Sample records for exact histogram specification

  1. The ISI distribution of the stochastic Hodgkin-Huxley neuron.

    PubMed

    Rowat, Peter F; Greenwood, Priscilla E

    2014-01-01

    The simulation of ion-channel noise has an important role in computational neuroscience. In recent years several approximate methods of carrying out this simulation have been published, based on stochastic differential equations, and all giving slightly different results. The obvious, and essential, question is: which method is the most accurate and which is most computationally efficient? Here we make a contribution to the answer. We compare interspike interval histograms from simulated data using four different approximate stochastic differential equation (SDE) models of the stochastic Hodgkin-Huxley neuron, as well as the exact Markov chain model simulated by the Gillespie algorithm. One of the recent SDE models is the same as the Kurtz approximation first published in 1978. All the models considered give similar ISI histograms over a wide range of deterministic and stochastic input. Three features of these histograms are an initial peak, followed by one or more bumps, and then an exponential tail. We explore how these features depend on deterministic input and on level of channel noise, and explain the results using the stochastic dynamics of the model. We conclude with a rough ranking of the four SDE models with respect to the similarity of their ISI histograms to the histogram of the exact Markov chain model.

  2. Book review: A new view on the species abundance distribution

    USGS Publications Warehouse

    DeAngelis, Donald L.

    2018-01-01

    The sampled relative abundances of species of a taxonomic group, whether birds, trees, or moths, in a natural community at a particular place vary in a way that suggests a consistent underlying pattern, referred to as the species abundance distribution (SAD). Preston [1] conjectured that the numbers of species, plotted as a histogram of logarithmic abundance classes called octaves, seemed to fit a lognormal distribution; that is, the histograms look like normal distributions, although truncated on the left-hand, or low-species-abundance, end. Although other specific curves for the SAD have been proposed in the literature, Preston’s lognormal distribution is widely cited in textbooks and has stimulated attempts at explanation. An important aspect of Preston’s lognormal distribution is the ‘veil line’, a vertical line drawn exactly at the point of the left-hand truncation in the distribution, to the left of which would be species missing from the sample. Dewdney rejects the lognormal conjecture. Instead, starting with the long-recognized fact that the number of species sampled from a community, when plotted as histograms against population abundance, resembles an inverted J, he presents a mathematical description of an alternative that he calls the ‘J distribution’, a hyperbolic density function truncated at both ends. When multiplied by species richness, R, it becomes the SAD of the sample.

  3. Damage Proxy Map from Interferometric Synthetic Aperture Radar Coherence

    NASA Technical Reports Server (NTRS)

    Webb, Frank H. (Inventor); Yun, Sang-Ho (Inventor); Fielding, Eric Jameson (Inventor); Simons, Mark (Inventor)

    2015-01-01

    A method, apparatus, and article of manufacture provide the ability to generate a damage proxy map. A master coherence map and a slave coherence map, for an area prior and subsequent to (including) a damage event are obtained. The slave coherence map is registered to the master coherence map. Pixel values of the slave coherence map are modified using histogram matching to provide a first histogram of the master coherence map that exactly matches a second histogram of the slave coherence map. A coherence difference between the slave coherence map and the master coherence map is computed to produce a damage proxy map. The damage proxy map is displayed with the coherence difference displayed in a visually distinguishable manner.

  4. Better Than Counting: Density Profiles from Force Sampling

    NASA Astrophysics Data System (ADS)

    de las Heras, Daniel; Schmidt, Matthias

    2018-05-01

    Calculating one-body density profiles in equilibrium via particle-based simulation methods involves counting of events of particle occurrences at (histogram-resolved) space points. Here, we investigate an alternative method based on a histogram of the local force density. Via an exact sum rule, the density profile is obtained with a simple spatial integration. The method circumvents the inherent ideal gas fluctuations. We have tested the method in Monte Carlo, Brownian dynamics, and molecular dynamics simulations. The results carry a statistical uncertainty smaller than that of the standard counting method, reducing therefore the computation time.

  5. Comparison of image enhancement methods for the effective diagnosis in successive whole-body bone scans.

    PubMed

    Jeong, Chang Bu; Kim, Kwang Gi; Kim, Tae Sung; Kim, Seok Ki

    2011-06-01

    Whole-body bone scan is one of the most frequent diagnostic procedures in nuclear medicine. Especially, it plays a significant role in important procedures such as the diagnosis of osseous metastasis and evaluation of osseous tumor response to chemotherapy and radiation therapy. It can also be used to monitor the possibility of any recurrence of the tumor. However, it is a very time-consuming effort for radiologists to quantify subtle interval changes between successive whole-body bone scans because of many variations such as intensity, geometry, and morphology. In this paper, we present the most effective method of image enhancement based on histograms, which may assist radiologists in interpreting successive whole-body bone scans effectively. Forty-eight successive whole-body bone scans from 10 patients were obtained and evaluated using six methods of image enhancement based on histograms: histogram equalization, brightness-preserving bi-histogram equalization, contrast-limited adaptive histogram equalization, end-in search, histogram matching, and exact histogram matching (EHM). Comparison of the results of the different methods was made using three similarity measures peak signal-to-noise ratio, histogram intersection, and structural similarity. Image enhancement of successive bone scans using EHM showed the best results out of the six methods measured for all similarity measures. EHM is the best method of image enhancement based on histograms for diagnosing successive whole-body bone scans. The method for successive whole-body bone scans has the potential to greatly assist radiologists quantify interval changes more accurately and quickly by compensating for the variable nature of intensity information. Consequently, it can improve radiologists' diagnostic accuracy as well as reduce reading time for detecting interval changes.

  6. Computing a Non-trivial Lower Bound on the Joint Entropy between Two Images

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Perumalla, Kalyan S.

    In this report, a non-trivial lower bound on the joint entropy of two non-identical images is developed, which is greater than the individual entropies of the images. The lower bound is the least joint entropy possible among all pairs of images that have the same histograms as those of the given images. New algorithms are presented to compute the joint entropy lower bound with a computation time proportional to S log S where S is the number of histogram bins of the images. This is faster than the traditional methods of computing the exact joint entropy with a computation timemore » that is quadratic in S .« less

  7. Approximate Algorithms for Computing Spatial Distance Histograms with Accuracy Guarantees

    PubMed Central

    Grupcev, Vladimir; Yuan, Yongke; Tu, Yi-Cheng; Huang, Jin; Chen, Shaoping; Pandit, Sagar; Weng, Michael

    2014-01-01

    Particle simulation has become an important research tool in many scientific and engineering fields. Data generated by such simulations impose great challenges to database storage and query processing. One of the queries against particle simulation data, the spatial distance histogram (SDH) query, is the building block of many high-level analytics, and requires quadratic time to compute using a straightforward algorithm. Previous work has developed efficient algorithms that compute exact SDHs. While beating the naive solution, such algorithms are still not practical in processing SDH queries against large-scale simulation data. In this paper, we take a different path to tackle this problem by focusing on approximate algorithms with provable error bounds. We first present a solution derived from the aforementioned exact SDH algorithm, and this solution has running time that is unrelated to the system size N. We also develop a mathematical model to analyze the mechanism that leads to errors in the basic approximate algorithm. Our model provides insights on how the algorithm can be improved to achieve higher accuracy and efficiency. Such insights give rise to a new approximate algorithm with improved time/accuracy tradeoff. Experimental results confirm our analysis. PMID:24693210

  8. Can histogram analysis of MR images predict aggressiveness in pancreatic neuroendocrine tumors?

    PubMed

    De Robertis, Riccardo; Maris, Bogdan; Cardobi, Nicolò; Tinazzi Martini, Paolo; Gobbo, Stefano; Capelli, Paola; Ortolani, Silvia; Cingarlini, Sara; Paiella, Salvatore; Landoni, Luca; Butturini, Giovanni; Regi, Paolo; Scarpa, Aldo; Tortora, Giampaolo; D'Onofrio, Mirko

    2018-06-01

    To evaluate MRI derived whole-tumour histogram analysis parameters in predicting pancreatic neuroendocrine neoplasm (panNEN) grade and aggressiveness. Pre-operative MR of 42 consecutive patients with panNEN >1 cm were retrospectively analysed. T1-/T2-weighted images and ADC maps were analysed. Histogram-derived parameters were compared to histopathological features using the Mann-Whitney U test. Diagnostic accuracy was assessed by ROC-AUC analysis; sensitivity and specificity were assessed for each histogram parameter. ADC entropy was significantly higher in G2-3 tumours with ROC-AUC 0.757; sensitivity and specificity were 83.3 % (95 % CI: 61.2-94.5) and 61.1 % (95 % CI: 36.1-81.7). ADC kurtosis was higher in panNENs with vascular involvement, nodal and hepatic metastases (p= .008, .021 and .008; ROC-AUC= 0.820, 0.709 and 0.820); sensitivity and specificity were: 85.7/74.3 % (95 % CI: 42-99.2 /56.4-86.9), 36.8/96.5 % (95 % CI: 17.2-61.4 /76-99.8) and 100/62.8 % (95 % CI: 56.1-100/44.9-78.1). No significant differences between groups were found for other histogram-derived parameters (p >.05). Whole-tumour histogram analysis of ADC maps may be helpful in predicting tumour grade, vascular involvement, nodal and liver metastases in panNENs. ADC entropy and ADC kurtosis are the most accurate parameters for identification of panNENs with malignant behaviour. • Whole-tumour ADC histogram analysis can predict aggressiveness in pancreatic neuroendocrine neoplasms. • ADC entropy and kurtosis are higher in aggressive tumours. • ADC histogram analysis can quantify tumour diffusion heterogeneity. • Non-invasive quantification of tumour heterogeneity can provide adjunctive information for prognostication.

  9. ADC histogram analysis for adrenal tumor histogram analysis of apparent diffusion coefficient in differentiating adrenal adenoma from pheochromocytoma.

    PubMed

    Umanodan, Tomokazu; Fukukura, Yoshihiko; Kumagae, Yuichi; Shindo, Toshikazu; Nakajo, Masatoyo; Takumi, Koji; Nakajo, Masanori; Hakamada, Hiroto; Umanodan, Aya; Yoshiura, Takashi

    2017-04-01

    To determine the diagnostic performance of apparent diffusion coefficient (ADC) histogram analysis in diffusion-weighted (DW) magnetic resonance imaging (MRI) for differentiating adrenal adenoma from pheochromocytoma. We retrospectively evaluated 52 adrenal tumors (39 adenomas and 13 pheochromocytomas) in 47 patients (21 men, 26 women; mean age, 59.3 years; range, 16-86 years) who underwent DW 3.0T MRI. Histogram parameters of ADC (b-values of 0 and 200 [ADC 200 ], 0 and 400 [ADC 400 ], and 0 and 800 s/mm 2 [ADC 800 ])-mean, variance, coefficient of variation (CV), kurtosis, skewness, and entropy-were compared between adrenal adenomas and pheochromocytomas, using the Mann-Whitney U-test. Receiver operating characteristic (ROC) curves for the histogram parameters were generated to differentiate adrenal adenomas from pheochromocytomas. Sensitivity and specificity were calculated by using a threshold criterion that would maximize the average of sensitivity and specificity. Variance and CV of ADC 800 were significantly higher in pheochromocytomas than in adrenal adenomas (P < 0.001 and P = 0.001, respectively). With all b-value combinations, the entropy of ADC was significantly higher in pheochromocytomas than in adrenal adenomas (all P ≤ 0.001), and showed the highest area under the ROC curve among the ADC histogram parameters for diagnosing adrenal adenomas (ADC 200 , 0.82; ADC 400 , 0.87; and ADC 800 , 0.92), with sensitivity of 84.6% and specificity of 84.6% (cutoff, ≤2.82) with ADC 200 ; sensitivity of 89.7% and specificity of 84.6% (cutoff, ≤2.77) with ADC 400 ; and sensitivity of 94.9% and specificity of 92.3% (cutoff, ≤2.67) with ADC 800 . ADC histogram analysis of DW MRI can help differentiate adrenal adenoma from pheochromocytoma. 3 J. Magn. Reson. Imaging 2017;45:1195-1203. © 2016 International Society for Magnetic Resonance in Medicine.

  10. Image contrast enhancement with brightness preservation using an optimal gamma correction and weighted sum approach

    NASA Astrophysics Data System (ADS)

    Jiang, G.; Wong, C. Y.; Lin, S. C. F.; Rahman, M. A.; Ren, T. R.; Kwok, Ngaiming; Shi, Haiyan; Yu, Ying-Hao; Wu, Tonghai

    2015-04-01

    The enhancement of image contrast and preservation of image brightness are two important but conflicting objectives in image restoration. Previous attempts based on linear histogram equalization had achieved contrast enhancement, but exact preservation of brightness was not accomplished. A new perspective is taken here to provide balanced performance of contrast enhancement and brightness preservation simultaneously by casting the quest of such solution to an optimization problem. Specifically, the non-linear gamma correction method is adopted to enhance the contrast, while a weighted sum approach is employed for brightness preservation. In addition, the efficient golden search algorithm is exploited to determine the required optimal parameters to produce the enhanced images. Experiments are conducted on natural colour images captured under various indoor, outdoor and illumination conditions. Results have shown that the proposed method outperforms currently available methods in contrast to enhancement and brightness preservation.

  11. Histogram analysis of T2*-based pharmacokinetic imaging in cerebral glioma grading.

    PubMed

    Liu, Hua-Shan; Chiang, Shih-Wei; Chung, Hsiao-Wen; Tsai, Ping-Huei; Hsu, Fei-Ting; Cho, Nai-Yu; Wang, Chao-Ying; Chou, Ming-Chung; Chen, Cheng-Yu

    2018-03-01

    To investigate the feasibility of histogram analysis of the T2*-based permeability parameter volume transfer constant (K trans ) for glioma grading and to explore the diagnostic performance of the histogram analysis of K trans and blood plasma volume (v p ). We recruited 31 and 11 patients with high- and low-grade gliomas, respectively. The histogram parameters of K trans and v p , derived from the first-pass pharmacokinetic modeling based on the T2* dynamic susceptibility-weighted contrast-enhanced perfusion-weighted magnetic resonance imaging (T2* DSC-PW-MRI) from the entire tumor volume, were evaluated for differentiating glioma grades. Histogram parameters of K trans and v p showed significant differences between high- and low-grade gliomas and exhibited significant correlations with tumor grades. The mean K trans derived from the T2* DSC-PW-MRI had the highest sensitivity and specificity for differentiating high-grade gliomas from low-grade gliomas compared with other histogram parameters of K trans and v p . Histogram analysis of T2*-based pharmacokinetic imaging is useful for cerebral glioma grading. The histogram parameters of the entire tumor K trans measurement can provide increased accuracy with additional information regarding microvascular permeability changes for identifying high-grade brain tumors. Copyright © 2017 Elsevier B.V. All rights reserved.

  12. DWI-associated entire-tumor histogram analysis for the differentiation of low-grade prostate cancer from intermediate-high-grade prostate cancer.

    PubMed

    Wu, Chen-Jiang; Wang, Qing; Li, Hai; Wang, Xiao-Ning; Liu, Xi-Sheng; Shi, Hai-Bin; Zhang, Yu-Dong

    2015-10-01

    To investigate diagnostic efficiency of DWI using entire-tumor histogram analysis in differentiating the low-grade (LG) prostate cancer (PCa) from intermediate-high-grade (HG) PCa in comparison with conventional ROI-based measurement. DW images (b of 0-1400 s/mm(2)) from 126 pathology-confirmed PCa (diameter >0.5 cm) in 110 patients were retrospectively collected and processed by mono-exponential model. The measurement of tumor apparent diffusion coefficients (ADCs) was performed with using histogram-based and ROI-based approach, respectively. The diagnostic ability of ADCs from two methods for differentiating LG-PCa (Gleason score, GS ≤ 6) from HG-PCa (GS > 6) was determined by ROC regression, and compared by McNemar's test. There were 49 LG-tumor and 77 HG-tumor at pathologic findings. Histogram-based ADCs (mean, median, 10th and 90th) and ROI-based ADCs (mean) showed dominant relationships with ordinal GS of Pca (ρ = -0.225 to -0.406, p < 0.05). All above imaging indices reflected significant difference between LG-PCa and HG-PCa (all p values <0.01). Histogram 10th ADCs had dominantly high Az (0.738), Youden index (0.415), and positive likelihood ratio (LR+, 2.45) in stratifying tumor GS against mean, median and 90th ADCs, and ROI-based ADCs. Histogram mean, median, and 10th ADCs showed higher specificity (65.3%-74.1% vs. 44.9%, p < 0.01), but lower sensitivity (57.1%-71.3% vs. 84.4%, p < 0.05) than ROI-based ADCs in differentiating LG-PCa from HG-PCa. DWI-associated histogram analysis had higher specificity, Az, Youden index, and LR+ for differentiation of PCa Gleason grade than ROI-based approach.

  13. Histograms showing variations in oil yield, water yield, and specific gravity of oil from Fischer assay analyses of oil-shale drill cores and cuttings from the Piceance Basin, northwestern Colorado

    USGS Publications Warehouse

    Dietrich, John D.; Brownfield, Michael E.; Johnson, Ronald C.; Mercier, Tracey J.

    2014-01-01

    Recent studies indicate that the Piceance Basin in northwestern Colorado contains over 1.5 trillion barrels of oil in place, making the basin the largest known oil-shale deposit in the world. Previously published histograms display oil-yield variations with depth and widely correlate rich and lean oil-shale beds and zones throughout the basin. Histograms in this report display oil-yield data plotted alongside either water-yield or oil specific-gravity data. Fischer assay analyses of core and cutting samples collected from exploration drill holes penetrating the Eocene Green River Formation in the Piceance Basin can aid in determining the origins of those deposits, as well as estimating the amount of organic matter, halite, nahcolite, and water-bearing minerals. This report focuses only on the oil yield plotted against water yield and oil specific gravity.

  14. Locally advanced rectal cancer: post-chemoradiotherapy ADC histogram analysis for predicting a complete response.

    PubMed

    Cho, Seung Hyun; Kim, Gab Chul; Jang, Yun-Jin; Ryeom, Hunkyu; Kim, Hye Jung; Shin, Kyung-Min; Park, Jun Seok; Choi, Gyu-Seog; Kim, See Hyung

    2015-09-01

    The value of diffusion-weighted imaging (DWI) for reliable differentiation between pathologic complete response (pCR) and residual tumor is still unclear. Recently, a few studies reported that histogram analysis can be helpful to monitor the therapeutic response in various cancer research. To investigate whether post-chemoradiotherapy (CRT) apparent diffusion coefficient (ADC) histogram analysis can be helpful to predict a pCR in locally advanced rectal cancer (LARC). Fifty patients who underwent preoperative CRT followed by surgery were enrolled in this retrospective study, non-pCR (n = 41) and pCR (n = 9), respectively. ADC histogram analysis encompassing the whole tumor was performed on two post-CRT ADC600 and ADC1000 (b factors 0, 600 vs. 0, 1000 s/mm(2)) maps. Mean, minimum, maximum, SD, mode, 10th, 25th, 50th, 75th, 90th percentile ADCs, skewness, and kurtosis were derived. Diagnostic performance for predicting pCR was evaluated and compared. On both maps, 10th and 25th ADCs showed better diagnostic performance than that using mean ADC. Tenth percentile ADCs revealed the best diagnostic performance on both ADC600 (AZ 0.841, sensitivity 100%, specificity 70.7%) and ADC1000 (AZ 0.821, sensitivity 77.8%, specificity 87.8%) maps. In comparison between 10th percentile and mean ADC, the specificity was significantly improved on both ADC600 (70.7% vs. 53.7%; P = 0.031) and ADC1000 (87.8% vs. 73.2%; P = 0.039) maps. Post-CRT ADC histogram analysis is helpful for predicting pCR in LARC, especially, in improving the specificity, compared with mean ADC. © The Foundation Acta Radiologica 2014.

  15. Blind technique using blocking artifacts and entropy of histograms for image tampering detection

    NASA Astrophysics Data System (ADS)

    Manu, V. T.; Mehtre, B. M.

    2017-06-01

    The tremendous technological advancements in recent times has enabled people to create, edit and circulate images easily than ever before. As a result of this, ensuring the integrity and authenticity of the images has become challenging. Malicious editing of images to deceive the viewer is referred to as image tampering. A widely used image tampering technique is image splicing or compositing, in which regions from different images are copied and pasted. In this paper, we propose a tamper detection method utilizing the blocking and blur artifacts which are the footprints of splicing. The classification of images as tampered or not, is done based on the standard deviations of the entropy histograms and block discrete cosine transformations. We can detect the exact boundaries of the tampered area in the image, if the image is classified as tampered. Experimental results on publicly available image tampering datasets show that the proposed method outperforms the existing methods in terms of accuracy.

  16. Regionally adaptive histogram equalization of the chest.

    PubMed

    Sherrier, R H; Johnson, G A

    1987-01-01

    Advances in the area of digital chest radiography have resulted in the acquisition of high-quality images of the human chest. With these advances, there arises a genuine need for image processing algorithms specific to the chest, in order to fully exploit this digital technology. We have implemented the well-known technique of histogram equalization, noting the problems encountered when it is adapted to chest images. These problems have been successfully solved with our regionally adaptive histogram equalization method. With this technique histograms are calculated locally and then modified according to both the mean pixel value of that region as well as certain characteristics of the cumulative distribution function. This process, which has allowed certain regions of the chest radiograph to be enhanced differentially, may also have broader implications for other image processing tasks.

  17. Dissimilarity representations in lung parenchyma classification

    NASA Astrophysics Data System (ADS)

    Sørensen, Lauge; de Bruijne, Marleen

    2009-02-01

    A good problem representation is important for a pattern recognition system to be successful. The traditional approach to statistical pattern recognition is feature representation. More specifically, objects are represented by a number of features in a feature vector space, and classifiers are built in this representation. This is also the general trend in lung parenchyma classification in computed tomography (CT) images, where the features often are measures on feature histograms. Instead, we propose to build normal density based classifiers in dissimilarity representations for lung parenchyma classification. This allows for the classifiers to work on dissimilarities between objects, which might be a more natural way of representing lung parenchyma. In this context, dissimilarity is defined between CT regions of interest (ROI)s. ROIs are represented by their CT attenuation histogram and ROI dissimilarity is defined as a histogram dissimilarity measure between the attenuation histograms. In this setting, the full histograms are utilized according to the chosen histogram dissimilarity measure. We apply this idea to classification of different emphysema patterns as well as normal, healthy tissue. Two dissimilarity representation approaches as well as different histogram dissimilarity measures are considered. The approaches are evaluated on a set of 168 CT ROIs using normal density based classifiers all showing good performance. Compared to using histogram dissimilarity directly as distance in a emph{k} nearest neighbor classifier, which achieves a classification accuracy of 92.9%, the best dissimilarity representation based classifier is significantly better with a classification accuracy of 97.0% (text{emph{p" border="0" class="imgtopleft"> = 0.046).

  18. Microbubble cloud characterization by nonlinear frequency mixing.

    PubMed

    Cavaro, M; Payan, C; Moysan, J; Baqué, F

    2011-05-01

    In the frame of the fourth generation forum, France decided to develop sodium fast nuclear reactors. French Safety Authority requests the associated monitoring of argon gas into sodium. This implies to estimate the void fraction, and a histogram indicating the bubble population. In this context, the present letter studies the possibility of achieving an accurate determination of the histogram with acoustic methods. A nonlinear, two-frequency mixing technique has been implemented, and a specific optical device has been developed in order to validate the experimental results. The acoustically reconstructed histograms are in excellent agreement with those obtained using optical methods.

  19. Whole Tumor Histogram-profiling of Diffusion-Weighted Magnetic Resonance Images Reflects Tumorbiological Features of Primary Central Nervous System Lymphoma.

    PubMed

    Schob, Stefan; Münch, Benno; Dieckow, Julia; Quäschling, Ulf; Hoffmann, Karl-Titus; Richter, Cindy; Garnov, Nikita; Frydrychowicz, Clara; Krause, Matthias; Meyer, Hans-Jonas; Surov, Alexey

    2018-04-01

    Diffusion weighted imaging (DWI) quantifies motion of hydrogen nuclei in biological tissues and hereby has been used to assess the underlying tissue microarchitecture. Histogram-profiling of DWI provides more detailed information on diffusion characteristics of a lesion than the standardly calculated values of the apparent diffusion coefficient (ADC)-minimum, mean and maximum. Hence, the aim of our study was to investigate, which parameters of histogram-profiling of DWI in primary central nervous system lymphoma can be used to specifically predict features like cellular density, chromatin content and proliferative activity. Pre-treatment ADC maps of 21 PCNSL patients (8 female, 13 male, 28-89 years) from a 1.5T system were used for Matlab-based histogram profiling. Results of histopathology (H&E staining) and immunohistochemistry (Ki-67 expression) were quantified. Correlations between histogram-profiling parameters and neuropathologic examination were calculated using SPSS 23.0. The lower percentiles (p10 and p25) showed significant correlations with structural parameters of the neuropathologic examination (cellular density, chromatin content). The highest percentile, p90, correlated significantly with Ki-67 expression, resembling proliferative activity. Kurtosis of the ADC histogram correlated significantly with cellular density. Histogram-profiling of DWI in PCNSL provides a comprehensible set of parameters, which reflect distinct tumor-architectural and tumor-biological features, and hence, are promising biomarkers for treatment response and prognosis. Copyright © 2018. Published by Elsevier Inc.

  20. Differential diagnosis of normal pressure hydrocephalus by MRI mean diffusivity histogram analysis.

    PubMed

    Ivkovic, M; Liu, B; Ahmed, F; Moore, D; Huang, C; Raj, A; Kovanlikaya, I; Heier, L; Relkin, N

    2013-01-01

    Accurate diagnosis of normal pressure hydrocephalus is challenging because the clinical symptoms and radiographic appearance of NPH often overlap those of other conditions, including age-related neurodegenerative disorders such as Alzheimer and Parkinson diseases. We hypothesized that radiologic differences between NPH and AD/PD can be characterized by a robust and objective MR imaging DTI technique that does not require intersubject image registration or operator-defined regions of interest, thus avoiding many pitfalls common in DTI methods. We collected 3T DTI data from 15 patients with probable NPH and 25 controls with AD, PD, or dementia with Lewy bodies. We developed a parametric model for the shape of intracranial mean diffusivity histograms that separates brain and ventricular components from a third component composed mostly of partial volume voxels. To accurately fit the shape of the third component, we constructed a parametric function named the generalized Voss-Dyke function. We then examined the use of the fitting parameters for the differential diagnosis of NPH from AD, PD, and DLB. Using parameters for the MD histogram shape, we distinguished clinically probable NPH from the 3 other disorders with 86% sensitivity and 96% specificity. The technique yielded 86% sensitivity and 88% specificity when differentiating NPH from AD only. An adequate parametric model for the shape of intracranial MD histograms can distinguish NPH from AD, PD, or DLB with high sensitivity and specificity.

  1. Utility of histogram analysis of apparent diffusion coefficient maps obtained using 3.0T MRI for distinguishing uterine carcinosarcoma from endometrial carcinoma.

    PubMed

    Takahashi, Masahiro; Kozawa, Eito; Tanisaka, Megumi; Hasegawa, Kousei; Yasuda, Masanori; Sakai, Fumikazu

    2016-06-01

    We explored the role of histogram analysis of apparent diffusion coefficient (ADC) maps for discriminating uterine carcinosarcoma and endometrial carcinoma. We retrospectively evaluated findings in 13 patients with uterine carcinosarcoma and 50 patients with endometrial carcinoma who underwent diffusion-weighted imaging (b = 0, 500, 1000 s/mm(2) ) at 3T with acquisition of corresponding ADC maps. We derived histogram data from regions of interest drawn on all slices of the ADC maps in which tumor was visualized, excluding areas of necrosis and hemorrhage in the tumor. We used the Mann-Whitney test to evaluate the capacity of histogram parameters (mean ADC value, 5th to 95th percentiles, skewness, kurtosis) to discriminate uterine carcinosarcoma and endometrial carcinoma and analyzed the receiver operating characteristic (ROC) curve to determine the optimum threshold value for each parameter and its corresponding sensitivity and specificity. Carcinosarcomas demonstrated significantly higher mean vales of ADC, 95th, 90th, 75th, 50th, 25th percentiles and kurtosis than endometrial carcinomas (P < 0.05). ROC curve analysis of the 75th percentile yielded the best area under the ROC curve (AUC; 0.904), sensitivity of 100%, and specificity of 78.0%, with a cutoff value of 1.034 × 10(-3) mm(2) /s. Histogram analysis of ADC maps might be helpful for discriminating uterine carcinosarcomas and endometrial carcinomas. J. Magn. Reson. Imaging 2016;43:1301-1307. © 2015 Wiley Periodicals, Inc.

  2. Contact-free palm-vein recognition based on local invariant features.

    PubMed

    Kang, Wenxiong; Liu, Yang; Wu, Qiuxia; Yue, Xishun

    2014-01-01

    Contact-free palm-vein recognition is one of the most challenging and promising areas in hand biometrics. In view of the existing problems in contact-free palm-vein imaging, including projection transformation, uneven illumination and difficulty in extracting exact ROIs, this paper presents a novel recognition approach for contact-free palm-vein recognition that performs feature extraction and matching on all vein textures distributed over the palm surface, including finger veins and palm veins, to minimize the loss of feature information. First, a hierarchical enhancement algorithm, which combines a DOG filter and histogram equalization, is adopted to alleviate uneven illumination and to highlight vein textures. Second, RootSIFT, a more stable local invariant feature extraction method in comparison to SIFT, is adopted to overcome the projection transformation in contact-free mode. Subsequently, a novel hierarchical mismatching removal algorithm based on neighborhood searching and LBP histograms is adopted to improve the accuracy of feature matching. Finally, we rigorously evaluated the proposed approach using two different databases and obtained 0.996% and 3.112% Equal Error Rates (EERs), respectively, which demonstrate the effectiveness of the proposed approach.

  3. Contact-Free Palm-Vein Recognition Based on Local Invariant Features

    PubMed Central

    Kang, Wenxiong; Liu, Yang; Wu, Qiuxia; Yue, Xishun

    2014-01-01

    Contact-free palm-vein recognition is one of the most challenging and promising areas in hand biometrics. In view of the existing problems in contact-free palm-vein imaging, including projection transformation, uneven illumination and difficulty in extracting exact ROIs, this paper presents a novel recognition approach for contact-free palm-vein recognition that performs feature extraction and matching on all vein textures distributed over the palm surface, including finger veins and palm veins, to minimize the loss of feature information. First, a hierarchical enhancement algorithm, which combines a DOG filter and histogram equalization, is adopted to alleviate uneven illumination and to highlight vein textures. Second, RootSIFT, a more stable local invariant feature extraction method in comparison to SIFT, is adopted to overcome the projection transformation in contact-free mode. Subsequently, a novel hierarchical mismatching removal algorithm based on neighborhood searching and LBP histograms is adopted to improve the accuracy of feature matching. Finally, we rigorously evaluated the proposed approach using two different databases and obtained 0.996% and 3.112% Equal Error Rates (EERs), respectively, which demonstrate the effectiveness of the proposed approach. PMID:24866176

  4. Histogram analysis of apparent diffusion coefficient maps for assessing thymic epithelial tumours: correlation with world health organization classification and clinical staging.

    PubMed

    Kong, Ling-Yan; Zhang, Wei; Zhou, Yue; Xu, Hai; Shi, Hai-Bin; Feng, Qing; Xu, Xiao-Quan; Yu, Tong-Fu

    2018-04-01

    To investigate the value of apparent diffusion coefficients (ADCs) histogram analysis for assessing World Health Organization (WHO) pathological classification and Masaoka clinical stages of thymic epithelial tumours. 37 patients with histologically confirmed thymic epithelial tumours were enrolled. ADC measurements were performed using hot-spot ROI (ADC HS-ROI ) and histogram-based approach. ADC histogram parameters included mean ADC (ADC mean ), median ADC (ADC median ), 10 and 90 percentile of ADC (ADC 10 and ADC 90 ), kurtosis and skewness. One-way ANOVA, independent-sample t-test, and receiver operating characteristic were used for statistical analyses. There were significant differences in ADC mean , ADC median , ADC 10 , ADC 90 and ADC HS-ROI among low-risk thymoma (type A, AB, B1; n = 14), high-risk thymoma (type B2, B3; n = 9) and thymic carcinoma (type C, n = 14) groups (all p-values <0.05), while no significant difference in skewness (p = 0.181) and kurtosis (p = 0.088). ADC 10 showed best differentiating ability (cut-off value, ≤0.689 × 10 -3 mm 2 s -1 ; AUC, 0.957; sensitivity, 95.65%; specificity, 92.86%) for discriminating low-risk thymoma from high-risk thymoma and thymic carcinoma. Advanced Masaoka stages (Stage III and IV; n = 24) tumours showed significant lower ADC parameters and higher kurtosis than early Masaoka stage (Stage I and II; n = 13) tumours (all p-values <0.05), while no significant difference on skewness (p = 0.063). ADC 10 showed best differentiating ability (cut-off value, ≤0.689 × 10 -3 mm 2 s -1 ; AUC, 0.913; sensitivity, 91.30%; specificity, 85.71%) for discriminating advanced and early Masaoka stage epithelial tumours. ADC histogram analysis may assist in assessing the WHO pathological classification and Masaoka clinical stages of thymic epithelial tumours. Advances in knowledge: 1. ADC histogram analysis could help to assess WHO pathological classification of thymic epithelial tumours. 2. ADC histogram analysis could help to evaluate Masaoka clinical stages of thymic epithelial tumours. 3. ADC 10 might be a promising imaging biomarker for assessing and characterizing thymic epithelial tumours.

  5. Histogram analysis of diffusion kurtosis imaging derived maps may distinguish between low and high grade gliomas before surgery.

    PubMed

    Qi, Xi-Xun; Shi, Da-Fa; Ren, Si-Xie; Zhang, Su-Ya; Li, Long; Li, Qing-Chang; Guan, Li-Ming

    2018-04-01

    To investigate the value of histogram analysis of diffusion kurtosis imaging (DKI) maps in the evaluation of glioma grading. A total of 39 glioma patients who underwent preoperative magnetic resonance imaging (MRI) were classified into low-grade (13 cases) and high-grade (26 cases) glioma groups. Parametric DKI maps were derived, and histogram metrics between low- and high-grade gliomas were analysed. The optimum diagnostic thresholds of the parameters, area under the receiver operating characteristic curve (AUC), sensitivity, and specificity were achieved using a receiver operating characteristic (ROC). Significant differences were observed not only in 12 metrics of histogram DKI parameters (P<0.05), but also in mean diffusivity (MD) and mean kurtosis (MK) values, including age as a covariate (F=19.127, P<0.001 and F=20.894, P<0.001, respectively), between low- and high-grade gliomas. Mean MK was the best independent predictor of differentiating glioma grades (B=18.934, 22.237 adjusted for age, P<0.05). The partial correlation coefficient between fractional anisotropy (FA) and kurtosis fractional anisotropy (KFA) was 0.675 (P<0.001). The AUC of the mean MK, sensitivity, and specificity were 0.925, 88.5% and 84.6%, respectively. DKI parameters can effectively distinguish between low- and high-grade gliomas. Mean MK is the best independent predictor of differentiating glioma grades. • DKI is a new and important method. • DKI can provide additional information on microstructural architecture. • Histogram analysis of DKI may be more effective in glioma grading.

  6. Whole-tumour diffusion kurtosis MR imaging histogram analysis of rectal adenocarcinoma: Correlation with clinical pathologic prognostic factors.

    PubMed

    Cui, Yanfen; Yang, Xiaotang; Du, Xiaosong; Zhuo, Zhizheng; Xin, Lei; Cheng, Xintao

    2018-04-01

    To investigate potential relationships between diffusion kurtosis imaging (DKI)-derived parameters using whole-tumour volume histogram analysis and clinicopathological prognostic factors in patients with rectal adenocarcinoma. 79 consecutive patients who underwent MRI examination with rectal adenocarcinoma were retrospectively evaluated. Parameters D, K and conventional ADC were measured using whole-tumour volume histogram analysis. Student's t-test or Mann-Whitney U-test, receiver operating characteristic curves and Spearman's correlation were used for statistical analysis. Almost all the percentile metrics of K were correlated positively with nodal involvement, higher histological grades, the presence of lymphangiovascular invasion (LVI) and circumferential margin (CRM) (p<0.05), with the exception of between K 10th , K 90th and histological grades. In contrast, significant negative correlations were observed between 25th, 50th percentiles and mean values of ADC and D, as well as ADC 10th , with tumour T stages (p< 0.05). Meanwhile, lower 75th and 90th percentiles of ADC and D values were also correlated inversely with nodal involvement (p< 0.05). K mean showed a relatively higher area under the curve (AUC) and higher specificity than other percentiles for differentiation of lesions with nodal involvement. DKI metrics with whole-tumour volume histogram analysis, especially K parameters, were associated with important prognostic factors of rectal cancer. • K correlated positively with some important prognostic factors of rectal cancer. • K mean showed higher AUC and specificity for differentiation of nodal involvement. • DKI metrics with whole-tumour volume histogram analysis depicted tumour heterogeneity.

  7. A Monte Carlo study of the impact of the choice of rectum volume definition on estimates of equivalent uniform doses and the volume parameter

    NASA Astrophysics Data System (ADS)

    Kvinnsland, Yngve; Muren, Ludvig Paul; Dahl, Olav

    2004-08-01

    Calculations of normal tissue complication probability (NTCP) values for the rectum are difficult because it is a hollow, non-rigid, organ. Finding the true cumulative dose distribution for a number of treatment fractions requires a CT scan before each treatment fraction. This is labour intensive, and several surrogate distributions have therefore been suggested, such as dose wall histograms, dose surface histograms and histograms for the solid rectum, with and without margins. In this study, a Monte Carlo method is used to investigate the relationships between the cumulative dose distributions based on all treatment fractions and the above-mentioned histograms that are based on one CT scan only, in terms of equivalent uniform dose. Furthermore, the effect of a specific choice of histogram on estimates of the volume parameter of the probit NTCP model was investigated. It was found that the solid rectum and the rectum wall histograms (without margins) gave equivalent uniform doses with an expected value close to the values calculated from the cumulative dose distributions in the rectum wall. With the number of patients available in this study the standard deviations of the estimates of the volume parameter were large, and it was not possible to decide which volume gave the best estimates of the volume parameter, but there were distinct differences in the mean values of the values obtained.

  8. Histogram analysis of apparent diffusion coefficient maps for differentiating primary CNS lymphomas from tumefactive demyelinating lesions.

    PubMed

    Lu, Shan Shan; Kim, Sang Joon; Kim, Namkug; Kim, Ho Sung; Choi, Choong Gon; Lim, Young Min

    2015-04-01

    This study intended to investigate the usefulness of histogram analysis of apparent diffusion coefficient (ADC) maps for discriminating primary CNS lymphomas (PCNSLs), especially atypical PCNSLs, from tumefactive demyelinating lesions (TDLs). Forty-seven patients with PCNSLs and 18 with TDLs were enrolled in our study. Hyperintense lesions seen on T2-weighted images were defined as ROIs after ADC maps were registered to the corresponding T2-weighted image. ADC histograms were calculated from the ROIs containing the entire lesion on every section and on a voxel-by-voxel basis. The ADC histogram parameters were compared among all PCNSLs and TDLs as well as between the subgroup of atypical PCNSLs and TDLs. ROC curves were constructed to evaluate the diagnostic performance of the histogram parameters and to determine the optimum thresholds. The differences between the PCNSLs and TDLs were found in the minimum ADC values (ADCmin) and in the 5th and 10th percentiles (ADC5% and ADC10%) of the cumulative ADC histograms. However, no statistical significance was found in the mean ADC value or in the ADC value concerning the mode, kurtosis, and skewness. The ADCmin, ADC5%, and ADC10% were also lower in atypical PCNSLs than in TDLs. ADCmin was the best indicator for discriminating atypical PCNSLs from TDLs, with a threshold of 556×10(-6) mm2/s (sensitivity, 81.3 %; specificity, 88.9%). Histogram analysis of ADC maps may help to discriminate PCNSLs from TDLs and may be particularly useful in differentiating atypical PCNSLs from TDLs.

  9. The impact of slice-reduced computed tomography on histogram-based densitometry assessment of lung fibrosis in patients with systemic sclerosis.

    PubMed

    Nguyen-Kim, Thi Dan Linh; Maurer, Britta; Suliman, Yossra A; Morsbach, Fabian; Distler, Oliver; Frauenfelder, Thomas

    2018-04-01

    To evaluate usability of slice-reduced sequential computed tomography (CT) compared to standard high-resolution CT (HRCT) in patients with systemic sclerosis (SSc) for qualitative and quantitative assessment of interstitial lung disease (ILD) with respect to (I) detection of lung parenchymal abnormalities, (II) qualitative and semiquantitative visual assessment, (III) quantification of ILD by histograms and (IV) accuracy for the 20%-cut off discrimination. From standard chest HRCT of 60 SSc patients sequential 9-slice-computed tomography (reduced HRCT) was retrospectively reconstructed. ILD was assessed by visual scoring and quantitative histogram parameters. Results from standard and reduced HRCT were compared using non-parametric tests and analysed by univariate linear regression analyses. With respect to the detection of parenchymal abnormalities, only the detection of intrapulmonary bronchiectasis was significantly lower in reduced HRCT compared to standard HRCT (P=0.039). No differences were found comparing visual scores for fibrosis severity and extension from standard and reduced HRCT (P=0.051-0.073). All scores correlated significantly (P<0.001) to histogram parameters derived from both, standard and reduced HRCT. Significant higher values of kurtosis and skewness for reduced HRCT were found (both P<0.001). In contrast to standard HRCT histogram parameters from reduced HRCT showed significant discrimination at cut-off 20% fibrosis (sensitivity 88% kurtosis and skewness; specificity 81% kurtosis and 86% skewness; cut-off kurtosis ≤26, cut-off skewness ≤4; both P<0.001). Reduced HRCT is a robust method to assess lung fibrosis in SSc with minimal radiation dose with no difference in scoring assessment of lung fibrosis severity and extension in comparison to standard HRCT. In contrast to standard HRCT histogram parameters derived from the approach of reduced HRCT could discriminate at a threshold of 20% lung fibrosis with high sensitivity and specificity. Hence it might be used to detect early disease progression of lung fibrosis in context of monitoring and treatment of SSc patients.

  10. Measuring the apparent diffusion coefficient in primary rectal tumors: is there a benefit in performing histogram analyses?

    PubMed

    van Heeswijk, Miriam M; Lambregts, Doenja M J; Maas, Monique; Lahaye, Max J; Ayas, Z; Slenter, Jos M G M; Beets, Geerard L; Bakers, Frans C H; Beets-Tan, Regina G H

    2017-06-01

    The apparent diffusion coefficient (ADC) is a potential prognostic imaging marker in rectal cancer. Typically, mean ADC values are used, derived from precise manual whole-volume tumor delineations by experts. The aim was first to explore whether non-precise circular delineation combined with histogram analysis can be a less cumbersome alternative to acquire similar ADC measurements and second to explore whether histogram analyses provide additional prognostic information. Thirty-seven patients who underwent a primary staging MRI including diffusion-weighted imaging (DWI; b0, 25, 50, 100, 500, 1000; 1.5 T) were included. Volumes-of-interest (VOIs) were drawn on b1000-DWI: (a) precise delineation, manually tracing tumor boundaries (2 expert readers), and (b) non-precise delineation, drawing circular VOIs with a wide margin around the tumor (2 non-experts). Mean ADC and histogram metrics (mean, min, max, median, SD, skewness, kurtosis, 5th-95th percentiles) were derived from the VOIs and delineation time was recorded. Measurements were compared between the two methods and correlated with prognostic outcome parameters. Median delineation time reduced from 47-165 s (precise) to 21-43 s (non-precise). The 45th percentile of the non-precise delineation showed the best correlation with the mean ADC from the precise delineation as the reference standard (ICC 0.71-0.75). None of the mean ADC or histogram parameters showed significant prognostic value; only the total tumor volume (VOI) was significantly larger in patients with positive clinical N stage and mesorectal fascia involvement. When performing non-precise tumor delineation, histogram analysis (in specific 45th ADC percentile) may be used as an alternative to obtain similar ADC values as with precise whole tumor delineation. Histogram analyses are not beneficial to obtain additional prognostic information.

  11. Subtype Differentiation of Small (≤ 4 cm) Solid Renal Mass Using Volumetric Histogram Analysis of DWI at 3-T MRI.

    PubMed

    Li, Anqin; Xing, Wei; Li, Haojie; Hu, Yao; Hu, Daoyu; Li, Zhen; Kamel, Ihab R

    2018-05-29

    The purpose of this article is to evaluate the utility of volumetric histogram analysis of apparent diffusion coefficient (ADC) derived from reduced-FOV DWI for small (≤ 4 cm) solid renal mass subtypes at 3-T MRI. This retrospective study included 38 clear cell renal cell carcinomas (RCCs), 16 papillary RCCs, 18 chromophobe RCCs, 13 minimal fat angiomyolipomas (AMLs), and seven oncocytomas evaluated with preoperative MRI. Volumetric ADC maps were generated using all slices of the reduced-FOV DW images to obtain histogram parameters, including mean, median, 10th percentile, 25th percentile, 75th percentile, 90th percentile, and SD ADC values, as well as skewness, kurtosis, and entropy. Comparisons of these parameters were made by one-way ANOVA, t test, and ROC curves analysis. ADC histogram parameters differentiated eight of 10 pairs of renal tumors. Three subtype pairs (clear cell RCC vs papillary RCC, clear cell RCC vs chromophobe RCC, and clear cell RCC vs minimal fat AML) were differentiated by mean ADC. However, five other subtype pairs (clear cell RCC vs oncocytoma, papillary RCC vs minimal fat AML, papillary RCC vs oncocytoma, chromophobe RCC vs minimal fat AML, and chromophobe RCC vs oncocytoma) were differentiated by histogram distribution parameters exclusively (all p < 0.05). Mean ADC, median ADC, 75th and 90th percentile ADC, SD ADC, and entropy of malignant tumors were significantly higher than those of benign tumors (all p < 0.05). Combination of mean ADC with histogram parameters yielded the highest AUC (0.851; sensitivity, 80.0%; specificity, 86.1%). Quantitative volumetric ADC histogram analysis may help differentiate various subtypes of small solid renal tumors, including benign and malignant lesions.

  12. True progression versus pseudoprogression in the treatment of glioblastomas: a comparison study of normalized cerebral blood volume and apparent diffusion coefficient by histogram analysis.

    PubMed

    Song, Yong Sub; Choi, Seung Hong; Park, Chul-Kee; Yi, Kyung Sik; Lee, Woong Jae; Yun, Tae Jin; Kim, Tae Min; Lee, Se-Hoon; Kim, Ji-Hoon; Sohn, Chul-Ho; Park, Sung-Hye; Kim, Il Han; Jahng, Geon-Ho; Chang, Kee-Hyun

    2013-01-01

    The purpose of this study was to differentiate true progression from pseudoprogression of glioblastomas treated with concurrent chemoradiotherapy (CCRT) with temozolomide (TMZ) by using histogram analysis of apparent diffusion coefficient (ADC) and normalized cerebral blood volume (nCBV) maps. Twenty patients with histopathologically proven glioblastoma who had received CCRT with TMZ underwent perfusion-weighted imaging and diffusion-weighted imaging (b = 0, 1000 sec/mm(2)). The corresponding nCBV and ADC maps for the newly visible, entirely enhancing lesions were calculated after the completion of CCRT with TMZ. Two observers independently measured the histogram parameters of the nCBV and ADC maps. The histogram parameters between the true progression group (n = 10) and the pseudoprogression group (n = 10) were compared by use of an unpaired Student's t test and subsequent multivariable stepwise logistic regression analysis to determine the best predictors for the differential diagnosis between the two groups. Receiver operating characteristic analysis was employed to determine the best cutoff values for the histogram parameters that proved to be significant predictors for differentiating true progression from pseudoprogression. Intraclass correlation coefficient was used to determine the level of inter-observer reliability for the histogram parameters. The 5th percentile value (C5) of the cumulative ADC histograms was a significant predictor for the differential diagnosis between true progression and pseudoprogression (p = 0.044 for observer 1; p = 0.011 for observer 2). Optimal cutoff values of 892 × 10(-6) mm(2)/sec for observer 1 and 907 × 10(-6) mm(2)/sec for observer 2 could help differentiate between the two groups with a sensitivity of 90% and 80%, respectively, a specificity of 90% and 80%, respectively, and an area under the curve of 0.880 and 0.840, respectively. There was no other significant differentiating parameter on the nCBV histograms. Inter-observer reliability was excellent or good for all histogram parameters (intraclass correlation coefficient range: 0.70-0.99). The C5 of the cumulative ADC histogram can be a promising parameter for the differentiation of true progression from pseudoprogression of newly visible, entirely enhancing lesions after CCRT with TMZ for glioblastomas.

  13. True Progression versus Pseudoprogression in the Treatment of Glioblastomas: A Comparison Study of Normalized Cerebral Blood Volume and Apparent Diffusion Coefficient by Histogram Analysis

    PubMed Central

    Song, Yong Sub; Park, Chul-Kee; Yi, Kyung Sik; Lee, Woong Jae; Yun, Tae Jin; Kim, Tae Min; Lee, Se-Hoon; Kim, Ji-Hoon; Sohn, Chul-Ho; Park, Sung-Hye; Kim, Il Han; Jahng, Geon-Ho; Chang, Kee-Hyun

    2013-01-01

    Objective The purpose of this study was to differentiate true progression from pseudoprogression of glioblastomas treated with concurrent chemoradiotherapy (CCRT) with temozolomide (TMZ) by using histogram analysis of apparent diffusion coefficient (ADC) and normalized cerebral blood volume (nCBV) maps. Materials and Methods Twenty patients with histopathologically proven glioblastoma who had received CCRT with TMZ underwent perfusion-weighted imaging and diffusion-weighted imaging (b = 0, 1000 sec/mm2). The corresponding nCBV and ADC maps for the newly visible, entirely enhancing lesions were calculated after the completion of CCRT with TMZ. Two observers independently measured the histogram parameters of the nCBV and ADC maps. The histogram parameters between the true progression group (n = 10) and the pseudoprogression group (n = 10) were compared by use of an unpaired Student's t test and subsequent multivariable stepwise logistic regression analysis to determine the best predictors for the differential diagnosis between the two groups. Receiver operating characteristic analysis was employed to determine the best cutoff values for the histogram parameters that proved to be significant predictors for differentiating true progression from pseudoprogression. Intraclass correlation coefficient was used to determine the level of inter-observer reliability for the histogram parameters. Results The 5th percentile value (C5) of the cumulative ADC histograms was a significant predictor for the differential diagnosis between true progression and pseudoprogression (p = 0.044 for observer 1; p = 0.011 for observer 2). Optimal cutoff values of 892 × 10-6 mm2/sec for observer 1 and 907 × 10-6 mm2/sec for observer 2 could help differentiate between the two groups with a sensitivity of 90% and 80%, respectively, a specificity of 90% and 80%, respectively, and an area under the curve of 0.880 and 0.840, respectively. There was no other significant differentiating parameter on the nCBV histograms. Inter-observer reliability was excellent or good for all histogram parameters (intraclass correlation coefficient range: 0.70-0.99). Conclusion The C5 of the cumulative ADC histogram can be a promising parameter for the differentiation of true progression from pseudoprogression of newly visible, entirely enhancing lesions after CCRT with TMZ for glioblastomas. PMID:23901325

  14. The impact of slice-reduced computed tomography on histogram-based densitometry assessment of lung fibrosis in patients with systemic sclerosis

    PubMed Central

    Maurer, Britta; Suliman, Yossra A.; Morsbach, Fabian; Distler, Oliver; Frauenfelder, Thomas

    2018-01-01

    Background To evaluate usability of slice-reduced sequential computed tomography (CT) compared to standard high-resolution CT (HRCT) in patients with systemic sclerosis (SSc) for qualitative and quantitative assessment of interstitial lung disease (ILD) with respect to (I) detection of lung parenchymal abnormalities, (II) qualitative and semiquantitative visual assessment, (III) quantification of ILD by histograms and (IV) accuracy for the 20%-cut off discrimination. Methods From standard chest HRCT of 60 SSc patients sequential 9-slice-computed tomography (reduced HRCT) was retrospectively reconstructed. ILD was assessed by visual scoring and quantitative histogram parameters. Results from standard and reduced HRCT were compared using non-parametric tests and analysed by univariate linear regression analyses. Results With respect to the detection of parenchymal abnormalities, only the detection of intrapulmonary bronchiectasis was significantly lower in reduced HRCT compared to standard HRCT (P=0.039). No differences were found comparing visual scores for fibrosis severity and extension from standard and reduced HRCT (P=0.051–0.073). All scores correlated significantly (P<0.001) to histogram parameters derived from both, standard and reduced HRCT. Significant higher values of kurtosis and skewness for reduced HRCT were found (both P<0.001). In contrast to standard HRCT histogram parameters from reduced HRCT showed significant discrimination at cut-off 20% fibrosis (sensitivity 88% kurtosis and skewness; specificity 81% kurtosis and 86% skewness; cut-off kurtosis ≤26, cut-off skewness ≤4; both P<0.001). Conclusions Reduced HRCT is a robust method to assess lung fibrosis in SSc with minimal radiation dose with no difference in scoring assessment of lung fibrosis severity and extension in comparison to standard HRCT. In contrast to standard HRCT histogram parameters derived from the approach of reduced HRCT could discriminate at a threshold of 20% lung fibrosis with high sensitivity and specificity. Hence it might be used to detect early disease progression of lung fibrosis in context of monitoring and treatment of SSc patients. PMID:29850118

  15. Insight on AV-45 binding in white and grey matter from histogram analysis: a study on early Alzheimer's disease patients and healthy subjects

    PubMed Central

    Nemmi, Federico; Saint-Aubert, Laure; Adel, Djilali; Salabert, Anne-Sophie; Pariente, Jérémie; Barbeau, Emmanuel; Payoux, Pierre; Péran, Patrice

    2014-01-01

    Purpose AV-45 amyloid biomarker is known to show uptake in white matter in patients with Alzheimer’s disease (AD) but also in healthy population. This binding; thought to be of a non-specific lipophilic nature has not yet been investigated. The aim of this study was to determine the differential pattern of AV-45 binding in healthy and pathological populations in white matter. Methods We recruited 24 patients presenting with AD at early stage and 17 matched, healthy subjects. We used an optimized PET-MRI registration method and an approach based on intensity histogram using several indexes. We compared the results of the intensity histogram analyses with a more canonical approach based on target-to-cerebellum Standard Uptake Value (SUVr) in white and grey matters using MANOVA and discriminant analyses. A cluster analysis on white and grey matter histograms was also performed. Results White matter histogram analysis revealed significant differences between AD and healthy subjects, which were not revealed by SUVr analysis. However, white matter histograms was not decisive to discriminate groups, and indexes based on grey matter only showed better discriminative power than SUVr. The cluster analysis divided our sample in two clusters, showing different uptakes in grey but also in white matter. Conclusion These results demonstrate that AV-45 binding in white matter conveys subtle information not detectable using SUVr approach. Although it is not better than standard SUVr to discriminate AD patients from healthy subjects, this information could reveal white matter modifications. PMID:24573658

  16. Impact of the radiotherapy technique on the correlation between dose-volume histograms of the bladder wall defined on MRI imaging and dose-volume/surface histograms in prostate cancer patients

    NASA Astrophysics Data System (ADS)

    Maggio, Angelo; Carillo, Viviana; Cozzarini, Cesare; Perna, Lucia; Rancati, Tiziana; Valdagni, Riccardo; Gabriele, Pietro; Fiorino, Claudio

    2013-04-01

    The aim of this study was to evaluate the correlation between the ‘true’ absolute and relative dose-volume histograms (DVHs) of the bladder wall, dose-wall histogram (DWH) defined on MRI imaging and other surrogates of bladder dosimetry in prostate cancer patients, planned both with 3D-conformal and intensity-modulated radiation therapy (IMRT) techniques. For 17 prostate cancer patients, previously treated with radical intent, CT and MRI scans were acquired and matched. The contours of bladder walls were drawn by using MRI images. External bladder surfaces were then used to generate artificial bladder walls by performing automatic contractions of 5, 7 and 10 mm. For each patient a 3D conformal radiotherapy (3DCRT) and an IMRT treatment plan was generated with a prescription dose of 77.4 Gy (1.8 Gy/fr) and DVH of the whole bladder of the artificial walls (DVH-5/10) and dose-surface histograms (DSHs) were calculated and compared against the DWH in absolute and relative value, for both treatment planning techniques. A specific software (VODCA v. 4.4.0, MSS Inc.) was used for calculating the dose-volume/surface histogram. Correlation was quantified for selected dose-volume/surface parameters by the Spearman correlation coefficient. The agreement between %DWH and DVH5, DVH7 and DVH10 was found to be very good (maximum average deviations below 2%, SD < 5%): DVH5 showed the best agreement. The correlation was slightly better for absolute (R = 0.80-0.94) compared to relative (R = 0.66-0.92) histograms. The DSH was also found to be highly correlated with the DWH, although slightly higher deviations were generally found. The DVH was not a good surrogate of the DWH (R < 0.7 for most of parameters). When comparing the two treatment techniques, more pronounced differences between relative histograms were seen for IMRT with respect to 3DCRT (p < 0.0001).

  17. Diffusion Profiling via a Histogram Approach Distinguishes Low-grade from High-grade Meningiomas, Can Reflect the Respective Proliferative Potential and Progesterone Receptor Status.

    PubMed

    Gihr, Georg Alexander; Horvath-Rizea, Diana; Garnov, Nikita; Kohlhof-Meinecke, Patricia; Ganslandt, Oliver; Henkes, Hans; Meyer, Hans Jonas; Hoffmann, Karl-Titus; Surov, Alexey; Schob, Stefan

    2018-02-01

    Presurgical grading, estimation of growth kinetics, and other prognostic factors are becoming increasingly important for selecting the best therapeutic approach for meningioma patients. Diffusion-weighted imaging (DWI) provides microstructural information and reflects tumor biology. A novel DWI approach, histogram profiling of apparent diffusion coefficient (ADC) volumes, provides more distinct information than conventional DWI. Therefore, our study investigated whether ADC histogram profiling distinguishes low-grade from high-grade lesions and reflects Ki-67 expression and progesterone receptor status. Pretreatment ADC volumes of 37 meningioma patients (28 low-grade, 9 high-grade) were used for histogram profiling. WHO grade, Ki-67 expression, and progesterone receptor status were evaluated. Comparative and correlative statistics investigating the association between histogram profiling and neuropathology were performed. The entire ADC profile (p10, p25, p75, p90, mean, median) was significantly lower in high-grade versus low-grade meningiomas. The lower percentiles, mean, and modus showed significant correlations with Ki-67 expression. Skewness and entropy of the ADC volumes were significantly associated with progesterone receptor status and Ki-67 expression. ROC analysis revealed entropy to be the most accurate parameter distinguishing low-grade from high-grade meningiomas. ADC histogram profiling provides a distinct set of parameters, which help differentiate low-grade versus high-grade meningiomas. Also, histogram metrics correlate significantly with histological surrogates of the respective proliferative potential. More specifically, entropy revealed to be the most promising imaging biomarker for presurgical grading. Both, entropy and skewness were significantly associated with progesterone receptor status and Ki-67 expression and therefore should be investigated further as predictors for prognostically relevant tumor biological features. Since absolute ADC values vary between MRI scanners of different vendors and field strengths, their use is more limited in the presurgical setting.

  18. Histogram Analysis of CT Perfusion of Hepatocellular Carcinoma for Predicting Response to Transarterial Radioembolization: Value of Tumor Heterogeneity Assessment.

    PubMed

    Reiner, Caecilia S; Gordic, Sonja; Puippe, Gilbert; Morsbach, Fabian; Wurnig, Moritz; Schaefer, Niklaus; Veit-Haibach, Patrick; Pfammatter, Thomas; Alkadhi, Hatem

    2016-03-01

    To evaluate in patients with hepatocellular carcinoma (HCC), whether assessment of tumor heterogeneity by histogram analysis of computed tomography (CT) perfusion helps predicting response to transarterial radioembolization (TARE). Sixteen patients (15 male; mean age 65 years; age range 47-80 years) with HCC underwent CT liver perfusion for treatment planning prior to TARE with Yttrium-90 microspheres. Arterial perfusion (AP) derived from CT perfusion was measured in the entire tumor volume, and heterogeneity was analyzed voxel-wise by histogram analysis. Response to TARE was evaluated on follow-up imaging (median follow-up, 129 days) based on modified Response Evaluation Criteria in Solid Tumors (mRECIST). Results of histogram analysis and mean AP values of the tumor were compared between responders and non-responders. Receiver operating characteristics were calculated to determine the parameters' ability to discriminate responders from non-responders. According to mRECIST, 8 patients (50%) were responders and 8 (50%) non-responders. Comparing responders and non-responders, the 50th and 75th percentile of AP derived from histogram analysis was significantly different [AP 43.8/54.3 vs. 27.6/34.3 mL min(-1) 100 mL(-1)); p < 0.05], while the mean AP of HCCs (43.5 vs. 27.9 mL min(-1) 100 mL(-1); p > 0.05) was not. Further heterogeneity parameters from histogram analysis (skewness, coefficient of variation, and 25th percentile) did not differ between responders and non-responders (p > 0.05). If the cut-off for the 75th percentile was set to an AP of 37.5 mL min(-1) 100 mL(-1), therapy response could be predicted with a sensitivity of 88% (7/8) and specificity of 75% (6/8). Voxel-wise histogram analysis of pretreatment CT perfusion indicating tumor heterogeneity of HCC improves the pretreatment prediction of response to TARE.

  19. Real-time video analysis for retail stores

    NASA Astrophysics Data System (ADS)

    Hassan, Ehtesham; Maurya, Avinash K.

    2015-03-01

    With the advancement in video processing technologies, we can capture subtle human responses in a retail store environment which play decisive role in the store management. In this paper, we present a novel surveillance video based analytic system for retail stores targeting localized and global traffic estimate. Development of an intelligent system for human traffic estimation in real-life poses a challenging problem because of the variation and noise involved. In this direction, we begin with a novel human tracking system by an intelligent combination of motion based and image level object detection. We demonstrate the initial evaluation of this approach on available standard dataset yielding promising result. Exact traffic estimate in a retail store require correct separation of customers from service providers. We present a role based human classification framework using Gaussian mixture model for this task. A novel feature descriptor named graded colour histogram is defined for object representation. Using, our role based human classification and tracking system, we have defined a novel computationally efficient framework for two types of analytics generation i.e., region specific people count and dwell-time estimation. This system has been extensively evaluated and tested on four hours of real-life video captured from a retail store.

  20. Automated oil spill detection with multispectral imagery

    NASA Astrophysics Data System (ADS)

    Bradford, Brian N.; Sanchez-Reyes, Pedro J.

    2011-06-01

    In this publication we present an automated detection method for ocean surface oil, like that which existed in the Gulf of Mexico as a result of the April 20, 2010 Deepwater Horizon drilling rig explosion. Regions of surface oil in airborne imagery are isolated using red, green, and blue bands from multispectral data sets. The oil shape isolation procedure involves a series of image processing functions to draw out the visual phenomenological features of the surface oil. These functions include selective color band combinations, contrast enhancement and histogram warping. An image segmentation process then separates out contiguous regions of oil to provide a raster mask to an analyst. We automate the detection algorithm to allow large volumes of data to be processed in a short time period, which can provide timely oil coverage statistics to response crews. Geo-referenced and mosaicked data sets enable the largest identified oil regions to be mapped to exact geographic coordinates. In our simulation, multispectral imagery came from multiple sources including first-hand data collected from the Gulf. Results of the simulation show the oil spill coverage area as a raster mask, along with histogram statistics of the oil pixels. A rough square footage estimate of the coverage is reported if the image ground sample distance is available.

  1. Multivariable extrapolation of grand canonical free energy landscapes

    NASA Astrophysics Data System (ADS)

    Mahynski, Nathan A.; Errington, Jeffrey R.; Shen, Vincent K.

    2017-12-01

    We derive an approach for extrapolating the free energy landscape of multicomponent systems in the grand canonical ensemble, obtained from flat-histogram Monte Carlo simulations, from one set of temperature and chemical potentials to another. This is accomplished by expanding the landscape in a Taylor series at each value of the order parameter which defines its macrostate phase space. The coefficients in each Taylor polynomial are known exactly from fluctuation formulas, which may be computed by measuring the appropriate moments of extensive variables that fluctuate in this ensemble. Here we derive the expressions necessary to define these coefficients up to arbitrary order. In principle, this enables a single flat-histogram simulation to provide complete thermodynamic information over a broad range of temperatures and chemical potentials. Using this, we also show how to combine a small number of simulations, each performed at different conditions, in a thermodynamically consistent fashion to accurately compute properties at arbitrary temperatures and chemical potentials. This method may significantly increase the computational efficiency of biased grand canonical Monte Carlo simulations, especially for multicomponent mixtures. Although approximate, this approach is amenable to high-throughput and data-intensive investigations where it is preferable to have a large quantity of reasonably accurate simulation data, rather than a smaller amount with a higher accuracy.

  2. Statistical projection effects in a hydrodynamic pilot-wave system

    NASA Astrophysics Data System (ADS)

    Sáenz, Pedro J.; Cristea-Platon, Tudor; Bush, John W. M.

    2018-03-01

    Millimetric liquid droplets can walk across the surface of a vibrating fluid bath, self-propelled through a resonant interaction with their own guiding or `pilot' wave fields. These walking droplets, or `walkers', exhibit several features previously thought to be peculiar to the microscopic, quantum realm. In particular, walkers confined to circular corrals manifest a wave-like statistical behaviour reminiscent of that of electrons in quantum corrals. Here we demonstrate that localized topological inhomogeneities in an elliptical corral may lead to resonant projection effects in the walker's statistics similar to those reported in quantum corrals. Specifically, we show that a submerged circular well may drive the walker to excite specific eigenmodes in the bath that result in drastic changes in the particle's statistical behaviour. The well tends to attract the walker, leading to a local peak in the walker's position histogram. By placing the well at one of the foci, a mode with maxima near the foci is preferentially excited, leading to a projection effect in the walker's position histogram towards the empty focus, an effect strongly reminiscent of the quantum mirage. Finally, we demonstrate that the mean pilot-wave field has the same form as the histogram describing the walker's statistics.

  3. Information-Adaptive Image Encoding and Restoration

    NASA Technical Reports Server (NTRS)

    Park, Stephen K.; Rahman, Zia-ur

    1998-01-01

    The multiscale retinex with color restoration (MSRCR) has shown itself to be a very versatile automatic image enhancement algorithm that simultaneously provides dynamic range compression, color constancy, and color rendition. A number of algorithms exist that provide one or more of these features, but not all. In this paper we compare the performance of the MSRCR with techniques that are widely used for image enhancement. Specifically, we compare the MSRCR with color adjustment methods such as gamma correction and gain/offset application, histogram modification techniques such as histogram equalization and manual histogram adjustment, and other more powerful techniques such as homomorphic filtering and 'burning and dodging'. The comparison is carried out by testing the suite of image enhancement methods on a set of diverse images. We find that though some of these techniques work well for some of these images, only the MSRCR performs universally well oil the test set.

  4. Sample Training Based Wildfire Segmentation by 2D Histogram θ-Division with Minimum Error

    PubMed Central

    Dong, Erqian; Sun, Mingui; Jia, Wenyan; Zhang, Dengyi; Yuan, Zhiyong

    2013-01-01

    A novel wildfire segmentation algorithm is proposed with the help of sample training based 2D histogram θ-division and minimum error. Based on minimum error principle and 2D color histogram, the θ-division methods were presented recently, but application of prior knowledge on them has not been explored. For the specific problem of wildfire segmentation, we collect sample images with manually labeled fire pixels. Then we define the probability function of error division to evaluate θ-division segmentations, and the optimal angle θ is determined by sample training. Performances in different color channels are compared, and the suitable channel is selected. To further improve the accuracy, the combination approach is presented with both θ-division and other segmentation methods such as GMM. Our approach is tested on real images, and the experiments prove its efficiency for wildfire segmentation. PMID:23878526

  5. A Comparison of the Multiscale Retinex With Other Image Enhancement Techniques

    NASA Technical Reports Server (NTRS)

    Rahman, Zia-Ur; Woodell, Glenn A.; Jobson, Daniel J.

    1997-01-01

    The multiscale retinex with color restoration (MSRCR) has shown itself to be a very versatile automatic image enhancement algorithm that simultaneously provides dynamic range compression, color constancy, and color rendition. A number of algorithms exist that provide one or more of these features, but not all. In this paper we compare the performance of the MSRCR with techniques that are widely used for image enhancement. Specifically, we compare the MSRCR with color adjustment methods such as gamma correction and gain/offset application, histogram modification techniques such as histogram equalization and manual histogram adjustment, and other more powerful techniques such as homomorphic filtering and 'burning and dodging'. The comparison is carried out by testing the suite of image enhancement methods on a set of diverse images. We find that though some of these techniques work well for some of these images, only the MSRCR performs universally well on the test set.

  6. Adaptive image contrast enhancement using generalizations of histogram equalization.

    PubMed

    Stark, J A

    2000-01-01

    This paper proposes a scheme for adaptive image-contrast enhancement based on a generalization of histogram equalization (HE). HE is a useful technique for improving image contrast, but its effect is too severe for many purposes. However, dramatically different results can be obtained with relatively minor modifications. A concise description of adaptive HE is set out, and this framework is used in a discussion of past suggestions for variations on HE. A key feature of this formalism is a "cumulation function," which is used to generate a grey level mapping from the local histogram. By choosing alternative forms of cumulation function one can achieve a wide variety of effects. A specific form is proposed. Through the variation of one or two parameters, the resulting process can produce a range of degrees of contrast enhancement, at one extreme leaving the image unchanged, at another yielding full adaptive equalization.

  7. Content based Image Retrieval based on Different Global and Local Color Histogram Methods: A Survey

    NASA Astrophysics Data System (ADS)

    Suhasini, Pallikonda Sarah; Sri Rama Krishna, K.; Murali Krishna, I. V.

    2017-02-01

    Different global and local color histogram methods for content based image retrieval (CBIR) are investigated in this paper. Color histogram is a widely used descriptor for CBIR. Conventional method of extracting color histogram is global, which misses the spatial content, is less invariant to deformation and viewpoint changes, and results in a very large three dimensional histogram corresponding to the color space used. To address the above deficiencies, different global and local histogram methods are proposed in recent research. Different ways of extracting local histograms to have spatial correspondence, invariant colour histogram to add deformation and viewpoint invariance and fuzzy linking method to reduce the size of the histogram are found in recent papers. The color space and the distance metric used are vital in obtaining color histogram. In this paper the performance of CBIR based on different global and local color histograms in three different color spaces, namely, RGB, HSV, L*a*b* and also with three distance measures Euclidean, Quadratic and Histogram intersection are surveyed, to choose appropriate method for future research.

  8. Naturalness preservation image contrast enhancement via histogram modification

    NASA Astrophysics Data System (ADS)

    Tian, Qi-Chong; Cohen, Laurent D.

    2018-04-01

    Contrast enhancement is a technique for enhancing image contrast to obtain better visual quality. Since many existing contrast enhancement algorithms usually produce over-enhanced results, the naturalness preservation is needed to be considered in the framework of image contrast enhancement. This paper proposes a naturalness preservation contrast enhancement method, which adopts the histogram matching to improve the contrast and uses the image quality assessment to automatically select the optimal target histogram. The contrast improvement and the naturalness preservation are both considered in the target histogram, so this method can avoid the over-enhancement problem. In the proposed method, the optimal target histogram is a weighted sum of the original histogram, the uniform histogram, and the Gaussian-shaped histogram. Then the structural metric and the statistical naturalness metric are used to determine the weights of corresponding histograms. At last, the contrast-enhanced image is obtained via matching the optimal target histogram. The experiments demonstrate the proposed method outperforms the compared histogram-based contrast enhancement algorithms.

  9. Characterization of testicular germ cell tumors: Whole-lesion histogram analysis of the apparent diffusion coefficient at 3T.

    PubMed

    Min, Xiangde; Feng, Zhaoyan; Wang, Liang; Cai, Jie; Yan, Xu; Li, Basen; Ke, Zan; Zhang, Peipei; You, Huijuan

    2018-01-01

    To assess the values of parameters derived from whole-lesion histograms of the apparent diffusion coefficient (ADC) at 3T for the characterization of testicular germ cell tumors (TGCTs). A total of 24 men with TGCTs underwent 3T diffusion-weighted imaging. Fourteen tumors were pathologically confirmed as seminomas, and ten tumors were pathologically confirmed as nonseminomas. Whole-lesion histogram analysis of the ADC values was performed. A Mann-Whitney U test was employed to compare the differences in ADC histogram parameters between seminomas and nonseminomas. Receiver operating characteristic analysis was used to identify the cutoff values for each parameter for differentiating seminomas from nonseminomas; furthermore, the area under the curve (AUC) was calculated to evaluate the diagnostic accuracy. The median of 10th, 25th, 50th, 75th, and 90th percentiles and mean, minimum and maximum ADC values were all significantly reduced for seminomas compared with nonseminomas (p<0.05 for all). In contrast, the median of kurtosis and skewness of ADC values of seminomas were both significantly increased compared with those of nonseminomas (p=0.003 and 0.001, respectively). For differentiating nonseminomas from seminomas, the 10th percentile ADC yielded the highest AUC with a sensitivity and specificity of 100% and 92.86%, respectively. Whole-lesion histogram analysis of ADCs might be used for preoperative characterization of TGCTs. Copyright © 2017 Elsevier B.V. All rights reserved.

  10. Quantification and classification of neuronal responses in kernel-smoothed peristimulus time histograms

    PubMed Central

    Fried, Itzhak; Koch, Christof

    2014-01-01

    Peristimulus time histograms are a widespread form of visualizing neuronal responses. Kernel convolution methods transform these histograms into a smooth, continuous probability density function. This provides an improved estimate of a neuron's actual response envelope. We here develop a classifier, called the h-coefficient, to determine whether time-locked fluctuations in the firing rate of a neuron should be classified as a response or as random noise. Unlike previous approaches, the h-coefficient takes advantage of the more precise response envelope estimation provided by the kernel convolution method. The h-coefficient quantizes the smoothed response envelope and calculates the probability of a response of a given shape to occur by chance. We tested the efficacy of the h-coefficient in a large data set of Monte Carlo simulated smoothed peristimulus time histograms with varying response amplitudes, response durations, trial numbers, and baseline firing rates. Across all these conditions, the h-coefficient significantly outperformed more classical classifiers, with a mean false alarm rate of 0.004 and a mean hit rate of 0.494. We also tested the h-coefficient's performance in a set of neuronal responses recorded in humans. The algorithm behind the h-coefficient provides various opportunities for further adaptation and the flexibility to target specific parameters in a given data set. Our findings confirm that the h-coefficient can provide a conservative and powerful tool for the analysis of peristimulus time histograms with great potential for future development. PMID:25475352

  11. Histogram analysis of diffusion kurtosis imaging of nasopharyngeal carcinoma: Correlation between quantitative parameters and clinical stage.

    PubMed

    Xu, Xiao-Quan; Ma, Gao; Wang, Yan-Jun; Hu, Hao; Su, Guo-Yi; Shi, Hai-Bin; Wu, Fei-Yun

    2017-07-18

    To evaluate the correlation between histogram parameters derived from diffusion-kurtosis (DK) imaging and the clinical stage of nasopharyngeal carcinoma (NPC). High T-stage (T3/4) NPC showed significantly higher Kapp-mean (P = 0.018), Kapp-median (P = 0.029) and Kapp-90th (P = 0.003) than low T-stage (T1/2) NPC. High N-stage NPC (N2/3) showed significantly lower Dapp-mean (P = 0.002), Dapp-median (P = 0.002) and Dapp-10th (P < 0.001) than low N-stage NPC (N0/1). High AJCC-stage NPC (III/IV) showed significantly lower Dapp-10th (P = 0.038) than low AJCC-stage NPC (I/II). ROC analyses indicated that Kapp-90th was optimal for predicting high T-stage (AUC, 0.759; sensitivity, 0.842; specificity, 0.607), while Dapp-10th was best for predicting high N- and AJCC-stage (N-stage, AUC, 0.841; sensitivity, 0.875; specificity, 0.807; AJCC-stage, AUC, 0.671; sensitivity, 0.800; specificity, 0.588). DK imaging data of forty-seven consecutive NPC patients were retrospectively analyzed. Apparent diffusion for Gaussian distribution (Dapp) and apparent kurtosis coefficient (Kapp) were generated using diffusion-kurtosis model. Histogram parameters, including mean, median, 10th, 90th percentiles, skewness and kurtosis of Dapp and Kapp were calculated. Patients were divided into low and high T, N and clinical stage based on American Joint Committee on Cancer (AJCC) staging system. Differences of histogram parameters between low and high T, N and AJCC stages were compared using t test. Multiple receiver operating characteristic (ROC) curves were used to determine and compare the value of significant parameters in predicting high T, N and AJCC stage, respectively. DK imaging-derived parameters correlated well with clinical stage of NPC, therefore could serve as an adjunctive imaging technique for evaluating NPC.

  12. Histogram Analysis of Apparent Diffusion Coefficients for Occult Tonsil Cancer in Patients with Cervical Nodal Metastasis from an Unknown Primary Site at Presentation.

    PubMed

    Choi, Young Jun; Lee, Jeong Hyun; Kim, Hye Ok; Kim, Dae Yoon; Yoon, Ra Gyoung; Cho, So Hyun; Koh, Myeong Ju; Kim, Namkug; Kim, Sang Yoon; Baek, Jung Hwan

    2016-01-01

    To explore the added value of histogram analysis of apparent diffusion coefficient (ADC) values over magnetic resonance (MR) imaging and fluorine 18 ((18)F) fluorodeoxyglucose (FDG) positron emission tomography (PET)/computed tomography (CT) for the detection of occult palatine tonsil squamous cell carcinoma (SCC) in patients with cervical nodal metastasis from a cancer of an unknown primary site. The institutional review board approved this retrospective study, and the requirement for informed consent was waived. Differences in the bimodal histogram parameters of the ADC values were assessed among occult palatine tonsil SCC (n = 19), overt palatine tonsil SCC (n = 20), and normal palatine tonsils (n = 20). One-way analysis of variance was used to analyze differences among the three groups. Receiver operating characteristic curve analysis was used to determine the best differentiating parameters. The increased sensitivity of histogram analysis over MR imaging and (18)F-FDG PET/CT for the detection of occult palatine tonsil SCC was evaluated as added value. Histogram analysis showed statistically significant differences in the mean, standard deviation, and 50th and 90th percentile ADC values among the three groups (P < .0045). Occult palatine tonsil SCC had a significantly higher standard deviation for the overall curves, mean and standard deviation of the higher curves, and 90th percentile ADC value, compared with normal palatine tonsils (P < .0167). Receiver operating characteristic curve analysis showed that the standard deviation of the overall curve best delineated occult palatine tonsil SCC from normal palatine tonsils, with a sensitivity of 78.9% (15 of 19 patients) and a specificity of 60% (12 of 20 patients). The added value of ADC histogram analysis was 52.6% over MR imaging alone and 15.8% over combined conventional MR imaging and (18)F-FDG PET/CT. Adding ADC histogram analysis to conventional MR imaging can improve the detection sensitivity for occult palatine tonsil SCC in patients with a cervical nodal metastasis originating from a cancer of an unknown primary site. © RSNA, 2015.

  13. Utility of whole-lesion ADC histogram metrics for assessing the malignant potential of pancreatic intraductal papillary mucinous neoplasms (IPMNs).

    PubMed

    Hoffman, David H; Ream, Justin M; Hajdu, Christina H; Rosenkrantz, Andrew B

    2017-04-01

    To evaluate whole-lesion ADC histogram metrics for assessing the malignant potential of pancreatic intraductal papillary mucinous neoplasms (IPMNs), including in comparison with conventional MRI features. Eighteen branch-duct IPMNs underwent MRI with DWI prior to resection (n = 16) or FNA (n = 2). A blinded radiologist placed 3D volumes-of-interest on the entire IPMN on the ADC map, from which whole-lesion histogram metrics were generated. The reader also assessed IPMN size, mural nodularity, and adjacent main-duct dilation. Benign (low-to-intermediate grade dysplasia; n = 10) and malignant (high-grade dysplasia or invasive adenocarcinoma; n = 8) IPMNs were compared. Whole-lesion ADC histogram metrics demonstrating significant differences between benign and malignant IPMNs were: entropy (5.1 ± 0.2 vs. 5.4 ± 0.2; p = 0.01, AUC = 86%); mean of the bottom 10th percentile (2.2 ± 0.4 vs. 1.6 ± 0.7; p = 0.03; AUC = 81%); and mean of the 10-25th percentile (2.8 ± 0.4 vs. 2.3 ± 0.6; p = 0.04; AUC = 79%). The overall mean ADC, skewness, and kurtosis were not significantly different between groups (p ≥ 0.06; AUC = 50-78%). For entropy (highest performing histogram metric), an optimal threshold of >5.3 achieved a sensitivity of 100%, a specificity of 70%, and an accuracy of 83% for predicting malignancy. No significant difference (p = 0.18-0.64) was observed between benign and malignant IPMNs for cyst size ≥3 cm, adjacent main-duct dilatation, or mural nodule. At multivariable analysis of entropy in combination with all other ADC histogram and conventional MRI features, entropy was the only significant independent predictor of malignancy (p = 0.004). Although requiring larger studies, ADC entropy obtained from 3D whole-lesion histogram analysis may serve as a biomarker for identifying the malignant potential of IPMNs, independent of conventional MRI features.

  14. Predicting the nodal status in gastric cancers: The role of apparent diffusion coefficient histogram characteristic analysis.

    PubMed

    Liu, Song; Zhang, Yujuan; Xia, Jie; Chen, Ling; Guan, Wenxian; Guan, Yue; Ge, Yun; He, Jian; Zhou, Zhengyang

    2017-10-01

    To explore the application of histogram analysis in preoperative T and N staging of gastric cancers, with a focus on characteristic parameters of apparent diffusion coefficient (ADC) maps. Eighty-seven patients with gastric cancers underwent diffusion weighted magnetic resonance imaging (b=0, 1000s/mm 2 ), which generated ADC maps. Whole-volume histogram analysis was performed on ADC maps and 7 characteristic parameters were obtained. All those patients underwent surgery and postoperative pathologic T and N stages were determined. Four parameters, including skew, kurtosis, s-sD av and sample number, showed significant differences among gastric cancers at different T and N stages. Most parameters correlated with T and N stages significantly and worked in differentiating gastric cancers at different T or N stages. Especially skew yielded a sensitivity of 0.758, a specificity of 0.810, and an area under the curve (AUC) of 0.802 for differentiating gastric cancers with and without lymph node metastasis (P<0.001). All the parameters, except AUC low , showed good or excellent inter-observer agreement with intra-class correlation coefficients ranging from 0.710 to 0.991. Characteristic parameters derived from whole-volume ADC histogram analysis could help assessing preoperative T and N stages of gastric cancers. Copyright © 2017. Published by Elsevier Inc.

  15. Universal and adapted vocabularies for generic visual categorization.

    PubMed

    Perronnin, Florent

    2008-07-01

    Generic Visual Categorization (GVC) is the pattern classification problem which consists in assigning labels to an image based on its semantic content. This is a challenging task as one has to deal with inherent object/scene variations as well as changes in viewpoint, lighting and occlusion. Several state-of-the-art GVC systems use a vocabulary of visual terms to characterize images with a histogram of visual word counts. We propose a novel practical approach to GVC based on a universal vocabulary, which describes the content of all the considered classes of images, and class vocabularies obtained through the adaptation of the universal vocabulary using class-specific data. The main novelty is that an image is characterized by a set of histograms - one per class - where each histogram describes whether the image content is best modeled by the universal vocabulary or the corresponding class vocabulary. This framework is applied to two types of local image features: low-level descriptors such as the popular SIFT and high-level histograms of word co-occurrences in a spatial neighborhood. It is shown experimentally on two challenging datasets (an in-house database of 19 categories and the PASCAL VOC 2006 dataset) that the proposed approach exhibits state-of-the-art performance at a modest computational cost.

  16. Motor Oil Classification using Color Histograms and Pattern Recognition Techniques.

    PubMed

    Ahmadi, Shiva; Mani-Varnosfaderani, Ahmad; Habibi, Biuck

    2018-04-20

    Motor oil classification is important for quality control and the identification of oil adulteration. In thiswork, we propose a simple, rapid, inexpensive and nondestructive approach based on image analysis and pattern recognition techniques for the classification of nine different types of motor oils according to their corresponding color histograms. For this, we applied color histogram in different color spaces such as red green blue (RGB), grayscale, and hue saturation intensity (HSI) in order to extract features that can help with the classification procedure. These color histograms and their combinations were used as input for model development and then were statistically evaluated by using linear discriminant analysis (LDA), quadratic discriminant analysis (QDA), and support vector machine (SVM) techniques. Here, two common solutions for solving a multiclass classification problem were applied: (1) transformation to binary classification problem using a one-against-all (OAA) approach and (2) extension from binary classifiers to a single globally optimized multilabel classification model. In the OAA strategy, LDA, QDA, and SVM reached up to 97% in terms of accuracy, sensitivity, and specificity for both the training and test sets. In extension from binary case, despite good performances by the SVM classification model, QDA and LDA provided better results up to 92% for RGB-grayscale-HSI color histograms and up to 93% for the HSI color map, respectively. In order to reduce the numbers of independent variables for modeling, a principle component analysis algorithm was used. Our results suggest that the proposed method is promising for the identification and classification of different types of motor oils.

  17. Decoding brain cancer dynamics: a quantitative histogram-based approach using temporal MRI

    NASA Astrophysics Data System (ADS)

    Zhou, Mu; Hall, Lawrence O.; Goldgof, Dmitry B.; Russo, Robin; Gillies, Robert J.; Gatenby, Robert A.

    2015-03-01

    Brain tumor heterogeneity remains a challenge for probing brain cancer evolutionary dynamics. In light of evolution, it is a priority to inspect the cancer system from a time-domain perspective since it explicitly tracks the dynamics of cancer variations. In this paper, we study the problem of exploring brain tumor heterogeneity from temporal clinical magnetic resonance imaging (MRI) data. Our goal is to discover evidence-based knowledge from such temporal imaging data, where multiple clinical MRI scans from Glioblastoma multiforme (GBM) patients are generated during therapy. In particular, we propose a quantitative histogram-based approach that builds a prediction model to measure the difference in histograms obtained from pre- and post-treatment. The study could significantly assist radiologists by providing a metric to identify distinctive patterns within each tumor, which is crucial for the goal of providing patient-specific treatments. We examine the proposed approach for a practical application - clinical survival group prediction. Experimental results show that our approach achieved 90.91% accuracy.

  18. Two-state theory of binned photon statistics for a large class of waiting time distributions and its application to quantum dot blinking

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Volkán-Kacsó, Sándor

    2014-06-14

    A theoretical method is proposed for the calculation of the photon counting probability distribution during a bin time. Two-state fluorescence and steady excitation are assumed. A key feature is a kinetic scheme that allows for an extensive class of stochastic waiting time distribution functions, including power laws, expanded as a sum of weighted decaying exponentials. The solution is analytic in certain conditions, and an exact and simple expression is found for the integral contribution of “bright” and “dark” states. As an application for power law kinetics, theoretical results are compared with experimental intensity histograms from a number of blinking CdSe/ZnSmore » quantum dots. The histograms are consistent with distributions of intensity states around a “bright” and a “dark” maximum. A gap of states is also revealed in the more-or-less flat inter-peak region. The slope and to some extent the flatness of the inter-peak feature are found to be sensitive to the power-law exponents. Possible models consistent with these findings are discussed, such as the combination of multiple charging and fluctuating non-radiative channels or the multiple recombination center model. A fitting of the latter to experiment provides constraints on the interaction parameter between the recombination centers. Further extensions and applications of the photon counting theory are also discussed.« less

  19. [Registration and 3D rendering of serial tissue section images].

    PubMed

    Liu, Zhexing; Jiang, Guiping; Dong, Wu; Zhang, Yu; Xie, Xiaomian; Hao, Liwei; Wang, Zhiyuan; Li, Shuxiang

    2002-12-01

    It is an important morphological research method to reconstruct the 3D imaging from serial section tissue images. Registration of serial images is a key step to 3D reconstruction. Firstly, an introduction to the segmentation-counting registration algorithm is presented, which is based on the joint histogram. After thresholding of the two images to be registered, the criterion function is defined as counting in a specific region of the joint histogram, which greatly speeds up the alignment process. Then, the method is used to conduct the serial tissue image matching task, and lies a solid foundation for 3D rendering. Finally, preliminary surface rendering results are presented.

  20. MRI histogram analysis enables objective and continuous classification of intervertebral disc degeneration.

    PubMed

    Waldenberg, Christian; Hebelka, Hanna; Brisby, Helena; Lagerstrand, Kerstin Magdalena

    2018-05-01

    Magnetic resonance imaging (MRI) is the best diagnostic imaging method for low back pain. However, the technique is currently not utilized in its full capacity, often failing to depict painful intervertebral discs (IVDs), potentially due to the rough degeneration classification system used clinically today. MR image histograms, which reflect the IVD heterogeneity, may offer sensitive imaging biomarkers for IVD degeneration classification. This study investigates the feasibility of using histogram analysis as means of objective and continuous grading of IVD degeneration. Forty-nine IVDs in ten low back pain patients (six males, 25-69 years) were examined with MRI (T2-weighted images and T2-maps). Each IVD was semi-automatically segmented on three mid-sagittal slices. Histogram features of the IVD were extracted from the defined regions of interest and correlated to Pfirrmann grade. Both T2-weighted images and T2-maps displayed similar histogram features. Histograms of well-hydrated IVDs displayed two separate peaks, representing annulus fibrosus and nucleus pulposus. Degenerated IVDs displayed decreased peak separation, where the separation was shown to correlate strongly with Pfirrmann grade (P < 0.05). In addition, some degenerated IVDs within the same Pfirrmann grade displayed diametrically different histogram appearances. Histogram features correlated well with IVD degeneration, suggesting that IVD histogram analysis is a suitable tool for objective and continuous IVD degeneration classification. As histogram analysis revealed IVD heterogeneity, it may be a clinical tool for characterization of regional IVD degeneration effects. To elucidate the usefulness of histogram analysis in patient management, IVD histogram features between asymptomatic and symptomatic individuals needs to be compared.

  1. RAId_aPS: MS/MS Analysis with Multiple Scoring Functions and Spectrum-Specific Statistics

    PubMed Central

    Alves, Gelio; Ogurtsov, Aleksey Y.; Yu, Yi-Kuo

    2010-01-01

    Statistically meaningful comparison/combination of peptide identification results from various search methods is impeded by the lack of a universal statistical standard. Providing an -value calibration protocol, we demonstrated earlier the feasibility of translating either the score or heuristic -value reported by any method into the textbook-defined -value, which may serve as the universal statistical standard. This protocol, although robust, may lose spectrum-specific statistics and might require a new calibration when changes in experimental setup occur. To mitigate these issues, we developed a new MS/MS search tool, RAId_aPS, that is able to provide spectrum-specific -values for additive scoring functions. Given a selection of scoring functions out of RAId score, K-score, Hyperscore and XCorr, RAId_aPS generates the corresponding score histograms of all possible peptides using dynamic programming. Using these score histograms to assign -values enables a calibration-free protocol for accurate significance assignment for each scoring function. RAId_aPS features four different modes: (i) compute the total number of possible peptides for a given molecular mass range, (ii) generate the score histogram given a MS/MS spectrum and a scoring function, (iii) reassign -values for a list of candidate peptides given a MS/MS spectrum and the scoring functions chosen, and (iv) perform database searches using selected scoring functions. In modes (iii) and (iv), RAId_aPS is also capable of combining results from different scoring functions using spectrum-specific statistics. The web link is http://www.ncbi.nlm.nih.gov/CBBresearch/Yu/raid_aps/index.html. Relevant binaries for Linux, Windows, and Mac OS X are available from the same page. PMID:21103371

  2. Efficient visibility-driven medical image visualisation via adaptive binned visibility histogram.

    PubMed

    Jung, Younhyun; Kim, Jinman; Kumar, Ashnil; Feng, David Dagan; Fulham, Michael

    2016-07-01

    'Visibility' is a fundamental optical property that represents the observable, by users, proportion of the voxels in a volume during interactive volume rendering. The manipulation of this 'visibility' improves the volume rendering processes; for instance by ensuring the visibility of regions of interest (ROIs) or by guiding the identification of an optimal rendering view-point. The construction of visibility histograms (VHs), which represent the distribution of all the visibility of all voxels in the rendered volume, enables users to explore the volume with real-time feedback about occlusion patterns among spatially related structures during volume rendering manipulations. Volume rendered medical images have been a primary beneficiary of VH given the need to ensure that specific ROIs are visible relative to the surrounding structures, e.g. the visualisation of tumours that may otherwise be occluded by neighbouring structures. VH construction and its subsequent manipulations, however, are computationally expensive due to the histogram binning of the visibilities. This limits the real-time application of VH to medical images that have large intensity ranges and volume dimensions and require a large number of histogram bins. In this study, we introduce an efficient adaptive binned visibility histogram (AB-VH) in which a smaller number of histogram bins are used to represent the visibility distribution of the full VH. We adaptively bin medical images by using a cluster analysis algorithm that groups the voxels according to their intensity similarities into a smaller subset of bins while preserving the distribution of the intensity range of the original images. We increase efficiency by exploiting the parallel computation and multiple render targets (MRT) extension of the modern graphical processing units (GPUs) and this enables efficient computation of the histogram. We show the application of our method to single-modality computed tomography (CT), magnetic resonance (MR) imaging and multi-modality positron emission tomography-CT (PET-CT). In our experiments, the AB-VH markedly improved the computational efficiency for the VH construction and thus improved the subsequent VH-driven volume manipulations. This efficiency was achieved without major degradation in the VH visually and numerical differences between the AB-VH and its full-bin counterpart. We applied several variants of the K-means clustering algorithm with varying Ks (the number of clusters) and found that higher values of K resulted in better performance at a lower computational gain. The AB-VH also had an improved performance when compared to the conventional method of down-sampling of the histogram bins (equal binning) for volume rendering visualisation. Copyright © 2016 Elsevier Ltd. All rights reserved.

  3. Daniel Goodman’s empirical approach to Bayesian statistics

    USGS Publications Warehouse

    Gerrodette, Tim; Ward, Eric; Taylor, Rebecca L.; Schwarz, Lisa K.; Eguchi, Tomoharu; Wade, Paul; Himes Boor, Gina

    2016-01-01

    Bayesian statistics, in contrast to classical statistics, uses probability to represent uncertainty about the state of knowledge. Bayesian statistics has often been associated with the idea that knowledge is subjective and that a probability distribution represents a personal degree of belief. Dr. Daniel Goodman considered this viewpoint problematic for issues of public policy. He sought to ground his Bayesian approach in data, and advocated the construction of a prior as an empirical histogram of “similar” cases. In this way, the posterior distribution that results from a Bayesian analysis combined comparable previous data with case-specific current data, using Bayes’ formula. Goodman championed such a data-based approach, but he acknowledged that it was difficult in practice. If based on a true representation of our knowledge and uncertainty, Goodman argued that risk assessment and decision-making could be an exact science, despite the uncertainties. In his view, Bayesian statistics is a critical component of this science because a Bayesian analysis produces the probabilities of future outcomes. Indeed, Goodman maintained that the Bayesian machinery, following the rules of conditional probability, offered the best legitimate inference from available data. We give an example of an informative prior in a recent study of Steller sea lion spatial use patterns in Alaska.

  4. Estimation of internal organ motion-induced variance in radiation dose in non-gated radiotherapy

    NASA Astrophysics Data System (ADS)

    Zhou, Sumin; Zhu, Xiaofeng; Zhang, Mutian; Zheng, Dandan; Lei, Yu; Li, Sicong; Bennion, Nathan; Verma, Vivek; Zhen, Weining; Enke, Charles

    2016-12-01

    In the delivery of non-gated radiotherapy (RT), owing to intra-fraction organ motion, a certain degree of RT dose uncertainty is present. Herein, we propose a novel mathematical algorithm to estimate the mean and variance of RT dose that is delivered without gating. These parameters are specific to individual internal organ motion, dependent on individual treatment plans, and relevant to the RT delivery process. This algorithm uses images from a patient’s 4D simulation study to model the actual patient internal organ motion during RT delivery. All necessary dose rate calculations are performed in fixed patient internal organ motion states. The analytical and deterministic formulae of mean and variance in dose from non-gated RT were derived directly via statistical averaging of the calculated dose rate over possible random internal organ motion initial phases, and did not require constructing relevant histograms. All results are expressed in dose rate Fourier transform coefficients for computational efficiency. Exact solutions are provided to simplified, yet still clinically relevant, cases. Results from a volumetric-modulated arc therapy (VMAT) patient case are also presented. The results obtained from our mathematical algorithm can aid clinical decisions by providing information regarding both mean and variance of radiation dose to non-gated patients prior to RT delivery.

  5. A Whole-Tumor Histogram Analysis of Apparent Diffusion Coefficient Maps for Differentiating Thymic Carcinoma from Lymphoma.

    PubMed

    Zhang, Wei; Zhou, Yue; Xu, Xiao-Quan; Kong, Ling-Yan; Xu, Hai; Yu, Tong-Fu; Shi, Hai-Bin; Feng, Qing

    2018-01-01

    To assess the performance of a whole-tumor histogram analysis of apparent diffusion coefficient (ADC) maps in differentiating thymic carcinoma from lymphoma, and compare it with that of a commonly used hot-spot region-of-interest (ROI)-based ADC measurement. Diffusion weighted imaging data of 15 patients with thymic carcinoma and 13 patients with lymphoma were retrospectively collected and processed with a mono-exponential model. ADC measurements were performed by using a histogram-based and hot-spot-ROI-based approach. In the histogram-based approach, the following parameters were generated: mean ADC (ADC mean ), median ADC (ADC median ), 10th and 90th percentile of ADC (ADC 10 and ADC 90 ), kurtosis, and skewness. The difference in ADCs between thymic carcinoma and lymphoma was compared using a t test. Receiver operating characteristic analyses were conducted to determine and compare the differentiating performance of ADCs. Lymphoma demonstrated significantly lower ADC mean , ADC median , ADC 10 , ADC 90 , and hot-spot-ROI-based mean ADC than those found in thymic carcinoma (all p values < 0.05). There were no differences found in the kurtosis ( p = 0.412) and skewness ( p = 0.273). The ADC 10 demonstrated optimal differentiating performance (cut-off value, 0.403 × 10 -3 mm 2 /s; area under the receiver operating characteristic curve [AUC], 0.977; sensitivity, 92.3%; specificity, 93.3%), followed by the ADC mean , ADC median , ADC 90 , and hot-spot-ROI-based mean ADC. The AUC of ADC 10 was significantly higher than that of the hot spot ROI based ADC (0.977 vs. 0.797, p = 0.036). Compared with the commonly used hot spot ROI based ADC measurement, a histogram analysis of ADC maps can improve the differentiating performance between thymic carcinoma and lymphoma.

  6. Radiological indeterminate vestibular schwannoma and meningioma in cerebellopontine angle area: differentiating using whole-tumor histogram analysis of apparent diffusion coefficient.

    PubMed

    Xu, Xiao-Quan; Li, Yan; Hong, Xun-Ning; Wu, Fei-Yun; Shi, Hai-Bin

    2017-02-01

    To assess the role of whole-tumor histogram analysis of apparent diffusion coefficient (ADC) maps in differentiating radiological indeterminate vestibular schwannoma (VS) from meningioma in cerebellopontine angle (CPA). Diffusion-weighted (DW) images (b = 0 and 1000 s/mm 2 ) of pathologically confirmed and radiological indeterminate CPA meningioma (CPAM) (n = 27) and VS (n = 12) were retrospectively collected and processed with mono-exponential model. Whole-tumor regions of interest were drawn on all slices of the ADC maps to obtain histogram parameters, including the mean ADC (ADC mean ), median ADC (ADC median ), 10th/25th/75th/90th percentile ADC (ADC 10 , ADC 25 , ADC 75 and ADC 90 ), skewness and kurtosis. The differences of ADC histogram parameters between CPAM and VS were compared using unpaired t-test. Multiple receiver operating characteristic (ROC) curves analysis was used to determine and compare the diagnostic value of each significant parameter. Significant differences were found on the ADC mean , ADC median , ADC 10 , ADC 25 , ADC 75 and ADC 90 between CPAM and VS (all p values < 0.001), while no significant difference was found on kurtosis (p = 0.562) and skewness (p = 0.047). ROC curves analysis revealed, a cut-off value of 1.126 × 10 -3 mm 2 /s for the ADC 90 value generated highest area under curves (AUC) for differentiating CPAM from VS (AUC, 0.975; sensitivity, 100%; specificity, 88.9%). Histogram analysis of ADC maps based on whole tumor can be a useful tool for differentiating radiological indeterminate CPAM from VS. The ADC 90 value was the most promising parameter for differentiating these two entities.

  7. Bin Ratio-Based Histogram Distances and Their Application to Image Classification.

    PubMed

    Hu, Weiming; Xie, Nianhua; Hu, Ruiguang; Ling, Haibin; Chen, Qiang; Yan, Shuicheng; Maybank, Stephen

    2014-12-01

    Large variations in image background may cause partial matching and normalization problems for histogram-based representations, i.e., the histograms of the same category may have bins which are significantly different, and normalization may produce large changes in the differences between corresponding bins. In this paper, we deal with this problem by using the ratios between bin values of histograms, rather than bin values' differences which are used in the traditional histogram distances. We propose a bin ratio-based histogram distance (BRD), which is an intra-cross-bin distance, in contrast with previous bin-to-bin distances and cross-bin distances. The BRD is robust to partial matching and histogram normalization, and captures correlations between bins with only a linear computational complexity. We combine the BRD with the ℓ1 histogram distance and the χ(2) histogram distance to generate the ℓ1 BRD and the χ(2) BRD, respectively. These combinations exploit and benefit from the robustness of the BRD under partial matching and the robustness of the ℓ1 and χ(2) distances to small noise. We propose a method for assessing the robustness of histogram distances to partial matching. The BRDs and logistic regression-based histogram fusion are applied to image classification. The experimental results on synthetic data sets show the robustness of the BRDs to partial matching, and the experiments on seven benchmark data sets demonstrate promising results of the BRDs for image classification.

  8. Theory and Application of DNA Histogram Analysis.

    ERIC Educational Resources Information Center

    Bagwell, Charles Bruce

    The underlying principles and assumptions associated with DNA histograms are discussed along with the characteristics of fluorescent probes. Information theory was described and used to calculate the information content of a DNA histogram. Two major types of DNA histogram analyses are proposed: parametric and nonparametric analysis. Three levels…

  9. Evaluation of the effectiveness of color attributes for video indexing

    NASA Astrophysics Data System (ADS)

    Chupeau, Bertrand; Forest, Ronan

    2001-10-01

    Color features are reviewed and their effectiveness assessed in the application framework of key-frame clustering for abstracting unconstrained video. Existing color spaces and associated quantization schemes are first studied. Description of global color distribution by means of histograms is then detailed. In our work, 12 combinations of color space and quantization were selected, together with 12 histogram metrics. Their respective effectiveness with respect to picture similarity measurement was evaluated through a query-by-example scenario. For that purpose, a set of still-picture databases was built by extracting key frames from several video clips, including news, documentaries, sports and cartoons. Classical retrieval performance evaluation criteria were adapted to the specificity of our testing methodology.

  10. Evaluation of the effectiveness of color attributes for video indexing

    NASA Astrophysics Data System (ADS)

    Chupeau, Bertrand; Forest, Ronan

    2001-01-01

    Color features are reviewed and their effectiveness assessed in the application framework of key-frame clustering for abstracting unconstrained video. Existing color spaces and associated quantization schemes are first studied. Description of global color distribution by means of histograms is then detailed. In our work, twelve combinations of color space and quantization were selected, together with twelve histogram metrics. Their respective effectiveness with respect to picture similarity measurement was evaluated through a query-be-example scenario. For that purpose, a set of still-picture databases was built by extracting key-frames from several video clips, including news, documentaries, sports and cartoons. Classical retrieval performance evaluation criteria were adapted to the specificity of our testing methodology.

  11. Evaluation of the effectiveness of color attributes for video indexing

    NASA Astrophysics Data System (ADS)

    Chupeau, Bertrand; Forest, Ronan

    2000-12-01

    Color features are reviewed and their effectiveness assessed in the application framework of key-frame clustering for abstracting unconstrained video. Existing color spaces and associated quantization schemes are first studied. Description of global color distribution by means of histograms is then detailed. In our work, twelve combinations of color space and quantization were selected, together with twelve histogram metrics. Their respective effectiveness with respect to picture similarity measurement was evaluated through a query-be-example scenario. For that purpose, a set of still-picture databases was built by extracting key-frames from several video clips, including news, documentaries, sports and cartoons. Classical retrieval performance evaluation criteria were adapted to the specificity of our testing methodology.

  12. Histogram deconvolution - An aid to automated classifiers

    NASA Technical Reports Server (NTRS)

    Lorre, J. J.

    1983-01-01

    It is shown that N-dimensional histograms are convolved by the addition of noise in the picture domain. Three methods are described which provide the ability to deconvolve such noise-affected histograms. The purpose of the deconvolution is to provide automated classifiers with a higher quality N-dimensional histogram from which to obtain classification statistics.

  13. Parameterization of the Age-Dependent Whole Brain Apparent Diffusion Coefficient Histogram

    PubMed Central

    Batra, Marion; Nägele, Thomas

    2015-01-01

    Purpose. The distribution of apparent diffusion coefficient (ADC) values in the brain can be used to characterize age effects and pathological changes of the brain tissue. The aim of this study was the parameterization of the whole brain ADC histogram by an advanced model with influence of age considered. Methods. Whole brain ADC histograms were calculated for all data and for seven age groups between 10 and 80 years. Modeling of the histograms was performed for two parts of the histogram separately: the brain tissue part was modeled by two Gaussian curves, while the remaining part was fitted by the sum of a Gaussian curve, a biexponential decay, and a straight line. Results. A consistent fitting of the histograms of all age groups was possible with the proposed model. Conclusions. This study confirms the strong dependence of the whole brain ADC histograms on the age of the examined subjects. The proposed model can be used to characterize changes of the whole brain ADC histogram in certain diseases under consideration of age effects. PMID:26609526

  14. Breast lesion characterization using whole-lesion histogram analysis with stretched-exponential diffusion model.

    PubMed

    Liu, Chunling; Wang, Kun; Li, Xiaodan; Zhang, Jine; Ding, Jie; Spuhler, Karl; Duong, Timothy; Liang, Changhong; Huang, Chuan

    2018-06-01

    Diffusion-weighted imaging (DWI) has been studied in breast imaging and can provide more information about diffusion, perfusion and other physiological interests than standard pulse sequences. The stretched-exponential model has previously been shown to be more reliable than conventional DWI techniques, but different diagnostic sensitivities were found from study to study. This work investigated the characteristics of whole-lesion histogram parameters derived from the stretched-exponential diffusion model for benign and malignant breast lesions, compared them with conventional apparent diffusion coefficient (ADC), and further determined which histogram metrics can be best used to differentiate malignant from benign lesions. This was a prospective study. Seventy females were included in the study. Multi-b value DWI was performed on a 1.5T scanner. Histogram parameters of whole lesions for distributed diffusion coefficient (DDC), heterogeneity index (α), and ADC were calculated by two radiologists and compared among benign lesions, ductal carcinoma in situ (DCIS), and invasive carcinoma confirmed by pathology. Nonparametric tests were performed for comparisons among invasive carcinoma, DCIS, and benign lesions. Comparisons of receiver operating characteristic (ROC) curves were performed to show the ability to discriminate malignant from benign lesions. The majority of histogram parameters (mean/min/max, skewness/kurtosis, 10-90 th percentile values) from DDC, α, and ADC were significantly different among invasive carcinoma, DCIS, and benign lesions. DDC 10% (area under curve [AUC] = 0.931), ADC 10% (AUC = 0.893), and α mean (AUC = 0.787) were found to be the best metrics in differentiating benign from malignant tumors among all histogram parameters derived from ADC and α, respectively. The combination of DDC 10% and α mean , using logistic regression, yielded the highest sensitivity (90.2%) and specificity (95.5%). DDC 10% and α mean derived from the stretched-exponential model provides more information and better diagnostic performance in differentiating malignancy from benign lesions than ADC parameters derived from a monoexponential model. 2 Technical Efficacy: Stage 2 J. Magn. Reson. Imaging 2018;47:1701-1710. © 2017 International Society for Magnetic Resonance in Medicine.

  15. Quantitative computed tomography applied to interstitial lung diseases.

    PubMed

    Obert, Martin; Kampschulte, Marian; Limburg, Rebekka; Barańczuk, Stefan; Krombach, Gabriele A

    2018-03-01

    To evaluate a new image marker that retrieves information from computed tomography (CT) density histograms, with respect to classification properties between different lung parenchyma groups. Furthermore, to conduct a comparison of the new image marker with conventional markers. Density histograms from 220 different subjects (normal = 71; emphysema = 73; fibrotic = 76) were used to compare the conventionally applied emphysema index (EI), 15 th percentile value (PV), mean value (MV), variance (V), skewness (S), kurtosis (K), with a new histogram's functional shape (HFS) method. Multinomial logistic regression (MLR) analyses was performed to calculate predictions of different lung parenchyma group membership using the individual methods, as well as combinations thereof, as covariates. Overall correct assigned subjects (OCA), sensitivity (sens), specificity (spec), and Nagelkerke's pseudo R 2 (NR 2 ) effect size were estimated. NR 2 was used to set up a ranking list of the different methods. MLR indicates the highest classification power (OCA of 92%; sens 0.95; spec 0.89; NR 2 0.95) when all histogram analyses methods were applied together in the MLR. Highest classification power among individually applied methods was found using the HFS concept (OCA 86%; sens 0.93; spec 0.79; NR 2 0.80). Conventional methods achieved lower classification potential on their own: EI (OCA 69%; sens 0.95; spec 0.26; NR 2 0.52); PV (OCA 69%; sens 0.90; spec 0.37; NR 2 0.57); MV (OCA 65%; sens 0.71; spec 0.58; NR 2 0.61); V (OCA 66%; sens 0.72; spec 0.53; NR 2 0.66); S (OCA 65%; sens 0.88; spec 0.26; NR 2 0.55); and K (OCA 63%; sens 0.90; spec 0.16; NR 2 0.48). The HFS method, which was so far applied to a CT bone density curve analysis, is also a remarkable information extraction tool for lung density histograms. Presumably, being a principle mathematical approach, the HFS method can extract valuable health related information also from histograms from complete different areas. Copyright © 2018 Elsevier B.V. All rights reserved.

  16. Histogram Analysis of CT Perfusion of Hepatocellular Carcinoma for Predicting Response to Transarterial Radioembolization: Value of Tumor Heterogeneity Assessment

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Reiner, Caecilia S., E-mail: caecilia.reiner@usz.ch; Gordic, Sonja; Puippe, Gilbert

    2016-03-15

    PurposeTo evaluate in patients with hepatocellular carcinoma (HCC), whether assessment of tumor heterogeneity by histogram analysis of computed tomography (CT) perfusion helps predicting response to transarterial radioembolization (TARE).Materials and MethodsSixteen patients (15 male; mean age 65 years; age range 47–80 years) with HCC underwent CT liver perfusion for treatment planning prior to TARE with Yttrium-90 microspheres. Arterial perfusion (AP) derived from CT perfusion was measured in the entire tumor volume, and heterogeneity was analyzed voxel-wise by histogram analysis. Response to TARE was evaluated on follow-up imaging (median follow-up, 129 days) based on modified Response Evaluation Criteria in Solid Tumors (mRECIST). Results of histogrammore » analysis and mean AP values of the tumor were compared between responders and non-responders. Receiver operating characteristics were calculated to determine the parameters’ ability to discriminate responders from non-responders.ResultsAccording to mRECIST, 8 patients (50 %) were responders and 8 (50 %) non-responders. Comparing responders and non-responders, the 50th and 75th percentile of AP derived from histogram analysis was significantly different [AP 43.8/54.3 vs. 27.6/34.3 mL min{sup −1} 100 mL{sup −1}); p < 0.05], while the mean AP of HCCs (43.5 vs. 27.9 mL min{sup −1} 100 mL{sup −1}; p > 0.05) was not. Further heterogeneity parameters from histogram analysis (skewness, coefficient of variation, and 25th percentile) did not differ between responders and non-responders (p > 0.05). If the cut-off for the 75th percentile was set to an AP of 37.5 mL min{sup −1} 100 mL{sup −1}, therapy response could be predicted with a sensitivity of 88 % (7/8) and specificity of 75 % (6/8).ConclusionVoxel-wise histogram analysis of pretreatment CT perfusion indicating tumor heterogeneity of HCC improves the pretreatment prediction of response to TARE.« less

  17. Introducing parallelism to histogramming functions for GEM systems

    NASA Astrophysics Data System (ADS)

    Krawczyk, Rafał D.; Czarski, Tomasz; Kolasinski, Piotr; Pozniak, Krzysztof T.; Linczuk, Maciej; Byszuk, Adrian; Chernyshova, Maryna; Juszczyk, Bartlomiej; Kasprowicz, Grzegorz; Wojenski, Andrzej; Zabolotny, Wojciech

    2015-09-01

    This article is an assessment of potential parallelization of histogramming algorithms in GEM detector system. Histogramming and preprocessing algorithms in MATLAB were analyzed with regard to adding parallelism. Preliminary implementation of parallel strip histogramming resulted in speedup. Analysis of algorithms parallelizability is presented. Overview of potential hardware and software support to implement parallel algorithm is discussed.

  18. Comparison of Histograms for Use in Cloud Observation and Modeling

    NASA Technical Reports Server (NTRS)

    Green, Lisa; Xu, Kuan-Man

    2005-01-01

    Cloud observation and cloud modeling data can be presented in histograms for each characteristic to be measured. Combining information from single-cloud histograms yields a summary histogram. Summary histograms can be compared to each other to reach conclusions about the behavior of an ensemble of clouds in different places at different times or about the accuracy of a particular cloud model. As in any scientific comparison, it is necessary to decide whether any apparent differences are statistically significant. The usual methods of deciding statistical significance when comparing histograms do not apply in this case because they assume independent data. Thus, a new method is necessary. The proposed method uses the Euclidean distance metric and bootstrapping to calculate the significance level.

  19. Dielectrophoretic immobilisation of nanoparticles as isolated singles in regular arrays

    NASA Astrophysics Data System (ADS)

    Knigge, Xenia; Wenger, Christian; Bier, Frank F.; Hölzel, Ralph

    2018-02-01

    We demonstrate the immobilisation of polystyrene nanoparticles on vertical nano-electrodes by means of dielectrophoresis. The electrodes have diameters of 500 nm or 50 nm, respectively, and are arranged in arrays of several thousand electrodes, allowing many thousands of experiments in parallel. At a frequency of 15 kHz, which is found favourable for polystyrene, several occupation patterns are observed, and both temporary and permanent immobilisation is achieved. In addition, a histogram method is applied, which allows to determine the number of particles occupying the electrodes. These results are validated with scanning electron microscopy images. Immobilising exactly one particle at each electrode tip is achieved for electrode tip diameters with half the particle size. Extension of this system down to the level of single molecules is envisaged, which will avoid ensemble averaging at still statistically large sample sizes.

  20. Quantitative histogram analysis of images

    NASA Astrophysics Data System (ADS)

    Holub, Oliver; Ferreira, Sérgio T.

    2006-11-01

    A routine for histogram analysis of images has been written in the object-oriented, graphical development environment LabVIEW. The program converts an RGB bitmap image into an intensity-linear greyscale image according to selectable conversion coefficients. This greyscale image is subsequently analysed by plots of the intensity histogram and probability distribution of brightness, and by calculation of various parameters, including average brightness, standard deviation, variance, minimal and maximal brightness, mode, skewness and kurtosis of the histogram and the median of the probability distribution. The program allows interactive selection of specific regions of interest (ROI) in the image and definition of lower and upper threshold levels (e.g., to permit the removal of a constant background signal). The results of the analysis of multiple images can be conveniently saved and exported for plotting in other programs, which allows fast analysis of relatively large sets of image data. The program file accompanies this manuscript together with a detailed description of two application examples: The analysis of fluorescence microscopy images, specifically of tau-immunofluorescence in primary cultures of rat cortical and hippocampal neurons, and the quantification of protein bands by Western-blot. The possibilities and limitations of this kind of analysis are discussed. Program summaryTitle of program: HAWGC Catalogue identifier: ADXG_v1_0 Program summary URL:http://cpc.cs.qub.ac.uk/summaries/ADXG_v1_0 Program obtainable from: CPC Program Library, Queen's University of Belfast, N. Ireland Computers: Mobile Intel Pentium III, AMD Duron Installations: No installation necessary—Executable file together with necessary files for LabVIEW Run-time engine Operating systems or monitors under which the program has been tested: WindowsME/2000/XP Programming language used: LabVIEW 7.0 Memory required to execute with typical data:˜16MB for starting and ˜160MB used for loading of an image No. of bits in a word: 32 No. of processors used: 1 Has the code been vectorized or parallelized?: No No of lines in distributed program, including test data, etc.:138 946 No. of bytes in distributed program, including test data, etc.:15 166 675 Distribution format: tar.gz Nature of physical problem: Quantification of image data (e.g., for discrimination of molecular species in gels or fluorescent molecular probes in cell cultures) requires proprietary or complex software packages, which might not include the relevant statistical parameters or make the analysis of multiple images a tedious procedure for the general user. Method of solution: Tool for conversion of RGB bitmap image into luminance-linear image and extraction of luminance histogram, probability distribution, and statistical parameters (average brightness, standard deviation, variance, minimal and maximal brightness, mode, skewness and kurtosis of histogram and median of probability distribution) with possible selection of region of interest (ROI) and lower and upper threshold levels. Restrictions on the complexity of the problem: Does not incorporate application-specific functions (e.g., morphometric analysis) Typical running time: Seconds (depending on image size and processor speed) Unusual features of the program: None

  1. A novel method for the evaluation of uncertainty in dose-volume histogram computation.

    PubMed

    Henríquez, Francisco Cutanda; Castrillón, Silvia Vargas

    2008-03-15

    Dose-volume histograms (DVHs) are a useful tool in state-of-the-art radiotherapy treatment planning, and it is essential to recognize their limitations. Even after a specific dose-calculation model is optimized, dose distributions computed by using treatment-planning systems are affected by several sources of uncertainty, such as algorithm limitations, measurement uncertainty in the data used to model the beam, and residual differences between measured and computed dose. This report presents a novel method to take them into account. To take into account the effect of associated uncertainties, a probabilistic approach using a new kind of histogram, a dose-expected volume histogram, is introduced. The expected value of the volume in the region of interest receiving an absorbed dose equal to or greater than a certain value is found by using the probability distribution of the dose at each point. A rectangular probability distribution is assumed for this point dose, and a formulation that accounts for uncertainties associated with point dose is presented for practical computations. This method is applied to a set of DVHs for different regions of interest, including 6 brain patients, 8 lung patients, 8 pelvis patients, and 6 prostate patients planned for intensity-modulated radiation therapy. Results show a greater effect on planning target volume coverage than in organs at risk. In cases of steep DVH gradients, such as planning target volumes, this new method shows the largest differences with the corresponding DVH; thus, the effect of the uncertainty is larger.

  2. Approximate sample sizes required to estimate length distributions

    USGS Publications Warehouse

    Miranda, L.E.

    2007-01-01

    The sample sizes required to estimate fish length were determined by bootstrapping from reference length distributions. Depending on population characteristics and species-specific maximum lengths, 1-cm length-frequency histograms required 375-1,200 fish to estimate within 10% with 80% confidence, 2.5-cm histograms required 150-425 fish, proportional stock density required 75-140 fish, and mean length required 75-160 fish. In general, smaller species, smaller populations, populations with higher mortality, and simpler length statistics required fewer samples. Indices that require low sample sizes may be suitable for monitoring population status, and when large changes in length are evident, additional sampling effort may be allocated to more precisely define length status with more informative estimators. ?? Copyright by the American Fisheries Society 2007.

  3. Predicting the Valence of a Scene from Observers’ Eye Movements

    PubMed Central

    R.-Tavakoli, Hamed; Atyabi, Adham; Rantanen, Antti; Laukka, Seppo J.; Nefti-Meziani, Samia; Heikkilä, Janne

    2015-01-01

    Multimedia analysis benefits from understanding the emotional content of a scene in a variety of tasks such as video genre classification and content-based image retrieval. Recently, there has been an increasing interest in applying human bio-signals, particularly eye movements, to recognize the emotional gist of a scene such as its valence. In order to determine the emotional category of images using eye movements, the existing methods often learn a classifier using several features that are extracted from eye movements. Although it has been shown that eye movement is potentially useful for recognition of scene valence, the contribution of each feature is not well-studied. To address the issue, we study the contribution of features extracted from eye movements in the classification of images into pleasant, neutral, and unpleasant categories. We assess ten features and their fusion. The features are histogram of saccade orientation, histogram of saccade slope, histogram of saccade length, histogram of saccade duration, histogram of saccade velocity, histogram of fixation duration, fixation histogram, top-ten salient coordinates, and saliency map. We utilize machine learning approach to analyze the performance of features by learning a support vector machine and exploiting various feature fusion schemes. The experiments reveal that ‘saliency map’, ‘fixation histogram’, ‘histogram of fixation duration’, and ‘histogram of saccade slope’ are the most contributing features. The selected features signify the influence of fixation information and angular behavior of eye movements in the recognition of the valence of images. PMID:26407322

  4. Information granules in image histogram analysis.

    PubMed

    Wieclawek, Wojciech

    2018-04-01

    A concept of granular computing employed in intensity-based image enhancement is discussed. First, a weighted granular computing idea is introduced. Then, the implementation of this term in the image processing area is presented. Finally, multidimensional granular histogram analysis is introduced. The proposed approach is dedicated to digital images, especially to medical images acquired by Computed Tomography (CT). As the histogram equalization approach, this method is based on image histogram analysis. Yet, unlike the histogram equalization technique, it works on a selected range of the pixel intensity and is controlled by two parameters. Performance is tested on anonymous clinical CT series. Copyright © 2017 Elsevier Ltd. All rights reserved.

  5. Stochastic HKMDHE: A multi-objective contrast enhancement algorithm

    NASA Astrophysics Data System (ADS)

    Pratiher, Sawon; Mukhopadhyay, Sabyasachi; Maity, Srideep; Pradhan, Asima; Ghosh, Nirmalya; Panigrahi, Prasanta K.

    2018-02-01

    This contribution proposes a novel extension of the existing `Hyper Kurtosis based Modified Duo-Histogram Equalization' (HKMDHE) algorithm, for multi-objective contrast enhancement of biomedical images. A novel modified objective function has been formulated by joint optimization of the individual histogram equalization objectives. The optimal adequacy of the proposed methodology with respect to image quality metrics such as brightness preserving abilities, peak signal-to-noise ratio (PSNR), Structural Similarity Index (SSIM) and universal image quality metric has been experimentally validated. The performance analysis of the proposed Stochastic HKMDHE with existing histogram equalization methodologies like Global Histogram Equalization (GHE) and Contrast Limited Adaptive Histogram Equalization (CLAHE) has been given for comparative evaluation.

  6. Infrared image segmentation method based on spatial coherence histogram and maximum entropy

    NASA Astrophysics Data System (ADS)

    Liu, Songtao; Shen, Tongsheng; Dai, Yao

    2014-11-01

    In order to segment the target well and suppress background noises effectively, an infrared image segmentation method based on spatial coherence histogram and maximum entropy is proposed. First, spatial coherence histogram is presented by weighting the importance of the different position of these pixels with the same gray-level, which is obtained by computing their local density. Then, after enhancing the image by spatial coherence histogram, 1D maximum entropy method is used to segment the image. The novel method can not only get better segmentation results, but also have a faster computation time than traditional 2D histogram-based segmentation methods.

  7. The Amazing Histogram.

    ERIC Educational Resources Information Center

    Vandermeulen, H.; DeWreede, R. E.

    1983-01-01

    Presents a histogram drawing program which sorts real numbers in up to 30 categories. Entered data are sorted and saved in a text file which is then used to generate the histogram. Complete Applesoft program listings are included. (JN)

  8. Bin recycling strategy for improving the histogram precision on GPU

    NASA Astrophysics Data System (ADS)

    Cárdenas-Montes, Miguel; Rodríguez-Vázquez, Juan José; Vega-Rodríguez, Miguel A.

    2016-07-01

    Histogram is an easily comprehensible way to present data and analyses. In the current scientific context with access to large volumes of data, the processing time for building histogram has dramatically increased. For this reason, parallel construction is necessary to alleviate the impact of the processing time in the analysis activities. In this scenario, GPU computing is becoming widely used for reducing until affordable levels the processing time of histogram construction. Associated to the increment of the processing time, the implementations are stressed on the bin-count accuracy. Accuracy aspects due to the particularities of the implementations are not usually taken into consideration when building histogram with very large data sets. In this work, a bin recycling strategy to create an accuracy-aware implementation for building histogram on GPU is presented. In order to evaluate the approach, this strategy was applied to the computation of the three-point angular correlation function, which is a relevant function in Cosmology for the study of the Large Scale Structure of Universe. As a consequence of the study a high-accuracy implementation for histogram construction on GPU is proposed.

  9. Quality assurance for high dose rate brachytherapy treatment planning optimization: using a simple optimization to verify a complex optimization

    NASA Astrophysics Data System (ADS)

    Deufel, Christopher L.; Furutani, Keith M.

    2014-02-01

    As dose optimization for high dose rate brachytherapy becomes more complex, it becomes increasingly important to have a means of verifying that optimization results are reasonable. A method is presented for using a simple optimization as quality assurance for the more complex optimization algorithms typically found in commercial brachytherapy treatment planning systems. Quality assurance tests may be performed during commissioning, at regular intervals, and/or on a patient specific basis. A simple optimization method is provided that optimizes conformal target coverage using an exact, variance-based, algebraic approach. Metrics such as dose volume histogram, conformality index, and total reference air kerma agree closely between simple and complex optimizations for breast, cervix, prostate, and planar applicators. The simple optimization is shown to be a sensitive measure for identifying failures in a commercial treatment planning system that are possibly due to operator error or weaknesses in planning system optimization algorithms. Results from the simple optimization are surprisingly similar to the results from a more complex, commercial optimization for several clinical applications. This suggests that there are only modest gains to be made from making brachytherapy optimization more complex. The improvements expected from sophisticated linear optimizations, such as PARETO methods, will largely be in making systems more user friendly and efficient, rather than in finding dramatically better source strength distributions.

  10. AHIMSA - Ad hoc histogram information measure sensing algorithm for feature selection in the context of histogram inspired clustering techniques

    NASA Technical Reports Server (NTRS)

    Dasarathy, B. V.

    1976-01-01

    An algorithm is proposed for dimensionality reduction in the context of clustering techniques based on histogram analysis. The approach is based on an evaluation of the hills and valleys in the unidimensional histograms along the different features and provides an economical means of assessing the significance of the features in a nonparametric unsupervised data environment. The method has relevance to remote sensing applications.

  11. Clinical Utility of Blood Cell Histogram Interpretation

    PubMed Central

    Bhagya, S.; Majeed, Abdul

    2017-01-01

    An automated haematology analyser provides blood cell histograms by plotting the sizes of different blood cells on X-axis and their relative number on Y-axis. Histogram interpretation needs careful analysis of Red Blood Cell (RBC), White Blood Cell (WBC) and platelet distribution curves. Histogram analysis is often a neglected part of the automated haemogram which if interpreted well, has significant potential to provide diagnostically relevant information even before higher level investigations are ordered. PMID:29207767

  12. Clinical Utility of Blood Cell Histogram Interpretation.

    PubMed

    Thomas, E T Arun; Bhagya, S; Majeed, Abdul

    2017-09-01

    An automated haematology analyser provides blood cell histograms by plotting the sizes of different blood cells on X-axis and their relative number on Y-axis. Histogram interpretation needs careful analysis of Red Blood Cell (RBC), White Blood Cell (WBC) and platelet distribution curves. Histogram analysis is often a neglected part of the automated haemogram which if interpreted well, has significant potential to provide diagnostically relevant information even before higher level investigations are ordered.

  13. Potential of MR histogram analyses for prediction of response to chemotherapy in patients with colorectal hepatic metastases.

    PubMed

    Liang, He-Yue; Huang, Ya-Qin; Yang, Zhao-Xia; Ying-Ding; Zeng, Meng-Su; Rao, Sheng-Xiang

    2016-07-01

    To determine if magnetic resonance imaging (MRI) histogram analyses can help predict response to chemotherapy in patients with colorectal hepatic metastases by using response evaluation criteria in solid tumours (RECIST1.1) as the reference standard. Standard MRI including diffusion-weighted imaging (b=0, 500 s/mm(2)) was performed before chemotherapy in 53 patients with colorectal hepatic metastases. Histograms were performed for apparent diffusion coefficient (ADC) maps, arterial, and portal venous phase images; thereafter, mean, percentiles (1st, 10th, 50th, 90th, 99th), skewness, kurtosis, and variance were generated. Quantitative histogram parameters were compared between responders (partial and complete response, n=15) and non-responders (progressive and stable disease, n=38). Receiver operator characteristics (ROC) analyses were further analyzed for the significant parameters. The mean, 1st percentile, 10th percentile, 50th percentile, 90th percentile, 99th percentile of the ADC maps were significantly lower in responding group than that in non-responding group (p=0.000-0.002) with area under the ROC curve (AUCs) of 0.76-0.82. The histogram parameters of arterial and portal venous phase showed no significant difference (p>0.05) between the two groups. Histogram-derived parameters for ADC maps seem to be a promising tool for predicting response to chemotherapy in patients with colorectal hepatic metastases. • ADC histogram analyses can potentially predict chemotherapy response in colorectal liver metastases. • Lower histogram-derived parameters (mean, percentiles) for ADC tend to have good response. • MR enhancement histogram analyses are not reliable to predict response.

  14. Multipurpose contrast enhancement on epiphyseal plates and ossification centers for bone age assessment

    PubMed Central

    2013-01-01

    Background The high variations of background luminance, low contrast and excessively enhanced contrast of hand bone radiograph often impede the bone age assessment rating system in evaluating the degree of epiphyseal plates and ossification centers development. The Global Histogram equalization (GHE) has been the most frequently adopted image contrast enhancement technique but the performance is not satisfying. A brightness and detail preserving histogram equalization method with good contrast enhancement effect has been a goal of much recent research in histogram equalization. Nevertheless, producing a well-balanced histogram equalized radiograph in terms of its brightness preservation, detail preservation and contrast enhancement is deemed to be a daunting task. Method In this paper, we propose a novel framework of histogram equalization with the aim of taking several desirable properties into account, namely the Multipurpose Beta Optimized Bi-Histogram Equalization (MBOBHE). This method performs the histogram optimization separately in both sub-histograms after the segmentation of histogram using an optimized separating point determined based on the regularization function constituted by three components. The result is then assessed by the qualitative and quantitative analysis to evaluate the essential aspects of histogram equalized image using a total of 160 hand radiographs that are implemented in testing and analyses which are acquired from hand bone online database. Result From the qualitative analysis, we found that basic bi-histogram equalizations are not capable of displaying the small features in image due to incorrect selection of separating point by focusing on only certain metric without considering the contrast enhancement and detail preservation. From the quantitative analysis, we found that MBOBHE correlates well with human visual perception, and this improvement shortens the evaluation time taken by inspector in assessing the bone age. Conclusions The proposed MBOBHE outperforms other existing methods regarding comprehensive performance of histogram equalization. All the features which are pertinent to bone age assessment are more protruding relative to other methods; this has shorten the required evaluation time in manual bone age assessment using TW method. While the accuracy remains unaffected or slightly better than using unprocessed original image. The holistic properties in terms of brightness preservation, detail preservation and contrast enhancement are simultaneous taken into consideration and thus the visual effect is contributive to manual inspection. PMID:23565999

  15. Using histograms to introduce randomization in the generation of ensembles of decision trees

    DOEpatents

    Kamath, Chandrika; Cantu-Paz, Erick; Littau, David

    2005-02-22

    A system for decision tree ensembles that includes a module to read the data, a module to create a histogram, a module to evaluate a potential split according to some criterion using the histogram, a module to select a split point randomly in an interval around the best split, a module to split the data, and a module to combine multiple decision trees in ensembles. The decision tree method includes the steps of reading the data; creating a histogram; evaluating a potential split according to some criterion using the histogram, selecting a split point randomly in an interval around the best split, splitting the data, and combining multiple decision trees in ensembles.

  16. Color Histogram Diffusion for Image Enhancement

    NASA Technical Reports Server (NTRS)

    Kim, Taemin

    2011-01-01

    Various color histogram equalization (CHE) methods have been proposed to extend grayscale histogram equalization (GHE) for color images. In this paper a new method called histogram diffusion that extends the GHE method to arbitrary dimensions is proposed. Ranges in a histogram are specified as overlapping bars of uniform heights and variable widths which are proportional to their frequencies. This diagram is called the vistogram. As an alternative approach to GHE, the squared error of the vistogram from the uniform distribution is minimized. Each bar in the vistogram is approximated by a Gaussian function. Gaussian particles in the vistoram diffuse as a nonlinear autonomous system of ordinary differential equations. CHE results of color images showed that the approach is effective.

  17. Automatic discrimination of color retinal images using the bag of words approach

    NASA Astrophysics Data System (ADS)

    Sadek, I.; Sidibé, D.; Meriaudeau, F.

    2015-03-01

    Diabetic retinopathy (DR) and age related macular degeneration (ARMD) are among the major causes of visual impairment all over the world. DR is mainly characterized by small red spots, namely microaneurysms and bright lesions, specifically exudates. However, ARMD is mainly identified by tiny yellow or white deposits called drusen. Since exudates might be the only visible signs of the early diabetic retinopathy, there is an increase demand for automatic diagnosis of retinopathy. Exudates and drusen may share similar appearances; as a result discriminating between them plays a key role in improving screening performance. In this research, we investigative the role of bag of words approach in the automatic diagnosis of retinopathy diabetes. Initially, the color retinal images are preprocessed in order to reduce the intra and inter patient variability. Subsequently, SURF (Speeded up Robust Features), HOG (Histogram of Oriented Gradients), and LBP (Local Binary Patterns) descriptors are extracted. We proposed to use single-based and multiple-based methods to construct the visual dictionary by combining the histogram of word occurrences from each dictionary and building a single histogram. Finally, this histogram representation is fed into a support vector machine with linear kernel for classification. The introduced approach is evaluated for automatic diagnosis of normal and abnormal color retinal images with bright lesions such as drusen and exudates. This approach has been implemented on 430 color retinal images, including six publicly available datasets, in addition to one local dataset. The mean accuracies achieved are 97.2% and 99.77% for single-based and multiple-based dictionaries respectively.

  18. Histogram based analysis of lung perfusion of children after congenital diaphragmatic hernia repair.

    PubMed

    Kassner, Nora; Weis, Meike; Zahn, Katrin; Schaible, Thomas; Schoenberg, Stefan O; Schad, Lothar R; Zöllner, Frank G

    2018-05-01

    To investigate a histogram based approach to characterize the distribution of perfusion in the whole left and right lung by descriptive statistics and to show how histograms could be used to visually explore perfusion defects in two year old children after Congenital Diaphragmatic Hernia (CDH) repair. 28 children (age of 24.2±1.7months; all left sided hernia; 9 after extracorporeal membrane oxygenation therapy) underwent quantitative DCE-MRI of the lung. Segmentations of left and right lung were manually drawn to mask the calculated pulmonary blood flow maps and then to derive histograms for each lung side. Individual and group wise analysis of histograms of left and right lung was performed. Ipsilateral and contralateral lung show significant difference in shape and descriptive statistics derived from the histogram (Wilcoxon signed-rank test, p<0.05) on group wise and individual level. Subgroup analysis (patients with vs without ECMO therapy) showed no significant differences using histogram derived parameters. Histogram analysis can be a valuable tool to characterize and visualize whole lung perfusion of children after CDH repair. It allows for several possibilities to analyze the data, either describing the perfusion differences between the right and left lung but also to explore and visualize localized perfusion patterns in the 3D lung volume. Subgroup analysis will be possible given sufficient sample sizes. Copyright © 2017 Elsevier Inc. All rights reserved.

  19. Using the Bootstrap Method for a Statistical Significance Test of Differences between Summary Histograms

    NASA Technical Reports Server (NTRS)

    Xu, Kuan-Man

    2006-01-01

    A new method is proposed to compare statistical differences between summary histograms, which are the histograms summed over a large ensemble of individual histograms. It consists of choosing a distance statistic for measuring the difference between summary histograms and using a bootstrap procedure to calculate the statistical significance level. Bootstrapping is an approach to statistical inference that makes few assumptions about the underlying probability distribution that describes the data. Three distance statistics are compared in this study. They are the Euclidean distance, the Jeffries-Matusita distance and the Kuiper distance. The data used in testing the bootstrap method are satellite measurements of cloud systems called cloud objects. Each cloud object is defined as a contiguous region/patch composed of individual footprints or fields of view. A histogram of measured values over footprints is generated for each parameter of each cloud object and then summary histograms are accumulated over all individual histograms in a given cloud-object size category. The results of statistical hypothesis tests using all three distances as test statistics are generally similar, indicating the validity of the proposed method. The Euclidean distance is determined to be most suitable after comparing the statistical tests of several parameters with distinct probability distributions among three cloud-object size categories. Impacts on the statistical significance levels resulting from differences in the total lengths of satellite footprint data between two size categories are also discussed.

  20. Continuous-Time Random Walk with multi-step memory: an application to market dynamics

    NASA Astrophysics Data System (ADS)

    Gubiec, Tomasz; Kutner, Ryszard

    2017-11-01

    An extended version of the Continuous-Time Random Walk (CTRW) model with memory is herein developed. This memory involves the dependence between arbitrary number of successive jumps of the process while waiting times between jumps are considered as i.i.d. random variables. This dependence was established analyzing empirical histograms for the stochastic process of a single share price on a market within the high frequency time scale. Then, it was justified theoretically by considering bid-ask bounce mechanism containing some delay characteristic for any double-auction market. Our model appeared exactly analytically solvable. Therefore, it enables a direct comparison of its predictions with their empirical counterparts, for instance, with empirical velocity autocorrelation function. Thus, the present research significantly extends capabilities of the CTRW formalism. Contribution to the Topical Issue "Continuous Time Random Walk Still Trendy: Fifty-year History, Current State and Outlook", edited by Ryszard Kutner and Jaume Masoliver.

  1. FPGA based charge fast histogramming for GEM detector

    NASA Astrophysics Data System (ADS)

    Poźniak, Krzysztof T.; Byszuk, A.; Chernyshova, M.; Cieszewski, R.; Czarski, T.; Dominik, W.; Jakubowska, K.; Kasprowicz, G.; Rzadkiewicz, J.; Scholz, M.; Zabolotny, W.

    2013-10-01

    This article presents a fast charge histogramming method for the position sensitive X-ray GEM detector. The energy resolved measurements are carried out simultaneously for 256 channels of the GEM detector. The whole process of histogramming is performed in 21 FPGA chips (Spartan-6 series from Xilinx) . The results of the histogramming process are stored in an external DDR3 memory. The structure of an electronic measuring equipment and a firmware functionality implemented in the FPGAs is described. Examples of test measurements are presented.

  2. Local dynamic range compensation for scanning electron microscope imaging system.

    PubMed

    Sim, K S; Huang, Y H

    2015-01-01

    This is the extended project by introducing the modified dynamic range histogram modification (MDRHM) and is presented in this paper. This technique is used to enhance the scanning electron microscope (SEM) imaging system. By comparing with the conventional histogram modification compensators, this technique utilizes histogram profiling by extending the dynamic range of each tile of an image to the limit of 0-255 range while retains its histogram shape. The proposed technique yields better image compensation compared to conventional methods. © Wiley Periodicals, Inc.

  3. Whole-lesion apparent diffusion coefficient histogram analysis: significance in T and N staging of gastric cancers.

    PubMed

    Liu, Song; Zhang, Yujuan; Chen, Ling; Guan, Wenxian; Guan, Yue; Ge, Yun; He, Jian; Zhou, Zhengyang

    2017-10-02

    Whole-lesion apparent diffusion coefficient (ADC) histogram analysis has been introduced and proved effective in assessment of multiple tumors. However, the application of whole-volume ADC histogram analysis in gastrointestinal tumors has just started and never been reported in T and N staging of gastric cancers. Eighty patients with pathologically confirmed gastric carcinomas underwent diffusion weighted (DW) magnetic resonance imaging before surgery prospectively. Whole-lesion ADC histogram analysis was performed by two radiologists independently. The differences of ADC histogram parameters among different T and N stages were compared with independent-samples Kruskal-Wallis test. Receiver operating characteristic (ROC) analysis was performed to evaluate the performance of ADC histogram parameters in differentiating particular T or N stages of gastric cancers. There were significant differences of all the ADC histogram parameters for gastric cancers at different T (except ADC min and ADC max ) and N (except ADC max ) stages. Most ADC histogram parameters differed significantly between T1 vs T3, T1 vs T4, T2 vs T4, N0 vs N1, N0 vs N3, and some parameters (ADC 5% , ADC 10% , ADC min ) differed significantly between N0 vs N2, N2 vs N3 (all P < 0.05). Most parameters except ADC max performed well in differentiating different T and N stages of gastric cancers. Especially for identifying patients with and without lymph node metastasis, the ADC 10% yielded the largest area under the ROC curve of 0.794 (95% confidence interval, 0.677-0.911). All the parameters except ADC max showed excellent inter-observer agreement with intra-class correlation coefficients higher than 0.800. Whole-volume ADC histogram parameters held great potential in differentiating different T and N stages of gastric cancers preoperatively.

  4. Histogram Profiling of Postcontrast T1-Weighted MRI Gives Valuable Insights into Tumor Biology and Enables Prediction of Growth Kinetics and Prognosis in Meningiomas.

    PubMed

    Gihr, Georg Alexander; Horvath-Rizea, Diana; Kohlhof-Meinecke, Patricia; Ganslandt, Oliver; Henkes, Hans; Richter, Cindy; Hoffmann, Karl-Titus; Surov, Alexey; Schob, Stefan

    2018-06-14

    Meningiomas are the most frequently diagnosed intracranial masses, oftentimes requiring surgery. Especially procedure-related morbidity can be substantial, particularly in elderly patients. Hence, reliable imaging modalities enabling pretherapeutic prediction of tumor grade, growth kinetic, realistic prognosis, and-as a consequence-necessity of surgery are of great value. In this context, a promising diagnostic approach is advanced analysis of magnetic resonance imaging data. Therefore, our study investigated whether histogram profiling of routinely acquired postcontrast T1-weighted images is capable of separating low-grade from high-grade lesions and whether histogram parameters reflect Ki-67 expression in meningiomas. Pretreatment T1-weighted postcontrast volumes of 44 meningioma patients were used for signal intensity histogram profiling. WHO grade, tumor volume, and Ki-67 expression were evaluated. Comparative and correlative statistics investigating the association between histogram profile parameters and neuropathology were performed. None of the investigated histogram parameters revealed significant differences between low-grade and high-grade meningiomas. However, significant correlations were identified between Ki-67 and the histogram parameters skewness and entropy as well as between entropy and tumor volume. Contrary to previously reported findings, pretherapeutic postcontrast T1-weighted images can be used to predict growth kinetics in meningiomas if whole tumor histogram analysis is employed. However, no differences between distinct WHO grades were identifiable in out cohort. As a consequence, histogram analysis of postcontrast T1-weighted images is a promising approach to obtain quantitative in vivo biomarkers reflecting the proliferative potential in meningiomas. Copyright © 2018 The Authors. Published by Elsevier Inc. All rights reserved.

  5. Dose-volume histogram prediction using density estimation.

    PubMed

    Skarpman Munter, Johanna; Sjölund, Jens

    2015-09-07

    Knowledge of what dose-volume histograms can be expected for a previously unseen patient could increase consistency and quality in radiotherapy treatment planning. We propose a machine learning method that uses previous treatment plans to predict such dose-volume histograms. The key to the approach is the framing of dose-volume histograms in a probabilistic setting.The training consists of estimating, from the patients in the training set, the joint probability distribution of some predictive features and the dose. The joint distribution immediately provides an estimate of the conditional probability of the dose given the values of the predictive features. The prediction consists of estimating, from the new patient, the distribution of the predictive features and marginalizing the conditional probability from the training over this. Integrating the resulting probability distribution for the dose yields an estimate of the dose-volume histogram.To illustrate how the proposed method relates to previously proposed methods, we use the signed distance to the target boundary as a single predictive feature. As a proof-of-concept, we predicted dose-volume histograms for the brainstems of 22 acoustic schwannoma patients treated with stereotactic radiosurgery, and for the lungs of 9 lung cancer patients treated with stereotactic body radiation therapy. Comparing with two previous attempts at dose-volume histogram prediction we find that, given the same input data, the predictions are similar.In summary, we propose a method for dose-volume histogram prediction that exploits the intrinsic probabilistic properties of dose-volume histograms. We argue that the proposed method makes up for some deficiencies in previously proposed methods, thereby potentially increasing ease of use, flexibility and ability to perform well with small amounts of training data.

  6. Structure Size Enhanced Histogram

    NASA Astrophysics Data System (ADS)

    Wesarg, Stefan; Kirschner, Matthias

    Direct volume visualization requires the definition of transfer functions (TFs) for the assignment of opacity and color. Multi-dimensional TFs are based on at least two image properties, and are specified by means of 2D histograms. In this work we propose a new type of a 2D histogram which combines gray value with information about the size of the structures. This structure size enhanced (SSE) histogram is an intuitive approach for representing anatomical features. Clinicians — the users we are focusing on — are much more familiar with selecting features by their size than by their gradient magnitude value. As a proof of concept, we employ the SSE histogram for the definition of two-dimensional TFs for the visualization of 3D MRI and CT image data.

  7. Face recognition algorithm using extended vector quantization histogram features.

    PubMed

    Yan, Yan; Lee, Feifei; Wu, Xueqian; Chen, Qiu

    2018-01-01

    In this paper, we propose a face recognition algorithm based on a combination of vector quantization (VQ) and Markov stationary features (MSF). The VQ algorithm has been shown to be an effective method for generating features; it extracts a codevector histogram as a facial feature representation for face recognition. Still, the VQ histogram features are unable to convey spatial structural information, which to some extent limits their usefulness in discrimination. To alleviate this limitation of VQ histograms, we utilize Markov stationary features (MSF) to extend the VQ histogram-based features so as to add spatial structural information. We demonstrate the effectiveness of our proposed algorithm by achieving recognition results superior to those of several state-of-the-art methods on publicly available face databases.

  8. Ultrasonic histogram assessment of early response to concurrent chemo-radiotherapy in patients with locally advanced cervical cancer: a feasibility study.

    PubMed

    Xu, Yan; Ru, Tong; Zhu, Lijing; Liu, Baorui; Wang, Huanhuan; Zhu, Li; He, Jian; Liu, Song; Zhou, Zhengyang; Yang, Xiaofeng

    To monitor early response for locally advanced cervical cancers undergoing concurrent chemo-radiotherapy (CCRT) by ultrasonic histogram. B-mode ultrasound examinations were performed at 4 time points in thirty-four patients during CCRT. Six ultrasonic histogram parameters were used to assess the echogenicity, homogeneity and heterogeneity of tumors. I peak increased rapidly since the first week after therapy initiation, whereas W low , W high and A high changed significantly at the second week. The average ultrasonic histogram progressively moved toward the right and converted into more symmetrical shape. Ultrasonic histogram could be served as a potential marker to monitor early response during CCRT. Copyright © 2018 Elsevier Inc. All rights reserved.

  9. Face verification system for Android mobile devices using histogram based features

    NASA Astrophysics Data System (ADS)

    Sato, Sho; Kobayashi, Kazuhiro; Chen, Qiu

    2016-07-01

    This paper proposes a face verification system that runs on Android mobile devices. In this system, facial image is captured by a built-in camera on the Android device firstly, and then face detection is implemented using Haar-like features and AdaBoost learning algorithm. The proposed system verify the detected face using histogram based features, which are generated by binary Vector Quantization (VQ) histogram using DCT coefficients in low frequency domains, as well as Improved Local Binary Pattern (Improved LBP) histogram in spatial domain. Verification results with different type of histogram based features are first obtained separately and then combined by weighted averaging. We evaluate our proposed algorithm by using publicly available ORL database and facial images captured by an Android tablet.

  10. Coding and decoding with adapting neurons: a population approach to the peri-stimulus time histogram.

    PubMed

    Naud, Richard; Gerstner, Wulfram

    2012-01-01

    The response of a neuron to a time-dependent stimulus, as measured in a Peri-Stimulus-Time-Histogram (PSTH), exhibits an intricate temporal structure that reflects potential temporal coding principles. Here we analyze the encoding and decoding of PSTHs for spiking neurons with arbitrary refractoriness and adaptation. As a modeling framework, we use the spike response model, also known as the generalized linear neuron model. Because of refractoriness, the effect of the most recent spike on the spiking probability a few milliseconds later is very strong. The influence of the last spike needs therefore to be described with high precision, while the rest of the neuronal spiking history merely introduces an average self-inhibition or adaptation that depends on the expected number of past spikes but not on the exact spike timings. Based on these insights, we derive a 'quasi-renewal equation' which is shown to yield an excellent description of the firing rate of adapting neurons. We explore the domain of validity of the quasi-renewal equation and compare it with other rate equations for populations of spiking neurons. The problem of decoding the stimulus from the population response (or PSTH) is addressed analogously. We find that for small levels of activity and weak adaptation, a simple accumulator of the past activity is sufficient to decode the original input, but when refractory effects become large decoding becomes a non-linear function of the past activity. The results presented here can be applied to the mean-field analysis of coupled neuron networks, but also to arbitrary point processes with negative self-interaction.

  11. Combining Vector Quantization and Histogram Equalization.

    ERIC Educational Resources Information Center

    Cosman, Pamela C.; And Others

    1992-01-01

    Discussion of contrast enhancement techniques focuses on the use of histogram equalization with a data compression technique, i.e., tree-structured vector quantization. The enhancement technique of intensity windowing is described, and the use of enhancement techniques for medical images is explained, including adaptive histogram equalization.…

  12. Histogram Curve Matching Approaches for Object-based Image Classification of Land Cover and Land Use

    PubMed Central

    Toure, Sory I.; Stow, Douglas A.; Weeks, John R.; Kumar, Sunil

    2013-01-01

    The classification of image-objects is usually done using parametric statistical measures of central tendency and/or dispersion (e.g., mean or standard deviation). The objectives of this study were to analyze digital number histograms of image objects and evaluate classifications measures exploiting characteristic signatures of such histograms. Two histograms matching classifiers were evaluated and compared to the standard nearest neighbor to mean classifier. An ADS40 airborne multispectral image of San Diego, California was used for assessing the utility of curve matching classifiers in a geographic object-based image analysis (GEOBIA) approach. The classifications were performed with data sets having 0.5 m, 2.5 m, and 5 m spatial resolutions. Results show that histograms are reliable features for characterizing classes. Also, both histogram matching classifiers consistently performed better than the one based on the standard nearest neighbor to mean rule. The highest classification accuracies were produced with images having 2.5 m spatial resolution. PMID:24403648

  13. Histogram and gray level co-occurrence matrix on gray-scale ultrasound images for diagnosing lymphocytic thyroiditis.

    PubMed

    Shin, Young Gyung; Yoo, Jaeheung; Kwon, Hyeong Ju; Hong, Jung Hwa; Lee, Hye Sun; Yoon, Jung Hyun; Kim, Eun-Kyung; Moon, Hee Jung; Han, Kyunghwa; Kwak, Jin Young

    2016-08-01

    The objective of the study was to evaluate whether texture analysis using histogram and gray level co-occurrence matrix (GLCM) parameters can help clinicians diagnose lymphocytic thyroiditis (LT) and differentiate LT according to pathologic grade. The background thyroid pathology of 441 patients was classified into no evidence of LT, chronic LT (CLT), and Hashimoto's thyroiditis (HT). Histogram and GLCM parameters were extracted from the regions of interest on ultrasound. The diagnostic performances of the parameters for diagnosing and differentiating LT were calculated. Of the histogram and GLCM parameters, the mean on histogram had the highest Az (0.63) and VUS (0.303). As the degrees of LT increased, the mean decreased and the standard deviation and entropy increased. The mean on histogram from gray-scale ultrasound showed the best diagnostic performance as a single parameter in differentiating LT according to pathologic grade as well as in diagnosing LT. Copyright © 2016 Elsevier Ltd. All rights reserved.

  14. Whole-Lesion Histogram Analysis of Apparent Diffusion Coefficient for the Assessment of Cervical Cancer.

    PubMed

    Guan, Yue; Shi, Hua; Chen, Ying; Liu, Song; Li, Weifeng; Jiang, Zhuoran; Wang, Huanhuan; He, Jian; Zhou, Zhengyang; Ge, Yun

    2016-01-01

    The aim of this study was to explore the application of whole-lesion histogram analysis of apparent diffusion coefficient (ADC) values of cervical cancer. A total of 54 women (mean age, 53 years) with cervical cancers underwent 3-T diffusion-weighted imaging with b values of 0 and 800 s/mm prospectively. Whole-lesion histogram analysis of ADC values was performed. Paired sample t test was used to compare differences in ADC histogram parameters between cervical cancers and normal cervical tissues. Receiver operating characteristic curves were constructed to identify the optimal threshold of each parameter. All histogram parameters in this study including ADCmean, ADCmin, ADC10%-ADC90%, mode, skewness, and kurtosis of cervical cancers were significantly lower than those of normal cervical tissues (all P < 0.0001). ADC90% had the largest area under receiver operating characteristic curve of 0.996. Whole-lesion histogram analysis of ADC maps is useful in the assessment of cervical cancer.

  15. Time-cumulated visible and infrared radiance histograms used as descriptors of surface and cloud variations

    NASA Technical Reports Server (NTRS)

    Seze, Genevieve; Rossow, William B.

    1991-01-01

    The spatial and temporal stability of the distributions of satellite-measured visible and infrared radiances, caused by variations in clouds and surfaces, are investigated using bidimensional and monodimensional histograms and time-composite images. Similar analysis of the histograms of the original and time-composite images provides separation of the contributions of the space and time variations to the total variations. The variability of both the surfaces and clouds is found to be larger at scales much larger than the minimum resolved by satellite imagery. This study shows that the shapes of these histograms are distinctive characteristics of the different climate regimes and that particular attributes of these histograms can be related to several general, though not universal, properties of clouds and surface variations at regional and synoptic scales. There are also significant exceptions to these relationships in particular climate regimes. The characteristics of these radiance histograms provide a stable well defined descriptor of the cloud and surface properties.

  16. Particle swarm optimization-based local entropy weighted histogram equalization for infrared image enhancement

    NASA Astrophysics Data System (ADS)

    Wan, Minjie; Gu, Guohua; Qian, Weixian; Ren, Kan; Chen, Qian; Maldague, Xavier

    2018-06-01

    Infrared image enhancement plays a significant role in intelligent urban surveillance systems for smart city applications. Unlike existing methods only exaggerating the global contrast, we propose a particle swam optimization-based local entropy weighted histogram equalization which involves the enhancement of both local details and fore-and background contrast. First of all, a novel local entropy weighted histogram depicting the distribution of detail information is calculated based on a modified hyperbolic tangent function. Then, the histogram is divided into two parts via a threshold maximizing the inter-class variance in order to improve the contrasts of foreground and background, respectively. To avoid over-enhancement and noise amplification, double plateau thresholds of the presented histogram are formulated by means of particle swarm optimization algorithm. Lastly, each sub-image is equalized independently according to the constrained sub-local entropy weighted histogram. Comparative experiments implemented on real infrared images prove that our algorithm outperforms other state-of-the-art methods in terms of both visual and quantized evaluations.

  17. Pretreatment ADC histogram analysis is a predictive imaging biomarker for bevacizumab treatment but not chemotherapy in recurrent glioblastoma.

    PubMed

    Ellingson, B M; Sahebjam, S; Kim, H J; Pope, W B; Harris, R J; Woodworth, D C; Lai, A; Nghiemphu, P L; Mason, W P; Cloughesy, T F

    2014-04-01

    Pre-treatment ADC characteristics have been shown to predict response to bevacizumab in recurrent glioblastoma multiforme. However, no studies have examined whether ADC characteristics are specific to this particular treatment. The purpose of the current study was to determine whether ADC histogram analysis is a bevacizumab-specific or treatment-independent biomarker of treatment response in recurrent glioblastoma multiforme. Eighty-nine bevacizumab-treated and 43 chemotherapy-treated recurrent glioblastoma multiformes never exposed to bevacizumab were included in this study. In all patients, ADC values in contrast-enhancing ROIs from MR imaging examinations performed at the time of recurrence, immediately before commencement of treatment for recurrence, were extracted and the resulting histogram was fitted to a mixed model with a double Gaussian distribution. Mean ADC in the lower Gaussian curve was used as the primary biomarker of interest. The Cox proportional hazards model and log-rank tests were used for survival analysis. Cox multivariate regression analysis accounting for the interaction between bevacizumab- and non-bevacizumab-treated patients suggested that the ability of the lower Gaussian curve to predict survival is dependent on treatment (progression-free survival, P = .045; overall survival, P = .003). Patients with bevacizumab-treated recurrent glioblastoma multiforme with a pretreatment lower Gaussian curve > 1.2 μm(2)/ms had a significantly longer progression-free survival and overall survival compared with bevacizumab-treated patients with a lower Gaussian curve < 1.2 μm(2)/ms. No differences in progression-free survival or overall survival were observed in the chemotherapy-treated cohort. Bevacizumab-treated patients with a mean lower Gaussian curve > 1.2 μm(2)/ms had a significantly longer progression-free survival and overall survival compared with chemotherapy-treated patients. The mean lower Gaussian curve from ADC histogram analysis is a predictive imaging biomarker for bevacizumab-treated, not chemotherapy-treated, recurrent glioblastoma multiforme. Patients with recurrent glioblastoma multiforme with a mean lower Gaussian curve > 1.2 μm(2)/ms have a survival advantage when treated with bevacizumab.

  18. Apparent diffusion coefficient histogram shape analysis for monitoring early response in patients with advanced cervical cancers undergoing concurrent chemo-radiotherapy.

    PubMed

    Meng, Jie; Zhu, Lijing; Zhu, Li; Wang, Huanhuan; Liu, Song; Yan, Jing; Liu, Baorui; Guan, Yue; Ge, Yun; He, Jian; Zhou, Zhengyang; Yang, Xiaofeng

    2016-10-22

    To explore the role of apparent diffusion coefficient (ADC) histogram shape related parameters in early assessment of treatment response during the concurrent chemo-radiotherapy (CCRT) course of advanced cervical cancers. This prospective study was approved by the local ethics committee and informed consent was obtained from all patients. Thirty-two patients with advanced cervical squamous cell carcinomas underwent diffusion weighted magnetic resonance imaging (b values, 0 and 800 s/mm 2 ) before CCRT, at the end of 2nd and 4th week during CCRT and immediately after CCRT completion. Whole lesion ADC histogram analysis generated several histogram shape related parameters including skewness, kurtosis, s-sD av , width, standard deviation, as well as first-order entropy and second-order entropies. The averaged ADC histograms of 32 patients were generated to visually observe dynamic changes of the histogram shape following CCRT. All parameters except width and standard deviation showed significant changes during CCRT (all P < 0.05), and their variation trends fell into four different patterns. Skewness and kurtosis both showed high early decline rate (43.10 %, 48.29 %) at the end of 2nd week of CCRT. All entropies kept decreasing significantly since 2 weeks after CCRT initiated. The shape of averaged ADC histogram also changed obviously following CCRT. ADC histogram shape analysis held the potential in monitoring early tumor response in patients with advanced cervical cancers undergoing CCRT.

  19. [Clinical application of MRI histogram in evaluation of muscle fatty infiltration].

    PubMed

    Zheng, Y M; Du, J; Li, W Z; Wang, Z X; Zhang, W; Xiao, J X; Yuan, Y

    2016-10-18

    To describe a method based on analysis of the histogram of intensity values produced from the magnetic resonance imaging (MRI) for quantifying the degree of fatty infiltration. The study included 25 patients with dystrophinopathy. All the subjects underwent muscle MRI test at thigh level. The histogram M values of 250 muscles adjusted for subcutaneous fat, representing the degree of fatty infiltration, were compared with the expert visual reading using the modified Mercuri scale. There was a significant positive correlation between the histogram M values and the scores of visual reading (r=0.854, P<0.001). The distinct pattern of muscle involvement detected in the patients with dystrophinopathy in our study of histogram M values was similar to that of visual reading and results in literature. The histogram M values had stronger correlations with the clinical data than the scores of visual reading as follows: the correlations with age (r=0.730, P<0.001) and (r=0.753, P<0.001); with strength of knee extensor (r=-0.468, P=0.024) and (r=-0.460, P=0.027) respectively. Meanwhile, the histogram M values analysis had better repeatability than visual reading with the interclass correlation coefficient was 0.998 (95% CI: 0.997-0.998, P<0.001) and 0.958 (95% CI: 0.946-0.967, P<0.001) respectively. Histogram M values analysis of MRI with the advantages of repeatability and objectivity can be used to evaluate the degree of muscle fatty infiltration.

  20. The Histogram-Area Connection

    ERIC Educational Resources Information Center

    Gratzer, William; Carpenter, James E.

    2008-01-01

    This article demonstrates an alternative approach to the construction of histograms--one based on the notion of using area to represent relative density in intervals of unequal length. The resulting histograms illustrate the connection between the area of the rectangles associated with particular outcomes and the relative frequency (probability)…

  1. Investigating Student Understanding of Histograms

    ERIC Educational Resources Information Center

    Kaplan, Jennifer J.; Gabrosek, John G.; Curtiss, Phyllis; Malone, Chris

    2014-01-01

    Histograms are adept at revealing the distribution of data values, especially the shape of the distribution and any outlier values. They are included in introductory statistics texts, research methods texts, and in the popular press, yet students often have difficulty interpreting the information conveyed by a histogram. This research identifies…

  2. Thresholding histogram equalization.

    PubMed

    Chuang, K S; Chen, S; Hwang, I M

    2001-12-01

    The drawbacks of adaptive histogram equalization techniques are the loss of definition on the edges of the object and overenhancement of noise in the images. These drawbacks can be avoided if the noise is excluded in the equalization transformation function computation. A method has been developed to separate the histogram into zones, each with its own equalization transformation. This method can be used to suppress the nonanatomic noise and enhance only certain parts of the object. This method can be combined with other adaptive histogram equalization techniques. Preliminary results indicate that this method can produce images with superior contrast.

  3. Variations of attractors and wavelet spectra of the immunofluorescence distributions for women in the pregnant period

    NASA Astrophysics Data System (ADS)

    Galich, Nikolay E.

    2008-07-01

    Communication contains the description of the immunology data treatment. New nonlinear methods of immunofluorescence statistical analysis of peripheral blood neutrophils have been developed. We used technology of respiratory burst reaction of DNA fluorescence in the neutrophils cells nuclei due to oxidative activity. The histograms of photon count statistics the radiant neutrophils populations' in flow cytometry experiments are considered. Distributions of the fluorescence flashes frequency as functions of the fluorescence intensity are analyzed. Statistic peculiarities of histograms set for women in the pregnant period allow dividing all histograms on the three classes. The classification is based on three different types of smoothing and long-range scale averaged immunofluorescence distributions, their bifurcation and wavelet spectra. Heterogeneity peculiarities of long-range scale immunofluorescence distributions and peculiarities of wavelet spectra allow dividing all histograms on three groups. First histograms group belongs to healthy donors. Two other groups belong to donors with autoimmune and inflammatory diseases. Some of the illnesses are not diagnosed by standards biochemical methods. Medical standards and statistical data of the immunofluorescence histograms for identifications of health and illnesses are interconnected. Peculiarities of immunofluorescence for women in pregnant period are classified. Health or illness criteria are connected with statistics features of immunofluorescence histograms. Neutrophils populations' fluorescence presents the sensitive clear indicator of health status.

  4. Complexity of possibly gapped histogram and analysis of histogram.

    PubMed

    Fushing, Hsieh; Roy, Tania

    2018-02-01

    We demonstrate that gaps and distributional patterns embedded within real-valued measurements are inseparable biological and mechanistic information contents of the system. Such patterns are discovered through data-driven possibly gapped histogram, which further leads to the geometry-based analysis of histogram (ANOHT). Constructing a possibly gapped histogram is a complex problem of statistical mechanics due to the ensemble of candidate histograms being captured by a two-layer Ising model. This construction is also a distinctive problem of Information Theory from the perspective of data compression via uniformity. By defining a Hamiltonian (or energy) as a sum of total coding lengths of boundaries and total decoding errors within bins, this issue of computing the minimum energy macroscopic states is surprisingly resolved by applying the hierarchical clustering algorithm. Thus, a possibly gapped histogram corresponds to a macro-state. And then the first phase of ANOHT is developed for simultaneous comparison of multiple treatments, while the second phase of ANOHT is developed based on classical empirical process theory for a tree-geometry that can check the authenticity of branches of the treatment tree. The well-known Iris data are used to illustrate our technical developments. Also, a large baseball pitching dataset and a heavily right-censored divorce data are analysed to showcase the existential gaps and utilities of ANOHT.

  5. Histogram-based quantitative evaluation of endobronchial ultrasonography images of peripheral pulmonary lesion.

    PubMed

    Morikawa, Kei; Kurimoto, Noriaki; Inoue, Takeo; Mineshita, Masamichi; Miyazawa, Teruomi

    2015-01-01

    Endobronchial ultrasonography using a guide sheath (EBUS-GS) is an increasingly common bronchoscopic technique, but currently, no methods have been established to quantitatively evaluate EBUS images of peripheral pulmonary lesions. The purpose of this study was to evaluate whether histogram data collected from EBUS-GS images can contribute to the diagnosis of lung cancer. Histogram-based analyses focusing on the brightness of EBUS images were retrospectively conducted: 60 patients (38 lung cancer; 22 inflammatory diseases), with clear EBUS images were included. For each patient, a 400-pixel region of interest was selected, typically located at a 3- to 5-mm radius from the probe, from recorded EBUS images during bronchoscopy. Histogram height, width, height/width ratio, standard deviation, kurtosis and skewness were investigated as diagnostic indicators. Median histogram height, width, height/width ratio and standard deviation were significantly different between lung cancer and benign lesions (all p < 0.01). With a cutoff value for standard deviation of 10.5, lung cancer could be diagnosed with an accuracy of 81.7%. Other characteristics investigated were inferior when compared to histogram standard deviation. Histogram standard deviation appears to be the most useful characteristic for diagnosing lung cancer using EBUS images. © 2015 S. Karger AG, Basel.

  6. Complexity of possibly gapped histogram and analysis of histogram

    PubMed Central

    Roy, Tania

    2018-01-01

    We demonstrate that gaps and distributional patterns embedded within real-valued measurements are inseparable biological and mechanistic information contents of the system. Such patterns are discovered through data-driven possibly gapped histogram, which further leads to the geometry-based analysis of histogram (ANOHT). Constructing a possibly gapped histogram is a complex problem of statistical mechanics due to the ensemble of candidate histograms being captured by a two-layer Ising model. This construction is also a distinctive problem of Information Theory from the perspective of data compression via uniformity. By defining a Hamiltonian (or energy) as a sum of total coding lengths of boundaries and total decoding errors within bins, this issue of computing the minimum energy macroscopic states is surprisingly resolved by applying the hierarchical clustering algorithm. Thus, a possibly gapped histogram corresponds to a macro-state. And then the first phase of ANOHT is developed for simultaneous comparison of multiple treatments, while the second phase of ANOHT is developed based on classical empirical process theory for a tree-geometry that can check the authenticity of branches of the treatment tree. The well-known Iris data are used to illustrate our technical developments. Also, a large baseball pitching dataset and a heavily right-censored divorce data are analysed to showcase the existential gaps and utilities of ANOHT. PMID:29515829

  7. Complexity of possibly gapped histogram and analysis of histogram

    NASA Astrophysics Data System (ADS)

    Fushing, Hsieh; Roy, Tania

    2018-02-01

    We demonstrate that gaps and distributional patterns embedded within real-valued measurements are inseparable biological and mechanistic information contents of the system. Such patterns are discovered through data-driven possibly gapped histogram, which further leads to the geometry-based analysis of histogram (ANOHT). Constructing a possibly gapped histogram is a complex problem of statistical mechanics due to the ensemble of candidate histograms being captured by a two-layer Ising model. This construction is also a distinctive problem of Information Theory from the perspective of data compression via uniformity. By defining a Hamiltonian (or energy) as a sum of total coding lengths of boundaries and total decoding errors within bins, this issue of computing the minimum energy macroscopic states is surprisingly resolved by applying the hierarchical clustering algorithm. Thus, a possibly gapped histogram corresponds to a macro-state. And then the first phase of ANOHT is developed for simultaneous comparison of multiple treatments, while the second phase of ANOHT is developed based on classical empirical process theory for a tree-geometry that can check the authenticity of branches of the treatment tree. The well-known Iris data are used to illustrate our technical developments. Also, a large baseball pitching dataset and a heavily right-censored divorce data are analysed to showcase the existential gaps and utilities of ANOHT.

  8. Context-sensitive patch histograms for detecting rare events in histopathological data

    NASA Astrophysics Data System (ADS)

    Diaz, Kristians; Baust, Maximilian; Navab, Nassir

    2017-03-01

    Assessment of histopathological data is not only difficult due to its varying appearance, e.g. caused by staining artifacts, but also due to its sheer size: Common whole slice images feature a resolution of 6000x4000 pixels. Therefore, finding rare events in such data sets is a challenging and tedious task and developing sophisticated computerized tools is not easy, especially when no or little training data is available. In this work, we propose learning-free yet effective approach based on context sensitive patch-histograms in order to find extramedullary hematopoiesis events in Hematoxylin-Eosin-stained images. When combined with a simple nucleus detector, one can achieve performance levels in terms of sensitivity 0.7146, specificity 0.8476 and accuracy 0.8353 which are very well comparable to a recently published approach based on random forests.

  9. CHOBS: Color Histogram of Block Statistics for Automatic Bleeding Detection in Wireless Capsule Endoscopy Video.

    PubMed

    Ghosh, Tonmoy; Fattah, Shaikh Anowarul; Wahid, Khan A

    2018-01-01

    Wireless capsule endoscopy (WCE) is the most advanced technology to visualize whole gastrointestinal (GI) tract in a non-invasive way. But the major disadvantage here, it takes long reviewing time, which is very laborious as continuous manual intervention is necessary. In order to reduce the burden of the clinician, in this paper, an automatic bleeding detection method for WCE video is proposed based on the color histogram of block statistics, namely CHOBS. A single pixel in WCE image may be distorted due to the capsule motion in the GI tract. Instead of considering individual pixel values, a block surrounding to that individual pixel is chosen for extracting local statistical features. By combining local block features of three different color planes of RGB color space, an index value is defined. A color histogram, which is extracted from those index values, provides distinguishable color texture feature. A feature reduction technique utilizing color histogram pattern and principal component analysis is proposed, which can drastically reduce the feature dimension. For bleeding zone detection, blocks are classified using extracted local features that do not incorporate any computational burden for feature extraction. From extensive experimentation on several WCE videos and 2300 images, which are collected from a publicly available database, a very satisfactory bleeding frame and zone detection performance is achieved in comparison to that obtained by some of the existing methods. In the case of bleeding frame detection, the accuracy, sensitivity, and specificity obtained from proposed method are 97.85%, 99.47%, and 99.15%, respectively, and in the case of bleeding zone detection, 95.75% of precision is achieved. The proposed method offers not only low feature dimension but also highly satisfactory bleeding detection performance, which even can effectively detect bleeding frame and zone in a continuous WCE video data.

  10. Differentiation of orbital lymphoma and idiopathic orbital inflammatory pseudotumor: combined diagnostic value of conventional MRI and histogram analysis of ADC maps.

    PubMed

    Ren, Jiliang; Yuan, Ying; Wu, Yingwei; Tao, Xiaofeng

    2018-05-02

    The overlap of morphological feature and mean ADC value restricted clinical application of MRI in the differential diagnosis of orbital lymphoma and idiopathic orbital inflammatory pseudotumor (IOIP). In this paper, we aimed to retrospectively evaluate the combined diagnostic value of conventional magnetic resonance imaging (MRI) and whole-tumor histogram analysis of apparent diffusion coefficient (ADC) maps in the differentiation of the two lesions. In total, 18 patients with orbital lymphoma and 22 patients with IOIP were included, who underwent both conventional MRI and diffusion weighted imaging before treatment. Conventional MRI features and histogram parameters derived from ADC maps, including mean ADC (ADC mean ), median ADC (ADC median ), skewness, kurtosis, 10th, 25th, 75th and 90th percentiles of ADC (ADC 10 , ADC 25 , ADC 75 , ADC 90 ) were evaluated and compared between orbital lymphoma and IOIP. Multivariate logistic regression analysis was used to identify the most valuable variables for discriminating. Differential model was built upon the selected variables and receiver operating characteristic (ROC) analysis was also performed to determine the differential ability of the model. Multivariate logistic regression showed ADC 10 (P = 0.023) and involvement of orbit preseptal space (P = 0.029) were the most promising indexes in the discrimination of orbital lymphoma and IOIP. The logistic model defined by ADC 10 and involvement of orbit preseptal space was built, which achieved an AUC of 0.939, with sensitivity of 77.30% and specificity of 94.40%. Conventional MRI feature of involvement of orbit preseptal space and ADC histogram parameter of ADC 10 are valuable in differential diagnosis of orbital lymphoma and IOIP.

  11. Three-dimensional volumetric gray-scale uterine cervix histogram prediction of days to delivery in full term pregnancy.

    PubMed

    Kim, Ji Youn; Kim, Hai-Joong; Hahn, Meong Hi; Jeon, Hye Jin; Cho, Geum Joon; Hong, Sun Chul; Oh, Min Jeong

    2013-09-01

    Our aim was to figure out whether volumetric gray-scale histogram difference between anterior and posterior cervix can indicate the extent of cervical consistency. We collected data of 95 patients who were appropriate for vaginal delivery with 36th to 37th weeks of gestational age from September 2010 to October 2011 in the Department of Obstetrics and Gynecology, Korea University Ansan Hospital. Patients were excluded who had one of the followings: Cesarean section, labor induction, premature rupture of membrane. Thirty-four patients were finally enrolled. The patients underwent evaluation of the cervix through Bishop score, cervical length, cervical volume, three-dimensional (3D) cervical volumetric gray-scale histogram. The interval days from the cervix evaluation to the delivery day were counted. We compared to 3D cervical volumetric gray-scale histogram, Bishop score, cervical length, cervical volume with interval days from the evaluation of the cervix to the delivery. Gray-scale histogram difference between anterior and posterior cervix was significantly correlated to days to delivery. Its correlation coefficient (R) was 0.500 (P = 0.003). The cervical length was significantly related to the days to delivery. The correlation coefficient (R) and P-value between them were 0.421 and 0.013. However, anterior lip histogram, posterior lip histogram, total cervical volume, Bishop score were not associated with days to delivery (P >0.05). By using gray-scale histogram difference between anterior and posterior cervix and cervical length correlated with the days to delivery. These methods can be utilized to better help predict a cervical consistency.

  12. Construction and Evaluation of Histograms in Teacher Training

    ERIC Educational Resources Information Center

    Bruno, A.; Espinel, M. C.

    2009-01-01

    This article details the results of a written test designed to reveal how education majors construct and evaluate histograms and frequency polygons. Included is a description of the mistakes made by the students which shows how they tend to confuse histograms with bar diagrams, incorrectly assign data along the Cartesian axes and experience…

  13. Empirical Histograms in Item Response Theory with Ordinal Data

    ERIC Educational Resources Information Center

    Woods, Carol M.

    2007-01-01

    The purpose of this research is to describe, test, and illustrate a new implementation of the empirical histogram (EH) method for ordinal items. The EH method involves the estimation of item response model parameters simultaneously with the approximation of the distribution of the random latent variable (theta) as a histogram. Software for the EH…

  14. Symbol recognition via statistical integration of pixel-level constraint histograms: a new descriptor.

    PubMed

    Yang, Su

    2005-02-01

    A new descriptor for symbol recognition is proposed. 1) A histogram is constructed for every pixel to figure out the distribution of the constraints among the other pixels. 2) All the histograms are statistically integrated to form a feature vector with fixed dimension. The robustness and invariance were experimentally confirmed.

  15. Airborne gamma-ray spectrometer and magnetometer survey, Durango D, Colorado. Final report Volume II A. Detail area

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Not Available

    1983-01-01

    This volume contains geology of the Durango D detail area, radioactive mineral occurrences in Colorado, and geophysical data interpretation. Eight appendices provide: stacked profiles, geologic histograms, geochemical histograms, speed and altitude histograms, geologic statistical tables, geochemical statistical tables, magnetic and ancillary profiles, and test line data.

  16. Airborne gamma-ray spectrometer and magnetometer survey, Durango C, Colorado. Final report Volume II A. Detail area

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Not Available

    1983-01-01

    Geology of Durango C detail area, radioactive mineral occurrences in Colorado, and geophysical data interpretation are included in this report. Eight appendices provide: stacked profiles, geologic histograms, geochemical histograms, speed and altitude histograms, geologic statistical tables, magnetic and ancillary profiles, and test line data.

  17. Action recognition via cumulative histogram of multiple features

    NASA Astrophysics Data System (ADS)

    Yan, Xunshi; Luo, Yupin

    2011-01-01

    Spatial-temporal interest points (STIPs) are popular in human action recognition. However, they suffer from difficulties in determining size of codebook and losing much information during forming histograms. In this paper, spatial-temporal interest regions (STIRs) are proposed, which are based on STIPs and are capable of marking the locations of the most ``shining'' human body parts. In order to represent human actions, the proposed approach takes great advantages of multiple features, including STIRs, pyramid histogram of oriented gradients and pyramid histogram of oriented optical flows. To achieve this, cumulative histogram is used to integrate dynamic information in sequences and to form feature vectors. Furthermore, the widely used nearest neighbor and AdaBoost methods are employed as classification algorithms. Experiments on public datasets KTH, Weizmann and UCF sports show that the proposed approach achieves effective and robust results.

  18. Histogram analysis of apparent diffusion coefficient for monitoring early response in patients with advanced cervical cancers undergoing concurrent chemo-radiotherapy.

    PubMed

    Meng, Jie; Zhu, Lijing; Zhu, Li; Ge, Yun; He, Jian; Zhou, Zhengyang; Yang, Xiaofeng

    2017-11-01

    Background Apparent diffusion coefficient (ADC) histogram analysis has been widely used in determining tumor prognosis. Purpose To investigate the dynamic changes of ADC histogram parameters during concurrent chemo-radiotherapy (CCRT) in patients with advanced cervical cancers. Material and Methods This prospective study enrolled 32 patients with advanced cervical cancers undergoing CCRT who received diffusion-weighted (DW) magnetic resonance imaging (MRI) before CCRT, at the end of the second and fourth week during CCRT and one month after CCRT completion. The ADC histogram for the entire tumor volume was generated, and a series of histogram parameters was obtained. Dynamic changes of those parameters in cervical cancers were investigated as early biomarkers for treatment response. Results All histogram parameters except AUC low showed significant changes during CCRT (all P < 0.05). There were three variable trends involving different parameters. The mode, 5th, 10th, and 25th percentiles showed similar early increase rates (33.33%, 33.99%, 34.12%, and 30.49%, respectively) at the end of the second week of CCRT. The pre-CCRT 5th and 25th percentiles of the complete response (CR) group were significantly lower than those of the partial response (PR) group. Conclusion A series of ADC histogram parameters of cervical cancers changed significantly at the early stage of CCRT, indicating their potential in monitoring early tumor response to therapy.

  19. ADC histogram analysis of muscle lymphoma - Correlation with histopathology in a rare entity.

    PubMed

    Meyer, Hans-Jonas; Pazaitis, Nikolaos; Surov, Alexey

    2018-06-21

    Diffusion weighted imaging (DWI) is able to reflect histopathology architecture. A novel imaging approach, namely histogram analysis, is used to further characterize lesion on MRI. The purpose of this study is to correlate histogram parameters derived from apparent diffusion coefficient- (ADC) maps with histopathology parameters in muscle lymphoma. Eight patients (mean age 64.8 years, range 45-72 years) with histopathologically confirmed muscle lymphoma were retrospectively identified. Cell count, total nucleic and average nucleic areas were estimated using ImageJ. Additionally, Ki67-index was calculated. DWI was obtained on a 1.5T scanner by using the b values of 0 and 1000 s/mm2. Histogram analysis was performed as a whole lesion measurement by using a custom-made Matlabbased application. The correlation analysis revealed statistically significant correlation between cell count and ADCmean (p=-0.76, P=0.03) as well with ADCp75 (p=-0.79, P=0.02). Kurtosis and entropy correlated with average nucleic area (p=-0.81, P=0.02, p=0.88, P=0.007, respectively). None of the analyzed ADC parameters correlated with total nucleic area and with Ki67-index. This study identified significant correlations between cellularity and histogram parameters derived from ADC maps in muscle lymphoma. Thus, histogram analysis parameters reflect histopathology in muscle tumors. Advances in knowledge: Whole lesion ADC histogram analysis is able to reflect histopathology parameters in muscle lymphomas.

  20. Delay, change and bifurcation of the immunofluorescence distribution attractors in health statuses diagnostics and in medical treatment

    NASA Astrophysics Data System (ADS)

    Galich, Nikolay E.; Filatov, Michael V.

    2008-07-01

    Communication contains the description of the immunology experiments and the experimental data treatment. New nonlinear methods of immunofluorescence statistical analysis of peripheral blood neutrophils have been developed. We used technology of respiratory burst reaction of DNA fluorescence in the neutrophils cells nuclei due to oxidative activity. The histograms of photon count statistics the radiant neutrophils populations' in flow cytometry experiments are considered. Distributions of the fluorescence flashes frequency as functions of the fluorescence intensity are analyzed. Statistic peculiarities of histograms set for healthy and unhealthy donors allow dividing all histograms on the three classes. The classification is based on three different types of smoothing and long-range scale averaged immunofluorescence distributions and their bifurcation. Heterogeneity peculiarities of long-range scale immunofluorescence distributions allow dividing all histograms on three groups. First histograms group belongs to healthy donors. Two other groups belong to donors with autoimmune and inflammatory diseases. Some of the illnesses are not diagnosed by standards biochemical methods. Medical standards and statistical data of the immunofluorescence histograms for identifications of health and illnesses are interconnected. Possibilities and alterations of immunofluorescence statistics in registration, diagnostics and monitoring of different diseases in various medical treatments have been demonstrated. Health or illness criteria are connected with statistics features of immunofluorescence histograms. Neutrophils populations' fluorescence presents the sensitive clear indicator of health status.

  1. Whole brain myelin mapping using T1- and T2-weighted MR imaging data

    PubMed Central

    Ganzetti, Marco; Wenderoth, Nicole; Mantini, Dante

    2014-01-01

    Despite recent advancements in MR imaging, non-invasive mapping of myelin in the brain still remains an open issue. Here we attempted to provide a potential solution. Specifically, we developed a processing workflow based on T1-w and T2-w MR data to generate an optimized myelin enhanced contrast image. The workflow allows whole brain mapping using the T1-w/T2-w technique, which was originally introduced as a non-invasive method for assessing cortical myelin content. The hallmark of our approach is a retrospective calibration algorithm, applied to bias-corrected T1-w and T2-w images, that relies on image intensities outside the brain. This permits standardizing the intensity histogram of the ratio image, thereby allowing for across-subject statistical analyses. Quantitative comparisons of image histograms within and across different datasets confirmed the effectiveness of our normalization procedure. Not only did the calibrated T1-w/T2-w images exhibit a comparable intensity range, but also the shape of the intensity histograms was largely corresponding. We also assessed the reliability and specificity of the ratio image compared to other MR-based techniques, such as magnetization transfer ratio (MTR), fractional anisotropy (FA), and fluid-attenuated inversion recovery (FLAIR). With respect to these other techniques, T1-w/T2-w had consistently high values, as well as low inter-subject variability, in brain structures where myelin is most abundant. Overall, our results suggested that the T1-w/T2-w technique may be a valid tool supporting the non-invasive mapping of myelin in the brain. Therefore, it might find important applications in the study of brain development, aging and disease. PMID:25228871

  2. Histogram analysis of apparent diffusion coefficient at 3.0 T in urinary bladder lesions: correlation with pathologic findings.

    PubMed

    Suo, Shi-Teng; Chen, Xiao-Xi; Fan, Yu; Wu, Lian-Ming; Yao, Qiu-Ying; Cao, Meng-Qiu; Liu, Qiang; Xu, Jian-Rong

    2014-08-01

    To investigate the potential value of histogram analysis of apparent diffusion coefficient (ADC) obtained at standard (700 s/mm(2)) and high (1500 s/mm(2)) b values on a 3.0-T scanner in the differentiation of bladder cancer from benign lesions and in assessing bladder tumors of different pathologic T stages and to evaluate the diagnostic performance of ADC-based histogram parameters. In all, 52 patients with bladder lesions, including benign lesions (n = 7) and malignant tumors (n = 45; T1 stage or less, 23; T2 stage, 7; T3 stage, 8; and T4 stage, 7), were retrospectively evaluated. Magnetic resonance examination at 3.0 T and diffusion-weighted imaging were performed. ADC maps were obtained at two b values (b = 700 and 1500 s/mm(2); ie, ADC-700 and ADC-1500). Parameters of histogram analysis included mean, kurtosis, skewness, and entropy. The correlations between these parameters and pathologic results were revealed. Receiver operating characteristic (ROC) curves were generated to determine the diagnostic value of histogram parameters. Significant differences were found in mean ADC-700, mean ADC-1500, skewness ADC-1500, and kurtosis ADC-1500 between bladder cancer and benign lesions (P = .002-.032). There were also significant differences in mean ADC-700, mean ADC-1500, and kurtosis ADC-1500 among bladder tumors of different pathologic T stages (P = .000-.046). No significant differences were observed in other parameters. Mean ADC-1500 and kurtosis ADC-1500 were significantly correlated with T stage, respectively (ρ = -0.614, P < .001; ρ = 0.374, P = .011). ROC analysis showed that the combination of mean ADC-1500 and kurtosis ADC-1500 has the maximal area under the ROC curve (AUC, 0.894; P < .001) in the differentiation of benign lesions and malignant tumors, with a sensitivity of 77.78% and specificity of 100%. AUCs for differentiating low- and high-stage tumors were 0.840 for mean ADC-1500 (P < .001) and 0.696 for kurtosis ADC-1500 (P = .015). Histogram analysis of ADC-1500 at 3.0 T can be useful in evaluation of bladder lesions. A combination of mean ADC-1500 and kurtosis ADC-1500 may be more beneficial in the differentiation of benign and malignant lesions. Mean ADC-1500 was the most promising parameter for differentiating low- from high-stage bladder cancer. Copyright © 2014 AUR. Published by Elsevier Inc. All rights reserved.

  3. Time-cumulated visible and infrared histograms used as descriptor of cloud cover

    NASA Technical Reports Server (NTRS)

    Seze, G.; Rossow, W.

    1987-01-01

    To study the statistical behavior of clouds for different climate regimes, the spatial and temporal stability of VIS-IR bidimensional histograms is tested. Also, the effect of data sampling and averaging on the histogram shapes is considered; in particular the sampling strategy used by the International Satellite Cloud Climatology Project is tested.

  4. Interpreting Histograms. As Easy as It Seems?

    ERIC Educational Resources Information Center

    Lem, Stephanie; Onghena, Patrick; Verschaffel, Lieven; Van Dooren, Wim

    2014-01-01

    Histograms are widely used, but recent studies have shown that they are not as easy to interpret as it might seem. In this article, we report on three studies on the interpretation of histograms in which we investigated, namely, (1) whether the misinterpretation by university students can be considered to be the result of heuristic reasoning, (2)…

  5. Improving Real World Performance of Vision Aided Navigation in a Flight Environment

    DTIC Science & Technology

    2016-09-15

    Introduction . . . . . . . 63 4.2 Wide Area Search Extent . . . . . . . . . . . . . . . . . 64 4.3 Large-Scale Image Navigation Histogram Filter ...65 4.3.1 Location Model . . . . . . . . . . . . . . . . . . 66 4.3.2 Measurement Model . . . . . . . . . . . . . . . 66 4.3.3 Histogram Filter ...Iteration of Histogram Filter . . . . . . . . . . . 70 4.4 Implementation and Flight Test Campaign . . . . . . . . 71 4.4.1 Software Implementation

  6. Airborne gamma-ray spectrometer and magnetometer survey, Durango A, Colorado. Final report Volume II A. Detail area

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Not Available

    1983-01-01

    This volume contains geology of the Durango A detail area, radioactive mineral occurences in Colorado, and geophysical data interpretation. Eight appendices provide the following: stacked profiles, geologic histograms, geochemical histograms, speed and altitude histograms, geologic statistical tables, geochemical statistical tables, magnetic and ancillary profiles, and test line data.

  7. Airborne gamma-ray spectrometer and magnetometer survey, Durango B, Colorado. Final report Volume II A. Detail area

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Not Available

    1983-01-01

    The geology of the Durango B detail area, the radioactive mineral occurrences in Colorado and the geophysical data interpretation are included in this report. Seven appendices contain: stacked profiles, geologic histograms, geochemical histograms, speed and altitude histograms, geologic statistical tables, geochemical statistical tables, and test line data.

  8. Students' Understanding of Bar Graphs and Histograms: Results from the LOCUS Assessments

    ERIC Educational Resources Information Center

    Whitaker, Douglas; Jacobbe, Tim

    2017-01-01

    Bar graphs and histograms are core statistical tools that are widely used in statistical practice and commonly taught in classrooms. Despite their importance and the instructional time devoted to them, many students demonstrate misunderstandings when asked to read and interpret bar graphs and histograms. Much of the research that has been…

  9. Modeling Early Postnatal Brain Growth and Development with CT: Changes in the Brain Radiodensity Histogram from Birth to 2 Years.

    PubMed

    Cauley, K A; Hu, Y; Och, J; Yorks, P J; Fielden, S W

    2018-04-01

    The majority of brain growth and development occur in the first 2 years of life. This study investigated these changes by analysis of the brain radiodensity histogram of head CT scans from the clinical population, 0-2 years of age. One hundred twenty consecutive head CTs with normal findings meeting the inclusion criteria from children from birth to 2 years were retrospectively identified from 3 different CT scan platforms. Histogram analysis was performed on brain-extracted images, and histogram mean, mode, full width at half maximum, skewness, kurtosis, and SD were correlated with subject age. The effects of scan platform were investigated. Normative curves were fitted by polynomial regression analysis. Average total brain volume was 360 cm 3 at birth, 948 cm 3 at 1 year, and 1072 cm 3 at 2 years. Total brain tissue density showed an 11% increase in mean density at 1 year and 19% at 2 years. Brain radiodensity histogram skewness was positive at birth, declining logarithmically in the first 200 days of life. The histogram kurtosis also decreased in the first 200 days to approach a normal distribution. Direct segmentation of CT images showed that changes in brain radiodensity histogram skewness correlated with, and can be explained by, a relative increase in gray matter volume and an increase in gray and white matter tissue density that occurs during this period of brain maturation. Normative metrics of the brain radiodensity histogram derived from routine clinical head CT images can be used to develop a model of normal brain development. © 2018 by American Journal of Neuroradiology.

  10. Histogram analysis derived from apparent diffusion coefficient (ADC) is more sensitive to reflect serological parameters in myositis than conventional ADC analysis.

    PubMed

    Meyer, Hans Jonas; Emmer, Alexander; Kornhuber, Malte; Surov, Alexey

    2018-05-01

    Diffusion-weighted imaging (DWI) has the potential of being able to reflect histopathology architecture. A novel imaging approach, namely histogram analysis, is used to further characterize tissues on MRI. The aim of this study was to correlate histogram parameters derived from apparent diffusion coefficient (ADC) maps with serological parameters in myositis. 16 patients with autoimmune myositis were included in this retrospective study. DWI was obtained on a 1.5 T scanner by using the b-values of 0 and 1000 s mm - 2 . Histogram analysis was performed as a whole muscle measurement by using a custom-made Matlab-based application. The following ADC histogram parameters were estimated: ADCmean, ADCmax, ADCmin, ADCmedian, ADCmode, and the following percentiles ADCp10, ADCp25, ADCp75, ADCp90, as well histogram parameters kurtosis, skewness, and entropy. In all patients, the blood sample was acquired within 3 days to the MRI. The following serological parameters were estimated: alanine aminotransferase, aspartate aminotransferase, creatine kinase, lactate dehydrogenase, C-reactive protein (CRP) and myoglobin. All patients were screened for Jo1-autobodies. Kurtosis correlated inversely with CRP (p = -0.55 and 0.03). Furthermore, ADCp10 and ADCp90 values tended to correlate with creatine kinase (p = -0.43, 0.11, and p = -0.42, = 0.12 respectively). In addition, ADCmean, p10, p25, median, mode, and entropy were different between Jo1-positive and Jo1-negative patients. ADC histogram parameters are sensitive for detection of muscle alterations in myositis patients. Advances in knowledge: This study identified that kurtosis derived from ADC maps is associated with CRP in myositis patients. Furthermore, several ADC histogram parameters are statistically different between Jo1-positive and Jo1-negative patients.

  11. Non-small cell lung cancer: Whole-lesion histogram analysis of the apparent diffusion coefficient for assessment of tumor grade, lymphovascular invasion and pleural invasion.

    PubMed

    Tsuchiya, Naoko; Doai, Mariko; Usuda, Katsuo; Uramoto, Hidetaka; Tonami, Hisao

    2017-01-01

    Investigating the diagnostic accuracy of histogram analyses of apparent diffusion coefficient (ADC) values for determining non-small cell lung cancer (NSCLC) tumor grades, lymphovascular invasion, and pleural invasion. We studied 60 surgically diagnosed NSCLC patients. Diffusion-weighted imaging (DWI) was performed in the axial plane using a navigator-triggered single-shot, echo-planar imaging sequence with prospective acquisition correction. The ADC maps were generated, and we placed a volume-of-interest on the tumor to construct the whole-lesion histogram. Using the histogram, we calculated the mean, 5th, 10th, 25th, 50th, 75th, 90th, and 95th percentiles of ADC, skewness, and kurtosis. Histogram parameters were correlated with tumor grade, lymphovascular invasion, and pleural invasion. We performed a receiver operating characteristics (ROC) analysis to assess the diagnostic performance of histogram parameters for distinguishing different pathologic features. The ADC mean, 10th, 25th, 50th, 75th, 90th, and 95th percentiles showed significant differences among the tumor grades. The ADC mean, 25th, 50th, 75th, 90th, and 95th percentiles were significant histogram parameters between high- and low-grade tumors. The ROC analysis between high- and low-grade tumors showed that the 95th percentile ADC achieved the highest area under curve (AUC) at 0.74. Lymphovascular invasion was associated with the ADC mean, 50th, 75th, 90th, and 95th percentiles, skewness, and kurtosis. Kurtosis achieved the highest AUC at 0.809. Pleural invasion was only associated with skewness, with the AUC of 0.648. ADC histogram analyses on the basis of the entire tumor volume are able to stratify NSCLCs' tumor grade, lymphovascular invasion and pleural invasion.

  12. Macrophage Biochemistry, Activation and Function

    DTIC Science & Technology

    1981-01-01

    vacuolar apparatus become more abundant. Functional capabilities, including phagocytic activity, protein synthesis and surface receptors, also increase...properties of cell components of other tissues has led to the following assignment of marker enzymes to specific macrophage components. This assessment is...subfractions. The surface area of each histogram bar then gives the frac- tional amount of constituent present within each normalized fraction. Distribution

  13. Improved automatic adjustment of density and contrast in FCR system using neural network

    NASA Astrophysics Data System (ADS)

    Takeo, Hideya; Nakajima, Nobuyoshi; Ishida, Masamitsu; Kato, Hisatoyo

    1994-05-01

    FCR system has an automatic adjustment of image density and contrast by analyzing the histogram of image data in the radiation field. Advanced image recognition methods proposed in this paper can improve the automatic adjustment performance, in which neural network technology is used. There are two methods. Both methods are basically used 3-layer neural network with back propagation. The image data are directly input to the input-layer in one method and the histogram data is input in the other method. The former is effective to the imaging menu such as shoulder joint in which the position of interest region occupied on the histogram changes by difference of positioning and the latter is effective to the imaging menu such as chest-pediatrics in which the histogram shape changes by difference of positioning. We experimentally confirm the validity of these methods (about the automatic adjustment performance) as compared with the conventional histogram analysis methods.

  14. Investigation on improved infrared image detail enhancement algorithm based on adaptive histogram statistical stretching and gradient filtering

    NASA Astrophysics Data System (ADS)

    Zeng, Bangze; Zhu, Youpan; Li, Zemin; Hu, Dechao; Luo, Lin; Zhao, Deli; Huang, Juan

    2014-11-01

    Duo to infrared image with low contrast, big noise and unclear visual effect, target is very difficult to observed and identified. This paper presents an improved infrared image detail enhancement algorithm based on adaptive histogram statistical stretching and gradient filtering (AHSS-GF). Based on the fact that the human eyes are very sensitive to the edges and lines, the author proposed to extract the details and textures by using the gradient filtering. New histogram could be acquired by calculating the sum of original histogram based on fixed window. With the minimum value for cut-off point, author carried on histogram statistical stretching. After the proper weights given to the details and background, the detail-enhanced results could be acquired finally. The results indicate image contrast could be improved and the details and textures could be enhanced effectively as well.

  15. Research of image retrieval technology based on color feature

    NASA Astrophysics Data System (ADS)

    Fu, Yanjun; Jiang, Guangyu; Chen, Fengying

    2009-10-01

    Recently, with the development of the communication and the computer technology and the improvement of the storage technology and the capability of the digital image equipment, more and more image resources are given to us than ever. And thus the solution of how to locate the proper image quickly and accurately is wanted.The early method is to set up a key word for searching in the database, but now the method has become very difficult when we search much more picture that we need. In order to overcome the limitation of the traditional searching method, content based image retrieval technology was aroused. Now, it is a hot research subject.Color image retrieval is the important part of it. Color is the most important feature for color image retrieval. Three key questions on how to make use of the color characteristic are discussed in the paper: the expression of color, the abstraction of color characteristic and the measurement of likeness based on color. On the basis, the extraction technology of the color histogram characteristic is especially discussed. Considering the advantages and disadvantages of the overall histogram and the partition histogram, a new method based the partition-overall histogram is proposed. The basic thought of it is to divide the image space according to a certain strategy, and then calculate color histogram of each block as the color feature of this block. Users choose the blocks that contain important space information, confirming the right value. The system calculates the distance between the corresponding blocks that users choosed. Other blocks merge into part overall histograms again, and the distance should be calculated. Then accumulate all the distance as the real distance between two pictures. The partition-overall histogram comprehensive utilizes advantages of two methods above, by choosing blocks makes the feature contain more spatial information which can improve performance; the distances between partition-overall histogram make rotating and translation does not change. The HSV color space is used to show color characteristic of image, which is suitable to the visual characteristic of human. Taking advance of human's feeling to color, it quantifies color sector with unequal interval, and get characteristic vector. Finally, it matches the similarity of image with the algorithm of the histogram intersection and the partition-overall histogram. Users can choose a demonstration image to show inquired vision require, and also can adjust several right value through the relevance-feedback method to obtain the best result of search.An image retrieval system based on these approaches is presented. The result of the experiments shows that the image retrieval based on partition-overall histogram can keep the space distribution information while abstracting color feature efficiently, and it is superior to the normal color histograms in precision rate while researching. The query precision rate is more than 95%. In addition, the efficient block expression will lower the complicate degree of the images to be searched, and thus the searching efficiency will be increased. The image retrieval algorithms based on the partition-overall histogram proposed in the paper is efficient and effective.

  16. Spline smoothing of histograms by linear programming

    NASA Technical Reports Server (NTRS)

    Bennett, J. O.

    1972-01-01

    An algorithm for an approximating function to the frequency distribution is obtained from a sample of size n. To obtain the approximating function a histogram is made from the data. Next, Euclidean space approximations to the graph of the histogram using central B-splines as basis elements are obtained by linear programming. The approximating function has area one and is nonnegative.

  17. Histogram analysis of greyscale sonograms to differentiate between the subtypes of follicular variant of papillary thyroid cancer.

    PubMed

    Kwon, M-R; Shin, J H; Hahn, S Y; Oh, Y L; Kwak, J Y; Lee, E; Lim, Y

    2018-06-01

    To evaluate the diagnostic value of histogram analysis using ultrasound (US) to differentiate between the subtypes of follicular variant of papillary thyroid carcinoma (FVPTC). The present study included 151 patients with surgically confirmed FVPTC diagnosed between January 2014 and May 2016. Their preoperative US features were reviewed retrospectively. Histogram parameters (mean, maximum, minimum, range, root mean square, skewness, kurtosis, energy, entropy, and correlation) were obtained for each nodule. The 152 nodules in 151 patients comprised 48 non-invasive follicular thyroid neoplasm with papillary-like nuclear features (NIFTPs; 31.6%), 60 invasive encapsulated FVPTCs (EFVPTCs; 39.5%), and 44 infiltrative FVPTCs (28.9%). The US features differed significantly between the subtypes of FVPTC. Discrimination was achieved between NIFTPs and infiltrative FVPTC, and between invasive EFVPTC and infiltrative FVPTC using histogram parameters; however, the parameters were not significantly different between NIFTP and invasive EFVPTC. It is feasible to use greyscale histogram analysis to differentiate between NIFTP and infiltrative FVPTC, but not between NIFTP and invasive EFVPTC. Histograms can be used as a supplementary tool to differentiate the subtypes of FVPTC. Copyright © 2017 The Royal College of Radiologists. Published by Elsevier Ltd. All rights reserved.

  18. DSP+FPGA-based real-time histogram equalization system of infrared image

    NASA Astrophysics Data System (ADS)

    Gu, Dongsheng; Yang, Nansheng; Pi, Defu; Hua, Min; Shen, Xiaoyan; Zhang, Ruolan

    2001-10-01

    Histogram Modification is a simple but effective method to enhance an infrared image. There are several methods to equalize an infrared image's histogram due to the different characteristics of the different infrared images, such as the traditional HE (Histogram Equalization) method, and the improved HP (Histogram Projection) and PE (Plateau Equalization) method and so on. If to realize these methods in a single system, the system must have a mass of memory and extremely fast speed. In our system, we introduce a DSP + FPGA based real-time procession technology to do these things together. FPGA is used to realize the common part of these methods while DSP is to do the different part. The choice of methods and the parameter can be input by a keyboard or a computer. By this means, the function of the system is powerful while it is easy to operate and maintain. In this article, we give out the diagram of the system and the soft flow chart of the methods. And at the end of it, we give out the infrared image and its histogram before and after the process of HE method.

  19. Biomorphic networks: approach to invariant feature extraction and segmentation for ATR

    NASA Astrophysics Data System (ADS)

    Baek, Andrew; Farhat, Nabil H.

    1998-10-01

    Invariant features in two dimensional binary images are extracted in a single layer network of locally coupled spiking (pulsating) model neurons with prescribed synapto-dendritic response. The feature vector for an image is represented as invariant structure in the aggregate histogram of interspike intervals obtained by computing time intervals between successive spikes produced from each neuron over a given period of time and combining such intervals from all neurons in the network into a histogram. Simulation results show that the feature vectors are more pattern-specific and invariant under translation, rotation, and change in scale or intensity than achieved in earlier work. We also describe an application of such networks to segmentation of line (edge-enhanced or silhouette) images. The biomorphic spiking network's capabilities in segmentation and invariant feature extraction may prove to be, when they are combined, valuable in Automated Target Recognition (ATR) and other automated object recognition systems.

  20. Histogram Analysis of Diffusion Weighted Imaging at 3T is Useful for Prediction of Lymphatic Metastatic Spread, Proliferative Activity, and Cellularity in Thyroid Cancer.

    PubMed

    Schob, Stefan; Meyer, Hans Jonas; Dieckow, Julia; Pervinder, Bhogal; Pazaitis, Nikolaos; Höhn, Anne Kathrin; Garnov, Nikita; Horvath-Rizea, Diana; Hoffmann, Karl-Titus; Surov, Alexey

    2017-04-12

    Pre-surgical diffusion weighted imaging (DWI) is increasingly important in the context of thyroid cancer for identification of the optimal treatment strategy. It has exemplarily been shown that DWI at 3T can distinguish undifferentiated from well-differentiated thyroid carcinoma, which has decisive implications for the magnitude of surgery. This study used DWI histogram analysis of whole tumor apparent diffusion coefficient (ADC) maps. The primary aim was to discriminate thyroid carcinomas which had already gained the capacity to metastasize lymphatically from those not yet being able to spread via the lymphatic system. The secondary aim was to reflect prognostically important tumor-biological features like cellularity and proliferative activity with ADC histogram analysis. Fifteen patients with follicular-cell derived thyroid cancer were enrolled. Lymph node status, extent of infiltration of surrounding tissue, and Ki-67 and p53 expression were assessed in these patients. DWI was obtained in a 3T system using b values of 0, 400, and 800 s/mm². Whole tumor ADC volumes were analyzed using a histogram-based approach. Several ADC parameters showed significant correlations with immunohistopathological parameters. Most importantly, ADC histogram skewness and ADC histogram kurtosis were able to differentiate between nodal negative and nodal positive thyroid carcinoma. histogram analysis of whole ADC tumor volumes has the potential to provide valuable information on tumor biology in thyroid carcinoma. However, further studies are warranted.

  1. Histogram Analysis of Diffusion Weighted Imaging at 3T is Useful for Prediction of Lymphatic Metastatic Spread, Proliferative Activity, and Cellularity in Thyroid Cancer

    PubMed Central

    Schob, Stefan; Meyer, Hans Jonas; Dieckow, Julia; Pervinder, Bhogal; Pazaitis, Nikolaos; Höhn, Anne Kathrin; Garnov, Nikita; Horvath-Rizea, Diana; Hoffmann, Karl-Titus; Surov, Alexey

    2017-01-01

    Pre-surgical diffusion weighted imaging (DWI) is increasingly important in the context of thyroid cancer for identification of the optimal treatment strategy. It has exemplarily been shown that DWI at 3T can distinguish undifferentiated from well-differentiated thyroid carcinoma, which has decisive implications for the magnitude of surgery. This study used DWI histogram analysis of whole tumor apparent diffusion coefficient (ADC) maps. The primary aim was to discriminate thyroid carcinomas which had already gained the capacity to metastasize lymphatically from those not yet being able to spread via the lymphatic system. The secondary aim was to reflect prognostically important tumor-biological features like cellularity and proliferative activity with ADC histogram analysis. Fifteen patients with follicular-cell derived thyroid cancer were enrolled. Lymph node status, extent of infiltration of surrounding tissue, and Ki-67 and p53 expression were assessed in these patients. DWI was obtained in a 3T system using b values of 0, 400, and 800 s/mm2. Whole tumor ADC volumes were analyzed using a histogram-based approach. Several ADC parameters showed significant correlations with immunohistopathological parameters. Most importantly, ADC histogram skewness and ADC histogram kurtosis were able to differentiate between nodal negative and nodal positive thyroid carcinoma. Conclusions: histogram analysis of whole ADC tumor volumes has the potential to provide valuable information on tumor biology in thyroid carcinoma. However, further studies are warranted. PMID:28417929

  2. Enhancing tumor apparent diffusion coefficient histogram skewness stratifies the postoperative survival in recurrent glioblastoma multiforme patients undergoing salvage surgery.

    PubMed

    Zolal, Amir; Juratli, Tareq A; Linn, Jennifer; Podlesek, Dino; Sitoci Ficici, Kerim Hakan; Kitzler, Hagen H; Schackert, Gabriele; Sobottka, Stephan B; Rieger, Bernhard; Krex, Dietmar

    2016-05-01

    Objective To determine the value of apparent diffusion coefficient (ADC) histogram parameters for the prediction of individual survival in patients undergoing surgery for recurrent glioblastoma (GBM) in a retrospective cohort study. Methods Thirty-one patients who underwent surgery for first recurrence of a known GBM between 2008 and 2012 were included. The following parameters were collected: age, sex, enhancing tumor size, mean ADC, median ADC, ADC skewness, ADC kurtosis and fifth percentile of the ADC histogram, initial progression free survival (PFS), extent of second resection and further adjuvant treatment. The association of these parameters with survival and PFS after second surgery was analyzed using log-rank test and Cox regression. Results Using log-rank test, ADC histogram skewness of the enhancing tumor was significantly associated with both survival (p = 0.001) and PFS after second surgery (p = 0.005). Further parameters associated with prolonged survival after second surgery were: gross total resection at second surgery (p = 0.026), tumor size (0.040) and third surgery (p = 0.003). In the multivariate Cox analysis, ADC histogram skewness was shown to be an independent prognostic factor for survival after second surgery. Conclusion ADC histogram skewness of the enhancing lesion, enhancing lesion size, third surgery, as well as gross total resection have been shown to be associated with survival following the second surgery. ADC histogram skewness was an independent prognostic factor for survival in the multivariate analysis.

  3. Coding and Decoding with Adapting Neurons: A Population Approach to the Peri-Stimulus Time Histogram

    PubMed Central

    Naud, Richard; Gerstner, Wulfram

    2012-01-01

    The response of a neuron to a time-dependent stimulus, as measured in a Peri-Stimulus-Time-Histogram (PSTH), exhibits an intricate temporal structure that reflects potential temporal coding principles. Here we analyze the encoding and decoding of PSTHs for spiking neurons with arbitrary refractoriness and adaptation. As a modeling framework, we use the spike response model, also known as the generalized linear neuron model. Because of refractoriness, the effect of the most recent spike on the spiking probability a few milliseconds later is very strong. The influence of the last spike needs therefore to be described with high precision, while the rest of the neuronal spiking history merely introduces an average self-inhibition or adaptation that depends on the expected number of past spikes but not on the exact spike timings. Based on these insights, we derive a ‘quasi-renewal equation’ which is shown to yield an excellent description of the firing rate of adapting neurons. We explore the domain of validity of the quasi-renewal equation and compare it with other rate equations for populations of spiking neurons. The problem of decoding the stimulus from the population response (or PSTH) is addressed analogously. We find that for small levels of activity and weak adaptation, a simple accumulator of the past activity is sufficient to decode the original input, but when refractory effects become large decoding becomes a non-linear function of the past activity. The results presented here can be applied to the mean-field analysis of coupled neuron networks, but also to arbitrary point processes with negative self-interaction. PMID:23055914

  4. Histogram-based normalization technique on human brain magnetic resonance images from different acquisitions.

    PubMed

    Sun, Xiaofei; Shi, Lin; Luo, Yishan; Yang, Wei; Li, Hongpeng; Liang, Peipeng; Li, Kuncheng; Mok, Vincent C T; Chu, Winnie C W; Wang, Defeng

    2015-07-28

    Intensity normalization is an important preprocessing step in brain magnetic resonance image (MRI) analysis. During MR image acquisition, different scanners or parameters would be used for scanning different subjects or the same subject at a different time, which may result in large intensity variations. This intensity variation will greatly undermine the performance of subsequent MRI processing and population analysis, such as image registration, segmentation, and tissue volume measurement. In this work, we proposed a new histogram normalization method to reduce the intensity variation between MRIs obtained from different acquisitions. In our experiment, we scanned each subject twice on two different scanners using different imaging parameters. With noise estimation, the image with lower noise level was determined and treated as the high-quality reference image. Then the histogram of the low-quality image was normalized to the histogram of the high-quality image. The normalization algorithm includes two main steps: (1) intensity scaling (IS), where, for the high-quality reference image, the intensities of the image are first rescaled to a range between the low intensity region (LIR) value and the high intensity region (HIR) value; and (2) histogram normalization (HN),where the histogram of low-quality image as input image is stretched to match the histogram of the reference image, so that the intensity range in the normalized image will also lie between LIR and HIR. We performed three sets of experiments to evaluate the proposed method, i.e., image registration, segmentation, and tissue volume measurement, and compared this with the existing intensity normalization method. It is then possible to validate that our histogram normalization framework can achieve better results in all the experiments. It is also demonstrated that the brain template with normalization preprocessing is of higher quality than the template with no normalization processing. We have proposed a histogram-based MRI intensity normalization method. The method can normalize scans which were acquired on different MRI units. We have validated that the method can greatly improve the image analysis performance. Furthermore, it is demonstrated that with the help of our normalization method, we can create a higher quality Chinese brain template.

  5. Dissociation between exact and approximate addition in developmental dyslexia.

    PubMed

    Yang, Xiujie; Meng, Xiangzhi

    2016-09-01

    Previous research has suggested that number sense and language are involved in number representation and calculation, in which number sense supports approximate arithmetic, and language permits exact enumeration and calculation. Meanwhile, individuals with dyslexia have a core deficit in phonological processing. Based on these findings, we thus hypothesized that children with dyslexia may exhibit exact calculation impairment while doing mental arithmetic. The reaction time and accuracy while doing exact and approximate addition with symbolic Arabic digits and non-symbolic visual arrays of dots were compared between typically developing children and children with dyslexia. Reaction time analyses did not reveal any differences across two groups of children, the accuracies, interestingly, revealed a distinction of approximation and exact addition across two groups of children. Specifically, two groups of children had no differences in approximation. Children with dyslexia, however, had significantly lower accuracy in exact addition in both symbolic and non-symbolic tasks than that of typically developing children. Moreover, linguistic performances were selectively associated with exact calculation across individuals. These results suggested that children with dyslexia have a mental arithmetic deficit specifically in the realm of exact calculation, while their approximation ability is relatively intact. Copyright © 2016 Elsevier Ltd. All rights reserved.

  6. Cockpit management and Specific Behavioral Objectives (SBOs)

    NASA Technical Reports Server (NTRS)

    Mudge, R. W.

    1987-01-01

    One of the primary tools used to accomplish the task of effective training is the specific behavioral objective (SBO). An SBO is simply a statement which specifically identifies a small segment of the final behavior sought, and a little more. The key word is specific. The company pinpoints exactly what it is it wants the pilot to do after completing training, and what it should evaluate from the point of view of both the program and the pilot. It tells the junior crewmember exactly, specifically, what he should monitor and support insofar as the management function is concerned. It gives greater meaning to the term second in command. And finally, it tells the supervisory pilot exactly what he should observe, evaluate, and instruct, insofar as the management function is concerned.

  7. Quantitative characterization of brain β-amyloid in 718 normal subjects using a joint PiB/FDG PET image histogram

    NASA Astrophysics Data System (ADS)

    Camp, Jon J.; Hanson, Dennis P.; Lowe, Val J.; Kemp, Bradley J.; Senjem, Matthew L.; Murray, Melissa E.; Dickson, Dennis W.; Parisi, Joseph E.; Petersen, Ronald C.; Robb, Richard A.; Holmes, David R.

    2016-03-01

    We have previously described an automated system for the co-registration of PiB and FDG PET images with structural MRI and a neurological anatomy atlas to produce region-specific quantization of cortical activity and amyloid burden. We also reported a global joint PiB/FDG histogram-based measure (FDG-Associated PiB Uptake Ratio - FAPUR) that performed as well as regional PiB ratio in stratifying Alzheimer's disease (AD) and Lewy Body Dementia (LBD) patients from normal subjects in an autopsy-verified cohort of 31. In this paper we examine results of this analysis on a clinically-verified cohort of 718 normal volunteers. We found that the global FDG ratio correlated negatively with age (r2 = 0.044) and global PiB ratio correlated positively with age (r2=0.038). FAPUR also correlated negatively with age (r2-.025), and in addition, we introduce a new metric - the Pearson's correlation coefficient (r2) of the joint PiB/FDG histogram which correlates positively (r2=0.014) with age. We then used these measurements to construct age-weighted Z-scores for all measurements made on the original autopsy cohort. We found similar stratification using Z-scores compared to raw values; however, the joint PiB/FDG r2 Z-score showed the greatest stratification ability.

  8. Characterization of Diffusion Metric Map Similarity in Data From a Clinical Data Repository Using Histogram Distances

    PubMed Central

    Warner, Graham C.; Helmer, Karl G.

    2018-01-01

    As the sharing of data is mandated by funding agencies and journals, reuse of data has become more prevalent. It becomes imperative, therefore, to develop methods to characterize the similarity of data. While users can group data based on the acquisition parameters stored in the file headers, these gives no indication whether a file can be combined with other data without increasing the variance in the data set. Methods have been implemented that characterize the signal-to-noise ratio or identify signal drop-outs in the raw image files, but potential users of data often have access to calculated metric maps and these are more difficult to characterize and compare. Here we describe a histogram-distance-based method applied to diffusion metric maps of fractional anisotropy and mean diffusivity that were generated using data extracted from a repository of clinically-acquired MRI data. We describe the generation of the data set, the pitfalls specific to diffusion MRI data, and the results of the histogram distance analysis. We find that, in general, data from GE scanners are less similar than are data from Siemens scanners. We also find that the distribution of distance metric values is not Gaussian at any selection of the acquisition parameters considered here (field strength, number of gradient directions, b-value, and vendor). PMID:29568257

  9. Histogram-based ionogram displays and their application to autoscaling

    NASA Astrophysics Data System (ADS)

    Lynn, Kenneth J. W.

    2018-03-01

    A simple method is described for displaying and auto scaling the basic ionogram parameters foF2 and h'F2 as well as some additional layer parameters from digital ionograms. The technique employed is based on forming frequency and height histograms in each ionogram. This technique has now been applied specifically to ionograms produced by the IPS5D ionosonde developed and operated by the Australian Space Weather Service (SWS). The SWS ionograms are archived in a cleaned format and readily available from the SWS internet site. However, the method is applicable to any ionosonde which produces ionograms in a digital format at a useful signal-to-noise level. The most novel feature of the technique for autoscaling is its simplicity and the avoidance of the mathematical imaging and line fitting techniques often used. The program arose from the necessity to display many days of ionogram output to allow the location of specific types of ionospheric event such as ionospheric storms, travelling ionospheric disturbances and repetitive ionospheric height changes for further investigation and measurement. Examples and applications of the method are given including the removal of sporadic E and spread F.

  10. VirSSPA- a virtual reality tool for surgical planning workflow.

    PubMed

    Suárez, C; Acha, B; Serrano, C; Parra, C; Gómez, T

    2009-03-01

    A virtual reality tool, called VirSSPA, was developed to optimize the planning of surgical processes. Segmentation algorithms for Computed Tomography (CT) images: a region growing procedure was used for soft tissues and a thresholding algorithm was implemented to segment bones. The algorithms operate semiautomati- cally since they only need seed selection with the mouse on each tissue segmented by the user. The novelty of the paper is the adaptation of an enhancement method based on histogram thresholding applied to CT images for surgical planning, which simplifies subsequent segmentation. A substantial improvement of the virtual reality tool VirSSPA was obtained with these algorithms. VirSSPA was used to optimize surgical planning, to decrease the time spent on surgical planning and to improve operative results. The success rate increases due to surgeons being able to see the exact extent of the patient's ailment. This tool can decrease operating room time, thus resulting in reduced costs. Virtual simulation was effective for optimizing surgical planning, which could, consequently, result in improved outcomes with reduced costs.

  11. Image Enhancement via Subimage Histogram Equalization Based on Mean and Variance

    PubMed Central

    2017-01-01

    This paper puts forward a novel image enhancement method via Mean and Variance based Subimage Histogram Equalization (MVSIHE), which effectively increases the contrast of the input image with brightness and details well preserved compared with some other methods based on histogram equalization (HE). Firstly, the histogram of input image is divided into four segments based on the mean and variance of luminance component, and the histogram bins of each segment are modified and equalized, respectively. Secondly, the result is obtained via the concatenation of the processed subhistograms. Lastly, the normalization method is deployed on intensity levels, and the integration of the processed image with the input image is performed. 100 benchmark images from a public image database named CVG-UGR-Database are used for comparison with other state-of-the-art methods. The experiment results show that the algorithm can not only enhance image information effectively but also well preserve brightness and details of the original image. PMID:29403529

  12. Image contrast enhancement using adjacent-blocks-based modification for local histogram equalization

    NASA Astrophysics Data System (ADS)

    Wang, Yang; Pan, Zhibin

    2017-11-01

    Infrared images usually have some non-ideal characteristics such as weak target-to-background contrast and strong noise. Because of these characteristics, it is necessary to apply the contrast enhancement algorithm to improve the visual quality of infrared images. Histogram equalization (HE) algorithm is a widely used contrast enhancement algorithm due to its effectiveness and simple implementation. But a drawback of HE algorithm is that the local contrast of an image cannot be equally enhanced. Local histogram equalization algorithms are proved to be the effective techniques for local image contrast enhancement. However, over-enhancement of noise and artifacts can be easily found in the local histogram equalization enhanced images. In this paper, a new contrast enhancement technique based on local histogram equalization algorithm is proposed to overcome the drawbacks mentioned above. The input images are segmented into three kinds of overlapped sub-blocks using the gradients of them. To overcome the over-enhancement effect, the histograms of these sub-blocks are then modified by adjacent sub-blocks. We pay more attention to improve the contrast of detail information while the brightness of the flat region in these sub-blocks is well preserved. It will be shown that the proposed algorithm outperforms other related algorithms by enhancing the local contrast without introducing over-enhancement effects and additional noise.

  13. Value of MR histogram analyses for prediction of microvascular invasion of hepatocellular carcinoma.

    PubMed

    Huang, Ya-Qin; Liang, He-Yue; Yang, Zhao-Xia; Ding, Ying; Zeng, Meng-Su; Rao, Sheng-Xiang

    2016-06-01

    The objective is to explore the value of preoperative magnetic resonance (MR) histogram analyses in predicting microvascular invasion (MVI) of hepatocellular carcinoma (HCC).Fifty-one patients with histologically confirmed HCC who underwent diffusion-weighted and contrast-enhanced MR imaging were included. Histogram analyses were performed and mean, variance, skewness, kurtosis, 1th, 10th, 50th, 90th, and 99th percentiles were derived. Quantitative histogram parameters were compared between HCCs with and without MVI. Receiver operating characteristics (ROC) analyses were generated to compare the diagnostic performance of tumor size, histogram analyses of apparent diffusion coefficient (ADC) maps, and MR enhancement.The mean, 1th, 10th, and 50th percentiles of ADC maps, and the mean, variance. 1th, 10th, 50th, 90th, and 99th percentiles of the portal venous phase (PVP) images were significantly different between the groups with and without MVI (P <0.05), with area under the ROC curves (AUCs) of 0.66 to 0.74 for ADC and 0.76 to 0.88 for PVP. The largest AUC of PVP (1th percentile) showed significantly higher accuracy compared with that of arterial phase (AP) or tumor size (P <0.001).MR histogram analyses-in particular for 1th percentile for PVP images-held promise for prediction of MVI of HCC.

  14. Assessment of histological differentiation in gastric cancers using whole-volume histogram analysis of apparent diffusion coefficient maps.

    PubMed

    Zhang, Yujuan; Chen, Jun; Liu, Song; Shi, Hua; Guan, Wenxian; Ji, Changfeng; Guo, Tingting; Zheng, Huanhuan; Guan, Yue; Ge, Yun; He, Jian; Zhou, Zhengyang; Yang, Xiaofeng; Liu, Tian

    2017-02-01

    To investigate the efficacy of histogram analysis of the entire tumor volume in apparent diffusion coefficient (ADC) maps for differentiating between histological grades in gastric cancer. Seventy-eight patients with gastric cancer were enrolled in a retrospective 3.0T magnetic resonance imaging (MRI) study. ADC maps were obtained at two different b values (0 and 1000 sec/mm 2 ) for each patient. Tumors were delineated on each slice of the ADC maps, and a histogram for the entire tumor volume was subsequently generated. A series of histogram parameters (eg, skew and kurtosis) were calculated and correlated with the histological grade of the surgical specimen. The diagnostic performance of each parameter for distinguishing poorly from moderately well-differentiated gastric cancers was assessed by using the area under the receiver operating characteristic curve (AUC). There were significant differences in the 5 th , 10 th , 25 th , and 50 th percentiles, skew, and kurtosis between poorly and well-differentiated gastric cancers (P < 0.05). There were correlations between the degrees of differentiation and histogram parameters, including the 10 th percentile, skew, kurtosis, and max frequency; the correlation coefficients were 0.273, -0.361, -0.339, and -0.370, respectively. Among all the histogram parameters, the max frequency had the largest AUC value, which was 0.675. Histogram analysis of the ADC maps on the basis of the entire tumor volume can be useful in differentiating between histological grades for gastric cancer. 4 J. Magn. Reson. Imaging 2017;45:440-449. © 2016 International Society for Magnetic Resonance in Medicine.

  15. Macronuclear chromatin structure dynamics in Colpoda inflata (Protista, Ciliophora) resting encystment.

    PubMed

    Tiano, L; Chessa, M G; Carrara, S; Tagliafierro, G; Delmonte Corrado, M U

    1999-01-01

    The chromatin structure dynamics of the Colpoda inflata macronucleus have been investigated in relation to its functional condition, concerning chromatin body extrusion regulating activity. Samples of 2- and 25-day-old resting cysts derived from a standard culture, and of 1-year-old resting cysts derived from a senescent culture, were examined by means of histogram analysis performed on acquired optical microscopy images. Three groups of histograms were detected in each sample. Histogram classification, clustering and matching were assessed in order to obtain the mean histogram of each group. Comparative analysis of the mean histogram showed a similarity in the grey level range of 25-day- and 1-year-old cysts, unlike the wider grey level range found in 2-day-old cysts. Moreover, the respective mean histograms of the three cyst samples appeared rather similar in shape. All this implies that macronuclear chromatin structural features of 1-year-old cysts are common to both cyst standard cultures. The evaluation of the acquired images and their respective histograms evidenced a dynamic state of the macronuclear chromatin, appearing differently condensed in relation to the chromatin body extrusion regulating activity of the macronucleus. The coexistence of a chromatin-decondensed macronucleus with a pycnotic extrusion body suggests that chromatin unable to decondense, thus inactive, is extruded. This finding, along with the presence of chromatin structural features common to standard and senescent cyst populations, supports the occurrence of 'rejuvenated' cell lines from 1-year-old encysted senescent cells, a phenomenon which could be a result of accomplished macronuclear renewal.

  16. Non-small cell lung cancer: Whole-lesion histogram analysis of the apparent diffusion coefficient for assessment of tumor grade, lymphovascular invasion and pleural invasion

    PubMed Central

    Tsuchiya, Naoko; Doai, Mariko; Usuda, Katsuo; Uramoto, Hidetaka

    2017-01-01

    Purpose Investigating the diagnostic accuracy of histogram analyses of apparent diffusion coefficient (ADC) values for determining non-small cell lung cancer (NSCLC) tumor grades, lymphovascular invasion, and pleural invasion. Materials and methods We studied 60 surgically diagnosed NSCLC patients. Diffusion-weighted imaging (DWI) was performed in the axial plane using a navigator-triggered single-shot, echo-planar imaging sequence with prospective acquisition correction. The ADC maps were generated, and we placed a volume-of-interest on the tumor to construct the whole-lesion histogram. Using the histogram, we calculated the mean, 5th, 10th, 25th, 50th, 75th, 90th, and 95th percentiles of ADC, skewness, and kurtosis. Histogram parameters were correlated with tumor grade, lymphovascular invasion, and pleural invasion. We performed a receiver operating characteristics (ROC) analysis to assess the diagnostic performance of histogram parameters for distinguishing different pathologic features. Results The ADC mean, 10th, 25th, 50th, 75th, 90th, and 95th percentiles showed significant differences among the tumor grades. The ADC mean, 25th, 50th, 75th, 90th, and 95th percentiles were significant histogram parameters between high- and low-grade tumors. The ROC analysis between high- and low-grade tumors showed that the 95th percentile ADC achieved the highest area under curve (AUC) at 0.74. Lymphovascular invasion was associated with the ADC mean, 50th, 75th, 90th, and 95th percentiles, skewness, and kurtosis. Kurtosis achieved the highest AUC at 0.809. Pleural invasion was only associated with skewness, with the AUC of 0.648. Conclusions ADC histogram analyses on the basis of the entire tumor volume are able to stratify NSCLCs' tumor grade, lymphovascular invasion and pleural invasion. PMID:28207858

  17. Automatic age-related macular degeneration detection and staging

    NASA Astrophysics Data System (ADS)

    van Grinsven, Mark J. J. P.; Lechanteur, Yara T. E.; van de Ven, Johannes P. H.; van Ginneken, Bram; Theelen, Thomas; Sánchez, Clara I.

    2013-03-01

    Age-related macular degeneration (AMD) is a degenerative disorder of the central part of the retina, which mainly affects older people and leads to permanent loss of vision in advanced stages of the disease. AMD grading of non-advanced AMD patients allows risk assessment for the development of advanced AMD and enables timely treatment of patients, to prevent vision loss. AMD grading is currently performed manually on color fundus images, which is time consuming and expensive. In this paper, we propose a supervised classification method to distinguish patients at high risk to develop advanced AMD from low risk patients and provide an exact AMD stage determination. The method is based on the analysis of the number and size of drusen on color fundus images, as drusen are the early characteristics of AMD. An automatic drusen detection algorithm is used to detect all drusen. A weighted histogram of the detected drusen is constructed to summarize the drusen extension and size and fed into a random forest classifier in order to separate low risk from high risk patients and to allow exact AMD stage determination. Experiments showed that the proposed method achieved similar performance as human observers in distinguishing low risk from high risk AMD patients, obtaining areas under the Receiver Operating Characteristic curve of 0.929 and 0.934. A weighted kappa agreement of 0.641 and 0.622 versus two observers were obtained for AMD stage evaluation. Our method allows for quick and reliable AMD staging at low costs.

  18. Diagnosis of Tempromandibular Disorders Using Local Binary Patterns.

    PubMed

    Haghnegahdar, A A; Kolahi, S; Khojastepour, L; Tajeripour, F

    2018-03-01

    Temporomandibular joint disorder (TMD) might be manifested as structural changes in bone through modification, adaptation or direct destruction. We propose to use Local Binary Pattern (LBP) characteristics and histogram-oriented gradients on the recorded images as a diagnostic tool in TMD assessment. CBCT images of 66 patients (132 joints) with TMD and 66 normal cases (132 joints) were collected and 2 coronal cut prepared from each condyle, although images were limited to head of mandibular condyle. In order to extract features of images, first we use LBP and then histogram of oriented gradients. To reduce dimensionality, the linear algebra Singular Value Decomposition (SVD) is applied to the feature vectors matrix of all images. For evaluation, we used K nearest neighbor (K-NN), Support Vector Machine, Naïve Bayesian and Random Forest classifiers. We used Receiver Operating Characteristic (ROC) to evaluate the hypothesis. K nearest neighbor classifier achieves a very good accuracy (0.9242), moreover, it has desirable sensitivity (0.9470) and specificity (0.9015) results, when other classifiers have lower accuracy, sensitivity and specificity. We proposed a fully automatic approach to detect TMD using image processing techniques based on local binary patterns and feature extraction. K-NN has been the best classifier for our experiments in detecting patients from healthy individuals, by 92.42% accuracy, 94.70% sensitivity and 90.15% specificity. The proposed method can help automatically diagnose TMD at its initial stages.

  19. An extensive analysis of various texture feature extractors to detect Diabetes Mellitus using facial specific regions.

    PubMed

    Shu, Ting; Zhang, Bob; Yan Tang, Yuan

    2017-04-01

    Researchers have recently discovered that Diabetes Mellitus can be detected through non-invasive computerized method. However, the focus has been on facial block color features. In this paper, we extensively study the effects of texture features extracted from facial specific regions at detecting Diabetes Mellitus using eight texture extractors. The eight methods are from four texture feature families: (1) statistical texture feature family: Image Gray-scale Histogram, Gray-level Co-occurance Matrix, and Local Binary Pattern, (2) structural texture feature family: Voronoi Tessellation, (3) signal processing based texture feature family: Gaussian, Steerable, and Gabor filters, and (4) model based texture feature family: Markov Random Field. In order to determine the most appropriate extractor with optimal parameter(s), various parameter(s) of each extractor are experimented. For each extractor, the same dataset (284 Diabetes Mellitus and 231 Healthy samples), classifiers (k-Nearest Neighbors and Support Vector Machines), and validation method (10-fold cross validation) are used. According to the experiments, the first and third families achieved a better outcome at detecting Diabetes Mellitus than the other two. The best texture feature extractor for Diabetes Mellitus detection is the Image Gray-scale Histogram with bin number=256, obtaining an accuracy of 99.02%, a sensitivity of 99.64%, and a specificity of 98.26% by using SVM. Copyright © 2017 Elsevier Ltd. All rights reserved.

  20. MTR and In-vivo 1H-MRS studies on mouse brain with parkinson's disease

    NASA Astrophysics Data System (ADS)

    Yoon, Moon-Hyun; Kim, Hyeon-Jin; Chung, Jin-Yeung; Doo, Ah-Reum; Park, Hi-Joon; Kim, Seung-Nam; Choe, Bo-Young

    2012-12-01

    The aim of this study was to investigate whether the changes in the magnetization transfer ratio (MTR) histogram are related to specific characteristics of Parkinson's disease (PD) and to investigate whether the MTR histogram parameters are associated with neurochemical dysfunction by performing in vivo proton magnetic resonance spectroscopy (1H-MRS). MTR and in vivo 1H-MRS studies were performed on control mice (n = 10) and 1-methyl-1,2,3,6-tetrahydropyridine intoxicated mice (n = 10). All the MTR and in vivo 1H-MRS experiments were performed on a 9.4 T MRI/MRS system (Bruker Biospin, Germany) using a standard head coil. The protondensity fast spin echo (FSE) images and the T2-weighted spin echo (SE) images were acquired with no gap. Outer volume suppression (OVS), combined with the ultra-short echo-time stimulated echo acquisition mode (STEAM), was used for the localized in-vivo 1H-MRS. The quantitative analysis of metabolites was performed from the 1H spectra obtained in vivo on the striatum (ST) by using jMRUI (Lyon, France). The peak height of the MTR histograms in the PD model group was significantly lower than that in the control group (p < 0.05). The midbrain MTR values for volume were lower in the PD group than the control group(p < 0.05). The complex peak (Glx: glutamine+glutamate+ GABA)/creatine (Cr) ratio of the right ST in the PD group was significantly increased as compared to that of the control group. The present study revealed that the peak height of the MTR histogram was significantly decreased in the ST and substantia nigra, and a significant increase in the Gl x /Cr ratio was found in the ST of the PD group, as compared with that of the control group. These findings could reflect the early phase of neuronal dysfunction of neurotransmitters.

  1. Modeling late rectal toxicities based on a parameterized representation of the 3D dose distribution

    NASA Astrophysics Data System (ADS)

    Buettner, Florian; Gulliford, Sarah L.; Webb, Steve; Partridge, Mike

    2011-04-01

    Many models exist for predicting toxicities based on dose-volume histograms (DVHs) or dose-surface histograms (DSHs). This approach has several drawbacks as firstly the reduction of the dose distribution to a histogram results in the loss of spatial information and secondly the bins of the histograms are highly correlated with each other. Furthermore, some of the complex nonlinear models proposed in the past lack a direct physical interpretation and the ability to predict probabilities rather than binary outcomes. We propose a parameterized representation of the 3D distribution of the dose to the rectal wall which explicitly includes geometrical information in the form of the eccentricity of the dose distribution as well as its lateral and longitudinal extent. We use a nonlinear kernel-based probabilistic model to predict late rectal toxicity based on the parameterized dose distribution and assessed its predictive power using data from the MRC RT01 trial (ISCTRN 47772397). The endpoints under consideration were rectal bleeding, loose stools, and a global toxicity score. We extract simple rules identifying 3D dose patterns related to a specifically low risk of complication. Normal tissue complication probability (NTCP) models based on parameterized representations of geometrical and volumetric measures resulted in areas under the curve (AUCs) of 0.66, 0.63 and 0.67 for predicting rectal bleeding, loose stools and global toxicity, respectively. In comparison, NTCP models based on standard DVHs performed worse and resulted in AUCs of 0.59 for all three endpoints. In conclusion, we have presented low-dimensional, interpretable and nonlinear NTCP models based on the parameterized representation of the dose to the rectal wall. These models had a higher predictive power than models based on standard DVHs and their low dimensionality allowed for the identification of 3D dose patterns related to a low risk of complication.

  2. CHOBS: Color Histogram of Block Statistics for Automatic Bleeding Detection in Wireless Capsule Endoscopy Video

    PubMed Central

    Ghosh, Tonmoy; Wahid, Khan A.

    2018-01-01

    Wireless capsule endoscopy (WCE) is the most advanced technology to visualize whole gastrointestinal (GI) tract in a non-invasive way. But the major disadvantage here, it takes long reviewing time, which is very laborious as continuous manual intervention is necessary. In order to reduce the burden of the clinician, in this paper, an automatic bleeding detection method for WCE video is proposed based on the color histogram of block statistics, namely CHOBS. A single pixel in WCE image may be distorted due to the capsule motion in the GI tract. Instead of considering individual pixel values, a block surrounding to that individual pixel is chosen for extracting local statistical features. By combining local block features of three different color planes of RGB color space, an index value is defined. A color histogram, which is extracted from those index values, provides distinguishable color texture feature. A feature reduction technique utilizing color histogram pattern and principal component analysis is proposed, which can drastically reduce the feature dimension. For bleeding zone detection, blocks are classified using extracted local features that do not incorporate any computational burden for feature extraction. From extensive experimentation on several WCE videos and 2300 images, which are collected from a publicly available database, a very satisfactory bleeding frame and zone detection performance is achieved in comparison to that obtained by some of the existing methods. In the case of bleeding frame detection, the accuracy, sensitivity, and specificity obtained from proposed method are 97.85%, 99.47%, and 99.15%, respectively, and in the case of bleeding zone detection, 95.75% of precision is achieved. The proposed method offers not only low feature dimension but also highly satisfactory bleeding detection performance, which even can effectively detect bleeding frame and zone in a continuous WCE video data. PMID:29468094

  3. SU-F-I-45: An Automated Technique to Measure Image Contrast in Clinical CT Images

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sanders, J; Abadi, E; Meng, B

    Purpose: To develop and validate an automated technique for measuring image contrast in chest computed tomography (CT) exams. Methods: An automated computer algorithm was developed to measure the distribution of Hounsfield units (HUs) inside four major organs: the lungs, liver, aorta, and bones. These organs were first segmented or identified using computer vision and image processing techniques. Regions of interest (ROIs) were automatically placed inside the lungs, liver, and aorta and histograms of the HUs inside the ROIs were constructed. The mean and standard deviation of each histogram were computed for each CT dataset. Comparison of the mean and standardmore » deviation of the HUs in the different organs provides different contrast values. The ROI for the bones is simply the segmentation mask of the bones. Since the histogram for bones does not follow a Gaussian distribution, the 25th and 75th percentile were computed instead of the mean. The sensitivity and accuracy of the algorithm was investigated by comparing the automated measurements with manual measurements. Fifteen contrast enhanced and fifteen non-contrast enhanced chest CT clinical datasets were examined in the validation procedure. Results: The algorithm successfully measured the histograms of the four organs in both contrast and non-contrast enhanced chest CT exams. The automated measurements were in agreement with manual measurements. The algorithm has sufficient sensitivity as indicated by the near unity slope of the automated versus manual measurement plots. Furthermore, the algorithm has sufficient accuracy as indicated by the high coefficient of determination, R2, values ranging from 0.879 to 0.998. Conclusion: Patient-specific image contrast can be measured from clinical datasets. The algorithm can be run on both contrast enhanced and non-enhanced clinical datasets. The method can be applied to automatically assess the contrast characteristics of clinical chest CT images and quantify dependencies that may not be captured in phantom data.« less

  4. Exact and approximate solutions to the oblique shock equations for real-time applications

    NASA Technical Reports Server (NTRS)

    Hartley, T. T.; Brandis, R.; Mossayebi, F.

    1991-01-01

    The derivation of exact solutions for determining the characteristics of an oblique shock wave in a supersonic flow is investigated. Specifically, an explicit expression for the oblique shock angle in terms of the free stream Mach number, the centerbody deflection angle, and the ratio of the specific heats, is derived. A simpler approximate solution is obtained and compared to the exact solution. The primary objectives of obtaining these solutions is to provide a fast algorithm that can run in a real time environment.

  5. Dynamic contrast-enhanced MR imaging of the rectum: Correlations between single-section and whole-tumor histogram analyses.

    PubMed

    Choi, M H; Oh, S N; Park, G E; Yeo, D-M; Jung, S E

    2018-05-10

    To evaluate the interobserver and intermethod correlations of histogram metrics of dynamic contrast-enhanced magnetic resonance imaging (DCE-MRI) parameters acquired by multiple readers using the single-section and whole-tumor volume methods. Four DCE parameters (K trans , K ep , V e , V p ) were evaluated in 45 patients (31 men and 14 women; mean age, 61±11 years [range, 29-83 years]) with locally advanced rectal cancer using pre-chemoradiotherapy (CRT) MRI. Ten histogram metrics were extracted using two methods of lesion selection performed by three radiologists: the whole-tumor volume method for the whole tumor on axial section-by-section images and the single-section method for the entire area of the tumor on one axial image. The interobserver and intermethod correlations were evaluated using the intraclass correlation coefficients (ICCs). The ICCs showed excellent interobserver and intermethod correlations in most of histogram metrics of the DCE parameters. The ICCs among the three readers were > 0.7 (P<0.001) for all histogram metrics, except for the minimum and maximum. The intermethod correlations for most of the histogram metrics were excellent for each radiologist, regardless of the differences in the radiologists' experience. The interobserver and intermethod correlations for most of the histogram metrics of the DCE parameters are excellent in rectal cancer. Therefore, the single-section method may be a potential alternative to the whole-tumor volume method using pre-CRT MRI, despite the fact that the high agreement between the two methods cannot be extrapolated to post-CRT MRI. Copyright © 2018 Société française de radiologie. Published by Elsevier Masson SAS. All rights reserved.

  6. The histogram analysis of diffusion-weighted intravoxel incoherent motion (IVIM) imaging for differentiating the gleason grade of prostate cancer.

    PubMed

    Zhang, Yu-Dong; Wang, Qing; Wu, Chen-Jiang; Wang, Xiao-Ning; Zhang, Jing; Liu, Hui; Liu, Xi-Sheng; Shi, Hai-Bin

    2015-04-01

    To evaluate histogram analysis of intravoxel incoherent motion (IVIM) for discriminating the Gleason grade of prostate cancer (PCa). A total of 48 patients pathologically confirmed as having clinically significant PCa (size > 0.5 cm) underwent preoperative DW-MRI (b of 0-900 s/mm(2)). Data was post-processed by monoexponential and IVIM model for quantitation of apparent diffusion coefficients (ADCs), perfusion fraction f, diffusivity D and pseudo-diffusivity D*. Histogram analysis was performed by outlining entire-tumour regions of interest (ROIs) from histological-radiological correlation. The ability of imaging indices to differentiate low-grade (LG, Gleason score (GS) ≤6) from intermediate/high-grade (HG, GS > 6) PCa was analysed by ROC regression. Eleven patients had LG tumours (18 foci) and 37 patients had HG tumours (42 foci) on pathology examination. HG tumours had significantly lower ADCs and D in terms of mean, median, 10th and 75th percentiles, combined with higher histogram kurtosis and skewness for ADCs, D and f, than LG PCa (p < 0.05). Histogram D showed relatively higher correlations (ñ = 0.641-0.668 vs. ADCs: 0.544-0.574) with ordinal GS of PCa; and its mean, median and 10th percentile performed better than ADCs did in distinguishing LG from HG PCa. It is feasible to stratify the pathological grade of PCa by IVIM with histogram metrics. D performed better in distinguishing LG from HG tumour than conventional ADCs. • GS had relatively higher correlation with tumour D than ADCs. • Difference of histogram D among two-grade tumours was statistically significant. • D yielded better individual features in demonstrating tumour grade than ADC. • D* and f failed to determine tumour grade of PCa.

  7. Diffusion-weighted imaging: Apparent diffusion coefficient histogram analysis for detecting pathologic complete response to chemoradiotherapy in locally advanced rectal cancer.

    PubMed

    Choi, Moon Hyung; Oh, Soon Nam; Rha, Sung Eun; Choi, Joon-Il; Lee, Sung Hak; Jang, Hong Seok; Kim, Jun-Gi; Grimm, Robert; Son, Yohan

    2016-07-01

    To investigate the usefulness of apparent diffusion coefficient (ADC) values derived from histogram analysis of the whole rectal cancer as a quantitative parameter to evaluate pathologic complete response (pCR) on preoperative magnetic resonance imaging (MRI). We enrolled a total of 86 consecutive patients who had undergone surgery for rectal cancer after neoadjuvant chemoradiotherapy (CRT) at our institution between July 2012 and November 2014. Two radiologists who were blinded to the final pathological results reviewed post-CRT MRI to evaluate tumor stage. Quantitative image analysis was performed using T2 -weighted and diffusion-weighted images independently by two radiologists using dedicated software that performed histogram analysis to assess the distribution of ADC in the whole tumor. After surgery, 16 patients were confirmed to have achieved pCR (18.6%). All parameters from pre- and post-CRT ADC histogram showed good or excellent agreement between two readers. The minimum, 10th, 25th, 50th, and 75th percentile and mean ADC from post-CRT ADC histogram were significantly higher in the pCR group than in the non-pCR group for both readers. The 25th percentile value from ADC histogram in post-CRT MRI had the best diagnostic performance for detecting pCR, with an area under the receiver operating characteristic curve of 0.796. Low percentile values derived from the ADC histogram analysis of rectal cancer on MRI after CRT showed a significant difference between pCR and non-pCR groups, demonstrating the utility of the ADC value as a quantitative and objective marker to evaluate complete pathologic response to preoperative CRT in rectal cancer. J. Magn. Reson. Imaging 2016;44:212-220. © 2015 Wiley Periodicals, Inc.

  8. Serial data acquisition for GEM-2D detector

    NASA Astrophysics Data System (ADS)

    Kolasinski, Piotr; Pozniak, Krzysztof T.; Czarski, Tomasz; Linczuk, Maciej; Byszuk, Adrian; Chernyshova, Maryna; Juszczyk, Bartlomiej; Kasprowicz, Grzegorz; Wojenski, Andrzej; Zabolotny, Wojciech; Zienkiewicz, Pawel; Mazon, Didier; Malard, Philippe; Herrmann, Albrecht; Vezinet, Didier

    2014-11-01

    This article debates about data fast acquisition and histogramming method for the X-ray GEM detector. The whole process of histogramming is performed by FPGA chips (Spartan-6 series from Xilinx). The results of the histogramming process are stored in an internal FPGA memory and then sent to PC. In PC data is merged and processed by MATLAB. The structure of firmware functionality implemented in the FPGAs is described. Examples of test measurements and results are presented.

  9. Frequency distribution histograms for the rapid analysis of data

    NASA Technical Reports Server (NTRS)

    Burke, P. V.; Bullen, B. L.; Poff, K. L.

    1988-01-01

    The mean and standard error are good representations for the response of a population to an experimental parameter and are frequently used for this purpose. Frequency distribution histograms show, in addition, responses of individuals in the population. Both the statistics and a visual display of the distribution of the responses can be obtained easily using a microcomputer and available programs. The type of distribution shown by the histogram may suggest different mechanisms to be tested.

  10. Detection of Local Tumor Recurrence After Definitive Treatment of Head and Neck Squamous Cell Carcinoma: Histogram Analysis of Dynamic Contrast-Enhanced T1-Weighted Perfusion MRI.

    PubMed

    Choi, Sang Hyun; Lee, Jeong Hyun; Choi, Young Jun; Park, Ji Eun; Sung, Yu Sub; Kim, Namkug; Baek, Jung Hwan

    2017-01-01

    This study aimed to explore the added value of histogram analysis of the ratio of initial to final 90-second time-signal intensity AUC (AUCR) for differentiating local tumor recurrence from contrast-enhancing scar on follow-up dynamic contrast-enhanced T1-weighted perfusion MRI of patients treated for head and neck squamous cell carcinoma (HNSCC). AUCR histogram parameters were assessed among tumor recurrence (n = 19) and contrast-enhancing scar (n = 27) at primary sites and compared using the t test. ROC analysis was used to determine the best differentiating parameters. The added value of AUCR histogram parameters was assessed when they were added to inconclusive conventional MRI results. Histogram analysis showed statistically significant differences in the 50th, 75th, and 90th percentiles of the AUCR values between the two groups (p < 0.05). The 90th percentile of the AUCR values (AUCR 90 ) was the best predictor of local tumor recurrence (AUC, 0.77; 95% CI, 0.64-0.91) with an estimated cutoff of 1.02. AUCR 90 increased sensitivity by 11.7% over that of conventional MRI alone when added to inconclusive results. Histogram analysis of AUCR can improve the diagnostic yield for local tumor recurrence during surveillance after treatment for HNSCC.

  11. Value of MR histogram analyses for prediction of microvascular invasion of hepatocellular carcinoma

    PubMed Central

    Huang, Ya-Qin; Liang, He-Yue; Yang, Zhao-Xia; Ding, Ying; Zeng, Meng-Su; Rao, Sheng-Xiang

    2016-01-01

    Abstract The objective is to explore the value of preoperative magnetic resonance (MR) histogram analyses in predicting microvascular invasion (MVI) of hepatocellular carcinoma (HCC). Fifty-one patients with histologically confirmed HCC who underwent diffusion-weighted and contrast-enhanced MR imaging were included. Histogram analyses were performed and mean, variance, skewness, kurtosis, 1th, 10th, 50th, 90th, and 99th percentiles were derived. Quantitative histogram parameters were compared between HCCs with and without MVI. Receiver operating characteristics (ROC) analyses were generated to compare the diagnostic performance of tumor size, histogram analyses of apparent diffusion coefficient (ADC) maps, and MR enhancement. The mean, 1th, 10th, and 50th percentiles of ADC maps, and the mean, variance. 1th, 10th, 50th, 90th, and 99th percentiles of the portal venous phase (PVP) images were significantly different between the groups with and without MVI (P <0.05), with area under the ROC curves (AUCs) of 0.66 to 0.74 for ADC and 0.76 to 0.88 for PVP. The largest AUC of PVP (1th percentile) showed significantly higher accuracy compared with that of arterial phase (AP) or tumor size (P <0.001). MR histogram analyses—in particular for 1th percentile for PVP images—held promise for prediction of MVI of HCC. PMID:27368028

  12. Effect of respiratory and cardiac gating on the major diffusion-imaging metrics

    PubMed Central

    Hamaguchi, Hiroyuki; Sugimori, Hiroyuki; Nakanishi, Mitsuhiro; Nakagawa, Shin; Fujiwara, Taro; Yoshida, Hirokazu; Takamori, Sayaka; Shirato, Hiroki

    2016-01-01

    The effect of respiratory gating on the major diffusion-imaging metrics and that of cardiac gating on mean kurtosis (MK) are not known. For evaluation of whether the major diffusion-imaging metrics—MK, fractional anisotropy (FA), and mean diffusivity (MD) of the brain—varied between gated and non-gated acquisitions, respiratory-gated, cardiac-gated, and non-gated diffusion-imaging of the brain were performed in 10 healthy volunteers. MK, FA, and MD maps were constructed for all acquisitions, and the histograms were constructed. The normalized peak height and location of the histograms were compared among the acquisitions by use of Friedman and post hoc Wilcoxon tests. The effect of the repetition time (TR) on the diffusion-imaging metrics was also tested, and we corrected for its variation among acquisitions, if necessary. The results showed a shift in the peak location of the MK and MD histograms to the right with an increase in TR (p ≤ 0.01). The corrected peak location of the MK histograms, the normalized peak height of the FA histograms, the normalized peak height and the corrected peak location of the MD histograms varied significantly between the gated and non-gated acquisitions (p < 0.05). These results imply an influence of respiration and cardiac pulsation on the major diffusion-imaging metrics. The gating conditions must be kept identical if reproducible results are to be achieved. PMID:27073115

  13. Infrared face recognition based on LBP histogram and KW feature selection

    NASA Astrophysics Data System (ADS)

    Xie, Zhihua

    2014-07-01

    The conventional LBP-based feature as represented by the local binary pattern (LBP) histogram still has room for performance improvements. This paper focuses on the dimension reduction of LBP micro-patterns and proposes an improved infrared face recognition method based on LBP histogram representation. To extract the local robust features in infrared face images, LBP is chosen to get the composition of micro-patterns of sub-blocks. Based on statistical test theory, Kruskal-Wallis (KW) feature selection method is proposed to get the LBP patterns which are suitable for infrared face recognition. The experimental results show combination of LBP and KW features selection improves the performance of infrared face recognition, the proposed method outperforms the traditional methods based on LBP histogram, discrete cosine transform(DCT) or principal component analysis(PCA).

  14. Multispectral histogram normalization contrast enhancement

    NASA Technical Reports Server (NTRS)

    Soha, J. M.; Schwartz, A. A.

    1979-01-01

    A multispectral histogram normalization or decorrelation enhancement which achieves effective color composites by removing interband correlation is described. The enhancement procedure employs either linear or nonlinear transformations to equalize principal component variances. An additional rotation to any set of orthogonal coordinates is thus possible, while full histogram utilization is maintained by avoiding the reintroduction of correlation. For the three-dimensional case, the enhancement procedure may be implemented with a lookup table. An application of the enhancement to Landsat multispectral scanning imagery is presented.

  15. Remote logo detection using angle-distance histograms

    NASA Astrophysics Data System (ADS)

    Youn, Sungwook; Ok, Jiheon; Baek, Sangwook; Woo, Seongyoun; Lee, Chulhee

    2016-05-01

    Among all the various computer vision applications, automatic logo recognition has drawn great interest from industry as well as various academic institutions. In this paper, we propose an angle-distance map, which we used to develop a robust logo detection algorithm. The proposed angle-distance histogram is invariant against scale and rotation. The proposed method first used shape information and color characteristics to find the candidate regions and then applied the angle-distance histogram. Experiments show that the proposed method detected logos of various sizes and orientations.

  16. An Experimental Comparison of Similarity Assessment Measures for 3D Models on Constrained Surface Deformation

    NASA Astrophysics Data System (ADS)

    Quan, Lulin; Yang, Zhixin

    2010-05-01

    To address the issues in the area of design customization, this paper expressed the specification and application of the constrained surface deformation, and reported the experimental performance comparison of three prevail effective similarity assessment algorithms on constrained surface deformation domain. Constrained surface deformation becomes a promising method that supports for various downstream applications of customized design. Similarity assessment is regarded as the key technology for inspecting the success of new design via measuring the difference level between the deformed new design and the initial sample model, and indicating whether the difference level is within the limitation. According to our theoretical analysis and pre-experiments, three similarity assessment algorithms are suitable for this domain, including shape histogram based method, skeleton based method, and U system moment based method. We analyze their basic functions and implementation methodologies in detail, and do a series of experiments on various situations to test their accuracy and efficiency using precision-recall diagram. Shoe model is chosen as an industrial example for the experiments. It shows that shape histogram based method gained an optimal performance in comparison. Based on the result, we proposed a novel approach that integrating surface constrains and shape histogram description with adaptive weighting method, which emphasize the role of constrains during the assessment. The limited initial experimental result demonstrated that our algorithm outperforms other three algorithms. A clear direction for future development is also drawn at the end of the paper.

  17. Detection of simulated microcalcifications in fixed mammary tissue: An ROC study of the effect of local versus global histogram equalization.

    PubMed

    Sund, T; Olsen, J B

    2006-09-01

    To investigate whether sliding window adaptive histogram equalization (SWAHE) of digital mammograms improves the detection of simulated calcifications, as compared to images normalized by global histogram equalization (GHE). Direct digital mammograms were obtained from mammary tissue phantoms superimposed with different frames. Each frame was divided into forty squares by a wire mesh, and contained granular calcifications randomly positioned in about 50% of the squares. Three radiologists read the mammograms on a display monitor. They classified their confidence in the presence of microcalcifications in each square on a scale of 1 to 5. Images processed with GHE were first read and used as a reference. In a later session, the same images processed with SWAHE were read. The results were compared using ROC methodology. When the total areas AZ were compared, the results were completely equivocal. When comparing the high-specificity partial ROC area AZ,0.2 below false-positive fraction (FPF) 0.20, two of the three observers performed best with the images processed with SWAHE. The difference was not statistically significant. When the reader's confidence threshold in malignancy is set at a high level, increasing the contrast of mammograms with SWAHE may enhance the visibility of microcalcifications without adversely affecting the false-positive rate. When the reader's confidence threshold is set at a low level, the effect of SWAHE is an increase of false positives. Further investigation is needed to confirm the validity of the conclusions.

  18. Robust and fast pedestrian detection method for far-infrared automotive driving assistance systems

    NASA Astrophysics Data System (ADS)

    Liu, Qiong; Zhuang, Jiajun; Ma, Jun

    2013-09-01

    Despite considerable effort has been contributed to night-time pedestrian detection for automotive driving assistance systems recent years, robust and real-time pedestrian detection is by no means a trivial task and is still underway due to the moving cameras, uncontrolled outdoor environments, wide range of possible pedestrian presentations and the stringent performance criteria for automotive applications. This paper presents an alternative night-time pedestrian detection method using monocular far-infrared (FIR) camera, which includes two modules (regions of interest (ROIs) generation and pedestrian recognition) in a cascade fashion. Pixel-gradient oriented vertical projection is first proposed to estimate the vertical image stripes that might contain pedestrians, and then local thresholding image segmentation is adopted to generate ROIs more accurately within the estimated vertical stripes. A novel descriptor called PEWHOG (pyramid entropy weighted histograms of oriented gradients) is proposed to represent FIR pedestrians in recognition module. Specifically, PEWHOG is used to capture both the local object shape described by the entropy weighted distribution of oriented gradient histograms and its pyramid spatial layout. Then PEWHOG is fed to a three-branch structured classifier using support vector machines (SVM) with histogram intersection kernel (HIK). An off-line training procedure combining both the bootstrapping and early-stopping strategy is introduced to generate a more robust classifier by exploiting hard negative samples iteratively. Finally, multi-frame validation is utilized to suppress some transient false positives. Experimental results on FIR video sequences from various scenarios demonstrate that the presented method is effective and promising.

  19. Tackling action-based video abstraction of animated movies for video browsing

    NASA Astrophysics Data System (ADS)

    Ionescu, Bogdan; Ott, Laurent; Lambert, Patrick; Coquin, Didier; Pacureanu, Alexandra; Buzuloiu, Vasile

    2010-07-01

    We address the issue of producing automatic video abstracts in the context of the video indexing of animated movies. For a quick browse of a movie's visual content, we propose a storyboard-like summary, which follows the movie's events by retaining one key frame for each specific scene. To capture the shot's visual activity, we use histograms of cumulative interframe distances, and the key frames are selected according to the distribution of the histogram's modes. For a preview of the movie's exciting action parts, we propose a trailer-like video highlight, whose aim is to show only the most interesting parts of the movie. Our method is based on a relatively standard approach, i.e., highlighting action through the analysis of the movie's rhythm and visual activity information. To suit every type of movie content, including predominantly static movies or movies without exciting parts, the concept of action depends on the movie's average rhythm. The efficiency of our approach is confirmed through several end-user studies.

  20. A geometric model for evaluating the effects of inter-fraction rectal motion during prostate radiotherapy

    NASA Astrophysics Data System (ADS)

    Pavel-Mititean, Luciana M.; Rowbottom, Carl G.; Hector, Charlotte L.; Partridge, Mike; Bortfeld, Thomas; Schlegel, Wolfgang

    2004-06-01

    A geometric model is presented which allows calculation of the dosimetric consequences of rectal motion in prostate radiotherapy. Variations in the position of the rectum are measured by repeat CT scanning during the courses of treatment of five patients. Dose distributions are calculated by applying the same conformal treatment plan to each imaged fraction and rectal dose-surface histograms produced. The 2D model allows isotropic expansion and contraction in the plane of each CT slice. By summing the dose to specific volume elements tracked by the model, composite dose distributions are produced that explicitly include measured inter-fraction motion for each patient. These are then used to estimate effective dose-surface histograms (DSHs) for the entire treatment. Results are presented showing the magnitudes of the measured target and rectal motion and showing the effects of this motion on the integral dose to the rectum. The possibility of using such information to calculate normal tissue complication probabilities (NTCP) is demonstrated and discussed.

  1. Detection of acute lymphocyte leukemia using k-nearest neighbor algorithm based on shape and histogram features

    NASA Astrophysics Data System (ADS)

    Purwanti, Endah; Calista, Evelyn

    2017-05-01

    Leukemia is a type of cancer which is caused by malignant neoplasms in leukocyte cells. Leukemia disease which can cause death quickly enough for the sufferer is a type of acute lymphocyte leukemia (ALL). In this study, we propose automatic detection of lymphocyte leukemia through classification of lymphocyte cell images obtained from peripheral blood smear single cell. There are two main objectives in this study. The first is to extract featuring cells. The second objective is to classify the lymphocyte cells into two classes, namely normal and abnormal lymphocytes. In conducting this study, we use combination of shape feature and histogram feature, and the classification algorithm is k-nearest Neighbour with k variation is 1, 3, 5, 7, 9, 11, 13, and 15. The best level of accuracy, sensitivity, and specificity in this study are 90%, 90%, and 90%, and they were obtained from combined features of area-perimeter-mean-standard deviation with k=7.

  2. The multi-state energy landscape of the SAM-I riboswitch: A single-molecule Förster resonance energy transfer spectroscopy study

    NASA Astrophysics Data System (ADS)

    Manz, Christoph; Kobitski, Andrei Yu.; Samanta, Ayan; Jäschke, Andres; Nienhaus, G. Ulrich

    2018-03-01

    RNA (ribonucleic acid) molecules are highly flexible biopolymers fluctuating at physiological temperatures among many different conformations that are represented by minima in a hierarchical conformational free energy landscape. Here we have employed single-molecule FRET (smFRET) to explore the energy landscape of the B. subtilis yitJ SAM-I riboswitch (RS). In this small RNA molecule, specific binding of an S-adenosyl-L-methionine (SAM) ligand in the aptamer domain regulates gene expression by inducing structural changes in another domain, the expression platform, causing transcription termination by the RNA polymerase. We have measured smFRET histograms over wide ranges of Mg2+ concentration for three RS variants that were specifically labeled with fluorescent dyes on different sites. In the analysis, different conformations are associated with discrete Gaussian model distributions, which are typically fairly broad on the FRET efficiency scale and thus can be extremely challenging to unravel due to their mutual overlap. Our earlier work on two SAM-I RS variants revealed four major conformations. By introducing a global fitting procedure which models both the Mg2+ concentration dependencies of the fractional populations and the average FRET efficiencies of the individual FRET distributions according to Mg2+ binding isotherms, we were able to consistently describe the histogram data of both variants at all studied Mg2+ concentrations. With the third FRET-labeled variant, however, we found significant deviations when applying the four-state model to the data. This can arise because the different FRET labeling of the new variant allows two states to be distinguished that were previously not separable due to overlap. Indeed, the resulting five-state model presented here consistently describes the smFRET histograms of all three variants as well as their variations with Mg2+ concentration. We also performed a triangulation of the donor position for two of the constructs to explore how the expression platform is oriented with respect to the aptamer.

  3. Assessment of treatment response during chemoradiation therapy for pancreatic cancer based on quantitative radiomic analysis of daily CTs: An exploratory study.

    PubMed

    Chen, Xiaojian; Oshima, Kiyoko; Schott, Diane; Wu, Hui; Hall, William; Song, Yingqiu; Tao, Yalan; Li, Dingjie; Zheng, Cheng; Knechtges, Paul; Erickson, Beth; Li, X Allen

    2017-01-01

    In an effort for early assessment of treatment response, we investigate radiation induced changes in quantitative CT features of tumor during the delivery of chemoradiation therapy (CRT) for pancreatic cancer. Diagnostic-quality CT data acquired daily during routine CT-guided CRT using a CT-on-rails for 20 pancreatic head cancer patients were analyzed. On each daily CT, the pancreatic head, the spinal cord and the aorta were delineated and the histograms of CT number (CTN) in these contours were extracted. Eight histogram-based radiomic metrics including the mean CTN (MCTN), peak position, volume, standard deviation (SD), skewness, kurtosis, energy and entropy were calculated for each fraction. Paired t-test was used to check the significance of the change of specific metric at specific time. GEE model was used to test the association between changes of metrics over time for different pathology responses. In general, CTN histogram in the pancreatic head (but not in spinal cord) changed during the CRT delivery. Changes from the 1st to the 26th fraction in MCTN ranged from -15.8 to 3.9 HU with an average of -4.7 HU (p<0.001). Meanwhile the volume decreased, the skewness increased (less skewed), and the kurtosis decreased (less peaked). The changes of MCTN, volume, skewness, and kurtosis became significant after two weeks of treatment. Patient pathological response is associated with the changes of MCTN, SD, and skewness. In cases of good response, patients tend to have large reductions in MCTN and skewness, and large increases in SD and kurtosis. Significant changes in CT radiomic features, such as the MCTN, skewness, and kurtosis in tumor were observed during the course of CRT for pancreas cancer based on quantitative analysis of daily CTs. These changes may be potentially used for early assessment of treatment response and stratification for therapeutic intensification.

  4. Histograms and Raisin Bread

    ERIC Educational Resources Information Center

    Leyden, Michael B.

    1975-01-01

    Describes various elementary school activities using a loaf of raisin bread to promote inquiry skills. Activities include estimating the number of raisins in the loaf by constructing histograms of the number of raisins in a slice. (MLH)

  5. Infrared small target enhancement: grey level mapping based on improved sigmoid transformation and saliency histogram

    NASA Astrophysics Data System (ADS)

    Wan, Minjie; Gu, Guohua; Qian, Weixian; Ren, Kan; Chen, Qian

    2018-06-01

    Infrared (IR) small target enhancement plays a significant role in modern infrared search and track (IRST) systems and is the basic technique of target detection and tracking. In this paper, a coarse-to-fine grey level mapping method using improved sigmoid transformation and saliency histogram is designed to enhance IR small targets under different backgrounds. For the stage of rough enhancement, the intensity histogram is modified via an improved sigmoid function so as to narrow the regular intensity range of background as much as possible. For the part of further enhancement, a linear transformation is accomplished based on a saliency histogram constructed by averaging the cumulative saliency values provided by a saliency map. Compared with other typical methods, the presented method can achieve both better visual performances and quantitative evaluations.

  6. A domain-knowledge-inspired mathematical framework for the description and classification of H&E stained histopathology images.

    PubMed

    Massar, Melody L; Bhagavatula, Ramamurthy; Ozolek, John A; Castro, Carlos A; Fickus, Matthew; Kovačević, Jelena

    2011-10-19

    We present the current state of our work on a mathematical framework for identification and delineation of histopathology images-local histograms and occlusion models. Local histograms are histograms computed over defined spatial neighborhoods whose purpose is to characterize an image locally. This unit of description is augmented by our occlusion models that describe a methodology for image formation. In the context of this image formation model, the power of local histograms with respect to appropriate families of images will be shown through various proved statements about expected performance. We conclude by presenting a preliminary study to demonstrate the power of the framework in the context of histopathology image classification tasks that, while differing greatly in application, both originate from what is considered an appropriate class of images for this framework.

  7. [Research on K-means clustering segmentation method for MRI brain image based on selecting multi-peaks in gray histogram].

    PubMed

    Chen, Zhaoxue; Yu, Haizhong; Chen, Hao

    2013-12-01

    To solve the problem of traditional K-means clustering in which initial clustering centers are selected randomly, we proposed a new K-means segmentation algorithm based on robustly selecting 'peaks' standing for White Matter, Gray Matter and Cerebrospinal Fluid in multi-peaks gray histogram of MRI brain image. The new algorithm takes gray value of selected histogram 'peaks' as the initial K-means clustering center and can segment the MRI brain image into three parts of tissue more effectively, accurately, steadily and successfully. Massive experiments have proved that the proposed algorithm can overcome many shortcomings caused by traditional K-means clustering method such as low efficiency, veracity, robustness and time consuming. The histogram 'peak' selecting idea of the proposed segmentootion method is of more universal availability.

  8. Neutron camera employing row and column summations

    DOEpatents

    Clonts, Lloyd G.; Diawara, Yacouba; Donahue, Jr, Cornelius; Montcalm, Christopher A.; Riedel, Richard A.; Visscher, Theodore

    2016-06-14

    For each photomultiplier tube in an Anger camera, an R.times.S array of preamplifiers is provided to detect electrons generated within the photomultiplier tube. The outputs of the preamplifiers are digitized to measure the magnitude of the signals from each preamplifier. For each photomultiplier tube, a corresponding summation circuitry including R row summation circuits and S column summation circuits numerically add the magnitudes of the signals from preamplifiers for each row and for each column to generate histograms. For a P.times.Q array of photomultiplier tubes, P.times.Q summation circuitries generate P.times.Q row histograms including R entries and P.times.Q column histograms including S entries. The total set of histograms include P.times.Q.times.(R+S) entries, which can be analyzed by a position calculation circuit to determine the locations of events (detection of a neutron).

  9. Evaluation of breast cancer using intravoxel incoherent motion (IVIM) histogram analysis: comparison with malignant status, histological subtype, and molecular prognostic factors.

    PubMed

    Cho, Gene Young; Moy, Linda; Kim, Sungheon G; Baete, Steven H; Moccaldi, Melanie; Babb, James S; Sodickson, Daniel K; Sigmund, Eric E

    2016-08-01

    To examine heterogeneous breast cancer through intravoxel incoherent motion (IVIM) histogram analysis. This HIPAA-compliant, IRB-approved retrospective study included 62 patients (age 48.44 ± 11.14 years, 50 malignant lesions and 12 benign) who underwent contrast-enhanced 3 T breast MRI and diffusion-weighted imaging. Apparent diffusion coefficient (ADC) and IVIM biomarkers of tissue diffusivity (Dt), perfusion fraction (fp), and pseudo-diffusivity (Dp) were calculated using voxel-based analysis for the whole lesion volume. Histogram analysis was performed to quantify tumour heterogeneity. Comparisons were made using Mann-Whitney tests between benign/malignant status, histological subtype, and molecular prognostic factor status while Spearman's rank correlation was used to characterize the association between imaging biomarkers and prognostic factor expression. The average values of the ADC and IVIM biomarkers, Dt and fp, showed significant differences between benign and malignant lesions. Additional significant differences were found in the histogram parameters among tumour subtypes and molecular prognostic factor status. IVIM histogram metrics, particularly fp and Dp, showed significant correlation with hormonal factor expression. Advanced diffusion imaging biomarkers show relationships with molecular prognostic factors and breast cancer malignancy. This analysis reveals novel diagnostic metrics that may explain some of the observed variability in treatment response among breast cancer patients. • Novel IVIM biomarkers characterize heterogeneous breast cancer. • Histogram analysis enables quantification of tumour heterogeneity. • IVIM biomarkers show relationships with breast cancer malignancy and molecular prognostic factors.

  10. Whole-tumor histogram analysis of the cerebral blood volume map: tumor volume defined by 11C-methionine positron emission tomography image improves the diagnostic accuracy of cerebral glioma grading.

    PubMed

    Wu, Rongli; Watanabe, Yoshiyuki; Arisawa, Atsuko; Takahashi, Hiroto; Tanaka, Hisashi; Fujimoto, Yasunori; Watabe, Tadashi; Isohashi, Kayako; Hatazawa, Jun; Tomiyama, Noriyuki

    2017-10-01

    This study aimed to compare the tumor volume definition using conventional magnetic resonance (MR) and 11C-methionine positron emission tomography (MET/PET) images in the differentiation of the pre-operative glioma grade by using whole-tumor histogram analysis of normalized cerebral blood volume (nCBV) maps. Thirty-four patients with histopathologically proven primary brain low-grade gliomas (n = 15) and high-grade gliomas (n = 19) underwent pre-operative or pre-biopsy MET/PET, fluid-attenuated inversion recovery, dynamic susceptibility contrast perfusion-weighted magnetic resonance imaging, and contrast-enhanced T1-weighted at 3.0 T. The histogram distribution derived from the nCBV maps was obtained by co-registering the whole tumor volume delineated on conventional MR or MET/PET images, and eight histogram parameters were assessed. The mean nCBV value had the highest AUC value (0.906) based on MET/PET images. Diagnostic accuracy significantly improved when the tumor volume was measured from MET/PET images compared with conventional MR images for the parameters of mean, 50th, and 75th percentile nCBV value (p = 0.0246, 0.0223, and 0.0150, respectively). Whole-tumor histogram analysis of CBV map provides more valuable histogram parameters and increases diagnostic accuracy in the differentiation of pre-operative cerebral gliomas when the tumor volume is derived from MET/PET images.

  11. Effect of respiratory and cardiac gating on the major diffusion-imaging metrics.

    PubMed

    Hamaguchi, Hiroyuki; Tha, Khin Khin; Sugimori, Hiroyuki; Nakanishi, Mitsuhiro; Nakagawa, Shin; Fujiwara, Taro; Yoshida, Hirokazu; Takamori, Sayaka; Shirato, Hiroki

    2016-08-01

    The effect of respiratory gating on the major diffusion-imaging metrics and that of cardiac gating on mean kurtosis (MK) are not known. For evaluation of whether the major diffusion-imaging metrics-MK, fractional anisotropy (FA), and mean diffusivity (MD) of the brain-varied between gated and non-gated acquisitions, respiratory-gated, cardiac-gated, and non-gated diffusion-imaging of the brain were performed in 10 healthy volunteers. MK, FA, and MD maps were constructed for all acquisitions, and the histograms were constructed. The normalized peak height and location of the histograms were compared among the acquisitions by use of Friedman and post hoc Wilcoxon tests. The effect of the repetition time (TR) on the diffusion-imaging metrics was also tested, and we corrected for its variation among acquisitions, if necessary. The results showed a shift in the peak location of the MK and MD histograms to the right with an increase in TR (p ≤ 0.01). The corrected peak location of the MK histograms, the normalized peak height of the FA histograms, the normalized peak height and the corrected peak location of the MD histograms varied significantly between the gated and non-gated acquisitions (p < 0.05). These results imply an influence of respiration and cardiac pulsation on the major diffusion-imaging metrics. The gating conditions must be kept identical if reproducible results are to be achieved. © The Author(s) 2016.

  12. The use of sensory perception indicators for improving the characterization and modelling of total petroleum hydrocarbon (TPH) grade in soils.

    PubMed

    Roxo, Sónia; de Almeida, José António; Matias, Filipa Vieira; Mata-Lima, Herlander; Barbosa, Sofia

    2016-03-01

    This paper proposes a multistep approach for creating a 3D stochastic model of total petroleum hydrocarbon (TPH) grade in potentially polluted soils of a deactivated oil storage site by using chemical analysis results as primary or hard data and classes of sensory perception variables as secondary or soft data. First, the statistical relationship between the sensory perception variables (e.g. colour, odour and oil-water reaction) and TPH grade is analysed, after which the sensory perception variable exhibiting the highest correlation is selected (oil-water reaction in this case study). The probabilities of cells belonging to classes of oil-water reaction are then estimated for the entire soil volume using indicator kriging. Next, local histograms of TPH grade for each grid cell are computed, combining the probabilities of belonging to a specific sensory perception indicator class and conditional to the simulated values of TPH grade. Finally, simulated images of TPH grade are generated by using the P-field simulation algorithm, utilising the local histograms of TPH grade for each grid cell. The set of simulated TPH values allows several calculations to be performed, such as average values, local uncertainties and the probability of the TPH grade of the soil exceeding a specific threshold value.

  13. On the impact of improved dosimetric accuracy on head and neck high dose rate brachytherapy.

    PubMed

    Peppa, Vasiliki; Pappas, Eleftherios; Major, Tibor; Takácsi-Nagy, Zoltán; Pantelis, Evaggelos; Papagiannis, Panagiotis

    2016-07-01

    To study the effect of finite patient dimensions and tissue heterogeneities in head and neck high dose rate brachytherapy. The current practice of TG-43 dosimetry was compared to patient specific dosimetry obtained using Monte Carlo simulation for a sample of 22 patient plans. The dose distributions were compared in terms of percentage dose differences as well as differences in dose volume histogram and radiobiological indices for the target and organs at risk (mandible, parotids, skin, and spinal cord). Noticeable percentage differences exist between TG-43 and patient specific dosimetry, mainly at low dose points. Expressed as fractions of the planning aim dose, percentage differences are within 2% with a general TG-43 overestimation except for the spine. These differences are consistent resulting in statistically significant differences of dose volume histogram and radiobiology indices. Absolute differences of these indices are however small to warrant clinical importance in terms of tumor control or complication probabilities. The introduction of dosimetry methods characterized by improved accuracy is a valuable advancement. It does not appear however to influence dose prescription or call for amendment of clinical recommendations for the mobile tongue, base of tongue, and floor of mouth patient cohort of this study. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.

  14. Pattern-histogram-based temporal change detection using personal chest radiographs

    NASA Astrophysics Data System (ADS)

    Ugurlu, Yucel; Obi, Takashi; Hasegawa, Akira; Yamaguchi, Masahiro; Ohyama, Nagaaki

    1999-05-01

    An accurate and reliable detection of temporal changes from a pair of images has considerable interest in the medical science. Traditional registration and subtraction techniques can be applied to extract temporal differences when,the object is rigid or corresponding points are obvious. However, in radiological imaging, loss of the depth information, the elasticity of object, the absence of clearly defined landmarks and three-dimensional positioning differences constraint the performance of conventional registration techniques. In this paper, we propose a new method in order to detect interval changes accurately without using an image registration technique. The method is based on construction of so-called pattern histogram and comparison procedure. The pattern histogram is a graphic representation of the frequency counts of all allowable patterns in the multi-dimensional pattern vector space. K-means algorithm is employed to partition pattern vector space successively. Any differences in the pattern histograms imply that different patterns are involved in the scenes. In our experiment, a pair of chest radiographs of pneumoconiosis is employed and the changing histogram bins are visualized on both of the images. We found that the method can be used as an alternative way of temporal change detection, particularly when the precise image registration is not available.

  15. A Concise Guide to Feature Histograms with Applications to LIDAR-Based Spacecraft Relative Navigation

    NASA Astrophysics Data System (ADS)

    Rhodes, Andrew P.; Christian, John A.; Evans, Thomas

    2017-12-01

    With the availability and popularity of 3D sensors, it is advantageous to re-examine the use of point cloud descriptors for the purpose of pose estimation and spacecraft relative navigation. One popular descriptor is the oriented unique repeatable clustered viewpoint feature histogram (OUR-CVFH), which is most often utilized in personal and industrial robotics to simultaneously recognize and navigate relative to an object. Recent research into using the OUR-CVFH descriptor for spacecraft navigation has produced favorable results. Since OUR-CVFH is the most recent innovation in a large family of feature histogram point cloud descriptors, discussions of parameter settings and insights into its functionality are spread among various publications and online resources. This paper organizes the history of feature histogram point cloud descriptors for a straightforward explanation of their evolution. This article compiles all the requisite information needed to implement OUR-CVFH into one location, as well as providing useful suggestions on how to tune the generation parameters. This work is beneficial for anyone interested in using this histogram descriptor for object recognition or navigation - may it be personal robotics or spacecraft navigation.

  16. Hybrid Histogram Descriptor: A Fusion Feature Representation for Image Retrieval.

    PubMed

    Feng, Qinghe; Hao, Qiaohong; Chen, Yuqi; Yi, Yugen; Wei, Ying; Dai, Jiangyan

    2018-06-15

    Currently, visual sensors are becoming increasingly affordable and fashionable, acceleratingly the increasing number of image data. Image retrieval has attracted increasing interest due to space exploration, industrial, and biomedical applications. Nevertheless, designing effective feature representation is acknowledged as a hard yet fundamental issue. This paper presents a fusion feature representation called a hybrid histogram descriptor (HHD) for image retrieval. The proposed descriptor comprises two histograms jointly: a perceptually uniform histogram which is extracted by exploiting the color and edge orientation information in perceptually uniform regions; and a motif co-occurrence histogram which is acquired by calculating the probability of a pair of motif patterns. To evaluate the performance, we benchmarked the proposed descriptor on RSSCN7, AID, Outex-00013, Outex-00014 and ETHZ-53 datasets. Experimental results suggest that the proposed descriptor is more effective and robust than ten recent fusion-based descriptors under the content-based image retrieval framework. The computational complexity was also analyzed to give an in-depth evaluation. Furthermore, compared with the state-of-the-art convolutional neural network (CNN)-based descriptors, the proposed descriptor also achieves comparable performance, but does not require any training process.

  17. Improved LSB matching steganography with histogram characters reserved

    NASA Astrophysics Data System (ADS)

    Chen, Zhihong; Liu, Wenyao

    2008-03-01

    This letter bases on the researches of LSB (least significant bit, i.e. the last bit of a binary pixel value) matching steganographic method and the steganalytic method which aims at histograms of cover images, and proposes a modification to LSB matching. In the LSB matching, if the LSB of the next cover pixel matches the next bit of secret data, do nothing; otherwise, choose to add or subtract one from the cover pixel value at random. In our improved method, a steganographic information table is defined and records the changes which embedded secrete bits introduce in. Through the table, the next LSB which has the same pixel value will be judged to add or subtract one dynamically in order to ensure the histogram's change of cover image is minimized. Therefore, the modified method allows embedding the same payload as the LSB matching but with improved steganographic security and less vulnerability to attacks compared with LSB matching. The experimental results of the new method show that the histograms maintain their attributes, such as peak values and alternative trends, in an acceptable degree and have better performance than LSB matching in the respects of histogram distortion and resistance against existing steganalysis.

  18. Histograms and Frequency Density.

    ERIC Educational Resources Information Center

    Micromath, 2003

    2003-01-01

    Introduces exercises on histograms and frequency density. Guides pupils to Discovering Important Statistical Concepts Using Spreadsheets (DISCUSS), created at the University of Coventry. Includes curriculum points, teaching tips, activities, and internet address (http://www.coventry.ac.uk/discuss/). (KHR)

  19. Diagnosis of Tempromandibular Disorders Using Local Binary Patterns

    PubMed Central

    Haghnegahdar, A.A.; Kolahi, S.; Khojastepour, L.; Tajeripour, F.

    2018-01-01

    Background: Temporomandibular joint disorder (TMD) might be manifested as structural changes in bone through modification, adaptation or direct destruction. We propose to use Local Binary Pattern (LBP) characteristics and histogram-oriented gradients on the recorded images as a diagnostic tool in TMD assessment. Material and Methods: CBCT images of 66 patients (132 joints) with TMD and 66 normal cases (132 joints) were collected and 2 coronal cut prepared from each condyle, although images were limited to head of mandibular condyle. In order to extract features of images, first we use LBP and then histogram of oriented gradients. To reduce dimensionality, the linear algebra Singular Value Decomposition (SVD) is applied to the feature vectors matrix of all images. For evaluation, we used K nearest neighbor (K-NN), Support Vector Machine, Naïve Bayesian and Random Forest classifiers. We used Receiver Operating Characteristic (ROC) to evaluate the hypothesis. Results: K nearest neighbor classifier achieves a very good accuracy (0.9242), moreover, it has desirable sensitivity (0.9470) and specificity (0.9015) results, when other classifiers have lower accuracy, sensitivity and specificity. Conclusion: We proposed a fully automatic approach to detect TMD using image processing techniques based on local binary patterns and feature extraction. K-NN has been the best classifier for our experiments in detecting patients from healthy individuals, by 92.42% accuracy, 94.70% sensitivity and 90.15% specificity. The proposed method can help automatically diagnose TMD at its initial stages. PMID:29732343

  20. The DataCube Server. Animate Agent Project Working Note 2, Version 1.0

    DTIC Science & Technology

    1993-11-01

    before this can be called a histogram of all the needed levels must be made and their one band images must be made. Note if a levels backprojection...will not be used then the level does not need to be histogrammed. Any points outside the active region in a levels backprojection will be undefined...this can be called a histogram of all the needed levels must be made and their one band images must be made. Note if a levels backprojection will not

  1. Robust Audio Watermarking by Using Low-Frequency Histogram

    NASA Astrophysics Data System (ADS)

    Xiang, Shijun

    In continuation to earlier work where the problem of time-scale modification (TSM) has been studied [1] by modifying the shape of audio time domain histogram, here we consider the additional ingredient of resisting additive noise-like operations, such as Gaussian noise, lossy compression and low-pass filtering. In other words, we study the problem of the watermark against both TSM and additive noises. To this end, in this paper we extract the histogram from a Gaussian-filtered low-frequency component for audio watermarking. The watermark is inserted by shaping the histogram in a way that the use of two consecutive bins as a group is exploited for hiding a bit by reassigning their population. The watermarked signals are perceptibly similar to the original one. Comparing with the previous time-domain watermarking scheme [1], the proposed watermarking method is more robust against additive noise, MP3 compression, low-pass filtering, etc.

  2. [Image Feature Extraction and Discriminant Analysis of Xinjiang Uygur Medicine Based on Color Histogram].

    PubMed

    Hamit, Murat; Yun, Weikang; Yan, Chuanbo; Kutluk, Abdugheni; Fang, Yang; Alip, Elzat

    2015-06-01

    Image feature extraction is an important part of image processing and it is an important field of research and application of image processing technology. Uygur medicine is one of Chinese traditional medicine and researchers pay more attention to it. But large amounts of Uygur medicine data have not been fully utilized. In this study, we extracted the image color histogram feature of herbal and zooid medicine of Xinjiang Uygur. First, we did preprocessing, including image color enhancement, size normalizition and color space transformation. Then we extracted color histogram feature and analyzed them with statistical method. And finally, we evaluated the classification ability of features by Bayes discriminant analysis. Experimental results showed that high accuracy for Uygur medicine image classification was obtained by using color histogram feature. This study would have a certain help for the content-based medical image retrieval for Xinjiang Uygur medicine.

  3. LSAH: a fast and efficient local surface feature for point cloud registration

    NASA Astrophysics Data System (ADS)

    Lu, Rongrong; Zhu, Feng; Wu, Qingxiao; Kong, Yanzi

    2018-04-01

    Point cloud registration is a fundamental task in high level three dimensional applications. Noise, uneven point density and varying point cloud resolutions are the three main challenges for point cloud registration. In this paper, we design a robust and compact local surface descriptor called Local Surface Angles Histogram (LSAH) and propose an effectively coarse to fine algorithm for point cloud registration. The LSAH descriptor is formed by concatenating five normalized sub-histograms into one histogram. The five sub-histograms are created by accumulating a different type of angle from a local surface patch respectively. The experimental results show that our LSAH is more robust to uneven point density and point cloud resolutions than four state-of-the-art local descriptors in terms of feature matching. Moreover, we tested our LSAH based coarse to fine algorithm for point cloud registration. The experimental results demonstrate that our algorithm is robust and efficient as well.

  4. Advanced concentration analysis of atom probe tomography data: Local proximity histograms and pseudo-2D concentration maps.

    PubMed

    Felfer, Peter; Cairney, Julie

    2018-06-01

    Analysing the distribution of selected chemical elements with respect to interfaces is one of the most common tasks in data mining in atom probe tomography. This can be represented by 1D concentration profiles, 2D concentration maps or proximity histograms, which represent concentration, density etc. of selected species as a function of the distance from a reference surface/interface. These are some of the most useful tools for the analysis of solute distributions in atom probe data. In this paper, we present extensions to the proximity histogram in the form of 'local' proximity histograms, calculated for selected parts of a surface, and pseudo-2D concentration maps, which are 2D concentration maps calculated on non-flat surfaces. This way, local concentration changes at interfaces or and other structures can be assessed more effectively. Copyright © 2018 Elsevier B.V. All rights reserved.

  5. Histogram contrast analysis and the visual segregation of IID textures.

    PubMed

    Chubb, C; Econopouly, J; Landy, M S

    1994-09-01

    A new psychophysical methodology is introduced, histogram contrast analysis, that allows one to measure stimulus transformations, f, used by the visual system to draw distinctions between different image regions. The method involves the discrimination of images constructed by selecting texture micropatterns randomly and independently (across locations) on the basis of a given micropattern histogram. Different components of f are measured by use of different component functions to modulate the micropattern histogram until the resulting textures are discriminable. When no discrimination threshold can be obtained for a given modulating component function, a second titration technique may be used to measure the contribution of that component to f. The method includes several strong tests of its own assumptions. An example is given of the method applied to visual textures composed of small, uniform squares with randomly chosen gray levels. In particular, for a fixed mean gray level mu and a fixed gray-level variance sigma 2, histogram contrast analysis is used to establish that the class S of all textures composed of small squares with jointly independent, identically distributed gray levels with mean mu and variance sigma 2 is perceptually elementary in the following sense: there exists a single, real-valued function f S of gray level, such that two textures I and J in S are discriminable only if the average value of f S applied to the gray levels in I is significantly different from the average value of f S applied to the gray levels in J. Finally, histogram contrast analysis is used to obtain a seventh-order polynomial approximation of f S.

  6. Predicting pathologic tumor response to chemoradiotherapy with histogram distances characterizing longitudinal changes in 18F-FDG uptake patterns

    PubMed Central

    Tan, Shan; Zhang, Hao; Zhang, Yongxue; Chen, Wengen; D’Souza, Warren D.; Lu, Wei

    2013-01-01

    Purpose: A family of fluorine-18 (18F)-fluorodeoxyglucose (18F-FDG) positron-emission tomography (PET) features based on histogram distances is proposed for predicting pathologic tumor response to neoadjuvant chemoradiotherapy (CRT). These features describe the longitudinal change of FDG uptake distribution within a tumor. Methods: Twenty patients with esophageal cancer treated with CRT plus surgery were included in this study. All patients underwent PET/CT scans before (pre-) and after (post-) CRT. The two scans were first rigidly registered, and the original tumor sites were then manually delineated on the pre-PET/CT by an experienced nuclear medicine physician. Two histograms representing the FDG uptake distribution were extracted from the pre- and the registered post-PET images, respectively, both within the delineated tumor. Distances between the two histograms quantify longitudinal changes in FDG uptake distribution resulting from CRT, and thus are potential predictors of tumor response. A total of 19 histogram distances were examined and compared to both traditional PET response measures and Haralick texture features. Receiver operating characteristic analyses and Mann-Whitney U test were performed to assess their predictive ability. Results: Among all tested histogram distances, seven bin-to-bin and seven crossbin distances outperformed traditional PET response measures using maximum standardized uptake value (AUC = 0.70) or total lesion glycolysis (AUC = 0.80). The seven bin-to-bin distances were: L2 distance (AUC = 0.84), χ2 distance (AUC = 0.83), intersection distance (AUC = 0.82), cosine distance (AUC = 0.83), squared Euclidean distance (AUC = 0.83), L1 distance (AUC = 0.82), and Jeffrey distance (AUC = 0.82). The seven crossbin distances were: quadratic-chi distance (AUC = 0.89), earth mover distance (AUC = 0.86), fast earth mover distance (AUC = 0.86), diffusion distance (AUC = 0.88), Kolmogorov-Smirnov distance (AUC = 0.88), quadratic form distance (AUC = 0.87), and match distance (AUC = 0.84). These crossbin histogram distance features showed slightly higher prediction accuracy than texture features on post-PET images. Conclusions: The results suggest that longitudinal patterns in 18F-FDG uptake characterized using histogram distances provide useful information for predicting the pathologic response of esophageal cancer to CRT. PMID:24089897

  7. [Characteristics of high resolution diffusion weighted imaging apparent diffusion coefficient histogram and its correlations with cancer stages in patients with nasopharyngeal carcinoma].

    PubMed

    Wang, G J; Wang, Y; Ye, Y; Chen, F; Lu, Y T; Li, S L

    2017-11-07

    Objective: To investigate the features of apparent diffusion coefficient (ADC) histogram parameters based on entire tumor volume data in high resolution diffusion weighted imaging of nasopharyngeal carcinoma (NPC) and to evaluate its correlations with cancer stages. Methods: This retrospective study included 154 cases of NPC patients[102 males and 52 females, mean age (48±11) years]who had received readout segmentation of long variable echo trains of MRI scan before radiation therapy. The area of tumor was delineated on each section of axial ADC maps to generate ADC histogram by using Image J. ADC histogram of entire tumor along with the histogram parameters-the tumor voxels, ADC(mean), ADC(25%), ADC(50%), ADC(75%), skewness and kurtosis were obtained by merging all sections with SPSS 22.0 software. Intra-observer repeatability was assessed by using intra-class correlation coefficients (ICC). The patients were subdivided into two groups according to cancer volume: small cancer group (<305 voxels, about 2 cm(3)) and large cancer group (≥2 cm(3)). The correlation between ADC histogram parameters and cancer stages was evaluated with Spearman test. Results: The ICC of measuring ADC histogram parameters of tumor voxels, ADC(mean), ADC(25%), ADC(50%), ADC(75%), skewness, kurtosis was 0.938, 0.861, 0.885, 0.838, 0.836, 0.358 and 0.456, respectively. The tumor voxels was positively correlated with T staging ( r =0.368, P <0.05). There were significant differences in tumor voxels among patients with different T stages ( K =22.306, P <0.05). There were significant differences in the ADC(mean), ADC(25%), ADC(50%) among patients with different T stages in the small cancer group( K =8.409, 8.187, 8.699, all P <0.05), and the up-mentioned three indices were positively correlated with T staging ( r =0.221, 0.209, 0.235, all P <0.05). Skewness and kurtosis differed significantly between the groups with different cancer volume( t =-2.987, Z =-3.770, both P <0.05). Conclusion: The tumor volume, tissue uniformity of NPC are important factors affecting ADC and cancer stages, parameters of ADC histogram (ADC(mean), ADC(25%), ADC(50%)) increases with T staging in NPC smaller than 2 cm(3).

  8. Quantitative analysis of brain magnetic resonance imaging for hepatic encephalopathy

    NASA Astrophysics Data System (ADS)

    Syh, Hon-Wei; Chu, Wei-Kom; Ong, Chin-Sing

    1992-06-01

    High intensity lesions around ventricles have recently been observed in T1-weighted brain magnetic resonance images for patients suffering hepatic encephalopathy. The exact etiology that causes magnetic resonance imaging (MRI) gray scale changes has not been totally understood. The objective of our study was to investigate, through quantitative means, (1) the amount of changes to brain white matter due to the disease process, and (2) the extent and distribution of these high intensity lesions, since it is believed that the abnormality may not be entirely limited to the white matter only. Eleven patients with proven haptic encephalopathy and three normal persons without any evidence of liver abnormality constituted our current data base. Trans-axial, sagittal, and coronal brain MRI were obtained on a 1.5 Tesla scanner. All processing was carried out on a microcomputer-based image analysis system in an off-line manner. Histograms were decomposed into regular brain tissues and lesions. Gray scale ranges coded as lesion were then brought back to original images to identify distribution of abnormality. Our results indicated the disease process involved pallidus, mesencephalon, and subthalamic regions.

  9. Quantitative FLASH MRI at 3T using a rational approximation of the Ernst equation.

    PubMed

    Helms, Gunther; Dathe, Henning; Dechent, Peter

    2008-03-01

    From the half-angle substitution of trigonometric terms in the Ernst equation, rational approximations of the flip angle dependence of the FLASH signal can be derived. Even the rational function of the lowest order was in good agreement with the experiment for flip angles up to 20 degrees . Three-dimensional maps of the signal amplitude and longitudinal relaxation rates in human brain were obtained from eight subjects by dual-angle measurements at 3T (nonselective 3D-FLASH, 7 degrees and 20 degrees flip angle, TR = 30 ms, isotropic resolution of 0.95 mm, each 7:09 min). The corresponding estimates of T1 and signal amplitude are simple algebraic expressions and deviated about 1% from the exact solution. They are ill-conditioned to estimate the local flip angle deviation but can be corrected post hoc by division of squared RF maps obtained by independent measurements. Local deviations from the nominal flip angles strongly affected the relaxation estimates and caused considerable blurring of the T1 histograms. (c) 2008 Wiley-Liss, Inc.

  10. A novel retinal vessel extraction algorithm based on matched filtering and gradient vector flow

    NASA Astrophysics Data System (ADS)

    Yu, Lei; Xia, Mingliang; Xuan, Li

    2013-10-01

    The microvasculature network of retina plays an important role in the study and diagnosis of retinal diseases (age-related macular degeneration and diabetic retinopathy for example). Although it is possible to noninvasively acquire high-resolution retinal images with modern retinal imaging technologies, non-uniform illumination, the low contrast of thin vessels and the background noises all make it difficult for diagnosis. In this paper, we introduce a novel retinal vessel extraction algorithm based on gradient vector flow and matched filtering to segment retinal vessels with different likelihood. Firstly, we use isotropic Gaussian kernel and adaptive histogram equalization to smooth and enhance the retinal images respectively. Secondly, a multi-scale matched filtering method is adopted to extract the retinal vessels. Then, the gradient vector flow algorithm is introduced to locate the edge of the retinal vessels. Finally, we combine the results of matched filtering method and gradient vector flow algorithm to extract the vessels at different likelihood levels. The experiments demonstrate that our algorithm is efficient and the intensities of vessel images exactly represent the likelihood of the vessels.

  11. Histogram equalization with Bayesian estimation for noise robust speech recognition.

    PubMed

    Suh, Youngjoo; Kim, Hoirin

    2018-02-01

    The histogram equalization approach is an efficient feature normalization technique for noise robust automatic speech recognition. However, it suffers from performance degradation when some fundamental conditions are not satisfied in the test environment. To remedy these limitations of the original histogram equalization methods, class-based histogram equalization approach has been proposed. Although this approach showed substantial performance improvement under noise environments, it still suffers from performance degradation due to the overfitting problem when test data are insufficient. To address this issue, the proposed histogram equalization technique employs the Bayesian estimation method in the test cumulative distribution function estimation. It was reported in a previous study conducted on the Aurora-4 task that the proposed approach provided substantial performance gains in speech recognition systems based on the acoustic modeling of the Gaussian mixture model-hidden Markov model. In this work, the proposed approach was examined in speech recognition systems with deep neural network-hidden Markov model (DNN-HMM), the current mainstream speech recognition approach where it also showed meaningful performance improvement over the conventional maximum likelihood estimation-based method. The fusion of the proposed features with the mel-frequency cepstral coefficients provided additional performance gains in DNN-HMM systems, which otherwise suffer from performance degradation in the clean test condition.

  12. Dynamic Contrast-enhanced MR Imaging in Renal Cell Carcinoma: Reproducibility of Histogram Analysis on Pharmacokinetic Parameters

    PubMed Central

    Wang, Hai-yi; Su, Zi-hua; Xu, Xiao; Sun, Zhi-peng; Duan, Fei-xue; Song, Yuan-yuan; Li, Lu; Wang, Ying-wei; Ma, Xin; Guo, Ai-tao; Ma, Lin; Ye, Hui-yi

    2016-01-01

    Pharmacokinetic parameters derived from dynamic contrast-enhanced magnetic resonance imaging (DCE-MRI) have been increasingly used to evaluate the permeability of tumor vessel. Histogram metrics are a recognized promising method of quantitative MR imaging that has been recently introduced in analysis of DCE-MRI pharmacokinetic parameters in oncology due to tumor heterogeneity. In this study, 21 patients with renal cell carcinoma (RCC) underwent paired DCE-MRI studies on a 3.0 T MR system. Extended Tofts model and population-based arterial input function were used to calculate kinetic parameters of RCC tumors. Mean value and histogram metrics (Mode, Skewness and Kurtosis) of each pharmacokinetic parameter were generated automatically using ImageJ software. Intra- and inter-observer reproducibility and scan–rescan reproducibility were evaluated using intra-class correlation coefficients (ICCs) and coefficient of variation (CoV). Our results demonstrated that the histogram method (Mode, Skewness and Kurtosis) was not superior to the conventional Mean value method in reproducibility evaluation on DCE-MRI pharmacokinetic parameters (K trans & Ve) in renal cell carcinoma, especially for Skewness and Kurtosis which showed lower intra-, inter-observer and scan-rescan reproducibility than Mean value. Our findings suggest that additional studies are necessary before wide incorporation of histogram metrics in quantitative analysis of DCE-MRI pharmacokinetic parameters. PMID:27380733

  13. A psychophysical comparison of two methods for adaptive histogram equalization.

    PubMed

    Zimmerman, J B; Cousins, S B; Hartzell, K M; Frisse, M E; Kahn, M G

    1989-05-01

    Adaptive histogram equalization (AHE) is a method for adaptive contrast enhancement of digital images. It is an automatic, reproducible method for the simultaneous viewing of contrast within a digital image with a large dynamic range. Recent experiments have shown that in specific cases, there is no significant difference in the ability of AHE and linear intensity windowing to display gray-scale contrast. More recently, a variant of AHE which limits the allowed contrast enhancement of the image has been proposed. This contrast-limited adaptive histogram equalization (CLAHE) produces images in which the noise content of an image is not excessively enhanced, but in which sufficient contrast is provided for the visualization of structures within the image. Images processed with CLAHE have a more natural appearance and facilitate the comparison of different areas of an image. However, the reduced contrast enhancement of CLAHE may hinder the ability of an observer to detect the presence of some significant gray-scale contrast. In this report, a psychophysical observer experiment was performed to determine if there is a significant difference in the ability of AHE and CLAHE to depict gray-scale contrast. Observers were presented with computed tomography (CT) images of the chest processed with AHE and CLAHE. Subtle artificial lesions were introduced into some images. The observers were asked to rate their confidence regarding the presence of the lesions; this rating-scale data was analyzed using receiver operating characteristic (ROC) curve techniques. These ROC curves were compared for significant differences in the observers' performances. In this report, no difference was found in the abilities of AHE and CLAHE to depict contrast information.

  14. Age-related apparent diffusion coefficient changes in the normal brain.

    PubMed

    Watanabe, Memi; Sakai, Osamu; Ozonoff, Al; Kussman, Steven; Jara, Hernán

    2013-02-01

    To measure the mean diffusional age-related changes of the brain over the full human life span by using diffusion-weighted spin-echo single-shot echo-planar magnetic resonance (MR) imaging and sequential whole-brain apparent diffusion coefficient (ADC) histogram analysis and, secondarily, to build mathematical models of these normal age-related changes throughout human life. After obtaining institutional review board approval, a HIPAA-compliant retrospective search was conducted for brain MR imaging studies performed in 2007 for various clinical indications. Informed consent was waived. The brain data of 414 healthy subjects (189 males and 225 females; mean age, 33.7 years; age range, 2 days to 89.3 years) were obtained with diffusion-weighted spin-echo single-shot echo-planar MR imaging. ADC histograms of the whole brain were generated. ADC peak values, histogram widths, and intracranial volumes were plotted against age, and model parameters were estimated by using nonlinear regression. Four different stages were identified for aging changes in ADC peak values, as characterized by specific mathematical terms: There were age-associated exponential decays for the maturation period and the development period, a constant term for adulthood, and a linear increase for the senescence period. The age dependency of ADC peak value was simulated by using four-term six-coefficient function, including biexponential and linear terms. This model fit the data very closely (R(2) = 0.91). Brain diffusivity as a whole demonstrated age-related changes through four distinct periods of life. These results could contribute to establishing an ADC baseline of the normal brain, covering the full human life span.

  15. Fast analysis of molecular dynamics trajectories with graphics processing units-Radial distribution function histogramming

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Levine, Benjamin G., E-mail: ben.levine@temple.ed; Stone, John E., E-mail: johns@ks.uiuc.ed; Kohlmeyer, Axel, E-mail: akohlmey@temple.ed

    2011-05-01

    The calculation of radial distribution functions (RDFs) from molecular dynamics trajectory data is a common and computationally expensive analysis task. The rate limiting step in the calculation of the RDF is building a histogram of the distance between atom pairs in each trajectory frame. Here we present an implementation of this histogramming scheme for multiple graphics processing units (GPUs). The algorithm features a tiling scheme to maximize the reuse of data at the fastest levels of the GPU's memory hierarchy and dynamic load balancing to allow high performance on heterogeneous configurations of GPUs. Several versions of the RDF algorithm aremore » presented, utilizing the specific hardware features found on different generations of GPUs. We take advantage of larger shared memory and atomic memory operations available on state-of-the-art GPUs to accelerate the code significantly. The use of atomic memory operations allows the fast, limited-capacity on-chip memory to be used much more efficiently, resulting in a fivefold increase in performance compared to the version of the algorithm without atomic operations. The ultimate version of the algorithm running in parallel on four NVIDIA GeForce GTX 480 (Fermi) GPUs was found to be 92 times faster than a multithreaded implementation running on an Intel Xeon 5550 CPU. On this multi-GPU hardware, the RDF between two selections of 1,000,000 atoms each can be calculated in 26.9 s per frame. The multi-GPU RDF algorithms described here are implemented in VMD, a widely used and freely available software package for molecular dynamics visualization and analysis.« less

  16. The combination of a histogram-based clustering algorithm and support vector machine for the diagnosis of osteoporosis.

    PubMed

    Kavitha, Muthu Subash; Asano, Akira; Taguchi, Akira; Heo, Min-Suk

    2013-09-01

    To prevent low bone mineral density (BMD), that is, osteoporosis, in postmenopausal women, it is essential to diagnose osteoporosis more precisely. This study presented an automatic approach utilizing a histogram-based automatic clustering (HAC) algorithm with a support vector machine (SVM) to analyse dental panoramic radiographs (DPRs) and thus improve diagnostic accuracy by identifying postmenopausal women with low BMD or osteoporosis. We integrated our newly-proposed histogram-based automatic clustering (HAC) algorithm with our previously-designed computer-aided diagnosis system. The extracted moment-based features (mean, variance, skewness, and kurtosis) of the mandibular cortical width for the radial basis function (RBF) SVM classifier were employed. We also compared the diagnostic efficacy of the SVM model with the back propagation (BP) neural network model. In this study, DPRs and BMD measurements of 100 postmenopausal women patients (aged >50 years), with no previous record of osteoporosis, were randomly selected for inclusion. The accuracy, sensitivity, and specificity of the BMD measurements using our HAC-SVM model to identify women with low BMD were 93.0% (88.0%-98.0%), 95.8% (91.9%-99.7%) and 86.6% (79.9%-93.3%), respectively, at the lumbar spine; and 89.0% (82.9%-95.1%), 96.0% (92.2%-99.8%) and 84.0% (76.8%-91.2%), respectively, at the femoral neck. Our experimental results predict that the proposed HAC-SVM model combination applied on DPRs could be useful to assist dentists in early diagnosis and help to reduce the morbidity and mortality associated with low BMD and osteoporosis.

  17. Fast Analysis of Molecular Dynamics Trajectories with Graphics Processing Units—Radial Distribution Function Histogramming

    PubMed Central

    Stone, John E.; Kohlmeyer, Axel

    2011-01-01

    The calculation of radial distribution functions (RDFs) from molecular dynamics trajectory data is a common and computationally expensive analysis task. The rate limiting step in the calculation of the RDF is building a histogram of the distance between atom pairs in each trajectory frame. Here we present an implementation of this histogramming scheme for multiple graphics processing units (GPUs). The algorithm features a tiling scheme to maximize the reuse of data at the fastest levels of the GPU’s memory hierarchy and dynamic load balancing to allow high performance on heterogeneous configurations of GPUs. Several versions of the RDF algorithm are presented, utilizing the specific hardware features found on different generations of GPUs. We take advantage of larger shared memory and atomic memory operations available on state-of-the-art GPUs to accelerate the code significantly. The use of atomic memory operations allows the fast, limited-capacity on-chip memory to be used much more efficiently, resulting in a fivefold increase in performance compared to the version of the algorithm without atomic operations. The ultimate version of the algorithm running in parallel on four NVIDIA GeForce GTX 480 (Fermi) GPUs was found to be 92 times faster than a multithreaded implementation running on an Intel Xeon 5550 CPU. On this multi-GPU hardware, the RDF between two selections of 1,000,000 atoms each can be calculated in 26.9 seconds per frame. The multi-GPU RDF algorithms described here are implemented in VMD, a widely used and freely available software package for molecular dynamics visualization and analysis. PMID:21547007

  18. SU-E-J-270: Repeated 18F-FDG PET/CTs Based Feature Analysis for the Predication of Anal Cancer Recurrence

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wang, J; Chuong, M; Choi, W

    Purpose: To identify PET/CT based imaging predictors of anal cancer recurrence and evaluate baseline vs. mid-treatment vs. post-treatment PET/CT scans in the tumor recurrence prediction. Methods: FDG-PET/CT scans were obtained at baseline, during chemoradiotherapy (CRT, midtreatment), and after CRT (post-treatment) in 17 patients of anal cancer. Four patients had tumor recurrence. For each patient, the mid-treatment and post-treatment scans were respectively aligned to the baseline scan by a rigid registration followed by a deformable registration. PET/CT image features were computed within the manually delineated tumor volume of each scan to characterize the intensity histogram, spatial patterns (texture), and shape ofmore » the tumors, as well as the changes of these features resulting from CRT. A total of 335 image features were extracted. An Exact Logistic Regression model was employed to analyze these PET/CT image features in order to identify potential predictors for tumor recurrence. Results: Eleven potential predictors of cancer recurrence were identified with p < 0.10, including five shape features, five statistical texture features, and one CT intensity histogram feature. Six features were indentified from posttreatment scans, 3 from mid-treatment scans, and 2 from baseline scans. These features indicated that there were differences in shape, intensity, and spatial pattern between tumors with and without recurrence. Recurrent tumors tended to have more compact shape (higher roundness and lower elongation) and larger intensity difference between baseline and follow-up scans, compared to non-recurrent tumors. Conclusion: PET/CT based anal cancer recurrence predictors were identified. The post-CRT PET/CT is the most important scan for the prediction of cancer recurrence. The baseline and mid-CRT PET/CT also showed value in the prediction and would be more useful for the predication of tumor recurrence in early stage of CRT. This work was supported in part by the National Cancer Institute Grant R01CA172638.« less

  19. Specific issues, exact locations: case study of a community mapping project to improve safety in a disadvantaged community.

    PubMed

    Qummouh, Rana; Rose, Vanessa; Hall, Pat

    2012-12-01

    Safety is a health issue and a significant concern in disadvantaged communities. This paper describes an example of community-initiated action to address perceptions of fear and safety in a suburb in south-west Sydney which led to the development of a local, community-driven research project. As a first step in developing community capacity to take action on issues of safety, a joint resident-agency group implemented a community safety mapping project to identify the extent of safety issues in the community and their exact geographical location. Two aerial maps of the suburb, measuring one metre by two metres, were placed on display at different locations for four months. Residents used coloured stickers to identify specific issues and exact locations where crime and safety were a concern. Residents identified 294 specific safety issues in the suburb, 41.9% (n=123) associated with public infrastructure, such as poor lighting and pathways, and 31.9% (n=94) associated with drug-related issues such as drug activity and discarded syringes. Good health promotion practice reflects community need. In a very practical sense, this project responded to community calls for action by mapping resident knowledge on specific safety issues and exact locations and presenting these maps to local decision makers for further action.

  20. Apparent diffusion coefficient histogram analysis can evaluate radiation-induced parotid damage and predict late xerostomia degree in nasopharyngeal carcinoma

    PubMed Central

    Zhou, Nan; Guo, Tingting; Zheng, Huanhuan; Pan, Xia; Chu, Chen; Dou, Xin; Li, Ming; Liu, Song; Zhu, Lijing; Liu, Baorui; Chen, Weibo; He, Jian; Yan, Jing; Zhou, Zhengyang; Yang, Xiaofeng

    2017-01-01

    We investigated apparent diffusion coefficient (ADC) histogram analysis to evaluate radiation-induced parotid damage and predict xerostomia degrees in nasopharyngeal carcinoma (NPC) patients receiving radiotherapy. The imaging of bilateral parotid glands in NPC patients was conducted 2 weeks before radiotherapy (time point 1), one month after radiotherapy (time point 2), and four months after radiotherapy (time point 3). From time point 1 to 2, parotid volume, skewness, and kurtosis decreased (P < 0.001, = 0.001, and < 0.001, respectively), but all other ADC histogram parameters increased (all P < 0.001, except P = 0.006 for standard deviation [SD]). From time point 2 to 3, parotid volume continued to decrease (P = 0.022), and SD, 75th and 90th percentiles continued to increase (P = 0.024, 0.010, and 0.006, respectively). Early change rates of parotid ADCmean, ADCmin, kurtosis, and 25th, 50th, 75th, 90th percentiles (from time point 1 to 2) correlated with late parotid atrophy rate (from time point 1 to 3) (all P < 0.05). Multiple linear regression analysis revealed correlations among parotid volume, time point, and ADC histogram parameters. Early mean change rates for bilateral parotid SD and ADCmax could predict late xerostomia degrees at seven months after radiotherapy (three months after time point 3) with AUC of 0.781 and 0.818 (P = 0.014, 0.005, respectively). ADC histogram parameters were reproducible (intraclass correlation coefficient, 0.830 - 0.999). ADC histogram analysis could be used to evaluate radiation-induced parotid damage noninvasively, and predict late xerostomia degrees of NPC patients treated with radiotherapy. PMID:29050274

  1. Histogram Analysis of Diffusion Tensor Imaging Parameters in Pediatric Cerebellar Tumors.

    PubMed

    Wagner, Matthias W; Narayan, Anand K; Bosemani, Thangamadhan; Huisman, Thierry A G M; Poretti, Andrea

    2016-05-01

    Apparent diffusion coefficient (ADC) values have been shown to assist in differentiating cerebellar pilocytic astrocytomas and medulloblastomas. Previous studies have applied only ADC measurements and calculated the mean/median values. Here we investigated the value of diffusion tensor imaging (DTI) histogram characteristics of the entire tumor for differentiation of cerebellar pilocytic astrocytomas and medulloblastomas. Presurgical DTI data were analyzed with a region of interest (ROI) approach to include the entire tumor. For each tumor, histogram-derived metrics including the 25th percentile, 75th percentile, and skewness were calculated for fractional anisotropy (FA) and mean (MD), axial (AD), and radial (RD) diffusivity. The histogram metrics were used as primary predictors of interest in a logistic regression model. Statistical significance levels were set at p < .01. The study population included 17 children with pilocytic astrocytoma and 16 with medulloblastoma (mean age, 9.21 ± 5.18 years and 7.66 ± 4.97 years, respectively). Compared to children with medulloblastoma, children with pilocytic astrocytoma showed higher MD (P = .003 and P = .008), AD (P = .004 and P = .007), and RD (P = .003 and P = .009) values for the 25th and 75th percentile. In addition, histogram skewness showed statistically significant differences for MD between low- and high-grade tumors (P = .008). The 25th percentile for MD yields the best results for the presurgical differentiation between pediatric cerebellar pilocytic astrocytomas and medulloblastomas. The analysis of other DTI metrics does not provide additional diagnostic value. Our study confirms the diagnostic value of the quantitative histogram analysis of DTI data in pediatric neuro-oncology. Copyright © 2015 by the American Society of Neuroimaging.

  2. Correlation of histogram analysis of apparent diffusion coefficient with uterine cervical pathologic finding.

    PubMed

    Lin, Yuning; Li, Hui; Chen, Ziqian; Ni, Ping; Zhong, Qun; Huang, Huijuan; Sandrasegaran, Kumar

    2015-05-01

    The purpose of this study was to investigate the application of histogram analysis of apparent diffusion coefficient (ADC) in characterizing pathologic features of cervical cancer and benign cervical lesions. This prospective study was approved by the institutional review board, and written informed consent was obtained. Seventy-three patients with cervical cancer (33-69 years old; 35 patients with International Federation of Gynecology and Obstetrics stage IB cervical cancer) and 38 patients (38-61 years old) with normal cervix or cervical benign lesions (control group) were enrolled. All patients underwent 3-T diffusion-weighted imaging (DWI) with b values of 0 and 800 s/mm(2). ADC values of the entire tumor in the patient group and the whole cervix volume in the control group were assessed. Mean ADC, median ADC, 25th and 75th percentiles of ADC, skewness, and kurtosis were calculated. Histogram parameters were compared between different pathologic features, as well as between stage IB cervical cancer and control groups. Mean ADC, median ADC, and 25th percentile of ADC were significantly higher for adenocarcinoma (p = 0.021, 0.006, and 0.004, respectively), and skewness was significantly higher for squamous cell carcinoma (p = 0.011). Median ADC was statistically significantly higher for well or moderately differentiated tumors (p = 0.044), and skewness was statistically significantly higher for poorly differentiated tumors (p = 0.004). No statistically significant difference of ADC histogram was observed between lymphovascular space invasion subgroups. All histogram parameters differed significantly between stage IB cervical cancer and control groups (p < 0.05). Distribution of ADCs characterized by histogram analysis may help to distinguish early-stage cervical cancer from normal cervix or cervical benign lesions and may be useful for evaluating the different pathologic features of cervical cancer.

  3. Differentiating between Glioblastoma and Primary CNS Lymphoma Using Combined Whole-tumor Histogram Analysis of the Normalized Cerebral Blood Volume and the Apparent Diffusion Coefficient.

    PubMed

    Bao, Shixing; Watanabe, Yoshiyuki; Takahashi, Hiroto; Tanaka, Hisashi; Arisawa, Atsuko; Matsuo, Chisato; Wu, Rongli; Fujimoto, Yasunori; Tomiyama, Noriyuki

    2018-05-31

    This study aimed to determine whether whole-tumor histogram analysis of normalized cerebral blood volume (nCBV) and apparent diffusion coefficient (ADC) for contrast-enhancing lesions can be used to differentiate between glioblastoma (GBM) and primary central nervous system lymphoma (PCNSL). From 20 patients, 9 with PCNSL and 11 with GBM without any hemorrhagic lesions, underwent MRI, including diffusion-weighted imaging and dynamic susceptibility contrast perfusion-weighted imaging before surgery. Histogram analysis of nCBV and ADC from whole-tumor voxels in contrast-enhancing lesions was performed. An unpaired t-test was used to compare the mean values for each type of tumor. A multivariate logistic regression model (LRM) was performed to classify GBM and PCNSL using the best parameters of ADC and nCBV. All nCBV histogram parameters of GBMs were larger than those of PCNSLs, but only average nCBV was statistically significant after Bonferroni correction. Meanwhile, ADC histogram parameters were also larger in GBM compared to those in PCNSL, but these differences were not statistically significant. According to receiver operating characteristic curve analysis, the nCBV average and ADC 25th percentile demonstrated the largest area under the curve with values of 0.869 and 0.838, respectively. The LRM combining these two parameters differentiated between GBM and PCNSL with a higher area under the curve value (Logit (P) = -21.12 + 10.00 × ADC 25th percentile (10 -3 mm 2 /s) + 5.420 × nCBV mean, P < 0.001). Our results suggest that whole-tumor histogram analysis of nCBV and ADC combined can be a valuable objective diagnostic method for differentiating between GBM and PCNSL.

  4. Histogram analysis of diffusion kurtosis imaging estimates for in vivo assessment of 2016 WHO glioma grades: A cross-sectional observational study.

    PubMed

    Hempel, Johann-Martin; Schittenhelm, Jens; Brendle, Cornelia; Bender, Benjamin; Bier, Georg; Skardelly, Marco; Tabatabai, Ghazaleh; Castaneda Vega, Salvador; Ernemann, Ulrike; Klose, Uwe

    2017-10-01

    To assess the diagnostic performance of histogram analysis of diffusion kurtosis imaging (DKI) maps for in vivo assessment of the 2016 World Health Organization Classification of Tumors of the Central Nervous System (2016 CNS WHO) integrated glioma grades. Seventy-seven patients with histopathologically-confirmed glioma who provided written informed consent were retrospectively assessed between 01/2014 and 03/2017 from a prospective trial approved by the local institutional review board. Ten histogram parameters of mean kurtosis (MK) and mean diffusivity (MD) metrics from DKI were independently assessed by two blinded physicians from a volume of interest around the entire solid tumor. One-way ANOVA was used to compare MK and MD histogram parameter values between 2016 CNS WHO-based tumor grades. Receiver operating characteristic analysis was performed on MK and MD histogram parameters for significant results. The 25th, 50th, 75th, and 90th percentiles of MK and average MK showed significant differences between IDH1/2 wild-type gliomas, IDH1/2 mutated gliomas, and oligodendrogliomas with chromosome 1p/19q loss of heterozygosity and IDH1/2 mutation (p<0.001). The 50th, 75th, and 90th percentiles showed a slightly higher diagnostic performance (area under the curve (AUC) range; 0.868-0.991) than average MK (AUC range; 0.855-0.988) in classifying glioma according to the integrated approach of 2016 CNS WHO. Histogram analysis of DKI can stratify gliomas according to the integrated approach of 2016 CNS WHO. The 50th (median), 75th , and the 90th percentiles showed the highest diagnostic performance. However, the average MK is also robust and feasible in routine clinical practice. Copyright © 2017 Elsevier B.V. All rights reserved.

  5. Apparent diffusion coefficient histogram analysis can evaluate radiation-induced parotid damage and predict late xerostomia degree in nasopharyngeal carcinoma.

    PubMed

    Zhou, Nan; Guo, Tingting; Zheng, Huanhuan; Pan, Xia; Chu, Chen; Dou, Xin; Li, Ming; Liu, Song; Zhu, Lijing; Liu, Baorui; Chen, Weibo; He, Jian; Yan, Jing; Zhou, Zhengyang; Yang, Xiaofeng

    2017-09-19

    We investigated apparent diffusion coefficient (ADC) histogram analysis to evaluate radiation-induced parotid damage and predict xerostomia degrees in nasopharyngeal carcinoma (NPC) patients receiving radiotherapy. The imaging of bilateral parotid glands in NPC patients was conducted 2 weeks before radiotherapy (time point 1), one month after radiotherapy (time point 2), and four months after radiotherapy (time point 3). From time point 1 to 2, parotid volume, skewness, and kurtosis decreased ( P < 0.001, = 0.001, and < 0.001, respectively), but all other ADC histogram parameters increased (all P < 0.001, except P = 0.006 for standard deviation [SD]). From time point 2 to 3, parotid volume continued to decrease ( P = 0.022), and SD, 75 th and 90 th percentiles continued to increase ( P = 0.024, 0.010, and 0.006, respectively). Early change rates of parotid ADC mean , ADC min , kurtosis, and 25 th , 50 th , 75 th , 90 th percentiles (from time point 1 to 2) correlated with late parotid atrophy rate (from time point 1 to 3) (all P < 0.05). Multiple linear regression analysis revealed correlations among parotid volume, time point, and ADC histogram parameters. Early mean change rates for bilateral parotid SD and ADC max could predict late xerostomia degrees at seven months after radiotherapy (three months after time point 3) with AUC of 0.781 and 0.818 ( P = 0.014, 0.005, respectively). ADC histogram parameters were reproducible (intraclass correlation coefficient, 0.830 - 0.999). ADC histogram analysis could be used to evaluate radiation-induced parotid damage noninvasively, and predict late xerostomia degrees of NPC patients treated with radiotherapy.

  6. Comparison between types I and II epithelial ovarian cancer using histogram analysis of monoexponential, biexponential, and stretched-exponential diffusion models.

    PubMed

    Wang, Feng; Wang, Yuxiang; Zhou, Yan; Liu, Congrong; Xie, Lizhi; Zhou, Zhenyu; Liang, Dong; Shen, Yang; Yao, Zhihang; Liu, Jianyu

    2017-12-01

    To evaluate the utility of histogram analysis of monoexponential, biexponential, and stretched-exponential models to a dualistic model of epithelial ovarian cancer (EOC). Fifty-two patients with histopathologically proven EOC underwent preoperative magnetic resonance imaging (MRI) (including diffusion-weighted imaging [DWI] with 11 b-values) using a 3.0T system and were divided into two groups: types I and II. Apparent diffusion coefficient (ADC), true diffusion coefficient (D), pseudodiffusion coefficient (D*), perfusion fraction (f), distributed diffusion coefficient (DDC), and intravoxel water diffusion heterogeneity (α) histograms were obtained based on solid components of the entire tumor. The following metrics of each histogram were compared between two types: 1) mean; 2) median; 3) 10th percentile and 90th percentile. Conventional MRI morphological features were also recorded. Significant morphological features for predicting EOC type were maximum diameter (P = 0.007), texture of lesion (P = 0.001), and peritoneal implants (P = 0.001). For ADC, D, f, DDC, and α, all metrics were significantly lower in type II than type I (P < 0.05). Mean, median, 10th, and 90th percentile of D* were not significantly different (P = 0.336, 0.154, 0.779, and 0.203, respectively). Most histogram metrics of ADC, D, and DDC had significantly higher area under the receiver operating characteristic curve values than those of f and α (P < 0.05) CONCLUSION: It is feasible to grade EOC by morphological features and three models with histogram analysis. ADC, D, and DDC have better performance than f and α; f and α may provide additional information. 4 Technical Efficacy: Stage 1 J. Magn. Reson. Imaging 2017;46:1797-1809. © 2017 International Society for Magnetic Resonance in Medicine.

  7. Principal component analysis of the CT density histogram to generate parametric response maps of COPD

    NASA Astrophysics Data System (ADS)

    Zha, N.; Capaldi, D. P. I.; Pike, D.; McCormack, D. G.; Cunningham, I. A.; Parraga, G.

    2015-03-01

    Pulmonary x-ray computed tomography (CT) may be used to characterize emphysema and airways disease in patients with chronic obstructive pulmonary disease (COPD). One analysis approach - parametric response mapping (PMR) utilizes registered inspiratory and expiratory CT image volumes and CT-density-histogram thresholds, but there is no consensus regarding the threshold values used, or their clinical meaning. Principal-component-analysis (PCA) of the CT density histogram can be exploited to quantify emphysema using data-driven CT-density-histogram thresholds. Thus, the objective of this proof-of-concept demonstration was to develop a PRM approach using PCA-derived thresholds in COPD patients and ex-smokers without airflow limitation. Methods: Fifteen COPD ex-smokers and 5 normal ex-smokers were evaluated. Thoracic CT images were also acquired at full inspiration and full expiration and these images were non-rigidly co-registered. PCA was performed for the CT density histograms, from which the components with the highest eigenvalues greater than one were summed. Since the values of the principal component curve correlate directly with the variability in the sample, the maximum and minimum points on the curve were used as threshold values for the PCA-adjusted PRM technique. Results: A significant correlation was determined between conventional and PCA-adjusted PRM with 3He MRI apparent diffusion coefficient (p<0.001), with CT RA950 (p<0.0001), as well as with 3He MRI ventilation defect percent, a measurement of both small airways disease (p=0.049 and p=0.06, respectively) and emphysema (p=0.02). Conclusions: PRM generated using PCA thresholds of the CT density histogram showed significant correlations with CT and 3He MRI measurements of emphysema, but not airways disease.

  8. Local intensity area descriptor for facial recognition in ideal and noise conditions

    NASA Astrophysics Data System (ADS)

    Tran, Chi-Kien; Tseng, Chin-Dar; Chao, Pei-Ju; Ting, Hui-Min; Chang, Liyun; Huang, Yu-Jie; Lee, Tsair-Fwu

    2017-03-01

    We propose a local texture descriptor, local intensity area descriptor (LIAD), which is applied for human facial recognition in ideal and noisy conditions. Each facial image is divided into small regions from which LIAD histograms are extracted and concatenated into a single feature vector to represent the facial image. The recognition is performed using a nearest neighbor classifier with histogram intersection and chi-square statistics as dissimilarity measures. Experiments were conducted with LIAD using the ORL database of faces (Olivetti Research Laboratory, Cambridge), the Face94 face database, the Georgia Tech face database, and the FERET database. The results demonstrated the improvement in accuracy of our proposed descriptor compared to conventional descriptors [local binary pattern (LBP), uniform LBP, local ternary pattern, histogram of oriented gradients, and local directional pattern]. Moreover, the proposed descriptor was less sensitive to noise and had low histogram dimensionality. Thus, it is expected to be a powerful texture descriptor that can be used for various computer vision problems.

  9. Image correlation and sampling study

    NASA Technical Reports Server (NTRS)

    Popp, D. J.; Mccormack, D. S.; Sedwick, J. L.

    1972-01-01

    The development of analytical approaches for solving image correlation and image sampling of multispectral data is discussed. Relevant multispectral image statistics which are applicable to image correlation and sampling are identified. The general image statistics include intensity mean, variance, amplitude histogram, power spectral density function, and autocorrelation function. The translation problem associated with digital image registration and the analytical means for comparing commonly used correlation techniques are considered. General expressions for determining the reconstruction error for specific image sampling strategies are developed.

  10. Machine recognition of navel orange worm damage in x-ray images of pistachio nuts

    NASA Astrophysics Data System (ADS)

    Keagy, Pamela M.; Parvin, Bahram; Schatzki, Thomas F.

    1995-01-01

    Insect infestation increases the probability of aflatoxin contamination in pistachio nuts. A non- destructive test is currently not available to determine the insect content of pistachio nuts. This paper uses film X-ray images of various types of pistachio nuts to assess the possibility of machine recognition of insect infested nuts. Histogram parameters of four derived images are used in discriminant functions to select insect infested nuts from specific processing streams.

  11. Integrated Hamiltonian sampling: a simple and versatile method for free energy simulations and conformational sampling.

    PubMed

    Mori, Toshifumi; Hamers, Robert J; Pedersen, Joel A; Cui, Qiang

    2014-07-17

    Motivated by specific applications and the recent work of Gao and co-workers on integrated tempering sampling (ITS), we have developed a novel sampling approach referred to as integrated Hamiltonian sampling (IHS). IHS is straightforward to implement and complementary to existing methods for free energy simulation and enhanced configurational sampling. The method carries out sampling using an effective Hamiltonian constructed by integrating the Boltzmann distributions of a series of Hamiltonians. By judiciously selecting the weights of the different Hamiltonians, one achieves rapid transitions among the energy landscapes that underlie different Hamiltonians and therefore an efficient sampling of important regions of the conformational space. Along this line, IHS shares similar motivations as the enveloping distribution sampling (EDS) approach of van Gunsteren and co-workers, although the ways that distributions of different Hamiltonians are integrated are rather different in IHS and EDS. Specifically, we report efficient ways for determining the weights using a combination of histogram flattening and weighted histogram analysis approaches, which make it straightforward to include many end-state and intermediate Hamiltonians in IHS so as to enhance its flexibility. Using several relatively simple condensed phase examples, we illustrate the implementation and application of IHS as well as potential developments for the near future. The relation of IHS to several related sampling methods such as Hamiltonian replica exchange molecular dynamics and λ-dynamics is also briefly discussed.

  12. Design of interpolation functions for subpixel-accuracy stereo-vision systems.

    PubMed

    Haller, Istvan; Nedevschi, Sergiu

    2012-02-01

    Traditionally, subpixel interpolation in stereo-vision systems was designed for the block-matching algorithm. During the evaluation of different interpolation strategies, a strong correlation was observed between the type of the stereo algorithm and the subpixel accuracy of the different solutions. Subpixel interpolation should be adapted to each stereo algorithm to achieve maximum accuracy. In consequence, it is more important to propose methodologies for interpolation function generation than specific function shapes. We propose two such methodologies based on data generated by the stereo algorithms. The first proposal uses a histogram to model the environment and applies histogram equalization to an existing solution adapting it to the data. The second proposal employs synthetic images of a known environment and applies function fitting to the resulted data. The resulting function matches the algorithm and the data as best as possible. An extensive evaluation set is used to validate the findings. Both real and synthetic test cases were employed in different scenarios. The test results are consistent and show significant improvements compared with traditional solutions. © 2011 IEEE

  13. Action Recognition Using 3D Histograms of Texture and A Multi-Class Boosting Classifier.

    PubMed

    Zhang, Baochang; Yang, Yun; Chen, Chen; Yang, Linlin; Han, Jungong; Shao, Ling

    2017-10-01

    Human action recognition is an important yet challenging task. This paper presents a low-cost descriptor called 3D histograms of texture (3DHoTs) to extract discriminant features from a sequence of depth maps. 3DHoTs are derived from projecting depth frames onto three orthogonal Cartesian planes, i.e., the frontal, side, and top planes, and thus compactly characterize the salient information of a specific action, on which texture features are calculated to represent the action. Besides this fast feature descriptor, a new multi-class boosting classifier (MBC) is also proposed to efficiently exploit different kinds of features in a unified framework for action classification. Compared with the existing boosting frameworks, we add a new multi-class constraint into the objective function, which helps to maintain a better margin distribution by maximizing the mean of margin, whereas still minimizing the variance of margin. Experiments on the MSRAction3D, MSRGesture3D, MSRActivity3D, and UTD-MHAD data sets demonstrate that the proposed system combining 3DHoTs and MBC is superior to the state of the art.

  14. Scaling images using their background ratio. An application in statistical comparisons of images.

    PubMed

    Kalemis, A; Binnie, D; Bailey, D L; Flower, M A; Ott, R J

    2003-06-07

    Comparison of two medical images often requires image scaling as a pre-processing step. This is usually done with the scaling-to-the-mean or scaling-to-the-maximum techniques which, under certain circumstances, in quantitative applications may contribute a significant amount of bias. In this paper, we present a simple scaling method which assumes only that the most predominant values in the corresponding images belong to their background structure. The ratio of the two images to be compared is calculated and its frequency histogram is plotted. The scaling factor is given by the position of the peak in this histogram which belongs to the background structure. The method was tested against the traditional scaling-to-the-mean technique on simulated planar gamma-camera images which were compared using pixelwise statistical parametric tests. Both sensitivity and specificity for each condition were measured over a range of different contrasts and sizes of inhomogeneity for the two scaling techniques. The new method was found to preserve sensitivity in all cases while the traditional technique resulted in significant degradation of sensitivity in certain cases.

  15. A Bio Medical Waste Identification and Classification Algorithm Using Mltrp and Rvm.

    PubMed

    Achuthan, Aravindan; Ayyallu Madangopal, Vasumathi

    2016-10-01

    We aimed to extract the histogram features for text analysis and, to classify the types of Bio Medical Waste (BMW) for garbage disposal and management. The given BMW was preprocessed by using the median filtering technique that efficiently reduced the noise in the image. After that, the histogram features of the filtered image were extracted with the help of proposed Modified Local Tetra Pattern (MLTrP) technique. Finally, the Relevance Vector Machine (RVM) was used to classify the BMW into human body parts, plastics, cotton and liquids. The BMW image was collected from the garbage image dataset for analysis. The performance of the proposed BMW identification and classification system was evaluated in terms of sensitivity, specificity, classification rate and accuracy with the help of MATLAB. When compared to the existing techniques, the proposed techniques provided the better results. This work proposes a new texture analysis and classification technique for BMW management and disposal. It can be used in many real time applications such as hospital and healthcare management systems for proper BMW disposal.

  16. A Bayesian Modeling Approach for Estimation of a Shape-Free Groundwater Age Distribution using Multiple Tracers

    DOE PAGES

    Massoudieh, Arash; Visser, Ate; Sharifi, Soroosh; ...

    2013-10-15

    The mixing of groundwaters with different ages in aquifers, groundwater age is more appropriately represented by a distribution rather than a scalar number. To infer a groundwater age distribution from environmental tracers, a mathematical form is often assumed for the shape of the distribution and the parameters of the mathematical distribution are estimated using deterministic or stochastic inverse methods. We found that the prescription of the mathematical form limits the exploration of the age distribution to the shapes that can be described by the selected distribution. In this paper, the use of freeform histograms as groundwater age distributions is evaluated.more » A Bayesian Markov Chain Monte Carlo approach is used to estimate the fraction of groundwater in each histogram bin. This method was able to capture the shape of a hypothetical gamma distribution from the concentrations of four age tracers. The number of bins that can be considered in this approach is limited based on the number of tracers available. The histogram method was also tested on tracer data sets from Holten (The Netherlands; 3H, 3He, 85Kr, 39Ar) and the La Selva Biological Station (Costa-Rica; SF 6, CFCs, 3H, 4He and 14C), and compared to a number of mathematical forms. According to standard Bayesian measures of model goodness, the best mathematical distribution performs better than the histogram distributions in terms of the ability to capture the observed tracer data relative to their complexity. Among the histogram distributions, the four bin histogram performs better in most of the cases. The Monte Carlo simulations showed strong correlations in the posterior estimates of bin contributions, indicating that these bins cannot be well constrained using the available age tracers. The fact that mathematical forms overall perform better than the freeform histogram does not undermine the benefit of the freeform approach, especially for the cases where a larger amount of observed data is available and when the real groundwater distribution is more complex than can be represented by simple mathematical forms.« less

  17. A Bayesian Modeling Approach for Estimation of a Shape-Free Groundwater Age Distribution using Multiple Tracers

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Massoudieh, Arash; Visser, Ate; Sharifi, Soroosh

    The mixing of groundwaters with different ages in aquifers, groundwater age is more appropriately represented by a distribution rather than a scalar number. To infer a groundwater age distribution from environmental tracers, a mathematical form is often assumed for the shape of the distribution and the parameters of the mathematical distribution are estimated using deterministic or stochastic inverse methods. We found that the prescription of the mathematical form limits the exploration of the age distribution to the shapes that can be described by the selected distribution. In this paper, the use of freeform histograms as groundwater age distributions is evaluated.more » A Bayesian Markov Chain Monte Carlo approach is used to estimate the fraction of groundwater in each histogram bin. This method was able to capture the shape of a hypothetical gamma distribution from the concentrations of four age tracers. The number of bins that can be considered in this approach is limited based on the number of tracers available. The histogram method was also tested on tracer data sets from Holten (The Netherlands; 3H, 3He, 85Kr, 39Ar) and the La Selva Biological Station (Costa-Rica; SF 6, CFCs, 3H, 4He and 14C), and compared to a number of mathematical forms. According to standard Bayesian measures of model goodness, the best mathematical distribution performs better than the histogram distributions in terms of the ability to capture the observed tracer data relative to their complexity. Among the histogram distributions, the four bin histogram performs better in most of the cases. The Monte Carlo simulations showed strong correlations in the posterior estimates of bin contributions, indicating that these bins cannot be well constrained using the available age tracers. The fact that mathematical forms overall perform better than the freeform histogram does not undermine the benefit of the freeform approach, especially for the cases where a larger amount of observed data is available and when the real groundwater distribution is more complex than can be represented by simple mathematical forms.« less

  18. Gliomas: Application of Cumulative Histogram Analysis of Normalized Cerebral Blood Volume on 3 T MRI to Tumor Grading

    PubMed Central

    Kim, Hyungjin; Choi, Seung Hong; Kim, Ji-Hoon; Ryoo, Inseon; Kim, Soo Chin; Yeom, Jeong A.; Shin, Hwaseon; Jung, Seung Chai; Lee, A. Leum; Yun, Tae Jin; Park, Chul-Kee; Sohn, Chul-Ho; Park, Sung-Hye

    2013-01-01

    Background Glioma grading assumes significant importance in that low- and high-grade gliomas display different prognoses and are treated with dissimilar therapeutic strategies. The objective of our study was to retrospectively assess the usefulness of a cumulative normalized cerebral blood volume (nCBV) histogram for glioma grading based on 3 T MRI. Methods From February 2010 to April 2012, 63 patients with astrocytic tumors underwent 3 T MRI with dynamic susceptibility contrast perfusion-weighted imaging. Regions of interest containing the entire tumor volume were drawn on every section of the co-registered relative CBV (rCBV) maps and T2-weighted images. The percentile values from the cumulative nCBV histograms and the other histogram parameters were correlated with tumor grades. Cochran’s Q test and the McNemar test were used to compare the diagnostic accuracies of the histogram parameters after the receiver operating characteristic curve analysis. Using the parameter offering the highest diagnostic accuracy, a validation process was performed with an independent test set of nine patients. Results The 99th percentile of the cumulative nCBV histogram (nCBV C99), mean and peak height differed significantly between low- and high-grade gliomas (P = <0.001, 0.014 and <0.001, respectively) and between grade III and IV gliomas (P = <0.001, 0.001 and <0.001, respectively). The diagnostic accuracy of nCBV C99 was significantly higher than that of the mean nCBV (P = 0.016) in distinguishing high- from low-grade gliomas and was comparable to that of the peak height (P = 1.000). Validation using the two cutoff values of nCBV C99 achieved a diagnostic accuracy of 66.7% (6/9) for the separation of all three glioma grades. Conclusion Cumulative histogram analysis of nCBV using 3 T MRI can be a useful method for preoperative glioma grading. The nCBV C99 value is helpful in distinguishing high- from low-grade gliomas and grade IV from III gliomas. PMID:23704910

  19. Comparison of Utility of Histogram Apparent Diffusion Coefficient and R2* for Differentiation of Low-Grade From High-Grade Clear Cell Renal Cell Carcinoma.

    PubMed

    Zhang, Yu-Dong; Wu, Chen-Jiang; Wang, Qing; Zhang, Jing; Wang, Xiao-Ning; Liu, Xi-Sheng; Shi, Hai-Bin

    2015-08-01

    The purpose of this study was to compare histogram analysis of apparent diffusion coefficient (ADC) and R2* for differentiating low-grade from high-grade clear cell renal cell carcinoma (RCC). Forty-six patients with pathologically confirmed clear cell RCC underwent preoperative BOLD and DWI MRI of the kidneys. ADCs based on the entire tumor volume were calculated with b value combinations of 0 and 800 s/mm(2). ROI-based R2* was calculated with eight TE combinations of 6.7-22.8 milliseconds. Histogram analysis of tumor ADCs and R2* values was performed to obtain mean; median; width; and fifth, 10th, 90th, and 95th percentiles and histogram inhomogeneity, kurtosis, and skewness for all lesions. Thirty-three low-grade and 13 high-grade clear cell RCCs were found at pathologic examination. The TNM classification and tumor volume of clear cell RCC significantly correlated with histogram ADC and R2* (ρ = -0.317 to 0.506; p < 0.05). High-grade clear cell RCC had significantly lower mean, median, and 10th percentile ADCs but higher inhomogeneity and median R2* than low-grade clear cell RCC (all p < 0.05). Compared with other histogram ADC and R2* indexes, 10th percentile ADC had the highest accuracy (91.3%) in discriminating low- from high-grade clear cell RCC. R2* in discriminating hemorrhage was achieved with a threshold of 68.95 Hz. At this threshold, high-grade clear cell RCC had a significantly higher prevalence of intratumor hemorrhage (high-grade, 76.9%; low-grade, 45.4%; p < 0.05) and larger hemorrhagic area than low-grade clear cell RCC (high-grade, 34.9% ± 31.6%; low-grade, 8.9 ± 16.8%; p < 0.05). A close relation was found between MRI indexes and pathologic findings. Histogram analysis of ADC and R2* allows differentiation of low- from high-grade clear cell RCC with high accuracy.

  20. Multipeak low-temperature behavior of specific heat capacity in frustrated magnetic systems: An exact theoretical analysis

    NASA Astrophysics Data System (ADS)

    Jurčišinová, E.; Jurčišin, M.

    2018-05-01

    We investigate in detail the process of formation of the multipeak low-temperature structure in the behavior of the specific heat capacity in frustrated magnetic systems in the framework of the exactly solvable antiferromagnetic spin-1 /2 Ising model with the multisite interaction in the presence of the external magnetic field on the kagome-like Husimi lattice. The behavior of the entropy of the model is studied and exact values of the residual entropies of all ground states are found. It is shown that the multipeak structure in the behavior of the specific heat capacity is related to the formation of the multilevel hierarchical ordering in the system of all ground states of the model. Direct relation between the maximal number of peaks in the specific heat capacity behavior and the number of independent interactions in studied frustrated magnetic system is identified. The mechanism of the formation of the multipeak structure in the specific heat capacity is described and studied in detail, and it is generalized to frustrated magnetic systems with arbitrary numbers of independent interactions.

  1. A trainable decisions-in decision-out (DEI-DEO) fusion system

    NASA Astrophysics Data System (ADS)

    Dasarathy, Belur V.

    1998-03-01

    Most of the decision fusion systems proposed hitherto in the literature for multiple data source (sensor) environments operate on the basis of pre-defined fusion logic, be they crisp (deterministic), probabilistic, or fuzzy in nature, with no specific learning phase. The fusion systems that are trainable, i.e., ones that have a learning phase, mostly operate in the features-in-decision-out mode, which essentially reduces the fusion process functionally to a pattern classification task in the joint feature space. In this study, a trainable decisions-in-decision-out fusion system is described which estimates a fuzzy membership distribution spread across the different decision choices based on the performance of the different decision processors (sensors) corresponding to each training sample (object) which is associated with a specific ground truth (true decision). Based on a multi-decision space histogram analysis of the performance of the different processors over the entire training data set, a look-up table associating each cell of the histogram with a specific true decision is generated which forms the basis for the operational phase. In the operational phase, for each set of decision inputs, a pointer to the look-up table learnt previously is generated from which a fused decision is derived. This methodology, although primarily designed for fusing crisp decisions from the multiple decision sources, can be adapted for fusion of fuzzy decisions as well if such are the inputs from these sources. Examples, which illustrate the benefits and limitations of the crisp and fuzzy versions of the trainable fusion systems, are also included.

  2. Clarification to "Examining Rater Errors in the Assessment of Written Composition with a Many-Faceted Rasch Model."

    ERIC Educational Resources Information Center

    Englehard, George, Jr.

    1996-01-01

    Data presented in figure three of the article cited may be misleading in that the automatic scaling procedure used by the computer program that generated the histogram highlighted spikes that would look different with different histogram methods. (SLD)

  3. Using Computer Graphics in Statistics.

    ERIC Educational Resources Information Center

    Kerley, Lyndell M.

    1990-01-01

    Described is software which allows a student to use simulation to produce analytical output as well as graphical results. The results include a frequency histogram of a selected population distribution, a frequency histogram of the distribution of the sample means, and test the normality distributions of the sample means. (KR)

  4. A case of EDTA-dependent pseudothrombocytopenia: simple recognition of an underdiagnosed and misleading phenomenon

    PubMed Central

    2014-01-01

    Background EDTA-dependent pseudothrombocytopenia (EDTA-PTCP) is a common laboratory phenomenon with a prevalence ranging from 0.1-2% in hospitalized patients to 15-17% in outpatients evaluated for isolated thrombocytopenia. Despite its harmlessness, EDTA-PTCP frequently leads to time-consuming, costly and even invasive diagnostic investigations. EDTA-PTCP is often overlooked because blood smears are not evaluated visually in routine practice and histograms as well as warning flags of hematology analyzers are not interpreted correctly. Nonetheless, EDTA-PTCP may be diagnosed easily even by general practitioners without any experiences in blood film examinations. This is the first report illustrating the typical patterns of a platelet (PLT) and white blood cell (WBC) histograms of hematology analyzers. Case presentation A 37-year-old female patient of Caucasian origin was referred with suspected acute leukemia and the crew of the emergency unit arranged extensive investigations for work-up. However, examination of EDTA blood sample revealed atypical lymphocytes and an isolated thrombocytopenia together with typical patterns of WBC and PLT histograms: a serrated curve of the platelet histogram and a peculiar peak on the left side of the WBC histogram. EDTA-PTCP was confirmed by a normal platelet count when examining citrated blood. Conclusion Awareness of typical PLT and WBC patterns may alert to the presence of EDTA-PTCP in routine laboratory practice helping to avoid unnecessary investigations and over-treatment. PMID:24808761

  5. Gaze Fluctuations Are Not Additively Decomposable: Reply to Bogartz and Staub

    ERIC Educational Resources Information Center

    Kelty-Stephen, Damian G.; Mirman, Daniel

    2013-01-01

    Our previous work interpreted single-lognormal fits to inter-gaze distance (i.e., "gaze steps") histograms as evidence of multiplicativity and hence interactions across scales in visual cognition. Bogartz and Staub (2012) proposed that gaze steps are additively decomposable into fixations and saccades, matching the histograms better and…

  6. An Efficient Pipeline for Abdomen Segmentation in CT Images.

    PubMed

    Koyuncu, Hasan; Ceylan, Rahime; Sivri, Mesut; Erdogan, Hasan

    2018-04-01

    Computed tomography (CT) scans usually include some disadvantages due to the nature of the imaging procedure, and these handicaps prevent accurate abdomen segmentation. Discontinuous abdomen edges, bed section of CT, patient information, closeness between the edges of the abdomen and CT, poor contrast, and a narrow histogram can be regarded as the most important handicaps that occur in abdominal CT scans. Currently, one or more handicaps can arise and prevent technicians obtaining abdomen images through simple segmentation techniques. In other words, CT scans can include the bed section of CT, a patient's diagnostic information, low-quality abdomen edges, low-level contrast, and narrow histogram, all in one scan. These phenomena constitute a challenge, and an efficient pipeline that is unaffected by handicaps is required. In addition, analysis such as segmentation, feature selection, and classification has meaning for a real-time diagnosis system in cases where the abdomen section is directly used with a specific size. A statistical pipeline is designed in this study that is unaffected by the handicaps mentioned above. Intensity-based approaches, morphological processes, and histogram-based procedures are utilized to design an efficient structure. Performance evaluation is realized in experiments on 58 CT images (16 training, 16 test, and 26 validation) that include the abdomen and one or more disadvantage(s). The first part of the data (16 training images) is used to detect the pipeline's optimum parameters, while the second and third parts are utilized to evaluate and to confirm the segmentation performance. The segmentation results are presented as the means of six performance metrics. Thus, the proposed method achieves remarkable average rates for training/test/validation of 98.95/99.36/99.57% (jaccard), 99.47/99.67/99.79% (dice), 100/99.91/99.91% (sensitivity), 98.47/99.23/99.85% (specificity), 99.38/99.63/99.87% (classification accuracy), and 98.98/99.45/99.66% (precision). In summary, a statistical pipeline performing the task of abdomen segmentation is achieved that is not affected by the disadvantages, and the most detailed abdomen segmentation study is performed for the use before organ and tumor segmentation, feature extraction, and classification.

  7. Exact mean-energy expansion of Ginibre's gas for coupling constants Γ =2 ×(oddinteger)

    NASA Astrophysics Data System (ADS)

    Salazar, R.; Téllez, G.

    2017-12-01

    Using the approach of a Vandermonde determinant to the power Γ =Q2/kBT expansion on monomial functions, a way to find the excess energy Uexc of the two-dimensional one-component plasma (2DOCP) on hard and soft disks (or a Dyson gas) for odd values of Γ /2 is provided. At Γ =2 , the present study not only corroborates the result for the particle-particle energy contribution of the Dyson gas found by Shakirov [Shakirov, Phys. Lett. A 375, 984 (2011), 10.1016/j.physleta.2011.01.004] by using an alternative approach, but also provides the exact N -finite expansion of the excess energy of the 2DOCP on the hard disk. The excess energy is fitted to the ansatz of the form Uexc=K1N +K2√{N }+K3+K4/N +O (1 /N2) to study the finite-size correction, with Ki coefficients and N the number of particles. In particular, the bulk term of the excess energy is in agreement with the well known result of Jancovici for the hard disk in the thermodynamic limit [Jancovici, Phys. Rev. Lett. 46, 386 (1981), 10.1103/PhysRevLett.46.386]. Finally, an expression is found for the pair correlation function which still keeps a link with the random matrix theory via the kernel in the Ginibre ensemble [Ginibre, J. Math. Phys. 6, 440 (1965), 10.1063/1.1704292] for odd values of Γ /2 . A comparison between the analytical two-body density function and histograms obtained with Monte Carlo simulations for small systems and Γ =2 ,6 ,10 ,... shows that the approach described in this paper may be used to study analytically the crossover behavior from systems in the fluid phase to small crystals.

  8. Human physiological benefits of viewing nature: EEG responses to exact and statistical fractal patterns.

    PubMed

    Hagerhall, C M; Laike, T; Küller, M; Marcheschi, E; Boydston, C; Taylor, R P

    2015-01-01

    Psychological and physiological benefits of viewing nature have been extensively studied for some time. More recently it has been suggested that some of these positive effects can be explained by nature's fractal properties. Virtually all studies on human responses to fractals have used stimuli that represent the specific form of fractal geometry found in nature, i.e. statistical fractals, as opposed to fractal patterns which repeat exactly at different scales. This raises the question of whether human responses like preference and relaxation are being driven by fractal geometry in general or by the specific form of fractal geometry found in nature. In this study we consider both types of fractals (statistical and exact) and morph one type into the other. Based on the Koch curve, nine visual stimuli were produced in which curves of three different fractal dimensions evolve gradually from an exact to a statistical fractal. The patterns were shown for one minute each to thirty-five subjects while qEEG was continuously recorded. The results showed that the responses to statistical and exact fractals differ, and that the natural form of the fractal is important for inducing alpha responses, an indicator of a wakefully relaxed state and internalized attention.

  9. Machine recognition of navel orange worm damage in X-ray images of pistachio nuts

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Keagy, P.M.; Schatzki, T.F.; Parvin, B.

    Insect infestation increases the probability of aflatoxin contamination in pistachio nuts. A non-destructive test is currently not available to determine the insect content of pistachio nuts. This paper presents the use of film X-ray images of various types of pistachio nuts to assess the possibility of machine recognition of insect infested nuts. Histogram parameters of four derived images are used in discriminant functions to select insect infested nuts from specific processing streams.

  10. As-built design specification for PARHIS

    NASA Technical Reports Server (NTRS)

    Tompkins, M. A. (Principal Investigator)

    1981-01-01

    The program is part of the CLASFYG package. It produces histograms of the greeness profile derived parameters alpha, beta, t sub o, and chi squared, which are computed by the CLASFYG program. Alpha is the approximate greeness rise time, beta is the approximate greeness decay time, t sub o is the spectral crop emergence date, and chi squared per degree of freedom is the goodness of fit of the actual data to the computed greeness profile. The program also produces statistical information concerning the parameters.

  11. Generalised Category Attack—Improving Histogram-Based Attack on JPEG LSB Embedding

    NASA Astrophysics Data System (ADS)

    Lee, Kwangsoo; Westfeld, Andreas; Lee, Sangjin

    We present a generalised and improved version of the category attack on LSB steganography in JPEG images with straddled embedding path. It detects more reliably low embedding rates and is also less disturbed by double compressed images. The proposed methods are evaluated on several thousand images. The results are compared to both recent blind and specific attacks for JPEG embedding. The proposed attack permits a more reliable detection, although it is based on first order statistics only. Its simple structure makes it very fast.

  12. Development of a Methodology for Verifying Military Computer Family Built-in-Test Performance Specifications.

    DTIC Science & Technology

    1980-09-01

    gates stuck-at- zero or stuck-at-one, one at a time. As indicated, there is little differ- ence between the function most affected and the function...one at a time. These two histograms are not arranged in descending order. Note that there is little difference between the function most affected and...the function least affected for either case. Even though there is little difference in the frequency with which each instruction will be affected, the

  13. Metrics and textural features of MRI diffusion to improve classification of pediatric posterior fossa tumors.

    PubMed

    Rodriguez Gutierrez, D; Awwad, A; Meijer, L; Manita, M; Jaspan, T; Dineen, R A; Grundy, R G; Auer, D P

    2014-05-01

    Qualitative radiologic MR imaging review affords limited differentiation among types of pediatric posterior fossa brain tumors and cannot detect histologic or molecular subtypes, which could help to stratify treatment. This study aimed to improve current posterior fossa discrimination of histologic tumor type by using support vector machine classifiers on quantitative MR imaging features. This retrospective study included preoperative MRI in 40 children with posterior fossa tumors (17 medulloblastomas, 16 pilocytic astrocytomas, and 7 ependymomas). Shape, histogram, and textural features were computed from contrast-enhanced T2WI and T1WI and diffusivity (ADC) maps. Combinations of features were used to train tumor-type-specific classifiers for medulloblastoma, pilocytic astrocytoma, and ependymoma types in separation and as a joint posterior fossa classifier. A tumor-subtype classifier was also produced for classic medulloblastoma. The performance of different classifiers was assessed and compared by using randomly selected subsets of training and test data. ADC histogram features (25th and 75th percentiles and skewness) yielded the best classification of tumor type (on average >95.8% of medulloblastomas, >96.9% of pilocytic astrocytomas, and >94.3% of ependymomas by using 8 training samples). The resulting joint posterior fossa classifier correctly assigned >91.4% of the posterior fossa tumors. For subtype classification, 89.4% of classic medulloblastomas were correctly classified on the basis of ADC texture features extracted from the Gray-Level Co-Occurence Matrix. Support vector machine-based classifiers using ADC histogram features yielded very good discrimination among pediatric posterior fossa tumor types, and ADC textural features show promise for further subtype discrimination. These findings suggest an added diagnostic value of quantitative feature analysis of diffusion MR imaging in pediatric neuro-oncology. © 2014 by American Journal of Neuroradiology.

  14. MRI intensity nonuniformity correction using simultaneously spatial and gray-level histogram information.

    PubMed

    Milles, Julien; Zhu, Yue Min; Gimenez, Gérard; Guttmann, Charles R G; Magnin, Isabelle E

    2007-03-01

    A novel approach for correcting intensity nonuniformity in magnetic resonance imaging (MRI) is presented. This approach is based on the simultaneous use of spatial and gray-level histogram information. Spatial information about intensity nonuniformity is obtained using cubic B-spline smoothing. Gray-level histogram information of the image corrupted by intensity nonuniformity is exploited from a frequential point of view. The proposed correction method is illustrated using both physical phantom and human brain images. The results are consistent with theoretical prediction, and demonstrate a new way of dealing with intensity nonuniformity problems. They are all the more significant as the ground truth on intensity nonuniformity is unknown in clinical images.

  15. An effective image classification method with the fusion of invariant feature and a new color descriptor

    NASA Astrophysics Data System (ADS)

    Mansourian, Leila; Taufik Abdullah, Muhamad; Nurliyana Abdullah, Lili; Azman, Azreen; Mustaffa, Mas Rina

    2017-02-01

    Pyramid Histogram of Words (PHOW), combined Bag of Visual Words (BoVW) with the spatial pyramid matching (SPM) in order to add location information to extracted features. However, different PHOW extracted from various color spaces, and they did not extract color information individually, that means they discard color information, which is an important characteristic of any image that is motivated by human vision. This article, concatenated PHOW Multi-Scale Dense Scale Invariant Feature Transform (MSDSIFT) histogram and a proposed Color histogram to improve the performance of existing image classification algorithms. Performance evaluation on several datasets proves that the new approach outperforms other existing, state-of-the-art methods.

  16. Application of Markov Models for Analysis of Development of Psychological Characteristics

    ERIC Educational Resources Information Center

    Kuravsky, Lev S.; Malykh, Sergey B.

    2004-01-01

    A technique to study combined influence of environmental and genetic factors on the base of changes in phenotype distributions is presented. Histograms are exploited as base analyzed characteristics. A continuous time, discrete state Markov process with piece-wise constant interstate transition rates is associated with evolution of each histogram.…

  17. Post-Modeling Histogram Matching of Maps Produced Using Regression Trees

    Treesearch

    Andrew J. Lister; Tonya W. Lister

    2006-01-01

    Spatial predictive models often use statistical techniques that in some way rely on averaging of values. Estimates from linear modeling are known to be susceptible to truncation of variance when the independent (predictor) variables are measured with error. A straightforward post-processing technique (histogram matching) for attempting to mitigate this effect is...

  18. Microprocessor-Based Neural-Pulse-Wave Analyzer

    NASA Technical Reports Server (NTRS)

    Kojima, G. K.; Bracchi, F.

    1983-01-01

    Microprocessor-based system analyzes amplitudes and rise times of neural waveforms. Displaying histograms of measured parameters helps researchers determine how many nerves contribute to signal and specify waveform characteristics of each. Results are improved noise rejection, full or partial separation of overlapping peaks, and isolation and identification of related peaks in different histograms. 2

  19. Histogram-based automatic thresholding for bruise detection of apples by structured-illumination reflectance imaging

    USDA-ARS?s Scientific Manuscript database

    Thresholding is an important step in the segmentation of image features, and the existing methods are not all effective when the image histogram exhibits a unimodal pattern, which is common in defect detection of fruit. This study was aimed at developing a general automatic thresholding methodology ...

  20. Deep convolutional neural networks for automatic classification of gastric carcinoma using whole slide images in digital histopathology.

    PubMed

    Sharma, Harshita; Zerbe, Norman; Klempert, Iris; Hellwich, Olaf; Hufnagl, Peter

    2017-11-01

    Deep learning using convolutional neural networks is an actively emerging field in histological image analysis. This study explores deep learning methods for computer-aided classification in H&E stained histopathological whole slide images of gastric carcinoma. An introductory convolutional neural network architecture is proposed for two computerized applications, namely, cancer classification based on immunohistochemical response and necrosis detection based on the existence of tumor necrosis in the tissue. Classification performance of the developed deep learning approach is quantitatively compared with traditional image analysis methods in digital histopathology requiring prior computation of handcrafted features, such as statistical measures using gray level co-occurrence matrix, Gabor filter-bank responses, LBP histograms, gray histograms, HSV histograms and RGB histograms, followed by random forest machine learning. Additionally, the widely known AlexNet deep convolutional framework is comparatively analyzed for the corresponding classification problems. The proposed convolutional neural network architecture reports favorable results, with an overall classification accuracy of 0.6990 for cancer classification and 0.8144 for necrosis detection. Copyright © 2017 Elsevier Ltd. All rights reserved.

  1. Distribution of a suite of elements including arsenic and mercury in Alabama coal

    USGS Publications Warehouse

    Goldhaber, Martin B.; Bigelow, R.C.; Hatch, J.R.; Pashin, J.C.

    2000-01-01

    Arsenic and other elements are unusually abundant in Alabama coal. This conclusion is based on chemical analyses of coal in the U.S. Geological Survey's National Coal Resources Data System (NCRDS; Bragg and others, 1994). According to NCRDS data, the average concentration of arsenic in Alabama coal (72 ppm) is three times higher than is the average for all U.S. coal (24 ppm). Of the U.S. coal analyses for arsenic that are at least 3 standard deviations above the mean, approximately 90% are from the coal fields of Alabama. Figure 1 contrasts the abundance of arsenic in coal of the Warrior field of Alabama (histogram C) with that of coal of the Powder River Basin, Wyoming (histogram A), and the Eastern Interior Province including the Illinois Basin and nearby areas (histogram B). The Warrior field is by far the largest in Alabama. On the histogram, the large 'tail' of very high values (> 200 ppm) in the Warrior coal contrasts with the other two regions that have very few analyses greater than 200 ppm.

  2. Real-Time Tracking by Double Templates Matching Based on Timed Motion History Image with HSV Feature

    PubMed Central

    Li, Zhiyong; Li, Pengfei; Yu, Xiaoping; Hashem, Mervat

    2014-01-01

    It is a challenge to represent the target appearance model for moving object tracking under complex environment. This study presents a novel method with appearance model described by double templates based on timed motion history image with HSV color histogram feature (tMHI-HSV). The main components include offline template and online template initialization, tMHI-HSV-based candidate patches feature histograms calculation, double templates matching (DTM) for object location, and templates updating. Firstly, we initialize the target object region and calculate its HSV color histogram feature as offline template and online template. Secondly, the tMHI-HSV is used to segment the motion region and calculate these candidate object patches' color histograms to represent their appearance models. Finally, we utilize the DTM method to trace the target and update the offline template and online template real-timely. The experimental results show that the proposed method can efficiently handle the scale variation and pose change of the rigid and nonrigid objects, even in illumination change and occlusion visual environment. PMID:24592185

  3. Adjustments for the display of quantized ion channel dwell times in histograms with logarithmic bins.

    PubMed

    Stark, J A; Hladky, S B

    2000-02-01

    Dwell-time histograms are often plotted as part of patch-clamp investigations of ion channel currents. The advantages of plotting these histograms with a logarithmic time axis were demonstrated by, J. Physiol. (Lond.). 378:141-174), Pflügers Arch. 410:530-553), and, Biophys. J. 52:1047-1054). Sigworth and Sine argued that the interpretation of such histograms is simplified if the counts are presented in a manner similar to that of a probability density function. However, when ion channel records are recorded as a discrete time series, the dwell times are quantized. As a result, the mapping of dwell times to logarithmically spaced bins is highly irregular; bins may be empty, and significant irregularities may extend beyond the duration of 100 samples. Using simple approximations based on the nature of the binning process and the transformation rules for probability density functions, we develop adjustments for the display of the counts to compensate for this effect. Tests with simulated data suggest that this procedure provides a faithful representation of the data.

  4. Assessment of Arterial Wall Enhancement for Differentiation of Parent Artery Disease from Small Artery Disease: Comparison between Histogram Analysis and Visual Analysis on 3-Dimensional Contrast-Enhanced T1-Weighted Turbo Spin Echo MR Images at 3T.

    PubMed

    Jang, Jinhee; Kim, Tae-Won; Hwang, Eo-Jin; Choi, Hyun Seok; Koo, Jaseong; Shin, Yong Sam; Jung, So-Lyung; Ahn, Kook-Jin; Kim, Bum-Soo

    2017-01-01

    The purpose of this study was to compare the histogram analysis and visual scores in 3T MRI assessment of middle cerebral arterial wall enhancement in patients with acute stroke, for the differentiation of parent artery disease (PAD) from small artery disease (SAD). Among the 82 consecutive patients in a tertiary hospital for one year, 25 patients with acute infarcts in middle cerebral artery (MCA) territory were included in this study including 15 patients with PAD and 10 patients with SAD. Three-dimensional contrast-enhanced T1-weighted turbo spin echo MR images with black-blood preparation at 3T were analyzed both qualitatively and quantitatively. The degree of MCA stenosis, and visual and histogram assessments on MCA wall enhancement were evaluated. A statistical analysis was performed to compare diagnostic accuracy between qualitative and quantitative metrics. The degree of stenosis, visual enhancement score, geometric mean (GM), and the 90th percentile (90P) value from the histogram analysis were significantly higher in PAD than in SAD ( p = 0.006 for stenosis, < 0.001 for others). The receiver operating characteristic curve area of GM and 90P were 1 (95% confidence interval [CI], 0.86-1.00). A histogram analysis of a relevant arterial wall enhancement allows differentiation between PAD and SAD in patients with acute stroke within the MCA territory.

  5. Using color histogram normalization for recovering chromatic illumination-changed images.

    PubMed

    Pei, S C; Tseng, C L; Wu, C C

    2001-11-01

    We propose a novel image-recovery method using the covariance matrix of the red-green-blue (R-G-B) color histogram and tensor theories. The image-recovery method is called the color histogram normalization algorithm. It is known that the color histograms of an image taken under varied illuminations are related by a general affine transformation of the R-G-B coordinates when the illumination is changed. We propose a simplified affine model for application with illumination variation. This simplified affine model considers the effects of only three basic forms of distortion: translation, scaling, and rotation. According to this principle, we can estimate the affine transformation matrix necessary to recover images whose color distributions are varied as a result of illumination changes. We compare the normalized color histogram of the standard image with that of the tested image. By performing some operations of simple linear algebra, we can estimate the matrix of the affine transformation between two images under different illuminations. To demonstrate the performance of the proposed algorithm, we divide the experiments into two parts: computer-simulated images and real images corresponding to illumination changes. Simulation results show that the proposed algorithm is effective for both types of images. We also explain the noise-sensitive skew-rotation estimation that exists in the general affine model and demonstrate that the proposed simplified affine model without the use of skew rotation is better than the general affine model for such applications.

  6. Histogram analysis of ADC in rectal cancer: associations with different histopathological findings including expression of EGFR, Hif1-alpha, VEGF, p53, PD1, and KI 67. A preliminary study.

    PubMed

    Meyer, Hans Jonas; Höhn, Annekathrin; Surov, Alexey

    2018-04-06

    Functional imaging modalities like Diffusion-weighted imaging are increasingly used to predict tumor behavior like cellularity and vascularity in different tumors. Histogram analysis is an emergent imaging analysis, in which every voxel is used to obtain a histogram and therefore statistically information about tumors can be provided. The purpose of this study was to elucidate possible associations between ADC histogram parameters and several immunhistochemical features in rectal cancer. Overall, 11 patients with histologically proven rectal cancer were included into the study. There were 2 (18.18%) females and 9 males with a mean age of 67.1 years. KI 67-index, expression of p53, EGFR, VEGF, and Hif1-alpha were semiautomatically estimated. The tumors were divided into PD1-positive and PD1-negative lesions. ADC histogram analysis was performed as a whole lesion measurement using an in-house matlab application. Spearman's correlation analysis revealed a strong correlation between EGFR expression and ADCmax (p=0.72, P=0.02). None of the vascular parameters (VEGF, Hif1-alpha) correlated with ADC parameters. Kurtosis and skewness correlated inversely with p53 expression (p=-0.64, P=0.03 and p=-0.81, P=0.002, respectively). ADCmedian and ADCmode correlated with Ki67 (p=-0.62, P=0.04 and p=-0.65, P=0.03, respectively). PD1-positive tumors showed statistically significant lower ADCmax values in comparison to PD1-negative tumors, 1.93 ± 0.36 vs 2.32 ± 0.47×10 -3 mm 2 /s, p=0.04. Several associations were identified between histogram parameter derived from ADC maps and EGFR, KI 67 and p53 expression in rectal cancer. Furthermore, ADCmax was different between PD1 positive and PD1 negative tumors indicating an important role of ADC parameters for possible future treatment prediction.

  7. Histogram analysis of ADC in rectal cancer: associations with different histopathological findings including expression of EGFR, Hif1-alpha, VEGF, p53, PD1, and KI 67. A preliminary study

    PubMed Central

    Meyer, Hans Jonas; Höhn, Annekathrin; Surov, Alexey

    2018-01-01

    Functional imaging modalities like Diffusion-weighted imaging are increasingly used to predict tumor behavior like cellularity and vascularity in different tumors. Histogram analysis is an emergent imaging analysis, in which every voxel is used to obtain a histogram and therefore statistically information about tumors can be provided. The purpose of this study was to elucidate possible associations between ADC histogram parameters and several immunhistochemical features in rectal cancer. Overall, 11 patients with histologically proven rectal cancer were included into the study. There were 2 (18.18%) females and 9 males with a mean age of 67.1 years. KI 67-index, expression of p53, EGFR, VEGF, and Hif1-alpha were semiautomatically estimated. The tumors were divided into PD1-positive and PD1-negative lesions. ADC histogram analysis was performed as a whole lesion measurement using an in-house matlab application. Spearman's correlation analysis revealed a strong correlation between EGFR expression and ADCmax (p=0.72, P=0.02). None of the vascular parameters (VEGF, Hif1-alpha) correlated with ADC parameters. Kurtosis and skewness correlated inversely with p53 expression (p=-0.64, P=0.03 and p=-0.81, P=0.002, respectively). ADCmedian and ADCmode correlated with Ki67 (p=-0.62, P=0.04 and p=-0.65, P=0.03, respectively). PD1-positive tumors showed statistically significant lower ADCmax values in comparison to PD1-negative tumors, 1.93 ± 0.36 vs 2.32 ± 0.47×10−3mm2/s, p=0.04. Several associations were identified between histogram parameter derived from ADC maps and EGFR, KI 67 and p53 expression in rectal cancer. Furthermore, ADCmax was different between PD1 positive and PD1 negative tumors indicating an important role of ADC parameters for possible future treatment prediction. PMID:29719621

  8. SU-C-207A-07: Cumulative 18F-FDG Uptake Histogram Relative to Radiation Dose Volume Histogram of Lung After IMRT Or PSPT and Their Association with Radiation Pneumonitis

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Shusharina, N; Choi, N; Bortfeld, T

    2016-06-15

    Purpose: To determine whether the difference in cumulative 18F-FDG uptake histogram of lung treated with either IMRT or PSPT is associated with radiation pneumonitis (RP) in patients with inoperable stage II and III NSCLC. Methods: We analyzed 24 patients from a prospective randomized trial to compare IMRT (n=12) with vs. PSPT (n=12) for inoperable NSCLC. All patients underwent PET-CT imaging between 35 and 88 days post-therapy. Post-treatment PET-CT was aligned with planning 4D CT to establish a voxel-to-voxel correspondence between post-treatment PET and planning dose images. 18F-FDG uptake as a function of radiation dose to normal lung was obtained formore » each patient. Distribution of the standard uptake value (SUV) was analyzed using a volume histogram method. The image quantitative characteristics and DVH measures were correlated with clinical symptoms of pneumonitis. Results: Patients with RP were present in both groups: 5 in the IMRT and 6 in the PSPT. The analysis of cumulative SUV histograms showed significantly higher relative volumes of the normal lung having higher SUV uptake in the PSPT patients for both symptomatic and asymptomatic cases (VSUV=2: 10% for IMRT vs 16% for proton RT and VSUV=1: 10% for IMRT vs 23% for proton RT). In addition, the SUV histograms for symptomatic cases in PSPT patients exhibited a significantly longer tail at the highest SUV. The absolute volume of the lung receiving the dose >70 Gy was larger in the PSPT patients. Conclusion: 18F-FDG uptake – radiation dose response correlates with RP in both groups of patients by means of the linear regression slope. SUV is higher for the PSPT patients for both symptomatic and asymptomatic cases. Higher uptake after PSPT patients is explained by larger volumes of the lung receiving high radiation dose.« less

  9. LinoSPAD: a time-resolved 256×1 CMOS SPAD line sensor system featuring 64 FPGA-based TDC channels running at up to 8.5 giga-events per second

    NASA Astrophysics Data System (ADS)

    Burri, Samuel; Homulle, Harald; Bruschini, Claudio; Charbon, Edoardo

    2016-04-01

    LinoSPAD is a reconfigurable camera sensor with a 256×1 CMOS SPAD (single-photon avalanche diode) pixel array connected to a low cost Xilinx Spartan 6 FPGA. The LinoSPAD sensor's line of pixels has a pitch of 24 μm and 40% fill factor. The FPGA implements an array of 64 TDCs and histogram engines capable of processing up to 8.5 giga-photons per second. The LinoSPAD sensor measures 1.68 mm×6.8 mm and each pixel has a direct digital output to connect to the FPGA. The chip is bonded on a carrier PCB to connect to the FPGA motherboard. 64 carry chain based TDCs sampled at 400 MHz can generate a timestamp every 7.5 ns with a mean time resolution below 25 ps per code. The 64 histogram engines provide time-of-arrival histograms covering up to 50 ns. An alternative mode allows the readout of 28 bit timestamps which have a range of up to 4.5 ms. Since the FPGA TDCs have considerable non-linearity we implemented a correction module capable of increasing histogram linearity at real-time. The TDC array is interfaced to a computer using a super-speed USB3 link to transfer over 150k histograms per second for the 12.5 ns reference period used in our characterization. After characterization and subsequent programming of the post-processing we measure an instrument response histogram shorter than 100 ps FWHM using a strong laser pulse with 50 ps FWHM. A timing resolution that when combined with the high fill factor makes the sensor well suited for a wide variety of applications from fluorescence lifetime microscopy over Raman spectroscopy to 3D time-of-flight.

  10. Isobio software: biological dose distribution and biological dose volume histogram from physical dose conversion using linear-quadratic-linear model.

    PubMed

    Jaikuna, Tanwiwat; Khadsiri, Phatchareewan; Chawapun, Nisa; Saekho, Suwit; Tharavichitkul, Ekkasit

    2017-02-01

    To develop an in-house software program that is able to calculate and generate the biological dose distribution and biological dose volume histogram by physical dose conversion using the linear-quadratic-linear (LQL) model. The Isobio software was developed using MATLAB version 2014b to calculate and generate the biological dose distribution and biological dose volume histograms. The physical dose from each voxel in treatment planning was extracted through Computational Environment for Radiotherapy Research (CERR), and the accuracy was verified by the differentiation between the dose volume histogram from CERR and the treatment planning system. An equivalent dose in 2 Gy fraction (EQD 2 ) was calculated using biological effective dose (BED) based on the LQL model. The software calculation and the manual calculation were compared for EQD 2 verification with pair t -test statistical analysis using IBM SPSS Statistics version 22 (64-bit). Two and three-dimensional biological dose distribution and biological dose volume histogram were displayed correctly by the Isobio software. Different physical doses were found between CERR and treatment planning system (TPS) in Oncentra, with 3.33% in high-risk clinical target volume (HR-CTV) determined by D 90% , 0.56% in the bladder, 1.74% in the rectum when determined by D 2cc , and less than 1% in Pinnacle. The difference in the EQD 2 between the software calculation and the manual calculation was not significantly different with 0.00% at p -values 0.820, 0.095, and 0.593 for external beam radiation therapy (EBRT) and 0.240, 0.320, and 0.849 for brachytherapy (BT) in HR-CTV, bladder, and rectum, respectively. The Isobio software is a feasible tool to generate the biological dose distribution and biological dose volume histogram for treatment plan evaluation in both EBRT and BT.

  11. Diagnostic accuracy of ultrasonic histogram features to evaluate radiation toxicity of the parotid glands: a clinical study of xerostomia following head-and-neck cancer radiotherapy.

    PubMed

    Yang, Xiaofeng; Tridandapani, Srini; Beitler, Jonathan J; Yu, David S; Chen, Zhengjia; Kim, Sungjin; Bruner, Deborah W; Curran, Walter J; Liu, Tian

    2014-10-01

    To investigate the diagnostic accuracy of ultrasound histogram features in the quantitative assessment of radiation-induced parotid gland injury and to identify potential imaging biomarkers for radiation-induced xerostomia (dry mouth)-the most common and debilitating side effect after head-and-neck radiotherapy (RT). Thirty-four patients, who have developed xerostomia after RT for head-and-neck cancer, were enrolled. Radiation-induced xerostomia was defined by the Radiation Therapy Oncology Group/European Organization for Research and Treatment of Cancer morbidity scale. Ultrasound scans were performed on each patient's parotids bilaterally. The 34 patients were stratified into the acute-toxicity groups (16 patients, ≤ 3 months after treatment) and the late-toxicity group (18 patients, > 3 months after treatment). A separate control group of 13 healthy volunteers underwent similar ultrasound scans of their parotid glands. Six sonographic features were derived from the echo-intensity histograms to assess acute and late toxicity of the parotid glands. The quantitative assessments were compared to a radiologist's clinical evaluations. The diagnostic accuracy of these ultrasonic histogram features was evaluated with the receiver operating characteristic (ROC) curve. With an area under the ROC curve greater than 0.90, several histogram features demonstrated excellent diagnostic accuracy for evaluation of acute and late toxicity of parotid glands. Significant differences (P < .05) in all six sonographic features were demonstrated between the control, acute-toxicity, and late-toxicity groups. However, subjective radiologic evaluation cannot distinguish between acute and late toxicity of parotid glands. We demonstrated that ultrasound histogram features could be used to measure acute and late toxicity of the parotid glands after head-and-neck cancer RT, which may be developed into a low-cost imaging method for xerostomia monitoring and assessment. Copyright © 2014 AUR. Published by Elsevier Inc. All rights reserved.

  12. Methods in quantitative image analysis.

    PubMed

    Oberholzer, M; Ostreicher, M; Christen, H; Brühlmann, M

    1996-05-01

    The main steps of image analysis are image capturing, image storage (compression), correcting imaging defects (e.g. non-uniform illumination, electronic-noise, glare effect), image enhancement, segmentation of objects in the image and image measurements. Digitisation is made by a camera. The most modern types include a frame-grabber, converting the analog-to-digital signal into digital (numerical) information. The numerical information consists of the grey values describing the brightness of every point within the image, named a pixel. The information is stored in bits. Eight bits are summarised in one byte. Therefore, grey values can have a value between 0 and 256 (2(8)). The human eye seems to be quite content with a display of 5-bit images (corresponding to 64 different grey values). In a digitised image, the pixel grey values can vary within regions that are uniform in the original scene: the image is noisy. The noise is mainly manifested in the background of the image. For an optimal discrimination between different objects or features in an image, uniformity of illumination in the whole image is required. These defects can be minimised by shading correction [subtraction of a background (white) image from the original image, pixel per pixel, or division of the original image by the background image]. The brightness of an image represented by its grey values can be analysed for every single pixel or for a group of pixels. The most frequently used pixel-based image descriptors are optical density, integrated optical density, the histogram of the grey values, mean grey value and entropy. The distribution of the grey values existing within an image is one of the most important characteristics of the image. However, the histogram gives no information about the texture of the image. The simplest way to improve the contrast of an image is to expand the brightness scale by spreading the histogram out to the full available range. Rules for transforming the grey value histogram of an existing image (input image) into a new grey value histogram (output image) are most quickly handled by a look-up table (LUT). The histogram of an image can be influenced by gain, offset and gamma of the camera. Gain defines the voltage range, offset defines the reference voltage and gamma the slope of the regression line between the light intensity and the voltage of the camera. A very important descriptor of neighbourhood relations in an image is the co-occurrence matrix. The distance between the pixels (original pixel and its neighbouring pixel) can influence the various parameters calculated from the co-occurrence matrix. The main goals of image enhancement are elimination of surface roughness in an image (smoothing), correction of defects (e.g. noise), extraction of edges, identification of points, strengthening texture elements and improving contrast. In enhancement, two types of operations can be distinguished: pixel-based (point operations) and neighbourhood-based (matrix operations). The most important pixel-based operations are linear stretching of grey values, application of pre-stored LUTs and histogram equalisation. The neighbourhood-based operations work with so-called filters. These are organising elements with an original or initial point in their centre. Filters can be used to accentuate or to suppress specific structures within the image. Filters can work either in the spatial or in the frequency domain. The method used for analysing alterations of grey value intensities in the frequency domain is the Hartley transform. Filter operations in the spatial domain can be based on averaging or ranking the grey values occurring in the organising element. The most important filters, which are usually applied, are the Gaussian filter and the Laplace filter (both averaging filters), and the median filter, the top hat filter and the range operator (all ranking filters). Segmentation of objects is traditionally based on threshold grey values. (AB

  13. Subtype differentiation of renal tumors using voxel-based histogram analysis of intravoxel incoherent motion parameters.

    PubMed

    Gaing, Byron; Sigmund, Eric E; Huang, William C; Babb, James S; Parikh, Nainesh S; Stoffel, David; Chandarana, Hersh

    2015-03-01

    The aim of this study was to determine if voxel-based histogram analysis of intravoxel incoherent motion imaging (IVIM) parameters can differentiate various subtypes of renal tumors, including benign and malignant lesions. A total of 44 patients with renal tumors who underwent surgery and had histopathology available were included in this Health Insurance Portability and Accountability Act-compliant, institutional review board-approved, single-institution prospective study. In addition to routine renal magnetic resonance imaging examination performed on a 1.5-T system, all patients were imaged with axial diffusion-weighted imaging using 8 b values (range, 0-800 s/mm). A biexponential model was fitted to the diffusion signal data using a segmented algorithm to extract the IVIM parameters perfusion fraction (fp), tissue diffusivity (Dt), and pseudodiffusivity (Dp) for each voxel. Mean and histogram measures of heterogeneity (standard deviation, skewness, and kurtosis) of IVIM parameters were correlated with pathology results of tumor subtype using unequal variance t tests to compare subtypes in terms of each measure. Correction for multiple comparisons was accomplished using the Tukey honestly significant difference procedure. A total of 44 renal tumors including 23 clear cell (ccRCC), 4 papillary (pRCC), 5 chromophobe, and 5 cystic renal cell carcinomas, as well as benign lesions, 4 oncocytomas (Onc) and 3 angiomyolipomas (AMLs), were included in our analysis. Mean IVIM parameters fp and Dt differentiated 8 of 15 pairs of renal tumors. Histogram analysis of IVIM parameters differentiated 9 of 15 subtype pairs. One subtype pair (ccRCC vs pRCC) was differentiated by mean analysis but not by histogram analysis. However, 2 other subtype pairs (AML vs Onc and ccRCC vs Onc) were differentiated by histogram distribution parameters exclusively. The standard deviation of Dt [σ(Dt)] differentiated ccRCC (0.362 ± 0.136 × 10 mm/s) from AML (0.199 ± 0.043 × 10 mm/s) (P = 0.002). Kurtosis of fp separated Onc (2.767 ± 1.299) from AML (-0.325 ± 0.279; P = 0.001), ccRCC (0.612 ± 1.139; P = 0.042), and pRCC (0.308 ± 0.730; P = 0.025). Intravoxel incoherent motion imaging parameters with inclusion of histogram measures of heterogeneity can help differentiate malignant from benign lesions as well as various subtypes of renal cancers.

  14. Exact Solution of Mutator Model with Linear Fitness and Finite Genome Length

    NASA Astrophysics Data System (ADS)

    Saakian, David B.

    2017-08-01

    We considered the infinite population version of the mutator phenomenon in evolutionary dynamics, looking at the uni-directional mutations in the mutator-specific genes and linear selection. We solved exactly the model for the finite genome length case, looking at the quasispecies version of the phenomenon. We calculated the mutator probability both in the statics and dynamics. The exact solution is important for us because the mutator probability depends on the genome length in a highly non-trivial way.

  15. Exact Cosmological Models with Yang–Mills Fields on Lyra Manifold

    NASA Astrophysics Data System (ADS)

    Shchigolev, V. K.; Bezbatko, D. N.

    2018-04-01

    The present study deals with the Friedmann-Robertson-Walker cosmological models with Yang-Mills (YM) fields in Lyra geometry. The energy-momentum tensor of the YM fields for our models is obtained with the help of an exact solution to the YM equations with minimal coupling to gravity. Two specific exact solutions of the model are obtained regarding the effective equation of state and the exponential law of expansion. The physical and geometric behavior of the model is also discussed.

  16. Exact results for models of multichannel quantum nonadiabatic transitions

    DOE PAGES

    Sinitsyn, N. A.

    2014-12-11

    We consider nonadiabatic transitions in explicitly time-dependent systems with Hamiltonians of the form Hˆ(t)=Aˆ+Bˆt+Cˆ/t, where t is time and Aˆ,Bˆ,Cˆ are Hermitian N × N matrices. We show that in any model of this type, scattering matrix elements satisfy nontrivial exact constraints that follow from the absence of the Stokes phenomenon for solutions with specific conditions at t→–∞. This allows one to continue such solutions analytically to t→+∞, and connect their asymptotic behavior at t→–∞ and t→+∞. This property becomes particularly useful when a model shows additional discrete symmetries. Specifically, we derive a number of simple exact constraints and explicitmore » expressions for scattering probabilities in such systems.« less

  17. On algorithmic optimization of histogramming functions for GEM systems

    NASA Astrophysics Data System (ADS)

    Krawczyk, Rafał D.; Czarski, Tomasz; Kolasinski, Piotr; Poźniak, Krzysztof T.; Linczuk, Maciej; Byszuk, Adrian; Chernyshova, Maryna; Juszczyk, Bartlomiej; Kasprowicz, Grzegorz; Wojenski, Andrzej; Zabolotny, Wojciech

    2015-09-01

    This article concerns optimization methods for data analysis for the X-ray GEM detector system. The offline analysis of collected samples was optimized for MATLAB computations. Compiled functions in C language were used with MEX library. Significant speedup was received for both ordering-preprocessing and for histogramming of samples. Utilized techniques with obtained results are presented.

  18. Students' Misconceptions in Interpreting Center and Variability of Data Represented via Histograms and Stem-and-Leaf Plots

    ERIC Educational Resources Information Center

    Cooper, Linda L.; Shore, Felice S.

    2008-01-01

    This paper identifies and discusses misconceptions that students have in making judgments of center and variability when data are presented graphically. An assessment addressing interpreting center and variability in histograms and stem-and-leaf plots was administered to, and follow-up interviews were conducted with, undergraduates enrolled in…

  19. Texture and phase analysis of deformed SUS304 by using HIPPO

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Takajo, Shigehiro; Vogel, Sven C.

    2016-11-15

    These slides represent the author's research activity at Los Alamos National Laboratory (LANL), which is about texture and phase analysis of deformed SUS304 by using HIPPO. The following topics are covered: diffraction histogram at each sample position, diffraction histogram (all bank data averaged), possiblity of ε-phase, MAUD analysis with including ε-phase.

  20. Shift-Invariant Image Reconstruction of Speckle-Degraded Images Using Bispectrum Estimation

    DTIC Science & Technology

    1990-05-01

    process with the requisite negative exponential pelf. I call this model the Negative Exponential Model ( NENI ). The NENI flowchart is seen in Figure 6...Figure ]3d-g. Statistical Histograms and Phase for the RPj NG EXP FDF MULT METHOD FILuteC 14a. Truth Object Speckled Via the NENI HISTOGRAM OF SPECKLE

  1. Automation in clinical microbiology: a new approach to identifying micro-organisms by automated pattern matching of proteins labelled with 35S-methionine.

    PubMed Central

    Tabaqchali, S; Silman, R; Holland, D

    1987-01-01

    A new rapid automated method for the identification and classification of microorganisms is described. It is based on the incorporation of 35S-methionine into cellular proteins and subsequent separation of the radiolabelled proteins by sodium dodecyl sulphate-polyacrylamide gel electrophoresis (SDS-PAGE). The protein patterns produced were species specific and reproducible, permitting discrimination between the species. A large number of Gram negative and Gram positive aerobic and anaerobic organisms were successfully tested. Furthermore, there were sufficient differences within species between the protein profiles to permit subdivision of the species. New typing schemes for Clostridium difficile, coagulase negative staphylococci, and Staphylococcus aureus, including the methicillin resistant strains, could thus be introduced; this has provided the basis for useful epidemiological studies. To standardise and automate the procedure an automated electrophoresis system and a two dimensional scanner were developed to scan the dried gels directly. The scanner is operated by a computer which also stores and analyses the scan data. Specific histograms are produced for each bacterial species. Pattern recognition software is used to construct databases and to compare data obtained from different gels: in this way duplicate "unknowns" can be identified. Specific small areas showing differences between various histograms can also be isolated and expanded to maximise the differences, thus providing differentiation between closely related bacterial species and the identification of differences within the species to provide new typing schemes. This system should be widely applied in clinical microbiology laboratories in the near future. Images Fig 1 Fig 2 Fig 3 Fig 4 Fig 5 Fig 6 Fig 7 Fig 8 PMID:3312300

  2. [Algorithm of locally adaptive region growing based on multi-template matching applied to automated detection of hemorrhages].

    PubMed

    Gao, Wei-Wei; Shen, Jian-Xin; Wang, Yu-Liang; Liang, Chun; Zuo, Jing

    2013-02-01

    In order to automatically detect hemorrhages in fundus images, and develop an automated diabetic retinopathy screening system, a novel algorithm named locally adaptive region growing based on multi-template matching was established and studied. Firstly, spectral signature of major anatomical structures in fundus was studied, so that the right channel among RGB channels could be selected for different segmentation objects. Secondly, the fundus image was preprocessed by means of HSV brightness correction and contrast limited adaptive histogram equalization (CLAHE). Then, seeds of region growing were founded out by removing optic disc and vessel from the resulting image of normalized cross-correlation (NCC) template matching on the previous preprocessed image with several templates. Finally, locally adaptive region growing segmentation was used to find out the exact contours of hemorrhages, and the automated detection of the lesions was accomplished. The approach was tested on 90 different resolution fundus images with variable color, brightness and quality. Results suggest that the approach could fast and effectively detect hemorrhages in fundus images, and it is stable and robust. As a result, the approach can meet the clinical demands.

  3. Color object detection using spatial-color joint probability functions.

    PubMed

    Luo, Jiebo; Crandall, David

    2006-06-01

    Object detection in unconstrained images is an important image understanding problem with many potential applications. There has been little success in creating a single algorithm that can detect arbitrary objects in unconstrained images; instead, algorithms typically must be customized for each specific object. Consequently, it typically requires a large number of exemplars (for rigid objects) or a large amount of human intuition (for nonrigid objects) to develop a robust algorithm. We present a robust algorithm designed to detect a class of compound color objects given a single model image. A compound color object is defined as having a set of multiple, particular colors arranged spatially in a particular way, including flags, logos, cartoon characters, people in uniforms, etc. Our approach is based on a particular type of spatial-color joint probability function called the color edge co-occurrence histogram. In addition, our algorithm employs perceptual color naming to handle color variation, and prescreening to limit the search scope (i.e., size and location) for the object. Experimental results demonstrated that the proposed algorithm is insensitive to object rotation, scaling, partial occlusion, and folding, outperforming a closely related algorithm based on color co-occurrence histograms by a decisive margin.

  4. Evaluation of thresholding techniques for segmenting scaffold images in tissue engineering

    NASA Astrophysics Data System (ADS)

    Rajagopalan, Srinivasan; Yaszemski, Michael J.; Robb, Richard A.

    2004-05-01

    Tissue engineering attempts to address the ever widening gap between the demand and supply of organ and tissue transplants using natural and biomimetic scaffolds. The regeneration of specific tissues aided by synthetic materials is dependent on the structural and morphometric properties of the scaffold. These properties can be derived non-destructively using quantitative analysis of high resolution microCT scans of scaffolds. Thresholding of the scanned images into polymeric and porous phase is central to the outcome of the subsequent structural and morphometric analysis. Visual thresholding of scaffolds produced using stochastic processes is inaccurate. Depending on the algorithmic assumptions made, automatic thresholding might also be inaccurate. Hence there is a need to analyze the performance of different techniques and propose alternate ones, if needed. This paper provides a quantitative comparison of different thresholding techniques for segmenting scaffold images. The thresholding algorithms examined include those that exploit spatial information, locally adaptive characteristics, histogram entropy information, histogram shape information, and clustering of gray-level information. The performance of different techniques was evaluated using established criteria, including misclassification error, edge mismatch, relative foreground error, and region non-uniformity. Algorithms that exploit local image characteristics seem to perform much better than those using global information.

  5. Characterization of brightness and stoichiometry of bright particles by flow-fluorescence fluctuation spectroscopy.

    PubMed

    Johnson, Jolene; Chen, Yan; Mueller, Joachim D

    2010-11-03

    Characterization of bright particles at low concentrations by fluorescence fluctuation spectroscopy (FFS) is challenging, because the event rate of particle detection is low and fluorescence background contributes significantly to the measured signal. It is straightforward to increase the event rate by flow, but the high background continues to be problematic for fluorescence correlation spectroscopy. Here, we characterize the use of photon-counting histogram analysis in the presence of flow. We demonstrate that a photon-counting histogram efficiently separates the particle signal from the background and faithfully determines the brightness and concentration of particles independent of flow speed, as long as undersampling is avoided. Brightness provides a measure of the number of fluorescently labeled proteins within a complex and has been used to determine stoichiometry of protein complexes in vivo and in vitro. We apply flow-FFS to determine the stoichiometry of the group specific antigen protein within viral-like particles of the human immunodeficiency virus type-1 from the brightness. Our results demonstrate that flow-FFS is a sensitive method for the characterization of complex macromolecular particles at low concentrations. Copyright © 2010 Biophysical Society. Published by Elsevier Inc. All rights reserved.

  6. Whole-tumor apparent diffusion coefficient (ADC) histogram analysis to differentiate benign peripheral neurogenic tumors from soft tissue sarcomas.

    PubMed

    Nakajo, Masanori; Fukukura, Yoshihiko; Hakamada, Hiroto; Yoneyama, Tomohide; Kamimura, Kiyohisa; Nagano, Satoshi; Nakajo, Masayuki; Yoshiura, Takashi

    2018-02-22

    Apparent diffusion coefficient (ADC) histogram analyses have been used to differentiate tumor grades and predict therapeutic responses in various anatomic sites with moderate success. To determine the ability of diffusion-weighted imaging (DWI) with a whole-tumor ADC histogram analysis to differentiate benign peripheral neurogenic tumors (BPNTs) from soft tissue sarcomas (STSs). Retrospective study, single institution. In all, 25 BPNTs and 31 STSs. Two-b value DWI (b-values = 0, 1000s/mm 2 ) was at 3.0T. The histogram parameters of whole-tumor for ADC were calculated by two radiologists and compared between BPNTs and STSs. Nonparametric tests were performed for comparisons between BPNTs and STSs. P < 0.05 was considered statistically significant. The ability of each parameter to differentiate STSs from BPNTs was evaluated using area under the curve (AUC) values derived from a receiver operating characteristic curve analysis. The mean ADC and all percentile parameters were significantly lower in STSs than in BPNTs (P < 0.001-0.009), with AUCs of 0.703-0.773. However, the coefficient of variation (P = 0.020 and AUC = 0.682) and skewness (P = 0.012 and AUC = 0.697) were significantly higher in STSs than in BPNTs. Kurtosis (P = 0.295) and entropy (P = 0.604) did not differ significantly between BPNTs and STSs. Whole-tumor ADC histogram parameters except kurtosis and entropy differed significantly between BPNTs and STSs. 3 Technical Efficacy: Stage 2 J. Magn. Reson. Imaging 2018. © 2018 International Society for Magnetic Resonance in Medicine.

  7. Histogram Matching Extends Acceptable Signal Strength Range on Optical Coherence Tomography Images

    PubMed Central

    Chen, Chieh-Li; Ishikawa, Hiroshi; Wollstein, Gadi; Bilonick, Richard A.; Sigal, Ian A.; Kagemann, Larry; Schuman, Joel S.

    2015-01-01

    Purpose. We minimized the influence of image quality variability, as measured by signal strength (SS), on optical coherence tomography (OCT) thickness measurements using the histogram matching (HM) method. Methods. We scanned 12 eyes from 12 healthy subjects with the Cirrus HD-OCT device to obtain a series of OCT images with a wide range of SS (maximal range, 1–10) at the same visit. For each eye, the histogram of an image with the highest SS (best image quality) was set as the reference. We applied HM to the images with lower SS by shaping the input histogram into the reference histogram. Retinal nerve fiber layer (RNFL) thickness was automatically measured before and after HM processing (defined as original and HM measurements), and compared to the device output (device measurements). Nonlinear mixed effects models were used to analyze the relationship between RNFL thickness and SS. In addition, the lowest tolerable SSs, which gave the RNFL thickness within the variability margin of manufacturer recommended SS range (6–10), were determined for device, original, and HM measurements. Results. The HM measurements showed less variability across a wide range of image quality than the original and device measurements (slope = 1.17 vs. 4.89 and 1.72 μm/SS, respectively). The lowest tolerable SS was successfully reduced to 4.5 after HM processing. Conclusions. The HM method successfully extended the acceptable SS range on OCT images. This would qualify more OCT images with low SS for clinical assessment, broadening the OCT application to a wider range of subjects. PMID:26066749

  8. Apparent diffusion coefficient histogram metrics correlate with survival in diffuse intrinsic pontine glioma: a report from the Pediatric Brain Tumor Consortium

    PubMed Central

    Poussaint, Tina Young; Vajapeyam, Sridhar; Ricci, Kelsey I.; Panigrahy, Ashok; Kocak, Mehmet; Kun, Larry E.; Boyett, James M.; Pollack, Ian F.; Fouladi, Maryam

    2016-01-01

    Background Diffuse intrinsic pontine glioma (DIPG) is associated with poor survival regardless of therapy. We used volumetric apparent diffusion coefficient (ADC) histogram metrics to determine associations with progression-free survival (PFS) and overall survival (OS) at baseline and after radiation therapy (RT). Methods Baseline and post-RT quantitative ADC histograms were generated from fluid-attenuated inversion recovery (FLAIR) images and enhancement regions of interest. Metrics assessed included number of peaks (ie, unimodal or bimodal), mean and median ADC, standard deviation, mode, skewness, and kurtosis. Results Based on FLAIR images, the majority of tumors had unimodal peaks with significantly shorter average survival. Pre-RT FLAIR mean, mode, and median values were significantly associated with decreased risk of progression; higher pre-RT ADC values had longer PFS on average. Pre-RT FLAIR skewness and standard deviation were significantly associated with increased risk of progression; higher pre-RT FLAIR skewness and standard deviation had shorter PFS. Nonenhancing tumors at baseline showed higher ADC FLAIR mean values, lower kurtosis, and higher PFS. For enhancing tumors at baseline, bimodal enhancement histograms had much worse PFS and OS than unimodal cases and significantly lower mean peak values. Enhancement in tumors only after RT led to significantly shorter PFS and OS than in patients with baseline or no baseline enhancement. Conclusions ADC histogram metrics in DIPG demonstrate significant correlations between diffusion metrics and survival, with lower diffusion values (increased cellularity), increased skewness, and enhancement associated with shorter survival, requiring future investigations in large DIPG clinical trials. PMID:26487690

  9. Issues around Creating a Reusable Learning Object to Support Statistics Teaching

    ERIC Educational Resources Information Center

    Gilchrist, Mollie

    2007-01-01

    Although our health professional students have some experience of simple charts, such as pie and bar, and some intuition of histograms, they do not appear to have much knowledge or understanding about box and whisker plots and their relation to the data they are describing or compared to histograms. The boxplot is a versatile charting tool, useful…

  10. ON THE THEORY AND PROCEDURE FOR CONSTRUCTING A MINIMAL-LENGTH, AREA-CONSERVING FREQUENCY POLYGON FROM GROUPED DATA.

    ERIC Educational Resources Information Center

    CASE, C. MARSTON

    THIS PAPER IS CONCERNED WITH GRAPHIC PRESENTATION AND ANALYSIS OF GROUPED OBSERVATIONS. IT PRESENTS A METHOD AND SUPPORTING THEORY FOR THE CONSTRUCTION OF AN AREA-CONSERVING, MINIMAL LENGTH FREQUENCY POLYGON CORRESPONDING TO A GIVEN HISTOGRAM. TRADITIONALLY, THE CONCEPT OF A FREQUENCY POLYGON CORRESPONDING TO A GIVEN HISTOGRAM HAS REFERRED TO THAT…

  11. Methods for Determining Particle Size Distributions from Nuclear Detonations.

    DTIC Science & Technology

    1987-03-01

    Debris . . . 30 IV. Summary of Sample Preparation Method . . . . 35 V. Set Parameters for PCS ... ........... 39 VI. Analysis by Vendors...54 XV. Results From Brookhaven Analysis Using The Method of Cumulants ... ........... . 54 XVI. Results From Brookhaven Analysis of Sample...R-3 Using Histogram Method ......... .55 XVII. Results From Brookhaven Analysis of Sample R-8 Using Histogram Method ........... 56 XVIII.TEM Particle

  12. Diffusion profiling of tumor volumes using a histogram approach can predict proliferation and further microarchitectural features in medulloblastoma.

    PubMed

    Schob, Stefan; Beeskow, Anne; Dieckow, Julia; Meyer, Hans-Jonas; Krause, Matthias; Frydrychowicz, Clara; Hirsch, Franz-Wolfgang; Surov, Alexey

    2018-05-31

    Medulloblastomas are the most common central nervous system tumors in childhood. Treatment and prognosis strongly depend on histology and transcriptomic profiling. However, the proliferative potential also has prognostical value. Our study aimed to investigate correlations between histogram profiling of diffusion-weighted images and further microarchitectural features. Seven patients (age median 14.6 years, minimum 2 years, maximum 20 years; 5 male, 2 female) were included in this retrospective study. Using a Matlab-based analysis tool, histogram analysis of whole apparent diffusion coefficient (ADC) volumes was performed. ADC entropy revealed a strong inverse correlation with the expression of the proliferation marker Ki67 (r = - 0.962, p = 0.009) and with total nuclear area (r = - 0.888, p = 0.044). Furthermore, ADC percentiles, most of all ADCp90, showed significant correlations with Ki67 expression (r = 0.902, p = 0.036). Diffusion histogram profiling of medulloblastomas provides valuable in vivo information which potentially can be used for risk stratification and prognostication. First of all, entropy revealed to be the most promising imaging biomarker. However, further studies are warranted.

  13. Novel Variants of a Histogram Shift-Based Reversible Watermarking Technique for Medical Images to Improve Hiding Capacity

    PubMed Central

    Tuckley, Kushal

    2017-01-01

    In telemedicine systems, critical medical data is shared on a public communication channel. This increases the risk of unauthorised access to patient's information. This underlines the importance of secrecy and authentication for the medical data. This paper presents two innovative variations of classical histogram shift methods to increase the hiding capacity. The first technique divides the image into nonoverlapping blocks and embeds the watermark individually using the histogram method. The second method separates the region of interest and embeds the watermark only in the region of noninterest. This approach preserves the medical information intact. This method finds its use in critical medical cases. The high PSNR (above 45 dB) obtained for both techniques indicates imperceptibility of the approaches. Experimental results illustrate superiority of the proposed approaches when compared with other methods based on histogram shifting techniques. These techniques improve embedding capacity by 5–15% depending on the image type, without affecting the quality of the watermarked image. Both techniques also enable lossless reconstruction of the watermark and the host medical image. A higher embedding capacity makes the proposed approaches attractive for medical image watermarking applications without compromising the quality of the image. PMID:29104744

  14. Whole-lesion ADC histogram and texture analysis in predicting recurrence of cervical cancer treated with CCRT.

    PubMed

    Meng, Jie; Zhu, Lijing; Zhu, Li; Xie, Li; Wang, Huanhuan; Liu, Song; Yan, Jing; Liu, Baorui; Guan, Yue; He, Jian; Ge, Yun; Zhou, Zhengyang; Yang, Xiaofeng

    2017-11-03

    To explore the value of whole-lesion apparent diffusion coefficient (ADC) histogram and texture analysis in predicting tumor recurrence of advanced cervical cancer treated with concurrent chemo-radiotherapy (CCRT). 36 women with pathologically confirmed advanced cervical squamous carcinomas were enrolled in this prospective study. 3.0 T pelvic MR examinations including diffusion weighted imaging (b = 0, 800 s/mm 2 ) were performed before CCRT (pre-CCRT) and at the end of 2nd week of CCRT (mid-CCRT). ADC histogram and texture features were derived from the whole volume of cervical cancers. With a mean follow-up of 25 months (range, 11 ∼ 43), 10/36 (27.8%) patients ended with recurrence. Pre-CCRT 75th, 90th, correlation, autocorrelation and mid-CCRT ADC mean , 10th, 25th, 50th, 75th, 90th, autocorrelation can effectively differentiate the recurrence from nonrecurrence group with area under the curve ranging from 0.742 to 0.850 (P values range, 0.001 ∼ 0.038). Pre- and mid-treatment whole-lesion ADC histogram and texture analysis hold great potential in predicting tumor recurrence of advanced cervical cancer treated with CCRT.

  15. Pulmonary emphysema classification based on an improved texton learning model by sparse representation

    NASA Astrophysics Data System (ADS)

    Zhang, Min; Zhou, Xiangrong; Goshima, Satoshi; Chen, Huayue; Muramatsu, Chisako; Hara, Takeshi; Yokoyama, Ryujiro; Kanematsu, Masayuki; Fujita, Hiroshi

    2013-03-01

    In this paper, we present a texture classification method based on texton learned via sparse representation (SR) with new feature histogram maps in the classification of emphysema. First, an overcomplete dictionary of textons is learned via KSVD learning on every class image patches in the training dataset. In this stage, high-pass filter is introduced to exclude patches in smooth area to speed up the dictionary learning process. Second, 3D joint-SR coefficients and intensity histograms of the test images are used for characterizing regions of interest (ROIs) instead of conventional feature histograms constructed from SR coefficients of the test images over the dictionary. Classification is then performed using a classifier with distance as a histogram dissimilarity measure. Four hundreds and seventy annotated ROIs extracted from 14 test subjects, including 6 paraseptal emphysema (PSE) subjects, 5 centrilobular emphysema (CLE) subjects and 3 panlobular emphysema (PLE) subjects, are used to evaluate the effectiveness and robustness of the proposed method. The proposed method is tested on 167 PSE, 240 CLE and 63 PLE ROIs consisting of mild, moderate and severe pulmonary emphysema. The accuracy of the proposed system is around 74%, 88% and 89% for PSE, CLE and PLE, respectively.

  16. Efficient reversible data hiding in encrypted image with public key cryptosystem

    NASA Astrophysics Data System (ADS)

    Xiang, Shijun; Luo, Xinrong

    2017-12-01

    This paper proposes a new reversible data hiding scheme for encrypted images by using homomorphic and probabilistic properties of Paillier cryptosystem. The proposed method can embed additional data directly into encrypted image without any preprocessing operations on original image. By selecting two pixels as a group for encryption, data hider can retrieve the absolute differences of groups of two pixels by employing a modular multiplicative inverse method. Additional data can be embedded into encrypted image by shifting histogram of the absolute differences by using the homomorphic property in encrypted domain. On the receiver side, legal user can extract the marked histogram in encrypted domain in the same way as data hiding procedure. Then, the hidden data can be extracted from the marked histogram and the encrypted version of original image can be restored by using inverse histogram shifting operations. Besides, the marked absolute differences can be computed after decryption for extraction of additional data and restoration of original image. Compared with previous state-of-the-art works, the proposed scheme can effectively avoid preprocessing operations before encryption and can efficiently embed and extract data in encrypted domain. The experiments on the standard image files also certify the effectiveness of the proposed scheme.

  17. Background estimation and player detection in badminton video clips using histogram of pixel values along temporal dimension

    NASA Astrophysics Data System (ADS)

    Peng, Yahui; Ma, Xiao; Gao, Xinyu; Zhou, Fangxu

    2015-12-01

    Computer vision is an important tool for sports video processing. However, its application in badminton match analysis is very limited. In this study, we proposed a straightforward but robust histogram-based background estimation and player detection methods for badminton video clips, and compared the results with the naive averaging method and the mixture of Gaussians methods, respectively. The proposed method yielded better background estimation results than the naive averaging method and more accurate player detection results than the mixture of Gaussians player detection method. The preliminary results indicated that the proposed histogram-based method could estimate the background and extract the players accurately. We conclude that the proposed method can be used for badminton player tracking and further studies are warranted for automated match analysis.

  18. Machine assisted histogram classification

    NASA Astrophysics Data System (ADS)

    Benyó, B.; Gaspar, C.; Somogyi, P.

    2010-04-01

    LHCb is one of the four major experiments under completion at the Large Hadron Collider (LHC). Monitoring the quality of the acquired data is important, because it allows the verification of the detector performance. Anomalies, such as missing values or unexpected distributions can be indicators of a malfunctioning detector, resulting in poor data quality. Spotting faulty or ageing components can be either done visually using instruments, such as the LHCb Histogram Presenter, or with the help of automated tools. In order to assist detector experts in handling the vast monitoring information resulting from the sheer size of the detector, we propose a graph based clustering tool combined with machine learning algorithm and demonstrate its use by processing histograms representing 2D hitmaps events. We prove the concept by detecting ion feedback events in the LHCb experiment's RICH subdetector.

  19. Histogram analysis for smartphone-based rapid hematocrit determination

    PubMed Central

    Jalal, Uddin M.; Kim, Sang C.; Shim, Joon S.

    2017-01-01

    A novel and rapid analysis technique using histogram has been proposed for the colorimetric quantification of blood hematocrits. A smartphone-based “Histogram” app for the detection of hematocrits has been developed integrating the smartphone embedded camera with a microfluidic chip via a custom-made optical platform. The developed histogram analysis shows its effectiveness in the automatic detection of sample channel including auto-calibration and can analyze the single-channel as well as multi-channel images. Furthermore, the analyzing method is advantageous to the quantification of blood-hematocrit both in the equal and varying optical conditions. The rapid determination of blood hematocrits carries enormous information regarding physiological disorders, and the use of such reproducible, cost-effective, and standard techniques may effectively help with the diagnosis and prevention of a number of human diseases. PMID:28717569

  20. Structural analysis of vibroacoustical processes

    NASA Technical Reports Server (NTRS)

    Gromov, A. P.; Myasnikov, L. L.; Myasnikova, Y. N.; Finagin, B. A.

    1973-01-01

    The method of automatic identification of acoustical signals, by means of the segmentation was used to investigate noises and vibrations in machines and mechanisms, for cybernetic diagnostics. The structural analysis consists of presentation of a noise or vibroacoustical signal as a sequence of segments, determined by the time quantization, in which each segment is characterized by specific spectral characteristics. The structural spectrum is plotted as a histogram of the segments, also as a relation of the probability density of appearance of a segment to the segment type. It is assumed that the conditions of ergodic processes are maintained.

  1. Wildfire Detection using by Multi Dimensional Histogram in Boreal Forest

    NASA Astrophysics Data System (ADS)

    Honda, K.; Kimura, K.; Honma, T.

    2008-12-01

    Early detection of wildfires is an issue for reduction of damage to environment and human. There are some attempts to detect wildfires by using satellite imagery, which are mainly classified into three methods: Dozier Method(1981-), Threshold Method(1986-) and Contextual Method(1994-). However, the accuracy of these methods is not enough: some commission and omission errors are included in the detected results. In addition, it is not so easy to analyze satellite imagery with high accuracy because of insufficient ground truth data. Kudoh and Hosoi (2003) developed the detection method by using three-dimensional (3D) histogram from past fire data with the NOAA-AVHRR imagery. But their method is impractical because their method depends on their handworks to pick up past fire data from huge data. Therefore, the purpose of this study is to collect fire points as hot spots efficiently from satellite imagery and to improve the method to detect wildfires with the collected data. As our method, we collect past fire data with the Alaska Fire History data obtained by the Alaska Fire Service (AFS). We select points that are expected to be wildfires, and pick up the points inside the fire area of the AFS data. Next, we make 3D histogram with the past fire data. In this study, we use Bands 1, 21 and 32 of MODIS. We calculate the likelihood to detect wildfires with the three-dimensional histogram. As our result, we select wildfires with the 3D histogram effectively. We can detect the troidally spreading wildfire. This result shows the evidence of good wildfire detection. However, the area surrounding glacier tends to rise brightness temperature. It is a false alarm. Burnt area and bare ground are sometimes indicated as false alarms, so that it is necessary to improve this method. Additionally, we are trying various combinations of MODIS bands as the better method to detect wildfire effectively. So as to adjust our method in another area, we are applying our method to tropical forest in Kalimantan, Indonesia and around Chiang Mai, Thailand. But the ground truth data in these areas is lesser than the one in Alaska. Our method needs lots of accurate observed data to make multi-dimensional histogram in the same area. In this study, we can show the system to select wildfire data efficiently from satellite imagery. Furthermore, the development of multi-dimensional histogram from past fire data makes it possible to detect wildfires accurately.

  2. WE-G-BRD-09: Prediction of Local Control/Failure by Using Feature Histogram Selection in Follow-Up T2-Weighted MR Image in Spinal Tumors After Stereotactic Body Radiation Therapy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhou, J; Harb, J; Jawad, M

    2014-06-15

    Purpose: In follow-up T2-weighted MR images of spinal tumor patients treated with stereotactic body radiation therapy (SBRT), high intensity features embedded in dark surroundings may suggest a local failure (LF). We investigated image intensity histogram in imaging features to predict LF and local control (LC). Methods: Sixty-seven spinal tumors were treated with SBRT at our institution with scheduled follow-up MR T2-weighted (TR 3200–6600ms; TE 75-132ms) imaging. The LF group included 10 tumors with 8.7 months median follow-up, while the LC group had 11 tumors with 24.1 months median follow-up. The follow-up images were fused to the planning CT. Image intensitymore » histograms of the GTV were calculated. Voxels in greater than 90% (V90), 80% (V80), and peak (Vpeak) of the histogram were grouped into sub-ROIs to determine the best feature histogram. The intensity of each sub-ROI was evaluated using the mean T2-weighted signal ratio (intensity in sub-ROI / intensity in normal vertebrae). An ROC curve in predicting LF for each sub-ROI was calculated to determine the best feature histogram parameter for LF prediction. Results: Mean T2-weighted signal ratio in the LF group was significantly higher than that in the LC group for all sub-ROIs (1.1±0.4 vs. 0.7±0.2, 1.2±0.4 vs. 0.8±0.2, 1.4±0.5 vs. 0.8±0.2, for V90, V80, and Vpeak, p=0.02, 0.02, and 0.002, respectively). The corresponding areas-under-curve (AUC) of ROC were 0.78, 0.80, and 0.87, p=0.02, 0.03, 0.004, respectively. No correlation was found between T2-weighted signal ratio in Vpeak and follow-up time (Pearson's ρ=0.15). Conclusion: Increased T2-weighted signal can be used to identify local failure while decreased signal indicates local control after spinal SBRT. By choosing the best histogram parameter (here the Vpeak), the AUC of the ROC can be substantially improved, which implies reliable prediction of LC and LF. These results are being further studied and validated with large multi-institutional data.« less

  3. Mouse Curve Biometrics

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Schulz, Douglas A.

    2007-10-08

    A biometric system suitable for validating user identity using only mouse movements and no specialized equipment is presented. Mouse curves (mouse movements with little or no pause between them) are individually classied and used to develop classication histograms, which are representative of an individual's typical mouse use. These classication histograms can then be compared to validate identity. This classication approach is suitable for providing continuous identity validation during an entire user session.

  4. DIF Testing with an Empirical-Histogram Approximation of the Latent Density for Each Group

    ERIC Educational Resources Information Center

    Woods, Carol M.

    2011-01-01

    This research introduces, illustrates, and tests a variation of IRT-LR-DIF, called EH-DIF-2, in which the latent density for each group is estimated simultaneously with the item parameters as an empirical histogram (EH). IRT-LR-DIF is used to evaluate the degree to which items have different measurement properties for one group of people versus…

  5. An Automated Energy Detection Algorithm Based on Kurtosis-Histogram Excision

    DTIC Science & Technology

    2018-01-01

    ARL-TR-8269 ● JAN 2018 US Army Research Laboratory An Automated Energy Detection Algorithm Based on Kurtosis-Histogram Excision...needed. Do not return it to the originator. ARL-TR-8269 ● JAN 2018 US Army Research Laboratory An Automated Energy Detection...collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources

  6. SU-F-R-50: Radiation-Induced Changes in CT Number Histogram During Chemoradiation Therapy for Pancreatic Cancer

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chen, X; Schott, D; Song, Y

    Purpose: In an effort of early assessment of treatment response, we investigate radiation induced changes in CT number histogram of GTV during the delivery of chemoradiation therapy (CRT) for pancreatic cancer. Methods: Diagnostic-quality CT data acquired daily during routine CT-guided CRT using a CT-on-rails for 20 pancreatic head cancer patients were analyzed. All patients were treated with a radiation dose of 50.4 in 28 fractions. On each daily CT set, the contours of the pancreatic head and the spinal cord were delineated. The Hounsfiled Units (HU) histogram in these contourswere extracted and processed using MATLAB. Eight parameters of the histogrammore » including the mean HU over all the voxels, peak position, volume, standard deviation (SD), skewness, kurtosis, energy, and entropy were calculated for each fraction. The significances were inspected using paired two-tailed t-test and the correlations were analyzed using Spearman rank correlation tests. Results: In general, HU histogram in pancreatic head (but not in spinal cord) changed during the CRT delivery. Changes from the first to the last fraction in mean HU in pancreatic head ranged from −13.4 to 3.7 HU with an average of −4.4 HU, which was significant (P<0.001). Among other quantities, the volume decreased, the skewness increased (less skewed), and the kurtosis decreased (less sharp) during the CRT delivery. The changes of mean HU, volume, skewness, and kurtosis became significant after two weeks of treatment. Patient pathological response status is associated with the changes of SD (ΔSD), i.e., ΔSD= 1.85 (average of 7 patients) for good reponse, −0.08 (average of 6 patients) for moderate and poor response. Conclusion: Significant changes in HU histogram and the histogram-based metrics (e.g., meam HU, skewness, and kurtosis) in tumor were observed during the course of chemoradiation therapy for pancreas cancer. These changes may be potentially used for early assessment of treatment response.« less

  7. Liver fibrosis: in vivo evaluation using intravoxel incoherent motion-derived histogram metrics with histopathologic findings at 3.0 T.

    PubMed

    Hu, Fubi; Yang, Ru; Huang, Zixing; Wang, Min; Zhang, Hanmei; Yan, Xu; Song, Bin

    2017-12-01

    To retrospectively determine the feasibility of intravoxel incoherent motion (IVIM) imaging based on histogram analysis for the staging of liver fibrosis (LF) using histopathologic findings as the reference standard. 56 consecutive patients (14 men, 42 women; age range, 15-76, years) with chronic liver diseases (CLDs) were studied using IVIM-DWI with 9 b-values (0, 25, 50, 75, 100, 150, 200, 500, 800 s/mm 2 ) at 3.0 T. Fibrosis stage was evaluated using the METAVIR scoring system. Histogram metrics including mean, standard deviation (Std), skewness, kurtosis, minimum (Min), maximum (Max), range, interquartile (Iq) range, and percentiles (10, 25, 50, 75, 90th) were extracted from apparent diffusion coefficient (ADC), true diffusion coefficient (D), pseudo-diffusion coefficient (D*), and perfusion fraction (f) maps. All histogram metrics among different fibrosis groups were compared using one-way analysis of variance or nonparametric Kruskal-Wallis test. For significant parameters, receivers operating characteristic curve (ROC) analyses were further performed for the staging of LF. Based on their METAVIR stage, the 56 patients were reclassified into three groups as follows: F0-1 group (n = 25), F2-3 group (n = 21), and F4 group (n = 10). The mean, Iq range, percentiles (50, 75, and 90th) of D* maps between the groups were significant differences (all P < 0.05). Area under the ROC curve (AUC) of the mean, Iq range, 50, 75, and 90th percentile of D* maps for identifying significant LF (≥F2 stage) was 0.901, 0.859, 0.876, 0.943, and 0.886 (all P < 0.0001), respectively; for diagnosing severe fibrosis or cirrhosis (F4), AUC was 0.917, 0.922, 0.943, 0.985, and 0.939 (all P < 0.0001), respectively. The histogram metrics of ADC, D, and f maps demonstrated no significant difference among the groups (all P > 0.05). Histogram analysis of D* map derived from IVIM can be used to stage liver fibrosis in patients with CLDs and provide more quantitative information beyond the mean value.

  8. Visual vs Fully Automatic Histogram-Based Assessment of Idiopathic Pulmonary Fibrosis (IPF) Progression Using Sequential Multidetector Computed Tomography (MDCT)

    PubMed Central

    Colombi, Davide; Dinkel, Julien; Weinheimer, Oliver; Obermayer, Berenike; Buzan, Teodora; Nabers, Diana; Bauer, Claudia; Oltmanns, Ute; Palmowski, Karin; Herth, Felix; Kauczor, Hans Ulrich; Sverzellati, Nicola

    2015-01-01

    Objectives To describe changes over time in extent of idiopathic pulmonary fibrosis (IPF) at multidetector computed tomography (MDCT) assessed by semi-quantitative visual scores (VSs) and fully automatic histogram-based quantitative evaluation and to test the relationship between these two methods of quantification. Methods Forty IPF patients (median age: 70 y, interquartile: 62-75 years; M:F, 33:7) that underwent 2 MDCT at different time points with a median interval of 13 months (interquartile: 10-17 months) were retrospectively evaluated. In-house software YACTA quantified automatically lung density histogram (10th-90th percentile in 5th percentile steps). Longitudinal changes in VSs and in the percentiles of attenuation histogram were obtained in 20 untreated patients and 20 patients treated with pirfenidone. Pearson correlation analysis was used to test the relationship between VSs and selected percentiles. Results In follow-up MDCT, visual overall extent of parenchymal abnormalities (OE) increased in median by 5 %/year (interquartile: 0 %/y; +11 %/y). Substantial difference was found between treated and untreated patients in HU changes of the 40th and of the 80th percentiles of density histogram. Correlation analysis between VSs and selected percentiles showed higher correlation between the changes (Δ) in OE and Δ 40th percentile (r=0.69; p<0.001) as compared to Δ 80th percentile (r=0.58; p<0.001); closer correlation was found between Δ ground-glass extent and Δ 40th percentile (r=0.66, p<0.001) as compared to Δ 80th percentile (r=0.47, p=0.002), while the Δ reticulations correlated better with the Δ 80th percentile (r=0.56, p<0.001) in comparison to Δ 40th percentile (r=0.43, p=0.003). Conclusions There is a relevant and fully automatically measurable difference at MDCT in VSs and in histogram analysis at one year follow-up of IPF patients, whether treated or untreated: Δ 40th percentile might reflect the change in overall extent of lung abnormalities, notably of ground-glass pattern; furthermore Δ 80th percentile might reveal the course of reticular opacities. PMID:26110421

  9. Arrays of nucleic acid probes on biological chips

    DOEpatents

    Chee, Mark; Cronin, Maureen T.; Fodor, Stephen P. A.; Huang, Xiaohua X.; Hubbell, Earl A.; Lipshutz, Robert J.; Lobban, Peter E.; Morris, MacDonald S.; Sheldon, Edward L.

    1998-11-17

    DNA chips containing arrays of oligonucleotide probes can be used to determine whether a target nucleic acid has a nucleotide sequence identical to or different from a specific reference sequence. The array of probes comprises probes exactly complementary to the reference sequence, as well as probes that differ by one or more bases from the exactly complementary probes.

  10. A comparison of methods using optical coherence tomography to detect demineralized regions in teeth

    PubMed Central

    Sowa, Michael G.; Popescu, Dan P.; Friesen, Jeri R.; Hewko, Mark D.; Choo-Smith, Lin-P’ing

    2013-01-01

    Optical coherence tomography (OCT) is a three- dimensional optical imaging technique that can be used to identify areas of early caries formation in dental enamel. The OCT signal at 850 nm back-reflected from sound enamel is attenuated stronger than the signal back-reflected from demineralized regions. To quantify this observation, the OCT signal as a function of depth into the enamel (also known as the A-scan intensity), the histogram of the A-scan intensities and three summary parameters derived from the A-scan are defined and their diagnostic potential compared. A total of 754 OCT A-scans were analyzed. The three summary parameters derived from the A-scans, the OCT attenuation coefficient as well as the mean and standard deviation of the lognormal fit to the histogram of the A-scan ensemble show statistically significant differences (p < 0.01) when comparing parameters from sound enamel and caries. Furthermore, these parameters only show a modest correlation. Based on the area under the curve (AUC) of the receiver operating characteristics (ROC) plot, the OCT attenuation coefficient shows higher discriminatory capacity (AUC=0.98) compared to the parameters derived from the lognormal fit to the histogram of the A-scan. However, direct analysis of the A-scans or the histogram of A-scan intensities using linear support vector machine classification shows diagnostic discrimination (AUC = 0.96) comparable to that achieved using the attenuation coefficient. These findings suggest that either direct analysis of the A-scan, its intensity histogram or the attenuation coefficient derived from the descending slope of the OCT A-scan have high capacity to discriminate between regions of caries and sound enamel. PMID:22052833

  11. Response evaluation of giant-cell tumor of bone treated by denosumab: Histogram and texture analysis of CT images.

    PubMed

    Yi, Jisook; Lee, Young Han; Kim, Sang Kyum; Kim, Seung Hyun; Song, Ho-Taek; Shin, Kyoo-Ho; Suh, Jin-Suck

    2018-05-01

    This study aimed to compare computed tomography (CT) features, including tumor size and textural and histogram measurements, of giant-cell tumors of bone (GCTBs) before and after denosumab treatment and determine their applicability in monitoring GCTB response to denosumab treatment. This retrospective study included eight patients (male, 3; female, 5; mean age, 33.4 years) diagnosed with GCTB, who had received treatment by denosumab and had undergone pre- and post-treatment non-contrast CT between January 2010 and December 2016. This study was approved by the institutional review board. Pre- and post-treatment size, histogram, and textural parameters of GCTBs were compared by the Wilcoxon signed-rank test. Pathological findings of five patients who underwent surgery after denosumab treatment were evaluated for assessment of treatment response. Relative to the baseline values, the tumor size had decreased, while the mean attenuation, standard deviation, entropy (all, P = 0.017), and skewness (P = 0.036) of the GCTBs had significantly increased post-treatment. Although the difference was statistically insignificant, the tumors also exhibited increased kurtosis, contrast, and inverse difference moment (P = 0.123, 0.327, and 0.575, respectively) post-treatment. Histologic findings revealed new bone formation and complete depletion or decrease in the number of osteoclast-like giant cells. The histogram and textural parameters of GCTBs changed significantly after denosumab treatment. Knowledge of the tendency towards increased mean attenuation and heterogeneity but increased local homogeneity in post-treatment CT histogram and textural features of GCTBs might aid in treatment planning and tumor response evaluation during denosumab treatment. Copyright © 2018. Published by Elsevier B.V.

  12. Comparative study of pulsed-continuous arterial spin labeling and dynamic susceptibility contrast imaging by histogram analysis in evaluation of glial tumors.

    PubMed

    Arisawa, Atsuko; Watanabe, Yoshiyuki; Tanaka, Hisashi; Takahashi, Hiroto; Matsuo, Chisato; Fujiwara, Takuya; Fujiwara, Masahiro; Fujimoto, Yasunori; Tomiyama, Noriyuki

    2018-06-01

    Arterial spin labeling (ASL) is a non-invasive perfusion technique that may be an alternative to dynamic susceptibility contrast magnetic resonance imaging (DSC-MRI) for assessment of brain tumors. To our knowledge, there have been no reports on histogram analysis of ASL. The purpose of this study was to determine whether ASL is comparable with DSC-MRI in terms of differentiating high-grade and low-grade gliomas by evaluating the histogram analysis of cerebral blood flow (CBF) in the entire tumor. Thirty-four patients with pathologically proven glioma underwent ASL and DSC-MRI. High-signal areas on contrast-enhanced T 1 -weighted images or high-intensity areas on fluid-attenuated inversion recovery images were designated as the volumes of interest (VOIs). ASL-CBF, DSC-CBF, and DSC-cerebral blood volume maps were constructed and co-registered to the VOI. Perfusion histogram analyses of the whole VOI and statistical analyses were performed to compare the ASL and DSC images. There was no significant difference in the mean values for any of the histogram metrics in both of the low-grade gliomas (n = 15) and the high-grade gliomas (n = 19). Strong correlations were seen in the 75th percentile, mean, median, and standard deviation values between the ASL and DSC images. The area under the curve values tended to be greater for the DSC images than for the ASL images. DSC-MRI is superior to ASL for distinguishing high-grade from low-grade glioma. ASL could be an alternative evaluation method when DSC-MRI cannot be used, e.g., in patients with renal failure, those in whom repeated examination is required, and in children.

  13. Differentiation between malignant and benign thyroid nodules and stratification of papillary thyroid cancer with aggressive histological features: Whole-lesion diffusion-weighted imaging histogram analysis.

    PubMed

    Hao, Yonghong; Pan, Chu; Chen, WeiWei; Li, Tao; Zhu, WenZhen; Qi, JianPin

    2016-12-01

    To explore the usefulness of whole-lesion histogram analysis of apparent diffusion coefficient (ADC) derived from reduced field-of-view (r-FOV) diffusion-weighted imaging (DWI) in differentiating malignant and benign thyroid nodules and stratifying papillary thyroid cancer (PTC) with aggressive histological features. This Institutional Review Board-approved, retrospective study included 93 patients with 101 pathologically proven thyroid nodules. All patients underwent preoperative r-FOV DWI at 3T. The whole-lesion ADC assessments were performed for each patient. Histogram-derived ADC parameters between different subgroups (pathologic type, extrathyroidal extension, lymph node metastasis) were compared. Receiver operating characteristic curve analysis was used to determine optimal histogram parameters in differentiating benign and malignant nodules and predicting aggressiveness of PTC. Mean ADC, median ADC, 5 th percentile ADC, 25 th percentile ADC, 75 th percentile ADC, 95 th percentile ADC (all P < 0.001), and kurtosis (P = 0.001) were significantly lower in malignant thyroid nodules, and mean ADC achieved the highest AUC (0.919) with a cutoff value of 1842.78 × 10 -6 mm 2 /s in differentiating malignant and benign nodules. Compared to the PTCs without extrathyroidal extension, PTCs with extrathyroidal extension showed significantly lower median ADC, 5 th percentile ADC, and 25 th percentile ADC. The 5 th percentile ADC achieved the highest AUC (0.757) with cutoff value of 911.5 × 10 -6 mm 2 /s for differentiating between PTCs with and without extrathyroidal extension. Whole-lesion ADC histogram analysis might help to differentiate malignant nodules from benign ones and show the PTCs with extrathyroidal extension. J. Magn. Reson. Imaging 2016;44:1546-1555. © 2016 International Society for Magnetic Resonance in Medicine.

  14. Whole-tumor MRI histogram analyses of hepatocellular carcinoma: Correlations with Ki-67 labeling index.

    PubMed

    Hu, Xin-Xing; Yang, Zhao-Xia; Liang, He-Yue; Ding, Ying; Grimm, Robert; Fu, Cai-Xia; Liu, Hui; Yan, Xu; Ji, Yuan; Zeng, Meng-Su; Rao, Sheng-Xiang

    2017-08-01

    To evaluate whether whole-tumor histogram-derived parameters for an apparent diffusion coefficient (ADC) map and contrast-enhanced magnetic resonance imaging (MRI) could aid in assessing Ki-67 labeling index (LI) of hepatocellular carcinoma (HCC). In all, 57 patients with HCC who underwent pretreatment MRI with a 3T MR scanner were included retrospectively. Histogram parameters including mean, median, standard deviation, skewness, kurtosis, and percentiles (5 th , 25 th , 75 th , 95 th ) were derived from the ADC map and MR enhancement. Correlations between histogram parameters and Ki-67 LI were evaluated and differences between low Ki-67 (≤10%) and high Ki-67 (>10%) groups were assessed. Mean, median, 5 th , 25 th , 75 th percentiles of ADC, and mean, median, 25 th , 75 th , 95 th percentiles of enhancement of arterial phase (AP) demonstrated significant inverse correlations with Ki-67 LI (rho up to -0.48 for ADC, -0.43 for AP) and showed significant differences between low and high Ki-67 groups (P < 0.001-0.04). Areas under the receiver operator characteristics (ROC) curve for identification of high Ki-67 were 0.78, 0.77, 0.79, 0.82, and 0.76 for mean, median, 5 th , 25 th , 75 th percentiles of ADC, respectively, and 0.74, 0.81, 0.76, 0.82, 0.69 for mean, median, 25 th , 75 th , 95 th percentiles of AP, respectively. Histogram-derived parameters of ADC and AP were potentially helpful for predicting Ki-67 LI of HCC. 3 Technical Efficacy: Stage 3 J. MAGN. RESON. IMAGING 2017;46:383-392. © 2016 International Society for Magnetic Resonance in Medicine.

  15. Atherogenic lipid phenotype in a general group of subjects.

    PubMed

    Van, Joanne; Pan, Jianqiu; Charles, M Arthur; Krauss, Ronald; Wong, Nathan; Wu, Xiaoshan

    2007-11-01

    The atherogenic lipid phenotype is a major cardiovascular risk factor, but normal values do not exist derived from 1 analysis in a general study group. To determine normal values of all of the atherogenic lipid phenotype parameters using subjects from a general study group. One hundred two general subjects were used to determine their atherogenic lipid phenotype using polyacrylamide gradient gels. Low-density lipoprotein (LDL) size revealed 24% of subjects express LDL phenotype B, defined as average LDL peak particle size 258 A or less; however, among the Chinese subjects, the expression of the B phenotype was higher at 44% (P = .02). For the total group, mean LDL size was 265 +/- 11 A (1 SD); however, histograms were bimodal in both men and women. After excluding subjects expressing LDL phenotype B, because they are at increased cardiovascular risk and thus are not completely healthy, LDL histograms were unimodal and the mean LDL size was 270 +/- 7 A. A small, dense LDL concentration histogram (total group) revealed skewing; thus, phenotype B subjects were excluded, for the rationale described previously, and the mean value was 13 +/- 9 mg/dL (0.33 +/- 0.23 mmol/L). High-density lipoprotein (HDL) cholesterol histograms were bimodal in both sexes. After removing subjects as described previously or if HDL cholesterol levels were less than 45 mg/dL, histograms were unimodal and revealed a mean HDL cholesterol value of 61 +/- 12 mg/dL (1.56 +/- 0.31 mmol/L). HDL 2, HDL 2a, and HDL 2b were similarly evaluated. Approximate normal values for the atherogenic lipid phenotype, similar to those derived from cardiovascular endpoint trials, can be determined if those high proportions of subjects with dyslipidemic cardiovascular risk are excluded.

  16. Feasibility of histogram analysis of susceptibility-weighted MRI for staging of liver fibrosis

    PubMed Central

    Yang, Zhao-Xia; Liang, He-Yue; Hu, Xin-Xing; Huang, Ya-Qin; Ding, Ying; Yang, Shan; Zeng, Meng-Su; Rao, Sheng-Xiang

    2016-01-01

    PURPOSE We aimed to evaluate whether histogram analysis of susceptibility-weighted imaging (SWI) could quantify liver fibrosis grade in patients with chronic liver disease (CLD). METHODS Fifty-three patients with CLD who underwent multi-echo SWI (TEs of 2.5, 5, and 10 ms) were included. Histogram analysis of SWI images were performed and mean, variance, skewness, kurtosis, and the 1st, 10th, 50th, 90th, and 99th percentiles were derived. Quantitative histogram parameters were compared. For significant parameters, further receiver operating characteristic (ROC) analyses were performed to evaluate the potential diagnostic performance for differentiating liver fibrosis stages. RESULTS The number of patients in each pathologic fibrosis grade was 7, 3, 5, 5, and 33 for F0, F1, F2, F3, and F4, respectively. The results of variance (TE: 10 ms), 90th percentile (TE: 10 ms), and 99th percentile (TE: 10 and 5 ms) in F0–F3 group were significantly lower than in F4 group, with areas under the ROC curves (AUCs) of 0.84 for variance and 0.70–0.73 for the 90th and 99th percentiles, respectively. The results of variance (TE: 10 and 5 ms), 99th percentile (TE: 10 ms), and skewness (TE: 2.5 and 5 ms) in F0–F2 group were smaller than those of F3/F4 group, with AUCs of 0.88 and 0.69 for variance (TE: 10 and 5 ms, respectively), 0.68 for 99th percentile (TE: 10 ms), and 0.73 and 0.68 for skewness (TE: 2.5 and 5 ms, respectively). CONCLUSION Magnetic resonance histogram analysis of SWI, particularly the variance, is promising for predicting advanced liver fibrosis and cirrhosis. PMID:27113421

  17. Tumour homing and therapeutic effect of colloidal nanoparticles depend on the number of attached antibodies

    PubMed Central

    Colombo, Miriam; Fiandra, Luisa; Alessio, Giulia; Mazzucchelli, Serena; Nebuloni, Manuela; De Palma, Clara; Kantner, Karsten; Pelaz, Beatriz; Rotem, Rany; Corsi, Fabio; Parak, Wolfgang J.; Prosperi, Davide

    2016-01-01

    Active targeting of nanoparticles to tumours can be achieved by conjugation with specific antibodies. Specific active targeting of the HER2 receptor is demonstrated in vitro and in vivo with a subcutaneous MCF-7 breast cancer mouse model with trastuzumab-functionalized gold nanoparticles. The number of attached antibodies per nanoparticle was precisely controlled in a way that each nanoparticle was conjugated with either exactly one or exactly two antibodies. As expected, in vitro we found a moderate increase in targeting efficiency of nanoparticles with two instead of just one antibody attached per nanoparticle. However, the in vivo data demonstrate that best effect is obtained for nanoparticles with only exactly one antibody. There is indication that this is based on a size-related effect. These results highlight the importance of precisely controlling the ligand density on the nanoparticle surface for optimizing active targeting, and that less antibodies can exhibit more effect. PMID:27991503

  18. Improving the convergence rate in affine registration of PET and SPECT brain images using histogram equalization.

    PubMed

    Salas-Gonzalez, D; Górriz, J M; Ramírez, J; Padilla, P; Illán, I A

    2013-01-01

    A procedure to improve the convergence rate for affine registration methods of medical brain images when the images differ greatly from the template is presented. The methodology is based on a histogram matching of the source images with respect to the reference brain template before proceeding with the affine registration. The preprocessed source brain images are spatially normalized to a template using a general affine model with 12 parameters. A sum of squared differences between the source images and the template is considered as objective function, and a Gauss-Newton optimization algorithm is used to find the minimum of the cost function. Using histogram equalization as a preprocessing step improves the convergence rate in the affine registration algorithm of brain images as we show in this work using SPECT and PET brain images.

  19. HoDOr: histogram of differential orientations for rigid landmark tracking in medical images

    NASA Astrophysics Data System (ADS)

    Tiwari, Abhishek; Patwardhan, Kedar Anil

    2018-03-01

    Feature extraction plays a pivotal role in pattern recognition and matching. An ideal feature should be invariant to image transformations such as translation, rotation, scaling, etc. In this work, we present a novel rotation-invariant feature, which is based on Histogram of Oriented Gradients (HOG). We compare performance of the proposed approach with the HOG feature on 2D phantom data, as well as 3D medical imaging data. We have used traditional histogram comparison measures such as Bhattacharyya distance and Normalized Correlation Coefficient (NCC) to assess efficacy of the proposed approach under effects of image rotation. In our experiments, the proposed feature performs 40%, 20%, and 28% better than the HOG feature on phantom (2D), Computed Tomography (CT-3D), and Ultrasound (US-3D) data for image matching, and landmark tracking tasks respectively.

  20. A novel parallel architecture for local histogram equalization

    NASA Astrophysics Data System (ADS)

    Ohannessian, Mesrob I.; Choueiter, Ghinwa F.; Diab, Hassan

    2005-07-01

    Local histogram equalization is an image enhancement algorithm that has found wide application in the pre-processing stage of areas such as computer vision, pattern recognition and medical imaging. The computationally intensive nature of the procedure, however, is a main limitation when real time interactive applications are in question. This work explores the possibility of performing parallel local histogram equalization, using an array of special purpose elementary processors, through an HDL implementation that targets FPGA or ASIC platforms. A novel parallelization scheme is presented and the corresponding architecture is derived. The algorithm is reduced to pixel-level operations. Processing elements are assigned image blocks, to maintain a reasonable performance-cost ratio. To further simplify both processor and memory organizations, a bit-serial access scheme is used. A brief performance assessment is provided to illustrate and quantify the merit of the approach.

  1. Reducing Error Rates for Iris Image using higher Contrast in Normalization process

    NASA Astrophysics Data System (ADS)

    Aminu Ghali, Abdulrahman; Jamel, Sapiee; Abubakar Pindar, Zahraddeen; Hasssan Disina, Abdulkadir; Mat Daris, Mustafa

    2017-08-01

    Iris recognition system is the most secured, and faster means of identification and authentication. However, iris recognition system suffers a setback from blurring, low contrast and illumination due to low quality image which compromises the accuracy of the system. The acceptance or rejection rates of verified user depend solely on the quality of the image. In many cases, iris recognition system with low image contrast could falsely accept or reject user. Therefore this paper adopts Histogram Equalization Technique to address the problem of False Rejection Rate (FRR) and False Acceptance Rate (FAR) by enhancing the contrast of the iris image. A histogram equalization technique enhances the image quality and neutralizes the low contrast of the image at normalization stage. The experimental result shows that Histogram Equalization Technique has reduced FRR and FAR compared to the existing techniques.

  2. Chest CT window settings with multiscale adaptive histogram equalization: pilot study.

    PubMed

    Fayad, Laura M; Jin, Yinpeng; Laine, Andrew F; Berkmen, Yahya M; Pearson, Gregory D; Freedman, Benjamin; Van Heertum, Ronald

    2002-06-01

    Multiscale adaptive histogram equalization (MAHE), a wavelet-based algorithm, was investigated as a method of automatic simultaneous display of the full dynamic contrast range of a computed tomographic image. Interpretation times were significantly lower for MAHE-enhanced images compared with those for conventionally displayed images. Diagnostic accuracy, however, was insufficient in this pilot study to allow recommendation of MAHE as a replacement for conventional window display.

  3. [The value of spectral frequency analysis by Doppler examination (author's transl)].

    PubMed

    Boccalon, H; Reggi, M; Lozes, A; Canal, C; Jausseran, J M; Courbier, R; Puel, P; Enjalbert, A

    1981-01-01

    Arterial stenoses of moderate extent may involve modifications of the blood flow. Arterial shading is not always examined at the best incident angle to assess the extent of the stenosis. Spectral frequency analysis by Doppler examination is a good means of evaluating the effect of moderate arterial lesions. The present study was carried out with a Doppler effect having an acoustic spectrum, which is shown in a histogram having 16 frequency bands. The values were recorded on the two femoral arteries. A study was also made of 49 normal subjects so as to establish a normal envelope histogram, taking into account the following parameters: maximum peak (800 Hz), low cut-off frequency (420 Hz), high cut-off frequency (2,600 Hz); the first peak was found to be present in 81 % of the subjects (at 375 Hz) and the second peak in 75 % of the subjects (2,020 Hz). Thirteen patients with iliac lesions of different extent were included in the study; details of these lesions were established in all cases by aortography. None of the recorded frequency histograms were located within the normal envelope. Two cases of moderate iliac stenoses were noted ( Less Than 50 % of the diameter) which interfered with the histogram, even though the femoral velocity signal was normal.

  4. Differentially Private Histogram Publication For Dynamic Datasets: An Adaptive Sampling Approach

    PubMed Central

    Li, Haoran; Jiang, Xiaoqian; Xiong, Li; Liu, Jinfei

    2016-01-01

    Differential privacy has recently become a de facto standard for private statistical data release. Many algorithms have been proposed to generate differentially private histograms or synthetic data. However, most of them focus on “one-time” release of a static dataset and do not adequately address the increasing need of releasing series of dynamic datasets in real time. A straightforward application of existing histogram methods on each snapshot of such dynamic datasets will incur high accumulated error due to the composibility of differential privacy and correlations or overlapping users between the snapshots. In this paper, we address the problem of releasing series of dynamic datasets in real time with differential privacy, using a novel adaptive distance-based sampling approach. Our first method, DSFT, uses a fixed distance threshold and releases a differentially private histogram only when the current snapshot is sufficiently different from the previous one, i.e., with a distance greater than a predefined threshold. Our second method, DSAT, further improves DSFT and uses a dynamic threshold adaptively adjusted by a feedback control mechanism to capture the data dynamics. Extensive experiments on real and synthetic datasets demonstrate that our approach achieves better utility than baseline methods and existing state-of-the-art methods. PMID:26973795

  5. Multi-site Study of Diffusion Metric Variability: Characterizing the Effects of Site, Vendor, Field Strength, and Echo Time using the Histogram Distance.

    PubMed

    Helmer, K G; Chou, M-C; Preciado, R I; Gimi, B; Rollins, N K; Song, A; Turner, J; Mori, S

    2016-02-27

    MRI-based multi-site trials now routinely include some form of diffusion-weighted imaging (DWI) in their protocol. These studies can include data originating from scanners built by different vendors, each with their own set of unique protocol restrictions, including restrictions on the number of available gradient directions, whether an externally-generated list of gradient directions can be used, and restrictions on the echo time (TE). One challenge of multi-site studies is to create a common imaging protocol that will result in a reliable and accurate set of diffusion metrics. The present study describes the effect of site, scanner vendor, field strength, and TE on two common metrics: the first moment of the diffusion tensor field (mean diffusivity, MD), and the fractional anisotropy (FA). We have shown in earlier work that ROI metrics and the mean of MD and FA histograms are not sufficiently sensitive for use in site characterization. Here we use the distance between whole brain histograms of FA and MD to investigate within- and between-site effects. We concluded that the variability of DTI metrics due to site, vendor, field strength, and echo time could influence the results in multi-center trials and that histogram distance is sensitive metrics for each of these variables.

  6. Histogram analysis parameters of apparent diffusion coefficient reflect tumor cellularity and proliferation activity in head and neck squamous cell carcinoma

    PubMed Central

    Winter, Karsten; Richter, Cindy; Hoehn, Anna-Kathrin

    2018-01-01

    Our purpose was to analyze associations between apparent diffusion coefficient (ADC) histogram analysis parameters and histopathologicalfeatures in head and neck squamous cell carcinoma (HNSCC). The study involved 32 patients with primary HNSCC. For every tumor, the following histogram analysis parameters were calculated: ADCmean, ADCmax, ADCmin, ADCmedian, ADCmode, P10, P25, P75, P90, kurtosis, skewness, and entropy. Furthermore, proliferation index KI 67, cell count, total and average nucleic areas were estimated. Spearman's correlation coefficient (p) was used to analyze associations between investigated parameters. In overall sample, all ADC values showed moderate inverse correlations with KI 67. All ADC values except ADCmax correlated inversely with tumor cellularity. Slightly correlations were identified between total/average nucleic area and ADCmean, ADCmin, ADCmedian, and P25. In G1/2 tumors, only ADCmode correlated well with Ki67. No statistically significant correlations between ADC parameters and cellularity were found. In G3 tumors, Ki 67 correlated with all ADC parameters except ADCmode. Cell count correlated well with all ADC parameters except ADCmax. Total nucleic area correlated inversely with ADCmean, ADCmin, ADCmedian, P25, and P90. ADC histogram parameters reflect proliferation potential and cellularity in HNSCC. The associations between histopathology and imaging depend on tumor grading. PMID:29805759

  7. Statistical Properties of Line Centroid Velocity Increments in the rho Ophiuchi Cloud

    NASA Technical Reports Server (NTRS)

    Lis, D. C.; Keene, Jocelyn; Li, Y.; Phillips, T. G.; Pety, J.

    1998-01-01

    We present a comparison of histograms of CO (2-1) line centroid velocity increments in the rho Ophiuchi molecular cloud with those computed for spectra synthesized from a three-dimensional, compressible, but non-starforming and non-gravitating hydrodynamic simulation. Histograms of centroid velocity increments in the rho Ophiuchi cloud show clearly non-Gaussian wings, similar to those found in histograms of velocity increments and derivatives in experimental studies of laboratory and atmospheric flows, as well as numerical simulations of turbulence. The magnitude of these wings increases monotonically with decreasing separation, down to the angular resolution of the data. This behavior is consistent with that found in the phase of the simulation which has most of the properties of incompressible turbulence. The time evolution of the magnitude of the non-Gaussian wings in the histograms of centroid velocity increments in the simulation is consistent with the evolution of the vorticity in the flow. However, we cannot exclude the possibility that the wings are associated with the shock interaction regions. Moreover, in an active starforming region like the rho Ophiuchi cloud, the effects of shocks may be more important than in the simulation. However, being able to identify shock interaction regions in the interstellar medium is also important, since numerical simulations show that vorticity is generated in shock interactions.

  8. Contrast Enhancement Algorithm Based on Gap Adjustment for Histogram Equalization

    PubMed Central

    Chiu, Chung-Cheng; Ting, Chih-Chung

    2016-01-01

    Image enhancement methods have been widely used to improve the visual effects of images. Owing to its simplicity and effectiveness histogram equalization (HE) is one of the methods used for enhancing image contrast. However, HE may result in over-enhancement and feature loss problems that lead to unnatural look and loss of details in the processed images. Researchers have proposed various HE-based methods to solve the over-enhancement problem; however, they have largely ignored the feature loss problem. Therefore, a contrast enhancement algorithm based on gap adjustment for histogram equalization (CegaHE) is proposed. It refers to a visual contrast enhancement algorithm based on histogram equalization (VCEA), which generates visually pleasing enhanced images, and improves the enhancement effects of VCEA. CegaHE adjusts the gaps between two gray values based on the adjustment equation, which takes the properties of human visual perception into consideration, to solve the over-enhancement problem. Besides, it also alleviates the feature loss problem and further enhances the textures in the dark regions of the images to improve the quality of the processed images for human visual perception. Experimental results demonstrate that CegaHE is a reliable method for contrast enhancement and that it significantly outperforms VCEA and other methods. PMID:27338412

  9. Analysis of dose heterogeneity using a subvolume-DVH

    NASA Astrophysics Data System (ADS)

    Said, M.; Nilsson, P.; Ceberg, C.

    2017-11-01

    The dose-volume histogram (DVH) is universally used in radiation therapy for its highly efficient way of summarizing three-dimensional dose distributions. An apparent limitation that is inherent to standard histograms is the loss of spatial information, e.g. it is no longer possible to tell where low- and high-dose regions are, and whether they are connected or disjoint. Two methods for overcoming the spatial fragmentation of low- and high-dose regions are presented, both based on the gray-level size zone matrix, which is a two-dimensional histogram describing the frequencies of connected regions of similar intensities. The first approach is a quantitative metric which can be likened to a homogeneity index. The large cold spot metric (LCS) is here defined to emphasize large contiguous regions receiving too low a dose; emphasis is put on both size, and deviation from the prescribed dose. In contrast, the subvolume-DVH (sDVH) is an extension to the standard DVH and allows for a qualitative evaluation of the degree of dose heterogeneity. The information retained from the two-dimensional histogram is overlaid on top of the DVH and the two are presented simultaneously. Both methods gauge the underlying heterogeneity in ways that the DVH alone cannot, and both have their own merits—the sDVH being more intuitive and the LCS being quantitative.

  10. Digital image classification with the help of artificial neural network by simple histogram.

    PubMed

    Dey, Pranab; Banerjee, Nirmalya; Kaur, Rajwant

    2016-01-01

    Visual image classification is a great challenge to the cytopathologist in routine day-to-day work. Artificial neural network (ANN) may be helpful in this matter. In this study, we have tried to classify digital images of malignant and benign cells in effusion cytology smear with the help of simple histogram data and ANN. A total of 404 digital images consisting of 168 benign cells and 236 malignant cells were selected for this study. The simple histogram data was extracted from these digital images and an ANN was constructed with the help of Neurointelligence software [Alyuda Neurointelligence 2.2 (577), Cupertino, California, USA]. The network architecture was 6-3-1. The images were classified as training set (281), validation set (63), and test set (60). The on-line backpropagation training algorithm was used for this study. A total of 10,000 iterations were done to train the ANN system with the speed of 609.81/s. After the adequate training of this ANN model, the system was able to identify all 34 malignant cell images and 24 out of 26 benign cells. The ANN model can be used for the identification of the individual malignant cells with the help of simple histogram data. This study will be helpful in the future to identify malignant cells in unknown situations.

  11. Short-term stability of T1 and T2 relaxation measures in multiple sclerosis normal appearing white matter.

    PubMed

    Liang, Alice L W; Vavasour, Irene M; Mädler, Burkhard; Traboulsee, Anthony L; Lang, Donna J; Li, David K B; MacKay, Alex L; Laule, Cornelia

    2012-06-01

    The presence of diffuse and widespread abnormalities within the 'normal appearing' white matter (NAWM) of multiple sclerosis (MS) brain has been established. T(1) histogram analysis has revealed increased T(1) (related to water content) in segmented NAWM, while quantitative assessment of T(2) relaxation measures has demonstrated decreased myelin water fraction (MWF, related to myelin content) and increased geometric mean T(2) (GMT(2)) of the intra/extracellular water pool. Previous studies with follow-up periods of 1-5 years have demonstrated longitudinal changes in T(1) histogram metrics over time; however, longitudinal changes in MWF and GMT(2) of segmented NAWM have not been examined. We examined the short-term evolution of MWF, GMT(2) and T(1) in MS NAWM based on monthly scanning over 6 months in 18 relapsing remitting (RR) MS subjects. Histogram metrics demonstrated short-term stability of T(1), MWF and remitting (RR) MS subjects. We observed no change in MWF, GMT(2) or T(1) histogram metrics in NAWM in RRMS over the course of 6 months. Longer follow-up periods may be required to establish demonstrable changes in NAWM based on of MWF, GMT(2) and T(1) metrics.

  12. Slope histogram distribution-based parametrisation of Martian geomorphic features

    NASA Astrophysics Data System (ADS)

    Balint, Zita; Székely, Balázs; Kovács, Gábor

    2014-05-01

    The application of geomorphometric methods on the large Martian digital topographic datasets paves the way to analyse the Martian areomorphic processes in more detail. One of the numerous methods is the analysis is to analyse local slope distributions. To this implementation a visualization program code was developed that allows to calculate the local slope histograms and to compare them based on Kolmogorov distance criterion. As input data we used the digital elevation models (DTMs) derived from HRSC high-resolution stereo camera image from various Martian regions. The Kolmogorov-criterion based discrimination produces classes of slope histograms that displayed using coloration obtaining an image map. In this image map the distribution can be visualized by their different colours representing the various classes. Our goal is to create a local slope histogram based classification for large Martian areas in order to obtain information about general morphological characteristics of the region. This is a contribution of the TMIS.ascrea project, financed by the Austrian Research Promotion Agency (FFG). The present research is partly realized in the frames of TÁMOP 4.2.4.A/2-11-1-2012-0001 high priority "National Excellence Program - Elaborating and Operating an Inland Student and Researcher Personal Support System convergence program" project's scholarship support, using Hungarian state and European Union funds and cofinances from the European Social Fund.

  13. Cytochrome c conformations resolved by the photon counting histogram: Watching the alkaline transition with single-molecule sensitivity

    PubMed Central

    Perroud, Thomas D.; Bokoch, Michael P.; Zare, Richard N.

    2005-01-01

    We apply the photon counting histogram (PCH) model, a fluorescence technique with single-molecule sensitivity, to study pH-induced conformational changes of cytochrome c. PCH is able to distinguish different protein conformations based on the brightness of a fluorophore sensitive to its local environment. We label cytochrome c through its single free cysteine with tetramethylrhodamine-5-maleimide (TMR), a fluorophore with specific brightnesses that we associate with specific protein conformations. Ensemble measurements demonstrate two different fluorescence responses with increasing pH: (i) a decrease in fluorescence intensity caused by the alkaline transition of cytochrome c (pH 7.0–9.5), and (ii) an increase in intensity when the protein unfolds (pH 9.5–10.8). The magnitudes of these two responses depend strongly on the molar ratio of TMR used to label cytochrome c. Using PCH we determine that this effect arises from the proportion of a nonfunctional conformation in the sample, which can be differentiated from the functional conformation. We further determine the causes of each ensemble fluorescence response: (i) during the alkaline transition, the fluorophore enters a dark state and discrete conformations are observed, and (ii) as cytochrome c unfolds, the fluorophore incrementally brightens, but discrete conformations are no longer resolved. Moreover, we also show that functional TMR-cytochrome c undergoes a response of identical magnitude regardless of the proportion of nonfunctional protein in the sample. As expected for a technique with single-molecule sensitivity, we demonstrate that PCH can directly observe the most relevant conformation, unlike ensemble fluorometry. PMID:16314563

  14. ADC Histogram Analysis of Cervical Cancer Aids Detecting Lymphatic Metastases-a Preliminary Study.

    PubMed

    Schob, Stefan; Meyer, Hans Jonas; Pazaitis, Nikolaos; Schramm, Dominik; Bremicker, Kristina; Exner, Marc; Höhn, Anne Kathrin; Garnov, Nikita; Surov, Alexey

    2017-12-01

    Apparent diffusion coefficient (ADC) histogram analysis has been used to some extent in cervical cancer (CC) to distinguish between low-grade and high-grade tumors. Although this differentiation is undoubtedly helpful, it would be even more crucial in the presurgical setting to determine whether a tumor already gained the potential to metastasize via the lymphatic system. So far, no studies investigated the potential of 3T ADC histogram analysis in CC to differentiate between nodal-positive and nodal-negative entities. Therefore, the principal aim of our study was to investigate the potential of 3T ADC histogram analysis to differentiate between CC with and without lymph node metastasis. The second aim was to elucidate possible differences in ADC histogram parameters between CC with limited vs. advanced tumor stages and well-differentiated vs. undifferentiated lesions. Finally, correlations of p53 expression and Ki-67 index with ADC parameters were analyzed. Eighteen female patients (mean age 55.4 years, range 32-79 years) with histopathologically confirmed cervical squamous cell carcinoma of the uterine cervix were prospectively enrolled. Tumor stages, tumor grading, status of metastatic dissemination, Ki67-index, and p53 expression were assessed in these patients. Diffusion weighted imaging (DWI) was obtained in a 3T scanner using the following b values: b0 and b1000 s/mm 2 . Group comparisons using Mann-Whitney U test revealed the following findings: nodal-positive CC had statistically significant lower ADC parameters (ADCmin, ADCmean, median ADC, Mode, p10, p25, p75, and p90) in comparison to nodal-negative CC (all p < 0.05). ADCentropy was significantly elevated (p = 0.046) in tumors with advanced T stages (T3/4) compared to tumors with limited T stage (T2). ADCmin values were different in a statistically significant manner comparing G1/G2 and G3 tumors (40.45 ± 18.63 vs. 65.0 ± 23.63 × 10-5 mm2 s -1 , p = 0.035). Furthermore, Spearman Rho calculation identified an inverse correlation between ADCentropy and p53 expression (r = -0.472, p = 0.048). The main finding of our study is the discriminability of nodal-positive from nodal-negative CC using ADC histogram analysis in 3T DWI. This information is crucial for the gynecological surgeon to identify the optimal treatment strategy for patients suffering from CC. Furthermore, ADCentropy was identified as a potential imaging biomarker for tumor heterogeneity and might be able to indicate further molecular changes like loss of p53 expression, which is associated with EMT and consequentially indicates a poor prognosis in CC. Finally, our study confirmed the findings of previous works, which indicated that histogram analysis of ADC maps can distinguish between low-grade and high-grade CC. In conclusion, it can be stated that ADC histogram analysis provides additional, prognostically important information on tumor biology in CC.

  15. Qualitative evaluations and comparisons of six night-vision colorization methods

    NASA Astrophysics Data System (ADS)

    Zheng, Yufeng; Reese, Kristopher; Blasch, Erik; McManamon, Paul

    2013-05-01

    Current multispectral night vision (NV) colorization techniques can manipulate images to produce colorized images that closely resemble natural scenes. The colorized NV images can enhance human perception by improving observer object classification and reaction times especially for low light conditions. This paper focuses on the qualitative (subjective) evaluations and comparisons of six NV colorization methods. The multispectral images include visible (Red-Green- Blue), near infrared (NIR), and long wave infrared (LWIR) images. The six colorization methods are channel-based color fusion (CBCF), statistic matching (SM), histogram matching (HM), joint-histogram matching (JHM), statistic matching then joint-histogram matching (SM-JHM), and the lookup table (LUT). Four categries of quality measurements are used for the qualitative evaluations, which are contrast, detail, colorfulness, and overall quality. The score of each measurement is rated from 1 to 3 scale to represent low, average, and high quality, respectively. Specifically, high contrast (of rated score 3) means an adequate level of brightness and contrast. The high detail represents high clarity of detailed contents while maintaining low artifacts. The high colorfulness preserves more natural colors (i.e., closely resembles the daylight image). Overall quality is determined from the NV image compared to the reference image. Nine sets of multispectral NV images were used in our experiments. For each set, the six colorized NV images (produced from NIR and LWIR images) are concurrently presented to users along with the reference color (RGB) image (taken at daytime). A total of 67 subjects passed a screening test ("Ishihara Color Blindness Test") and were asked to evaluate the 9-set colorized images. The experimental results showed the quality order of colorization methods from the best to the worst: CBCF < SM < SM-JHM < LUT < JHM < HM. It is anticipated that this work will provide a benchmark for NV colorization and for quantitative evaluation using an objective metric such as objective evaluation index (OEI).

  16. Gastrointestinal Dose-Histogram Effects in the Context of Dose-Volume–Constrained Prostate Radiation Therapy: Analysis of Data From the RADAR Prostate Radiation Therapy Trial

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ebert, Martin A., E-mail: Martin.Ebert@health.wa.gov.au; School of Physics, University of Western Australia, Perth, Western Australia; Foo, Kerwyn

    Purpose: To use a high-quality multicenter trial dataset to determine dose-volume effects for gastrointestinal (GI) toxicity following radiation therapy for prostate carcinoma. Influential dose-volume histogram regions were to be determined as functions of dose, anatomical location, toxicity, and clinical endpoint. Methods and Materials: Planning datasets for 754 participants in the TROG 03.04 RADAR trial were available, with Late Effects of Normal Tissues (LENT) Subjective, Objective, Management, and Analytic (SOMA) toxicity assessment to a median of 72 months. A rank sum method was used to define dose-volume cut-points as near-continuous functions of dose to 3 GI anatomical regions, together with amore » comprehensive assessment of significance. Univariate and multivariate ordinal regression was used to assess the importance of cut-points at each dose. Results: Dose ranges providing significant cut-points tended to be consistent with those showing significant univariate regression odds-ratios (representing the probability of a unitary increase in toxicity grade per percent relative volume). Ranges of significant cut-points for rectal bleeding validated previously published results. Separation of the lower GI anatomy into complete anorectum, rectum, and anal canal showed the impact of mid-low doses to the anal canal on urgency and tenesmus, completeness of evacuation and stool frequency, and mid-high doses to the anorectum on bleeding and stool frequency. Derived multivariate models emphasized the importance of the high-dose region of the anorectum and rectum for rectal bleeding and mid- to low-dose regions for diarrhea and urgency and tenesmus, and low-to-mid doses to the anal canal for stool frequency, diarrhea, evacuation, and bleeding. Conclusions: Results confirm anatomical dependence of specific GI toxicities. They provide an atlas summarizing dose-histogram effects and derived constraints as functions of anatomical region, dose, toxicity, and endpoint for informing future radiation therapy planning.« less

  17. Numerically accurate computational techniques for optimal estimator analyses of multi-parameter models

    NASA Astrophysics Data System (ADS)

    Berger, Lukas; Kleinheinz, Konstantin; Attili, Antonio; Bisetti, Fabrizio; Pitsch, Heinz; Mueller, Michael E.

    2018-05-01

    Modelling unclosed terms in partial differential equations typically involves two steps: First, a set of known quantities needs to be specified as input parameters for a model, and second, a specific functional form needs to be defined to model the unclosed terms by the input parameters. Both steps involve a certain modelling error, with the former known as the irreducible error and the latter referred to as the functional error. Typically, only the total modelling error, which is the sum of functional and irreducible error, is assessed, but the concept of the optimal estimator enables the separate analysis of the total and the irreducible errors, yielding a systematic modelling error decomposition. In this work, attention is paid to the techniques themselves required for the practical computation of irreducible errors. Typically, histograms are used for optimal estimator analyses, but this technique is found to add a non-negligible spurious contribution to the irreducible error if models with multiple input parameters are assessed. Thus, the error decomposition of an optimal estimator analysis becomes inaccurate, and misleading conclusions concerning modelling errors may be drawn. In this work, numerically accurate techniques for optimal estimator analyses are identified and a suitable evaluation of irreducible errors is presented. Four different computational techniques are considered: a histogram technique, artificial neural networks, multivariate adaptive regression splines, and an additive model based on a kernel method. For multiple input parameter models, only artificial neural networks and multivariate adaptive regression splines are found to yield satisfactorily accurate results. Beyond a certain number of input parameters, the assessment of models in an optimal estimator analysis even becomes practically infeasible if histograms are used. The optimal estimator analysis in this paper is applied to modelling the filtered soot intermittency in large eddy simulations using a dataset of a direct numerical simulation of a non-premixed sooting turbulent flame.

  18. Gray-level transformations for interactive image enhancement. M.S. Thesis. Final Technical Report

    NASA Technical Reports Server (NTRS)

    Fittes, B. A.

    1975-01-01

    A gray-level transformation method suitable for interactive image enhancement was presented. It is shown that the well-known histogram equalization approach is a special case of this method. A technique for improving the uniformity of a histogram is also developed. Experimental results which illustrate the capabilities of both algorithms are described. Two proposals for implementing gray-level transformations in a real-time interactive image enhancement system are also presented.

  19. [A fast iterative algorithm for adaptive histogram equalization].

    PubMed

    Cao, X; Liu, X; Deng, Z; Jiang, D; Zheng, C

    1997-01-01

    In this paper, we propose an iterative algorthm called FAHE., which is based on the relativity between the current local histogram and the one before the sliding window moving. Comparing with the basic AHE, the computing time of FAHE is decreased from 5 hours to 4 minutes on a 486dx/33 compatible computer, when using a 65 x 65 sliding window for a 512 x 512 with 8 bits gray-level range.

  20. Ocean Wave Slope Statistics from Automated Analysis of Sun Glitter Photographs

    DTIC Science & Technology

    1985-06-01

    8217*.... . .. , .. . .. I 1 SCONTROL MAPCROSSREF.LAdEf_ 2 Si4OuTINE HDSPLY ( HTST . No NAME. XO. XSTEPI 3 C 4 C SIUBROUTINE TO nISPLAY A UNIVARIATE HISTOGRAM...LYRANON. CSC, FESRUARV ?6s 1qA0. 7 C a C HTST z HISTOGRAM ARRAY. 9 C NT 0 ROW DIMFNSION OF HIST. to C N.1 x COLUMN DIMENSTnN OF MIST. it C 12 REAL HIST

  1. High frequency measurements of shot noise suppression in atomic-scale metal contacts

    NASA Astrophysics Data System (ADS)

    Wheeler, Patrick J.; Evans, Kenneth; Russom, Jeffrey; King, Nicholas; Natelson, Douglas

    2009-03-01

    Shot noise provides a means of assessing the number and transmission coefficients of transmitting channels in atomic- and molecular-scale junctions. Previous experiments at low temperatures in metal and semiconductor point contacts have demonstrated the expected suppression of shot noise when junction conductance is near an integer multiple of the conductance quantum, G0≡2e^2/h. Using high frequency techniques, we demonstrate the high speed acquisition of such data at room temperature in mechanical break junctions. In clean Au contacts conductance histograms with clear peaks at G0, 2G0, and 3G0 are acquired within hours, and histograms of simultaneous measurements of the shot noise show clear suppression at those conductance values. We describe the dependence of the noise on bias voltage and analyze the noise vs. conductance histograms in terms of a model that averages over transmission coefficients.

  2. Lindemann histograms as a new method to analyse nano-patterns and phases

    NASA Astrophysics Data System (ADS)

    Makey, Ghaith; Ilday, Serim; Tokel, Onur; Ibrahim, Muhamet; Yavuz, Ozgun; Pavlov, Ihor; Gulseren, Oguz; Ilday, Omer

    The detection, observation, and analysis of material phases and atomistic patterns are of great importance for understanding systems exhibiting both equilibrium and far-from-equilibrium dynamics. As such, there is intense research on phase transitions and pattern dynamics in soft matter, statistical and nonlinear physics, and polymer physics. In order to identify phases and nano-patterns, the pair correlation function is commonly used. However, this approach is limited in terms of recognizing competing patterns in dynamic systems, and lacks visualisation capabilities. In order to solve these limitations, we introduce Lindemann histogram quantification as an alternative method to analyse solid, liquid, and gas phases, along with hexagonal, square, and amorphous nano-pattern symmetries. We show that the proposed approach based on Lindemann parameter calculated per particle maps local number densities to material phase or particles pattern. We apply the Lindemann histogram method on dynamical colloidal self-assembly experimental data and identify competing patterns.

  3. Change Detection of High-Resolution Remote Sensing Images Based on Adaptive Fusion of Multiple Features

    NASA Astrophysics Data System (ADS)

    Wang, G. H.; Wang, H. B.; Fan, W. F.; Liu, Y.; Chen, C.

    2018-04-01

    In view of the traditional change detection algorithm mainly depends on the spectral information image spot, failed to effectively mining and fusion of multi-image feature detection advantage, the article borrows the ideas of object oriented analysis proposed a multi feature fusion of remote sensing image change detection algorithm. First by the multi-scale segmentation of image objects based; then calculate the various objects of color histogram and linear gradient histogram; utilizes the color distance and edge line feature distance between EMD statistical operator in different periods of the object, using the adaptive weighted method, the color feature distance and edge in a straight line distance of combination is constructed object heterogeneity. Finally, the curvature histogram analysis image spot change detection results. The experimental results show that the method can fully fuse the color and edge line features, thus improving the accuracy of the change detection.

  4. Efficient HIK SVM learning for image classification.

    PubMed

    Wu, Jianxin

    2012-10-01

    Histograms are used in almost every aspect of image processing and computer vision, from visual descriptors to image representations. Histogram intersection kernel (HIK) and support vector machine (SVM) classifiers are shown to be very effective in dealing with histograms. This paper presents contributions concerning HIK SVM for image classification. First, we propose intersection coordinate descent (ICD), a deterministic and scalable HIK SVM solver. ICD is much faster than, and has similar accuracies to, general purpose SVM solvers and other fast HIK SVM training methods. We also extend ICD to the efficient training of a broader family of kernels. Second, we show an important empirical observation that ICD is not sensitive to the C parameter in SVM, and we provide some theoretical analyses to explain this observation. ICD achieves high accuracies in many problems, using its default parameters. This is an attractive property for practitioners, because many image processing tasks are too large to choose SVM parameters using cross-validation.

  5. A method for real-time implementation of HOG feature extraction

    NASA Astrophysics Data System (ADS)

    Luo, Hai-bo; Yu, Xin-rong; Liu, Hong-mei; Ding, Qing-hai

    2011-08-01

    Histogram of oriented gradient (HOG) is an efficient feature extraction scheme, and HOG descriptors are feature descriptors which is widely used in computer vision and image processing for the purpose of biometrics, target tracking, automatic target detection(ATD) and automatic target recognition(ATR) etc. However, computation of HOG feature extraction is unsuitable for hardware implementation since it includes complicated operations. In this paper, the optimal design method and theory frame for real-time HOG feature extraction based on FPGA were proposed. The main principle is as follows: firstly, the parallel gradient computing unit circuit based on parallel pipeline structure was designed. Secondly, the calculation of arctangent and square root operation was simplified. Finally, a histogram generator based on parallel pipeline structure was designed to calculate the histogram of each sub-region. Experimental results showed that the HOG extraction can be implemented in a pixel period by these computing units.

  6. Multi-stream LSTM-HMM decoding and histogram equalization for noise robust keyword spotting.

    PubMed

    Wöllmer, Martin; Marchi, Erik; Squartini, Stefano; Schuller, Björn

    2011-09-01

    Highly spontaneous, conversational, and potentially emotional and noisy speech is known to be a challenge for today's automatic speech recognition (ASR) systems, which highlights the need for advanced algorithms that improve speech features and models. Histogram Equalization is an efficient method to reduce the mismatch between clean and noisy conditions by normalizing all moments of the probability distribution of the feature vector components. In this article, we propose to combine histogram equalization and multi-condition training for robust keyword detection in noisy speech. To better cope with conversational speaking styles, we show how contextual information can be effectively exploited in a multi-stream ASR framework that dynamically models context-sensitive phoneme estimates generated by a long short-term memory neural network. The proposed techniques are evaluated on the SEMAINE database-a corpus containing emotionally colored conversations with a cognitive system for "Sensitive Artificial Listening".

  7. Content-based unconstrained color logo and trademark retrieval with color edge gradient co-occurrence histograms

    NASA Astrophysics Data System (ADS)

    Phan, Raymond; Androutsos, Dimitrios

    2008-01-01

    In this paper, we present a logo and trademark retrieval system for unconstrained color image databases that extends the Color Edge Co-occurrence Histogram (CECH) object detection scheme. We introduce more accurate information to the CECH, by virtue of incorporating color edge detection using vector order statistics. This produces a more accurate representation of edges in color images, in comparison to the simple color pixel difference classification of edges as seen in the CECH. Our proposed method is thus reliant on edge gradient information, and as such, we call this the Color Edge Gradient Co-occurrence Histogram (CEGCH). We use this as the main mechanism for our unconstrained color logo and trademark retrieval scheme. Results illustrate that the proposed retrieval system retrieves logos and trademarks with good accuracy, and outperforms the CECH object detection scheme with higher precision and recall.

  8. Correlation of 18F-FDG PET and MRI Apparent Diffusion Coefficient Histogram Metrics with Survival in Diffuse Intrinsic Pontine Glioma: A Report from the Pediatric Brain Tumor Consortium.

    PubMed

    Zukotynski, Katherine A; Vajapeyam, Sridhar; Fahey, Frederic H; Kocak, Mehmet; Brown, Douglas; Ricci, Kelsey I; Onar-Thomas, Arzu; Fouladi, Maryam; Poussaint, Tina Young

    2017-08-01

    The purpose of this study was to describe baseline 18 F-FDG PET voxel characteristics in pediatric diffuse intrinsic pontine glioma (DIPG) and to correlate these metrics with baseline MRI apparent diffusion coefficient (ADC) histogram metrics, progression-free survival (PFS), and overall survival. Methods: Baseline brain 18 F-FDG PET and MRI scans were obtained in 33 children from Pediatric Brain Tumor Consortium clinical DIPG trials. 18 F-FDG PET images, postgadolinium MR images, and ADC MR images were registered to baseline fluid attenuation inversion recovery MR images. Three-dimensional regions of interest on fluid attenuation inversion recovery MR images and postgadolinium MR images and 18 F-FDG PET and MR ADC histograms were generated. Metrics evaluated included peak number, skewness, and kurtosis. Correlation between PET and MR ADC histogram metrics was evaluated. PET pixel values within the region of interest for each tumor were plotted against MR ADC values. The association of these imaging markers with survival was described. Results: PET histograms were almost always unimodal (94%, vs. 6% bimodal). None of the PET histogram parameters (skewness or kurtosis) had a significant association with PFS, although a higher PET postgadolinium skewness tended toward a less favorable PFS (hazard ratio, 3.48; 95% confidence interval [CI], 0.75-16.28 [ P = 0.11]). There was a significant association between higher MR ADC postgadolinium skewness and shorter PFS (hazard ratio, 2.56; 95% CI, 1.11-5.91 [ P = 0.028]), and there was the suggestion that this also led to shorter overall survival (hazard ratio, 2.18; 95% CI, 0.95-5.04 [ P = 0.067]). Higher MR ADC postgadolinium kurtosis tended toward shorter PFS (hazard ratio, 1.30; 95% CI, 0.98-1.74 [ P = 0.073]). PET and MR ADC pixel values were negatively correlated using the Pearson correlation coefficient. Further, the level of PET and MR ADC correlation was significantly positively associated with PFS; tumors with higher values of ADC-PET correlation had more favorable PFS (hazard ratio, 0.17; 95% CI, 0.03-0.89 [ P = 0.036]), suggesting that a higher level of negative ADC-PET correlation leads to less favorable PFS. A more significant negative correlation may indicate higher-grade elements within the tumor leading to poorer outcomes. Conclusion: 18 F-FDG PET and MR ADC histogram metrics in pediatric DIPG demonstrate different characteristics with often a negative correlation between PET and MR ADC pixel values. A higher negative correlation is associated with a worse PFS, which may indicate higher-grade elements within the tumor. © 2017 by the Society of Nuclear Medicine and Molecular Imaging.

  9. The escape of high explosive products: An exact-solution problem for verification of hydrodynamics codes

    DOE PAGES

    Doebling, Scott William

    2016-10-22

    This paper documents the escape of high explosive (HE) products problem. The problem, first presented by Fickett & Rivard, tests the implementation and numerical behavior of a high explosive detonation and energy release model and its interaction with an associated compressible hydrodynamics simulation code. The problem simulates the detonation of a finite-length, one-dimensional piece of HE that is driven by a piston from one end and adjacent to a void at the other end. The HE equation of state is modeled as a polytropic ideal gas. The HE detonation is assumed to be instantaneous with an infinitesimal reaction zone. Viamore » judicious selection of the material specific heat ratio, the problem has an exact solution with linear characteristics, enabling a straightforward calculation of the physical variables as a function of time and space. Lastly, implementation of the exact solution in the Python code ExactPack is discussed, as are verification cases for the exact solution code.« less

  10. Exact solutions for layered thermocapillary convection of a viscous incompressible fluid with specified stresses on the bottom

    NASA Astrophysics Data System (ADS)

    Prosviryakov, E. Yu.; Spevak, L. F.

    2017-12-01

    A new exact solution of the Oberbeck-Boussinesq system is found. The Marangoni thermocapillary convection in an infinite fluid layer is described. It is demonstrated that the specification of tangential stresses at both boundaries of the layered velocity field is nonstationary. Velocities describe a superposition of unidirectional flows with an intermediate time interval when there are counterflows.

  11. Incremental Prognostic Value of Apparent Diffusion Coefficient Histogram Analysis in Head and Neck Squamous Cell Carcinoma.

    PubMed

    Li, Xiaoxia; Yuan, Ying; Ren, Jiliang; Shi, Yiqian; Tao, Xiaofeng

    2018-03-26

    We aimed to investigate the incremental prognostic value of apparent diffusion coefficient (ADC) histogram analysis in patients with head and neck squamous cell carcinoma (HNSCC) and integrate it into a multivariate prognostic model. A retrospective review of magnetic resonance imaging findings was conducted in patients with pathologically confirmed HNSCC between June 2012 and December 2015. For each tumor, six histogram parameters were derived: the 10th, 50th, and 90th percentiles of ADC (ADC 10 , ADC 50 , and ADC 90 ); mean ADC values (ADC mean ); kurtosis; and skewness. The clinical variables included age, sex, smoking status, tumor volume, and tumor node metastasis stage. The association of these histogram and clinical variables with overall survival (OS) was determined. Further validation of the histogram parameters as independent biomarkers was performed using multivariate Cox proportional hazard models combined with clinical variables, which was compared to the clinical model. Models were assessed with C index and receiver operating characteristic curve analyses for the 12- and 36-month OS. Ninety-six patients were eligible for analysis. Median follow-up was 877 days (range, 54-1516 days). A total of 29 patients died during follow-up (30%). Patients with higher ADC values (ADC 10  > 0.958 × 10 -3 mm 2 /s, ADC 50  > 1.089 × 10 -3 mm 2 /s, ADC 90  > 1.152 × 10 -3 mm 2 /s, ADC mean  > 1.047 × 10 -3 mm 2 /s) and lower kurtosis (≤0.967) were significant predictors of poor OS (P < .100 for all). After adjusting for sex and tumor node metastasis stage, the ADC 90 and kurtosis are both significant predictors of OS with hazard ratios = 1.00 (95% confidence interval: 1.001-1.004) and 0.58 (95% confidence interval: 0.37-0.90), respectively. By adding the ADC parameters into the clinical model, the C index and diagnostic accuracies for the 12- and 36-month OS showed significant improvement. ADC histogram analysis has incremental prognostic value in patients with HNSCC and increases the performance of a multivariable prognostic model in addition to clinical variables. Copyright © 2018 The Association of University Radiologists. Published by Elsevier Inc. All rights reserved.

  12. Measuring kinetics of complex single ion channel data using mean-variance histograms.

    PubMed

    Patlak, J B

    1993-07-01

    The measurement of single ion channel kinetics is difficult when those channels exhibit subconductance events. When the kinetics are fast, and when the current magnitudes are small, as is the case for Na+, Ca2+, and some K+ channels, these difficulties can lead to serious errors in the estimation of channel kinetics. I present here a method, based on the construction and analysis of mean-variance histograms, that can overcome these problems. A mean-variance histogram is constructed by calculating the mean current and the current variance within a brief "window" (a set of N consecutive data samples) superimposed on the digitized raw channel data. Systematic movement of this window over the data produces large numbers of mean-variance pairs which can be assembled into a two-dimensional histogram. Defined current levels (open, closed, or sublevel) appear in such plots as low variance regions. The total number of events in such low variance regions is estimated by curve fitting and plotted as a function of window width. This function decreases with the same time constants as the original dwell time probability distribution for each of the regions. The method can therefore be used: 1) to present a qualitative summary of the single channel data from which the signal-to-noise ratio, open channel noise, steadiness of the baseline, and number of conductance levels can be quickly determined; 2) to quantify the dwell time distribution in each of the levels exhibited. In this paper I present the analysis of a Na+ channel recording that had a number of complexities. The signal-to-noise ratio was only about 8 for the main open state, open channel noise, and fast flickers to other states were present, as were a substantial number of subconductance states. "Standard" half-amplitude threshold analysis of these data produce open and closed time histograms that were well fitted by the sum of two exponentials, but with apparently erroneous time constants, whereas the mean-variance histogram technique provided a more credible analysis of the open, closed, and subconductance times for the patch. I also show that the method produces accurate results on simulated data in a wide variety of conditions, whereas the half-amplitude method, when applied to complex simulated data shows the same errors as were apparent in the real data. The utility and the limitations of this new method are discussed.

  13. New exact solutions of the Tzitzéica-type equations in non-linear optics using the expa function method

    NASA Astrophysics Data System (ADS)

    Hosseini, K.; Ayati, Z.; Ansari, R.

    2018-04-01

    One specific class of non-linear evolution equations, known as the Tzitzéica-type equations, has received great attention from a group of researchers involved in non-linear science. In this article, new exact solutions of the Tzitzéica-type equations arising in non-linear optics, including the Tzitzéica, Dodd-Bullough-Mikhailov and Tzitzéica-Dodd-Bullough equations, are obtained using the expa function method. The integration technique actually suggests a useful and reliable method to extract new exact solutions of a wide range of non-linear evolution equations.

  14. Time-Harmonic Gaussian Beams: Exact Solutions of the Helmhotz Equation in Free Space

    NASA Astrophysics Data System (ADS)

    Kiselev, A. P.

    2017-12-01

    An exact solution of the Helmholtz equation u xx + u yy + u zz + k 2 u = 0 is presented, which describes propagation of monochromatic waves in the free space. The solution has the form of a superposition of plane waves with a specific weight function dependent on a certain free parameter a. If ka→∞, the solution is localized in the Gaussian manner in a vicinity of a certain straight line and asymptotically coincides with the famous approximate solution known as the fundamental mode of a paraxial Gaussian beam. The asymptotics of the aforementioned exact solution does not include a backward wave.

  15. Historical Temporal Shipping (HITS)

    DTIC Science & Technology

    1978-06-28

    Histogram Cells 45 El Figure 4-3 Projection of Area onto Route Perpendicular 45 Figure 4-4 Single Column Cut of Route Envelope 46ii Figure 4-5 Histogram of...Resources, "Super" Bulk Carriers, and Deepwater Port Development." Naval Postgraduate School . June 1974. 8. Gulland, J.A. "The Fish Resources of the Ocean...sailing reports from the various harbour masters. The completeness of the data thus depends in most cases upon the diligence of a single reporting source

  16. Hardware solution for continuous time-resolved burst detection of single molecules in flow

    NASA Astrophysics Data System (ADS)

    Wahl, Michael; Erdmann, Rainer; Lauritsen, Kristian; Rahn, Hans-Juergen

    1998-04-01

    Time Correlated Single Photon Counting (TCSPC) is a valuable tool for Single Molecule Detection (SMD). However, existing TCSPC systems did not support continuous data collection and processing as is desirable for applications such as SMD for e.g. DNA-sequencing in a liquid flow. First attempts at using existing instrumentation in this kind of operation mode required additional routing hardware to switch between several memory banks and were not truly continuous. We have designed a hard- and software system to perform continuous real-time TCSPC based upon a modern solid state Time to Digital Converter (TDC). Short dead times of the fully digital TDC design combined with fast Field Programmable Gay Array logic permit a continuous data throughput as high as 3 Mcounts/sec. The histogramming time may be set as short as 100 microsecond(s) . Every histogram or every single fluorescence photon can be real-time tagged at 200 ns resolution in addition to recording its arrival time relative to the excitation pulse. Continuous switching between memory banks permits concurrent histogramming and data read-out. The instrument provides a time resolution of 60 ps and up to 4096 histogram channels. The overall instrument response function in combination with a low cost picosecond diode laser and an inexpensive photomultiplier tube was found to be 180 ps and well sufficient to measure sub-nanosecond fluorescence lifetimes.

  17. Digital image classification with the help of artificial neural network by simple histogram

    PubMed Central

    Dey, Pranab; Banerjee, Nirmalya; Kaur, Rajwant

    2016-01-01

    Background: Visual image classification is a great challenge to the cytopathologist in routine day-to-day work. Artificial neural network (ANN) may be helpful in this matter. Aims and Objectives: In this study, we have tried to classify digital images of malignant and benign cells in effusion cytology smear with the help of simple histogram data and ANN. Materials and Methods: A total of 404 digital images consisting of 168 benign cells and 236 malignant cells were selected for this study. The simple histogram data was extracted from these digital images and an ANN was constructed with the help of Neurointelligence software [Alyuda Neurointelligence 2.2 (577), Cupertino, California, USA]. The network architecture was 6-3-1. The images were classified as training set (281), validation set (63), and test set (60). The on-line backpropagation training algorithm was used for this study. Result: A total of 10,000 iterations were done to train the ANN system with the speed of 609.81/s. After the adequate training of this ANN model, the system was able to identify all 34 malignant cell images and 24 out of 26 benign cells. Conclusion: The ANN model can be used for the identification of the individual malignant cells with the help of simple histogram data. This study will be helpful in the future to identify malignant cells in unknown situations. PMID:27279679

  18. Measurement of susceptibility artifacts with histogram-based reference value on magnetic resonance images according to standard ASTM F2119.

    PubMed

    Heinrich, Andreas; Teichgräber, Ulf K; Güttler, Felix V

    2015-12-01

    The standard ASTM F2119 describes a test method for measuring the size of a susceptibility artifact based on the example of a passive implant. A pixel in an image is considered to be a part of an image artifact if the intensity is changed by at least 30% in the presence of a test object, compared to a reference image in which the test object is absent (reference value). The aim of this paper is to simplify and accelerate the test method using a histogram-based reference value. Four test objects were scanned parallel and perpendicular to the main magnetic field, and the largest susceptibility artifacts were measured using two methods of reference value determination (reference image-based and histogram-based reference value). The results between both methods were compared using the Mann-Whitney U-test. The difference between both reference values was 42.35 ± 23.66. The difference of artifact size was 0.64 ± 0.69 mm. The artifact sizes of both methods did not show significant differences; the p-value of the Mann-Whitney U-test was between 0.710 and 0.521. A standard-conform method for a rapid, objective, and reproducible evaluation of susceptibility artifacts could be implemented. The result of the histogram-based method does not significantly differ from the ASTM-conform method.

  19. Histogram analysis parameters of apparent diffusion coefficient reflect tumor cellularity and proliferation activity in head and neck squamous cell carcinoma.

    PubMed

    Surov, Alexey; Meyer, Hans Jonas; Winter, Karsten; Richter, Cindy; Hoehn, Anna-Kathrin

    2018-05-04

    Our purpose was to analyze associations between apparent diffusion coefficient (ADC) histogram analysis parameters and histopathologicalfeatures in head and neck squamous cell carcinoma (HNSCC). The study involved 32 patients with primary HNSCC. For every tumor, the following histogram analysis parameters were calculated: ADCmean, ADCmax, ADC min , ADC median , ADC mode , P10, P25, P75, P90, kurtosis, skewness, and entropy. Furthermore, proliferation index KI 67, cell count, total and average nucleic areas were estimated. Spearman's correlation coefficient (p) was used to analyze associations between investigated parameters. In overall sample, all ADC values showed moderate inverse correlations with KI 67. All ADC values except ADCmax correlated inversely with tumor cellularity. Slightly correlations were identified between total/average nucleic area and ADC mean , ADC min , ADC median , and P25. In G1/2 tumors, only ADCmode correlated well with Ki67. No statistically significant correlations between ADC parameters and cellularity were found. In G3 tumors, Ki 67 correlated with all ADC parameters except ADCmode. Cell count correlated well with all ADC parameters except ADCmax. Total nucleic area correlated inversely with ADC mean , ADC min , ADC median , P25, and P90. ADC histogram parameters reflect proliferation potential and cellularity in HNSCC. The associations between histopathology and imaging depend on tumor grading.

  20. Multi-site Study of Diffusion Metric Variability: Characterizing the Effects of Site, Vendor, Field Strength, and Echo Time using the Histogram Distance

    PubMed Central

    Helmer, K. G.; Chou, M-C.; Preciado, R. I.; Gimi, B.; Rollins, N. K.; Song, A.; Turner, J.; Mori, S.

    2016-01-01

    MRI-based multi-site trials now routinely include some form of diffusion-weighted imaging (DWI) in their protocol. These studies can include data originating from scanners built by different vendors, each with their own set of unique protocol restrictions, including restrictions on the number of available gradient directions, whether an externally-generated list of gradient directions can be used, and restrictions on the echo time (TE). One challenge of multi-site studies is to create a common imaging protocol that will result in a reliable and accurate set of diffusion metrics. The present study describes the effect of site, scanner vendor, field strength, and TE on two common metrics: the first moment of the diffusion tensor field (mean diffusivity, MD), and the fractional anisotropy (FA). We have shown in earlier work that ROI metrics and the mean of MD and FA histograms are not sufficiently sensitive for use in site characterization. Here we use the distance between whole brain histograms of FA and MD to investigate within- and between-site effects. We concluded that the variability of DTI metrics due to site, vendor, field strength, and echo time could influence the results in multi-center trials and that histogram distance is sensitive metrics for each of these variables. PMID:27350723

  1. Illusory Late Heavy Bombardments

    NASA Astrophysics Data System (ADS)

    Boehnke, Patrick; Harrison, T. Mark

    2016-09-01

    The Late Heavy Bombardment (LHB), a hypothesized impact spike at ˜3.9 Ga, is one of the major scientific concepts to emerge from Apollo-era lunar exploration. A significant portion of the evidence for the existence of the LHB comes from histograms of 40Ar/39Ar “plateau” ages (i.e., regions selected on the basis of apparent isochroneity). However, due to lunar magmatism and overprinting from subsequent impact events, virtually all Apollo-era samples show evidence for 40Ar/39Ar age spectrum disturbances, leaving open the possibility that partial 40Ar* resetting could bias interpretation of bombardment histories due to plateaus yielding misleadingly young ages. We examine this possibility through a physical model of 40Ar* diffusion in Apollo samples and test the uniqueness of the impact histories obtained by inverting plateau age histograms. Our results show that plateau histograms tend to yield age peaks, even in those cases where the input impact curve did not contain such a spike, in part due to the episodic nature of lunar crust or parent body formation. Restated, monotonically declining impact histories yield apparent age peaks that could be misinterpreted as LHB-type events. We further conclude that the assignment of apparent 40Ar/39Ar plateau ages bears an undesirably high degree of subjectivity. When compounded by inappropriate interpretations of histograms constructed from plateau ages, interpretation of apparent, but illusory, impact spikes is likely.

  2. Illusory Late Heavy Bombardments

    PubMed Central

    Boehnke, Patrick; Harrison, T. Mark

    2016-01-01

    The Late Heavy Bombardment (LHB), a hypothesized impact spike at ∼3.9 Ga, is one of the major scientific concepts to emerge from Apollo-era lunar exploration. A significant portion of the evidence for the existence of the LHB comes from histograms of 40Ar/39Ar “plateau” ages (i.e., regions selected on the basis of apparent isochroneity). However, due to lunar magmatism and overprinting from subsequent impact events, virtually all Apollo-era samples show evidence for 40Ar/39Ar age spectrum disturbances, leaving open the possibility that partial 40Ar* resetting could bias interpretation of bombardment histories due to plateaus yielding misleadingly young ages. We examine this possibility through a physical model of 40Ar* diffusion in Apollo samples and test the uniqueness of the impact histories obtained by inverting plateau age histograms. Our results show that plateau histograms tend to yield age peaks, even in those cases where the input impact curve did not contain such a spike, in part due to the episodic nature of lunar crust or parent body formation. Restated, monotonically declining impact histories yield apparent age peaks that could be misinterpreted as LHB-type events. We further conclude that the assignment of apparent 40Ar/39Ar plateau ages bears an undesirably high degree of subjectivity. When compounded by inappropriate interpretations of histograms constructed from plateau ages, interpretation of apparent, but illusory, impact spikes is likely. PMID:27621460

  3. Control system of hexacopter using color histogram footprint and convolutional neural network

    NASA Astrophysics Data System (ADS)

    Ruliputra, R. N.; Darma, S.

    2017-07-01

    The development of unmanned aerial vehicles (UAV) has been growing rapidly in recent years. The use of logic thinking which is implemented into the program algorithms is needed to make a smart system. By using visual input from a camera, UAV is able to fly autonomously by detecting a target. However, some weaknesses arose as usage in the outdoor environment might change the target's color intensity. Color histogram footprint overcomes the problem because it divides color intensity into separate bins that make the detection tolerant to the slight change of color intensity. Template matching compare its detection result with a template of the reference image to determine the target position and use it to position the vehicle in the middle of the target with visual feedback control based on Proportional-Integral-Derivative (PID) controller. Color histogram footprint method localizes the target by calculating the back projection of its histogram. It has an average success rate of 77 % from a distance of 1 meter. It can position itself in the middle of the target by using visual feedback control with an average positioning time of 73 seconds. After the hexacopter is in the middle of the target, Convolutional Neural Networks (CNN) classifies a number contained in the target image to determine a task depending on the classified number, either landing, yawing, or return to launch. The recognition result shows an optimum success rate of 99.2 %.

  4. SU-F-T-340: Direct Editing of Dose Volume Histograms: Algorithms and a Unified Convex Formulation for Treatment Planning with Dose Constraints

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ungun, B; Stanford University School of Medicine, Stanford, CA; Fu, A

    2016-06-15

    Purpose: To develop a procedure for including dose constraints in convex programming-based approaches to treatment planning, and to support dynamic modification of such constraints during planning. Methods: We present a mathematical approach that allows mean dose, maximum dose, minimum dose and dose volume (i.e., percentile) constraints to be appended to any convex formulation of an inverse planning problem. The first three constraint types are convex and readily incorporated. Dose volume constraints are not convex, however, so we introduce a convex restriction that is related to CVaR-based approaches previously proposed in the literature. To compensate for the conservatism of this restriction,more » we propose a new two-pass algorithm that solves the restricted problem on a first pass and uses this solution to form exact constraints on a second pass. In another variant, we introduce slack variables for each dose constraint to prevent the problem from becoming infeasible when the user specifies an incompatible set of constraints. We implement the proposed methods in Python using the convex programming package cvxpy in conjunction with the open source convex solvers SCS and ECOS. Results: We show, for several cases taken from the clinic, that our proposed method meets specified constraints (often with margin) when they are feasible. Constraints are met exactly when we use the two-pass method, and infeasible constraints are replaced with the nearest feasible constraint when slacks are used. Finally, we introduce ConRad, a Python-embedded free software package for convex radiation therapy planning. ConRad implements the methods described above and offers a simple interface for specifying prescriptions and dose constraints. Conclusion: This work demonstrates the feasibility of using modifiable dose constraints in a convex formulation, making it practical to guide the treatment planning process with interactively specified dose constraints. This work was supported by the Stanford BioX Graduate Fellowship and NIH Grant 5R01CA176553.« less

  5. Anatomy-corresponding method of IMRT verification.

    PubMed

    Winiecki, Janusz; Zurawski, Zbigniew; Drzewiecka, Barbara; Slosarek, Krzysztof

    2010-01-01

    During a proper execution of dMLC plans, there occurs an undesired but frequent effect of the dose locally accumulated by tissue being significantly different than expected. The conventional dosimetric QA procedures give only a partial picture of the quality of IMRT treatment, because their solely quantitative outcomes usually correspond more to the total area of the detector than the actually irradiated volume. The aim of this investigation was to develop a procedure of dynamic plans verification which would be able to visualize the potential anomalies of dose distribution and specify which tissue they exactly refer to. The paper presents a method discovered and clinically examined in our department. It is based on a Gamma Evaluation concept and allows accurate localization of deviations between predicted and acquired dose distributions, which were registered by portal as well as film dosimetry. All the calculations were performed on the self-made software GammaEval, the γ-images (2-dimensional distribution of γ-values) and γ-histograms were created as quantitative outcomes of verification. Over 150 maps of dose distribution have been analyzed and the cross-examination of the gamma images with DRRs was performed. It seems, that the complex monitoring of treatment would be possible owing to the images obtained as a cross-examination of γ-images and corresponding DRRs.

  6. Next generation PET data acquisition architectures

    NASA Astrophysics Data System (ADS)

    Jones, W. F.; Reed, J. H.; Everman, J. L.; Young, J. W.; Seese, R. D.

    1997-06-01

    New architectures for higher performance data acquisition in PET are proposed. Improvements are demanded primarily by three areas of advancing PET state of the art. First, larger detector arrays such as the Hammersmith ECAT/sup (R/) EXACT HR/sup ++/ exceed the addressing capacity of 32 bit coincidence event words. Second, better scintillators (LSO) make depth-of interaction (DOI) and time-of-flight (TOF) operation more practical. Third, fully optimized single photon attenuation correction requires higher rates of data collection. New technologies which enable the proposed third generation Real Time Sorter (RTS III) include: (1) 80 Mbyte/sec Fibre Channel RAID disk systems, (2) PowerPC on both VMEbus and PCI Local bus, and (3) quadruple interleaved DRAM controller designs. Data acquisition flexibility is enhanced through a wider 64 bit coincidence event word. PET methodology support includes DOI (6 bits), TOF (6 bits), multiple energy windows (6 bits), 512/spl times/512 sinogram indexes (18 bits), and 256 crystal rings (16 bits). Throughput of 10 M events/sec is expected for list-mode data collection as well as both on-line and replay histogramming. Fully efficient list-mode storage for each PET application is provided by real-time bit packing of only the active event word bits. Real-time circuits provide DOI rebinning.

  7. Language and number: a bilingual training study.

    PubMed

    Spelke, E S; Tsivkin, S

    2001-01-01

    Three experiments investigated the role of a specific language in human representations of number. Russian-English bilingual college students were taught new numerical operations (Experiment 1), new arithmetic equations (Experiments 1 and 2), or new geographical or historical facts involving numerical or non-numerical information (Experiment 3). After learning a set of items in each of their two languages, subjects were tested for knowledge of those items, and new items, in both languages. In all the studies, subjects retrieved information about exact numbers more effectively in the language of training, and they solved trained problems more effectively than untrained problems. In contrast, subjects retrieved information about approximate numbers and non-numerical facts with equal efficiency in their two languages, and their training on approximate number facts generalized to new facts of the same type. These findings suggest that a specific, natural language contributes to the representation of large, exact numbers but not to the approximate number representations that humans share with other mammals. Language appears to play a role in learning about exact numbers in a variety of contexts, a finding with implications for practice in bilingual education. The findings prompt more general speculations about the role of language in the development of specifically human cognitive abilities.

  8. Conformally symmetric traversable wormholes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Boehmer, Christian G.; Harko, Tiberiu; Lobo, Francisco S. N.

    2007-10-15

    Exact solutions of traversable wormholes are found under the assumption of spherical symmetry and the existence of a nonstatic conformal symmetry, which presents a more systematic approach in searching for exact wormhole solutions. In this work, a wide variety of solutions are deduced by considering choices for the form function, a specific linear equation of state relating the energy density and the pressure anisotropy, and various phantom wormhole geometries are explored. A large class of solutions impose that the spatial distribution of the exotic matter is restricted to the throat neighborhood, with a cutoff of the stress-energy tensor at amore » finite junction interface, although asymptotically flat exact solutions are also found. Using the 'volume integral quantifier', it is found that the conformally symmetric phantom wormhole geometries may, in principle, be constructed by infinitesimally small amounts of averaged null energy condition violating matter. Considering the tidal acceleration traversability conditions for the phantom wormhole geometry, specific wormhole dimensions and the traversal velocity are also deduced.« less

  9. Moderated histogram equalization, an automatic means of enhancing the contrast in digital light micrographs reversibly.

    PubMed

    Entwistle, A

    2004-06-01

    A means for improving the contrast in the images produced from digital light micrographs is described that requires no intervention by the experimenter: zero-order, scaling, tonally independent, moderated histogram equalization. It is based upon histogram equalization, which often results in digital light micrographs that contain regions that appear to be saturated, negatively biased or very grainy. Here a non-decreasing monotonic function is introduced into the process, which moderates the changes in contrast that are generated. This method is highly effective for all three of the main types of contrast found in digital light micrography: bright objects viewed against a dark background, e.g. fluorescence and dark-ground or dark-field image data sets; bright and dark objects sets against a grey background, e.g. image data sets collected with phase or Nomarski differential interference contrast optics; and darker objects set against a light background, e.g. views of absorbing specimens. Moreover, it is demonstrated that there is a single fixed moderating function, whose actions are independent of the number of elements of image data, which works well with all types of digital light micrographs, including multimodal or multidimensional image data sets. The use of this fixed function is very robust as the appearance of the final image is not altered discernibly when it is applied repeatedly to an image data set. Consequently, moderated histogram equalization can be applied to digital light micrographs as a push-button solution, thereby eliminating biases that those undertaking the processing might have introduced during manual processing. Finally, moderated histogram equalization yields a mapping function and so, through the use of look-up tables, indexes or palettes, the information present in the original data file can be preserved while an image with the improved contrast is displayed on the monitor screen.

  10. SU-G-BRC-08: Evaluation of Dose Mass Histogram as a More Representative Dose Description Method Than Dose Volume Histogram in Lung Cancer Patients

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Liu, J; Eldib, A; Ma, C

    2016-06-15

    Purpose: Dose-volume-histogram (DVH) is widely used for plan evaluation in radiation treatment. The concept of dose-mass-histogram (DMH) is expected to provide a more representative description as it accounts for heterogeneity in tissue density. This study is intended to assess the difference between DVH and DMH for evaluating treatment planning quality. Methods: 12 lung cancer treatment plans were exported from the treatment planning system. DVHs for the planning target volume (PTV), the normal lung and other structures of interest were calculated. DMHs were calculated in a similar way as DVHs expect that the voxel density converted from the CT number wasmore » used in tallying the dose histogram bins. The equivalent uniform dose (EUD) was calculated based on voxel volume and mass, respectively. The normal tissue complication probability (NTCP) in relation to the EUD was calculated for the normal lung to provide quantitative comparison of DVHs and DMHs for evaluating the radiobiological effect. Results: Large differences were observed between DVHs and DMHs for lungs and PTVs. For PTVs with dense tumor cores, DMHs are higher than DVHs due to larger mass weighing in the high dose conformal core regions. For the normal lungs, DMHs can either be higher or lower than DVHs depending on the target location within the lung. When the target is close to the lower lung, DMHs show higher values than DVHs because the lower lung has higher density than the central portion or the upper lung. DMHs are lower than DVHs for targets in the upper lung. The calculated NTCPs showed a large range of difference between DVHs and DMHs. Conclusion: The heterogeneity of lung can be well considered using DMH for evaluating target coverage and normal lung pneumonitis. Further studies are warranted to quantify the benefits of DMH over DVH for plan quality evaluation.« less

  11. Quantitative Image Quality and Histogram-Based Evaluations of an Iterative Reconstruction Algorithm at Low-to-Ultralow Radiation Dose Levels: A Phantom Study in Chest CT

    PubMed Central

    Lee, Ki Baek

    2018-01-01

    Objective To describe the quantitative image quality and histogram-based evaluation of an iterative reconstruction (IR) algorithm in chest computed tomography (CT) scans at low-to-ultralow CT radiation dose levels. Materials and Methods In an adult anthropomorphic phantom, chest CT scans were performed with 128-section dual-source CT at 70, 80, 100, 120, and 140 kVp, and the reference (3.4 mGy in volume CT Dose Index [CTDIvol]), 30%-, 60%-, and 90%-reduced radiation dose levels (2.4, 1.4, and 0.3 mGy). The CT images were reconstructed by using filtered back projection (FBP) algorithms and IR algorithm with strengths 1, 3, and 5. Image noise, signal-to-noise ratio (SNR), and contrast-to-noise ratio (CNR) were statistically compared between different dose levels, tube voltages, and reconstruction algorithms. Moreover, histograms of subtraction images before and after standardization in x- and y-axes were visually compared. Results Compared with FBP images, IR images with strengths 1, 3, and 5 demonstrated image noise reduction up to 49.1%, SNR increase up to 100.7%, and CNR increase up to 67.3%. Noteworthy image quality degradations on IR images including a 184.9% increase in image noise, 63.0% decrease in SNR, and 51.3% decrease in CNR, and were shown between 60% and 90% reduced levels of radiation dose (p < 0.0001). Subtraction histograms between FBP and IR images showed progressively increased dispersion with increased IR strength and increased dose reduction. After standardization, the histograms appeared deviated and ragged between FBP images and IR images with strength 3 or 5, but almost normally-distributed between FBP images and IR images with strength 1. Conclusion The IR algorithm may be used to save radiation doses without substantial image quality degradation in chest CT scanning of the adult anthropomorphic phantom, down to approximately 1.4 mGy in CTDIvol (60% reduced dose). PMID:29354008

  12. The extended Einstein-Maxwell-aether-axion model: Exact solutions for axionically controlled pp-wave aether modes

    NASA Astrophysics Data System (ADS)

    Balakin, Alexander B.

    2018-03-01

    The extended Einstein-Maxwell-aether-axion model describes internal interactions inside the system, which contains gravitational, electromagnetic fields, the dynamic unit vector field describing the velocity of an aether, and the pseudoscalar field associated with the axionic dark matter. The specific feature of this model is that the axion field controls the dynamics of the aether through the guiding functions incorporated into Jacobson’s constitutive tensor. Depending on the state of the axion field, these guiding functions can control and switch on or switch off the influence of acceleration, shear, vorticity and expansion of the aether flow on the state of physical system as a whole. We obtain new exact solutions, which possess the pp-wave symmetry, and indicate them by the term pp-wave aether modes in contrast to the pure pp-waves, which cannot propagate in this field conglomerate. These exact solutions describe a specific dynamic state of the pseudoscalar field, which corresponds to one of the minima of the axion potential and switches off the influence of shear and expansion of the aether flow; the model does not impose restrictions on Jacobson’s coupling constants and on the axion mass. Properties of these new exact solutions are discussed.

  13. Improving Sector Hash Carving with Rule-Based and Entropy-Based Non-Probative Block Filters

    DTIC Science & Technology

    2015-03-01

    0x20 exceeds the histogram rule’s threshold of 256 instances of a single 4-byte value. The 0x20 bytes are part of an Extensible Metadata Platform (XMP...block consists of data separated by NULL bytes of padding. The histogram rule is triggered for the block because the block contains more than 256 4...sdash can reduce the rate of false positive matches. After characteristic features have been selected, the features are hashed using SHA -1, which creates

  14. Intensity Modulated Radiation Treatment of Prostate Cancer Guided by High Field MR Spectroscopic Imaging

    DTIC Science & Technology

    2006-05-01

    d). (e) In the histogram analysis eld units are observed initially for voxels located on the d to 250 Hounsfield units.ses (a) el the tration...CT10, CT20, and CT30. Histogram ximum difference of 250 Hounsfield units . Only 0.01% d units.d imag ts a mand finite-element model. The fluid flow...cause Hounsfield unit calibration problems. While this does not seem to influence the image registration, the use of CBCT for dose calculation should

  15. Digital enhancement of computerized axial tomograms

    NASA Technical Reports Server (NTRS)

    Roberts, E., Jr.

    1978-01-01

    A systematic evaluation was conducted of certain digital image enhancement techniques performed in image space. Three types of images were used, computer generated phantoms, tomograms of a synthetic phantom, and axial tomograms of human anatomy containing images of lesions, artificially introduced into the tomograms. Several types of smoothing, sharpening, and histogram modification were explored. It was concluded that the most useful enhancement techniques are a selective smoothing of singular picture elements, combined with contrast manipulation. The most useful tool in applying these techniques is the gray-scale histogram.

  16. Automated Weather Observing System (AWOS) Demonstration Program.

    DTIC Science & Technology

    1984-09-01

    month "bur:-in" r "debugging" period and a 10-month ’usefu I life " period. Fhe butrn- in pr i ,J was i sed to establish the Data Acquisition System...Histograms. Histograms provide a graphical means of showing how well the probability distribution of residu : , approaches a normal or Gaussian distribution...Organization Report No. 7- Author’s) Paul .J. O t Brien et al. DOT/FAA/CT-84/20 9. Performing Organlzation Name and Address 10. Work Unit No. (TRAIS

  17. optBINS: Optimal Binning for histograms

    NASA Astrophysics Data System (ADS)

    Knuth, Kevin H.

    2018-03-01

    optBINS (optimal binning) determines the optimal number of bins in a uniform bin-width histogram by deriving the posterior probability for the number of bins in a piecewise-constant density model after assigning a multinomial likelihood and a non-informative prior. The maximum of the posterior probability occurs at a point where the prior probability and the the joint likelihood are balanced. The interplay between these opposing factors effectively implements Occam's razor by selecting the most simple model that best describes the data.

  18. WASP (Write a Scientific Paper) using Excel - 4: Histograms.

    PubMed

    Grech, Victor

    2018-02-01

    Plotting data into graphs is a crucial step in data analysis as part of an initial descriptive statistics exercise since it gives the researcher an overview of the shape and nature of the data. Outlier values may also be identified, and these may be incorrect data, or true and important outliers. This paper explains how to access Microsoft Excel's Analysis Toolpak and provides some pointers for the utilisation of the histogram tool within the Toolpak. Copyright © 2018. Published by Elsevier B.V.

  19. Modulation Based on Probability Density Functions

    NASA Technical Reports Server (NTRS)

    Williams, Glenn L.

    2009-01-01

    A proposed method of modulating a sinusoidal carrier signal to convey digital information involves the use of histograms representing probability density functions (PDFs) that characterize samples of the signal waveform. The method is based partly on the observation that when a waveform is sampled (whether by analog or digital means) over a time interval at least as long as one half cycle of the waveform, the samples can be sorted by frequency of occurrence, thereby constructing a histogram representing a PDF of the waveform during that time interval.

  20. Flood Detection/Monitoring Using Adjustable Histogram Equalization Technique

    PubMed Central

    Riaz, Muhammad Mohsin; Ghafoor, Abdul

    2014-01-01

    Flood monitoring technique using adjustable histogram equalization is proposed. The technique overcomes the limitations (overenhancement, artifacts, and unnatural look) of existing technique by adjusting the contrast of images. The proposed technique takes pre- and postimages and applies different processing steps for generating flood map without user interaction. The resultant flood maps can be used for flood monitoring and detection. Simulation results show that the proposed technique provides better output quality compared to the state of the art existing technique. PMID:24558332

  1. Responsiveness to Change of Functional Limitation Reporting: Cross-sectional Study Using the Intermountain ROMS Scale in Outpatient Rehabilitation.

    PubMed

    Brennan, Gerard P; Hunter, Stephen J; Snow, Greg; Minick, Kate I

    2017-12-01

    The Centers for Medicare and Medicaid Services (CMS) require physical therapists document patients' functional limitations. The process is not standardized. 
A systematic approach to determine a patient's functional limitations and responsiveness to change is needed. The purpose of this study is to compare patient-reported outcomes (PROs) responsiveness to change using 7-level severity/complexity modifier scale proposed by Medicare to a derived scale implemented by Intermountain Healthcare's Rehabilitation Outcomes Management System (ROMS). This was a retrospective, observational cohort design. 165,183 PROs prior to July 1, 2013, were compared to 46,334 records from July 1, 2013, to December 31, 2015. Histograms and ribbon plots illustrate distribution and change of patients' scores. ROMS raw score ranges were calculated and compared to CMS' severity/complexity levels based on score percentage. Distribution of the population was compared based on the 2 methods. Sensitivity and specificity were compared for responsiveness to change based on minimal clinically important difference (MCID). Histograms demonstrated few patient scores placed in CMS scale levels at the extremes, whereas the majority of scores placed in 2 middle levels (CJ, CK). ROMS distributed scores more evenly across levels. Ribbon plots illustrated advantage of ROMS' using narrower score ranges. Greater chance for patients to change levels was observed with ROMS when an MCID was achieved. ROMS narrower scale levels resulted in greater sensitivity and good specificity. Geographic representation for the United States was limited. Without patients' global rating of change, a reference standard to gauge validation of improvement could not be provided. ROMS provides a standard approach to identify accurately functional limitation modifier levels and to detect improvement more accurately than a straight across transposition using the CMS scale. © 2017 American Physical Therapy Association

  2. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Doebling, Scott William

    This paper documents the escape of high explosive (HE) products problem. The problem, first presented by Fickett & Rivard, tests the implementation and numerical behavior of a high explosive detonation and energy release model and its interaction with an associated compressible hydrodynamics simulation code. The problem simulates the detonation of a finite-length, one-dimensional piece of HE that is driven by a piston from one end and adjacent to a void at the other end. The HE equation of state is modeled as a polytropic ideal gas. The HE detonation is assumed to be instantaneous with an infinitesimal reaction zone. Viamore » judicious selection of the material specific heat ratio, the problem has an exact solution with linear characteristics, enabling a straightforward calculation of the physical variables as a function of time and space. Lastly, implementation of the exact solution in the Python code ExactPack is discussed, as are verification cases for the exact solution code.« less

  3. A flower image retrieval method based on ROI feature.

    PubMed

    Hong, An-Xiang; Chen, Gang; Li, Jun-Li; Chi, Zhe-Ru; Zhang, Dan

    2004-07-01

    Flower image retrieval is a very important step for computer-aided plant species recognition. In this paper, we propose an efficient segmentation method based on color clustering and domain knowledge to extract flower regions from flower images. For flower retrieval, we use the color histogram of a flower region to characterize the color features of flower and two shape-based features sets, Centroid-Contour Distance (CCD) and Angle Code Histogram (ACH), to characterize the shape features of a flower contour. Experimental results showed that our flower region extraction method based on color clustering and domain knowledge can produce accurate flower regions. Flower retrieval results on a database of 885 flower images collected from 14 plant species showed that our Region-of-Interest (ROI) based retrieval approach using both color and shape features can perform better than a method based on the global color histogram proposed by Swain and Ballard (1991) and a method based on domain knowledge-driven segmentation and color names proposed by Das et al.(1999).

  4. High capacity reversible watermarking for audio by histogram shifting and predicted error expansion.

    PubMed

    Wang, Fei; Xie, Zhaoxin; Chen, Zuo

    2014-01-01

    Being reversible, the watermarking information embedded in audio signals can be extracted while the original audio data can achieve lossless recovery. Currently, the few reversible audio watermarking algorithms are confronted with following problems: relatively low SNR (signal-to-noise) of embedded audio; a large amount of auxiliary embedded location information; and the absence of accurate capacity control capability. In this paper, we present a novel reversible audio watermarking scheme based on improved prediction error expansion and histogram shifting. First, we use differential evolution algorithm to optimize prediction coefficients and then apply prediction error expansion to output stego data. Second, in order to reduce location map bits length, we introduced histogram shifting scheme. Meanwhile, the prediction error modification threshold according to a given embedding capacity can be computed by our proposed scheme. Experiments show that this algorithm improves the SNR of embedded audio signals and embedding capacity, drastically reduces location map bits length, and enhances capacity control capability.

  5. Spatial detection of tv channel logos as outliers from the content

    NASA Astrophysics Data System (ADS)

    Ekin, Ahmet; Braspenning, Ralph

    2006-01-01

    This paper proposes a purely image-based TV channel logo detection algorithm that can detect logos independently from their motion and transparency features. The proposed algorithm can robustly detect any type of logos, such as transparent and animated, without requiring any temporal constraints whereas known methods have to wait for the occurrence of large motion in the scene and assume stationary logos. The algorithm models logo pixels as outliers from the actual scene content that is represented by multiple 3-D histograms in the YC BC R space. We use four scene histograms corresponding to each of the four corners because the content characteristics change from one image corner to another. A further novelty of the proposed algorithm is that we define image corners and the areas where we compute the scene histograms by a cinematic technique called Golden Section Rule that is used by professionals. The robustness of the proposed algorithm is demonstrated over a dataset of representative TV content.

  6. Object-based change detection method using refined Markov random field

    NASA Astrophysics Data System (ADS)

    Peng, Daifeng; Zhang, Yongjun

    2017-01-01

    In order to fully consider the local spatial constraints between neighboring objects in object-based change detection (OBCD), an OBCD approach is presented by introducing a refined Markov random field (MRF). First, two periods of images are stacked and segmented to produce image objects. Second, object spectral and textual histogram features are extracted and G-statistic is implemented to measure the distance among different histogram distributions. Meanwhile, object heterogeneity is calculated by combining spectral and textual histogram distance using adaptive weight. Third, an expectation-maximization algorithm is applied for determining the change category of each object and the initial change map is then generated. Finally, a refined change map is produced by employing the proposed refined object-based MRF method. Three experiments were conducted and compared with some state-of-the-art unsupervised OBCD methods to evaluate the effectiveness of the proposed method. Experimental results demonstrate that the proposed method obtains the highest accuracy among the methods used in this paper, which confirms its validness and effectiveness in OBCD.

  7. Exploring gravitational lensing model variations in the Frontier Fields galaxy clusters

    NASA Astrophysics Data System (ADS)

    Harris James, Nicholas John; Raney, Catie; Brennan, Sean; Keeton, Charles

    2018-01-01

    Multiple groups have been working on modeling the mass distributions of the six lensing galaxy clusters in the Hubble Space Telescope Frontier Fields data set. The magnification maps produced from these mass models will be important for the future study of the lensed background galaxies, but there exists significant variation in the different groups’ models and magnification maps. We explore the use of two-dimensional histograms as a tool for visualizing these magnification map variations. Using a number of simple, one- or two-halo singular isothermal sphere models, we explore the features that are produced in 2D histogram model comparisons when parameters such as halo mass, ellipticity, and location are allowed to vary. Our analysis demonstrates the potential of 2D histograms as a means of observing the full range of differences between the Frontier Fields groups’ models.This work has been supported by funding from National Science Foundation grants PHY-1560077 and AST-1211385, and from the Space Telescope Science Institute.

  8. An improved contrast enhancement algorithm for infrared images based on adaptive double plateaus histogram equalization

    NASA Astrophysics Data System (ADS)

    Li, Shuo; Jin, Weiqi; Li, Li; Li, Yiyang

    2018-05-01

    Infrared thermal images can reflect the thermal-radiation distribution of a particular scene. However, the contrast of the infrared images is usually low. Hence, it is generally necessary to enhance the contrast of infrared images in advance to facilitate subsequent recognition and analysis. Based on the adaptive double plateaus histogram equalization, this paper presents an improved contrast enhancement algorithm for infrared thermal images. In the proposed algorithm, the normalized coefficient of variation of the histogram, which characterizes the level of contrast enhancement, is introduced as feedback information to adjust the upper and lower plateau thresholds. The experiments on actual infrared images show that compared to the three typical contrast-enhancement algorithms, the proposed algorithm has better scene adaptability and yields better contrast-enhancement results for infrared images with more dark areas or a higher dynamic range. Hence, it has high application value in contrast enhancement, dynamic range compression, and digital detail enhancement for infrared thermal images.

  9. Color image enhancement based on particle swarm optimization with Gaussian mixture

    NASA Astrophysics Data System (ADS)

    Kattakkalil Subhashdas, Shibudas; Choi, Bong-Seok; Yoo, Ji-Hoon; Ha, Yeong-Ho

    2015-01-01

    This paper proposes a Gaussian mixture based image enhancement method which uses particle swarm optimization (PSO) to have an edge over other contemporary methods. The proposed method uses the guassian mixture model to model the lightness histogram of the input image in CIEL*a*b* space. The intersection points of the guassian components in the model are used to partition the lightness histogram. . The enhanced lightness image is generated by transforming the lightness value in each interval to appropriate output interval according to the transformation function that depends on PSO optimized parameters, weight and standard deviation of Gaussian component and cumulative distribution of the input histogram interval. In addition, chroma compensation is applied to the resulting image to reduce washout appearance. Experimental results show that the proposed method produces a better enhanced image compared to the traditional methods. Moreover, the enhanced image is free from several side effects such as washout appearance, information loss and gradation artifacts.

  10. Random walk numerical simulation for hopping transport at finite carrier concentrations: diffusion coefficient and transport energy concept.

    PubMed

    Gonzalez-Vazquez, J P; Anta, Juan A; Bisquert, Juan

    2009-11-28

    The random walk numerical simulation (RWNS) method is used to compute diffusion coefficients for hopping transport in a fully disordered medium at finite carrier concentrations. We use Miller-Abrahams jumping rates and an exponential distribution of energies to compute the hopping times in the random walk simulation. The computed diffusion coefficient shows an exponential dependence with respect to Fermi-level and Arrhenius behavior with respect to temperature. This result indicates that there is a well-defined transport level implicit to the system dynamics. To establish the origin of this transport level we construct histograms to monitor the energies of the most visited sites. In addition, we construct "corrected" histograms where backward moves are removed. Since these moves do not contribute to transport, these histograms provide a better estimation of the effective transport level energy. The analysis of this concept in connection with the Fermi-level dependence of the diffusion coefficient and the regime of interest for the functioning of dye-sensitised solar cells is thoroughly discussed.

  11. A low-dispersion, exactly energy-charge-conserving semi-implicit relativistic particle-in-cell algorithm

    NASA Astrophysics Data System (ADS)

    Chen, Guangye; Luis, Chacon; Bird, Robert; Stark, David; Yin, Lin; Albright, Brian

    2017-10-01

    Leap-frog based explicit algorithms, either ``energy-conserving'' or ``momentum-conserving'', do not conserve energy discretely. Time-centered fully implicit algorithms can conserve discrete energy exactly, but introduce large dispersion errors in the light-wave modes, regardless of timestep sizes. This can lead to intolerable simulation errors where highly accurate light propagation is needed (e.g. laser-plasma interactions, LPI). In this study, we selectively combine the leap-frog and Crank-Nicolson methods to produce a low-dispersion, exactly energy-and-charge-conserving PIC algorithm. Specifically, we employ the leap-frog method for Maxwell equations, and the Crank-Nicolson method for particle equations. Such an algorithm admits exact global energy conservation, exact local charge conservation, and preserves the dispersion properties of the leap-frog method for the light wave. The algorithm has been implemented in a code named iVPIC, based on the VPIC code developed at LANL. We will present numerical results that demonstrate the properties of the scheme with sample test problems (e.g. Weibel instability run for 107 timesteps, and LPI applications.

  12. Exact closed-form solutions of a fully nonlinear asymptotic two-fluid model

    NASA Astrophysics Data System (ADS)

    Cheviakov, Alexei F.

    2018-05-01

    A fully nonlinear model of Choi and Camassa (1999) describing one-dimensional incompressible dynamics of two non-mixing fluids in a horizontal channel, under a shallow water approximation, is considered. An equivalence transformation is presented, leading to a special dimensionless form of the system, involving a single dimensionless constant physical parameter, as opposed to five parameters present in the original model. A first-order dimensionless ordinary differential equation describing traveling wave solutions is analyzed. Several multi-parameter families of physically meaningful exact closed-form solutions of the two-fluid model are derived, corresponding to periodic, solitary, and kink-type bidirectional traveling waves; specific examples are given, and properties of the exact solutions are analyzed.

  13. The value of whole lesion ADC histogram profiling to differentiate between morphologically indistinguishable ring enhancing lesions-comparison of glioblastomas and brain abscesses.

    PubMed

    Horvath-Rizea, Diana; Surov, Alexey; Hoffmann, Karl-Titus; Garnov, Nikita; Vörkel, Cathrin; Kohlhof-Meinecke, Patricia; Ganslandt, Oliver; Bäzner, Hansjörg; Gihr, Georg Alexander; Kalman, Marcell; Henkes, Elina; Henkes, Hans; Schob, Stefan

    2018-04-06

    Morphologically similar appearing ring enhancing lesions in the brain parenchyma can be caused by a number of distinct pathologies, however, they consistently represent life-threatening conditions. The two most frequently encountered diseases manifesting as such are glioblastoma multiforme (GBM) and brain abscess (BA), each requiring disparate therapeutical approaches. As a result of their morphological resemblance, essential treatment might be significantly delayed or even ommited, in case results of conventional imaging remain inconclusive. Therefore, our study aimed to investigate, whether ADC histogram profiling reliably can distinguish between both entities, thus enhancing the differential diagnostic process and preventing treatment failure in this highly critical context. 103 patients (51 BA, 52 GBM) with histopathologically confirmed diagnosis were enrolled. Pretreatment diffusion weighted imaging (DWI) was obtained in a 1.5T system using b values of 0, 500, and 1000 s/mm 2 . Whole lesion ADC volumes were analyzed using a histogram-based approach. Statistical analysis was performed using SPSS version 23. All investigated parameters were statistically different in comparison of both groups. Most importantly, ADCp10 was able to differentiate reliably between BA and GBM with excellent accuracy (0.948) using a cutpoint value of 70 × 10 -5 mm 2 × s -1 . ADC whole lesion histogram profiling provides a valuable tool to differentiate between morphologically indistinguishable mass lesions. Among the investigated parameters, the 10th percentile of the ADC volume distinguished best between GBM and BA.

  14. Whole lesion histogram analysis of meningiomas derived from ADC values. Correlation with several cellularity parameters, proliferation index KI 67, nucleic content, and membrane permeability.

    PubMed

    Surov, Alexey; Hamerla, Gordian; Meyer, Hans Jonas; Winter, Karsten; Schob, Stefan; Fiedler, Eckhard

    2018-09-01

    To analyze several histopathological features and their possible correlations with whole lesion histogram analysis derived from ADC maps in meningioma. The retrospective study involved 36 patients with primary meningiomas. For every tumor, the following histogram analysis parameters of apparent diffusion coefficient (ADC) were calculated: ADC mean , ADC max , ADC min , ADC median , ADC mode , ADC percentiles: P10, P25, P75, P90, as well kurtosis, skewness, and entropy. All measures were performed by two radiologists. Proliferation index KI 67, minimal, maximal and mean cell count, total nucleic area, and expression of water channel aquaporin 4 (AQP4) were estimated. Spearman's correlation coefficient was used to analyze associations between investigated parameters. A perfect interobserver agreement for all ADC values (0.84-0.97) was identified. All ADC values correlated inversely with tumor cellularity with the strongest correlation between P10, P25 and mean cell count (-0.558). KI 67 correlated inversely with all ADC values except ADC min . ADC parameters did not correlate with total nucleic area. All ADC values correlated statistically significant with expression of AQP4. ADC histogram analysis is a valid method with an excellent interobserver agreement. Cellularity parameters and proliferation potential are associated with different ADC values. Membrane permeability may play a greater role for water diffusion than cell count and proliferation activity. Copyright © 2018 Elsevier Inc. All rights reserved.

  15. Three-Dimensional Object Recognition and Registration for Robotic Grasping Systems Using a Modified Viewpoint Feature Histogram

    PubMed Central

    Chen, Chin-Sheng; Chen, Po-Chun; Hsu, Chih-Ming

    2016-01-01

    This paper presents a novel 3D feature descriptor for object recognition and to identify poses when there are six-degrees-of-freedom for mobile manipulation and grasping applications. Firstly, a Microsoft Kinect sensor is used to capture 3D point cloud data. A viewpoint feature histogram (VFH) descriptor for the 3D point cloud data then encodes the geometry and viewpoint, so an object can be simultaneously recognized and registered in a stable pose and the information is stored in a database. The VFH is robust to a large degree of surface noise and missing depth information so it is reliable for stereo data. However, the pose estimation for an object fails when the object is placed symmetrically to the viewpoint. To overcome this problem, this study proposes a modified viewpoint feature histogram (MVFH) descriptor that consists of two parts: a surface shape component that comprises an extended fast point feature histogram and an extended viewpoint direction component. The MVFH descriptor characterizes an object’s pose and enhances the system’s ability to identify objects with mirrored poses. Finally, the refined pose is further estimated using an iterative closest point when the object has been recognized and the pose roughly estimated by the MVFH descriptor and it has been registered on a database. The estimation results demonstrate that the MVFH feature descriptor allows more accurate pose estimation. The experiments also show that the proposed method can be applied in vision-guided robotic grasping systems. PMID:27886080

  16. Detection of white spot lesions by segmenting laser speckle images using computer vision methods.

    PubMed

    Gavinho, Luciano G; Araujo, Sidnei A; Bussadori, Sandra K; Silva, João V P; Deana, Alessandro M

    2018-05-05

    This paper aims to develop a method for laser speckle image segmentation of tooth surfaces for diagnosis of early stages caries. The method, applied directly to a raw image obtained by digital photography, is based on the difference between the speckle pattern of a carious lesion tooth surface area and that of a sound area. Each image is divided into blocks which are identified in a working matrix by their χ 2 distance between block histograms of the analyzed image and the reference histograms previously obtained by K-means from healthy (h_Sound) and lesioned (h_Decay) areas, separately. If the χ 2 distance between a block histogram and h_Sound is greater than the distance to h_Decay, this block is marked as decayed. The experiments showed that the method can provide effective segmentation for initial lesions. We used 64 images to test the algorithm and we achieved 100% accuracy in segmentation. Differences between the speckle pattern of a sound tooth surface region and a carious region, even in the early stage, can be evidenced by the χ 2 distance between histograms. This method proves to be more effective for segmenting the laser speckle image, which enhances the contrast between sound and lesioned tissues. The results were obtained with low computational cost. The method has the potential for early diagnosis in a clinical environment, through the development of low-cost portable equipment.

  17. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sinitsyn, N. A.

    We consider nonadiabatic transitions in explicitly time-dependent systems with Hamiltonians of the form Hˆ(t)=Aˆ+Bˆt+Cˆ/t, where t is time and Aˆ,Bˆ,Cˆ are Hermitian N × N matrices. We show that in any model of this type, scattering matrix elements satisfy nontrivial exact constraints that follow from the absence of the Stokes phenomenon for solutions with specific conditions at t→–∞. This allows one to continue such solutions analytically to t→+∞, and connect their asymptotic behavior at t→–∞ and t→+∞. This property becomes particularly useful when a model shows additional discrete symmetries. Specifically, we derive a number of simple exact constraints and explicitmore » expressions for scattering probabilities in such systems.« less

  18. Apparent Diffusion Coefficient Histograms of Human Papillomavirus-Positive and Human Papillomavirus-Negative Head and Neck Squamous Cell Carcinoma: Assessment of Tumor Heterogeneity and Comparison with Histopathology.

    PubMed

    de Perrot, T; Lenoir, V; Domingo Ayllón, M; Dulguerov, N; Pusztaszeri, M; Becker, M

    2017-11-01

    Head and neck squamous cell carcinoma associated with human papillomavirus infection represents a distinct tumor entity. We hypothesized that diffusion phenotypes based on the histogram analysis of ADC values reflect distinct degrees of tumor heterogeneity in human papillomavirus-positive and human papillomavirus-negative head and neck squamous cell carcinomas. One hundred five consecutive patients (mean age, 64 years; range, 45-87 years) with primary oropharyngeal ( n = 52) and oral cavity ( n = 53) head and neck squamous cell carcinoma underwent MR imaging with anatomic and diffusion-weighted sequences ( b = 0, b = 1000 s/mm 2 , monoexponential ADC calculation). The collected tumor voxels from the contoured ROIs provided histograms from which position, dispersion, and form parameters were computed. Histogram data were correlated with histopathology, p16-immunohistochemistry, and polymerase chain reaction for human papillomavirus DNA. There were 21 human papillomavirus-positive and 84 human papillomavirus-negative head and neck squamous cell carcinomas. At histopathology, human papillomavirus-positive cancers were more often nonkeratinizing (13/21, 62%) than human papillomavirus-negative cancers (19/84, 23%; P = .001), and their mitotic index was higher (71% versus 49%; P = .005). ROI-based mean and median ADCs were significantly lower in human papillomavirus-positive (1014 ± 178 × 10 -6 mm 2 /s and 970 ± 187 × 10 -6 mm 2 /s, respectively) than in human papillomavirus-negative tumors (1184 ± 168 × 10 -6 mm 2 /s and 1161 ± 175 × 10 -6 mm 2 /s, respectively; P < .001), whereas excess kurtosis and skewness were significantly higher in human papillomavirus-positive (1.934 ± 1.386 and 0.923 ± 0.510, respectively) than in human papillomavirus-negative tumors (0.643 ± 0.982 and 0.399 ± 0.516, respectively; P < .001). Human papillomavirus-negative head and neck squamous cell carcinoma had symmetric normally distributed ADC histograms, which corresponded histologically to heterogeneous tumors with variable cellularity, high stromal component, keratin pearls, and necrosis. Human papillomavirus-positive head and neck squamous cell carcinomas had leptokurtic skewed right histograms, which corresponded to homogeneous tumors with back-to-back densely packed cells, scant stromal component, and scattered comedonecrosis. Diffusion phenotypes of human papillomavirus-positive and human papillomavirus-negative head and neck squamous cell carcinomas show significant differences, which reflect their distinct degree of tumor heterogeneity. © 2017 by American Journal of Neuroradiology.

  19. Measuring kinetics of complex single ion channel data using mean-variance histograms.

    PubMed Central

    Patlak, J B

    1993-01-01

    The measurement of single ion channel kinetics is difficult when those channels exhibit subconductance events. When the kinetics are fast, and when the current magnitudes are small, as is the case for Na+, Ca2+, and some K+ channels, these difficulties can lead to serious errors in the estimation of channel kinetics. I present here a method, based on the construction and analysis of mean-variance histograms, that can overcome these problems. A mean-variance histogram is constructed by calculating the mean current and the current variance within a brief "window" (a set of N consecutive data samples) superimposed on the digitized raw channel data. Systematic movement of this window over the data produces large numbers of mean-variance pairs which can be assembled into a two-dimensional histogram. Defined current levels (open, closed, or sublevel) appear in such plots as low variance regions. The total number of events in such low variance regions is estimated by curve fitting and plotted as a function of window width. This function decreases with the same time constants as the original dwell time probability distribution for each of the regions. The method can therefore be used: 1) to present a qualitative summary of the single channel data from which the signal-to-noise ratio, open channel noise, steadiness of the baseline, and number of conductance levels can be quickly determined; 2) to quantify the dwell time distribution in each of the levels exhibited. In this paper I present the analysis of a Na+ channel recording that had a number of complexities. The signal-to-noise ratio was only about 8 for the main open state, open channel noise, and fast flickers to other states were present, as were a substantial number of subconductance states. "Standard" half-amplitude threshold analysis of these data produce open and closed time histograms that were well fitted by the sum of two exponentials, but with apparently erroneous time constants, whereas the mean-variance histogram technique provided a more credible analysis of the open, closed, and subconductance times for the patch. I also show that the method produces accurate results on simulated data in a wide variety of conditions, whereas the half-amplitude method, when applied to complex simulated data shows the same errors as were apparent in the real data. The utility and the limitations of this new method are discussed. Images FIGURE 2 FIGURE 4 FIGURE 8 FIGURE 9 PMID:7690261

  20. Tantra yukti method of theorization in ayurveda.

    PubMed

    Singh, Anuradha

    2003-01-01

    Method of theorization (Tantra Yukti-s given in Ayurvedic texts) is analyzed in the backdrop of scientific method. Thirty six methodic devices are singled out from texts for analysis in terms of truth specific, theory specific and discourse specific issues. The paper also points out exact problems in conception of method in Ayurveda and Science.

  1. Landmark Detection in Orbital Images Using Salience Histograms

    NASA Technical Reports Server (NTRS)

    Wagstaff, Kiri L.; Panetta, Julian; Schorghofer, Norbert; Greeley, Ronald; PendletonHoffer, Mary; bunte, Melissa

    2010-01-01

    NASA's planetary missions have collected, and continue to collect, massive volumes of orbital imagery. The volume is such that it is difficult to manually review all of the data and determine its significance. As a result, images are indexed and searchable by location and date but generally not by their content. A new automated method analyzes images and identifies "landmarks," or visually salient features such as gullies, craters, dust devil tracks, and the like. This technique uses a statistical measure of salience derived from information theory, so it is not associated with any specific landmark type. It identifies regions that are unusual or that stand out from their surroundings, so the resulting landmarks are context-sensitive areas that can be used to recognize the same area when it is encountered again. A machine learning classifier is used to identify the type of each discovered landmark. Using a specified window size, an intensity histogram is computed for each such window within the larger image (sliding the window across the image). Next, a salience map is computed that specifies, for each pixel, the salience of the window centered at that pixel. The salience map is thresholded to identify landmark contours (polygons) using the upper quartile of salience values. Descriptive attributes are extracted for each landmark polygon: size, perimeter, mean intensity, standard deviation of intensity, and shape features derived from an ellipse fit.

  2. Hierarchical brain tissue segmentation and its application in multiple sclerosis and Alzheimer's disease

    NASA Astrophysics Data System (ADS)

    Lei, Tianhu; Udupa, Jayaram K.; Moonis, Gul; Schwartz, Eric; Balcer, Laura

    2005-04-01

    Based on Fuzzy Connectedness (FC) object delineation principles and algorithms, a hierarchical brain tissue segmentation technique has been developed for MR images. After MR image background intensity inhomogeneity correction and intensity standardization, three FC objects for cerebrospinal fluid (CSF), gray matter (GM), and white matter (WM) are generated via FC object delineation, and an intracranial (IC) mask is created via morphological operations. Then, the IC mask is decomposed into parenchymal (BP) and CSF masks, while the BP mask is separated into WM and GM masks. WM mask is further divided into pure and dirty white matter masks (PWM and DWM). In Multiple Sclerosis studies, a severe white matter lesion (LS) mask is defined from DWM mask. Based on the segmented brain tissue images, a histogram-based method has been developed to find disease-specific, image-based quantitative markers for characterizing the macromolecular manifestation of the two diseases. These same procedures have been applied to 65 MS (46 patients and 19 normal subjects) and 25 AD (15 patients and 10 normal subjects) data sets, each of which consists of FSE PD- and T2-weighted MR images. Histograms representing standardized PD and T2 intensity distributions and their numerical parameters provide an effective means for characterizing the two diseases. The procedures are systematic, nearly automated, robust, and the results are reproducible.

  3. Real-time computed tomography dosimetry during ultrasound-guided brachytherapy for prostate cancer.

    PubMed

    Kaplan, Irving D; Meskell, Paul; Oldenburg, Nicklas E; Saltzman, Brian; Kearney, Gary P; Holupka, Edward J

    2006-01-01

    Ultrasound-guided implantation of permanent radioactive seeds is a treatment option for localized prostate cancer. Several techniques have been described for the optimal placement of the seeds in the prostate during this procedure. Postimplantation dosimetric calculations are performed after the implant. Areas of underdosing can only be corrected with either an external beam boost or by performing a second implant. We demonstrate the feasibility of performing computed tomography (CT)-based postplanning during the ultrasound-guided implant and subsequently correcting for underdosed areas. Ultrasound-guided brachytherapy is performed on a modified CT table with general anesthesia. The postplanning CT scan is performed after the implant, while the patient is still under anesthesia. Additional seeds are implanted into "cold spots," and the resultant dosimetry confirmed with CT. Intraoperative postplanning was successfully performed. Dose-volume histograms demonstrated adequate dose coverage during the initial implant, but on detailed analysis, for some patients, areas of underdosing were observed either at the apex or the peripheral zone. Additional seeds were implanted to bring these areas to prescription dose. Intraoperative postplanning is feasible during ultrasound-guided brachytherapy for prostate cancer. Although the postimplant dose-volume histograms for all patients, before the implantation of additional seeds, were adequate according to the American Brachytherapy Society criteria, specific critical areas can be underdosed. Additional seeds can then be implanted to optimize the dosimetry and reduce the risk of underdosing areas of cancer.

  4. Comparison of LOPES measurements with CoREAS and REAS 3.11 simulations

    NASA Astrophysics Data System (ADS)

    Ludwig, M.; Apel, W. D.; Arteaga-Velázquez, J. C.; Bähren, L.; Bekk, K.; Bertaina, M.; Biermann, P. L.; Blümer, J.; Bozdog, H.; Brancus, I. M.; Chiavassa, A.; Daumiller, K.; de Souza, V.; Di Pierro, F.; Doll, P.; Engel, R.; Falcke, H.; Fuchs, B.; Fuhrmann, D.; Gemmeke, H.; Grupen, C.; Haug, M.; Haungs, A.; Heck, D.; Hörandel, J. R.; Horneffer, A.; Huber, D.; Huege, T.; Isar, P. G.; Kampert, K.-H.; Kang, D.; Krömer, O.; Kuijpers, J.; Link, K.; Łuczak, P.; Mathes, H. J.; Melissas, M.; Morello, C.; Oehlschläger, J.; Palmieri, N.; Pierog, T.; Rautenberg, J.; Rebel, H.; Roth, M.; Rühle, C.; Saftoiu, A.; Schieler, H.; Schmidt, A.; Schröder, F. G.; Sima, O.; Toma, G.; Trinchero, G. C.; Weindl, A.; Wochele, J.; Zabierowski, J.; Zensus, J. A.

    2013-05-01

    In the previous years, LOPES emerged as a very successful experiment measuring the radio emission from air showers in the MHz frequency range. In parallel, the theoretical description of radio emission was developed further and REAS became a widely used simulation Monte Carlo code. REAS 3 as well as CoREAS are based on the endpoint formalism, i.e. they calculate the emission of the air-shower without assuming specific emission mechanisms. While REAS 3 is based on histograms derived from CORSIKA simulations, CoREAS is directly implemented into CORSIKA without loss of information due to histogramming of the particle distributions. In contrast to the earlier versions of REAS, the newest version REAS 3.11 and CoREAS take into account a realistic atmospheric refractive index. To improve the understanding of the emission processes and judge the quality of the simulations, we compare their predictions with high-quality events measured by LOPES. We present results concerning the lateral distribution measured with 30 east-west aligned LOPES antennas. Only the simulation codes including the refractive index (REAS 3.11 and CoREAS) are able to reproduce the slope of measured lateral distributions, but REAS 3.0 predicts too steep lateral distributions, and does not predict rising lateral distributions as seen in a few LOPES events. Moreover, REAS 3.11 predicts an absolute amplitude compatible with the LOPES measurements.

  5. Digital enhancement of computerized axial tomograms

    NASA Technical Reports Server (NTRS)

    Roberts, E., Jr.

    1978-01-01

    A systematic evaluation has been conducted of certain digital image enhancement techniques performed in image space. Three types of images have been used, computer generated phantoms, tomograms of a synthetic phantom, and axial tomograms of human anatomy containing images of lesions, artificially introduced into the tomograms. Several types of smoothing, sharpening, and histogram modification have been explored. It has been concluded that the most useful enhancement techniques are a selective smoothing of singular picture elements, combined with contrast manipulation. The most useful tool in applying these techniques is the gray-scale histogram.

  6. Characteristics of random inlet pressure fluctuations during flights of F-111A airplane

    NASA Technical Reports Server (NTRS)

    Costakis, W. G.

    1977-01-01

    Compressor face dynamic total pressures from four F-111 flights were analyzed. Statistics of the nonstationary data were investigated by analyzing the data in a quasi-stationary manner. Changes in the character of the dynamic signal are investigated as functions of flight conditions, time in flight, and location at the compressor face. The results, which are presented in the form of rms values, histograms, and power spectrum plots, show that the shape of the power spectra remains relatively flat while the histograms have an approximate normal distribution.

  7. Double Negative (CD3+4-8-) TCRalphaBeta Splenic Cells from Young NOD Mice Provide Long-Lasting Protection against Type 1 Diabetes

    DTIC Science & Technology

    2010-07-02

    indicated. Panel B, pancreatic infiltrating lymphocytes from 4 month-old NOD females ( left histogram) and males ( right histogram) (n = 8 mice/group...assay was used to measure the IL-2 secretion in the culture medium. Panel A, DN splenic cell cultures stimulated under Th1 ( left panel) and Th2 ( right ...variance test. The significance (p#0.005) of individual differences in frequency of DNCD3 thymocytes and splenocytes from female and male NOD littermates

  8. Shell structures in aluminum nanocontacts at elevated temperatures

    PubMed Central

    2012-01-01

    Aluminum nanocontact conductance histograms are studied experimentally from room temperature up to near the bulk melting point. The dominant stable configurations for this metal show a very early crossover from shell structures at low wire diameters to ionic subshell structures at larger diameters. At these larger radii, the favorable structures are temperature-independent and consistent with those expected for ionic subshell (faceted) formations in face-centered cubic geometries. When approaching the bulk melting temperature, these local stability structures become less pronounced as shown by the vanishing conductance histogram peak structure. PMID:22325572

  9. Principles of protein folding--a perspective from simple exact models.

    PubMed Central

    Dill, K. A.; Bromberg, S.; Yue, K.; Fiebig, K. M.; Yee, D. P.; Thomas, P. D.; Chan, H. S.

    1995-01-01

    General principles of protein structure, stability, and folding kinetics have recently been explored in computer simulations of simple exact lattice models. These models represent protein chains at a rudimentary level, but they involve few parameters, approximations, or implicit biases, and they allow complete explorations of conformational and sequence spaces. Such simulations have resulted in testable predictions that are sometimes unanticipated: The folding code is mainly binary and delocalized throughout the amino acid sequence. The secondary and tertiary structures of a protein are specified mainly by the sequence of polar and nonpolar monomers. More specific interactions may refine the structure, rather than dominate the folding code. Simple exact models can account for the properties that characterize protein folding: two-state cooperativity, secondary and tertiary structures, and multistage folding kinetics--fast hydrophobic collapse followed by slower annealing. These studies suggest the possibility of creating "foldable" chain molecules other than proteins. The encoding of a unique compact chain conformation may not require amino acids; it may require only the ability to synthesize specific monomer sequences in which at least one monomer type is solvent-averse. PMID:7613459

  10. Nonequilibrium Green's functions and atom-surface dynamics: Simple views from a simple model system

    NASA Astrophysics Data System (ADS)

    Boström, E.; Hopjan, M.; Kartsev, A.; Verdozzi, C.; Almbladh, C.-O.

    2016-03-01

    We employ Non-equilibrium Green's functions (NEGF) to describe the real-time dynamics of an adsorbate-surface model system exposed to ultrafast laser pulses. For a finite number of electronic orbitals, the system is solved exactly and within different levels of approximation. Specifically i) the full exact quantum mechanical solution for electron and nuclear degrees of freedom is used to benchmark ii) the Ehrenfest approximation (EA) for the nuclei, with the electron dynamics still treated exactly. Then, using the EA, electronic correlations are treated with NEGF within iii) 2nd Born and with iv) a recently introduced hybrid scheme, which mixes 2nd Born self-energies with non-perturbative, local exchange- correlation potentials of Density Functional Theory (DFT). Finally, the effect of a semi-infinite substrate is considered: we observe that a macroscopic number of de-excitation channels can hinder desorption. While very preliminary in character and based on a simple and rather specific model system, our results clearly illustrate the large potential of NEGF to investigate atomic desorption, and more generally, the non equilibrium dynamics of material surfaces subject to ultrafast laser fields.

  11. Efficient Levenberg-Marquardt minimization of the maximum likelihood estimator for Poisson deviates

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Laurence, T; Chromy, B

    2009-11-10

    Histograms of counted events are Poisson distributed, but are typically fitted without justification using nonlinear least squares fitting. The more appropriate maximum likelihood estimator (MLE) for Poisson distributed data is seldom used. We extend the use of the Levenberg-Marquardt algorithm commonly used for nonlinear least squares minimization for use with the MLE for Poisson distributed data. In so doing, we remove any excuse for not using this more appropriate MLE. We demonstrate the use of the algorithm and the superior performance of the MLE using simulations and experiments in the context of fluorescence lifetime imaging. Scientists commonly form histograms ofmore » counted events from their data, and extract parameters by fitting to a specified model. Assuming that the probability of occurrence for each bin is small, event counts in the histogram bins will be distributed according to the Poisson distribution. We develop here an efficient algorithm for fitting event counting histograms using the maximum likelihood estimator (MLE) for Poisson distributed data, rather than the non-linear least squares measure. This algorithm is a simple extension of the common Levenberg-Marquardt (L-M) algorithm, is simple to implement, quick and robust. Fitting using a least squares measure is most common, but it is the maximum likelihood estimator only for Gaussian-distributed data. Non-linear least squares methods may be applied to event counting histograms in cases where the number of events is very large, so that the Poisson distribution is well approximated by a Gaussian. However, it is not easy to satisfy this criterion in practice - which requires a large number of events. It has been well-known for years that least squares procedures lead to biased results when applied to Poisson-distributed data; a recent paper providing extensive characterization of these biases in exponential fitting is given. The more appropriate measure based on the maximum likelihood estimator (MLE) for the Poisson distribution is also well known, but has not become generally used. This is primarily because, in contrast to non-linear least squares fitting, there has been no quick, robust, and general fitting method. In the field of fluorescence lifetime spectroscopy and imaging, there have been some efforts to use this estimator through minimization routines such as Nelder-Mead optimization, exhaustive line searches, and Gauss-Newton minimization. Minimization based on specific one- or multi-exponential models has been used to obtain quick results, but this procedure does not allow the incorporation of the instrument response, and is not generally applicable to models found in other fields. Methods for using the MLE for Poisson-distributed data have been published by the wider spectroscopic community, including iterative minimization schemes based on Gauss-Newton minimization. The slow acceptance of these procedures for fitting event counting histograms may also be explained by the use of the ubiquitous, fast Levenberg-Marquardt (L-M) fitting procedure for fitting non-linear models using least squares fitting (simple searches obtain {approx}10000 references - this doesn't include those who use it, but don't know they are using it). The benefits of L-M include a seamless transition between Gauss-Newton minimization and downward gradient minimization through the use of a regularization parameter. This transition is desirable because Gauss-Newton methods converge quickly, but only within a limited domain of convergence; on the other hand the downward gradient methods have a much wider domain of convergence, but converge extremely slowly nearer the minimum. L-M has the advantages of both procedures: relative insensitivity to initial parameters and rapid convergence. Scientists, when wanting an answer quickly, will fit data using L-M, get an answer, and move on. Only those that are aware of the bias issues will bother to fit using the more appropriate MLE for Poisson deviates. However, since there is a simple, analytical formula for the appropriate MLE measure for Poisson deviates, it is inexcusable that least squares estimators are used almost exclusively when fitting event counting histograms. There have been ways found to use successive non-linear least squares fitting to obtain similarly unbiased results, but this procedure is justified by simulation, must be re-tested when conditions change significantly, and requires two successive fits. There is a great need for a fitting routine for the MLE estimator for Poisson deviates that has convergence domains and rates comparable to the non-linear least squares L-M fitting. We show in this report that a simple way to achieve that goal is to use the L-M fitting procedure not to minimize the least squares measure, but the MLE for Poisson deviates.« less

  12. TANTRA YUKTI METHOD OF THEORIZATION IN AYURVEDA

    PubMed Central

    Singh, Anuradha

    2003-01-01

    Method of theorization (Tantra Yukti-s given in Ayurvedic texts) is analyzed in the backdrop of scientific method. Thirty six methodic devices are singled out from texts for analysis in terms of truth specific, theory specific and discourse specific issues. The paper also points out exact problems in conception of method in Ayurveda and Science. PMID:22557088

  13. Whole-lesion histogram analysis of the apparent diffusion coefficient: Evaluation of the correlation with subtypes of mucinous breast carcinoma.

    PubMed

    Guo, Yuan; Kong, Qing-Cong; Zhu, Ye-Qing; Liu, Zhen-Zhen; Peng, Ling-Rong; Tang, Wen-Jie; Yang, Rui-Meng; Xie, Jia-Jun; Liu, Chun-Ling

    2018-02-01

    To evaluate the utility of the whole-lesion histogram apparent diffusion coefficient (ADC) for characterizing the heterogeneity of mucinous breast carcinoma (MBC) and to determine which ADC metrics may help to best differentiate subtypes of MBC. This retrospective study involved 52 MBC patients, including 37 pure MBC (PMBC) and 15 mixed MBC (MMBC). The PMBC patients were subtyped into PMBC-A (20 cases) and PMBC-B (17 cases) groups. All patients underwent preoperative diffusion-weighted imaging (DWI) at 1.5T and the whole-lesion ADC assessments were generated. Histogram-derived ADC parameters were compared between PMBC vs. MMBC and PMBC-A vs. PMBC-B, and receiver operating characteristic (ROC) curve analysis was used to determine optimal histogram parameters for differentiating these groups. The PMBC group exhibited significantly higher ADC values for the mean (P = 0.004), 25 th (P = 0.004), 50 th (P = 0.004), 75 th (P = 0.006), and 90 th percentiles (P = 0.013) and skewness (P = 0.021) than did the MMBC group. The 25 th percentile of ADC values achieved the highest area under the curve (AUC) (0.792), with a cutoff value of 1.345 × 10 -3 mm 2 /s, in distinguishing PMBC and MMBC. The PMBC-A group showed significantly higher ADC values for the mean (P = 0.049), 25 th (P = 0.015), and 50 th (P = 0.026) percentiles and skewness (P = 0.004) than did the PMBC-B group. The 25 th percentile of the ADC cutoff value (1.476 × 10 -3 mm 2 /s) demonstrated the best AUC (0.837) among the ADC values for distinguishing PMBC-A and PMBC-B. Whole-lesion ADC histogram analysis enables comprehensive evaluation of an MBC in its entirety and differentiating subtypes of MBC. Thus, it may be a helpful and supportive tool for conventional MRI. 4 Technical Efficacy: Stage 2 J. Magn. Reson. Imaging 2018;47:391-400. © 2017 International Society for Magnetic Resonance in Medicine.

  14. Quantitative Evaluation for Differentiating Malignant and Benign Thyroid Nodules Using Histogram Analysis of Grayscale Sonograms.

    PubMed

    Nam, Se Jin; Yoo, Jaeheung; Lee, Hye Sun; Kim, Eun-Kyung; Moon, Hee Jung; Yoon, Jung Hyun; Kwak, Jin Young

    2016-04-01

    To evaluate the diagnostic value of histogram analysis using grayscale sonograms for differentiation of malignant and benign thyroid nodules. From July 2013 through October 2013, 579 nodules in 563 patients who had undergone ultrasound-guided fine-needle aspiration were included. For the grayscale histogram analysis, pixel echogenicity values in regions of interest were measured as 0 to 255 (0, black; 255, white) with in-house software. Five parameters (mean, skewness, kurtosis, standard deviation, and entropy) were obtained for each thyroid nodule. With principal component analysis, an index was derived. Diagnostic performance rates for the 5 histogram parameters and the principal component analysis index were calculated. A total of 563 patients were included in the study (mean age ± SD, 50.3 ± 12.3 years;range, 15-79 years). Of the 579 nodules, 431 were benign, and 148 were malignant. Among the 5 parameters and the principal component analysis index, the standard deviation (75.546 ± 14.153 versus 62.761 ± 16.01; P < .001), kurtosis (3.898 ± 2.652 versus 6.251 ± 9.102; P < .001), entropy (0.16 ± 0.135 versus 0.239 ± 0.185; P < .001), and principal component analysis index (-0.386±0.774 versus 0.134 ± 0.889; P < .001) were significantly different between the malignant and benign nodules. With the calculated cutoff values, the areas under the curve were 0.681 (95% confidence interval, 0.643-0.721) for standard deviation, 0.661 (0.620-0.703) for principal component analysis index, 0.651 (0.607-0.691) for kurtosis, 0.638 (0.596-0.681) for entropy, and 0.606 (0.563-0.647) for skewness. The subjective analysis of grayscale sonograms by radiologists alone showed an area under the curve of 0.861 (0.833-0.888). Grayscale histogram analysis was feasible for differentiating malignant and benign thyroid nodules but did not show better diagnostic performance than subjective analysis performed by radiologists. Further technical advances will be needed to objectify interpretations of thyroid grayscale sonograms. © 2016 by the American Institute of Ultrasound in Medicine.

  15. Improved dose-volume histogram estimates for radiopharmaceutical therapy by optimizing quantitative SPECT reconstruction parameters

    NASA Astrophysics Data System (ADS)

    Cheng, Lishui; Hobbs, Robert F.; Segars, Paul W.; Sgouros, George; Frey, Eric C.

    2013-06-01

    In radiopharmaceutical therapy, an understanding of the dose distribution in normal and target tissues is important for optimizing treatment. Three-dimensional (3D) dosimetry takes into account patient anatomy and the nonuniform uptake of radiopharmaceuticals in tissues. Dose-volume histograms (DVHs) provide a useful summary representation of the 3D dose distribution and have been widely used for external beam treatment planning. Reliable 3D dosimetry requires an accurate 3D radioactivity distribution as the input. However, activity distribution estimates from SPECT are corrupted by noise and partial volume effects (PVEs). In this work, we systematically investigated OS-EM based quantitative SPECT (QSPECT) image reconstruction in terms of its effect on DVHs estimates. A modified 3D NURBS-based Cardiac-Torso (NCAT) phantom that incorporated a non-uniform kidney model and clinically realistic organ activities and biokinetics was used. Projections were generated using a Monte Carlo (MC) simulation; noise effects were studied using 50 noise realizations with clinical count levels. Activity images were reconstructed using QSPECT with compensation for attenuation, scatter and collimator-detector response (CDR). Dose rate distributions were estimated by convolution of the activity image with a voxel S kernel. Cumulative DVHs were calculated from the phantom and QSPECT images and compared both qualitatively and quantitatively. We found that noise, PVEs, and ringing artifacts due to CDR compensation all degraded histogram estimates. Low-pass filtering and early termination of the iterative process were needed to reduce the effects of noise and ringing artifacts on DVHs, but resulted in increased degradations due to PVEs. Large objects with few features, such as the liver, had more accurate histogram estimates and required fewer iterations and more smoothing for optimal results. Smaller objects with fine details, such as the kidneys, required more iterations and less smoothing at early time points post-radiopharmaceutical administration but more smoothing and fewer iterations at later time points when the total organ activity was lower. The results of this study demonstrate the importance of using optimal reconstruction and regularization parameters. Optimal results were obtained with different parameters at each time point, but using a single set of parameters for all time points produced near-optimal dose-volume histograms.

  16. Let's get specific: the relationship between specificity and affinity.

    PubMed

    Eaton, B E; Gold, L; Zichi, D A

    1995-10-01

    The factors that lead to high-affinity binding are a good fit between the surfaces of the two molecules in their ground state and charge complementarity. Exactly the same factors give high specificity for a target. We argue that selection for high-affinity binding automatically leads to highly specific binding. This principle can be used to simplify screening approaches aimed at generating useful drugs.

  17. Simulation program for estimating statistical power of Cox's proportional hazards model assuming no specific distribution for the survival time.

    PubMed

    Akazawa, K; Nakamura, T; Moriguchi, S; Shimada, M; Nose, Y

    1991-07-01

    Small sample properties of the maximum partial likelihood estimates for Cox's proportional hazards model depend on the sample size, the true values of regression coefficients, covariate structure, censoring pattern and possibly baseline hazard functions. Therefore, it would be difficult to construct a formula or table to calculate the exact power of a statistical test for the treatment effect in any specific clinical trial. The simulation program, written in SAS/IML, described in this paper uses Monte-Carlo methods to provide estimates of the exact power for Cox's proportional hazards model. For illustrative purposes, the program was applied to real data obtained from a clinical trial performed in Japan. Since the program does not assume any specific function for the baseline hazard, it is, in principle, applicable to any censored survival data as long as they follow Cox's proportional hazards model.

  18. Document image cleanup and binarization

    NASA Astrophysics Data System (ADS)

    Wu, Victor; Manmatha, Raghaven

    1998-04-01

    Image binarization is a difficult task for documents with text over textured or shaded backgrounds, poor contrast, and/or considerable noise. Current optical character recognition (OCR) and document analysis technology do not handle such documents well. We have developed a simple yet effective algorithm for document image clean-up and binarization. The algorithm consists of two basic steps. In the first step, the input image is smoothed using a low-pass filter. The smoothing operation enhances the text relative to any background texture. This is because background texture normally has higher frequency than text does. The smoothing operation also removes speckle noise. In the second step, the intensity histogram of the smoothed image is computed and a threshold automatically selected as follows. For black text, the first peak of the histogram corresponds to text. Thresholding the image at the value of the valley between the first and second peaks of the histogram binarizes the image well. In order to reliably identify the valley, the histogram is smoothed by a low-pass filter before the threshold is computed. The algorithm has been applied to some 50 images from a wide variety of source: digitized video frames, photos, newspapers, advertisements in magazines or sales flyers, personal checks, etc. There are 21820 characters and 4406 words in these images. 91 percent of the characters and 86 percent of the words are successfully cleaned up and binarized. A commercial OCR was applied to the binarized text when it consisted of fonts which were OCR recognizable. The recognition rate was 84 percent for the characters and 77 percent for the words.

  19. The value of whole lesion ADC histogram profiling to differentiate between morphologically indistinguishable ring enhancing lesions–comparison of glioblastomas and brain abscesses

    PubMed Central

    Hoffmann, Karl-Titus; Garnov, Nikita; Vörkel, Cathrin; Kohlhof-Meinecke, Patricia; Ganslandt, Oliver; Bäzner, Hansjörg; Gihr, Georg Alexander; Kalman, Marcell; Henkes, Elina; Henkes, Hans; Schob, Stefan

    2018-01-01

    Background Morphologically similar appearing ring enhancing lesions in the brain parenchyma can be caused by a number of distinct pathologies, however, they consistently represent life-threatening conditions. The two most frequently encountered diseases manifesting as such are glioblastoma multiforme (GBM) and brain abscess (BA), each requiring disparate therapeutical approaches. As a result of their morphological resemblance, essential treatment might be significantly delayed or even ommited, in case results of conventional imaging remain inconclusive. Therefore, our study aimed to investigate, whether ADC histogram profiling reliably can distinguish between both entities, thus enhancing the differential diagnostic process and preventing treatment failure in this highly critical context. Methods 103 patients (51 BA, 52 GBM) with histopathologically confirmed diagnosis were enrolled. Pretreatment diffusion weighted imaging (DWI) was obtained in a 1.5T system using b values of 0, 500, and 1000 s/mm2. Whole lesion ADC volumes were analyzed using a histogram-based approach. Statistical analysis was performed using SPSS version 23. Results All investigated parameters were statistically different in comparison of both groups. Most importantly, ADCp10 was able to differentiate reliably between BA and GBM with excellent accuracy (0.948) using a cutpoint value of 70 × 10−5 mm2 × s−1. Conclusions ADC whole lesion histogram profiling provides a valuable tool to differentiate between morphologically indistinguishable mass lesions. Among the investigated parameters, the 10th percentile of the ADC volume distinguished best between GBM and BA. PMID:29719596

  20. Investigating the Role of Global Histogram Equalization Technique for 99mTechnetium-Methylene diphosphonate Bone Scan Image Enhancement.

    PubMed

    Pandey, Anil Kumar; Sharma, Param Dev; Dheer, Pankaj; Parida, Girish Kumar; Goyal, Harish; Patel, Chetan; Bal, Chandrashekhar; Kumar, Rakesh

    2017-01-01

    99m Technetium-methylene diphosphonate ( 99m Tc-MDP) bone scan images have limited number of counts per pixel, and hence, they have inferior image quality compared to X-rays. Theoretically, global histogram equalization (GHE) technique can improve the contrast of a given image though practical benefits of doing so have only limited acceptance. In this study, we have investigated the effect of GHE technique for 99m Tc-MDP-bone scan images. A set of 89 low contrast 99m Tc-MDP whole-body bone scan images were included in this study. These images were acquired with parallel hole collimation on Symbia E gamma camera. The images were then processed with histogram equalization technique. The image quality of input and processed images were reviewed by two nuclear medicine physicians on a 5-point scale where score of 1 is for very poor and 5 is for the best image quality. A statistical test was applied to find the significance of difference between the mean scores assigned to input and processed images. This technique improves the contrast of the images; however, oversaturation was noticed in the processed images. Student's t -test was applied, and a statistically significant difference in the input and processed image quality was found at P < 0.001 (with α = 0.05). However, further improvement in image quality is needed as per requirements of nuclear medicine physicians. GHE techniques can be used on low contrast bone scan images. In some of the cases, a histogram equalization technique in combination with some other postprocessing technique is useful.

  1. Postmortem validation of breast density using dual-energy mammography

    PubMed Central

    Molloi, Sabee; Ducote, Justin L.; Ding, Huanjun; Feig, Stephen A.

    2014-01-01

    Purpose: Mammographic density has been shown to be an indicator of breast cancer risk and also reduces the sensitivity of screening mammography. Currently, there is no accepted standard for measuring breast density. Dual energy mammography has been proposed as a technique for accurate measurement of breast density. The purpose of this study is to validate its accuracy in postmortem breasts and compare it with other existing techniques. Methods: Forty postmortem breasts were imaged using a dual energy mammography system. Glandular and adipose equivalent phantoms of uniform thickness were used to calibrate a dual energy basis decomposition algorithm. Dual energy decomposition was applied after scatter correction to calculate breast density. Breast density was also estimated using radiologist reader assessment, standard histogram thresholding and a fuzzy C-mean algorithm. Chemical analysis was used as the reference standard to assess the accuracy of different techniques to measure breast composition. Results: Breast density measurements using radiologist reader assessment, standard histogram thresholding, fuzzy C-mean algorithm, and dual energy were in good agreement with the measured fibroglandular volume fraction using chemical analysis. The standard error estimates using radiologist reader assessment, standard histogram thresholding, fuzzy C-mean, and dual energy were 9.9%, 8.6%, 7.2%, and 4.7%, respectively. Conclusions: The results indicate that dual energy mammography can be used to accurately measure breast density. The variability in breast density estimation using dual energy mammography was lower than reader assessment rankings, standard histogram thresholding, and fuzzy C-mean algorithm. Improved quantification of breast density is expected to further enhance its utility as a risk factor for breast cancer. PMID:25086548

  2. Postmortem validation of breast density using dual-energy mammography

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Molloi, Sabee, E-mail: symolloi@uci.edu; Ducote, Justin L.; Ding, Huanjun

    2014-08-15

    Purpose: Mammographic density has been shown to be an indicator of breast cancer risk and also reduces the sensitivity of screening mammography. Currently, there is no accepted standard for measuring breast density. Dual energy mammography has been proposed as a technique for accurate measurement of breast density. The purpose of this study is to validate its accuracy in postmortem breasts and compare it with other existing techniques. Methods: Forty postmortem breasts were imaged using a dual energy mammography system. Glandular and adipose equivalent phantoms of uniform thickness were used to calibrate a dual energy basis decomposition algorithm. Dual energy decompositionmore » was applied after scatter correction to calculate breast density. Breast density was also estimated using radiologist reader assessment, standard histogram thresholding and a fuzzy C-mean algorithm. Chemical analysis was used as the reference standard to assess the accuracy of different techniques to measure breast composition. Results: Breast density measurements using radiologist reader assessment, standard histogram thresholding, fuzzy C-mean algorithm, and dual energy were in good agreement with the measured fibroglandular volume fraction using chemical analysis. The standard error estimates using radiologist reader assessment, standard histogram thresholding, fuzzy C-mean, and dual energy were 9.9%, 8.6%, 7.2%, and 4.7%, respectively. Conclusions: The results indicate that dual energy mammography can be used to accurately measure breast density. The variability in breast density estimation using dual energy mammography was lower than reader assessment rankings, standard histogram thresholding, and fuzzy C-mean algorithm. Improved quantification of breast density is expected to further enhance its utility as a risk factor for breast cancer.« less

  3. An Apparent Diffusion Coefficient Histogram Method Versus a Traditional 2-Dimensional Measurement Method for Identifying Non-Puerperal Mastitis From Breast Cancer at 3.0 T.

    PubMed

    Tang, Qi; Li, Qiang; Xie, Dong; Chu, Ketao; Liu, Lidong; Liao, Chengcheng; Qin, Yunying; Wang, Zheng; Su, Danke

    2018-05-21

    This study aimed to investigate the utility of a volumetric apparent diffusion coefficient (ADC) histogram method for distinguishing non-puerperal mastitis (NPM) from breast cancer (BC) and to compare this method with a traditional 2-dimensional measurement method. Pretreatment diffusion-weighted imaging data at 3.0 T were obtained for 80 patients (NPM, n = 27; BC, n = 53) and were retrospectively assessed. Two readers measured ADC values according to 2 distinct region-of-interest (ROI) protocols. The first protocol included the generation of ADC histograms for each lesion, and various parameters were examined. In the second protocol, 3 freehand (TF) ROIs for local lesions were generated to obtain a mean ADC value (defined as ADC-ROITF). All of the ADC values were compared by an independent-samples t test or the Mann-Whitney U test. Receiver operating characteristic curves and a leave-one-out cross-validation method were also used to determine diagnostic deficiencies of the significant parameters. The ADC values for NPM were characterized by significantly higher mean, 5th to 95th percentiles, and maximum and mode ADCs compared with the corresponding ADCs for BC (all P < 0.05). However, the minimum, skewness, and kurtosis ADC values, as well as ADC-ROITF, did not significantly differ between the NPM and BC cases. Thus, the generation of volumetric ADC histograms seems to be a superior method to the traditional 2-dimensional method that was examined, and it also seems to represent a promising image analysis method for distinguishing NPM from BC.

  4. Identification of column edges of DNA fragments by using K-means clustering and mean algorithm on lane histograms of DNA agarose gel electrophoresis images

    NASA Astrophysics Data System (ADS)

    Turan, Muhammed K.; Sehirli, Eftal; Elen, Abdullah; Karas, Ismail R.

    2015-07-01

    Gel electrophoresis (GE) is one of the most used method to separate DNA, RNA, protein molecules according to size, weight and quantity parameters in many areas such as genetics, molecular biology, biochemistry, microbiology. The main way to separate each molecule is to find borders of each molecule fragment. This paper presents a software application that show columns edges of DNA fragments in 3 steps. In the first step the application obtains lane histograms of agarose gel electrophoresis images by doing projection based on x-axis. In the second step, it utilizes k-means clustering algorithm to classify point values of lane histogram such as left side values, right side values and undesired values. In the third step, column edges of DNA fragments is shown by using mean algorithm and mathematical processes to separate DNA fragments from the background in a fully automated way. In addition to this, the application presents locations of DNA fragments and how many DNA fragments exist on images captured by a scientific camera.

  5. Selecting a Variable for Predicting the Diagnosis of PTB Patients From Comparison of Chest X-ray Images

    NASA Astrophysics Data System (ADS)

    Mohd. Rijal, Omar; Mohd. Noor, Norliza; Teng, Shee Lee

    A statistical method of comparing two digital chest radiographs for Pulmonary Tuberculosis (PTB) patients has been proposed. After applying appropriate image registration procedures, a selected subset of each image is converted to an image histogram (or box plot). Comparing two chest X-ray images is equivalent to the direct comparison of the two corresponding histograms. From each histogram, eleven percentiles (of image intensity) are calculated. The number of percentiles that shift to the left (NLSP) when second image is compared to the first has been shown to be an indicator of patients` progress. In this study, the values of NLSP is to be compared with the actual diagnosis (Y) of several medical practitioners. A logistic regression model is used to study the relationship between NLSP and Y. This study showed that NLSP may be used as an alternative or second opinion for Y. The proposed regression model also show that important explanatory variables such as outcomes of sputum test (Z) and degree of image registration (W) may be omitted when estimating Y-values.

  6. Perceptual Contrast Enhancement with Dynamic Range Adjustment

    PubMed Central

    Zhang, Hong; Li, Yuecheng; Chen, Hao; Yuan, Ding; Sun, Mingui

    2013-01-01

    Recent years, although great efforts have been made to improve its performance, few Histogram equalization (HE) methods take human visual perception (HVP) into account explicitly. The human visual system (HVS) is more sensitive to edges than brightness. This paper proposes to take use of this nature intuitively and develops a perceptual contrast enhancement approach with dynamic range adjustment through histogram modification. The use of perceptual contrast connects the image enhancement problem with the HVS. To pre-condition the input image before the HE procedure is implemented, a perceptual contrast map (PCM) is constructed based on the modified Difference of Gaussian (DOG) algorithm. As a result, the contrast of the image is sharpened and high frequency noise is suppressed. A modified Clipped Histogram Equalization (CHE) is also developed which improves visual quality by automatically detecting the dynamic range of the image with improved perceptual contrast. Experimental results show that the new HE algorithm outperforms several state-of-the-art algorithms in improving perceptual contrast and enhancing details. In addition, the new algorithm is simple to implement, making it suitable for real-time applications. PMID:24339452

  7. Visual Contrast Enhancement Algorithm Based on Histogram Equalization

    PubMed Central

    Ting, Chih-Chung; Wu, Bing-Fei; Chung, Meng-Liang; Chiu, Chung-Cheng; Wu, Ya-Ching

    2015-01-01

    Image enhancement techniques primarily improve the contrast of an image to lend it a better appearance. One of the popular enhancement methods is histogram equalization (HE) because of its simplicity and effectiveness. However, it is rarely applied to consumer electronics products because it can cause excessive contrast enhancement and feature loss problems. These problems make the images processed by HE look unnatural and introduce unwanted artifacts in them. In this study, a visual contrast enhancement algorithm (VCEA) based on HE is proposed. VCEA considers the requirements of the human visual perception in order to address the drawbacks of HE. It effectively solves the excessive contrast enhancement problem by adjusting the spaces between two adjacent gray values of the HE histogram. In addition, VCEA reduces the effects of the feature loss problem by using the obtained spaces. Furthermore, VCEA enhances the detailed textures of an image to generate an enhanced image with better visual quality. Experimental results show that images obtained by applying VCEA have higher contrast and are more suited to human visual perception than those processed by HE and other HE-based methods. PMID:26184219

  8. Adaptive local thresholding for robust nucleus segmentation utilizing shape priors

    NASA Astrophysics Data System (ADS)

    Wang, Xiuzhong; Srinivas, Chukka

    2016-03-01

    This paper describes a novel local thresholding method for foreground detection. First, a Canny edge detection method is used for initial edge detection. Then, tensor voting is applied on the initial edge pixels, using a nonsymmetric tensor field tailored to encode prior information about nucleus size, shape, and intensity spatial distribution. Tensor analysis is then performed to generate the saliency image and, based on that, the refined edge. Next, the image domain is divided into blocks. In each block, at least one foreground and one background pixel are sampled for each refined edge pixel. The saliency weighted foreground histogram and background histogram are then created. These two histograms are used to calculate a threshold by minimizing the background and foreground pixel classification error. The block-wise thresholds are then used to generate the threshold for each pixel via interpolation. Finally, the foreground is obtained by comparing the original image with the threshold image. The effective use of prior information, combined with robust techniques, results in far more reliable foreground detection, which leads to robust nucleus segmentation.

  9. An application to pulmonary emphysema classification based on model of texton learning by sparse representation

    NASA Astrophysics Data System (ADS)

    Zhang, Min; Zhou, Xiangrong; Goshima, Satoshi; Chen, Huayue; Muramatsu, Chisako; Hara, Takeshi; Yokoyama, Ryojiro; Kanematsu, Masayuki; Fujita, Hiroshi

    2012-03-01

    We aim at using a new texton based texture classification method in the classification of pulmonary emphysema in computed tomography (CT) images of the lungs. Different from conventional computer-aided diagnosis (CAD) pulmonary emphysema classification methods, in this paper, firstly, the dictionary of texton is learned via applying sparse representation(SR) to image patches in the training dataset. Then the SR coefficients of the test images over the dictionary are used to construct the histograms for texture presentations. Finally, classification is performed by using a nearest neighbor classifier with a histogram dissimilarity measure as distance. The proposed approach is tested on 3840 annotated regions of interest consisting of normal tissue and mild, moderate and severe pulmonary emphysema of three subtypes. The performance of the proposed system, with an accuracy of about 88%, is comparably higher than state of the art method based on the basic rotation invariant local binary pattern histograms and the texture classification method based on texton learning by k-means, which performs almost the best among other approaches in the literature.

  10. Moving from spatially segregated to transparent motion: a modelling approach

    PubMed Central

    Durant, Szonya; Donoso-Barrera, Alejandra; Tan, Sovira; Johnston, Alan

    2005-01-01

    Motion transparency, in which patterns of moving elements group together to give the impression of lacy overlapping surfaces, provides an important challenge to models of motion perception. It has been suggested that we perceive transparent motion when the shape of the velocity histogram of the stimulus is bimodal. To investigate this further, random-dot kinematogram motion sequences were created to simulate segregated (perceptually spatially separated) and transparent (perceptually overlapping) motion. The motion sequences were analysed using the multi-channel gradient model (McGM) to obtain the speed and direction at every pixel of each frame of the motion sequences. The velocity histograms obtained were found to be quantitatively similar and all were bimodal. However, the spatial and temporal properties of the velocity field differed between segregated and transparent stimuli. Transparent stimuli produced patches of rightward and leftward motion that varied in location over time. This demonstrates that we can successfully differentiate between these two types of motion on the basis of the time varying local velocity field. However, the percept of motion transparency cannot be based simply on the presence of a bimodal velocity histogram. PMID:17148338

  11. Regime-Dependent Differences in Surface Freshwater Exchange Estimates Over the Ocean

    NASA Astrophysics Data System (ADS)

    Wong, Sun; Behrangi, Ali

    2018-01-01

    Differences in gridded precipitation (P), surface evaporation (E), and the resultant surface freshwater exchange (P - E) among different products over the ocean are diagnosed as functions of moisture advection (Qadvt) and moisture tendency by dynamical convergence (Qcnvg). Compared to the GPCP product, the TRMM3B42 product captures higher frequency of precipitation with larger extreme precipitation rates in regimes of deep convection and more light rain detections in regimes of frequent occurrence of boundary layer clouds. Discrepancies in E depend on moisture flux divergence, with the OAFlux product having the largest E in regimes of divergence. Discrepancies in mean P - E in deep convective regimes are highly influenced by differences in precipitation, with the TRMM3B42 product yielding P - E histograms closer to those inferred from the reanalysis moisture flux convergence. In nonconvergent regimes, observation-based P - E histograms skew toward positive values while the inferred reanalysis histograms are symmetric about the means.

  12. A dosimetric comparison of {sup 169}Yb versus {sup 192}Ir for HDR prostate brachytherapy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lymperopoulou, G.; Papagiannis, P.; Sakelliou, L.

    2005-12-15

    For the purpose of evaluating the use of {sup 169}Yb for prostate High Dose Rate brachytherapy (HDR), a hypothetical {sup 169}Yb source is assumed with the exact same design of the new microSelectron source replacing the {sup 192}Ir active core by pure {sup 169}Yb metal. Monte Carlo simulation is employed for the full dosimetric characterization of both sources and results are compared following the AAPM TG-43 dosimetric formalism. Monte Carlo calculated dosimetry results are incorporated in a commercially available treatment planning system (SWIFT{sup TM}), which features an inverse treatment planning option based on a multiobjective dose optimization engine. The qualitymore » of prostate HDR brachytherapy using the real {sup 192}Ir and hypothetical {sup 169}Yb source is compared in a comprehensive analysis of different prostate implants in terms of the multiobjective dose optimization solutions as well as treatment quality indices such as Dose Volume Histograms (DVH) and the Conformal Index (COIN). Given that scattering overcompensates for absorption in intermediate photon energies and distances in the range of interest to prostate HDR brachytherapy, {sup 169}Yb proves at least equivalent to {sup 192}Ir irrespective of prostate volume. This has to be evaluated in view of the shielding requirements for the {sup 169}Yb energies that are minimal relative to that for {sup 192}Ir.« less

  13. Nanocubes for real-time exploration of spatiotemporal datasets.

    PubMed

    Lins, Lauro; Klosowski, James T; Scheidegger, Carlos

    2013-12-01

    Consider real-time exploration of large multidimensional spatiotemporal datasets with billions of entries, each defined by a location, a time, and other attributes. Are certain attributes correlated spatially or temporally? Are there trends or outliers in the data? Answering these questions requires aggregation over arbitrary regions of the domain and attributes of the data. Many relational databases implement the well-known data cube aggregation operation, which in a sense precomputes every possible aggregate query over the database. Data cubes are sometimes assumed to take a prohibitively large amount of space, and to consequently require disk storage. In contrast, we show how to construct a data cube that fits in a modern laptop's main memory, even for billions of entries; we call this data structure a nanocube. We present algorithms to compute and query a nanocube, and show how it can be used to generate well-known visual encodings such as heatmaps, histograms, and parallel coordinate plots. When compared to exact visualizations created by scanning an entire dataset, nanocube plots have bounded screen error across a variety of scales, thanks to a hierarchical structure in space and time. We demonstrate the effectiveness of our technique on a variety of real-world datasets, and present memory, timing, and network bandwidth measurements. We find that the timings for the queries in our examples are dominated by network and user-interaction latencies.

  14. Adaptive Processing of RADARSAT-1 Fine Mode Data: Ship Parameter Estimation

    DTIC Science & Technology

    2007-03-01

    53 Figure 60: D7S1, the 63 m long freighter “ Germa ” is one of the smallest ships in the data set. .. 53 Figure 61: D6S1...5 10 15 20 25 30 length [m] N um be r of s hi ps Figure 1: Length histogram of analyzed ships according to the AIS data. 8 DRDC Ottawa TM 2007...053 0 50 100 150 200 250 300 350 400 0 5 10 15 20 25 θ [°] N um be r of s hi ps Figure 2: Aspect angle histogram of analyzed ships

  15. An improved reversible data hiding algorithm based on modification of prediction errors

    NASA Astrophysics Data System (ADS)

    Jafar, Iyad F.; Hiary, Sawsan A.; Darabkh, Khalid A.

    2014-04-01

    Reversible data hiding algorithms are concerned with the ability of hiding data and recovering the original digital image upon extraction. This issue is of interest in medical and military imaging applications. One particular class of such algorithms relies on the idea of histogram shifting of prediction errors. In this paper, we propose an improvement over one popular algorithm in this class. The improvement is achieved by employing a different predictor, the use of more bins in the prediction error histogram in addition to multilevel embedding. The proposed extension shows significant improvement over the original algorithm and its variations.

  16. A Practical Theory of Micro-Solar Power Sensor Networks

    DTIC Science & Technology

    2009-04-20

    Simulation Platform TOSSIM [LLWC03] ns-2 Matlab C++ AVRORA [TLP05] Reference Hardware Mica2 WINS, Medusa Mica Mica2, Medusa Mica2 Simulated Power Power...scale. From this raw data, we can 162 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1 0 2 4 Correlation coefficient F re qu en cy Histogram of correlation...0.5 0.6 0.7 0.8 0.9 1 0 1 2 Correlation coefficient F re qu en cy Histogram of correlation coefficient with solar radiation measurement (Turbidity at

  17. Multivariable nonlinear analysis of foreign exchange rates

    NASA Astrophysics Data System (ADS)

    Suzuki, Tomoya; Ikeguchi, Tohru; Suzuki, Masuo

    2003-05-01

    We analyze the multivariable time series of foreign exchange rates. These are price movements that have often been analyzed, and dealing time intervals and spreads between bid and ask prices. Considering dealing time intervals as event timing such as neurons’ firings, we use raster plots (RPs) and peri-stimulus time histograms (PSTHs) which are popular methods in the field of neurophysiology. Introducing special processings to obtaining RPs and PSTHs time histograms for analyzing exchange rates time series, we discover that there exists dynamical interaction among three variables. We also find that adopting multivariables leads to improvements of prediction accuracy.

  18. 40 CFR 246.200-3 - Recommended procedures: Market study.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ...) SOLID WASTES SOURCE SEPARATION FOR MATERIALS RECOVERY GUIDELINES Requirements and Recommended Procedures... techniques; (b) Directly contacting buyers, and determining the buyers' quality specifications, the exact...

  19. 40 CFR 246.200-3 - Recommended procedures: Market study.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ...) SOLID WASTES SOURCE SEPARATION FOR MATERIALS RECOVERY GUIDELINES Requirements and Recommended Procedures... techniques; (b) Directly contacting buyers, and determining the buyers' quality specifications, the exact...

  20. 40 CFR 246.200-3 - Recommended procedures: Market study.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ...) SOLID WASTES SOURCE SEPARATION FOR MATERIALS RECOVERY GUIDELINES Requirements and Recommended Procedures... techniques; (b) Directly contacting buyers, and determining the buyers' quality specifications, the exact...

  1. Applying the Principles of Specific Objectivity and of Generalizability to the Measurement of Change.

    ERIC Educational Resources Information Center

    Fischer, Gerhard H.

    1987-01-01

    A natural parameterization and formalization of the problem of measuring change in dichotomous data is developed. Mathematically-exact definitions of specific objectivity are presented, and the basic structures of the linear logistic test model and the linear logistic model with relaxed assumptions are clarified. (SLD)

  2. Scanning fluorescence correlation spectroscopy comes full circle.

    PubMed

    Gunther, German; Jameson, David M; Aguilar, Joao; Sánchez, Susana A

    2018-02-07

    In this article, we review the application of fluorescence correlation spectroscopy (FCS) methods to studies on live cells. We begin with a brief overview of the theory underlying FCS, highlighting the type of information obtainable. We then focus on circular scanning FCS. Specifically, we discuss instrumentation and data analysis and offer some considerations regarding sample preparation. Two examples from the literature are discussed in detail. First, we show how this method, coupled with the photon counting histogram analysis, can provide information on yeast ribosomal structures in live cells. The combination of scanning FCS with dual channel detection in the study of lipid domains in live cells is also illustrated. Copyright © 2018 Elsevier Inc. All rights reserved.

  3. Cross-platform validation and analysis environment for particle physics

    NASA Astrophysics Data System (ADS)

    Chekanov, S. V.; Pogrebnyak, I.; Wilbern, D.

    2017-11-01

    A multi-platform validation and analysis framework for public Monte Carlo simulation for high-energy particle collisions is discussed. The front-end of this framework uses the Python programming language, while the back-end is written in Java, which provides a multi-platform environment that can be run from a web browser and can easily be deployed at the grid sites. The analysis package includes all major software tools used in high-energy physics, such as Lorentz vectors, jet algorithms, histogram packages, graphic canvases, and tools for providing data access. This multi-platform software suite, designed to minimize OS-specific maintenance and deployment time, is used for online validation of Monte Carlo event samples through a web interface.

  4. Automated assessment of imaging biomarkers for the PanCan lung cancer risk prediction model with validation on NLST data

    NASA Astrophysics Data System (ADS)

    Wiemker, Rafael; Sevenster, Merlijn; MacMahon, Heber; Li, Feng; Dalal, Sandeep; Tahmasebi, Amir; Klinder, Tobias

    2017-03-01

    The imaging biomarkers EmphysemaPresence and NoduleSpiculation are crucial inputs for most models aiming to predict the risk of indeterminate pulmonary nodules detected at CT screening. To increase reproducibility and to accelerate screening workflow it is desirable to assess these biomarkers automatically. Validation on NLST images indicates that standard histogram measures are not sufficient to assess EmphysemaPresence in screenees. However, automatic scoring of bulla-resembling low attenuation areas can achieve agreement with experts with close to 80% sensitivity and specificity. NoduleSpiculation can be automatically assessed with similar accuracy. We find a dedicated spiculi tracing score to slightly outperform generic combinations of texture features with classifiers.

  5. Automated Age-related Macular Degeneration screening system using fundus images.

    PubMed

    Kunumpol, P; Umpaipant, W; Kanchanaranya, N; Charoenpong, T; Vongkittirux, S; Kupakanjana, T; Tantibundhit, C

    2017-07-01

    This work proposed an automated screening system for Age-related Macular Degeneration (AMD), and distinguishing between wet or dry types of AMD using fundus images to assist ophthalmologists in eye disease screening and management. The algorithm employs contrast-limited adaptive histogram equalization (CLAHE) in image enhancement. Subsequently, discrete wavelet transform (DWT) and locality sensitivity discrimination analysis (LSDA) were used to extract features for a neural network model to classify the results. The results showed that the proposed algorithm was able to distinguish between normal eyes, dry AMD, or wet AMD with 98.63% sensitivity, 99.15% specificity, and 98.94% accuracy, suggesting promising potential as a medical support system for faster eye disease screening at lower costs.

  6. A Varian DynaLog file-based procedure for patient dose-volume histogram-based IMRT QA.

    PubMed

    Calvo-Ortega, Juan F; Teke, Tony; Moragues, Sandra; Pozo, Miquel; Casals-Farran, Joan

    2014-03-06

    In the present study, we describe a method based on the analysis of the dynamic MLC log files (DynaLog) generated by the controller of a Varian linear accelerator in order to perform patient-specific IMRT QA. The DynaLog files of a Varian Millennium MLC, recorded during an IMRT treatment, can be processed using a MATLAB-based code in order to generate the actual fluence for each beam and so recalculate the actual patient dose distribution using the Eclipse treatment planning system. The accuracy of the DynaLog-based dose reconstruction procedure was assessed by introducing ten intended errors to perturb the fluence of the beams of a reference plan such that ten subsequent erroneous plans were generated. In-phantom measurements with an ionization chamber (ion chamber) and planar dose measurements using an EPID system were performed to investigate the correlation between the measured dose changes and the expected ones detected by the reconstructed plans for the ten intended erroneous cases. Moreover, the method was applied to 20 cases of clinical plans for different locations (prostate, lung, breast, and head and neck). A dose-volume histogram (DVH) metric was used to evaluate the impact of the delivery errors in terms of dose to the patient. The ionometric measurements revealed a significant positive correlation (R² = 0.9993) between the variations of the dose induced in the erroneous plans with respect to the reference plan and the corresponding changes indicated by the DynaLog-based reconstructed plans. The EPID measurements showed that the accuracy of the DynaLog-based method to reconstruct the beam fluence was comparable with the dosimetric resolution of the portal dosimetry used in this work (3%/3 mm). The DynaLog-based reconstruction method described in this study is a suitable tool to perform a patient-specific IMRT QA. This method allows us to perform patient-specific IMRT QA by evaluating the result based on the DVH metric of the planning CT image (patient DVH-based IMRT QA).

  7. Repeated significance tests of linear combinations of sensitivity and specificity of a diagnostic biomarker

    PubMed Central

    Wu, Mixia; Shu, Yu; Li, Zhaohai; Liu, Aiyi

    2016-01-01

    A sequential design is proposed to test whether the accuracy of a binary diagnostic biomarker meets the minimal level of acceptance. The accuracy of a binary diagnostic biomarker is a linear combination of the marker’s sensitivity and specificity. The objective of the sequential method is to minimize the maximum expected sample size under the null hypothesis that the marker’s accuracy is below the minimal level of acceptance. The exact results of two-stage designs based on Youden’s index and efficiency indicate that the maximum expected sample sizes are smaller than the sample sizes of the fixed designs. Exact methods are also developed for estimation, confidence interval and p-value concerning the proposed accuracy index upon termination of the sequential testing. PMID:26947768

  8. SU-D-201-02: Prediction of Delivered Dose Based On a Joint Histogram of CT and FDG PET Images

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Park, M; Choi, Y; Cho, A

    2015-06-15

    Purpose: To investigate whether pre-treatment images can be used in predicting microsphere distribution in tumors. When intra-arterial radioembolization using Y90 microspheres was performed, the microspheres were often delivered non-uniformly within the tumor, which could lead to an inefficient therapy. Therefore, it is important to estimate the distribution of microspheres. Methods: Early arterial phase CT and FDG PET images were acquired for patients with primary liver cancer prior to radioembolization (RE) using Y90 microspheres. Tumor volume was delineated on CT images and fused with FDG PET images. From each voxel (3.9×3.9×3.3 mm3) in the tumor, the Hounsfield unit (HU) from themore » CT and SUV values from the FDG PET were harvested. We binned both HU and SUV into 11 bins and then calculated a normalized joint-histogram in an 11×11 array.Patients also underwent a post-treatment Y90 PET imaging. Radiation dose for the tumor was estimated using convolution of the Y90 distribution with a dose-point kernel. We also calculated a fraction of the tumor volume that received a radiation dose great than 100Gy. Results: Averaged over 40 patients, 55% of tumor volume received a dose greater than 100Gy (range : 1.1 – 100%). The width of the joint histogram was narrower for patients with a high dose. For patients with a low dose, the width was wider and a larger fraction of tumor volume had low HU. Conclusion: We have shown the pattern of joint histogram of the HU and SUV depends on delivered dose. The patterns can predict the efficacy of uniform intra-arterial delivery of Y90 microspheres.« less

  9. Correlation Between Echinoidea Size and Threat Level

    NASA Astrophysics Data System (ADS)

    Bakshi, S.; Lee, A.; Heim, N.; Payne, J.

    2017-12-01

    Echinoidea (or sea urchins), are small, spiny, globular, animals that populate the seafloors of nearly the entire planet. Echinoidea have existed on Earth since the Ordovician period, and from their archaic origin there is much to be learned about the relationship between Echinoidea body size and how it affects the survivability of the individual. The goal of this project is to determine how Echinoidea dimensions such as body volume, area, and length compare across extinct and extant species by plotting Echinoidea data in R. We will use stratigraphic data as a source to find which species of sea urchin from our data is extinct. We will then create three sets of three histograms of the size data for each type of measurement. One set will include histograms for sea urchin length, area, and volume. The other set will include histograms for extinct sea urchin length, area, and volume. The last set will include histograms for extant sea urchin length, area, and volume. Our data showed that extant sea urchins had a larger size, and extinct sea urchins were smaller. Our length data showed that the average length of all sea urchins were 54.95791 mm, the average length of extinct sea urchins were 51.0337 mm, and the average length of extant sea urchins were 66.12774 mm. There is a generally increasing trend of size over time, except for a small outlier about 350 million years ago, where echinoderm extinction selected towards larger species and biovolume was abnormally high. Our data also showed that over the past 200 million years, echinoderm extinction selectivity drove slightly smaller sea urchins towards extinction, further supporting the idea that a larger size was and still is advantageous for echinoderms.

  10. Esophageal wall dose-surface maps do not improve the predictive performance of a multivariable NTCP model for acute esophageal toxicity in advanced stage NSCLC patients treated with intensity-modulated (chemo-)radiotherapy.

    PubMed

    Dankers, Frank; Wijsman, Robin; Troost, Esther G C; Monshouwer, René; Bussink, Johan; Hoffmann, Aswin L

    2017-05-07

    In our previous work, a multivariable normal-tissue complication probability (NTCP) model for acute esophageal toxicity (AET) Grade  ⩾2 after highly conformal (chemo-)radiotherapy for non-small cell lung cancer (NSCLC) was developed using multivariable logistic regression analysis incorporating clinical parameters and mean esophageal dose (MED). Since the esophagus is a tubular organ, spatial information of the esophageal wall dose distribution may be important in predicting AET. We investigated whether the incorporation of esophageal wall dose-surface data with spatial information improves the predictive power of our established NTCP model. For 149 NSCLC patients treated with highly conformal radiation therapy esophageal wall dose-surface histograms (DSHs) and polar dose-surface maps (DSMs) were generated. DSMs were used to generate new DSHs and dose-length-histograms that incorporate spatial information of the dose-surface distribution. From these histograms dose parameters were derived and univariate logistic regression analysis showed that they correlated significantly with AET. Following our previous work, new multivariable NTCP models were developed using the most significant dose histogram parameters based on univariate analysis (19 in total). However, the 19 new models incorporating esophageal wall dose-surface data with spatial information did not show improved predictive performance (area under the curve, AUC range 0.79-0.84) over the established multivariable NTCP model based on conventional dose-volume data (AUC  =  0.84). For prediction of AET, based on the proposed multivariable statistical approach, spatial information of the esophageal wall dose distribution is of no added value and it is sufficient to only consider MED as a predictive dosimetric parameter.

  11. Whole-lesion histogram analysis metrics of the apparent diffusion coefficient as a marker of breast lesions characterization at 1.5 T.

    PubMed

    Bougias, H; Ghiatas, A; Priovolos, D; Veliou, K; Christou, A

    2017-05-01

    To retrospectively assess the role of whole-lesion apparent diffusion coefficient (ADC) in the characterization of breast tumors by comparing different histogram metrics. 49 patients with 53 breast lesions underwent magnetic resonance imaging (MRI). ADC histogram parameters, including the mean, mode, 10th/50th/90th percentile, skewness, kurtosis, and entropy ADCs, were derived for the whole-lesion volume in each patient. Mann-Whitney U-test, area under the receiver-operating characteristic curve (AUC) were used for statistical analysis. The mean, mode and 10th/50th/90th percentile ADC values were significantly lower in malignant lesions compared with benign ones (all P < 0.0001), while skewness was significantly higher in malignant lesions P = 0.02. However, no significant difference was found between entropy and kurtosis values in malignant lesions compared with benign ones (P = 0.06 and P = 1.00, respectively). Univariate logistic regression showed that 10th and 50th percentile ADC yielded the highest AUC (0.985; 95% confidence interval [CI]: 0.902, 1.000 and 0.982; 95% confidence interval [CI]: 0.896, 1.000 respectively), whereas kurtosis value yielded the lowest AUC (0.500; 95% CI: 0.355, 0.645), indicating that 10th and 50th percentile ADC values may be more accurate for lesion discrimination. Whole-lesion ADC histogram analysis could be a helpful index in the characterization and differentiation between benign and malignant breast lesions with the 10th and 50th percentile ADC be the most accurate discriminators. Copyright © 2017 The College of Radiographers. Published by Elsevier Ltd. All rights reserved.

  12. Investigating the Role of Global Histogram Equalization Technique for 99mTechnetium-Methylene diphosphonate Bone Scan Image Enhancement

    PubMed Central

    Pandey, Anil Kumar; Sharma, Param Dev; Dheer, Pankaj; Parida, Girish Kumar; Goyal, Harish; Patel, Chetan; Bal, Chandrashekhar; Kumar, Rakesh

    2017-01-01

    Purpose of the Study: 99mTechnetium-methylene diphosphonate (99mTc-MDP) bone scan images have limited number of counts per pixel, and hence, they have inferior image quality compared to X-rays. Theoretically, global histogram equalization (GHE) technique can improve the contrast of a given image though practical benefits of doing so have only limited acceptance. In this study, we have investigated the effect of GHE technique for 99mTc-MDP-bone scan images. Materials and Methods: A set of 89 low contrast 99mTc-MDP whole-body bone scan images were included in this study. These images were acquired with parallel hole collimation on Symbia E gamma camera. The images were then processed with histogram equalization technique. The image quality of input and processed images were reviewed by two nuclear medicine physicians on a 5-point scale where score of 1 is for very poor and 5 is for the best image quality. A statistical test was applied to find the significance of difference between the mean scores assigned to input and processed images. Results: This technique improves the contrast of the images; however, oversaturation was noticed in the processed images. Student's t-test was applied, and a statistically significant difference in the input and processed image quality was found at P < 0.001 (with α = 0.05). However, further improvement in image quality is needed as per requirements of nuclear medicine physicians. Conclusion: GHE techniques can be used on low contrast bone scan images. In some of the cases, a histogram equalization technique in combination with some other postprocessing technique is useful. PMID:29142344

  13. Novel Histogram Based Unsupervised Classification Technique to Determine Natural Classes From Biophysically Relevant Fit Parameters to Hyperspectral Data

    DOE PAGES

    McCann, Cooper; Repasky, Kevin S.; Morin, Mikindra; ...

    2017-05-23

    Hyperspectral image analysis has benefited from an array of methods that take advantage of the increased spectral depth compared to multispectral sensors; however, the focus of these developments has been on supervised classification methods. Lack of a priori knowledge regarding land cover characteristics can make unsupervised classification methods preferable under certain circumstances. An unsupervised classification technique is presented in this paper that utilizes physically relevant basis functions to model the reflectance spectra. These fit parameters used to generate the basis functions allow clustering based on spectral characteristics rather than spectral channels and provide both noise and data reduction. Histogram splittingmore » of the fit parameters is then used as a means of producing an unsupervised classification. Unlike current unsupervised classification techniques that rely primarily on Euclidian distance measures to determine similarity, the unsupervised classification technique uses the natural splitting of the fit parameters associated with the basis functions creating clusters that are similar in terms of physical parameters. The data set used in this work utilizes the publicly available data collected at Indian Pines, Indiana. This data set provides reference data allowing for comparisons of the efficacy of different unsupervised data analysis. The unsupervised histogram splitting technique presented in this paper is shown to be better than the standard unsupervised ISODATA clustering technique with an overall accuracy of 34.3/19.0% before merging and 40.9/39.2% after merging. Finally, this improvement is also seen as an improvement of kappa before/after merging of 24.8/30.5 for the histogram splitting technique compared to 15.8/28.5 for ISODATA.« less

  14. Experimental study of a depth-encoding PET detector inserting horizontal-striped glass between crystal layers

    NASA Astrophysics Data System (ADS)

    Yang, J.; Kim, K. B.; Choi, Y.; Kang, J.

    2018-04-01

    A depth-encoding positron emission tomography (PET) detector inserting a horizontal-striped glass between pixilated scintillation crystal layers was developed and experimentally evaluated. The detector consists of 2-layers of 4×4 LYSO array arranged with a 3.37 mm pitch. Horizontal-striped glasses with 1×4 array with different thickness of 3, 4 and 5 mm were inserted between top- and bottom-crystal layers. Bottom surface of bottom-layer was optically coupled to a 4×4 GAPD array. Sixteen output signals from DOI-PET detector were multiplexed by modified resistive charge division (RCD) networks and multiplexed signals were fed into custom-made charge-sensitive preamplifiers. The four amplified signals were digitized and recorded by the custom-made DAQ system based on FPGA. The four digitized outputs were post-processed and converted to flood histograms for each interaction event. Experimental results revealed that all crystal pixels were clearly identified on the 2D flood histogram without overlapping. Patterns of the 2D flood histogram were constituted with arrangements of [bottom–top–bottom–top–\\ldots–top–bottom–top–bottom] crystal responses in X-direction. These could be achieved by employing horizontal-striped glass that controlled the extent of light dispersion towards the X-direction in crystal layers for generation of a different position mapping for each layer and the modified RCD network that controls degree of charge sharing in readout electronics for reduction of identification error. This study demonstrated the proposed DOI-PET detector can extract the 3D γ-ray interaction position without considerable performance degradation of PET detector from the 2D flood histogram.

  15. Dynamic Histogram Analysis To Determine Free Energies and Rates from Biased Simulations.

    PubMed

    Stelzl, Lukas S; Kells, Adam; Rosta, Edina; Hummer, Gerhard

    2017-12-12

    We present an algorithm to calculate free energies and rates from molecular simulations on biased potential energy surfaces. As input, it uses the accumulated times spent in each state or bin of a histogram and counts of transitions between them. Optimal unbiased equilibrium free energies for each of the states/bins are then obtained by maximizing the likelihood of a master equation (i.e., first-order kinetic rate model). The resulting free energies also determine the optimal rate coefficients for transitions between the states or bins on the biased potentials. Unbiased rates can be estimated, e.g., by imposing a linear free energy condition in the likelihood maximization. The resulting "dynamic histogram analysis method extended to detailed balance" (DHAMed) builds on the DHAM method. It is also closely related to the transition-based reweighting analysis method (TRAM) and the discrete TRAM (dTRAM). However, in the continuous-time formulation of DHAMed, the detailed balance constraints are more easily accounted for, resulting in compact expressions amenable to efficient numerical treatment. DHAMed produces accurate free energies in cases where the common weighted-histogram analysis method (WHAM) for umbrella sampling fails because of slow dynamics within the windows. Even in the limit of completely uncorrelated data, where WHAM is optimal in the maximum-likelihood sense, DHAMed results are nearly indistinguishable. We illustrate DHAMed with applications to ion channel conduction, RNA duplex formation, α-helix folding, and rate calculations from accelerated molecular dynamics. DHAMed can also be used to construct Markov state models from biased or replica-exchange molecular dynamics simulations. By using binless WHAM formulated as a numerical minimization problem, the bias factors for the individual states can be determined efficiently in a preprocessing step and, if needed, optimized globally afterward.

  16. Investigation of depth-of-interaction (DOI) effects in single- and dual-layer block detectors by the use of light sharing in scintillators.

    PubMed

    Yamamoto, Seiichi

    2012-01-01

    In block detectors for PET scanners that use different lengths of slits in scintillators to share light among photomultiplier tubes (PMTs), a position histogram is distorted when the depth of interaction (DOI) of the gamma photons is near the PMTs (DOI effect). However, it remains unclear whether a DOI effect is observed for block detectors that use light sharing in scintillators. To investigate the effect, I tested the effect for single- and dual-layer block detectors. In the single-layer block detector, Ce doped Gd₂SiO₅ (GSO) crystals of 1.9 × 1.9 × 15 mm³ (0.5 mol% Ce) were used. In the dual-layer block detector, GSO crystals of a 1.9 × 1.9 × 6 mm³ (1.5 mol% Ce) were used for the front layer and GSO crystals of 1.9 × 1.9 × 9 mm³ (0.5 mol% Ce) for the back layer. These scintillators were arranged to form an 8 × 8 matrix with multi-layer optical film inserted partly between the scintillators for obtaining an optimized position response with use of two dual-PMTs. Position histograms and energy responses were measured for these block detectors at three different DOI positions, and the flood histograms were obtained. The results indicated that DOI effects are observed in both block detectors, but the dual-layer block showed more severe distortion in the position histogram as well as larger energy variations. We conclude that, in the block detectors that use light sharing in the scintillators, the DOI effect is an important factor for the performance of the detectors, especially for DOI block detectors.

  17. The Utility of Using a Near-Infrared (NIR) Camera to Measure Beach Surface Moisture

    NASA Astrophysics Data System (ADS)

    Nelson, S.; Schmutz, P. P.

    2017-12-01

    Surface moisture content is an important factor that must be considered when studying aeolian sediment transport in a beach environment. A few different instruments and procedures are available for measuring surface moisture content (i.e. moisture probes, LiDAR, and gravimetric moisture data from surface scrapings); however, these methods can be inaccurate, costly, and inapplicable, particularly in the field. Near-infrared (NIR) spectral band imagery is another technique used to obtain moisture data. NIR imagery has been predominately used through remote sensing and has yet to be used for ground-based measurements. Dry sand reflects infrared radiation given off by the sun and wet sand absorbs IR radiation. All things considered, this study assesses the utility of measuring surface moisture content of beach sand with a modified NIR camera. A traditional point and shoot digital camera was internally modified with the placement of a visible light-blocking filter. Images were taken of three different types of beach sand at controlled moisture content values, with sunlight as the source of infrared radiation. A technique was established through trial and error by comparing resultant histogram values using Adobe Photoshop with the various moisture conditions. The resultant IR absorption histogram values were calibrated to actual gravimetric moisture content from surface scrapings of the samples. Overall, the results illustrate that the NIR spectrum modified camera does not provide the ability to adequately measure beach surface moisture content. However, there were noted differences in IR absorption histogram values among the different sediment types. Sediment with darker quartz mineralogy provided larger variations in histogram values, but the technique is not sensitive enough to accurately represent low moisture percentages, which are of most importance when studying aeolian sediment transport.

  18. Esophageal wall dose-surface maps do not improve the predictive performance of a multivariable NTCP model for acute esophageal toxicity in advanced stage NSCLC patients treated with intensity-modulated (chemo-)radiotherapy

    NASA Astrophysics Data System (ADS)

    Dankers, Frank; Wijsman, Robin; Troost, Esther G. C.; Monshouwer, René; Bussink, Johan; Hoffmann, Aswin L.

    2017-05-01

    In our previous work, a multivariable normal-tissue complication probability (NTCP) model for acute esophageal toxicity (AET) Grade  ⩾2 after highly conformal (chemo-)radiotherapy for non-small cell lung cancer (NSCLC) was developed using multivariable logistic regression analysis incorporating clinical parameters and mean esophageal dose (MED). Since the esophagus is a tubular organ, spatial information of the esophageal wall dose distribution may be important in predicting AET. We investigated whether the incorporation of esophageal wall dose-surface data with spatial information improves the predictive power of our established NTCP model. For 149 NSCLC patients treated with highly conformal radiation therapy esophageal wall dose-surface histograms (DSHs) and polar dose-surface maps (DSMs) were generated. DSMs were used to generate new DSHs and dose-length-histograms that incorporate spatial information of the dose-surface distribution. From these histograms dose parameters were derived and univariate logistic regression analysis showed that they correlated significantly with AET. Following our previous work, new multivariable NTCP models were developed using the most significant dose histogram parameters based on univariate analysis (19 in total). However, the 19 new models incorporating esophageal wall dose-surface data with spatial information did not show improved predictive performance (area under the curve, AUC range 0.79-0.84) over the established multivariable NTCP model based on conventional dose-volume data (AUC  =  0.84). For prediction of AET, based on the proposed multivariable statistical approach, spatial information of the esophageal wall dose distribution is of no added value and it is sufficient to only consider MED as a predictive dosimetric parameter.

  19. Novel Histogram Based Unsupervised Classification Technique to Determine Natural Classes From Biophysically Relevant Fit Parameters to Hyperspectral Data

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    McCann, Cooper; Repasky, Kevin S.; Morin, Mikindra

    Hyperspectral image analysis has benefited from an array of methods that take advantage of the increased spectral depth compared to multispectral sensors; however, the focus of these developments has been on supervised classification methods. Lack of a priori knowledge regarding land cover characteristics can make unsupervised classification methods preferable under certain circumstances. An unsupervised classification technique is presented in this paper that utilizes physically relevant basis functions to model the reflectance spectra. These fit parameters used to generate the basis functions allow clustering based on spectral characteristics rather than spectral channels and provide both noise and data reduction. Histogram splittingmore » of the fit parameters is then used as a means of producing an unsupervised classification. Unlike current unsupervised classification techniques that rely primarily on Euclidian distance measures to determine similarity, the unsupervised classification technique uses the natural splitting of the fit parameters associated with the basis functions creating clusters that are similar in terms of physical parameters. The data set used in this work utilizes the publicly available data collected at Indian Pines, Indiana. This data set provides reference data allowing for comparisons of the efficacy of different unsupervised data analysis. The unsupervised histogram splitting technique presented in this paper is shown to be better than the standard unsupervised ISODATA clustering technique with an overall accuracy of 34.3/19.0% before merging and 40.9/39.2% after merging. Finally, this improvement is also seen as an improvement of kappa before/after merging of 24.8/30.5 for the histogram splitting technique compared to 15.8/28.5 for ISODATA.« less

  20. A comparative study on preprocessing techniques in diabetic retinopathy retinal images: illumination correction and contrast enhancement.

    PubMed

    Rasta, Seyed Hossein; Partovi, Mahsa Eisazadeh; Seyedarabi, Hadi; Javadzadeh, Alireza

    2015-01-01

    To investigate the effect of preprocessing techniques including contrast enhancement and illumination correction on retinal image quality, a comparative study was carried out. We studied and implemented a few illumination correction and contrast enhancement techniques on color retinal images to find out the best technique for optimum image enhancement. To compare and choose the best illumination correction technique we analyzed the corrected red and green components of color retinal images statistically and visually. The two contrast enhancement techniques were analyzed using a vessel segmentation algorithm by calculating the sensitivity and specificity. The statistical evaluation of the illumination correction techniques were carried out by calculating the coefficients of variation. The dividing method using the median filter to estimate background illumination showed the lowest Coefficients of variations in the red component. The quotient and homomorphic filtering methods after the dividing method presented good results based on their low Coefficients of variations. The contrast limited adaptive histogram equalization increased the sensitivity of the vessel segmentation algorithm up to 5% in the same amount of accuracy. The contrast limited adaptive histogram equalization technique has a higher sensitivity than the polynomial transformation operator as a contrast enhancement technique for vessel segmentation. Three techniques including the dividing method using the median filter to estimate background, quotient based and homomorphic filtering were found as the effective illumination correction techniques based on a statistical evaluation. Applying the local contrast enhancement technique, such as CLAHE, for fundus images presented good potentials in enhancing the vasculature segmentation.

  1. Examining the NZESM Cloud representation with Self Organizing Maps

    NASA Astrophysics Data System (ADS)

    Schuddeboom, Alex; McDonald, Adrian; Parsons, Simon; Morgenstern, Olaf; Harvey, Mike

    2017-04-01

    Several different cloud regimes are identified from MODIS satellite data and the representation of these regimes within the New Zealand Earth System Model (NZESM) is examined. For the development of our cloud classification we utilize a neural network algorithm known as self organizing maps (SOMs) on MODIS cloud top pressure - cloud optical thickness joint histograms. To evaluate the representation of the cloud within NZESM, the frequency and geographical distribution of the regimes is compared between the NZESM and satellite data. This approach has the advantage of not only identifying differences, but also potentially giving additional information about the discrepancy such as in which regions or phases of cloud the differences are most prominent. To allow for a more direct comparison between datasets, the COSP satellite simulation software is applied to NZESM output. COSP works by simulating the observational processes linked to a satellite, within the GCM, so that data can be generated in a way that shares the particular observational bias of specific satellites. By taking the COSP joint histograms and comparing them to our existing classifications we can easily search for discrepancies between the observational data and the simulations without having to be cautious of biases introduced by the satellite. Preliminary results, based on data for 2008, show a significant decrease in overall cloud fraction in the NZESM compared to the MODIS satellite data. To better understand the nature of this discrepancy, the cloud fraction related to different cloud heights and phases were also analysed.

  2. MCNP output data analysis with ROOT (MODAR)

    NASA Astrophysics Data System (ADS)

    Carasco, C.

    2010-12-01

    MCNP Output Data Analysis with ROOT (MODAR) is a tool based on CERN's ROOT software. MODAR has been designed to handle time-energy data issued by MCNP simulations of neutron inspection devices using the associated particle technique. MODAR exploits ROOT's Graphical User Interface and functionalities to visualize and process MCNP simulation results in a fast and user-friendly way. MODAR allows to take into account the detection system time resolution (which is not possible with MCNP) as well as detectors energy response function and counting statistics in a straightforward way. New version program summaryProgram title: MODAR Catalogue identifier: AEGA_v1_1 Program summary URL:http://cpc.cs.qub.ac.uk/summaries/AEGA_v1_1.html Program obtainable from: CPC Program Library, Queen's University, Belfast, N. Ireland Licensing provisions: Standard CPC licence, http://cpc.cs.qub.ac.uk/licence/licence.html No. of lines in distributed program, including test data, etc.: 150 927 No. of bytes in distributed program, including test data, etc.: 4 981 633 Distribution format: tar.gz Programming language: C++ Computer: Most Unix workstations and PCs Operating system: Most Unix systems, Linux and windows, provided the ROOT package has been installed. Examples where tested under Suse Linux and Windows XP. RAM: Depends on the size of the MCNP output file. The example presented in the article, which involves three two dimensional 139×740 bins histograms, allocates about 60 MB. These data are running under ROOT and include consumption by ROOT itself. Classification: 17.6 Catalogue identifier of previous version: AEGA_v1_0 Journal reference of previous version: Comput. Phys. Comm. 181 (2010) 1161 External routines: ROOT version 5.24.00 ( http://root.cern.ch/drupal/) Does the new version supersede the previous version?: Yes Nature of problem: The output of a MCNP simulation is an ascii file. The data processing is usually performed by copying and pasting the relevant parts of the ascii file into Microsoft Excel. Such an approach is satisfactory when the quantity of data is small but is not efficient when the size of the simulated data is large, for example when time-energy correlations are studied in detail such as in problems involving the associated particle technique. In addition, since the finite time resolution of the simulated detector cannot be modeled with MCNP, systems in which time-energy correlation is crucial cannot be described in a satisfactory way. Finally, realistic particle energy deposit in detectors is calculated with MCNP in a two step process involving type-5 then type-8 tallies. In the first step, the photon flux energy spectrum associated to a time region is selected and serves as a source energy distribution for the second step. Thus, several files must be manipulated before getting the result, which can be time consuming if one needs to study several time regions or different detectors performances. In the same way, modeling counting statistics obtained in a limited acquisition time requires several steps and can also be time consuming. Solution method: In order to overcome the previous limitations, the MODAR C++ code has been written to make use of CERN's ROOT data analysis software. MCNP output data are read from the MCNP output file with dedicated routines. Two dimensional histograms are filled and can be handled efficiently within the ROOT framework. To keep a user friendly analysis tool, all processing and data display can be done by means of ROOT Graphical User Interface. Specific routines have been written to include detectors finite time resolution and energy response function as well as counting statistics in a straightforward way. Reasons for new version: For applications involving the Associate Particle Technique, a large number of gamma rays are produced by the fast neutrons interactions. To study the energy spectra, it is useful to identify the gamma-ray energy peaks in a straightforward way. Therefore, the possibility to show gamma rays corresponding to specific reactions has been added in MODAR. Summary of revisions: It is possible to use a gamma ray database to better identify in the energy spectra gamma ray peaks with their first and second escapes. Histograms can be scaled by the number of source particle to evaluate the number of counts that is expected without statistical uncertainties. Additional comments: The possibility of adding tallies has also been incorporated in MODAR in order to describe systems in which the signal from several detectors can be summed. Moreover, MODAR can be adapted to handle other problems involving two dimensional data. Running time: The CPU time needed to smear a two dimensional histogram depends on the size of the histogram. In the presented example, the time-energy smearing of one of the 139×740 two dimensional histograms takes 3 minutes with a DELL computer equipped with INTEL Core 2.

  3. Using Generalized Equivalent Uniform Dose Atlases to Combine and Analyze Prospective Dosimetric and Radiation Pneumonitis Data From 2 Non-Small Cell Lung Cancer Dose Escalation Protocols

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Liu Fan; Yorke, Ellen D.; Belderbos, Jose S.A.

    2013-01-01

    Purpose: To demonstrate the use of generalized equivalent uniform dose (gEUD) atlas for data pooling in radiation pneumonitis (RP) modeling, to determine the dependence of RP on gEUD, to study the consistency between data sets, and to verify the increased statistical power of the combination. Methods and Materials: Patients enrolled in prospective phase I/II dose escalation studies of radiation therapy of non-small cell lung cancer at Memorial Sloan-Kettering Cancer Center (MSKCC) (78 pts) and the Netherlands Cancer Institute (NKI) (86 pts) were included; 10 (13%) and 14 (17%) experienced RP requiring steroids (RPS) within 6 months after treatment. gEUD wasmore » calculated from dose-volume histograms. Atlases for each data set were created using 1-Gy steps from exact gEUDs and RPS data. The Lyman-Kutcher-Burman model was fit to the atlas and exact gEUD data. Heterogeneity and inconsistency statistics for the fitted parameters were computed. gEUD maps of the probability of RPS rate {>=}20% were plotted. Results: The 2 data sets were homogeneous and consistent. The best fit values of the volume effect parameter a were small, with upper 95% confidence limit around 1.0 in the joint data. The likelihood profiles around the best fit a values were flat in all cases, making determination of the best fit a weak. All confidence intervals (CIs) were narrower in the joint than in the individual data sets. The minimum P value for correlations of gEUD with RPS in the joint data was .002, compared with P=.01 and .05 for MSKCC and NKI data sets, respectively. gEUD maps showed that at small a, RPS risk increases with gEUD. Conclusions: The atlas can be used to combine gEUD and RPS information from different institutions and model gEUD dependence of RPS. RPS has a large volume effect with the mean dose model barely included in the 95% CI. Data pooling increased statistical power.« less

  4. Osmolality urine test

    MedlinePlus

    ... balance and urine concentration. Osmolality is a more exact measurement of urine concentration than the urine specific ... must be authorized in writing by ADAM Health Solutions. About MedlinePlus Site Map FAQs Customer Support Get ...

  5. Large Area Crop Inventory Experiment (LACIE). Detection of episodic phenomena on LANDSAT imagery. [Kansas

    NASA Technical Reports Server (NTRS)

    Chesnutwood, C. M. (Principal Investigator)

    1976-01-01

    The author has identified the following significant results. Episodic phenomena such as rainfall shortly before data pass, thin translucent clouds, cloud shadows, and aircraft condensation trails and their shadows are responsible for changes in the spectral reflectivities of some surfaces. These changes are readily detected on LANDSAT full-frame imagery. Histograms of selected areas in Kansas show a distinct decrease in mean radiance values, but also, an increase in scene contrast, in areas where recent rains had occurred. Histograms from a few individual fields indicate that the mean radiance values for winter wheat followed a different trend after a rainfall than alfalfa or grasses.

  6. Adaptive histogram equalization in digital radiography of destructive skeletal lesions.

    PubMed

    Braunstein, E M; Capek, P; Buckwalter, K; Bland, P; Meyer, C R

    1988-03-01

    Adaptive histogram equalization, an image-processing technique that distributes pixel values of an image uniformly throughout the gray scale, was applied to 28 plain radiographs of bone lesions, after they had been digitized. The non-equalized and equalized digital images were compared by two skeletal radiologists with respect to lesion margins, internal matrix, soft-tissue mass, cortical breakthrough, and periosteal reaction. Receiver operating characteristic (ROC) curves were constructed on the basis of the responses. Equalized images were superior to nonequalized images in determination of cortical breakthrough and presence or absence of periosteal reaction. ROC analysis showed no significant difference in determination of margins, matrix, or soft-tissue masses.

  7. Rejection of the maternal electrocardiogram in the electrohysterogram signal.

    PubMed

    Leman, H; Marque, C

    2000-08-01

    The electrohysterogram (EHG) signal is mainly corrupted by the mother's electrocardiogram (ECG), which remains present despite analog filtering during acquisition. Wavelets are a powerful denoising tool and have already proved their efficiency on the EHG. In this paper, we propose a new method that employs the redundant wavelet packet transform. We first study wavelet packet coefficient histograms and propose an algorithm to automatically detect the histogram mode number. Using a new criterion, we compute a best basis adapted to the denoising. After EHG wavelet packet coefficient thresholding in the selected basis, the inverse transform is applied. The ECG seems to be very efficiently removed.

  8. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kristiansen, J.I.; Balliny, N.; Saxov, S.

    Some available information on thermal conductivity of earth materials from the Scandinavian area is collected. The mean conductivities as reported from individual localities are grouped in crystalline and sedimentary rocks. Mean results are displayed in histograms and localities are mapped. The collocation of conductivity information contains new results of granites and sedimentary rocks from Sweden and of limestones and clays from Danish borings. The new values are presented as histograms of individual measurements and given as mean values with standard errors of mean. The crystalline rocks range from about 2 to about 4 W/ (m K), and the sedimentary rocksmore » range from about 0.8 to about 6 W/ (m K).« less

  9. Improved image retrieval based on fuzzy colour feature vector

    NASA Astrophysics Data System (ADS)

    Ben-Ahmeida, Ahlam M.; Ben Sasi, Ahmed Y.

    2013-03-01

    One of Image indexing techniques is the Content-Based Image Retrieval which is an efficient way for retrieving images from the image database automatically based on their visual contents such as colour, texture, and shape. In this paper will be discuss how using content-based image retrieval (CBIR) method by colour feature extraction and similarity checking. By dividing the query image and all images in the database into pieces and extract the features of each part separately and comparing the corresponding portions in order to increase the accuracy in the retrieval. The proposed approach is based on the use of fuzzy sets, to overcome the problem of curse of dimensionality. The contribution of colour of each pixel is associated to all the bins in the histogram using fuzzy-set membership functions. As a result, the Fuzzy Colour Histogram (FCH), outperformed the Conventional Colour Histogram (CCH) in image retrieving, due to its speedy results, where were images represented as signatures that took less size of memory, depending on the number of divisions. The results also showed that FCH is less sensitive and more robust to brightness changes than the CCH with better retrieval recall values.

  10. Automated Counting of Particles To Quantify Cleanliness

    NASA Technical Reports Server (NTRS)

    Rhode, James

    2005-01-01

    A machine vision system, similar to systems used in microbiological laboratories to count cultured microbes, has been proposed for quantifying the cleanliness of nominally precisely cleaned hardware by counting residual contaminant particles. The system would include a microscope equipped with an electronic camera and circuitry to digitize the camera output, a personal computer programmed with machine-vision and interface software, and digital storage media. A filter pad, through which had been aspirated solvent from rinsing the hardware in question, would be placed on the microscope stage. A high-resolution image of the filter pad would be recorded. The computer would analyze the image and present a histogram of sizes of particles on the filter. On the basis of the histogram and a measure of the desired level of cleanliness, the hardware would be accepted or rejected. If the hardware were accepted, the image would be saved, along with other information, as a quality record. If the hardware were rejected, the histogram and ancillary information would be recorded for analysis of trends. The software would perceive particles that are too large or too numerous to meet a specified particle-distribution profile. Anomalous particles or fibrous material would be flagged for inspection.

  11. Multi-scale Morphological Image Enhancement of Chest Radiographs by a Hybrid Scheme.

    PubMed

    Alavijeh, Fatemeh Shahsavari; Mahdavi-Nasab, Homayoun

    2015-01-01

    Chest radiography is a common diagnostic imaging test, which contains an enormous amount of information about a patient. However, its interpretation is highly challenging. The accuracy of the diagnostic process is greatly influenced by image processing algorithms; hence enhancement of the images is indispensable in order to improve visibility of the details. This paper aims at improving radiograph parameters such as contrast, sharpness, noise level, and brightness to enhance chest radiographs, making use of a triangulation method. Here, contrast limited adaptive histogram equalization technique and noise suppression are simultaneously performed in wavelet domain in a new scheme, followed by morphological top-hat and bottom-hat filtering. A unique implementation of morphological filters allows for adjustment of the image brightness and significant enhancement of the contrast. The proposed method is tested on chest radiographs from Japanese Society of Radiological Technology database. The results are compared with conventional enhancement techniques such as histogram equalization, contrast limited adaptive histogram equalization, Retinex, and some recently proposed methods to show its strengths. The experimental results reveal that the proposed method can remarkably improve the image contrast while keeping the sensitive chest tissue information so that radiologists might have a more precise interpretation.

  12. Multi-scale Morphological Image Enhancement of Chest Radiographs by a Hybrid Scheme

    PubMed Central

    Alavijeh, Fatemeh Shahsavari; Mahdavi-Nasab, Homayoun

    2015-01-01

    Chest radiography is a common diagnostic imaging test, which contains an enormous amount of information about a patient. However, its interpretation is highly challenging. The accuracy of the diagnostic process is greatly influenced by image processing algorithms; hence enhancement of the images is indispensable in order to improve visibility of the details. This paper aims at improving radiograph parameters such as contrast, sharpness, noise level, and brightness to enhance chest radiographs, making use of a triangulation method. Here, contrast limited adaptive histogram equalization technique and noise suppression are simultaneously performed in wavelet domain in a new scheme, followed by morphological top-hat and bottom-hat filtering. A unique implementation of morphological filters allows for adjustment of the image brightness and significant enhancement of the contrast. The proposed method is tested on chest radiographs from Japanese Society of Radiological Technology database. The results are compared with conventional enhancement techniques such as histogram equalization, contrast limited adaptive histogram equalization, Retinex, and some recently proposed methods to show its strengths. The experimental results reveal that the proposed method can remarkably improve the image contrast while keeping the sensitive chest tissue information so that radiologists might have a more precise interpretation. PMID:25709942

  13. Lower-upper-threshold correlation for underwater range-gated imaging self-adaptive enhancement.

    PubMed

    Sun, Liang; Wang, Xinwei; Liu, Xiaoquan; Ren, Pengdao; Lei, Pingshun; He, Jun; Fan, Songtao; Zhou, Yan; Liu, Yuliang

    2016-10-10

    In underwater range-gated imaging (URGI), enhancement of low-brightness and low-contrast images is critical for human observation. Traditional histogram equalizations over-enhance images, with the result of details being lost. To compress over-enhancement, a lower-upper-threshold correlation method is proposed for underwater range-gated imaging self-adaptive enhancement based on double-plateau histogram equalization. The lower threshold determines image details and compresses over-enhancement. It is correlated with the upper threshold. First, the upper threshold is updated by searching for the local maximum in real time, and then the lower threshold is calculated by the upper threshold and the number of nonzero units selected from a filtered histogram. With this method, the backgrounds of underwater images are constrained with enhanced details. Finally, the proof experiments are performed. Peak signal-to-noise-ratio, variance, contrast, and human visual properties are used to evaluate the objective quality of the global and regions of interest images. The evaluation results demonstrate that the proposed method adaptively selects the proper upper and lower thresholds under different conditions. The proposed method contributes to URGI with effective image enhancement for human eyes.

  14. Computer-assisted analysis of the vascular endothelial cell motile response to injury.

    PubMed

    Askey, D B; Herman, I M

    1988-12-01

    We have developed an automated, user-friendly method to track vascular endothelial cell migration in vitro using an IBM PC/XT with MS DOS. Analog phase-contrast images of the bovine aortic endothelial cells are converted into digital images (8 bit, 250 x 240 pixel resolution) using a Tecmar Video VanGogh A/D board. Digitized images are stored at selected time points following mechanical injury in vitro. FORTRAN and assembly language subroutines have been implemented to automatically detect the wound edge and the edge of each cell nucleus in the phase-contrast, light-microscope field. Detection of the wound edge is accomplished by intensity thresholding following noise reduction in the image and subsequent sampling of the wound. After the range of wound intensities is determined, the entire image is sampled and a histogram of intensities is formed. The histogram peak corresponding to the wound intensities is subtracted, leaving a histogram peak that gives the range of intensities corresponding to the cell nuclei. Rates of cell migration, as well as cellular trajectories and cell surface areas, can be automatically quantitated and analyzed. This inexpensive, automated cell-tracking system should be widely applicable in a variety of cell biologic applications.

  15. Using an image-extended relational database to support content-based image retrieval in a PACS.

    PubMed

    Traina, Caetano; Traina, Agma J M; Araújo, Myrian R B; Bueno, Josiane M; Chino, Fabio J T; Razente, Humberto; Azevedo-Marques, Paulo M

    2005-12-01

    This paper presents a new Picture Archiving and Communication System (PACS), called cbPACS, which has content-based image retrieval capabilities. The cbPACS answers range and k-nearest- neighbor similarity queries, employing a relational database manager extended to support images. The images are compared through their features, which are extracted by an image-processing module and stored in the extended relational database. The database extensions were developed aiming at efficiently answering similarity queries by taking advantage of specialized indexing methods. The main concept supporting the extensions is the definition, inside the relational manager, of distance functions based on features extracted from the images. An extension to the SQL language enables the construction of an interpreter that intercepts the extended commands and translates them to standard SQL, allowing any relational database server to be used. By now, the system implemented works on features based on color distribution of the images through normalized histograms as well as metric histograms. Metric histograms are invariant regarding scale, translation and rotation of images and also to brightness transformations. The cbPACS is prepared to integrate new image features, based on texture and shape of the main objects in the image.

  16. Digital image improvement by adding noise: an example by a professional photographer

    NASA Astrophysics Data System (ADS)

    Kurihara, Takehito; Manabe, Yoshitsugu; Aoki, Naokazu; Kobayashi, Hiroyuki

    2008-01-01

    To overcome shortcomings of digital image, or to reproduce grain of traditional silver halide photographs, some photographers add noise (grain) to digital image. In an effort to find a factor of preferable noise, we analyzed how a professional photographer introduces noise into B&W digital images and found two noticeable characteristics: 1) there is more noise in mid-tones, gradually decreasing in highlights and shadows toward the ends of tonal range, and 2) histograms in highlights are skewed toward shadows and vice versa, while almost symmetrical in mid-tones. Next, we examined whether the professional's noise could be reproduced. The symmetrical histograms were approximated by Gaussian distribution and skewed ones by chi-square distribution. The images on which the noise was reproduced were judged by the professional himself to be satisfactory enough. As the professional said he added the noise so that "it looked like the grain of B&W gelatin silver photographs," we compared the two kinds of noise and found they have in common: 1) more noise in mid-tones but almost none in brightest highlights and deepest shadows, and 2) asymmetrical histograms in highlights and shadows. We think these common characteristics might be one condition for "good" noise.

  17. Convolution Comparison Pattern: An Efficient Local Image Descriptor for Fingerprint Liveness Detection

    PubMed Central

    Gottschlich, Carsten

    2016-01-01

    We present a new type of local image descriptor which yields binary patterns from small image patches. For the application to fingerprint liveness detection, we achieve rotation invariant image patches by taking the fingerprint segmentation and orientation field into account. We compute the discrete cosine transform (DCT) for these rotation invariant patches and attain binary patterns by comparing pairs of two DCT coefficients. These patterns are summarized into one or more histograms per image. Each histogram comprises the relative frequencies of pattern occurrences. Multiple histograms are concatenated and the resulting feature vector is used for image classification. We name this novel type of descriptor convolution comparison pattern (CCP). Experimental results show the usefulness of the proposed CCP descriptor for fingerprint liveness detection. CCP outperforms other local image descriptors such as LBP, LPQ and WLD on the LivDet 2013 benchmark. The CCP descriptor is a general type of local image descriptor which we expect to prove useful in areas beyond fingerprint liveness detection such as biological and medical image processing, texture recognition, face recognition and iris recognition, liveness detection for face and iris images, and machine vision for surface inspection and material classification. PMID:26844544

  18. Search for Correlated Fluctuations in the Beta+ Decay of Na-22

    NASA Astrophysics Data System (ADS)

    Silverman, M. P.; Strange, W.

    2008-10-01

    Claims for a ``cosmogenic'' force that correlates otherwise independent stochastic events have been made for at least 10 years, based largely on visual inspection of time series of histograms whose shapes were interpreted as suggestive of recurrent patterns with semi-diurnal, diurnal, and monthly periods. Building on our earlier work to test randomness of different nuclear decay processes, we have searched for correlations in the time-series of coincident positron-electron annihilations deriving from beta+ decay of Na-22. Disintegrations were counted within a narrow time window over a period of 7 days, leading to a time series of more than 1 million events. Statistical tests were performed on the raw time series, its correlation function, and its Fourier transform to search for cyclic correlations indicative of quantum-mechanical violating deviations from Poisson statistics. The time series was then partitioned into a sequence of 167 ``bags'' each of 8192 events. A histogram was made of the events of each bag, where contiguous frequency classes differed by a single count. The chronological sequence of histograms was then tested for correlations within classes. In all cases the results of the tests were in accord with statistical control, giving no evidence of correlated fluctuations.

  19. Predicting low-temperature free energy landscapes with flat-histogram Monte Carlo methods

    NASA Astrophysics Data System (ADS)

    Mahynski, Nathan A.; Blanco, Marco A.; Errington, Jeffrey R.; Shen, Vincent K.

    2017-02-01

    We present a method for predicting the free energy landscape of fluids at low temperatures from flat-histogram grand canonical Monte Carlo simulations performed at higher ones. We illustrate our approach for both pure and multicomponent systems using two different sampling methods as a demonstration. This allows us to predict the thermodynamic behavior of systems which undergo both first order and continuous phase transitions upon cooling using simulations performed only at higher temperatures. After surveying a variety of different systems, we identify a range of temperature differences over which the extrapolation of high temperature simulations tends to quantitatively predict the thermodynamic properties of fluids at lower ones. Beyond this range, extrapolation still provides a reasonably well-informed estimate of the free energy landscape; this prediction then requires less computational effort to refine with an additional simulation at the desired temperature than reconstruction of the surface without any initial estimate. In either case, this method significantly increases the computational efficiency of these flat-histogram methods when investigating thermodynamic properties of fluids over a wide range of temperatures. For example, we demonstrate how a binary fluid phase diagram may be quantitatively predicted for many temperatures using only information obtained from a single supercritical state.

  20. Assessing clutter reduction in parallel coordinates using image processing techniques

    NASA Astrophysics Data System (ADS)

    Alhamaydh, Heba; Alzoubi, Hussein; Almasaeid, Hisham

    2018-01-01

    Information visualization has appeared as an important research field for multidimensional data and correlation analysis in recent years. Parallel coordinates (PCs) are one of the popular techniques to visual high-dimensional data. A problem with the PCs technique is that it suffers from crowding, a clutter which hides important data and obfuscates the information. Earlier research has been conducted to reduce clutter without loss in data content. We introduce the use of image processing techniques as an approach for assessing the performance of clutter reduction techniques in PC. We use histogram analysis as our first measure, where the mean feature of the color histograms of the possible alternative orderings of coordinates for the PC images is calculated and compared. The second measure is the extracted contrast feature from the texture of PC images based on gray-level co-occurrence matrices. The results show that the best PC image is the one that has the minimal mean value of the color histogram feature and the maximal contrast value of the texture feature. In addition to its simplicity, the proposed assessment method has the advantage of objectively assessing alternative ordering of PC visualization.

Top