Dubrovsky, V. G.; Topovsky, A. V.; Basalaev, M. Yu.
2010-09-15
The classes of exactly solvable multiline soliton potentials and corresponding wave functions of two-dimensional stationary Schroedinger equation via {partial_derivative}-dressing method are constructed and their physical interpretation is discussed.
Scattering waves using exact controllability methods
NASA Astrophysics Data System (ADS)
Bristeau, M. O.; Glowinski, R.; Periaux, J.
1993-01-01
The main goal of this paper is to introduce a novel method for solving the Helmholtz equations from acoustics and two-dimensional electromagnetics. The key idea of the method is to go back to the original wave equation and look for time periodic solutions. In order to find these solutions, we essentially use a least squares/shooting method which is closely related to exact controllability and to the Hilbert uniqueness method of Lions (1988). From this formulation and by analogy with other controllability problems, we derive a conjugate gradient algorithm (in an appropriate Hilbert space) which has quite good convergence properties. Numerical experiments concerning the scattering of planar waves by convex or nonconvex obstacles show the efficiency of the new algorithm, particularly for air intakelike reflectors and two-dimensional aircraft related bodies.
A fast exact sequential algorithm for the partial digest problem.
Abbas, Mostafa M; Bahig, Hazem M
2016-12-22
Restriction site analysis involves determining the locations of restriction sites after the process of digestion by reconstructing their positions based on the lengths of the cut DNA. Using different reaction times with a single enzyme to cut DNA is a technique known as a partial digestion. Determining the exact locations of restriction sites following a partial digestion is challenging due to the computational time required even with the best known practical algorithm. In this paper, we introduce an efficient algorithm to find the exact solution for the partial digest problem. The algorithm is able to find all possible solutions for the input and works by traversing the solution tree with a breadth-first search in two stages and deleting all repeated subproblems. Two types of simulated data, random and Zhang, are used to measure the efficiency of the algorithm. We also apply the algorithm to real data for the Luciferase gene and the E. coli K12 genome. Our algorithm is a fast tool to find the exact solution for the partial digest problem. The percentage of improvement is more than 75% over the best known practical algorithm for the worst case. For large numbers of inputs, our algorithm is able to solve the problem in a suitable time, while the best known practical algorithm is unable.
Partial transpose of random quantum states: Exact formulas and meanders
Fukuda, Motohisa; Sniady, Piotr
2013-04-15
We investigate the asymptotic behavior of the empirical eigenvalues distribution of the partial transpose of a random quantum state. The limiting distribution was previously investigated via Wishart random matrices indirectly (by approximating the matrix of trace 1 by the Wishart matrix of random trace) and shown to be the semicircular distribution or the free difference of two free Poisson distributions, depending on how dimensions of the concerned spaces grow. Our use of Wishart matrices gives exact combinatorial formulas for the moments of the partial transpose of the random state. We find three natural asymptotic regimes in terms of geodesics on the permutation groups. Two of them correspond to the above two cases; the third one turns out to be a new matrix model for the meander polynomials. Moreover, we prove the convergence to the semicircular distribution together with its extreme eigenvalues under weaker assumptions, and show large deviation bound for the latter.
Exact Nonlinear Internal Equatorial Waves in the f-plane
NASA Astrophysics Data System (ADS)
Hsu, Hung-Chu
2016-07-01
We present an explicit exact solution of the nonlinear governing equations for internal geophysical water waves propagating westward above the thermocline in the f-plane approximation near the equator. Moreover, the mass transport velocity induced by this internal equatorial wave is eastward and a westward current occurs in the transition zone between the great depth where the water is still and the thermocline.
Exact Steady Azimuthal Internal Waves in the f-Plane
NASA Astrophysics Data System (ADS)
Hsu, Hung-Chu
2017-03-01
We present an explicit exact solution of the nonlinear governing equations with Coriolis and centripetal terms in the f-plane approximation for internal geophysical trapped waves with a uniform current near the equator. This solution describes in the Lagrangian framework azimuthal equatorial internal waves propagating westward in a stratified rotational fluid.
Exact and explicit solitary wave solutions to some nonlinear equations
Jiefang Zhang
1996-08-01
Exact and explicit solitary wave solutions are obtained for some physically interesting nonlinear evolutions and wave equations in physics and other fields by using a special transformation. These equations include the KdV-Burgers equation, the MKdV-Burgers equation, the combined KdV-MKdV equation, the Newell-Whitehead equation, the dissipative {Phi}{sup 4}-model equation, the generalized Fisher equation, and the elastic-medium wave equation.
Exact complex-wave reconstruction in digital holography.
Seelamantula, Chandra Sekhar; Pavillon, Nicolas; Depeursinge, Christian; Unser, Michael
2011-06-01
We address the problem of exact complex-wave reconstruction in digital holography. We show that, by confining the object-wave modulation to one quadrant of the frequency domain, and by maintaining a reference-wave intensity higher than that of the object, one can achieve exact complex-wave reconstruction in the absence of noise. A feature of the proposed technique is that the zero-order artifact, which is commonly encountered in hologram reconstruction, can be completely suppressed in the absence of noise. The technique is noniterative and nonlinear. We also establish a connection between the reconstruction technique and homomorphic signal processing, which enables an interpretation of the technique from the perspective of deconvolution. Another key contribution of this paper is a direct link between the reconstruction technique and the two-dimensional Hilbert transform formalism proposed by Hahn. We show that this connection leads to explicit Hilbert transform relations between the magnitude and phase of the complex wave encoded in the hologram. We also provide results on simulated as well as experimental data to validate the accuracy of the reconstruction technique.
Exact Steady Azimuthal Edge Waves in Rotating Fluids
NASA Astrophysics Data System (ADS)
Ionescu-Kruse, Delia
2017-09-01
The full problem of water waves travelling along a constant sloping beach with the shoreline parallel to the Equator, written in a moving frame with the origin at a point on the rotating Earth is introduced. An exact steady solution of this problem moving only in the azimuthal direction, with no variations in this direction, is obtained. The solution is discussed in turn in spherical coordinates, in cylindrical coordinates and in the tangent-plan approximations.
AdS waves as exact solutions to quadratic gravity
Guellue, Ibrahim; Sisman, Tahsin Cagri; Tekin, Bayram; Guerses, Metin
2011-04-15
We give an exact solution of the quadratic gravity in D dimensions. The solution is a plane-fronted wave metric with a cosmological constant. This metric solves not only the full quadratic gravity field equations but also the linearized ones which include the linearized equations of the recently found critical gravity. A subset of the solutions change the asymptotic structure of the anti-de Sitter space due to their logarithmic behavior.
Exact Steady Azimuthal Edge Waves in Rotating Fluids
NASA Astrophysics Data System (ADS)
Ionescu-Kruse, Delia
2016-09-01
The full problem of water waves travelling along a constant sloping beach with the shoreline parallel to the Equator, written in a moving frame with the origin at a point on the rotating Earth is introduced. An exact steady solution of this problem moving only in the azimuthal direction, with no variations in this direction, is obtained. The solution is discussed in turn in spherical coordinates, in cylindrical coordinates and in the tangent-plan approximations.
Pseudopotential Method for Higher Partial Wave Scattering
Idziaszek, Zbigniew; Calarco, Tommaso
2006-01-13
We present a zero-range pseudopotential applicable for all partial wave interactions between neutral atoms. For p and d waves, we derive effective pseudopotentials, which are useful for problems involving anisotropic external potentials. Finally, we consider two nontrivial applications of the p-wave pseudopotential: we solve analytically the problem of two interacting spin-polarized fermions confined in a harmonic trap, and we analyze the scattering of p-wave interacting particles in a quasi-two-dimensional system.
S-Wave Dispersion Relations: Exact Left Hand E-Plane Discontinuity from the Born Series
NASA Technical Reports Server (NTRS)
Bessis, D.; Temkin, A.
1999-01-01
We show, for a superposition of Yukawa potentials, that the left hand cut discontinuity in the complex E plane of the (S-wave) scattering amplitude is given exactly, in an interval depending on n, by the discontinuity of the Born series stopped at order n. This also establishes an inverse and unexpected correspondence of the Born series at positive high energies and negative low energies. We can thus construct a viable dispersion relation (DR) for the partial (S-) wave amplitude. The high numerical precision achievable by the DR is demonstrated for the exponential potential at zero scattering energy. We also briefly discuss the extension of our results to Field Theory.
S-Wave Dispersion Relations: Exact Left Hand E-Plane Discontinuity from the Born Series
NASA Technical Reports Server (NTRS)
Bessis, D.; Temkin, A.
1999-01-01
We show, for a superposition of Yukawa potentials, that the left hand cut discontinuity in the complex E plane of the (S-wave) scattering amplitude is given exactly, in an interval depending on n, by the discontinuity of the Born series stopped at order n. This also establishes an inverse and unexpected correspondence of the Born series at positive high energies and negative low energies. We can thus construct a viable dispersion relation (DR) for the partial (S-) wave amplitude. The high numerical precision achievable by the DR is demonstrated for the exponential potential at zero scattering energy. We also briefly discuss the extension of our results to Field Theory.
Exact matter-wave vortices in a driven optical lattice
NASA Astrophysics Data System (ADS)
Deng, Yan; Hai, Wenhua; Zhou, Zheng
2013-07-01
We investigate vortex dynamics of a periodically driven Bose-Einstein condensate confined in a spatially two-dimensional optical lattice. An exact Floquet solution of the Gross-Pitaevskii equation is obtained for a certain parameter region which can be divided into the phase-jumping and phase-continuing regions. In the former region, the exact solution can describe spatiotemporal evolution of multiple vortices. For a small ratio of driving strength to optical lattice depth the vortices keep nearly unmoved. With the increase of the ratio, the vortices undergo an effective interaction and periodically evolve along some fixed circular orbits that leads the vortex dipoles and quadrupoles to produce and break alternatively. There is a critical ratio in the phase-jumping region beyond which the vortices generate and melt periodically. In the phase-continuing region, the condensate in the exact Floquet state evolves periodically without zero-density nodes. It is numerically demonstrated that the exact solution is stable under an initial perturbation for both parameter regions, except for a subregion of the phase-jumping region in which stability of the condensate is lost. However, the solution is structurally stable under a small parameter perturbation only for the phase-continuing region, while for the whole phase-jumping region the structural stability is destroyed. The results suggest a scheme for creating and controlling matter-wave vortices.
Study of coupled nonlinear partial differential equations for finding exact analytical solutions.
Khan, Kamruzzaman; Akbar, M Ali; Koppelaar, H
2015-07-01
Exact solutions of nonlinear partial differential equations (NPDEs) are obtained via the enhanced (G'/G)-expansion method. The method is subsequently applied to find exact solutions of the Drinfel'd-Sokolov-Wilson (DSW) equation and the (2+1)-dimensional Painlevé integrable Burgers (PIB) equation. The efficiency of this method for finding these exact solutions is demonstrated. The method is effective and applicable for many other NPDEs in mathematical physics.
Study of coupled nonlinear partial differential equations for finding exact analytical solutions
Khan, Kamruzzaman; Akbar, M. Ali; Koppelaar, H.
2015-01-01
Exact solutions of nonlinear partial differential equations (NPDEs) are obtained via the enhanced (G′/G)-expansion method. The method is subsequently applied to find exact solutions of the Drinfel'd–Sokolov–Wilson (DSW) equation and the (2+1)-dimensional Painlevé integrable Burgers (PIB) equation. The efficiency of this method for finding these exact solutions is demonstrated. The method is effective and applicable for many other NPDEs in mathematical physics. PMID:26587256
Exact traveling wave solutions for system of nonlinear evolution equations.
Khan, Kamruzzaman; Akbar, M Ali; Arnous, Ahmed H
2016-01-01
In this work, recently deduced generalized Kudryashov method is applied to the variant Boussinesq equations, and the (2 + 1)-dimensional breaking soliton equations. As a result a range of qualitative explicit exact traveling wave solutions are deduced for these equations, which motivates us to develop, in the near future, a new approach to obtain unsteady solutions of autonomous nonlinear evolution equations those arise in mathematical physics and engineering fields. It is uncomplicated to extend this method to higher-order nonlinear evolution equations in mathematical physics. And it should be possible to apply the same method to nonlinear evolution equations having more general forms of nonlinearities by utilizing the traveling wave hypothesis.
Stokes waves revisited: Exact solutions in the asymptotic limit
NASA Astrophysics Data System (ADS)
Davies, Megan; Chattopadhyay, Amit K.
2016-03-01
The Stokes perturbative solution of the nonlinear (boundary value dependent) surface gravity wave problem is known to provide results of reasonable accuracy to engineers in estimating the phase speed and amplitudes of such nonlinear waves. The weakling in this structure though is the presence of aperiodic "secular variation" in the solution that does not agree with the known periodic propagation of surface waves. This has historically necessitated increasingly higher-ordered (perturbative) approximations in the representation of the velocity profile. The present article ameliorates this long-standing theoretical insufficiency by invoking a compact exact n -ordered solution in the asymptotic infinite depth limit, primarily based on a representation structured around the third-ordered perturbative solution, that leads to a seamless extension to higher-order (e.g., fifth-order) forms existing in the literature. The result from this study is expected to improve phenomenological engineering estimates, now that any desired higher-ordered expansion may be compacted within the same representation, but without any aperiodicity in the spectral pattern of the wave guides.
Exact exchange plane-wave-pseudopotential calculations for slabs.
Engel, Eberhard
2014-05-14
The exact exchange of density functional theory is applied to both free-standing graphene and a Si(111) slab, using the plane-wave pseudopotential (PWPP) approach and a periodic repetition of the supercell containing the slab. It is shown that (i) PWPP calculations with exact exchange for slabs in supercell geometry are basically feasible, (ii) the width of the vacuum required for a decoupling of the slabs is only moderately larger than in the case of the local-density approximation, and (iii) the resulting exchange potential vx shows an extended region, both far outside the surface of the slab and far from the middle of the vacuum region between the slabs, in which vx behaves as -e(2)/z, provided the width of the vacuum is chosen sufficiently large. This last result is corroborated by an analytical analysis of periodically repeated jellium slabs. The intermediate -e(2)/z behavior of vx can be used for an absolute normalization of vx and the total Kohn-Sham potential, which, in turn, allows the determination of the work function.
Partial wave analysis using graphics processing units
NASA Astrophysics Data System (ADS)
Berger, Niklaus; Beijiang, Liu; Jike, Wang
2010-04-01
Partial wave analysis is an important tool for determining resonance properties in hadron spectroscopy. For large data samples however, the un-binned likelihood fits employed are computationally very expensive. At the Beijing Spectrometer (BES) III experiment, an increase in statistics compared to earlier experiments of up to two orders of magnitude is expected. In order to allow for a timely analysis of these datasets, additional computing power with short turnover times has to be made available. It turns out that graphics processing units (GPUs) originally developed for 3D computer games have an architecture of massively parallel single instruction multiple data floating point units that is almost ideally suited for the algorithms employed in partial wave analysis. We have implemented a framework for tensor manipulation and partial wave fits called GPUPWA. The user writes a program in pure C++ whilst the GPUPWA classes handle computations on the GPU, memory transfers, caching and other technical details. In conjunction with a recent graphics processor, the framework provides a speed-up of the partial wave fit by more than two orders of magnitude compared to legacy FORTRAN code.
NASA Astrophysics Data System (ADS)
Sahadevan, R.; Prakash, P.
2017-01-01
We show how invariant subspace method can be extended to time fractional coupled nonlinear partial differential equations and construct their exact solutions. Effectiveness of the method has been illustrated through time fractional Hunter-Saxton equation, time fractional coupled nonlinear diffusion system, time fractional coupled Boussinesq equation and time fractional Whitman-Broer-Kaup system. Also we explain how maximal dimension of the time fractional coupled nonlinear partial differential equations can be estimated.
Unitary networks from the exact renormalization of wave functionals
NASA Astrophysics Data System (ADS)
Fliss, Jackson R.; Leigh, Robert G.; Parrikar, Onkar
2017-06-01
The exact renormalization group (ERG) for O (N ) vector models (at large N ) on flat Euclidean space can be interpreted as the bulk dynamics corresponding to a holographically dual higher spin gauge theory on AdSd +1. This was established in the sense that at large N the generating functional of correlation functions of single-trace operators is reproduced by the on-shell action of the bulk higher spin theory, which is most simply presented in a first-order (phase space) formalism. In this paper, we extend the ERG formalism to the wave functionals of arbitrary states of the O (N ) vector model at the free fixed point. We find that the ERG flow of the ground state and a specific class of excited states is implemented by the action of unitary operators which can be chosen to be local. Consequently, the ERG equations provide a continuum notion of a tensor network. We compare this tensor network with the entanglement renormalization networks, MERA, and its continuum version, cMERA, which have appeared recently in holographic contexts. In particular, the ERG tensor network appears to share the general structure of cMERA but differs in important ways. We comment on possible holographic implications.
Localized light waves: Paraxial and exact solutions of the wave equation (a review)
NASA Astrophysics Data System (ADS)
Kiselev, A. P.
2007-04-01
Simple explicit localized solutions are systematized over the whole space of a linear wave equation, which models the propagation of optical radiation in a linear approximation. Much attention has been paid to exact solutions (which date back to the Bateman findings) that describe wave beams (including Bessel-Gauss beams) and wave packets with a Gaussian localization with respect to the spatial variables and time. Their asymptotics with respect to free parameters and at large distances are presented. A similarity between these exact solutions and harmonic in time fields obtained in the paraxial approximation based on the Leontovich-Fock parabolic equation has been studied. Higher-order modes are considered systematically using the separation of variables method. The application of the Bateman solutions of the wave equation to the construction of solutions to equations with dispersion and nonlinearity and their use in wavelet analysis, as well as the summation of Gaussian beams, are discussed. In addition, solutions localized at infinity known as the Moses-Prosser “acoustic bullets”, as well as their harmonic in time counterparts, “ X waves”, waves from complex sources, etc., have been considered. Everywhere possible, the most elementary mathematical formalism is used.
Exact diffusion constant for the one-dimensional partially asymmetric exclusion model
NASA Astrophysics Data System (ADS)
Derrida, B.; Mallick, K.
1997-02-01
We calculate exactly the diffusion constant associated with the fluctuations of the current for the partial asymmetric exclusion model on a ring with an arbitrary number of particles and holes. We also give the diffusion constant of a tagged particle on that ring. Our approach extends, using the deformed harmonic oscillator algebra, a result already known for the fully asymmetric case. In the limit of weak asymmetry, we extract from our exact expression the crossover between the Edwards - Wilkinson and the Kardar - Parisi - Zhang equations in (1 + 1) dimensions.
Generalized pseudopotentials for higher partial wave scattering.
Stock, René; Silberfarb, Andrew; Bolda, Eric L; Deutsch, Ivan H
2005-01-21
We derive a generalized zero-range pseudopotential applicable to all partial wave solutions to the Schrödinger equation based on a delta-shell potential in the limit that the shell radius approaches zero. This properly models all higher order multipole moments not accounted for with a monopolar delta function at the origin, as used in the familiar Fermi pseudopotential for s-wave scattering. By making the strength of the potential energy dependent, we derive self-consistent solutions for the entire energy spectrum of the realistic potential. We apply this to study two particles in an isotropic harmonic trap, interacting through a central potential, and derive analytic expressions for the energy eigenstates and eigenvalues.
Superconformal partial waves in Grassmannian field theories
NASA Astrophysics Data System (ADS)
Doobary, Reza; Heslop, Paul
2015-12-01
We derive superconformal partial waves for all scalar four-point functions on a super Grassmannian space Gr( m| n, 2 m|2 n) for all m, n. This family of four-point functions includes those of all (arbitrary weight) half BPS operators in both N=4 SYM ( m = n = 2) and in N = 2 superconformal field theories in four dimensions ( m = 2 , n = 1) on analytic superspace. It also includes four-point functions of all (arbitrary dimension) scalar fields in non-supersymmetric conformal field theories ( m = 2 , n = 0) on Minkowski space, as well as those of a certain class of representations of the compact SU(2 n) coset spaces. As an application we then specialise to N=4 SYM and use these results to perform a detailed superconformal partial wave analysis of the four-point functions of arbitrary weight half BPS operators. We discuss the non-trivial separation of protected and unprotected sectors for the <2222>, <2233> and <3333> cases in an SU( N) gauge theory at finite N. The <2233> correlator predicts a non-trivial protected twist four sector for <3333> which we can completely determine using the knowledge that there is precisely one such protected twist four operator for each spin.
Generalized and exact solutions for oblique shock waves of real gases with application to real air
NASA Astrophysics Data System (ADS)
Kouremenos, D. A.; Antonopoulos, K. A.
1989-12-01
The present work presents a generalized method for calculating oblique shock waves of real gases, based on the Redlich-Kwong (1949) equation of state. Also described is an exact method applicable when the exact equation of state and enthalpy function of a real gas are available. Application of the generalized and the exact methods in the case of real air showed that the former is very accurate and at least twenty times faster than the latter. An additional contribution of the study is the derivation of real gas oblique shock wave equations, which are of the same algebraic form as the well known ideal gas normal shock wave relations.
NASA Astrophysics Data System (ADS)
Wang, Ying; Guo, Yunxi
2017-09-01
In this paper, we developed, for the first time, the exact expressions of several periodic travelling wave solutions and a solitary wave solution for a shallow water wave model of moderate amplitude. Then, we present the existence theorem of the global weak solutions. Finally, we prove the stability of solution in L1(R) space for the Cauchy problem of the equation.
Gershgorin, B.; Majda, A.J.
2011-02-20
A statistically exactly solvable model for passive tracers is introduced as a test model for the authors' Nonlinear Extended Kalman Filter (NEKF) as well as other filtering algorithms. The model involves a Gaussian velocity field and a passive tracer governed by the advection-diffusion equation with an imposed mean gradient. The model has direct relevance to engineering problems such as the spread of pollutants in the air or contaminants in the water as well as climate change problems concerning the transport of greenhouse gases such as carbon dioxide with strongly intermittent probability distributions consistent with the actual observations of the atmosphere. One of the attractive properties of the model is the existence of the exact statistical solution. In particular, this unique feature of the model provides an opportunity to design and test fast and efficient algorithms for real-time data assimilation based on rigorous mathematical theory for a turbulence model problem with many active spatiotemporal scales. Here, we extensively study the performance of the NEKF which uses the exact first and second order nonlinear statistics without any approximations due to linearization. The role of partial and sparse observations, the frequency of observations and the observation noise strength in recovering the true signal, its spectrum, and fat tail probability distribution are the central issues discussed here. The results of our study provide useful guidelines for filtering realistic turbulent systems with passive tracers through partial observations.
Exact finite difference schemes for the non-linear unidirectional wave equation
NASA Technical Reports Server (NTRS)
Mickens, R. E.
1985-01-01
Attention is given to the construction of exact finite difference schemes for the nonlinear unidirectional wave equation that describes the nonlinear propagation of a wave motion in the positive x-direction. The schemes constructed for these equations are compared with those obtained by using the usual procedures of numerical analysis. It is noted that the order of the exact finite difference models is equal to the order of the differential equation.
On exact traveling-wave solutions for local fractional Korteweg-de Vries equation.
Yang, Xiao-Jun; Tenreiro Machado, J A; Baleanu, Dumitru; Cattani, Carlo
2016-08-01
This paper investigates the Korteweg-de Vries equation within the scope of the local fractional derivative formulation. The exact traveling wave solutions of non-differentiable type with the generalized functions defined on Cantor sets are analyzed. The results for the non-differentiable solutions when fractal dimension is 1 are also discussed. It is shown that the exact solutions for the local fractional Korteweg-de Vries equation characterize the fractal wave on shallow water surfaces.
Dynamical behaviours and exact travelling wave solutions of modified generalized Vakhnenko equation
NASA Astrophysics Data System (ADS)
Xiao, Junjun; Feng, Dahe; Meng, Xia; Cheng, Yuanquan
2017-01-01
By using the bifurcation theory of planar dynamical systems and the qualitative theory of differential equations, we studied the dynamical behaviours and exact travelling wave solutions of the modified generalized Vakhnenko equation (mGVE). As a result, we obtained all possible bifurcation parametric sets and many explicit formulas of smooth and non-smooth travelling waves such as cusped solitons, loop solitons, periodic cusp waves, pseudopeakon solitons, smooth periodic waves and smooth solitons. Moreover, we provided some numerical simulations of these solutions.
Exact spherical wave solutions to Maxwell's equations with applications
NASA Astrophysics Data System (ADS)
Silvestri, Guy G.
Electromagnetic radiation from bounded sources represent an important class of physical problems that can be solved for exactly. However, available texts on this subject almost always resort to approximate solution techniques that not only obscure the essential features of the problem but also restrict application to limited ranges of observation. This dissertation presents exact solutions for this important class of problems and demonstrates how these solutions can be applied to situations of genuine physical interest, in particular, the design of device structures with prespecified emission characteristics. The strategy employed is to solve Maxwell's equations in the spherical coordinate system. In this system, fundamental parameters such as electric and magnetic multipole moments fall out quite naturally. Expressions for radiated power, force, and torque assume especially illuminating and simple forms when expressed in terms of these multipole moments. All solutions are derived ab initio using first-principles arguments exclusively. Two operator equations that receive particularly detailed treatment are the vector Helmholtz equation for the time-independent potential vector-a and the 'covariant divergence' equation for the energy-momentum-stress tensor T(exp mu nu). An application of classical formulas, as modified by the requirements of statistical mechanics, to the case of heated black bodies leads to inquiries into the foundations of quantum mechanics and their relation to classical field theory. An application of formulas to various emission structures (spherically shaped antennas, surface diffraction gratings, collimated beams) provides a basis upon which to characterize these structures in an exact sense and, ultimately, to elicit clues as to their optimum design.
Exact Spherical Wave Solutions to Maxwell's Equations with Applications
NASA Astrophysics Data System (ADS)
Silvestri, Guy G.
Electromagnetic radiation from bounded sources represent an important class of physical problems that can be solved for exactly. However, available texts on this subject almost always resort to approximate solution techniques that not only obscure the essential features of the problem but also restrict application to limited ranges of observation. This dissertation presents exact solutions for this important class of problems and demonstrates how these solutions can be applied to situations of genuine physical interest, in particular, the design of device structures with prespecified emission characteristics. The strategy employed is to solve Maxwell's equations in the spherical coordinate system. In this system, fundamental parameters such as electric and magnetic multipole moments fall out quite naturally. Expressions for radiated power, force, and torque assume especially illuminating and simple forms when expressed in terms of these multipole moments. All solutions are derived ab initio using first-principles arguments exclusively. Two operator-equations that receive particularly detailed treatment are the vector Helmholtz equation for the time-independent potential vec a and the "covariant divergence" equation for the energy-momentum-stress tensor T^{mu nu}. An application of classical formulas, as modified by the requirements of statistical mechanics, to the case of heated blackbodies leads to inquiries into the foundations of quantum mechanics and their relation to classical field theory. An application of formulas to various emission structures (spherically-shaped antennas, surface diffraction gratings, collimated beams) provides a basis upon which to characterize these structures in an exact sense, and, ultimately, to elicit clues as to their optimum design.
Peakons and new exact solitary wave solutions of extended quantum Zakharov-Kuznetsov equation
NASA Astrophysics Data System (ADS)
Zhang, Ben-gong; Li, Weibo; Li, Xiangpeng
2017-06-01
In this paper, the three dimensional extended quantum Zakharov-Kuznetsov equation, which arises in the dimensionless hydrodynamic equations describing the nonlinear propagation of the quantum ion-acoustic waves, is investigated by an auxiliary equation method. As a result, peakons and a series of new exact traveling wave solutions, including bell-shaped, kink-type solitary wave, shock wave, periodic wave, and Jacobi elliptic solutions, are obtained. We also analyze the three kinds of nonlinear structures of our results, i.e., blowup, peakons, and shock wave. These new exact solutions will enrich the previous results and help us to further understand the physical structures and analyze the nonlinear propagation of the quantum ion-acoustic waves.
Quantum features in atomic nanofabrication using exactly resonant standing waves.
Jürgens, Dirk; Greiner, Alexander; Stützle, Ralf; Habenicht, Anja; te Sligte, Edwin; Oberthaler, Markus K
2004-12-03
We report on the first fabrication of nanostructures with exactly resonant light revealing the quantum character of the atom-light interaction. Classically the formation of nanostructures is not expected; thus, the observed formation of complex periodic line patterns can be explained only by treating atom-light interaction and propagation of the atoms quantum mechanically. Our numerical quantum calculations are in quantitative agreement with this experimental finding. Moreover, the theory predicts that for small detunings nanostructures with lambda/4 period can be produced, which beats the standard nanofabrication limit of lambda/2. Our experiments confirm this prediction.
An Exact Solution for Geophysical Edge Waves in the {β}-Plane Approximation
NASA Astrophysics Data System (ADS)
Ionescu-Kruse, Delia
2015-12-01
By taking into account the {β}-plane effects, we provide an exact nonlinear solution to the geophysical edge-wave problem within the Lagrangian framework. This solution describes trapped waves propagating eastward or westward along a sloping beach with the shoreline parallel to the Equator.
The new BNL partial wave analysis programs
Cummings, J.P.; Weygand, D.P.
1997-07-29
Experiment E852 at Brookhaven National Laboratory is a meson spectroscopy experiment which took data at the Multi-Particle Spectrometer facility of the Alternating Gradient Syncrotron. Upgrades to the spectrometer`s data acquisition and trigger electronics allowed over 900 million data events, of numerous topologies, to be recorded to tape in 1995 running alone. One of the primary goals of E852 is identification of states beyond the quark model, i.e., states with gluonic degrees of freedom. Identification of such states involves the measurement of a systems spin-parity. Such a measurement is usually done using Partial Wave Analysis. Programs to perform such analyses exist, in fact, one was written at BNL and used in previous experiments by some of this group. This program, however, was optimized for a particular final state, and modification to allow analysis of the broad range of final states in E852 would have been difficult. The authors therefore decided to write a new program, with an eye towards generality that would allow analysis of a large class of reactions.
Partial Wave Analysis of Coupled Photonic Structures
NASA Technical Reports Server (NTRS)
Fuller, Kirk A.; Smith, David D.; Curreri, Peter A. (Technical Monitor)
2002-01-01
The very high quality factors sustained by microcavity optical resonators are relevant to applications in wavelength filtering, routing, switching, modulation, and multiplexing/demultiplexing. Increases in the density of photonic elements require that attention be paid to how electromagnetic (EM) coupling modifies their optical properties. This is especially true when cavity resonances are involved, in which case, their characteristics may be fundamentally altered. Understanding the optical properties of microcavities that are near or in contact with photonic elements---such as other microcavities, nanostructures, couplers, and substrates---can be expected to advance our understanding of the roles that these structures may play in VLSI photonics, biosensors and similar device technologies. Wc present results from recent theoretical studies of the effects of inter- and intracavity coupling on optical resonances in compound spherical particles. Concentrically stratified spheres and bispheres constituted from homogeneous and stratified spheres are subjects of this investigation. A new formulation is introduced for the absorption of light in an arbitrary layer of a multilayered sphere, which is based on multiple reflections of the spherical partial waves of the Lorenz-Mie solution for scattering by a sphere. Absorption efficiencies, which can be used to profile cavity resonances and to infer fluorescence yields or the onset of nonlinear optical processes in the microcavities, are presented. Splitting of resonances in these multisphere systems is paid particular attention, and consequences for photonic device development and possible performance enhancements through carefully designed architectures that exploit EM coupling are considered.
An Exactly Solvable Travelling Wave Equation in the Fisher-KPP Class
NASA Astrophysics Data System (ADS)
Brunet, Éric; Derrida, Bernard
2015-11-01
For a simple one dimensional lattice version of a travelling wave equation, we obtain an exact relation between the initial condition and the position of the front at any later time. This exact relation takes the form of an inverse problem: given the times t_n at which the travelling wave reaches the positions n, one can deduce the initial profile. We show, by means of complex analysis, that a number of known properties of travelling wave equations in the Fisher-KPP class can be recovered, in particular Bramson's shifts of the positions. We also recover and generalize Ebert-van Saarloos' corrections depending on the initial condition.
Exact Travelling Wave Solutions of the Nonlinear Evolution Equations by Auxiliary Equation Method
NASA Astrophysics Data System (ADS)
Kaplan, Melike; Akbulut, Arzu; Bekir, Ahmet
2015-10-01
The auxiliary equation method presents wide applicability to handling nonlinear wave equations. In this article, we establish new exact travelling wave solutions of the nonlinear Zoomeron equation, coupled Higgs equation, and equal width wave equation. The travelling wave solutions are expressed by the hyperbolic functions, trigonometric functions, and rational functions. It is shown that the proposed method provides a powerful mathematical tool for solving nonlinear wave equations in mathematical physics and engineering. Throughout the article, all calculations are made with the aid of the Maple packet program.
Exact numerical solutions for dark waves on the discrete nonlinear Schrödinger equation.
Sánchez-Rey, Bernardo; Johansson, Magnus
2005-03-01
In this paper we study numerically existence and stability of exact dark waves on the (nonintegrable) discrete nonlinear Schrödinger equation for a finite one-dimensional lattice. These are solutions that bifurcate from stationary dark modes with constant background intensity and zero intensity at a site, and whose initial state translates exactly one site each period of the internal oscillations. We show that exact dark waves are characterized by an oscillatory background whose wavelength is closely related with the velocity. Faster dark waves require smaller wavelengths. For slow enough velocity dark waves are linearly stable, but when trying to continue numerically a solution towards higher velocities bifurcations appear, due to rearrangements in the oscillatory tail in order to make possible a decreasing of the wavelength. However, in principle, one might control the stability of an exact dark wave adjusting a phase factor which plays the role of a discreteness parameter. In addition, we also study the regimes of existence and stability for stationary discrete gray modes, which are exact solutions with phase-twisted constant-amplitude background and nonzero minimum intensity. Also such solutions develop envelope oscillations on top of the homogeneous background when continued into moving phase-twisted solutions.
Exact traveling wave solutions of the van der Waals normal form for fluidized granular matter
NASA Astrophysics Data System (ADS)
Abourabia, A. M.; Morad, A. M.
2015-11-01
Analytical solutions of the van der Waals normal form for fluidized granular media have been done to study the phase separation phenomenon by using two different exact methods. The Painlevé analysis is discussed to illustrate the integrability of the model equation. An auto-Bäcklund transformation is presented via the truncated expansion and symbolic computation. The results show that the exact solutions of the model introduce solitary waves of different types. The solutions of the hydrodynamic model and the van der Waals equation exhibit a behavior similar to the one observed in molecular dynamic simulations such that two pairs of shock and rarefaction waves appear and move away, giving rise to the bubbles. The dispersion properties and the relation between group and phase velocities of the model equation are studied using the plane wave assumption. The diagrams are drawn to illustrate the physical properties of the exact solutions, and indicate their stability and bifurcation.
Modelling rogue waves through exact dynamical lump soliton controlled by ocean currents
Kundu, Anjan; Mukherjee, Abhik; Naskar, Tapan
2014-01-01
Rogue waves are extraordinarily high and steep isolated waves, which appear suddenly in a calm sea and disappear equally fast. However, though the rogue waves are localized surface waves, their theoretical models and experimental observations are available mostly in one dimension, with the majority of them admitting only limited and fixed amplitude and modular inclination of the wave. We propose two dimensions, exactly solvable nonlinear Schrödinger (NLS) equation derivable from the basic hydrodynamic equations and endowed with integrable structures. The proposed two-dimensional equation exhibits modulation instability and frequency correction induced by the nonlinear effect, with a directional preference, all of which can be determined through precise analytic result. The two-dimensional NLS equation allows also an exact lump soliton which can model a full-grown surface rogue wave with adjustable height and modular inclination. The lump soliton under the influence of an ocean current appears and disappears preceded by a hole state, with its dynamics controlled by the current term. These desirable properties make our exact model promising for describing ocean rogue waves. PMID:24711719
Modelling rogue waves through exact dynamical lump soliton controlled by ocean currents.
Kundu, Anjan; Mukherjee, Abhik; Naskar, Tapan
2014-04-08
Rogue waves are extraordinarily high and steep isolated waves, which appear suddenly in a calm sea and disappear equally fast. However, though the rogue waves are localized surface waves, their theoretical models and experimental observations are available mostly in one dimension, with the majority of them admitting only limited and fixed amplitude and modular inclination of the wave. We propose two dimensions, exactly solvable nonlinear Schrödinger (NLS) equation derivable from the basic hydrodynamic equations and endowed with integrable structures. The proposed two-dimensional equation exhibits modulation instability and frequency correction induced by the nonlinear effect, with a directional preference, all of which can be determined through precise analytic result. The two-dimensional NLS equation allows also an exact lump soliton which can model a full-grown surface rogue wave with adjustable height and modular inclination. The lump soliton under the influence of an ocean current appears and disappears preceded by a hole state, with its dynamics controlled by the current term. These desirable properties make our exact model promising for describing ocean rogue waves.
NASA Technical Reports Server (NTRS)
Barnes, A.
1983-01-01
An exact nonlinear solution is found to the relativistic kinetic and electrodynamic equations (in their hydromagnetic limit) that describes the large-amplitude fast-mode magnetoacoustic wave propagating normal to the magnetic field in a collisionless, previously uniform plasma. It is pointed out that a wave of this kind will be generated by transverse compression of any collisionless plasma. The solution is in essence independent of the detailed form of the particle momentum distribution functions. The solution is obtained, in part, through the method of characteristics; the wave exhibits the familiar properties of steepening and shock formation. A detailed analysis is given of the ultrarelativistic limit of this wave.
Exact Analysis of Lamb Waves in Piezoelectric Membranes with Distinct Electrode Arrangements
NASA Astrophysics Data System (ADS)
Chen, Yung-Yu
2009-07-01
Lamb wave devices have been widely used in electro-acoustic and microfluidic devices. In order to improve their performances, the phase velocity dispersion and electromechanical coupling coefficient (ECC) of the Lamb wave should be calculated exactly during designing. Accordingly, this paper aims at analyzing exactly Lamb waves in a single piezoelectric membrane with distinct electrode arrangements. First, the transfer matrix method was employed to calculate the phase velocity dispersion. The ECCs under distinct electrical boundary conditions were calculated by the Green's function method. Finally, the calculated ECCs were compared with that by using the acoustic velocity difference method. Results show that the differences exist especially in the case of metalized surface, and the coupling coefficients deeply depend on the electrode arrangements. It is concluded that the S0 mode for the metalized surface case is a better choice for a Lamb wave device due to less dispersion, higher velocity, and larger coupling coefficient.
Islam, Md Hamidul; Khan, Kamruzzaman; Akbar, M Ali; Salam, Md Abdus
2014-01-01
Mathematical modeling of many physical systems leads to nonlinear evolution equations because most physical systems are inherently nonlinear in nature. The investigation of traveling wave solutions of nonlinear partial differential equations (NPDEs) plays a significant role in the study of nonlinear physical phenomena. In this article, we construct the traveling wave solutions of modified KDV-ZK equation and viscous Burgers equation by using an enhanced (G '/G) -expansion method. A number of traveling wave solutions in terms of unknown parameters are obtained. Derived traveling wave solutions exhibit solitary waves when special values are given to its unknown parameters. 35C07; 35C08; 35P99.
Amplification of sound waves in an imploding plasma shell: Exact results
Han, S.J.
1988-01-01
In an extended model, a rigorous proof is given for sound-wave amplifications in an imploding plasma shell. It is shown that, in the absence of a massless free surface, the boundary conditions give the exact eigenvalues which determine the asymptotic solution to the problem.
Exact soliton solution of spin chain with an external magnetic field in linear wave background
NASA Astrophysics Data System (ADS)
Li, Qiu-Yan; Xie, Zheng-Wei; Li, Lu; Li, Zai-Dong; Liang, Jiu-Qing
2004-07-01
Employing a simple, straightforward Darboux transformation we construct exact N-soliton solution for anisotropic spin chain driven by an external magnetic field in linear wave background. As a special case the explicit one- and two-soliton solution dressed by the linear wave corresponding to magnon in quantum theory is obtained analytically and its property is discussed in detail. The dispersion law, effective soliton mass, and the energy of each soliton are investigated as well. Our result show that the stability criterion of soliton is related with anisotropic parameter and the amplitude of the linear wave.
Condensates of p-wave pairs are exact solutions for rotating two-component Bose gases.
Papenbrock, T; Reimann, S M; Kavoulakis, G M
2012-02-17
We derive exact analytical results for the wave functions and energies of harmonically trapped two-component Bose-Einstein condensates with weakly repulsive interactions under rotation. The isospin symmetric wave functions are universal and do not depend on the matrix elements of the two-body interaction. The comparison with the results from numerical diagonalization shows that the ground state and low-lying excitations consist of condensates of p-wave pairs for repulsive contact interactions, Coulomb interactions, and the repulsive interactions between aligned dipoles.
Condensates of p-Wave Pairs Are Exact Solutions for Rotating Two-Component Bose Gases
Papenbrock, T; Kavoulakis, G. M.
2012-01-01
We derive exact analytical results for the wave functions and energies of harmonically trapped two-component Bose-Einstein condensates with weakly repulsive interactions under rotation. The isospin symmetric wave functions are universal and do not depend on the matrix elements of the two-body interaction. The comparison with the results from numerical diagonalization shows that the ground state and low-lying excitations consist of condensates of p-wave pairs for repulsive contact interactions, Coulomb interactions, and the repulsive interactions between aligned dipoles.
Lerma H, S.
2010-07-15
The structure of the exact wave function of the isovectorial pairing Hamiltonian with nondegenerate single-particle levels is discussed. The way that the single-particle splittings break the quartet condensate solution found for N=Z nuclei in a single degenerate level is established. After a brief review of the exact solution, the structure of the wave function is analyzed and some particular cases are considered where a clear interpretation of the wave function emerges. An expression for the exact wave function in terms of the isospin triplet of pair creators is given. The ground-state wave function is analyzed as a function of pairing strength, for a system of four protons and four neutrons. For small and large values of the pairing strength a dominance of two-pair (quartets) scalar couplings is found, whereas for intermediate values enhancements of the nonscalar couplings are obtained. A correlation of these enhancements with the creation of Cooper-like pairs is observed.
ALFVEN WAVES IN A PARTIALLY IONIZED TWO-FLUID PLASMA
Soler, R.; Ballester, J. L.; Terradas, J.; Carbonell, M. E-mail: joseluis.ballester@uib.es E-mail: marc.carbonell@uib.es
2013-04-20
Alfven waves are a particular class of magnetohydrodynamic waves relevant in many astrophysical and laboratory plasmas. In partially ionized plasmas the dynamics of Alfven waves is affected by the interaction between ionized and neutral species. Here we study Alfven waves in a partially ionized plasma from the theoretical point of view using the two-fluid description. We consider that the plasma is composed of an ion-electron fluid and a neutral fluid, which interact by means of particle collisions. To keep our investigation as general as possible, we take the neutral-ion collision frequency and the ionization degree as free parameters. First, we perform a normal mode analysis. We find the modification due to neutral-ion collisions of the wave frequencies and study the temporal and spatial attenuation of the waves. In addition, we discuss the presence of cutoff values of the wavelength that constrain the existence of oscillatory standing waves in weakly ionized plasmas. Later, we go beyond the normal mode approach and solve the initial-value problem in order to study the time-dependent evolution of the wave perturbations in the two fluids. An application to Alfven waves in the low solar atmospheric plasma is performed and the implication of partial ionization for the energy flux is discussed.
Partial Wave Dispersion Relations: Application to Electron-Atom Scattering
NASA Technical Reports Server (NTRS)
Temkin, A.; Drachman, Richard J.
1999-01-01
In this Letter we propose the use of partial wave dispersion relations (DR's) as the way of solving the long-standing problem of correctly incorporating exchange in a valid DR for electron-atom scattering. In particular a method is given for effectively calculating the contribution of the discontinuity and/or poles of the partial wave amplitude which occur in the negative E plane. The method is successfully tested in three cases: (i) the analytically solvable exponential potential, (ii) the Hartree potential, and (iii) the S-wave exchange approximation for electron-hydrogen scattering.
MAGNETOACOUSTIC WAVES IN A PARTIALLY IONIZED TWO-FLUID PLASMA
Soler, Roberto; Ballester, Jose Luis; Carbonell, Marc E-mail: joseluis.ballester@uib.es
2013-11-01
Compressible disturbances propagate in a plasma in the form of magnetoacoustic waves driven by both gas pressure and magnetic forces. In partially ionized plasmas the dynamics of ionized and neutral species are coupled due to ion-neutral collisions. As a consequence, magnetoacoustic waves propagating through a partially ionized medium are affected by ion-neutral coupling. The degree to which the behavior of the classic waves is modified depends on the physical properties of the various species and on the relative value of the wave frequency compared to the ion-neutral collision frequency. Here, we perform a comprehensive theoretical investigation of magnetoacoustic wave propagation in a partially ionized plasma using the two-fluid formalism. We consider an extensive range of values for the collision frequency, ionization ratio, and plasma β, so that the results are applicable to a wide variety of astrophysical plasmas. We determine the modification of the wave frequencies and study the frictional damping due to ion-neutral collisions. Approximate analytic expressions for the frequencies are given in the limit case of strongly coupled ions and neutrals, while numerically obtained dispersion diagrams are provided for arbitrary collision frequencies. In addition, we discuss the presence of cutoffs in the dispersion diagrams that constrain wave propagation for certain combinations of parameters. A specific application to propagation of compressible waves in the solar chromosphere is given.
An exact solution for effects of topography on free Rayleigh waves
Savage, W.Z.
2004-01-01
An exact solution for the effects of topography on Rayleigh wave amplification is presented. The solution is obtained by incorporating conformal mapping into complex-variable stress functions developed for free Rayleigh wave propagation in an elastic half-space with a flat upper surface. Results are presented for free Rayleigh wave propagation across isolated symmetric ridges and valleys. It is found for wavelengths that are comparable to ridge widths that horizontal Rayleigh wave amplitudes are amplified at ridge crests and that vertical amplitudes are strongly reduced near ridge crests relative to horizontal and vertical amplitudes of free Rayleigh waves in the flat case. Horizontal amplitudes are strongly deamplified at valley bottoms relative to those for the flat case for Rayleigh wavelengths comparable to valley widths. Wave amplitudes in the symmetric ridges and valleys asymptotically approach those for the flat case with increased wavelengths, increased ridge and valley widths, and with horizontal distance from and depth below the isolated ridges and valleys. Also, prograde particle motion is predicted near crests of narrow ridges and near the bottoms of narrow valleys. Finally, application of the theory at two sites known for topographic wave amplification gives a predicted surface wave amplification ratio of 3.80 at the ridge center for a frequency of 1.0 Hz at Robinwood Ridge in northern California and a predicted surface wave amplification ratio of 1.67 at the ridge center for the same frequency at the Cedar Hill Nursery site at Tarzana in southern California.
Santos-Sacchi, Joseph
2004-07-01
Measures of membrane capacitance offer insight into a variety of cellular processes. Unfortunately, popular methodologies rely on model simplifications that sensitize them to interference from inevitable changes in resistive components of the traditional cell-clamp model. Here I report on a novel method to measure membrane capacitance that disposes of the usual simplifications and assumptions, yet is immune to such interference and works on the millisecond timescale. It is based on the exact empirical determination of the elusive partial derivative, partial differential Y/partial differential C(m), which heretofore had been approximated. Furthermore, I illustrate how this method extends to the vesicle fusion problem by permitting the determination of partial differential Y(v)/partial differential C(v), thereby providing estimates of fusion pore conductance and vesicle capacitance. Finally, I provide simulation examples and physiological examples of how the method can be used to study processes that are routinely interrogated by measures of membrane capacitance.
Lee, Jong-In; Kim, Young-Taek; Shin, Sungwon
2014-01-01
This study presents wave height distribution in terms of stem wave evolution phenomena on partially perforated wall structures through three-dimensional laboratory experiments. The plain and partially perforated walls were tested to understand their effects on the stem wave evolution under the monochromatic and random wave cases with the various wave conditions, incident angle (from 10 to 40 degrees), and configurations of front and side walls. The partially perforated wall reduced the relative wave heights more effectively compared to the plain wall structure. Partially perforated walls with side walls showed a better performance in terms of wave height reduction compared to the structure without the side wall. Moreover, the relative wave heights along the wall were relatively small when the relative chamber width is large, within the range of the chamber width in this study. The wave spectra showed a frequency dependency of the wave energy dissipation. In most cases, the existence of side wall is a more important factor than the porosity of the front wall in terms of the wave height reduction even if the partially perforated wall was still effective compared to the plain wall. PMID:25254260
Exact relativistic expressions for wave refraction in a generally moving fluid.
Cavalleri, G; Tonni, E; Barbero, F
2013-04-01
The law for the refraction of a wave when the two fluids and the interface are moving with relativistic velocities is given in an exact form, at the same time correcting a first order error in a previous paper [Cavalleri and Tonni, Phys. Rev. E 57, 3478 (1998)]. The treatment is then extended to a generally moving fluid with variable refractive index, ready to be applied to the refraction of acoustic, electromagnetic, or magnetohydrodynamic waves in the atmosphere of rapidly rotating stars. In the particular case of a gas cloud receding because of the universe expansion, our result can be applied to predict observable micro- and mesolensings. The first order approximation of our exact result for the deviation due to refraction of the light coming from a further quasar has a relativistic dependence equal to the one obtained by Einsteins' linearized theory of gravitation.
Some Exact Results for the Schroedinger Wave Equation with a Time Dependent Potential
NASA Technical Reports Server (NTRS)
Campbell, Joel
2009-01-01
The time dependent Schroedinger equation with a time dependent delta function potential is solved exactly for many special cases. In all other cases the problem can be reduced to an integral equation of the Volterra type. It is shown that by knowing the wave function at the origin, one may derive the wave function everywhere. Thus, the problem is reduced from a PDE in two variables to an integral equation in one. These results are used to compare adiabatic versus sudden changes in the potential. It is shown that adiabatic changes in the p otential lead to conservation of the normalization of the probability density.
Exact Interaction Solutions of an Extended (2+1)-Dimensional Shallow Water Wave Equation
NASA Astrophysics Data System (ADS)
Wang, Yun-Hu; Wang, Hui; Zhang, Hong-Sheng; Chaolu, TEMUER
2017-08-01
Applying the consistent Riccati expansion method, the extended (2+1)-dimensional shallow water wave equation is proved consistent Riccati solvable and the exact interaction solutions including soliton-cnoidal wave solutions, solitoff-typed solutions are obtained. With the help of the truncated Painlevé expansion, the corresponding nonlocal symmetry is also given, and furthermore, the nonlocal symmetry is localized by prolonging the related enlarged system. Supported by the National Natural Science Foundation of China under Grant Nos. 11405103, 11571008, 51679132, 11601321, and 11526137
Nonlinear wave structures as exact solutions of Vlasov-Maxwell equations.
NASA Astrophysics Data System (ADS)
Dasgupta, B.; Tsurutani, B. T.; Janaki, M. S.; Sharma, A. S.
2001-12-01
Many recent observations by POLAR and Geotail spacecraft of the low-latitudes magnetopause boundary layer (LLBL) and the polar cap boundary layer (PCBL) have detected nonlinear wave structures [Tsurutani et al, Geophys. Res. Lett., 25, 4117, 1998]. These nonlinear waves have electromagnetic signatures that are identified with Alfven and Whistler modes. Also solitary waves with mono- and bi-polar features were observed. In general such electromagnetic structures are described by the full Vlasov-Maxwell equations for waves propagating at an angle to the ambient magnetic field, but it has been a diffficult task obtaining the solutions because of the inherent nonlinearity. We have obtained an exact nonlinear solution of the full Vlasov-Maxwell equations in the presence of an electromagnetic wave propagating at an arbitrary direction with an ambient magnetic field. This is accomplished by finding the constants of motion of the charged particles in the electromagnetic field of the wave and then constructing a realistic distribution function as a function of these constants of motion. The corresponding trapping conditions for such waves are obtained, yielding the self-consistent description for the particles in the presence of the nonlinear waves. The interpretation of the observed nonlinear structures in terms of these general solutions will be presented.
Matter-Wave Fields for Double-Slit Atom Interferometry: Variational Versus Exact Solitons
NASA Astrophysics Data System (ADS)
Ndifon Ngek, Isaiah; Moïse Dikandé, Alain; Moubissi, Alain Brice
2016-12-01
A major challenge in the theoretical modeling of double-slit interferometry involving matter-wave fields is the appropriate waveform to be assigned to this field. While all the studies carried out to date on this issue deal with variational fields, experiments suggest that the optical field is generated by splitting a single-hump Bose-Einstein condensate into two spatially and temporally entangled pulses indicating the possibility of fully controlling the subsequent motion of the two output pulses. To probe the consistency of variational and exact soliton solutions to the field equation, we solve the Gross-Pitaevskii equation with an optical potential barrier assumed to act as a beam splitter, while including gravity. The exact solution is compared with the two most common variational wavefunctions, namely, the Hermite-Gaussian and super-sech modes. From numerical simulations, evidence is given of the exact solution as being the most appropriate matter-wave structure that provides a coherent description of the generation and spatio-temporal evolution of matter-wave optical fields in a hypothetical implementation of double-slit atom interferometry.
Correlations of πN partial waves for multireaction analyses
Doring, M.; Revier, J.; Ronchen, D.; ...
2016-06-15
In the search for missing baryonic resonances, many analyses include data from a variety of pion- and photon-induced reactions. For elastic πN scattering, however, usually the partial waves of the SAID (Scattering Analysis Interactive Database) or other groups are fitted, instead of data. We provide the partial-wave covariance matrices needed to perform correlated χ2 fits, in which the obtained χ2 equals the actual χ2 up to nonlinear and normalization corrections. For any analysis relying on partial waves extracted from elastic pion scattering, this is a prerequisite to assess the significance of resonance signals and to assign any uncertainty on results.more » Lastly, the influence of systematic errors is also considered.« less
Bohmian mechanics in the exact factorization of electron-nuclear wave functions
NASA Astrophysics Data System (ADS)
Suzuki, Yasumitsu; Watanabe, Kazuyuki
2016-09-01
The exact factorization of an electron-nuclear wave function [A. Abedi, N. T. Maitra, and E. K. U. Gross, Phys. Rev. Lett. 105, 123002 (2010), 10.1103/PhysRevLett.105.123002] allows us to define the rigorous nuclear time-dependent Schrödinger equation (TDSE) with a time-dependent potential-energy surface (TDPES) that fully accounts for the coupling to the electronic motion and drives the nuclear wave-packet dynamics. Here, we study whether the propagation of multiple classical trajectories can reproduce the quantum nuclear motion in strong-field processes when their motions are governed by the quantum Hamilton-Jacobi equation derived by applying Bohmian mechanics to this exact nuclear TDSE. We demonstrate that multiple classical trajectories propagated by the force from the gradient of the exact TDPES plus the Bohmian quantum potential can reproduce the strong-field dissociation dynamics of a one-dimensional model of the H2 + molecule. Our results show that the force from the Bohmian quantum potential plays a non-negligible role in yielding quantum nuclear dynamics in the strong-field process studied here, where ionization and/or splitting of nuclear probability density occurs.
Exact scattering and diffraction of antiplane shear waves by a vertical edge crack
NASA Astrophysics Data System (ADS)
Tsaur, Deng-How
2010-06-01
Scattering and diffraction problems of a vertical edge crack connected to the surface of a half space are considered for antiplane shear wave incidence. The method of separation of variables is adopted to derive an exact series solution. The total displacement field is expressed as infinite series containing products of radial and angular Mathieu functions with unknown coefficients. An exact analytical determination of unknown coefficients is carried out by insuring the vanishing of normal stresses on crack faces. Frequency-domain results are given for extremely near, near, and far fields, whereas time-domain ones are for horizontal surface and subsurface motions. Comparisons with published data for the dynamic stress intensity factor show good agreement. The exact analytical nature of proposed solutions can be applied very conveniently and rapidly to high-frequency steady-state cases, enhancing the computation efficiency in transient cases when performing the fast Fourier transform. A sampled set of time slices for underground wave propagation benefits the interpretation of scattering and diffraction phenomena induced by a vertical edge crack.
The adiabatic limit of the exact factorization of the electron-nuclear wave function.
Eich, F G; Agostini, Federica
2016-08-07
We propose a procedure to analyze the relation between the exact factorization of the electron-nuclear wave function and the Born-Oppenheimer approximation. We define the adiabatic limit as the limit of infinite nuclear mass. To this end, we introduce a unit system that singles out the dependence on the electron-nuclear mass ratio of each term appearing in the equations of the exact factorization. We observe how non-adiabatic effects induced by the coupling to the nuclear motion affect electronic properties and we analyze the leading term, connecting it to the classical nuclear momentum. Its dependence on the mass ratio is tested numerically on a model of proton-coupled electron transfer in different non-adiabatic regimes.
Es'kin, V A; Kudrin, A V; Petrov, E Yu
2011-06-01
The behavior of electromagnetic fields in nonlinear media has been a topical problem since the discovery of materials with a nonlinearity of electromagnetic properties. The problem of finding exact solutions for the source-excited nonlinear waves in curvilinear coordinates has been regarded as unsolvable for a long time. In this work, we present the first solution of this type for a cylindrically symmetric field excited by a pulsed current filament in a nondispersive medium that is simultaneously inhomogeneous and nonlinear. Assuming that the medium has a power-law permittivity profile in the linear regime and lacks a center of inversion, we derive an exact solution for the electromagnetic field excited by a current filament in such a medium and discuss the properties of this solution.
Exact Quantization of Einstein-Rosen Waves Coupled to Massless Scalar Matter
NASA Astrophysics Data System (ADS)
Barbero G., J. Fernando; Garay, Iñaki; Villaseñor, Eduardo J.
2005-07-01
We show in this Letter that gravity coupled to a massless scalar field with full cylindrical symmetry can be exactly quantized by an extension of the techniques used in the quantization of Einstein-Rosen waves. This system provides a useful test bed to discuss a number of issues in quantum general relativity, such as the emergence of the classical metric, microcausality, and large quantum gravity effects. It may also provide an appropriate framework to study gravitational critical phenomena from a quantum point of view, issues related to black hole evaporation, and the consistent definition of test fields and particles in quantum gravity.
Chakrabarti, Nikhil; Maity, Chandan; Schamel, Hans
2011-04-08
Compressional waves in a magnetized plasma of arbitrary resistivity are treated with the lagrangian fluid approach. An exact nonlinear solution with a nontrivial space and time dependence is obtained with boundary conditions as in Harris' current sheet. The solution shows competition among hydrodynamic convection, magnetic field diffusion, and dispersion. This results in a collapse of density and the magnetic field in the absence of dispersion. The dispersion effects arrest the collapse of density but not of the magnetic field. A possible application is in the early stage of magnetic star formation.
Partial wave decomposition in Friedrichs model with self-interacting continua
NASA Astrophysics Data System (ADS)
Xiao, Zhiguang; Zhou, Zhi-Yong
2017-07-01
We consider the nonrelativistic model of coupling bare discrete states with continuum states in which the continuum states can have interactions among themselves. By partial-wave decomposition and constraint to the conserved angular momentum eigenstates, the model can be reduced to Friedrichs-like model with additional interactions between the continua. If a kind of factorizable form factor is chosen, the model can be exactly solvable, that is, the generalized discrete eigenstates including bound states, virtual states, and resonances can all be represented using the original bare states, and so do the in-state and out-state. The exact S matrix is thus obtained. We then discuss the behaviors of the dynamically generated S-wave and P-wave discrete states as the coupling is varying when there is only one self-interacting bare continuum state. We find that even when the potential is repulsive there could also be resonances and virtual states. In the P-wave cases with attractive interaction, we find that when there is a near-threshold bound state, there will always be an accompanying virtual state and we also give a more general argument of this effect.
Exact scale-invariant background of gravitational waves from cosmic defects.
Figueroa, Daniel G; Hindmarsh, Mark; Urrestilla, Jon
2013-03-08
We demonstrate that any scaling source in the radiation era produces a background of gravitational waves with an exact scale-invariant power spectrum. Cosmic defects, created after a phase transition in the early universe, are such a scaling source. We emphasize that the result is independent of the topology of the cosmic defects, the order of phase transition, and the nature of the symmetry broken, global or gauged. As an example, using large-scale numerical simulations, we calculate the scale-invariant gravitational wave power spectrum generated by the dynamics of a global O(N) scalar theory. The result approaches the large N theoretical prediction as N(-2), albeit with a large coefficient. The signal from global cosmic strings is O(100) times larger than the large N prediction.
Exact solutions of unsteady Korteweg-de Vries and time regularized long wave equations.
Islam, S M Rayhanul; Khan, Kamruzzaman; Akbar, M Ali
2015-01-01
In this paper, we implement the exp(-Φ(ξ))-expansion method to construct the exact traveling wave solutions for nonlinear evolution equations (NLEEs). Here we consider two model equations, namely the Korteweg-de Vries (KdV) equation and the time regularized long wave (TRLW) equation. These equations play significant role in nonlinear sciences. We obtained four types of explicit function solutions, namely hyperbolic, trigonometric, exponential and rational function solutions of the variables in the considered equations. It has shown that the applied method is quite efficient and is practically well suited for the aforementioned problems and so for the other NLEEs those arise in mathematical physics and engineering fields. PACS numbers: 02.30.Jr, 02.70.Wz, 05.45.Yv, 94.05.Fq.
Impact of Plunging Breaking Wave on a Partially Submerged Cube
NASA Astrophysics Data System (ADS)
Wang, A.; Ikeda, C. M.; Duncan, J. H.
2012-11-01
The impact of a plunging breaking wave on a partially submerged rigid cube (L = 30 . 5 cm) is studied experimentally in a wave tank that is 14.8 m long, 1.15 m wide and 2.2 m high with a water depth of 0.91 m. A single repeatable plunging breaker is generated from a dispersively focused wave packet (average frequency of 1.14 Hz) that is created with a programmable wave maker. The water surface profiles at the vertical center plane of the cube are measured with a cinematic LIF technique. The cube is centered in the width of the tank and mounted from above with the front face oriented with its normal in the vertical long center plane of the tank and tilted at angles of 0 and 20 degrees downward relative to horizontal. For the range of horizontal cube positions used here, during the wave impact, the water free surface forms a circular arc between the water contact point on the front face of the cube and the wave crest. As the wave impact continues, this arc converges to a point and a fast-moving vertical jet is formed. The effect of the submergence and tilt angle of the cube on the jet formation are explored. This work is supported by the Office of Naval Research.
Wave optics simulation approach for partial spatially coherent beams.
Xiao, Xifeng; Voelz, David
2006-08-07
A numerical wave optics approach for simulating a partial spatially coherent beam is presented. The approach involves the application of a sequence of random phase screens to an initial beam field and the summation of the intensity results after propagation. The relationship between the screen parameters and the spatial coherence function for the beam is developed and the approach is verified by comparing results with analytic formulations for a Gaussian Schell-model beam. The approach can be used for modeling applications such as free space optical laser links that utilize partially coherent beams.
Calculation of the Scattering Amplitude Without Partial Wave Expansion
NASA Technical Reports Server (NTRS)
Shertzer, J.; Temkin, Aaron; Fisher, Richard R. (Technical Monitor)
2001-01-01
Two developments in the direct calculation of the angular differential scattering amplitude have been implemented: (a) The integral expansion of the scattering amplitude is simplified by analytically integration over the azimuthal angle. (b) The resulting integral as a function of scattering angle is calculated by using the numerically generated wave function from a finite element method calculation. Results for electron-hydrogen scattering in the static approximation will be shown to be as accurate as a partial wave expansion with as many l's as is necessary for convergence at the incident energy being calculated.
Power counting in peripheral partial waves: The singlet channels
NASA Astrophysics Data System (ADS)
Valderrama, M. Pavón; Sánchez, M. Sánchez; Yang, C.-J.; Long, Bingwei; Carbonell, J.; van Kolck, U.
2017-05-01
We analyze the power counting of the peripheral singlet partial waves in nucleon-nucleon scattering. In agreement with conventional wisdom, we find that pion exchanges are perturbative in the peripheral singlets. We quantify from the effective field theory perspective the well-known suppression induced by the centrifugal barrier in the pion-exchange interactions. By exploring perturbation theory up to fourth order, we find that the one-pion-exchange potential in these channels is demoted from leading to subleading order by a given power of the expansion parameter that grows with the orbital angular momentum. We discuss the implications of these demotions for few-body calculations: though higher partial waves have been known for a long time to be irrelevant in these calculations (and are hence ignored), here we explain how to systematize the procedure in a way that is compatible with the effective field theory expansion.
Properties of Baryons from Bonn-Gatchina Partial Wave Analysis
NASA Astrophysics Data System (ADS)
Sarantsev, Andrey
The recent results from the Bonn-Gatchinal partial wave analysis are reported. The analysis includes a large number of new pseudoscalar meson photoproduction data taken with polarized beam and target. The analysis also includes the information about photoproduction of vector mesons, which reveals resonant signals at masses above 2 GeV. The impact of the new data on spectrum of baryons and their properties is discussed.
Impact of plunging breaking waves on a partially submerged cube
NASA Astrophysics Data System (ADS)
Wang, A.; Ikeda, C.; Duncan, J. H.
2013-11-01
The impact of a deep-water plunging breaking wave on a partially submerged cube is studied experimentally in a tank that is 14.8 m long and 1.2 m wide with a water depth of 0.91 m. The breakers are created from dispersively focused wave packets generated by a programmable wave maker. The water surface profile in the vertical center plane of the cube is measured using a cinematic laser-induced fluorescence technique with movie frame rates ranging from 300 to 4,500 Hz. The pressure distribution on the front face of the cube is measured with 24 fast-response sensors simultaneously with the wave profile measurements. The cube is positioned vertically at three heights relative to the mean water level and horizontally at a distance from the wave maker where a strong vertical water jet is formed. The portion of the water surface between the contact point on the front face of the cube and the wave crest is fitted with a circular arc and the radius and vertical position of the fitted circle is tracked during the impact. The vertical acceleration of the contact point reaches more than 50 times the acceleration of gravity and the pressure distribution just below the free surface shows a localized high-pressure region with a very high vertical pressure gradient. This work is supported by the Office of Naval Research under grant N000141110095.
Exact analytical representations for broadband transmission properties of quarter-wave multilayers.
Grigoriev, Victor; Biancalana, Fabio
2011-10-01
The formalism of the scattering matrix is applied to describe the transmission properties of multilayered structures with deep variations of the refractive index and arbitrary arrangements of the layers. We show that there is an exact analytical formula for the transmission spectrum, which is valid for the full spectral range and which contains only a limited number of parameters for structures satisfying the quarter-wave condition. These parameters are related to the poles of the scattering matrix, and we present an efficient algorithm to find them, which is based on considering the ray propagation inside the structure and subsequent application of the harmonic inversion technique. These results are significant for analyzing the reshaping of ultrashort pulses in multilayered structures.
MAGNETOHYDRODYNAMIC WAVES IN A PARTIALLY IONIZED FILAMENT THREAD
Soler, R.; Oliver, R.; Ballester, J. L. E-mail: ramon.oliver@uib.es
2009-07-10
Oscillations and propagating waves are commonly seen in high-resolution observations of filament threads, i.e., the fine-structures of solar filaments/prominences. Since the temperature of prominences is typically of the order of 10{sup 4} K, the prominence plasma is only partially ionized. In this paper, we study the effect of neutrals on the wave propagation in a filament thread modeled as a partially ionized homogeneous magnetic flux tube embedded in an homogeneous and fully ionized coronal plasma. Ohmic and ambipolar magnetic diffusion are considered in the basic resistive magnetohydrodynamic (MHD) equations. We numerically compute the eigenfrequencies of kink, slow, and Alfven linear MHD modes and obtain analytical approximations in some cases. We find that the existence of propagating modes is constrained by the presence of critical values of the longitudinal wavenumber. In particular, the lower and upper frequency cutoffs of kink and Alfven waves owe their existence to magnetic diffusion parallel and perpendicular to magnetic field lines, respectively. The slow mode only has a lower frequency cutoff, which is caused by perpendicular magnetic diffusion and is significantly affected by the ionization degree. In addition, ion-neutral collision is the most efficient damping mechanism for short wavelengths, while ohmic diffusion dominates in the long-wavelength regime.
Shear Wave Generation by Decoupled and Partially Coupled Explosions
NASA Astrophysics Data System (ADS)
Baker, G. E.; Xu, H.; Stevens, J. L.
2008-12-01
Decoupling is a means of evading detection by detonation of an explosion within a large cavity, which reduces the amplitude of the seismic waves. Such explosions are however still detectable with the current global seismic network, so their discrimination is important. A fully decoupled explosion detonated in the center of a spherical cavity will be a purely compressional seismic source, and so its discrimination should be straightforward. In practice however, decoupled explosions generate S waves, often identical to and sometimes even larger (relative to P) than S waves from comparable tamped explosions. If the source were purely compressional, the S waves must be the result of conversion from P and/or Rg. Asymmetries however, such as asphericity of the cavity or offset or asymmetry of the explosion, can lead to the direct generation of S waves even from a fully decoupled explosion. Fracturing or asymmetry of the nonlinear region about the cavity of a partially decoupled explosion could also result in direct generation of S waves. Most historical decoupling data have been studied extensively, but usually with the goal of quantifying P-wave decoupling. We identify S waves in the historical records, identify observations that can be used to distinguish their genesis, and model the observations to test the proposed mechanisms. Travel times and a bubble pulse peak in the P but not S spectra of water-filled cavity explosions in salt at the Soviet Azgir test site indicate that the S is generated at the source. The observed nearfield S radiation pattern of the US decoupled explosion Sterling is matched by source modeling that includes the flat floor (due to melted and recrystallized salt) of the cavity. The similarity of the Sterling coda waveforms with distance indicates their source is at or very near the cavity. Calculations of the extent and orientation of fracturing by both the Azgir and Sterling explosions predict minimal effects on the resulting waveforms. Both
NASA Astrophysics Data System (ADS)
Li, Jibin
In this paper, we consider the exact explicit solutions for the famous generalized Hénon-Heiles (H-H) system. Corresponding to the three integrable cases, on the basis of the investigation of the dynamical behavior and level curves of the planar dynamical systems, we find all possible explicit exact parametric representations of solutions in the invariant manifolds of equilibrium points in the four-dimensional phase space. These solutions contain quasi-periodic solutions, homoclinic solutions, periodic solutions as well as blow-up solutions. Therefore, we answer the question: what are the flows in the center manifolds and homoclinic manifolds of the generalized Hénon-Heiles (H-H) system. As an application of the above results, we consider the traveling wave solutions for the coupled (n + 1)-dimensional Klein-Gordon-Schrödinger Equations with quadratic power nonlinearity.
Some new traveling wave exact solutions of the (2+1)-dimensional Boiti-Leon-Pempinelli equations.
Qi, Jian-ming; Zhang, Fu; Yuan, Wen-jun; Huang, Zi-feng
2014-01-01
We employ the complex method to obtain all meromorphic exact solutions of complex (2+1)-dimensional Boiti-Leon-Pempinelli equations (BLP system of equations). The idea introduced in this paper can be applied to other nonlinear evolution equations. Our results show that all rational and simply periodic traveling wave exact solutions of the equations (BLP) are solitary wave solutions, the complex method is simpler than other methods, and there exist some rational solutions ur,2 (z) and simply periodic solutions us,2-6(z) which are not only new but also not degenerated successively by the elliptic function solutions. We believe that this method should play an important role for finding exact solutions in the mathematical physics. For these new traveling wave solutions, we give some computer simulations to illustrate our main results.
Direct Calculation of the Scattering Amplitude Without Partial Wave Analysis
NASA Technical Reports Server (NTRS)
Shertzer, J.; Temkin, A.; Fisher, Richard R. (Technical Monitor)
2001-01-01
Two new developments in scattering theory are reported. We show, in a practical way, how one can calculate the full scattering amplitude without invoking a partial wave expansion. First, the integral expression for the scattering amplitude f(theta) is simplified by an analytic integration over the azimuthal angle. Second, the full scattering wavefunction which appears in the integral expression for f(theta) is obtained by solving the Schrodinger equation with the finite element method (FEM). As an example, we calculate electron scattering from the Hartree potential. With minimal computational effort, we obtain accurate and stable results for the scattering amplitude.
Laboratory monitoring of P-waves in partially saturated sand
NASA Astrophysics Data System (ADS)
Barrière, J.; Bordes, C.; Brito, D.; Sénéchal, P.; Perroud, H.
2011-12-01
Seismic data depends on a variety of hydrogeological properties of the prospected porous media such as porosity, permeability and fluid saturation. We have performed a laboratory experiment in the kiloHertz range in order to analyze the role of partial saturation on direct propagating P-waves phase velocity and attenuation. The experiment consists of a sand-filled tank 107 cm x 34 cm x 35cm equipped with accelerometers and water capacitance probes. The P-waves seismic propagation is generated by hitting a steel ball on a granite plate on the one lateral side of the container. Several imbibition/drainage cycles are performed between the water residual saturation and the gas residual saturation. The laboratory seismic data are processed by two Continuous Wavelet Transforms using one real mother wavelet (Mexican hat) and one complex (Morlet) to recover velocity and attenuation as a function of frequency. Phase velocity of direct P-wave decreases with an increase of water content and is quite consistent with the low frequency limit of the Biot's theory both for imbibition and drainage. The interpretation of the P-waves attenuation needs to go beyond the macroscopic fluid flow of Biot's theory and to introduce a viscoelastic contribution linked to the grain to grain overall losses which are described by a constant Q-model. A strong hysteresis between imbibition and drainage is observed and explained by introducing an effective permeability depending on water and gas relative permeabilities (Van Genuchten model).
NASA Astrophysics Data System (ADS)
Miroshnikov, Victor
2015-11-01
The Navier-Stokes system of PDEs is reduced to a system of the vorticity, continuity, Helmholtz, and Lamb-Helmholtz PDEs. The periodic Dirichlet problems are formulated for conservative internal waves vanishing at infinity in upper and lower domains. Stationary kinematic Fourier (SKF) structures, stationary kinematic Euler-Fourier (SKEF) structures, stationary dynamic Euler-Fourier (SDEF) structures, and SKEF-SDEF structures of three spatial variables and time are constructed to consider kinematic and dynamic problems of the three-dimensional theory of the Newtonian flows with harmonic velocity. Exact solutions for propagation and interaction of N internal waves in the upper and lower domains are developed by the method of decomposition in invariant structures and implemented through experimental and theoretical programming in Maple. Main results are summarized in a global existence theorem for the strong solutions. The SKEF, SDEF, and SKEF-SDEF structures of the cumulative flows are visualized by two-parametric surface plots for six fluid-dynamic variables.
Exact density functional and wave function embedding schemes based on orbital localization
NASA Astrophysics Data System (ADS)
Hégely, Bence; Nagy, Péter R.; Ferenczy, György G.; Kállay, Mihály
2016-08-01
Exact schemes for the embedding of density functional theory (DFT) and wave function theory (WFT) methods into lower-level DFT or WFT approaches are introduced utilizing orbital localization. First, a simple modification of the projector-based embedding scheme of Manby and co-workers [J. Chem. Phys. 140, 18A507 (2014)] is proposed. We also use localized orbitals to partition the system, but instead of augmenting the Fock operator with a somewhat arbitrary level-shift projector we solve the Huzinaga-equation, which strictly enforces the Pauli exclusion principle. Second, the embedding of WFT methods in local correlation approaches is studied. Since the latter methods split up the system into local domains, very simple embedding theories can be defined if the domains of the active subsystem and the environment are treated at a different level. The considered embedding schemes are benchmarked for reaction energies and compared to quantum mechanics (QM)/molecular mechanics (MM) and vacuum embedding. We conclude that for DFT-in-DFT embedding, the Huzinaga-equation-based scheme is more efficient than the other approaches, but QM/MM or even simple vacuum embedding is still competitive in particular cases. Concerning the embedding of wave function methods, the clear winner is the embedding of WFT into low-level local correlation approaches, and WFT-in-DFT embedding can only be more advantageous if a non-hybrid density functional is employed.
A New Pion-Nucleon Partial Wave Analysis
NASA Astrophysics Data System (ADS)
Sadler, Michael; Watson, Shon; Stahov, Jugoslav
2006-10-01
Existing determinations of the masses, widths and decay modes of low-lying excited states of the nucleon, as compiled in the Review of Particle Physics, are determined from energy-independent partial wave analyses of pion-nucleon scattering data. For the N*(1440) and most other resonances under 2 GeV, the analyses cited are the Karlsruhe-Helsinki, Carnegie Mellon-Berkeley and Kent State analyses, the latter of which used the elastic amplitudes from the other two. The data included in these analyses were published before 1980. Other analyses, notably the recent ones from George Washington University and the Pittsburgh-Argonne group, are ``not used for averages, fits, limits, etc.'' Complete sets of measurements (differential cross sections, analyzing powers and spin rotation parameters) have been measured in the N*(1440) resonance region since 1980, culminating in the Crystal Ball program at BNL to measure all-neutral final states (charge exchange, multiple pi-zero final states, and inverse photoproduction). A new partial wave analysis of the Karlsruhe-Helsinki type has been started by Abilene Christian University, University of Tuzla, and Rudjer Boskovic Institute. The analysis is constrained by fixed-t and interior hyperbolic dispersion relations. Comparisons of the new analysis to modern experimental data and to previous analyses will be presented.
NASA Technical Reports Server (NTRS)
Shebalin, John V.
1988-01-01
An exact analytic solution is found for a basic electromagnetic wave-charged particle interaction by solving the nonlinear equations of motion. The particle position, velocity, and corresponding time are found to be explicit functions of the total phase of the wave. Particle position and velocity are thus implicit functions of time. Applications include describing the motion of a free electron driven by an intense laser beam..
NASA Technical Reports Server (NTRS)
Shebalin, John V.
1988-01-01
An exact analytic solution is found for a basic electromagnetic wave-charged particle interaction by solving the nonlinear equations of motion. The particle position, velocity, and corresponding time are found to be explicit functions of the total phase of the wave. Particle position and velocity are thus implicit functions of time. Applications include describing the motion of a free electron driven by an intense laser beam..
The Thomas and Effimov Effects for General Partial Waves
NASA Astrophysics Data System (ADS)
Sternberg, James; Macek, Joseph
2006-05-01
Description of the two-body interactions between particles is a fundamental step in modeling many-body systems. Because s-wave scattering dominates at ultra-cold temperatures, zero-range potentials (ZRPs) have been a popular way to describe the two-body interactions. Recent experiments enhance higher partial waves and this has led to interest in extending the zero-range model beyond l=0Stock:2005. In this work we use a ZRP model to examine three body systems. Of particular importance in these systems is the Thomas effect, which is the divergence of the wave function when all three particles are close together. The Thomas effect is known for spin zero particles when l=0. In addition there is the Effimov effect, in which there are an infinite number of three body bound states if the zero-range potential boundary conditions separate in hyperspherical coordinates as the scattering length al->∞. We show that the Effimov effect occurs for not only the well-known l=0 case, but for spin 1/2 fermions via the l=1 pseudopotential of ref. [1] This research is supported by Department of Energy Grant DE-FG02-02ER15283 [1] Ren'e Stock, Andrew Silberfarb, Eric. L. Bolda, and Ivan H. Deutsch, Phys Rev. Lett. 94 023202 (2005)
NASA Astrophysics Data System (ADS)
Kudryashov, Nikolay A.
2015-11-01
The fourth-order equation for description of nonlinear waves is considered. A few variants of this equation are studied. Painlevé test is applied to investigate integrability of these equations. We show that all these equations are not integrable, but some exact solutions of these equations exist. Analytic solutions in closed-form of the equations are found.
Treatment of Ion-Atom Collisions Using a Partial-Wave Expansion of the Projectile Wavefunction
ERIC Educational Resources Information Center
Wong, T. G.; Foster, M.; Colgan, J.; Madison, D. H.
2009-01-01
We present calculations of ion-atom collisions using a partial-wave expansion of the projectile wavefunction. Most calculations of ion-atom collisions have typically used classical or plane-wave approximations for the projectile wavefunction, since partial-wave expansions are expected to require prohibitively large numbers of terms to converge…
Treatment of Ion-Atom Collisions Using a Partial-Wave Expansion of the Projectile Wavefunction
ERIC Educational Resources Information Center
Wong, T. G.; Foster, M.; Colgan, J.; Madison, D. H.
2009-01-01
We present calculations of ion-atom collisions using a partial-wave expansion of the projectile wavefunction. Most calculations of ion-atom collisions have typically used classical or plane-wave approximations for the projectile wavefunction, since partial-wave expansions are expected to require prohibitively large numbers of terms to converge…
Search for Higher Flavor Multiplets in Partial Wave Analyses
Yakov Azimov; Richard Arndt; I.I. Strakovsky; Ron Workman; K. Goeke
2005-04-01
The possible existence of higher multi-quark flavor multiplets of baryons is investigated. We argue that the S-matrix should have poles with any quantum numbers, including those which are exotic. This argument provides a novel justification for the existence of hadrons with arbitrary exotic structure. Though it does not constitute a proof, there are still no theoretical arguments against exotics. We then consider KN and piN scattering. Conventional and modified partial-wave analyses provide several sets of candidates for correlated pairs (Theta1, Delta), each of which could label a related 27-plet. Properties of the pairs (masses, mass orderings, spin-parity quantum numbers) do not quite correspond to the current theoretical expectations. Decay widths of the candidates are either wider or narrower than expected. Possible reasons for such disagreements are briefly discussed.
Baryon Spectroscopy Through Partial-Wave Analysis and Meson Photoproduction
Manley, D. Mark
2016-09-08
The principal goal of this project is the experimental and phenomenological study of baryon spectroscopy. The PI's group consists of himself and three graduate students. This final report summarizes research activities by the PI's group during the period 03/01/2015 to 08/14/2016. During this period, the PI co-authored 11 published journal papers and one proceedings article and presented three invited talks. The PI's general interest is the investigation of the baryon resonance spectrum up to masses of ~ 2 GeV. More detail is given on two research projects: Neutral Kaon Photoproduction and Partial-Wave Analyses of γp → η p, γn → η n, and γp → K⁺ Λ.
Exact periodic and solitary waves and their interactions for the (2+1)-dimensional KdV equation
NASA Astrophysics Data System (ADS)
Peng, Yan-Ze
2006-02-01
A general solution involving three arbitrary functions is first obtained for a (2+1)-dimensional KdV equation by means of WTC truncation method. Then exact periodic wave solutions are expressed in terms of rational functions of the Jacobi elliptic functions. Limit cases are studied and some interesting, new solitary structures are revealed. The interaction properties between Jacobi elliptic waves (various limit cases) are investigated numerically. The fusion and fission of y-periodic solitary waves is for the first time reported.
Song, Jong-Won; Giorgi, Giacomo; Yamashita, Koichi; Hirao, Kimihiko
2013-06-28
Integrable singularity in the exact exchange calculations in hybrid functionals is an old and well-known problem in plane-wave basis. Recently, we developed a hybrid functional named Gaussian-attenuating Perdew-Burke-Ernzerhof (Gau-PBE), which uses a Gaussian function as a modified Coulomb potential for the exact exchange. We found that the modified Coulomb potential of Gaussian function enables the exact exchange calculation in plane-wave basis to be singularity-free and, as a result, the Gau-PBE functional shows faster energy convergence on k and q grids for the exact exchange calculations. Also, a tight comparison (same k and q meshes) between Gau-PBE and two other hybrid functionals, i.e., PBE0 and HSE06, indicates Gau-PBE functional as the least computational time consuming. The Gau-PBE functional employed in conjunction with a plane wave basis provides bandgaps with higher accuracy than the PBE0 and HSE06 in agreement with bandgaps previously calculated using Gaussian-type-orbitals.
A family of exact travelling wave solutions of (2+1)-dimensional KdV4 equation
NASA Astrophysics Data System (ADS)
Ayhan, Burcu; Bekir, Ahmet; Ozer, M. Naci
2017-01-01
Nonlinear evolution equations have a wide range of applications in science and engineering. In recent years many power-ful methods to construct exact solutions of nonlinear evolution equations. In this paper we present (1/G' ) expansion method, extended simplest equation method (SEM) and the modification of the truncated expansion (MTEM) method for (2 + 1) dimensional KdV4 equation to establish new exact solutions. So periodic and hyperbolic function solutions are obtained for this equation. The effi-ciency of the these methods for finding travelling wave solutions of the high order nonlinear evolution equations is demonstrated.
NASA Astrophysics Data System (ADS)
Wazwaz, Abdul-Majid
2017-07-01
We present exact solutions for new (3+1)-dimensional nonlinear equations of wave propagation and fluids. We use the tanh/sech method combined with a computer symbolic system for a reliable treatment of this work. We determine a variety of exact solutions for each equation that contains soliton, kink and periodic solutions. The constraints that guarantee the existence of soliton and kink solutions were examined and found to be related to the coefficients k, r and s of the space variables x, y, and z respectively.
NASA Astrophysics Data System (ADS)
Brunet, Éric; Derrida, Bernard
2004-07-01
We calculate exactly the velocity and diffusion constant of a microscopic stochastic model of N evolving particles which can be described by a noisy traveling-wave equation with a noise of order N-1/2 . Our model can be viewed as the infinite range limit of a directed polymer in random medium with N sites in the transverse direction. Despite some peculiarities of the traveling-wave equations in the absence of noise, our exact solution allows us to test the validity of a simple cutoff approximation and to show that, in the weak noise limit, the position of the front can be completely described by the effect of the noise on the first particle.
Brunet, Eric; Derrida, Bernard
2004-01-01
We calculate exactly the velocity and diffusion constant of a microscopic stochastic model of N evolving particles which can be described by a noisy traveling-wave equation with a noise of order N(-1/2). Our model can be viewed as the infinite range limit of a directed polymer in random medium with N sites in the transverse direction. Despite some peculiarities of the traveling-wave equations in the absence of noise, our exact solution allows us to test the validity of a simple cutoff approximation and to show that, in the weak noise limit, the position of the front can be completely described by the effect of the noise on the first particle.
Overlap of exact and Gross-Pitaevskii wave functions in Bose-Einstein condensates of dilute gases
NASA Astrophysics Data System (ADS)
Klaiman, Shachar; Cederbaum, Lorenz S.
2016-12-01
It has been proven theoretically for bosons with two-body repulsive interaction potentials in the dilute limit that the Gross-Pitaevskii equation provides the exact energy and density per particle as does the basic many-particle Schrödinger equation [E. H. Lieb and R. Seiringer, Phys. Rev. Lett. 88, 170409 (2002), 10.1103/PhysRevLett.88.170409]. Here, we investigate the overlap of the Gross-Pitaevskii and exact ground-state wave functions. It is found that this overlap is always smaller than unity and may even vanish despite the fact that both wave functions provide the same energy and density per particle. Consequences are discussed.
Kurokawa, Yusaku I; Nakashima, Hiroyuki; Nakatsuji, Hiroshi
2014-06-07
We derived the necessary conditions that must be satisfied by the non-relativistic time-independent exact wave functions for many-particle systems at a two-particle coalescence (or cusp) point. Some simple conditions are known to be Kato's cusp condition (CC) and Rassolov and Chipman's CC. In a previous study, we derived an infinite number of necessary conditions that two-particle wave functions must satisfy at a coalescence point. In the present study, we extend these conditions to many-particle systems. They are called general coalescence conditions (GCCs), and Kato's CC and Rassolov and Chipman's CC are included as special conditions. GCCs can be applied not only to Coulombic systems but also to any system in which the interaction between two particles is represented in a power series of inter-particle distances. We confirmed the correctness of our derivation of the GCCs by applying the exact wave function of a harmonium in electron-electron and electron-nucleus coalescence situations. In addition, we applied the free complement (FC) wave functions of a helium atom to the GCCs to examine the accuracy of the FC wave function in the context of a coalescence situation.
H-He elastic scattering at low energies: Contribution of nonzero partial waves
Sinha, Prabal K.; Ghosh, A.S.
2005-01-01
The present study reports the nonzero partial wave elastic cross sections together with s-wave results for the scattering of an antihydrogen atom off a gaseous helium target at thermal energies (up to 10{sup -2} a.u.). We have used a nonadiabatic atomic orbital method having different basis sets to investigate the system. The consideration of all the significant partial waves (up to J=24) reduces the oscillatory nature present in the individual partial wave cross section. The added elastic cross section is almost constant up to 10{sup -7} a.u. and then decreases steadily and very slowly with increasing energy.
Erokhin, N. S. Zakharov, V. E.; Zol’nikova, N. N.; Mikhailovskaya, L. A.
2015-02-15
Different variants of resonance tunneling of a transverse electromagnetic wave through a plasma layer containing short-scale (subwavelength) inhomogeneities, including evanescence regions to which approximate methods are inapplicable, are analyzed in the framework of an exactly solvable one-dimensional model. Complex plasma density profiles described by a number of free parameters determining the permittivity modulation depth, the characteristic scale lengths of plasma structures, their number, and the thickness of the inhomogeneous plasma layer are considered. It is demonstrated that reflection-free propagation of the wave incident on the layer from vacuum (the effect of wave-barrier transillumination) can be achieved for various sets of such structures, including plasma density profiles containing a stochastic component. Taking into account cubic nonlinearity, it is also possible to obtain an exact solution to the one-dimensional problem on the nonlinear transillumination of nonuniform plasma. In this case, the thicknesses of the evanescence regions decrease appreciably. The problem of resonance tunneling of electromagnetic waves through such barriers is of interest for a number of practical applications.
Guo Shimin; Wang Hongli; Mei Liquan
2012-06-15
By combining the effects of bounded cylindrical geometry, azimuthal and axial perturbations, the nonlinear dust acoustic waves (DAWs) in an unmagnetized plasma consisting of negatively charged dust grains, nonextensive ions, and nonextensive electrons are studied in this paper. Using the reductive perturbation method, a (3 + 1)-dimensional variable-coefficient cylindrical Korteweg-de Vries (KdV) equation describing the nonlinear propagation of DAWs is derived. Via the homogeneous balance principle, improved F-expansion technique and symbolic computation, the exact traveling and solitary wave solutions of the KdV equation are presented in terms of Jacobi elliptic functions. Moreover, the effects of the plasma parameters on the solitary wave structures are discussed in detail. The obtained results could help in providing a good fit between theoretical analysis and real applications in space physics and future laboratory plasma experiments where long-range interactions are present.
Ferromagnetic transition in harmonically trapped Fermi gas with higher partial-wave interactions
NASA Astrophysics Data System (ADS)
Sun, Zongli; Gu, Qiang
2017-01-01
Spontaneous ferromagnetic transition in trapped Fermi gas is studied in the presence of a higher partial-wave interaction. At the mean-field level, the ground-state energy contribution from an arbitrary partial wave is derived, with which the equilibrium density profile of each spin component can be calculated. Our results show that, in the spin-\\tfrac{1}{2} Fermi gas, the individual repulsive d-wave interaction can induce ferromagnetic transition; while the individual repulsive or attractive p- and f-wave interactions fail. In addition, the higher partial waves can have a remarkable influence on the ferromagnetic phase induced by the s-wave interaction. The repulsive d-wave interaction and attractive p- or f-wave interactions lower the s-wave Stoner point and critical particle number, while the attractive d-wave interaction and repulsive p- or f-wave interactions increase them. In addition, our results also show that both repulsive d-wave interaction and attractive p- or f-wave interactions can enhance the ferromagnetic state induced by s-wave interaction.
NASA Astrophysics Data System (ADS)
Kong, Chao; Hai, Kuo; Tan, Jintao; Chen, Hao; Hai, Wenhua
2016-03-01
Nonlinear Kronig-Penney model has been frequently employed to study transmission problem of electron wave in a doped semiconductor superlattice or in a nonlinear electrified chain. Here from an integral equation we derive a novel exact solution of the problem, which contains a simple nonlinear map connecting transmission coefficient with system parameters. Consequently, we propose a scheme to manipulate electronic distribution and transmission by adjusting the system parameters. A new quantum coherence effect is evidenced by the strict expression of transmission coefficient, which results in the aperiodic electronic distributions and different transmission coefficients including the approximate zero transmission and total transmission, and the multiple transmissions. The method based on the concise exact solution can be applied directly to some nonlinear cold atomic systems and a lot of linear Kronig-Penney systems, and also can be extended to investigate electronic transport in different discrete nonlinear systems.
Raman three-wave interaction in partially spin polarized plasma
NASA Astrophysics Data System (ADS)
Shahid, M.; Iqbal, Z.; Jamil, M.; Murtaza, G.
2017-10-01
By employing the separate spin evolution-quantum hydrodynamic model (SSE-QHD), the nonlinear growth rate of the parametric decay instability is studied via the Raman scattering process of three-wave coupling. SSE-QHD equations are solved for the pump wave (O-mode), sideband Shear Alfvén wave, and the electron plasma perturbations. It is observed that the spectrum of the electron plasma waves is modified due to newly generated spin dependent waves which contribute in the coupling process. The nonlinear growth rate as a result of three wave coupling is plotted for different sets of parameters and conditions. It is also observed that the growth rate is suppressed due to the spin effects. Shifting of diamagnetic behavior of plasma to paramagnetic behavior is noticed.
NASA Astrophysics Data System (ADS)
Vitanov, Nikolay K.
2011-03-01
We discuss the class of equations ∑i,j=0mAij(u){∂iu}/{∂ti}∂+∑k,l=0nBkl(u){∂ku}/{∂xk}∂=C(u) where Aij( u), Bkl( u) and C( u) are functions of u( x, t) as follows: (i) Aij, Bkl and C are polynomials of u; or (ii) Aij, Bkl and C can be reduced to polynomials of u by means of Taylor series for small values of u. For these two cases the above-mentioned class of equations consists of nonlinear PDEs with polynomial nonlinearities. We show that the modified method of simplest equation is powerful tool for obtaining exact traveling-wave solution of this class of equations. The balance equations for the sub-class of traveling-wave solutions of the investigated class of equations are obtained. We illustrate the method by obtaining exact traveling-wave solutions (i) of the Swift-Hohenberg equation and (ii) of the generalized Rayleigh equation for the cases when the extended tanh-equation or the equations of Bernoulli and Riccati are used as simplest equations.
Wave Directional Characteristics on a Partially Sheltered Coast.
1982-01-01
California Sea Grant Program, IMR Ref. 78-102. Pawka, S. S., V. Hsiao, 0. H. Shemdin , and D. L. Inman, 1978, "Comparison of wave directional spectra...Pawka, S. S., S. V. Hsiao, 0. H. Shemdin , and D. L. Inman, 1980, "Com- parisons between wave directional spectra from SAR and pressure sensor arrays...effects of wave induced airflow, are under 77 active investigation (Evans and Shemdin ,1980). Previous ground truth experiments, reported in Mcleish et al
Exact many-body wave function and properties of trapped bosons in the infinite-particle limit
NASA Astrophysics Data System (ADS)
Cederbaum, Lorenz S.
2017-07-01
The emphasis of this work is on the computation of physical properties as well as of the wave function of interacting bosons in a trap potential. Many-body perturbation theory is employed to study the leading term of these quantities for finite numbers of bosons, and exact solutions are aimed at in the infinite-particle limit. As discussed before, a suitable starting point is the second-quantized Hamiltonian represented in the basis of destruction and creation operators of its own mean-field potential. This choice leads to expressions for the perturbation terms of all quantities which exhibit a very weak dependence on the particle number. Importantly, when applying ideas similar to Bogoliubov's, the Hamiltonian can be reduced in the infinite-particle limit to a much simplified form which is a priori particle-number conserving. The resulting phonon Hamiltonian is diagonalizable by a linear transformation for which an explicit eigenvalue equation is given. Physical properties can be expressed explicitly by elements of this transformation, and of particular relevance is that the particle-number-conserving wave functions of the original many-boson system can be reconstructed using recursion relations. The reconstruction of the particle-conserving wave function from the phonon Hamiltonian can also be used to assess when the infinite-particle limit is reached in practice for finite trapped condensates. Two applications are discussed in detail. For one of them, an exact solution is known which is found, in the infinite-particle limit, to exactly coincide with that of the phonon Hamiltonian. In both examples expressions for the properties are given in closed form. The physics behind the phonon Hamiltonian and its physical properties is discussed.
Analytical expressions for partial wave two-body Coulomb transition matrices at ground-state energy
NASA Astrophysics Data System (ADS)
Kharchenko, V. F.
2016-11-01
Leaning upon the Fock method of the stereographic projection of the three-dimensional momentum space onto the four-dimensional unit sphere the possibility of the analytical solving of the Lippmann-Schwinger integral equation for the partial wave two-body Coulomb transition matrix at the ground bound state energy has been studied. In this case new expressions for the partial p-, d- and f-wave two-body Coulomb transition matrices have been obtained in the simple analytical form. The developed approach can also be extended to determine analytically the partial wave Coulomb transition matrices at the energies of excited bound states.
NASA Astrophysics Data System (ADS)
Liu, Yin-Ping; Li, Zhi-Bin
2003-03-01
Based on a type of elliptic equation, a new algebraic method to construct a series of exact solutions for nonlinear evolution equations is proposed, meanwhile, its complete implementation TRWS in Maple is presented. The TRWS can output a series of travelling wave solutions entirely automatically, which include polynomial solutions, exponential function solutions, triangular function solutions, hyperbolic function solutions, rational function solutions, Jacobi elliptic function solutions, and Weierstrass elliptic function solutions. The effectiveness of the package is illustrated by applying it to a variety of equations. Not only are previously known solutions recovered but also new solutions and more general form of solutions are obtained.
Kurokawa, Yusaku I.; Nakashima, Hiroyuki; Nakatsuji, Hiroshi
2013-07-28
We derived the necessary conditions that the non-relativistic time-independent exact wave functions for two-particle systems must satisfy at a coalescence (or cusp) point. Some of such necessary conditions are already known to be Kato's cusp condition (CC) and Rassolov and Chipman's CC. In the present study, we extended and generalized those conditions, calling them generalized coalescence conditions (GCCs). Kato's CC and Rassolov and Chipman's CC were shown to be specific cases included in the GCCs. The GCCs can be applied not only to Coulombic systems but also to any systems where the interaction between two particles is represented in a power series of the inter-particle distance. We confirmed the correctness of our derivation of these GCCs by applying the free complement wave functions of a hydrogen atom in ground and excited states, a harmonic oscillator, and a system with an interacting potential of V=r.
Pseudo Rayleigh wave in a partially saturated non-dissipative porous solid
NASA Astrophysics Data System (ADS)
Sharma, M. D.
2017-03-01
Propagation of surface waves is studied at the pervious boundary of a porous solid saturated with a mixture of two immiscible fluids. An approach, based on continuum mixture theory, is used to derive a secular equation for the propagation of harmonic waves at the stress-free plane surface of this non-dissipative medium. Numerical analysis shows that this secular equation may not represent the propagation of true surface wave in the porous aggregate. Then, this equation is solved numerically for the propagation of pseudo Rayleigh wave or the leaky surface waves. To ensure the existence of pseudo Rayleigh wave, capillary effect between two (wetting and non-wetting) pore-fluids is related to the partial saturation. Effects of porosity and partial saturation coupled with capillary effect are observed on the phase velocity of pseudo Rayleigh waves in sandstone saturated with water-CO2 mixture.
Complex space source theory of partially coherent light wave.
Seshadri, S R
2010-07-01
The complex space source theory is used to derive a general integral expression for the vector potential that generates the extended full Gaussian wave in terms of the input value of the vector potential of the corresponding paraxial beam. The vector potential and the fields are assumed to fluctuate on a time scale that is large compared to the wave period. The Poynting vector in the propagation direction averaged over a wave period is expressed in terms of the cross-spectral density of the fluctuating vector potential across the input plane. The Schell model is assumed for the cross-spectral density. The radiation intensity distribution and the power radiated are determined. The effect of spatial coherence on the radiation intensity distribution and the radiated power are investigated for different values of the physical parameters. Illustrative numerical results are provided to bring out the effect of spatial coherence on the propagation characteristics of the fluctuating light wave.
Workman, R. L.; Tiator, L.; Wunderlich, Y.; ...
2017-01-19
Here, we compare the methods of amplitude reconstruction, for a complete experiment and a truncated partial-wave analysis, applied to the photoproduction of pseudoscalar mesons. The approach is pedagogical, showing in detail how the amplitude reconstruction (observables measured at a single energy and angle) is related to a truncated partial-wave analysis (observables measured at a single energy and a number of angles).
Partial reflections of radio waves from the lower ionosphere
NASA Technical Reports Server (NTRS)
Connolly, D. J.; Tanenbaum, S. B.
1972-01-01
The addition of phase difference measurements to partial reflection experiments is discussed, and some advantages of measuring electron density this way are pointed out. The additional information obtained reduces the requirement for an accurate predetermination of collision frequency. Calculations are also made to estimate the errors expected in partial-reflection experiments due to the assumption of Fresnel reflection and to the neglect of coupling between modes. In both cases, the errors are found to be of the same order as known errors in the measurements due to current instrumental limitations.
Matter-wave exact periodic solutions in optical lattices with periodic potential
NASA Astrophysics Data System (ADS)
Liu, Changfu; Zhu, Aijun
2013-10-01
Some special matter-wave periodic solutions for the Gross-Pitaevskii equation with periodic potential in the multidimensional optical lattices, are obtained through restricting parameters and some balance conditions between the optical potentials and interaction energies. The results show that the same type of periodic solutions in the same dimension possesses the same norm but different phases and they are all bounded. Especially, the numerics shows that two class (2+1)-dimensional periodic solutions are stable.
Extracting scattering phase shifts in higher partial waves from lattice QCD calculations
Luu, Thomas; Savage, Martin J.
2011-06-01
Lüscher’s method is routinely used to determine meson-meson, meson-baryon, and baryon-baryon s-wave scattering amplitudes below inelastic thresholds from lattice QCD calculations—presently at unphysical light-quark masses. In this work we review the formalism and develop the requisite expressions to extract phase shifts describing meson-meson scattering in partial waves with angular momentum l≤6 and l=9. The implications of the underlying cubic symmetry, and strategies for extracting the phase shifts from lattice QCD calculations, are presented, along with a discussion of the signal-to-noise problem that afflicts the higher partial waves.
NASA Astrophysics Data System (ADS)
Prodhan, Suryoday; Ramasesha, S.
2017-08-01
Singlet fission (SF) is a potential pathway for significant enhancement of efficiency in organic solar cells (OSC). In this paper, we study singlet fission in a pair of polyene molecules in two different stacking arrangements employing exact many-body wave packet dynamics. In the noninteracting model, the SF yield is absent. The individual molecules are treated within Hubbard and Pariser-Parr-Pople (PPP) models and the interaction between them involves transfer terms, intersite electron repulsions, and site-charge-bond-charge repulsion terms. Initial wave packet is constructed from excited singlet state of one molecule and ground state of the other. Time development of this wave packet under the influence of intermolecular interactions is followed within the Schrödinger picture by an efficient predictor-corrector scheme. In unsubstituted Hubbard and PPP chains, 2 1A excited singlet state leads to significant SF yield while the 1 1B state gives negligible fission yield. On substitution by donor-acceptor groups of moderate strength, the lowest excited state will have sufficient 2 1A character and hence results in significant SF yield. Because of rapid internal conversion, the nature of the lowest excited singlet will determine the SF contribution to OSC efficiency. Furthermore, we find the fission yield depends considerably on the stacking arrangement of the polyene molecules.
Treatment of ion-atom collisions using a partial-wave expansion of the projectile wavefunction
Foster, M; Colgan, J; Wong, T G; Madison, D H
2008-01-01
We present calculations of ion-atom collisions using a partial-wave expansion of the projectile wavefunction. Most calculations of ion-atom collisions have typically used classical or plane-wave approximations for the projectile wavefunction, since partial-wave expansions are expected to require prohibitively large numbers of terms to converge scattering quantities. Here we show that such calculations are possible using modern high-performance computing. We demonstrate the utility of our method by examining elastic scattering of protons by hydrogen and helium atoms, problems familiar to undergraduate students of atomic scattering. Application to ionization of helium using partial-wave expansions of the projectile wavefunction, which has long been desirable in heavy-ion collision physics, is thus quite feasible.
Shock-wave structure in a partially ionized gas
NASA Technical Reports Server (NTRS)
Lu, C. S.; Huang, A. B.
1974-01-01
The structure of a steady plane shock in a partially ionized gas has been investigated using the Boltzmann equation with a kinetic model as the governing equation and the discrete ordinate method as a tool. The effects of the electric field induced by the charge separation on the shock structure have also been studied. Although the three species of an ionized gas travel with approximately the same macroscopic velocity, the individual distribution functions are found to be very different. In a strong shock the atom distribution function may have double peaks, while the ion distribution function has only one peak. Electrons are heated up much earlier than ions and atoms in a partially ionized gas. Because the interactions of electrons with atoms and with ions are different, the ion temperature can be different from the atom temperature.
Exact soliton-on-plane-wave solutions for two-component Bose-Einstein condensates.
Li, Lu; Malomed, Boris A; Mihalache, Dumitru; Liu, W M
2006-06-01
By means of the Darboux transformation, we obtain analytical solutions for a soliton set on top of a plane-wave background in coupled Gross-Pitaevskii equations describing a binary Bose-Einstein condensate. We consider basic properties of the solutions with and without the cross interaction [cross phase modulation (XPM)] between the two components of the background. In the absence of the XPM, this solutions maintain properties of one-component condensates, such as the modulation instability (MI); in the presence of the cross interaction, the solutions exhibit different properties, such as restriction of the MI and soliton splitting.
Exact soliton-on-plane-wave solutions for two-component Bose-Einstein condensates
Li Lu; Malomed, Boris A.; Mihalache, Dumitru; Liu, W. M.
2006-06-15
By means of the Darboux transformation, we obtain analytical solutions for a soliton set on top of a plane-wave background in coupled Gross-Pitaevskii equations describing a binary Bose-Einstein condensate. We consider basic properties of the solutions with and without the cross interaction [cross phase modulation (XPM)] between the two components of the background. In the absence of the XPM, this solutions maintain properties of one-component condensates, such as the modulation instability (MI); in the presence of the cross interaction, the solutions exhibit different properties, such as restriction of the MI and soliton splitting.
NASA Astrophysics Data System (ADS)
Li, Zhi-Bin; Liu, Yin-Ping
2004-11-01
In Maple 8, by taking advantage of the package RIF contained in DEtools, we developed a package RAEEM which is a comprehensive and complete implementation of such methods as the tanh-method, the extended tanh-method, the Jacobi elliptic function method and the elliptic equation method. RAEEM can entirely automatically output a series of exact traveling wave solutions, including those of polynomial, exponential, triangular, hyperbolic, rational, Jacobi elliptic, Weierstrass elliptic type. The effectiveness of the package is illustrated by applying it to a large variety of equations. In addition to recovering previously known solutions, we also obtain more general forms of some solutions and new solutions. Program summaryTitle of program: RAEEM Catalogue identifier: ADUP Program summary URL:http://cpc.cs.qub.ac.uk/summaries/ADUP Program obtained from: CPC Program Library, Queen's University of Belfast, N. Ireland Computers: PC Pentium IV Installations: Copy Operating systems: Windows 98/2000/XP Program language used: Maple 8 Memory required to execute with typical data: depends on the problem, minimum about 8M words No. of bits in a word: 8 No. of lines in distributed program, including test data, etc.: 3163 No. of bytes in distributed program, including the test data, etc.: 26 720 Distribution format: tar.gz Nature of physical problem: Our program provides exact traveling wave solutions, which describe various phenomena in nature, and thus can give more insight into the physical aspects of problems. These solutions may be easily used in further applications. Restriction on the complexity of the problem: The program can handle system of nonlinear evolution equations with any number of independent and dependent variables, in which each equation is a polynomial (or can be converted to a polynomial) in the dependent variables and their derivatives. Typical running time: It depends on the input equations as well as the degrees of the desired polynomial solutions. For
Shape Waves in 2D Josephson Junctions: Exact Solutions and Time Dilation
NASA Astrophysics Data System (ADS)
Gulevich, D. R.; Kusmartsev, F. V.; Savel'Ev, Sergey; Yampol'Skii, V. A.; Nori, Franco
2008-09-01
We predict a new class of excitations propagating along a Josephson vortex in two-dimensional Josephson junctions. These excitations are associated with the distortion of a Josephson vortex line and have an analogy with shear waves in solid mechanics. Their shapes can have an arbitrary profile, which is retained when propagating. We derive a universal analytical expression for the energy of arbitrary shape excitations, investigate their influence on the dynamics of a vortex line, and discuss conditions where such excitations can be created. Finally, we show that such excitations play the role of a clock for a relativistically moving Josephson vortex and suggest an experiment to measure a time dilation effect analogous to that in special relativity.
Shape waves in 2D Josephson junctions: exact solutions and time dilation.
Gulevich, D R; Kusmartsev, F V; Savel'ev, Sergey; Yampol'skii, V A; Nori, Franco
2008-09-19
We predict a new class of excitations propagating along a Josephson vortex in two-dimensional Josephson junctions. These excitations are associated with the distortion of a Josephson vortex line and have an analogy with shear waves in solid mechanics. Their shapes can have an arbitrary profile, which is retained when propagating. We derive a universal analytical expression for the energy of arbitrary shape excitations, investigate their influence on the dynamics of a vortex line, and discuss conditions where such excitations can be created. Finally, we show that such excitations play the role of a clock for a relativistically moving Josephson vortex and suggest an experiment to measure a time dilation effect analogous to that in special relativity.
March, N H; Nagy, A
2008-11-21
Following some studies of integral(n)(r)inverted DeltaV(r)dr by earlier workers for the density functional theory (DFT) one-body potential V(r) generating the exact ground-state density, we consider here the special case of spherical atoms. The starting point is the differential virial theorem, which is used, as well as the Hiller-Sucher-Feinberg [Phys. Rev. A 18, 2399 (1978)] identity to show that the scalar quantity paralleling the above vector integral, namely, integral(n)(r) partial differential(V)(r)/partial differential(r)dr, is determined solely by the electron density n(0) at the nucleus for the s-like atoms He and Be. The force - partial differential(V)/ partial differential(r) is then related to the derivative of the exchange-correlation potential V(xc)(r) by terms involving only the external potential in addition to n(r). The resulting integral constraint should allow some test of the quality of currently used forms of V(xc)(r). The article concludes with results from the differential virial theorem and the Hiller-Sucher-Feinberg identity for the exact many-electron theory of spherical atoms, as well as for the DFT for atoms such as Ne with a closed p shell.
Analysis of non linear partially standing waves from 3D velocity measurements
NASA Astrophysics Data System (ADS)
Drevard, D.; Rey, V.; Svendsen, Ib; Fraunie, P.
2003-04-01
Surface gravity waves in the ocean exhibit an energy spectrum distributed in both frequency and direction of propagation. Wave data collection is of great importance in coastal zones for engineering and scientific studies. In particular, partially standing waves measurements near coastal structures and steep or barred beaches may be a requirement, for instance for morphodynamic studies. The aim of the present study is the analysis of partially standing surface waves icluding non-linear effects. According to 1st order Stokes theory, synchronous measurements of horizontal and vertical velocity components allow calculation of rate of standing waves (Drevard et al, 2003). In the present study, it is demonstrated that for deep water conditions, partially standing 2nd order Stokes waves induced velocity field is still represented by the 1st order solution for the velocity potential contrary to the surface elevation which exhibits harmonic components. For intermediate water depth, harmonic components appear not only in the surface elevation but also in the velocity fields, but their weight remains much smaller, because of the vertical decreasing wave induced motion. For irregular waves, the influence of the spectrum width on the non-linear effects in the analysis is discussed. Keywords: Wave measurements ; reflection ; non-linear effects Acknowledgements: This work was initiated during the stay of Prof. Ib Svendsen, as invited Professor, at LSEET in autumn 2002. This study is carried out in the framework of the Scientific French National Programmes PNEC ART7 and PATOM. Their financial supports are acknowledged References: Drevard, D., Meuret, A., Rey, V. Piazzola, J. And Dolle, A.. (2002). "Partially reflected waves measurements using Acoustic Doppler Velocimeter (ADV)", Submitted to ISOPE 03, Honolulu, Hawaii, May 2003.
Evaluation of partial widths and branching ratios from resonance wave functions
Goldzak, Tamar; Gilary, Ido; Moiseyev, Nimrod
2010-11-15
A quantum system in a given resonance state has different open channels for decay. Partial widths are the decay rates of the resonance (metastable) state into the different open channels. Here we present a rigorous derivation of the partial widths from the solution of a time-dependent Schroedinger equation with outgoing boundary conditions. We show that the sum of the partial widths obtained from the resonance wave function is equal to the total width. The difference with respect to previous studies on partial widths and branching ratios is discussed.
NASA Technical Reports Server (NTRS)
Shertzer, Janine; Temkin, Aaron
2007-01-01
In the first two papers in this series, we developed a method for studying electron-hydrogen scattering that does not use partial wave analysis. We constructed an ansatz for the wave function in both the static and static exchange approximations and calculated the full scattering amplitude. Here we go beyond the static exchange approximation, and include correlation in the wave function via a modified polarized orbital. This correlation function provides a significant improvement over the static exchange approximation: the resultant elastic scattering amplitudes are in very good agreement with fully converged partial wave calculations for electron-hydrogen scattering. A fully variational modification of this approach is discussed in the conclusion of the article Popular summary of Direct calculation of the scattering amplitude without partial wave expansion. III ....." by J. Shertzer and A. Temkin. In this paper we continue the development of In this paper we continue the development of a new approach to the way in which researchers have traditionally used to calculate the scattering cross section of (low-energy) electrons from atoms. The basic mathematical problem is to solve the Schroedinger Equation (SE) corresponding the above physical process. Traditionally it was always the case that the SE was reduced to a sequence of one-dimensional (ordinary) differential equations - called partial waves which were solved and from the solutions "phase shifts" were extracted, from which the scattering cross section was calculated.
Exact non-Born-Oppenheimer wave functions for three-particle Hookean systems with arbitrary masses
Lopez, Xabier; Ugalde, Jesus M.; Echevarria, Lorenzo; Ludena, Eduardo V.
2006-10-15
A Hookean model of a three-body problem for particles with arbitrary masses and charges where two of them interact with each other through a Coulomb potential and with the third through a harmonic potential is presented. It is shown that a condition relating the masses to the harmonic coupling constants must be satisfied in order to render this problem separable. A general exact analytic solution written in terms of the relative interparticle coordinates is given as well as general expressions for the total and binding energies of this three-body system. We apply these results to examine electronic, muonic, antiprotonic, and pionic families of non-Born-Oppenheimer Hookean systems. The first contains the atoms or atomic ions: Ps{sup -}(e{sup +}e{sup -}e{sup -}), H{sup -}(p{sup +}e{sup -}e{sup -}), D{sup -}(d{sup +}e{sup -}e{sup -}), T{sup -}(p{sup +}e{sup -}e{sup -}), {sup 4}He(he{sup +2}e{sup -}e{sup -}), and the following molecular ions: Ps{sub 2}{sup +}(e{sup -}e{sup +}e{sup +}), H{sub 2}{sup +}(e{sup -}p{sup +}p{sup +}), HD{sup +}(e{sup -}d{sup +}p{sup +}), HT{sup +}(e{sup -}t{sup +}p{sup +}), DT{sup +}(e{sup -}d{sup +}t{sup +}), D{sub 2}{sup +}(e{sup -}d{sup +}d{sup +}), T{sub 2}{sup +}(e{sup -}t{sup +}t{sup +}). The muonic and antiprotonic families are similar to the electronic ones except that the species are formed replacing e{sup -} by {mu}{sup -} or p{sup -}. The pionic family comprises exotic atoms containing at least one pion. We also apply these results to two-electron three-dimensional spherical quantum dots and for these systems we examine the effect of electronic correlation, particularly on the singlet-triplet transitions and on the collective motion of the electrons and center of mass leading to ''floppy''dynamics.
Petrović, Nikola Z; Belić, Milivoj; Zhong, Wei-Ping
2011-02-01
We obtain exact traveling wave and spatiotemporal soliton solutions to the generalized (3+1)-dimensional nonlinear Schrödinger equation with variable coefficients and polynomial Kerr nonlinearity of an arbitrarily high order. Exact solutions, given in terms of Jacobi elliptic functions, are presented for the special cases of cubic-quintic and septic models. We demonstrate that the widely used method for finding exact solutions in terms of Jacobi elliptic functions is not applicable to the nonlinear Schrödinger equation with saturable nonlinearity.
New results on the Roper resonance and the P11 partial wave
NASA Astrophysics Data System (ADS)
Sarantsev, A. V.; Fuchs, M.; Kotulla, M.; Thoma, U.; Ahrens, J.; Annand, J. R. M.; Anisovich, A. V.; Anton, G.; Bantes, R.; Bartholomy, O.; Beck, R.; Beloglazov, Yu.; Castelijns, R.; Crede, V.; Ehmanns, A.; Ernst, J.; Fabry, I.; Flemming, H.; Fösel, A.; Funke, Chr.; Gothe, R.; Gridnev, A.; Gutz, E.; Höffgen, St.; Horn, I.; Hößl, J.; Hornidge, D.; Janssen, S.; Junkersfeld, J.; Kalinowsky, H.; Klein, F.; Klempt, E.; Koch, H.; Konrad, M.; Kopf, B.; Krusche, B.; Langheinrich, J.; Löhner, H.; Lopatin, I.; Lotz, J.; McGeorge, J. C.; MacGregor, I. J. D.; Matthäy, H.; Menze, D.; Messchendorp, J. G.; Metag, V.; Nikonov, V. A.; Novinski, D.; Novotny, R.; Ostrick, M.; van Pee, H.; Pfeiffer, M.; Radkov, A.; Rosner, G.; Rost, M.; Schmidt, C.; Schoch, B.; Suft, G.; Sumachev, V.; Szczepanek, T.; Walther, D.; Watts, D. P.; Weinheimer, Chr.; CB-ELSA; A2-TAPS Collaborations
2008-01-01
Properties of the Roper resonance, the first scalar excitation of the nucleon, are determined. Pole positions and residues of the P11 partial wave are studied in a combined analysis of pion- and photo-induced reactions. We find the Roper pole at { (1371 ± 7) - i (92 ± 10) } MeV and an elasticity of 0.61 ± 0.03. The largest decay coupling is found for the Nσ (σ = (ππ)-S-wave). The analysis is based on new data on γp → pπ0π0 for photons in the energy range from the two-pion threshold to 820 MeV from TAPS at Mainz and from 0.4 to 1.3 GeV from Crystal Barrel at Bonn and includes further data from other experiments. The partial wave analysis excludes the possibility that the Roper resonance is split into two states with different partial decay widths.
New results on the Roper resonance and the P partial wave
NASA Astrophysics Data System (ADS)
Cb-Elsa; A2-Taps Collaborations; Sarantsev, A. V.; Fuchs, M.; Kotulla, M.; Thoma, U.; Ahrens, J.; Annand, J. R. M.; Anisovich, A. V.; Anton, G.; Bantes, R.; Bartholomy, O.; Beck, R.; Beloglazov, Yu.; Castelijns, R.; Crede, V.; Ehmanns, A.; Ernst, J.; Fabry, I.; Flemming, H.; Fösel, A.; Funke, Chr.; Gothe, R.; Gridnev, A.; Gutz, E.; Höffgen, St.; Horn, I.; Hößl, J.; Hornidge, D.; Janssen, S.; Junkersfeld, J.; Kalinowsky, H.; Klein, F.; Klempt, E.; Koch, H.; Konrad, M.; Kopf, B.; Krusche, B.; Langheinrich, J.; Löhner, H.; Lopatin, I.; Lotz, J.; McGeorge, J. C.; MacGregor, I. J. D.; Matthäy, H.; Menze, D.; Messchendorp, J. G.; Metag, V.; Nikonov, V. A.; Novinski, D.; Novotny, R.; Ostrick, M.; van Pee, H.; Pfeiffer, M.; Radkov, A.; Rosner, G.; Rost, M.; Schmidt, C.; Schoch, B.; Suft, G.; Sumachev, V.; Szczepanek, T.; Walther, D.; Watts, D. P.; Weinheimer, Chr.
2008-01-01
Properties of the Roper resonance, the first scalar excitation of the nucleon, are determined. Pole positions and residues of the P partial wave are studied in a combined analysis of pion- and photo-induced reactions. We find the Roper pole at {(1371±7)-i(92±10)} MeV and an elasticity of 0.61±0.03. The largest decay coupling is found for the Nσ (σ=(ππ)-S-wave). The analysis is based on new data on γp→pππ for photons in the energy range from the two-pion threshold to 820 MeV from TAPS at Mainz and from 0.4 to 1.3 GeV from Crystal Barrel at Bonn and includes further data from other experiments. The partial wave analysis excludes the possibility that the Roper resonance is split into two states with different partial decay widths.
NASA Technical Reports Server (NTRS)
Shertzer, Janine; Temkin, Aaron
2004-01-01
The development of a practical method of accurately calculating the full scattering amplitude, without making a partial wave decomposition is continued. The method is developed in the context of electron-hydrogen scattering, and here exchange is dealt with by considering e-H scattering in the static exchange approximation. The Schroedinger equation in this approximation can be simplified to a set of coupled integro-differential equations. The equations are solved numerically for the full scattering wave function. The scattering amplitude can most accurately be calculated from an integral expression for the amplitude; that integral can be formally simplified, and then evaluated using the numerically determined wave function. The results are essentially identical to converged partial wave results.
NASA Technical Reports Server (NTRS)
Shertzer, Janine; Temkin, Aaron
2004-01-01
The development of a practical method of accurately calculating the full scattering amplitude, without making a partial wave decomposition is continued. The method is developed in the context of electron-hydrogen scattering, and here exchange is dealt with by considering e-H scattering in the static exchange approximation. The Schroedinger equation in this approximation can be simplified to a set of coupled integro-differential equations. The equations are solved numerically for the full scattering wave function. The scattering amplitude can most accurately be calculated from an integral expression for the amplitude; that integral can be formally simplified, and then evaluated using the numerically determined wave function. The results are essentially identical to converged partial wave results.
Partial-wave analysis of nucleon-nucleon elastic scattering data
NASA Astrophysics Data System (ADS)
Workman, Ron L.; Briscoe, William J.; Strakovsky, Igor I.
2016-12-01
Energy-dependent and single-energy fits to the existing nucleon-nucleon database have been updated to incorporate recent measurements. The fits cover a region from threshold to 3 GeV, in the laboratory kinetic energy, for proton-proton scattering, with an upper limit of 1.3 GeV for neutron-proton scattering. Experiments carried out at the COSY-WASA and COSY-ANKE facilities have had a significant impact on the partial-wave solutions. Results are discussed in terms of both partial-wave and direct reconstruction amplitudes.
Twisted partially coherent bosonic matter wave and its orbital angular momentum
NASA Astrophysics Data System (ADS)
Chen, Jun; Chen, Xiang-yun; Lin, Qiang
2017-06-01
Orbital angular momentum (OAM) is a general characteristic of coherent bosonic matter waves. Partially coherent bosonic matter waves (PCMWs) can also have OAM according to a vortex or twisted structure of the correlation phase of the first-order correlation function. We theoretically prove that a twist phase exists under partial coherence, and this phase contributes to the OAM flux of the PCMW field. We also present an example which illustrates that a twist phase can be produced by illuminating a Gaussian Schell model cold atomic cloud with a sequence of cylindrical lens pulses.
NASA Astrophysics Data System (ADS)
Kupershtokh, A. L.; Karpov, D. I.
2016-10-01
A stochastic model of partial discharges inside gas inclusions in condensed dielectrics was developed. The possibility of a "relay-race" wave propagation mechanism of partial discharges in a linear chain of gas inclusions is shown. The lattice Boltzmann method is successfully implemented for three-dimensional computer simulations of flows of dielectric fluid with bubbles. Growth and elongation of bubbles in a liquid dielectric under the action of a strong electric field are simulated. The physical model of propagation of partial discharges along a chain of gas bubbles in a liquid is formulated.
Attenuation measurements of ultrasonic P-wave and S-wave in partially frozen unconsolidated sands
NASA Astrophysics Data System (ADS)
Matsushima, J.; Suzuki, M.; Kato, Y.; Rokugawa, S.; Kato, A.
2012-12-01
Seismic attenuation which controls both the amplitude decay of seismic waves and the accompanying frequency change is a signature of the wave-rock interaction. Seismic attenuation in rocks is a highly variable parameter, which depends on the confining pressure, porosity, degree of fluid saturation, and fluid type. Although seismic attenuation has been widely used to estimate physical conditions and rock properties in various fields, the loss mechanisms responsible for seismic attenuation often are unclear and controversial. To elucidate a plausible mechanism for seismic attenuation, the joint use of both P- and S-waves will provide more helpful information because these two types of waves respond differently to fluid and solid combinations. We have conducted ultrasonic P- and S-wave transmission measurements to examine the influence of ice-brine coexisting system grown in the pore space of unconsolidated sands on ultrasonic P- and S-waves. We observed the variations of a transmitted wave with a frequency content of 100-1000 kHz , changing its temperature from 20°C to -15°C. We use not only impulse-type signals but also sweep-type signals to prevent from the spectral leakage effect caused by the effect of windowing. We concern with attenuation at ultrasonic frequencies of 500-1000 kHz for P-waves and 100-400 kHz for S-waves. Our observation of the variation of the Poisson's ratio and the ratio of P- to S-wave attenuation with changing temperature indicates the possibilities of the joint use of both P- and S-waves to elucidate a plausible mechanism for seismic attenuation.
Manafian Heris, Jalil; Lakestani, Mehrdad
2014-01-01
We establish exact solutions including periodic wave and solitary wave solutions for the integrable sixth-order Drinfeld-Sokolov-Satsuma-Hirota system. We employ this system by using a generalized (G'/G)-expansion and the generalized tanh-coth methods. These methods are developed for searching exact travelling wave solutions of nonlinear partial differential equations. It is shown that these methods, with the help of symbolic computation, provide a straightforward and powerful mathematical tool for solving nonlinear partial differential equations.
NASA Astrophysics Data System (ADS)
Scherrer, Arne; Agostini, Federica; Sebastiani, Daniel; Gross, E. K. U.; Vuilleumier, Rodolphe
2015-08-01
The nuclear velocity perturbation theory (NVPT) for vibrational circular dichroism (VCD) is derived from the exact factorization of the electron-nuclear wave function. This new formalism offers an exact starting point to include correction terms to the Born-Oppenheimer (BO) form of the molecular wave function, similar to the complete-adiabatic approximation. The corrections depend on a small parameter that, in a classical treatment of the nuclei, is identified as the nuclear velocity. Apart from proposing a rigorous basis for the NVPT, we show that the rotational strengths, related to the intensity of the VCD signal, contain a new contribution beyond-BO that can be evaluated with the NVPT and that only arises when the exact factorization approach is employed. Numerical results are presented for chiral and non-chiral systems to test the validity of the approach.
Scherrer, Arne; Agostini, Federica; Gross, E. K. U.; Sebastiani, Daniel; Vuilleumier, Rodolphe
2015-08-21
The nuclear velocity perturbation theory (NVPT) for vibrational circular dichroism (VCD) is derived from the exact factorization of the electron-nuclear wave function. This new formalism offers an exact starting point to include correction terms to the Born-Oppenheimer (BO) form of the molecular wave function, similar to the complete-adiabatic approximation. The corrections depend on a small parameter that, in a classical treatment of the nuclei, is identified as the nuclear velocity. Apart from proposing a rigorous basis for the NVPT, we show that the rotational strengths, related to the intensity of the VCD signal, contain a new contribution beyond-BO that can be evaluated with the NVPT and that only arises when the exact factorization approach is employed. Numerical results are presented for chiral and non-chiral systems to test the validity of the approach.
NASA Astrophysics Data System (ADS)
Trifonov, E. V.
2017-07-01
We propose a procedure for multiplying solutions of linear and nonlinear one-dimensional wave equations, where the speed of sound can be an arbitrary function of one variable. We obtain exact solutions. We show that the functional series comprising these solutions can be used to solve initial boundary value problems. For this, we introduce a special scalar product.
Wave interaction with a partially reflecting vertical wall protected by a submerged porous bar
NASA Astrophysics Data System (ADS)
Zhao, Yang; Liu, Yong; Li, Huajun
2016-08-01
This study gives an analytical solution for wave interaction with a partially reflecting vertical wall protected by a submerged porous bar based on linear potential theory. The whole study domain is divided into multiple sub-regions in relation to the structures. The velocity potential in each sub-region is written as a series solution by the separation of variables. A partially reflecting boundary condition is used to describe the partial reflection of a vertical wall. Unknown expansion coefficients in the series solutions are determined by matching velocity potentials among different sub-regions. The analytical solution is verified by an independently developed multi-domain boundary element method (BEM) solution and experimental data. The wave run-up and wave force on the partially reflecting vertical wall are estimated and examined, which can be effectively reduced by the submerged porous bar. The horizontal space between the vertical wall and the submerged porous bar is a key factor, which affects the sheltering function of the porous bar. The wave resonance between the porous bar and the vertical wall may disappear when the vertical wall has a low reflection coefficient. The present analytical solution may be used to determine the optimum parameters of structures at a preliminary engineering design stage.
NASA Technical Reports Server (NTRS)
Weatherford, C. A.; Onda, K.; Temkin, A.
1985-01-01
The noniterative partial-differential-equation (PDE) approach to electron-molecule scattering of Onda and Temkin (1983) is modified to account for the effects of exchange explicitly. The exchange equation is reduced to a set of inhomogeneous equations containing no integral terms and solved noniteratively in a difference form; a method for propagating the solution to large values of r is described; the changes in the polarization potential of the original PDE method required by the inclusion of exact static exchange are indicated; and the results of computations for e-N2 scattering in the fixed-nuclei approximation are presented in tables and graphs and compared with previous calculations and experimental data. Better agreement is obtained using the modified PDE method.
NASA Technical Reports Server (NTRS)
Weatherford, C. A.; Onda, K.; Temkin, A.
1985-01-01
The noniterative partial-differential-equation (PDE) approach to electron-molecule scattering of Onda and Temkin (1983) is modified to account for the effects of exchange explicitly. The exchange equation is reduced to a set of inhomogeneous equations containing no integral terms and solved noniteratively in a difference form; a method for propagating the solution to large values of r is described; the changes in the polarization potential of the original PDE method required by the inclusion of exact static exchange are indicated; and the results of computations for e-N2 scattering in the fixed-nuclei approximation are presented in tables and graphs and compared with previous calculations and experimental data. Better agreement is obtained using the modified PDE method.
Alam, Md Nur; Akbar, M Ali
2013-01-01
The new approach of the generalized (G'/G)-expansion method is an effective and powerful mathematical tool in finding exact traveling wave solutions of nonlinear evolution equations (NLEEs) in science, engineering and mathematical physics. In this article, the new approach of the generalized (G'/G)-expansion method is applied to construct traveling wave solutions of the Kadomtsev-Petviashvili-Benjamin-Bona-Mahony (KP-BBM) equation. The solutions are expressed in terms of the hyperbolic functions, the trigonometric functions and the rational functions. By means of this scheme, we found some new traveling wave solutions of the above mentioned equation.
NASA Astrophysics Data System (ADS)
Mori, Koichi
2010-12-01
Exact solutions to special cases of the general Riemann problem, in which two nonuniform and nonstationary flows are initially separated by a discontinuity at the origin, are proposed. By describing the evolution of flows using a family of the group-invariant solutions derived by Ovsiannikov [Dokl. Akad. Nauk S.S.S.R. 111, 439 (1958)] the flows ahead of and behind a shock wave accelerated at a constant rate are formulated analytically. Transition relations across a contact discontinuity and a characteristic wave in a nonuniform and nonstationary flow are formulated as well. The entire flow field is solved by combining these waves.
The N/D method with non-perturbative left-hand-cut discontinuity and the S10NN partial wave
NASA Astrophysics Data System (ADS)
Entem, D. R.; Oller, J. A.
2017-10-01
In this letter we introduce an integral equation that allows to calculate the exact left-hand-cut discontinuity for an uncoupled S-wave partial-wave amplitude in potential scattering for a given finite-range potential. In particular this is applied here to the S10 nucleon-nucleon (NN) partial wave. The calculation of Δ (A) is completely fixed by the potential because short-range physics (corresponding to integrated out degrees of freedom within the low-energy Effective Field Theory) does not contribute to Δ (A). The results obtained from the N / D method for a partial-wave amplitude are rigorous, since now the discontinuities along the left-hand cut and right-hand cut are exactly known. This solves in this case the open question with respect to the N / D method and the effect on the final result of the non-perturbative iterative diagrams in the evaluation of Δ (A). The solution of this problem also implies the equivalence of the N / D method and the Lippmann-Schwinger (LS) equation for the nonsingular one-pion exchange S10NN potential (Yukawa potential). The equivalence between the N / D method with one extra subtraction and the LS equation renormalized with one counterterm or with subtractive renormalization also holds for the singular attractive S10NN potentials calculated by including higher orders in Chiral Perturbation Theory (ChPT). However, the N / D method is more flexible and, rather straightforwardly, it allows to evaluate partial-wave amplitudes with a higher number of extra subtractions, that we fix in terms of shape parameters within the effective range expansion. We give results up to three extra subtractions in the N / D method, which provide a rather accurate reproduction of the S10NN phase shifts when the NNLO ChPT potential is employed. Our new method then provides a general theory to renormalize non-perturbatively singular and regular potentials in scattering that can be extended to higher partial waves as well as to coupled channel scattering.
Zubarev, Nikolay M; Zubareva, Olga V
2010-10-01
Nonlinear waves on sheets of dielectric liquid in the presence of an external tangential electric field are studied theoretically. It is shown that waves of arbitrary shape in three-dimensional geometry can propagate along (or against) the electric field direction without distortion, i.e., the equations of motion admit a wide class of exact traveling wave solutions. This unusual situation occurs for nonconducting ideal liquids with high dielectric constants in the case of a sufficiently strong field strength. Governing equations for evolution of plane symmetric waves on fluid sheets are derived using conformal variables. A dispersion relation for the evolution of small perturbations of the traveling wave solutions is obtained. It follows from this relation that, regardless of the wave shape, the amplitudes of small-scale perturbations do not increase with time and, hence, the traveling waves are stable. We also study the interaction of counterpropagating symmetric waves with small but finite amplitudes. The corresponding solution of the equations of motion describes the nonlinear superposition of the oppositely directed waves. The results obtained are applicable for the description of long waves on fluid sheets in a horizontal magnetic field.
Extension of the Temkin-Poet model to L>0 partial waves: The generalized exchange approximation
NASA Astrophysics Data System (ADS)
Temkin, A.; Shertzer, J.; Bhatia, A. K.
1998-02-01
The Temkin-Poet (TP) model of electron-hydrogen scattering is here generalized to L>0 partial waves in such a way as to be a clear generalization of the exchange approximation (EA). This generalized exchange approximation (GEA) leads to a pair of coupled partial differential equations (PDE's). Boundary conditions are formulated, and the PDE's are solved by a finite element method program adapted from a previous partial wave calculation of the full problem [Shertzer and Botero, Phys. Rev. A 49, 3673 (1994)]. Calculations are carried out for 1,3P and 1,3D partial waves in the elastic region. Phase shifts are bounded from below, as is rigorously required, by exchange approximate phase shifts. But the GEA can yield resonances: in the elastic region, in addition to the 1S resonance of the TP model, there is a 3P resonance whose position and width are in close proximity to the lowest 3P resonance of the full theory. The GEA distinguishes between singlet and triplet scattering for all L, and it contains inelastic and ionization channels in the appropriate energy regions. It is expected that the GEA will have its greatest utility in the ionization domain, as a nontrivial test of the many recent methods being developed.
NASA Astrophysics Data System (ADS)
Pradhan, O.; Matsushima, J.; Suzuki, M.
2012-12-01
Methane hydrate bearing sediment possesses unique seismic wave propagation properties. Both high seismic wave velocity and high wave attenuation are observed in methane hydrate bearing sediment. We used brine with salinity 2% in analogous to methane hydrate for conducting laboratory waveform measurement and characterization by using nuclear magnetic resonance (NMR) and magnetic resonance imaging (MRI) technique. When brine undergoes freezing, only pure water freezes into ice and salt remains in solution with successively increasing salinity and decreasing freezing point of the solution. Unfrozen brine is enclosed inside micro pores in ice, with exhibiting solid-liquid coexisting system. We used conventional pulse transmission technique to measure compressional wave velocity in partially frozen brine when brine is subjected cooling down to -12oC. Waveform measurement shows sudden increase in compressional wave velocity at temperature -3oC. Below -3oC, velocity increases slightly. Largest wave attenuation is observed at around -3oC. We conducted MRI experiment by using instrument Varian Unity Inova 4.7T. T1 weighted and diffusion weighted (DW) MR images were prepared by applying magnetic field gradient of 0.3 gauss/cm. We observe the spatial distribution of pores, microstructures and heterogeneity in partially frozen brine sample slices. Two dimensional apparent diffusion coefficient (ADC) maps are prepared from DW images with b-values 0 and 81 s/mm2 respectively. We estimate porosity quantitatively from each MR slices at temperature -3, -5, -7 and -12oC by using image analysis technique. Gassmann equation is applied to calculate compressional wave velocity from the porosity data and compared with the measured velocity obtained by waveform analysis technique. The NMR results show the existence of high and low mobility unfrozen brine in the pore space. MR imaging shows the heterogeneously distributed porosity values within a single slice with low porosity and high
PARTIAL REFLECTION AND TRAPPING OF A FAST-MODE WAVE IN SOLAR CORONAL ARCADE LOOPS
Kumar, Pankaj; Innes, D. E.
2015-04-20
We report on the first direct observation of a fast-mode wave propagating along and perpendicular to cool (171 Å) arcade loops observed by the Solar Dynamics Observatory/Atmospheric Imaging Assembly (AIA). The wave was associated with an impulsive/compact flare near the edge of a sunspot. The EUV wavefront expanded radially outward from the flare center and decelerated in the corona from 1060 to 760 km s{sup −1} within ∼3–4 minutes. Part of the EUV wave propagated along a large-scale arcade of cool loops and was partially reflected back to the flare site. The phase speed of the wave was about 1450 km s{sup −1}, which is interpreted as a fast-mode wave. A second overlying loop arcade, orientated perpendicular to the cool arcade, is heated and becomes visible in the AIA hot channels. These hot loops sway in time with the EUV wave, as it propagated to and fro along the lower loop arcade. We suggest that an impulsive energy release at one of the footpoints of the arcade loops causes the onset of an EUV shock wave that propagates along and perpendicular to the magnetic field.
1987-08-01
solution of the Korteweg-de Vries equation ( KdV ), working our way up to the derivation of the multi-soliton solution of the sine-Gordon equation (sG...SOLITARY WAVE SOLUTIONS OF NONLINEAR PARTIAL DIFFERENTIAL EQUATIONS j DiS~~Uj~l. _’UDistribution/Willy Hereman AvaiiLi -itY Codes Technical Summary Report...Key Words: soliton theory, solitary waves, coupled KdV , evolution equations , direct methods, Harry Dym, sine-Gordon Mathematics Department, University
Raman rogue waves in a partially mode-locked fiber laser.
Runge, Antoine F J; Aguergaray, Claude; Broderick, Neil G R; Erkintalo, Miro
2014-01-15
We report on an experimental study of spectral fluctuations induced by intracavity Raman conversion in a passively partially mode-locked, all-normal dispersion fiber laser. Specifically, we use dispersive Fourier transformation to measure single-shot spectra of Raman-induced noise-like pulses, demonstrating that for low cavity gain values Raman emission is sporadic and follows rogue-wave-like probability distributions, while a saturated regime with Gaussian statistics is obtained for high pump powers. Our experiments further reveal intracavity rogue waves originating from cascaded Raman dynamics.
Lang, Erhard W; Kasprowicz, Magdalena; Smielewski, Peter; Pickard, John; Czosnyka, Marek
2015-08-01
Plateau waves in intracranial pressure (ICP) are frequently recorded in neuro intensive care and are not yet fully understood. To further investigate this phenomenon, we analyzed partial pressure of cerebral oxygen (pbtO2) and a moving correlation coefficient between ICP and mean arterial blood pressure (ABP), called PRx, along with the cerebral oxygen reactivity index (ORx), which is a moving correlation coefficient between cerebral perfusion pressure (CPP) and pbtO2 in an observational study. We analyzed 55 plateau waves in 20 patients after severe traumatic brain injury. We calculated ABP, ABP pulse amplitude (ampABP), ICP, CPP, pbtO2, heart rate (HR), ICP pulse amplitude (ampICP), PRx, and ORx, before, during, and after each plateau wave. The analysis of variance with Bonferroni post hoc test was used to compare the differences in the variables before, during, and after the plateau wave. We considered all plateau waves, even in the same patient, independent because they are separated by long intervals. We found increases for ICP and ampICP according to our operational definitions for plateau waves. PRx increased significantly (p = 0.00026), CPP (p < 0.00001) and pbtO2 (p = 0.00007) decreased significantly during the plateau waves. ABP, ampABP, and HR remained unchanged. PRx during the plateau was higher than before the onset of wave in 40 cases (73 %) with no differences in baseline parameters for those with negative and positive ΔPRx (difference during and after). ORx showed an increase during and a decrease after the plateau waves, however, not statistically significant. PbtO2 overshoot after the wave occurred in 35 times (64 %), the mean difference was 4.9 ± 4.6 Hg (mean ± SD), and we found no difference in baseline parameters between those who overshoot and those who did not overshoot. Arterial blood pressure remains stable in ICP plateau waves, while cerebral autoregulatory indices show distinct changes, which indicate cerebrovascular
Calculation of the Full Scattering Amplitude without Partial Wave Decomposition II
NASA Technical Reports Server (NTRS)
Shertzer, J.; Temkin, A.
2003-01-01
As is well known, the full scattering amplitude can be expressed as an integral involving the complete scattering wave function. We have shown that the integral can be simplified and used in a practical way. Initial application to electron-hydrogen scattering without exchange was highly successful. The Schrodinger equation (SE) can be reduced to a 2d partial differential equation (pde), and was solved using the finite element method. We have now included exchange by solving the resultant SE, in the static exchange approximation. The resultant equation can be reduced to a pair of coupled pde's, to which the finite element method can still be applied. The resultant scattering amplitudes, both singlet and triplet, as a function of angle can be calculated for various energies. The results are in excellent agreement with converged partial wave results.
NASA Technical Reports Server (NTRS)
Shertzer, Janine; Temkin, A.
2003-01-01
As is well known, the full scattering amplitude can be expressed as an integral involving the complete scattering wave function. We have shown that the integral can be simplified and used in a practical way. Initial application to electron-hydrogen scattering without exchange was highly successful. The Schrodinger equation (SE), which can be reduced to a 2d partial differential equation (pde), was solved using the finite element method. We have now included exchange by solving the resultant SE, in the static exchange approximation, which is reducible to a pair of coupled pde's. The resultant scattering amplitudes, both singlet and triplet, calculated as a function of energy are in excellent agreement with converged partial wave results.
Space-time analogy for partially coherent plane-wave-type pulses.
Lancis, Jesús; Torres-Company, Víctor; Silvestre, Enrique; Andrés, Pedro
2005-11-15
In this Letter we extend the well-known space-time duality to partially coherent wave fields and, as a limit case, to incoherent sources. We show that there is a general analogy between the paraxial diffraction of quasi-monochromatic beams of limited spatial coherence and the temporal distortion of partially coherent plane-wave pulses in parabolic dispersive media. Next, coherence-dependent effects in the propagation of Gaussian Schell-model pulses are retrieved from that of their spatial counterpart, the Gaussian Schell-model beam. Finally, the last result allows us to present a source linewidth analysis in an optical fiber communication system operating around the 1.55 microm wavelength window.
NASA Technical Reports Server (NTRS)
Shertzer, Janine; Temkin, A.
2003-01-01
As is well known, the full scattering amplitude can be expressed as an integral involving the complete scattering wave function. We have shown that the integral can be simplified and used in a practical way. Initial application to electron-hydrogen scattering without exchange was highly successful. The Schrodinger equation (SE), which can be reduced to a 2d partial differential equation (pde), was solved using the finite element method. We have now included exchange by solving the resultant SE, in the static exchange approximation, which is reducible to a pair of coupled pde's. The resultant scattering amplitudes, both singlet and triplet, calculated as a function of energy are in excellent agreement with converged partial wave results.
Calculation of the Full Scattering Amplitude without Partial Wave Decomposition II
NASA Technical Reports Server (NTRS)
Shertzer, J.; Temkin, A.
2003-01-01
As is well known, the full scattering amplitude can be expressed as an integral involving the complete scattering wave function. We have shown that the integral can be simplified and used in a practical way. Initial application to electron-hydrogen scattering without exchange was highly successful. The Schrodinger equation (SE) can be reduced to a 2d partial differential equation (pde), and was solved using the finite element method. We have now included exchange by solving the resultant SE, in the static exchange approximation. The resultant equation can be reduced to a pair of coupled pde's, to which the finite element method can still be applied. The resultant scattering amplitudes, both singlet and triplet, as a function of angle can be calculated for various energies. The results are in excellent agreement with converged partial wave results.
NASA Technical Reports Server (NTRS)
Hayes, E. F.; Kouri, D. J.
1971-01-01
Coupled integral equations are derived for the full scattering amplitudes for both reactive and nonreactive channels. The equations do not involve any partial wave expansion and are obtained using channel operators for reactive and nonreactive collisions. These coupled integral equations are similar in nature to equations derived for purely nonreactive collisions of structureless particles. Using numerical quadrature techniques, these equations may be reduced to simultaneous algebraic equations which may then be solved.
A Rosetta Stone Relating Conventions In Photo-Meson Partial Wave Analyses
A.M. Sandorfi, B. Dey, A. Sarantsev, L. Tiator, R. Workman
2012-04-01
A new generation of complete experiments in pseudoscalar meson photo-production is being pursued at several laboratories. While new data are emerging, there is some confusion regarding definitions of asymmetries and the conventions used in partial wave analyses (PWA). We present expressions for constructing asymmetries as coordinate-system independent ratios of cross sections, along with the names used for these ratios by different PWA groups.
NASA Technical Reports Server (NTRS)
Hayes, E. F.; Kouri, D. J.
1971-01-01
Coupled integral equations are derived for the full scattering amplitudes for both reactive and nonreactive channels. The equations do not involve any partial wave expansion and are obtained using channel operators for reactive and nonreactive collisions. These coupled integral equations are similar in nature to equations derived for purely nonreactive collisions of structureless particles. Using numerical quadrature techniques, these equations may be reduced to simultaneous algebraic equations which may then be solved.
A Rosetta Stone relating conventions in photo-meson partial wave analyses
NASA Astrophysics Data System (ADS)
Sandorfi, A. M.; Dey, B.; Sarantsev, A.; Tiator, L.; Workman, R.
2012-04-01
A new generation of complete experiments in pseudoscalar meson photo-production is being pursued at several laboratories. While new data are emerging, there is some confusion regarding definitions of asymmetries and the conventions used in partial wave analyses (PWA). We present expressions for constructing asymmetries as coordinate-system independent ratios of cross sections, along with the names used for these ratios by different PWA groups.
NASA Astrophysics Data System (ADS)
Seadawy, Aly R.; Arshad, M.; Lu, Dianchen
2017-04-01
In this article, our aim is to further extend the applications of modified extended direct algebraic method on new coupled systems, which have many important applications in mathematical physics. many exact solutions out of which some are new in different forms such as soliton, solitary wave, periodic, elliptic function solutions of new coupled KdV and new coupled Zakharov-Kuznetsov (ZK) systems are constructed by employing this method. The constructed exact solutions are also presented graphically. The modulation instability is utilized to discuss the stability of obtained solutions. All solutions are stable and exact solutions. The obtained results show that the modified extended method is general and effective. Furthermore, many other new coupled systems arising in mathematical physics can also be solved by this powerful and effective method.
Plateau Waves of Intracranial Pressure and Partial Pressure of Cerebral Oxygen.
Lang, Erhard W; Kasprowicz, Magdalena; Smielewski, Peter; Pickard, John; Czosnyka, Marek
2016-01-01
This study investigates 55 intracranial pressure (ICP) plateau waves recorded in 20 patients after severe traumatic brain injury (TBI) with a focus on a moving correlation coefficient between mean arterial pressure (ABP) and ICP, called PRx, which serves as a marker of cerebrovascular reactivity, and a moving correlation coefficient between ABP and cerebral partial pressure of oxygen (pbtO2), called ORx, which serves as a marker for cerebral oxygen reactivity. ICP and ICPamplitude increased significantly during the plateau waves, whereas CPP and pbtO2 decreased significantly. ABP, ABP amplitude, and heart rate remained unchanged. In 73 % of plateau waves PRx increased during the wave. ORx showed an increase during and a decrease after the plateau waves, which was not statistically significant. Our data show profound cerebral vasoparalysis on top of the wave and, to a lesser extent, impairment of cerebral oxygen reactivity. The different behavior of the indices may be due to the different latencies of the cerebral blood flow and oxygen level control mechanisms. While cerebrovascular reactivity is a rapidly reacting mechanism, cerebral oxygen reactivity is slower.
NASA Astrophysics Data System (ADS)
Gabovich, Alexander M.; Li, Mai Suan; Szymczak, Henryk; Voitenko, Alexander I.
2015-08-01
Quasiparticle tunnel current either between identical d -wave superconductors partially gapped by charge density waves (SCDWs) or between an SCDW and a normal metal was calculated. The cases of unidirectional and checkerboard CDWs were considered. The tunnel conductance was found in both cases to possess a number of peculiarities, which cannot be described by introducing a single combined gap. The results are in qualitative agreement with experimental data obtained for a number of cuprates by the scanning tunnel spectroscopy, intrinsic-tunneling, and break-junction measurements. The difference between the experiment and the theory seems to stem from the spread of gap values occurring due to the intrinsic spatial inhomogeneity of nonstoichiometric oxides and reflected in the cuprate tunnel spectra.
Ebrahimi, V.; Esfandyari-Kalejahi, A.
2014-09-15
In this paper, first we represent the differences between spatial and temporal dispersions and their dependence on the measurement techniques for electrostatic waves in unmagnetized collisionless plasma. Then, three different experimental data are compared to the solutions of exact nonextensive dispersion relations for electron-ion and pair plasma. The results confirm the existence of new acoustic plasma waves. Furthermore, these comparisons yield a Maxwellian and a nonextensive plasma with nonextensive parameter q larger than one, and a Maxwellian plasma with some abnormal dispersion properties.
NASA Astrophysics Data System (ADS)
Marston, Philip L.; Zhang, Likun
2016-11-01
When evaluating radiation forces on spheres in soundfields (with or without orbital-angular momentum) the interpretation of analytical results is greatly simplified by retaining the use of s-function notation for partial-wave coefficients imported into acoustics from quantum scattering theory in the 1970s. This facilitates easy interpretation of various efficiency factors. For situations in which dissipation is negligible, each partial-wave s-function becomes characterized by a single parameter: a phase shift allowing for all possible situations. These phase shifts are associated with scattering by plane traveling waves and the incident wavefield of interest is separately parameterized. (When considering outcomes, the method of fabricating symmetric objects having a desirable set of phase shifts becomes a separate issue.) The existence of negative radiation force "islands" for beams reported in 2006 by Marston is manifested. This approach and consideration of conservation theorems illustrate the unphysical nature of various claims made by other researchers. This approach is also directly relevant to objects in standing waves. Supported by ONR.
HEATING OF THE PARTIALLY IONIZED SOLAR CHROMOSPHERE BY WAVES IN MAGNETIC STRUCTURES
Shelyag, S.; Przybylski, D.; Khomenko, E.; Vicente, A. de
2016-03-01
In this paper, we show a “proof of concept” of the heating mechanism of the solar chromosphere due to wave dissipation caused by the effects of partial ionization. Numerical modeling of non-linear wave propagation in a magnetic flux tube, embedded in the solar atmosphere, is performed by solving a system of single-fluid quasi-MHD equations, which take into account the ambipolar term from the generalized Ohm’s law. It is shown that perturbations caused by magnetic waves can be effectively dissipated due to ambipolar diffusion. The energy input by this mechanism is continuous and shown to be more efficient than dissipation of static currents, ultimately leading to chromospheric temperature increase in magnetic structures.
Heating of the Partially Ionized Solar Chromosphere by Waves in Magnetic Structures
NASA Astrophysics Data System (ADS)
Shelyag, S.; Khomenko, E.; de Vicente, A.; Przybylski, D.
2016-03-01
In this paper, we show a “proof of concept” of the heating mechanism of the solar chromosphere due to wave dissipation caused by the effects of partial ionization. Numerical modeling of non-linear wave propagation in a magnetic flux tube, embedded in the solar atmosphere, is performed by solving a system of single-fluid quasi-MHD equations, which take into account the ambipolar term from the generalized Ohm’s law. It is shown that perturbations caused by magnetic waves can be effectively dissipated due to ambipolar diffusion. The energy input by this mechanism is continuous and shown to be more efficient than dissipation of static currents, ultimately leading to chromospheric temperature increase in magnetic structures.
RESONANTLY DAMPED KINK MAGNETOHYDRODYNAMIC WAVES IN A PARTIALLY IONIZED FILAMENT THREAD
Soler, R.; Oliver, R.; Ballester, J. L. E-mail: ramon.oliver@uib.e
2009-12-10
Transverse oscillations of solar filament and prominence threads have been frequently reported. These oscillations have the common features of being of short period (2-10 minutes) and being damped after a few periods. The observations are interpreted as kink magnetohydrodynamic (MHD) wave modes, whereas resonant absorption in the Alfven continuum and ion-neutral collisions are candidates to be the damping mechanisms. Here, we study both analytically and numerically the time damping of kink MHD waves in a cylindrical, partially ionized filament thread embedded in a coronal environment. The thread model is composed of a straight and thin, homogeneous filament plasma, with a transverse inhomogeneous transitional layer where the plasma physical properties vary continuously from filament to coronal conditions. The magnetic field is homogeneous and parallel to the thread axis. We find that the kink mode is efficiently damped by resonant absorption for typical wavelengths of filament oscillations, the damping times being compatible with the observations. Partial ionization does not affect the process of resonant absorption, and the filament plasma ionization degree is only important for the damping for wavelengths much shorter than those observed. To our knowledge, this is the first time that the phenomenon of resonant absorption is studied in a partially ionized plasma.
Investigation of guided wave propagation in pipes fully and partially embedded in concrete.
Leinov, Eli; Lowe, Michael J S; Cawley, Peter
2016-12-01
The application of long-range guided-wave testing to pipes embedded in concrete results in unpredictable test-ranges. The influence of the circumferential extent of the embedding-concrete around a steel pipe on the guided wave propagation is investigated. An analytical model is used to study the axisymmetric fully embedded pipe case, while explicit finite-element and semi-analytical finite-element simulations are utilised to investigate a partially embedded pipe. Model predictions and simulations are compared with full-scale guided-wave tests. The transmission-loss of the T(0,1)-mode in an 8 in. steel pipe fully embedded over an axial length of 0.4 m is found to be in the range of 32-36 dB while it reduces by a factor of 5 when only 50% of the circumference is embedded. The transmission-loss in a fully embedded pipe is mainly due to attenuation in the embedded section while in a partially embedded pipe it depend strongly on the extent of mode-conversion at entry to the embedded-section; low loss modes with energy concentrated in the region of the circumference not-covered with concrete have been identified. The results show that in a fully embedded pipe, inspection beyond a short distance will not be possible, whereas when the concrete is debonded over a fraction of the pipe circumference, inspection of substantially longer lengths may be possible.
Plante, David T.; Goldstein, Michael R.; Cook, Jesse D.; Smith, Richard; Riedner, Brady A.; Rumble, Meredith E.; Jelenchick, Lauren; Roth, Andrea; Tononi, Giulio; Benca, Ruth M.; Peterson, Michael J.
2015-01-01
Objective Changes in slow waves during non-rapid eye movement (NREM) sleep in response to acute total sleep deprivation are well-established measures of sleep homeostasis. This investigation utilized high-density electroencephalography (hdEEG) to examine topographic changes in slow waves during repeated partial sleep deprivation. Methods Twenty-four participants underwent a 6-day sleep restriction protocol. Spectral and period-amplitude analyses of sleep hdEEG data were used to examine changes in slow wave energy, count, amplitude, and slope relative to baseline. Results Changes in slow wave energy were dependent on the quantity of NREM sleep utilized for analysis, with widespread increases during sleep restriction and recovery when comparing data from the first portion of the sleep period, but restricted to recovery sleep if the entire sleep episode was considered. Period-amplitude analysis was less dependent on the quantity of NREM sleep utilized, and demonstrated topographic changes in the count, amplitude, and distribution of slow waves, with frontal increases in slow wave amplitude, numbers of high-amplitude waves, and amplitude/slopes of low amplitude waves resulting from partial sleep deprivation. Conclusions Topographic changes in slow waves occur across the course of partial sleep restriction and recovery. Significance These results demonstrate a homeostatic response to partial sleep loss in humans. PMID:26596212
Plante, David T; Goldstein, Michael R; Cook, Jesse D; Smith, Richard; Riedner, Brady A; Rumble, Meredith E; Jelenchick, Lauren; Roth, Andrea; Tononi, Giulio; Benca, Ruth M; Peterson, Michael J
2016-02-01
Changes in slow waves during non-rapid eye movement (NREM) sleep in response to acute total sleep deprivation are well-established measures of sleep homeostasis. This investigation utilized high-density electroencephalography (hdEEG) to examine topographic changes in slow waves during repeated partial sleep deprivation. Twenty-four participants underwent a 6-day sleep restriction protocol. Spectral and period-amplitude analyses of sleep hdEEG data were used to examine changes in slow wave energy, count, amplitude, and slope relative to baseline. Changes in slow wave energy were dependent on the quantity of NREM sleep utilized for analysis, with widespread increases during sleep restriction and recovery when comparing data from the first portion of the sleep period, but restricted to recovery sleep if the entire sleep episode was considered. Period-amplitude analysis was less dependent on the quantity of NREM sleep utilized, and demonstrated topographic changes in the count, amplitude, and distribution of slow waves, with frontal increases in slow wave amplitude, numbers of high-amplitude waves, and amplitude/slopes of low amplitude waves resulting from partial sleep deprivation. Topographic changes in slow waves occur across the course of partial sleep restriction and recovery. These results demonstrate a homeostatic response to partial sleep loss in humans. Copyright © 2015 International Federation of Clinical Neurophysiology. Published by Elsevier Ireland Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Akhmediev, Nail; Ankiewicz, Adrian
2011-04-01
We study modulation instability (MI) of the discrete constant-background wave of the Ablowitz-Ladik (A-L) equation. We derive exact solutions of the A-L equation which are nonlinear continuations of MI at longer times. These periodic solutions comprise a family of two-parameter solutions with an arbitrary background field and a frequency of initial perturbation. The solutions are recurrent, since they return the field state to the original constant background solution after the process of nonlinear evolution has passed. These solutions can be considered as a complete resolution of the Fermi-Pasta-Ulam paradox for the A-L system. One remarkable consequence of the recurrent evolution is the nonlinear phase shift gained by the constant background wave after the process. A particular case of this family is the rational solution of the first-order or fundamental rogue wave.
Akhmediev, Nail; Ankiewicz, Adrian
2011-04-01
We study modulation instability (MI) of the discrete constant-background wave of the Ablowitz-Ladik (A-L) equation. We derive exact solutions of the A-L equation which are nonlinear continuations of MI at longer times. These periodic solutions comprise a family of two-parameter solutions with an arbitrary background field and a frequency of initial perturbation. The solutions are recurrent, since they return the field state to the original constant background solution after the process of nonlinear evolution has passed. These solutions can be considered as a complete resolution of the Fermi-Pasta-Ulam paradox for the A-L system. One remarkable consequence of the recurrent evolution is the nonlinear phase shift gained by the constant background wave after the process. A particular case of this family is the rational solution of the first-order or fundamental rogue wave.
NASA Astrophysics Data System (ADS)
Santucci, F.; Santini, P. M.
2016-10-01
We study the generalization of the dispersionless Kadomtsev-Petviashvili (dKP) equation in n+1 dimensions and with nonlinearity of degree m+1, a model equation describing the propagation of weakly nonlinear, quasi one-dimensional waves in the absence of dispersion and dissipation, and arising in several physical contexts, like acoustics, plasma physics, hydrodynamics and nonlinear optics. In 2 + 1 dimensions and with quadratic nonlinearity, this equation is integrable through a novel inverse scattering transform, and it has been recently shown to be a prototype model equation in the description of the two-dimensional wave breaking of localized initial data. In higher dimensions and with higher nonlinearity, the generalized dKP equations are not integrable, but their invariance under motions on the paraboloid allows one to construct in this paper a family of exact solutions describing waves constant on their paraboloidal wave front and breaking simultaneously in all points of it, developing after breaking either multivaluedness or single-valued discontinuous profiles (shocks). Then such exact solutions are used to build the longtime behavior of the solutions of the Cauchy problem, for small and localized initial data, showing that wave breaking of small initial data takes place in the longtime regime if and only if m(n-1)≤slant 2. Lastly, the analytic aspects of such wave breaking are investigated in detail in terms of the small initial data, in both cases in which the solution becomes multivalued after breaking or it develops a shock. These results, contained in the 2012 master’s thesis of one of the authors (FS) [1], generalize those obtained in [2] for the dKP equation in n+1 dimensions with quadratic nonlinearity, and are obtained following the same strategy.
Compact representations of partially coherent undulator radiation suitable for wave propagation
Lindberg, Ryan R.; Kim, Kwang -Je
2015-09-28
Undulator radiation is partially coherent in the transverse plane, with the degree of coherence depending on the ratio of the electron beam phase space area (emittance) to the characteristic radiation wavelength λ. Numerical codes used to predict x-ray beam line performance can typically only propagate coherent fields from the source to the image plane. We investigate methods for representing partially coherent undulator radiation using a suitably chosen set of coherent fields that can be used in standard wave propagation codes, and discuss such “coherent mode expansions” for arbitrary degrees of coherence. In the limit when the electron beam emittance alongmore » at least one direction is much larger than λ the coherent modes are orthogonal and therefore compact; when the emittance approaches λ in both planes we discuss an economical method of defining the relevant coherent fields that samples the electron beam phase space using low-discrepancy sequences.« less
Partial wave analysis of 3 π with pion and photon beams
NASA Astrophysics Data System (ADS)
Jackura, Andrew; Mikhasenko, Mikhail; Szczepaniak, Adam; Ketzer, Bernhard; Joint Physics Analysis Center Collaboration
2016-09-01
We present some results on the analysis of 3 π resonances from peripheral scattering of pions off of nuclear targets. The analysis is motivated by the recent release of the largest data set on diffractively produced three pions by the COMPASS collaboration. The model emphasizes the 3 π production process and their final state interactions which satisfy S-matrix principles. We apply our model to fit partial wave intensities and relative phases from COMPASS in the JPC =2-+ sector and search for resonances. We then discuss the extension of our formalism to photon beams to be used in the GlueX experiment.
Nucleon-nucleon scattering in the 1S0 partial wave in the modified Weinberg approach
NASA Astrophysics Data System (ADS)
Gasparyan, A. M.; Epelbaum, E.; Gegelia, J.; Krebs, H.
2016-03-01
Nucleon-nucleon scattering in the 1S0 partial wave is considered in chiral effective field theory within the recently suggested renormalizable formulation based on the Kadyshevsky equation. Contact interactions are taken into account beyond the leading-order approximation. The subleading contact terms are included non-perturbatively by means of subtractive renormalization. The dependence of the phase shifts on the choice of the renormalization condition is discussed. Perturbative inclusion of the subleading contact interaction is found to be justified only very close to threshold. The low-energy theorems are reproduced significantly better compared with the leading order results.
Highly directive Fabry-Perot leaky-wave nanoantennas based on optical partially reflective surfaces
Lorente-Crespo, M.; Mateo-Segura, C.
2015-05-04
Nanoantennas enhance the conversion between highly localized electromagnetic fields and far-field radiation. Here, we investigate the response of a nano-patch partially reflective surface backed with a silver mirror to an optical source embedded at the centre of the structure. Using full wave simulations, we demonstrate a two orders of magnitude increased directivity compared to the isotropic radiator, 50% power confinement to a 13.8° width beam and a ±16 nm bandwidth. Our antenna does not rely on plasmonic phenomena thus reducing non-radiative losses and conserving source coherence.
Evaporative cooling of metastable helium in the multi-partial-wave regime
Nguyen, Scott V.; Doret, S. Charles; Connolly, Colin B.; Michniak, Robert A.; Doyle, John M.; Ketterle, Wolfgang
2005-12-15
Metastable helium is buffer gas cooled, magnetically trapped, and evaporatively cooled in large numbers. 10{sup 11} {sup 4}He{sup *} atoms are trapped at an initial temperature of 400 mK and evaporatively cooled into the ultracold regime, resulting in a cloud of 2{+-}0.5x10{sup 9} atoms at 1.4{+-}0.2 mK. Efficient evaporation indicates low collisional loss for {sup 4}He{sup *} in both the ultracold and multi-partial-wave regime, in agreement with theory.
NASA Astrophysics Data System (ADS)
Xiao, Xifeng
One of the main drawbacks that prevent the extensive application of free space laser communications is the atmospheric turbulence through which the beam must propagate. For the past four decades, much attention has been devoted to finding different methods to overcome this difficulty. A partially coherent beam (PCB) has been recognized as an effective approach to improve the performance of an atmospheric link. It has been examined carefully with most analyses considering the Gaussian Schell-model (GSM) beam. However, practical PCBs may not follow GSM theory and are better examined through some numerical simulation approach such as a wave optics simulation. Consequently, an approach for modeling the spatially PCB in wave optics simulation is presented here. The approach involves the application of a sequence of random phase screens to an initial beam field and the summation of the intensity results after propagation. The relationship between the screen parameters and the spatial coherence function for the beam is developed and the approach is verified by comparing results with analytic formulations for a Gaussian Schell-model (GSM) beam. A variety of simulation studies were performed for this dissertation. The propagation through turbulence of a coherent beam and a particular version of a PCB, a pseudo-partially coherent beam (PPCB), is analyzed. The beam is created with a sequence of several Gaussian random phase screens for each atmospheric realization. The average intensity profiles, the scintillation index and aperture averaging factor for a horizontal propagation scenario are examined. Comparisons between these results and their corresponding analytic results for the well-known GSM beam are also made. Cumulative probability density functions for the received irradiance are initially investigated. Following the general simulation investigations, a performance metric is proposed as a general measure for optimizing the transverse coherence length of a partial
Mitri, F
2014-12-01
Stemming from the Rayleigh-Sommerfeld surface integral, the addition theorems for the spherical wave and Legendre functions, and a weighting function describing the behavior of the radial component vp1 of the normal velocity at the surface of a finite circular radiating source, partial-wave series expansions are derived for the incident field of acoustic spiraling (vortex) beams in a spherical coordinate system centered on the axis of wave propagation. Examples for vortex beams, comprising ρ-vortex, zeroth-order and higher order Bessel-Gauss and Bessel, truncated Neumann-Gauss and Hankel- Gauss, Laguerre-Gauss, and other Gaussian-type vortex beams are considered. The mathematical expressions are exact solutions of the Helmholtz equation. The results presented here are particularly useful to accurately evaluate analytically and compute numerically the acoustic scattering and other mechanical effects of finite vortex beams, such as the axial and 3-D acoustic radiation force and torque components on a sphere of any (isotropic, anisotropic, etc.) material (fluid, elastic, viscoelastic, etc.), either centered on the beam's axis of wave propagation, or placed off-axially. Numerical predictions allow optimal design of parameters in applications including but not limited to acoustical tweezers, acousto-fluidics, beamforming design, and imaging, to name a few.
NASA Astrophysics Data System (ADS)
Li, Jia; Wu, Pinghui; Chang, Liping
2016-02-01
Within the first-order Born approximation, the spectrum of light generated by the scattering of a partially coherent wave from a quasi-homogeneous (QH) medium is derived. In particular, the partially coherent incident wave is produced by Young's pinholes. It is shown that the spectrum of the scattered field is identical to the spectrum of incident plane waves if the Fourier transform of the normalized correlation coefficient (NCC) of the scattering potential satisfies a certain scaling law. The scaling law is valid when the medium size is sufficiently small compared with the space between Young' pinholes. Furthermore, comparisons are made between our conditions with the previous results.
SAID Partial Wave Analyses from CNS DAC (Center for Nuclear Studies Data Analysis Center)
George Washington University (GW) has one of the largest university-based nuclear-physics groups in the nation. Many of the current and future projects are geared to Thomas Jefferson National Accelerator Facility (JLab) at Newport News, VA. JLab is the world's premier electron accelerator for nuclear physics, and GW is one of the charter members of the governing body of JLab, the Southeastern Universities Research Association (SURA). The George Washington Data Analysis Center (DAC) was created in 1998 by an agreement among the Department of Energy, Jefferson Lab, and the GW Center for Nuclear Studies.The activities of the DAC fall into four distinct categories: 1) Performing partial-wave analyses of fundamental two- and three-body reactions; 2) Maintenance of databases associated with these reactions; 3) Development of software to disseminate DAC results (as well as the results of competing model-independent analyses and potential approaches); and 4) Phenomenological and theoretical investigations which bridge the gap between theory and experiment; in particular, the extraction of N* and D * hadronic and electromagnetic couplings. Partial Wave Analyses (and the associated databases) available at GW are: Pion-Nucleon, Kaon-Nucleon, Nucleon-Nucleon, Pion Photoproduction, Pion Electroproduction, Kaon Photoproduction, Eta Photoproduction, Eta-Prime Photoproduction, Pion-Deuteron (elastic), and Pion-Deuteron to Proton+Proton. [Taken from http://www.gwu.edu/~ndl/dac.htm">http://www.gwu.edu/~ndl/dac.htm
Two-nucleon higher partial-wave scattering from lattice QCD
NASA Astrophysics Data System (ADS)
Berkowitz, Evan; Kurth, Thorsten; Nicholson, Amy; Joó, Bálint; Rinaldi, Enrico; Strother, Mark; Vranas, Pavlos M.; Walker-Loud, André
2017-02-01
We present a determination of nucleon-nucleon scattering phase shifts for ℓ ≥ 0. The S, P, D and F phase shifts for both the spin-triplet and spin-singlet channels are computed with lattice Quantum ChromoDynamics. For ℓ > 0, this is the first lattice QCD calculation using the Lüscher finite-volume formalism. This required the design and implementation of novel lattice methods involving displaced sources and momentum-space cubic sinks. To demonstrate the utility of our approach, the calculations were performed in the SU (3)-flavor limit where the light quark masses have been tuned to the physical strange quark mass, corresponding to mπ =mK ≈ 800 MeV. In this work, we have assumed that only the lowest partial waves contribute to each channel, ignoring the unphysical partial wave mixing that arises within the finite-volume formalism. This assumption is only valid for sufficiently low energies; we present evidence that it holds for our study using two different channels. Two spatial volumes of V ≈(3.5 fm) 3 and V ≈(4.6 fm) 3 were used. The finite-volume spectrum is extracted from the exponential falloff of the correlation functions. Said spectrum is mapped onto the infinite volume phase shifts using the generalization of the Lüscher formalism for two-nucleon systems.
NASA Astrophysics Data System (ADS)
Liu, Jian-Guo; Du, Jian-Qiang; Zeng, Zhi-Fang; Ai, Guo-Ping
2016-10-01
The Korteweg-de Vries (KdV)-type models have been shown to describe many important physical situations such as fluid flows, plasma physics, and solid state physics. In this paper, a new (2 + 1)-dimensional KdV equation is discussed. Based on the Hirota's bilinear form and a generalized three-wave approach, we obtain new exact solutions for the new (2 + 1)-dimensional KdV equation. With the help of symbolic computation, the properties for some new solutions are presented with some figures.
Liu, Jian-Guo; Du, Jian-Qiang; Zeng, Zhi-Fang; Ai, Guo-Ping
2016-10-01
The Korteweg-de Vries (KdV)-type models have been shown to describe many important physical situations such as fluid flows, plasma physics, and solid state physics. In this paper, a new (2 + 1)-dimensional KdV equation is discussed. Based on the Hirota's bilinear form and a generalized three-wave approach, we obtain new exact solutions for the new (2 + 1)-dimensional KdV equation. With the help of symbolic computation, the properties for some new solutions are presented with some figures.
Bulanov, Sergei V; Esirkepov, Timur Zh; Kando, Masaki; Koga, James K; Bulanov, Stepan S
2011-11-01
When the parameters of electron-extreme power laser interaction enter the regime of dominated radiation reaction, the electron dynamics changes qualitatively. The adequate theoretical description of this regime becomes crucially important with the use of the radiation friction force either in the Lorentz-Abraham-Dirac form, which possesses unphysical runaway solutions, or in the Landau-Lifshitz form, which is a perturbation valid for relatively low electromagnetic wave amplitude. The goal of the present paper is to find the limits of the Landau-Lifshitz radiation force applicability in terms of the electromagnetic wave amplitude and frequency. For this, a class of the exact solutions to the nonlinear problems of charged particle motion in the time-varying electromagnetic field is used.
Two-fluid modeling of magnetosonic wave propagation in the partially ionized solar chromosphere
NASA Astrophysics Data System (ADS)
Maneva, Yana; Alvarez Laguna, Alejandro; Lani, Andrea; Poedts, Stefaan
2016-04-01
We perform 2D two-fluid simulations to study the effects of ion-neutral interactions on the propagation of magnetosonic waves in the partially ionized solar chromosphere, where the number density of neutrals significantly exceeds the number density of protons at low heights. Thus modeling the neutral-ion interactions and studying the effect of neutrals on the ambient plasma properties becomes important for better understanding the observed emission lines and the propagation of disturbances from the photosphere to the transition region and the corona. The role of charged particles (electrons and ions) is combined within resistive MHD approach with Coulomb collisions and anisotropic heat flux determined by Braginskii's transport coefficients. The electromagnetic fields are evolved according to the full Maxwell equations, allowing for propagation of higher frequency waves neglected by the standard MHD approximation. Separate mass, momentum and energy conservation equations are considered for the neutrals and the interaction between the different fluids is determined by the chemical reactions, such as impact ionization, radiative recombination and charge exchange, provided as additional source terms. To initialize the system we consider an ideal gas equation of state with equal initial temperatures for the electrons, ions and the neutrals and different density profiles. The initial temperature and density profiles are height-dependent and follow VAL C atmospheric model for the solar chromosphere. We have searched for a chemical and collisional equilibrium between the ions and the neutrals to minimize any unphysical outflows and artificial heating induced by initial pressure imbalances. Including different magnetic field profiles brings new source of plasma heating through Ohmic dissipation. The excitation and propagation of the magnetosonic waves depends on the type of the external velocity driver. As the waves propagate through the gravitationally stratified media
Wen, Xiao-Yong; Yan, Zhenya; Malomed, Boris A
2016-12-01
An integrable system of two-component nonlinear Ablowitz-Ladik equations is used to construct complex rogue-wave (RW) solutions in an explicit form. First, the modulational instability of continuous waves is studied in the system. Then, new higher-order discrete two-component RW solutions of the system are found by means of a newly derived discrete version of a generalized Darboux transformation. Finally, the perturbed evolution of these RW states is explored in terms of systematic simulations, which demonstrates that tightly and loosely bound RWs are, respectively, nearly stable and strongly unstable solutions.
NASA Astrophysics Data System (ADS)
Wen, Xiao-Yong; Yan, Zhenya; Malomed, Boris A.
2016-12-01
An integrable system of two-component nonlinear Ablowitz-Ladik equations is used to construct complex rogue-wave (RW) solutions in an explicit form. First, the modulational instability of continuous waves is studied in the system. Then, new higher-order discrete two-component RW solutions of the system are found by means of a newly derived discrete version of a generalized Darboux transformation. Finally, the perturbed evolution of these RW states is explored in terms of systematic simulations, which demonstrates that tightly and loosely bound RWs are, respectively, nearly stable and strongly unstable solutions.
NASA Astrophysics Data System (ADS)
Leonard, Stephen W.; Poisson, Eric
1998-08-01
The gravitational radiation originating from a compact binary system in circular orbit is usually expressed as an infinite sum over radiative multipole moments. In a slow-motion approximation, each multipole moment is expressed as a post-Newtonian expansion in powers of 0264-9381/15/8/002/img1, the ratio of the orbital velocity to the speed of light. The `bare multipole truncation' of the radiation consists in keeping only the leading-order (Newtonian) term in the post-Newtonian expansion of each moment, but summing over all the multipole moments. In the case of binary systems with small mass ratios, the bare multipole series was shown in a previous paper (Simone et al 1997 Class. Quantum Grav. 14 237) to converge for all values 0264-9381/15/8/002/img2, where e is the base of natural logarithms. (These include all physically relevant values for circular inspiral.) In this paper, we extend the analysis to a `partially bare multipole truncation' of the radiation, in which the leading-order moments are corrected with terms of relative order 0264-9381/15/8/002/img3 (first post-Newtonian, or 1PN, terms) and 0264-9381/15/8/002/img4 (1.5PN terms). We find that the partially bare multipole series also converges for all values 0264-9381/15/8/002/img2, and that it coincides (to within 1%) with the numerically `exact' results for 0264-9381/15/8/002/img6. Although this multipole series converges, it is an unphysical approximation, and the issue of the convergence of the true post-Newtonian series remains open. However, our analysis shows that an eventual failure of the true post-Newtonian series to converge cannot originate from summing over the Newtonian, 1PN and 1.5PN part of all the multipole moments.
Correlations of $\pi N$ partial waves for multireaction analyses
Doring, M.; Revier, J.; Ronchen, D.; Workman, R. L.
2016-06-15
In the search for missing baryonic resonances, many analyses include data from a variety of pion- and photon-induced reactions. For elastic πN scattering, however, usually the partial waves of the SAID (Scattering Analysis Interactive Database) or other groups are fitted, instead of data. We provide the partial-wave covariance matrices needed to perform correlated χ^{2} fits, in which the obtained χ^{2} equals the actual χ^{2} up to nonlinear and normalization corrections. For any analysis relying on partial waves extracted from elastic pion scattering, this is a prerequisite to assess the significance of resonance signals and to assign any uncertainty on results. Lastly, the influence of systematic errors is also considered.
Correlations of $\pi N$ partial waves for multireaction analyses
Doring, M.; Revier, J.; Ronchen, D.; Workman, R. L.
2016-06-15
In the search for missing baryonic resonances, many analyses include data from a variety of pion- and photon-induced reactions. For elastic πN scattering, however, usually the partial waves of the SAID (Scattering Analysis Interactive Database) or other groups are fitted, instead of data. We provide the partial-wave covariance matrices needed to perform correlated χ^{2} fits, in which the obtained χ^{2} equals the actual χ^{2} up to nonlinear and normalization corrections. For any analysis relying on partial waves extracted from elastic pion scattering, this is a prerequisite to assess the significance of resonance signals and to assign any uncertainty on results. Lastly, the influence of systematic errors is also considered.
Hydrate Formation and Compressional Wave Development in Partially Saturated Ottawa Sand
NASA Astrophysics Data System (ADS)
Waite, W. F.; Winters, W. J.; Mason, D. H.
2003-04-01
Methane gas hydrate was synthesized in three uniform mixtures of Ottawa sand and distilled water using the Gas Hydrate And Sediment Test Laboratory Instrument (GHASTLI) to examine hydrate formation behavior and its effects on compressional wave transmission in partially saturated granular material. The porosities were 38, 39, and 37% with 16, 31, and 58% respectively of the pore space in each specimen filled with water. Each sample was pressurized internally to 12 MPa with methane gas and consolidated to an effective stress of 250 kPa. Sample temperatures were reduced to 279 K, 7 K below the sI gas hydrate stability curve at 12 MPa. A pair of 1 Mhz transducers located in endcaps above and below the cylindrical sample was used to send a compressional wave through the sample's central axis to monitor the acoustic response to hydrate growth. Waveforms were collected in five to fifteen minute intervals for the ~100 to ~900 hours required for the acoustic signal to stabilize, an indication that the final hydrate distribution had been achieved. Here we consider two components of the acoustic waveform: the first arrival, which provides the compressional wave speed (Vp) in samples of known length, and the signal amplitude, which increases with improved signal transmission efficiency. Hydrate forming in granular media can increase both Vp and signal amplitude by binding individual grains, thereby stiffening the sample. Hydrate formation occurs most efficiently at the water/methane interface, and decreasing pore space water content increases that interfacial area. Consistent with increased formation efficiency, the signal amplitude growth rate, the temperature at which hydrate began to form and the magnitude of the temperature rise associated with exothermal hydrate formation were all higher in samples with lower water contents. Decreasing the pore space water content limits the total amount of hydrate that can form however, and despite the improved hydrate formation
Detection and Analysis of Partial Reflections of HF Waves from the Lower Ionosphere
NASA Astrophysics Data System (ADS)
Erdman, A.; Moore, R. C.
2016-12-01
On the afternoon of August 27, 2011, the western half of the High Frequency Active Auroral Research Program's (HAARP's) HF transmitter repeatedly broadcast a low-power (1 kW/Tx), 4.5-MHz, X-mode polarized, 10 microsecond pulse. The HF beam was directed vertically, and the inter-pulse period was 20 milliseconds. HF observations were performed at Oasis (62° 23' 30" N, 145° 9' 03" W) using two crossed 90-foot folded dipoles. Observations clearly indicate the detection of a ground wave and multiple reflections from different sources at F-region altitudes, which is consistent with digisonde measurements at 4.5 MHz. Additional reflections were detected at a virtual altitude of 90-110 km, and we interpret these reflections as partial reflections from the rapid conductivity change at the base of the ionosphere. We compare these observations with the predictions of a new finite-difference time-domain (FDTD) plasma model. The model is a one-dimensional, second-order accurate, cold plasma FDTD model of the ionosphere extending from ground through the lower F-region. The model accounts for a spatially varying plasma frequency, cyclotron frequency, and electron-neutral collision frequency. We discuss the possibility to analyze partial reflections from the base of the ionosphere as a function of frequency to characterize the reflecting plasma.
X-ray standing wave analysis of nanostructures using partially coherent radiation
Tiwari, M. K. Das, Gangadhar; Bedzyk, M. J.
2015-09-07
The effect of longitudinal (or temporal) coherence on total reflection assisted x-ray standing wave (TR-XSW) analysis of nanoscale materials is quantitatively demonstrated by showing how the XSW fringe visibility can be strongly damped by decreasing the spectral resolution of the incident x-ray beam. The correction for nonzero wavelength dispersion (δλ ≠ 0) of the incident x-ray wave field is accounted for in the model computations of TR-XSW assisted angle dependent fluorescence yields of the nanostructure coatings on x-ray mirror surfaces. Given examples include 90 nm diameter Au nanospheres deposited on a Si(100) surface and a 3 nm thick Zn layer trapped on top a 100 nm Langmuir-Blodgett film coating on a Au mirror surface. Present method opens up important applications, such as enabling XSW studies of large dimensioned nanostructures using conventional laboratory based partially coherent x-ray sources.
On the partial wave method for self energy calculations for non-hydrogenic electrons
NASA Astrophysics Data System (ADS)
Hagelstein, Peter L.
1994-07-01
A method for computing the self-energy correction for highly-ionized and high-Z many electron atoms is proposed and developed. The method is based on a partical wave analysis, and is immediately applicable to general potentials and many-electron wavefunctions. In this work we discuss the general approach, develop a formalism amenable to practical anal- ysis, provide the angular momentum reduction for arbitrary one-electron orbitals, and describe the computation of the twdimensional integrals and their kernels required for the partial wave analysis. Analytical results allowing for a practical renormalization scheme are discussed. This work is exploratory and developmental, and the present document provides a status report of our eforts. To date we have obtained numerical evidence that the method successfully handles the renormalization, and we report on significant progress in numerical methods for evaluating and approximating the two-dimensional integrals which occur in the method. We believe that this method can ultimately achieve an accuracy which is competitive with that of modern Brown's method calculations. The methods discussed within this work for approximating the two-dimensional radial matrix eIements including the full retarded couIomb interaction can be applied to other relativistic atomic physics calculations as a practical way to obtain improvements over the coulomb and Breit approximations.
Fast solution of elliptic partial differential equations using linear combinations of plane waves
NASA Astrophysics Data System (ADS)
Pérez-Jordá, José M.
2016-02-01
Given an arbitrary elliptic partial differential equation (PDE), a procedure for obtaining its solution is proposed based on the method of Ritz: the solution is written as a linear combination of plane waves and the coefficients are obtained by variational minimization. The PDE to be solved is cast as a system of linear equations A x =b , where the matrix A is not sparse, which prevents the straightforward application of standard iterative methods in order to solve it. This sparseness problem can be circumvented by means of a recursive bisection approach based on the fast Fourier transform, which makes it possible to implement fast versions of some stationary iterative methods (such as Gauss-Seidel) consuming O (N logN ) memory and executing an iteration in O (N log2N ) time, N being the number of plane waves used. In a similar way, fast versions of Krylov subspace methods and multigrid methods can also be implemented. These procedures are tested on Poisson's equation expressed in adaptive coordinates. It is found that the best results are obtained with the GMRES method using a multigrid preconditioner with Gauss-Seidel relaxation steps.
Fast solution of elliptic partial differential equations using linear combinations of plane waves.
Pérez-Jordá, José M
2016-02-01
Given an arbitrary elliptic partial differential equation (PDE), a procedure for obtaining its solution is proposed based on the method of Ritz: the solution is written as a linear combination of plane waves and the coefficients are obtained by variational minimization. The PDE to be solved is cast as a system of linear equations Ax=b, where the matrix A is not sparse, which prevents the straightforward application of standard iterative methods in order to solve it. This sparseness problem can be circumvented by means of a recursive bisection approach based on the fast Fourier transform, which makes it possible to implement fast versions of some stationary iterative methods (such as Gauss-Seidel) consuming O(NlogN) memory and executing an iteration in O(Nlog(2)N) time, N being the number of plane waves used. In a similar way, fast versions of Krylov subspace methods and multigrid methods can also be implemented. These procedures are tested on Poisson's equation expressed in adaptive coordinates. It is found that the best results are obtained with the GMRES method using a multigrid preconditioner with Gauss-Seidel relaxation steps.
A Composite Fermion Hofstadter Problem: Partially Polarized Density Wave States in the FQHE
NASA Astrophysics Data System (ADS)
Murthy, Ganpathy
2000-03-01
It is well known that the 2/5 FQH state can have two translationally invariant ground states, one of which is a singlet and the other fully polarized. A quantum phase transition occurs between these two as a function of the Zeeman field. This can be simply explained in terms of the crossing of Composite Fermion Landau levels. However, recently Kukushkin et al (PRL 82, 3665 (99)) have seen plateaus of half the maximal polarization in the 2/5 fraction at intermediate Zeeman fields. Similar plateaus, which are not allowed for translationally invariant CF states, are seen in other fractions as well. I propose a class of novel partially polarized spin/charge density wave states which display the co-existence of density wave and quantum Hall order (the Hall crystal state). The physical properties of the states, including gaps and collective excitations are computed using the formalism for the FQHE developed recently by Shankar and myself (for details see Murthy and Shankar in "Composite Fermions", Olle Heinonen, Editor).
NASA Astrophysics Data System (ADS)
Blankleider, B.; Afnan, I. R.
1985-04-01
The polarization observables of the reactions parrow parrow --> π+d, parrowp --> darrowπ+, and πdarrow --> πdarrow are investigated. Expressions relating these observables directly to (LSJ) partial wave amplitudes are derived and tabulations of the partial wave contributions are given for some of the observables. Examples are given of how such tabulations can be useful for optimizing the connection between theory and experiment and in suggesting possible new experiments. All observables are also calculated numerically using a unitary few-body model of the NN-πNN system to generate the amplitudes. Sensitivity to the choice of P11 interaction is investigated.
NASA Astrophysics Data System (ADS)
EL-Kalaawy, O. H.
2017-03-01
The nonlinear propagation of modified ion acoustic shock waves and double layers in a relativistic degenerate plasma is considered. This plasma system is proposed for containing inertial viscous positive and negative ion fluids, relativistic electron fluids, and negatively charged immobile heavy ions. The basic set of fluid equations is reduced to modified Burgers (MB) and further modified Burgers (FMB) or (Gardner) or Mamun and Zobaer (M-Z) equations by using the reductive perturbation method. The basic features of these shocks obtained from this analysis are observed to be significantly different from those obtained from the standard Burgers equation. By introducing two special functions and He's semi-inverse method, a variational principle and conservation laws for the Gardner (FmB) equation are obtained. A set of new exact solutions for the Gardner (FmB) equation are obtained by the auto-Bäcklund transformations. Finally, we will study the physical meanings of solutions.
NASA Astrophysics Data System (ADS)
Klochko, M. S.
2014-06-01
The surface waves and bulk acoustic bands were studied taking into account the interaction between the nearest and next-nearest neighbors in a cubic crystal. Expressions for the dispersion relations, the frequencies at which the surface waves split off the bulk spectrum, and the parameters of the amplitude attenuation have been obtained for the crystalline systems in which the surface waves are single-component and single-partial. The calculations were conducted taking into account the discrete nature of crystal lattice for arbitrary values of the two-dimensional wave vector. The analysis has demonstrated that the results obtained in the long-wavelength limit are in full agreement with those calculated in the framework of linear nonlocal elasticity theory. The influence of an adsorbed surface monolayer on the characteristics of the surface waves was studied.
NASA Astrophysics Data System (ADS)
Gulevich, D. R.; Kusmartsev, F. V.; Savel'Ev, Sergey; Yampol'Skii, V. A.; Nori, Franco
2009-09-01
We predict a class of excitations propagating along a Josephson vortex in two-dimensional Josephson junctions. These excitations are associated with the distortion of a Josephson vortex line of an arbitrary profile. We derive a universal analytical expression for the energy of arbitrary-shape excitations, investigate their influence on the dynamics of a vortex line, and discuss conditions where such excitations can be created. Finally, we show that such excitations play the role of a clock for a relativistically-moving Josephson vortex and suggest an experiment to measure a time-dilation effect analogous to that in special relativity. The position of the shape excitation on a Josephson vortex acts like a “minute hand” showing the time in the rest frame associated with the vortex. Remarkably, at some conditions, the shape wave can carry negative energy: a vortex with the shape excitation can have less energy than the same vortex without it.
Gulevich, D. R.; Savel'ev, Sergey; Kusmartsev, F. V.; Yampol'skii, V. A.; Nori, Franco
2009-09-01
We predict a class of excitations propagating along a Josephson vortex in two-dimensional Josephson junctions. These excitations are associated with the distortion of a Josephson vortex line of an arbitrary profile. We derive a universal analytical expression for the energy of arbitrary-shape excitations, investigate their influence on the dynamics of a vortex line, and discuss conditions where such excitations can be created. Finally, we show that such excitations play the role of a clock for a relativistically-moving Josephson vortex and suggest an experiment to measure a time-dilation effect analogous to that in special relativity. The position of the shape excitation on a Josephson vortex acts like a 'minute hand' showing the time in the rest frame associated with the vortex. Remarkably, at some conditions, the shape wave can carry negative energy: a vortex with the shape excitation can have less energy than the same vortex without it.
Hansson, T; Lisak, M; Anderson, D
2012-02-10
It is shown that the evolution equations describing partially coherent wave propagation in noninstantaneous Kerr media are integrable and have an infinite number of invariants. A recursion relation for generating these invariants is presented, and it is demonstrated how to express them in the coherent density, self-consistent multimode, mutual coherence, and Wigner formalisms.
Bello-Rivas, Juan M.; Elber, Ron
2015-01-01
A new theory and an exact computer algorithm for calculating kinetics and thermodynamic properties of a particle system are described. The algorithm avoids trapping in metastable states, which are typical challenges for Molecular Dynamics (MD) simulations on rough energy landscapes. It is based on the division of the full space into Voronoi cells. Prior knowledge or coarse sampling of space points provides the centers of the Voronoi cells. Short time trajectories are computed between the boundaries of the cells that we call milestones and are used to determine fluxes at the milestones. The flux function, an essential component of the new theory, provides a complete description of the statistical mechanics of the system at the resolution of the milestones. We illustrate the accuracy and efficiency of the exact Milestoning approach by comparing numerical results obtained on a model system using exact Milestoning with the results of long trajectories and with a solution of the corresponding Fokker-Planck equation. The theory uses an equation that resembles the approximate Milestoning method that was introduced in 2004 [A. K. Faradjian and R. Elber, J. Chem. Phys. 120(23), 10880-10889 (2004)]. However, the current formulation is exact and is still significantly more efficient than straightforward MD simulations on the system studied. PMID:25747056
Bello-Rivas, Juan M.; Elber, Ron
2015-03-07
A new theory and an exact computer algorithm for calculating kinetics and thermodynamic properties of a particle system are described. The algorithm avoids trapping in metastable states, which are typical challenges for Molecular Dynamics (MD) simulations on rough energy landscapes. It is based on the division of the full space into Voronoi cells. Prior knowledge or coarse sampling of space points provides the centers of the Voronoi cells. Short time trajectories are computed between the boundaries of the cells that we call milestones and are used to determine fluxes at the milestones. The flux function, an essential component of the new theory, provides a complete description of the statistical mechanics of the system at the resolution of the milestones. We illustrate the accuracy and efficiency of the exact Milestoning approach by comparing numerical results obtained on a model system using exact Milestoning with the results of long trajectories and with a solution of the corresponding Fokker-Planck equation. The theory uses an equation that resembles the approximate Milestoning method that was introduced in 2004 [A. K. Faradjian and R. Elber, J. Chem. Phys. 120(23), 10880-10889 (2004)]. However, the current formulation is exact and is still significantly more efficient than straightforward MD simulations on the system studied.
NASA Astrophysics Data System (ADS)
Yenen, Orhan
2003-05-01
Recent trends in AMO physics is to move from being a passive observer to an active controller of the outcome of quantum phenomena. Full controls of quantum processes require complete information about the quantum system; experiments which measure all the information allowed by quantum mechanics are called "Quantum Mechanically Complete Experiments". For example, when an isolated atom is photoionized, conservation laws limit the allowed partial waves of the photoelectron to a maximum of three. A quantum mechanically complete photoionization experiment then will have to determine all three partial wave probabilities and the two independent phases between the partial waves as a function of ionizing photon energy. From these five parameters all the quantities quantum mechanics allows one to measure can be determined for the "Residual Ion + Photoelectron" system. We have developed experimental methods [1, 2] to determine all three partial wave probabilities of photoelectrons when the residual ion is left in an excited state. Experimentally, Ar atoms are photoionized by circularly polarized synchrotron radiation produced by a unique VUV (vacuum ultraviolet) phase retarder we have installed at the Advanced Light Source (ALS) in Berkeley, CA. We measure the linear and circular polarization of the fine-structure-resolved fluorescent photons from the excited residual ions at specific directions. From the measurements one obtains the relativistic partial wave probabilities of the photoelectron. Our measurements highlight the significance of multielectron processes in photoionization dynamics and provide stringent tests of theory. The results indicate significant spin-dependent relativistic interactions during photoionization. [1] O. Yenen et al., Phys. Rev. Lett. 86, 979 (2001). [2] K. W. McLaughlin et al., Phys. Rev. Lett. 88, 123003 (2002).
Calculation of scattering amplitude without partial wave analysis: Inclusion of exchange
NASA Astrophysics Data System (ADS)
Temkin, Aaron; Shertzer, Janine
2002-05-01
In Ref. [1], a method is given for calculating the scattering amplitude f(Ω) directly. The idea is to calculate the complete wave function Ψ_k( r) numerically and use it in an integral expression for f(Ω). The original application was for electron scattering from static hydrogen without exchange. The Schrödinger equation (SE) reduces to a 2D partial differential equation (PDE), which is solved using the finite element method (FEM) [2]. The integral over dφr is done analytically, reducing the integral expression for f(Ω_k) to a 2D integral. Here we extend the method to include the effects of exchange. The SE can be reduced to a pair of 2D coupled PDE's which are again solved by the FEM. The formal expression for f(Ω) consists of two integrals, f^=fd f_e; fd is formally the same integral as the no-exchange f. We have also succeeded in reducing fe to a 2D integral. Results will be presented at the meeting. [1] J. Shertzer and A. Temkin, Phys. Rev. A 63, 062714 (2001). [2] J. Shertzer and J. Botero, Phys. Rev. A 49, 3673 (1994).
Partial wave analyses of J/ψ→γππ and γππ
NASA Astrophysics Data System (ADS)
BES Collaboration; Ablikim, M.; Bai, J. Z.; Ban, Y.; Bian, J. G.; Cai, X.; Chen, H. F.; Chen, H. S.; Chen, H. X.; Chen, J. C.; Chen, Jin; Chen, Y. B.; Chi, S. P.; Chu, Y. P.; Cui, X. Z.; Dai, Y. S.; Diao, L. Y.; Deng, Z. Y.; Dong, Q. F.; Du, S. X.; Fang, J.; Fang, S. S.; Fu, C. D.; Gao, C. S.; Gao, Y. N.; Gu, S. D.; Gu, Y. T.; Guo, Y. N.; Guo, Y. Q.; Guo, Z. J.; Harris, F. A.; He, K. L.; He, M.; Heng, Y. K.; Hu, H. M.; Hu, T.; Huang, G. S.; Huang, X. T.; Ji, X. B.; Jiang, X. S.; Jiang, X. Y.; Jiao, J. B.; Jin, D. P.; Jin, S.; Jin, Yi; Lai, Y. F.; Li, G.; Li, H. B.; Li, H. H.; Li, J.; Li, R. Y.; Li, S. M.; Li, W. D.; Li, W. G.; Li, X. L.; Li, X. N.; Li, X. Q.; Li, Y. L.; Liang, Y. F.; Liao, H. B.; Liu, B. J.; Liu, C. X.; Liu, F.; Liu, Fang; Liu, H. H.; Liu, H. M.; Liu, J.; Liu, J. B.; Liu, J. P.; Liu, Q.; Liu, R. G.; Liu, Z. A.; Lou, Y. C.; Lu, F.; Lu, G. R.; Lu, J. G.; Luo, C. L.; Ma, F. C.; Ma, H. L.; Ma, L. L.; Ma, Q. M.; Ma, X. B.; Mao, Z. P.; Mo, X. H.; Nie, J.; Olsen, S. L.; Peng, H. P.; Ping, R. G.; Qi, N. D.; Qin, H.; Qiu, J. F.; Ren, Z. Y.; Rong, G.; Shan, L. Y.; Shang, L.; Shen, C. P.; Shen, D. L.; Shen, X. Y.; Sheng, H. Y.; Sun, H. S.; Sun, J. F.; Sun, S. S.; Sun, Y. Z.; Sun, Z. J.; Tan, Z. Q.; Tang, X.; Tong, G. L.; Varner, G. S.; Wang, D. Y.; Wang, L.; Wang, L. L.; Wang, L. S.; Wang, M.; Wang, P.; Wang, P. L.; Wang, W. F.; Wang, Y. F.; Wang, Z.; Wang, Z. Y.; Wang, Zhe; Wang, Zheng; Wei, C. L.; Wei, D. H.; Wu, N.; Xia, X. M.; Xie, X. X.; Xu, G. F.; Xu, X. P.; Xu, Y.; Yan, M. L.; Yang, H. X.; Yang, Y. X.; Ye, M. H.; Ye, Y. X.; Yi, Z. Y.; Yu, G. W.; Yuan, C. Z.; Yuan, J. M.; Yuan, Y.; Zang, S. L.; Zeng, Y.; Zeng, Yu; Zhang, B. X.; Zhang, B. Y.; Zhang, C. C.; Zhang, D. H.; Zhang, H. Q.; Zhang, H. Y.; Zhang, J. W.; Zhang, J. Y.; Zhang, S. H.; Zhang, X. M.; Zhang, X. Y.; Zhang, Yiyun; Zhang, Z. P.; Zhao, D. X.; Zhao, J. W.; Zhao, M. G.; Zhao, P. P.; Zhao, W. R.; Zhao, Z. G.; Zheng, H. Q.; Zheng, J. P.; Zheng, Z. P.; Zhou, L.; Zhou, N. F.; Zhu, K. J.; Zhu, Q. M.; Zhu, Y. C.; Zhu, Y. S.; Zhu, Yingchun; Zhu, Z. A.; Zhuang, B. A.; Zhuang, X. A.; Zou, B. S.
2006-11-01
Results are presented on J/ψ radiative decays to ππ and ππ based on a sample of 58M J/ψ events taken with the BES II detector. Partial wave analyses are carried out using the relativistic covariant tensor amplitude method in the 1.0 to 2.3GeV/cππ mass range. There are conspicuous peaks due to the f(1270) and two 0 states in the 1.45 and 1.75 GeV/c mass regions. The first 0 state has a mass of 1466±6±20MeV/c, a width of 108-11+14±25MeV/c, and a branching fraction B(J/ψ→γf(1500)→γππ)=(0.67±0.02±0.30)×10. Spin 0 is strongly preferred over spin 2. The second 0 state peaks at 1765-3+4±13MeV/c with a width of 145±8±69MeV/c. If this 0 is interpreted as coming from f(1710), the ratio of its branching fractions to ππ and KK¯ is 0.41-0.17+0.11.
A partial wave analysis of the decay D0 → KS0π+π-
NASA Astrophysics Data System (ADS)
Albrecht, H.; Ehrlichmann, H.; Hamacher, T.; Hofmann, R. P.; Kirchhoff, T.; Nau, A.; Nowak, S.; Schröder, H.; Schulz, H. D.; Walter, M.; Wurth, R.; Appuhn, R. D.; Hast, C.; Kolanoski, H.; Lange, A.; Lindner, A.; Mankel, R.; Schieber, M.; Siegmund, T.; Spaan, B.; Thurn, H.; Töpfer, D.; Walther, A.; Wegener, D.; Paulini, M.; Reim, K.; Wegener, H.; Mundt, R.; Oest, T.; Reiner, R.; Schmidt-Parzefall, W.; Funk, W.; Stiewe, J.; Werner, S.; Ehret, K.; Hofmann, W.; Hüpper, A.; Khan, S.; Knöpfle, K. T.; Spengler, J.; Britton, D. I.; Charlesworth, C. E. K.; Edwards, K. W.; Hyatt, E. R. F.; Kapitza, H.; Krieger, P.; Macfarlane, D. B.; Patel, P. M.; Prentice, J. D.; Saull, P. R. B.; Tzamariudaki, K.; van de Water, R. G.; Yoon, T.-S.; Reßing, D.; Schmidtler, M.; Schneider, M.; Schubert, K. R.; Strahl, K.; Tamminga, J.; Waldi, R.; Weseler, S.; Kernel, G.; Križan, P.; Križnič, E.; Podobnik, T.; Živko, T.; Balagura, V.; Belyaev, I.; Danilov, M.; Droutskoy, A.; Golutvin, A.; Gorelov, I.; Kostina, G.; Lubimov, V.; Murat, P.; Pakhlov, P.; Ratnikov, F.; Semenov, S.; Shibaev, V.; Soloshenko, V.; Tichomirov, I.; Zaitsev, Yu.; Argus Collaboration
1993-07-01
Using the ARGUS detector at the DORIS-II electron-positron storage ring at DESY, we have investigated the exclusive decay D ∗+ → D 0π +, D 0 → K S0π +π -. From a partial wave analysis of the KS0π+π- system we find that (71.8± 4.2 ± 3.0)% are D 0 → K ∗-π + and (22.7 ± 3.2 ± 0.9)% are D 0 → overlineK0ϱ 0 with a relative phase of (-137 ± 7 ± 3)° between the channels. The remaining fraction can be described by several channels involving excited resonances, but not by a three-body phase space decay, thus giving first evidence for D0 decays into K 0∗(1430) -π +, overlineK0 f 0(1975), overlineK0 f 2(1270) , and overlineK0 f 0(1400) .
Nuclear pairing from microscopic forces: Singlet channels and higher-partial waves
NASA Astrophysics Data System (ADS)
Maurizio, Stefano; Holt, Jeremy W.; Finelli, Paolo
2014-10-01
Background: An accurate description of nuclear pairing gaps is extremely important for understanding static and dynamic properties of the inner crusts of neutron stars and to explain their cooling process. Purpose: We plan to study the behavior of the pairing gaps ΔF as a function of the Fermi momentum kF for neutron and nuclear matter in all relevant angular momentum channels where superfluidity is believed to naturally emerge. The calculations will employ realistic chiral nucleon-nucleon potentials with the inclusion of three-body forces and self-energy effects. Methods: The superfluid states of neutron and nuclear matter are studied by solving the BCS gap equation for chiral nuclear potentials using the method suggested by Khodel et al., where the original gap equation is replaced by a coupled set of equations for the dimensionless gap function χ (k) defined by Δ(k )=ΔFχ(k) and a nonlinear algebraic equation for the gap magnitude ΔF=Δ(kF) at the Fermi surface. This method is numerically stable even for small pairing gaps, such as that encountered in the coupled 3PF2 partial wave. Results: We have successfully applied Khodel's method to singlet (S) and coupled channel (SD and PF) cases in neutron and nuclear matter. Our calculations agree with other ab initio approaches, where available, and provide crucial inputs for future applications in superfluid systems.
Spreading speed and travelling wave solutions of a partially sedentary population
NASA Astrophysics Data System (ADS)
Volkov, Darko; Lui, Roger
2007-12-01
In this paper, we extend the population genetics model of Weinberger (1978, Asymptotic behavior of a model in population genetics. Nonlinear Partial Differential Equations and Applications (J. Chadam ed.). Lecture Notes in Mathematics, vol. 648. New York: Springer, pp. 47-98.) to the case where a fraction of the population does not migrate after the selection process. Mathematically, we study the asymptotic behaviour of solutions to the recursion un+1 = Qg[un], where ... In the above definition of Qg, K is a probability density function and f behaves qualitatively like the Beverton-Holt function. Under some appropriate conditions on K and f, we show that for each unit vector{xi} [isin] Rd, there exists a c*g({xi}) which has an explicit formula and is the spreading speed of Qg in the direction{xi} . We also show that for each c [≥] c*g({xi}), there exists a travelling wave solution in the direction{xi} which is continuous if gf '(0) [≤] 1.
Exact solutions for nonlinear foam drainage equation
NASA Astrophysics Data System (ADS)
Zayed, E. M. E.; Al-Nowehy, Abdul-Ghani
2017-02-01
In this paper, the modified simple equation method, the exp-function method, the soliton ansatz method, the Riccati equation expansion method and the ( G^' }/G)-expansion method are used to construct exact solutions with parameters of the nonlinear foam drainage equation. When these parameters are taken to be special values, the solitary wave solutions and the trigonometric function solutions are derived from the exact solutions. The obtained results confirm that the proposed methods are efficient techniques for analytic treatments of a wide variety of nonlinear partial differential equations in mathematical physics. We compare our results together with each other yielding from these integration tools. Also, our results have been compared with the well-known results of others.
Almassalha, Luay M.; Bauer, Greta M.; Chandler, John E.; Gladstein, Scott; Cherkezyan, Lusik; Stypula-Cyrus, Yolanda; Weinberg, Samuel; Zhang, Di; Thusgaard Ruhoff, Peder; Roy, Hemant K.; Subramanian, Hariharan; Chandel, Navdeep S.; Szleifer, Igal; Backman, Vadim
2016-01-01
The organization of chromatin is a regulator of molecular processes including transcription, replication, and DNA repair. The structures within chromatin that regulate these processes span from the nucleosomal (10-nm) to the chromosomal (>200-nm) levels, with little known about the dynamics of chromatin structure between these scales due to a lack of quantitative imaging technique in live cells. Previous work using partial-wave spectroscopic (PWS) microscopy, a quantitative imaging technique with sensitivity to macromolecular organization between 20 and 200 nm, has shown that transformation of chromatin at these length scales is a fundamental event during carcinogenesis. As the dynamics of chromatin likely play a critical regulatory role in cellular function, it is critical to develop live-cell imaging techniques that can probe the real-time temporal behavior of the chromatin nanoarchitecture. Therefore, we developed a live-cell PWS technique that allows high-throughput, label-free study of the causal relationship between nanoscale organization and molecular function in real time. In this work, we use live-cell PWS to study the change in chromatin structure due to DNA damage and expand on the link between metabolic function and the structure of higher-order chromatin. In particular, we studied the temporal changes to chromatin during UV light exposure, show that live-cell DNA-binding dyes induce damage to chromatin within seconds, and demonstrate a direct link between higher-order chromatin structure and mitochondrial membrane potential. Because biological function is tightly paired with structure, live-cell PWS is a powerful tool to study the nanoscale structure–function relationship in live cells. PMID:27702891
Resolving Difficulties of a Single-Channel Partial-Wave Analysis
NASA Astrophysics Data System (ADS)
Hunt, Brian; Manley, D. Mark
2016-03-01
The goal of our research is to determine better the properties of nucleon resonances using techniques of a global multichannel partial-wave analysis. Currently, many predicted resonances have not been found, while the properties of several known resonances are relatively uncertain. To resolve these issues, one must analyze many different reactions in a multichannel fit. Other groups generally approach this problem by generating an energy-dependent fit from the start. This is a fit where all channels are analyzed together. The method is powerful, but due to the complex nature of resonances, certain model-dependent assumptions have to be introduced from the start. The current work tries to resolve these issues by first generating single-energy solutions in which experimental data are analyzed in narrow energy bins. The single-energy solutions can then be used to constrain the energy-dependent solution in a comparatively unbiased manner. Our work focuses on adding three new single-energy solutions into the global fit. These reactions are γp --> ηp , γn --> ηn , and γp -->K+ Λ . During this talk, I will discuss the difficulties of this approach, our methods to overcome these difficulties, and a few preliminary results. This material is based upon work supported by the U.S. Department of Energy, Office of Science, Office of Medium Energy Nuclear Physics, under Award Nos. DE-FG02-01ER41194 and DE-SC0014323 and by the Kent State University Department of Physics.
NASA Astrophysics Data System (ADS)
Zhang, Di; Graff, Taylor; Crawford, Susan; Subramanian, Hariharan; Thompson, Sebastian; Derbas, Justin R.; Lyengar, Radha; Roy, Hemant K.; Brendler, Charles B.; Backman, Vadim
2016-02-01
Prostate Cancer (PC) is the second leading cause of cancer deaths in American men. While prostate specific antigen (PSA) test has been widely used for screening PC, >60% of the PSA detected cancers are indolent, leading to unnecessary clinical interventions. An alternative approach, active surveillance (AS), also suffer from high expense, discomfort and complications associated with repeat biopsies (every 1-3 years), limiting its acceptance. Hence, a technique that can differentiate indolent from aggressive PC would attenuate the harms from over-treatment. Combining microscopy with spectroscopy, our group has developed partial wave spectroscopic (PWS) microscopy, which can quantify intracellular nanoscale organizations (e.g. chromatin structures) that are not accessible by conventional microscopy. PWS microscopy has previously been shown to predict the risk of cancer in seven different organs (N ~ 800 patients). Herein we use PWS measurement of label-free histologically-normal prostatic epithelium to distinguish indolent from aggressive PC and predict PC risk. Our results from 38 men with low-grade PC indicated that there is a significant increase in progressors compared to non-progressors (p=0.002, effect size=110%, AUC=0.80, sensitivity=88% and specificity=72%), while the baseline clinical characteristics were not significantly different. We further improved the diagnostic power by performing nuclei-specific measurements using an automated system that separates in real-time the cell nuclei from the remaining prostate epithelium. In the long term, we envision that the PWS based prognostication can be coupled with AS without any change to the current procedure to mitigate the harms caused by over-treatment.
Almassalha, Luay M; Bauer, Greta M; Chandler, John E; Gladstein, Scott; Cherkezyan, Lusik; Stypula-Cyrus, Yolanda; Weinberg, Samuel; Zhang, Di; Thusgaard Ruhoff, Peder; Roy, Hemant K; Subramanian, Hariharan; Chandel, Navdeep S; Szleifer, Igal; Backman, Vadim
2016-10-18
The organization of chromatin is a regulator of molecular processes including transcription, replication, and DNA repair. The structures within chromatin that regulate these processes span from the nucleosomal (10-nm) to the chromosomal (>200-nm) levels, with little known about the dynamics of chromatin structure between these scales due to a lack of quantitative imaging technique in live cells. Previous work using partial-wave spectroscopic (PWS) microscopy, a quantitative imaging technique with sensitivity to macromolecular organization between 20 and 200 nm, has shown that transformation of chromatin at these length scales is a fundamental event during carcinogenesis. As the dynamics of chromatin likely play a critical regulatory role in cellular function, it is critical to develop live-cell imaging techniques that can probe the real-time temporal behavior of the chromatin nanoarchitecture. Therefore, we developed a live-cell PWS technique that allows high-throughput, label-free study of the causal relationship between nanoscale organization and molecular function in real time. In this work, we use live-cell PWS to study the change in chromatin structure due to DNA damage and expand on the link between metabolic function and the structure of higher-order chromatin. In particular, we studied the temporal changes to chromatin during UV light exposure, show that live-cell DNA-binding dyes induce damage to chromatin within seconds, and demonstrate a direct link between higher-order chromatin structure and mitochondrial membrane potential. Because biological function is tightly paired with structure, live-cell PWS is a powerful tool to study the nanoscale structure-function relationship in live cells.
NASA Astrophysics Data System (ADS)
Li, Jia; Chang, Liping; Chen, Feinan
2016-12-01
Based on the first-order Born approximation, the correlation between intensity fluctuations is derived for a partially coherent, electromagnetic plane wave scattering from a spatially quasi-homogeneous medium. Young's pinholes are utilized to control the degree of coherence of the incident field. For the electromagnetic scattering case, it is shown that the CIF of the scattered field strongly depends on the degree of polarization of the incident wave, Young's pinhole parameter, effective radius and correlation length of the medium. The influences of these parameters on the CIF distributions are revealed by numerical calculations.
NASA Astrophysics Data System (ADS)
Deutscher, R.; Everts, H. U.
1993-03-01
We study the ground state properties of the S=$\\frac{1}{2}$ Heisenberg antiferromagnet (HAF) on the triangular lattice with nearest-neighbour ($J$) and next-nearest neighbour ($\\alpha J$) couplings. Classically, this system is known to be ordered in a $120^\\circ$ N\\'eel type state for values $-\\infty<\\alpha\\le 1/8$ of the ratio $\\alpha$ of these couplings and in a collinear state for $1/8<\\alpha<1$. The order parameter ${\\cal M}$ and the helicity $\\chi$ of the $120^\\circ$ structure are obtained by numerical diagonalisation of finite periodic systems of up to $N=30$ sites and by applying the spin-wave (SW) approximation to the same finite systems. We find a surprisingly good agreement between the exact and the SW results in the entire region $-\\infty<\\alpha< 1/8$. It appears that the SW theory is still valid for the simple triangular HAF ($\\alpha=0$) although the sublattice magnetisation ${\\cal M}$ is substantially reduced from its classical value by quantum fluctuations. Our numerical results for the order parameter ${\\cal N}$ of the collinear order support the previous conjecture of a first order transition between the $120^\\circ$ and the collinear order at $\\alpha \\simeq 1/8$.
Marie, James John
2006-05-01
The JETSET experiment (PS202) conducted at CERN was designed to search for gluonic resonances in the mass range between 2.14 and 2.43 GeV/c^{2} using the channel, p$\\bar{p}$→ΦΦ→4K+/-. This channel is OZI suppressed, thus any observed enhancement of the cross section above a level consistent with the OZI rule could indicate possible resonating gluonic degrees of freedom. In fact, the measured cross section is two orders of magnitude larger than the OZI prediction and shows an enhancement centered near 2.2 GeV/c^{2} of width 50-100 MeV/c^{2}. A partial wave analysis (PWA) has been conducted in order to search for the dominant partial waves. The formalism and methods of this PWA will be fully developed. This analysis has revealed the dominance of J^{pc} = 2^{++} together with a significant J^{pc} = 4^{++} component. Because the Φ resonance is only 4 MeV wide, the PWA is relatively insensitive to the presence of competing channels coupling to the 4K^{±} final state. The partial wave analysis was
Li, Jia; Zhang, Hongchao; Ni, Chenyin; Shen, Zhonghua
2013-06-20
This research focuses on analyzing the frequency characteristics of ultrasonic waves induced by a partially closed surface-breaking crack. When acoustic waves interact with the crack, transmission, reflection, and mode conversions occur and the frequency characteristics of signals perform obvious changes. A pulsed laser line source is used to generate ultrasonic waves in the sample with a partially closed surface-breaking crack, and one can see how the frequency characteristics of detected signals change as the pulsed laser beam scans across the sample surface. The optical deflection beam method is developed to detect the ultrasonic signals experimentally. The fast Fourier transform (FFT) is used to analyze the time-domain data, and the FFT data are visualized by a B-scan plot. A clear disruption in the B-scan can be observed when the laser beam illuminates directly onto the crack, which is due to the changes of frequency characteristics induced by the partially closed crack. A frequency-domain B-scan of numerical simulation results is presented, and the clear disruption can also be observed clearly.
NASA Astrophysics Data System (ADS)
Martínez-Gómez, David; Soler, Roberto; Terradas, Jaume
2017-03-01
The presence of neutral species in a plasma has been shown to greatly affect the properties of magnetohydrodynamic waves. For instance, the interaction between ions and neutrals through momentum transfer collisions causes the damping of Alfvén waves and alters their oscillation frequency and phase speed. When the collision frequencies are larger than the frequency of the waves, single-fluid magnetohydrodynamic approximations can accurately describe the effects of partial ionization, since there is a strong coupling between the various species. However, at higher frequencies, the single-fluid models are not applicable and more complex approaches are required. Here, we use a five-fluid model with three ionized and two neutral components, which takes into consideration Hall’s current and Ohm’s diffusion in addition to the friction due to collisions between different species. We apply our model to plasmas composed of hydrogen and helium, and allow the ionization degree to be arbitrary. By analyzing the corresponding dispersion relation and numerical simulations, we study the properties of small-amplitude perturbations. We discuss the effect of momentum transfer collisions on the ion-cyclotron resonances and compare the importance of magnetic resistivity, and ion–neutral and ion–ion collisions on the wave damping at various frequency ranges. Applications to partially ionized plasmas of the solar atmosphere are performed.
NASA Astrophysics Data System (ADS)
Maneva, Y. G.; Poedts, S.; Alvarez Laguna, A.; Lani, A.
2016-12-01
Ion-neutral interactions play crucial role in the energetics and dynamics of the partially ionized solar chromosphere. To study the effect of neutrals for the evolution of the chromospheric plasma, including the transport coefficients, chemical reactions and possible contribution to wave damping and absorption, we have developed a multi-fluid simulation tool, which considers ionization and recombination processes in gravitationally stratified magnetized collisional media. Recent works have suggested that the vastly dominant neutrals might over-damp Alfvén waves in the chromosphere, thus absorbing their energy closer to the solar surface and reducing the contribution of Alfvén waves generated by the photospheric drivers to the coronal heating problem. In this study we have driven slow magnetosonic and Alfvén waves at the photosphere and have followed their evolution through the chromosphere towards the transition region. We have investigated the wave energy transfer related to shock formation, wave absorption and mode conversion in the gravitationally stratified media, as well as have the distribution of Poynting flux. Our two-fluid model consists of resistive MHD electrons and ions, which are chemically and collisionally coupled to a separate fluid population of neutral hydrogen. The model takes into account Coulomb collisions, anisotropic heat flux determined by Braginskii's transport coefficients, as well as impact ionization and radiative recombination. The initial state represents gravitationally stratified temperature and density profiles, which satisfy hydrostatic chemical equilibrium, except for the Lorentz force associated with the external magnetic field. We study the effects of the initial driver's amplitude and period on the related plasma energization, as well as the wave-induced changes in ionization and recombination.
Partially coherent fundamental Gaussian wave generated by a fluctuating planar current source.
Seshadri, S R
2010-06-01
The propagation characteristics of a spatially localized electromagnetic wave produced by a planar current source of different states of spatial coherence are analyzed by the use of a Gaussian Schell-model source. A linearly polarized fundamental electromagnetic Gaussian wave with the electric field perpendicular to the direction of propagation is treated. The effects of the degree of coherence of the source distribution on the radiation intensity distribution and the total radiated power are determined.
Exact solutions to the KDV-Burgers equation with forcing term using Tanh-Coth method
NASA Astrophysics Data System (ADS)
Chukkol, Yusuf Buba; Mohamad, Mohd Nor; Muminov, Mukhiddin I.
2017-08-01
In this paper, tanh-coth method was applied to derive the exact travelling wave solutions to the Korteweg-de-Vries and Burgers equation with forcing term(fKDVB). Solutions that are linear combination of solitary and shock wave solutions, and periodic wave solutions are obtained, by reducing the equation to the homogeneous type using a wave transformation. The method with the help of symbolic computation tool box provides a systematic way of solving many physical models involving nonlinear partial differential equations in mathematical physics.
NASA Astrophysics Data System (ADS)
Saha Ray, S.; Sahoo, S.
2017-01-01
In the present paper, we construct the analytical exact solutions of some nonlinear evolution equations in mathematical physics; namely time fractional modified Kawahara equations by using the ( G^'/G)-expansion method via fractional complex transform. As a result, new types of exact analytical solutions are obtained.
Exactly conservative integrators
Shadwick, B.A.; Bowman, J.C.; Morrison, P.J.
1995-07-19
Traditional numerical discretizations of conservative systems generically yield an artificial secular drift of any nonlinear invariants. In this work we present an explicit nontraditional algorithm that exactly conserves invariants. We illustrate the general method by applying it to the Three-Wave truncation of the Euler equations, the Volterra-Lotka predator-prey model, and the Kepler problem. We discuss our method in the context of symplectic (phase space conserving) integration methods as well as nonsymplectic conservative methods. We comment on the application of our method to general conservative systems.
NASA Astrophysics Data System (ADS)
Altshuler, Gennady; Manor, Ofer
2016-07-01
We use both theory and experiment to study the response of thin and free films of a partially wetting liquid to a MHz vibration, propagating in the solid substrate in the form of a Rayleigh surface acoustic wave (SAW). We generalise the previous theory for the response of a thin fully wetting liquid film to a SAW by including the presence of a small but finite three phase contact angle between the liquid and the solid. The SAW in the solid invokes a convective drift of mass in the liquid and leaks sound waves. The dynamics of a film that is too thin to support the accumulation of the sound wave leakage is governed by a balance between the drift and capillary stress alone. We use theory to demonstrate that a partially wetting liquid film, supporting a weak capillary stress, will spread along the path of the SAW. A partially wetting film, supporting an appreciable capillary stress, will however undergo a concurrent dynamic wetting and dewetting at the front and the rear, respectively, such that the film will displace, rather than spread, along the path of the SAW. The result of the theory for a weak capillary stress is in agreement with the previous experimental and theoretical studies on the response of thin silicon oil films to a propagating SAW. No corresponding previous results exist for the case of an appreciable capillary stress. We thus complement the large capillary limit of our theory by undertaking an experimental procedure where we explore the response of films of water and a surfactant solutions to a MHz SAW, which is found to be in qualitative agreement with the theory at this limit.
Djedovic, Gabriel; Kamelger, Florian Stefan; Jeschke, Johannes; Piza-Katzer, Hildegunde
2014-01-01
Extracorporeal shock wave therapy (ESWT) enhances tissue vascularization and neoangiogenesis. Recent animal studies showed improved soft tissue regeneration using ESWT. In most cases, deep partial-thickness burns require skin grafting; the outcome is often unsatisfactory in function and aesthetic appearance. The aim of this study was to demonstrate the effect of ESWT on skin regeneration after deep partial-thickness burns. Under general anesthesia, two standardized deep partial-thickness burns were induced on the back of 30 male Wistar rats. Immediately after the burn, ESWT was given to rats of group 1 (N = 15), but not to group 2 (N = 15). On days 5, 10, and 15, five rats of each group were analyzed. Reepithelialization rate was defined, perfusion units were measured, and histological analysis was performed. Digital photography was used for visual documentation. A wound score system was used. ESWT enhanced the percentage of wound closure in group 1 as compared to group 2 (P < 0.05). The reepithelialization rate was improved significantly on day 15 (P < 0.05). The wound score showed a significant increase in the ESWT group. ESWT improves skin regeneration of deep partial-thickness burns in rats. It may be a suitable and cost effective treatment alternative in this type of burn wounds in the future.
Kamelger, Florian Stefan; Jeschke, Johannes; Piza-Katzer, Hildegunde
2014-01-01
Extracorporeal shock wave therapy (ESWT) enhances tissue vascularization and neoangiogenesis. Recent animal studies showed improved soft tissue regeneration using ESWT. In most cases, deep partial-thickness burns require skin grafting; the outcome is often unsatisfactory in function and aesthetic appearance. The aim of this study was to demonstrate the effect of ESWT on skin regeneration after deep partial-thickness burns. Under general anesthesia, two standardized deep partial-thickness burns were induced on the back of 30 male Wistar rats. Immediately after the burn, ESWT was given to rats of group 1 (N = 15), but not to group 2 (N = 15). On days 5, 10, and 15, five rats of each group were analyzed. Reepithelialization rate was defined, perfusion units were measured, and histological analysis was performed. Digital photography was used for visual documentation. A wound score system was used. ESWT enhanced the percentage of wound closure in group 1 as compared to group 2 (P < 0.05). The reepithelialization rate was improved significantly on day 15 (P < 0.05). The wound score showed a significant increase in the ESWT group. ESWT improves skin regeneration of deep partial-thickness burns in rats. It may be a suitable and cost effective treatment alternative in this type of burn wounds in the future. PMID:25431664
Henao-Escobar, W; Domínguez-Renedo, O; Alonso-Lomillo, M A; Arcos-Martínez, M J
2015-10-01
This work presents the simultaneous determination of cadaverine, histamine, putrescine and tyramine by square wave voltammetry using a boron-doped diamond electrode. A multivariate calibration method based on partial least square regressions has allowed the resolution of the very high overlapped voltammetric signals obtained for the analyzed biogenic amines. Prediction errors lower than 9% have been obtained when concentration of quaternary mixtures were calculated. The developed procedure has been applied in the analysis of ham samples, which results are in good agreement with those obtained using the standard HPLC method. Copyright © 2015 Elsevier B.V. All rights reserved.
Cut-off wavenumber of Alfvén waves in partially ionized plasmas of the solar atmosphere
NASA Astrophysics Data System (ADS)
Zaqarashvili, T. V.; Carbonell, M.; Ballester, J. L.; Khodachenko, M. L.
2012-08-01
Context. Alfvén wave dynamics in partially ionized plasmas of the solar atmosphere shows that there is indeed a cut-off wavenumber, i.e. the Alfvén waves with wavenumbers higher than the cut-off value are evanescent. The cut-off wavenumber appears in single-fluid magnetohydrodynamic (MHD) approximation but it is absent in a multi-fluid approach. Up to now, an explanation for the existence of the cut-off wavenumber is still missing. Aims: The aim of this paper is to point out the reason for the appearance of a cut-off wavenumber in single-fluid MHD. Methods: Beginning with three-fluid equations (with electrons, protons and neutral hydrogen atoms), we performed consecutive approximations until we obtained the usual single-fluid description. We solved the dispersion relation of linear Alfvén waves at each step and sought the approximation responsible of the cut-off wavenumber appearance. Results: We have found that neglecting inertial terms significantly reduces the real part of the Alfvén frequency although it never becomes zero. Therefore, the cut-off wavenumber does not exist at this stage. However, when the inertial terms together with the Hall term in the induction equation are neglected, the real part of the Alfvén frequency becomes zero. Conclusions: The appearance of a cut-off wavenumber, when Alfvén waves in partially ionized regions of the solar atmosphere are studied, is the result of neglecting inertial and Hall terms, therefore it has no physical origin.
Off-shell Jost solutions for Coulomb and Coulomb-like interactions in all partial waves
Laha, U.; Bhoi, J.
2013-01-15
By exploiting the theory of ordinary differential equations, with judicious use of boundary conditions, interacting Green's functions and their integral transforms together with certain properties of higher transcendental functions, useful analytical expressions for the off-shell Jost solutions for motion in Coulomb and Coulomb-nuclear potentials are derived in maximal reduced form through different approaches to the problem in the representation space. The exact analytical expressions for the off-shell Jost solutions for Coulomb and Coulomb-like potentials are believed to be useful for the description of the charged particle scattering/reaction processes.
Salgado, Carlos W.; Weygand, Dennis P.
2014-04-01
Meson spectroscopy is going through a revival with the advent of high statistics experiments and new advances in the theoretical predictions. The Constituent Quark Model (CQM) is finally being expanded considering more basic principles of field theory and using discrete calculations of Quantum Chromodynamics (lattice QCD). These new calculations are approaching predictive power for the spectrum of hadronic resonances and decay modes. It will be the task of the new experiments to extract the meson spectrum from the data and compare with those predictions. The goal of this report is to describe one particular technique for extracting resonance information from multiparticle final states. The technique described here, partial wave analysis based on the helicity formalism, has been used at Brookhaven National Laboratory (BNL) using pion beams, and Jefferson Laboratory (Jlab) using photon beams. In particular this report broaden this technique to include production experiments using linearly polarized real photons or quasi-real photons. This article is of a didactical nature. We describe the process of analysis, detailing assumptions and formalisms, and is directed towards people interested in starting partial wave analysis.
NASA Astrophysics Data System (ADS)
Codina, R.; Ambrosini, D.
2017-06-01
For the last few decades, the effects of blast loading on structures have been studied by many researchers around the world. Explosions can be caused by events such as industrial accidents, military conflicts or terrorist attacks. Urban centers have been prone to various threats including car bombs, suicide attacks, and improvised explosive devices. Partially vented constructions subjected to external blast loading represent an important topic in protective engineering. The assessment of blast survivability inside structures and the development of design provisions with respect to internal elements require the study of the propagation and leakage of blast waves inside buildings. In this paper, full-scale tests are performed to study the effects of the leakage of blast waves inside a partially vented room that is subjected to different external blast loadings. The results obtained may be useful for proving the validity of different methods of calculation, both empirical and numerical. Moreover, the experimental results are compared with those computed using the empirical curves of the US Defense report/manual UFC 3-340. Finally, results of the dynamic response of the front masonry wall are presented in terms of accelerations and an iso-damage diagram.
Exact solution of the space-time fractional coupled EW and coupled MEW equations
NASA Astrophysics Data System (ADS)
Raslan, K. R.; S. EL-Danaf, Talaat; K. Ali, Khalid
2017-07-01
In this paper, we obtained a traveling wave solution by using the Kudryashov method for the space-time fractional nonlinear partial differential equations. The method is used to obtain the exact solutions for different types of the space-time fractional nonlinear partial differential equations, such as the space-time fractional coupled equal width wave equation (CEWE) and the space-time fractional coupled modified equal width wave equation (CMEWE), which are the important soliton equations. Both equations are reduced to ordinary differential equations by use of the fractional complex transform and of the properties of the modified Riemann-Liouville derivative. We plot the exact solutions for these equations at different time levels.
Wave simulation in partially frozen porous media with fractal freezing conditions
NASA Astrophysics Data System (ADS)
Carcione, José M.; Santos, Juan E.; Ravazzoli, Claudia L.; Helle, Hans B.
2003-12-01
A recent article [J. M. Carcione and G. Seriani, J. Comput. Phys. 170, 676 (2001)] proposes a modeling algorithm for wave simulation in a three-phase porous medium composed of sand grains, ice, and water. The differential equations hold for uniform water (ice) content. Here, we obtain the variable-porosity differential equations by using the analogy with the two-phase case and the complementary energy theorem. The displacements of the rock and ice frames and the variation of fluid content are the generalized coordinates, and the stress components and fluid pressure are the generalized forces. We simulate wave propagation in a frozen porous medium with fractal variations of porosity and, therefore, realistic freezing conditions.
Analysis of Shear Wave Generation by Decoupled and Partially Coupled Explosions
2009-07-31
The explosive source is on scale relative to the cavity size. Two factors suggest that both explosions m ight act as spherical seism ic sources...REFERENCES Baker, G. E., H. Xu, and J. L. Stevens (2009), Generation of Shear Waves from Explosions in Water-Filled Cavities, submitted to Bull. Seism ...I: Seismic Spectrum Scaling, Bull. Seism . Soc. Am., 61, 1675-1692 Murphy, J. (1969), Discussion of Paper by D. Springer, M. Denny, J. Healy, and W
NASA Astrophysics Data System (ADS)
Farsaei, Amir Ashkan; Mokhtari-Koushyar, Farzad; Javad Seyed-Talebi, Seyed Mohammad; Kavehvash, Zahra; Shabany, Mahdi
2016-03-01
Active millimeter-wave imaging based on synthetic aperture focusing offers certain unique and practical advantages in nondestructive testing applications. Traditionally, the imaging for this purpose is performed through a long procedure of raster scanning with a single antenna across a two-dimensional grid, leading to a slow, bulky, and expensive scanning platform. In this paper, an improved bistatic structure based on radial compressive sensing is proposed, where one fixed transmitter antenna and a linear array of receiving antennas are used. The main contributions of this paper are (a) reducing the scanning time, (b) improving the output quality, and (c) designing an inexpensive setup. These improvements are the result of the underlying proposed simpler scanning structure and faster reconstruction process.
NASA Astrophysics Data System (ADS)
Almqvist, B.; Misra, S.; Biedermann, A. R.; Mainprice, D.
2013-12-01
We studied the magnetic and elastic wave speed anisotropy of a synthetically prepared quartz-mica schist, prior to, during and after experimental melting. The synthetic rock was manufactured from a mixture of powders with equal volumes of quartz and muscovite. The powders were initially compacted with 200 MPa uniaxial stress at room temperature and sealed in a stainless steel canister. Subsequently the sealed canister was isostatically pressed at 180 MPa and 580 °C for 24 hours. This produced a solid medium with ~25 % porosity. Mica developed a preferred grain-shape alignment due to the initial compaction with differential load, where mica flakes tend to orient perpendicular to the applied stress and hence define a synthetic foliation plane. In the last stage we used a Paterson gas-medium apparatus, to pressurize and heat the specimens up to 300 MPa and 750 °C for a six hour duration. This stage initially compacted the rock, followed by generation of melt, and finally crystallization of new minerals from the melt. Elastic wave speed measurements were performed in situ at pressure and temperature, with a transducer assembly mounted next to the sample. Magnetic measurements were performed before and after the partial melt experiments. Anisotropy was measured in low- and high-field, using a susceptibility bridge and torsion magnetometer, respectively. Additionally we performed measurements of hysteresis, isothermal remanent magnetization (IRM) and susceptibility as a function of temperature, to investigate the magnetic properties of the rock. The elastic wave speed, before the melting-stage of the experiment, exhibits a distinct anisotropy with velocities parallel to the foliation being about 15 % higher than normal to the foliation plane. Measurements of the magnetic anisotropy in the bulk sample show that anisotropy is originating from the preferred orientation of muscovite, with a prominent flattening fabric. In contrast, specimens that underwent partial melting
NASA Astrophysics Data System (ADS)
Kudinov, I. V.; Kudinov, V. A.
2013-09-01
A mathematical model of elastic vibrations of an incompressible liquid has been developed based on the hypothesis on the finite velocity of propagation of field potentials in this liquid. A hyperbolic equation of vibrations of such a liquid with account of its relaxation properties has been obtained. An exact analytical solution of this equation has been found and investigated in detail.
Hyde, Milo W; Basu, Santasri; Spencer, Mark F; Cusumano, Salvatore J; Fiorino, Steven T
2013-03-25
The scattering of a partially-coherent wave from a statistically rough material surface is investigated via derivation of the scattered field cross-spectral density function. Two forms of the cross-spectral density are derived using the physical optics approximation. The first is applicable to smooth-to-moderately rough surfaces and is a complicated expression of source and surface parameters. Physical insight is gleaned from its analytical form and presented in this work. The second form of the cross-spectral density function is applicable to very rough surfaces and is remarkably physical. Its form is discussed at length and closed-form expressions are derived for the angular spectral degree of coherence and spectral density radii. Furthermore, it is found that, under certain circumstances, the cross-spectral density function maintains a Gaussian Schell-model form. This is consistent with published results applicable only in the paraxial regime. Lastly, the closed-form cross-spectral density functions derived here are rigorously validated with scatterometer measurements and full-wave electromagnetic and physical optics simulations. Good agreement is noted between the analytical predictions and the measured and simulated results.
NASA Astrophysics Data System (ADS)
Caldwell, Warren B.; Klemperer, Simon L.; Rai, Shyam S.; Lawrence, Jesse F.
2009-11-01
Seismic shear-wave velocities are sensitive to the partial melts that should be present in the Himalayan orogen if low-viscosity channel flow is active at the present day. We analyzed regional earthquakes in the western Himalaya and Tibet recorded on 16 broadband seismometers deployed across the NW Indian Himalaya, from the Indian platform to the Karakoram Range. We used a multiple filter technique to calculate the group velocity dispersion of fundamental-mode Rayleigh waves, and then inverted the dispersion records to obtain separate one-dimensional shear-wave velocity models for five geologic provinces: the Tibetan plateau, Ladakh arc complex, Indus Tsangpo suture zone, Tethyan Himalaya, and Himalayan thrust belt. Our velocity models show a low-velocity layer (LVL) with 7-17% velocity reduction centered at ~ 30 km depth and apparently continuous from the Tethyan Himalaya to the Tibetan plateau. This LVL shows good spatial correspondence with observations of low resistivity from magnetotelluric studies along the same profile. Of the possible explanations for low velocity and low resistivity in the mid-crust, only the presence of melts or aqueous fluids (or both) satisfactorily explains both sets of observations. Elevated heat flow observed in the NW Himalaya implies that if aqueous fluids are present in the mid-crust, then the mid-crust is well above its solidus. Comparison of our results with laboratory measurements and theoretical models suggests 3-7% melt is present in a channel in the upper-middle crust of the NW Himalaya at the present day, and the physical conditions to enable active channel flow may be present.
Quantization of wave equations and hermitian structures in partial differential varieties.
Paneitz, S M; Segal, I E
1980-12-01
Sufficiently close to 0, the solution variety of a nonlinear relativistic wave equation-e.g., of the form squarevarphi + m(2)varphi + gvarphi(p) = 0-admits a canonical Lorentz-invariant hermitian structure, uniquely determined by the consideration that the action of the differential scattering transformation in each tangent space be unitary. Similar results apply to linear time-dependent equations or to equations in a curved asymptotically flat space-time. A close relation of the Riemannian structure to the determination of vacuum expectation values is developed and illustrated by an explicit determination of a perturbative 2-point function for the case of interaction arising from curvature. The theory underlying these developments is in part a generalization of that of M. G. Krein and collaborators concerning stability of differential equations in Hilbert space and in part a precise relation between the unitarization of given symplectic linear actions and their full probabilistic quantization. The unique causal structure in the infinite symplectic group is instrumental in these developments.
Quantization of wave equations and hermitian structures in partial differential varieties
Paneitz, S. M.; Segal, I. E.
1980-01-01
Sufficiently close to 0, the solution variety of a nonlinear relativistic wave equation—e.g., of the form □ϕ + m2ϕ + gϕp = 0—admits a canonical Lorentz-invariant hermitian structure, uniquely determined by the consideration that the action of the differential scattering transformation in each tangent space be unitary. Similar results apply to linear time-dependent equations or to equations in a curved asymptotically flat space-time. A close relation of the Riemannian structure to the determination of vacuum expectation values is developed and illustrated by an explicit determination of a perturbative 2-point function for the case of interaction arising from curvature. The theory underlying these developments is in part a generalization of that of M. G. Krein and collaborators concerning stability of differential equations in Hilbert space and in part a precise relation between the unitarization of given symplectic linear actions and their full probabilistic quantization. The unique causal structure in the infinite symplectic group is instrumental in these developments. PMID:16592923
NASA Technical Reports Server (NTRS)
Bean, T. A.; Bowhill, S. A.
1973-01-01
Partial-reflection data collected for the eclipse of July 10, 1972 as well as for July 9 and 11, 1972, are analyzed to determine eclipse effects on D-region electron densities. The partial-reflection experiment was set up to collect data using an on-line PDP-15 computer and DECtape storage. The electron-density profiles show good agreement with results from other eclipses. The partial-reflection programs were changed after the eclipse data collection to improve the operation of the partial-reflection system. These changes were mainly due to expanded computer hardware and have simplified the operations of the system considerably.
Das, J.N.; Paul, S.; Chakrabarti, K.
2004-04-01
Here we report a set of converged cross-section results for double photoionization of helium atoms obtained in the hyperspherical partial wave theory for equal energy sharing kinematics at 6 eV energy above threshold. The calculated cross section results are generally in excellent agreement with the absolute measured results of Doerner et al. [Phys. Rev. 57, 1074 (1998)].
Menouar, Salah; Maamache, Mustapha; Choi, Jeong Ryeol
2010-08-15
The quantum states of time-dependent coupled oscillator model for charged particles subjected to variable magnetic field are investigated using the invariant operator methods. To do this, we have taken advantage of an alternative method, so-called unitary transformation approach, available in the framework of quantum mechanics, as well as a generalized canonical transformation method in the classical regime. The transformed quantum Hamiltonian is obtained using suitable unitary operators and is represented in terms of two independent harmonic oscillators which have the same frequencies as that of the classically transformed one. Starting from the wave functions in the transformed system, we have derived the full wave functions in the original system with the help of the unitary operators. One can easily take a complete description of how the charged particle behaves under the given Hamiltonian by taking advantage of these analytical wave functions.
Foust, F. R.; Bell, T. F.; Spasojevic, M.; Inan, U. S.
2011-06-15
We present results showing the measured Landau damping rate using a high-order discontinuous Galerkin particle-in-cell (DG-PIC) [G. B. Jacobs and J. S. Hesthaven, J. Comput. Phys. 214, 96 (2006)] method. We show that typical damping rates measured in particle-in-cell (PIC) simulations can differ significantly from the linearized Landau damping coefficient and propose a simple numerical method to solve the plasma dispersion function exactly for moderate to high damping rates. Simulation results show a high degree of agreement between the high-order PIC results and this calculated theoretical damping rate.
NASA Astrophysics Data System (ADS)
Hetmaniuk, Ulrich Ladislas
Fast solvers are often designed for problems posed on simple domains. Unfortunately, engineering applications deal with arbitrary domains. To allow the use of fast solvers, fictitious domain methods have been developed. They usually define an auxiliary problem on a rectangle or a parallelepiped. In aerospace and military applications, many scatterers are composed of one major axisymmetric component and a few features. Therefore, the aim of this thesis is to define, for the scattering of acoustic waves, fictitious domain methods which exploit such local axisymmetry. The original exterior problem is first approximated by introducing an absorbing boundary condition on an artificial boundary. A family of absorbing conditions is reviewed. For some simple scatterers, numerical experiments on the position of the artificial boundary reveal that the error induced by the absorbing condition is bounded, as the wave number increases, when the artificial boundary is fixed. Then, for a class of partially axisymmetric scatterers, the truncated computational domain is embedded into an axisymmetric domain. Helmholtz problems are formulated inside this axisymmetric domain and inside each feature. Lagrange multipliers are introduced at the interfaces between the features and the axisymmetric domain to enforce a set of carefully constructed constraints. This formulation is analyzed at the continuous level and is shown to be equivalent to the original one. For the Helmholtz equation defined over the axisymmetric domain, the solution is approximated by truncated Fourier series and finite elements. Properties of this discretization method for the Helmholtz equation are also analyzed on a two-dimensional model problem. Numerical experiments are performed to illustrate the analytical results. For the auxiliary problem inside each feature, classical finite elements are used to approximate the solution. The constraints are enforced pointwise. The resulting algebraic system is solved either
Esfandyari-Kalejahi, A.; Ebrahimi, V.
2014-03-15
We have derived generalized dispersion relations for longitudinal waves in collisionless thermal plasma using linear Vlasov-Poisson kinetic model and nonextensive distributions for electrons. The Maxwellian limit of the dispersion relations, where the q-nonextensive parameter tends to one, is calculated. The generalized dispersion relations are reduced to polynomials for some specific values of q. The well-known modes of oscillations such as the Langmuir and electron acoustic waves have been obtained by solving the dispersion relations. Some new modes of oscillation are also found. Finally, the dependence of the oscillation modes and damps on q is discussed.
NASA Astrophysics Data System (ADS)
Raslan, K. R.; EL-Danaf, Talaat S.; Ali, Khalid K.
2017-07-01
In the present paper, we established a traveling wave solution by using modified Kudryashov method for the space-time fractional nonlinear partial differential equations. The method is used to obtain the exact solutions for different types of the space-time fractional nonlinear partial differential equations such as, the space-time fractional coupled equal width wave equation (CEWE) and the space-time fractional coupled modified equal width wave equation (CMEW), which are the important soliton equations. Both equations are reduced to ordinary differential equations by the use of fractional complex transform and properties of modified Riemann-Liouville derivative. We plot the exact solutions for these equations at different time levels.
NASA Astrophysics Data System (ADS)
Kuruoǧlu, Zeki C.
2016-11-01
Direct numerical solution of the coordinate-space integral-equation version of the two-particle Lippmann-Schwinger (LS) equation is considered without invoking the traditional partial-wave decomposition. The singular kernel of the three-dimensional LS equation in coordinate space is regularized by a subtraction technique. The resulting nonsingular integral equation is then solved via the Nystrom method employing a direct-product quadrature rule for three variables. To reduce the computational burden of discretizing three variables, advantage is taken of the fact that, for central potentials, the azimuthal angle can be integrated out, leaving a two-variable reduced integral equation. A regularization method for the kernel of the two-variable integral equation is derived from the treatment of the singularity in the three-dimensional equation. A quadrature rule constructed as the direct product of single-variable quadrature rules for radial distance and polar angle is used to discretize the two-variable integral equation. These two- and three-variable methods are tested on the Hartree potential. The results show that the Nystrom method for the coordinate-space LS equation compares favorably in terms of its ease of implementation and effectiveness with the Nystrom method for the momentum-space version of the LS equation.
Partial wave analysis of the reaction {gamma}p{yields}p{omega} and the search for nucleon resonances
Williams, M.; Applegate, D.; Bellis, M.; Meyer, C. A.; Dey, B; Dickson, R.; Krahn, Z.; McCracken, M. E.; Moriya, K.; Schumacher, R. A.; Adhikari, K. P.; Careccia, S. L.; Dodge, G. E.; Guler, N.; Klein, A.; Mayer, M.; Nepali, C. S.; Niroula, M. R.; Seraydaryan, H.; Tkachenko, S.
2009-12-15
An event-based partial wave analysis (PWA) of the reaction {gamma}p{yields}p{omega} has been performed on a high-statistics dataset obtained using the CLAS at Jefferson Lab for center-of-mass energies from threshold up to 2.4 GeV. This analysis benefits from access to the world's first high-precision spin-density matrix element measurements, available to the event-based PWA through the decay distribution of {omega}{yields}{pi}{sup +}{pi}{sup -}{pi}{sup 0}. The data confirm the dominance of the t-channel {pi}{sup 0} exchange amplitude in the forward direction. The dominant resonance contributions are consistent with the previously identified states F{sub 15}(1680) and D{sub 13}(1700) near threshold, as well as the G{sub 17}(2190) at higher energies. Suggestive evidence for the presence of a J{sup P}=5/2{sup +} state around 2 GeV, a ''missing'' state, has also been found. Evidence for other states is inconclusive.
NASA Astrophysics Data System (ADS)
Benedito, E.; Fernández-Varea, J. M.; Salvat, F.
2001-03-01
We describe an algorithm for mixed (class II) simulation of electron multiple elastic scattering using numerical differential cross-sections (DCS), which is applicable in a wide energy range, from ˜100 eV to ˜1 GeV. DCSs are calculated by partial-wave analysis, or from a suitable high-energy approximation, and tabulated on a grid of scattering angles and electron energies. The size of the required DCS table is substantially reduced by means of a change of variable that absorbs most of the energy dependence of the DCS. That is, the scattering angle θ is replaced by a variable u, whose probability distribution function varies smoothly with the kinetic energy of the electron. A fast procedure to generate random values of u in restricted intervals is described. The algorithm for the simulation of electron transport in pure elastic scattering media (with energy-loss processes switched off) is obtained by combining this sampling procedure with a simple model for space displacements. The accuracy and stability of this algorithm is demonstrated by comparing results with those from detailed, event by event, simulations using the same DCSs. A complete transport code, including energy losses and the production of secondary radiations, is obtained by coupling the present elastic scattering simulation algorithm to the general-purpose Monte Carlo program PENELOPE. Simulated angular distributions of MeV electrons backscattered in aluminium and gold are in good agreement with experimental data.
NASA Astrophysics Data System (ADS)
Tokgöz, Çaǧatay; Dardona, Sameh
2016-09-01
Electrical failures in avionics systems may result from connector faults. If fault precursors are not detected in advance, they may lead to hard failures such as open and short circuits that could ultimately result in fire or loss of flight critical systems. Therefore, It is crucial to detect, locate, and characterize fault precursors for timely preventive maintenance and mitigation before hard failures occur. In this paper, a physics-based connector model consisting of multiple coaxial line sections with different characteristic impedances and lengths is proposed. Method of Moments (MoM) analyses were performed using commercial electromagnetic simulation software, FEKO, for transverse electric and magnetic (TEM) wave propagation through a connector. The physical parameters of the connector were optimized to match the measured S parameters for multiple insertion depths. The proposed models represent the connector for multiple insertion depths by varying only two length parameters at a time while other parameters are fixed. Insertion depth-dependent resonant frequency shifts observed during measurement are also captured by the model over the full range of fully inserted to barely touching contacts. Hence, the models provide accurate representations of the connector and properly detect precursors to partial insertion faults.
Partial wave analysis of the reaction γp→pω and the search for nucleon resonances
Williams, M.; Applegate, D.; Bellis, M.; ...
2009-12-30
We performed an event-based partial wave analysis (PWA) of the reaction γ p -> p ω on a high-statistics dataset obtained using the CLAS at Jefferson Lab for center-of-mass energies from threshold up to 2.4 GeV. This analysis benefits from access to the world's first high precision spin density matrix element measurements, available to the event-based PWA through the decay distribution of omega-> π+ π - π0. The data confirm the dominance of the t-channel π0 exchange amplitude in the forward direction. The dominant resonance contributions are consistent with the previously identified states F[15](1680) and D[13](1700) near threshold, as wellmore » as the G[17](2190) at higher energies. Suggestive evidence for the presence of a J(P)=5/2+ state around 2 GeV, a "missing" state, has also been found. Evidence for other states is inconclusive.« less
Dubrovsky, V. G.; Topovsky, A. V.
2013-03-15
New exact solutions, nonstationary and stationary, of Veselov-Novikov (VN) equation in the forms of simple nonlinear and linear superpositions of arbitrary number N of exact special solutions u{sup (n)}, n= 1, Horizontal-Ellipsis , N are constructed via Zakharov and Manakov {partial_derivative}-dressing method. Simple nonlinear superpositions are represented up to a constant by the sums of solutions u{sup (n)} and calculated by {partial_derivative}-dressing on nonzero energy level of the first auxiliary linear problem, i.e., 2D stationary Schroedinger equation. It is remarkable that in the zero energy limit simple nonlinear superpositions convert to linear ones in the form of the sums of special solutions u{sup (n)}. It is shown that the sums u=u{sup (k{sub 1})}+...+u{sup (k{sub m})}, 1 Less-Than-Or-Slanted-Equal-To k{sub 1} < k{sub 2} < Horizontal-Ellipsis < k{sub m} Less-Than-Or-Slanted-Equal-To N of arbitrary subsets of these solutions are also exact solutions of VN equation. The presented exact solutions include as superpositions of special line solitons and also superpositions of plane wave type singular periodic solutions. By construction these exact solutions represent also new exact transparent potentials of 2D stationary Schroedinger equation and can serve as model potentials for electrons in planar structures of modern electronics.
NASA Astrophysics Data System (ADS)
Guseinov, I. I.; Mamedov, B. A.; Ekenoğlu, A. S.
2006-08-01
A detailed study is undertaken, using various techniques, in deriving analytical formula of Franck-Condon overlap integrals and matrix elements of various functions of power (x), exponential (exp(-2cx)) and Gaussian (exp(-cx)) over displaced harmonic oscillator wave functions with arbitrary frequencies. The results suggested by previous experience with various algorithms are presented in mathematically compact form and consist of generalization. The relationships obtained are valid for the arbitrary values of parameters and the computation results are in good agreement with the literature. The numerical results illustrate clearly a further reduction in calculation times. Program summaryProgram name:FRANCK Catalogue identifier:ADXX_v1_0 Program summary URL:http://cpc.cs.qub.ac.uk/summaries/ADXX_v1_0 Program obtainable from: CPC Program Library, Queen's University of Belfast, N. Ireland Programming language:Mathematica 5.0 Computer:Pentium M 1.4 GHz Operating system:Mathematica 5.0 RAM:512 MB No. of lines in distributed program, including test data, etc.:825 No. of bytes in distributed program, including test data, etc.:16 344 Distribution format:tar.gz Nature of problem:The programs calculate the Franck-Condon factors and matrix elements over displaced harmonic oscillator wave functions with arbitrary quantum numbers (n,n), frequencies (a,a) and displacement (d) for the various functions of power (x), exponential (exp(-2cx)) and Gaussian (exp(-cx)). Solution method:The Franck-Condon factors and matrix elements are evaluated using binomial coefficients and basic integrals. Restrictions:The results obtained by the present programs show great numerical stability for arbitrary quantum numbers (n,n), frequencies (a,a) and displacement (d). Unusual features:None Running time:As an example, for the value of Franck-Condon Overlap Integral I(d;α,α)=0.004405001887372332 with n=3, n=2, a=4, a=3, d=2, the compilation time in a Pentium M 1.4 GHz computer is 0.18 s. Execution
New Travelling Solitary Wave and Periodic Solutions of the Generalized Kawahara Equation
Chen Huaitang; Yin Huicheng
2007-09-06
A simple elliptic equation method is used for constructing exact trevelling wave solutions of nonlinear partial differential equations(PDEs) in a unified way. With the aid of Maple, more new travelling solitary wave and periodic solutions are obtained for the generalized Kawahara equation.
NASA Astrophysics Data System (ADS)
Laundy, David; Alcock, Simon G.; Alianelli, Lucia; Sutter, John P.; Sawhney, Kawal J. S.; Chubar, Oleg
2014-09-01
A full wave propagation of X-rays from source to sample at a storage ring beamline requires simulation of the electron beam source and optical elements in the beamline. The finite emittance source causes the appearance of partial coherence in the wave field. Consequently, the wavefront cannot be treated exactly with fully coherent wave propagation or fully incoherent ray tracing. We have used the wavefront code Synchrotron Radiation Workshop (SRW) to perform partially coherent wavefront propagation using a parallel computing cluster at the Diamond Light Source. Measured mirror profiles have been used to correct the wavefront for surface errors.
Singleton, Jr., Robert; Israel, Daniel M.; Doebling, Scott William; Woods, Charles Nathan; Kaul, Ann; Walter, Jr., John William; Rogers, Michael Lloyd
2016-05-09
For code verification, one compares the code output against known exact solutions. There are many standard test problems used in this capacity, such as the Noh and Sedov problems. ExactPack is a utility that integrates many of these exact solution codes into a common API (application program interface), and can be used as a stand-alone code or as a python package. ExactPack consists of python driver scripts that access a library of exact solutions written in Fortran or Python. The spatial profiles of the relevant physical quantities, such as the density, fluid velocity, sound speed, or internal energy, are returned at a time specified by the user. The solution profiles can be viewed and examined by a command line interface or a graphical user interface, and a number of analysis tools and unit tests are also provided. We have documented the physics of each problem in the solution library, and provided complete documentation on how to extend the library to include additional exact solutions. ExactPack’s code architecture makes it easy to extend the solution-code library to include additional exact solutions in a robust, reliable, and maintainable manner.
NASA Astrophysics Data System (ADS)
Chrysos, Michael
2016-03-01
Relying on a simple analytic two-atom model in which the anisotropy of the interaction dipole polarizability obeys an inverse power law as a function of separation, we offer mathematical and numerical evidence that, in a monoatomic gas, the free-free Raman spectrum for a collisional pair of two different isotopes, a-a', may vastly differ from that for a-a. This result is obtained even if a and a' are assumed to have the same mass and zero nuclear spin and even if a-a and a-a' are subject to the same interaction polarizability and potential. The mechanism responsible for this effect is inherent in the parity of the partial-wave rotational quantum number J: given that the contribution of each partial wave to the Raman cross section is controlled by a polarizability-transition matrix-element and that each of those matrix-elements has a radial component with a magnitude slightly smaller than that of the preceding partial wave, a deficit which disfavors the odd-numbered waves is accumulated upon summing over J. In the far high-frequency wing, this deficit tends to generate spectral intensities for a-a' about half as great as the a-a ones, a tendency which becomes all the more effective as temperature is decreased. We show for instance that, for the spectral branch ΔJ = 2, the fractional difference between the free-free differential cross sections for a-a and a-a' is /1 2 /( 1 - x2 ) 3 1 + 3 x 4 , with x = √{ E / E ' } (E (E') being the initial (final) state energy of the pair and E' - E = hcν (ν > 0)). Remarkably, this quantity is zero at ν ≈ 0 but goes to /1 2 for ν ≫ 0. For ΔJ = 0, analogous conclusions may be drawn from the expression ( 1 + /ln ( 1+x/1-x ) 2 arctan x ) - 1 .
Pietrzak, Robert H.; Goldstein, Risë B.; Southwick, Steven M.; Grant, Bridget F.
2011-01-01
Objective This study examined associations between lifetime trauma exposures, PTSD and partial PTSD, and past-year medical conditions in a nationally representative sample of U.S. adults. Methods Face-to-face interviews were conducted with 34,653 participants in the Wave 2 National Epidemiologic Survey on Alcohol and Related Conditions. Logistic regression analyses evaluated associations of trauma exposure, PTSD and partial PTSD with respondent-reported medical diagnoses. Results After adjustment for sociodemographic characteristics and comorbid Axis I and II disorders, respondents with full PTSD were more likely than traumatized respondents without full or partial PTSD (comparison group) to report diagnoses of diabetes mellitus, noncirrhotic liver disease, angina pectoris, tachycardia, hypercholesterolemia, other heart disease, stomach ulcer, HIV seropositivity, gastritis, and arthritis (odds ratios [ORs]=1.2-2.5). Respondents with partial PTSD were more likely than the comparison group to report past-year diagnoses of stomach ulcer, angina pectoris, tachycardia, and arthritis (ORs=1.3-1.6). Men with full and partial PTSD were more likely than controls to report diagnoses of hypertension (both ORs=1.6), and both men and women with PTSD (ORs=1.8 and 1.6, respectively), and men with partial PTSD (OR=2.0) were more likely to report gastritis. Total number of lifetime traumatic event types was associated with many assessed medical conditions (ORs=1.04-1.16), reducing the magnitudes and rendering non-significant some of the associations between PTSD status and medical conditions. Conclusions Greater lifetime trauma exposure and PTSD are associated with numerous medical conditions, many of which are stress-related and chronic, in U.S. adults. Partial PTSD is associated with intermediate odds of some of these conditions. PMID:21949429
NASA Astrophysics Data System (ADS)
Yao, Ruo-Xia; Wang, Wei; Chen, Ting-Hua
2014-11-01
Motivated by the widely used ansätz method and starting from the modified Riemann—Liouville derivative together with a fractional complex transformation that can be utilized to transform nonlinear fractional partial differential equations to nonlinear ordinary differential equations, new types of exact traveling wave solutions to three important nonlinear space- and time-fractional partial differential equations are obtained simultaneously in terms of solutions of a Riccati equation. The results are new and first reported in this paper.
Exact solutions and singularities in string theory
Horowitz, G.T. ); Tseytlin, A.A. )
1994-10-15
We construct two new classes of exact solutions to string theory which are not of the standard plane wave of gauged WZW type. Many of these solutions have curvature singularities. The first class includes the fundamental string solution, for which the string coupling vanishes near the singularity. This suggests that the singularity may not be removed by quantum corrections. The second class consists of hybrids of plane wave and gauged WZW solutions. We discuss a four-dimensional example in detail.
Exact propagators for some degenerate hyperbolic operators
NASA Astrophysics Data System (ADS)
Beals, Richard; Kannai, Yakar
2006-10-01
Exact propagators are obtained for the degenerate second order hyperbolic operators ∂2 t - t 2 l Δ x , l=1,2,..., by analytic continuation from the degenerate elliptic operators ∂2 t + t 2 l Δ x . The partial Fourier transforms are also obtained in closed form, leading to integral transform formulas for certain combinations of Bessel functions and modified Bessel functions.
Wong, Kevin; Levi, Jessica R
2017-03-01
Evaluate the content and readability of health information regarding partial tonsillectomy. A web search was performed using the term partial tonsillectomy in Google, Yahoo!, and Bing. The first 50 websites from each search were evaluated using HONcode standards for quality and content. Readability was assessed using the Flesch-Kincaid Grade Level (FKGL), Flesch Reading Ease, Gunning-Fog Index, Coleman-Liau Index, Automated Readability Index, and SMOG score. The Freeman-Halton extension of Fisher's exact test was used to compare categorical differences between engines. Less than half of the websites mentioned patient eligibility criteria (43.3%), referenced peer-reviewed literature (43.3%), or provided a procedure description (46.7%). Twenty-two websites (14.7%) were unrelated to partial tonsillectomy, and over half contained advertisements (52%). These finding were consistent across search engines and search terms. The mean FKGL was 11.6 ± 0.11, Gunning-Fog Index was 15.1 ± 0.13, Coleman-Liau Index was 14.6 ± 0.11, ARI was 12.9 ± 0.13, and SMOG grade was 14.0 ± 0.1. All readability levels exceeded the abilities of the average American adult. Current online information regarding partial tonsillectomy may not provide adequate information and may be written at a level too difficult for the average adult reader.
Lin, D.-H.
2004-05-01
Partial wave theory of a three dimensional scattering problem for an arbitrary short range potential and a nonlocal Aharonov-Bohm magnetic flux is established. The scattering process of a 'hard sphere'-like potential and the magnetic flux is examined. An anomalous total cross section is revealed at the specific quantized magnetic flux at low energy which helps explain the composite fermion and boson model in the fractional quantum Hall effect. Since the nonlocal quantum interference of magnetic flux on the charged particles is universal, the nonlocal effect is expected to appear in a quite general potential system and will be useful in understanding some other phenomena in mesoscopic physics.
NASA Astrophysics Data System (ADS)
Maneva, Yana; Alvarez Laguna, Alejandro; Lani, Andrea; Poedts, Stefaan
2017-04-01
Partial ionization effects related to electron-neutral and ion-neutral interactions play an important role in the weakly ionized solar chromosphere, where the number density of neutrals vastly exceeds the number density of protons. The interactions between the magnetized plasma and the neutral particles can significantly change the resistivity of the plasma and lead to additional heating. Such multi-species interactions cannot be described within the simple MHD single fluid models and the non-equilibrium partial ionization effects cannot be properly captured even when generalized MHD models including Ambipolar diffusion terms are taken into account. A more detailed approach to describe these processes in the solar chromosphere is to use multi-fluid numerical simulations where the neutrals and the plasma species are described as separate fluids, coupled through the chemical reactions, additional currents, friction and resistivity terms. In this study we have elaborate on our previous results and perform 2D two-fluid simulations with an electron-proton fluid and a separate neutral fluid using an improved model where the density and temperature dependence of the plasma viscosities and heat conduction for the neutrals is assumed. Previously we have investigated the chromospheric propagation of fast and slow waves generated by a fixed photospheric foot-point velocity driver. In this study we have varied the velocity driver's frequency and location. We have also distinguished between the types of drivers which excite pure slow/Alfvén waves or a mixture of slow and fast waves. Finally, we have studied the non-uniform heating caused by the waves.
Exact Damping for Relativistic Plasma Waves
NASA Astrophysics Data System (ADS)
Swanson, D. G.
2000-10-01
The damping coefficient for a relativistic plasma may be reduced to a single integral with no approximations through use of the Newberger sum rules when k_z=0. Expanding the integral in a series, the leading term agrees with the leading term of the weak relativistic function F_7/2(z), but the remaining terms are not alike. The single expansion parameter is proportional to λ z, indicating that the result may NOT be accurately expressed as a series involving products of Bessel functions of argument λ times functions F_q(z). Expressions for the imaginary parts of all dielectric tensor elements will be presented. The real parts of the tensor elements are not as simple, but because the elements are analytic, they must likewise be modified.
Nakashima, Hiroyuki; Nakatsuji, Hiroshi
2013-07-28
We propose here fast antisymmetrization procedures for the partially correlated wave functions that appear in the free complement-local Schrödinger equation (FC-LSE) method. Pre-analysis of the correlation diagram, referred to as dot analysis, combined with the determinant update technique based on the Laplace expansion, drastically reduces the orders of the antisymmetrization computations. When the complement functions include only up to single-correlated terms, the order of computations is O(N(3)), which is the same as the non-correlated case. Similar acceleration is obtained for general correlated functions as a result of dot analysis. This algorithm has been successfully used in our laboratory in actual FC-LSE calculations for accurately solving the many-electron Schrödinger equations of atoms and molecules. The proposed method is general and applicable to the sampling-type methodology of other partially correlated wave functions like those in the quantum Monte Carlo and modern Hylleraas-type methods.
Nakashima, Hiroyuki; Nakatsuji, Hiroshi
2013-07-28
We propose here fast antisymmetrization procedures for the partially correlated wave functions that appear in the free complement-local Schrödinger equation (FC-LSE) method. Pre-analysis of the correlation diagram, referred to as dot analysis, combined with the determinant update technique based on the Laplace expansion, drastically reduces the orders of the antisymmetrization computations. When the complement functions include only up to single-correlated terms, the order of computations is O(N{sup 3}), which is the same as the non-correlated case. Similar acceleration is obtained for general correlated functions as a result of dot analysis. This algorithm has been successfully used in our laboratory in actual FC-LSE calculations for accurately solving the many-electron Schrödinger equations of atoms and molecules. The proposed method is general and applicable to the sampling-type methodology of other partially correlated wave functions like those in the quantum Monte Carlo and modern Hylleraas-type methods.
NASA Technical Reports Server (NTRS)
Vranish, John M. (Inventor)
2010-01-01
A partial gear bearing including an upper half, comprising peak partial teeth, and a lower, or bottom, half, comprising valley partial teeth. The upper half also has an integrated roller section between each of the peak partial teeth with a radius equal to the gear pitch radius of the radially outwardly extending peak partial teeth. Conversely, the lower half has an integrated roller section between each of the valley half teeth with a radius also equal to the gear pitch radius of the peak partial teeth. The valley partial teeth extend radially inwardly from its roller section. The peak and valley partial teeth are exactly out of phase with each other, as are the roller sections of the upper and lower halves. Essentially, the end roller bearing of the typical gear bearing has been integrated into the normal gear tooth pattern.
On exactly conservative integrators
Bowman, J.C.; Shadwick, B.A.; Morrison, P.J.
1997-06-01
Traditional explicit numerical discretizations of conservative systems generically predict artificial secular drifts of nonlinear invariants. These algorithms are based on polynomial functions of the time step. The authors discuss a general approach for developing explicit algorithms that conserve such invariants exactly. They illustrate the method by applying it to the truncated two-dimensional Euler equations.
Local relativistic exact decoupling
NASA Astrophysics Data System (ADS)
Peng, Daoling; Reiher, Markus
2012-06-01
We present a systematic hierarchy of approximations for local exact decoupling of four-component quantum chemical Hamiltonians based on the Dirac equation. Our ansatz reaches beyond the trivial local approximation that is based on a unitary transformation of only the atomic block-diagonal part of the Hamiltonian. Systematically, off-diagonal Hamiltonian matrix blocks can be subjected to a unitary transformation to yield relativistically corrected matrix elements. The full hierarchy is investigated with respect to the accuracy reached for the electronic energy and for selected molecular properties on a balanced test molecule set that comprises molecules with heavy elements in different bonding situations. Our atomic (local) assembly of the unitary exact-decoupling transformation—called local approximation to the unitary decoupling transformation (DLU)—provides an excellent local approximation for any relativistic exact-decoupling approach. Its order-N2 scaling can be further reduced to linear scaling by employing a neighboring-atomic-blocks approximation. Therefore, DLU is an efficient relativistic method well suited for relativistic calculations on large molecules. If a large molecule contains many light atoms (typically hydrogen atoms), the computational costs can be further reduced by employing a well-defined nonrelativistic approximation for these light atoms without significant loss of accuracy. We also demonstrate that the standard and straightforward transformation of only the atomic block-diagonal entries in the Hamiltonian—denoted diagonal local approximation to the Hamiltonian (DLH) in this paper—introduces an error that is on the order of the error of second-order Douglas-Kroll-Hess (i.e., DKH2) when compared with exact-decoupling results. Hence, the local DLH approximation would be pointless in an exact-decoupling framework, but can be efficiently employed in combination with the fast to evaluate DKH2 Hamiltonian in order to speed up calculations
Exact integrability in quantum field theory
Thacker, H.B.
1980-08-01
The treatment of exactly integrable systems in various branches of two-dimensional classical and quantum physics has recently been placed in a unified framework by the development of the quantum inverse method. This method consolidates a broad range of developments in classical nonlinear wave (soliton) physics, statistical mechanics, and quantum field theory. The essential technique for analyzing exactly integrable quantum systems was invested by Bethe in 1931. The quantum-mechanical extension of the inverse scattering method and its relationship to the methods associated with Bethe's ansatz are examined here. (RWR)
1985-09-23
6420 5697 26898 0 0 10:18:30 1.06 4420 18019 11092 0 0 10:20:07 1.06 3420 14879 1115 0 0 10:21:4 1.06 2700 5674 0 0 0 10:23:21 1.08 2300 5739 1264 0 0...for Detection and Measurement of Discharge (Corona) Pulses in Evaluation of Insulation Systems," ASTM D1868-73. 5. R. J. Densley, "Partial Discharge...under Direct-Voltage Conditions," Ch. 11 in Engineering Dielectrics, Vol. 1: Corona Measurement and Interpretation, ASTM 669, eds. R. Bartnikas and E. J
Exact Relativistic `Antigravity' Propulsion
NASA Astrophysics Data System (ADS)
Felber, Franklin S.
2006-01-01
The Schwarzschild solution is used to find the exact relativistic motion of a payload in the gravitational field of a mass moving with constant velocity. At radial approach or recession speeds faster than 3-1/2 times the speed of light, even a small mass gravitationally repels a payload. At relativistic speeds, a suitable mass can quickly propel a heavy payload from rest nearly to the speed of light with negligible stresses on the payload.
Exercises in exact quantization
NASA Astrophysics Data System (ADS)
Voros, André
2000-10-01
The formalism of exact 1D quantization is reviewed in detail and applied to the spectral study of three concrete Schrödinger Hamiltonians [-d2/dq2 + V(q)]± on the half-line {q>0}, with a Dirichlet (-) or Neumann (+) condition at q = 0. Emphasis is put on the analytical investigation of the spectral determinants and spectral zeta-functions with respect to singular perturbation parameters. We first discuss the homogeneous potential V(q) = qN as N→ + ∞ versus its (solvable) N = ∞ limit (an infinite square well): useful distinctions are established between regular and singular behaviours of spectral quantities; various identities among the square-well spectral functions are unravelled as limits of finite-N properties. The second model is the quartic anharmonic oscillator: the zero-energy spectral determinants det (-d2/dq2 + q4 + vq2)± are explicitly analysed in detail, revealing many special values, algebraic identities between Taylor coefficients and functional equations of a quartic type coupled to asymptotic v→∞ properties of Airy type. The third study addresses the potentials V(q) = qN + vqN/2-1 of even degree: their zero-energy spectral determinants prove computable in closed form, and the generalized eigenvalue problems with v as spectral variable admit exact quantization formulae which are perfect extensions of the harmonic oscillator case (corresponding to N = 2); these results partly reflect the presence of quasi-exactly solvable potentials in the family above.
Bliokh, K Yu; Bliokh, Yu P
2007-06-01
We present a solution to the problem of partial reflection and refraction of a polarized paraxial Gaussian beam at the interface between two transparent media. The Fedorov-Imbert transverse shifts of the centers of gravity of the reflected and refracted beams are calculated. Our results differ in the general case from those derived previously by other authors. In particular, they obey general conservation law for the beams' total angular momentum but do not obey one-particle conservation laws for individual photons, which have been proposed by [Onoda Phys. Rev. Lett. 93, 083901 (2004)]. We ascertain that these circumstances relate to the artificial model accepted in the literature for the polarized beam; this model does not fit to real beams. The present paper resolves the recent controversy and confirms the results of our previous paper [Bliokh Phys. Rev. Lett. 96, 073903 (2006)]. In addition, a diffraction effect of angular transverse shifts of the reflected and refracted beams is described.
Yang, Yong; Wei, Zhi-tao; Lu, Jin-shan; Zu, Qiang; Wang, Haiyi; Zhang, Xu
2012-06-01
To introduce transurethal partial cystectomy with a 2013 nm thulium laser as a treatment for paraganglioma of the urinary bladder in adults. Three patients with pheochromocytomas were treated transurethrally with a 2013 nm thulium laser under general anesthesia. A 2013 nm thulium laser was used to incise the full-thickness bladder wall around the tumors. The entire bladder wall was peeled between the detrusor muscle layer and outer connective tissues. Tumors with full-thickness detrusor muscle layers at the base were removed together. Intraoperative fluctuation of blood pressure, preoperative values of 24-hour urine catecholamine (CA) and vanillylmandelic acid (VMA), and postoperative complications were observed, and postoperative followtwoups were performed. All operations were successful. Operative time was 25 to 32 minutes. Perioperative blood pressure was stable in two cases while blood pressure fluctuated in the third case. When the entire tumor and the full-thickness bladder wall at the base were freed, blood pressure reverted to stability. All values of 24-hour urine CA and VMA were within normal limits postoperatively. Patients were followed for 7 to 9 months postoperatively with no recurrence. This series included highly selected patients who were treated by a single senior surgeon who is rich in experience in performing 2013 nm thulium laser procedures. To our knowledge, this is the first report of a 2013 nm thulium laser used to treat bladder pheochromocytoma. It can be applied to precisely vaporize and incise the full-thickness bladder wall and cut down the blood supply of the tumor, then peel it while blood pressure remains stable, thus completing partial cystectomy for bladder pheochromocytoma safely.
NASA Astrophysics Data System (ADS)
Murthy, Ganpathy
2000-01-01
It is well known that the ν = 2/5 state is unpolarized at zero Zeeman energy, while it is fully polarized at large Zeeman energies. A novel state with a charge/spin density wave order for composite fermions is proposed to exist at intermediate values of the Zeeman coupling for ν = 2/5. This state has half the maximum possible polarization, and can be extended to other incompressible fractions. A Hartree-Fock calculation based on the new approach for all fractional quantum Hall states developed by R. Shankar and the author is used to demonstrate the stability of this state to single-particle excitations and to compute gaps. A very recent experiment shows direct evidence for this state.
Murthy
2000-01-10
It is well known that the nu = 2/5 state is unpolarized at zero Zeeman energy, while it is fully polarized at large Zeeman energies. A novel state with a charge/spin density wave order for composite fermions is proposed to exist at intermediate values of the Zeeman coupling for nu = 2/5. This state has half the maximum possible polarization, and can be extended to other incompressible fractions. A Hartree-Fock calculation based on the new approach for all fractional quantum Hall states developed by R. Shankar and the author is used to demonstrate the stability of this state to single-particle excitations and to compute gaps. A very recent experiment shows direct evidence for this state.
Linearly exact parallel closures for slab geometry
NASA Astrophysics Data System (ADS)
Ji, Jeong-Young; Held, Eric D.; Jhang, Hogun
2013-08-01
Parallel closures are obtained by solving a linearized kinetic equation with a model collision operator using the Fourier transform method. The closures expressed in wave number space are exact for time-dependent linear problems to within the limits of the model collision operator. In the adiabatic, collisionless limit, an inverse Fourier transform is performed to obtain integral (nonlocal) parallel closures in real space; parallel heat flow and viscosity closures for density, temperature, and flow velocity equations replace Braginskii's parallel closure relations, and parallel flow velocity and heat flow closures for density and temperature equations replace Spitzer's parallel transport relations. It is verified that the closures reproduce the exact linear response function of Hammett and Perkins [Phys. Rev. Lett. 64, 3019 (1990)] for Landau damping given a temperature gradient. In contrast to their approximate closures where the vanishing viscosity coefficient numerically gives an exact response, our closures relate the heat flow and nonvanishing viscosity to temperature and flow velocity (gradients).
Bliokh, K. Yu.; Bliokh, Yu. P.
2007-06-15
We present a solution to the problem of partial reflection and refraction of a polarized paraxial Gaussian beam at the interface between two transparent media. The Fedorov-Imbert transverse shifts of the centers of gravity of the reflected and refracted beams are calculated. Our results differ in the general case from those derived previously by other authors. In particular, they obey general conservation law for the beams' total angular momentum but do not obey one-particle conservation laws for individual photons, which have been proposed by [Onoda et al. Phys. Rev. Lett. 93, 083901 (2004)]. We ascertain that these circumstances relate to the artificial model accepted in the literature for the polarized beam; this model does not fit to real beams. The present paper resolves the recent controversy and confirms the results of our previous paper [Bliokh et al. Phys. Rev. Lett. 96, 073903 (2006)]. In addition, a diffraction effect of angular transverse shifts of the reflected and refracted beams is described.
Catterall, Simon; Kaplan, David B.; Unsal, Mithat
2009-03-31
We provide an introduction to recent lattice formulations of supersymmetric theories which are invariant under one or more real supersymmetries at nonzero lattice spacing. These include the especially interesting case of N = 4 SYM in four dimensions. We discuss approaches based both on twisted supersymmetry and orbifold-deconstruction techniques and show their equivalence in the case of gauge theories. The presence of an exact supersymmetry reduces and in some cases eliminates the need for fine tuning to achieve a continuum limit invariant under the full supersymmetry of the target theory. We discuss open problems.
NASA Astrophysics Data System (ADS)
Trautman, Andrzej
2017-07-01
Historical remarks on early theoretical work on the subject. Very early on, Einstein introduced the notion of gravitational waves, but later became convinced that they did not exist as a physical phenomenon. Exact solutions of Einstein’s equations representing waves were found by a number of authors, contributing to their final acceptance as part of physics.
ERIC Educational Resources Information Center
Huang, Yi Ting; Spelke, Elizabeth; Snedeker, Jesse
2013-01-01
Number words are generally used to refer to the exact cardinal value of a set, but cognitive scientists disagree about their meanings. Although most psychological analyses presuppose that numbers have exact semantics ("two" means exactly two), many linguistic accounts propose that numbers have lower-bounded semantics (at least two), and…
Exact approaches for scaffolding
2015-01-01
This paper presents new structural and algorithmic results around the scaffolding problem, which occurs prominently in next generation sequencing. The problem can be formalized as an optimization problem on a special graph, the "scaffold graph". We prove that the problem is polynomial if this graph is a tree by providing a dynamic programming algorithm for this case. This algorithm serves as a basis to deduce an exact algorithm for general graphs using a tree decomposition of the input. We explore other structural parameters, proving a linear-size problem kernel with respect to the size of a feedback-edge set on a restricted version of Scaffolding. Finally, we examine some parameters of scaffold graphs, which are based on real-world genomes, revealing that the feedback edge set is significantly smaller than the input size. PMID:26451725
Exact solutions of forced Burgers equations with time variable coefficients
NASA Astrophysics Data System (ADS)
Büyükaşık, Şirin A.; Pashaev, Oktay K.
2013-07-01
In this paper, we consider a forced Burgers equation with time variable coefficients of the form Ut+(μ˙(t)/μ(t))U+UUx=(1/2μ(t))Uxx-ω2(t)x, and obtain an explicit solution of the general initial value problem in terms of a corresponding second order linear ordinary differential equation. Special exact solutions such as generalized shock and multi-shock waves, triangular wave, N-wave and rational type solutions are found and discussed. Then, we introduce forced Burgers equations with constant damping and an exponentially decaying diffusion coefficient as exactly solvable models. Different type of exact solutions are obtained for the critical, over and under damping cases, and their behavior is illustrated explicitly. In particular, the existence of inelastic type of collisions is observed by constructing multi-shock wave solutions, and for the rational type solutions the motion of the pole singularities is described.
NASA Astrophysics Data System (ADS)
Yasuda, Seiji; Miura, Hitoshi; Nakamoto, Taishi
2009-11-01
We carried out three-dimensional hydrodynamics simulations of the disruption of a partially-molten dust particle exposed to high-speed gas flow to examine the compound chondrule formation due to mutual collisions between the fragments (fragment-collision model; [Miura, H., Yasuda, S., Nakamoto, T., 2008a. Icarus194, 811-821]). In the shock-wave heating model, which is one of the most plausible models for chondrule formation, the gas friction heats and melts the surface of the cm-sized dust particle (parent particle) and then the strong gas ram pressure causes the disruption of the molten surface layer. The hydrodynamics simulation shows details of the disruptive motion of the molten surface, production of many fragments and their trajectories parting from the parent particle, and mutual collisions among them. In our simulation, we identified 32 isolated fragments extracted from the parent particle. The size distribution of the fragments was similar to that obtained from the aerodynamic experiment in which a liquid layer was attached to a solid core and it was exposed to a gas flow. We detected 12 collisions between the fragments, which may result in the compound chondrule formation. We also analyzed the paths of all the fragments in detail and found the importance of the shadow effect in which a fragment extracted later blocks the gas flow toward a fragment extracted earlier. We examined the collision velocity and impact parameter of each collision and found that 11 collisions should result in coalescence. It means that the ratio of coalescent bodies to single bodies formed in this disruption of a parent particle is R=11/(32-11)=0.52. We concluded that compound chondrule formation can occur just after the disruption of a cm-sized molten dust particle in shock-wave heating.
NASA Astrophysics Data System (ADS)
Williams, Mike
This work presents measurements of differential cross sections, dsigma/dcos qwCM , and spin density matrix elements, r0MM' , for the reaction gammap → po in the energy range 1.72 GeV< s <2.84 GeV. The data were collected at Jefferson Lab, using the CLAS detector, as part of the g11a run period in 2004. Our r0MM' measurements vastly increase the precision of the world's data and extend the large angle measurements by over 400 MeV in s . Our data confirms that for s < 2.1 GeV, the forward angle (small |t|) production amplitude is dominated by t-channel pi0 exchange. At higher energies, existing non-resonant models do a poor job of describing our data. In particular, u-channel models fail to reproduce our highest energy backwards r0MM' measurements. A mass-independent partial wave analysis has also been performed. Near threshold, the dominant resonance contributions extracted are the **** F15 (1680) and *** D 13(1700). Together with the t-channel pi0 exchange, these three waves provide a remarkably good description of our differential cross section and spin density matrix element measurements for s < 2 GeV. Strong, but not conclusive, evidence for the **** G17(2190) has also been extracted. Improved non-resonant models may be necessary to irrefutably show whether this state contributes to o photoproduction. Evidence for missing resonances is suggestive, but inconclusive without theoretical input.
Confidence intervals that match Fisher's exact or Blaker's exact tests
Fay, Michael P.
2010-01-01
When analyzing a 2 × 2 table, the two-sided Fisher's exact test and the usual exact confidence interval (CI) for the odds ratio may give conflicting inferences; for example, the test rejects but the associated CI contains an odds ratio of 1. The problem is that the usual exact CI is the inversion of the test that rejects if either of the one-sided Fisher's exact tests rejects at half the nominal significance level. Further, the confidence set that is the inversion of the usual two-sided Fisher's exact test may not be an interval, so following Blaker (2000, Confidence curves and improved exact confidence intervals for discrete distributions. Canadian Journal of Statistics 28, 783–798), we define the “matching” interval as the smallest interval that contains the confidence set. We explore these 2 versions of Fisher's exact test as well as an exact test suggested by Blaker (2000) and provide the R package exact2 ×2 which automatically assigns the appropriate matching interval to each of the 3 exact tests. PMID:19948745
Partial wave analysis of the reaction p (3.5 GeV) + p → pK+ Λ to search for the " ppK-" bound state
NASA Astrophysics Data System (ADS)
Agakishiev, G.; Arnold, O.; Belver, D.; Belyaev, A.; Berger-Chen, J. C.; Blanco, A.; Böhmer, M.; Boyard, J. L.; Cabanelas, P.; Chernenko, S.; Dybczak, A.; Epple, E.; Fabbietti, L.; Fateev, O.; Finocchiaro, P.; Fonte, P.; Friese, J.; Fröhlich, I.; Galatyuk, T.; Garzón, J. A.; Gernhäuser, R.; Göbel, K.; Golubeva, M.; González-Díaz, D.; Guber, F.; Gumberidze, M.; Heinz, T.; Hennino, T.; Holzmann, R.; Ierusalimov, A.; Iori, I.; Ivashkin, A.; Jurkovic, M.; Kämpfer, B.; Karavicheva, T.; Koenig, I.; Koenig, W.; Kolb, B. W.; Kornakov, G.; Kotte, R.; Krása, A.; Krizek, F.; Krücken, R.; Kuc, H.; Kühn, W.; Kugler, A.; Kunz, T.; Kurepin, A.; Ladygin, V.; Lalik, R.; Lapidus, K.; Lebedev, A.; Lopes, L.; Lorenz, M.; Maier, L.; Mangiarotti, A.; Markert, J.; Metag, V.; Michel, J.; Müntz, C.; Münzer, R.; Naumann, L.; Pachmayer, Y. C.; Palka, M.; Parpottas, Y.; Pechenov, V.; Pechenova, O.; Pietraszko, J.; Przygoda, W.; Ramstein, B.; Reshetin, A.; Rustamov, A.; Sadovsky, A.; Salabura, P.; Schmah, A.; Schwab, E.; Siebenson, J.; Sobolev, Yu. G.; Spataro, S.; Spruck, B.; Ströbele, H.; Stroth, J.; Sturm, C.; Tarantola, A.; Teilab, K.; Tlusty, P.; Traxler, M.; Tsertos, H.; Vasiliev, T.; Wagner, V.; Weber, M.; Wendisch, C.; Wüstenfeld, J.; Yurevich, S.; Zanevsky, Y.; Sarantsev, A. V.
2015-03-01
Employing the Bonn-Gatchina partial wave analysis framework (PWA), we have analyzed HADES data of the reaction p (3.5 GeV) + p → pK+ Λ. This reaction might contain information about the kaonic cluster " ppK-" (with quantum numbers JP =0- and total isospin I = 1 / 2) via its decay into pΛ. Due to interference effects in our coherent description of the data, a hypothetical K ‾ NN (or, specifically " ppK-") cluster signal need not necessarily show up as a pronounced feature (e.g. a peak) in an invariant mass spectrum like pΛ. Our PWA analysis includes a variety of resonant and non-resonant intermediate states and delivers a good description of our data (various angular distributions and two-hadron invariant mass spectra) without a contribution of a K ‾ NN cluster. At a confidence level of CLs = 95% such a cluster cannot contribute more than 2-12% to the total cross section with a pK+ Λ final state, which translates into a production cross-section between 0.7 μb and 4.2 μb, respectively. The range of the upper limit depends on the assumed cluster mass, width and production process.
Partial wave analysis of the reaction p(3.5 GeV) + p → pK+ Λ to search for the "ppK–" bound state
Agakishiev, G.; Arnold, O.; Belver, D.; ...
2015-01-26
Employing the Bonn–Gatchina partial wave analysis framework (PWA), we have analyzed HADES data of the reaction p(3.5GeV) + p → pK+Λ. This reaction might contain information about the kaonic cluster “ppK-” (with quantum numbers JP=0- and total isospin I =1/2) via its decay into pΛ. Due to interference effects in our coherent description of the data, a hypothetical K ¯NN (or, specifically “ppK-”) cluster signal need not necessarily show up as a pronounced feature (e.g. a peak) in an invariant mass spectrum like pΛ. Our PWA analysis includes a variety of resonant and non-resonant intermediate states and delivers a goodmore » description of our data (various angular distributions and two-hadron invariant mass spectra) without a contribution of a K ¯NN cluster. At a confidence level of CLs=95% such a cluster cannot contribute more than 2–12% to the total cross section with a pK+ Λ final state, which translates into a production cross-section between 0.7 μb and 4.2 μb, respectively. The range of the upper limit depends on the assumed cluster mass, width and production process.« less
Andreev, Pavel A; Iqbal, Z
2016-03-01
We consider the separate spin evolution of electrons and positrons in electron-positron and electron-positron-ion plasmas. We consider the oblique propagating longitudinal waves in these systems. Working in a regime of high-density n(0) ∼ 10(27) cm(-3) and high-magnetic-field B(0)=10(10) G, we report the presence of the spin-electron acoustic waves and their dispersion dependencies. In electron-positron plasmas, similarly to the electron-ion plasmas, we find one spin-electron acoustic wave (SEAW) at the propagation parallel or perpendicular to the external field and two spin-electron acoustic waves at the oblique propagation. At the parallel or perpendicular propagation of the longitudinal waves in electron-positron-ion plasmas, we find four branches: the Langmuir wave, the positron-acoustic wave, and a pair of waves having spin nature, they are the SEAW and the wave discovered in this paper, called the spin-electron-positron acoustic wave (SEPAW). At the oblique propagation we find eight longitudinal waves: the Langmuir wave, the Trivelpiece--Gould wave, a pair of positron-acoustic waves, a pair of SEAWs, and a pair of SEPAWs. Thus, for the first time, we report the existence of the second positron-acoustic wave existing at the oblique propagation and the existence of SEPAWs.
NASA Astrophysics Data System (ADS)
Fuster, Andrea; Pabst, Cornelia
2016-11-01
In this work we present Finsler gravitational waves. These are a Finslerian version of the well-known p p -waves, generalizing the very special relativity line element. Our Finsler p p -waves are an exact solution of Finslerian Einstein's equations in vacuum and describe gravitational waves propagating in an anisotropic background.
NASA Astrophysics Data System (ADS)
Endom, Joerg
2014-05-01
negligible any more. Locating for example the exact position of joints, rebars on site, getting correct calibration information or overlaying measurements of independent methods requires high accuracy positioning for all data. Different technologies of synchronizing and stabilizing are discussed in this presentation. Furthermore a scale problem for interdisciplinary work between the geotechnical engineer, the civil engineer, the surveyor and the geophysicist is presented. Manufacturers as well as users are addressed to work on a unified methodology that could be implemented in future. This presentation is a contribution to COST Action TU1208.
New Exact Solution of Dirac-Coulomb Equation with Exact Boundary Condition
NASA Astrophysics Data System (ADS)
Chen, Ruida
2008-04-01
It usually writes the boundary condition of the wave equation in the Coulomb field as a rough form without considering the size of the atomic nucleus. The rough expression brings on that the solutions of the Klein-Gordon equation and the Dirac equation with the Coulomb potential are divergent at the origin of the coordinates, also the virtual energies, when the nuclear charges number Z>137, meaning the original solutions do not satisfy the conditions for determining solution. Any divergences of the wave functions also imply that the probability density of the meson or the electron would rapidly increase when they are closing to the atomic nucleus. What it predicts is not a truth that the atom in ground state would rapidly collapse to the neutron-like. We consider that the atomic nucleus has definite radius and write the exact boundary condition for the hydrogen and hydrogen-like atom, then newly solve the radial Dirac-Coulomb equation and obtain a new exact solution without any mathematical and physical difficulties. Unexpectedly, the K value constructed by Dirac is naturally written in the barrier width or the equivalent radius of the atomic nucleus in solving the Dirac equation with the exact boundary condition, and it is independent of the quantum energy. Without any divergent wave function and the virtual energies, we obtain a new formula of the energy levels that is different from the Dirac formula of the energy levels in the Coulomb field.
An ansatz for solving nonlinear partial differential equations in mathematical physics.
Akbar, M Ali; Ali, Norhashidah Hj Mohd
2016-01-01
In this article, we introduce an ansatz involving exact traveling wave solutions to nonlinear partial differential equations. To obtain wave solutions using direct method, the choice of an appropriate ansatz is of great importance. We apply this ansatz to examine new and further general traveling wave solutions to the (1+1)-dimensional modified Benjamin-Bona-Mahony equation. Abundant traveling wave solutions are derived including solitons, singular solitons, periodic solutions and general solitary wave solutions. The solutions emphasize the nobility of this ansatz in providing distinct solutions to various tangible phenomena in nonlinear science and engineering. The ansatz could be more efficient tool to deal with higher dimensional nonlinear evolution equations which frequently arise in many real world physical problems.
Supersymmetric Ito equation: Bosonization and exact solutions
Ren Bo; Yu Jun; Lin Ji
2013-04-15
Based on the bosonization approach, the N=1 supersymmetric Ito (sIto) system is changed to a system of coupled bosonic equations. The approach can effectively avoid difficulties caused by intractable fermionic fields which are anticommuting. By solving the coupled bosonic equations, the traveling wave solutions of the sIto system are obtained with the mapping and deformation method. Some novel types of exact solutions for the supersymmetric system are constructed with the solutions and symmetries of the usual Ito equation. In the meanwhile, the similarity reduction solutions of the model are also studied with the Lie point symmetry theory.
Exact solutions for Weyl fermions with gravity
NASA Astrophysics Data System (ADS)
Cianci, Roberto; Fabbri, Luca; Vignolo, Stefano
2015-10-01
We consider the single-handed spinor field in interaction with its own gravitational field described by the set of field equations given by the Weyl field equations written in terms of derivatives that are covariant with respect to the gravitational connection plus Einstein field equations soured with the energy tensor of the spinor: for the Weyl spinor and the ensuing spacetime of Weyl-Lewis-Papapetrou structure, we find all exact solutions. The obtained solution for the metric tensor is that of a PP-wave spacetime, while the spinor field is a flag-dipole.
NASA Astrophysics Data System (ADS)
Cisterna, Adolfo; Hassaïne, Mokhtar; Oliva, Julio
2015-11-01
This paper is devoted to showing that the bosonic sector of R2 supergravity in four dimensions, constructed with the F term, admits a variety of exact and analytic solutions which include pp and anti-de Sitter (AdS) waves, asymptotically flat and AdS black holes and wormholes, as well as product spacetimes. The existence of static black holes and wormholes implies that a combination involving the Ricci scalar plus the norm of the field strength of the auxiliary two-form Bμ ν must be a constant. We focus on this sector of the theory, which has two subsectors depending on whether such a combination vanishes.
NASA Astrophysics Data System (ADS)
Saha Ray, S.
2016-09-01
In this article, the Jacobi elliptic function method viz. the mixed dn-sn method has been presented for finding the travelling wave solutions of the Davey-Stewartson equations. As a result, some solitary wave solutions and doubly periodic solutions are obtained in terms of Jacobi elliptic functions. Moreover, solitary wave solutions are obtained as simple limits of doubly periodic functions. These solutions can be useful to explain some physical phenomena, viz. evolution of a three-dimensional wave packet on water of finite depth. The proposed Jacobi elliptic function method is efficient, powerful and can be used in order to establish newer exact solutions for other kinds of nonlinear fractional partial differential equations arising in mathematical physics.
Huang, Yi Ting; Spelke, Elizabeth; Snedeker, Jesse
2014-01-01
Number words are generally used to refer to the exact cardinal value of a set, but cognitive scientists disagree about their meanings. Although most psychological analyses presuppose that numbers have exact semantics (two means EXACTLY TWO), many linguistic accounts propose that numbers have lower-bounded semantics (AT LEAST TWO), and that speakers restrict their reference through a pragmatic inference (scalar implicature). We address this debate through studies of children who are in the process of acquiring the meanings of numbers. Adults and 2- and 3-year-olds were tested in a novel paradigm that teases apart semantic and pragmatic aspects of interpretation (the covered box task). Our findings establish that when scalar implicatures are cancelled in the critical trials of this task, both adults and children consistently give exact interpretations for number words. These results, in concert with recent work on real-time processing, provide the first unambiguous evidence that number words have exact semantics. PMID:25285053
Pietrzak, Robert H.; Goldstein, Risë B.; Southwick, Steven M.; Grant, Bridget F.
2010-01-01
Background While it is well known that personality disorders are associated with trauma exposure and PTSD, limited nationally representative data are available on DSM-IV personality disorders that co-occur with posttraumatic stress disorder (PTSD) and partial PTSD. Methods Face-to-face interviews were conducted with 34,653 adults participating in the Wave 2 National Epidemiologic Survey on Alcohol and Related Conditions. Logistic regression analyses controlling for sociodemographics and additional psychiatric comorbidity evaluated associations of PTSD and partial PTSD with personality disorders. Results Prevalence rates of lifetime PTSD and partial PTSD were 6.4% and 6.6%, respectively. After adjustment for sociodemographic characteristics and additional psychiatric comorbidity, respondents with full PTSD were more likely than trauma controls to meet criteria for schizotypal, narcissistic, and borderline personality disorders (ORs=2.1–2.5); and respondents with partial PTSD were more likely than trauma controls to meet diagnostic criteria for borderline (OR=2.0), schizotypal (OR=1.8), and narcissistic (OR=1.6) PDs. Women with PTSD were more likely than controls to have obsessive-compulsive PD. Women with partial PTSD were more likely than controls to have antisocial PD; and men with partial PTSD were less likely than women with partial PTSD to have avoidant PD. Conclusions PTSD and partial PTSD are associated with borderline, schizotypal, and narcissistic personality disorders. Modestly higher rates of obsessive-compulsive PD were observed among women with full PTSD, and of antisocial PD among women with partial PTSD. PMID:20950823
NASA Astrophysics Data System (ADS)
Akter, Jesmin; Ali Akbar, M.
The modified simple equation (MSE) method is a competent and highly effective mathematical tool for extracting exact traveling wave solutions to nonlinear evolution equations (NLEEs) arising in science, engineering and mathematical physics. In this article, we implement the MSE method to find the exact solutions involving parameters to NLEEs via the Benney-Luke equation and the Phi-4 equations. The solitary wave solutions are derived from the exact traveling wave solutions when the parameters receive their special values.
NASA Astrophysics Data System (ADS)
Selima, Ehab S.; Yao, Xiaohua; Wazwaz, Abdul-Majid
2017-06-01
In this research, the surface waves of a horizontal fluid layer open to air under gravity field and vertical temperature gradient effects are studied. The governing equations of this model are reformulated and converted to a nonlinear evolution equation, the perturbed Korteweg-de Vries (pKdV) equation. We investigate the latter equation, which includes dispersion, diffusion, and instability effects, in order to examine the evolution of long surface waves in a convective fluid. Dispersion relation of the pKdV equation and its properties are discussed. The Painlevé analysis is applied not only to check the integrability of the pKdV equation but also to establish the Bäcklund transformation form. In addition, traveling wave solutions and a general form of the multiple-soliton solutions of the pKdV equation are obtained via Bäcklund transformation, the simplest equation method using Bernoulli, Riccati, and Burgers' equations as simplest equations, and the factorization method.
Partial differential equation-based localization of a monopole source from a circular array.
Ando, Shigeru; Nara, Takaaki; Levy, Tsukassa
2013-10-01
Wave source localization from a sensor array has long been the most active research topics in both theory and application. In this paper, an explicit and time-domain inversion method for the direction and distance of a monopole source from a circular array is proposed. The approach is based on a mathematical technique, the weighted integral method, for signal/source parameter estimation. It begins with an exact form of the source-constraint partial differential equation that describes the unilateral propagation of wide-band waves from a single source, and leads to exact algebraic equations that include circular Fourier coefficients (phase mode measurements) as their coefficients. From them, nearly closed-form, single-shot and multishot algorithms are obtained that is suitable for use with band-pass/differential filter banks. Numerical evaluation and several experimental results obtained using a 16-element circular microphone array are presented to verify the validity of the proposed method.
Pietrzak, Robert H.; Goldstein, Risë B.; Southwick, Steven M.; Grant, Bridget F.
2010-01-01
The present study used data from the Wave 2 National Epidemiologic Survey on Alcohol and Related Conditions (n=34,653) to examine lifetime Axis I psychiatric comorbidity of posttraumatic stress disorder (PTSD) in a nationally representative sample of U.S. adults. Lifetime prevalences±standard errors of PTSD and partial PTSD were 6.4%±0.18 and 6.6%±0.18, respectively. Rates of PTSD and partial PTSD were higher among women (8.6%±0.26 and 8.6%±0.26) than men (4.1%±0.19 and 4.5%±0.21). Respondents with both PTSD and partial PTSD most commonly reported unexpected death of someone close, serious illness or injury to someone close, and sexual assault as their worst stressful experiences. PTSD and partial PTSD were associated with elevated lifetime rates of mood, anxiety, and substance use disorders, and suicide attempts. Respondents with partial PTSD generally had intermediate odds of comorbid Axis I disorders and psychosocial impairment relative to trauma controls and full PTSD. PMID:21168991
Pietrzak, Robert H.; Goldstein, Risë B.; Southwick, Steven M.; Grant, Bridget F.
2011-01-01
Objectives To present findings on the prevalence, correlates, and psychiatric comorbidity of DSM-IV posttraumatic stress disorder (PTSD) and partial PTSD in a nationally representative sample of U.S. older adults. Design, Setting, and Participants Face-to-face interviews with 9,463 adults aged 60 years and older in the Wave 2 National Epidemiologic Survey on Alcohol and Related Conditions. Measurements Sociodemographic correlates, worst stressful experiences, comorbid lifetime mood, anxiety, substance use, and personality disorders, psychosocial functioning, and suicide attempts. Results Lifetime prevalences±standard errors of PTSD and partial PTSD were 4.5%±0.25 and 5.5%±0.27, respectively. Rates were higher in women (5.7%±0.37 and 6.5%±0.39) than men (3.1%±0.31 and 4.3%±0.37). Older adults with PTSD most frequently identified unexpected death of someone close, serious illness or injury to someone close, and own serious or life-threatening illness as their worst stressful events. Older adults exposed to trauma but without full or partial PTSD and respondents with partial PTSD most often identified unexpected death of someone close, serious illness or injury to someone close, and indirect experience of 9/11 as their worst events. PTSD was associated with elevated odds of lifetime mood, anxiety, drug use, and borderline and narcissistic personality disorders, and decreased psychosocial functioning. Partial PTSD was associated with elevated odds of mood, anxiety, and narcissistic and schizotypal personality disorders, and poorer psychosocial functioning relative to older adults exposed to trauma but without full or partial PTSD. Conclusions PTSD among older adults in the United States is slightly more prevalent than previously reported and associated with considerable psychiatric comorbidity and psychosocial dysfunction. Partial PTSD is associated with significant psychiatric comorbidity, particularly with mood and other anxiety disorders. PMID:22522959
Exact Classical and Quantum Dynamics in Background Electromagnetic Fields
NASA Astrophysics Data System (ADS)
Heinzl, Tom; Ilderton, Anton
2017-03-01
Analytic results for (Q)ED processes in external fields are limited to a few special cases, such as plane waves. However, the strong focusing of intense laser fields implies a need to go beyond the plane wave model. By exploiting Poincaré symmetry and superintegrability we show how to construct, and solve without approximation, new models of laser-matter interactions. We illustrate the method with a model of a radially polarized (TM) laser beam, for which we exactly determine the classical orbits and quantum wave functions. Including in this way the effects of transverse field structure should improve predictions and analyses for experiments at intense laser facilities.
Exact solution for a non-Markovian dissipative quantum dynamics.
Ferialdi, Luca; Bassi, Angelo
2012-04-27
We provide the exact analytic solution of the stochastic Schrödinger equation describing a harmonic oscillator interacting with a non-Markovian and dissipative environment. This result represents an arrival point in the study of non-Markovian dynamics via stochastic differential equations. It is also one of the few exactly solvable models for infinite-dimensional systems. We compute the Green's function; in the case of a free particle and with an exponentially correlated noise, we discuss the evolution of Gaussian wave functions.
Exact Lyapunov dimension of the universal attractor for the complex Ginzburg-Landau equation
Doering, C.R.; Gibbon, J.D.; Holm, D.D.; Nicolaenko, B.
1987-12-28
We present an exact analytic computation of the Lyapunov dimension of the universal attractor of the complex Ginzburg-Landau partial differential equation for a finite range of its parameter values. We obtain upper bounds on the attractor's dimension when the parameters do not permit an exact evaluation by our methods. The exact Lyapunov dimension agrees with an estimate of the number of degrees of freedom based on a simple linear stability analysis and mode-counting argument.
Exact models for isotropic matter
NASA Astrophysics Data System (ADS)
Thirukkanesh, S.; Maharaj, S. D.
2006-04-01
We study the Einstein-Maxwell system of equations in spherically symmetric gravitational fields for static interior spacetimes. The condition for pressure isotropy is reduced to a recurrence equation with variable, rational coefficients. We demonstrate that this difference equation can be solved in general using mathematical induction. Consequently, we can find an explicit exact solution to the Einstein-Maxwell field equations. The metric functions, energy density, pressure and the electric field intensity can be found explicitly. Our result contains models found previously, including the neutron star model of Durgapal and Bannerji. By placing restrictions on parameters arising in the general series, we show that the series terminate and there exist two linearly independent solutions. Consequently, it is possible to find exact solutions in terms of elementary functions, namely polynomials and algebraic functions.
Exact controllability of complex networks
Yuan, Zhengzhong; Zhao, Chen; Di, Zengru; Wang, Wen-Xu; Lai, Ying-Cheng
2013-01-01
Controlling complex networks is of paramount importance in science and engineering. Despite the recent development of structural controllability theory, we continue to lack a framework to control undirected complex networks, especially given link weights. Here we introduce an exact controllability paradigm based on the maximum multiplicity to identify the minimum set of driver nodes required to achieve full control of networks with arbitrary structures and link-weight distributions. The framework reproduces the structural controllability of directed networks characterized by structural matrices. We explore the controllability of a large number of real and model networks, finding that dense networks with identical weights are difficult to be controlled. An efficient and accurate tool is offered to assess the controllability of large sparse and dense networks. The exact controllability framework enables a comprehensive understanding of the impact of network properties on controllability, a fundamental problem towards our ultimate control of complex systems. PMID:24025746
Return to foundations of wave optics.
Anokhov, Sergey P
2007-08-01
The Huygens-Fresnel wave principle is found to extend far beyond its traditional use. Using only elementary mathematical means, it is shown in particular that this principle suffices to provide the exact solution of Sommerfeld's problem of plane wave diffraction by a perfectly conducting half-plane. A more exact formulation of the wave principle itself is proposed.
Fast Algorithms for Exact Exchange
NASA Astrophysics Data System (ADS)
Manzer, Samuel Fenton
This thesis describes several new theoretical developments that facilitate the computation of the exact exchange energy, a vital component of accurate molecular simulations. The primary technique on which these developments are based is the resolution of the identity approximation, particularly the pair atomic resolution of the identity approximation (PARI). We prove that computation of exact exchange using the PARI approximation is variationally stable, and provide benchmarks of the performance and accuracy of our implementation. We then show that the most commonly used SCF convergence acceleration algorithm, DIIS, enables the design of a new fast exchange algorithm that we designate as occ-RI-K. Next, we combine the preceding occ-RI-K algorithm with the PARI approximation to create a linear-scaling exact exchange algorithm for the specific case of large weakly-interacting systems. Finally, we discuss our development of a high-level, object-oriented software library for block-sparse tensor operations. This library provides the underlying implementation for all of the algorithms discussed in this thesis.
Double-wave solutions to quasilinear hyperbolic systems of first-order PDEs
NASA Astrophysics Data System (ADS)
Curró, C.; Manganaro, N.
2017-10-01
A reduction procedure for determining double-wave exact solutions to first-order hyperbolic systems of PDEs is proposed. The basic idea is to reduce the integration of the governing hyperbolic set of N partial differential equations to that of a 2 × 2 reduced hyperbolic model along with a further differential constraint. Therefore, the method of differential constraints is used in order to solve the auxiliary 2 × 2 system. An example of interest to viscoelasticity is presented.
NASA Astrophysics Data System (ADS)
Askari, E.; Daneshmand, F.; Amabili, M.
2011-10-01
Internal bodies (baffles) are used as damping devices to suppress the fluid sloshing motion in fluid-structure interaction systems. An analytical method is developed in the present article to investigate the effects of a rigid internal body on bulging and sloshing frequencies and modes of a cylindrical container partially filled with a fluid. The internal body is a thin-walled and open-ended cylindrical shell that is coaxially and partially submerged inside the container. The interaction between the fluid and the structure is taken into account to calculate the sloshing and bulging frequencies and modes of the coupled system using the Rayleigh quotient, Ritz expansion and Galerkin method. It is shown that the present formulation is an appropriate and new approach to tackle the problem with good accuracy. The effects of fluid level, number of nodal diameters, internal body radius and submergence ratio on the dynamic characteristics of the coupled system are also investigated.
Fleckenstein, Johannes; Friton, Mara; Himmelreich, Heiko; Banzer, Winfried
2017-05-01
To examine the effects of a single administration of focused extracorporeal shock wave therapy on eccentric exercise-induced delayed-onset muscle soreness (DOMS). Three-arm randomized controlled study. University research center. Participants (N=46; 23 women) had a mean age of 29.0±3.0 years and a mean body mass index of 23.8±2.8kg/m(2). Participants were randomly allocated to verum- (energy flux density, .06-.09mJ/mm(2); pulse ratio per point, 200) or sham-focused extracorporeal shock wave therapy (no energy) at 7 equidistant points along the biceps muscle or no intervention. The primary outcome was the difference in pain intensity. Secondary outcomes included maximum isometric voluntary force (MIVF), pressure pain threshold (PPT), and impairment in daily life. Despite descriptive clinically meaningful differences, mixed-effects analysis (group × time) of changes to baseline did not reveal significant differences in the reduction of pain intensity between groups (F2,42=2.5, P=.094). MIVF was not significantly different between groups (F2,43=1.9, P=.159). PTT (F2,43=0.2, P=.854) and daily life impairment (F2,42=1.4, P=.248) were not significantly decreased over time, and there were no differences between groups in the post hoc analysis. DOMS is a common symptom in people participating in exercise, sports, or recreational physical activities. A single treatment with focused extracorporeal shock wave therapy causes clinically relevant effects in the relief of pain, increase in force, and improvement of pain-associated impairments of daily living. Still, results need to be cautiously interpreted because of the pilot character of this study. Focused extracorporeal shock wave therapy might present an option in the midterm recovery from DOMS (72h) and be an approach to enhance the return to play in athletes. Copyright © 2017. Published by Elsevier Inc.
NASA Astrophysics Data System (ADS)
Rudnick, Roberta L.; Jackson, Ian
1995-06-01
Ultrasonic compressional wave velocities measured at 1.0 GPa and room temperature are compared with calculated velocities (based on single-crystal data and modal mineralogy) for a suite of mafic granulite xenoliths from the Chudleigh volcanic province, north Queensland, Australia. The xenoliths have nearly constant major element compositions but widely variable modal mineralogy, reflecting recrystallization under variable pressure-temperature conditions at depth in the continental crust (20-45 km). They thus provide an excellent opportunity to investigate velocity variation with depth in a mafic lower crust. Measured P wave velocities, corrected for the decompression-induced breakdown of garnet, range from 6.9 to 7.6 km/sec and correlate with derivation depth. These velocities are 5-12% lower than the calculated velocities (7.5-8.0 km/sec), apparently as a result of grain boundary alteration as well as irreversible changes that occurred in the xenoliths during rapid decompression. Calculated P wave velocities are similar to those estimated by Furlong and Fountain (1986) and Sobolev and Babeyko (1989) for mafic granulites formed through basaltic underplating of the continental crust. Depending upon in situ temperature, P wave velocities in the deepest samples may be interpreted as crustal (e.g., 7.3-7.6 km/sec, if heat flow is high) or mantle (7.7-7.8 km/sec, in areas of low heat flow). The range of velocities in the xenolith suite is larger than predicted for a fully equilibrated underplated basaltic layer, highlighting the importance of kinetic effects in determining the ultimate velocity profile of magmatically underplated crust. Comparison of our results with seismic profiles illustrates that the lower crust rarely reaches such high velocities, suggesting quartz-bearing rocks (country rocks?) are present within magmatically underplated layers of the deep crust.
An exact solution for the oscillating two-stream instability
NASA Astrophysics Data System (ADS)
Kaup, D. J.
1980-07-01
In the present paper, an exact solution of the oscillating two-stream instability is obtained for the case where the initial pump profile has a constant phase. The solution points to a very rapid partial pump depletion when the scaled pump energy is approximately pi/2, 3pi/2, 5pi/2, etc., to filamentation of a square pump profile undergoing any such partial depletion, and to stability when the scaled pump energy is just above npi and instability when it is just below npi.
Layden, B.; Cairns, Iver H.; Robinson, P. A.; Percival, D. J.
2012-07-15
The quadratic longitudinal response function describes the second-order nonlinear response of a plasma to electrostatic wave fields. An explicit expression for this function in the weak-turbulence regime requires the evaluation of velocity-space integrals involving the velocity distribution function and various resonant denominators. Previous calculations of the quadratic longitudinal response function were performed by approximating the resonant denominators to facilitate the integration. Here, we evaluate these integrals exactly for a non-relativistic collisionless unmagnetized isotropic Maxwellian plasma in terms of generalized plasma dispersion functions, and correct certain aspects of expressions previously derived for these functions. We show that in the appropriate limits the exact expression reduces to the approximate form used for interactions between two fast waves and one slow wave, such as the electrostatic decay of Langmuir waves into Langmuir waves and ion sound waves, and the scattering of Langmuir waves off thermal ions.
Pressure induced breather overturning on deep water: Exact solution
NASA Astrophysics Data System (ADS)
Abrashkin, A. A.; Oshmarina, O. E.
2014-08-01
A vortical model of breather overturning on deep water is proposed. The action of wind is simulated by nonuniform pressure on the free surface. The fluid motion is described by an exact solution of 2D hydrodynamic equations for an inviscid fluid in Lagrangian variables. Fluid particles rotate in circles of different radii. Formation of contraflexure points on the breather profile is studied. The mechanism of wave breaking and the role of flow vorticity are discussed.
Exact Solutions of Relativistic Bound State Problem for Spinless Bosons
NASA Astrophysics Data System (ADS)
Aslanzadeh, M.; Rajabi, A. A.
2017-01-01
We investigated in detail the relativistic bound states of spin-zero bosons under the influence of Coulomb-plus-linear potentials with an arbitrary combination of scalar and vector couplings. Through an exact analytical solution of three-dimensional Klein-Gordon equation, closed form expressions were derived for energy eigenvalues and wave functions and some correlations between potential parameters were found. We also presented the relativistic description of bound states and nonrelativistic limit of the problem in some special cases.
Exact analytical solutions for ADAFs
NASA Astrophysics Data System (ADS)
Habibi, Asiyeh; Abbassi, Shahram; Shadmehri, Mohsen
2017-02-01
We obtain two-dimensional exact analytic solutions for the structure of the hot accretion flows without wind. We assume that the only non-zero component of the stress tensor is Trϕ. Furthermore, we assume that the value of viscosity coefficient α varies with θ. We find radially self-similar solutions and compare them with the numerical and the analytical solutions already studied in the literature. The no-wind solution obtained in this paper may be applied to the nuclei of some cool-core clusters.
NASA Astrophysics Data System (ADS)
Azbel', Mark Ya.
Exact law of mortality dynamics in changing populations and environment is derived. The law is universal for all species, from single cell yeast to humans. It includes no characteristics of animal-environment interactions (metabolism etc.) which are a must for life. Such law is unique for live systems with their homeostatic self-adjustment to environment. Its universal dynamics for all animals, with their drastically different biology, evolutionary history, and complexity, is also unique for live systems — cf. different thermodynamics of liquids and glasses. The law which is valid for all live, and only live, systems is a life specific law of nature.
Gilbert, Kenneth E; Di, Xiao
2007-05-01
A method for exactly representing a point source starting field in a Fourier parabolic equation calculation is presented. The formulation is based on an exact, analytic expression for the field in vertical wave number space (k space). The field in vertical coordinate space (z space) is obtained via a Fourier transform of the k-space field. Thus, one can directly control the Fourier components of the starting field, so that nonpropagating components are excluded. The relation of the exact starting field to the standard Gaussian starting field is demonstrated analytically. Examples of the numerical implementation of the exact starting field are given.
Akbar, M Ali; Ali, Norhashidah Hj Mohd; Mohyud-Din, Syed Tauseef
2013-01-01
The (G'/G)-expansion method is one of the most direct and effective method for obtaining exact solutions of nonlinear partial differential equations (PDEs). In the present article, we construct the exact traveling wave solutions of nonlinear evolution equations in mathematical physics via the (2 + 1)-dimensional breaking soliton equation by using two methods: namely, a further improved (G'/G)-expansion method, where G(ξ) satisfies the auxiliary ordinary differential equation (ODE) [G'(ξ)](2) = p G (2)(ξ) + q G (4)(ξ) + r G (6)(ξ); p, q and r are constants and the well known extended tanh-function method. We demonstrate, nevertheless some of the exact solutions bring out by these two methods are analogous, but they are not one and the same. It is worth mentioning that the first method has not been exercised anybody previously which gives further exact solutions than the second one. PACS numbers 02.30.Jr, 05.45.Yv, 02.30.Ik.
NASA Astrophysics Data System (ADS)
Park, Yongcheol; Yoo, Hyun Jae; Lee, Won Sang; Lee, Choon-Ki; Lee, Joohan; Park, Hadong; Kim, Jinseok; Kim, Yeadong
2015-12-01
Mt. Melbourne is a late Cenozoic intraplate volcano located ∼30 km northeast of Jang Bogo Station in Antarctica. The volcano is quiescent with fumarolic activity at the summit. To monitor volcanic activity and glacial movements near Jang Bogo Station, a seismic network was installed during the 2010-11 Antarctic summer field season. The network is maintained during the summer field season every year, and the number of stations has been increased. We used continuous seismic data recorded by the network and an Italian seismic station (TNV) at Mario Zucchelli Station to develop a 3-D P-wave velocity model for the Mt. Melbourne area based on the teleseismic P-wave tomographic method. The new 3-D model presented a relative velocity structure for the lower part of the crust and upper mantle between depths of 30 and 160 km and revealed the presence of two low-velocity anomalies beneath Mt. Melbourne and the Priestley Fault. The low-velocity anomaly beneath Mt. Melbourne may be caused by the edge flow of hot mantle material at the lithospheric step between the thick East Antarctic Craton and thin Ross Sea crust. The other low-velocity anomaly along the Priestley Fault may have been beneath Mt. Melbourne and moved to the southern tip of the Deep Freeze Range, where the crustal thickness is relatively thin. The anomaly was trapped on the fault line and laterally flowed along the fault line in the northwest direction.
Some exact solutions for debris and avalanche flows
NASA Astrophysics Data System (ADS)
Pudasaini, Shiva P.
2011-04-01
Exact analytical solutions to simplified cases of nonlinear debris avalanche model equations are necessary to calibrate numerical simulations of flow depth and velocity profiles on inclined surfaces. These problem-specific solutions provide important insight into the full behavior of the system. In this paper, we present some new analytical solutions for debris and avalanche flows and then compare these solutions with experimental data to measure their performance and determine their relevance. First, by combining the mass and momentum balance equations with a Bagnold rheology, a new and special kinematic wave equation is constructed in which the flux and the wave celerity are complex nonlinear functions of the pressure gradient and the flow depth itself. The new model can explain the mechanisms of wave advection and distortion, and the quasiasymptotic front bore observed in many natural and laboratory debris and granular flows. Exact time-dependent solutions for debris flow fronts and associated velocity profiles are then constructed. We also present a novel semiexact two-dimensional plane velocity field through the flow depth. Second, starting with the force balance between gravity, the pressure gradient, and Bagnold's grain-inertia or macroviscous forces, we construct a simple and very special nonlinear ordinary differential equation to model the steady state debris front profile. An empirical pressure gradient enhancement factor is introduced to adequately stretch the flow front and properly model nonhydrostatic pressure in granular and debris avalanches. An exact solution in explicit form is constructed, and is expressed in terms of the Lambert-Euler omega function. Third, we consider rapid flows of frictional granular materials down a channel. The steady state mass and the momentum balance equations are combined together with the Coulomb friction law. The Chebyshev radicals are employed and the exact solutions are developed for the velocity profile and the
Christodoulides, D N; Joseph, R L
1984-06-01
The propagation of nonlinear optical pulses in fibers is discussed, taking into account physical effects arising from nonlinearity, dispersion, and transverse confinement. The wave equation is solved by treating the radial dependence of the field in an exact way. The conditions supporting bright solitary waves are presented and compared with previous results.
Exact Renormalization of Massless QED2
NASA Astrophysics Data System (ADS)
Casana, Rodolfo; Dias, Sebastião Alves
We perform the exact renormalization of two-dimensional massless gauge theories. Using these exact results we discuss the cluster property and confinement in both the anomalous and chiral Schwinger models.
AESS: Accelerated Exact Stochastic Simulation
NASA Astrophysics Data System (ADS)
Jenkins, David D.; Peterson, Gregory D.
2011-12-01
The Stochastic Simulation Algorithm (SSA) developed by Gillespie provides a powerful mechanism for exploring the behavior of chemical systems with small species populations or with important noise contributions. Gene circuit simulations for systems biology commonly employ the SSA method, as do ecological applications. This algorithm tends to be computationally expensive, so researchers seek an efficient implementation of SSA. In this program package, the Accelerated Exact Stochastic Simulation Algorithm (AESS) contains optimized implementations of Gillespie's SSA that improve the performance of individual simulation runs or ensembles of simulations used for sweeping parameters or to provide statistically significant results. Program summaryProgram title: AESS Catalogue identifier: AEJW_v1_0 Program summary URL:http://cpc.cs.qub.ac.uk/summaries/AEJW_v1_0.html Program obtainable from: CPC Program Library, Queen's University, Belfast, N. Ireland Licensing provisions: University of Tennessee copyright agreement No. of lines in distributed program, including test data, etc.: 10 861 No. of bytes in distributed program, including test data, etc.: 394 631 Distribution format: tar.gz Programming language: C for processors, CUDA for NVIDIA GPUs Computer: Developed and tested on various x86 computers and NVIDIA C1060 Tesla and GTX 480 Fermi GPUs. The system targets x86 workstations, optionally with multicore processors or NVIDIA GPUs as accelerators. Operating system: Tested under Ubuntu Linux OS and CentOS 5.5 Linux OS Classification: 3, 16.12 Nature of problem: Simulation of chemical systems, particularly with low species populations, can be accurately performed using Gillespie's method of stochastic simulation. Numerous variations on the original stochastic simulation algorithm have been developed, including approaches that produce results with statistics that exactly match the chemical master equation (CME) as well as other approaches that approximate the CME. Solution
Exact finite elements for conduction and convection
NASA Technical Reports Server (NTRS)
Thornton, E. A.; Dechaumphai, P.; Tamma, K. K.
1981-01-01
An appproach for developing exact one dimensional conduction-convection finite elements is presented. Exact interpolation functions are derived based on solutions to the governing differential equations by employing a nodeless parameter. Exact interpolation functions are presented for combined heat transfer in several solids of different shapes, and for combined heat transfer in a flow passage. Numerical results demonstrate that exact one dimensional elements offer advantages over elements based on approximate interpolation functions. Previously announced in STAR as N81-31507
Exact finite elements for conduction and convection
NASA Technical Reports Server (NTRS)
Thornton, E. A.; Dechaumphai, P.; Tamma, K. K.
1981-01-01
An appproach for developing exact one dimensional conduction-convection finite elements is presented. Exact interpolation functions are derived based on solutions to the governing differential equations by employing a nodeless parameter. Exact interpolation functions are presented for combined heat transfer in several solids of different shapes, and for combined heat transfer in a flow passage. Numerical results demonstrate that exact one dimensional elements offer advantages over elements based on approximate interpolation functions. Previously announced in STAR as N81-31507
Exact finite elements for conduction and convection
NASA Technical Reports Server (NTRS)
Thornton, E. A.; Dechaumphai, P.; Tamma, K. K.
1981-01-01
An approach for developing exact one dimensional conduction-convection finite elements is presented. Exact interpolation functions are derived based on solutions to the governing differential equations by employing a nodeless parameter. Exact interpolation functions are presented for combined heat transfer in several solids of different shapes, and for combined heat transfer in a flow passage. Numerical results demonstrate that exact one dimensional elements offer advantages over elements based on approximate interpolation functions.
Periodic standing-wave approximation: Overview and three-dimensional scalar models
Andrade, Zeferino; Beetle, Christopher; Blinov, Alexey; Bromley, Benjamin; Burko, Lior M.; Cranor, Maria; Price, Richard H.; Owen, Robert
2004-09-15
The periodic standing-wave method for binary inspiral computes the exact numerical solution for periodic binary motion with standing gravitational waves, and uses it as an approximation to slow binary inspiral with outgoing waves. Important features of this method presented here are: (i) the mathematical nature of the 'mixed' partial differential equations to be solved (ii) the meaning of standing waves in the method (iii) computational difficulties, and (iv) the 'effective linearity' that ultimately justifies the approximation. The method is applied to three-dimensional nonlinear scalar model problems, and the numerical results are used to demonstrate extraction of the outgoing solution from the standing-wave solution, and the role of effective linearity.
Exact results in gauge theories
NASA Astrophysics Data System (ADS)
Fucito, Francesco; Morales, Jose Francisco; Poghossian, Rubik; Pacifici, Daniel Ricci
2013-10-01
We derive exact formulae for the partition function and the expectation values of Wilson/'t Hooft loops, thus directly checking their S-duality transformations. We focus on a special class of gauge theories on S 4 with fundamental matter. In particular we show that, for a specific choice of the masses, the matrix model integral defining the gauge theory partition function localizes around a finite set of critical points where it can be explicitly evaluated and written in terms of generalized hypergeometric functions. From the AGT perspective the gauge theory partition function, evaluated with this choice of masses, is viewed as a four point correlator involving the insertion of a degenerated field. The well known simplicity of the degenerated correlator reflects the fact that for these choices of masses only a very restrictive type of instanton configurations contributes to the gauge theory partition function.
Exact propagators in harmonic superspace
NASA Astrophysics Data System (ADS)
Kuzenko, Sergei M.
2004-10-01
Within the background field formulation in harmonic superspace for quantum N = 2 super-Yang-Mills theories, the propagators of the matter, gauge and ghost superfields possess a complicated dependence on the SU(2) harmonic variables via the background vector multiplet. This dependence is shown to simplify drastically in the case of an on-shell vector multiplet. For a covariantly constant background vector multiplet, we exactly compute all the propagators. In conjunction with the covariant multi-loop scheme developed in arxiv:hep-th/0302205, these results provide an efficient (manifestly N = 2 supersymmetric) technical setup for computing multi-loop quantum corrections to effective actions in N = 2 supersymmetric gauge theories, including the N = 4 super-Yang-Mills theory.
Exact Bremsstrahlung and effective couplings
NASA Astrophysics Data System (ADS)
Mitev, Vladimir; Pomoni, Elli
2016-06-01
We calculate supersymmetric Wilson loops on the ellipsoid for a large class of mathcal{N} = 2 SCFT using the localization formula of Hama and Hosomichi. From them we extract the radiation emitted by an accelerating heavy probe quark as well as the entanglement entropy following the recent works of Lewkowycz-Maldacena and Fiol-Gerchkovitz-Komargodski. Comparing our results with the mathcal{N} = 4 SYM ones, we obtain interpolating functions f ( g 2) such that a given mathcal{N} = 2 SCFT observable is obtained by replacing in the corresponding mathcal{N} = 4 SYM result the coupling constant by f ( g 2). These "exact effective couplings" encode the finite, relative renormalization between the mathcal{N} = 2 and the mathcal{N} = 4 gluon propagator and they interpolate between the weak and the strong coupling. We discuss the range of their applicability.
High Resolution Thermometry for EXACT
NASA Technical Reports Server (NTRS)
Panek, J. S.; Nash, A. E.; Larson, M.; Mulders, N.
2000-01-01
High Resolution Thermometers (HRTs) based on SQUID detection of the magnetization of a paramagnetic salt or a metal alloy has been commonly used for sub-nano Kelvin temperature resolution in low temperature physics experiments. The main applications to date have been for temperature ranges near the lambda point of He-4 (2.177 K). These thermometers made use of materials such as Cu(NH4)2Br4 *2H2O, GdCl3, or PdFe. None of these materials are suitable for EXACT, which will explore the region of the He-3/He-4 tricritical point at 0.87 K. The experiment requirements and properties of several candidate paramagnetic materials will be presented, as well as preliminary test results.
Dark- and bright-rogue-wave solutions for media with long-wave-short-wave resonance.
Chen, Shihua; Grelu, Philippe; Soto-Crespo, J M
2014-01-01
Exact explicit rogue-wave solutions of intricate structures are presented for the long-wave-short-wave resonance equation. These vector parametric solutions feature coupled dark- and bright-field counterparts of the Peregrine soliton. Numerical simulations show the robustness of dark and bright rogue waves in spite of the onset of modulational instability. Dark fields originate from the complex interplay between anomalous dispersion and the nonlinearity driven by the coupled long wave. This unusual mechanism, not available in scalar nonlinear wave equation models, can provide a route to the experimental realization of dark rogue waves in, for instance, negative index media or with capillary-gravity waves.
Partially coherent vectorial nonparaxial beams.
Duan, Kailiang; Lü, Baida
2004-10-01
Generalized vectorial Rayleigh-Sommerfeld diffraction integrals are developed for the cross-spectral-density matrices of spatially partially coherent beams. Using the Gaussian Schell-model (GSM) beam as an example, we derive the expressions for the propagation of cross-spectral-density matrices and intensity of partially coherent vectorial nonparaxial beams, and the corresponding far-field asymptotic forms, beyond the paraxial approximation. The propagation of the vectorial nonparaxial GSM beams are evaluated and analyzed. It is shown that a 3 x 3 cross-spectral-density matrix or a vector theory is required for the exact description of nonparaxial GSM beams.
Exact gravitational wave signatures from colliding extreme black holes
NASA Astrophysics Data System (ADS)
Camps, Joan; Hadar, Shahar; Manton, Nicholas S.
2017-09-01
The low-energy dynamics of any system admitting a continuum of static configurations is approximated by slow motion in moduli (configuration) space. Here, following Ferrell and Eardley, this moduli space approximation is utilized to study collisions of two maximally charged Reissner-Nordström black holes of arbitrary masses, and to compute analytically the gravitational radiation generated by their scattering or coalescence. The motion remains slow even though the fields are strong, and the leading radiation is quadrupolar. A simple expression for the gravitational waveform is derived and compared at early and late times to expectations.
Odd and even partial waves of ηπ- and η‧π- in π- p →η (‧)π- p at 191 GeV / c
NASA Astrophysics Data System (ADS)
Adolph, C.; Akhunzyanov, R.; Alexeev, M. G.; Alexeev, G. D.; Amoroso, A.; Andrieux, V.; Anosov, V.; Austregesilo, A.; Badełek, B.; Balestra, F.; Barth, J.; Baum, G.; Beck, R.; Bedfer, Y.; Berlin, A.; Bernhard, J.; Bicker, K.; Bielert, E. R.; Bieling, J.; Birsa, R.; Bisplinghoff, J.; Bodlak, M.; Boer, M.; Bordalo, P.; Bradamante, F.; Braun, C.; Bressan, A.; Büchele, M.; Burtin, E.; Capozza, L.; Chiosso, M.; Chung, S. U.; Cicuttin, A.; Crespo, M. L.; Curiel, Q.; Dalla Torre, S.; Dasgupta, S. S.; Dasgupta, S.; Denisov, O. Yu.; Donskov, S. V.; Doshita, N.; Duic, V.; Dünnweber, W.; Dziewiecki, M.; Efremov, A.; Elia, C.; Eversheim, P. D.; Eyrich, W.; Faessler, M.; Ferrero, A.; Finger, M.; Finger, M.; Fischer, H.; Franco, C.; du Fresne von Hohenesche, N.; Friedrich, J. M.; Frolov, V.; Gautheron, F.; Gavrichtchouk, O. P.; Gerassimov, S.; Geyer, R.; Gnesi, I.; Gobbo, B.; Goertz, S.; Gorzellik, M.; Grabmüller, S.; Grasso, A.; Grube, B.; Grussenmeyer, T.; Guskov, A.; Haas, F.; von Harrach, D.; Hahne, D.; Hashimoto, R.; Heinsius, F. H.; Herrmann, F.; Hinterberger, F.; Höppner, Ch.; Horikawa, N.; d'Hose, N.; Huber, S.; Ishimoto, S.; Ivanov, A.; Ivanshin, Yu.; Iwata, T.; Jahn, R.; Jary, V.; Jasinski, P.; Jörg, P.; Joosten, R.; Kabuß, E.; Ketzer, B.; Khaustov, G. V.; Khokhlov, Yu. A.; Kisselev, Yu.; Klein, F.; Klimaszewski, K.; Koivuniemi, J. H.; Kolosov, V. N.; Kondo, K.; Königsmann, K.; Konorov, I.; Konstantinov, V. F.; Kotzinian, A. M.; Kouznetsov, O.; Krämer, M.; Kroumchtein, Z. V.; Kuchinski, N.; Kunne, F.; Kurek, K.; Kurjata, R. P.; Lednev, A. A.; Lehmann, A.; Levillain, M.; Levorato, S.; Lichtenstadt, J.; Maggiora, A.; Magnon, A.; Makke, N.; Mallot, G. K.; Marchand, C.; Martin, A.; Marzec, J.; Matousek, J.; Matsuda, H.; Matsuda, T.; Meshcheryakov, G.; Meyer, W.; Michigami, T.; Mikhailov, Yu. V.; Miyachi, Y.; Nagaytsev, A.; Nagel, T.; Nerling, F.; Neubert, S.; Neyret, D.; Novy, J.; Nowak, W.-D.; Nunes, A. S.; Olshevsky, A. G.; Orlov, I.; Ostrick, M.; Panknin, R.; Panzieri, D.; Parsamyan, B.; Paul, S.; Peshekhonov, D. V.; Platchkov, S.; Pochodzalla, J.; Polyakov, V. A.; Pretz, J.; Quaresma, M.; Quintans, C.; Ramos, S.; Regali, C.; Reicherz, G.; Rocco, E.; Rossiyskaya, N. S.; Ryabchikov, D. I.; Rychter, A.; Samoylenko, V. D.; Sandacz, A.; Sarkar, S.; Savin, I. A.; Sbrizzai, G.; Schiavon, P.; Schill, C.; Schlüter, T.; Schmidt, K.; Schmieden, H.; Schönning, K.; Schopferer, S.; Schott, M.; Shevchenko, O. Yu.; Silva, L.; Sinha, L.; Sirtl, S.; Slunecka, M.; Sosio, S.; Sozzi, F.; Srnka, A.; Steiger, L.; Stolarski, M.; Sulc, M.; Sulej, R.; Suzuki, H.; Szabelski, A.; Szameitat, T.; Sznajder, P.; Takekawa, S.; ter Wolbeek, J.; Tessaro, S.; Tessarotto, F.; Thibaud, F.; Uhl, S.; Uman, I.; Virius, M.; Wang, L.; Weisrock, T.; Wilfert, M.; Windmolders, R.; Wollny, H.; Zaremba, K.; Zavertyaev, M.; Zemlyanichkina, E.; Ziembicki, M.; Zink, A.
2015-01-01
Exclusive production of ηπ- and η‧π- has been studied with a 191 GeV / cπ- beam impinging on a hydrogen target at COMPASS (CERN). Partial-wave analyses reveal different odd/even angular momentum (L) characteristics in the inspected invariant mass range up to 3 GeV /c2. A striking similarity between the two systems is observed for the L = 2 , 4 , 6 intensities (scaled by kinematical factors) and the relative phases. The known resonances a2 (1320) and a4 (2040) are in line with this similarity. In contrast, a strong enhancement of η‧π- over ηπ- is found for the L = 1 , 3 , 5 waves, which carry non- q q bar quantum numbers. The L = 1 intensity peaks at 1.7 GeV /c2 in η‧π- and at 1.4 GeV /c2 in ηπ-, the corresponding phase motions with respect to L = 2 are different.
NASA Astrophysics Data System (ADS)
Azbel, Mark Ya.
2005-07-01
Exact law of mortality dynamics in changing populations and environment is derived. It includes no explicit characteristics of animal- environment interactions (metabolism etc) which are a must for life; it is universal for all animals, from single cell yeast to humans, with their drastically different biology, evolutionary history, and complexity; it is rapidly (within few percent of life span) reversible. Such law is unique for live systems with their homeostatic self-adjustment to environment (cf. thermodynamics of liquids and glasses). The law which is valid for all live, and only live, systems is their specific natural law. Mortality is an instrument of natural selection and biological diversity. Its law, which is preserved in evolution of all species, is a conservation law of mortality, selection, evolution, biology. The law implies new kind of intrinsic mortality and adaptation which dominate in evolutionary unprecedented protected populations and, in contrast to species specific natural selection, proceed via universal stepwise rungs and reduce to universal cellular mechanism. The law demonstrates that intrinsic mortality and at least certain aspects of aging are disposable evolutionary byproducts, and directed genetic and/or biological changes may yield healthy and vital Methuselah lifespan. This is consistent with experiments. Universality implies that single cell yeast may provide a master key to the cellular mechanism of universal mortality, aging, selection, evolution, and its regulation in all animals. One may look for its manifestations in animal cells also, e.g., in their replicative senescence and cancer. Evolutionary origin and genetic nature of universality are suggested.
Exact exchange for correlated electrons
NASA Astrophysics Data System (ADS)
Novák, P.; Kune?, J.; Chaput, L.; Pickett, W. E.
The cover picture is taken from the article by Pavel Novák that was chosen as Editor's Choice of this issue [1]. The figure shows the density of minority spin states in nickel oxide calculated by three commonly used approximations (LSDA, GGA, LDA+U) as well as using the newly proposed ?Exact Exchange for Correlated Electrons? (EECE) method. The EECE method treats the interactions between correlated electrons in a Hartree-Fock way, while all other interactions are described by the density functional theory. EECE is a promising starting point for the improvement of orbital-dependent functionals within the density functional theory.Pavel Novák is the head of the ?Spectroscopy of Magnetic Oxides? group at the Institute of Physics of ASCR, Prague, Czech Republic. Most of his scientific activity is devoted to the calculation of the electronic structure of solids, but he also closely cooperates with several experimental groups. Particular attention is focused on the nuclear magnetic resonance and electronic structure of magnetic oxides with mixed valency of the cations
NASA Astrophysics Data System (ADS)
Ferreira, L. A.; Shnir, Ya.
2017-09-01
We introduce a Skyrme type model with the target space being the sphere S3 and with an action possessing, as usual, quadratic and quartic terms in field derivatives. The novel character of the model is that the strength of the couplings of those two terms are allowed to depend upon the space-time coordinates. The model should therefore be interpreted as an effective theory, such that those couplings correspond in fact to low energy expectation values of fields belonging to a more fundamental theory at high energies. The theory possesses a self-dual sector that saturates the Bogomolny bound leading to an energy depending linearly on the topological charge. The self-duality equations are conformally invariant in three space dimensions leading to a toroidal ansatz and exact self-dual Skyrmion solutions. Those solutions are labelled by two integers and, despite their toroidal character, the energy density is spherically symmetric when those integers are equal and oblate or prolate otherwise.
Improved treatment of exact exchange in Quantum ESPRESSO
Barnes, Taylor A.; Kurth, Thorsten; Carrier, Pierre; ...
2017-01-18
Here, we present an algorithm and implementation for the parallel computation of exact exchange in Quantum ESPRESSO (QE) that exhibits greatly improved strong scaling. QE is an open-source software package for electronic structure calculations using plane wave density functional theory, and supports the use of local, semi-local, and hybrid DFT functionals. Wider application of hybrid functionals is desirable for the improved simulation of electronic band energy alignments and thermodynamic properties, but the computational complexity of evaluating the exact exchange potential limits the practical application of hybrid functionals to large systems and requires efficient implementations. We demonstrate that existing implementations ofmore » hybrid DFT that utilize a single data structure for both the local and exact exchange regions of the code are significantly limited in the degree of parallelization achievable. We present a band-pair parallelization approach, in which the calculation of exact exchange is parallelized and evaluated independently from the parallelization of the remainder of the calculation, with the wavefunction data being efficiently transformed on-the-fly into a form that is optimal for each part of the calculation. For a 64 water molecule supercell, our new algorithm reduces the overall time to solution by nearly an order of magnitude.« less
Improved treatment of exact exchange in Quantum ESPRESSO
NASA Astrophysics Data System (ADS)
Barnes, Taylor A.; Kurth, Thorsten; Carrier, Pierre; Wichmann, Nathan; Prendergast, David; Kent, Paul R. C.; Deslippe, Jack
2017-05-01
We present an algorithm and implementation for the parallel computation of exact exchange in Quantum ESPRESSO (QE) that exhibits greatly improved strong scaling. QE is an open-source software package for electronic structure calculations using plane wave density functional theory, and supports the use of local, semi-local, and hybrid DFT functionals. Wider application of hybrid functionals is desirable for the improved simulation of electronic band energy alignments and thermodynamic properties, but the computational complexity of evaluating the exact exchange potential limits the practical application of hybrid functionals to large systems and requires efficient implementations. We demonstrate that existing implementations of hybrid DFT that utilize a single data structure for both the local and exact exchange regions of the code are significantly limited in the degree of parallelization achievable. We present a band-pair parallelization approach, in which the calculation of exact exchange is parallelized and evaluated independently from the parallelization of the remainder of the calculation, with the wavefunction data being efficiently transformed on-the-fly into a form that is optimal for each part of the calculation. For a 64 water molecule supercell, our new algorithm reduces the overall time to solution by nearly an order of magnitude.
NASA Technical Reports Server (NTRS)
Title, A. M. (Inventor)
1978-01-01
A birefringent filter module comprises, in seriatum. (1) an entrance polarizer, (2) a first birefringent crystal responsive to optical energy exiting the entrance polarizer, (3) a partial polarizer responsive to optical energy exiting the first polarizer, (4) a second birefringent crystal responsive to optical energy exiting the partial polarizer, and (5) an exit polarizer. The first and second birefringent crystals have fast axes disposed + or -45 deg from the high transmitivity direction of the partial polarizer. Preferably, the second crystal has a length 1/2 that of the first crystal and the high transmitivity direction of the partial polarizer is nine times as great as the low transmitivity direction. To provide tuning, the polarizations of the energy entering the first crystal and leaving the second crystal are varied by either rotating the entrance and exit polarizers, or by sandwiching the entrance and exit polarizers between pairs of half wave plates that are rotated relative to the polarizers. A plurality of the filter modules may be cascaded.
Exact dynamics of finite Glauber-Fock photonic lattices
Rodriguez-Lara, B. M.
2011-11-15
The dynamics of Glauber-Fock lattice of size N is given through exact diagonalization of the corresponding Hamiltonian; the spectra {l_brace}{lambda}{sub k}{r_brace} is given as the roots of the Nth Hermite polynomial, H{sub N}({lambda}{sub k}/{radical}(2))=0, and the eigenstates are given in terms of Hermite polynomials evaluated at these roots. The exact dynamics is used to study coherent phenomena in discrete lattices. Due to the symmetry and spacing of the eigenvalues {l_brace}{lambda}{sub k}{r_brace}, oscillatory behavior is predicted with highly localized spectra, that is, near complete revivals of the photon number and partial recovery of the initial state at given waveguides.
NASA Astrophysics Data System (ADS)
Azbel‧, Mark Ya.
2005-08-01
The exact law of mortality dynamics in changing populations and environment is derived. It includes no explicit characteristics of animal-environment interactions (metabolism, etc.) which are a must for life; it is universal for all animals, from single-cell yeast to humans, with their drastically different biology, evolutionary history, and complexity; it is rapidly (within few percent of life span) reversible. Such a law is unique for live systems with their homeostatic self-adjustment to environment (cf. thermodynamics of liquids and glasses). The law which is valid for all live, and only live, systems is their specific natural law. Mortality is an instrument of natural selection and biological diversity. Its law, which is preserved in evolution of all species, is a conservation law of mortality, selection, evolution, biology. The law implies new kinds of intrinsic mortality and adaptation which dominate in evolutionary unprecedented protected populations and, in contrast to species-specific natural selection, proceed via universal stepwise rungs and reduce to universal cellular mechanism. The law demonstrates that intrinsic mortality and at least certain aspects of aging are disposable evolutionary byproducts, and directed genetic and/or biological changes may yield healthy and vital Methuselah lifespan. This is consistent with experiments. Universality implies that single-cell yeast may provide a master key to the cellular mechanism of universal mortality, aging, selection, evolution, and its regulation in all animals. One may look for its manifestations in animal cells also, e.g., in their replicative senescence and cancer. Evolutionary origin and genetic nature of universality are suggested.
Exactly solvable Hermite, Laguerre, and Jacobi type quantum parametric oscillators
NASA Astrophysics Data System (ADS)
A. Büyükaşık, Şirin; ćayiç, Zehra
2016-12-01
We introduce exactly solvable quantum parametric oscillators, which are generalizations of the quantum problems related with the classical orthogonal polynomials of Hermite, Laguerre, and Jacobi type, introduced in the work of Büyükaşık et al. [J. Math. Phys. 50, 072102 (2009)]. Quantization of these models with specific damping, frequency, and external forces is obtained using the Wei-Norman Lie algebraic approach. This determines the evolution operator exactly in terms of two linearly independent homogeneous solutions and a particular solution of the corresponding classical equation of motion. Then, time-evolution of wave functions and coherent states are found explicitly. Probability densities, expectation values, and uncertainty relations are evaluated and their properties are investigated under the influence of the external terms.
Low-drag exact coherent states in Newtonian channel flow
NASA Astrophysics Data System (ADS)
Park, Jae Sung; Graham, Michael
2013-11-01
Exact coherent states have been known to nicely capture the main features of turbulent flows such as near-wall coherent structures and streak spacing. In this study, we numerically calculate new classes of exact coherent states, specifically nonlinear traveling wave solutions, for Newtonian channel flow, which display low-drag flow features such as weak streamwise vortices and nearly nonexistent streamwise variations like those observed in polymer solutions and in Newtonian hibernating turbulence. Traveling wave solutions with various symmetries are found. While some of the structures clearly display nonlinear critical layer dynamics, in others this connection is not as clear. Dynamical trajectories are computed and some of the solutions are shown to lie on the basin boundary between laminar and turbulent flows and are thus edge-states of the flow. Lastly, the dependence of Reynolds number for the solutions is investigated. We find one intriguing family whose mean velocity profile appears to approach the so-called maximum drag reduction asymptote found in polymer solutions, despite the fact that fluid studied here is Newtonian. Our results suggest that these traveling wave solutions may play a role as promising targets for turbulence control strategies for drag reduction. This work was supported by the Air Force Office of Scientific Research through grant FA9550-11-1-0094 (Flow Interactions and Control Program).
Exact computations for the coherence estimate.
Nadarajah, Saralees; Kotz, Samuel
2007-07-01
The recent paper by Miranda de Sa et al. [10] developed methods for computing the sampling distribution of the coherence estimate between two signals. However, the methods were based on some approximations because it was claimed that exact calculations required extensive computations. In this technical note, we provide analytical expressions and 1-line programs for the exact computation of various measures of the sampling distribution. Besides being exact, our programs have several advantages over the methods suggested in [10].
Exact significance test for Markov order
NASA Astrophysics Data System (ADS)
Pethel, S. D.; Hahs, D. W.
2014-02-01
We describe an exact significance test of the null hypothesis that a Markov chain is nth order. The procedure utilizes surrogate data to yield an exact test statistic distribution valid for any sample size. Surrogate data are generated using a novel algorithm that guarantees, per shot, a uniform sampling from the set of sequences that exactly match the nth order properties of the observed data. Using the test, the Markov order of Tel Aviv rainfall data is examined.
Quasi-exactly solvable quasinormal modes
Ho, C.-L.; Cho, H.-T.
2007-11-20
We consider quasinormal modes with complex energies from the point of view of the theory of quasi-exactly solvable (QES) models. We demonstrate that it is possible to find new potentials which admit exactly solvable or QES quasinormal modes by suitable complexification of parameters defining the QES potentials. Particularly, we obtain one QES and four exactly solvable potentials out of the five one-dimensional QES systems based on the sl(2) algebra.
Algerian Women in the Exact Sciences
NASA Astrophysics Data System (ADS)
Kesri, Naziha
2009-04-01
In the exact sciences, which include physics, chemistry, and mathematics, women comprise 53% of the total graduates in Algeria. Fifty percent of persons working in careers in the exact sciences are women. We focus our analysis on graduate and postgraduate trends for women in the exact sciences and on women's careers in physics in universities and research laboratories, where the "leaky pipeline" is in evidence.
A Reduced Basis Method with Exact-Solution Certificates for Steady Symmetric Coercive Equations
2015-01-14
A Reduced Basis Method with Exact -Solution Certificates for Steady Symmetric Coercive Equations Masayuki Yano Department of Mechanical Engineering...bounds of the energy associated with the infinite-dimensional weak solution of parametrized steady symmetric coercive partial differential equations with...identify algebraic conditions for the reduced basis approx- imation of the dual variable that results in an exact satisfaction of the dual feasibility
Exact and approximate solutions to the oblique shock equations for real-time applications
NASA Technical Reports Server (NTRS)
Hartley, T. T.; Brandis, R.; Mossayebi, F.
1991-01-01
The derivation of exact solutions for determining the characteristics of an oblique shock wave in a supersonic flow is investigated. Specifically, an explicit expression for the oblique shock angle in terms of the free stream Mach number, the centerbody deflection angle, and the ratio of the specific heats, is derived. A simpler approximate solution is obtained and compared to the exact solution. The primary objectives of obtaining these solutions is to provide a fast algorithm that can run in a real time environment.
Symes, L M; Blakie, P B
2017-01-01
We develop numerical methods for solving the spin-2 Gross-Pitaevskii equation. The basis of our work is a two-way splitting of this evolution equation that leads to two exactly solvable subsystems. Utilizing second-order and fourth-order composition schemes we realize two fully symplectic integration algorithms, the first such algorithms for evolving spin-2 condensates. We demonstrate the accuracy of these algorithms against other methods on application to an exact continuous wave solution that we derive.
NASA Astrophysics Data System (ADS)
Symes, L. M.; Blakie, P. B.
2017-01-01
We develop numerical methods for solving the spin-2 Gross-Pitaevskii equation. The basis of our work is a two-way splitting of this evolution equation that leads to two exactly solvable subsystems. Utilizing second-order and fourth-order composition schemes we realize two fully symplectic integration algorithms, the first such algorithms for evolving spin-2 condensates. We demonstrate the accuracy of these algorithms against other methods on application to an exact continuous wave solution that we derive.
Observations of running penumbral waves.
NASA Technical Reports Server (NTRS)
Zirin, H.; Stein, A.
1972-01-01
Quiet sunspots with well-developed penumbrae show running intensity waves with period running around 300 sec. The waves appear connected with umbral flashes of exactly half the period. Waves are concentric, regular, with velocity constant around 10 km/sec. They are probably sound waves and show intensity fluctuation in H alpha centerline or wing of 10 to 20%. The energy is tiny compared to the heat deficit of the umbra.
The exact fundamental solution for the Benes tracking problem
NASA Astrophysics Data System (ADS)
Balaji, Bhashyam
2009-05-01
The universal continuous-discrete tracking problem requires the solution of a Fokker-Planck-Kolmogorov forward equation (FPKfe) for an arbitrary initial condition. Using results from quantum mechanics, the exact fundamental solution for the FPKfe is derived for the state model of arbitrary dimension with Benes drift that requires only the computation of elementary transcendental functions and standard linear algebra techniques- no ordinary or partial differential equations need to be solved. The measurement process may be an arbitrary, discrete-time nonlinear stochastic process, and the time step size can be arbitrary. Numerical examples are included, demonstrating its utility in practical implementation.
Exact solutions to quadratic gravity
NASA Astrophysics Data System (ADS)
Pravda, V.; Pravdová, A.; Podolský, J.; Švarc, R.
2017-04-01
Since all Einstein spacetimes are vacuum solutions to quadratic gravity in four dimensions, in this paper we study various aspects of non-Einstein vacuum solutions to this theory. Most such known solutions are of traceless Ricci and Petrov type N with a constant Ricci scalar. Thus we assume the Ricci scalar to be constant which leads to a substantial simplification of the field equations. We prove that a vacuum solution to quadratic gravity with traceless Ricci tensor of type N and aligned Weyl tensor of any Petrov type is necessarily a Kundt spacetime. This will considerably simplify the search for new non-Einstein solutions. Similarly, a vacuum solution to quadratic gravity with traceless Ricci type III and aligned Weyl tensor of Petrov type II or more special is again necessarily a Kundt spacetime. Then we study the general role of conformal transformations in constructing vacuum solutions to quadratic gravity. We find that such solutions can be obtained by solving one nonlinear partial differential equation for a conformal factor on any Einstein spacetime or, more generally, on any background with vanishing Bach tensor. In particular, we show that all geometries conformal to Kundt are either Kundt or Robinson-Trautman, and we provide some explicit Kundt and Robinson-Trautman solutions to quadratic gravity by solving the above mentioned equation on certain Kundt backgrounds.
A class of exact classical solutions to string theory.
Coley, A A
2002-12-31
We show that the recently obtained class of spacetimes for which all of the scalar curvature invariants vanish (which can be regarded as generalizations of pp-wave spacetimes) are exact solutions in string theory to all perturbative orders in the string tension scale. As a result the spectrum of the theory can be explicitly obtained, and these spacetimes are expected to provide some hints for the study of superstrings on more general backgrounds. Since these Lorentzian spacetimes suffer no quantum corrections to all loop orders they may also offer insights into quantum gravity.
Effective photon mass and exact translating quantum relativistic structures
Haas, Fernando Manrique, Marcos Antonio Albarracin
2016-04-15
Using a variation of the celebrated Volkov solution, the Klein-Gordon equation for a charged particle is reduced to a set of ordinary differential equations, exactly solvable in specific cases. The new quantum relativistic structures can reveal a localization in the radial direction perpendicular to the wave packet propagation, thanks to a non-vanishing scalar potential. The external electromagnetic field, the particle current density, and the charge density are determined. The stability analysis of the solutions is performed by means of numerical simulations. The results are useful for the description of a charged quantum test particle in the relativistic regime, provided spin effects are not decisive.
Broadband cloaking and holography with exact boundary conditions.
van Manen, Dirk-Jan; Vasmel, Marlies; Greenhalgh, Stewart; Robertsson, Johan O A
2015-06-01
Broadband cloaking and holography are achieved by creating an exact boundary condition on a surface enclosing an object or free space. A time-recursive, discrete version of the Kirchhoff-Helmholtz integral predicts the wavefield impinging on the surface, as well as its transmission through an arbitrary embedding or replacement medium. Surface source distributions proportional to the predicted wavefield cancel the incident waves and radiate the desired response. The fields inside and outside the surface can be controlled independently. A two-dimensional numerical example shows that cloaking and holography can be achieved to within numerical precision across the frequency range of the incident radiation.
A class of reduced-order models in the theory of waves and stability
Sorokin, S. V.
2016-01-01
This paper presents a class of approximations to a type of wave field for which the dispersion relation is transcendental. The approximations have two defining characteristics: (i) they give the field shape exactly when the frequency and wavenumber lie on a grid of points in the (frequency, wavenumber) plane and (ii) the approximate dispersion relations are polynomials that pass exactly through points on this grid. Thus, the method is interpolatory in nature, but the interpolation takes place in (frequency, wavenumber) space, rather than in physical space. Full details are presented for a non-trivial example, that of antisymmetric elastic waves in a layer. The method is related to partial fraction expansions and barycentric representations of functions. An asymptotic analysis is presented, involving Stirling's approximation to the psi function, and a logarithmic correction to the polynomial dispersion relation. PMID:27118895
Wave propagation in laminated orthotropic circular cylindrical shells
NASA Technical Reports Server (NTRS)
Srinivas, S.
1976-01-01
An exact three-dimensional analysis of wave propagation in laminated orthotropic circular cylindrical-shells is developed. Numerical results are presented for three-ply shells, and for various axial wave lengths, circumferential wave numbers, and thicknesses. Results from a thin shell theory and a refined approximate theory are compared with the exact results.
Systems of Nonlinear Hyperbolic Partial Differential Equations
1997-12-01
McKinney) Travelling wave solutions of the modified Korteweg - deVries -Burgers Equation . J. Differential Equations , 116 (1995), 448-467. 4. (with D.G...SUBTITLE Systems of Nonlinear Hyperbolic Partial Differential Equations 6. AUTHOR’S) Michael Shearer PERFORMING ORGANIZATION NAMES(S) AND...DISTRIBUTION CODE 13. ABSTRACT (Maximum 200 words) This project concerns properties of wave propagation in partial differential equations that are nonlinear
Exact adler function in supersymmetric QCD.
Shifman, M; Stepanyantz, K
2015-02-06
The Adler function D is found exactly in supersymmetric QCD. Our exact formula relates D(Q(2)) to the anomalous dimension of the matter superfields γ(α(s)(Q(2))). En route we prove another theorem: the absence of the so-called singlet contribution to D. While such singlet contributions are present in individual supergraphs, they cancel in the sum.
Exact treatment of the Jaynes-Cummings model under the action of an external classical field
Abdalla, M. Sebawe; Khalil, E.M.; Obada, A.S.-F.
2011-09-15
We consider the usual Jaynes-Cummings model (JCM), in the presence of an external classical field. Under a certain canonical transformation for the Pauli operators, the system is transformed into the usual JCM. Using the equations of motion in the Heisenberg picture, exact solutions for the time-dependent dynamical operators are obtained. In order to calculate the expectation values of these operators, the wave function has been constructed. It has been shown that the classical field augments the atomic frequency {omega}{sub 0} and mixes the original atomic states. Changes of squeezing from one quadrature to another is also observed for a strong value of the coupling parameter of the classical field. Furthermore, the system in this case displays partial entanglement and the state of the field losses its purity. - Highlights: > The time-dependent JCM, in the presence of the classical field, is still one of the essential problems in the quantum optics. > A new approach is applied through a certain canonical transformation. > The classical field augments the atomic frequency {omega}{sub 0} and mixes the original atomic states.
Castejon, F.; Pavlov, S. S.
2006-07-15
The fully relativistic plasma dielectric tensor for any wave and plasma parameter is estimated on the basis of the exact plasma dispersion functions concept. The inclusion of this concept allows one to write the tensor in a closed and compact form and to reduce the tensor evaluation to the calculation of those functions. The main analytical properties of these functions are studied and two methods are given for their evaluation. The comparison between the exact dielectric tensor with the weakly relativistic approximation, widely used presently in plasma waves calculations, is given as well as the range of plasma temperature, harmonic number, and propagation angle in which the weakly relativistic approximation is valid.
Spin-wave modes of ferromagnetic films
NASA Astrophysics Data System (ADS)
Arias, R. E.
2016-10-01
The spin-wave modes of ferromagnetic films have been studied for a long time experimentally as well as theoretically, either in the magnetostatic approximation or also considering the exchange interaction. A theoretical method is presented that allows one to determine with ease the exact frequency dispersion relations of dipole-exchange modes under general conditions: an obliquely applied magnetic field, and surface boundary conditions that allow for partial pinning, which may be of different origins. The method is a generalization of Green's theorem to the problem of solving the linear dynamics of ferromagnetic spin-wave modes. Convolution integral equations for the magnetization and the magnetostatic potential of the modes are derived on the surfaces of the film. For the translation-invariant film these become simple local algebraic equations at each in-plane wave vector. Eigenfrequencies result from imposing a 6 ×6 determinant to be null, and spin-wave modes follow everywhere through solving linear 6 ×6 inhomogeneous systems. An interpretation of the results is that the Green's functions represent six independent plane-wave solutions to the equations of motion, with six associated complex perpendicular wave vectors: volume modes correspond to the cases in which two of these are purely real at a given frequency. Furthermore, the convolution extinction equations enforce the boundary conditions: this is possible at specific eigenfrequencies for a given in-plane wave vector. Magnetostatic modes may also be obtained in detail. At low frequencies and for some obliquely applied magnetic fields, magnetostatic and dipole-exchange volume modes may have forward or backward character depending on the frequency range.
EXACT2: the semantics of biomedical protocols
2014-01-01
Background The reliability and reproducibility of experimental procedures is a cornerstone of scientific practice. There is a pressing technological need for the better representation of biomedical protocols to enable other agents (human or machine) to better reproduce results. A framework that ensures that all information required for the replication of experimental protocols is essential to achieve reproducibility. Methods We have developed the ontology EXACT2 (EXperimental ACTions) that is designed to capture the full semantics of biomedical protocols required for their reproducibility. To construct EXACT2 we manually inspected hundreds of published and commercial biomedical protocols from several areas of biomedicine. After establishing a clear pattern for extracting the required information we utilized text-mining tools to translate the protocols into a machine amenable format. We have verified the utility of EXACT2 through the successful processing of previously 'unseen' (not used for the construction of EXACT2) protocols. Results The paper reports on a fundamentally new version EXACT2 that supports the semantically-defined representation of biomedical protocols. The ability of EXACT2 to capture the semantics of biomedical procedures was verified through a text mining use case. In this EXACT2 is used as a reference model for text mining tools to identify terms pertinent to experimental actions, and their properties, in biomedical protocols expressed in natural language. An EXACT2-based framework for the translation of biomedical protocols to a machine amenable format is proposed. Conclusions The EXACT2 ontology is sufficient to record, in a machine processable form, the essential information about biomedical protocols. EXACT2 defines explicit semantics of experimental actions, and can be used by various computer applications. It can serve as a reference model for for the translation of biomedical protocols in natural language into a semantically
EXACT2: the semantics of biomedical protocols.
Soldatova, Larisa N; Nadis, Daniel; King, Ross D; Basu, Piyali S; Haddi, Emma; Baumlé, Véronique; Saunders, Nigel J; Marwan, Wolfgang; Rudkin, Brian B
2014-01-01
The reliability and reproducibility of experimental procedures is a cornerstone of scientific practice. There is a pressing technological need for the better representation of biomedical protocols to enable other agents (human or machine) to better reproduce results. A framework that ensures that all information required for the replication of experimental protocols is essential to achieve reproducibility. To construct EXACT2 we manually inspected hundreds of published and commercial biomedical protocols from several areas of biomedicine. After establishing a clear pattern for extracting the required information we utilized text-mining tools to translate the protocols into a machine amenable format. We have verified the utility of EXACT2 through the successful processing of previously 'unseen' (not used for the construction of EXACT2)protocols. We have developed the ontology EXACT2 (EXperimental ACTions) that is designed to capture the full semantics of biomedical protocols required for their reproducibility. The paper reports on a fundamentally new version EXACT2 that supports the semantically-defined representation of biomedical protocols. The ability of EXACT2 to capture the semantics of biomedical procedures was verified through a text mining use case. In this EXACT2 is used as a reference model for text mining tools to identify terms pertinent to experimental actions, and their properties, in biomedical protocols expressed in natural language. An EXACT2-based framework for the translation of biomedical protocols to a machine amenable format is proposed. The EXACT2 ontology is sufficient to record, in a machine processable form, the essential information about biomedical protocols. EXACT2 defines explicit semantics of experimental actions, and can be used by various computer applications. It can serve as a reference model for for the translation of biomedical protocols in natural language into a semantically-defined format.
Agakishiev, G.; Arnold, O.; Belver, D.; Belyaev, A.; Berger-Chen, J. C.; Blanco, A.; Böhmer, M.; Boyard, J. L.; Cabanelas, P.; Chernenko, S.; Dybczak, A.; Epple, E.; Fabbietti, L.; Fateev, O.; Finocchiaro, P.; Fonte, P.; Friese, J.; Fröhlich, I.; Galatyuk, T.; Garzón, J. A.; Gernhäuser, R.; Göbel, K.; Golubeva, M.; González-Díaz, D.; Guber, F.; Gumberidze, M.; Heinz, T.; Hennino, T.; Holzmann, R.; Ierusalimov, A.; Iori, I.; Ivashkin, A.; Jurkovic, M.; Kämpfer, B.; Karavicheva, T.; Koenig, I.; Koenig, W.; Kolb, B. W.; Kornakov, G.; Kotte, R.; Krása, A.; Krizek, F.; Krücken, R.; Kuc, H.; Kühn, W.; Kugler, A.; Kunz, T.; Kurepin, A.; Ladygin, V.; Lalik, R.; Lapidus, K.; Lebedev, A.; Lopes, L.; Lorenz, M.; Maier, L.; Mangiarotti, A.; Markert, J.; Metag, V.; Michel, J.; Müntz, C.; Münzer, R.; Naumann, L.; Pachmayer, Y. C.; Palka, M.; Parpottas, Y.; Pechenov, V.; Pechenova, O.; Pietraszko, J.; Przygoda, W.; Ramstein, B.; Reshetin, A.; Rustamov, A.; Sadovsky, A.; Salabura, P.; Schmah, A.; Schwab, E.; Siebenson, J.; Sobolev, Yu. G.; Spataro, S.; Spruck, B.; Ströbele, H.; Stroth, J.; Sturm, C.; Tarantola, A.; Teilab, K.; Tlusty, P.; Traxler, M.; Tsertos, H.; Vasiliev, T.; Wagner, V.; Weber, M.; Wendisch, C.; Wüstenfeld, J.; Yurevich, S.; Zanevsky, Y.; Sarantsev, A. V.
2015-01-26
Employing the Bonn–Gatchina partial wave analysis framework (PWA), we have analyzed HADES data of the reaction p(3.5GeV) + p → pK^{+}Λ. This reaction might contain information about the kaonic cluster “ppK^{-}” (with quantum numbers J^{P}=0^{-} and total isospin I =1/2) via its decay into pΛ. Due to interference effects in our coherent description of the data, a hypothetical K ¯NN (or, specifically “ppK^{-}”) cluster signal need not necessarily show up as a pronounced feature (e.g. a peak) in an invariant mass spectrum like pΛ. Our PWA analysis includes a variety of resonant and non-resonant intermediate states and delivers a good description of our data (various angular distributions and two-hadron invariant mass spectra) without a contribution of a K ¯NN cluster. At a confidence level of CL_{s}=95% such a cluster cannot contribute more than 2–12% to the total cross section with a pK^{+} Λ final state, which translates into a production cross-section between 0.7 μb and 4.2 μb, respectively. The range of the upper limit depends on the assumed cluster mass, width and production process.
Partial wave analysis of the reaction $\gamma p\to p\omega $ and the search for nucleon resonances
Williams, M.; Applegate, D.; Bellis, M.; Meyer, C. A.; Adhikari, K. P.; Anghinolfi, M.; Baghdasaryan, H.; Ball, J.; Battaglieri, M.; Bedlinskiy, I.; Berman, B. L.; Biselli, A. S.; Briscoe, W. J.; Brooks, W. K.; Burkert, V. D.; Careccia, S. L.; Carman, D. S.; Cole, P. L.; Collins, P.; Crede, V.; D’Angelo, A.; Daniel, A.; De Vita, R.; De Sanctis, E.; Deur, A.; Dey, B.; Dhamija, S.; Dickson, R.; Djalali, C.; Dodge, G. E.; Doughty, D.; Dugger, M.; Dupre, R.; Alaoui, A. El; Elouadrhiri, L.; Eugenio, P.; Fedotov, G.; Fegan, S.; Fradi, A.; Gabrielyan, M. Y.; Garçon, M.; Gilfoyle, G. P.; Giovanetti, K. L.; Girod, F. X.; Gohn, W.; Golovatch, E.; Gothe, R. W.; Griffioen, K. A.; Guidal, M.; Guler, N.; Guo, L.; Hafidi, K.; Hakobyan, H.; Hanretty, C.; Hassall, N.; Hicks, K.; Holtrop, M.; Ilieva, Y.; Ireland, D. G.; Ishkhanov, B. S.; Isupov, E. L.; Jawalkar, S. S.; Jo, H. S.; Johnstone, J. R.; Joo, K.; Keller, D.; Khandaker, M.; Khetarpal, P.; Kim, W.; Klein, A.; Klein, F. J.; Krahn, Z.; Kubarovsky, V.; Kuleshov, S. V.; Kuznetsov, V.; Livingston, K.; Lu, H. Y.; Mayer, M.; McAndrew, J.; McCracken, M. E.; McKinnon, B.; Mirazita, M.; Mokeev, V.; Moreno, B.; Moriya, K.; Morrison, B.; Munevar, E.; Nadel-Turonski, P.; Nepali, C. S.; Niccolai, S.; Niculescu, G.; Niculescu, I.; Niroula, M. R.; Niyazov, R. A.; Osipenko, M.; Ostrovidov, A. I.; Paris, M.; Park, K.; Park, S.; Pasyuk, E.; Pereira, S. Anefalos; Perrin, Y.; Pisano, S.; Pogorelko, O.; Pozdniakov, S.; Price, J. W.; Procureur, S.; Protopopescu, D.; Ricco, G.; Ripani, M.; Ritchie, B. G.; Rosner, G.; Rossi, P.; Sabatié, F.; Saini, M. S.; Salamanca, J.; Salgado, C.; Schott, D.; Schumacher, R. A.; Seraydaryan, H.; Sharabian, Y. G.; Smith, E. S.; Sober, D. I.; Sokhan, D.; Stepanyan, S. S.; Stoler, P.; Strakovsky, I. I.; Strauch, S.; Taiuti, M.; Tedeschi, D. J.; Tkachenko, S.; Ungaro, M.; Vineyard, M. F.; Voutier, E.; Watts, D. P.; Weygand, D. P.; Wood, M. H.; Zhang, J.; Zhao, B.
2009-12-30
We performed an event-based partial wave analysis (PWA) of the reaction γ p -> p ω on a high-statistics dataset obtained using the CLAS at Jefferson Lab for center-of-mass energies from threshold up to 2.4 GeV. This analysis benefits from access to the world's first high precision spin density matrix element measurements, available to the event-based PWA through the decay distribution of omega-> π^{+} π^{ -} π^{0}. The data confirm the dominance of the t-channel π^{0} exchange amplitude in the forward direction. The dominant resonance contributions are consistent with the previously identified states F[15](1680) and D[13](1700) near threshold, as well as the G[17](2190) at higher energies. Suggestive evidence for the presence of a J(P)=5/2^{+} state around 2 GeV, a "missing" state, has also been found. Evidence for other states is inconclusive.
Exact Solutions and Conservation Laws for a New Integrable Equation
Gandarias, M. L.; Bruzon, M. S.
2010-09-30
In this work we study a generalization of an integrable equation proposed by Qiao and Liu from the point of view of the theory of symmetry reductions in partial differential equations. Among the solutions we obtain a travelling wave with decaying velocity and a smooth soliton solution. We determine the subclass of these equations which are quasi-self-adjoint and we get a nontrivial conservation law.
Lin, Cheng-Horng
2016-12-23
There are more than 7 million people living near the Tatun volcano group in northern Taiwan. For the safety of the Taipei metropolis, in particular, it has been debated for decades whether or not these volcanoes are active. Here I show evidence of a deep magma reservoir beneath the Taipei metropolis from both S-wave shadows and P-wave delays. The reservoir is probably composed of either a thin magma layer overlay or many molten sills within thick partially molten rocks. Assuming that 40% of the reservoir is partially molten, its total volume could be approximately 350 km(3). The exact location and geometry of the magma reservoir will be obtained after dense seismic arrays are deployed in 2017-2020.
NASA Astrophysics Data System (ADS)
Lin, Cheng-Horng
2016-12-01
There are more than 7 million people living near the Tatun volcano group in northern Taiwan. For the safety of the Taipei metropolis, in particular, it has been debated for decades whether or not these volcanoes are active. Here I show evidence of a deep magma reservoir beneath the Taipei metropolis from both S-wave shadows and P-wave delays. The reservoir is probably composed of either a thin magma layer overlay or many molten sills within thick partially molten rocks. Assuming that 40% of the reservoir is partially molten, its total volume could be approximately 350 km3. The exact location and geometry of the magma reservoir will be obtained after dense seismic arrays are deployed in 2017–2020.
Lin, Cheng-Horng
2016-01-01
There are more than 7 million people living near the Tatun volcano group in northern Taiwan. For the safety of the Taipei metropolis, in particular, it has been debated for decades whether or not these volcanoes are active. Here I show evidence of a deep magma reservoir beneath the Taipei metropolis from both S-wave shadows and P-wave delays. The reservoir is probably composed of either a thin magma layer overlay or many molten sills within thick partially molten rocks. Assuming that 40% of the reservoir is partially molten, its total volume could be approximately 350 km3. The exact location and geometry of the magma reservoir will be obtained after dense seismic arrays are deployed in 2017–2020. PMID:28008931
NASA Astrophysics Data System (ADS)
Kim, E.-H.; Boardsen, S. A.; Johnson, J. R.; Slavin, J. A.
2016-02-01
This chapter provides a brief overview of the observed characteristics of ultra-low-frequency (ULF) waves at Mercury. It shows how field-aligned propagating ULF waves at Mercury can be generated by externally driven fast compressional waves (FWs) via mode conversion at the ion-ion hybrid resonance. Then, the chapter reviews the interpretation that the strong magnetic compressional waves near and its harmonics observed with 20 of Mercury's magnetic equator could be the ion Bernstein wave (IBW) mode. A recent statistical study of ULF waves at Mercury based on MESSENGER data reported the occurrence and polarization of the detected waves. The chapter further introduces the field line resonance and the electromagnetic ion Bernstein waves to explain such waves, and shows that both theories can partially explain the observations.
Peakompactons: Peaked compact nonlinear waves
Christov, Ivan C.; Kress, Tyler; Saxena, Avadh
2017-04-20
This paper is meant as an accessible introduction to/tutorial on the analytical construction and numerical simulation of a class of nonstandard solitary waves termed peakompactons. We present that these peaked compactly supported waves arise as solutions to nonlinear evolution equations from a hierarchy of nonlinearly dispersive Korteweg–de Vries-type models. Peakompactons, like the now-well-known compactons and unlike the soliton solutions of the Korteweg–de Vries equation, have finite support, i.e., they are of finite wavelength. However, unlike compactons, peakompactons are also peaked, i.e., a higher spatial derivative suffers a jump discontinuity at the wave’s crest. Here, we construct such solutions exactly bymore » reducing the governing partial differential equation to a nonlinear ordinary differential equation and employing a phase-plane analysis. Lastly, a simple, but reliable, finite-difference scheme is also designed and tested for the simulation of collisions of peakompactons. In addition to the peakompacton class of solutions, the general physical features of the so-called K#(n,m) hierarchy of nonlinearly dispersive Korteweg–de Vries-type models are discussed as well.« less
Peakompactons: Peaked compact nonlinear waves
NASA Astrophysics Data System (ADS)
Christov, Ivan C.; Kress, Tyler; Saxena, Avadh
2017-04-01
This paper is meant as an accessible introduction to/tutorial on the analytical construction and numerical simulation of a class of nonstandard solitary waves termed peakompactons. These peaked compactly supported waves arise as solutions to nonlinear evolution equations from a hierarchy of nonlinearly dispersive Korteweg-de Vries-type models. Peakompactons, like the now-well-known compactons and unlike the soliton solutions of the Korteweg-de Vries equation, have finite support, i.e., they are of finite wavelength. However, unlike compactons, peakompactons are also peaked, i.e., a higher spatial derivative suffers a jump discontinuity at the wave’s crest. Here, we construct such solutions exactly by reducing the governing partial differential equation to a nonlinear ordinary differential equation and employing a phase-plane analysis. A simple, but reliable, finite-difference scheme is also designed and tested for the simulation of collisions of peakompactons. In addition to the peakompacton class of solutions, the general physical features of the so-called K#(n,m) hierarchy of nonlinearly dispersive Korteweg-de Vries-type models are discussed as well.
Density functionals and dimensional renormalization for an exactly solvable model
NASA Astrophysics Data System (ADS)
Kais, S.; Herschbach, D. R.; Handy, N. C.; Murray, C. W.; Laming, G. J.
1993-07-01
We treat an analytically solvable version of the ``Hooke's Law'' model for a two-electron atom, in which the electron-electron repulsion is Coulombic but the electron-nucleus attraction is replaced by a harmonic oscillator potential. Exact expressions are obtained for the ground-state wave function and electron density, the Hartree-Fock solution, the correlation energy, the Kohn-Sham orbital, and, by inversion, the exchange and correlation functionals. These functionals pertain to the ``intermediate'' density regime (rs≥1.4) for an electron gas. As a test of customary approximations employed in density functional theory, we compare our exact density, exchange, and correlation potentials and energies with results from two approximations. These use Becke's exchange functional and either the Lee-Yang-Parr or the Perdew correlation functional. Both approximations yield rather good results for the density and the exchange and correlation energies, but both deviate markedly from the exact exchange and correlation potentials. We also compare properties of the Hooke's Law model with those of two-electron atoms, including the large dimension limit. A renormalization procedure applied to this very simple limit yields correlation energies as good as those obtained from the approximate functionals, for both the model and actual atoms.
Effect of fracture compliance on wave propagation within a fluid-filled fracture.
Nakagawa, Seiji; Korneev, Valeri A
2014-06-01
Open and partially closed fractures can trap seismic waves. Waves propagating primarily within fluid in a fracture are sometimes called Krauklis waves, which are strongly dispersive at low frequencies. The behavior of Krauklis waves has previously been examined for an open, fluid-filled channel (fracture), but the impact of finite fracture compliance resulting from contacting asperities and porous fillings in the fracture (e.g., debris, proppants) has not been fully investigated. In this paper, a dispersion equation is derived for Krauklis wave propagation in a fracture with finite fracture compliance, using a modified linear-slip-interface model (seismic displacement-discontinuity model). The resulting equation is formally identical to the dispersion equation for the symmetric fracture interface wave, another type of guided wave along a fracture. The low-frequency solutions of the newly derived dispersion equations are in good agreement with the exact solutions available for an open fracture. The primary effect of finite fracture compliance on Krauklis wave propagation is to increase wave velocity and attenuation at low frequencies. These effects can be used to monitor changes in the mechanical properties of a fracture.
NASA Astrophysics Data System (ADS)
Zhang, Jinliang; Hu, Wuqiang; Ma, Yu
2016-12-01
In this paper, the famous Klein-Gordon-Zakharov equations are firstly generalized, the new special types of Klein-Gordon-Zakharov equations with the positive fractional power terms (gKGZE) are presented. In order to derive the exact solutions of new special gKGZE, the subsidiary higher order ordinary differential equations (sub-ODEs) with the positive fractional power terms are introduced, and with the aids of the Sub-ODE, the exact solutions of three special types of the gKGZE are derived, which are the bell-type solitary wave solution, the algebraic solitary wave solution, the kink-type solitary wave solution and the sinusoidal traveling wave solution, provided that the coefficients of gKGZE satisfy certain constraint conditions.
A Formulation of Asymptotic and Exact Boundary Conditions Using Local Operators
NASA Technical Reports Server (NTRS)
Hagstrom, T.; Hariharan, S. I.
1998-01-01
In this paper we describe a systematic approach for constructing asymptotic boundary conditions for isotropic wave-like equations using local operators. The conditions take a recursive form with increasing order of accuracy. In three dimensions the recursion terminates and the resulting conditions are exact for solutions which are described by finite combinations of angular spherical harmonics. First, we develop the expansion for the two-dimensional wave equation and construct a sequence of easily implementable boundary conditions. We show that in three dimensions and analogous conditions are again easily implementable in addition to being exact. Also, we provide extensions of these ideas to hyperbolic systems. Namely, Maxwell's equations for TM waves are used to demonstrate the construction. Finally, we provide numerical examples to demonstrate the effectiveness of these conditions for a model problem governed by the wave equation.
Various Boussinesq solitary wave solutions
Yates, G.T.
1995-12-31
The generalized Boussinesq (gB) equations have been used to model nonlinear wave evolution over variable topography and wave interactions with structures. Like the KdV equation, the gB equations support a solitary wave solution which propagates without changing shape, and this solitary wave is often used as a primary test case for numerical studies of nonlinear waves using either the gB or other model equations. Nine different approximate solutions of the generalized Boussinesq equations are presented with simple closed form expressions for the wave elevation and wave speed. Each approximates the free propagation of a single solitary wave, and eight of these solutions are newly obtained. The author compares these solutions with the well known KdV solution, Rayleigh`s solution, Laitone`s higher order solution, and ``exact`` numerical integration of the gB equations. Existing experimental data on solitary wave shape and wave speed are compared with these models.
EXACT Software Repository v 1.1
HART, WILLIAM; BERRY, JONATHAN; HEAPHY, ROBERT; PHILLIPS, CYNTHIA; CHAKERIAN, STEFAN
2007-01-07
The EXACT Software Repository contains a variety of software packages for describing, controlling, and analyzing computer experiments. The EXACT Python framework provides the experimentalist with convenient software tools to ease and organize the entire experimental process, including the description of factors and levels, the design of experiments, the control of experimental runs, the archiving of results, and analysis of results. The FAST package provides a Framework for Agile Software Testing. FAST manage the distributed execution of EXACT, as well as summaries of test results.
EXACT Software Repository v 1.1
HART, WILLIAM; BERRY, JONATHAN; HEAPHY, ROBERT; PHILLIPS, CYNTHIA; CHAKERIAN, STEFAN
2007-01-07
The EXACT Software Repository contains a variety of software packages for describing, controlling, and analyzing computer experiments. The EXACT Python framework provides the experimentalist with convenient software tools to ease and organize the entire experimental process, including the description of factors and levels, the design of experiments, the control of experimental runs, the archiving of results, and analysis of results. The FAST package provides a Framework for Agile Software Testing. FAST manage the distributed execution of EXACT, as well as summaries of test results.
Exact image theory for the slab problem
NASA Technical Reports Server (NTRS)
Lindell, I. V.
1988-01-01
Exact image theory, recently introduced for the exact solution of problems involving homogeneous half spaces and microstrip-like geometries, is developed here for the problem of homogeneous slab of isotropic dielectric and/or magnetic material in free space. Expressions for image sources, creating the exact reflected and transmitted fields, are given and their numerical evaluation is demonstrated. Nonradiating modes, guided by the slab and responsible for the loss of convergence of the image functions, are considered and extracted. The theory can be applied, for example, in an analysis of finite ground planes in microstrip antenna structures.
Exact coherent structures: from fluid turbulence to cardiac arrhythmias
NASA Astrophysics Data System (ADS)
Grigoriev, Roman; Marcotte, Christopher; Byrne, Gregory
2014-03-01
Ventricular fibrillation, a life threatening cardiac arrhythmia, is an example of spatiotemporally chaotic state dominated by multiple interacting spiral waves. Recent studies of weak fluid turbulence suggest that spatiotemporal chaos in general can be understood as a walk among exact unstable regular solutions (exact coherent states, ECS) of nonlinear evolution equations. Several classes of ECS are believed to play a dominant role; most typically these are equilibria and periodic orbits or relative equilibria and relative periodic orbits for systems with global continuous symmetries. Numerical methods originally developed in the context of fluid turbulence can also be applied to models of cardiac dynamics which possess translational and rotational symmetries and, indeed, allowed us to identify relative equilibria and periodic orbits describing isolated spirals with, respectively, fixed and drifting cores. In order to find regular solutions featuring multiple interacting spirals a new approach is required that takes into consideration the dynamics of slowly drifting cores associated with local, rather than global, symmetries. We describe how local symmetries can be reduced and more general types of ECS computed that dominate spiral wave chaos in models of cardiac tissue.
Exact simulation of polarized light reflectance by particle deposits
NASA Astrophysics Data System (ADS)
Ramezan Pour, B.; Mackowski, D. W.
2015-12-01
The use of polarimetric light reflection measurements as a means of identifying the physical and chemical characteristics of particulate materials obviously relies on an accurate model of predicting the effects of particle size, shape, concentration, and refractive index on polarized reflection. The research examines two methods for prediction of reflection from plane parallel layers of wavelength—sized particles. The first method is based on an exact superposition solution to Maxwell's time harmonic wave equations for a deposit of spherical particles that are exposed to a plane incident wave. We use a FORTRAN-90 implementation of this solution (the Multiple Sphere T Matrix (MSTM) code), coupled with parallel computational platforms, to directly simulate the reflection from particle layers. The second method examined is based upon the vector radiative transport equation (RTE). Mie theory is used in our RTE model to predict the extinction coefficient, albedo, and scattering phase function of the particles, and the solution of the RTE is obtained from adding—doubling method applied to a plane—parallel configuration. Our results show that the MSTM and RTE predictions of the Mueller matrix elements converge when particle volume fraction in the particle layer decreases below around five percent. At higher volume fractions the RTE can yield results that, depending on the particle size and refractive index, significantly depart from the exact predictions. The particle regimes which lead to dependent scattering effects, and the application of methods to correct the vector RTE for particle interaction, will be discussed.
A Procedure to Construct Exact Solutions of Nonlinear Fractional Differential Equations
Güner, Özkan; Cevikel, Adem C.
2014-01-01
We use the fractional transformation to convert the nonlinear partial fractional differential equations with the nonlinear ordinary differential equations. The Exp-function method is extended to solve fractional partial differential equations in the sense of the modified Riemann-Liouville derivative. We apply the Exp-function method to the time fractional Sharma-Tasso-Olver equation, the space fractional Burgers equation, and the time fractional fmKdV equation. As a result, we obtain some new exact solutions. PMID:24737972
A procedure to construct exact solutions of nonlinear fractional differential equations.
Güner, Özkan; Cevikel, Adem C
2014-01-01
We use the fractional transformation to convert the nonlinear partial fractional differential equations with the nonlinear ordinary differential equations. The Exp-function method is extended to solve fractional partial differential equations in the sense of the modified Riemann-Liouville derivative. We apply the Exp-function method to the time fractional Sharma-Tasso-Olver equation, the space fractional Burgers equation, and the time fractional fmKdV equation. As a result, we obtain some new exact solutions.
NASA Astrophysics Data System (ADS)
Li, Jibin; Chen, Fengjuan
In this paper, we consider a modulated equation in a discrete nonlinear electrical transmission line. This model is an integrable planar dynamical system having three singular straight lines. By using the theory of singular systems to investigate the dynamical behavior for this system, we obtain bifurcations of phase portraits under different parameter conditions. Corresponding to some special level curves, we derive exact explicit parametric representations of solutions (including smooth solitary wave solutions, peakons, compactons, periodic cusp wave solutions) under different parameter conditions.
Noncommutativity from exact renormalization group dualities
NASA Astrophysics Data System (ADS)
Gangopadhyay, Sunandan; Scholtz, Frederik G.
2014-08-01
Here we demonstrate, first, the construction of dualities using the exact renormalization group approach and, second, that spatial noncommutativity can emerge as such a duality. This is done in a simple quantum mechanical setting that establishes an exact duality between the commutative and noncommutative quantum Hall systems with harmonic interactions. It is also demonstrated that this link can be understood as a blocking (coarse graining) transformation in time that relates commutative and noncommutative degrees of freedom.
Exact solution of a quantum forced time-dependent harmonic oscillator
NASA Technical Reports Server (NTRS)
Yeon, Kyu Hwang; George, Thomas F.; Um, Chung IN
1992-01-01
The Schrodinger equation is used to exactly evaluate the propagator, wave function, energy expectation values, uncertainty values, and coherent state for a harmonic oscillator with a time dependent frequency and an external driving time dependent force. These quantities represent the solution of the classical equation of motion for the time dependent harmonic oscillator.
The fractional coupled KdV equations: Exact solutions and white noise functional approach
NASA Astrophysics Data System (ADS)
Hossam, A. Ghany; S. Okb El Bab, A.; M. Zabel, A.; Abd-Allah, Hyder
2013-08-01
Variable coefficients and Wick-type stochastic fractional coupled KdV equations are investigated. By using the modified fractional sub-equation method, Hermite transform, and white noise theory the exact travelling wave solutions and white noise functional solutions are obtained, including the generalized exponential, hyperbolic, and trigonometric types.
Exact solutions of Wick-type stochastic equations with variable coefficients
NASA Astrophysics Data System (ADS)
Kim, Hyunsoo; Sakthivel, Rathinasamy
In this paper, we consider the Wick-type stochastic generalized Boussinesq equation and Wick-type stochastic Kadomtsev-Petviashvili equation with variable coefficients. By employing the (GG)-expansion method with the aid of symbolic computation and Hermite transformation, we derive new exact travelling wave solutions, which mclude hyperbolic and trigonometric solutions for the considered equations.
Exact solutions of optical pulse propagation in nonlinear meta-materials
NASA Astrophysics Data System (ADS)
Nanda, Lipsa
2017-01-01
An analytical and simulation based method has been used to exactly solve the nonlinear wave propagation in bulk media exhibiting frequency dependent dielectric susceptibility and magnetic permeability. The method has been further extended to investigate the intensity distribution in a nonlinear meta-material with negative refractive index where both ɛ and μ are dispersive and negative in nature.
NASA Astrophysics Data System (ADS)
Hwang, M.; Podloucky, R.; Gonis, A.; Freeman, A. J.
1986-01-01
Results of exact and analytic calculations of the electronic densities of states (DOS's) associated with semi-infinite substitutionally disordered chains are presented using the exact position-space renormalization-group (PSRG) method, the augmented-space (AS) formalism, and the embedded-cluster method (ECM). In addition to total DOS's, the PSRG method allows the calculation of exact partial DOS's associated with local atomic configurations in a disordered material. Comparisons with the exact results indicate that as in the case of infinite materials the ECM provides a reliable method for the calculation of single-particle properties, such as the DOS, of semi-infinite systems. Furthermore, the ECM is found to be much more accurate than the AS formalism, especially in the case of concentrated substitutionally disordered alloys.
Exact Potential Driving the Electron Dynamics in Enhanced Ionization of H(2)(+).
Khosravi, Elham; Abedi, Ali; Maitra, Neepa T
2015-12-31
It was recently shown that the exact factorization of the electron-nuclear wave function allows the construction of a Schrödinger equation for the electronic system, in which the potential contains exactly the effect of coupling to the nuclear degrees of freedom and any external fields. Here we study the exact potential acting on the electron in charge-resonance enhanced ionization in a model one-dimensional H(2)(+) molecule. We show there can be significant differences between the exact potential and that used in the traditional quasistatic analyses, arising from nonadiabatic coupling to the nuclear system, and that these are crucial to include for accurate simulations of time-resolved ionization dynamics and predictions of the ionization yield.
The exact forces on classical nuclei in non-adiabatic charge transfer
Agostini, Federica; Abedi, Ali; Suzuki, Yasumitsu; Min, Seung Kyu; Gross, E. K. U.; Maitra, Neepa T.
2015-02-28
The decomposition of electronic and nuclear motion presented in Abedi et al. [Phys. Rev. Lett. 105, 123002 (2010)] yields a time-dependent potential that drives the nuclear motion and fully accounts for the coupling to the electronic subsystem. Here, we show that propagation of an ensemble of independent classical nuclear trajectories on this exact potential yields dynamics that are essentially indistinguishable from the exact quantum dynamics for a model non-adiabatic charge transfer problem. We point out the importance of step and bump features in the exact potential that are critical in obtaining the correct splitting of the quasiclassical nuclear wave packet in space after it passes through an avoided crossing between two Born-Oppenheimer surfaces and analyze their structure. Finally, an analysis of the exact potentials in the context of trajectory surface hopping is presented, including preliminary investigations of velocity-adjustment and the force-induced decoherence effect.
The exact forces on classical nuclei in non-adiabatic charge transfer.
Agostini, Federica; Abedi, Ali; Suzuki, Yasumitsu; Min, Seung Kyu; Maitra, Neepa T; Gross, E K U
2015-02-28
The decomposition of electronic and nuclear motion presented in Abedi et al. [Phys. Rev. Lett. 105, 123002 (2010)] yields a time-dependent potential that drives the nuclear motion and fully accounts for the coupling to the electronic subsystem. Here, we show that propagation of an ensemble of independent classical nuclear trajectories on this exact potential yields dynamics that are essentially indistinguishable from the exact quantum dynamics for a model non-adiabatic charge transfer problem. We point out the importance of step and bump features in the exact potential that are critical in obtaining the correct splitting of the quasiclassical nuclear wave packet in space after it passes through an avoided crossing between two Born-Oppenheimer surfaces and analyze their structure. Finally, an analysis of the exact potentials in the context of trajectory surface hopping is presented, including preliminary investigations of velocity-adjustment and the force-induced decoherence effect.
Wave climate assessment by satellite remote sensing
Barstow, S.F.; Krogstad, H.E.
1995-12-31
Satellite remote sensing is quickly becoming a major information source for wave climate assessments. The present paper surveys various measurement principles and illustrates applications of satellite altimeter wave data from both the GEOSAT, Topex/Poseidon and ERS-1 Exact Repeat missions. The paper also discusses use of Wave Mode and Image Mode SAR data obtained by ERS-1.
Exact solutions for a class of quasi-exactly solvable models: A unified treatment
NASA Astrophysics Data System (ADS)
Hatami, N.; Setare, M. R.
2017-07-01
The exact solution of the Schrödinger equation for the four quasi-exactly solvable potentials is presented using the functional Bethe ansatz method. It is shown that all models give rise to the same basic differential equation which is quasi-exactly solvable. The eigenvalues, eigenfunctions and the allowed potential parameters are given for each of the four models in terms of the roots of a set of algebraic Bethe ansatz equations.
Exact soliton solutions for the interaction of few-cycle-pulse with nonlinear medium
NASA Astrophysics Data System (ADS)
Guo, Bang-Xing; Lin, Ji
2016-07-01
We study the Panilevé property of the coupled equations describing the interaction of few-cycle-pulse with nonlinear medium. And we use the consistent tanh expansion (CTE) method to search for exact interaction soliton solutions of the coupled equations. Many interaction solutions are obtained, such as the one kink-one periodic wave interaction solution, one kink-two periodic waves interaction solution, one kink-one dipole soliton interaction solution, one kink-two dipole solitons interaction solution, and one kink-soliton-one periodic wave interaction solution. We also obtain the kink-kink interaction by using Painlevé truncated expansion method.
Connecting exact coherent states to turbulent dynamics in channel flow
NASA Astrophysics Data System (ADS)
Park, Jae Sung; Graham, Michael D.
2015-11-01
The discovery of nonlinear traveling wave solutions to the Navier-Stokes equations or exact coherent states has greatly advanced the understanding of the nature of turbulent shear flows. These solutions are unstable saddle points in state space, while the time evolution of a turbulent flow is a dynamical trajectory wandering around them. In this regard, it is of interest to investigate how closely the turbulent trajectories approach these invariant states. Here, we present connections between turbulent trajectories and one intriguing solution family in channel flow. A state space visualization of turbulent trajectories is presented in a three-dimensional space. The lifetime of the trajectories is well represented by closeness to two distinct solutions resembling in many ways the active and hibernating phases of minimal channel turbulence (Xi & Graham PRL 2010). The connections are then examined by comparing mean profiles and flow structures. More importantly, the connections are confirmed by calculating the L2 distance between the trajectories and the traveling waves. Lastly, paths of an intermittent bursting phenomenon are identified in state space and the relationship between bursting paths and the traveling waves or hibernating turbulence is further discussed. This work was supported by the Air Force Office of Scientific Research through grant FA9550-15-1-0062 (Flow Interactions and Control Program).
Critical behavior for scalar nonlinear waves
NASA Astrophysics Data System (ADS)
Masoero, Davide; Raimondo, Andrea; Antunes, Pedro R. S.
2015-02-01
In the long wave regime, nonlinear waves may undergo a phase transition from a smooth behavior to a fast oscillatory behavior. In this study, we consider this phenomenon, which is commonly known as dispersive shock, in the light of Dubrovin's universality conjecture (Dubrovin, 2006; Dubrovin and Elaeva, 2012) and we argue that the transition can be described by a special solution of a model universal partial differential equation. This universal solution is constructed using the string equation. We provide a classification of universality classes and an explicit description of the transition with special functions, thereby extending Dubrovin's universality conjecture to a wider class of equations. In particular, we show that the Benjamin-Ono equation belongs to a novel universality class with respect to those known previously, and we compute its string equation exactly. We describe our results using the language of statistical mechanics, where we show that dispersive shocks share many of the features of the tricritical point in statistical systems, and we also build a dictionary of the relations between nonlinear waves and statistical mechanics.
Classes of exact Einstein Maxwell solutions
NASA Astrophysics Data System (ADS)
Komathiraj, K.; Maharaj, S. D.
2007-12-01
We find new classes of exact solutions to the Einstein Maxwell system of equations for a charged sphere with a particular choice of the electric field intensity and one of the gravitational potentials. The condition of pressure isotropy is reduced to a linear, second order differential equation which can be solved in general. Consequently we can find exact solutions to the Einstein Maxwell field equations corresponding to a static spherically symmetric gravitational potential in terms of hypergeometric functions. It is possible to find exact solutions which can be written explicitly in terms of elementary functions, namely polynomials and product of polynomials and algebraic functions. Uncharged solutions are regainable with our choice of electric field intensity; in particular we generate the Einstein universe for particular parameter values.
Exactly solvable quantum Sturm-Liouville problems
Bueyuekasik, Sirin A.; Pashaev, Oktay K.; Tigrak-Ulas, Esra
2009-07-15
The harmonic oscillator with time-dependent parameters covers a broad spectrum of physical problems from quantum transport, quantum optics, and quantum information to cosmology. Several methods have been developed to quantize this fundamental system, such as the path integral method, the Lewis-Riesenfeld time invariant method, the evolution operator or dynamical symmetry method, etc. In all these methods, solution of the quantum problem is given in terms of the classical one. However, only few exactly solvable problems of the last one, such as the damped oscillator or the Caldirola-Kanai model, have been treated. The goal of the present paper is to introduce a wide class of exactly solvable quantum models in terms of the Sturm-Liouville problem for classical orthogonal polynomials. This allows us to solve exactly the corresponding quantum parametric oscillators with specific damping and frequency dependence, which can be considered as quantum Sturm-Liouville problems.
Exactly solvable chaos in an electromechanical oscillator
NASA Astrophysics Data System (ADS)
Owens, Benjamin A. M.; Stahl, Mark T.; Corron, Ned J.; Blakely, Jonathan N.; Illing, Lucas
2013-09-01
A novel electromechanical chaotic oscillator is described that admits an exact analytic solution. The oscillator is a hybrid dynamical system with governing equations that include a linear second order ordinary differential equation with negative damping and a discrete switching condition that controls the oscillatory fixed point. The system produces provably chaotic oscillations with a topological structure similar to either the Lorenz butterfly or Rössler's folded-band oscillator depending on the configuration. Exact solutions are written as a linear convolution of a fixed basis pulse and a sequence of discrete symbols. We find close agreement between the exact analytical solutions and the physical oscillations. Waveform return maps for both configurations show equivalence to either a shift map or tent map, proving the chaotic nature of the oscillations.
NASA Astrophysics Data System (ADS)
Liu, Ping; Wang, Ya-Xiong; Ren, Bo; Li, Jin-Hua
2016-12-01
Exact solutions of the atmospheric (2+1)-dimensional nonlinear incompressible non-hydrostatic Boussinesq (INHB) equations are researched by Combining function expansion and symmetry method. By function expansion, several expansion coefficient equations are derived. Symmetries and similarity solutions are researched in order to obtain exact solutions of the INHB equations. Three types of symmetry reduction equations and similarity solutions for the expansion coefficient equations are proposed. Non-traveling wave solutions for the INHB equations are obtained by symmetries of the expansion coefficient equations. Making traveling wave transformations on expansion coefficient equations, we demonstrate some traveling wave solutions of the INHB equations. The evolutions on the wind velocities, temperature perturbation and pressure perturbation are demonstrated by figures, which demonstrate the periodic evolutions with time and space. Supported by the National Natural Science Foundation of China under Grant Nos. 11305031 and 11305106, and Training Programme Foundation for Outstanding Young Teachers in Higher Education Institutions of Guangdong Province under Grant No. Yq2013205
Exact axisymmetric solutions of the Maxwell equations in a nonlinear nondispersive medium.
Petrov, E Yu; Kudrin, A V
2010-05-14
The features of propagation of intense waves are of great interest for theory and experiment in electrodynamics and acoustics. The behavior of nonlinear waves in a bounded volume is of special importance and, at the same time, is an extremely complicated problem. It seems almost impossible to find a rigorous solution to such a problem even for any model of nonlinearity. We obtain the first exact solution of this type. We present a new method for deriving exact solutions of the Maxwell equations in a nonlinear medium without dispersion and give examples of the obtained solutions that describe propagation of cylindrical electromagnetic waves in a nonlinear nondispersive medium and free electromagnetic oscillations in a cylindrical cavity resonator filled with such a medium.
Roshid, Harun-Or; Kabir, Md Rashed; Bhowmik, Rajandra Chadra; Datta, Bimal Kumar
2014-01-01
In this paper, we have described two dreadfully important methods to solve nonlinear partial differential equations which are known as exp-function and the exp(-ϕ(ξ)) -expansion method. Recently, there are several methods to use for finding analytical solutions of the nonlinear partial differential equations. The methods are diverse and useful for solving the nonlinear evolution equations. With the help of these methods, we are investigated the exact travelling wave solutions of the Vakhnenko- Parkes equation. The obtaining soliton solutions of this equation are described many physical phenomena for weakly nonlinear surface and internal waves in a rotating ocean. Further, three-dimensional plots of the solutions such as solitons, singular solitons, bell type solitary wave i.e. non-topological solitons solutions and periodic solutions are also given to visualize the dynamics of the equation.
NASA Astrophysics Data System (ADS)
Cooper, Fred; Khare, Avinash; Comech, Andrew; Mihaila, Bogdan; Dawson, John F.; Saxena, Avadh
2017-01-01
We discuss the stability properties of the solutions of the general nonlinear Schrödinger equation (NLSE) in 1+1 dimensions in an external potential derivable from a parity-time ({ P }{ T }) symmetric superpotential W(x) that we considered earlier, Kevrekidis et al (2015 Phys. Rev. E 92 042901). In particular we consider the nonlinear partial differential equation \\{{{i}} {\\partial }t+{\\partial }x2-{V}-(x)+| \\psi (x,t){| }2κ \\} \\psi (x,t)=0, for arbitrary nonlinearity parameter κ. We study the bound state solutions when {V}-(x) =(1/4-{b}2){\\text{sech}}2(x), which can be derived from two different superpotentials W(x), one of which is complex and { P }{ T } symmetric. Using Derrick's theorem, as well as a time dependent variational approximation, we derive exact analytic results for the domain of stability of the trapped solution as a function of the depth b 2 of the external potential. We compare the regime of stability found from these analytic approaches with a numerical linear stability analysis using a variant of the Vakhitov-Kolokolov (V-K) stability criterion. The numerical results of applying the V-K condition give the same answer for the domain of stability as the analytic result obtained from applying Derrick's theorem. Our main result is that for κ \\gt 2 a new regime of stability for the exact solutions appears as long as b\\gt {b}{{crit}}, where {b}{{crit}} is a function of the nonlinearity parameter κ. In the absence of the potential the related solitary wave solutions of the NLSE are unstable for κ \\gt 2.
Exact solution of the robust knapsack problem☆
Monaci, Michele; Pferschy, Ulrich; Serafini, Paolo
2013-01-01
We consider an uncertain variant of the knapsack problem in which the weight of the items is not exactly known in advance, but belongs to a given interval, and an upper bound is imposed on the number of items whose weight differs from the expected one. For this problem, we provide a dynamic programming algorithm and present techniques aimed at reducing its space and time complexities. Finally, we computationally compare the performances of the proposed algorithm with those of different exact algorithms presented so far in the literature for robust optimization problems. PMID:24187428
Exactly solvable birth and death processes
Sasaki, Ryu
2009-10-15
Many examples of exactly solvable birth and death processes, a typical stationary Markov chain, are presented together with the explicit expressions of the transition probabilities. They are derived by similarity transforming exactly solvable 'matrix' quantum mechanics, which is recently proposed by Odake and the author [S. Odake and R. Sasaki, J. Math. Phys. 49, 053503 (2008)]. The (q-) Askey scheme of hypergeometric orthogonal polynomials of a discrete variable and their dual polynomials play a central role. The most generic solvable birth/death rates are rational functions of q{sup x} (with x being the population) corresponding to the q-Racah polynomial.
DFT calculations with the exact functional
NASA Astrophysics Data System (ADS)
Burke, Kieron
2014-03-01
I will discuss several works in which we calculate the exact exchange-correlation functional of density functional theory, mostly using the density-matrix renormalization group method invented by Steve White, our collaborator. We demonstrate that a Mott-Hubard insulator is a band metal. We also perform Kohn-Sham DFT calculations with the exact functional and prove that a simple algoritm always converges. But we find convergence becomes harder as correlations get stronger. An example from transport through molecular wires may also be discussed. Work supported by DOE grant DE-SC008696.
Finding exact spatial soliton profiles in nematic liquid crystals.
Beeckman, J; Neyts, K; Vanbrabant, P J M; James, R; Fernandez, F A
2010-02-15
Finding exact analytical soliton profile solutions is only possible for certain types of non-linear media. In most cases one must resort to numerical techniques to find the soliton profile. In this work we present numerical calculations of spatial soliton profiles in nematic liquid crystals. The nonlinearity is governed by the optical-field-induced liquid crystal director reorientation, which is described by a system of coupled nonlinear partial differential equations. The soliton profile is found using an iterative scheme whereby the induced waveguide and mode profiles are calculated alternatively until convergence is achieved. In this way it is also possible to find higher order solitons. The results in this work can be used to accurately design all-optical interconnections with soliton beams.
Exact solutions for laminated composite cylindrical shells in cylindrical bending
NASA Technical Reports Server (NTRS)
Yuan, F. G.
1992-01-01
Analytic elasticity solutions for laminated composite cylindrical shells under cylindrical bending are presented. The material of the shell is assumed to be general cylindrically anisotropic. Based on the theory of cylindrical anisotropic elasticity, coupled governing partial differential equations are developed. The general expressions for the stresses and displacements in the laminated composite cylinders are discussed. The closed form solutions based on Classical Shell Theory (CST) and Donnell's (1933) theory are also derived for comparison purposes. Three examples illustrate the effect of radius-to-thickness ratio, coupling and stacking sequence. The results show that, in general, CST yields poor stress and displacement distributions for thick-section composite shells, but converges to the exact elasticity solution as the radius-to-thickness ratio increases. It is also shown that Donnell's theory significantly underestimates the stress and displacement response.
Propagation of microwaves in gradient transmission lines: exactly solvable model
NASA Astrophysics Data System (ADS)
Shvartsburg, A. B.; Silin, N. V.
2015-08-01
Propagation of microwaves along the transmission line with smoothly continuously distributed capacitance and inductance (gradient transmission line) is considered in the framework of an exactly solvable model. The appearance of strong heterogeneity-induced plasma-like dispersion in gradient transmission line determined by the sizes and shapes of these distributions, is visualized by means of this model. Owing to this dispersion the energy transport in the line discussed can be ensured by both travelling and evanescent microwave modes, characterized by the real and imaginary wave numbers, respectively. The reflectance spectra for microwaves, incident on this heterogeneous transition section located between two homogeneous sections of transmission line are presented, the antireflection properties of this section are demonstrated. The interference of evanescent and anti-evanescent microwave modes is shown to provide the effective weakly attenuated energy transfer in the tunneling regime. The analogy between this microwave system and gradient nano-optical photonic barrier in revealed.
An exactly solvable three-dimensional nonlinear quantum oscillator
Schulze-Halberg, A.; Morris, J. R.
2013-11-15
Exact analytical, closed-form solutions, expressed in terms of special functions, are presented for the case of a three-dimensional nonlinear quantum oscillator with a position dependent mass. This system is the generalization of the corresponding one-dimensional system, which has been the focus of recent attention. In contrast to other approaches, we are able to obtain solutions in terms of special functions, without a reliance upon a Rodrigues-type of formula. The wave functions of the quantum oscillator have the familiar spherical harmonic solutions for the angular part. For the s-states of the system, the radial equation accepts solutions that have been recently found for the one-dimensional nonlinear quantum oscillator, given in terms of associated Legendre functions, along with a constant shift in the energy eigenvalues. Radial solutions are obtained for all angular momentum states, along with the complete energy spectrum of the bound states.
Exactly solvable models for symmetry-enriched topological phases
NASA Astrophysics Data System (ADS)
Cheng, Meng; Gu, Zheng-Cheng; Jiang, Shenghan; Qi, Yang
2017-09-01
We construct fixed-point wave functions and exactly solvable commuting-projector Hamiltonians for a large class of bosonic symmetry-enriched topological (SET) phases, based on the concept of equivalent classes of symmetric local unitary transformations. We argue that for onsite unitary symmetries, our construction realizes all SETs free of anomaly, as long as the underlying topological order itself can be realized with a commuting-projector Hamiltonian. We further extend the construction to antiunitary symmetries (e.g., time-reversal symmetry), mirror-reflection symmetries, and to anomalous SETs on the surface of three-dimensional symmetry-protected topological phases. Mathematically, our construction naturally leads to a generalization of group extensions of unitary fusion categories to antiunitary symmetries.
An exactly solvable three-dimensional nonlinear quantum oscillator
NASA Astrophysics Data System (ADS)
Schulze-Halberg, A.; Morris, J. R.
2013-11-01
Exact analytical, closed-form solutions, expressed in terms of special functions, are presented for the case of a three-dimensional nonlinear quantum oscillator with a position dependent mass. This system is the generalization of the corresponding one-dimensional system, which has been the focus of recent attention. In contrast to other approaches, we are able to obtain solutions in terms of special functions, without a reliance upon a Rodrigues-type of formula. The wave functions of the quantum oscillator have the familiar spherical harmonic solutions for the angular part. For the s-states of the system, the radial equation accepts solutions that have been recently found for the one-dimensional nonlinear quantum oscillator, given in terms of associated Legendre functions, along with a constant shift in the energy eigenvalues. Radial solutions are obtained for all angular momentum states, along with the complete energy spectrum of the bound states.
Exact Relaxation in a Class of Nonequilibrium Quantum Lattice Systems
Cramer, M.; Eisert, J.; Dawson, C. M.; Osborne, T. J.
2008-01-25
A reasonable physical intuition in the study of interacting quantum systems says that, independent of the initial state, the system will tend to equilibrate. In this work we introduce an experimentally accessible setting where relaxation to a steady state is exact, namely, for the Bose-Hubbard model quenched from a Mott quantum phase to the free strong superfluid regime. We rigorously prove that the evolving state locally relaxes to a steady state with maximum entropy constrained by second moments--thus maximizing the entanglement. Remarkably, for this to be true, no time average is necessary. Our argument includes a central limit theorem and exploits the finite speed of information transfer. We also show that for all periodic initial configurations (charge density waves) the system relaxes locally, and identify experimentally accessible signatures in optical lattices as well as implications for the foundations of statistical mechanics.
Th Matching Paradigm: An Exact Test Procedure.
ERIC Educational Resources Information Center
Gillett, Raphael
1985-01-01
Provides a framework based on rook methodology for constructing exact unweighted tests in the matching paradigm. This paradigm tests whether a one-to-one pairing configuration between objects in two arrays contains more pairings of a particular kind than expected under the null hypothesis. The procedure is particularly useful for small samples.…
Exactly marginal deformations from exceptional generalised geometry
NASA Astrophysics Data System (ADS)
Ashmore, Anthony; Gabella, Maxime; Graña, Mariana; Petrini, Michela; Waldram, Daniel
2017-01-01
We apply exceptional generalised geometry to the study of exactly marginal deformations of N = 1 SCFTs that are dual to generic AdS5 flux backgrounds in type IIB or eleven-dimensional supergravity. In the gauge theory, marginal deformations are parametrised by the space of chiral primary operators of conformal dimension three, while exactly marginal deformations correspond to quotienting this space by the complexified global symmetry group. We show how the supergravity analysis gives a geometric interpretation of the gauge theory results. The marginal deformations arise from deformations of generalised structures that solve moment maps for the generalised diffeomorphism group and have the correct charge under the generalised Reeb vector, generating the R-symmetry. If this is the only symmetry of the background, all marginal deformations are exactly marginal. If the background possesses extra isometries, there are obstructions that come from fixed points of the moment maps. The exactly marginal deformations are then given by a further quotient by these extra isometries.
Exact Solutions to Time-dependent Mdps
NASA Technical Reports Server (NTRS)
Boyan, Justin A.; Littman, Michael L.
2000-01-01
We describe an extension of the Markov decision process model in which a continuous time dimension is included in the state space. This allows for the representation and exact solution of a wide range of problems in which transitions or rewards vary over time. We examine problems based on route planning with public transportation and telescope observation scheduling.
Exact Vlasov Solutions of Kinetic Flux Ropes
NASA Astrophysics Data System (ADS)
Ng, C. S.
2014-12-01
Small-scale magnetic flux ropes have been observed to form within the diffusion region in three-dimensional (3D) kinetic simulations of magnetic reconnection. Such 3D structures and the 2D version of them (plasmoids, secondary islands) could have important dynamical effects on the reconnection physics itself. Small-scale flux ropes have also been observed within the interplanetary space. We have found exact time-steady solutions of kinetic flux ropes by generalizing exact solutions of 2D Bernstein-Greene-Kruskal (BGK) modes in a magnetized plasma with finite magnetic field strength [Ng, Bhattacharjee, and Skiff, Phys. Plasmas 13, 055903 (2006)] to cases with azimuthal magnetic fields so that these structures carry electric current as well as steady electric and magnetic fields. Such fully nonlinear solutions now satisfy exactly the Vlasov-Poisson-Ampere system of equations. Solutions like these could describe small-scale flux ropes observed in reconnection diffusion regions or in the interplanetary space. They are also exact nonlinear solutions that can be used to validate numerical schemes for kinetic simulations. This work is supported by a National Science Foundation grant PHY-1004357.
On Exact and Inexact Differentials and Applications
ERIC Educational Resources Information Center
Cortez, L. A. B.; de Oliveira, E. Capelas
2017-01-01
Considering the important role played by mathematical derivatives in the study of physical-chemical processes, this paper discusses the different possibilities and formulations of this concept and its application. In particular, in Chemical Thermodynamics, we study exact differentials associated with the so-called state functions and inexact…
Verbal Interference Suppresses Exact Numerical Representation
ERIC Educational Resources Information Center
Frank, Michael C.; Fedorenko, Evelina; Lai, Peter; Saxe, Rebecca; Gibson, Edward
2012-01-01
Language for number is an important case study of the relationship between language and cognition because the mechanisms of non-verbal numerical cognition are well-understood. When the Piraha (an Amazonian hunter-gatherer tribe who have no exact number words) are tested in non-verbal numerical tasks, they are able to perform one-to-one matching…
An Exact Formulation of Bradford's Law.
ERIC Educational Resources Information Center
Leimkuhler, Ferdinand F.
1980-01-01
Demonstrates, with an example, a relatively simple method for fitting Bradford's law to empirical data to estimate the number of journals and articles in a subject collection. An exact discrete formulation illustrates Bradford's law as a special case of the Zipf-Mandlebrot "rank frequency" law. (Author/RAA)
Coriolis-coupled wave packet dynamics of H + HLi reaction.
Padmanaban, R; Mahapatra, S
2006-05-11
We investigated the effect of Coriolis coupling (CC) on the initial state-selected dynamics of H+HLi reaction by a time-dependent wave packet (WP) approach. Exact quantum scattering calculations were obtained by a WP propagation method based on the Chebyshev polynomial scheme and ab initio potential energy surface of the reacting system. Partial wave contributions up to the total angular momentum J=30 were found to be necessary for the scattering of HLi in its vibrational and rotational ground state up to a collision energy approximately 0.75 eV. For each J value, the projection quantum number K was varied from 0 to min (J, K(max)), with K(max)=8 until J=20 and K(max)=4 for further higher J values. This is because further higher values of K do not have much effect on the dynamics and also because one wishes to maintain the large computational overhead for each calculation within the affordable limit. The initial state-selected integral reaction cross sections and thermal rate constants were calculated by summing up the contributions from all partial waves. These were compared with our previous results on the title system, obtained within the centrifugal sudden and J-shifting approximations, to demonstrate the impact of CC on the dynamics of this system.
Well-posedness and exact controllability of the mass balance equations for an extrusion process
NASA Astrophysics Data System (ADS)
Diagne, Mamadou; Shang, Peipei; Wang, Zhiqiang
2016-07-01
In this paper, we study the well-posedness and exact controllability of a physical model for a food extrusion process in the isothermal case. The model expresses the mass balance in the extruder chamber and consists of a hyperbolic Partial Differential Equation (PDE) and a nonlinear Ordinary Differential Equation (ODE) whose dynamics describes the evolution of a moving interface. By suitable change of coordinates and fixed point arguments, we prove the existence, uniqueness and regularity of the solution, and finally the exact controllability of the coupled system.
... brachytherapy; Accelerated partial breast irradiation - brachytherapy; Partial breast radiation therapy - brachytherapy; Permanent breast seed implant; PBSI; Low-dose radiotherapy - breast; High-dose radiotherapy - breast; Electronic balloon ...
NASA Astrophysics Data System (ADS)
Basu-Mallick, B.; Mandal, Bhabani Prasad; Roy, Pinaki
2017-05-01
By using the technique of supersymmetric quantum mechanics, we study a quasi exactly solvable extension of the N-particle rational Calogero model with harmonic confining interaction. Such quasi exactly solvable many particle system, whose effective potential in the radial direction yields a supersymmetric partner of the radial harmonic oscillator, is constructed by including new long-range interactions to the rational Calogero model. An infinite number of bound state energy levels are obtained for this system under certain conditions. We also calculate the corresponding bound state wave functions in terms of the recently discovered exceptional orthogonal Laguerre polynomials.
A Series of Exact Solutions of (2+1)-Dimensional CDGKS Equation
NASA Astrophysics Data System (ADS)
Yang, Zong-Hang
2006-11-01
An algebraic method with symbolic computation is devised to uniformly construct a series of exact solutions of the (2+1)-dimensional Caudrey-Dodd-Gibbon-Kotera-Sawda equation. The solutions obtained in this paper include solitary wave solutions, rational solutions, triangular periodic solutions, Jacobi and Weierstrass doubly periodic solutions. Among them, the Jacobi periodic solutions exactly degenerate to the solutions at a certain limit condition. Compared with most existing tanh method, the method used here can give new and more general solutions. More importantly, this method provides a guideline to classify the various types of the solution according to some parameters.
NASA Astrophysics Data System (ADS)
Chang, Kao-Hao; Tsaur, Deng-How; Wang, Jeen-Hwa
2014-12-01
A simplified mathematical model, composed of a semi-circular valley partially filled with an inclined alluvial layer under plane SH-wave incidence, is presented. To evaluate the site response theoretically, a rigorous series solution is derived via the region-matching technique. For angular wavefunctions constrained by an inclined free surface, the original form of Graf's addition formula is recast to arbitrarily shift the local coordinate system. The valley geometry, filling material, angle of incidence, and wave frequency are taken as significant parameters in exploring the site effect on ground motions. Also included are the frequency- and time-domain computations. Two canonical cases, the semi-circular vacant canyon and the fully filled semi-circular alluvial valley, with exact analytical solutions, and the partly horizontally filled case previously studied, are taken to be particular cases of the proposed general model. Steady-state results show that the peak amplitudes of motion may increase at low frequencies when the filling layer inclines to the illuminated region. At low-grazing incidence, the phenomenon of wave focusing becomes evident on the shadow side of the filling layer. Transient-state simulations elucidate how a sequence of surface waves travel on the topmost alluvium along opposite directions and interfere with multiple reflected waves within the filling layer.
Conformal invariance and new exact solutions of the elastostatics equations
NASA Astrophysics Data System (ADS)
Chirkunov, Yu. A.
2017-03-01
We fulfilled a group foliation of the system of n-dimensional (n ≥ 2) Lame equations of the classical static theory of elasticity with respect to the infinite subgroup contained in normal subgroup of main group of this system. It permitted us to move from the Lame equations to the equivalent unification of two first-order systems: automorphic and resolving. We obtained a general solution of the automorphic system. This solution is an n-dimensional analogue of the Kolosov-Muskhelishvili formula. We found the main Lie group of transformations of the resolving system of this group foliation. It turned out that in the two-dimensional and three-dimensional cases, which have a physical meaning, this system is conformally invariant, while the Lame equations admit only a group of similarities of the Euclidean space. This is a big success, since in the method of group foliation, resolving equations usually inherit Lie symmetries subgroup of the full symmetry group that was not used for the foliation. In the three-dimensional case for the solutions of the resolving system, we found the general form of the transformations similar to the Kelvin transformation. These transformations are the consequence of the conformal invariance of the resolving system. In the three-dimensional case with a help of the complex dependent and independent variables, the resolving system is written as a simple complex system. This allowed us to find non-trivial exact solutions of the Lame equations, which direct for the Lame equations practically impossible to obtain. For this complex system, all the essentially distinct invariant solutions of the maximal rank we have found in explicit form, or we reduced the finding of those solutions to the solving of the classical one-dimensional equations of the mathematical physics: the heat equation, the telegraph equation, the Tricomi equation, the generalized Darboux equation, and other equations. For the resolving system, we obtained double wave of a
An exact solution for the Hawking effect in a dispersive fluid
NASA Astrophysics Data System (ADS)
Philbin, T. G.
2016-09-01
We consider the wave equation for sound in a moving fluid with a fourth-order anomalous dispersion relation. The velocity of the fluid is a linear function of position, giving two points in the flow where the fluid velocity matches the group velocity of low-frequency waves. We find the exact solution for wave propagation in the flow. The scattering shows amplification of classical waves, leading to spontaneous emission when the waves are quantized. In the dispersionless limit the system corresponds to a 1 +1 -dimensional black-hole or white-hole binary and there is a thermal spectrum of Hawking radiation from each horizon. Dispersion changes the scattering coefficients so that the quantum emission is no longer thermal. The scattering coefficients were previously obtained by Busch and Parentani in a study of dispersive fields in de Sitter space [Phys. Rev. D 86, 104033 (2012)]. Our results give further details of the wave propagation in this exactly solvable case, where our focus is on laboratory systems.
Hidden algebra method (quasi-exact-solvability in quantum mechanics)
Turbiner, Alexander
1996-02-20
A general introduction to quasi-exactly-solvable problems of quantum mechanics is presented. Main attention is given to multidimensional quasi-exactly-solvable and exactly-solvable Schroedinger operators. Exact-solvability of the Calogero and Sutherland N-body problems ass ociated with an existence of the hidden algebra slN is discussed extensively.
Liu, Jia; Han, Qiang; Shao, L B; Wang, Z D
2011-07-08
A type of electron pairing model with spin-orbit interactions or Zeeman coupling is solved exactly in the framework of the Richardson ansatz. Based on the exact solutions for the case with spin-orbit interactions, it is shown rigorously that the pairing symmetry is of the p + ip wave and the ground state possesses time-reversal symmetry, regardless of the strength of the pairing interaction. Intriguingly, how Majorana fermions can emerge in the system is also elaborated. Exact results are illustrated for two systems, respectively, with spin-orbit interactions and Zeeman coupling.
Exact nonlinear excitations in double-degenerate plasmas
Akbari-Moghanjoughi, M.
2012-06-15
In this work, we use the conventional hydrodynamics formalism and incorporate the Chew-Goldberger-Low double-adiabatic theory to evaluate the nonlinear electrostatic ion excitations in double-degenerate (electron spin-orbit degenerate) magnetized quantum plasmas. Based on the Sagdeev pseudopotential method, an exact general pseudopotential is calculated which leads to the allowed Mach-number range criteria for such localized density structures in an anisotropic magnetized plasma. We employ the criteria on the Mach-number range for diverse magnetized quantum plasma with different equations of state. It is remarked that various plasma fractional parameters such as the system dimensionality, ion-temperature, relativistic-degeneracy, Zeeman-energy, and plasma composition are involved in the stability of an obliquely propagating nonlinear ion-acoustic wave in a double-degenerate quantum plasma. Current study is most appropriate for nonlinear wave analysis in dense astrophysical magnetized plasma environments such as white-dwarfs and neutron-star crusts where the strong magnetic fields can be present.
Exact folded-band chaotic oscillator.
Corron, Ned J; Blakely, Jonathan N
2012-06-01
An exactly solvable chaotic oscillator with folded-band dynamics is shown. The oscillator is a hybrid dynamical system containing a linear ordinary differential equation and a nonlinear switching condition. Bounded oscillations are provably chaotic, and successive waveform maxima yield a one-dimensional piecewise-linear return map with segments of both positive and negative slopes. Continuous-time dynamics exhibit a folded-band topology similar to Rössler's oscillator. An exact solution is written as a linear convolution of a fixed basis pulse and a discrete binary sequence, from which an equivalent symbolic dynamics is obtained. The folded-band topology is shown to be dependent on the symbol grammar.
Exact folded-band chaotic oscillator
NASA Astrophysics Data System (ADS)
Corron, Ned J.; Blakely, Jonathan N.
2012-06-01
An exactly solvable chaotic oscillator with folded-band dynamics is shown. The oscillator is a hybrid dynamical system containing a linear ordinary differential equation and a nonlinear switching condition. Bounded oscillations are provably chaotic, and successive waveform maxima yield a one-dimensional piecewise-linear return map with segments of both positive and negative slopes. Continuous-time dynamics exhibit a folded-band topology similar to Rössler's oscillator. An exact solution is written as a linear convolution of a fixed basis pulse and a discrete binary sequence, from which an equivalent symbolic dynamics is obtained. The folded-band topology is shown to be dependent on the symbol grammar.
Exact solution to fractional logistic equation
NASA Astrophysics Data System (ADS)
West, Bruce J.
2015-07-01
The logistic equation is one of the most familiar nonlinear differential equations in the biological and social sciences. Herein we provide an exact solution to an extension of this equation to incorporate memory through the use of fractional derivatives in time. The solution to the fractional logistic equation (FLE) is obtained using the Carleman embedding technique that allows the nonlinear equation to be replaced by an infinite-order set of linear equations, which we then solve exactly. The formal series expansion for the initial value solution of the FLE is shown to be expressed in terms of a series of weighted Mittag-Leffler functions that reduces to the well known analytic solution in the limit where the fractional index for the derivative approaches unity. The numerical integration to the FLE provides an excellent fit to the analytic solution. We propose this approach as a general technique for solving a class of nonlinear fractional differential equations.
Exact axisymmetric Taylor states for shaped plasmas
Cerfon, Antoine J. O'Neil, Michael
2014-06-15
We present a general construction for exact analytic Taylor states in axisymmetric toroidal geometries. In this construction, the Taylor equilibria are fully determined by specifying the aspect ratio, elongation, and triangularity of the desired plasma geometry. For equilibria with a magnetic X-point, the location of the X-point must also be specified. The flexibility and simplicity of these solutions make them useful for verifying the accuracy of numerical solvers and for theoretical studies of Taylor states in laboratory experiments.
Exact quantization conditions for cluster integrable systems
NASA Astrophysics Data System (ADS)
Franco, Sebastián; Hatsuda, Yasuyuki; Mariño, Marcos
2016-06-01
We propose exact quantization conditions for the quantum integrable systems of Goncharov and Kenyon, based on the enumerative geometry of the corresponding toric Calabi-Yau manifolds. Our conjecture builds upon recent results on the quantization of mirror curves, and generalizes a previous proposal for the quantization of the relativistic Toda lattice. We present explicit tests of our conjecture for the integrable systems associated to the resolved {{{C}}3}/{{{Z}}5} and {{{C}}3}/{{{Z}}6} orbifolds.
Exact and Approximate Sizes of Convex Datacubes
NASA Astrophysics Data System (ADS)
Nedjar, Sébastien
In various approaches, data cubes are pre-computed in order to efficiently answer Olap queries. The notion of data cube has been explored in various ways: iceberg cubes, range cubes, differential cubes or emerging cubes. Previously, we have introduced the concept of convex cube which generalizes all the quoted variants of cubes. More precisely, the convex cube captures all the tuples satisfying a monotone and/or antimonotone constraint combination. This paper is dedicated to a study of the convex cube size. Actually, knowing the size of such a cube even before computing it has various advantages. First of all, free space can be saved for its storage and the data warehouse administration can be improved. However the main interest of this size knowledge is to choose at best the constraints to apply in order to get a workable result. For an aided calibrating of constraints, we propose a sound characterization, based on inclusion-exclusion principle, of the exact size of convex cube as long as an upper bound which can be very quickly yielded. Moreover we adapt the nearly optimal algorithm HyperLogLog in order to provide a very good approximation of the exact size of convex cubes. Our analytical results are confirmed by experiments: the approximated size of convex cubes is really close to their exact size and can be computed quasi immediately.
Exact tests for Hardy-Weinberg proportions.
Engels, William R
2009-12-01
Exact conditional tests are often required to evaluate statistically whether a sample of diploids comes from a population with Hardy-Weinberg proportions or to confirm the accuracy of genotype assignments. This requirement is especially common when the sample includes multiple alleles and sparse data, thus rendering asymptotic methods, such as the common chi(2)-test, unreliable. Such an exact test can be performed using the likelihood ratio as its test statistic rather than the more commonly used probability test. Conceptual advantages in using the likelihood ratio are discussed. A substantially improved algorithm is described to permit the performance of a full-enumeration exact test on sample sizes that are too large for previous methods. An improved Monte Carlo algorithm is also proposed for samples that preclude full enumeration. These algorithms are about two orders of magnitude faster than those currently in use. Finally, methods are derived to compute the number of possible samples with a given set of allele counts, a useful quantity for evaluating the feasibility of the full enumeration procedure. Software implementing these methods, ExactoHW, is provided.
A hierarchical exact accelerated stochastic simulation algorithm
NASA Astrophysics Data System (ADS)
Orendorff, David; Mjolsness, Eric
2012-12-01
A new algorithm, "HiER-leap" (hierarchical exact reaction-leaping), is derived which improves on the computational properties of the ER-leap algorithm for exact accelerated simulation of stochastic chemical kinetics. Unlike ER-leap, HiER-leap utilizes a hierarchical or divide-and-conquer organization of reaction channels into tightly coupled "blocks" and is thereby able to speed up systems with many reaction channels. Like ER-leap, HiER-leap is based on the use of upper and lower bounds on the reaction propensities to define a rejection sampling algorithm with inexpensive early rejection and acceptance steps. But in HiER-leap, large portions of intra-block sampling may be done in parallel. An accept/reject step is used to synchronize across blocks. This method scales well when many reaction channels are present and has desirable asymptotic properties. The algorithm is exact, parallelizable and achieves a significant speedup over the stochastic simulation algorithm and ER-leap on certain problems. This algorithm offers a potentially important step towards efficient in silico modeling of entire organisms.
Rogue waves in Lugiato-Lefever equation with variable coefficients
NASA Astrophysics Data System (ADS)
Kol, Guy; Kingni, Sifeu; Woafo, Paul
2014-11-01
In this paper, we theoretically investigate the generation of optical rogue waves from a Lugiato-Lefever equation with variable coefficients by using the nonlinear Schrödinger equation-based constructive method. Exact explicit rogue-wave solutions of the Lugiato-Lefever equation with constant dispersion, detuning and dissipation are derived and presented. The bright rogue wave, intermediate rogue wave and the dark rogue wave are obtained by changing the value of one parameter in the exact explicit solutions corresponding to the external pump power of a continuous-wave laser.
Mitri, F. G.
2015-09-15
The standard Resonance Scattering Theory (RST) of plane waves is extended for the case of any two-dimensional (2D) arbitrarily-shaped monochromatic beam incident upon an elastic cylinder with arbitrary location using an exact methodology based on Graf’s translational addition theorem for the cylindrical wave functions. The analysis is exact as it does not require numerical integration procedures. The formulation is valid for any cylinder of finite size and material that is immersed in a nonviscous fluid. Partial-wave series expansions (PWSEs) for the incident, internal and scattered linear pressure fields are derived, and the analysis is further extended to obtain generalized expressions for the on-axis and off-axis acoustic radiation force components. The wave-fields are expressed using generalized PWSEs involving the beam-shape coefficients (BSCs) and the scattering coefficients of the cylinder. The off-axial BSCs are expressed analytically in terms of an infinite PWSE with emphasis on the translational offset distance d. Numerical computations are considered for a zeroth-order quasi-Gaussian beam chosen as an example to illustrate the analysis. Acoustic resonance scattering directivity diagrams are calculated by subtracting an appropriate background from the expression of the scattered pressure field. In addition, computations for the radiation force exerted on an elastic cylinder centered on the axis of wave propagation of the beam, and shifted off-axially are analyzed and discussed.
NASA Astrophysics Data System (ADS)
Dey, Biplab
In the first part of this work, we present differential cross section and polarization measurements for the reactions gammap → K+Sigma0 and gammap → φp. The data were collected using the large-acceptance CLAS detector stationed in Ball B at Jefferson Lab. An unpolarized energy-tagged photon beam produced via bremsstrahlung and a liquid hydrogen cryotarget was used for this, during the so-called g11a experimental run-period. The kinematic coverage of our results is from near production threshold to s = 2.84 GeV in energy and -0.95 ≤ costhetac.m. ≤ +0.95 in the meson production angle thetac.m.. For the most part, our results are finely binned in 10-MeV-wide s bins. For the φp channel, we analyze both the charged (φ → K+K -) and the neutral (φ → K0SK0L ) decay modes. For K+Sigma 0, our work corresponds to a 300 MeV increase in energy coverage for the differential cross sections and forms the first extensive recoil polarization world dataset. For φp, where previous world data is either non-existent or exist with wide energy bins and very limited statistics, our results will be the first extensive world dataset for both the cross sections and the spin density matrix elements r0MM' . Our K+Sigma0 results are now published as PRC 82, 025202 (2010) [1] and the φp results are also nearing completion of internal Collaboration analysis review. In addition, we have also been able to extend upon a previous K+Λ analysis in the backward-angles and near-threshold kinematic regimes, using a higher statistics dataset. The second segment consists of setting up a general framework for performing a coupled-channel partial wave analysis (PWA) on these extracted data results. Our final goal is to search for the so-called "missing" baryon resonances, that is, states predicted by quark models, but absent in conventional piN analyses. We construct the amplitudes and polarization observables required for this PWA. For polarizations in the pseudo-scalar sector, sign
NASA Astrophysics Data System (ADS)
Palecki, Michael A.; Changnon, Stanley A.; Kunkel, Kenneth E.
2001-07-01
The July 1999 heat wave in the Midwest was an event of relatively long duration punctuated by extreme conditions during its last 2 days. The intensity of the heat wave on 29 and 30 July rivaled that of the 1995 heat wave that killed more than 1000 people in the central United States. In 1999, however, the death toll was about one-fourth of this amount in the same region. The 1999 heat wave 2-day maximum apparent temperature was slightly less than during the 1995 heat wave at most Midwestern first-order stations. In addition, the 2-day peak was preceded by several hot days that allowed some short-term acclimatization to occur prior to the intense final days. In Chicago, conditions during the peak of the 1999 heat wave were very similar to those during the 1995 heat wave peak, especially the extreme nocturnal conditions of temperatures and humidity. Therefore, it seems unlikely that the reduction in the heat wave death toll in Chicago from about 700 in 1995 to 114 in 1999 is due solely to meteorological differences between the two heat waves. In St. Louis, the 1999 heat wave was intense for a much longer duration than the 1995 heat wave, thus partially explaining the increase in heat-related deaths there from the 1995 event to the 1999 event. An examination of heat wave response efforts in both Chicago and St. Louis leads to the conclusion that both cities were quite effective at mitigating their respective heat wave mortality rates, which in the 1999 event were almost exactly the same in both metropolitan areas. This represents a great improvement for the city of Chicago compared to the 1995 heat wave. Suggestions are made for further improving municipal heat wave response efforts based on the 1999 experience.
NASA Astrophysics Data System (ADS)
Leta, Temesgen Desta; Li, Jibin
In this paper, we study a model of generalized Dullin-Gottwald-Holm equation, depending on the power law nonlinearity, that derives a series of planar dynamical systems. The study of the traveling wave solutions for this model derives a planar Hamiltonian system. By investigating the dynamical behavior and bifurcation of solutions of the traveling wave system, we derive all possible exact explicit traveling wave solutions, under different parametric conditions. These results completely improve the study of traveling wave solutions to the mentioned model stated in [Biswas & Kara, 2010].
Freestyle Vs. Boolean: A Comparison of Partial and Exact Match Retrieval Systems.
ERIC Educational Resources Information Center
Paris, Lee Anne H.; Tibbo, Helen R.
1998-01-01
Compares results of traditional Boolean searching with those of Freestyle, LEXIS/NEXIS's natural language application. Study found that though the Boolean searches had better results more often, neither method demonstrated superior performance for every query, suggesting that different queries demand different techniques. Concludes that further…
Exact image method for Gaussian beam problems involving a planar interface
NASA Technical Reports Server (NTRS)
Lindell, I. V.
1987-01-01
Exact image method, recently introduced for the solution of electromagnetic field problems involving sources above a planar interface or two homogeneous media, is shown to be valid also for sources located in complex space, which makes its application possible for Gaussian beam analysis. It is demonstrated that the Goos-Hanchen shift and the angular shift of a TE polarized beam are correctly given as asymptotic results by the exact reflection image theory. Also, the apparent image location giving the correct Gaussian beam transmitted through the interface is obtained as another asymptotic check. The present theory makes it possible to calculate the exact coupling from the Gaussian beam to the reflected and refracted beams, as well as to the surface wave.
Bueyuekasik, Sirin A.; Pashaev, Oktay K.
2010-12-15
We construct a Madelung fluid model with time variable parameters as a dissipative quantum fluid and linearize it in terms of Schroedinger equation with time-dependent parameters. It allows us to find exact solutions of the nonlinear Madelung system in terms of solutions of the Schroedinger equation and the corresponding classical linear ordinary differential equation with variable frequency and damping. For the complex velocity field, the Madelung system takes the form of a nonlinear complex Schroedinger-Burgers equation, for which we obtain exact solutions using complex Cole-Hopf transformation. In particular, we give exact results for nonlinear Madelung systems related with Caldirola-Kanai-type dissipative harmonic oscillator. Collapse of the wave function in dissipative models and possible implications for the quantum cosmology are discussed.
Partial polarization by quantum distinguishability
NASA Astrophysics Data System (ADS)
Lahiri, Mayukh; Hochrainer, Armin; Lapkiewicz, Radek; Lemos, Gabriela Barreto; Zeilinger, Anton
2017-03-01
We establish that a connection exists between wave-particle duality of photons and partial polarization of a light beam. We perform a two-path lowest-order (single photon) interference experiment and demonstrate both theoretically and experimentally that the degree of polarization of the light beam emerging from an output of the interferometer depends on path distinguishability. In our experiment, we are able to change the quantum state of the emerging photon from a pure state to a fully mixed state without any direct interaction with the photon. Although most lowest-order interference experiments can be explained by classical theory, our experiment has no genuine classical analog. Our results show that a case exists where the cause of partial polarization is beyond the scope of classical theory.
Tree reconstruction from partial orders
Kannan, S.K. ); Warnow, T.J. )
1993-01-01
The problem of constructing trees given a matrix of interleaf distances is motivated by applications in computational evolutionary biology and linguistics. The general problem is to find an edge-weighted tree which most closely approximates the distance matrix. Although the construction problem is easy when the tree exactly fits the distance matrix, optimization problems under all popular criteria are either known or conjectured to be NP-complete. In this paper we consider the related problem where we are given a partial order on the pairwise distances, and wish to construct (if possible) an edge-weighted tree realizing the partial order. In particular we are interested in partial orders which arise from experiments on triples of species, which determine either a linear ordering of the three pairwise distances (called Total Order Model or TOM experiments) or only the pair(s) of minimum distance apart (called Partial Order Model or POM experiments). The POM and TOM experimental model is inspired by the model proposed by Kannan, Lawler, and Warnow for constructing trees from experiments which determine the rooted topology for any triple of species. We examine issues of construction of trees and consistency of TOM and POM experiments, where the trees may either be weighted or unweighted. Using these experiments to construct unweighted trees without nodes of degree two is motivated by a similar problem studied by Winkler, called the Discrete Metric Realization problem, which he showed to be strongly NP-hard. We have the following results: Determining consistency of a set of TOM or POM experiments is NP-Complete whether the tree is weighted or constrained to be unweighted and without degree two nodes. We can construct unweighted trees without degree two nodes from TOM experiments in optimal O(n[sup 3]) time and from POM experiments in O(n[sup 4]) time.
Tree reconstruction from partial orders
Kannan, S.K.; Warnow, T.J.
1993-03-01
The problem of constructing trees given a matrix of interleaf distances is motivated by applications in computational evolutionary biology and linguistics. The general problem is to find an edge-weighted tree which most closely approximates the distance matrix. Although the construction problem is easy when the tree exactly fits the distance matrix, optimization problems under all popular criteria are either known or conjectured to be NP-complete. In this paper we consider the related problem where we are given a partial order on the pairwise distances, and wish to construct (if possible) an edge-weighted tree realizing the partial order. In particular we are interested in partial orders which arise from experiments on triples of species, which determine either a linear ordering of the three pairwise distances (called Total Order Model or TOM experiments) or only the pair(s) of minimum distance apart (called Partial Order Model or POM experiments). The POM and TOM experimental model is inspired by the model proposed by Kannan, Lawler, and Warnow for constructing trees from experiments which determine the rooted topology for any triple of species. We examine issues of construction of trees and consistency of TOM and POM experiments, where the trees may either be weighted or unweighted. Using these experiments to construct unweighted trees without nodes of degree two is motivated by a similar problem studied by Winkler, called the Discrete Metric Realization problem, which he showed to be strongly NP-hard. We have the following results: Determining consistency of a set of TOM or POM experiments is NP-Complete whether the tree is weighted or constrained to be unweighted and without degree two nodes. We can construct unweighted trees without degree two nodes from TOM experiments in optimal O(n{sup 3}) time and from POM experiments in O(n{sup 4}) time.
An Exact Procedure for the Evaluation of Reference-Scaled Average Bioequivalence.
Tothfalusi, Laszlo; Endrenyi, Laszlo
2016-03-01
Reference-scaled average bioequivalence (RSABE) has been recommended by Food and Drug Administration (FDA), and in its closely related form by European Medicines Agency (EMA), for the determination of bioequivalence (BE) of highly variable (HV) and narrow therapeutic index (NTI) drug products. FDA suggested that RSABE be evaluated by an approximating procedure. Development of an alternative, numerically exact approach was sought. A new algorithm, called Exact, was derived for the assessment of RSABE. It is based upon the observation that the statistical model of RSABE follows a noncentral t distribution. The parameters of the distribution were derived for crossover and parallel-group study designs. Simulated BE studies of HV and NTI drugs compared the power and consumer risk of the proposed Exact method with those recommended by FDA and EMA. The Exact method had generally slightly higher power than the FDA approach. The consumer risks of the Exact and FDA procedures were generally below the nominal error risk with both methods except for the partial replicate design under certain heteroscedastic conditions. The estimator of RSABE was biased; simulations demonstrated the appropriateness of Hedges' correction. The FDA approach had another, small but meaningful bias. The confidence intervals of RSABE, based on the derived exact, analytical formulas, are uniformly most powerful. Their computation requires in standard cases only a single-line program script. The algorithm assumes that the estimates of the within-subject variances of both formulations are available. With each algorithm, the consumer risk is higher than 5% when the partial replicate design is applied.
Travelling wave solutions for higher-order wave equations of kdv type (iii).
Li, Jibin; Rui, Weigou; Long, Yao; He, Bin
2006-01-01
By using the theory of planar dynamical systems to the travelling wave equation of a higher order nonlinear wave equations of KdV type, the existence of smooth solitary wave, kink wave and anti-kink wave solutions and uncountably infinite many smooth and non-smooth periodic wave solutions are proved. In different regions of the parametric space, the sufficient conditions to guarantee the existence of the above solutions are given. In some conditions, exact explicit parametric representations of these waves are obtain.
Ray theory of the Love wave interactions
NASA Astrophysics Data System (ADS)
Seshadri, S. R.
1984-04-01
A ray-theoretical treatment is given of three different Love wave propagation problems corresponding to three different orders of increasing complexity. The zero-order problem corresponds to Love wave propagation along a planar film deposited on a semiinfinite substrate. The contradirectional coupling of two Love waves is a first-order problem in the sense that the coupling coefficient is proportional to the first power of the relative corrugation depth (RCD) in the same way that the wave characteristics of the zero-order problem depend on the zeroth power of the RCD. The coupling of the Love wave with the bulk elastic wave in the substrate is a second-order problem in the sense that in the transport equation for the guided wave amplitude the extinction and excitation coefficients are proportional to the second power of the RCD. The ray theory is shown to give an exact or asymptotically exact solution valid for small RCD.
Gunderson, Aaron M; Marston, Philip L
2016-11-01
The Kirchhoff approximation (KA) is used to model backscatter of sound from a partially exposed, rigid sphere at a flat free interface of two homogenous media. Scattered wavefields are calculated through numerical integration on the sphere of the Kirchhoff integral, requiring detailed knowledge of the illuminated region for each scattering path. This approach avoids amplitude discontinuities resulting from geometric transitions in the number of reflected rays. Reflections from the interface are modeled through use of an image source, positioned symmetrically relative to the real source. Results are compared to experimentally obtained backscattering records from elastic spheres at an air-water interface, as well as to an exact partial wave series for a half exposed sphere. These comparisons highlight the omission of Franz-type reflections from consideration within the KA, and the consequences of this omission are discussed. The results can be extended to boundary conditions beyond the ideal free surface limit, and are applicable to the problem of scattering by underwater objects partially buried in sand.
NASA Technical Reports Server (NTRS)
Boersma, J.; Rahmat-Samii, Y.
1980-01-01
The diffraction of an arbitrary cylindrical wave by a half-plane has been treated by Rahmat-Samii and Mittra who used a spectral domain approach. In this paper, their exact solution for the total field is expressed in terms of a new integral representation. For large wave number k, two rigorous procedures are described for the exact uniform asymptotic expansion of the total field solution. The uniform expansions obtained are valid in the entire space, including transition regions around the shadow boundaries. The final results are compared with the formulations of two leading uniform theories of edge diffraction, namely, the uniform asymptotic theory and the uniform theory of diffraction. Some unique observations and conclusions are made in relating the two theories.
Spectral theory of a surface-corrugated electron waveguide: The exact scattering-operator approach
NASA Astrophysics Data System (ADS)
Makarov, N. M.; Moroz, A. V.
1999-07-01
We apply the exact surface scattering operator to solve the problem of scalar (electron or sound) wave propagation through a strip with absolutely soft randomly rough boundaries. This approach is nonperturbative in either roughness heights or slopes. We analyzed the roughness-induced dephasing and attenuation of waves both asymptotically and numerically. The analysis proves that the signal is always scattered most effectively into the ``resonant'' waveguide modes, whose transverse wavelength is comparable to the rms roughness height ζ and whose total number is proportional to ζ-1. According to this integral resonance rule, the dephasing dominates over the attenuation and shows a nonanalytic (square-root) dependence on the dispersion ζ2 when (kζ)2<<1 (k is the wave number). In the case (kζ)2>>1, the dephasing and attenuation may well compete. We predict another two surprising effects: reentrant transparency and increase of the phase velocity of the wave.
ALmost EXact boundary conditions for transient Schrödinger-Poisson system
NASA Astrophysics Data System (ADS)
Bian, Lei; Pang, Gang; Tang, Shaoqiang; Arnold, Anton
2016-05-01
For the Schrödinger-Poisson system, we propose an ALmost EXact (ALEX) boundary condition to treat accurately the numerical boundaries. Being local in both space and time, the ALEX boundary conditions are demonstrated to be effective in suppressing spurious numerical reflections. Together with the Crank-Nicolson scheme, we simulate a resonant tunneling diode. The algorithm produces numerical results in excellent agreement with those in Mennemann et al. [1], yet at a much reduced complexity. Primary peaks in wave function profile appear as a consequence of quantum resonance, and should be considered in selecting the cut-off wave number for numerical simulations.
ALmost EXact boundary conditions for transient Schrödinger–Poisson system
Bian, Lei; Pang, Gang; Tang, Shaoqiang; Arnold, Anton
2016-05-15
For the Schrödinger–Poisson system, we propose an ALmost EXact (ALEX) boundary condition to treat accurately the numerical boundaries. Being local in both space and time, the ALEX boundary conditions are demonstrated to be effective in suppressing spurious numerical reflections. Together with the Crank–Nicolson scheme, we simulate a resonant tunneling diode. The algorithm produces numerical results in excellent agreement with those in Mennemann et al. [1], yet at a much reduced complexity. Primary peaks in wave function profile appear as a consequence of quantum resonance, and should be considered in selecting the cut-off wave number for numerical simulations.
Exactly separable Bohr Hamiltonian with the Killingbeck potential for triaxial nuclei
NASA Astrophysics Data System (ADS)
Neyazi, H.; Rajabi, A. A.; Hassanabadi, H.
2016-01-01
After pioneering work by Bohr, Mottelson and their numerous colleagues, the essential framework for understanding collective model is introduced. One of the applications of this framework is the study of shape phase transition, vibrational and rotational energy spectrum of nuclei. We consider the Bohr Hamiltonian and solve the beta and gamma part equation of it, by considering that reduced potential and wave function are exactly separable. In the beta part equation we consider the Killingbeck potential and derive the wave function and energy spectrum of it.
Interference effects in phased beam tracing using exact half-space solutions.
Boucher, Matthew A; Pluymers, Bert; Desmet, Wim
2016-12-01
Geometrical acoustics provides a correct solution to the wave equation for rectangular rooms with rigid boundaries and is an accurate approximation at high frequencies with nearly hard walls. When interference effects are important, phased geometrical acoustics is employed in order to account for phase shifts due to propagation and reflection. Error increases, however, with more absorption, complex impedance values, grazing incidence, smaller volumes and lower frequencies. Replacing the plane wave reflection coefficient with a spherical one reduces the error but results in slower convergence. Frequency-dependent stopping criteria are then applied to avoid calculating higher order reflections for frequencies that have already converged. Exact half-space solutions are used to derive two additional spherical wave reflection coefficients: (i) the Sommerfeld integral, consisting of a plane wave decomposition of a point source and (ii) a line of image sources located at complex coordinates. Phased beam tracing using exact half-space solutions agrees well with the finite element method for rectangular rooms with absorbing boundaries, at low frequencies and for rooms with different aspect ratios. Results are accurate even for long source-to-receiver distances. Finally, the crossover frequency between the plane and spherical wave reflection coefficients is discussed.
Planetary waves in rotating ionosphere
Khantadze, A. G.; Jandieri, V. G.; Jandieri, G. V.
2008-06-15
The problem of propagation of ultralong planetary waves in the Earth's upper atmosphere is considered. A new exact solution to the MHD equations for the ionosphere is obtained in spherical coordinates with allowance for the geomagnetic field and Earth's rotation. A general dispersion relation is derived for planetary waves in the ionospheric E and F regions, and the characteristic features of their propagation in a weakly ionized ionospheric plasma are discussed.
Exact solution to the Schrödinger’s equation with pseudo-Gaussian potential
Iacob, Felix; Lute, Marina
2015-12-15
We consider the radial Schrödinger equation with the pseudo-Gaussian potential. By making an ansatz to the solution of the eigenvalue equation for the associate Hamiltonian, we arrive at the general exact eigenfunction. The values of energy levels for the bound states are calculated along with their corresponding normalized wave-functions. The case of positive energy levels, known as meta-stable states, is also discussed and the magnitude of transmission coefficient through the potential barrier is evaluated.
Generalized p p waves in Poincaré gauge theory
NASA Astrophysics Data System (ADS)
Blagojević, M.; Cvetković, B.
2017-05-01
Starting from the generalized p p waves that are exact vacuum solutions of general relativity with a cosmological constant, we construct a new family of exact vacuum solutions of Poincaré gauge theory, the generalized p p waves with torsion. The ansatz for torsion is chosen in accordance with the wave nature of the solutions. For a subfamily of these solutions, the metric is dynamically determined by the torsion.
Supersymmetric QCD: exact results and strong coupling
NASA Astrophysics Data System (ADS)
Dine, Michael; Festuccia, Guido; Pack, Lawrence; Park, Chang-Soon; Ubaldi, Lorenzo; Wu, Weitao
2011-05-01
We revisit two longstanding puzzles in supersymmetric gauge theories. The first concerns the question of the holomorphy of the coupling, and related to this the possible definition of an exact (NSVZ) beta function. The second concerns instantons in pure gluodynamics, which appear to give sensible, exact results for certain correlation functions, which nonetheless differ from those obtained using systematic weak coupling expansions. For the first question, we extend an earlier proposal of Arkani-Hamed and Murayama, showing that if their regulated action is written suitably, the holomorphy of the couplings is manifest, and it is easy to determine the renormalization scheme for which the NSVZ formula holds. This scheme, however, is seen to be one of an infinite class of schemes, each leading to an exact beta function; the NSVZ scheme, while simple, is not selected by any compelling physical consideration. For the second question, we explain why the instanton computation in the pure supersymmetric gauge theory is not reliable, even at short distances. The semiclassical expansion about the instanton is purely formal; if infrared divergences appear, they spoil arguments based on holomorphy. We demonstrate that infrared divergences do not occur in the perturbation expansion about the instanton, but explain that there is no reason to think this captures all contributions from the sector with unit topological charge. That one expects additional contributions is illustrated by dilute gas corrections. These are infrared divergent, and so difficult to define, but if non-zero give order one, holomorphic, corrections to the leading result. Exploiting an earlier analysis of Davies et al, we demonstrate that in the theory compactified on a circle of radius β, due to infrared effects, finite contributions indeed arise which are not visible in the formal β → ∞ limit.