded spectrum varying as e{sub {sigma}}(n){approx}-n{sup -}2{sigma}/(2-{sigma}). We construct collective quantum states using the set of wavefunctions of the discrete spectrum assuming this asymptotic behavior. We give examples of states that are normalizable and satisfy the resolution of unity, using explicit positive functions. These are coherent states in the sense of Klauder and their completeness is achieved via exact solutions of Hausdorff moment problems, obtained by combining Laplace and Mellin transform methods. For {sigma} in the range 0 < {sigma}{<=} 2/3 we present exact implementations of such states for the parametrization {sigma}= 2(k-l)/(3k-l) with k and l positive integers satisfying k>l.

  9. Development of discrete gas kinetic scheme for simulation of 3D viscous incompressible and compressible flows

    NASA Astrophysics Data System (ADS)

    Yang, L. M.; Shu, C.; Wang, Y.; Sun, Y.

    2016-08-01

    The sphere function-based gas kinetic scheme (GKS), which was presented by Shu and his coworkers [23] for simulation of inviscid compressible flows, is extended to simulate 3D viscous incompressible and compressible flows in this work. Firstly, we use certain discrete points to represent the spherical surface in the phase velocity space. Then, integrals along the spherical surface for conservation forms of moments, which are needed to recover 3D Navier-Stokes equations, are approximated by integral quadrature. The basic requirement is that these conservation forms of moments can be exactly satisfied by weighted summation of distribution functions at discrete points. It was found that the integral quadrature by eight discrete points on the spherical surface, which forms the D3Q8 discrete velocity model, can exactly match the integral. In this way, the conservative variables and numerical fluxes can be computed by weighted summation of distribution functions at eight discrete points. That is, the application of complicated formulations resultant from integrals can be replaced by a simple solution process. Several numerical examples including laminar flat plate boundary layer, 3D lid-driven cavity flow, steady flow through a 90° bending square duct, transonic flow around DPW-W1 wing and supersonic flow around NACA0012 airfoil are chosen to validate the proposed scheme. Numerical results demonstrate that the present scheme can provide reasonable numerical results for 3D viscous flows.

  10. Reduced discretization error in HZETRN

    SciTech Connect

    Slaba, Tony C.; Blattnig, Steve R.; Tweed, John

    2013-02-01

    The deterministic particle transport code HZETRN is an efficient analysis tool for studying the effects of space radiation on humans, electronics, and shielding materials. In a previous work, numerical methods in the code were reviewed, and new methods were developed that further improved efficiency and reduced overall discretization error. It was also shown that the remaining discretization error could be attributed to low energy light ions (A < 4) with residual ranges smaller than the physical step-size taken by the code. Accurately resolving the spectrum of low energy light particles is important in assessing risk associated with astronaut radiation exposure. In this work, modifications to the light particle transport formalism are presented that accurately resolve the spectrum of low energy light ion target fragments. The modified formalism is shown to significantly reduce overall discretization error and allows a physical approximation to be removed. For typical step-sizes and energy grids used in HZETRN, discretization errors for the revised light particle transport algorithms are shown to be less than 4% for aluminum and water shielding thicknesses as large as 100 g/cm{sup 2} exposed to both solar particle event and galactic cosmic ray environments.

  11. Discrete tomography in neutron radiography

    NASA Astrophysics Data System (ADS)

    Kuba, Attila; Rodek, Lajos; Kiss, Zoltán; Ruskó, László; Nagy, Antal; Balaskó, Márton

    2005-04-01

    Discrete tomography (DT) is an imaging technique for reconstructing discrete images from their projections using the knowledge that the object to be reconstructed contains only a few homogeneous materials characterized by known discrete absorption values. One of the main reasons for applying DT is that we will hopefully require relatively few projections. Using discreteness and some a priori information (such as an approximate shape of the object) we can apply two DT methods in neutron imaging by reducing the problem to an optimization task. The first method is a special one because it is only suitable if the object is composed of cylinders and sphere shapes. The second method is a general one in the sense that it can be used for reconstructing objects of any shape. Software was developed and physical experiments performed in order to investigate the effects of several reconstruction parameters: the number of projections, noise levels, and complexity of the object to be reconstructed. We give a summary of the experimental results and make a comparison of the results obtained using a classical reconstruction technique (FBP). The programs we developed are available in our DT reconstruction program package DIRECT.

  12. Police Discretion: A Selected Bibliography.

    ERIC Educational Resources Information Center

    Brenner, Robert N.; Kravitz, Marjorie

    This bibliography was compiled with two goals. The first goal is to provide police administrators and officers with an overview of the issues involved in developing guidelines for police discretion and a discussion of the options available. The second goal is to demonstrate the need for continuing dialogue and interaction between lawmakers, law…

  13. Exact Pressure Evolution Equation for Incompressible Fluids

    NASA Astrophysics Data System (ADS)

    Tessarotto, M.; Ellero, M.; Aslan, N.; Mond, M.; Nicolini, P.

    2008-12-01

    An important aspect of computational fluid dynamics is related to the determination of the fluid pressure in isothermal incompressible fluids. In particular this concerns the construction of an exact evolution equation for the fluid pressure which replaces the Poisson equation and yields an algorithm which is a Poisson solver, i.e., it permits to time-advance exactly the same fluid pressure without solving the Poisson equation. In fact, the incompressible Navier-Stokes equations represent a mixture of hyperbolic and elliptic pde's, which are extremely hard to study both analytically and numerically. This amounts to transform an elliptic type fluid equation into a suitable hyperbolic equation, a result which usually is reached only by means of an asymptotic formulation. Besides being a still unsolved mathematical problem, the issue is relevant for at least two reasons: a) the proliferation of numerical algorithms in computational fluid dynamics which reproduce the behavior of incompressible fluids only in an asymptotic sense (see below); b) the possible verification of conjectures involving the validity of appropriate equations of state for the fluid pressure. Another possible motivation is, of course, the ongoing quest for efficient numerical solution methods to be applied for the construction of the fluid fields {ρ,V,p}, solutions of the initial and boundary-value problem associated to the incompressible N-S equations (INSE). In this paper we intend to show that an exact solution to this problem can be achieved adopting the approach based on inverse kinetic theory (IKT) recently developed for incompressible fluids by Tessarotto et al. [7, 6, 7, 8, 9]. In particular we intend to prove that the evolution of the fluid fields can be achieved by means of a suitable dynamical system, to be identified with the so-called Navier-Stokes (N-S) dynamical system. As a consequence it is found that the fluid pressure obeys a well-defined evolution equation. The result appears

  14. Exact two-component Hamiltonians revisited.

    PubMed

    Liu, Wenjian; Peng, Daoling

    2009-07-21

    Two routes for deriving the exact two-component Hamiltonians are compared. In the first case, as already known, we start directly from the matrix representation of the Dirac operator in a restricted kinetically balanced basis and make a single block diagonalization. In the second case, not considered before, we start instead from the Foldy-Wouthuysen operator and make proper use of resolutions of the identity. The expressions are surprisingly different. It turns out that a mistake was made in the former formulation when going from the Dirac to the Schrodinger picture. The two formulations become equivalent after the mistake is corrected.

  15. Exact two-component Hamiltonians revisited

    SciTech Connect

    Liu Wenjian; Peng Daoling

    2009-07-21

    Two routes for deriving the exact two-component Hamiltonians are compared. In the first case, as already known, we start directly from the matrix representation of the Dirac operator in a restricted kinetically balanced basis and make a single block diagonalization. In the second case, not considered before, we start instead from the Foldy-Wouthuysen operator and make proper use of resolutions of the identity. The expressions are surprisingly different. It turns out that a mistake was made in the former formulation when going from the Dirac to the Schroedinger picture. The two formulations become equivalent after the mistake is corrected.

  16. An exact accelerated stochastic simulation algorithm.

    PubMed

    Mjolsness, Eric; Orendorff, David; Chatelain, Philippe; Koumoutsakos, Petros

    2009-04-14

    An exact method for stochastic simulation of chemical reaction networks, which accelerates the stochastic simulation algorithm (SSA), is proposed. The present "ER-leap" algorithm is derived from analytic upper and lower bounds on the multireaction probabilities sampled by SSA, together with rejection sampling and an adaptive multiplicity for reactions. The algorithm is tested on a number of well-quantified reaction networks and is found experimentally to be very accurate on test problems including a chaotic reaction network. At the same time ER-leap offers a substantial speedup over SSA with a simulation time proportional to the 23 power of the number of reaction events in a Galton-Watson process.

  17. Exact solutions for Weyl fermions with gravity

    NASA Astrophysics Data System (ADS)

    Cianci, Roberto; Fabbri, Luca; Vignolo, Stefano

    2015-10-01

    We consider the single-handed spinor field in interaction with its own gravitational field described by the set of field equations given by the Weyl field equations written in terms of derivatives that are covariant with respect to the gravitational connection plus Einstein field equations soured with the energy tensor of the spinor: for the Weyl spinor and the ensuing spacetime of Weyl-Lewis-Papapetrou structure, we find all exact solutions. The obtained solution for the metric tensor is that of a PP-wave spacetime, while the spinor field is a flag-dipole.

  18. Exact solutions for network rewiring models

    NASA Astrophysics Data System (ADS)

    Evans, T. S.

    2007-03-01

    Evolving networks with a constant number of edges may be modelled using a rewiring process. These models are used to describe many real-world processes including the evolution of cultural artifacts such as family names, the evolution of gene variations, and the popularity of strategies in simple econophysics models such as the minority game. The model is closely related to Urn models used for glasses, quantum gravity and wealth distributions. The full mean field equation for the degree distribution is found and its exact solution and generating solution are given.

  19. Supersymmetric Ito equation: Bosonization and exact solutions

    SciTech Connect

    Ren Bo; Yu Jun; Lin Ji

    2013-04-15

    Based on the bosonization approach, the N=1 supersymmetric Ito (sIto) system is changed to a system of coupled bosonic equations. The approach can effectively avoid difficulties caused by intractable fermionic fields which are anticommuting. By solving the coupled bosonic equations, the traveling wave solutions of the sIto system are obtained with the mapping and deformation method. Some novel types of exact solutions for the supersymmetric system are constructed with the solutions and symmetries of the usual Ito equation. In the meanwhile, the similarity reduction solutions of the model are also studied with the Lie point symmetry theory.

  20. Exact solutions in R2 SUGRA

    NASA Astrophysics Data System (ADS)

    Cisterna, Adolfo; Hassaïne, Mokhtar; Oliva, Julio

    2015-11-01

    This paper is devoted to showing that the bosonic sector of R2 supergravity in four dimensions, constructed with the F term, admits a variety of exact and analytic solutions which include pp and anti-de Sitter (AdS) waves, asymptotically flat and AdS black holes and wormholes, as well as product spacetimes. The existence of static black holes and wormholes implies that a combination involving the Ricci scalar plus the norm of the field strength of the auxiliary two-form Bμ ν must be a constant. We focus on this sector of the theory, which has two subsectors depending on whether such a combination vanishes.

  1. Exactly soluble quantum wormhole in two dimensions

    SciTech Connect

    Kim, Won Tae; Son, Edwin J.; Yoon, Myung Seok

    2004-11-15

    We are presenting a quantum traversable wormhole in an exactly soluble two-dimensional model. This is different from previous works since the exotic negative energy that supports the wormhole is generated from the quantization of classical energy-momentum tensors. This explicit illustration shows the quantum-mechanical energy can be used as a candidate for the exotic source. As for the traversability, after a particle travels through the wormhole, the static initial wormhole geometry gets a back reaction which spoils the wormhole structure. However, it may still maintain the initial structure along with the appropriate boundary condition.

  2. Model for microemulsions: An exactly solvable case

    SciTech Connect

    Renlie, L. ); Hoye, J.S. ); Skaf, M.S. ); Stell, G. )

    1991-10-01

    The microscopic model for microemulsions, introduced earlier by Ciach, Hoye, and Stell (J. Chem. Phys. {bold 90}, 1214 (1989)) is here specialized to a one-dimensional lattice and solved exactly by the transfer matrix method. The microemulsion phase is identified by the formation of thermally distributed surfactant-bounded domains of oil. For this phase we find scattering functions and characteristic lengths that have some of the same features found in experimental data for microemulsions. Mean-field interactions beyond nearest-neighbor sites are introduced in order to study the phase diagram for the nonperiodic phases we encounter.

  3. Dust grain coagulation modelling : From discrete to continuous

    NASA Astrophysics Data System (ADS)

    Paruta, P.; Hendrix, T.; Keppens, R.

    2016-07-01

    In molecular clouds, stars are formed from a mixture of gas, plasma and dust particles. The dynamics of this formation is still actively investigated and a study of dust coagulation can help to shed light on this process. Starting from a pre-existing discrete coagulation model, this work aims to mathematically explore its properties and its suitability for numerical validation. The crucial step is in our reinterpretation from its original discrete to a well-defined continuous form, which results in the well-known Smoluchowski coagulation equation. This opens up the possibility of exploiting previous results in order to prove the existence and uniqueness of a mass conserving solution for the evolution of dust grain size distribution. Ultimately, to allow for a more flexible numerical implementation, the problem is rewritten as a non-linear hyperbolic integro-differential equation and solved using a finite volume discretisation. It is demonstrated that there is an exact numerical agreement with the initial discrete model, with improved accuracy. This is of interest for further work on dynamically coupled gas with dust simulations.

  4. Periodic wave, breather wave and travelling wave solutions of a (2 + 1)-dimensional B-type Kadomtsev-Petviashvili equation in fluids or plasmas

    NASA Astrophysics Data System (ADS)

    Hu, Wen-Qiang; Gao, Yi-Tian; Jia, Shu-Liang; Huang, Qian-Min; Lan, Zhong-Zhou

    2016-11-01

    In this paper, a (2 + 1)-dimensional B-type Kadomtsev-Petviashvili equation is investigated, which has been presented as a model for the shallow water wave in fluids or the electrostatic wave potential in plasmas. By virtue of the binary Bell polynomials, the bilinear form of this equation is obtained. With the aid of the bilinear form, N -soliton solutions are obtained by the Hirota method, periodic wave solutions are constructed via the Riemann theta function, and breather wave solutions are obtained according to the extended homoclinic test approach. Travelling waves are constructed by the polynomial expansion method as well. Then, the relations between soliton solutions and periodic wave solutions are strictly established, which implies the asymptotic behaviors of the periodic waves under a limited procedure. Furthermore, we obtain some new solutions of this equation by the standard extended homoclinic test approach. Finally, we give a generalized form of this equation, and find that similar analytical solutions can be obtained from the generalized equation with arbitrary coefficients.

  5. Inflationary potentials from the exact renormalisation group

    NASA Astrophysics Data System (ADS)

    Grozdanov, Sašo; Kraljić, David; Svanes, Eirik Eik

    2016-08-01

    We show that an inflationary slow-roll potential can be derived as an IR limit of the non-perturbative exact renormalisation group equation for a scalar field within the mean-field approximation. The result follows without having to specify a Lagrangian in the UV, which we take to be somewhere below the Planck scale to avoid discussing quantum gravity effects. We assume that the theory contains a scalar mode with suppressed coupling to other fields, and that higher derivative couplings are suppressed. In this framework the exact RG equation becomes a one-dimensional Schrödinger equation, which we solve. The effective IR potential is then dominated by the eigen-states of the RG Hamiltonian with the highest eigenvalues. We find that these potentials can generically give rise to slow-roll inflation, which is fully consistent with recent observations. As an example of how the proposed renormalisation group procedure works, we perform an explicit calculation in the ϕ4 theory in an appendix.

  6. Exact simulation of max-stable processes.

    PubMed

    Dombry, Clément; Engelke, Sebastian; Oesting, Marco

    2016-06-01

    Max-stable processes play an important role as models for spatial extreme events. Their complex structure as the pointwise maximum over an infinite number of random functions makes their simulation difficult. Algorithms based on finite approximations are often inexact and computationally inefficient. We present a new algorithm for exact simulation of a max-stable process at a finite number of locations. It relies on the idea of simulating only the extremal functions, that is, those functions in the construction of a max-stable process that effectively contribute to the pointwise maximum. We further generalize the algorithm by Dieker & Mikosch (2015) for Brown-Resnick processes and use it for exact simulation via the spectral measure. We study the complexity of both algorithms, prove that our new approach via extremal functions is always more efficient, and provide closed-form expressions for their implementation that cover most popular models for max-stable processes and multivariate extreme value distributions. For simulation on dense grids, an adaptive design of the extremal function algorithm is proposed.

  7. An exactly solvable model for quantum communications.

    PubMed

    Smith, Graeme; Smolin, John A

    2013-12-12

    Information theory establishes the ultimate limits on performance for noisy communication systems. Accurate models of physical communication devices must include quantum effects, but these typically make the theory intractable. As a result, communication capacities--the maximum possible rates of data transmission--are not known, even for transmission between two users connected by an electromagnetic waveguide with Gaussian noise. Here we present an exactly solvable model of communication with a fully quantum electromagnetic field. This gives explicit expressions for all point-to-point capacities of noisy quantum channels, with implications for quantum key distribution and fibre-optic communications. We also develop a theory of quantum communication networks by solving some rudimentary models including broadcast and multiple-access channels. We compare the predictions of our model with the orthodox Gaussian model and in all cases find agreement to within a few bits. At high signal-to-noise ratios, our simple model captures the relevant physics while remaining amenable to exact solution.

  8. Spatial data discretization methods for geocomputation

    NASA Astrophysics Data System (ADS)

    Cao, Feng; Ge, Yong; Wang, Jinfeng

    2014-02-01

    Geocomputation provides solutions to complex geographic problems. Continuous and discrete spatial data are involved in the geocomputational process; however, geocomputational methods for discrete spatial data cannot be directly applied to continuous or mixed spatial data. Therefore, discretization methods for continuous or mixed spatial data are involved in the process. Since spatial data has spatial features, such as association, heterogeneity and spatial structure, these features cannot be handled by traditional discretization methods. Therefore, this work develops feature-based spatial data discretization methods that achieve optimal discretization results for spatial data using spatial information implicit in those features. Two discretization methods considering the features of spatial data are presented. One is an unsupervised method considering autocorrelation of spatial data and the other is a supervised method considering spatial heterogeneity. Discretization processes of the two methods are exemplified using neural tube defects (NTD) for Heshun County in Shanxi Province, China. Effectiveness is also assessed.

  9. The SMM model as a boundary value problem using the discrete diffusion equation.

    PubMed

    Campbell, Joel

    2007-12-01

    A generalized single-step stepwise mutation model (SMM) is developed that takes into account an arbitrary initial state to a certain partial difference equation. This is solved in both the approximate continuum limit and the more exact discrete form. A time evolution model is developed for Y DNA or mtDNA that takes into account the reflective boundary modeling minimum microsatellite length and the original difference equation. A comparison is made between the more widely known continuum Gaussian model and a discrete model, which is based on modified Bessel functions of the first kind. A correction is made to the SMM model for the probability that two individuals are related that takes into account a reflecting boundary modeling minimum microsatellite length. This method is generalized to take into account the general n-step model and exact solutions are found. A new model is proposed for the step distribution.

  10. The SMM Model as a Boundary Value Problem Using the Discrete Diffusion Equation

    NASA Technical Reports Server (NTRS)

    Campbell, Joel

    2007-01-01

    A generalized single step stepwise mutation model (SMM) is developed that takes into account an arbitrary initial state to a certain partial difference equation. This is solved in both the approximate continuum limit and the more exact discrete form. A time evolution model is developed for Y DNA or mtDNA that takes into account the reflective boundary modeling minimum microsatellite length and the original difference equation. A comparison is made between the more widely known continuum Gaussian model and a discrete model, which is based on modified Bessel functions of the first kind. A correction is made to the SMM model for the probability that two individuals are related that takes into account a reflecting boundary modeling minimum microsatellite length. This method is generalized to take into account the general n-step model and exact solutions are found. A new model is proposed for the step distribution.

  11. Systoles in discrete dynamical systems

    NASA Astrophysics Data System (ADS)

    Fernandes, Sara; Grácio, Clara; Ramos, Carlos Correia

    2013-01-01

    The fruitful relationship between Geometry and Graph Theory has been explored by several authors benefiting also the Theory of discrete dynamical systems seen as Markov chains in graphs. In this work we will further explore the relation between these areas, giving a geometrical interpretation of notions from dynamical systems. In particular, we relate the topological entropy with the systole, here defined in the context of discrete dynamical systems. We show that for continuous interval maps the systole is trivial; however, for the class of interval maps with one discontinuity point the systole acquires relevance from the point of view of the dynamical behavior. Moreover, we define the geodesic length spectrum associated to a Markov interval map and we compute the referred spectrum in several examples.

  12. Dark Energy from Discrete Spacetime

    PubMed Central

    Trout, Aaron D.

    2013-01-01

    Dark energy accounts for most of the matter-energy content of our universe, yet current theories of its origin rely on radical physical assumptions such as the holographic principle or controversial anthropic arguments. We give a better motivated explanation for dark energy, claiming that it arises from a small negative scalar-curvature present even in empty spacetime. The vacuum has this curvature because spacetime is fundamentally discrete and there are more ways for a discrete geometry to have negative curvature than positive. We explicitly compute this effect using a variant of the well known dynamical-triangulations (DT) model for quantum gravity. Our model predicts a time-varying non-zero cosmological constant with a current value, in natural units, in agreement with observation. This calculation is made possible by a novel characterization of the possible DT action values combined with numerical evidence concerning their degeneracies. PMID:24312502

  13. Dark energy from discrete spacetime.

    PubMed

    Trout, Aaron D

    2013-01-01

    Dark energy accounts for most of the matter-energy content of our universe, yet current theories of its origin rely on radical physical assumptions such as the holographic principle or controversial anthropic arguments. We give a better motivated explanation for dark energy, claiming that it arises from a small negative scalar-curvature present even in empty spacetime. The vacuum has this curvature because spacetime is fundamentally discrete and there are more ways for a discrete geometry to have negative curvature than positive. We explicitly compute this effect using a variant of the well known dynamical-triangulations (DT) model for quantum gravity. Our model predicts a time-varying non-zero cosmological constant with a current value, [Formula: see text] in natural units, in agreement with observation. This calculation is made possible by a novel characterization of the possible DT action values combined with numerical evidence concerning their degeneracies.

  14. Observability of discretized partial differential equations

    NASA Technical Reports Server (NTRS)

    Cohn, Stephen E.; Dee, Dick P.

    1988-01-01

    It is shown that complete observability of the discrete model used to assimilate data from a linear partial differential equation (PDE) system is necessary and sufficient for asymptotic stability of the data assimilation process. The observability theory for discrete systems is reviewed and applied to obtain simple observability tests for discretized constant-coefficient PDEs. Examples are used to show how numerical dispersion can result in discrete dynamics with multiple eigenvalues, thereby detracting from observability.

  15. An exact accelerated stochastic simulation algorithm

    NASA Astrophysics Data System (ADS)

    Mjolsness, Eric; Orendorff, David; Chatelain, Philippe; Koumoutsakos, Petros

    2009-04-01

    An exact method for stochastic simulation of chemical reaction networks, which accelerates the stochastic simulation algorithm (SSA), is proposed. The present "ER-leap" algorithm is derived from analytic upper and lower bounds on the multireaction probabilities sampled by SSA, together with rejection sampling and an adaptive multiplicity for reactions. The algorithm is tested on a number of well-quantified reaction networks and is found experimentally to be very accurate on test problems including a chaotic reaction network. At the same time ER-leap offers a substantial speedup over SSA with a simulation time proportional to the 2/3 power of the number of reaction events in a Galton-Watson process.

  16. An exact accelerated stochastic simulation algorithm

    PubMed Central

    Mjolsness, Eric; Orendorff, David; Chatelain, Philippe; Koumoutsakos, Petros

    2009-01-01

    An exact method for stochastic simulation of chemical reaction networks, which accelerates the stochastic simulation algorithm (SSA), is proposed. The present “ER-leap” algorithm is derived from analytic upper and lower bounds on the multireaction probabilities sampled by SSA, together with rejection sampling and an adaptive multiplicity for reactions. The algorithm is tested on a number of well-quantified reaction networks and is found experimentally to be very accurate on test problems including a chaotic reaction network. At the same time ER-leap offers a substantial speedup over SSA with a simulation time proportional to the 2∕3 power of the number of reaction events in a Galton–Watson process. PMID:19368432

  17. Exactly soluble model of boundary degeneracy

    NASA Astrophysics Data System (ADS)

    Ganeshan, Sriram; Gorshkov, Alexey V.; Gurarie, Victor; Galitski, Victor M.

    2017-01-01

    We investigate the topological degeneracy that can be realized in Abelian fractional quantum spin Hall states with multiply connected gapped boundaries. Such a topological degeneracy (also dubbed as "boundary degeneracy") does not require superconducting proximity effect and can be created by simply applying a depletion gate to the quantum spin Hall material and using a generic spin-mixing term (e.g., due to backscattering) to gap out the edge modes. We construct an exactly soluble microscopic model manifesting this topological degeneracy and solve it using the recently developed technique [S. Ganeshan and M. Levin, Phys. Rev. B 93, 075118 (2016), 10.1103/PhysRevB.93.075118]. The corresponding string operators spanning this degeneracy are explicitly calculated. It is argued that the proposed scheme is experimentally reasonable.

  18. Exact order reduction in mode conversion

    NASA Astrophysics Data System (ADS)

    Swanson, D. G.

    1997-11-01

    The Exact Order Reduction method(S. Johnston, D. G. Swanson, Bull. Am. Phys. Soc. 41), 1425., which solves the mode conversion equations obtained from the Vlasov equations with high accuracy is shown to work over a broad range of parameters. The results for the scattering parameters are close to the corresponding results from the dispersion relation method, typically within a few percent. The technique is both faster and more robust (converging over a broader range of parameters), as well as solving the most highly accurate set of mode conversion equations. Results both with k_y=3D0 (incidence in midplane) and k_yne0 (oblique incidence) will be presented. abstract.

  19. Exact methods for self interacting neutrinos

    SciTech Connect

    Pehlivan, Y.; Balantekin, A. B.; Kajino, Toshitaka

    2014-06-24

    The effective many-body Hamiltonian which describes vacuum oscillations and self interactions of neutrinos in a two flavor mixing scheme under the single angle approximation has the same dynamical symmetries as the well known BCS pairing Hamiltonian. These dynamical symmetries manifest themselves in terms of a set of constants of motion and can be useful in formulating the collective oscillation modes in an intuitive way. In particular, we show that a neutrino spectral split can be simply viewed as an avoided level crossing between the eigenstates of a mean field Hamiltonian which includes a Lagrange multiplier in order to fix the value of an exact many-body constant of motion. We show that the same dynamical symmetries also exist in the three neutrino mixing scheme by explicitly writing down the corresponding constants of motion.

  20. Exactly isochoric deformations of soft solids

    NASA Astrophysics Data System (ADS)

    Biggins, John S.; Wei, Z.; Mahadevan, L.

    2014-12-01

    Many materials of contemporary interest, such as gels, biological tissues and elastomers, are easily deformed but essentially incompressible. Traditional linear theory of elasticity implements incompressibility only to first order and thus permits some volume changes, which become problematically large even at very small strains. Using a mixed coordinate transformation originally due to Gauss, we enforce the constraint of isochoric deformations exactly to develop a linear theory with perfect volume conservation that remains valid until strains become geometrically large. We demonstrate the utility of this approach by calculating the response of an infinite soft isochoric solid to a point force that leads to a nonlinear generalization of the Kelvin solution. Our approach naturally generalizes to a range of problems involving deformations of soft solids and interfaces in two-dimensional and axisymmetric geometries, which we exemplify by determining the solution to a distributed load that mimics muscular contraction within the bulk of a soft solid.

  1. Scattering waves using exact controllability methods

    NASA Astrophysics Data System (ADS)

    Bristeau, M. O.; Glowinski, R.; Periaux, J.

    1993-01-01

    The main goal of this paper is to introduce a novel method for solving the Helmholtz equations from acoustics and two-dimensional electromagnetics. The key idea of the method is to go back to the original wave equation and look for time periodic solutions. In order to find these solutions, we essentially use a least squares/shooting method which is closely related to exact controllability and to the Hilbert uniqueness method of Lions (1988). From this formulation and by analogy with other controllability problems, we derive a conjugate gradient algorithm (in an appropriate Hilbert space) which has quite good convergence properties. Numerical experiments concerning the scattering of planar waves by convex or nonconvex obstacles show the efficiency of the new algorithm, particularly for air intakelike reflectors and two-dimensional aircraft related bodies.

  2. Multidimensional discretization of conservation laws for unstructured polyhedral grids

    SciTech Connect

    Burton, D.E.

    1994-08-22

    To the extent possible, a discretized system should satisfy the same conservation laws as the physical system. The author considers the conservation properties of a staggered-grid Lagrange formulation of the hydrodynamics equations (SGH) which is an extension of a ID scheme due to von Neumann and Richtmyer (VNR). The term staggered refers to spatial centering in which position, velocity, and kinetic energy are centered at nodes, while density, pressure, and internal energy are at cell centers. Traditional SGH formulations consider mass, volume, and momentum conservation, but tend to ignore conservation of total energy, conservation of angular momentum, and requirements for thermodynamic reversibility. The author shows that, once the mass and momentum discretizations have been specified, discretization for other quantities are dictated by the conservation laws and cannot be independently defined. The spatial discretization method employs a finite volume procedure that replaces differential operators with surface integrals. The method is appropriate for multidimensional formulations (1D, 2D, 3D) on unstructured grids formed from polygonal (2D) or polyhedral (3D) cells. Conservation equations can then be expressed in conservation form in which conserved currents are exchanged between control volumes. In addition to the surface integrals, the conservation equations include source terms derived from physical sources or geometrical considerations. In Cartesian geometry, mass and momentum are conserved identically. Discussion of volume conservation will be temporarily deferred. The author shows that the momentum equation leads to a form-preserving definition for kinetic energy and to an exactly conservative evolution equation for internal energy. Similarly, the author derives a form-preserving definition and corresponding conservation equation for a zone-centered angular momentum.

  3. Detecting unitary events without discretization of time.

    PubMed

    Grün, S; Diesmann, M; Grammont, F; Riehle, A; Aertsen, A

    1999-12-15

    In earlier studies we developed the 'Unitary Events' analysis (Grün S. Unitary Joint-Events in Multiple-Neuron Spiking Activity: Detection, Significance and Interpretation. Reihe Physik, Band 60. Thun, Frankfurt/Main: Verlag Harri Deutsch, 1996.) to detect the presence of conspicuous spike coincidences in multiple single unit recordings and to evaluate their statistical significance. The method enabled us to study the relation between spike synchronization and behavioral events (Riehle A, Grün S, Diesmann M, Aertsen A. Spike synchronization and rate modulation differentially involved in motor cortical function. Science 1997;278:1950-1953.). There is recent experimental evidence that the timing accuracy of coincident spiking events, which might be relevant for higher brain function, may be in the range of 1-5 ms. To detect coincidences on that time scale, we sectioned the observation interval into short disjunct time slices ('bins'). Unitary Events analysis of this discretized process demonstrated that coincident events can indeed be reliably detected. However, the method looses sensitivity for higher temporal jitter of the events constituting the coincidences (Grün S. Unitary Joint-Events in Multiple-Neuron Spiking Activity: Detection, Significance and Interpretation. Reihe Physik, Band 60. Thun, Frankfurt/Main: Verlag Harri Deutsch, 1996.). Here we present a new approach, the 'multiple shift' method (MS), which overcomes the need for binning and treats the data in their (original) high time resolution (typically 1 ms, or better). Technically, coincidences are detected by shifting the spike trains against each other over the range of allowed coincidence width and integrating the number of exact coincidences (on the time resolution of the data) over all shifts. We found that the new method enhances the sensitivity for coincidences with temporal jitter. Both methods are outlined and compared on the basis of their analytical description and their application on

  4. An exact formulation of hyperdynamics simulations.

    PubMed

    Chen, L Y; Horing, N J M

    2007-06-14

    We introduce a new formula for the acceleration weight factor in the hyperdynamics simulation method, the use of which correctly provides an exact simulation of the true dynamics of a system. This new form of hyperdynamics is valid and applicable where the transition state theory (TST) is applicable and also where the TST is not applicable. To illustrate this new formulation, we perform hyperdynamics simulations for four systems ranging from one degree of freedom to 591 degrees of freedom: (1) We first analyze free diffusion having one degree of freedom. This system does not have a transition state. The TST and the original form of hyperdynamics are not applicable. Using the new form of hyperdynamics, we compute mean square displacement for a range of time. The results obtained agree perfectly with the analytical formula. (2) Then we examine the classical Kramers escape rate problem. The rate computed is in perfect agreement with the Kramers formula over a broad range of temperature. (3) We also study another classical problem: Computing the rate of effusion out of a cubic box through a tiny hole. This problem does not involve an energy barrier. Thus, the original form of hyperdynamics excludes the possibility of using a nonzero bias and is inappropriate. However, with the new weight factor formula, our new form of hyperdynamics can be easily implemented and it produces the exact results. (4) To illustrate applicability to systems of many degrees of freedom, we analyze diffusion of an atom adsorbed on the (001) surface of an fcc crystal. The system is modeled by an atom on top of a slab of six atomic layers. Each layer has 49 atoms. With the bottom two layers of atoms fixed, this system has 591 degrees of freedom. With very modest computing effort, we are able to characterize its diffusion pathways in the exchange-with-the-substrate and hop-over-the-bridge mechanisms.

  5. An exact formulation of hyperdynamics simulations

    NASA Astrophysics Data System (ADS)

    Chen, L. Y.; Horing, N. J. M.

    2007-06-01

    We introduce a new formula for the acceleration weight factor in the hyperdynamics simulation method, the use of which correctly provides an exact simulation of the true dynamics of a system. This new form of hyperdynamics is valid and applicable where the transition state theory (TST) is applicable and also where the TST is not applicable. To illustrate this new formulation, we perform hyperdynamics simulations for four systems ranging from one degree of freedom to 591 degrees of freedom: (1) We first analyze free diffusion having one degree of freedom. This system does not have a transition state. The TST and the original form of hyperdynamics are not applicable. Using the new form of hyperdynamics, we compute mean square displacement for a range of time. The results obtained agree perfectly with the analytical formula. (2) Then we examine the classical Kramers escape rate problem. The rate computed is in perfect agreement with the Kramers formula over a broad range of temperature. (3) We also study another classical problem: Computing the rate of effusion out of a cubic box through a tiny hole. This problem does not involve an energy barrier. Thus, the original form of hyperdynamics excludes the possibility of using a nonzero bias and is inappropriate. However, with the new weight factor formula, our new form of hyperdynamics can be easily implemented and it produces the exact results. (4) To illustrate applicability to systems of many degrees of freedom, we analyze diffusion of an atom adsorbed on the (001) surface of an fcc crystal. The system is modeled by an atom on top of a slab of six atomic layers. Each layer has 49 atoms. With the bottom two layers of atoms fixed, this system has 591 degrees of freedom. With very modest computing effort, we are able to characterize its diffusion pathways in the exchange-with-the-substrate and hop-over-the-bridge mechanisms.

  6. Umbral Deformations on Discrete SPACE TIME

    NASA Astrophysics Data System (ADS)

    Zachos, Cosmas K.

    Given a minimum measurable length underlying spacetime, the latter may be effectively regarded as discrete, at scales of order the Planck length. A systematic discretization of continuum physics may be effected most efficiently through the umbral deformation. General functionals yielding such deformations at the level of solutions are furnished and illustrated, and broad features of discrete oscillations and wave propagation are outlined.

  7. Properties of quantum systems via diagonalization of transition amplitudes. I. Discretization effects.

    PubMed

    Vidanović, Ivana; Bogojević, Aleksandar; Belić, Aleksandar

    2009-12-01

    We analyze the method for calculation of properties of nonrelativistic quantum systems based on exact diagonalization of space-discretized short-time evolution operators. In this paper we present a detailed analysis of the errors associated with space discretization. Approaches using direct diagonalization of real-space discretized Hamiltonians lead to polynomial errors in discretization spacing Delta . Here we show that the method based on the diagonalization of the short-time evolution operators leads to substantially smaller discretization errors, vanishing exponentially with 1/Delta(2). As a result, the presented calculation scheme is particularly well suited for numerical studies of few-body quantum systems. The analytically derived discretization errors estimates are numerically shown to hold for several models. In the follow up paper [I. Vidanović, A. Bogojević, A. Balaz, and A. Belić, Phys. Rev. E 80, 066706 (2009)] we present and analyze substantial improvements that result from the merger of this approach with the recently introduced effective-action scheme for high-precision calculation of short-time propagation.

  8. Multipulses in discrete Hamiltonian nonlinear systems.

    PubMed

    Kevrekidis, P G

    2001-08-01

    In this work, the behavior of multipulses in discrete Hamiltonian nonlinear systems is investigated. The discrete nonlinear Schrödinger equation is used as the benchmark system for this study. A singular perturbation methodology as well as a variational approach are implemented in order to identify the dominant factors in the discrete problem. The results of the two methodologies are shown to coincide in assessing the interplay of discreteness and exponential tail-tail pulse interaction. They also allow one to understand why, contrary to what is believed for their continuum siblings, discrete systems can sustain (static) multipulse configurations, a conclusion that is subsequently verified by numerical experiment.

  9. On equivalence of discrete-discrete and continuum-discrete design sensitivity analysis

    NASA Technical Reports Server (NTRS)

    Choi, Kyung K.; Twu, Sung-Ling

    1989-01-01

    Developments in design sensitivity analysis (DSA) method have been made using two fundamentally different approaches as shown. In the first approach, a discretized structural finite element model is used to carry out DSA. There are three different methods in the discrete DSA approach: finite difference, semi-analytical, and analytical methods. The finite difference method is a popular one due to its simplicity, but a serious shortcoming of the method is the uncertainty in the choice of a perturbation step size of design variables. In the semi-analytical method, the derivatives of stiffness matrix is computed by finite differences, whereas in the analytical method, the derivatives are obtained analytically. For the shape design variable, computation of analytical derivative of stiffness matrix is quite costly. Because of this, the semi-analytical method is a popular choice in discrete shape DSA approach. However, recently, Barthelemy and Haftka presented that the semi-analytical method can have serious accuracy problems for shape design variables in structures modeled by beam, plate, truss, frame, and solid elements. They found that accuracy problems occur even for a simple cantilever beam. In the second approach, a continuum model of the structure is used to carry out DSA.

  10. Discretization and Preconditioning Algorithms for the Euler and Navier-Stokes Equations on Unstructured Meshes

    NASA Technical Reports Server (NTRS)

    Barth, Timothy; Chancellor, Marisa K. (Technical Monitor)

    1997-01-01

    Several stabilized discretization procedures for conservation law equations on triangulated domains will be considered. Specifically, numerical schemes based on upwind finite volume, fluctuation splitting, Galerkin least-squares, and space discontinuous Galerkin discretization will be considered in detail. A standard energy analysis for several of these methods will be given via entropy symmetrization. Next, we will present some relatively new theoretical results concerning congruence relationships for left or right symmetrized equations. These results suggest new variants of existing FV, DG, GLS and FS methods which are computationally more efficient while retaining the pleasant theoretical properties achieved by entropy symmetrization. In addition, the task of Jacobian linearization of these schemes for use in Newton's method is greatly simplified owing to exploitation of exact symmetries which exist in the system. These variants have been implemented in the "ELF" library for which example calculations will be shown. The FV, FS and DG schemes also permit discrete maximum principle analysis and enforcement which greatly adds to the robustness of the methods. Some prevalent limiting strategies will be reviewed. Next, we consider embedding these nonlinear space discretizations into exact and inexact Newton solvers which are preconditioned using a nonoverlapping (Schur complement) domain decomposition technique. Elements of nonoverlapping domain decomposition for elliptic problems will be reviewed followed by the present extension to hyperbolic and elliptic-hyperbolic problems. Other issues of practical relevance such the meshing of geometries, code implementation, turbulence modeling, global convergence, etc. will be addressed as needed.

  11. Measuring maximum and standard metabolic rates using intermittent-flow respirometry: a student laboratory investigation of aerobic metabolic scope and environmental hypoxia in aquatic breathers.

    PubMed

    Rosewarne, P J; Wilson, J M; Svendsen, J C

    2016-01-01

    Metabolic rate is one of the most widely measured physiological traits in animals and may be influenced by both endogenous (e.g. body mass) and exogenous factors (e.g. oxygen availability and temperature). Standard metabolic rate (SMR) and maximum metabolic rate (MMR) are two fundamental physiological variables providing the floor and ceiling in aerobic energy metabolism. The total amount of energy available between these two variables constitutes the aerobic metabolic scope (AMS). A laboratory exercise aimed at an undergraduate level physiology class, which details the appropriate data acquisition methods and calculations to measure oxygen consumption rates in rainbow trout Oncorhynchus mykiss, is presented here. Specifically, the teaching exercise employs intermittent flow respirometry to measure SMR and MMR, derives AMS from the measurements and demonstrates how AMS is affected by environmental oxygen. Students' results typically reveal a decline in AMS in response to environmental hypoxia. The same techniques can be applied to investigate the influence of other key factors on metabolic rate (e.g. temperature and body mass). Discussion of the results develops students' understanding of the mechanisms underlying these fundamental physiological traits and the influence of exogenous factors. More generally, the teaching exercise outlines essential laboratory concepts in addition to metabolic rate calculations, data acquisition and unit conversions that enhance competency in quantitative analysis and reasoning. Finally, the described procedures are generally applicable to other fish species or aquatic breathers such as crustaceans (e.g. crayfish) and provide an alternative to using higher (or more derived) animals to investigate questions related to metabolic physiology.

  12. A TWO-DIMENSIONAL METHOD OF MANUFACTURED SOLUTIONS BENCHMARK SUITE BASED ON VARIATIONS OF LARSEN'S BENCHMARK WITH ESCALATING ORDER OF SMOOTHNESS OF THE EXACT SOLUTION

    SciTech Connect

    Sebastian Schunert; Yousry Y. Azmy

    2011-05-01

    The quantification of the discretization error associated with the spatial discretization of the Discrete Ordinate(DO) equations in multidimensional Cartesian geometries is the central problem in error estimation of spatial discretization schemes for transport theory as well as computer code verification. Traditionally fine mesh solutions are employed as reference, because analytical solutions only exist in the absence of scattering. This approach, however, is inadequate when the discretization error associated with the reference solution is not small compared to the discretization error associated with the mesh under scrutiny. Typically this situation occurs if the mesh of interest is only a couple of refinement levels away from the reference solution or if the order of accuracy of the numerical method (and hence the reference as well) is lower than expected. In this work we present a Method of Manufactured Solutions (MMS) benchmark suite with variable order of smoothness of the underlying exact solution for two-dimensional Cartesian geometries which provides analytical solutions aver- aged over arbitrary orthogonal meshes for scattering and non-scattering media. It should be emphasized that the developed MMS benchmark suite first eliminates the aforementioned limitation of fine mesh reference solutions since it secures knowledge of the underlying true solution and second that it allows for an arbitrary order of smoothness of the underlying ex- act solution. The latter is of importance because even for smooth parameters and boundary conditions the DO equations can feature exact solution with limited smoothness. Moreover, the degree of smoothness is crucial for both the order of accuracy and the magnitude of the discretization error for any spatial discretization scheme.

  13. Invariants of broken discrete symmetries.

    PubMed

    Kalozoumis, P A; Morfonios, C; Diakonos, F K; Schmelcher, P

    2014-08-01

    The parity and Bloch theorems are generalized to the case of broken global symmetry. Local inversion or translation symmetries in one dimension are shown to yield invariant currents that characterize wave propagation. These currents map the wave function from an arbitrary spatial domain to any symmetry-related domain. Our approach addresses any combination of local symmetries, thus applying, in particular, to acoustic, optical, and matter waves. Nonvanishing values of the invariant currents provide a systematic pathway to the breaking of discrete global symmetries.

  14. Invariants of Broken Discrete Symmetries

    NASA Astrophysics Data System (ADS)

    Kalozoumis, P. A.; Morfonios, C.; Diakonos, F. K.; Schmelcher, P.

    2014-08-01

    The parity and Bloch theorems are generalized to the case of broken global symmetry. Local inversion or translation symmetries in one dimension are shown to yield invariant currents that characterize wave propagation. These currents map the wave function from an arbitrary spatial domain to any symmetry-related domain. Our approach addresses any combination of local symmetries, thus applying, in particular, to acoustic, optical, and matter waves. Nonvanishing values of the invariant currents provide a systematic pathway to the breaking of discrete global symmetries.

  15. Exact general relativistic disks with magnetic fields

    NASA Astrophysics Data System (ADS)

    Letelier, Patricio S.

    1999-11-01

    The well-known ``displace, cut, and reflect'' method used to generate cold disks from given solutions of Einstein equations is extended to solutions of Einstein-Maxwell equations. Four exact solutions of the these last equations are used to construct models of hot disks with surface density, azimuthal pressure, and azimuthal current. The solutions are closely related to Kerr, Taub-NUT, Lynden-Bell-Pinault, and to a one-soliton solution. We find that the presence of the magnetic field can change in a nontrivial way the different properties of the disks. In particular, the pure general relativistic instability studied by Bic̆ák, Lynden-Bell, and Katz [Phys. Rev. D 47, 4334 (1993)] can be enhanced or cured by different distributions of currents inside the disk. These currents, outside the disk, generate a variety of axial symmetric magnetic fields. As far as we know these are the first models of hot disks studied in the context of general relativity.

  16. Exact solutions for extreme black hole magnetospheres

    NASA Astrophysics Data System (ADS)

    Lupsasca, Alexandru; Rodriguez, Maria J.

    2015-07-01

    We present new exact solutions of Force-Free Electrodynamics (FFE) in the Near-Horizon region of an Extremal Kerr black hole (NHEK) and offer a complete classifica-tion of the subset that form highest-weight representations of the spacetime's SL(2, ℝ)×U(1) isometry group. For a natural choice of spacetime embedding of this isometry group, the SL(2, ℝ) highest-weight conditions lead to stationary solutions with non-trivial angular de-pendence, as well as axisymmetry when the U(1)-charge vanishes. In addition, we unveil a hidden SL(2, ℂ) symmetry of the equations of FFE that stems from the action of a complex automorphism group, and enables us to generate an SL(2, ℂ) family of (generically time-dependent) solutions. We then obtain still more general solutions with less symmetry by appealing to a principle of linear superposition that holds for solutions with collinear cur-rents. This allows us to resum the highest-weight primaries and their SL(2, ℝ)-descendants.

  17. Exact solutions to magnetized plasma flow

    SciTech Connect

    Wang, Zhehui; Barnes, Cris W.

    2001-03-01

    Exact analytic solutions for steady-state magnetized plasma flow (MPF) using ideal magnetohydrodynamics formalism are presented. Several cases are considered. When plasma flow is included, a finite plasma pressure gradient {nabla}p can be maintained in a force-free state JxB=0 by the velocity gradient. Both incompressible and compressible MPF examples are discussed for a Taylor-state spheromak B field. A new magnetized nozzle solution is given for compressible plasma when U{parallel}B. Transition from a magnetized nozzle to a magnetic nozzle is possible when the B field is strong enough. No physical nozzle would be needed in the magnetic nozzle case. Diverging-, drum- and nozzle-shaped MPF solutions when U{perpendicular}B are also given. The electric field is needed to balance the UxB term in Ohm's law. The electric field can be generated in the laboratory with the proposed conducting electrodes. If such electric fields also exist in stars and galaxies, such as through a dynamo process, then these solutions can be candidates to explain single and double jets.

  18. New Exact Solution of Dirac-Coulomb Equation with Exact Boundary Condition

    NASA Astrophysics Data System (ADS)

    Chen, Ruida

    2008-04-01

    It usually writes the boundary condition of the wave equation in the Coulomb field as a rough form without considering the size of the atomic nucleus. The rough expression brings on that the solutions of the Klein-Gordon equation and the Dirac equation with the Coulomb potential are divergent at the origin of the coordinates, also the virtual energies, when the nuclear charges number Z>137, meaning the original solutions do not satisfy the conditions for determining solution. Any divergences of the wave functions also imply that the probability density of the meson or the electron would rapidly increase when they are closing to the atomic nucleus. What it predicts is not a truth that the atom in ground state would rapidly collapse to the neutron-like. We consider that the atomic nucleus has definite radius and write the exact boundary condition for the hydrogen and hydrogen-like atom, then newly solve the radial Dirac-Coulomb equation and obtain a new exact solution without any mathematical and physical difficulties. Unexpectedly, the K value constructed by Dirac is naturally written in the barrier width or the equivalent radius of the atomic nucleus in solving the Dirac equation with the exact boundary condition, and it is independent of the quantum energy. Without any divergent wave function and the virtual energies, we obtain a new formula of the energy levels that is different from the Dirac formula of the energy levels in the Coulomb field.

  19. Supervised Discrete Hashing With Relaxation.

    PubMed

    Gui, Jie; Liu, Tongliang; Sun, Zhenan; Tao, Dacheng; Tan, Tieniu

    2016-12-29

    Data-dependent hashing has recently attracted attention due to being able to support efficient retrieval and storage of high-dimensional data, such as documents, images, and videos. In this paper, we propose a novel learning-based hashing method called ''supervised discrete hashing with relaxation'' (SDHR) based on ''supervised discrete hashing'' (SDH). SDH uses ordinary least squares regression and traditional zero-one matrix encoding of class label information as the regression target (code words), thus fixing the regression target. In SDHR, the regression target is instead optimized. The optimized regression target matrix satisfies a large margin constraint for correct classification of each example. Compared with SDH, which uses the traditional zero-one matrix, SDHR utilizes the learned regression target matrix and, therefore, more accurately measures the classification error of the regression model and is more flexible. As expected, SDHR generally outperforms SDH. Experimental results on two large-scale image data sets (CIFAR-10 and MNIST) and a large-scale and challenging face data set (FRGC) demonstrate the effectiveness and efficiency of SDHR.

  20. Entwinement in discretely gauged theories

    NASA Astrophysics Data System (ADS)

    Balasubramanian, V.; Bernamonti, A.; Craps, B.; De Jonckheere, T.; Galli, F.

    2016-12-01

    We develop the notion of "entwinement" to characterize the amount of quantum entanglement between internal, discretely gauged degrees of freedom in a quantum field theory. This concept originated in the program of reconstructing spacetime from entanglement in holographic duality. We define entwinement formally in terms of a novel replica method which uses twist operators charged in a representation of the discrete gauge group. In terms of these twist operators we define a non-local, gauge-invariant object whose expectation value computes entwinement in a standard replica limit. We apply our method to the computation of entwinement in symmetric orbifold conformal field theories in 1+1 dimensions, which have an S N gauging. Such a theory appears in the weak coupling limit of the D1-D5 string theory which is dual to AdS3 at strong coupling. In this context, we show how certain kinds of entwinement measure the lengths, in units of the AdS scale, of non-minimal geodesics present in certain excited states of the system which are gravitationally described as conical defects and the M = 0 BTZ black hole. The possible types of entwinement that can be computed define a very large new class of quantities characterizing the fine structure of quantum wavefunctions.

  1. Discreteness effects in population dynamics

    NASA Astrophysics Data System (ADS)

    Guevara Hidalgo, Esteban; Lecomte, Vivien

    2016-05-01

    We analyse numerically the effects of small population size in the initial transient regime of a simple example population dynamics. These effects play an important role for the numerical determination of large deviation functions of additive observables for stochastic processes. A method commonly used in order to determine such functions is the so-called cloning algorithm which in its non-constant population version essentially reduces to the determination of the growth rate of a population, averaged over many realizations of the dynamics. However, the averaging of populations is highly dependent not only on the number of realizations of the population dynamics, and on the initial population size but also on the cut-off time (or population) considered to stop their numerical evolution. This may result in an over-influence of discreteness effects at initial times, caused by small population size. We overcome these effects by introducing a (realization-dependent) time delay in the evolution of populations, additional to the discarding of the initial transient regime of the population growth where these discreteness effects are strong. We show that the improvement in the estimation of the large deviation function comes precisely from these two main contributions.

  2. Direct discrete-time design approach to robust ? sampled-data observer-based output-feedback fuzzy control

    NASA Astrophysics Data System (ADS)

    Kim, Do Wan; Lee, Ho Jae

    2016-01-01

    This paper addresses a direct discrete-time design methodology for a robust ? sampled-data observer-based output-feedback stabilisation problem for a class of non-linear systems suffering from parametric uncertainties and disturbances that is identically modelled as a Takagi-Sugeno (T-S) fuzzy model at least locally. The primary features in the current development are that (1) we are based on an exact (rather than approximate) discrete-time model in an integral (rather than closed) form while (2) the ? control performance is characterised with respect to an ? (rather than l2) norm. It is shown that the uncertain sampled-data non-linear control system is robustly asymptotically stable if the employed discrete-time model is so. Design conditions are investigated in the discrete-time Lyapunov sense and concretised in the format of linear matrix inequalities.

  3. Ideal shrinking and expansion of discrete sequences

    NASA Technical Reports Server (NTRS)

    Watson, Andrew B.

    1986-01-01

    Ideal methods are described for shrinking or expanding a discrete sequence, image, or image sequence. The methods are ideal in the sense that they preserve the frequency spectrum of the input up to the Nyquist limit of the input or output, whichever is smaller. Fast implementations that make use of the discrete Fourier transform or the discrete Hartley transform are described. The techniques lead to a new multiresolution image pyramid.

  4. A discrete event method for wave simulation

    SciTech Connect

    Nutaro, James J

    2006-01-01

    This article describes a discrete event interpretation of the finite difference time domain (FDTD) and digital wave guide network (DWN) wave simulation schemes. The discrete event method is formalized using the discrete event system specification (DEVS). The scheme is shown to have errors that are proportional to the resolution of the spatial grid. A numerical example demonstrates the relative efficiency of the scheme with respect to FDTD and DWN schemes. The potential for the discrete event scheme to reduce numerical dispersion and attenuation errors is discussed.

  5. Discrete gauge symmetry in continuum theories

    SciTech Connect

    Krauss, L.M.; Wilczek, F.

    1989-03-13

    We point out that local symmetries can masquerade as discrete global symmetries to an observer equipped with only low-energy probes. The existence of the underlying local gauge invariance can, however, result in observable Aharonov-Bohm-type effects. Black holes can therefore carry discrete gauge charges: a form of nonclassical ''hair.'' Neither black-hole evaporation, wormholes, nor anything else can violate discrete gauge symmetries. In supersymmetric unified theories such discrete symmetries can forbid proton-decay amplitudes that might otherwise be catastrophic.

  6. Scalar discrete nonlinear multipoint boundary value problems

    NASA Astrophysics Data System (ADS)

    Rodriguez, Jesus; Taylor, Padraic

    2007-06-01

    In this paper we provide sufficient conditions for the existence of solutions to scalar discrete nonlinear multipoint boundary value problems. By allowing more general boundary conditions and by imposing less restrictions on the nonlinearities, we obtain results that extend previous work in the area of discrete boundary value problems [Debra L. Etheridge, Jesus Rodriguez, Periodic solutions of nonlinear discrete-time systems, Appl. Anal. 62 (1996) 119-137; Debra L. Etheridge, Jesus Rodriguez, Scalar discrete nonlinear two-point boundary value problems, J. Difference Equ. Appl. 4 (1998) 127-144].

  7. Discrete wave mechanics: An introduction

    PubMed Central

    Wall, Frederick T.

    1986-01-01

    Discrete wave mechanics is formulated for particles in one-dimensional systems by use of a simple finite difference equation. The solutions involve wave vectors (instead of wave functions) as well as a newly defined “wave vector energy.” In the limit, as c → ∞, the treatment reduces to that of Schrödinger's wave mechanics. Specific calculations are made for completely free particles as well as for particles confined to a one-dimensional box. The results exhibit a striking compatibility with relativistic considerations. The wave vectors show properties that can be identified with particles and anti-particles—each possess identical probability distributions with energies that add up to zero. PMID:16593732

  8. Discrete wave mechanics: Multidimensional systems

    PubMed Central

    Wall, Frederick T.

    1987-01-01

    Discrete wave mechanics is pursued further by extending the one-dimensional treatment to two (or more) dimensions in the light of explicit momentum considerations. Cognizance is taken of the effect of particle motion on mass and hence on the interactions between components of motion in different directions. The overall energy parameter turns out to be a product instead of a sum of parameters identified with each of several orthogonal axes. Accordingly, the separation of variables is most directly accomplished by factoring the principal energy parameter in conjunction with factoring the wave vector expression itself. Wave vector energies, on the other hand, remain additive. Finally, group velocity components are discussed for higher-dimensional systems. PMID:16593833

  9. Discrete modelling of drapery systems

    NASA Astrophysics Data System (ADS)

    Thoeni, Klaus; Giacomini, Anna

    2016-04-01

    Drapery systems are an efficient and cost-effective measure in preventing and controlling rockfall hazards on rock slopes. The simplest form consists of a row of ground anchors along the top of the slope connected to a horizontal support cable from which a wire mesh is suspended down the face of the slope. Such systems are generally referred to as simple or unsecured draperies (Badger and Duffy 2012). Variations such as secured draperies, where a pattern of ground anchors is incorporated within the field of the mesh, and hybrid systems, where the upper part of an unsecured drapery is elevated to intercept rockfalls originating upslope of the installation, are becoming more and more popular. This work presents a discrete element framework for simulation of unsecured drapery systems and its variations. The numerical model is based on the classical discrete element method (DEM) and implemented into the open-source framework YADE (Šmilauer et al., 2010). The model takes all relevant interactions between block, drapery and slope into account (Thoeni et al., 2014) and was calibrated and validated based on full-scale experiments (Giacomini et al., 2012).The block is modelled as a rigid clump made of spherical particles which allows any shape to be approximated. The drapery is represented by a set of spherical particle with remote interactions. The behaviour of the remote interactions is governed by the constitutive behaviour of the wire and generally corresponds to a piecewise linear stress-strain relation (Thoeni et al., 2013). The same concept is used to model wire ropes. The rock slope is represented by rigid triangular elements where material properties (e.g., normal coefficient of restitution, friction angle) are assigned to each triangle. The capabilities of the developed model to simulate drapery systems and estimate the residual hazard involved with such systems is shown. References Badger, T.C., Duffy, J.D. (2012) Drapery systems. In: Turner, A.K., Schuster R

  10. Structure of random discrete spacetime

    NASA Technical Reports Server (NTRS)

    Brightwell, Graham; Gregory, Ruth

    1991-01-01

    The usual picture of spacetime consists of a continuous manifold, together with a metric of Lorentzian signature which imposes a causal structure on the spacetime. A model, first suggested by Bombelli et al., is considered in which spacetime consists of a discrete set of points taken at random from a manifold, with only the causal structure on this set remaining. This structure constitutes a partially ordered set (or poset). Working from the poset alone, it is shown how to construct a metric on the space which closely approximates the metric on the original spacetime manifold, how to define the effective dimension of the spacetime, and how such quantities may depend on the scale of measurement. Possible desirable features of the model are discussed.

  11. Exact solutions for rate and synchrony in recurrent networks of coincidence detectors.

    PubMed

    Mikula, Shawn; Niebur, Ernst

    2008-11-01

    We provide analytical solutions for mean firing rates and cross-correlations of coincidence detector neurons in recurrent networks with excitatory or inhibitory connectivity, with rate-modulated steady-state spiking inputs. We use discrete-time finite-state Markov chains to represent network state transition probabilities, which are subsequently used to derive exact analytical solutions for mean firing rates and cross-correlations. As illustrated in several examples, the method can be used for modeling cortical microcircuits and clarifying single-neuron and population coding mechanisms. We also demonstrate that increasing firing rates do not necessarily translate into increasing cross-correlations, though our results do support the contention that firing rates and cross-correlations are likely to be coupled. Our analytical solutions underscore the complexity of the relationship between firing rates and cross-correlations.

  12. Three-body scattering theory without knowledge of exact asymptotic boundary conditions

    SciTech Connect

    Shakeshaft, Robin

    2009-07-15

    We formulate the theory of three-body scattering without explicit reference to exact asymptotic boundary conditions on the wave function. The transition rate and amplitude are expressed as volume integrals of the resolvent, which are insensitive to the region of asymptotically large distances. The physical branch of the resolvent is selected through the arrow of time, which is required to point forward in each subchannel. This is accomplished by first expressing the resolvent as an integral over time and then making a conformal transformation of each half of the time plane onto a unit disk. The physical branch corresponds to a path of integration in the upper half of the disk. We have tested the method, using a real discrete basis, by calculating the total cross section for singlet S-wave electron impact ionization of atomic hydrogen; our results are in reasonable agreement overall with the landmark results of Bartlet and Stelbovics [Phys. Rev. Lett. 93, 233201 (2004)].

  13. Three-body scattering theory without knowledge of exact asymptotic boundary conditions

    NASA Astrophysics Data System (ADS)

    Shakeshaft, Robin

    2009-07-01

    We formulate the theory of three-body scattering without explicit reference to exact asymptotic boundary conditions on the wave function. The transition rate and amplitude are expressed as volume integrals of the resolvent, which are insensitive to the region of asymptotically large distances. The physical branch of the resolvent is selected through the arrow of time, which is required to point forward in each subchannel. This is accomplished by first expressing the resolvent as an integral over time and then making a conformal transformation of each half of the time plane onto a unit disk. The physical branch corresponds to a path of integration in the upper half of the disk. We have tested the method, using a real discrete basis, by calculating the total cross section for singlet S -wave electron impact ionization of atomic hydrogen; our results are in reasonable agreement overall with the landmark results of Bartlet and Stelbovics [Phys. Rev. Lett. 93, 233201 (2004)].

  14. Static analysis of offshore risers with a geometrically-exact 3D beam model subjected to unilateral contact

    NASA Astrophysics Data System (ADS)

    Neto, Alfredo Gay; Martins, Clóvis A.; Pimenta, Paulo M.

    2014-01-01

    In offshore applications there are elements that can be modeled as long beams, such as umbilical cables, flexible and rigid pipes and hoses, immersed in the sea water, suspended from the floating unit to the seabed. The suspended part of these elements is named "riser" and is subjected to the ocean environment loads, such as waves and sea current. This work presents a structural geometrically-exact 3D beam model, discretized using the finite element method for riser modeling. An updated Lagrangian framework for the rotation parameterization has been used for the description of the exact kinematics. The goal is to perform a complete static analysis, considering the oceanic loads and the unilateral contact with the seabed, extending the current standard analysis for situations in which very large rotations occurs, in particular, large torsion. Details of the nonlinear 3D model and loads from oceanic environment are discussed, including the contact unilateral constraint.

  15. Exact quantum and time-dependent Hartree studies of the HBr/LiF(001) photodissociation dynamics

    NASA Astrophysics Data System (ADS)

    Fang, Jian-Yun; Guo, Hua

    1994-07-01

    Photodissociation dynamics of HBr adsorbed on a LiF(001) surface are investigated using both exact and time-dependent Hartree (TDH) methods on realistic potential energy surfaces. The dissociation dynamics are restricted in two dimensions and two coupled dissociative states of the adsorbate are included. The wave packets are propagated on numerical grids, and fast Fourier transform (FFT) and discrete variable representation (DVR) are used to calculate the action of the Hamiltonian. In the TDH treatment, each excited electronic state is represented by a single nuclear configuration. Final radial, angular, and momentum distributions of the H fragment are calculated. Comparisons between the exact and TDH results reveal that the agreement between the two is generally reasonable and is better for highly averaged quantities. Results also show that nonadiabatic transition dynamics are correctly reproduced by the TDH approximation. Finally, the calculated results are found consistent with the experimental observations.

  16. Exact null controllability of degenerate evolution equations with scalar control

    SciTech Connect

    Fedorov, Vladimir E; Shklyar, Benzion

    2012-12-31

    Necessary and sufficient conditions for the exact null controllability of a degenerate linear evolution equation with scalar control are obtained. These general results are used to examine the exact null controllability of the Dzektser equation in the theory of seepage. Bibliography: 13 titles.

  17. Aerodynamic shape optimization via discrete adjoint formulation using Euler equations on unstructured grids

    NASA Astrophysics Data System (ADS)

    Nath, Bijoyendra

    A methodology for aerodynamic shape optimization on two-dimensional unstructured grids using Euler equations is presented. The sensitivity derivatives are obtained using the discrete adjoint formulation. The Euler equations are solved using a fully implicit, upwind, cell-vertex, median-dual finite volume scheme. Roe's upwind flux-difference-splitting scheme is used to determine the inviscid fluxes. To enable discontinuities to be captured without oscillations, limiters are used at the reconstruction stage. The derivation of the accurate discretization of the flux Jacobians due to the conserved variables and the entire mesh required for the costate equation is developed and its efficient accumulation algorithm on an edge-based loop is implemented and documented. Exact linearization of Roe's approximate Riemann solver is incorporated into the aerodynamic analysis as well as the sensitivity analysis. Higher-order discretization is achieved by including all distance-one and -two terms due to the reconstruction and the limiter, although the limiter is not linearized. Two-dimensional body conforming grid movement strategy and grid sensitivity are obtained by considering the grid to be a system of interconnected springs. Arbitrary airfoil geometries are obtained using an algorithm for generalized von Mises airfoils with finite trailing edges. An incremental iterative formulation is used to solve the large sparse linear systems of equations obtained from the sensitivity analysis. The discrete linear systems obtained from the equations governing the flow and those from the sensitivity analysis are solved iteratively using the preconditioned GMRES (Generalized Minimum Residual) algorithm. For the optimization process, a constrained nonlinear programming package which uses a sequential quadratic programming algorithm is used. This study presents the process of analytically obtaining the exact discrete sensitivity derivatives and computationally cost-effective algorithms to

  18. Current Density and Continuity in Discretized Models

    ERIC Educational Resources Information Center

    Boykin, Timothy B.; Luisier, Mathieu; Klimeck, Gerhard

    2010-01-01

    Discrete approaches have long been used in numerical modelling of physical systems in both research and teaching. Discrete versions of the Schrodinger equation employing either one or several basis functions per mesh point are often used by senior undergraduates and beginning graduate students in computational physics projects. In studying…

  19. Discretization vs. Rounding Error in Euler's Method

    ERIC Educational Resources Information Center

    Borges, Carlos F.

    2011-01-01

    Euler's method for solving initial value problems is an excellent vehicle for observing the relationship between discretization error and rounding error in numerical computation. Reductions in stepsize, in order to decrease discretization error, necessarily increase the number of steps and so introduce additional rounding error. The problem is…

  20. Variable-coefficient discrete (GG)-expansion method for nonlinear differential-difference equations

    NASA Astrophysics Data System (ADS)

    Tang, Bo; He, Yinnian; Wei, Leilei; Wang, Shaoli

    2011-09-01

    In this Letter, a variable-coefficient discrete (GG)-expansion method is proposed to seek new and more general exact solutions of nonlinear differential-difference equations. Being concise and straightforward, this method is applied to the (2+1)-dimension Toda equation. As a result, many new and more general exact solutions are obtained including hyperbolic function solutions, trigonometric function solutions and rational solutions. It is shown that the proposed method provides a very effective and powerful mathematical tool for solving a great many nonlinear differential-difference equations in mathematical physics.

  1. Application of Exactly Linearized Error Transport Equations to AIAA CFD Prediction Workshops

    NASA Technical Reports Server (NTRS)

    Derlaga, Joseph M.; Park, Michael A.; Rallabhandi, Sriram

    2017-01-01

    The computational fluid dynamics (CFD) prediction workshops sponsored by the AIAA have created invaluable opportunities in which to discuss the predictive capabilities of CFD in areas in which it has struggled, e.g., cruise drag, high-lift, and sonic boom pre diction. While there are many factors that contribute to disagreement between simulated and experimental results, such as modeling or discretization error, quantifying the errors contained in a simulation is important for those who make decisions based on the computational results. The linearized error transport equations (ETE) combined with a truncation error estimate is a method to quantify one source of errors. The ETE are implemented with a complex-step method to provide an exact linearization with minimal source code modifications to CFD and multidisciplinary analysis methods. The equivalency of adjoint and linearized ETE functional error correction is demonstrated. Uniformly refined grids from a series of AIAA prediction workshops demonstrate the utility of ETE for multidisciplinary analysis with a connection between estimated discretization error and (resolved or under-resolved) flow features.

  2. Numerically Exact Computer Simulations of Light Scattering by Densely Packed, Random Particulate Media

    NASA Technical Reports Server (NTRS)

    Dlugach, Janna M.; Mishchenko, Michael I.; Liu, Li; Mackowski, Daniel W.

    2011-01-01

    Direct computer simulations of electromagnetic scattering by discrete random media have become an active area of research. In this progress review, we summarize and analyze our main results obtained by means of numerically exact computer solutions of the macroscopic Maxwell equations. We consider finite scattering volumes with size parameters in the range, composed of varying numbers of randomly distributed particles with different refractive indices. The main objective of our analysis is to examine whether all backscattering effects predicted by the low-density theory of coherent backscattering (CB) also take place in the case of densely packed media. Based on our extensive numerical data we arrive at the following conclusions: (i) all backscattering effects predicted by the asymptotic theory of CB can also take place in the case of densely packed media; (ii) in the case of very large particle packing density, scattering characteristics of discrete random media can exhibit behavior not predicted by the low-density theories of CB and radiative transfer; (iii) increasing the absorptivity of the constituent particles can either enhance or suppress typical manifestations of CB depending on the particle packing density and the real part of the refractive index. Our numerical data strongly suggest that spectacular backscattering effects identified in laboratory experiments and observed for a class of high-albedo Solar System objects are caused by CB.

  3. Discrete multiscale wavelet shrinkage and integrodifferential equations

    NASA Astrophysics Data System (ADS)

    Didas, S.; Steidl, G.; Weickert, J.

    2008-04-01

    We investigate the relation between discrete wavelet shrinkage and integrodifferential equations in the context of simplification and denoising of one-dimensional signals. In the continuous setting, strong connections between these two approaches were discovered in 6 (see references). The key observation is that the wavelet transform can be understood as derivative operator after the convolution with a smoothing kernel. In this paper, we extend these ideas to the practically relevant discrete setting with both orthogonal and biorthogonal wavelets. In the discrete case, the behaviour of the smoothing kernels for different scales requires additional investigation. The results of discrete multiscale wavelet shrinkage and related discrete versions of integrodifferential equations are compared with respect to their denoising quality by numerical experiments.

  4. Generalized exponential function and discrete growth models

    NASA Astrophysics Data System (ADS)

    Souto Martinez, Alexandre; Silva González, Rodrigo; Lauri Espíndola, Aquino

    2009-07-01

    Here we show that a particular one-parameter generalization of the exponential function is suitable to unify most of the popular one-species discrete population dynamic models into a simple formula. A physical interpretation is given to this new introduced parameter in the context of the continuous Richards model, which remains valid for the discrete case. From the discretization of the continuous Richards’ model (generalization of the Gompertz and Verhulst models), one obtains a generalized logistic map and we briefly study its properties. Notice, however that the physical interpretation for the introduced parameter persists valid for the discrete case. Next, we generalize the (scramble competition) θ-Ricker discrete model and analytically calculate the fixed points as well as their stabilities. In contrast to previous generalizations, from the generalized θ-Ricker model one is able to retrieve either scramble or contest models.

  5. Active control of turbomachine discrete tones

    NASA Astrophysics Data System (ADS)

    Fleeter, Sanford

    This paper was directed at active control of discrete frequency noise generated by subsonic blade rows through cancellation of the blade row interaction generated propagating acoustic waves. First discrete frequency noise generated by a rotor and stator in a duct was analyzed to determine the propagating acoustic pressure waves. Then a mathematical model was developed to analyze and predict the active control of discrete frequency noise generated by subsonic blade rows through cancellation of the propagating acoustic waves, accomplished by utilizing oscillating airfoil surfaces to generate additional control propagating pressure waves. These control waves interact with the propagating acoustic waves, thereby, in principle, canceling the acoustic waves and thus, the far field discrete frequency tones. This model was then applied to a fan exit guide vane to investigate active airfoil surface techniques for control of the propagating acoustic waves, and thus the far field discrete frequency tones, generated by blade row interactions.

  6. On the consistency between nearest-neighbor peridynamic discretizations and discretized classical elasticity models

    SciTech Connect

    Seleson, Pablo; Du, Qiang; Parks, Michael L.

    2016-08-16

    The peridynamic theory of solid mechanics is a nonlocal reformulation of the classical continuum mechanics theory. At the continuum level, it has been demonstrated that classical (local) elasticity is a special case of peridynamics. Such a connection between these theories has not been extensively explored at the discrete level. This paper investigates the consistency between nearest-neighbor discretizations of linear elastic peridynamic models and finite difference discretizations of the Navier–Cauchy equation of classical elasticity. While nearest-neighbor discretizations in peridynamics have been numerically observed to present grid-dependent crack paths or spurious microcracks, this paper focuses on a different, analytical aspect of such discretizations. We demonstrate that, even in the absence of cracks, such discretizations may be problematic unless a proper selection of weights is used. Specifically, we demonstrate that using the standard meshfree approach in peridynamics, nearest-neighbor discretizations do not reduce, in general, to discretizations of corresponding classical models. We study nodal-based quadratures for the discretization of peridynamic models, and we derive quadrature weights that result in consistency between nearest-neighbor discretizations of peridynamic models and discretized classical models. The quadrature weights that lead to such consistency are, however, model-/discretization-dependent. We motivate the choice of those quadrature weights through a quadratic approximation of displacement fields. The stability of nearest-neighbor peridynamic schemes is demonstrated through a Fourier mode analysis. Finally, an approach based on a normalization of peridynamic constitutive constants at the discrete level is explored. This approach results in the desired consistency for one-dimensional models, but does not work in higher dimensions. The results of the work presented in this paper suggest that even though nearest

  7. Multidimensional, fully implicit, exactly conserving electromagnetic particle-in-cell simulations

    NASA Astrophysics Data System (ADS)

    Chacon, Luis

    2015-09-01

    We discuss a new, conservative, fully implicit 2D-3V particle-in-cell algorithm for non-radiative, electromagnetic kinetic plasma simulations, based on the Vlasov-Darwin model. Unlike earlier linearly implicit PIC schemes and standard explicit PIC schemes, fully implicit PIC algorithms are unconditionally stable and allow exact discrete energy and charge conservation. This has been demonstrated in 1D electrostatic and electromagnetic contexts. In this study, we build on these recent algorithms to develop an implicit, orbit-averaged, time-space-centered finite difference scheme for the Darwin field and particle orbit equations for multiple species in multiple dimensions. The Vlasov-Darwin model is very attractive for PIC simulations because it avoids radiative noise issues in non-radiative electromagnetic regimes. The algorithm conserves global energy, local charge, and particle canonical-momentum exactly, even with grid packing. The nonlinear iteration is effectively accelerated with a fluid preconditioner, which allows efficient use of large timesteps, O(√{mi/me}c/veT) larger than the explicit CFL. In this presentation, we will introduce the main algorithmic components of the approach, and demonstrate the accuracy and efficiency properties of the algorithm with various numerical experiments in 1D and 2D. Support from the LANL LDRD program and the DOE-SC ASCR office.

  8. Exact event-driven implementation for recurrent networks of stochastic perfect integrate-and-fire neurons.

    PubMed

    Taillefumier, Thibaud; Touboul, Jonathan; Magnasco, Marcelo

    2012-12-01

    In vivo cortical recording reveals that indirectly driven neural assemblies can produce reliable and temporally precise spiking patterns in response to stereotyped stimulation. This suggests that despite being fundamentally noisy, the collective activity of neurons conveys information through temporal coding. Stochastic integrate-and-fire models delineate a natural theoretical framework to study the interplay of intrinsic neural noise and spike timing precision. However, there are inherent difficulties in simulating their networks' dynamics in silico with standard numerical discretization schemes. Indeed, the well-posedness of the evolution of such networks requires temporally ordering every neuronal interaction, whereas the order of interactions is highly sensitive to the random variability of spiking times. Here, we answer these issues for perfect stochastic integrate-and-fire neurons by designing an exact event-driven algorithm for the simulation of recurrent networks, with delayed Dirac-like interactions. In addition to being exact from the mathematical standpoint, our proposed method is highly efficient numerically. We envision that our algorithm is especially indicated for studying the emergence of polychronized motifs in networks evolving under spike-timing-dependent plasticity with intrinsic noise.

  9. Exact, E = 0, classical and quantum solutions for general power-law oscillators

    NASA Technical Reports Server (NTRS)

    Nieto, Michael Martin; Daboul, Jamil

    1995-01-01

    For zero energy, E = 0, we derive exact, classical and quantum solutions for all power-law oscillators with potentials V(r) = -gamma/r(exp nu), gamma greater than 0 and -infinity less than nu less than infinity. When the angular momentum is non-zero, these solutions lead to the classical orbits (p(t) = (cos mu(phi(t) - phi(sub 0)t))(exp 1/mu) with mu = nu/2 - 1 does not equal 0. For nu greater than 2, the orbits are bound and go through the origin. We calculate the periods and precessions of these bound orbits, and graph a number of specific examples. The unbound orbits are also discussed in detail. Quantum mechanically, this system is also exactly solvable. We find that when nu is greater than 2 the solutions are normalizable (bound), as in the classical case. Further, there are normalizable discrete, yet unbound, states. They correspond to unbound classical particles which reach infinity in a finite time. Finally, the number of space dimensions of the system can determine whether or not an E = 0 state is bound. These and other interesting comparisons to the classical system will be discussed.

  10. Exact two-dimensional zonal wavefront reconstruction with high spatial resolution in lateral shearing interferometry

    NASA Astrophysics Data System (ADS)

    Dai, Fengzhao; Li, Jie; Wang, Xiangzhao; Bu, Yang

    2016-05-01

    A novel zonal method is proposed for exact discrete reconstruction of a two-dimensional wavefront with high spatial resolution for lateral shearing interferometry. Four difference wavefronts measured in the x and y shear directions are required. Each of the two shear directions is measured twice with different shear amounts. The shear amounts of the second measurements of the x and y directions are Sx+1 pixels and Sy+1 pixels, where Sx pixels and Sy pixels are the shear amounts of the first measurements in the x and y directions, respectively. The shear amount in each direction can be chosen freely, provided that it is below a maximum value determined by the pupil shape and the number of samples N in that direction; thus, the choices are not limited by the more stringent condition required by previous methods, namely, that the shear amounts must be divisors of N. This method can exactly reconstruct any wavefront at evaluation points up to an arbitrary constant if the data is noiseless, and high spatial resolution can be achieved even with large shear amounts. The method is applicable not only to square pupils, but also to general pupil shapes if a sufficient number of Gerchberg iterations are employed. In this study, the validity and capability of the method were confirmed by numerical experiments. In addition, the experiments demonstrated that the method is stable with respect to noise in the difference wavefronts.

  11. Notes on the ExactPack Implementation of the DSD Rate Stick Solver

    SciTech Connect

    Kaul, Ann

    2016-08-01

    It has been shown above that the discretization scheme implemented in the ExactPack solver for the DSD Rate Stick equation is consistent with the Rate Stick PDE. In addition, a stability analysis has provided a CFL condition for a stable time step. Together, consistency and stability imply convergence of the scheme, which is expected to be close to first-order in time and second-order in space. It is understood that the nonlinearity of the underlying PDE will affect this rate somewhat. In the solver I implemented in ExactPack, I used the one-sided boundary condition described above at the outer boundary. In addition, I used 80% of the time step calculated in the stability analysis above. By making these two changes, I was able to implement a solver that calculates the solution without any arbitrary limits placed on the values of the curvature at the boundary. Thus, the calculation is driven directly by the conditions at the boundary as formulated in the DSD theory. The chosen scheme is completely coherent and defensible from a mathematical standpoint.

  12. Discretization and Preconditioning Algorithms for the Euler and Navier-Stokes Equations on Unstructured Meshes

    NASA Technical Reports Server (NTRS)

    Barth, Timothy J.; Kutler, Paul (Technical Monitor)

    1998-01-01

    Several stabilized demoralization procedures for conservation law equations on triangulated domains will be considered. Specifically, numerical schemes based on upwind finite volume, fluctuation splitting, Galerkin least-squares, and space discontinuous Galerkin demoralization will be considered in detail. A standard energy analysis for several of these methods will be given via entropy symmetrization. Next, we will present some relatively new theoretical results concerning congruence relationships for left or right symmetrized equations. These results suggest new variants of existing FV, DG, GLS, and FS methods which are computationally more efficient while retaining the pleasant theoretical properties achieved by entropy symmetrization. In addition, the task of Jacobean linearization of these schemes for use in Newton's method is greatly simplified owing to exploitation of exact symmetries which exist in the system. The FV, FS and DG schemes also permit discrete maximum principle analysis and enforcement which greatly adds to the robustness of the methods. Discrete maximum principle theory will be presented for general finite volume approximations on unstructured meshes. Next, we consider embedding these nonlinear space discretizations into exact and inexact Newton solvers which are preconditioned using a nonoverlapping (Schur complement) domain decomposition technique. Elements of nonoverlapping domain decomposition for elliptic problems will be reviewed followed by the present extension to hyperbolic and elliptic-hyperbolic problems. Other issues of practical relevance such the meshing of geometries, code implementation, turbulence modeling, global convergence, etc, will. be addressed as needed.

  13. Discrete vortices on anisotropic lattices

    NASA Astrophysics Data System (ADS)

    Chen, Gui-Hua; Wang, Hong-Cheng; Chen, Zi-Fa

    2015-08-01

    We consider the effects of anisotropy on two types of localized states with topological charges equal to 1 in two-dimensional nonlinear lattices, using the discrete nonlinear Schrödinger equation as a paradigm model. We find that on-site-centered vortices with different propagation constants are not globally stable, and that upper and lower boundaries of the propagation constant exist. The region between these two boundaries is the domain outside of which the on-site-centered vortices are unstable. This region decreases in size as the anisotropy parameter is gradually increased. We also consider off-site-centered vortices on anisotropic lattices, which are unstable on this lattice type and either transform into stable quadrupoles or collapse. We find that the transformation of off-sitecentered vortices into quadrupoles, which occurs on anisotropic lattices, cannot occur on isotropic lattices. In the quadrupole case, a propagation-constant region also exists, outside of which the localized states cannot stably exist. The influence of anisotropy on this region is almost identical to its effects on the on-site-centered vortex case.

  14. MULTISCALE DISCRETIZATION OF SHAPE CONTOURS

    SciTech Connect

    Prasad, L.; Rao, R.

    2000-09-01

    We present an efficient multi-scale scheme to adaptively approximate the continuous (or densely sampled) contour of a planar shape at varying resolutions. The notion of shape is intimately related to the notion of contour, and the efficient representation of the contour of a shape is vital to a computational understanding of the shape. Any polygonal approximation of a planar smooth curve is equivalent to a piecewise constant approximation of the parameterized X and Y coordinate functions of a discrete point set obtained by densely sampling the curve. Using the Haar wavelet transform for the piecewise approximation yields a hierarchical scheme in which the size of the approximating point set is traded off against the morphological accuracy of the approximation. Our algorithm compresses the representation of the initial shape contour to a sparse sequence of points in the plane defining the vertices of the shape's polygonal approximation. Furthermore, it is possible to control the overall resolution of the approximation by a single, scale-independent parameter.

  15. Impedance Matching for Discrete, Periodic Media and Application to Two-Scale Wave Propagation Models

    NASA Astrophysics Data System (ADS)

    Thirunavukkarasu, Senganal

    also be very useful for numerical simulation of dynamics of crystal lattices, for both MD simulations and AtC coupling. A critical problem that needs to be resolved in this context is the well-posedness of the discrete PMDL formulation. The proposed ECM facilitates direct extension of well-posedness criteria from continuous ABCs to discrete ABCs, and thus to discrete PMDL. This criterion is then used to develop a well-posed discrete PMDL formulation for a diatomic lattice, a simple but representative complex lattice, which is numerically verified to be stable. The methodology can be extended to more complex lattices, but at the expense of increased algebraic complexity, and perhaps significant increase in computational cost. Time-harmonic discrete PMDL can play an important role in numerical simulation of wave propagation in continuous periodic media, e.g. photonic crystals. ECM provides an alternate viewpoint for developing effective ABCs for periodic media. For instance, using ECM we derive an alternative expression for the exact Dirichlet-to-Neumann (DtN) operator of an unbounded periodic waveguide. While it is not yet clear if this alternative expression is computationally advantageous, it is nevertheless an interesting alternative. More significantly, we build on the existing idea of recursive doubling to propose a new and efficient method, based on discrete PMDL, to compute the DtN operator of an unbounded periodic waveguide. Compared to the original method, applicable only to dissipative media, the proposed method is more general and applicable to both dissipative and non-dissipative media. Based on the observations, it appears that discrete PMDL, and more generally the idea of equivalent continuous media, offers additional flexibility towards developing accurate methods for modeling wave propagation in a variety of application problems.

  16. Dissociation between exact and approximate addition in developmental dyslexia.

    PubMed

    Yang, Xiujie; Meng, Xiangzhi

    2016-09-01

    Previous research has suggested that number sense and language are involved in number representation and calculation, in which number sense supports approximate arithmetic, and language permits exact enumeration and calculation. Meanwhile, individuals with dyslexia have a core deficit in phonological processing. Based on these findings, we thus hypothesized that children with dyslexia may exhibit exact calculation impairment while doing mental arithmetic. The reaction time and accuracy while doing exact and approximate addition with symbolic Arabic digits and non-symbolic visual arrays of dots were compared between typically developing children and children with dyslexia. Reaction time analyses did not reveal any differences across two groups of children, the accuracies, interestingly, revealed a distinction of approximation and exact addition across two groups of children. Specifically, two groups of children had no differences in approximation. Children with dyslexia, however, had significantly lower accuracy in exact addition in both symbolic and non-symbolic tasks than that of typically developing children. Moreover, linguistic performances were selectively associated with exact calculation across individuals. These results suggested that children with dyslexia have a mental arithmetic deficit specifically in the realm of exact calculation, while their approximation ability is relatively intact.

  17. Compatible Spatial Discretizations for Partial Differential Equations

    SciTech Connect

    Arnold, Douglas, N, ed.

    2004-11-25

    From May 11--15, 2004, the Institute for Mathematics and its Applications held a hot topics workshop on Compatible Spatial Discretizations for Partial Differential Equations. The numerical solution of partial differential equations (PDE) is a fundamental task in science and engineering. The goal of the workshop was to bring together a spectrum of scientists at the forefront of the research in the numerical solution of PDEs to discuss compatible spatial discretizations. We define compatible spatial discretizations as those that inherit or mimic fundamental properties of the PDE such as topology, conservation, symmetries, and positivity structures and maximum principles. A wide variety of discretization methods applied across a wide range of scientific and engineering applications have been designed to or found to inherit or mimic intrinsic spatial structure and reproduce fundamental properties of the solution of the continuous PDE model at the finite dimensional level. A profusion of such methods and concepts relevant to understanding them have been developed and explored: mixed finite element methods, mimetic finite differences, support operator methods, control volume methods, discrete differential forms, Whitney forms, conservative differencing, discrete Hodge operators, discrete Helmholtz decomposition, finite integration techniques, staggered grid and dual grid methods, etc. This workshop seeks to foster communication among the diverse groups of researchers designing, applying, and studying such methods as well as researchers involved in practical solution of large scale problems that may benefit from advancements in such discretizations; to help elucidate the relations between the different methods and concepts; and to generally advance our understanding in the area of compatible spatial discretization methods for PDE. Particular points of emphasis included: + Identification of intrinsic properties of PDE models that are critical for the fidelity of numerical

  18. On the definition of discrete hydrodynamic variables.

    PubMed

    Español, Pep; Zúñiga, Ignacio

    2009-10-28

    The Green-Kubo formula for discrete hydrodynamic variables involves information about not only the fluid transport coefficients but also about discrete versions of the differential operators that govern the evolution of the discrete variables. This gives an intimate connection between discretization procedures in fluid dynamics and coarse-graining procedures used to obtain hydrodynamic behavior of molecular fluids. We observed that a natural definition of discrete hydrodynamic variables in terms of Voronoi cells leads to a Green-Kubo formula which is divergent, rendering the full coarse-graining strategy useless. In order to understand this subtle issue, in the present paper we consider the coarse graining of noninteracting Brownian particles. The discrete hydrodynamic variable for this problem is the number of particles within Voronoi cells. Thanks to the simplicity of the model we spot the origin of the singular behavior of the correlation functions. We offer an alternative definition, based on the concept of a Delaunay cell that behaves properly, suggesting the use of the Delaunay construction for the coarse graining of molecular fluids at the discrete hydrodynamic level.

  19. Discrete symmetries and de Sitter spacetime

    SciTech Connect

    Cotăescu, Ion I. Pascu, Gabriel

    2014-11-24

    Aspects of the ambiguity in defining quantum modes on de Sitter spacetime using a commuting system composed only of differential operators are discussed. Discrete symmetries and their actions on the wavefunction in commonly used coordinate charts are reviewed. It is argued that the system of commuting operators can be supplemented by requiring the invariance of the wavefunction to combined discrete symmetries- a criterion which selects a single state out of the α-vacuum family. Two such members of this family are singled out by particular combined discrete symmetries- states between which exists a well-known thermality relation.

  20. Discrete flavour symmetries from the Heisenberg group

    NASA Astrophysics Data System (ADS)

    Floratos, E. G.; Leontaris, G. K.

    2016-04-01

    Non-abelian discrete symmetries are of particular importance in model building. They are mainly invoked to explain the various fermion mass hierarchies and forbid dangerous superpotential terms. In string models they are usually associated to the geometry of the compactification manifold and more particularly to the magnetised branes in toroidal compactifications. Motivated by these facts, in this note we propose a unified framework to construct representations of finite discrete family groups based on the automorphisms of the discrete and finite Heisenberg group. We focus in particular, on the PSL2 (p) groups which contain the phenomenologically interesting cases.

  1. Exact ART: A Complete Implementation of an ART Network.

    PubMed

    Molenaar, Peter C.M.; Raijmakers, Maartje E.J.

    1997-06-01

    In this article we introduce a continuous time implementation of adaptive resonance theory (ART). ART designed by Grossberg concerns neural networks that self-organize stable pattern recognition categories of arbitrary sequences of input patterns. In contrast to the current implementations of ART we introduce a complete implementation of an ART network, including all regulatory and logical functions, as a system of ordinary differential equations capable of stand-alone running in real time. This means that transient behavior is kept in tact. This implementation of ART is based on ART 2 and is called Exact ART. Exact ART includes an implementation of a gated dipole field and an implementation of the orienting sub-system. The most important features of Exact ART, which are the design principles of ART 2, are proven mathematically. Also simulation studies show that Exact ART self-organizes stable recognition codes that agree with the classification behavior of ART 2. Copyright 1997 Elsevier Science Ltd.

  2. Exact theory of intermediate phases in two dimensions

    SciTech Connect

    Delfino, Gesualdo Squarcini, Alessio

    2014-03-15

    We show how field theory yields the exact description of intermediate phases in the scaling limit of two-dimensional statistical systems at a first order phase transition point. The ability of a third phase to form an intermediate wetting layer or only isolated bubbles is explicitly related to the spectrum of excitations of the field theory. The order parameter profiles are determined and interface properties such as passage probabilities and internal structure are deduced from them. The theory is illustrated through the application to the q-state Potts model and the Ashkin–Teller model. The latter is shown to provide the first exact solution of a bulk wetting transition. -- Highlights: •Phase separation with appearance of a third phase is studied exactly. •Interfacial properties are derived from field theory. •Exact solution of bulk wetting transition is provided.

  3. Exact BPS domain walls at finite gauge coupling

    NASA Astrophysics Data System (ADS)

    Blaschke, Filip

    2017-01-01

    Bogomol'nyi-Prasad-Sommerfield solitons in models with spontaneously broken gauge symmetry have been intensively studied at the infinite gauge coupling limit, where the governing equation-the so-called master equation-is exactly solvable. Except for a handful of special solutions, the standing impression is that analytic results at finite coupling are generally unavailable. The aim of this paper is to demonstrate, using domain walls in Abelian-Higgs models as the simplest example, that exact solitons at finite gauge coupling can be readily obtained if the number of Higgs fields (N) is large enough. In particular, we present a family of exact solutions, describing N domain walls at arbitrary positions in models with at least N≥2N+1. We have also found that adding together any pair of solutions can produce a new exact solution if the combined tension is below a certain limit.

  4. Exact Solution of Ising Model in 2d Shortcut Network

    NASA Astrophysics Data System (ADS)

    Shanker, O.

    We give the exact solution to the Ising model in the shortcut network in the 2D limit. The solution is found by mapping the model to the square lattice model with Brascamp and Kunz boundary conditions.

  5. Exact charge-conserving scatter-gather algorithm for particle-in-cell simulations on unstructured grids: A geometric perspective

    NASA Astrophysics Data System (ADS)

    Moon, Haksu; Teixeira, Fernando L.; Omelchenko, Yuri A.

    2015-09-01

    We describe a charge-conserving scatter-gather algorithm for particle-in-cell simulations on unstructured grids. Charge conservation is obtained from first principles, i.e., without the need for any post-processing or correction steps. This algorithm recovers, at a fundamental level, the scatter-gather algorithms presented recently by Campos-Pinto et al. (2014) (to first-order) and by Squire et al. (2012), but it is derived here in a streamlined fashion from a geometric viewpoint. Some ingredients reflecting this viewpoint are (1) the use of (discrete) differential forms of various degrees to represent fields, currents, and charged particles and provide localization rules for the degrees of freedom thereof on the various grid elements (nodes, edges, facets), (2) use of Whitney forms as basic interpolants from discrete differential forms to continuum space, and (3) use of a Galerkin formula for the discrete Hodge star operators (i.e., "mass matrices" incorporating the metric datum of the grid) applicable to generally irregular, unstructured grids. The expressions obtained for the scatter charges and scatter currents are very concise and do not involve numerical quadrature rules. Appropriate fractional areas within each grid element are identified that represent scatter charges and scatter currents within the element, and a simple geometric representation for the (exact) charge conservation mechanism is obtained by such identification. The field update is based on the coupled first-order Maxwell's curl equations to avoid spurious modes with secular growth (otherwise present in formulations that discretize the second-order wave equation). Examples are provided to verify preservation of discrete Gauss' law for all times.

  6. Exact Magnetic Diffusion Solutions for Magnetohydrodynamic Code Verification

    SciTech Connect

    Miller, D S

    2010-12-03

    In this paper, the authors present several new exact analytic space and time dependent solutions to the problem of magnetic diffusion in R-Z geometry. These problems serve to verify several different elements of an MHD implementation: magnetic diffusion, external circuit time integration, current and voltage energy sources, spatially dependent conductivities, and ohmic heating. The exact solutions are shown in comparison with 2D simulation results from the Ares code.

  7. Algebraic spin liquid in an exactly solvable spin model

    SciTech Connect

    Yao, Hong; Zhang, Shou-Cheng; Kivelson, Steven A.; /Stanford U., Phys. Dept.

    2010-03-25

    We have proposed an exactly solvable quantum spin-3/2 model on a square lattice. Its ground state is a quantum spin liquid with a half integer spin per unit cell. The fermionic excitations are gapless with a linear dispersion, while the topological 'vison' excitations are gapped. Moreover, the massless Dirac fermions are stable. Thus, this model is, to the best of our knowledge, the first exactly solvable model of half-integer spins whose ground state is an 'algebraic spin liquid.'

  8. When is quasi-linear theory exact. [particle acceleration

    NASA Technical Reports Server (NTRS)

    Jones, F. C.; Birmingham, T. J.

    1975-01-01

    We use the cumulant expansion technique of Kubo (1962, 1963) to derive an integrodifferential equation for the average one-particle distribution function for particles being accelerated by electric and magnetic fluctuations of a general nature. For a very restricted class of fluctuations, the equation for this function degenerates exactly to a differential equation of Fokker-Planck type. Quasi-linear theory, including the adiabatic assumption, is an exact theory only for this limited class of fluctuations.

  9. General exact solution of incompressible potential flows around two circles

    NASA Astrophysics Data System (ADS)

    Qianxi, Wang; Lixian, Zhuang; Binggang, Tong

    1993-02-01

    Three exact solutions are obtained for 2-D incompressible potential flows around two moving circles in three cases: (i) expansion (or contraction) of themselves, (ii) approaching (or departing from) each other, (iii) moving perpendicularly to the line connecting the centres in opposite directions. Meanwhile, another set of two exact solutions is obtained for 2-D incompressible potential flows between two moving eccentric circles in two cases: moving parallely or perpendicularly to the line connecting the centres.

  10. Exactly Embedded Wavefunction Methods for Characterizing Nitrogen Reduction Catalysis

    DTIC Science & Technology

    2015-01-15

    AFRL-OSR-VA-TR-2015-0038 Exactly Embedded Wavefunction Methods for Characterizing Nitrogen THOMAS MILLER CALIFORNIA INSTITUTE OF TECHNOLOGY Final...SUBTITLE Exactly Embedded Wavefunction Methods for Characterizing Nitrogen Reduction Catalysis 5a. CONTRACT NUMBER N/A 5b. GRANT NUMBER FA9550...catalysis, such as hydrogen and nitrogen reduction. In a significant methodological advance from the past year, we developed an accurate and

  11. A posteriori error estimators for the discrete ordinates approximation of the one-speed neutron transport equation

    SciTech Connect

    O'Brien, S.; Azmy, Y. Y.

    2013-07-01

    When calculating numerical solutions of the neutron transport equation it is important to have a measure of the accuracy of the solution. As the true solution is generally not known, a suitable estimation of the error must be made. The steady state transport equation possesses discretization errors in all its independent variables: angle, energy and space. In this work only spatial discretization errors are considered. An exact transport solution, in which the degree of regularity of the exact flux across the singular characteristic is controlled, is manufactured to determine the numerical solutions true discretization error. This solution is then projected onto a Legendre polynomial space in order to form an exact solution on the same basis space as the numerical solution, Discontinuous Galerkin Finite Element Method (DGFEM), to enable computation of the true error. Over a series of test problems the true error is compared to the error estimated by: Ragusa and Wang (RW), residual source (LER) and cell discontinuity estimators (JD). The validity and accuracy of the considered estimators are primarily assessed by considering the effectivity index and global L2 norm of the error. In general RW excels at approximating the true error distribution but usually under-estimates its magnitude; the LER estimator emulates the true error distribution but frequently over-estimates the magnitude of the true error; the JD estimator poorly captures the true error distribution and generally under-estimates the error about singular characteristics but over-estimates it elsewhere. (authors)

  12. Stationary dark localized modes: discrete nonlinear Schrödinger equations.

    PubMed

    Konotop, V V; Takeno, S

    1999-07-01

    Various kinds of stationary dark localized modes in discrete nonlinear Schrödinger equations are considered. A criterion for the existence of such excitations is introduced and an estimation of a localization region is provided. The results are illustrated in examples of the deformable discrete nonlinear Schrödinger equation, of the model of Frenkel excitons in a chain of two-level atoms, and of the model of a one-dimensional Heisenberg ferromagnetic in the stationary phase approximation. The three models display essentially different properties. It is shown that at an arbitrary amplitude of the background it is impossible to reach strong localization of dark modes. In the meantime, in the model of Frenkel excitons, exact dark compacton solutions are found.

  13. Average reflected power from a one-dimensional slab of discrete scatterers

    NASA Technical Reports Server (NTRS)

    Saatchi, Sasan S.; Lang, Roger H.

    1990-01-01

    Reflection from a one-dimensional random medium of discrete scatterers is considered. The discrete scattering medium is modeled by a Poisson impulse process with concentration lambda. By employing the Markov property of the Poisson impulse process, an exact functional integro-differential equation of the Kolmogorov-Feller type is found for the average reflected power. Approximate solutions to this equation are obtained by regular perturbation and two variable expansion techniques in the limit of small lambda. The regular perturbation results is valid for small slab thicknesses, while the two-variable result is uniformly valid for any thickness. The two-variable result shows that as the slab size becomes infinite all of the incident power is reflected on the average.

  14. Practical method to make a discrete memristor based on the aqueous solution of copper sulfate

    NASA Astrophysics Data System (ADS)

    Merrikh-Bayat, Farshad; Parvizi, Meysam

    2016-06-01

    A new method to realize a discrete memristor is proposed. The device under study consists of a tube filled of aqueous saturated solution of copper sulfate which can be electrolyzed by using two asymmetric copper electrodes, one of which has a considerably smaller cross-sectional area than to the other one. It is shown both theoretically and experimentally that this device has exactly the properties of a memristor if it is designed such that the electrical field and the current density on the thinner electrode when it acts as anode are sufficiently large. Different aspects of the proposed discrete memristor, including pinched hysteresis loop, on-off resistance ratio and memory volatilization, are studied and experimental results are presented.

  15. n-gon Equilibria of the Discrete (1+n)-body Problem

    NASA Astrophysics Data System (ADS)

    Minesaki, Yukitaka

    2017-02-01

    We prove that the discrete-time general (1+n)-body problem (d-G(1+n)BP) proposed by Minesaki can exactly trace the orbits of elliptic relative equilibrium solutions in the original general (1+n)-body problem (G(1+n)BP). These orbits include the orbits of relative equilibrium solutions that have already been discovered. Before this proof, no discrete-time system had been shown to retain the orbits of elliptic relative equilibrium solutions in {{G}}(1+n)BP. d-G(1+n)BP can also precisely reproduce doubly symmetric orbits of the general (1+4)-body problem, each of which passes near a square equilibrium solution over a long time interval.

  16. From chaos to chaos. An analysis of a discrete age-structured prey-predator model.

    PubMed

    Wikan, A

    2001-12-01

    Discrete age-structured density-dependent one-population models and discrete age-structured density-dependent prey-predator models are considered. Regarding the former, we present formal proofs of the nature of bifurcations involved as well as presenting some new results about the dynamics in unstable and chaotic parameter regions. Regarding the latter, we show that increased predation may act both as a stabilizing and a destabilizing effect. Moreover, we find that possible periodic dynamics of low period, either exact or approximate, may not be generated by the predator, but it may be generated by the prey. Finally, what is most interesting from the biological point of view, is that given that the prey, in absence of the predator, exhibits periodic or almost periodic oscillations of low period, then the introduction of the predator does not alter this periodicity in any substantial way until the stabilizing effect of increased predation becomes so strong that a stable equilibrium is achieved.

  17. Domain-decomposable preconditioners for second-order upwind discretizations of multicomponent systems

    SciTech Connect

    Keyes, D.E. . Dept. of Mechanical Engineering); Gropp, W.D. )

    1990-01-01

    Discrete systems arising in computational fluid dynamics applications often require wide stencils adapted to the local convective direction in order to accommodate higher-order upwind differencing, and involve multiple components perhaps coupling strongly at each point. Conventional exactly or approximately factored inverses of such operators are burdensome to apply globally, especially in problems complicated by non-tensor-product domain geometry or adaptive refinement, though their forward'' action is not. Such problems can be solved by iterative methods by using either point-block preconditioners or combination space-decoupled/component-decoupled preconditioners that are based on lower-order discretizations. Except for a global implicit solve on a coarse grid, each phase in the application of such preconditioners has simple locally exploitable structure. 16 refs., 2 figs., 3 tabs.

  18. Comparing the Discrete and Continuous Logistic Models

    ERIC Educational Resources Information Center

    Gordon, Sheldon P.

    2008-01-01

    The solutions of the discrete logistic growth model based on a difference equation and the continuous logistic growth model based on a differential equation are compared and contrasted. The investigation is conducted using a dynamic interactive spreadsheet. (Contains 5 figures.)

  19. Dynamic discretization method for solving Kepler's equation

    NASA Astrophysics Data System (ADS)

    Feinstein, Scott A.; McLaughlin, Craig A.

    2006-09-01

    Kepler’s equation needs to be solved many times for a variety of problems in Celestial Mechanics. Therefore, computing the solution to Kepler’s equation in an efficient manner is of great importance to that community. There are some historical and many modern methods that address this problem. Of the methods known to the authors, Fukushima’s discretization technique performs the best. By taking more of a system approach and combining the use of discretization with the standard computer science technique known as dynamic programming, we were able to achieve even better performance than Fukushima. We begin by defining Kepler’s equation for the elliptical case and describe existing solution methods. We then present our dynamic discretization method and show the results of a comparative analysis. This analysis will demonstrate that, for the conditions of our tests, dynamic discretization performs the best.

  20. Commutation Relations and Discrete Garnier Systems

    NASA Astrophysics Data System (ADS)

    Ormerod, Christopher M.; Rains, Eric M.

    2016-11-01

    We present four classes of nonlinear systems which may be considered discrete analogues of the Garnier system. These systems arise as discrete isomonodromic deformations of systems of linear difference equations in which the associated Lax matrices are presented in a factored form. A system of discrete isomonodromic deformations is completely determined by commutation relations between the factors. We also reparameterize these systems in terms of the image and kernel vectors at singular points to obtain a separate birational form. A distinguishing feature of this study is the presence of a symmetry condition on the associated linear problems that only appears as a necessary feature of the Lax pairs for the least degenerate discrete Painlevé equations.

  1. Running Parallel Discrete Event Simulators on Sierra

    SciTech Connect

    Barnes, P. D.; Jefferson, D. R.

    2015-12-03

    In this proposal we consider porting the ROSS/Charm++ simulator and the discrete event models that run under its control so that they run on the Sierra architecture and make efficient use of the Volta GPUs.

  2. A Few Continuous and Discrete Dynamical Systems

    NASA Astrophysics Data System (ADS)

    Zhang, Yufeng; Rui, Wenjuan

    2016-08-01

    Starting from a 2-unimodular group, we construct its new Lie algebras for which the positive-order Lax pairs and the negative-order Lax pairs are introduced, respectively. With the help of the resulting structure equation of the group we generate some partial differential equations including the well-known MKdV equation, the sine-Gordon equation, the hyperbolic sine-Gordon equation and other new nonlinear evolution equations. With the aid of the Tu scheme combined with the given Lax pairs, we obtain the isospectral and nonisospectral hierarchies of evolution equations, from which we generate two sets of symmetries of a generalized nonlinear Schrödinger (gNLS) equation. Finally, we discretize the Lax pairs to obtain a set of coupled semi-discrete equations. As their reduction, we produce the semi-discrete MKdV equation and semi-discrete NLS equation.

  3. Motion of Discrete Interfaces Through Mushy Layers

    NASA Astrophysics Data System (ADS)

    Braides, Andrea; Solci, Margherita

    2016-08-01

    We study the geometric motion of sets in the plane derived from the homogenization of discrete ferromagnetic energies with weak inclusions. We show that the discrete sets are composed by a `bulky' part and an external `mushy region' composed only of weak inclusions. The relevant motion is that of the bulky part, which asymptotically obeys to a motion by crystalline mean curvature with a forcing term, due to the energetic contribution of the mushy layers, and pinning effects, due to discreteness. From an analytical standpoint, it is interesting to note that the presence of the mushy layers implies only a weak and not strong convergence of the discrete motions, so that the convergence of the energies does not commute with the evolution. From a mechanical standpoint it is interesting to note the geometrical similarity of some phenomena in the cooling of binary melts.

  4. Vortex chains travelling with discrete velocities

    NASA Astrophysics Data System (ADS)

    Malishevskii, A. S.; Silin, V. P.; Uryupin, S. A.; Uspenskii, S. G.

    2008-05-01

    It has been shown that Swihart waves slowing down caused by Josephson junction spatial dispersion leads to the new field periodic nonlinear vortex states moving with discrete velocities. Swihart waves trapping by periodic vortex structures is discovered.

  5. The discrete-time compensated Kalman filter

    NASA Technical Reports Server (NTRS)

    Lee, W. H.; Athans, M.

    1978-01-01

    A suboptimal dynamic compensator to be used in conjunction with the ordinary discrete time Kalman filter was derived. The resultant compensated Kalman Filter has the property that steady state bias estimation errors, resulting from modelling errors, were eliminated.

  6. Radix Representation of Triangular Discrete Grid System

    NASA Astrophysics Data System (ADS)

    Ben, J.; Li, Y. L.; Wang, R.

    2016-11-01

    Discrete Global Grid Systems (DGGSs) are spatial references that use a hierarchical tessellation of cells to partition and address the entire globe. It provides an organizational structure that permits fast integration between multiple sources of large and variable geospatial data. Although many endeavors have been done to describe certain discrete grid systems, there still lack of a uniform mathematical framework for them. This paper simplifies the planar class I aperture 4 triangular discrete grid system into a hierarchical lattice model which is proved to be a radix system in the complex number plane. Mathematical properties of the radix system reveal the discrete grid system is equivalent to the set of complex numbers with special form. The conclusion provides a potential way to build a uniform mathematical framework of DGGS and can be used to design efficient encoding and spatial operation scheme for DGGS.

  7. A nonlinear filter for high order discontinuous Galerkin discretizations with discontinuity resolution within the cell

    NASA Astrophysics Data System (ADS)

    Panourgias, Konstantinos T.; Ekaterinaris, John A.

    2016-12-01

    The nonlinear filter introduced by Yee et al. (1999) [27] and extensively used in the development of low dissipative well-balanced high order accurate finite-difference schemes is adapted to the finite element context of discontinuous Galerkin (DG) discretizations. The filter operator is constructed in the canonical computational domain for the standard cubical element where it is applied to the computed conservative variables in a direction per direction basis. Filtering becomes possible for all element types in unstructured meshes using collapsed coordinate transformations. The performance of the proposed nonlinear filter for DG discretizations is demonstrated and evaluated for different orders of expansions for one-dimensional and multidimensional problems with exact solutions. It is shown that for higher order discretizations discontinuity resolution within the cell is achieved and the design order of accuracy is preserved. The filter is applied for a number of standard inviscid flow test problems including strong shocks interactions to demonstrate that the proposed dissipative mechanism for DG discretizations yields superior results compared to the results obtained with the total variation bounded (TVB) limiter and high-order hierarchical limiting. The proposed approach is suitable for p-adaptivity in order to locally enhance resolution of three-dimensional flow simulations that include discontinuities and complex flow features.

  8. Linear diffusion-wave channel routing using a discrete Hayami convolution method

    NASA Astrophysics Data System (ADS)

    Wang, Li; Wu, Joan Q.; Elliot, William J.; Fiedler, Fritz R.; Lapin, Sergey

    2014-02-01

    The convolution of an input with a response function has been widely used in hydrology as a means to solve various problems analytically. Due to the high computation demand in solving the functions using numerical integration, it is often advantageous to use the discrete convolution instead of the integration of the continuous functions. This approach greatly reduces the amount of the computational work; however, it increases the possibility for mass balance errors. In this study, we analyzed the characteristics of the kernel function for the Hayami convolution solution to the linear diffusion-wave channel routing with distributed lateral inflow. We propose two ways of selection of the discrete kernel function values: using the exact point values or using the center-averaged values. Through a hypothetical example and the applications to Asotin Creek, WA and the Clearwater River, ID, we showed that when the point kernel function values were used in the discrete Hayami convolution (DHC) solution, the mass balance error of channel routing is dependent on the number of time steps on the rising limb of the Hayami kernel function. The mass balance error is negligible when there are more than 1.8 time steps on the rising limb of the kernel function. The fewer time steps on the rising limb, the greater risk of high mass balance errors. When the average kernel function values are used for the DHC solution, however, the mass balance is always maintained, since the integration of the discrete kernel function is always unity.

  9. Equilibrium and Response Properties of the Integrate-and-Fire Neuron in Discrete Time

    PubMed Central

    Helias, Moritz; Deger, Moritz; Diesmann, Markus; Rotter, Stefan

    2009-01-01

    The integrate-and-fire neuron with exponential postsynaptic potentials is a frequently employed model to study neural networks. Simulations in discrete time still have highest performance at moderate numerical errors, which makes them first choice for long-term simulations of plastic networks. Here we extend the population density approach to investigate how the equilibrium and response properties of the leaky integrate-and-fire neuron are affected by time discretization. We present a novel analytical treatment of the boundary condition at threshold, taking both discretization of time and finite synaptic weights into account. We uncover an increased membrane potential density just below threshold as the decisive property that explains the deviations found between simulations and the classical diffusion approximation. Temporal discretization and finite synaptic weights both contribute to this effect. Our treatment improves the standard formula to calculate the neuron's equilibrium firing rate. Direct solution of the Markov process describing the evolution of the membrane potential density confirms our analysis and yields a method to calculate the firing rate exactly. Knowing the shape of the membrane potential distribution near threshold enables us to devise the transient response properties of the neuron model to synaptic input. We find a pronounced non-linear fast response component that has not been described by the prevailing continuous time theory for Gaussian white noise input. PMID:20130755

  10. Discrete mechanics, "time machines" and hybrid systems

    NASA Astrophysics Data System (ADS)

    Elze, Hans-Thomas

    2013-09-01

    Modifying the discrete mechanics proposed by T.D. Lee, we construct a class of discrete classical Hamiltonian systems, in which time is one of the dynamical variables. This includes a toy model of "time machines" which can travel forward and backward in time and which differ from models based on closed timelike curves (CTCs). In the continuum limit, we explore the interaction between such time reversing machines and quantum mechanical objects, employing a recent description of quantum-classical hybrids.

  11. Discrete Surface Modelling Using Partial Differential Equations.

    PubMed

    Xu, Guoliang; Pan, Qing; Bajaj, Chandrajit L

    2006-02-01

    We use various nonlinear partial differential equations to efficiently solve several surface modelling problems, including surface blending, N-sided hole filling and free-form surface fitting. The nonlinear equations used include two second order flows, two fourth order flows and two sixth order flows. These nonlinear equations are discretized based on discrete differential geometry operators. The proposed approach is simple, efficient and gives very desirable results, for a range of surface models, possibly having sharp creases and corners.

  12. Terminal Dynamics Approach to Discrete Event Systems

    NASA Technical Reports Server (NTRS)

    Zak, Michail; Meyers, Ronald

    1995-01-01

    This paper presents and discusses a mathematical formalism for simulation of discrete event dynamic (DED)-a special type of 'man-made' systems to serve specific purposes of information processing. The main objective of this work is to demonstrate that the mathematical formalism for DED can be based upon a terminal model of Newtonian dynamics which allows one to relax Lipschitz conditions at some discrete points.!.

  13. Stochastic Event Counter for Discrete-Event Systems Under Unreliable Observations

    SciTech Connect

    Tae-Sic Yoo; Humberto E. Garcia

    2008-06-01

    This paper addresses the issues of counting the occurrence of special events in the framework of partiallyobserved discrete-event dynamical systems (DEDS). First, we develop a noble recursive procedure that updates active counter information state sequentially with available observations. In general, the cardinality of active counter information state is unbounded, which makes the exact recursion infeasible computationally. To overcome this difficulty, we develop an approximated recursive procedure that regulates and bounds the size of active counter information state. Using the approximated active counting information state, we give an approximated minimum mean square error (MMSE) counter. The developed algorithms are then applied to count special routing events in a material flow system.

  14. Formulation of total complex power and energy flows into a discrete system.

    PubMed

    Inoue, Akira; Tanabe, Yosuke

    2015-12-01

    By considering total inputs into a discrete system, this letter analytically formulates and summarizes the relationships in the complex-form power and energy flows and the dissipated power and Lagrangian energy of the system. The matrix inverse method to obtain the force/moment necessary for the power/energy flow is shown as an indirect yet analytically exact method. A 2 degree-of-freedom system is employed to analytically validate the derived formulas, followed by a computational confirmation. A finite element plate-beam model is further utilized to computationally confirm the relationships in the complex power and energy flows.

  15. Discretization of continuous features in clinical datasets

    PubMed Central

    Maslove, David M; Podchiyska, Tanya; Lowe, Henry J

    2013-01-01

    Background The increasing availability of clinical data from electronic medical records (EMRs) has created opportunities for secondary uses of health information. When used in machine learning classification, many data features must first be transformed by discretization. Objective To evaluate six discretization strategies, both supervised and unsupervised, using EMR data. Materials and methods We classified laboratory data (arterial blood gas (ABG) measurements) and physiologic data (cardiac output (CO) measurements) derived from adult patients in the intensive care unit using decision trees and naïve Bayes classifiers. Continuous features were partitioned using two supervised, and four unsupervised discretization strategies. The resulting classification accuracy was compared with that obtained with the original, continuous data. Results Supervised methods were more accurate and consistent than unsupervised, but tended to produce larger decision trees. Among the unsupervised methods, equal frequency and k-means performed well overall, while equal width was significantly less accurate. Discussion This is, we believe, the first dedicated evaluation of discretization strategies using EMR data. It is unlikely that any one discretization method applies universally to EMR data. Performance was influenced by the choice of class labels and, in the case of unsupervised methods, the number of intervals. In selecting the number of intervals there is generally a trade-off between greater accuracy and greater consistency. Conclusions In general, supervised methods yield higher accuracy, but are constrained to a single specific application. Unsupervised methods do not require class labels and can produce discretized data that can be used for multiple purposes. PMID:23059731

  16. Discrete mappings with an explicit discrete Lyapunov function related to integrable mappings

    NASA Astrophysics Data System (ADS)

    Inoue, Hironori; Takahashi, Daisuke; Matsukidaira, Junta

    2006-05-01

    We propose discrete mappings of second order that have a discrete analogue of Lyapunov function. The mappings are extensions of the integrable Quispel-Roberts-Thompson (QRT) mapping, and a discrete Lyapunov function of the mappings is identical to an explicit conserved quantity of the QRT mapping. Moreover we can obtain a differential and an ultradiscrete limit of the mappings preserving the existence of Lyapunov function. We also give applications of a mapping with an adjusted parameter, a probabilistic mapping and coupled mappings.

  17. Breather cloth for vacuum curing

    NASA Technical Reports Server (NTRS)

    Reed, M. W.

    1979-01-01

    Finely-woven nylon cloth that has been treated with Teflon improves vacuum adhesive bonding of coatings to substrates. Cloth is placed over coating; entire assembly, including substrate, coating, and cloth, is placed in plastic vacuum bag for curing. Cloth allows coating to "breathe" when bag is evacuated. Applications include bonding film coatings to solar concentrators and collectors.

  18. Exact exchange with non-orthogonal generalized Wannier functions.

    PubMed

    Mountjoy, Jeff; Todd, Michelle; Mosey, Nicholas J

    2017-03-14

    The evaluation of exact exchange (EXX) is an important component of quantum chemical calculations performed with ab initio and hybrid density functional methods. While evaluating exact exchange is routine in molecular quantum chemical calculations performed with localized basis sets, the non-local nature of the exchange operator presents a major impediment to the efficient use of exact exchange in calculations that employ planewave basis sets. Non-orthogonal generalized Wannier functions (NGWFs) corresponding to planewave expansions of localized basis functions are an alternative form of basis set that can be used in quantum chemical calculations. The periodic nature of these functions renders them suitable for calculations of periodic systems, while the contraction of sets of planewaves into individual basis functions reduces the number of variational parameters, permitting the construction and direct diagonalization of the Fock matrix. The present study examines how NGWFs corresponding to Fourier series representations of conventional atom-centered basis sets can be used to evaluate exact exchange in periodic systems. Specifically, an approach for constructing the exchange operator with NGWFs is presented and used to perform Hartree-Fock calculations with a series of molecules in periodically repeated simulation cells. The results demonstrate that the NGWF approach is significantly faster than the EXX method, which is a standard approach for evaluating exact exchange in periodic systems.

  19. Exact exchange with non-orthogonal generalized Wannier functions

    NASA Astrophysics Data System (ADS)

    Mountjoy, Jeff; Todd, Michelle; Mosey, Nicholas J.

    2017-03-01

    The evaluation of exact exchange (EXX) is an important component of quantum chemical calculations performed with ab initio and hybrid density functional methods. While evaluating exact exchange is routine in molecular quantum chemical calculations performed with localized basis sets, the non-local nature of the exchange operator presents a major impediment to the efficient use of exact exchange in calculations that employ planewave basis sets. Non-orthogonal generalized Wannier functions (NGWFs) corresponding to planewave expansions of localized basis functions are an alternative form of basis set that can be used in quantum chemical calculations. The periodic nature of these functions renders them suitable for calculations of periodic systems, while the contraction of sets of planewaves into individual basis functions reduces the number of variational parameters, permitting the construction and direct diagonalization of the Fock matrix. The present study examines how NGWFs corresponding to Fourier series representations of conventional atom-centered basis sets can be used to evaluate exact exchange in periodic systems. Specifically, an approach for constructing the exchange operator with NGWFs is presented and used to perform Hartree-Fock calculations with a series of molecules in periodically repeated simulation cells. The results demonstrate that the NGWF approach is significantly faster than the EXX method, which is a standard approach for evaluating exact exchange in periodic systems.

  20. Some exact tests for manifest properties of latent trait models

    PubMed Central

    De Gooijer, Jan G.; Yuan, Ao

    2011-01-01

    Item response theory is one of the modern test theories with applications in educational and psychological testing. Recent developments made it possible to characterize some desired properties in terms of a collection of manifest ones, so that hypothesis tests on these traits can, in principle, be performed. But the existing test methodology is based on asymptotic approximation, which is impractical in most applications since the required sample sizes are often unrealistically huge. To overcome this problem, a class of tests is proposed for making exact statistical inference about four manifest properties: covariances given the sum are non-positive (CSN), manifest monotonicity (MM), conditional association (CA), and vanishing conditional dependence (VCD). One major advantage is that these exact tests do not require large sample sizes. As a result, tests for CSN and MM can be routinely performed in empirical studies. For testing CA and VCD, the exact methods are still impractical in most applications, due to the unusually large number of parameters to be tested. However, exact methods are still derived for them as an exploration toward practicality. Some numerical examples with applications of the exact tests for CSN and MM are provided. PMID:21562625

  1. Exact-Differential Large-Scale Traffic Simulation

    SciTech Connect

    Hanai, Masatoshi; Suzumura, Toyotaro; Theodoropoulos, Georgios; Perumalla, Kalyan S

    2015-01-01

    Analyzing large-scale traffics by simulation needs repeating execution many times with various patterns of scenarios or parameters. Such repeating execution brings about big redundancy because the change from a prior scenario to a later scenario is very minor in most cases, for example, blocking only one of roads or changing the speed limit of several roads. In this paper, we propose a new redundancy reduction technique, called exact-differential simulation, which enables to simulate only changing scenarios in later execution while keeping exactly same results as in the case of whole simulation. The paper consists of two main efforts: (i) a key idea and algorithm of the exact-differential simulation, (ii) a method to build large-scale traffic simulation on the top of the exact-differential simulation. In experiments of Tokyo traffic simulation, the exact-differential simulation shows 7.26 times as much elapsed time improvement in average and 2.26 times improvement even in the worst case as the whole simulation.

  2. On the consistency between nearest-neighbor peridynamic discretizations and discretized classical elasticity models

    DOE PAGES

    Seleson, Pablo; Du, Qiang; Parks, Michael L.

    2016-08-16

    The peridynamic theory of solid mechanics is a nonlocal reformulation of the classical continuum mechanics theory. At the continuum level, it has been demonstrated that classical (local) elasticity is a special case of peridynamics. Such a connection between these theories has not been extensively explored at the discrete level. This paper investigates the consistency between nearest-neighbor discretizations of linear elastic peridynamic models and finite difference discretizations of the Navier–Cauchy equation of classical elasticity. While nearest-neighbor discretizations in peridynamics have been numerically observed to present grid-dependent crack paths or spurious microcracks, this paper focuses on a different, analytical aspect of suchmore » discretizations. We demonstrate that, even in the absence of cracks, such discretizations may be problematic unless a proper selection of weights is used. Specifically, we demonstrate that using the standard meshfree approach in peridynamics, nearest-neighbor discretizations do not reduce, in general, to discretizations of corresponding classical models. We study nodal-based quadratures for the discretization of peridynamic models, and we derive quadrature weights that result in consistency between nearest-neighbor discretizations of peridynamic models and discretized classical models. The quadrature weights that lead to such consistency are, however, model-/discretization-dependent. We motivate the choice of those quadrature weights through a quadratic approximation of displacement fields. The stability of nearest-neighbor peridynamic schemes is demonstrated through a Fourier mode analysis. Finally, an approach based on a normalization of peridynamic constitutive constants at the discrete level is explored. This approach results in the desired consistency for one-dimensional models, but does not work in higher dimensions. The results of the work presented in this paper suggest that even though nearest

  3. PREFACE: 4th Symposium on Prospects in the Physics of Discrete Symmetries (DISCRETE2014)

    NASA Astrophysics Data System (ADS)

    Di Domenico, Antonio; Mavromatos, Nick E.; Mitsou, Vasiliki A.; Skliros, Dimitri P.

    2015-07-01

    The DISCRETE 2014: Fourth Symposium in the Physics of Discrete Symmetries took place at King's College London, Strand Campus, London WC2R 2LS, from Tuesday, December 2 2014 till Saturday, December 6 2014. This is the fourth Edition of the DISCRETE conference series, which is a biannual event, having been held previously in Valencia (Discrete'08), Rome (Discrete2010) and Lisbon (Discrete2012). The topics covered at the DISCRETE series of conferences are: T, C, P, CP symmetries; accidental symmetries (B, L conservation); CPT symmetry, decoherence and entangled states, Lorentz symmetry breaking (phenomenology and current bounds); neutrino mass and mixing; implications for cosmology and astroparticle physics, dark matter searches; experimental prospects at LHC, new facilities. In DISCRETE 2014 we have also introduced two new topics: cosmological aspects of non-commutative space-times as well as PT symmetric Hamiltonians (non-Hermitian but with real eigenvalues), a topic that has wide applications in particle physics and beyond. The conference was opened by the King's College London Vice Principal on Research and Innovation, Mr Chris Mottershead, followed by a welcome address by the Chair of DISCRETE 2014 (Professor Nick E. Mavromatos). After these introductory talks, the scientific programme of the DISCRETE 2014 symposium started. Following the tradition of DISCRETE series of conferences, the talks (138 in total) were divided into plenary-review talks (25), invited research talks (50) and shorter presentations (63) — selected by the conveners of each session in consultation with the organisers — from the submitted abstracts. We have been fortunate to have very high-quality, thought stimulating and interesting talks at all levels, which, together with the discussions among the participants, made the conference quite enjoyable. There were 152 registered participants for the event.

  4. Localization and coherent states in a quantum DNLS trimer

    NASA Astrophysics Data System (ADS)

    Martínez-Galicia, Ricardo; Panayotaros, Panayotis

    2016-11-01

    We compare quantum states obtained from the integration of exact and approximate evolution equations for a quantized discrete nonlinear Schrödinger system (DNLS) with three lattice sites (trimer). The initial conditions are Glauber coherent states, and their projections to subspaces with a definite number of particles, and we are especially interested in coherent states that correspond to classical states that are in the neighborhood of breather solutions of the classical system. The breathers are well defined periodic orbits of the classical DNLS that we heuristically view as examples of spatially localized solutions. The two evolution equations give converging results in the subspaces with an increasing number of particles. This is no longer the case for normalized projections of Glauber states, where we see that the distance between the quantum states obtained by the exact and approximate equations shows recurrence phenomena that depend on the number of quanta and on the dynamical properties of the classical trajectory.

  5. A practical discrete-adjoint method for high-fidelity compressible turbulence simulations

    SciTech Connect

    Vishnampet, Ramanathan; Bodony, Daniel J.; Freund, Jonathan B.

    2015-03-15

    Methods and computing hardware advances have enabled accurate predictions of complex compressible turbulence phenomena, such as the generation of jet noise that motivates the present effort. However, limited understanding of underlying physical mechanisms restricts the utility of such predictions since they do not, by themselves, indicate a route to design improvements. Gradient-based optimization using adjoints can circumvent the flow complexity to guide designs, though this is predicated on the availability of a sufficiently accurate solution of the forward and adjoint systems. These are challenging to obtain, since both the chaotic character of the turbulence and the typical use of discretizations near their resolution limits in order to efficiently represent its smaller scales will amplify any approximation errors made in the adjoint formulation. Formulating a practical exact adjoint that avoids such errors is especially challenging if it is to be compatible with state-of-the-art simulation methods used for the turbulent flow itself. Automatic differentiation (AD) can provide code to calculate a nominally exact adjoint, but existing general-purpose AD codes are inefficient to the point of being prohibitive for large-scale turbulence simulations. Here, we analyze the compressible flow equations as discretized using the same high-order workhorse methods used for many high-fidelity compressible turbulence simulations, and formulate a practical space–time discrete-adjoint method without changing the basic discretization. A key step is the definition of a particular discrete analog of the continuous norm that defines our cost functional; our selection leads directly to an efficient Runge–Kutta-like scheme, though it would be just first-order accurate if used outside the adjoint formulation for time integration, with finite-difference spatial operators for the adjoint system. Its computational cost only modestly exceeds that of the flow equations. We confirm that

  6. A practical discrete-adjoint method for high-fidelity compressible turbulence simulations

    NASA Astrophysics Data System (ADS)

    Vishnampet, Ramanathan; Bodony, Daniel J.; Freund, Jonathan B.

    2015-03-01

    Methods and computing hardware advances have enabled accurate predictions of complex compressible turbulence phenomena, such as the generation of jet noise that motivates the present effort. However, limited understanding of underlying physical mechanisms restricts the utility of such predictions since they do not, by themselves, indicate a route to design improvements. Gradient-based optimization using adjoints can circumvent the flow complexity to guide designs, though this is predicated on the availability of a sufficiently accurate solution of the forward and adjoint systems. These are challenging to obtain, since both the chaotic character of the turbulence and the typical use of discretizations near their resolution limits in order to efficiently represent its smaller scales will amplify any approximation errors made in the adjoint formulation. Formulating a practical exact adjoint that avoids such errors is especially challenging if it is to be compatible with state-of-the-art simulation methods used for the turbulent flow itself. Automatic differentiation (AD) can provide code to calculate a nominally exact adjoint, but existing general-purpose AD codes are inefficient to the point of being prohibitive for large-scale turbulence simulations. Here, we analyze the compressible flow equations as discretized using the same high-order workhorse methods used for many high-fidelity compressible turbulence simulations, and formulate a practical space-time discrete-adjoint method without changing the basic discretization. A key step is the definition of a particular discrete analog of the continuous norm that defines our cost functional; our selection leads directly to an efficient Runge-Kutta-like scheme, though it would be just first-order accurate if used outside the adjoint formulation for time integration, with finite-difference spatial operators for the adjoint system. Its computational cost only modestly exceeds that of the flow equations. We confirm that its

  7. Approximate reanalysis based on the exact analytic expressions

    NASA Astrophysics Data System (ADS)

    Fuchs, Moshe B.; Maslovitz, Gilad

    1992-06-01

    Fuchs has recently given the exact analytic expressions of the inverse of the stiffness matrix, the nodal displacements, and the stress resultants in linear elastic structures composed of prismatic elements. For structures of constant geometry, the expressions are explicit in terms of the unimodal stiffnesses of the components of the structures. However, the expressions are intractable in their exact form due to their inordinate length. It all has to do with the number of statically determinate substructures embedded in common engineering structures. This paper describes some preliminary results obtained from approximate analysis models for the internal forces using truncated expressions that are similar in form to the exact analytic ones. The approach is illustrated with numerical examples.

  8. Exact solution of the two-axis countertwisting Hamiltonian

    NASA Astrophysics Data System (ADS)

    Pan, Feng; Zhang, Yao-Zhong; Draayer, Jerry P.

    2017-01-01

    It is shown that the two-axis countertwisting Hamiltonian is exactly solvable when the quantum number of the total angular momentum of the system is an integer after the Jordan-Schwinger (differential) boson realization of the SU(2) algebra. Algebraic Bethe ansatz is used to get the exact solution with the help of the SU(1,1) algebraic structure, from which a set of Bethe ansatz equations of the problem is derived. It is shown that solutions of the Bethe ansatz equations can be obtained as zeros of the Heine-Stieltjes polynomials. The total number of the four sets of the zeros equals exactly 2 J + 1 for a given integer angular momentum quantum number J, which proves the completeness of the solutions. It is also shown that double degeneracy in level energies may also occur in the J → ∞ limit for integer J case except a unique non-degenerate level with zero excitation energy.

  9. Universality in exact quantum state population dynamics and control

    SciTech Connect

    Wu, Lian-Ao; Segal, Dvira; Brumer, Paul; Egusquiza, Inigo L.

    2010-09-15

    We consider an exact population transition, defined as the probability of finding a state at a final time that is exactly equal to the probability of another state at the initial time. We prove that, given a Hamiltonian, there always exists a complete set of orthogonal states that can be employed as time-zero states for which this exact population transition occurs. The result is general: It holds for arbitrary systems, arbitrary pairs of initial and final states, and for any time interval. The proposition is illustrated with several analytic models. In particular, we demonstrate that in some cases, by tuning the control parameters, a complete transition might occur, where a target state, vacant at t=0, is fully populated at time {tau}.

  10. Discrete rogue waves in an array of waveguides

    NASA Astrophysics Data System (ADS)

    Efe, S.; Yuce, C.

    2015-06-01

    We study discrete rogue waves in an array of nonlinear waveguides. We show that very small degree of disorder due to experimental imperfection has a deep effect on the formation of discrete rogue waves. We predict long-living discrete rogue wave solution of the discrete nonlinear Schrödinger equation.

  11. Constraint analysis for variational discrete systems

    SciTech Connect

    Dittrich, Bianca; Höhn, Philipp A.

    2013-09-15

    A canonical formalism and constraint analysis for discrete systems subject to a variational action principle are devised. The formalism is equivalent to the covariant formulation, encompasses global and local discrete time evolution moves and naturally incorporates both constant and evolving phase spaces, the latter of which is necessary for a time varying discretization. The different roles of constraints in the discrete and the conditions under which they are first or second class and/or symmetry generators are clarified. The (non-) preservation of constraints and the symplectic structure is discussed; on evolving phase spaces the number of constraints at a fixed time step depends on the initial and final time step of evolution. Moreover, the definition of observables and a reduced phase space is provided; again, on evolving phase spaces the notion of an observable as a propagating degree of freedom requires specification of an initial and final step and crucially depends on this choice, in contrast to the continuum. However, upon restriction to translation invariant systems, one regains the usual time step independence of canonical concepts. This analysis applies, e.g., to discrete mechanics, lattice field theory, quantum gravity models, and numerical analysis.

  12. Discrete Mathematics in the Schools. DIMACS Series in Discrete Mathematics and Theoretical Computer Science, Volume 36.

    ERIC Educational Resources Information Center

    Rosenstein, Joseph G., Ed.; Franzblau, Deborah S., Ed.; Roberts, Fred S., Ed.

    This book is a collection of articles by experienced educators and explains why and how discrete mathematics should be taught in K-12 classrooms. It includes evidence for "why" and practical guidance for "how" and also discusses how discrete mathematics can be used as a vehicle for achieving the broader goals of the major…

  13. Formation of discrete solitons in light-induced photonic lattices.

    PubMed

    Chen, Zhigang; Martin, Hector; Eugenieva, Eugenia; Xu, Jingjun; Yang, Jianke

    2005-03-21

    We present both experimental and theoretical results on discrete solitons in two-dimensional optically-induced photonic lattices in a variety of settings, including fundamental discrete solitons, vector-like discrete solitons, discrete dipole solitons, and discrete soliton trains. In each case, a clear transition from two-dimensional discrete diffraction to discrete trapping is demonstrated with a waveguide lattice induced by partially coherent light in a bulk photorefractive crystal. Our experimental results are in good agreement with the theoretical analysis of these effects.

  14. Stochastic discrete event simulation of germinal center reactions

    NASA Astrophysics Data System (ADS)

    Figge, Marc Thilo

    2005-05-01

    We introduce a generic reaction-diffusion model for germinal center reactions and perform numerical simulations within a stochastic discrete event approach. In contrast to the frequently used deterministic continuum approach, each single reaction event is monitored in space and time in order to simulate the correct time evolution of this complex biological system. Germinal centers play an important role in the immune system by performing a reaction that aims at improving the affinity between antibodies and antigens. Our model captures experimentally observed features of this reaction, such as the development of the remarkable germinal center morphology and the maturation of antibody-antigen affinity in the course of time. We model affinity maturation within a simple affinity class picture and study it as a function of the distance between the initial antibody-antigen affinity and the highest possible affinity. The model reveals that this mutation distance may be responsible for the experimentally observed all-or-none behavior of germinal centers; i.e., they generate either mainly output cells of high affinity or no high-affinity output cells at all. Furthermore, the exact simulation of the system dynamics allows us to study the hypothesis of cell recycling in germinal centers as a mechanism for affinity optimization. A comparison of three possible recycling pathways indicates that affinity maturation is optimized by a recycling pathway that has previously not been taken into account in deterministic continuum models.

  15. Constant pressure and temperature discrete-time Langevin molecular dynamics

    SciTech Connect

    Grønbech-Jensen, Niels; Farago, Oded

    2014-11-21

    We present a new and improved method for simultaneous control of temperature and pressure in molecular dynamics simulations with periodic boundary conditions. The thermostat-barostat equations are built on our previously developed stochastic thermostat, which has been shown to provide correct statistical configurational sampling for any time step that yields stable trajectories. Here, we extend the method and develop a set of discrete-time equations of motion for both particle dynamics and system volume in order to seek pressure control that is insensitive to the choice of the numerical time step. The resulting method is simple, practical, and efficient. The method is demonstrated through direct numerical simulations of two characteristic model systems—a one-dimensional particle chain for which exact statistical results can be obtained and used as benchmarks, and a three-dimensional system of Lennard-Jones interacting particles simulated in both solid and liquid phases. The results, which are compared against the method of Kolb and Dünweg [J. Chem. Phys. 111, 4453 (1999)], show that the new method behaves according to the objective, namely that acquired statistical averages and fluctuations of configurational measures are accurate and robust against the chosen time step applied to the simulation.

  16. Exact numerical calculation of chromaticity in small rings

    SciTech Connect

    Dragt, A.J.

    1981-06-01

    A Newton's search method is presented which efficiently finds closed orbits in a ring whose lattice contains both linear elements, such as drifts and quadrupoles, and nonlinear elements such as dipoles with a small radius of curvature, sextupoles, etc. The method simultaneously determines the tune of the closed orbit. By observing how the location of the closed orbit depends on the total momentum, the /eta/ and /eta/sub p/rime/ functions are determined exactly (including nonlinear terms in /delta/). By observing how the tunes of the closed orbit depend on the total momentum, the chromaticities are determined exactly. 2 refs.

  17. Dynamical dimer-dimer correlation functions from exact diagonalization

    SciTech Connect

    Werner, Ralph

    2001-05-01

    A regularization method is presented to deduce dynamic correlation functions from exact diagonalization calculations. It is applied to dimer-dimer correlation functions in quantum spin chains relevant for the description of spin-Peierls systems. Exact results for the XY model are presented. The analysis draws into doubt that the dimer-dimer correlation functions show the same scale invariance as spin-spin correlation functions. The results are applied to describe the quasielastic scattering in CuGeO{sub 3} and the hardening of the Peierls-active phonons.

  18. Aesthetic Responses to Exact Fractals Driven by Physical Complexity.

    PubMed

    Bies, Alexander J; Blanc-Goldhammer, Daryn R; Boydston, Cooper R; Taylor, Richard P; Sereno, Margaret E

    2016-01-01

    Fractals are physically complex due to their repetition of patterns at multiple size scales. Whereas the statistical characteristics of the patterns repeat for fractals found in natural objects, computers can generate patterns that repeat exactly. Are these exact fractals processed differently, visually and aesthetically, than their statistical counterparts? We investigated the human aesthetic response to the complexity of exact fractals by manipulating fractal dimensionality, symmetry, recursion, and the number of segments in the generator. Across two studies, a variety of fractal patterns were visually presented to human participants to determine the typical response to exact fractals. In the first study, we found that preference ratings for exact midpoint displacement fractals can be described by a linear trend with preference increasing as fractal dimension increases. For the majority of individuals, preference increased with dimension. We replicated these results for other exact fractal patterns in a second study. In the second study, we also tested the effects of symmetry and recursion by presenting asymmetric dragon fractals, symmetric dragon fractals, and Sierpinski carpets and Koch snowflakes, which have radial and mirror symmetry. We found a strong interaction among recursion, symmetry and fractal dimension. Specifically, at low levels of recursion, the presence of symmetry was enough to drive high preference ratings for patterns with moderate to high levels of fractal dimension. Most individuals required a much higher level of recursion to recover this level of preference in a pattern that lacked mirror or radial symmetry, while others were less discriminating. This suggests that exact fractals are processed differently than their statistical counterparts. We propose a set of four factors that influence complexity and preference judgments in fractals that may extend to other patterns: fractal dimension, recursion, symmetry and the number of segments in a

  19. Exact Model of Vacancy-Mediated Solute Transport in Magnesium

    NASA Astrophysics Data System (ADS)

    Agarwal, Ravi; Trinkle, Dallas R.

    2017-03-01

    Most substitutional solutes in solids diffuse via vacancies. However, widely used analytic models for diffusivity make uncontrolled approximations in the relations between atomic jump rates that reduce accuracy. Symmetry analysis of the hexagonal close packed crystal identifies more distinct vacancy transitions than prior models, and a Green function approach computes diffusivity exactly for solutes in magnesium. We find large differences for the solute drag of Al, Zn, and rare earth solutes, and improved diffusion activation energies—highlighting the need for exact analytic transport models.

  20. EXACT - The Solar X-Ray Spectrometer CubeSat

    NASA Astrophysics Data System (ADS)

    Knuth, Trevor; Glesener, Lindsay; Gebre-Egziabher, Demoz; Vogt, Ryan; Denis, Charles; Weiher, Hannah; Runnels, Joel; Vievering, Juliana

    2016-05-01

    The Experiment for X-ray Characterization and Timing (EXACT) mission will be a CubeSat based hard X-ray spectrometer used for viewing solar flares with high time precision. Solar flares and the related coronal mass ejections affect space weather and the near-Earth environment. EXACT can study the hard X-rays generated by the Sun in the declining phase of Solar Cycle 24 in order to probe electron acceleration in solar eruptive events while also serving as a precursor to future hard X-ray spectrometers that could monitor the Sun continuously.

  1. Exact nonparaxial beams of the scalar Helmholtz equation.

    PubMed

    Rodríguez-Morales, Gustavo; Chávez-Cerda, Sabino

    2004-03-01

    It is shown that three-dimensional nonparaxial beams are described by the oblate spheroidal exact solutions of the Helmholtz equation. For what is believed to be the first time, their beam behavior is investigated and their corresponding parameters are defined. Using the fact that the beam width of the family of paraxial Gaussian beams is described by a hyperbola, we formally establish the connection between the physical parameters of nonparaxial spheroidal beam solutions and those of paraxial beams. These results are also helpful for investigating exact vector nonparaxial beams.

  2. Anisotropic exact solutions in scalar-tensor-vector gravity

    NASA Astrophysics Data System (ADS)

    Sharif, M.; Yousaf, Aasma

    2016-09-01

    The aim of this paper is to explore exact solutions in the scalar-tensor-vector theory of gravity with two scalar fields and one vector field. We consider a locally rotationally symmetric Bianchi type-I universe filled with perfect fluid. The first exact solution is found through certain assumptions while the second solution is obtained through Noether symmetry approach. We discuss the behavior of the resulting solutions numerically and also explore the corresponding energy conditions. It is found that the strong energy condition is violated in both cases indicating the accelerated expansion of the universe.

  3. Exact synthesis of multiqubit Clifford+T circuits

    NASA Astrophysics Data System (ADS)

    Giles, Brett; Selinger, Peter

    2013-03-01

    We prove that a unitary matrix has an exact representation over the Clifford+T gate set with local ancillas if and only if its entries are in the ring Z[(1)/(2),i]. Moreover, we show that one ancilla always suffices. These facts were conjectured by Kliuchnikov, Maslov, and Mosca. We obtain an algorithm for synthesizing a exact Clifford+T circuit from any such n-qubit operator. We also characterize the Clifford+T operators that can be represented without ancillas.

  4. Quantifying risks with exact analytical solutions of derivative pricing distribution

    NASA Astrophysics Data System (ADS)

    Zhang, Kun; Liu, Jing; Wang, Erkang; Wang, Jin

    2017-04-01

    Derivative (i.e. option) pricing is essential for modern financial instrumentations. Despite of the previous efforts, the exact analytical forms of the derivative pricing distributions are still challenging to obtain. In this study, we established a quantitative framework using path integrals to obtain the exact analytical solutions of the statistical distribution for bond and bond option pricing for the Vasicek model. We discuss the importance of statistical fluctuations away from the expected option pricing characterized by the distribution tail and their associations to value at risk (VaR). The framework established here is general and can be applied to other financial derivatives for quantifying the underlying statistical distributions.

  5. Exact solution for a non-Markovian dissipative quantum dynamics.

    PubMed

    Ferialdi, Luca; Bassi, Angelo

    2012-04-27

    We provide the exact analytic solution of the stochastic Schrödinger equation describing a harmonic oscillator interacting with a non-Markovian and dissipative environment. This result represents an arrival point in the study of non-Markovian dynamics via stochastic differential equations. It is also one of the few exactly solvable models for infinite-dimensional systems. We compute the Green's function; in the case of a free particle and with an exponentially correlated noise, we discuss the evolution of Gaussian wave functions.

  6. Exact linearization of the radiation-damped spin system

    PubMed

    Rourke; Augustine

    2000-02-21

    Nonlinear evolution of the Landau-Lifshitz type can be exactly linearized. Special cases include the radiation-damped spin system and the superradiant system in the semiclassical regime, in the presence of time-varying driving fields. For these, the resultant linear system is simply that of a spin 1 / 2 particle, with the radiation damping rate, or superradiant characteristic time, manifested as an imaginary addition to the spin's resonance frequency. Consequently, methods from inverse scattering theory can be used to design driving fields. The behavior of these systems under stochastic excitation can be determined exactly.

  7. Exact Distribution of the Maximal Height of p Vicious Walkers

    NASA Astrophysics Data System (ADS)

    Schehr, Grégory; Majumdar, Satya N.; Comtet, Alain; Randon-Furling, Julien

    2008-10-01

    Using path-integral techniques, we compute exactly the distribution of the maximal height Hp of p nonintersecting Brownian walkers over a unit time interval in one dimension, both for excursions p watermelons with a wall, and bridges p watermelons without a wall, for all integer p≥1. For large p, we show that ⟨Hp⟩˜2p (excursions) whereas ⟨Hp⟩˜p (bridges). Our exact results prove that previous numerical experiments only measured the preasymptotic behaviors and not the correct asymptotic ones. In addition, our method establishes a physical connection between vicious walkers and random matrix theory.

  8. Aesthetic Responses to Exact Fractals Driven by Physical Complexity

    PubMed Central

    Bies, Alexander J.; Blanc-Goldhammer, Daryn R.; Boydston, Cooper R.; Taylor, Richard P.; Sereno, Margaret E.

    2016-01-01

    Fractals are physically complex due to their repetition of patterns at multiple size scales. Whereas the statistical characteristics of the patterns repeat for fractals found in natural objects, computers can generate patterns that repeat exactly. Are these exact fractals processed differently, visually and aesthetically, than their statistical counterparts? We investigated the human aesthetic response to the complexity of exact fractals by manipulating fractal dimensionality, symmetry, recursion, and the number of segments in the generator. Across two studies, a variety of fractal patterns were visually presented to human participants to determine the typical response to exact fractals. In the first study, we found that preference ratings for exact midpoint displacement fractals can be described by a linear trend with preference increasing as fractal dimension increases. For the majority of individuals, preference increased with dimension. We replicated these results for other exact fractal patterns in a second study. In the second study, we also tested the effects of symmetry and recursion by presenting asymmetric dragon fractals, symmetric dragon fractals, and Sierpinski carpets and Koch snowflakes, which have radial and mirror symmetry. We found a strong interaction among recursion, symmetry and fractal dimension. Specifically, at low levels of recursion, the presence of symmetry was enough to drive high preference ratings for patterns with moderate to high levels of fractal dimension. Most individuals required a much higher level of recursion to recover this level of preference in a pattern that lacked mirror or radial symmetry, while others were less discriminating. This suggests that exact fractals are processed differently than their statistical counterparts. We propose a set of four factors that influence complexity and preference judgments in fractals that may extend to other patterns: fractal dimension, recursion, symmetry and the number of segments in a

  9. Exact Integrations of Polynomials and Symmetric Quadrature Formulas over Arbitrary Polyhedral Grids

    NASA Technical Reports Server (NTRS)

    Liu, Yen; Vinokur, Marcel

    1997-01-01

    This paper is concerned with two important elements in the high-order accurate spatial discretization of finite volume equations over arbitrary grids. One element is the integration of basis functions over arbitrary domains, which is used in expressing various spatial integrals in terms of discrete unknowns. The other consists of quadrature approximations to those integrals. Only polynomial basis functions applied to polyhedral and polygonal grids are treated here. Non-triangular polygonal faces are subdivided into a union of planar triangular facets, and the resulting triangulated polyhedron is subdivided into a union of tetrahedra. The straight line segment, triangle, and tetrahedron are thus the fundamental shapes that are the building blocks for all integrations and quadrature approximations. Integrals of products up to the fifth order are derived in a unified manner for the three fundamental shapes in terms of the position vectors of vertices. Results are given both in terms of tensor products and products of Cartesian coordinates. The exact polynomial integrals are used to obtain symmetric quadrature approximations of any degree of precision up to five for arbitrary integrals over the three fundamental domains. Using a coordinate-free formulation, simple and rational procedures are developed to derive virtually all quadrature formulas, including some previously unpublished. Four symmetry groups of quadrature points are introduced to derive Gauss formulas, while their limiting forms are used to derive Lobatto formulas. Representative Gauss and Lobatto formulas are tabulated. The relative efficiency of their application to polyhedral and polygonal grids is detailed. The extension to higher degrees of precision is discussed.

  10. An algebra of discrete event processes

    NASA Technical Reports Server (NTRS)

    Heymann, Michael; Meyer, George

    1991-01-01

    This report deals with an algebraic framework for modeling and control of discrete event processes. The report consists of two parts. The first part is introductory, and consists of a tutorial survey of the theory of concurrency in the spirit of Hoare's CSP, and an examination of the suitability of such an algebraic framework for dealing with various aspects of discrete event control. To this end a new concurrency operator is introduced and it is shown how the resulting framework can be applied. It is further shown that a suitable theory that deals with the new concurrency operator must be developed. In the second part of the report the formal algebra of discrete event control is developed. At the present time the second part of the report is still an incomplete and occasionally tentative working paper.

  11. LAPS discretization and solution of plasma equilibrium

    NASA Astrophysics Data System (ADS)

    Missanelli, Maria; Delzanno, Gian Luca; Guo, Zehua; Srinivasan, Bhuvana; Tang, Xianzhu

    2011-10-01

    LAPS provides spectral element discretization for solving steady state plasma profiles. Our initial focus is on its implementation for two dimensional open magnetic field equilibria in linear and toroidal geometries. The linear geometry is an axisymmetric magnetic mirror with anisotropic pressure. The toroidal case is a tokamak scrape-off layer plasma. Structured grids are produced by the grid generation package in LAPS. The spectral element discretization uses modal bases over quadrilateral elements. A Newton-Krylov solver implemented with the Portable, Extensible Toolkits for Scientific Computing PETSc is applied to iteratively converge the solution. Care has been taken in the code design to separate the grid generation, spectral element discretization, and (non)linear solver from the user-specified equilibrium equations, so the LAPS infrastructure can be easily used for different applications. Work supported by DOE OFES.

  12. Numerical discretization for nonlinear diffusion filter

    NASA Astrophysics Data System (ADS)

    Mustaffa, I.; Mizuar, I.; Aminuddin, M. M. M.; Dasril, Y.

    2015-05-01

    Nonlinear diffusion filters are famously used in machine vision for image denoising and restoration. This paper presents a study on the effects of different numerical discretization of nonlinear diffusion filter. Several numerical discretization schemes are presented; namely semi-implicit, AOS, and fully implicit schemes. The results of these schemes are compared by visual results, objective measurement e.g. PSNR and MSE. The results are also compared to a Daubechies wavelet denoising method. It is acknowledged that the two preceding scheme have already been discussed in literature, however comparison to the latter scheme has not been made. The semi-implicit scheme uses an additive operator splitting (AOS) developed to overcome the shortcoming of the explicit scheme i.e., stability for very small time steps. Although AOS has proven to be efficient, from the nonlinear diffusion filter results with different discretization schemes, examples shows that implicit schemes are worth pursuing.

  13. Superheavy dark matter with discrete gauge symmetries

    NASA Astrophysics Data System (ADS)

    Hamaguchi, K.; Nomura, Yasunori; Yanagida, T.

    1998-11-01

    We show that there are discrete gauge symmetries which naturally protect heavy X particles from decaying into ordinary light particles in the supersymmetric standard model. This makes the proposal that superheavy X particles constitute part of the dark matter in the present universe very attractive. It is more interesting that there is a class of discrete gauge symmetries which naturally accommodates a long-lived unstable X particle. We find that in some discrete Z10 models, for example, a superheavy X particle has a lifetime of τX~=1011-1026 yr for a mass of MX~=1013-1014 GeV. This long lifetime is guaranteed by the absence of lower dimensional operators (of light particles) coupled to the X. We briefly discuss a possible explanation for the recently observed ultrahigh-energy cosmic ray events by the decay of this unstable X particle.

  14. Optimal Learning Rules for Discrete Synapses

    PubMed Central

    Barrett, Adam B.; van Rossum, M. C. W.

    2008-01-01

    There is evidence that biological synapses have a limited number of discrete weight states. Memory storage with such synapses behaves quite differently from synapses with unbounded, continuous weights, as old memories are automatically overwritten by new memories. Consequently, there has been substantial discussion about how this affects learning and storage capacity. In this paper, we calculate the storage capacity of discrete, bounded synapses in terms of Shannon information. We use this to optimize the learning rules and investigate how the maximum information capacity depends on the number of synapses, the number of synaptic states, and the coding sparseness. Below a certain critical number of synapses per neuron (comparable to numbers found in biology), we find that storage is similar to unbounded, continuous synapses. Hence, discrete synapses do not necessarily have lower storage capacity. PMID:19043540

  15. Tree Ensembles on the Induced Discrete Space.

    PubMed

    Yildiz, Olcay Taner

    2016-05-01

    Decision trees are widely used predictive models in machine learning. Recently, K -tree is proposed, where the original discrete feature space is expanded by generating all orderings of values of k discrete attributes and these orderings are used as the new attributes in decision tree induction. Although K -tree performs significantly better than the proper one, their exponential time complexity can prohibit their use. In this brief, we propose K -forest, an extension of random forest, where a subset of features is selected randomly from the induced discrete space. Simulation results on 17 data sets show that the novel ensemble classifier has significantly lower error rate compared with the random forest based on the original feature space.

  16. Insight from modelling discrete fractures using GEOCRACK

    SciTech Connect

    DuTeaux, Robert; Swenson, Daniel; Hardeman, Brian

    1996-01-24

    This work analyzes the behavior of a numerical geothermal reservoir simulation with flow only in discrete fractures. GEOCRACK is a 2-D finite element model developed at Kansas State University for the Hot Dry Rock (HDR) research at Los Alamos National Laboratory. Its numerical simulations couple the mechanics of discrete fracture behavior with the state of earth stress, fluid flow, and heat transfer. This coupled model could also be of value for modeling reinjection and other reservoir operating strategies for liquid dominated fractured reservoirs. Because fracture surfaces cool quickly by fluid convection, and heat does not conduct quickly from the interior of reservoir rock, modeling the injection of cold fluid into a fractured reservoir is better simulated by a model with discrete fractures. This work contains knowledge gained from HDR reservoir simulation and continues to develop the general concept of heat mining, reservoir optimization. and the sensitivity of simulation to the uncertainties of fracture spacing and dynamic flow dispersion.

  17. Discrete Time Crystals: Rigidity, Criticality, and Realizations.

    PubMed

    Yao, N Y; Potter, A C; Potirniche, I-D; Vishwanath, A

    2017-01-20

    Despite being forbidden in equilibrium, spontaneous breaking of time translation symmetry can occur in periodically driven, Floquet systems with discrete time-translation symmetry. The period of the resulting discrete time crystal is quantized to an integer multiple of the drive period, arising from a combination of collective synchronization and many body localization. Here, we consider a simple model for a one-dimensional discrete time crystal which explicitly reveals the rigidity of the emergent oscillations as the drive is varied. We numerically map out its phase diagram and compute the properties of the dynamical phase transition where the time crystal melts into a trivial Floquet insulator. Moreover, we demonstrate that the model can be realized with current experimental technologies and propose a blueprint based upon a one dimensional chain of trapped ions. Using experimental parameters (featuring long-range interactions), we identify the phase boundaries of the ion-time-crystal and propose a measurable signature of the symmetry breaking phase transition.

  18. Discrete-time Markovian stochastic Petri nets

    NASA Technical Reports Server (NTRS)

    Ciardo, Gianfranco

    1995-01-01

    We revisit and extend the original definition of discrete-time stochastic Petri nets, by allowing the firing times to have a 'defective discrete phase distribution'. We show that this formalism still corresponds to an underlying discrete-time Markov chain. The structure of the state for this process describes both the marking of the Petri net and the phase of the firing time for each transition, resulting in a large state space. We then modify the well-known power method to perform a transient analysis even when the state space is infinite, subject to the condition that only a finite number of states can be reached in a finite amount of time. Since the memory requirements might still be excessive, we suggest a bounding technique based on truncation.

  19. Discrete Time Crystals: Rigidity, Criticality, and Realizations

    NASA Astrophysics Data System (ADS)

    Yao, N. Y.; Potter, A. C.; Potirniche, I.-D.; Vishwanath, A.

    2017-01-01

    Despite being forbidden in equilibrium, spontaneous breaking of time translation symmetry can occur in periodically driven, Floquet systems with discrete time-translation symmetry. The period of the resulting discrete time crystal is quantized to an integer multiple of the drive period, arising from a combination of collective synchronization and many body localization. Here, we consider a simple model for a one-dimensional discrete time crystal which explicitly reveals the rigidity of the emergent oscillations as the drive is varied. We numerically map out its phase diagram and compute the properties of the dynamical phase transition where the time crystal melts into a trivial Floquet insulator. Moreover, we demonstrate that the model can be realized with current experimental technologies and propose a blueprint based upon a one dimensional chain of trapped ions. Using experimental parameters (featuring long-range interactions), we identify the phase boundaries of the ion-time-crystal and propose a measurable signature of the symmetry breaking phase transition.

  20. Discrete Roughness Transition for Hypersonic Flight Vehicles

    NASA Technical Reports Server (NTRS)

    Berry, Scott A.; Horvath, Thomas J.

    2007-01-01

    The importance of discrete roughness and the correlations developed to predict the onset of boundary layer transition on hypersonic flight vehicles are discussed. The paper is organized by hypersonic vehicle applications characterized in a general sense by the boundary layer: slender with hypersonic conditions at the edge of the boundary layer, moderately blunt with supersonic, and blunt with subsonic. This paper is intended to be a review of recent discrete roughness transition work completed at NASA Langley Research Center in support of agency flight test programs. First, a review is provided of discrete roughness wind tunnel data and the resulting correlations that were developed. Then, results obtained from flight vehicles, in particular the recently flown Hyper-X and Shuttle missions, are discussed and compared to the ground-based correlations.