Sample records for exact pole solutions

  1. Kadomtsev−Petviashvili equation for a flow of highly nonisothermal collisionless plasma

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Movsesyants, Yu. B., E-mail: yumovsesyants@gmail.com; Rukhadze, A. A., E-mail: rukh@fpl.gpi.ru; Tyuryukanov, P. M.

    2016-01-15

    It is shown that the equations of two-fluid electrodynamics for a cold ions flow and Boltzmann electrons in the vicinity of the ion-sound point can be reduced to the Kadomtsev−Petviashvili equation. Examples of two-dimensional equilibria with pole singularities obtained by exactly solving the equations are presented. An exact self-similar solution describing a two-dimensional transonic flow and having no pole singularities is found.

  2. Kadomtsev-Petviashvili equation for a flow of highly nonisothermal collisionless plasma

    NASA Astrophysics Data System (ADS)

    Movsesyants, Yu. B.; Rukhadze, A. A.; Tyuryukanov, P. M.

    2016-01-01

    It is shown that the equations of two-fluid electrodynamics for a cold ions flow and Boltzmann electrons in the vicinity of the ion-sound point can be reduced to the Kadomtsev-Petviashvili equation. Examples of two-dimensional equilibria with pole singularities obtained by exactly solving the equations are presented. An exact self-similar solution describing a two-dimensional transonic flow and having no pole singularities is found.

  3. Meromorphic solutions of recurrence relations and DRA method for multicomponent master integrals

    NASA Astrophysics Data System (ADS)

    Lee, Roman N.; Mingulov, Kirill T.

    2018-04-01

    We formulate a method to find the meromorphic solutions of higher-order recurrence relations in the form of the sum over poles with coefficients defined recursively. Several explicit examples of the application of this technique are given. The main advantage of the described approach is that the analytical properties of the solutions are very clear (the position of poles is explicit, the behavior at infinity can be easily determined). These are exactly the properties that are required for the application of the multiloop calculation method based on dimensional recurrence relations and analyticity (the DRA method).

  4. A connection between the maximum displacements of rogue waves and the dynamics of poles in the complex plane.

    PubMed

    Liu, T Y; Chiu, T L; Clarkson, P A; Chow, K W

    2017-09-01

    Rogue waves of evolution systems are displacements which are localized in both space and time. The locations of the points of maximum displacements of the wave profiles may correlate with the trajectories of the poles of the exact solutions from the perspective of complex variables through analytic continuation. More precisely, the location of the maximum height of the rogue wave in laboratory coordinates (real space and time) is conjectured to be equal to the real part of the pole of the exact solution, if the spatial coordinate is allowed to be complex. This feature can be verified readily for the Peregrine breather (lowest order rogue wave) of the nonlinear Schrödinger equation. This connection is further demonstrated numerically here for more complicated scenarios, namely the second order rogue wave of the Boussinesq equation (for bidirectional long waves in shallow water), an asymmetric second order rogue wave for the nonlinear Schrödinger equation (as evolution system for slowly varying wave packets), and a symmetric second order rogue wave of coupled Schrödinger systems. Furthermore, the maximum displacements in physical space occur at a time instant where the trajectories of the poles in the complex plane reverse directions. This property is conjectured to hold for many other systems, and will help to determine the maximum amplitudes of rogue waves.

  5. A connection between the maximum displacements of rogue waves and the dynamics of poles in the complex plane

    NASA Astrophysics Data System (ADS)

    Liu, T. Y.; Chiu, T. L.; Clarkson, P. A.; Chow, K. W.

    2017-09-01

    Rogue waves of evolution systems are displacements which are localized in both space and time. The locations of the points of maximum displacements of the wave profiles may correlate with the trajectories of the poles of the exact solutions from the perspective of complex variables through analytic continuation. More precisely, the location of the maximum height of the rogue wave in laboratory coordinates (real space and time) is conjectured to be equal to the real part of the pole of the exact solution, if the spatial coordinate is allowed to be complex. This feature can be verified readily for the Peregrine breather (lowest order rogue wave) of the nonlinear Schrödinger equation. This connection is further demonstrated numerically here for more complicated scenarios, namely the second order rogue wave of the Boussinesq equation (for bidirectional long waves in shallow water), an asymmetric second order rogue wave for the nonlinear Schrödinger equation (as evolution system for slowly varying wave packets), and a symmetric second order rogue wave of coupled Schrödinger systems. Furthermore, the maximum displacements in physical space occur at a time instant where the trajectories of the poles in the complex plane reverse directions. This property is conjectured to hold for many other systems, and will help to determine the maximum amplitudes of rogue waves.

  6. Classical Control System Design: A non-Graphical Method for Finding the Exact System Parameters

    NASA Astrophysics Data System (ADS)

    Hussein, Mohammed Tawfik

    2008-06-01

    The Root Locus method of control system design was developed in the 1940's. It is a set of rules that helps in sketching the path traced by the roots of the closed loop characteristic equation of the system, as a parameter such as a controller gain, k, is varied. The procedure provides approximate sketching guidelines. Designs on control systems using the method are therefore not exact. This paper aims at a non-graphical method for finding the exact system parameters to place a pair of complex conjugate poles on a specified damping ratio line. The overall procedure is based on the exact solution of complex equations on the PC using numerical methods.

  7. Shadow poles in coupled-channel problems calculated with the Berggren basis

    NASA Astrophysics Data System (ADS)

    Id Betan, R. M.; Kruppa, A. T.; Vertse, T.

    2018-02-01

    Background: In coupled-channels models the poles of the scattering S matrix are located on different Riemann sheets. Physical observables are affected mainly by poles closest to the physical region but sometimes shadow poles have considerable effect too. Purpose: The purpose of this paper is to show that in coupled-channels problems all poles of the S matrix can be located by an expansion in terms of a properly constructed complex-energy basis. Method: The Berggren basis is used for expanding the coupled-channels solutions. Results: The locations of the poles of the S matrix for the Cox potential, constructed for coupled-channels problems, were numerically calculated and compared with the exact ones. In a nuclear physics application the Jπ=3 /2+ resonant poles of 5He were calculated in a phenomenological two-channel model. The properties of both the normal and shadow resonances agree with previous findings. Conclusions: We have shown that, with an appropriately chosen Berggren basis, all poles of the S matrix including the shadow poles can be determined. We have found that the shadow pole of 5He migrates between Riemann sheets if the coupling strength is varied.

  8. The Dynamics and Evolution of Poles and Rogue Waves for Nonlinear Schrödinger Equations*

    NASA Astrophysics Data System (ADS)

    Chiu, Tin Lok; Liu, Tian Yang; Chan, Hiu Ning; Wing Chow, Kwok

    2017-09-01

    Rogue waves are unexpectedly large deviations from equilibrium or otherwise calm positions in physical systems, e.g. hydrodynamic waves and optical beam intensities. The profiles and points of maximum displacements of these rogue waves are correlated with the movement of poles of the exact solutions extended to the complex plane through analytic continuation. Such links are shown to be surprisingly precise for the first order rogue wave of the nonlinear Schrödinger (NLS) and the derivative NLS equations. A computational study on the second order rogue waves of the NLS equation also displays remarkable agreements.

  9. Strongly Correlated Electron Systems: An Operatorial Perspective

    NASA Astrophysics Data System (ADS)

    Di Ciolo, Andrea; Avella, Adolfo

    2018-05-01

    We discuss the operatorial approach to the study of strongly correlated electron systems and show how the exact solution of target models on small clusters chosen ad-hoc (minimal models) can suggest very efficient bulk approximations. We use the Hubbard model as case study (target model) and we analyze and discuss the crucial role of spin fluctuations in its 2-site realization (minimal model). Accordingly, we devise a novel three-pole approximation for the 2D case, including in the basic field an operator describing the dressing of the electronic one by the nearest-neighbor spin-fluctuations. Such a solution is in very good agreement with the exact one in the minimal model (2-site case) and performs very well once compared to advanced (semi-)numerical methods in the 2D case, being by far less computational-resource demanding.

  10. A two-mass expanding exact space-time solution

    NASA Astrophysics Data System (ADS)

    Uzan, Jean-Philippe; Ellis, George F. R.; Larena, Julien

    2011-01-01

    In order to understand how locally static configurations around gravitationally bound bodies can be embedded in an expanding universe, we investigate the solutions of general relativity describing a space-time whose spatial sections have the topology of a 3-sphere with two identical masses at the poles. We show that Israel junction conditions imply that two spherically symmetric static regions around the masses cannot be glued together. If one is interested in an exterior solution, this prevents the geometry around the masses to be of the Schwarzschild type and leads to the introduction of a cosmological constant. The study of the extension of the Kottler space-time shows that there exists a non-static solution consisting of two static regions surrounding the masses that match a Kantowski-Sachs expanding region on the cosmological horizon. The comparison with a Swiss-Cheese construction is also discussed.

  11. Modeling the heliolatitudinal gradient of the solar wind parameters with exact MHD solutions

    NASA Technical Reports Server (NTRS)

    Lima, J. J. G.; Tsinganos, K.

    1995-01-01

    The heliolatitudinal dependence of observations of the solar wind macroscopic quantities such as the averaged proton speed, density and the mass and momentum flux are modeled. The published observations covering the last two and a half solar cycles, are obtained either via the technique of interplanetary scintillations for the last 2 solar cycles (1970-1990), or, from the plasma experiment aboard the ULYSSES spacecraft for the recent period 1990-1994. Exact, two dimensional solutions of the full set of the steady MHD equations are used which are obtained through a nonlinear separation of the variables in the MHD equations. The three parameters emerging from the solutions are fixed from these observations, as well as from observations of the solar rotation. It is found that near solar maximum the solar wind speed is uniformly low, around the 400 km/s over a wide range of latitudes. On the other hand, during solar minimum and the declining phase of the solar activity cycle, there is a strong heliolatitudinal gradient in proton speed between 400-800 from equator to pole. This modeling also agrees with previous findings that the gradient in wind speed with the latitude is offset by a gradient in density such that the mass and momentum flux vary relatively little.

  12. Thickness-shear and thickness-twist modes in an AT-cut quartz acoustic wave filter.

    PubMed

    Zhao, Zinan; Qian, Zhenghua; Wang, Bin; Yang, Jiashi

    2015-04-01

    We studied thickness-shear and thickness-twist vibrations of a monolithic, two-pole crystal filter made from a plate of AT-cut quartz. The scalar differential equations derived by Tiersten and Smythe for electroded and unelectroded quartz plates were employed which are valid for both the fundamental and the overtone modes. Exact solutions for the free vibration resonant frequencies and modes were obtained from the equations. For a structurally symmetric filter, the modes can be separated into symmetric and antisymmetric ones. Trapped modes with vibrations mainly under the electrodes were found. The effect of the distance between the two pairs of electrodes was examined. Copyright © 2015 Elsevier B.V. All rights reserved.

  13. A QUARTER-CENTURY OF OBSERVATIONS OF COMET 10P/TEMPEL 2 AT LOWELL OBSERVATORY: CONTINUED SPIN-DOWN, COMA MORPHOLOGY, PRODUCTION RATES, AND NUMERICAL MODELING

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Knight, Matthew M.; Schleicher, David G.; Schwieterman, Edward W.

    2012-11-01

    We report on photometry and imaging of Comet 10P/Tempel 2 obtained at Lowell Observatory from 1983 through 2011. We measured a nucleus rotation period of 8.950 {+-} 0.002 hr from 16 nights of imaging acquired between 2010 September and 2011 January. This rotation period is longer than the period we previously measured in 1999, which was itself longer than the period measured in 1988, and demonstrates that Tempel 2 is continuing to spin down, presumably due to torques caused by asymmetric outgassing. A nearly linear jet was observed which varied little during a rotation cycle in both R and CNmore » images acquired during the 1999 and 2010 apparitions. We measured the projected direction of this jet throughout the two apparitions and, under the assumption that the source region of the jet was near the comet's pole, determined a rotational pole direction of R.A./decl. = 151 Degree-Sign /+59 Degree-Sign from CN measurements and R.A./decl. = 173 Degree-Sign /+57 Degree-Sign from dust measurements (we estimate a circular uncertainty of 3 Degree-Sign for CN and 4 Degree-Sign for dust). Different combinations of effects likely bias both gas and dust solutions and we elected to average these solutions for a final pole direction of R.A./decl. = 162 Degree-Sign {+-} 11 Degree-Sign /+58 Degree-Sign {+-} 1 Degree-Sign . Photoelectric photometry was acquired on 3 nights in 1983, 2 nights in 1988, 19 nights in 1999/2000, and 10 nights in 2010/2011. The activity exhibited a steep 'turn-on' {approx}3 months prior to perihelion (the exact timing of which varies) and a relatively smooth decline after perihelion. The activity during the 1999 and 2010 apparitions was similar; limited data in 1983 and 1988 (along with IUE data from the literature) were systematically higher and the difference cannot be explained entirely by the smaller perihelion distance. We measured a 'typical' composition, in agreement with previous investigators. Monte Carlo numerical modeling with our pole solution best replicated the observed coma morphology for a source region located near a comet latitude of +80 Degree-Sign and having a radius of {approx}10 Degree-Sign . Our model reproduced the seasonal changes in activity, suggesting that the majority of Tempel 2's activity originates from a small active region located near the pole. We also find that a cosine-squared solar angle function gives the best fit as compared to a standard cosine function.« less

  14. Exact partition functions for the Ω-deformed {N}={2}^{ast } SU(2) gauge theory

    NASA Astrophysics Data System (ADS)

    Beccaria, Matteo; Macorini, Guido

    2016-07-01

    We study the low energy effective action of the Ω-deformed {N}={2}^{ast } SU(2) gauge theory. It depends on the deformation parameters ɛ 1, ɛ 2, the scalar field expectation value a, and the hypermultiplet mass m. We explore the plane (m/ɛ_1,ɛ_2/ɛ_1) looking for special features in the multi-instanton contributions to the prepotential, motivated by what happens in the Nekrasov-Shatashvili limit ɛ 2 → 0. We propose a simple condition on the structure of poles of the k-instanton prepotential and show that it is admissible at a finite set of points in the above plane. At these special points, the prepotential has poles at fixed positions independent on the instanton number. Besides and remarkably, both the instanton partition function and the full prepotential, including the perturbative contribution, may be given in closed form as functions of the scalar expectation value a and the modular parameter q appearing in special combinations of Eisenstein series and Dedekind η function. As a byproduct, the modular anomaly equation can be tested at all orders at these points. We discuss these special features from the point of view of the AGT correspondence and provide explicit toroidal 1-blocks in non-trivial closed form. The full list of solutions with 1, 2, 3, and 4 poles is determined and described in details.

  15. Absence of a charge diffusion pole at finite energies in an exactly solvable interacting flat-band model in d dimensions

    NASA Astrophysics Data System (ADS)

    Phillips, Philip W.; Setty, Chandan; Zhang, Shuyi

    2018-05-01

    Motivated by recent bounds for charge diffusion in critical matter, we investigate the following question: What sets the scale for the velocity for diffusing degrees of freedom in a scale-invariant system? To make our statements precise, we analyze the diffusion pole in an exactly solvable model for a Mott transition in the presence of a long-range interaction term. To achieve scale invariance, we limit our discussion to the flat-band regime. We find in this limit that the diffusion pole, which would normally obtain at finite energy, is pushed to zero energy, resulting in a vanishing of the diffusion constant. This occurs even in the presence of interactions in certain limits, indicating the robustness of this result to the inclusion of a scale in the problem. Consequently, scale invariance precludes any reasonable definition of the diffusion constant. Nonetheless, we do find that a scale can be defined, albeit irrelevant to diffusion, which is the product of the squared band velocity and the density of states.

  16. Technology and the Environment

    NASA Technical Reports Server (NTRS)

    1977-01-01

    Forest Service officials consulted NASA and found a solution in the application of laser technology originally developed for satellites. NASA/Goddard built a system called a "laser range pole," a portable battery operated back-packed device that allows direct sightings no matter how rough the intervening terrain or how thick the forest. The equipment consists of a laser transmitter and a receiver. From a given property marker, the transmitter pulses a laser beam vertically, several thousand feet in some cases. At a second surveying point about a mile away, the receiver detects the laser pulse high above the trees, and locks in on the exact direction. Thus provided a bearing between the two points, a ground crew can extend the border line back to the sending point by conventional surveying techniques.

  17. Phloem unloading in Arabidopsis roots is convective and regulated by the phloem-pole pericycle

    PubMed Central

    Ross-Elliott, Timothy J; Jensen, Kaare H; Haaning, Katrine S; Wager, Brittney M; Knoblauch, Jan; Howell, Alexander H; Mullendore, Daniel L; Monteith, Alexander G; Paultre, Danae; Yan, Dawei; Otero, Sofia; Bourdon, Matthieu; Sager, Ross; Lee, Jung-Youn; Helariutta, Ykä; Knoblauch, Michael; Oparka, Karl J

    2017-01-01

    In plants, a complex mixture of solutes and macromolecules is transported by the phloem. Here, we examined how solutes and macromolecules are separated when they exit the phloem during the unloading process. We used a combination of approaches (non-invasive imaging, 3D-electron microscopy, and mathematical modelling) to show that phloem unloading of solutes in Arabidopsis roots occurs through plasmodesmata by a combination of mass flow and diffusion (convective phloem unloading). During unloading, solutes and proteins are diverted into the phloem-pole pericycle, a tissue connected to the protophloem by a unique class of ‘funnel plasmodesmata’. While solutes are unloaded without restriction, large proteins are released through funnel plasmodesmata in discrete pulses, a phenomenon we refer to as ‘batch unloading’. Unlike solutes, these proteins remain restricted to the phloem-pole pericycle. Our data demonstrate a major role for the phloem-pole pericycle in regulating phloem unloading in roots. DOI: http://dx.doi.org/10.7554/eLife.24125.001 PMID:28230527

  18. High-sensitivity survey of a pole-on disk-jet system around high mass YSOs

    NASA Astrophysics Data System (ADS)

    Motogi, Kazuhito; Walsh, Andrew; Hirota, Tomoya; Niinuma, Kotaro; Sugiyama, Koichiro; Fujisawa, Kenta; Yonekura, Yoshinori; Honma, Mareki; Sorai, Kazuo

    2013-10-01

    Recent theoretical works have suggested that detailed evolution of a high mass protostellar object highly depends on effective accretion rate and exact accretion geometry. Observational studies of the innermost accretion properties are, thus, an essential task in the ALMA era. High mass protostellar objects with a pole-on disk-jet system are, hence, excellent targets for such a study, since an outflow cavity reduces the total optical depth along the line-of-sight. Our previous studies have shown that some singular water maser sources called dominant blue-shifted masers (DBSMs) are plausible candidates of pole-on disk jet systems. There are, however, still two major problems as follows, (1) Some DBSMs can be a "fake", because of the significant variability of water masers. (2) It is difficult to verify the sources are really in pole-on geometry. The first problems can be checked with the thermal counterparts, and the second problem can be tested by morphologies of the class II CH3OH maser sources. We propose a high-sensitivity survey of real “pole-on” disk-jet systems towards the southern ten DBSMs. This new survey consists of multi-band observations between C/X/K/W bands. We will start from the C/X-continuum survey in this semester. Scientific goals in this semester are, (1) surveying radio jet activities with the C/X continuum emission, (2) estimating the inclination angle of disk-jet systems based on the morphologies of the CH3OH maser spots. (3) determining the exact positions of driving sources.

  19. Solution of magnetic field and eddy current problem induced by rotating magnetic poles (abstract)

    NASA Astrophysics Data System (ADS)

    Liu, Z. J.; Low, T. S.

    1996-04-01

    The magnetic field and eddy current problems induced by rotating permanent magnet poles occur in electromagnetic dampers, magnetic couplings, and many other devices. Whereas numerical techniques, for example, finite element methods can be exploited to study various features of these problems, such as heat generation and drag torque development, etc., the analytical solution is always of interest to the designers since it helps them to gain the insight into the interdependence of the parameters involved and provides an efficient tool for designing. Some of the previous work showed that the solution of the eddy current problem due to the linearly moving magnet poles can give satisfactory approximation for the eddy current problem due to rotating fields. However, in many practical cases, especially when the number of magnet poles is small, there is significant effect of flux focusing due to the geometry. The above approximation can therefore lead to marked errors in the theoretical predictions of the device performance. Bernot et al. recently described an analytical solution in a polar coordinate system where the radial field is excited by a time-varying source. A discussion of an analytical solution of the magnetic field and eddy current problems induced by moving magnet poles in radial field machines will be given in this article. The theoretical predictions obtained from this method is compared with the results obtained from finite element calculations. The validity of the method is also checked by the comparison of the theoretical predictions and the measurements from a test machine. It is shown that the introduced solution leads to a significant improvement in the air gap field prediction as compared with the results obtained from the analytical solution that models the eddy current problems induced by linearly moving magnet poles.

  20. The use of rational functions in numerical quadrature

    NASA Astrophysics Data System (ADS)

    Gautschi, Walter

    2001-08-01

    Quadrature problems involving functions that have poles outside the interval of integration can profitably be solved by methods that are exact not only for polynomials of appropriate degree, but also for rational functions having the same (or the most important) poles as the function to be integrated. Constructive and computational tools for accomplishing this are described and illustrated in a number of quadrature contexts. The superiority of such rational/polynomial methods is shown by an analysis of the remainder term and documented by numerical examples.

  1. Poles of the Zagreb analysis partial-wave T matrices

    NASA Astrophysics Data System (ADS)

    Batinić, M.; Ceci, S.; Švarc, A.; Zauner, B.

    2010-09-01

    The Zagreb analysis partial-wave T matrices included in the Review of Particle Physics [by the Particle Data Group (PDG)] contain Breit-Wigner parameters only. As the advantages of pole over Breit-Wigner parameters in quantifying scattering matrix resonant states are becoming indisputable, we supplement the original solution with the pole parameters. Because of an already reported numeric error in the S11 analytic continuation [Batinić , Phys. Rev. CPRVCAN0556-281310.1103/PhysRevC.57.1004 57, 1004(E) (1997); arXiv:nucl-th/9703023], we declare the old BATINIC 95 solution, presently included by the PDG, invalid. Instead, we offer two new solutions: (A) corrected BATINIC 95 and (B) a new solution with an improved S11 πN elastic input. We endorse solution (B).

  2. Measuring the state of charge of the electrolyte solution in a vanadium redox flow battery using a four-pole cell device

    NASA Astrophysics Data System (ADS)

    Ngamsai, Kittima; Arpornwichanop, Amornchai

    2015-12-01

    The decrease in the efficiency and capacity of a vanadium redox flow battery (VRB) caused by an electrolyte imbalance is an important impediment to its long-term operation. Knowing the state of charge (SOC) of an electrolyte solution can quantify the level of the electrolyte imbalance in the VRB. In this study, a four-pole cell device is devised and employed to predict the SOC. The proposed method directly measures the ionic resistance of the electrolyte solution and is sufficiently precise to be applied in real-time mode. Experimental studies on the effects of the operating current on the four-pole cell and the concentrations of vanadium and sulfuric acid in the electrolyte solution are carried out. The results show that the four-pole cell method can be utilized to measure the electrolyte SOC. The concentrations of vanadium and sulfuric acid in the electrolyte solution affect the ionic resistance of the solution. Regarding the capacity and efficiency of the VRB system, the results indicate that the electrical charge is determined from the concentration of vanadium and that the cell voltage depends on the concentration of sulfuric acid in the electrolyte solution. The decreased vanadium concentration and increased sulfuric acid concentration improves the cell voltage efficiency.

  3. PolyPole-1: An accurate numerical algorithm for intra-granular fission gas release

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pizzocri, D.; Rabiti, C.; Luzzi, L.

    2016-09-01

    This paper describes the development of a new numerical algorithm (called PolyPole-1) to efficiently solve the equation for intra-granular fission gas release in nuclear fuel. The work was carried out in collaboration with Politecnico di Milano and Institute for Transuranium Elements. The PolyPole-1 algorithms is being implemented in INL's fuels code BISON code as part of BISON's fission gas release model. The transport of fission gas from within the fuel grains to the grain boundaries (intra-granular fission gas release) is a fundamental controlling mechanism of fission gas release and gaseous swelling in nuclear fuel. Hence, accurate numerical solution of themore » corresponding mathematical problem needs to be included in fission gas behaviour models used in fuel performance codes. Under the assumption of equilibrium between trapping and resolution, the process can be described mathematically by a single diffusion equation for the gas atom concentration in a grain. In this work, we propose a new numerical algorithm (PolyPole-1) to efficiently solve the fission gas diffusion equation in time-varying conditions. The PolyPole-1 algorithm is based on the analytic modal solution of the diffusion equation for constant conditions, with the addition of polynomial corrective terms that embody the information on the deviation from constant conditions. The new algorithm is verified by comparing the results to a finite difference solution over a large number of randomly generated operation histories. Furthermore, comparison to state-of-the-art algorithms used in fuel performance codes demonstrates that the accuracy of the PolyPole-1 solution is superior to other algorithms, with similar computational effort. Finally, the concept of PolyPole-1 may be extended to the solution of the general problem of intra-granular fission gas diffusion during non-equilibrium trapping and resolution, which will be the subject of future work.« less

  4. Analytical saturated domain orientation textures and electromechanical properties of ferroelectric ceramics due to electric/mechanical poling

    NASA Astrophysics Data System (ADS)

    Li, F. X.; Rajapakse, R. K. N. D.

    2007-03-01

    Saturated domain orientation textures of three types of pseudocubic (tetragonal, rhombohedral, and orthorhombic) ferroelectric ceramics after complete electric and uniaxial tension (compression) poling is studied analytically in this paper. A one-dimensional orientation distribution function (ODF) of the domain polar vectors is explicitly derived from the uniform inverse pole figures of the poling field axes on a stereographic projection with respect to the fixed crystallite coordinates. The analytical ODF is used to obtain the analytical solutions of saturated polarization and strain after electric/mechanical poling. Based on the closed form solution of the saturated domain orientation textures, the resultant intrinsic electromechanical properties of ferroelectric ceramics, which depend only on the ODF and properties of the corresponding single crystals, are obtained. The results show how the macroscopic symmetries of ferroelectric crystals change from 4mm (tetragonal), 3m (rhombohedral), and mm2 (orthorhombic) single crystals to a ∞mm (transversely isotropic) completely poled ceramic.

  5. A highly accurate analytical solution for the surface fields of a short vertical wire antenna lying on a multilayer ground

    NASA Astrophysics Data System (ADS)

    Parise, M.

    2018-01-01

    A highly accurate analytical solution is derived to the electromagnetic problem of a short vertical wire antenna located on a stratified ground. The derivation consists of three steps. First, the integration path of the integrals describing the fields of the dipole is deformed and wrapped around the pole singularities and the two vertical branch cuts of the integrands located in the upper half of the complex plane. This allows to decompose the radiated field into its three contributions, namely the above-surface ground wave, the lateral wave, and the trapped surface waves. Next, the square root terms responsible for the branch cuts are extracted from the integrands of the branch-cut integrals. Finally, the extracted square roots are replaced with their rational representations according to Newton's square root algorithm, and residue theorem is applied to give explicit expressions, in series form, for the fields. The rigorous integration procedure and the convergence of square root algorithm ensure that the obtained formulas converge to the exact solution. Numerical simulations are performed to show the validity and robustness of the developed formulation, as well as its advantages in terms of time cost over standard numerical integration procedures.

  6. Ring modulator small-signal response analysis based on pole-zero representation.

    PubMed

    Karimelahi, Samira; Sheikholeslami, Ali

    2016-04-04

    We present a closed-form expression for the small-signal response of a depletion-mode ring modulator and verify it by measurement results. Both electrical and optical behavior of micro-ring modulator as well as the loss variation due to the index modulation is considered in the derivation. This expression suggests that a ring modulator is a third-order system with one real pole, one zero and a pair of complex-conjugate poles. The exact positions of the poles/zero are given and shown to be dependent upon parameters such as electrical bandwidth, coupling condition, optical loss, and sign/value of laser detunings. We show that the location of zero is different for positive and negative detuning, and therefore, the ring modulator frequency response is asymmetric. We use the gain-bandwidth product as a figure of merit and calculate it for various pole/zero locations. We show that gain-bandwidth for the over-coupled ring modulator is superior compared to other coupling conditions. Also, we show that the gain-bandwidth product can be increased to a limit by increasing the electrical bandwidth.

  7. Direct localization of poles of a meromorphic function from measurements on an incomplete boundary

    NASA Astrophysics Data System (ADS)

    Nara, Takaaki; Ando, Shigeru

    2010-01-01

    This paper proposes an algebraic method to reconstruct the positions of multiple poles in a meromorphic function field from measurements on an arbitrary simple arc in it. A novel issue is the exactness of the algorithm depending on whether the arc is open or closed, and whether it encloses or does not enclose the poles. We first obtain a differential equation that can equivalently determine the meromorphic function field. From it, we derive linear equations that relate the elementary symmetric polynomials of the pole positions to weighted integrals of the field along the simple arc and end-point terms of the arc when it is an open one. Eliminating the end-point terms based on an appropriate choice of weighting functions and a combination of the linear equations, we obtain a simple system of linear equations for solving the elementary symmetric polynomials. We also show that our algorithm can be applied to a 2D electric impedance tomography problem. The effects of the proximity of the poles, the number of measurements and noise on the localization accuracy are numerically examined.

  8. Methods for the computation of the multivalued Painlevé transcendents on their Riemann surfaces

    NASA Astrophysics Data System (ADS)

    Fasondini, Marco; Fornberg, Bengt; Weideman, J. A. C.

    2017-09-01

    We extend the numerical pole field solver (Fornberg and Weideman (2011) [12]) to enable the computation of the multivalued Painlevé transcendents, which are the solutions to the third, fifth and sixth Painlevé equations, on their Riemann surfaces. We display, for the first time, solutions to these equations on multiple Riemann sheets. We also provide numerical evidence for the existence of solutions to the sixth Painlevé equation that have pole-free sectors, known as tronquée solutions.

  9. On the ultimate uncertainty of the top quark pole mass

    NASA Astrophysics Data System (ADS)

    Beneke, M.; Marquard, P.; Nason, P.; Steinhauser, M.

    2017-12-01

    We combine the known asymptotic behaviour of the QCD perturbation series expansion, which relates the pole mass of a heavy quark to the MS ‾ mass, with the exact series coefficients up to the four-loop order to determine the ultimate uncertainty of the top-quark pole mass due to the renormalon divergence. We perform extensive tests of our procedure by varying the number of colours and flavours, as well as the scale of the strong coupling and the MS ‾ mass. Including an estimate of the internal bottom and charm quark mass effect, we conclude that this uncertainty is around 110 MeV. We further estimate the additional contribution to the mass relation from the five-loop correction and beyond to be around 300 MeV.

  10. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Singleton, Jr., Robert; Israel, Daniel M.; Doebling, Scott William

    For code verification, one compares the code output against known exact solutions. There are many standard test problems used in this capacity, such as the Noh and Sedov problems. ExactPack is a utility that integrates many of these exact solution codes into a common API (application program interface), and can be used as a stand-alone code or as a python package. ExactPack consists of python driver scripts that access a library of exact solutions written in Fortran or Python. The spatial profiles of the relevant physical quantities, such as the density, fluid velocity, sound speed, or internal energy, are returnedmore » at a time specified by the user. The solution profiles can be viewed and examined by a command line interface or a graphical user interface, and a number of analysis tools and unit tests are also provided. We have documented the physics of each problem in the solution library, and provided complete documentation on how to extend the library to include additional exact solutions. ExactPack’s code architecture makes it easy to extend the solution-code library to include additional exact solutions in a robust, reliable, and maintainable manner.« less

  11. A Shape Model of the Main-belt Asteroid 27 Euterpe

    NASA Astrophysics Data System (ADS)

    Stephens, Robert D.; Warner, Brian D.; Megna, Ralph; Coley, Daniel

    2012-01-01

    We obtained dense rotational lightcurves for the mainbelt asteroid 27 Euterpe during four apparitions in 2000, 2009, 2010 and 2011. The analysis indicates retrograde rotation and suggests, but does not confirm, that Euterpe has albedo features making the determination of an unambiguous spin vector and model shape difficult. Euterpe's apparent nearly spherical shape, low inclination, and pole within about 35 degrees of the plane of the solar system, caused two pole and shape solutions to be present, differing by about 180° in longitude. We found solutions of (83°, -39°, 10.40825 ± 0.00003 h) and (261°, -30°, 10.40818 ± 0.00003 h). The approximate error in the pole solutions is ± 10 degrees.

  12. Structural stability and chaotic solutions of perturbed Benjamin-Ono equations

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Birnir, B.; Morrison, P.J.

    1986-11-01

    A method for proving chaos in partial differential equations is discussed and applied to the Benjamin-Ono equation subject to perturbations. The perturbations are of two types: one that corresponds to viscous dissipation, the so-called Burger's term, and one that involves the Hilbert transform and has been used to model Landau damping. The method proves chaos in the PDE by proving temporal chaos in its pole solutions. The spatial structure of the pole solutions remains intact, but their positions are chaotic in time. Melnikov's method is invoked to show this temporal chaos. It is discovered that the pole behavior is verymore » sensitive to the Burger's perturbation, but is quite insensitive to the perturbation involving the Hilbert transform.« less

  13. Low-pass filtering of noisy Schlumberger sounding curves. Part I: Theory

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Patella, D.

    1986-02-01

    A contribution is given to the solution of the problem of filtering noise-degraded Schlumberger sounding curves. It is shown that the transformation to the pole-pole system is actually a smoothing operation that filters high-frequency noise. In the case of residual noise contamination in the transformed pole-pole curve, it is demonstrated that a subsequent application of a conventional rectangular low-pass filter, with cut-off frequency not less than the right-hand frequency limit of the main message pass-band, may satisfactorily solve the problem by leaving a pole-pole curve available for interpretation. An attempt is also made to understand the essential peculiarities of themore » pole-pole system as far as penetration depth, resolving power and selectivity power are concerned.« less

  14. Studying the validity of relativistic hydrodynamics with a new exact solution of the Boltzmann equation

    NASA Astrophysics Data System (ADS)

    Denicol, Gabriel; Heinz, Ulrich; Martinez, Mauricio; Noronha, Jorge; Strickland, Michael

    2014-12-01

    We present an exact solution to the Boltzmann equation which describes a system undergoing boost-invariant longitudinal and azimuthally symmetric radial expansion for arbitrary shear viscosity to entropy density ratio. This new solution is constructed by considering the conformal map between Minkowski space and the direct product of three-dimensional de Sitter space with a line. The resulting solution respects S O (3 )q⊗S O (1 ,1 )⊗Z2 symmetry. We compare the exact kinetic solution with exact solutions of the corresponding macroscopic equations that were obtained from the kinetic theory in ideal and second-order viscous hydrodynamic approximations. The macroscopic solutions are obtained in de Sitter space and are subject to the same symmetries used to obtain the exact kinetic solution.

  15. Impact of opening of the Central America Seaway on climate in a coupled atmosphere-ocean-sea-ice model

    NASA Astrophysics Data System (ADS)

    Barrier, N.; Ferreira, D.; Marshall, J.

    2012-04-01

    We investigate the climatic impact of opening the Central America Seaway (CAS) in a coupled atmosphere-ocean-sea-ice model. A highly idealized land distribution is employed in which two meridional barriers extend from the North Pole in to the southern hemisphere, thus dividing the ocean in to a large basin, a small basin and a circumpolar flow around the South Pole. Such a configuration captures the essential zonal and inter-hemispheric asymmetries of the current climate. These simple geometrical constraints are sufficient to localize the deep-reaching meridional overturning circulation (MOC) to the northern extremity of the small basin. Given this reference experiment, we open up an analogue of the Central America Seaway on the western margin of the small basin north of the equator. Both deep and shallow passageways are considered. We find that although a major reorganization of ocean circulation occurs, along with significant local water-mass changes, global heat and freshwater meridional transports are largely unchanged, as are temperatures over the North Pole. In particular we do not observe a weakening of the MOC in the small basin, with salinity exchange between the large basin playing only a minor role. The simplicity of the geometrical configuration used in our experiments enables us to tease apart exactly what is going on. Experiments in which the salinity and temperature states of the small and large basins are interchanged, for example, show that our solutions are robust, with deep convection returning to the small basin after 800 years or so. Our experiments suggest to us that the closing of the CAS alone is not sufficient to lead to the onset of northern hemisphere glaciations 2 Ma years or so ago.

  16. Study of analytical method to seek for exact solutions of variant Boussinesq equations.

    PubMed

    Khan, Kamruzzaman; Akbar, M Ali

    2014-01-01

    In this paper, we have been acquired the soliton solutions of the Variant Boussinesq equations. Primarily, we have used the enhanced (G'/G)-expansion method to find exact solutions of Variant Boussinesq equations. Then, we attain some exact solutions including soliton solutions, hyperbolic and trigonometric function solutions of this equation. 35 K99; 35P05; 35P99.

  17. Study of coupled nonlinear partial differential equations for finding exact analytical solutions.

    PubMed

    Khan, Kamruzzaman; Akbar, M Ali; Koppelaar, H

    2015-07-01

    Exact solutions of nonlinear partial differential equations (NPDEs) are obtained via the enhanced (G'/G)-expansion method. The method is subsequently applied to find exact solutions of the Drinfel'd-Sokolov-Wilson (DSW) equation and the (2+1)-dimensional Painlevé integrable Burgers (PIB) equation. The efficiency of this method for finding these exact solutions is demonstrated. The method is effective and applicable for many other NPDEs in mathematical physics.

  18. Fourier decomposition of segmented magnets with radial magnetization in surface-mounted PM machines

    NASA Astrophysics Data System (ADS)

    Tiang, Tow Leong; Ishak, Dahaman; Lim, Chee Peng

    2017-11-01

    This paper presents a generic field model of radial magnetization (RM) pattern produced by multiple segmented magnets per rotor pole in surface-mounted permanent magnet (PM) machines. The magnetization vectors from either odd- or even-number of magnet blocks per pole are described. Fourier decomposition is first employed to derive the field model, and later integrated with the exact 2D analytical subdomain method to predict the magnetic field distributions and other motor global quantities. For the assessment purpose, a 12-slot/8-pole surface-mounted PM motor with two segmented magnets per pole is investigated by using the proposed field model. The electromagnetic performances of the PM machines are intensively predicted by the proposed magnet field model which include the magnetic field distributions, airgap flux density, phase back-EMF, cogging torque, and output torque during either open-circuit or on-load operating conditions. The analytical results are evaluated and compared with those obtained from both 2D and 3D finite element analyses (FEA) where an excellent agreement has been achieved.

  19. Study of coupled nonlinear partial differential equations for finding exact analytical solutions

    PubMed Central

    Khan, Kamruzzaman; Akbar, M. Ali; Koppelaar, H.

    2015-01-01

    Exact solutions of nonlinear partial differential equations (NPDEs) are obtained via the enhanced (G′/G)-expansion method. The method is subsequently applied to find exact solutions of the Drinfel'd–Sokolov–Wilson (DSW) equation and the (2+1)-dimensional Painlevé integrable Burgers (PIB) equation. The efficiency of this method for finding these exact solutions is demonstrated. The method is effective and applicable for many other NPDEs in mathematical physics. PMID:26587256

  20. Fingering patterns in magnetic fluids: Perturbative solutions and the stability of exact stationary shapes

    NASA Astrophysics Data System (ADS)

    Anjos, Pedro H. A.; Lira, Sérgio A.; Miranda, José A.

    2018-04-01

    We examine the formation of interfacial patterns when a magnetic liquid droplet (ferrofluid, or a magnetorheological fluid), surrounded by a nonmagnetic fluid, is subjected to a radial magnetic field in a Hele-Shaw cell. By using a vortex-sheet formalism, we find exact stationary solutions for the fluid-fluid interface in the form of n -fold polygonal shapes. A weakly nonlinear, mode-coupling method is then utilized to find time-evolving perturbative solutions for the interfacial patterns. The stability of such nonzero surface tension exact solutions is checked and discussed, by trying to systematically approach the exact stationary shapes through perturbative solutions containing an increasingly larger number of participating Fourier modes. Our results indicate that the exact stationary solutions of the problem are stable, and that a good matching between exact and perturbative shape solutions is achieved just by using a few Fourier modes. The stability of such solutions is substantiated by a linearization process close to the stationary shape, where a system of mode-coupling equations is diagonalized, determining the eigenvalues which dictate the stability of a fixed point.

  1. Normal stress differences from Oldroyd 8-constant framework: Exact analytical solution for large-amplitude oscillatory shear flow

    NASA Astrophysics Data System (ADS)

    Saengow, C.; Giacomin, A. J.

    2017-12-01

    The Oldroyd 8-constant framework for continuum constitutive theory contains a rich diversity of popular special cases for polymeric liquids. In this paper, we use part of our exact solution for shear stress to arrive at unique exact analytical solutions for the normal stress difference responses to large-amplitude oscillatory shear (LAOS) flow. The nonlinearity of the polymeric liquids, triggered by LAOS, causes these responses at even multiples of the test frequency. We call responses at a frequency higher than twice the test frequency higher harmonics. We find the new exact analytical solutions to be compact and intrinsically beautiful. These solutions reduce to those of our previous work on the special case of the corotational Maxwell fluid. Our solutions also agree with our new truncated Goddard integral expansion for the special case of the corotational Jeffreys fluid. The limiting behaviors of these exact solutions also yield new explicit expressions. Finally, we use our exact solutions to see how η∞ affects the normal stress differences in LAOS.

  2. Constructing exact symmetric informationally complete measurements from numerical solutions

    NASA Astrophysics Data System (ADS)

    Appleby, Marcus; Chien, Tuan-Yow; Flammia, Steven; Waldron, Shayne

    2018-04-01

    Recently, several intriguing conjectures have been proposed connecting symmetric informationally complete quantum measurements (SIC POVMs, or SICs) and algebraic number theory. These conjectures relate the SICs to their minimal defining algebraic number field. Testing or sharpening these conjectures requires that the SICs are expressed exactly, rather than as numerical approximations. While many exact solutions of SICs have been constructed previously using Gröbner bases, this method has probably been taken as far as is possible with current computer technology (except in special cases where there are additional symmetries). Here, we describe a method for converting high-precision numerical solutions into exact ones using an integer relation algorithm in conjunction with the Galois symmetries of an SIC. Using this method, we have calculated 69 new exact solutions, including nine new dimensions, where previously only numerical solutions were known—which more than triples the number of known exact solutions. In some cases, the solutions require number fields with degrees as high as 12 288. We use these solutions to confirm that they obey the number-theoretic conjectures, and address two questions suggested by the previous work.

  3. A possible pole problem in the formula for klystron gap fields

    NASA Technical Reports Server (NTRS)

    Kosmahl, H. G.

    1977-01-01

    In isolated cases a pole may be encountered in a previously published solution for the fields in a klystron gap. Formulas, permitting the critical combinations of parameters to be defined, are presented. It is noted that the region of inaccuracy surrounding the pole is sufficiently small and that a 0.1% change in the field changing parameter is enough to avoid it.

  4. Nonlinear oscillator with power-form elastic-term: Fourier series expansion of the exact solution

    NASA Astrophysics Data System (ADS)

    Beléndez, Augusto; Francés, Jorge; Beléndez, Tarsicio; Bleda, Sergio; Pascual, Carolina; Arribas, Enrique

    2015-05-01

    A family of conservative, truly nonlinear, oscillators with integer or non-integer order nonlinearity is considered. These oscillators have only one odd power-form elastic-term and exact expressions for their period and solution were found in terms of Gamma functions and a cosine-Ateb function, respectively. Only for a few values of the order of nonlinearity, is it possible to obtain the periodic solution in terms of more common functions. However, for this family of conservative truly nonlinear oscillators we show in this paper that it is possible to obtain the Fourier series expansion of the exact solution, even though this exact solution is unknown. The coefficients of the Fourier series expansion of the exact solution are obtained as an integral expression in which a regularized incomplete Beta function appears. These coefficients are a function of the order of nonlinearity only and are computed numerically. One application of this technique is to compare the amplitudes for the different harmonics of the solution obtained using approximate methods with the exact ones computed numerically as shown in this paper. As an example, the approximate amplitudes obtained via a modified Ritz method are compared with the exact ones computed numerically.

  5. FAST TRACK COMMUNICATION Time-dependent exact solutions of the nonlinear Kompaneets equation

    NASA Astrophysics Data System (ADS)

    Ibragimov, N. H.

    2010-12-01

    Time-dependent exact solutions of the Kompaneets photon diffusion equation are obtained for several approximations of this equation. One of the approximations describes the case when the induced scattering is dominant. In this case, the Kompaneets equation has an additional symmetry which is used for constructing some exact solutions as group invariant solutions.

  6. Automatic pole-like object modeling via 3D part-based analysis of point cloud

    NASA Astrophysics Data System (ADS)

    He, Liu; Yang, Haoxiang; Huang, Yuchun

    2016-10-01

    Pole-like objects, including trees, lampposts and traffic signs, are indispensable part of urban infrastructure. With the advance of vehicle-based laser scanning (VLS), massive point cloud of roadside urban areas becomes applied in 3D digital city modeling. Based on the property that different pole-like objects have various canopy parts and similar trunk parts, this paper proposed the 3D part-based shape analysis to robustly extract, identify and model the pole-like objects. The proposed method includes: 3D clustering and recognition of trunks, voxel growing and part-based 3D modeling. After preprocessing, the trunk center is identified as the point that has local density peak and the largest minimum inter-cluster distance. Starting from the trunk centers, the remaining points are iteratively clustered to the same centers of their nearest point with higher density. To eliminate the noisy points, cluster border is refined by trimming boundary outliers. Then, candidate trunks are extracted based on the clustering results in three orthogonal planes by shape analysis. Voxel growing obtains the completed pole-like objects regardless of overlaying. Finally, entire trunk, branch and crown part are analyzed to obtain seven feature parameters. These parameters are utilized to model three parts respectively and get signal part-assembled 3D model. The proposed method is tested using the VLS-based point cloud of Wuhan University, China. The point cloud includes many kinds of trees, lampposts and other pole-like posters under different occlusions and overlaying. Experimental results show that the proposed method can extract the exact attributes and model the roadside pole-like objects efficiently.

  7. Traveling wave and exact solutions for the perturbed nonlinear Schrödinger equation with Kerr law nonlinearity

    NASA Astrophysics Data System (ADS)

    Akram, Ghazala; Mahak, Nadia

    2018-06-01

    The nonlinear Schrödinger equation (NLSE) with the aid of three order dispersion terms is investigated to find the exact solutions via the extended (G'/G2)-expansion method and the first integral method. Many exact traveling wave solutions, such as trigonometric, hyperbolic, rational, soliton and complex function solutions, are characterized with some free parameters of the problem studied. It is corroborated that the proposed techniques are manageable, straightforward and powerful tools to find the exact solutions of nonlinear partial differential equations (PDEs). Some figures are plotted to describe the propagation of traveling wave solutions expressed by the hyperbolic functions, trigonometric functions and rational functions.

  8. Some new traveling wave exact solutions of the (2+1)-dimensional Boiti-Leon-Pempinelli equations.

    PubMed

    Qi, Jian-ming; Zhang, Fu; Yuan, Wen-jun; Huang, Zi-feng

    2014-01-01

    We employ the complex method to obtain all meromorphic exact solutions of complex (2+1)-dimensional Boiti-Leon-Pempinelli equations (BLP system of equations). The idea introduced in this paper can be applied to other nonlinear evolution equations. Our results show that all rational and simply periodic traveling wave exact solutions of the equations (BLP) are solitary wave solutions, the complex method is simpler than other methods, and there exist some rational solutions ur,2 (z) and simply periodic solutions us,2-6(z) which are not only new but also not degenerated successively by the elliptic function solutions. We believe that this method should play an important role for finding exact solutions in the mathematical physics. For these new traveling wave solutions, we give some computer simulations to illustrate our main results.

  9. Exact traveling soliton solutions for the generalized Benjamin-Bona-Mahony equation

    NASA Astrophysics Data System (ADS)

    Boudoue Hubert, Malwe; Kudryashov, Nikolai A.; Justin, Mibaile; Abbagari, Souleymanou; Betchewe, Gambo; Doka, Serge Y.

    2018-03-01

    In this paper, we investigate the generalized Benjamin-Bona-Mahony equation which better describes long waves with arbitrary power-law nonlinearity. As a result, we obtain exact travelling wave soliton solutions, such as anti-kink soliton solution, bright soliton solution, dark soliton solution and periodic solution. These solutions have many free parameters such that they may be used to simulate many experimental situations. The main contribution, in this work, is to not apply the computer codes for construction of exact solutions and not consider the integration constants as zero, because they give all variants for solutions.

  10. A new class of exact, nonlinear solutions to the Grad-Shafranov equation

    NASA Technical Reports Server (NTRS)

    Roumeliotis, George

    1993-01-01

    We have constructed a new class of exact, nonlinear solutions to the Grad-Shafranov equation, representing force-free magnetic fields with translational symmetry. These exact solutions are pertinent to the study of magnetic structures in the solar corona that are subjected to photospheric shearing motions.

  11. Laplace-Beltrami operator and exact solutions for branes

    NASA Astrophysics Data System (ADS)

    Zheltukhin, A. A.

    2013-02-01

    Proposed is a new approach to finding exact solutions of nonlinear p-brane equations in D-dimensional Minkowski space based on the use of various initial value constraints. It is shown that the constraints Δx→=0 and Δx→=-Λ(t,σr)x→ give two sets of exact solutions.

  12. Padé approximations for Painlevé I and II transcendents

    NASA Astrophysics Data System (ADS)

    Novokshenov, V. Yu.

    2009-06-01

    We use a version of the Fair-Luke algorithm to find the Padé approximate solutions of the Painlevé I and II equations. We find the distributions of poles for the well-known Ablowitz-Segur and Hastings-McLeod solutions of the Painlevé II equation. We show that the Boutroux tritronquée solution of the Painleé I equation has poles only in the critical sector of the complex plane. The algorithm allows checking other analytic properties of the Painlevé transcendents, such as the asymptotic behavior at infinity in the complex plane.

  13. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dubrovsky, V. G.; Topovsky, A. V.

    New exact solutions, nonstationary and stationary, of Veselov-Novikov (VN) equation in the forms of simple nonlinear and linear superpositions of arbitrary number N of exact special solutions u{sup (n)}, n= 1, Horizontal-Ellipsis , N are constructed via Zakharov and Manakov {partial_derivative}-dressing method. Simple nonlinear superpositions are represented up to a constant by the sums of solutions u{sup (n)} and calculated by {partial_derivative}-dressing on nonzero energy level of the first auxiliary linear problem, i.e., 2D stationary Schroedinger equation. It is remarkable that in the zero energy limit simple nonlinear superpositions convert to linear ones in the form of the sums ofmore » special solutions u{sup (n)}. It is shown that the sums u=u{sup (k{sub 1})}+...+u{sup (k{sub m})}, 1 Less-Than-Or-Slanted-Equal-To k{sub 1} < k{sub 2} < Horizontal-Ellipsis < k{sub m} Less-Than-Or-Slanted-Equal-To N of arbitrary subsets of these solutions are also exact solutions of VN equation. The presented exact solutions include as superpositions of special line solitons and also superpositions of plane wave type singular periodic solutions. By construction these exact solutions represent also new exact transparent potentials of 2D stationary Schroedinger equation and can serve as model potentials for electrons in planar structures of modern electronics.« less

  14. A new generalized exponential rational function method to find exact special solutions for the resonance nonlinear Schrödinger equation

    NASA Astrophysics Data System (ADS)

    Ghanbari, Behzad; Inc, Mustafa

    2018-04-01

    The present paper suggests a novel technique to acquire exact solutions of nonlinear partial differential equations. The main idea of the method is to generalize the exponential rational function method. In order to examine the ability of the method, we consider the resonant nonlinear Schrödinger equation (R-NLSE). Many variants of exact soliton solutions for the equation are derived by the proposed method. Physical interpretations of some obtained solutions is also included. One can easily conclude that the new proposed method is very efficient and finds the exact solutions of the equation in a relatively easy way.

  15. Exact solutions for (1 + 1)-dimensional nonlinear dispersive modified Benjamin-Bona-Mahony equation and coupled Klein-Gordon equations.

    PubMed

    Khan, Kamruzzaman; Akbar, M Ali; Islam, S M Rayhanul

    2014-01-01

    In this work, recently developed modified simple equation (MSE) method is applied to find exact traveling wave solutions of nonlinear evolution equations (NLEEs). To do so, we consider the (1 + 1)-dimensional nonlinear dispersive modified Benjamin-Bona-Mahony (DMBBM) equation and coupled Klein-Gordon (cKG) equations. Two classes of explicit exact solutions-hyperbolic and trigonometric solutions of the associated equations are characterized with some free parameters. Then these exact solutions correspond to solitary waves for particular values of the parameters. 02.30.Jr; 02.70.Wz; 05.45.Yv; 94.05.Fg.

  16. Exact traveling-wave and spatiotemporal soliton solutions to the generalized (3+1)-dimensional Schrödinger equation with polynomial nonlinearity of arbitrary order.

    PubMed

    Petrović, Nikola Z; Belić, Milivoj; Zhong, Wei-Ping

    2011-02-01

    We obtain exact traveling wave and spatiotemporal soliton solutions to the generalized (3+1)-dimensional nonlinear Schrödinger equation with variable coefficients and polynomial Kerr nonlinearity of an arbitrarily high order. Exact solutions, given in terms of Jacobi elliptic functions, are presented for the special cases of cubic-quintic and septic models. We demonstrate that the widely used method for finding exact solutions in terms of Jacobi elliptic functions is not applicable to the nonlinear Schrödinger equation with saturable nonlinearity. ©2011 American Physical Society

  17. A computational exploration of the McCoy-Tracy-Wu solutions of the third Painlevé equation

    NASA Astrophysics Data System (ADS)

    Fasondini, Marco; Fornberg, Bengt; Weideman, J. A. C.

    2018-01-01

    The method recently developed by the authors for the computation of the multivalued Painlevé transcendents on their Riemann surfaces (Fasondini et al., 2017) is used to explore families of solutions to the third Painlevé equation that were identified by McCoy et al. (1977) and which contain a pole-free sector. Limiting cases, in which the solutions are singular functions of the parameters, are also investigated and it is shown that a particular set of limiting solutions is expressible in terms of special functions. Solutions that are single-valued, logarithmically (infinitely) branched and algebraically branched, with any number of distinct sheets, are encountered. The algebraically branched solutions have multiple pole-free sectors on their Riemann surfaces that are accounted for by using asymptotic formulae and Bäcklund transformations.

  18. Gravity Gradient Tensor of Arbitrary 3D Polyhedral Bodies with up to Third-Order Polynomial Horizontal and Vertical Mass Contrasts

    NASA Astrophysics Data System (ADS)

    Ren, Zhengyong; Zhong, Yiyuan; Chen, Chaojian; Tang, Jingtian; Kalscheuer, Thomas; Maurer, Hansruedi; Li, Yang

    2018-03-01

    During the last 20 years, geophysicists have developed great interest in using gravity gradient tensor signals to study bodies of anomalous density in the Earth. Deriving exact solutions of the gravity gradient tensor signals has become a dominating task in exploration geophysics or geodetic fields. In this study, we developed a compact and simple framework to derive exact solutions of gravity gradient tensor measurements for polyhedral bodies, in which the density contrast is represented by a general polynomial function. The polynomial mass contrast can continuously vary in both horizontal and vertical directions. In our framework, the original three-dimensional volume integral of gravity gradient tensor signals is transformed into a set of one-dimensional line integrals along edges of the polyhedral body by sequentially invoking the volume and surface gradient (divergence) theorems. In terms of an orthogonal local coordinate system defined on these edges, exact solutions are derived for these line integrals. We successfully derived a set of unified exact solutions of gravity gradient tensors for constant, linear, quadratic and cubic polynomial orders. The exact solutions for constant and linear cases cover all previously published vertex-type exact solutions of the gravity gradient tensor for a polygonal body, though the associated algorithms may differ in numerical stability. In addition, to our best knowledge, it is the first time that exact solutions of gravity gradient tensor signals are derived for a polyhedral body with a polynomial mass contrast of order higher than one (that is quadratic and cubic orders). Three synthetic models (a prismatic body with depth-dependent density contrasts, an irregular polyhedron with linear density contrast and a tetrahedral body with horizontally and vertically varying density contrasts) are used to verify the correctness and the efficiency of our newly developed closed-form solutions. Excellent agreements are obtained between our solutions and other published exact solutions. In addition, stability tests are performed to demonstrate that our exact solutions can safely be used to detect shallow subsurface targets.

  19. Soliton and periodic solutions for time-dependent coefficient non-linear equation

    NASA Astrophysics Data System (ADS)

    Guner, Ozkan

    2016-01-01

    In this article, we establish exact solutions for the generalized (3+1)-dimensional variable coefficient Kadomtsev-Petviashvili (GVCKP) equation. Using solitary wave ansatz in terms of ? functions and the modified sine-cosine method, we find exact analytical bright soliton solutions and exact periodic solutions for the considered model. The physical parameters in the soliton solutions are obtained as function of the dependent model coefficients. The effectiveness and reliability of the method are shown by its application to the GVCKP equation.

  20. Approach to first-order exact solutions of the Ablowitz-Ladik equation.

    PubMed

    Ankiewicz, Adrian; Akhmediev, Nail; Lederer, Falk

    2011-05-01

    We derive exact solutions of the Ablowitz-Ladik (A-L) equation using a special ansatz that linearly relates the real and imaginary parts of the complex function. This ansatz allows us to derive a family of first-order solutions of the A-L equation with two independent parameters. This novel technique shows that every exact solution of the A-L equation has a direct analog among first-order solutions of the nonlinear Schrödinger equation (NLSE). © 2011 American Physical Society

  1. Exact analytical solution to a transient conjugate heat-transfer problem

    NASA Technical Reports Server (NTRS)

    Sucec, J.

    1973-01-01

    An exact analytical solution is found for laminar, constant-property, slug flow over a thin plate which is also convectively cooled from below. The solution is found by means of two successive Laplace transformations when a transient in the plate and the fluid is initiated by a step change in the fluid inlet temperature. The exact solution yields the transient fluid temperature, surface heat flux, and surface temperature distributions. The results of the exact transient solution for the surface heat flux are compared to the quasi-steady values, and a criterion for the validity of the quasi-steady results is found. Also the effect of the plate coupling parameter on the surface heat flux are investigated.

  2. A generalized simplest equation method and its application to the Boussinesq-Burgers equation.

    PubMed

    Sudao, Bilige; Wang, Xiaomin

    2015-01-01

    In this paper, a generalized simplest equation method is proposed to seek exact solutions of nonlinear evolution equations (NLEEs). In the method, we chose a solution expression with a variable coefficient and a variable coefficient ordinary differential auxiliary equation. This method can yield a Bäcklund transformation between NLEEs and a related constraint equation. By dealing with the constraint equation, we can derive infinite number of exact solutions for NLEEs. These solutions include the traveling wave solutions, non-traveling wave solutions, multi-soliton solutions, rational solutions, and other types of solutions. As applications, we obtained wide classes of exact solutions for the Boussinesq-Burgers equation by using the generalized simplest equation method.

  3. A Generalized Simplest Equation Method and Its Application to the Boussinesq-Burgers Equation

    PubMed Central

    Sudao, Bilige; Wang, Xiaomin

    2015-01-01

    In this paper, a generalized simplest equation method is proposed to seek exact solutions of nonlinear evolution equations (NLEEs). In the method, we chose a solution expression with a variable coefficient and a variable coefficient ordinary differential auxiliary equation. This method can yield a Bäcklund transformation between NLEEs and a related constraint equation. By dealing with the constraint equation, we can derive infinite number of exact solutions for NLEEs. These solutions include the traveling wave solutions, non-traveling wave solutions, multi-soliton solutions, rational solutions, and other types of solutions. As applications, we obtained wide classes of exact solutions for the Boussinesq-Burgers equation by using the generalized simplest equation method. PMID:25973605

  4. Another look at North Sea pole tide dynamics

    NASA Technical Reports Server (NTRS)

    Dickman, S. R.; Preisig, J. R.

    1986-01-01

    The mechanism proposed by Wunsch (1974) to explain pole tide observations in the North Sea is evaluated. Wunsch's equations governing pole tide in the North Sea are presented, and solutions for correcting the depth, stream function, and deviation of the tidal height from the equilibrium values are described. The similarity between the Stokes paradox and the tidal equations of the North Sea, and the need for inclusion of inertial terms in the tidal equations are discussed.

  5. Turbulence and Global Properties of the Solar Wind

    NASA Technical Reports Server (NTRS)

    Goldstein, Melvyn L.

    2007-01-01

    The solar wind shows striking characteristics that suggest that it is a turbulent magnetofluid, but the picture is not altogether simple. From the earliest observations, a strong correlation between magnetic fluctuations and plasma velocity fluctuations as noted. The high corrections suggest that the fluctuations are Alven waves. In addition, the power spectrum of the magnetic fluctuation showed evidence of an inertial range that resembled that seen in fully-developed fluid turbulence. Alfven waves, however, are exact solutions of the equations of an incompressible magnetohydrodynamics. Thus, there was a puzzle: how can a magnetofluid consisting of Alfven waves be turbulent? The answer lay in the role of velocity shears in the solar wind that could drive turbulent evolution. Puzzles remain: for example, the power spectrum of the velocity fluctuations is less steep than the slope of the magnetic fluctuations. The plasma in the magnetic tail of Earth's magnetosphere also shows aspects of turbulence, as does the plasma in the dayside magnetosphere near the poles--the so-called dayside cusps.

  6. An explicit asymptotic model for the surface wave in a viscoelastic half-space based on applying Rabotnov's fractional exponential integral operators

    NASA Astrophysics Data System (ADS)

    Wilde, M. V.; Sergeeva, N. V.

    2018-05-01

    An explicit asymptotic model extracting the contribution of a surface wave to the dynamic response of a viscoelastic half-space is derived. Fractional exponential Rabotnov's integral operators are used for describing of material properties. The model is derived by extracting the principal part of the poles corresponding to the surface waves after applying Laplace and Fourier transforms. The simplified equations for the originals are written by using power series expansions. Padè approximation is constructed to unite short-time and long-time models. The form of this approximation allows to formulate the explicit model using a fractional exponential Rabotnov's integral operator with parameters depending on the properties of surface wave. The applicability of derived models is studied by comparing with the exact solutions of a model problem. It is revealed that the model based on Padè approximation is highly effective for all the possible time domains.

  7. The one step fermionic ladder

    NASA Astrophysics Data System (ADS)

    Das, Joy Prakash; Setlur, Girish S.

    2017-10-01

    The one step fermionic ladder refers to two parallel Luttinger Liquids (poles of the ladder) placed such that there is a finite probability of electrons hopping between the two poles at a pair of opposing points along each of the poles. The many-body Green function for such a system is calculated in presence of forward scattering interactions using the powerful non-chiral bosonization technique (NCBT). This technique is based on a non-standard harmonic analysis of the rapidly varying parts of the density fields appropriate for the study of strongly inhomogeneous ladder systems. The closed analytical expression for the correlation function obtained from NCBT is nothing but the series involving the RPA (Random Phase Approximation) diagrams in powers of the forward scattering coupling strength resummed to include only the most singular terms with the source of inhomogeneities treated exactly. Finally the correlation functions are used to study physical phenomena such as Friedel oscillations and the conductance of such systems with the potential difference applied across various ends.

  8. On the Singularity Structure of WKB Solution of the Boosted Whittaker Equation: its Relevance to Resurgent Functions with Essential Singularities

    NASA Astrophysics Data System (ADS)

    Kamimoto, Shingo; Kawai, Takahiro; Koike, Tatsuya

    2016-12-01

    Inspired by the symbol calculus of linear differential operators of infinite order applied to the Borel transformed WKB solutions of simple-pole type equation [Kamimoto et al. (RIMS Kôkyûroku Bessatsu B 52:127-146, 2014)], which is summarized in Section 1, we introduce in Section 2 the space of simple resurgent functions depending on a parameter with an infra-exponential type growth order, and then we define the assigning operator A which acts on the space and produces resurgent functions with essential singularities. In Section 3, we apply the operator A to the Borel transforms of the Voros coefficient and its exponentiation for the Whittaker equation with a large parameter so that we may find the Borel transforms of the Voros coefficient and its exponentiation for the boosted Whittaker equation with a large parameter. In Section 4, we use these results to find the explicit form of the alien derivatives of the Borel transformed WKB solutions of the boosted Whittaker equation with a large parameter. The results in this paper manifest the importance of resurgent functions with essential singularities in developing the exact WKB analysis, the WKB analysis based on the resurgent function theory. It is also worth emphasizing that the concrete form of essential singularities we encounter is expressed by the linear differential operators of infinite order.

  9. Exact analytical solution of a classical Josephson tunnel junction problem

    NASA Astrophysics Data System (ADS)

    Kuplevakhsky, S. V.; Glukhov, A. M.

    2010-10-01

    We give an exact and complete analytical solution of the classical problem of a Josephson tunnel junction of arbitrary length W ɛ(0,∞) in the presence of external magnetic fields and transport currents. Contrary to a wide-spread belief, the exact analytical solution unambiguously proves that there is no qualitative difference between so-called "small" (W≪1) and "large" junctions (W≫1). Another unexpected physical implication of the exact analytical solution is the existence (in the current-carrying state) of unquantized Josephson vortices carrying fractional flux and located near one of the edges of the junction. We also refine the mathematical definition of critical transport current.

  10. Classes of exact Einstein Maxwell solutions

    NASA Astrophysics Data System (ADS)

    Komathiraj, K.; Maharaj, S. D.

    2007-12-01

    We find new classes of exact solutions to the Einstein Maxwell system of equations for a charged sphere with a particular choice of the electric field intensity and one of the gravitational potentials. The condition of pressure isotropy is reduced to a linear, second order differential equation which can be solved in general. Consequently we can find exact solutions to the Einstein Maxwell field equations corresponding to a static spherically symmetric gravitational potential in terms of hypergeometric functions. It is possible to find exact solutions which can be written explicitly in terms of elementary functions, namely polynomials and product of polynomials and algebraic functions. Uncharged solutions are regainable with our choice of electric field intensity; in particular we generate the Einstein universe for particular parameter values.

  11. Duplication and Nuclear Envelope Insertion of the Yeast Microtubule Organizing Centre, the Spindle Pole Body.

    PubMed

    Rüthnick, Diana; Schiebel, Elmar

    2018-05-10

    The main microtubule organizing centre in the unicellular model organisms Saccharomyces cerevisiae and Schizosaccharomyces pompe is the spindle pole body (SPB). The SPB is a multilayer structure, which duplicates exactly once per cell cycle. Unlike higher eukaryotic cells, both yeast model organisms undergo mitosis without breakdown of the nuclear envelope (NE), a so-called closed mitosis. Therefore, in order to simultaneously nucleate nuclear and cytoplasmic MTs, it is vital to embed the SPB into the NE at least during mitosis, similarly to the nuclear pore complex (NPC). This review aims to embrace the current knowledge of the SPB duplication cycle with special emphasis on the critical step of the insertion of the new SPB into the NE.

  12. Vacuum polarization of the electromagnetic field near a rotating black hole

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Frolov, V.P.; Zel'nikov, A.I.

    1985-12-15

    The electromagnetic field contribution to the vacuum polarization near a rotating black hole is considered. It is shown that the problem of calculating the renormalized average value of the stress-energy tensor /sup ren/ for the Hartle-Hawking vacuum state at the pole of the event horizon can be reduced to the problem of electro- and magnetostatics in the Kerr spacetime. An explicit expression for /sup ren/ at the pole of the event horizon is obtained and its properties are discussed. It is shown that in the case of a nonrotating black hole the Page-Brown approximation for the electromagnetic stress-energy tensor givesmore » a result which coincides at the event horizon with the exact value of /sup ren/. .AE« less

  13. On exact traveling-wave solutions for local fractional Korteweg-de Vries equation.

    PubMed

    Yang, Xiao-Jun; Tenreiro Machado, J A; Baleanu, Dumitru; Cattani, Carlo

    2016-08-01

    This paper investigates the Korteweg-de Vries equation within the scope of the local fractional derivative formulation. The exact traveling wave solutions of non-differentiable type with the generalized functions defined on Cantor sets are analyzed. The results for the non-differentiable solutions when fractal dimension is 1 are also discussed. It is shown that the exact solutions for the local fractional Korteweg-de Vries equation characterize the fractal wave on shallow water surfaces.

  14. Exact solution of the hidden Markov processes.

    PubMed

    Saakian, David B

    2017-11-01

    We write a master equation for the distributions related to hidden Markov processes (HMPs) and solve it using a functional equation. Thus the solution of HMPs is mapped exactly to the solution of the functional equation. For a general case the latter can be solved only numerically. We derive an exact expression for the entropy of HMPs. Our expression for the entropy is an alternative to the ones given before by the solution of integral equations. The exact solution is possible because actually the model can be considered as a generalized random walk on a one-dimensional strip. While we give the solution for the two second-order matrices, our solution can be easily generalized for the L values of the Markov process and M values of observables: We should be able to solve a system of L functional equations in the space of dimension M-1.

  15. Exact solution of the hidden Markov processes

    NASA Astrophysics Data System (ADS)

    Saakian, David B.

    2017-11-01

    We write a master equation for the distributions related to hidden Markov processes (HMPs) and solve it using a functional equation. Thus the solution of HMPs is mapped exactly to the solution of the functional equation. For a general case the latter can be solved only numerically. We derive an exact expression for the entropy of HMPs. Our expression for the entropy is an alternative to the ones given before by the solution of integral equations. The exact solution is possible because actually the model can be considered as a generalized random walk on a one-dimensional strip. While we give the solution for the two second-order matrices, our solution can be easily generalized for the L values of the Markov process and M values of observables: We should be able to solve a system of L functional equations in the space of dimension M -1 .

  16. Exact and approximate solutions to the oblique shock equations for real-time applications

    NASA Technical Reports Server (NTRS)

    Hartley, T. T.; Brandis, R.; Mossayebi, F.

    1991-01-01

    The derivation of exact solutions for determining the characteristics of an oblique shock wave in a supersonic flow is investigated. Specifically, an explicit expression for the oblique shock angle in terms of the free stream Mach number, the centerbody deflection angle, and the ratio of the specific heats, is derived. A simpler approximate solution is obtained and compared to the exact solution. The primary objectives of obtaining these solutions is to provide a fast algorithm that can run in a real time environment.

  17. Exact Solutions for the Integrable Sixth-Order Drinfeld-Sokolov-Satsuma-Hirota System by the Analytical Methods.

    PubMed

    Manafian Heris, Jalil; Lakestani, Mehrdad

    2014-01-01

    We establish exact solutions including periodic wave and solitary wave solutions for the integrable sixth-order Drinfeld-Sokolov-Satsuma-Hirota system. We employ this system by using a generalized (G'/G)-expansion and the generalized tanh-coth methods. These methods are developed for searching exact travelling wave solutions of nonlinear partial differential equations. It is shown that these methods, with the help of symbolic computation, provide a straightforward and powerful mathematical tool for solving nonlinear partial differential equations.

  18. Exact solution for spin precession in the radiationless relativistic Kepler problem

    NASA Astrophysics Data System (ADS)

    Mane, S. R.

    2014-11-01

    There is interest in circulating beams of polarized particles in all-electric storage rings to search for nonzero permanent electric dipole moments of subatomic particles. To this end, it is helpful to derive exact analytical solutions of the spin precession in idealized models, both for pedagogical reasons and to serve as benchmark tests for analysis and design of experiments. This paper derives exact solutions for the spin precession in the relativistic Kepler problem. Some counterintuitive properties of the solutions are pointed out.

  19. Homotopy decomposition method for solving one-dimensional time-fractional diffusion equation

    NASA Astrophysics Data System (ADS)

    Abuasad, Salah; Hashim, Ishak

    2018-04-01

    In this paper, we present the homotopy decomposition method with a modified definition of beta fractional derivative for the first time to find exact solution of one-dimensional time-fractional diffusion equation. In this method, the solution takes the form of a convergent series with easily computable terms. The exact solution obtained by the proposed method is compared with the exact solution obtained by using fractional variational homotopy perturbation iteration method via a modified Riemann-Liouville derivative.

  20. Exact solution of the generalized Peierls equation for arbitrary n-fold screw dislocation

    NASA Astrophysics Data System (ADS)

    Wang, Shaofeng; Hu, Xiangsheng

    2018-05-01

    The exact solution of the generalized Peierls equation is presented and proved for arbitrary n-fold screw dislocation. The displacement field, stress field and the energy of the n-fold dislocation are also evaluated explicitly. It is found that the solution defined on each individual fold is given by the tail cut from the original Peierls solution. In viewpoint of energetics, a screw dislocation has a tendency to spread the distribution on all possible slip planes which are contained in the dislocation line zone. Based on the exact solution, the approximated solution of the improved Peierls equation is proposed for the modified γ-surface.

  1. Time-Harmonic Gaussian Beams: Exact Solutions of the Helmhotz Equation in Free Space

    NASA Astrophysics Data System (ADS)

    Kiselev, A. P.

    2017-12-01

    An exact solution of the Helmholtz equation u xx + u yy + u zz + k 2 u = 0 is presented, which describes propagation of monochromatic waves in the free space. The solution has the form of a superposition of plane waves with a specific weight function dependent on a certain free parameter a. If ka→∞, the solution is localized in the Gaussian manner in a vicinity of a certain straight line and asymptotically coincides with the famous approximate solution known as the fundamental mode of a paraxial Gaussian beam. The asymptotics of the aforementioned exact solution does not include a backward wave.

  2. Influence of annealing on the photodeposition of silver on periodically poled lithium niobate

    DOE PAGES

    Carville, N. Craig; Neumayer, Sabine M.; Manzo, Michele; ...

    2016-02-03

    Here, the preferential deposition of metal nanoparticles onto periodically poled lithium niobate surfaces, whereby photogenerated electrons accumulate in accordance with local electric fields and reduce metal ions from solution, is known to depend on the intensity and wavelength of the illumination and the concentration of the solution used. Here, it is shown that for identical deposition conditions (wavelength, intensity, concentration), post-poling annealing for 10 h at 200 °C modifies the surface reactivity through the reorientation of internal defect fields. Whereas silver nanoparticles deposit preferentially on the +z domains on unannealed crystals, the deposition occurs preferentially along 180 degrees domain wallsmore » for annealed crystals. In neither case is the deposition selective; limited deposition occurs also on the unannealed -z domain surface and on both annealed domain surfaces. The observed behavior is attributed to a relaxation of the poling-induced defect frustration mediated by Li + ion mobility during annealing, which affects the accumulation of electrons, thereby changing the surface reactivity. The evolution of the defect field with temperature is corroborated using Raman spectroscopy.« less

  3. Exact Magnetic Diffusion Solutions for Magnetohydrodynamic Code Verification

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Miller, D S

    In this paper, the authors present several new exact analytic space and time dependent solutions to the problem of magnetic diffusion in R-Z geometry. These problems serve to verify several different elements of an MHD implementation: magnetic diffusion, external circuit time integration, current and voltage energy sources, spatially dependent conductivities, and ohmic heating. The exact solutions are shown in comparison with 2D simulation results from the Ares code.

  4. Applications of exact traveling wave solutions of Modified Liouville and the Symmetric Regularized Long Wave equations via two new techniques

    NASA Astrophysics Data System (ADS)

    Lu, Dianchen; Seadawy, Aly R.; Ali, Asghar

    2018-06-01

    In this current work, we employ novel methods to find the exact travelling wave solutions of Modified Liouville equation and the Symmetric Regularized Long Wave equation, which are called extended simple equation and exp(-Ψ(ξ))-expansion methods. By assigning the different values to the parameters, different types of the solitary wave solutions are derived from the exact traveling wave solutions, which shows the efficiency and precision of our methods. Some solutions have been represented by graphical. The obtained results have several applications in physical science.

  5. On solutions of the fifth-order dispersive equations with porous medium type non-linearity

    NASA Astrophysics Data System (ADS)

    Kocak, Huseyin; Pinar, Zehra

    2018-07-01

    In this work, we focus on obtaining the exact solutions of the fifth-order semi-linear and non-linear dispersive partial differential equations, which have the second-order diffusion-like (porous-type) non-linearity. The proposed equations were not studied in the literature in the sense of the exact solutions. We reveal solutions of the proposed equations using the classical Riccati equations method. The obtained exact solutions, which can play a key role to simulate non-linear waves in the medium with dispersion and diffusion, are illustrated and discussed in details.

  6. Reproduction of exact solutions of Lipkin model by nonlinear higher random-phase approximation

    NASA Astrophysics Data System (ADS)

    Terasaki, J.; Smetana, A.; Šimkovic, F.; Krivoruchenko, M. I.

    2017-10-01

    It is shown that the random-phase approximation (RPA) method with its nonlinear higher generalization, which was previously considered as approximation except for a very limited case, reproduces the exact solutions of the Lipkin model. The nonlinear higher RPA is based on an equation nonlinear on eigenvectors and includes many-particle-many-hole components in the creation operator of the excited states. We demonstrate the exact character of solutions analytically for the particle number N = 2 and numerically for N = 8. This finding indicates that the nonlinear higher RPA is equivalent to the exact Schrödinger equation.

  7. Exact BPS domain walls at finite gauge coupling

    NASA Astrophysics Data System (ADS)

    Blaschke, Filip

    2017-01-01

    Bogomol'nyi-Prasad-Sommerfield solitons in models with spontaneously broken gauge symmetry have been intensively studied at the infinite gauge coupling limit, where the governing equation-the so-called master equation-is exactly solvable. Except for a handful of special solutions, the standing impression is that analytic results at finite coupling are generally unavailable. The aim of this paper is to demonstrate, using domain walls in Abelian-Higgs models as the simplest example, that exact solitons at finite gauge coupling can be readily obtained if the number of Higgs fields (NF ) is large enough. In particular, we present a family of exact solutions, describing N domain walls at arbitrary positions in models with at least NF≥2 N +1 . We have also found that adding together any pair of solutions can produce a new exact solution if the combined tension is below a certain limit.

  8. Collisionless tearing instability of a bi-Maxwellian neutral sheet - An integrodifferential treatment with exact particle orbits

    NASA Technical Reports Server (NTRS)

    Burkhart, G. R.; Chen, J.

    1989-01-01

    The integrodifferential equation describing the linear tearing instability in the bi-Maxwellian neutral sheet is solved without approximating the particle orbits or the eigenfunction psi. Results of this calculation are presented. Comparison between the exact solution and the three-region approximation motivates the piecewise-straight-line approximation, a simplification that allows faster solution of the integrodifferential equation, yet retains the important features of the exact solution.

  9. New Exact Solutions of Relativistic Hydrodynamics for Longitudinally Expanding Fireballs

    NASA Astrophysics Data System (ADS)

    Csörgő, Tamás; Kasza, Gábor; Csanád, Máté; Jiang, Zefang

    2018-06-01

    We present new, exact, finite solutions of relativistic hydrodynamics for longitudinally expanding fireballs for arbitrary constant value of the speed of sound. These new solutions generalize earlier, longitudinally finite, exact solutions, from an unrealistic to a reasonable equation of state, characterized by a temperature independent (average) value of the speed of sound. Observables like the rapidity density and the pseudorapidity density are evaluated analytically, resulting in simple and easy to fit formulae that can be matched to the high energy proton-proton and heavy ion collision data at RHIC and LHC. In the longitudinally boost-invariant limit, these new solutions approach the Hwa-Bjorken solution and the corresponding rapidity distributions approach a rapidity plateaux.

  10. Explicit and exact nontraveling wave solutions of the (3+1)-dimensional potential Yu-Toda-Sasa-Fukuyama equation

    NASA Astrophysics Data System (ADS)

    Yuan, Na

    2018-04-01

    With the aid of the symbolic computation, we present an improved ( G ‧ / G ) -expansion method, which can be applied to seek more types of exact solutions for certain nonlinear evolution equations. In illustration, we choose the (3 + 1)-dimensional potential Yu-Toda-Sasa-Fukuyama equation to demonstrate the validity and advantages of the method. As a result, abundant explicit and exact nontraveling wave solutions are obtained including two solitary waves solutions, nontraveling wave solutions and dromion soliton solutions. Some particular localized excitations and the interactions between two solitary waves are researched. The method can be also applied to other nonlinear partial differential equations.

  11. Exact traveling wave solutions of fractional order Boussinesq-like equations by applying Exp-function method

    NASA Astrophysics Data System (ADS)

    Rahmatullah; Ellahi, Rahmat; Mohyud-Din, Syed Tauseef; Khan, Umar

    2018-03-01

    We have computed new exact traveling wave solutions, including complex solutions of fractional order Boussinesq-Like equations, occurring in physical sciences and engineering, by applying Exp-function method. The method is blended with fractional complex transformation and modified Riemann-Liouville fractional order operator. Our obtained solutions are verified by substituting back into their corresponding equations. To the best of our knowledge, no other technique has been reported to cope with the said fractional order nonlinear problems combined with variety of exact solutions. Graphically, fractional order solution curves are shown to be strongly related to each other and most importantly, tend to fixate on their integer order solution curve. Our solutions comprise high frequencies and very small amplitude of the wave responses.

  12. High-resolution Local Gravity Model of the South Pole of the Moon from GRAIL Extended Mission Data

    NASA Technical Reports Server (NTRS)

    Goossens, Sander Johannes; Sabaka, Terence J.; Nicholas, Joseph B.; Lemoine, Frank G.; Rowlands, David D.; Mazarico, Erwan; Neumann, Gregory A.; Smith, David E.; Zuber, Maria T.

    2014-01-01

    We estimated a high-resolution local gravity field model over the south pole of the Moon using data from the Gravity Recovery and Interior Laboratory's extended mission. Our solution consists of adjustments with respect to a global model expressed in spherical harmonics. The adjustments are expressed as gridded gravity anomalies with a resolution of 1/6deg by 1/6deg (equivalent to that of a degree and order 1080 model in spherical harmonics), covering a cap over the south pole with a radius of 40deg. The gravity anomalies have been estimated from a short-arc analysis using only Ka-band range-rate (KBRR) data over the area of interest. We apply a neighbor-smoothing constraint to our solution. Our local model removes striping present in the global model; it reduces the misfit to the KBRR data and improves correlations with topography to higher degrees than current global models.

  13. Nodal-line dynamics via exact polynomial solutions for coherent waves traversing aberrated imaging systems.

    PubMed

    Paganin, David M; Beltran, Mario A; Petersen, Timothy C

    2018-03-01

    We obtain exact polynomial solutions for two-dimensional coherent complex scalar fields propagating through arbitrary aberrated shift-invariant linear imaging systems. These solutions are used to model nodal-line dynamics of coherent fields output by such systems.

  14. Exact solutions and low-frequency instability of the adiabatic auroral arc model

    NASA Technical Reports Server (NTRS)

    Cornwall, John M.

    1988-01-01

    The adiabatic auroral arc model couples a kinetic theory parallel current driven by mirror forces to horizontal ionospheric currents; the resulting equations are nonlinear. Some exact stationary solutions to these equations, some of them based on the Liouville equation, are developed, with both latitudinal and longitudinal spatial variations. These Liouville equation exact solutions are related to stability boundaries of low-frequency instabilities such as Kelvin-Helmholtz, as shown by a study of a simplified model.

  15. On an application of conformal maps to inequalities for rational functions

    NASA Astrophysics Data System (ADS)

    Dubinin, V. N.

    2002-04-01

    Using classical properties of conformal maps, we get new exact inequalities for rational functions with prescribed poles. In particular, we prove a new Bernstein-type inequality, an inequality for Blaschke products and a theorem that generalizes the Turan inequality for polynomials. The estimates obtained strengthen some familiar inequalities of Videnskii and Rusak. They are also related to recent results of Borwein, Erdelyi, Li, Mohapatra, Rodriguez, Aziz and others.

  16. Exact e-e (exchange) correlations of 2-D quantum dots in magnetic field: Size extensive N = 3 , 4 , … , ‧ n ‧ -electron systems via multi-pole expansion

    NASA Astrophysics Data System (ADS)

    Aggarwal, Priyanka; Sharma, Shivalika; Singh, Sunny; Kaur, Harsimran; Hazra, Ram Kuntal

    2017-04-01

    Inclusion of coulomb interaction emerges with the complexity of either convergence of integrals or separation of variables of Schrödinger equations. For an N-electron system, interaction terms grow by N(N-1)/2 factors. Therefore, 2-e system stands as fundamental basic unit for generalized N-e systems. For the first time, we have evaluated e-e correlations in very simple and absolutely terminating finite summed hypergeometric series for 2-D double carrier parabolic quantum dot in both zero and arbitrary non-zero magnetic field (symmetric gauge) and have appraised these integrals in variational methods. The competitive role among confinement strength, magnetic field, mass of the carrier and dielectric constant of the medium on energy level diagram, level-spacing statistics, heat capacities (Cv at 1 K) and magnetization (T ∼ (0-1)K) is studied on systems spanning over wide range of materials (GaAs,Ge,CdS,SiO2 and He, etc). We have also constructed an exact theory for generalized correlated N-e 2-D quantum dots via multi-pole expansion but for the sake of compactness of the article we refrain from data.

  17. How hairpin vortices emerge from exact invariant solutions

    NASA Astrophysics Data System (ADS)

    Schneider, Tobias M.; Farano, Mirko; de Palma, Pietro; Robinet, Jean-Christoph; Cherubini, Stefania

    2017-11-01

    Hairpin vortices are among the most commonly observed flow structures in wall-bounded shear flows. However, within the dynamical system approach to turbulence, those structures have not yet been described. They are not captured by known exact invariant solutions of the Navier-Stokes equations nor have other state-space structures supporting hairpins been identified. We show that hairpin structures are observed along an optimally growing trajectory leaving a well known exact traveling wave solution of plane Poiseuille flow. The perturbation triggering hairpins does not correspond to an unstable mode of the exact traveling wave but lies in the stable manifold where non-normality causes strong transient amplification.

  18. CN Morphology Studies of Comet 103P/Hartley 2

    NASA Astrophysics Data System (ADS)

    Knight, Matthew M.; Schleicher, David G.

    2011-06-01

    We report on narrowband CN imaging of Comet 103P/Hartley 2 obtained at Lowell Observatory on 39 nights from 2010 July until 2011 January. We observed two features, one generally to the north and the other generally to the south. The CN morphology varied during the apparition: no morphology was seen in July; in August and September, the northern feature dominated and appeared as a mostly face-on spiral; in October, November, and December, the northern and southern features were roughly equal in brightness and looked like more side-on corkscrews; in January, the southern feature was dominant but the morphology was indistinct due to very low signal. The morphology changed smoothly during each night and similar morphology was seen from night to night. However, the morphology did not exactly repeat each rotation cycle, suggesting that there is a small non-principal axis rotation. Based on the repetition of the morphology, we find evidence that the fundamental rotation period was increasing: 16.7 hr from August 13 to 17, 17.2 hr from September 10 to 13, 18.2 hr from October 12 to 19, and 18.7 hr from October 31 to November 7. We conducted Monte Carlo jet modeling to constrain the pole orientation and locations of the active regions based on the observed morphology. Our preliminary, self-consistent pole solution has an obliquity of 10° relative to the comet's orbital plane (i.e., it is centered near R.A. = 257° and decl. = +67° with an uncertainty around this position of about 15°) and has two mid-latitude sources, one in each hemisphere.

  19. Assessment of the further improved (G'/G)-expansion method and the extended tanh-method in probing exact solutions of nonlinear PDEs.

    PubMed

    Akbar, M Ali; Ali, Norhashidah Hj Mohd; Mohyud-Din, Syed Tauseef

    2013-01-01

    The (G'/G)-expansion method is one of the most direct and effective method for obtaining exact solutions of nonlinear partial differential equations (PDEs). In the present article, we construct the exact traveling wave solutions of nonlinear evolution equations in mathematical physics via the (2 + 1)-dimensional breaking soliton equation by using two methods: namely, a further improved (G'/G)-expansion method, where G(ξ) satisfies the auxiliary ordinary differential equation (ODE) [G'(ξ)](2) = p G (2)(ξ) + q G (4)(ξ) + r G (6)(ξ); p, q and r are constants and the well known extended tanh-function method. We demonstrate, nevertheless some of the exact solutions bring out by these two methods are analogous, but they are not one and the same. It is worth mentioning that the first method has not been exercised anybody previously which gives further exact solutions than the second one. PACS numbers 02.30.Jr, 05.45.Yv, 02.30.Ik.

  20. Electric field induced cubic to monoclinic phase transition in multiferroic 0.65Bi(Ni{sub 1/2}Ti{sub 1/2})O{sub 3}-0.35PbTiO{sub 3} solid solution

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pandey, Rishikesh; Singh, Akhilesh Kumar, E-mail: akhilesh-bhu@yahoo.com

    2014-10-20

    The results of x-ray diffraction studies on 0.65Bi(Ni{sub 1/2}Ti{sub 1/2})O{sub 3}-0.35PbTiO{sub 3} solid solution poled at various electric fields are presented. After poling, significant value of planar electromechanical coupling coefficient (k{sub P}) is observed for this composition having cubic structure in unpoled state. The cubic structure of 0.65Bi(Ni{sub 1/2}Ti{sub 1/2})O{sub 3}-0.35PbTiO{sub 3} transforms to monoclinic structure with space group Pm for the poling field ≥5 kV/cm. Large c-axis microscopic lattice strain (1.6%) is achieved at 30 kV/cm poling field. The variation of the c-axis strain and unit cell volume with poling field shows a drastic jump similar to that observed for strainmore » versus electric field curve in (1 − x)Pb(Mg{sub 1/3}Nb{sub 2/3}) O{sub 3}-xPbTiO{sub 3} and (1 − x)Pb(Zn{sub 1/3}Nb{sub 2/3})O{sub 3}-xPbTiO{sub 3}.« less

  1. Asteroid (16) Psyche: Triaxial Ellipsoid Dimensions and Rotational Pole from Keck II NIRC2 AO Images and Keck I OSIRIS Images

    NASA Astrophysics Data System (ADS)

    Drummond, Jack D.; Conrad, Al; Reddy, Vishnu; de Kleer, Katherine R.; Adamkovics, Mate; de Pater, Imke; Merline, William J.; Tamblyn, Peter

    2016-10-01

    Adaptive optics (AO) images of asteroid (16) Psyche obtained at 4 epochs with the NIRC2 camera at the 10m W. M. Keck Observatory (Keck II) on UT 2015 December 25 lead to triaxial ellipsoid diameters of 279±4 x 230±2 x 195±14 km, and a rotational pole at RA=29° and Dec=-2°. Adding 6 more epochs obtained nearly simultaneously with the OSIRIS system at Keck I, as well as two more epochs from Keck II in 2009, yields diameters of 273±2 x 232±2 x 165±3 km, and a pole at RA=37° and Dec=+1°. (Errors are formal fit parameter uncertainties; an additional 4% uncertainty is possible from systematic biases.) The differing perspectives between 2015 (sub-Earth latitude Θ=-50°) and 2009 (Θ=-6°) improves primarily the c dimension and the location of the rotational pole, but illustrates how well images from even a single night can determine the size, shape, and pole of an asteroid. The 2015 observations were obtained as part of a campaign to study Psyche with many techniques over a few months, including radar from Arecibo and images from Magellan.These handful of images show the same rugged outline as the radius vector model available on the DAMIT website, constructed from many lightcurves and scaled by previous Keck AO images. In fact Psyche has rotated some 125,350 times between the first lightcurve in 1955 and our 2015 AO images, exactly 60 years apart to the day. Since the asteroid has such a high obliquity, these lightcurves have scanned well into both northern and southern hemispheres. The difference between the pole derived from our images and the radius vector model pole is only 7°, and the mean diameters of Psyche are 219 and 211 km, respectively.

  2. Solutions of the cylindrical nonlinear Maxwell equations.

    PubMed

    Xiong, Hao; Si, Liu-Gang; Ding, Chunling; Lü, Xin-You; Yang, Xiaoxue; Wu, Ying

    2012-01-01

    Cylindrical nonlinear optics is a burgeoning research area which describes cylindrical electromagnetic wave propagation in nonlinear media. Finding new exact solutions for different types of nonlinearity and inhomogeneity to describe cylindrical electromagnetic wave propagation is of great interest and meaningful for theory and application. This paper gives exact solutions for the cylindrical nonlinear Maxwell equations and presents an interesting connection between the exact solutions for different cylindrical nonlinear Maxwell equations. We also provide some examples and discussion to show the application of the results we obtained. Our results provide the basis for solving complex systems of nonlinearity and inhomogeneity with simple systems.

  3. An exact solution of a simplified two-phase plume model. [for solid propellant rocket

    NASA Technical Reports Server (NTRS)

    Wang, S.-Y.; Roberts, B. B.

    1974-01-01

    An exact solution of a simplified two-phase, gas-particle, rocket exhaust plume model is presented. It may be used to make the upper-bound estimation of the heat flux and pressure loads due to particle impingement on the objects existing in the rocket exhaust plume. By including the correction factors to be determined experimentally, the present technique will provide realistic data concerning the heat and aerodynamic loads on these objects for design purposes. Excellent agreement in trend between the best available computer solution and the present exact solution is shown.

  4. Exact solutions of the Wheeler–DeWitt equation and the Yamabe construction

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ita III, Eyo Eyo, E-mail: ita@usna.edu; Soo, Chopin, E-mail: cpsoo@mail.ncku.edu.tw

    Exact solutions of the Wheeler–DeWitt equation of the full theory of four dimensional gravity of Lorentzian signature are obtained. They are characterized by Schrödinger wavefunctionals having support on 3-metrics of constant spatial scalar curvature, and thus contain two full physical field degrees of freedom in accordance with the Yamabe construction. These solutions are moreover Gaussians of minimum uncertainty and they are naturally associated with a rigged Hilbert space. In addition, in the limit the regulator is removed, exact 3-dimensional diffeomorphism and local gauge invariance of the solutions are recovered.

  5. Exact solutions of fractional mBBM equation and coupled system of fractional Boussinesq-Burgers

    NASA Astrophysics Data System (ADS)

    Javeed, Shumaila; Saif, Summaya; Waheed, Asif; Baleanu, Dumitru

    2018-06-01

    The new exact solutions of nonlinear fractional partial differential equations (FPDEs) are established by adopting first integral method (FIM). The Riemann-Liouville (R-L) derivative and the local conformable derivative definitions are used to deal with the fractional order derivatives. The proposed method is applied to get exact solutions for space-time fractional modified Benjamin-Bona-Mahony (mBBM) equation and coupled time-fractional Boussinesq-Burgers equation. The suggested technique is easily applicable and effectual which can be implemented successfully to obtain the solutions for different types of nonlinear FPDEs.

  6. Exact Analytical Solutions for Elastodynamic Impact

    DTIC Science & Technology

    2015-11-30

    corroborated by derivation of exact discrete solutions from recursive equations for the impact problems. 15. SUBJECT TERMS One-dimensional impact; Elastic...wave propagation; Laplace transform; Floor function; Discrete solutions 16. SECURITY CLASSIFICATION OF: 17. LIMITATION OF ABSTRACT UU 18...impact Elastic wave propagation Laplace transform Floor function Discrete solutionsWe consider the one-dimensional impact problem in which a semi

  7. Exact analytic solution for the spin-up maneuver of an axially symmetric spacecraft

    NASA Astrophysics Data System (ADS)

    Ventura, Jacopo; Romano, Marcello

    2014-11-01

    The problem of spinning-up an axially symmetric spacecraft subjected to an external torque constant in magnitude and parallel to the symmetry axis is considered. The existing exact analytic solution for an axially symmetric body is applied for the first time to this problem. The proposed solution is valid for any initial conditions of attitude and angular velocity and for any length of time and rotation amplitude. Furthermore, the proposed solution can be numerically evaluated up to any desired level of accuracy. Numerical experiments and comparison with an existing approximated solution and with the integration of the equations of motion are reported in the paper. Finally, a new approximated solution obtained from the exact one is introduced in this paper.

  8. Nonexistence of exact solutions agreeing with the Gaussian beam on the beam axis or in the focal plane

    NASA Astrophysics Data System (ADS)

    Lekner, John; Andrejic, Petar

    2018-01-01

    Solutions of the Helmholtz equation which describe electromagnetic beams (and also acoustic or particle beams) are discussed. We show that an exact solution which reproduces the Gaussian beam waveform on the beam axis does not exist. This is surprising, since the Gaussian beam is a solution of the paraxial equation, and thus supposedly accurate on and near the beam axis. Likewise, a solution of the Helmholtz equation which exactly reproduces the Gaussian beam in the focal plane does not exist. We show that the last statement also holds for Bessel-Gauss beams. However, solutions of the Helmholtz equation (one of which is discussed in detail) can approximate the Gaussian waveform within the central focal region.

  9. On symmetries, conservation laws and exact solutions of the nonlinear Schrödinger-Hirota equation

    NASA Astrophysics Data System (ADS)

    Akbulut, Arzu; Taşcan, Filiz

    2018-04-01

    In this paper, conservation laws and exact solution are found for nonlinear Schrödinger-Hirota equation. Conservation theorem is used for finding conservation laws. We get modified conservation laws for given equation. Modified simple equation method is used to obtain the exact solutions of the nonlinear Schrödinger-Hirota equation. It is shown that the suggested method provides a powerful mathematical instrument for solving nonlinear equations in mathematical physics and engineering.

  10. High-resolution local gravity model of the south pole of the Moon from GRAIL extended mission data.

    PubMed

    Goossens, Sander; Sabaka, Terence J; Nicholas, Joseph B; Lemoine, Frank G; Rowlands, David D; Mazarico, Erwan; Neumann, Gregory A; Smith, David E; Zuber, Maria T

    2014-05-28

    We estimated a high-resolution local gravity field model over the south pole of the Moon using data from the Gravity Recovery and Interior Laboratory's extended mission. Our solution consists of adjustments with respect to a global model expressed in spherical harmonics. The adjustments are expressed as gridded gravity anomalies with a resolution of 1/6° by 1/6° (equivalent to that of a degree and order 1080 model in spherical harmonics), covering a cap over the south pole with a radius of 40°. The gravity anomalies have been estimated from a short-arc analysis using only Ka-band range-rate (KBRR) data over the area of interest. We apply a neighbor-smoothing constraint to our solution. Our local model removes striping present in the global model; it reduces the misfit to the KBRR data and improves correlations with topography to higher degrees than current global models. We present a high-resolution gravity model of the south pole of the Moon Improved correlations with topography to higher degrees than global models Improved fits to the data and reduced striping that is present in global models.

  11. High-resolution local gravity model of the south pole of the Moon from GRAIL extended mission data

    PubMed Central

    Goossens, Sander; Sabaka, Terence J; Nicholas, Joseph B; Lemoine, Frank G; Rowlands, David D; Mazarico, Erwan; Neumann, Gregory A; Smith, David E; Zuber, Maria T

    2014-01-01

    We estimated a high-resolution local gravity field model over the south pole of the Moon using data from the Gravity Recovery and Interior Laboratory's extended mission. Our solution consists of adjustments with respect to a global model expressed in spherical harmonics. The adjustments are expressed as gridded gravity anomalies with a resolution of 1/6° by 1/6° (equivalent to that of a degree and order 1080 model in spherical harmonics), covering a cap over the south pole with a radius of 40°. The gravity anomalies have been estimated from a short-arc analysis using only Ka-band range-rate (KBRR) data over the area of interest. We apply a neighbor-smoothing constraint to our solution. Our local model removes striping present in the global model; it reduces the misfit to the KBRR data and improves correlations with topography to higher degrees than current global models. Key Points We present a high-resolution gravity model of the south pole of the Moon Improved correlations with topography to higher degrees than global models Improved fits to the data and reduced striping that is present in global models PMID:26074637

  12. The escape of high explosive products: An exact-solution problem for verification of hydrodynamics codes

    DOE PAGES

    Doebling, Scott William

    2016-10-22

    This paper documents the escape of high explosive (HE) products problem. The problem, first presented by Fickett & Rivard, tests the implementation and numerical behavior of a high explosive detonation and energy release model and its interaction with an associated compressible hydrodynamics simulation code. The problem simulates the detonation of a finite-length, one-dimensional piece of HE that is driven by a piston from one end and adjacent to a void at the other end. The HE equation of state is modeled as a polytropic ideal gas. The HE detonation is assumed to be instantaneous with an infinitesimal reaction zone. Viamore » judicious selection of the material specific heat ratio, the problem has an exact solution with linear characteristics, enabling a straightforward calculation of the physical variables as a function of time and space. Lastly, implementation of the exact solution in the Python code ExactPack is discussed, as are verification cases for the exact solution code.« less

  13. Exact vacuum solution to conformal Weyl gravity and galactic rotation curves

    NASA Technical Reports Server (NTRS)

    Mannheim, Philip D.; Kazanas, Demosthenes

    1989-01-01

    The complete, exact exterior solution for a static, spherically symmetric source in locally conformal invariant Weyl gravity is presented. The solution includes the familiar exterior Schwarzschild solution as a special case and contains an extra gravitational potential term which grows linearly with distance. The obtained solution provides a potential explanation for observed galactic rotation curves without the need for dark matter. The solution also has some interesting implications for cosmology.

  14. The exact solutions and approximate analytic solutions of the (2 + 1)-dimensional KP equation based on symmetry method.

    PubMed

    Gai, Litao; Bilige, Sudao; Jie, Yingmo

    2016-01-01

    In this paper, we successfully obtained the exact solutions and the approximate analytic solutions of the (2 + 1)-dimensional KP equation based on the Lie symmetry, the extended tanh method and the homotopy perturbation method. In first part, we obtained the symmetries of the (2 + 1)-dimensional KP equation based on the Wu-differential characteristic set algorithm and reduced it. In the second part, we constructed the abundant exact travelling wave solutions by using the extended tanh method. These solutions are expressed by the hyperbolic functions, the trigonometric functions and the rational functions respectively. It should be noted that when the parameters are taken as special values, some solitary wave solutions are derived from the hyperbolic function solutions. Finally, we apply the homotopy perturbation method to obtain the approximate analytic solutions based on four kinds of initial conditions.

  15. Exact soliton solutions and their stability control in the nonlinear Schrödinger equation with spatiotemporally modulated nonlinearity.

    PubMed

    Tian, Qing; Wu, Lei; Zhang, Jie-Fang; Malomed, Boris A; Mihalache, D; Liu, W M

    2011-01-01

    We put forward a generic transformation which helps to find exact soliton solutions of the nonlinear Schrödinger equation with a spatiotemporal modulation of the nonlinearity and external potentials. As an example, we construct exact solitons for the defocusing nonlinearity and harmonic potential. When the soliton's eigenvalue is fixed, the number of exact solutions is determined by energy levels of the linear harmonic oscillator. In addition to the stable fundamental solitons, stable higher-order modes, describing array of dark solitons nested in a finite-width background, are constructed too. We also show how to control the instability domain of the nonstationary solitons.

  16. Turbulence and Global Properties of the Solar Wind

    NASA Technical Reports Server (NTRS)

    Goldstein, Melvyn L.

    2010-01-01

    The solar wind shows striking characteristics that suggest that it is a turbulent magnetofluid, but the picture is not altogether simple. From the earliest observations, a strong correlation between magnetic fluctuations and plasma velocity fluctuations was noted. The high corrections suggest that the fluctuations are Alfven waves. In addition, the power spectrum of the magnetic fluctuation showed evidence of an inertial range that resembled that seen in fully-developed fluid turbulence. Alfven waves, however, are exact solutions of the equations of incompressible magnetohydrodynamics. Thus, there was a puzzle: how can a magnetofluid consisting of Alfven waves be turbulent? The answer lay in the role of velocity shears in the solar wind that could drive turbulent evolution. Puzzles remain: for example, the power spectrum of the velocity fluctuations is less steep than the slope of the magnetic fluctuations. The plasma in the magnetic tail of Earth's magnetosphere also shows aspects of turbulence, as does the plasma in the dayside magnetosphere near the poles the dayside cusps. Recently, new analyses of high time resolution magnetic field data from Cluster have offered a glimpse of how turbulence is dissipated, thus heating the ambient plasma.

  17. Restoration of the covariant gauge α in the initial field of gravity in de Sitter spacetime

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cheong, Lee Yen; Yan, Chew Xiao

    2014-03-05

    The gravitational field generated by a mass term and the initial surface through covariant retarded Green's function for linearized gravity in de Sitter spacetime was studied recently [4, 5] with the covariant gauges set to β = 2/3 and α = 5/3. In this paper we extend the work to restore the gauge parameter α in the field coming from the initial data using the method of shifting the parameter. The α terms in the initial field cancels exactly with the one coming from the source term. Consequently, the correct field configuration, with two equal mass points moving in itsmore » geodesic, one located at the North pole and another one located at the South pole, is reproduced in the whole manifold of de Sitter spacetime.« less

  18. Exact Riemann solutions of the Ripa model for flat and non-flat bottom topographies

    NASA Astrophysics Data System (ADS)

    Rehman, Asad; Ali, Ishtiaq; Qamar, Shamsul

    2018-03-01

    This article is concerned with the derivation of exact Riemann solutions for Ripa model considering flat and non-flat bottom topographies. The Ripa model is a system of shallow water equations accounting for horizontal temperature gradients. In the case of non-flat bottom topography, the mass, momentum and energy conservation principles are utilized to relate the left and right states across the step-type bottom topography. The resulting system of algebraic equations is solved iteratively. Different numerical case studies of physical interest are considered. The solutions obtained from developed exact Riemann solvers are compared with the approximate solutions of central upwind scheme.

  19. A Numerical Scheme for Ordinary Differential Equations Having Time Varying and Nonlinear Coefficients Based on the State Transition Matrix

    NASA Technical Reports Server (NTRS)

    Bartels, Robert E.

    2002-01-01

    A variable order method of integrating initial value ordinary differential equations that is based on the state transition matrix has been developed. The method has been evaluated for linear time variant and nonlinear systems of equations. While it is more complex than most other methods, it produces exact solutions at arbitrary time step size when the time variation of the system can be modeled exactly by a polynomial. Solutions to several nonlinear problems exhibiting chaotic behavior have been computed. Accuracy of the method has been demonstrated by comparison with an exact solution and with solutions obtained by established methods.

  20. Analytical study of exact solutions of the nonlinear Korteweg-de Vries equation with space-time fractional derivatives

    NASA Astrophysics Data System (ADS)

    Liu, Jiangen; Zhang, Yufeng

    2018-01-01

    This paper gives an analytical study of dynamic behavior of the exact solutions of nonlinear Korteweg-de Vries equation with space-time local fractional derivatives. By using the improved (G‧ G )-expansion method, the explicit traveling wave solutions including periodic solutions, dark soliton solutions, soliton solutions and soliton-like solutions, are obtained for the first time. They can better help us further understand the physical phenomena and provide a strong basis. Meanwhile, some solutions are presented through 3D-graphs.

  1. Exact solutions to the Mo-Papas and Landau-Lifshitz equations

    NASA Astrophysics Data System (ADS)

    Rivera, R.; Villarroel, D.

    2002-10-01

    Two exact solutions of the Mo-Papas and Landau-Lifshitz equations for a point charge in classical electrodynamics are presented here. Both equations admit as an exact solution the motion of a charge rotating with constant speed in a circular orbit. These equations also admit as an exact solution the motion of two identical charges rotating with constant speed at the opposite ends of a diameter. These exact solutions allow one to obtain, starting from the equation of motion, a definite formula for the rate of radiation. In both cases the rate of radiation can also be obtained, with independence of the equation of motion, from the well known fields of a point charge, that is, from the Maxwell equations. The rate of radiation obtained from the Mo-Papas equation in the one-charge case coincides with the rate of radiation that comes from the Maxwell equations; but in the two-charge case the results do not coincide. On the other hand, the rate of radiation obtained from the Landau-Lifshitz equation differs from the one that follows from the Maxwell equations in both the one-charge and two-charge cases. This last result does not support a recent statement by Rohrlich in favor of considering the Landau-Lifshitz equation as the correct and exact equation of motion for a point charge in classical electrodynamics.

  2. New analytical exact solutions of time fractional KdV-KZK equation by Kudryashov methods

    NASA Astrophysics Data System (ADS)

    S Saha, Ray

    2016-04-01

    In this paper, new exact solutions of the time fractional KdV-Khokhlov-Zabolotskaya-Kuznetsov (KdV-KZK) equation are obtained by the classical Kudryashov method and modified Kudryashov method respectively. For this purpose, the modified Riemann-Liouville derivative is used to convert the nonlinear time fractional KdV-KZK equation into the nonlinear ordinary differential equation. In the present analysis, the classical Kudryashov method and modified Kudryashov method are both used successively to compute the analytical solutions of the time fractional KdV-KZK equation. As a result, new exact solutions involving the symmetrical Fibonacci function, hyperbolic function and exponential function are obtained for the first time. The methods under consideration are reliable and efficient, and can be used as an alternative to establish new exact solutions of different types of fractional differential equations arising from mathematical physics. The obtained results are exhibited graphically in order to demonstrate the efficiencies and applicabilities of these proposed methods of solving the nonlinear time fractional KdV-KZK equation.

  3. Exact solutions for postbuckling of a graded porous beam

    NASA Astrophysics Data System (ADS)

    Ma, L. S.; Ou, Z. Y.

    2018-06-01

    An exact, closed-form solution for the postbuckling responses of graded porous beams subjected to axially loading is obtained. It was assumed that the properties of the graded porous materials vary continuously through thickness of the beams, the equations governing the axial and transverse deformations are derived based on the classical beam theory and the physical neutral surface concept. The two equations are reduced to a single nonlinear fourth-order integral-differential equation governing the transverse deformations. The nonlinear equation is directly solved without any use of approximation and a closed-form solution for postbuckled deformation is obtained as a function of the applied load. The exact solutions explicitly describe the nonlinear equilibrium paths of the buckled beam and thus are able to provide insight into deformation problems. Based on the exact solutions obtained herein, the effects of various factors such as porosity distribution pattern, porosity coefficient and boundary conditions on postbuckling behavior of graded porous beams have been investigated.

  4. Exact axisymmetric solutions of the Maxwell equations in a nonlinear nondispersive medium.

    PubMed

    Petrov, E Yu; Kudrin, A V

    2010-05-14

    The features of propagation of intense waves are of great interest for theory and experiment in electrodynamics and acoustics. The behavior of nonlinear waves in a bounded volume is of special importance and, at the same time, is an extremely complicated problem. It seems almost impossible to find a rigorous solution to such a problem even for any model of nonlinearity. We obtain the first exact solution of this type. We present a new method for deriving exact solutions of the Maxwell equations in a nonlinear medium without dispersion and give examples of the obtained solutions that describe propagation of cylindrical electromagnetic waves in a nonlinear nondispersive medium and free electromagnetic oscillations in a cylindrical cavity resonator filled with such a medium.

  5. New exact periodic solitary-wave solutions for the new (3+1)-dimensional generalized Kadomtsev-Petviashvili equation in multi-temperature electron plasmas

    NASA Astrophysics Data System (ADS)

    Liu, Jian-Guo; Tian, Yu; Zeng, Zhi-Fang

    2017-10-01

    In this paper, we aim to introduce a new form of the (3+1)-dimensional generalized Kadomtsev-Petviashvili equation for the long waves of small amplitude with slow dependence on the transverse coordinate. By using the Hirota's bilinear form and the extended homoclinic test approach, new exact periodic solitary-wave solutions for the new (3+1)-dimensional generalized Kadomtsev-Petviashvili equation are presented. Moreover, the properties and characteristics for these new exact periodic solitary-wave solutions are discussed with some figures.

  6. The mu-derivative and its applications to finding exact solutions of the Cahn-Hilliard, Korteveg-de Vries, and Burgers equations.

    PubMed

    Mitlin, Vlad

    2005-10-15

    A new transformation termed the mu-derivative is introduced. Applying it to the Cahn-Hilliard equation yields dynamical exact solutions. It is shown that the mu-transformed Cahn-Hilliard equation can be presented in a separable form. This transformation also yields dynamical exact solutions and separable forms for other nonlinear models such as the modified Korteveg-de Vries and the Burgers equations. The general structure of a nonlinear partial differential equation that becomes separable upon applying the mu-derivative is described.

  7. Alternate Solution to Generalized Bernoulli Equations via an Integrating Factor: An Exact Differential Equation Approach

    ERIC Educational Resources Information Center

    Tisdell, C. C.

    2017-01-01

    Solution methods to exact differential equations via integrating factors have a rich history dating back to Euler (1740) and the ideas enjoy applications to thermodynamics and electromagnetism. Recently, Azevedo and Valentino presented an analysis of the generalized Bernoulli equation, constructing a general solution by linearizing the problem…

  8. A re-examination of paleomagnetic results from NA Jurassic sedimentary rocks: Additional evidence for proposed Jurassic MUTO?

    NASA Astrophysics Data System (ADS)

    Housen, B. A.

    2015-12-01

    Kent and Irving, 2010; and Kent et al, 2015 propose a monster shift in the position of Jurassic (160 to 145 Ma) paleopoles for North America- defined by results from igneous rocks. This monster shift is likely an unrecognized true polar wander occurrence. Although subject to inclination error, results from sedimentary rocks from North America, if corrected for these effects, can be used to supplement the available data for this time period. Steiner (2003) reported results from 48 stratigraphic horizons sampled from the Callovian Summerville Fm, from NE New Mexico. A recalculated mean of these results yields a mean direction of D = 332, I = 39, n=48, k = 15, α95 = 5.4°. These data were analyzed for possible inclination error-although the dataset is small, the E-I results yielded a corrected I = 53. This yields a corrected paleopole for NA at ~165 Ma located at 67° N and 168° E.Paleomagnetic results from the Black Hills- Kilanowski (2002) for the Callovian Hulett Mbr of the Sundance Fm, and Gregiore (2001) the Oxfordian-Tithonian Morrison Fm (Gregiore, 2001) have previously been interpreted to represent Eocene-aged remagnetizations- due to the nearly exact coincidence between the in-situ pole positions of these Jurassic units with the Eocene pole for NA. Both of the tilt-corrected results for these units have high latitude poles (Sundance Fm: 79° N, 146° E; Morrison Fm: 89° N, 165° E). An E-I analysis of these data will be presented- using a provisional inclination error of 10°, corrected paleopoles are: (Sundance Fm: 76° N, 220° E; Morrison Fm: 77° N, 266° E). The Black Hills 165 Ma (Sundance Fm) and 145 Ma (Morrison Fm) poles, provisionally corrected for 10° inclination error- occur fairly close to the NA APWP proposed by Kent et al, 2015- using an updated set of results from kimberlites- the agreement between the Sundance Fm and the Triple-B (158 Ma) pole would be nearly exact with a slightly lesser inclination error. The Summerville Fm- which is thought to be ~ coeval with the Sundance Fm- is significantly offset from this newer NA path, but a larger inclination error for this unit would produce a better agreement. Thus, pending more precise estimates of inclination error from these units, middle-late Jurassic sedimentary rocks from NA do support the existence of a MUTO (Monster Unknown True polar wander Occurrence) during Jurassic time.

  9. Interaction and charge transfer between dielectric spheres: Exact and approximate analytical solutions.

    PubMed

    Lindén, Fredrik; Cederquist, Henrik; Zettergren, Henning

    2016-11-21

    We present exact analytical solutions for charge transfer reactions between two arbitrarily charged hard dielectric spheres. These solutions, and the corresponding exact ones for sphere-sphere interaction energies, include sums that describe polarization effects to infinite orders in the inverse of the distance between the sphere centers. In addition, we show that these exact solutions may be approximated by much simpler analytical expressions that are useful for many practical applications. This is exemplified through calculations of Langevin type cross sections for forming a compound system of two colliding spheres and through calculations of electron transfer cross sections. We find that it is important to account for dielectric properties and finite sphere sizes in such calculations, which for example may be useful for describing the evolution, growth, and dynamics of nanometer sized dielectric objects such as molecular clusters or dust grains in different environments including astrophysical ones.

  10. Some exact velocity profiles for granular flow in converging hoppers

    NASA Astrophysics Data System (ADS)

    Cox, Grant M.; Hill, James M.

    2005-01-01

    Gravity flow of granular materials through hoppers occurs in many industrial processes. For an ideal cohesionless granular material, which satisfies the Coulomb-Mohr yield condition, the number of known analytical solutions is limited. However, for the special case of the angle of internal friction δ equal to ninety degrees, there exist exact parametric solutions for the governing coupled ordinary differential equations for both two-dimensional wedges and three-dimensional cones, both of which involve two arbitrary constants of integration. These solutions are the only known analytical solutions of this generality. Here, we utilize the double-shearing theory of granular materials to determine the velocity field corresponding to these exact parametric solutions for the two problems of gravity flow through converging wedge and conical hoppers. An independent numerical solution for other angles of internal friction is shown to coincide with the analytical solution.

  11. Analytical approach for the fractional differential equations by using the extended tanh method

    NASA Astrophysics Data System (ADS)

    Pandir, Yusuf; Yildirim, Ayse

    2018-07-01

    In this study, we consider analytical solutions of space-time fractional derivative foam drainage equation, the nonlinear Korteweg-de Vries equation with time and space-fractional derivatives and time-fractional reaction-diffusion equation by using the extended tanh method. The fractional derivatives are defined in the modified Riemann-Liouville context. As a result, various exact analytical solutions consisting of trigonometric function solutions, kink-shaped soliton solutions and new exact solitary wave solutions are obtained.

  12. Outer Solutions for General Linear Turning Point Problems.

    DTIC Science & Technology

    1977-02-01

    i l t e r e n t i a l equat ions near a pole wi th respect to a parameter . For general inves t iga t ions such d i f f e ren t i a l equat...analyt ic funct ions Ar (X) are allowed to have poles at x = 0. This the ory can easily be extended to slightly more involved types of s ingular i t...4) means that the order of the poles of A (x) can grow , at worst , l inearly with r. This restraining inequal i ty is the stronger the larger K i s

  13. Molecular ub figure-of-merit studies of solid solutions

    NASA Astrophysics Data System (ADS)

    Healy, David; Thomas, Philip R.; Szablewski, Marek; Cross, Graham H.

    1995-10-01

    The dipole moments ((mu) ) of a series of zwitterionic nonlinear optical chromophores doped into poly(methyl methacrylate) have been determined. Values of between 34 D and 38 D have been measured through the fitting of a uncurtailed Langevin function to the incidence angle dependence of the p-p second harmonic intensity generated from corona poled films. It is shown that accurate values of dipole moment can only be determined when the poling fields are lower than approximately 100 MVm-1 above which existing electric field poling models appear to be inadequate. The reasons for this are as yet unknown, possible mechanisms of the effect are presented.

  14. More exact solutions of the constant astigmatism equation

    NASA Astrophysics Data System (ADS)

    Hlaváč, Adam

    2018-01-01

    By using Bäcklund transformation for the sine-Gordon equation, new periodic exact solutions of the constant astigmatism equation zyy +(1 / z) xx + 2 = 0 are generated from a seed which corresponds to Lipschitz surfaces of constant astigmatism.

  15. A Large Class of Exact Solutions to the One-Dimensional Schrodinger Equation

    ERIC Educational Resources Information Center

    Karaoglu, Bekir

    2007-01-01

    A remarkable property of a large class of functions is exploited to generate exact solutions to the one-dimensional Schrodinger equation. The method is simple and easy to implement. (Contains 1 table and 1 figure.)

  16. Numerical Uncertainty Analysis for Computational Fluid Dynamics using Student T Distribution -- Application of CFD Uncertainty Analysis Compared to Exact Analytical Solution

    NASA Technical Reports Server (NTRS)

    Groves, Curtis E.; Ilie, marcel; Shallhorn, Paul A.

    2014-01-01

    Computational Fluid Dynamics (CFD) is the standard numerical tool used by Fluid Dynamists to estimate solutions to many problems in academia, government, and industry. CFD is known to have errors and uncertainties and there is no universally adopted method to estimate such quantities. This paper describes an approach to estimate CFD uncertainties strictly numerically using inputs and the Student-T distribution. The approach is compared to an exact analytical solution of fully developed, laminar flow between infinite, stationary plates. It is shown that treating all CFD input parameters as oscillatory uncertainty terms coupled with the Student-T distribution can encompass the exact solution.

  17. Exact closed-form solutions of a fully nonlinear asymptotic two-fluid model

    NASA Astrophysics Data System (ADS)

    Cheviakov, Alexei F.

    2018-05-01

    A fully nonlinear model of Choi and Camassa (1999) describing one-dimensional incompressible dynamics of two non-mixing fluids in a horizontal channel, under a shallow water approximation, is considered. An equivalence transformation is presented, leading to a special dimensionless form of the system, involving a single dimensionless constant physical parameter, as opposed to five parameters present in the original model. A first-order dimensionless ordinary differential equation describing traveling wave solutions is analyzed. Several multi-parameter families of physically meaningful exact closed-form solutions of the two-fluid model are derived, corresponding to periodic, solitary, and kink-type bidirectional traveling waves; specific examples are given, and properties of the exact solutions are analyzed.

  18. Some exact solutions for maximally symmetric topological defects in Anti de Sitter space

    NASA Astrophysics Data System (ADS)

    Alvarez, Orlando; Haddad, Matthew

    2018-03-01

    We obtain exact analytical solutions for a class of SO( l) Higgs field theories in a non-dynamic background n-dimensional anti de Sitter space. These finite transverse energy solutions are maximally symmetric p-dimensional topological defects where n = ( p + 1) + l. The radius of curvature of anti de Sitter space provides an extra length scale that allows us to study the equations of motion in a limit where the masses of the Higgs field and the massive vector bosons are both vanishing. We call this the double BPS limit. In anti de Sitter space, the equations of motion depend on both p and l. The exact analytical solutions are expressed in terms of standard special functions. The known exact analytical solutions are for kink-like defects ( p = 0 , 1 , 2 , . . . ; l = 1), vortex-like defects ( p = 1 , 2 , 3; l = 2), and the 't Hooft-Polyakov monopole ( p = 0; l = 3). A bonus is that the double BPS limit automatically gives a maximally symmetric classical glueball type solution. In certain cases where we did not find an analytic solution, we present numerical solutions to the equations of motion. The asymptotically exponentially increasing volume with distance of anti de Sitter space imposes different constraints than those found in the study of defects in Minkowski space.

  19. Perturbational blowup solutions to the compressible Euler equations with damping.

    PubMed

    Cheung, Ka Luen

    2016-01-01

    The N-dimensional isentropic compressible Euler system with a damping term is one of the most fundamental equations in fluid dynamics. Since it does not have a general solution in a closed form for arbitrary well-posed initial value problems. Constructing exact solutions to the system is a useful way to obtain important information on the properties of its solutions. In this article, we construct two families of exact solutions for the one-dimensional isentropic compressible Euler equations with damping by the perturbational method. The two families of exact solutions found include the cases [Formula: see text] and [Formula: see text], where [Formula: see text] is the adiabatic constant. With analysis of the key ordinary differential equation, we show that the classes of solutions include both blowup type and global existence type when the parameters are suitably chosen. Moreover, in the blowup cases, we show that the singularities are of essential type in the sense that they cannot be smoothed by redefining values at the odd points. The two families of exact solutions obtained in this paper can be useful to study of related numerical methods and algorithms such as the finite difference method, the finite element method and the finite volume method that are applied by scientists to simulate the fluids for applications.

  20. Closed solutions to a differential-difference equation and an associated plate solidification problem.

    PubMed

    Layeni, Olawanle P; Akinola, Adegbola P; Johnson, Jesse V

    2016-01-01

    Two distinct and novel formalisms for deriving exact closed solutions of a class of variable-coefficient differential-difference equations arising from a plate solidification problem are introduced. Thereupon, exact closed traveling wave and similarity solutions to the plate solidification problem are obtained for some special cases of time-varying plate surface temperature.

  1. Longitude origins on moving equator II: effects of nutation

    NASA Astrophysics Data System (ADS)

    Fukushima, T.

    We obtained an explicit solution of s, the angle specifying the non-rotating orign (NRO) (Guinot 1979), for the pole uniformly rotating on a circle around an arbitrary fixed direction. Thanks to the obtained formula, we derived an approximate expression of its correction, Δs, due to the fast nutational motion of the pole by ignoring the slow precessional motion. By adopting the IAU 1980 nutation series (Seidelmann 1980) and combining the result with the previous solution for the precessional motion of the Earth's pole (Fukushima 2000), we developed a more precise expression of the global motion of the Celestial Ephemeris Origin (CEO). The current speed of global rotation of CEO amounts to -4.149 688 1"/yr where the contribution of the nutation is small as -38.4μas/yr but non-negligible. The negative sign shows that CEO rotates clockwise with respect to the inertial frame when viewed from the north pole. The long periodic motion of CEO is of the amplitude of the obliquity of ecliptic, around 23.5 degree, and of the period of precession, around 25800 yr. While the effect of nutation on the periodic motion of CEO looks like a series of mixed secular terms, which is simply proportional to the nutation in longitude and is of the order of some tens mas/yr.

  2. The complex phase gradient method applied to leaky Lamb waves.

    PubMed

    Lenoir, O; Conoir, J M; Izbicki, J L

    2002-10-01

    The classical phase gradient method applied to the characterization of the angular resonances of an immersed elastic plate, i.e., the angular poles of its reflection coefficient R, was proved to be efficient when their real parts are close to the real zeros of R and their imaginary parts are not too large compared to their real parts. This method consists of plotting the partial reflection coefficient phase derivative with respect to the sine of the incidence angle, considered as real, versus incidence angle. In the vicinity of a resonance, this curve exhibits a Breit-Wigner shape, whose minimum is located at the pole real part and whose amplitude is the inverse of its imaginary part. However, when the imaginary part is large, this method is not sufficiently accurate compared to the exact calculation of the complex angular root. An improvement of this method consists of plotting, in 3D, in the complex angle plane and at a given frequency, the angular phase derivative with respect to the real part of the sine of the incidence angle, considered as complex. When the angular pole is reached, the 3D curve shows a clear-cut transition whose position is easily obtained.

  3. Exact solutions for the source-excited cylindrical electromagnetic waves in a nonlinear nondispersive medium.

    PubMed

    Es'kin, V A; Kudrin, A V; Petrov, E Yu

    2011-06-01

    The behavior of electromagnetic fields in nonlinear media has been a topical problem since the discovery of materials with a nonlinearity of electromagnetic properties. The problem of finding exact solutions for the source-excited nonlinear waves in curvilinear coordinates has been regarded as unsolvable for a long time. In this work, we present the first solution of this type for a cylindrically symmetric field excited by a pulsed current filament in a nondispersive medium that is simultaneously inhomogeneous and nonlinear. Assuming that the medium has a power-law permittivity profile in the linear regime and lacks a center of inversion, we derive an exact solution for the electromagnetic field excited by a current filament in such a medium and discuss the properties of this solution.

  4. Lie symmetry analysis, exact solutions and conservation laws for the time fractional Caudrey-Dodd-Gibbon-Sawada-Kotera equation

    NASA Astrophysics Data System (ADS)

    Baleanu, Dumitru; Inc, Mustafa; Yusuf, Abdullahi; Aliyu, Aliyu Isa

    2018-06-01

    In this work, we investigate the Lie symmetry analysis, exact solutions and conservation laws (Cls) to the time fractional Caudrey-Dodd-Gibbon-Sawada-Kotera (CDGDK) equation with Riemann-Liouville (RL) derivative. The time fractional CDGDK is reduced to nonlinear ordinary differential equation (ODE) of fractional order. New exact traveling wave solutions for the time fractional CDGDK are obtained by fractional sub-equation method. In the reduced equation, the derivative is in Erdelyi-Kober (EK) sense. Ibragimov's nonlocal conservation method is applied to construct Cls for time fractional CDGDK.

  5. Asymptotically exact parabolic solutions of the generalized nonlinear Schrödinger equation with varying parameters

    NASA Astrophysics Data System (ADS)

    Kruglov, Vladimir I.; Harvey, John D.

    2006-12-01

    We present exact asymptotic similariton solutions of the generalized nonlinear Schrödinger equation (NLSE) with gain or loss terms for a normal-dispersion fiber amplifier with dispersion, nonlinearity, and gain profiles that depend on the propagation distance. Our treatment is based on the mapping of the NLSE with varying parameters to the NLSE with constant dispersion and nonlinearity coefficients and an arbitrary varying gain function. We formulate an effective procedure that leads directly, under appropriate conditions, to a wide range of exact asymptotic similariton solutions of NLSE demonstrating self-similar propagating regimes with linear chirp.

  6. Rogue wave solutions for the infinite integrable nonlinear Schrödinger equation hierarchy.

    PubMed

    Ankiewicz, A; Akhmediev, N

    2017-07-01

    We present rogue wave solutions of the integrable nonlinear Schrödinger equation hierarchy with an infinite number of higher-order terms. The latter include higher-order dispersion and higher-order nonlinear terms. In particular, we derive the fundamental rogue wave solutions for all orders of the hierarchy, with exact expressions for velocities, phase, and "stretching factors" in the solutions. We also present several examples of exact solutions of second-order rogue waves, including rogue wave triplets.

  7. Gravitational field of a concentrated mass in Jordan—Brans—Dicke theory

    NASA Astrophysics Data System (ADS)

    Arutyunyan, G. G.; Papoyan, V. V.

    1994-04-01

    The problem of determining the gravitational field of a static, spherically symmetric, self-gravitating object is formulated. The small number of physically applicable exact solutions of the equations in Jordan—Brans—Dicke theory is augmented with new exact solutions describing the external gravitational field of the given body. Once a solution has been found, it can be rewritten in modified curvature, homogeneous, and other coordinates by appropriate gauging. In a special case the solution coincides with the well-known Schwarzschild solution.

  8. Analytical solution for boundary heat fluxes from a radiating rectangular medium

    NASA Technical Reports Server (NTRS)

    Siegel, R.

    1991-01-01

    Reference is made to the work of Shah (1979) which demonstrated the possibility of partially integrating the radiative equations analytically to obtain an 'exact' solution. Shah's solution was given as a double integration of the modified Bessel function of order zero. Here, it is shown that the 'exact' solution for a rectangular region radiating to cold black walls can be conveniently derived, and expressed in simple form, by using an integral function, Sn, analogous to the exponential integral function appearing in plane-layer solutions.

  9. Robust determination of the chemical potential in the pole expansion and selected inversion method for solving Kohn-Sham density functional theory

    NASA Astrophysics Data System (ADS)

    Jia, Weile; Lin, Lin

    2017-10-01

    Fermi operator expansion (FOE) methods are powerful alternatives to diagonalization type methods for solving Kohn-Sham density functional theory (KSDFT). One example is the pole expansion and selected inversion (PEXSI) method, which approximates the Fermi operator by rational matrix functions and reduces the computational complexity to at most quadratic scaling for solving KSDFT. Unlike diagonalization type methods, the chemical potential often cannot be directly read off from the result of a single step of evaluation of the Fermi operator. Hence multiple evaluations are needed to be sequentially performed to compute the chemical potential to ensure the correct number of electrons within a given tolerance. This hinders the performance of FOE methods in practice. In this paper, we develop an efficient and robust strategy to determine the chemical potential in the context of the PEXSI method. The main idea of the new method is not to find the exact chemical potential at each self-consistent-field (SCF) iteration but to dynamically and rigorously update the upper and lower bounds for the true chemical potential, so that the chemical potential reaches its convergence along the SCF iteration. Instead of evaluating the Fermi operator for multiple times sequentially, our method uses a two-level strategy that evaluates the Fermi operators in parallel. In the regime of full parallelization, the wall clock time of each SCF iteration is always close to the time for one single evaluation of the Fermi operator, even when the initial guess is far away from the converged solution. We demonstrate the effectiveness of the new method using examples with metallic and insulating characters, as well as results from ab initio molecular dynamics.

  10. Robust determination of the chemical potential in the pole expansion and selected inversion method for solving Kohn-Sham density functional theory.

    PubMed

    Jia, Weile; Lin, Lin

    2017-10-14

    Fermi operator expansion (FOE) methods are powerful alternatives to diagonalization type methods for solving Kohn-Sham density functional theory (KSDFT). One example is the pole expansion and selected inversion (PEXSI) method, which approximates the Fermi operator by rational matrix functions and reduces the computational complexity to at most quadratic scaling for solving KSDFT. Unlike diagonalization type methods, the chemical potential often cannot be directly read off from the result of a single step of evaluation of the Fermi operator. Hence multiple evaluations are needed to be sequentially performed to compute the chemical potential to ensure the correct number of electrons within a given tolerance. This hinders the performance of FOE methods in practice. In this paper, we develop an efficient and robust strategy to determine the chemical potential in the context of the PEXSI method. The main idea of the new method is not to find the exact chemical potential at each self-consistent-field (SCF) iteration but to dynamically and rigorously update the upper and lower bounds for the true chemical potential, so that the chemical potential reaches its convergence along the SCF iteration. Instead of evaluating the Fermi operator for multiple times sequentially, our method uses a two-level strategy that evaluates the Fermi operators in parallel. In the regime of full parallelization, the wall clock time of each SCF iteration is always close to the time for one single evaluation of the Fermi operator, even when the initial guess is far away from the converged solution. We demonstrate the effectiveness of the new method using examples with metallic and insulating characters, as well as results from ab initio molecular dynamics.

  11. CN MORPHOLOGY STUDIES OF COMET 103P/HARTLEY 2

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Knight, Matthew M.; Schleicher, David G., E-mail: knight@lowell.edu

    2011-06-15

    We report on narrowband CN imaging of Comet 103P/Hartley 2 obtained at Lowell Observatory on 39 nights from 2010 July until 2011 January. We observed two features, one generally to the north and the other generally to the south. The CN morphology varied during the apparition: no morphology was seen in July; in August and September, the northern feature dominated and appeared as a mostly face-on spiral; in October, November, and December, the northern and southern features were roughly equal in brightness and looked like more side-on corkscrews; in January, the southern feature was dominant but the morphology was indistinctmore » due to very low signal. The morphology changed smoothly during each night and similar morphology was seen from night to night. However, the morphology did not exactly repeat each rotation cycle, suggesting that there is a small non-principal axis rotation. Based on the repetition of the morphology, we find evidence that the fundamental rotation period was increasing: 16.7 hr from August 13 to 17, 17.2 hr from September 10 to 13, 18.2 hr from October 12 to 19, and 18.7 hr from October 31 to November 7. We conducted Monte Carlo jet modeling to constrain the pole orientation and locations of the active regions based on the observed morphology. Our preliminary, self-consistent pole solution has an obliquity of 10{sup 0} relative to the comet's orbital plane (i.e., it is centered near R.A. = 257{sup 0} and decl. = +67{sup 0} with an uncertainty around this position of about 15{sup 0}) and has two mid-latitude sources, one in each hemisphere.« less

  12. Exact solutions to force-free electrodynamics in black hole backgrounds

    NASA Astrophysics Data System (ADS)

    Brennan, T. Daniel; Gralla, Samuel E.; Jacobson, Ted

    2013-10-01

    A shared property of several of the known exact solutions to the equations of force-free electrodynamics is that their charge-current four-vector is null. We examine the general properties of null-current solutions and then focus on the principal congruences of the Kerr black hole spacetime. We obtain a large class of exact solutions, which are in general time-dependent and non-axisymmetric. These solutions include waves that, surprisingly, propagate without scattering on the curvature of the black hole’s background. They may be understood as generalizations to Robinson’s solutions to vacuum electrodynamics associated with a shear-free congruence of null geodesics. When stationary and axisymmetric, our solutions reduce to those of Menon and Dermer, the only previously known solutions in Kerr. In Kerr, all of our solutions have null electromagnetic fields (\\vec{E} \\cdot \\vec{B} = 0 and E2 = B2). However, in Schwarzschild or flat spacetime there is freedom to add a magnetic monopole field, making the solutions magnetically dominated (B2 > E2). This freedom may be used to reproduce the various flat-spacetime and Schwarzschild-spacetime (split) monopole solutions available in the literature (due to Michel and later authors), and to obtain a large class of time-dependent, non-axisymmetric generalizations. These generalizations may be used to model the magnetosphere of a conducting star that rotates with arbitrary prescribed time-dependent rotation axis and speed. We thus significantly enlarge the class of known exact solutions, while organizing and unifying previously discovered solutions in terms of their null structure.

  13. On exact solutions for disturbances to the asymptotic suction boundary layer: transformation of Barnes integrals to convolution integrals

    NASA Astrophysics Data System (ADS)

    Russell, John

    2000-11-01

    A modified Orr-Sommerfeld equation that applies to the asymptotic suction boundary layer was reported by Bussmann & Münz in a wartime report dated 1942 and by Hughes & Reid in J.F.M. ( 23, 1965, p715). Fundamental systems of exact solutions of the Orr-Sommerfeld equation for this mean velocity distribution were reported by D. Grohne in an unpublished typescript dated 1950. Exact solutions of the equation of Bussmann, Münz, Hughes, & Reid were reported by P. Baldwin in Mathematika ( 17, 1970, p206). Grohne and Baldwin noticed that these exact solutions may be expressed either as Barnes integrals or as convolution integrals. In a later paper (Phil. Trans. Roy. Soc. A, 399, 1985, p321), Baldwin applied the convolution integrals in the contruction of large-Reynolds number asymptotic approximations that hold uniformly. The present talk discusses the subtleties that arise in the construction of such convolution integrals, including several not reported by Grohne or Baldwin. The aim is to recover the full set of seven solutions (one well balanced, three balanced, and three dominant-recessive) postulated by W.H. Reid in various works on the uniformly valid solutions.

  14. Exact solutions for a type of electron pairing model with spin-orbit interactions and Zeeman coupling.

    PubMed

    Liu, Jia; Han, Qiang; Shao, L B; Wang, Z D

    2011-07-08

    A type of electron pairing model with spin-orbit interactions or Zeeman coupling is solved exactly in the framework of the Richardson ansatz. Based on the exact solutions for the case with spin-orbit interactions, it is shown rigorously that the pairing symmetry is of the p + ip wave and the ground state possesses time-reversal symmetry, regardless of the strength of the pairing interaction. Intriguingly, how Majorana fermions can emerge in the system is also elaborated. Exact results are illustrated for two systems, respectively, with spin-orbit interactions and Zeeman coupling.

  15. Logical gaps in the approximate solutions of the social learning game and an exact solution.

    PubMed

    Dai, Wenjie; Wang, Xin; Di, Zengru; Wu, Jinshan

    2014-01-01

    After the social learning models were proposed, finding solutions to the games becomes a well-defined mathematical question. However, almost all papers on the games and their applications are based on solutions built either upon an ad-hoc argument or a twisted Bayesian analysis of the games. Here, we present logical gaps in those solutions and offer an exact solution of our own. We also introduce a minor extension to the original game so that not only logical differences but also differences in action outcomes among those solutions become visible.

  16. Traveling wavefront solutions to nonlinear reaction-diffusion-convection equations

    NASA Astrophysics Data System (ADS)

    Indekeu, Joseph O.; Smets, Ruben

    2017-08-01

    Physically motivated modified Fisher equations are studied in which nonlinear convection and nonlinear diffusion is allowed for besides the usual growth and spread of a population. It is pointed out that in a large variety of cases separable functions in the form of exponentially decaying sharp wavefronts solve the differential equation exactly provided a co-moving point source or sink is active at the wavefront. The velocity dispersion and front steepness may differ from those of some previously studied exact smooth traveling wave solutions. For an extension of the reaction-diffusion-convection equation, featuring a memory effect in the form of a maturity delay for growth and spread, also smooth exact wavefront solutions are obtained. The stability of the solutions is verified analytically and numerically.

  17. Interior radiances in optically deep absorbing media. 1: Exact solutions for one-dimensional model

    NASA Technical Reports Server (NTRS)

    Kattawar, G. W.; Plass, G. N.

    1973-01-01

    The exact solutions are obtained for a one dimensional model of a scattering and absorbing medium. The results are given for both the reflected and transmitted radiance for any arbitrary surface albedo as well as for the interior radiance. These same quantities are calculated by the matrix operator method. The relative error of the solutions is obtained by comparison with the exact solutions as well as by an error analysis of the equations. The importance of an accurate starting value for the reflection and transmission operators is shown. A fourth order Runge-Kutta method can be used to solve the differential equations satisfied by these operators in order to obtain such accurate starting values.

  18. Euclidean mirrors: enhanced vacuum decay from reflected instantons

    NASA Astrophysics Data System (ADS)

    Akal, Ibrahim; Moortgat-Pick, Gudrid

    2018-05-01

    We study the tunnelling of virtual matter–antimatter pairs from the quantum vacuum in the presence of a spatially uniform, time-dependent electric background composed of a strong, slow field superimposed with a weak, rapid field. After analytic continuation to Euclidean spacetime, we obtain from the instanton equations two critical points. While one of them is the closing point of the instanton path, the other serves as an Euclidean mirror which reflects and squeezes the instanton. It is this reflection and shrinking which is responsible for an enormous enhancement of the vacuum pair production rate. We discuss how important features of two different mechanisms can be analysed and understood via such a rotation in the complex plane. (a) Consistent with previous studies, we first discuss the standard assisted mechanism with a static strong field and certain weak fields with a distinct pole structure in order to show that the reflection takes place exactly at the poles. We also discuss the effect of possible sub-cycle structures. We extend this reflection picture then to weak fields which have no poles present and illustrate the effective reflections with explicit examples. An additional field strength dependence for the rate occurs in such cases. We analytically compute the characteristic threshold for the assisted mechanism given by the critical combined Keldysh parameter. We discuss significant differences between these two types of fields. For various backgrounds, we present the contributing instantons and perform analytical computations for the corresponding rates treating both fields nonperturbatively. (b) In addition, we also study the case with a nonstatic strong field which gives rise to the assisted dynamical mechanism. For different strong field profiles we investigate the impact on the critical combined Keldysh parameter. As an explicit example, we analytically compute the rate by employing the exact reflection points. The validity of the predictions for both mechanisms is confirmed by numerical computations.

  19. Exact solution for four-order acousto-optic Bragg diffraction with arbitrary initial conditions.

    PubMed

    Pieper, Ron; Koslover, Deborah; Poon, Ting-Chung

    2009-03-01

    An exact solution to the four-order acousto-optic (AO) Bragg diffraction problem with arbitrary initial conditions compatible with exact Bragg angle incident light is developed. The solution, obtained by solving a 4th-order differential equation, is formalized into a transition matrix operator predicting diffracted light orders at the exit of the AO cell in terms of the same diffracted light orders at the entrance. It is shown that the transition matrix is unitary and that this unitary matrix condition is sufficient to guarantee energy conservation. A comparison of analytical solutions with numerical predictions validates the formalism. Although not directly related to the approach used to obtain the solution, it was discovered that all four generated eigenvalues from the four-order AO differential matrix operator are expressed simply in terms of Euclid's Divine Proportion.

  20. Gravitational Instantons and Minimal Surfaces

    NASA Astrophysics Data System (ADS)

    Nutku, Y.

    1996-12-01

    We show that for every minimal surface in E3 there is a gravitational instanton, an exact solution of the Einstein field equations with Euclidean signature and anti-self-dual curvature. The explicit metric establishing this correspondence is presented and a new class of exact solutions are obtained.

  1. OPTRAN- OPTIMAL LOW THRUST ORBIT TRANSFERS

    NASA Technical Reports Server (NTRS)

    Breakwell, J. V.

    1994-01-01

    OPTRAN is a collection of programs that solve the problem of optimal low thrust orbit transfers between non-coplanar circular orbits for spacecraft with chemical propulsion systems. The programs are set up to find Hohmann-type solutions, with burns near the perigee and apogee of the transfer orbit. They will solve both fairly long burn-arc transfers and "divided-burn" transfers. Program modeling includes a spherical earth gravity model and propulsion system models for either constant thrust or constant acceleration. The solutions obtained are optimal with respect to fuel use: i.e., final mass of the spacecraft is maximized with respect to the controls. The controls are the direction of thrust and the thrust on/off times. Two basic types of programs are provided in OPTRAN. The first type is for "exact solution" which results in complete, exact tkme-histories. The exact spacecraft position, velocity, and optimal thrust direction are given throughout the maneuver, as are the optimal thrust switch points, the transfer time, and the fuel costs. Exact solution programs are provided in two versions for non-coplanar transfers and in a fast version for coplanar transfers. The second basic type is for "approximate solutions" which results in approximate information on the transfer time and fuel costs. The approximate solution is used to estimate initial conditions for the exact solution. It can be used in divided-burn transfers to find the best number of burns with respect to time. The approximate solution is useful by itself in relatively efficient, short burn-arc transfers. These programs are written in FORTRAN 77 for batch execution and have been implemented on a DEC VAX series computer with the largest program having a central memory requirement of approximately 54K of 8 bit bytes. The OPTRAN program were developed in 1983.

  2. Dark energy fingerprints in the nonminimal Wu-Yang wormhole structure

    NASA Astrophysics Data System (ADS)

    Balakin, Alexander B.; Zayats, Alexei E.

    2014-08-01

    We discuss new exact solutions to nonminimally extended Einstein-Yang-Mills equations describing spherically symmetric static wormholes supported by the gauge field of the Wu-Yang type in a dark energy environment. We focus on the analysis of three types of exact solutions to the gravitational field equations. Solutions of the first type relate to the model, in which the dark energy is anisotropic; i.e., the radial and tangential pressures do not coincide. Solutions of the second type correspond to the isotropic pressure tensor; in particular, we discuss the exact solution, for which the dark energy is characterized by the equation of state for a string gas. Solutions of the third type describe the dark energy model with constant pressure and energy density. For the solutions of the third type, we consider in detail the problem of horizons and find constraints for the parameters of nonminimal coupling and for the constitutive parameters of the dark energy equation of state, which guarantee that the nonminimal wormholes are traversable.

  3. Exact Solutions of Atmospheric (2+1)-Dimensional Nonlinear Incompressible Non-hydrostatic Boussinesq Equations

    NASA Astrophysics Data System (ADS)

    Liu, Ping; Wang, Ya-Xiong; Ren, Bo; Li, Jin-Hua

    2016-12-01

    Exact solutions of the atmospheric (2+1)-dimensional nonlinear incompressible non-hydrostatic Boussinesq (INHB) equations are researched by Combining function expansion and symmetry method. By function expansion, several expansion coefficient equations are derived. Symmetries and similarity solutions are researched in order to obtain exact solutions of the INHB equations. Three types of symmetry reduction equations and similarity solutions for the expansion coefficient equations are proposed. Non-traveling wave solutions for the INHB equations are obtained by symmetries of the expansion coefficient equations. Making traveling wave transformations on expansion coefficient equations, we demonstrate some traveling wave solutions of the INHB equations. The evolutions on the wind velocities, temperature perturbation and pressure perturbation are demonstrated by figures, which demonstrate the periodic evolutions with time and space. Supported by the National Natural Science Foundation of China under Grant Nos. 11305031 and 11305106, and Training Programme Foundation for Outstanding Young Teachers in Higher Education Institutions of Guangdong Province under Grant No. Yq2013205

  4. Symmetry reduction and exact solutions of two higher-dimensional nonlinear evolution equations.

    PubMed

    Gu, Yongyi; Qi, Jianming

    2017-01-01

    In this paper, symmetries and symmetry reduction of two higher-dimensional nonlinear evolution equations (NLEEs) are obtained by Lie group method. These NLEEs play an important role in nonlinear sciences. We derive exact solutions to these NLEEs via the [Formula: see text]-expansion method and complex method. Five types of explicit function solutions are constructed, which are rational, exponential, trigonometric, hyperbolic and elliptic function solutions of the variables in the considered equations.

  5. Applications of He's semi-inverse method, ITEM and GGM to the Davey-Stewartson equation

    NASA Astrophysics Data System (ADS)

    Zinati, Reza Farshbaf; Manafian, Jalil

    2017-04-01

    We investigate the Davey-Stewartson (DS) equation. Travelling wave solutions were found. In this paper, we demonstrate the effectiveness of the analytical methods, namely, He's semi-inverse variational principle method (SIVPM), the improved tan(φ/2)-expansion method (ITEM) and generalized G'/G-expansion method (GGM) for seeking more exact solutions via the DS equation. These methods are direct, concise and simple to implement compared to other existing methods. The exact solutions containing four types solutions have been achieved. The results demonstrate that the aforementioned methods are more efficient than the Ansatz method applied by Mirzazadeh (2015). Abundant exact travelling wave solutions including solitons, kink, periodic and rational solutions have been found by the improved tan(φ/2)-expansion and generalized G'/G-expansion methods. By He's semi-inverse variational principle we have obtained dark and bright soliton wave solutions. Also, the obtained semi-inverse variational principle has profound implications in physical understandings. These solutions might play important role in engineering and physics fields. Moreover, by using Matlab, some graphical simulations were done to see the behavior of these solutions.

  6. Coverage and control of constellations of elliptical inclined frozen lunar orbits

    NASA Technical Reports Server (NTRS)

    Ely, Todd A.

    2005-01-01

    A great deal of scientific interest exists regarding the permanently shadowed craters near the poles of the Moon where there may be frozen volatiles. These regions, particularly the Moon's South Pole, have been proposed for extensive robotic and human exploration. Unfortunately, they are typically not in view of Earth, and would require some form of communication relay to facilitate exploration via robotic and/or human missions. One solution for such a relay is a long-lived constellation of lunar telecommunication orbiters providing focused coverage at the pole of interest. Robust support requires this coverage to be continuous, redundant, and, in order to minimize costs, this constellation should consist of 3 satellites or fewer.

  7. Strategies for Optimal Control Design of Normal Acceleration Command Following on the F-16

    DTIC Science & Technology

    1992-12-01

    Padd approximation. This approximation has a pole at -40, and introduces a nonminimum phase zero at +40. In deriving the equation for normal acceleration...input signal. The mean not being exactly zero will surface in some simulation plots, but does not alter the point of showing general trends. Also...closer to reality, I will ’know that my goal has been accomplished. My honest belief is that general mixed H2/H.. optimization is the methodology of

  8. Groebner Basis Solutions to Satellite Trajectory Control by Pole Placement

    NASA Astrophysics Data System (ADS)

    Kukelova, Z.; Krsek, P.; Smutny, V.; Pajdla, T.

    2013-09-01

    Satellites play an important role, e.g., in telecommunication, navigation and weather monitoring. Controlling their trajectories is an important problem. In [1], an approach to the pole placement for the synthesis of a linear controller has been presented. It leads to solving five polynomial equations in nine unknown elements of the state space matrices of a compensator. This is an underconstrained system and therefore four of the unknown elements need to be considered as free parameters and set to some prior values to obtain a system of five equations in five unknowns. In [1], this system was solved for one chosen set of free parameters with the help of Dixon resultants. In this work, we study and present Groebner basis solutions to this problem of computation of a dynamic compensator for the satellite for different combinations of input free parameters. We show that the Groebner basis method for solving systems of polynomial equations leads to very simple solutions for all combinations of free parameters. These solutions require to perform only the Gauss-Jordan elimination of a small matrix and computation of roots of a single variable polynomial. The maximum degree of this polynomial is not greater than six in general but for most combinations of the input free parameters its degree is even lower. [1] B. Palancz. Application of Dixon resultant to satellite trajectory control by pole placement. Journal of Symbolic Computation, Volume 50, March 2013, Pages 79-99, Elsevier.

  9. Sampling with poling-based flux balance analysis: optimal versus sub-optimal flux space analysis of Actinobacillus succinogenes.

    PubMed

    Binns, Michael; de Atauri, Pedro; Vlysidis, Anestis; Cascante, Marta; Theodoropoulos, Constantinos

    2015-02-18

    Flux balance analysis is traditionally implemented to identify the maximum theoretical flux for some specified reaction and a single distribution of flux values for all the reactions present which achieve this maximum value. However it is well known that the uncertainty in reaction networks due to branches, cycles and experimental errors results in a large number of combinations of internal reaction fluxes which can achieve the same optimal flux value. In this work, we have modified the applied linear objective of flux balance analysis to include a poling penalty function, which pushes each new set of reaction fluxes away from previous solutions generated. Repeated poling-based flux balance analysis generates a sample of different solutions (a characteristic set), which represents all the possible functionality of the reaction network. Compared to existing sampling methods, for the purpose of generating a relatively "small" characteristic set, our new method is shown to obtain a higher coverage than competing methods under most conditions. The influence of the linear objective function on the sampling (the linear bias) constrains optimisation results to a subspace of optimal solutions all producing the same maximal fluxes. Visualisation of reaction fluxes plotted against each other in 2 dimensions with and without the linear bias indicates the existence of correlations between fluxes. This method of sampling is applied to the organism Actinobacillus succinogenes for the production of succinic acid from glycerol. A new method of sampling for the generation of different flux distributions (sets of individual fluxes satisfying constraints on the steady-state mass balances of intermediates) has been developed using a relatively simple modification of flux balance analysis to include a poling penalty function inside the resulting optimisation objective function. This new methodology can achieve a high coverage of the possible flux space and can be used with and without linear bias to show optimal versus sub-optimal solution spaces. Basic analysis of the Actinobacillus succinogenes system using sampling shows that in order to achieve the maximal succinic acid production CO₂ must be taken into the system. Solutions involving release of CO₂ all give sub-optimal succinic acid production.

  10. Exact solutions to the time-fractional differential equations via local fractional derivatives

    NASA Astrophysics Data System (ADS)

    Guner, Ozkan; Bekir, Ahmet

    2018-01-01

    This article utilizes the local fractional derivative and the exp-function method to construct the exact solutions of nonlinear time-fractional differential equations (FDEs). For illustrating the validity of the method, it is applied to the time-fractional Camassa-Holm equation and the time-fractional-generalized fifth-order KdV equation. Moreover, the exact solutions are obtained for the equations which are formed by different parameter values related to the time-fractional-generalized fifth-order KdV equation. This method is an reliable and efficient mathematical tool for solving FDEs and it can be applied to other non-linear FDEs.

  11. Exact Solutions for Nonlinear Development of a Kelvin-Helmholtz Instability for the Counterflow of Superfluid and Normal Components of Helium II.

    PubMed

    Lushnikov, Pavel M; Zubarev, Nikolay M

    2018-05-18

    Relative motion of the normal and superfluid components of helium II results in the quantum Kelvin-Helmholtz instability (KHI) at their common free surface. We found the integrability and exact growing solutions for the nonlinear stage of the development of that instability. Contrary to the usual KHI of the interface between two classical fluids, the dynamics of a helium II free surface allows reduction to the Laplace growth equation, which has an infinite number of exact solutions, including the generic formation of sharp cusps at the free surface in a finite time.

  12. Exact Solutions for Nonlinear Development of a Kelvin-Helmholtz Instability for the Counterflow of Superfluid and Normal Components of Helium II

    NASA Astrophysics Data System (ADS)

    Lushnikov, Pavel M.; Zubarev, Nikolay M.

    2018-05-01

    Relative motion of the normal and superfluid components of helium II results in the quantum Kelvin-Helmholtz instability (KHI) at their common free surface. We found the integrability and exact growing solutions for the nonlinear stage of the development of that instability. Contrary to the usual KHI of the interface between two classical fluids, the dynamics of a helium II free surface allows reduction to the Laplace growth equation, which has an infinite number of exact solutions, including the generic formation of sharp cusps at the free surface in a finite time.

  13. New exact solutions of the Tzitzéica-type equations in non-linear optics using the expa function method

    NASA Astrophysics Data System (ADS)

    Hosseini, K.; Ayati, Z.; Ansari, R.

    2018-04-01

    One specific class of non-linear evolution equations, known as the Tzitzéica-type equations, has received great attention from a group of researchers involved in non-linear science. In this article, new exact solutions of the Tzitzéica-type equations arising in non-linear optics, including the Tzitzéica, Dodd-Bullough-Mikhailov and Tzitzéica-Dodd-Bullough equations, are obtained using the expa function method. The integration technique actually suggests a useful and reliable method to extract new exact solutions of a wide range of non-linear evolution equations.

  14. Hierarchic models for laminated plates. Ph.D. Thesis

    NASA Technical Reports Server (NTRS)

    Actis, Ricardo Luis

    1991-01-01

    Structural plates and shells are three-dimensional bodies, one dimension of which happens to be much smaller than the other two. Thus, the quality of a plate or shell model must be judged on the basis of how well its exact solution approximates the corresponding three-dimensional problem. Of course, the exact solution depends not only on the choice of the model but also on the topology, material properties, loading and constraints. The desired degree of approximation depends on the analyst's goals in performing the analysis. For these reasons models have to be chosen adaptively. Hierarchic sequences of models make adaptive selection of the model which is best suited for the purposes of a particular analysis possible. The principles governing the formulation of hierarchic models for laminated plates are presented. The essential features of the hierarchic models described models are: (1) the exact solutions corresponding to the hierarchic sequence of models converge to the exact solution of the corresponding problem of elasticity for a fixed laminate thickness; and (2) the exact solution of each model converges to the same limit as the exact solution of the corresponding problem of elasticity with respect to the laminate thickness approaching zero. The formulation is based on one parameter (beta) which characterizes the hierarchic sequence of models, and a set of constants whose influence was assessed by a numerical sensitivity study. The recommended selection of these constants results in the number of fields increasing by three for each increment in the power of beta. Numerical examples analyzed with the proposed sequence of models are included and good correlation with the reference solutions was found. Results were obtained for laminated strips (plates in cylindrical bending) and for square and rectangular plates with uniform loading and with homogeneous boundary conditions. Cross-ply and angle-ply laminates were evaluated and the results compared with those of MSC/PROBE. Hierarchic models make the computation of any engineering data possible to an arbitrary level of precision within the framework of the theory of elasticity.

  15. Some Exact Solutions of a Nonintegrable Toda-type Equation

    NASA Astrophysics Data System (ADS)

    Kim, Chanju

    2018-05-01

    We study a Toda-type equation with two scalar fields which is not integrable and construct two families of exact solutions which are expressed in terms of rational functions. The equation appears in U(1) Chern-Simons theories coupled to two nonrelativistic matter fields with opposite charges. One family of solutions is a trivial embedding of Liouville-type solutions. The other family is obtained by transforming the equation into the Taubes vortex equation on the hyperbolic space. Though the Taubes equation is not integrable, a trivial vacuum solution provides nontrivial solutions to the original Toda-type equation.

  16. Solution of the advection-dispersion equation: Continuous load of finite duration

    USGS Publications Warehouse

    Runkel, R.L.

    1996-01-01

    Field studies of solute fate and transport in streams and rivers often involve an. experimental release of solutes at an upstream boundary for a finite period of time. A review of several standard references on surface-water-quality modeling indicates that the analytical solution to the constant-parameter advection-dispersion equation for this type of boundary condition has been generally overlooked. Here an exact analytical solution that considers a continuous load of unite duration is compared to an approximate analytical solution presented elsewhere. Results indicate that the exact analytical solution should be used for verification of numerical solutions and other solute-transport problems wherein a high level of accuracy is required. ?? ASCE.

  17. A new high-resolution kinematic model for the southern North Atlantic region: the Iberian plate kinematics since the Late Cretaceous

    NASA Astrophysics Data System (ADS)

    Macchiavelli, Chiara; Vergés, Jaume; Schettino, Antonio; Fernández, Manel; Turco, Eugenio; Torné, Montserrat; Casciello, Emilio

    2017-04-01

    We present the first high-resolution kinematic model for the southern North Atlantic since the late Cretaceous, in order to constrain the Iberian kinematics during the last 83 Myr. Assessing the detailed movements of the Iberian plate is crucial to constrain the kinematics of the Western Mediterranean region and to better understand the Pyrenees and Betic - Rif orogenic systems evolution. The new plate motions model for the Iberia - North America plate pair is accompanied by a high-resolution isochron map for the southern North Atlantic region, resulting from a re-examination of 400 ship tracks and 3 aeromagnetic tracks in the NGDC data base for the area between the Azores triple junction and 46° N. We derive a well-constrained kinematic solution for the relative motion between an independent Iberia and North America from seafloor spreading data despite the short length of the magnetic lineations and the scarcity of large-offset transform faults and fracture zones. Accurate finite reconstruction poles for the Iberia - North America conjugate plate pair between the Late Cretaceous (Chron 34, 83.5 Ma) and the present day (Chron 2A, 2.58 Ma) are calculated on the basis of a set of 100 magnetic profiles through an iterative method. Euler poles and associated angles of rotation are computed as follow. An initial rotation pole is calculated using only magnetic anomaly crossings. The initial large uncertainty associated with the first determination is reduced by generating a set of synthetic fracture zones associated with the initial pole and using points sampled along these structures in conjunction with magnetic anomaly crossings to calculate a new Euler pole and associated confidence ellipse. This procedure is repeated n times, generating a sequence of improving approximate solutions and stopped when the solution become stable excluding solutions that were inconsistent with geological constraints. We used these results to build a comprehensive kinematic model for the North America - Iberia - Europe - Africa - Morocco plate system. A set of plate reconstructions illustrates the Iberian plate kinematics and show plate boundaries and velocity fields since the Late Cretaceous attempting to reconcile the geology of Pyrenees and Betic - Rif chain and the kinematic of the southern North Atlantic Ocean. This research is supported by project ALPIMED (PIE-CSIC-201530E082)

  18. Exact-solution for cone-plate viscometry

    NASA Astrophysics Data System (ADS)

    Giacomin, A. J.; Gilbert, P. H.

    2017-11-01

    The viscosity of a Newtonian fluid is often measured by confining the fluid to the gap between a rotating cone that is perpendicular to a fixed disk. We call this experiment cone-plate viscometry. When the cone angle approaches π/2 , the viscometer gap is called narrow. The shear stress in the fluid, throughout a narrow gap, hardly departs from the shear stress exerted on the plate, and we thus call cone-plate flow nearly homogeneous. In this paper, we derive an exact solution for this slight heterogeneity, and from this, we derive the correction factors for the shear rate on the cone and plate, for the torque, and thus, for the measured Newtonian viscosity. These factors thus allow the cone-plate viscometer to be used more accurately, and with cone-angles well below π/2 . We find cone-plate flow field heterogeneity to be far slighter than previously thought. We next use our exact solution for the velocity to arrive at the exact solution for the temperature rise, due to viscous dissipation, in cone-plate flow subject to isothermal boundaries. Since Newtonian viscosity is a strong function of temperature, we expect our new exact solution for the temperature rise be useful to those measuring Newtonian viscosity, and especially so, to those using wide gaps. We include two worked examples to teach practitioners how to use our main results.

  19. The Spin Vector of (832) Karin

    NASA Astrophysics Data System (ADS)

    Slivan, Stephen M.; Molnar, L. A.

    2010-10-01

    We observed rotation lightcurves of Koronis family and Karin cluster member (832) Karin during its four consecutive apparitions in 2006-2009, and combined the new observations with previously published lightcurves to determine its spin vector orientation and preliminary model shape. Karin is a prograde rotator with a period of 18.352 h, spin obliquity near 41°, and pole ecliptic longitude near either 51° or 228°. Although the two ambiguous pole solutions are near the clustered pole solutions of four Koronis family members whose spins are thought to be trapped in a spin-orbit resonance (Vokrouhlický et al., 2003), Karin does not seem to be trapped in the resonance; this is consistent with the expectation that the 6 My age of Karin (Nesvorný et al., 2002) is too young for YORP torques to have modified its spin since its formation. The spin vector and shape results for Karin will constrain family formation models that include spin properties, and we discuss the Karin results in the context of the other members of the Karin cluster, the Karin parent body, and the parent body's siblings in the Koronis family.

  20. Bright and singular soliton solutions of the conformable time-fractional Klein-Gordon equations with different nonlinearities

    NASA Astrophysics Data System (ADS)

    Hosseini, Kamyar; Mayeli, Peyman; Ansari, Reza

    2018-07-01

    Finding the exact solutions of nonlinear fractional differential equations has gained considerable attention, during the past two decades. In this paper, the conformable time-fractional Klein-Gordon equations with quadratic and cubic nonlinearities are studied. Several exact soliton solutions, including the bright (non-topological) and singular soliton solutions are formally extracted by making use of the ansatz method. Results demonstrate that the method can efficiently handle the time-fractional Klein-Gordon equations with different nonlinearities.

  1. An exact plane-stress solution for a class of problems in orthotropic elasticity

    NASA Technical Reports Server (NTRS)

    Erb, D. A.; Cooper, P. A.; Weisshaar, T. A.

    1982-01-01

    An exact solution for the stress field within a rectangular slab of orthotropic material is found using a two dimensional Fourier series formulation. The material is required to be in plane stress, with general stress boundary conditions, and the principle axes of the material must be parallel to the sides of the rectangle. Two load cases similar to those encountered in materials testing are investigated using the solution. The solution method has potential uses in stress analysis of composite structures.

  2. Wide localized solutions of the parity-time-symmetric nonautonomous nonlinear Schrödinger equation

    NASA Astrophysics Data System (ADS)

    Meza, L. E. Arroyo; Dutra, A. de Souza; Hott, M. B.; Roy, P.

    2015-01-01

    By using canonical transformations we obtain localized (in space) exact solutions of the nonlinear Schrödinger equation (NLSE) with cubic and quintic space and time modulated nonlinearities and in the presence of time-dependent and inhomogeneous external potentials and amplification or absorption (source or drain) coefficients. We obtain a class of wide localized exact solutions of NLSE in the presence of a number of non-Hermitian parity-time (PT )-symmetric external potentials, which are constituted by a mixing of external potentials and source or drain terms. The exact solutions found here can be applied to theoretical studies of ultrashort pulse propagation in optical fibers with focusing and defocusing nonlinearities. We show that, even in the presence of gain or loss terms, stable solutions can be found and that the PT symmetry is an important feature to guarantee the conservation of the average energy of the system.

  3. New soliton solution to the longitudinal wave equation in a magneto-electro-elastic circular rod

    NASA Astrophysics Data System (ADS)

    Seadawy, Aly R.; Manafian, Jalil

    2018-03-01

    This paper examines the effectiveness of an integration scheme which called the extended trial equation method (ETEM) in exactly solving a well-known nonlinear equation of partial differential equations (PDEs). In this respect, the longitudinal wave equation (LWE) that arises in mathematical physics with dispersion caused by the transverse Poisson's effect in a magneto-electro-elastic (MEE) circular rod, which a series of exact traveling wave solutions for the aforementioned equation is formally extracted. Explicit new exact solutions are derived in different form such as dark solitons, bright solitons, solitary wave, periodic solitary wave, rational function, and elliptic function solutions of the longitudinal wave equation. The movements of obtained solutions are shown graphically, which helps to understand the physical phenomena of this longitudinal wave equation. Many other such types of nonlinear equations arising in non-destructive evaluation of structures made of the advanced MEE material can also be solved by this method.

  4. Exact Solution of a Faraday's Law Problem that Includes a Nonlinear Term and Its Implication for Perturbation Theory.

    ERIC Educational Resources Information Center

    Fulcher, Lewis P.

    1979-01-01

    Presents an exact solution to the nonlinear Faraday's law problem of a rod sliding on frictionless rails with resistance. Compares the results with perturbation calculations based on the methods of Poisson and Pincare and of Kryloff and Bogoliuboff. (Author/GA)

  5. Exact solution for a non-Markovian dissipative quantum dynamics.

    PubMed

    Ferialdi, Luca; Bassi, Angelo

    2012-04-27

    We provide the exact analytic solution of the stochastic Schrödinger equation describing a harmonic oscillator interacting with a non-Markovian and dissipative environment. This result represents an arrival point in the study of non-Markovian dynamics via stochastic differential equations. It is also one of the few exactly solvable models for infinite-dimensional systems. We compute the Green's function; in the case of a free particle and with an exponentially correlated noise, we discuss the evolution of Gaussian wave functions.

  6. Exact Solution of Mutator Model with Linear Fitness and Finite Genome Length

    NASA Astrophysics Data System (ADS)

    Saakian, David B.

    2017-08-01

    We considered the infinite population version of the mutator phenomenon in evolutionary dynamics, looking at the uni-directional mutations in the mutator-specific genes and linear selection. We solved exactly the model for the finite genome length case, looking at the quasispecies version of the phenomenon. We calculated the mutator probability both in the statics and dynamics. The exact solution is important for us because the mutator probability depends on the genome length in a highly non-trivial way.

  7. Exact Cosmological Models with Yang–Mills Fields on Lyra Manifold

    NASA Astrophysics Data System (ADS)

    Shchigolev, V. K.; Bezbatko, D. N.

    2018-04-01

    The present study deals with the Friedmann-Robertson-Walker cosmological models with Yang-Mills (YM) fields in Lyra geometry. The energy-momentum tensor of the YM fields for our models is obtained with the help of an exact solution to the YM equations with minimal coupling to gravity. Two specific exact solutions of the model are obtained regarding the effective equation of state and the exponential law of expansion. The physical and geometric behavior of the model is also discussed.

  8. Exact Exchange calculations for periodic systems: a real space approach

    NASA Astrophysics Data System (ADS)

    Natan, Amir; Marom, Noa; Makmal, Adi; Kronik, Leeor; Kuemmel, Stephan

    2011-03-01

    We present a real-space method for exact-exchange Kohn-Sham calculations of periodic systems. The method is based on self-consistent solutions of the optimized effective potential (OEP) equation on a three-dimensional non-orthogonal grid, using norm conserving pseudopotentials. These solutions can be either exact, using the S-iteration approach, or approximate, using the Krieger, Li, and Iafrate (KLI) approach. We demonstrate, using a variety of systems, the importance of singularity corrections and use of appropriate pseudopotentials.

  9. Exact Solutions for Wind-Driven Coastal Upwelling and Downwelling over Sloping Topography

    NASA Astrophysics Data System (ADS)

    Choboter, P.; Duke, D.; Horton, J.; Sinz, P.

    2009-12-01

    The dynamics of wind-driven coastal upwelling and downwelling are studied using a simplified dynamical model. Exact solutions are examined as a function of time and over a family of sloping topographies. Assumptions in the two-dimensional model include a frictionless ocean interior below the surface Ekman layer, and no alongshore dependence of the variables; however, dependence in the cross-shore and vertical directions is retained. Additionally, density and alongshore momentum are advected by the cross-shore velocity in order to maintain thermal wind. The time-dependent initial-value problem is solved with constant initial stratification and no initial alongshore flow. An alongshore pressure gradient is added to allow the cross-shore flow to be geostrophically balanced far from shore. Previously, this model has been used to study upwelling over flat-bottom and sloping topographies, but the novel feature in this work is the discovery of exact solutions for downwelling. These exact solutions are compared to numerical solutions from a primitive-equation ocean model, based on the Princeton Ocean Model, configured in a similar two-dimensional geometry. Many typical features of the evolution of density and velocity during downwelling are displayed by the analytical model.

  10. Exact results relating spin-orbit interactions in two-dimensional strongly correlated systems

    NASA Astrophysics Data System (ADS)

    Kucska, Nóra; Gulácsi, Zsolt

    2018-06-01

    A 2D square, two-bands, strongly correlated and non-integrable system is analysed exactly in the presence of many-body spin-orbit interactions via the method of Positive Semidefinite Operators. The deduced exact ground states in the high concentration limit are strongly entangled, and given by the spin-orbit coupling are ferromagnetic and present an enhanced carrier mobility, which substantially differs for different spin projections. The described state emerges in a restricted parameter space region, which however is clearly accessible experimentally. The exact solutions are provided via the solution of a matching system of equations containing 74 coupled, non-linear and complex algebraic equations. In our knowledge, other exact results for 2D interacting systems with spin-orbit interactions are not present in the literature.

  11. Alternate solution to generalized Bernoulli equations via an integrating factor: an exact differential equation approach

    NASA Astrophysics Data System (ADS)

    Tisdell, C. C.

    2017-08-01

    Solution methods to exact differential equations via integrating factors have a rich history dating back to Euler (1740) and the ideas enjoy applications to thermodynamics and electromagnetism. Recently, Azevedo and Valentino presented an analysis of the generalized Bernoulli equation, constructing a general solution by linearizing the problem through a substitution. The purpose of this note is to present an alternative approach using 'exact methods', illustrating that a substitution and linearization of the problem is unnecessary. The ideas may be seen as forming a complimentary and arguably simpler approach to Azevedo and Valentino that have the potential to be assimilated and adapted to pedagogical needs of those learning and teaching exact differential equations in schools, colleges, universities and polytechnics. We illustrate how to apply the ideas through an analysis of the Gompertz equation, which is of interest in biomathematical models of tumour growth.

  12. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Doebling, Scott William

    This paper documents the escape of high explosive (HE) products problem. The problem, first presented by Fickett & Rivard, tests the implementation and numerical behavior of a high explosive detonation and energy release model and its interaction with an associated compressible hydrodynamics simulation code. The problem simulates the detonation of a finite-length, one-dimensional piece of HE that is driven by a piston from one end and adjacent to a void at the other end. The HE equation of state is modeled as a polytropic ideal gas. The HE detonation is assumed to be instantaneous with an infinitesimal reaction zone. Viamore » judicious selection of the material specific heat ratio, the problem has an exact solution with linear characteristics, enabling a straightforward calculation of the physical variables as a function of time and space. Lastly, implementation of the exact solution in the Python code ExactPack is discussed, as are verification cases for the exact solution code.« less

  13. Exact coherent structures in an asymptotically reduced description of parallel shear flows

    NASA Astrophysics Data System (ADS)

    Beaume, Cédric; Knobloch, Edgar; Chini, Gregory P.; Julien, Keith

    2015-02-01

    A reduced description of shear flows motivated by the Reynolds number scaling of lower-branch exact coherent states in plane Couette flow (Wang J, Gibson J and Waleffe F 2007 Phys. Rev. Lett. 98 204501) is constructed. Exact time-independent nonlinear solutions of the reduced equations corresponding to both lower and upper branch states are found for a sinusoidal, body-forced shear flow. The lower branch solution is characterized by fluctuations that vary slowly along the critical layer while the upper branch solutions display a bimodal structure and are more strongly focused on the critical layer. The reduced equations provide a rational framework for investigations of subcritical spatiotemporal patterns in parallel shear flows.

  14. A new class of exact solutions of the Klein-Gordon equation of a charged particle interacting with an electromagnetic plane wave in a medium

    NASA Astrophysics Data System (ADS)

    Varró, Sándor

    2014-01-01

    Exact solutions are presented of the Klein-Gordon equation of a charged particle moving in a transverse monochromatic plasmon wave of arbitrary high amplitude, which propagates in an underdense plasma. These solutions are expressed in terms of Ince polynomials, forming a doubly infinite set, parametrized by discrete momentum components of the charged particle’s de Broglie wave along the polarization vector and along the propagation direction of the plasmon radiation. The envelope of the exact wavefunctions describes a high-contrast periodic structure of the particle density on the plasma length scale, which may have relevance in novel particle acceleration mechanisms.

  15. The hyperbolic step potential: Anti-bound states, SUSY partners and Wigner time delays

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gadella, M.; Kuru, Ş.; Negro, J., E-mail: jnegro@fta.uva.es

    We study the scattering produced by a one dimensional hyperbolic step potential, which is exactly solvable and shows an unusual interest because of its asymmetric character. The analytic continuation of the scattering matrix in the momentum representation has a branch cut and an infinite number of simple poles on the negative imaginary axis which are related with the so called anti-bound states. This model does not show resonances. Using the wave functions of the anti-bound states, we obtain supersymmetric (SUSY) partners which are the series of Rosen–Morse II potentials. We have computed the Wigner reflection and transmission time delays formore » the hyperbolic step and such SUSY partners. Our results show that the more bound states a partner Hamiltonian has the smaller is the time delay. We also have evaluated time delays for the hyperbolic step potential in the classical case and have obtained striking similitudes with the quantum case. - Highlights: • The scattering matrix of hyperbolic step potential is studied. • The scattering matrix has a branch cut and an infinite number of poles. • The poles are associated to anti-bound states. • Susy partners using antibound states are computed. • Wigner time delays for the hyperbolic step and partner potentials are compared.« less

  16. F-Expansion Method and New Exact Solutions of the Schrödinger-KdV Equation

    PubMed Central

    Filiz, Ali; Ekici, Mehmet; Sonmezoglu, Abdullah

    2014-01-01

    F-expansion method is proposed to seek exact solutions of nonlinear evolution equations. With the aid of symbolic computation, we choose the Schrödinger-KdV equation with a source to illustrate the validity and advantages of the proposed method. A number of Jacobi-elliptic function solutions are obtained including the Weierstrass-elliptic function solutions. When the modulus m of Jacobi-elliptic function approaches to 1 and 0, soliton-like solutions and trigonometric-function solutions are also obtained, respectively. The proposed method is a straightforward, short, promising, and powerful method for the nonlinear evolution equations in mathematical physics. PMID:24672327

  17. F-expansion method and new exact solutions of the Schrödinger-KdV equation.

    PubMed

    Filiz, Ali; Ekici, Mehmet; Sonmezoglu, Abdullah

    2014-01-01

    F-expansion method is proposed to seek exact solutions of nonlinear evolution equations. With the aid of symbolic computation, we choose the Schrödinger-KdV equation with a source to illustrate the validity and advantages of the proposed method. A number of Jacobi-elliptic function solutions are obtained including the Weierstrass-elliptic function solutions. When the modulus m of Jacobi-elliptic function approaches to 1 and 0, soliton-like solutions and trigonometric-function solutions are also obtained, respectively. The proposed method is a straightforward, short, promising, and powerful method for the nonlinear evolution equations in mathematical physics.

  18. Exact solution of a quantum forced time-dependent harmonic oscillator

    NASA Technical Reports Server (NTRS)

    Yeon, Kyu Hwang; George, Thomas F.; Um, Chung IN

    1992-01-01

    The Schrodinger equation is used to exactly evaluate the propagator, wave function, energy expectation values, uncertainty values, and coherent state for a harmonic oscillator with a time dependent frequency and an external driving time dependent force. These quantities represent the solution of the classical equation of motion for the time dependent harmonic oscillator.

  19. Rayleigh-Bloch waves trapped by a periodic perturbation: exact solutions

    NASA Astrophysics Data System (ADS)

    Merzon, A.; Zhevandrov, P.; Romero Rodríguez, M. I.; De la Paz Méndez, J. E.

    2018-06-01

    Exact solutions describing the Rayleigh-Bloch waves for the two-dimensional Helmholtz equation are constructed in the case when the refractive index is a sum of a constant and a small amplitude function which is periodic in one direction and of finite support in the other. These solutions are quasiperiodic along the structure and exponentially decay in the orthogonal direction. A simple formula for the dispersion relation of these waves is obtained.

  20. Exact solutions of the Navier-Stokes equations generalized for flow in porous media

    NASA Astrophysics Data System (ADS)

    Daly, Edoardo; Basser, Hossein; Rudman, Murray

    2018-05-01

    Flow of Newtonian fluids in porous media is often modelled using a generalized version of the full non-linear Navier-Stokes equations that include additional terms describing the resistance to flow due to the porous matrix. Because this formulation is becoming increasingly popular in numerical models, exact solutions are required as a benchmark of numerical codes. The contribution of this study is to provide a number of non-trivial exact solutions of the generalized form of the Navier-Stokes equations for parallel flow in porous media. Steady-state solutions are derived in the case of flows in a medium with constant permeability along the main direction of flow and a constant cross-stream velocity in the case of both linear and non-linear drag. Solutions are also presented for cases in which the permeability changes in the direction normal to the main flow. An unsteady solution for a flow with velocity driven by a time-periodic pressure gradient is also derived. These solutions form a basis for validating computational models across a wide range of Reynolds and Darcy numbers.

  1. Path Following in the Exact Penalty Method of Convex Programming.

    PubMed

    Zhou, Hua; Lange, Kenneth

    2015-07-01

    Classical penalty methods solve a sequence of unconstrained problems that put greater and greater stress on meeting the constraints. In the limit as the penalty constant tends to ∞, one recovers the constrained solution. In the exact penalty method, squared penalties are replaced by absolute value penalties, and the solution is recovered for a finite value of the penalty constant. In practice, the kinks in the penalty and the unknown magnitude of the penalty constant prevent wide application of the exact penalty method in nonlinear programming. In this article, we examine a strategy of path following consistent with the exact penalty method. Instead of performing optimization at a single penalty constant, we trace the solution as a continuous function of the penalty constant. Thus, path following starts at the unconstrained solution and follows the solution path as the penalty constant increases. In the process, the solution path hits, slides along, and exits from the various constraints. For quadratic programming, the solution path is piecewise linear and takes large jumps from constraint to constraint. For a general convex program, the solution path is piecewise smooth, and path following operates by numerically solving an ordinary differential equation segment by segment. Our diverse applications to a) projection onto a convex set, b) nonnegative least squares, c) quadratically constrained quadratic programming, d) geometric programming, and e) semidefinite programming illustrate the mechanics and potential of path following. The final detour to image denoising demonstrates the relevance of path following to regularized estimation in inverse problems. In regularized estimation, one follows the solution path as the penalty constant decreases from a large value.

  2. Path Following in the Exact Penalty Method of Convex Programming

    PubMed Central

    Zhou, Hua; Lange, Kenneth

    2015-01-01

    Classical penalty methods solve a sequence of unconstrained problems that put greater and greater stress on meeting the constraints. In the limit as the penalty constant tends to ∞, one recovers the constrained solution. In the exact penalty method, squared penalties are replaced by absolute value penalties, and the solution is recovered for a finite value of the penalty constant. In practice, the kinks in the penalty and the unknown magnitude of the penalty constant prevent wide application of the exact penalty method in nonlinear programming. In this article, we examine a strategy of path following consistent with the exact penalty method. Instead of performing optimization at a single penalty constant, we trace the solution as a continuous function of the penalty constant. Thus, path following starts at the unconstrained solution and follows the solution path as the penalty constant increases. In the process, the solution path hits, slides along, and exits from the various constraints. For quadratic programming, the solution path is piecewise linear and takes large jumps from constraint to constraint. For a general convex program, the solution path is piecewise smooth, and path following operates by numerically solving an ordinary differential equation segment by segment. Our diverse applications to a) projection onto a convex set, b) nonnegative least squares, c) quadratically constrained quadratic programming, d) geometric programming, and e) semidefinite programming illustrate the mechanics and potential of path following. The final detour to image denoising demonstrates the relevance of path following to regularized estimation in inverse problems. In regularized estimation, one follows the solution path as the penalty constant decreases from a large value. PMID:26366044

  3. Propagation of sound waves through a linear shear layer: A closed form solution

    NASA Technical Reports Server (NTRS)

    Scott, J. N.

    1978-01-01

    Closed form solutions are presented for sound propagation from a line source in or near a shear layer. The analysis was exact for all frequencies and was developed assuming a linear velocity profile in the shear layer. This assumption allowed the solution to be expressed in terms of parabolic cyclinder functions. The solution is presented for a line monopole source first embedded in the uniform flow and then in the shear layer. Solutions are also discussed for certain types of dipole and quadrupole sources. Asymptotic expansions of the exact solutions for small and large values of Strouhal number gave expressions which correspond to solutions previously obtained for these limiting cases.

  4. Details of Exact Low Prandtl Number Boundary-Layer Solutions for Forced and For Free Convection

    NASA Technical Reports Server (NTRS)

    Sparrow, E. M.; Gregg, J. L.

    1959-01-01

    A detailed report is given of exact (numerical) solutions of the laminar-boundary-layer equations for the Prandtl number range appropriate to liquid metals (0.003 to 0.03). Consideration is given to the following situations: (1) forced convection over a flat plate for the conditions of uniform wall temperature and uniform wall heat flux, and (2) free convection over an isothermal vertical plate. Tabulations of the new solutions are given in detail. Results are presented for the heat-transfer and shear-stress characteristics; temperature and velocity distributions are also shown. The heat-transfer results are correlated in terms of dimensionless parameters that vary only slightly over the entire liquid-metal range. Previous analytical and experimental work on low Prandtl number boundary layers is surveyed and compared with the new exact solutions.

  5. Exact finite element method analysis of viscoelastic tapered structures to transient loads

    NASA Technical Reports Server (NTRS)

    Spyrakos, Constantine Chris

    1987-01-01

    A general method is presented for determining the dynamic torsional/axial response of linear structures composed of either tapered bars or shafts to transient excitations. The method consists of formulating and solving the dynamic problem in the Laplace transform domain by the finite element method and obtaining the response by a numerical inversion of the transformed solution. The derivation of the torsional and axial stiffness matrices is based on the exact solution of the transformed governing equation of motion, and it consequently leads to the exact solution of the problem. The solution permits treatment of the most practical cases of linear tapered bars and shafts, and employs modeling of structures with only one element per member which reduces the number of degrees of freedom involved. The effects of external viscous or internal viscoelastic damping are also taken into account.

  6. Computational method for exact frequency-dependent rays on the basis of the solution of the Helmholtz equation

    NASA Astrophysics Data System (ADS)

    Protasov, M.; Gadylshin, K.

    2017-07-01

    A numerical method is proposed for the calculation of exact frequency-dependent rays when the solution of the Helmholtz equation is known. The properties of frequency-dependent rays are analysed and compared with classical ray theory and with the method of finite-difference modelling for the first time. In this paper, we study the dependence of these rays on the frequency of signals and show the convergence of the exact rays to the classical rays with increasing frequency. A number of numerical experiments demonstrate the distinctive features of exact frequency-dependent rays, in particular, their ability to penetrate into shadow zones that are impenetrable for classical rays.

  7. Exact finite elements for conduction and convection

    NASA Technical Reports Server (NTRS)

    Thornton, E. A.; Dechaumphai, P.; Tamma, K. K.

    1981-01-01

    An approach for developing exact one dimensional conduction-convection finite elements is presented. Exact interpolation functions are derived based on solutions to the governing differential equations by employing a nodeless parameter. Exact interpolation functions are presented for combined heat transfer in several solids of different shapes, and for combined heat transfer in a flow passage. Numerical results demonstrate that exact one dimensional elements offer advantages over elements based on approximate interpolation functions.

  8. On the exact solutions of high order wave equations of KdV type (I)

    NASA Astrophysics Data System (ADS)

    Bulut, Hasan; Pandir, Yusuf; Baskonus, Haci Mehmet

    2014-12-01

    In this paper, by means of a proper transformation and symbolic computation, we study high order wave equations of KdV type (I). We obtained classification of exact solutions that contain soliton, rational, trigonometric and elliptic function solutions by using the extended trial equation method. As a result, the motivation of this paper is to utilize the extended trial equation method to explore new solutions of high order wave equation of KdV type (I). This method is confirmed by applying it to this kind of selected nonlinear equations.

  9. Expanded solutions of force-free electrodynamics on general Kerr black holes

    NASA Astrophysics Data System (ADS)

    Li, Huiquan; Wang, Jiancheng

    2017-07-01

    In this work, expanded solutions of force-free magnetospheres on general Kerr black holes are derived through a radial distance expansion method. From the regular conditions both at the horizon and at spatial infinity, two previously known asymptotical solutions (one of them is actually an exact solution) are identified as the only solutions that satisfy the same conditions at the two boundaries. Taking them as initial conditions at the boundaries, expanded solutions up to the first few orders are derived by solving the stream equation order by order. It is shown that our extension of the exact solution can (partially) cure the problems of the solution: it leads to magnetic domination and a mostly timelike current for restricted parameters.

  10. Exact nonparaxial beams of the scalar Helmholtz equation.

    PubMed

    Rodríguez-Morales, Gustavo; Chávez-Cerda, Sabino

    2004-03-01

    It is shown that three-dimensional nonparaxial beams are described by the oblate spheroidal exact solutions of the Helmholtz equation. For what is believed to be the first time, their beam behavior is investigated and their corresponding parameters are defined. Using the fact that the beam width of the family of paraxial Gaussian beams is described by a hyperbola, we formally establish the connection between the physical parameters of nonparaxial spheroidal beam solutions and those of paraxial beams. These results are also helpful for investigating exact vector nonparaxial beams.

  11. The existence of a real pole-free solution of the fourth order analogue of the Painlevé I equation

    NASA Astrophysics Data System (ADS)

    Claeys, T.; Vanlessen, M.

    2007-05-01

    We establish the existence of a real solution y(x, T) with no poles on the real line of the following fourth order analogue of the Painlevé I equation: \\[ \\begin{equation*}x=Ty-\\left(\\case 1 6 y^3+\\case{1}{24} (y_x^2+2yy_{xx}) +\\case {1}{240} y_{xxxx}\\right).\\end{equation*} \\] This proves the existence part of a conjecture posed by Dubrovin. We obtain our result by proving the solvability of an associated Riemann-Hilbert problem through the approach of a vanishing lemma. In addition, by applying the Deift/Zhou steepest-descent method to this Riemann-Hilbert problem, we obtain the asymptotics for y(x, T) as x → ±∞.

  12. Using exact solutions to develop an implicit scheme for the baroclinic primitive equations

    NASA Technical Reports Server (NTRS)

    Marchesin, D.

    1984-01-01

    The exact solutions presently obtained by means of a novel method for nonlinear initial value problems are used in the development of numerical schemes for the computer solution of these problems. The method is applied to a new, fully implicit scheme on a vertical slice of the isentropic baroclinic equations. It was not possible to find a global scale phenomenon that could be simulated by the baroclinic primitive equations on a vertical slice.

  13. Benchmark problems and solutions

    NASA Technical Reports Server (NTRS)

    Tam, Christopher K. W.

    1995-01-01

    The scientific committee, after careful consideration, adopted six categories of benchmark problems for the workshop. These problems do not cover all the important computational issues relevant to Computational Aeroacoustics (CAA). The deciding factor to limit the number of categories to six was the amount of effort needed to solve these problems. For reference purpose, the benchmark problems are provided here. They are followed by the exact or approximate analytical solutions. At present, an exact solution for the Category 6 problem is not available.

  14. Spatial correlations and exact solution of the problem of the boson peak profile in amorphous media

    NASA Astrophysics Data System (ADS)

    Kirillov, Sviatoslav A.; A. Voyiatzis, George; Kolomiyets, Tatiana M.; H. Anastasiadis, Spiros

    1999-11-01

    Based on a model correlation function which covers spatial correlations from Gaussian to exponential, we have arrived at an exact analytic solution of the problem of the Boson peak profile in amorphous media. Probe fits made for polyisoprene and triacetin prove the working ability of the formulae obtained.

  15. Exact Solutions to Time-dependent Mdps

    NASA Technical Reports Server (NTRS)

    Boyan, Justin A.; Littman, Michael L.

    2000-01-01

    We describe an extension of the Markov decision process model in which a continuous time dimension is included in the state space. This allows for the representation and exact solution of a wide range of problems in which transitions or rewards vary over time. We examine problems based on route planning with public transportation and telescope observation scheduling.

  16. Perturbed Coulomb Potentials in the Klein-Gordon Equation: Quasi-Exact Solution

    NASA Astrophysics Data System (ADS)

    Baradaran, M.; Panahi, H.

    2018-05-01

    Using the Lie algebraic approach, we present the quasi-exact solutions of the relativistic Klein-Gordon equation for perturbed Coulomb potentials namely the Cornell potential, the Kratzer potential and the Killingbeck potential. We calculate the general exact expressions for the energies, corresponding wave functions and the allowed values of the parameters of the potential within the representation space of sl(2) Lie algebra. In addition, we show that the considered equations can be transformed into the Heun's differential equations and then we reproduce the results using the associated special functions. Also, we study the special case of the Coulomb potential and show that in the non-relativistic limit, the solution of the Klein-Gordon equation converges to that of Schrödinger equation.

  17. Ferrofluid patterns in Hele-Shaw cells: Exact, stable, stationary shape solutions.

    PubMed

    Lira, Sérgio A; Miranda, José A

    2016-01-01

    We investigate a quasi-two-dimensional system composed of an initially circular ferrofluid droplet surrounded by a nonmagnetic fluid of higher density. These immiscible fluids flow in a rotating Hele-Shaw cell, under the influence of an in-plane radial magnetic field. We focus on the situation in which destabilizing bulk magnetic field effects are balanced by stabilizing centrifugal forces. In this framing, we consider the interplay of capillary and magnetic normal traction effects in determining the fluid-fluid interface morphology. By employing a vortex-sheet formalism, we have been able to find a family of exact stationary N-fold polygonal shape solutions for the interface. A weakly nonlinear theory is then used to verify that such exact interfacial solutions are in fact stable.

  18. Twisted gravitational waves

    NASA Astrophysics Data System (ADS)

    Bini, Donato; Chicone, Carmen; Mashhoon, Bahram

    2018-03-01

    In general relativity (GR), linearized gravitational waves propagating in empty Minkowski spacetime along a fixed spatial direction have the property that the wave front is the Euclidean plane. Beyond the linear regime, exact plane waves in GR have been studied theoretically for a long time and many exact vacuum solutions of the gravitational field equations are known that represent plane gravitational waves. These have parallel rays and uniform wave fronts. It turns out, however, that GR also admits exact solutions representing gravitational waves propagating along a fixed direction that are nonplanar. The wave front is then nonuniform and the bundle of rays is twisted. We find a class of solutions representing nonplanar unidirectional gravitational waves and study some of the properties of these twisted waves.

  19. Rotation relaxation splitting for optimizing parallel RF excitation pulses with T1 - and T2 -relaxations in MRI

    NASA Astrophysics Data System (ADS)

    Majewski, Kurt

    2018-03-01

    Exact solutions of the Bloch equations with T1 - and T2 -relaxation terms for piecewise constant magnetic fields are numerically challenging. We therefore investigate an approximation for the achieved magnetization in which rotations and relaxations are split into separate operations. We develop an estimate for its accuracy and explicit first and second order derivatives with respect to the complex excitation radio frequency voltages. In practice, the deviation between an exact solution of the Bloch equations and this rotation relaxation splitting approximation seems negligible. Its computation times are similar to exact solutions without relaxation terms. We apply the developed theory to numerically optimize radio frequency excitation waveforms with T1 - and T2 -relaxations in several examples.

  20. Quantum decay model with exact explicit analytical solution

    NASA Astrophysics Data System (ADS)

    Marchewka, Avi; Granot, Er'El

    2009-01-01

    A simple decay model is introduced. The model comprises a point potential well, which experiences an abrupt change. Due to the temporal variation, the initial quantum state can either escape from the well or stay localized as a new bound state. The model allows for an exact analytical solution while having the necessary features of a decay process. The results show that the decay is never exponential, as classical dynamics predicts. Moreover, at short times the decay has a fractional power law, which differs from perturbation quantum method predictions. At long times the decay includes oscillations with an envelope that decays algebraically. This is a model where the final state can be either continuous or localized, and that has an exact analytical solution.

  1. Tethys Tops Saturn

    NASA Image and Video Library

    2016-07-11

    An illusion of perspective, Saturn's moon Tethys seems to hang above the planet's north pole in this view from NASA's Cassini spacecraft. Tethys (660 miles or 1,062 kilometers across) is actually farther away than Saturn in this image. Lacking visual clues about distance, our brains place the moon above Saturn's north pole. Tethys, like all of Saturn's major moons and its ring system, orbits almost exactly in the planet's equatorial plane. This view looks toward the sunlit side of the rings from about 17 degrees above the ring plane. The image was taken with the Cassini spacecraft's wide-angle camera on Jan. 26, 2015 using a spectral filter which preferentially admits wavelengths of near-infrared light centered at 752 nanometers. The view was acquired at a distance of approximately 2.1 million miles (3.4 million kilometers) from Saturn. Image scale on Saturn is 120 miles (200 kilometers) per pixel. Tethys has been brightened by a factor of three relative to Saturn to enhance its visibility. http://photojournal.jpl.nasa.gov/catalog/PIA20488

  2. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fischer, Nadine; Prestel, S.; Ritzmann, M.

    We present the first public implementation of antenna-based QCD initial- and final-state showers. The shower kernels are 2→3 antenna functions, which capture not only the collinear dynamics but also the leading soft (coherent) singularities of QCD matrix elements. We define the evolution measure to be inversely proportional to the leading poles, hence gluon emissions are evolved in a p ⊥ measure inversely proportional to the eikonal, while processes that only contain a single pole (e.g., g → qq¯) are evolved in virtuality. Non-ordered emissions are allowed, suppressed by an additional power of 1/Q 2. Recoils and kinematics are governed bymore » exact on-shell 2 → 3 phase-space factorisations. This first implementation is limited to massless QCD partons and colourless resonances. Tree-level matrix-element corrections are included for QCD up to O(α 4 s) (4 jets), and for Drell–Yan and Higgs production up to O(α 3 s) (V / H + 3 jets). Finally, the resulting algorithm has been made publicly available in Vincia 2.0.« less

  3. Clinical applications of optical coherence tomography in the posterior pole: the 2011 José Manuel Espino Lecture – Part II

    PubMed Central

    Arevalo, J Fernando; Lasave, Andres F; Arias, Juan D; Serrano, Martin A; Arevalo, Fernando A

    2013-01-01

    Optical coherence tomography (OCT) is a high-resolution, cross-sectional imaging technique that allows detailed assessment of retinal thickness and morphologic evaluation of the retinal layers. This technology has developed quickly over the past two decades. OCT imaging has rapidly been integrated into routine ophthalmic clinical practice and trials. It has complemented fluorescein angiography in many instances, especially in the diagnosis and management of retinal disorders, including diabetic macular edema and age-related macular degeneration. With OCT, the exact localization of pathologic features can be visualized in segmentation maps of the retina, and this has allowed OCT to be used to evaluate specific features that may serve as predictive factors in the prognosis and follow up of these pathologies. Therefore, it has become an important clinical and research tool for the diagnosis, follow up, treatment, and assessment of new treatment modalities for all diseases that affect the posterior pole of the eye. PMID:24235811

  4. Conformally symmetric traversable wormholes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Boehmer, Christian G.; Harko, Tiberiu; Lobo, Francisco S. N.

    2007-10-15

    Exact solutions of traversable wormholes are found under the assumption of spherical symmetry and the existence of a nonstatic conformal symmetry, which presents a more systematic approach in searching for exact wormhole solutions. In this work, a wide variety of solutions are deduced by considering choices for the form function, a specific linear equation of state relating the energy density and the pressure anisotropy, and various phantom wormhole geometries are explored. A large class of solutions impose that the spatial distribution of the exotic matter is restricted to the throat neighborhood, with a cutoff of the stress-energy tensor at amore » finite junction interface, although asymptotically flat exact solutions are also found. Using the 'volume integral quantifier', it is found that the conformally symmetric phantom wormhole geometries may, in principle, be constructed by infinitesimally small amounts of averaged null energy condition violating matter. Considering the tidal acceleration traversability conditions for the phantom wormhole geometry, specific wormhole dimensions and the traversal velocity are also deduced.« less

  5. Three-dimensional analytic model of the magnetic field for the Chalk River Superconducting Cyclotron

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Davies, W.G.; Lee-Whiting, G.E.; Douglas, S.R.

    1994-07-01

    A three-dimensional analytic model of the magnetic field for the TASCC cyclotron that satisfies Maxwell`s equations exactly has been constructed for use with the new differential-algebra orbit-dynamics code. The model includes: (1) the superconducting coils; (2) the saturated iron poles; (3) the partially saturated yoke; (4) the saturated-iron trim rods. Lines of dipole density along the edges of the hills account for the non-uniformities and edge effects and along with three yoke constants constitute the only free parameters.

  6. Regionalized Lunar South Pole Surface Navigation System Analysis

    NASA Technical Reports Server (NTRS)

    Welch, Bryan W.

    2008-01-01

    Apollo missions utilized Earth-based assets for navigation because the landings took place at lunar locations in constant view from the Earth. The new exploration campaign to the lunar south pole region will have limited Earth visibility, but the extent to which a navigation system comprised solely of Earth-based tracking stations will provide adequate navigation solutions in this region is unknown. This report presents a dilution-of-precision (DoP)-based, stationary surface navigation analysis of the performance of multiple lunar satellite constellations, Earth-based deep space network assets, and combinations thereof. Results show that kinematic and integrated solutions cannot be provided by the Earth-based deep space network stations. Also, the stationary surface navigation system needs to be operated either as a two-way navigation system or as a one-way navigation system with local terrain information, while the position solution is integrated over a short duration of time with navigation signals being provided by a lunar satellite constellation.

  7. Knotted optical vortices in exact solutions to Maxwell's equations

    NASA Astrophysics Data System (ADS)

    de Klerk, Albertus J. J. M.; van der Veen, Roland I.; Dalhuisen, Jan Willem; Bouwmeester, Dirk

    2017-05-01

    We construct a family of exact solutions to Maxwell's equations in which the points of zero intensity form knotted lines topologically equivalent to a given but arbitrary algebraic link. These lines of zero intensity, more commonly referred to as optical vortices, and their topology are preserved as time evolves and the fields have finite energy. To derive explicit expressions for these new electromagnetic fields that satisfy the nullness property, we make use of the Bateman variables for the Hopf field as well as complex polynomials in two variables whose zero sets give rise to algebraic links. The class of algebraic links includes not only all torus knots and links thereof, but also more intricate cable knots. While the unknot has been considered before, the solutions presented here show that more general knotted structures can also arise as optical vortices in exact solutions to Maxwell's equations.

  8. Opera: reconstructing optimal genomic scaffolds with high-throughput paired-end sequences.

    PubMed

    Gao, Song; Sung, Wing-Kin; Nagarajan, Niranjan

    2011-11-01

    Scaffolding, the problem of ordering and orienting contigs, typically using paired-end reads, is a crucial step in the assembly of high-quality draft genomes. Even as sequencing technologies and mate-pair protocols have improved significantly, scaffolding programs still rely on heuristics, with no guarantees on the quality of the solution. In this work, we explored the feasibility of an exact solution for scaffolding and present a first tractable solution for this problem (Opera). We also describe a graph contraction procedure that allows the solution to scale to large scaffolding problems and demonstrate this by scaffolding several large real and synthetic datasets. In comparisons with existing scaffolders, Opera simultaneously produced longer and more accurate scaffolds demonstrating the utility of an exact approach. Opera also incorporates an exact quadratic programming formulation to precisely compute gap sizes (Availability: http://sourceforge.net/projects/operasf/ ).

  9. Opera: Reconstructing Optimal Genomic Scaffolds with High-Throughput Paired-End Sequences

    PubMed Central

    Gao, Song; Sung, Wing-Kin

    2011-01-01

    Abstract Scaffolding, the problem of ordering and orienting contigs, typically using paired-end reads, is a crucial step in the assembly of high-quality draft genomes. Even as sequencing technologies and mate-pair protocols have improved significantly, scaffolding programs still rely on heuristics, with no guarantees on the quality of the solution. In this work, we explored the feasibility of an exact solution for scaffolding and present a first tractable solution for this problem (Opera). We also describe a graph contraction procedure that allows the solution to scale to large scaffolding problems and demonstrate this by scaffolding several large real and synthetic datasets. In comparisons with existing scaffolders, Opera simultaneously produced longer and more accurate scaffolds demonstrating the utility of an exact approach. Opera also incorporates an exact quadratic programming formulation to precisely compute gap sizes (Availability: http://sourceforge.net/projects/operasf/). PMID:21929371

  10. Solution of the exact equations for three-dimensional atmospheric entry using directly matched asymptotic expansions

    NASA Technical Reports Server (NTRS)

    Busemann, A.; Vinh, N. X.; Culp, R. D.

    1976-01-01

    The problem of determining the trajectories, partially or wholly contained in the atmosphere of a spherical, nonrotating planet, is considered. The exact equations of motion for three-dimensional, aerodynamically affected flight are derived. Modified Chapman variables are introduced and the equations are transformed into a set suitable for analytic integration using asymptotic expansions. The trajectory is solved in two regions: the outer region, where the force may be considered a gravitational field with aerodynamic perturbations, and the inner region, where the force is predominantly aerodynamic, with gravity as a perturbation. The two solutions are matched directly. A composite solution, valid everywhere, is constructed by additive composition. This approach of directly matched asymptotic expansions applied to the exact equations of motion couched in terms of modified Chapman variables yields an analytical solution which should prove to be a powerful tool for aerodynamic orbit calculations.

  11. Effect of zone size on the convergence of exact solutions for diffusion in single phase systems with planar, cylindrical or spherical geometry

    NASA Technical Reports Server (NTRS)

    Unnam, J.; Tenney, D. R.

    1981-01-01

    Exact solutions for diffusion in single phase binary alloy systems with constant diffusion coefficient and zero-flux boundary condition have been evaluated to establish the optimum zone size of applicability. Planar, cylindrical and spherical interface geometry, and finite, singly infinite, and doubly infinite systems are treated. Two solutions are presented for each geometry, one well suited to short diffusion times, and one to long times. The effect of zone-size on the convergence of these solutions is discussed. A generalized form of the diffusion solution for doubly infinite systems is proposed.

  12. Exact traveling wave solutions of the KP-BBM equation by using the new approach of generalized (G'/G)-expansion method.

    PubMed

    Alam, Md Nur; Akbar, M Ali

    2013-01-01

    The new approach of the generalized (G'/G)-expansion method is an effective and powerful mathematical tool in finding exact traveling wave solutions of nonlinear evolution equations (NLEEs) in science, engineering and mathematical physics. In this article, the new approach of the generalized (G'/G)-expansion method is applied to construct traveling wave solutions of the Kadomtsev-Petviashvili-Benjamin-Bona-Mahony (KP-BBM) equation. The solutions are expressed in terms of the hyperbolic functions, the trigonometric functions and the rational functions. By means of this scheme, we found some new traveling wave solutions of the above mentioned equation.

  13. Exact and approximate solutions for transient squeezing flow

    NASA Astrophysics Data System (ADS)

    Lang, Ji; Santhanam, Sridhar; Wu, Qianhong

    2017-10-01

    In this paper, we report two novel theoretical approaches to examine a fast-developing flow in a thin fluid gap, which is widely observed in industrial applications and biological systems. The problem is featured by a very small Reynolds number and Strouhal number, making the fluid convective acceleration negligible, while its local acceleration is not. We have developed an exact solution for this problem which shows that the flow starts with an inviscid limit when the viscous effect has no time to appear and is followed by a subsequent developing flow, in which the viscous effect continues to penetrate into the entire fluid gap. An approximate solution is also developed using a boundary layer integral method. This solution precisely captures the general behavior of the transient fluid flow process and agrees very well with the exact solution. We also performed numerical simulation using Ansys-CFX. Excellent agreement between the analytical and the numerical solutions is obtained, indicating the validity of the analytical approaches. The study presented herein fills the gap in the literature and will have a broad impact on industrial and biomedical applications.

  14. Eshelby problem of polygonal inclusions in anisotropic piezoelectric full- and half-planes

    NASA Astrophysics Data System (ADS)

    Pan, E.

    2004-03-01

    This paper presents an exact closed-form solution for the Eshelby problem of polygonal inclusion in anisotropic piezoelectric full- and half-planes. Based on the equivalent body-force concept of eigenstrain, the induced elastic and piezoelectric fields are first expressed in terms of line integral on the boundary of the inclusion with the integrand being the Green's function. Using the recently derived exact closed-form line-source Green's function, the line integral is then carried out analytically, with the final expression involving only elementary functions. The exact closed-form solution is applied to a square-shaped quantum wire within semiconductor GaAs full- and half-planes, with results clearly showing the importance of material orientation and piezoelectric coupling. While the elastic and piezoelectric fields within the square-shaped quantum wire could serve as benchmarks to other numerical methods, the exact closed-form solution should be useful to the analysis of nanoscale quantum-wire structures where large strain and electric fields could be induced by the misfit strain.

  15. Hydrodynamics beyond Navier-Stokes: exact solution to the lattice Boltzmann hierarchy.

    PubMed

    Ansumali, S; Karlin, I V; Arcidiacono, S; Abbas, A; Prasianakis, N I

    2007-03-23

    The exact solution to the hierarchy of nonlinear lattice Boltzmann (LB) kinetic equations in the stationary planar Couette flow is found at nonvanishing Knudsen numbers. A new method of solving LB kinetic equations which combines the method of moments with boundary conditions for populations enables us to derive closed-form solutions for all higher-order moments. A convergence of results suggests that the LB hierarchy with larger velocity sets is the novel way to approximate kinetic theory.

  16. Exact time-dependent solutions for a self-regulating gene.

    PubMed

    Ramos, A F; Innocentini, G C P; Hornos, J E M

    2011-06-01

    The exact time-dependent solution for the stochastic equations governing the behavior of a binary self-regulating gene is presented. Using the generating function technique to rephrase the master equations in terms of partial differential equations, we show that the model is totally integrable and the analytical solutions are the celebrated confluent Heun functions. Self-regulation plays a major role in the control of gene expression, and it is remarkable that such a microscopic model is completely integrable in terms of well-known complex functions.

  17. An exact solution of the Currie-Hill equations in 1 + 1 dimensional Minkowski space

    NASA Astrophysics Data System (ADS)

    Balog, János

    2014-11-01

    We present an exact two-particle solution of the Currie-Hill equations of Predictive Relativistic Mechanics in 1 + 1 dimensional Minkowski space. The instantaneous accelerations are given in terms of elementary functions depending on the relative particle position and velocities. The general solution of the equations of motion is given and by studying the global phase space of this system it is shown that this is a subspace of the full kinematic phase space.

  18. Exact finite elements for conduction and convection

    NASA Technical Reports Server (NTRS)

    Thornton, E. A.; Dechaumphai, P.; Tamma, K. K.

    1981-01-01

    An appproach for developing exact one dimensional conduction-convection finite elements is presented. Exact interpolation functions are derived based on solutions to the governing differential equations by employing a nodeless parameter. Exact interpolation functions are presented for combined heat transfer in several solids of different shapes, and for combined heat transfer in a flow passage. Numerical results demonstrate that exact one dimensional elements offer advantages over elements based on approximate interpolation functions. Previously announced in STAR as N81-31507

  19. Numerical Solution of the Electron Transport Equation in the Upper Atmosphere

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Woods, Mark Christopher; Holmes, Mark; Sailor, William C

    A new approach for solving the electron transport equation in the upper atmosphere is derived. The problem is a very stiff boundary value problem, and to obtain an accurate numerical solution, matrix factorizations are used to decouple the fast and slow modes. A stable finite difference method is applied to each mode. This solver is applied to a simplifieed problem for which an exact solution exists using various versions of the boundary conditions that might arise in a natural auroral display. The numerical and exact solutions are found to agree with each other to at least two significant digits.

  20. Localized light waves: Paraxial and exact solutions of the wave equation (a review)

    NASA Astrophysics Data System (ADS)

    Kiselev, A. P.

    2007-04-01

    Simple explicit localized solutions are systematized over the whole space of a linear wave equation, which models the propagation of optical radiation in a linear approximation. Much attention has been paid to exact solutions (which date back to the Bateman findings) that describe wave beams (including Bessel-Gauss beams) and wave packets with a Gaussian localization with respect to the spatial variables and time. Their asymptotics with respect to free parameters and at large distances are presented. A similarity between these exact solutions and harmonic in time fields obtained in the paraxial approximation based on the Leontovich-Fock parabolic equation has been studied. Higher-order modes are considered systematically using the separation of variables method. The application of the Bateman solutions of the wave equation to the construction of solutions to equations with dispersion and nonlinearity and their use in wavelet analysis, as well as the summation of Gaussian beams, are discussed. In addition, solutions localized at infinity known as the Moses-Prosser “acoustic bullets”, as well as their harmonic in time counterparts, “ X waves”, waves from complex sources, etc., have been considered. Everywhere possible, the most elementary mathematical formalism is used.

  1. The stationary sine-Gordon equation on metric graphs: Exact analytical solutions for simple topologies

    NASA Astrophysics Data System (ADS)

    Sabirov, K.; Rakhmanov, S.; Matrasulov, D.; Susanto, H.

    2018-04-01

    We consider the stationary sine-Gordon equation on metric graphs with simple topologies. Exact analytical solutions are obtained for different vertex boundary conditions. It is shown that the method can be extended for tree and other simple graph topologies. Applications of the obtained results to branched planar Josephson junctions and Josephson junctions with tricrystal boundaries are discussed.

  2. Exact Solution of Gas Dynamics Equations Through Reduced Differential Transform and Sumudu Transform Linked with Pades Approximants

    NASA Astrophysics Data System (ADS)

    Rao, T. R. Ramesh

    2018-04-01

    In this paper, we study the analytical method based on reduced differential transform method coupled with sumudu transform through Pades approximants. The proposed method may be considered as alternative approach for finding exact solution of Gas dynamics equation in an effective manner. This method does not require any discretization, linearization and perturbation.

  3. Exact Solutions of Linear Reaction-Diffusion Processes on a Uniformly Growing Domain: Criteria for Successful Colonization

    PubMed Central

    Simpson, Matthew J

    2015-01-01

    Many processes during embryonic development involve transport and reaction of molecules, or transport and proliferation of cells, within growing tissues. Mathematical models of such processes usually take the form of a reaction-diffusion partial differential equation (PDE) on a growing domain. Previous analyses of such models have mainly involved solving the PDEs numerically. Here, we present a framework for calculating the exact solution of a linear reaction-diffusion PDE on a growing domain. We derive an exact solution for a general class of one-dimensional linear reaction—diffusion process on 0

  4. Exact solutions of linear reaction-diffusion processes on a uniformly growing domain: criteria for successful colonization.

    PubMed

    Simpson, Matthew J

    2015-01-01

    Many processes during embryonic development involve transport and reaction of molecules, or transport and proliferation of cells, within growing tissues. Mathematical models of such processes usually take the form of a reaction-diffusion partial differential equation (PDE) on a growing domain. Previous analyses of such models have mainly involved solving the PDEs numerically. Here, we present a framework for calculating the exact solution of a linear reaction-diffusion PDE on a growing domain. We derive an exact solution for a general class of one-dimensional linear reaction-diffusion process on 0

  5. The method of generating functions in exact scalar field inflationary cosmology

    NASA Astrophysics Data System (ADS)

    Chervon, Sergey V.; Fomin, Igor V.; Beesham, Aroonkumar

    2018-04-01

    The construction of exact solutions in scalar field inflationary cosmology is of growing interest. In this work, we review the results which have been obtained with the help of one of the most effective methods, viz., the method of generating functions for the construction of exact solutions in scalar field cosmology. We also include in the debate the superpotential method, which may be considered as the bridge to the slow roll approximation equations. Based on the review, we suggest a classification for the generating functions, and find a connection for all of them with the superpotential.

  6. Multi-Body Orbit Architectures for Lunar South Pole Coverage

    NASA Technical Reports Server (NTRS)

    Grebow, D. J.; Ozimek, M. T.; Howell, K. C.; Folta, D. C.

    2006-01-01

    A potential ground station at the lunar south pole has prompted studies of orbit architectures that ensure adequate coverage. Constant communications can be achieved with two spacecraft in different combinations of Earth-Moon libration point orbits. Halo and vertical families, as well as other orbits near L1 and L2 are considered. The investigation includes detailed results using nine different orbits with periods ranging from 7 to 16 days. Natural solutions are generated in a full ephemeris model, including solar perturbations. A preliminary station-keeping analysis is also completed.

  7. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Xu, Xin-Ping, E-mail: xuxp@mail.ihep.ac.cn; Ide, Yusuke

    In the literature, there are numerous studies of one-dimensional discrete-time quantum walks (DTQWs) using a moving shift operator. However, there is no exact solution for the limiting probability distributions of DTQWs on cycles using a general coin or swapping shift operator. In this paper, we derive exact solutions for the limiting probability distribution of quantum walks using a general coin and swapping shift operator on cycles for the first time. Based on the exact solutions, we show how to generate symmetric quantum walks and determine the condition under which a symmetric quantum walk appears. Our results suggest that choosing various coinmore » and initial state parameters can achieve a symmetric quantum walk. By defining a quantity to measure the variation of symmetry, deviation and mixing time of symmetric quantum walks are also investigated.« less

  8. Comparison of two leading uniform theories of edge diffraction with the exact uniform asymptotic solution

    NASA Technical Reports Server (NTRS)

    Boersma, J.; Rahmat-Samii, Y.

    1980-01-01

    The diffraction of an arbitrary cylindrical wave by a half-plane has been treated by Rahmat-Samii and Mittra who used a spectral domain approach. In this paper, their exact solution for the total field is expressed in terms of a new integral representation. For large wave number k, two rigorous procedures are described for the exact uniform asymptotic expansion of the total field solution. The uniform expansions obtained are valid in the entire space, including transition regions around the shadow boundaries. The final results are compared with the formulations of two leading uniform theories of edge diffraction, namely, the uniform asymptotic theory and the uniform theory of diffraction. Some unique observations and conclusions are made in relating the two theories.

  9. Algebraic Construction of Exact Difference Equations from Symmetry of Equations

    NASA Astrophysics Data System (ADS)

    Itoh, Toshiaki

    2009-09-01

    Difference equations or exact numerical integrations, which have general solutions, are treated algebraically. Eliminating the symmetries of the equation, we can construct difference equations (DCE) or numerical integrations equivalent to some ODEs or PDEs that means both have the same solution functions. When arbitrary functions are given, whether we can construct numerical integrations that have solution functions equal to given function or not are treated in this work. Nowadays, Lie's symmetries solver for ODE and PDE has been implemented in many symbolic software. Using this solver we can construct algebraic DCEs or numerical integrations which are correspond to some ODEs or PDEs. In this work, we treated exact correspondence between ODE or PDE and DCE or numerical integration with Gröbner base and Janet base from the view of Lie's symmetries.

  10. Exact models for isotropic matter

    NASA Astrophysics Data System (ADS)

    Thirukkanesh, S.; Maharaj, S. D.

    2006-04-01

    We study the Einstein-Maxwell system of equations in spherically symmetric gravitational fields for static interior spacetimes. The condition for pressure isotropy is reduced to a recurrence equation with variable, rational coefficients. We demonstrate that this difference equation can be solved in general using mathematical induction. Consequently, we can find an explicit exact solution to the Einstein-Maxwell field equations. The metric functions, energy density, pressure and the electric field intensity can be found explicitly. Our result contains models found previously, including the neutron star model of Durgapal and Bannerji. By placing restrictions on parameters arising in the general series, we show that the series terminate and there exist two linearly independent solutions. Consequently, it is possible to find exact solutions in terms of elementary functions, namely polynomials and algebraic functions.

  11. Can GRACE Explain Some of the Main Interannual Polar Motion Signatures?

    NASA Astrophysics Data System (ADS)

    Adhikari, S.; Ivins, E. R.; Larour, E. Y.

    2016-12-01

    GRACE has provided a series of monthly solutions for water mass transport that now span a 14-year period. A natural question to ask is how much of this mass transport information might be used to reconstruct, theoretically, the non-tidal and non-Chandlerian polar motion at interannual time scales. Reconstruction of the pole position at interannual time scales since 2002 has been performed by Chen et al. (2013, GRL) and Adhikari and Ivins (2016, Science Advances). (The main feature of polar motion that has been evolving since the mid 1990's is the increasing dominance of Greenland ice mass loss.) Here we discuss this reconstruction and the level of error that occurs because of missing information about the spherical harmonic degree 1 and 2 terms and the lack of terms associated with angular momentum transfer in the Louiville equations. Using GRACE observations and complementary solutions of self-attraction/loading problem on an elastically compressible rotating earth, we show that ice mass losses from polar ice sheets, and when combined with changes in continental hydrology, explain nearly the entire amplitude (83±23%) and mean directional shift (within 5.9±7.6°) of recently observed eastward polar motion. We also show that decadal scale pole variations are directly linked to global changes in continental hydrology. The energy sources for such motions are likely to be associated with decadal scale ocean and atmospheric oscillations that also drive 20th century continental wet-dry variability. Interannual variability in pole position, therefore, offers a tool for assessing past stability of our climate, and for the future, now faced with an increased intensity in the water cycle and more vulnerable to ice sheet instability. Figure caption: Observed and reconstructed mean annual pole positions with respect to the 2003-2015 mean position. Blue error band is associated with the reconstructed solution; red signifies additional errors that are related to uncertainty in the long-term linear trend. Notice the interannual variability during the GRACE period.

  12. Polymer poling characterization using second harmonic generation (SHG)

    NASA Astrophysics Data System (ADS)

    Tellier, Gildas; Averty, Dominique; Blart, Errol; Boisrobert, Christian; Gundel, Hartmut; Le Tacon, Sylvain; Monnereau, Cyrille; Odobel, Fabrice; Seveno, Raynald

    2006-04-01

    Several polymer molecules have structures which are suitable for the non-linear optic applications. We report on the design and fabrication of a high performance electro-optic modulator made of polymer thin films. The polymer we study contains a chromophore based on Disperse Red One covalently grafted to a host-matrix. The polymer materials are deposited in thin layers on a glass substrate by chemical solution deposition, either by spin-coating or by dip-coating. The thickness of the films is ranging from a hundred nanometers to several micrometers. Initially, the polymer molecules are randomly oriented and the films are isotropic, hence no electro-optic effect can be observed. In order to break the symmetry and align the chromophores, the films are submitted to the so-called corona poling process. As a result, their structure become non-centrosymmetric and the second-order susceptibility is no longer zero. The corona poling method consists of applying a high electric field to the polymer by means of a needle electrode, placed above the polymer film which is posed on a grounded sample support electrode. Thermal regulation of the support electrode allows to control the temperature during the poling of the films. Once the poling process has been established, a chemical cross-linking function is thermally activated in order to fix the orientation of the chromophores in the polymer matrix. The orientation and its stability in time is evaluated with a Second Harmonic Generation measurement set-up using the Makers Fringes configuration. We studied the influence of the poling temperature, the distance between the corona needle electrode and the sample, the high voltage applied, and the duration of the poling process on the efficiency of chromophore orientation in order to optimize the poling procedure. Finally, aging of poled polymer samples has been investigated at elevated temperatures, confirming the stability of the cross-linking process.

  13. Some new exact solitary wave solutions of the van der Waals model arising in nature

    NASA Astrophysics Data System (ADS)

    Bibi, Sadaf; Ahmed, Naveed; Khan, Umar; Mohyud-Din, Syed Tauseef

    2018-06-01

    This work proposes two well-known methods, namely, Exponential rational function method (ERFM) and Generalized Kudryashov method (GKM) to seek new exact solutions of the van der Waals normal form for the fluidized granular matter, linked with natural phenomena and industrial applications. New soliton solutions such as kink, periodic and solitary wave solutions are established coupled with 2D and 3D graphical patterns for clarity of physical features. Our comparison reveals that the said methods excel several existing methods. The worked-out solutions show that the suggested methods are simple and reliable as compared to many other approaches which tackle nonlinear equations stemming from applied sciences.

  14. Comment on "exact solutions of the derivative nonlinear Schrödinger equation for a nonlinear transmission line".

    PubMed

    Nickel, J; Schürmann, H W

    2007-03-01

    In a recent article Kengne and Liu [Phys. Rev. E 73, 026603 (2006)] have presented a number of exact elliptic solutions for a derivative nonlinear Schrödinger equation. It is the aim of this Comment to point out that all these solutions given in Secs. II and III of this article (referred to as KL in the following) are subcases of the general solution of Eq. (KL.9). Conditions for the parameters A-E of the solutions given by Kengne and Liu can be found from general conditions for solitary and periodic elliptic solutions as shown in the following. Positive and bounded solutions can be found by considering the phase diagram. Therefore, the comment of Kengne and Liu that "we find its particular positive bounded solutions" can be specified.

  15. An entropy maximization problem related to optical communication

    NASA Technical Reports Server (NTRS)

    Mceliece, R. J.; Rodemich, E. R.; Swanson, L.

    1986-01-01

    In relation to a problem in optical communication, the paper considers the general problem of maximizing the entropy of a stationary radom process that is subject to an average transition cost constraint. By using a recent result of Justesen and Hoholdt, an exact solution to the problem is presented and a class of finite state encoders that give a good approximation to the exact solution is suggested.

  16. Chapter 5. Hidden Symmetry and Exact Solutions in Einstein Gravity

    NASA Astrophysics Data System (ADS)

    Yasui, Y.; Houri, T.

    Conformal Killing-Yano tensors are introduced as ageneralization of Killing vectors. They describe symmetries of higher-dimensional rotating black holes. In particular, a rank-2 closed conformal Killing-Yano tensor generates the tower of both hidden symmetries and isometries. We review a classification of higher-dimensional spacetimes admitting such a tensor, and present exact solutions to the Einstein equations for these spacetimes.

  17. Exact solutions for layered thermocapillary convection of a viscous incompressible fluid with specified stresses on the bottom

    NASA Astrophysics Data System (ADS)

    Prosviryakov, E. Yu.; Spevak, L. F.

    2017-12-01

    A new exact solution of the Oberbeck-Boussinesq system is found. The Marangoni thermocapillary convection in an infinite fluid layer is described. It is demonstrated that the specification of tangential stresses at both boundaries of the layered velocity field is nonstationary. Velocities describe a superposition of unidirectional flows with an intermediate time interval when there are counterflows.

  18. Exact periodic solutions of the sixth-order generalized Boussinesq equation

    NASA Astrophysics Data System (ADS)

    Kamenov, O. Y.

    2009-09-01

    This paper examines a class of nonlinear sixth-order generalized Boussinesq-like equations (SGBE): utt = uxx + 3(u2)xx + uxxxx + αuxxxxxx, α in R, depending on the positive parameter α. Hirota's bilinear transformation method is applied to the above class of non-integrable equations and exact periodic solutions have been obtained. The results confirmed the well-known nonlinear superposition principle.

  19. Bianchi class A models in Sàez-Ballester's theory

    NASA Astrophysics Data System (ADS)

    Socorro, J.; Espinoza-García, Abraham

    2012-08-01

    We apply the Sàez-Ballester (SB) theory to Bianchi class A models, with a barotropic perfect fluid in a stiff matter epoch. We obtain exact classical solutions à la Hamilton for Bianchi type I, II and VIh=-1 models. We also find exact quantum solutions to all Bianchi Class A models employing a particular ansatz for the wave function of the universe.

  20. Steady-state solution of the semi-empirical diffusion equation for area sources. [air pollution studies

    NASA Technical Reports Server (NTRS)

    Lebedeff, S. A.; Hameed, S.

    1975-01-01

    The problem investigated can be solved exactly in a simple manner if the equations are written in terms of a similarity variable. The exact solution is used to explore two questions of interest in the modelling of urban air pollution, taking into account the distribution of surface concentration downwind of an area source and the distribution of concentration with height.

  1. Ferrofluid patterns in a radial magnetic field: linear stability, nonlinear dynamics, and exact solutions.

    PubMed

    Oliveira, Rafael M; Miranda, José A; Leandro, Eduardo S G

    2008-01-01

    The response of a ferrofluid droplet to a radial magnetic field is investigated, when the droplet is confined in a Hele-Shaw cell. We study how the stability properties of the interface and the shape of the emerging patterns react to the action of the magnetic field. At early linear stages, it is found that the radial field is destabilizing and determines the growth of fingering structures at the interface. In the weakly nonlinear regime, we have verified that the magnetic field favors the formation of peaked patterned structures that tend to become sharper and sharper as the magnitude of the magnetic effects is increased. A more detailed account of the pattern morphology is provided by the determination of nontrivial exact stationary solutions for the problem with finite surface tension. These solutions are obtained analytically and reveal the development of interesting polygon-shaped and starfishlike patterns. For sufficiently large applied fields or magnetic susceptibilities, pinch-off phenomena are detected, tending to occur near the fingertips. We have found that the morphological features obtained from the exact solutions are consistent with our linear and weakly nonlinear predictions. By contrasting the exact solutions for ferrofluids under radial field with those obtained for rotating Hele-Shaw flows with ordinary nonmagnetic fluids, we deduce that they coincide in the limit of very small susceptibilities.

  2. Codimension-2 Brane Black Holes

    NASA Astrophysics Data System (ADS)

    Zamorano, Nelson; Arias, Cesar; Ordenes, Ariel; Guzman, Francisco

    2012-03-01

    We analyze the geometry associated to a six dimensional solution of the Einstein's equations. It describes a Schwarzschild de-Sitter black hole on a 3-brane, surrounded by a two dimensional compact bulk. A four dimensional effective cosmological constant and a Planck mass are matched to their six dimensional counterpart. Deviation from Newton's law are computed in both of the solutions found. To learn about the geometry of the bulk, we study the geodesics in this sector. At least, in our opinion, there are some features of these solutions that makes worth to pursue this analysis. The singularity associated to the warped bulk is controlled by the mass M of the black hole. It vanishes if we set M=0. In the same context, it makes an interesting problem to study the Gregory-Laflamme instability in this context [1]. Another feature is the rugby ball type of geometry exhibited by these solutions [2]. They end up in two conical singularities at its respective poles. The branes are located precisely at the poles. Besides, a Wick's rotation generates a connection between different solutions. [4pt] [1] R. Gregory and R. Laflamme, Phys. Rev Lett., 70,2837 (1993)[0pt] [2] S. M. Carroll and M. M. Guica, arXiv:hep-th/0302067

  3. Apparatus and method for continuous electroplating. [Patent application

    DOEpatents

    Conlon, T.P. Jr.; Holmes, S.D.

    1981-11-19

    An apparatus and method are disclosed for performing a continuous electroplating process upon an elongate conductive stock article. A closed housing assembly retaining an electroplating solution and having a conductive housing body and flexible, nonconductive end walls is connected to the positive pole of a source of electromotive force. The end walls have an aperture for receiving the conducting stock article in sliding and sealing contact. The stock article is connected to the negative pole of the source of electromotive force. The conductive housing body and the section of the conductive stock article within the housing body are coextensive, coaxial and spaced a uniform distance apart. The housing body has an inlet at the bottom and an outlet at the top allowing the housing assembly to fill completely with plating solution. The inlet has a reduced nozzle to create turbulence and spiral circulating motion of the plating solution moved by a pump connected by nonconductive conduits. The solution is circulated through an open reservoir. A coolant may be conveyed through the interior in a hollow stock article to cool the surface being electroplated. Different sizes of coaxial metal insert sleeves may be telescopically received in the housing body.

  4. Local Lunar Gravity Field Analysis over the South Pole-aitken Basin from SELENE Farside Tracking Data

    NASA Technical Reports Server (NTRS)

    Goossens, Sander Johannes; Ishihara, Yoshiaki; Matsumoto, Koji; Sasaki, Sho

    2012-01-01

    We present a method with which we determined the local lunar gravity field model over the South Pole-Aitken (SPA) basin on the farside of the Moon by estimating adjustments to a global lunar gravity field model using SELENE tracking data. Our adjustments are expressed in localized functions concentrated over the SPA region in a spherical cap with a radius of 45deg centered at (191.1 deg E, 53.2 deg S), and the resolution is equivalent to a 150th degree and order spherical harmonics expansion. The new solution over SPA was used in several applications of geophysical analysis. It shows an increased correlation with high-resolution lunar topography in the frequency band l = 40-70, and admittance values are slightly different and more leveled when compared to other, global gravity field models using the same data. The adjustments expressed in free-air anomalies and differences in Bouguer anomalies between the local solution and the a priori global solution correlate with topographic surface features. The Moho structure beneath the SPA basin is slightly modified in our solution, most notably at the southern rim of the Apollo basin and around the Zeeman crater

  5. [Studies for analyzing restricted ingredients such as phenylbenzoimidazole sulfonic acid].

    PubMed

    Tokunaga, Hiroshi; Mori, Kenichiro; Onuki, Nahomi; Nosaka, Tomio; Doi, Kayo; Sakaguchi, Hiroshi; Fujii, Makiko; Takano, Katuhiro; Hayashi, Masato; Yoshizawa, Kenichi; Shimamura, Kimio; Sato, Nobuo

    2006-01-01

    Phenylbenzoimidazol sulfonic acid (PBS) is a kind of sunscreens in cosmetics and is nominated as the restricted ingredients in cosmetics in Japanese Pharmaceutical Affairs Act. So the analytical method for PBS was investigated by HPLC. 1.0 g of the lotions with 1.0% PBS was exactly weighed, put into a 50-mL volumetric flask. Water was added to make exactly 50 mL and this mixture was used as the sample solution. On the other hand, 1.0 g of the creams with 1.0% PBS was exactly weighed, put into a beaker. After adding 1 mL of tetrahydrofuran and dissolving the cream, that mixture was transferred to a 50-mL volumetric flask. And then the beaker was rinsed with 1 mL of tetrahydrofuran and the rinsed solution was put together into the volumetric flask. After adding water to the volumetric flask to make exactly 50 mL, this mixture was used as the sample solution. If necessary, the mixture was filtrated with a membrane filter (0.45 microm). 5.0 mL of the sample solution was pipetted and put into a 200-mL volumetric flask. After adding water to make exactly 200 mL, 20 microL of this solution was analyzed by HPLC using the ODS column (CAPCELL PAK C18 column, 4.6 mm i.d. x 250 mm), the mixture of 40 mmol/L acetic buffer (pH 3.4) and acetonitrile (3:1) with 0.8 mmol/L dodecyltrimethyl ammonium bromide and the detection wavelength of 305 nm. The working curve from 0.5 to 20.0 microg/mL showed a linear line between the concentrations of PBS and the peak areas. There was no interference of peak of PBS from the lotion and cream.

  6. Exact analytic solution for non-linear density fluctuation in a ΛCDM universe

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yoo, Jaiyul; Gong, Jinn-Ouk, E-mail: jyoo@physik.uzh.ch, E-mail: jinn-ouk.gong@apctp.org

    We derive the exact third-order analytic solution of the matter density fluctuation in the proper-time hypersurface in a ΛCDM universe, accounting for the explicit time-dependence and clarifying the relation to the initial condition. Furthermore, we compare our analytic solution to the previous calculation in the comoving gauge, and to the standard Newtonian perturbation theory by providing Fourier kernels for the relativistic effects. Our results provide an essential ingredient for a complete description of galaxy bias in the relativistic context.

  7. Closed timelike curves produced by pairs of moving cosmic strings - Exact solutions

    NASA Technical Reports Server (NTRS)

    Gott, J. Richard, III

    1991-01-01

    Exact solutions of Einstein's field equations are presented for the general case of two moving straight cosmic strings that do not intersect. The solutions for parallel cosmic strings moving in opposite directions show closed timelike curves (CTCs) that circle the two strings as they pass, allowing observers to visit their own past. Similar results occur for nonparallel strings, and for masses in (2+1)-dimensional spacetime. For finite string loops the possibility that black-hole formation may prevent the formation of CTCs is discussed.

  8. An exact solution for a thick domain wall in general relativity

    NASA Technical Reports Server (NTRS)

    Goetz, Guenter; Noetzold, Dirk

    1989-01-01

    An exact solution of the Einstein equations for a static, planar domain wall with finite thickness is presented. At infinity, density and pressure vanish and the space-time tends to the Minkowski vacuum on one side of the wall and to the Taub vacuum on the other side. A surprising feature of this solution is that the density and pressure distribution are symmetric about the central plane of the wall whereas the space-time metric and therefore also the gravitational field experienced by a test particle is asymmetric.

  9. Exact solutions for network rewiring models

    NASA Astrophysics Data System (ADS)

    Evans, T. S.

    2007-03-01

    Evolving networks with a constant number of edges may be modelled using a rewiring process. These models are used to describe many real-world processes including the evolution of cultural artifacts such as family names, the evolution of gene variations, and the popularity of strategies in simple econophysics models such as the minority game. The model is closely related to Urn models used for glasses, quantum gravity and wealth distributions. The full mean field equation for the degree distribution is found and its exact solution and generating solution are given.

  10. Exact Solution of the Gyration Radius of an Individual's Trajectory for a Simplified Human Regular Mobility Model

    NASA Astrophysics Data System (ADS)

    Yan, Xiao-Yong; Han, Xiao-Pu; Zhou, Tao; Wang, Bing-Hong

    2011-12-01

    We propose a simplified human regular mobility model to simulate an individual's daily travel with three sequential activities: commuting to workplace, going to do leisure activities and returning home. With the assumption that the individual has a constant travel speed and inferior limit of time at home and in work, we prove that the daily moving area of an individual is an ellipse, and finally obtain an exact solution of the gyration radius. The analytical solution captures the empirical observation well.

  11. Regular black holes in f(T) Gravity through a nonlinear electrodynamics source

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Junior, Ednaldo L.B.; Rodrigues, Manuel E.; Houndjo, Mahouton J.S., E-mail: ednaldobarrosjr@gmail.com, E-mail: esialg@gmail.com, E-mail: sthoundjo@yahoo.fr

    2015-10-01

    We seek to obtain a new class of exact solutions of regular black holes in f(T) Gravity with non-linear electrodynamics material content, with spherical symmetry in 4D. The equations of motion provide the regaining of various solutions of General Relativity, as a particular case where the function f(T)=T. We developed a powerful method for finding exact solutions, where we get the first new class of regular black holes solutions in the f(T) Theory, where all the geometrics scalars disappear at the origin of the radial coordinate and are finite everywhere, as well as a new class of singular black holes.

  12. Renormalization of the fragmentation equation: exact self-similar solutions and turbulent cascades.

    PubMed

    Saveliev, V L; Gorokhovski, M A

    2012-12-01

    Using an approach developed earlier for renormalization of the Boltzmann collision integral [Saveliev and Nanbu, Phys. Rev. E 65, 051205 (2002)], we derive an exact divergence form for the fragmentation operator. Then we reduce the fragmentation equation to the continuity equation in size space, with the flux given explicitly. This allows us to obtain self-similar solutions and to find the integral of motion for these solutions (we call it the bare flux). We show how these solutions can be applied as a description of cascade processes in three- and two-dimensional turbulence. We also suggested an empirical cascade model of impact fragmentation of brittle materials.

  13. 5D Lovelock gravity: New exact solutions with torsion

    NASA Astrophysics Data System (ADS)

    Cvetković, B.; Simić, D.

    2016-10-01

    Five-dimensional Lovelock gravity is investigated in the first order formalism. A new class of exact solutions is constructed: the Bañados, Teitelboim, Zanelli black rings with and without torsion. We show that our solution with torsion exists in a different sector of the Lovelock gravity, as compared to the Lovelock Chern-Simons sector or the one investigated by Canfora et al. The conserved charges of the solutions are found using Nester's formula, and the results are confirmed by the canonical method. We show that the theory linearized around the background with torsion possesses two additional degrees of freedom with respect to general relativity.

  14. Exact solution of large asymmetric traveling salesman problems.

    PubMed

    Miller, D L; Pekny, J F

    1991-02-15

    The traveling salesman problem is one of a class of difficult problems in combinatorial optimization that is representative of a large number of important scientific and engineering problems. A survey is given of recent applications and methods for solving large problems. In addition, an algorithm for the exact solution of the asymmetric traveling salesman problem is presented along with computational results for several classes of problems. The results show that the algorithm performs remarkably well for some classes of problems, determining an optimal solution even for problems with large numbers of cities, yet for other classes, even small problems thwart determination of a provably optimal solution.

  15. ALARA: The next link in a chain of activation codes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wilson, P.P.H.; Henderson, D.L.

    1996-12-31

    The Adaptive Laplace and Analytic Radioactivity Analysis [ALARA] code has been developed as the next link in the chain of DKR radioactivity codes. Its methods address the criticisms of DKR while retaining its best features. While DKR ignored loops in the transmutation/decay scheme to preserve the exactness of the mathematical solution, ALARA incorporates new computational approaches without jeopardizing the most important features of DKR`s physical modelling and mathematical methods. The physical model uses `straightened-loop, linear chains` to achieve the same accuracy in the loop solutions as is demanded in the rest of the scheme. In cases where a chain hasmore » no loops, the exact DKR solution is used. Otherwise, ALARA adaptively chooses between a direct Laplace inversion technique and a Laplace expansion inversion technique to optimize the accuracy and speed of the solution. All of these methods result in matrix solutions which allow the fastest and most accurate solution of exact pulsing histories. Since the entire history is solved for each chain as it is created, ALARA achieves the optimum combination of high accuracy, high speed and low memory usage. 8 refs., 2 figs.« less

  16. Localized solutions of Lugiato-Lefever equations with focused pump.

    PubMed

    Cardoso, Wesley B; Salasnich, Luca; Malomed, Boris A

    2017-12-04

    Lugiato-Lefever (LL) equations in one and two dimensions (1D and 2D) accurately describe the dynamics of optical fields in pumped lossy cavities with the intrinsic Kerr nonlinearity. The external pump is usually assumed to be uniform, but it can be made tightly focused too-in particular, for building small pixels. We obtain solutions of the LL equations, with both the focusing and defocusing intrinsic nonlinearity, for 1D and 2D confined modes supported by the localized pump. In the 1D setting, we first develop a simple perturbation theory, based in the sech ansatz, in the case of weak pump and loss. Then, a family of exact analytical solutions for spatially confined modes is produced for the pump focused in the form of a delta-function, with a nonlinear loss (two-photon absorption) added to the LL model. Numerical findings demonstrate that these exact solutions are stable, both dynamically and structurally (the latter means that stable numerical solutions close to the exact ones are found when a specific condition, necessary for the existence of the analytical solution, does not hold). In 2D, vast families of stable confined modes are produced by means of a variational approximation and full numerical simulations.

  17. Small-on-large geometric anelasticity

    PubMed Central

    2016-01-01

    In this paper, we are concerned with finding exact solutions for the stress fields of nonlinear solids with non-symmetric distributions of defects (or more generally finite eigenstrains) that are small perturbations of symmetric distributions of defects with known exact solutions. In the language of geometric mechanics, this corresponds to finding a deformation that is a result of a perturbation of the metric of the Riemannian material manifold. We present a general framework that can be used for a systematic analysis of this class of anelasticity problems. This geometric formulation can be thought of as a material analogue of the classical small-on-large theory in nonlinear elasticity. We use the present small-on-large anelasticity theory to find exact solutions for the stress fields of some non-symmetric distributions of screw dislocations in incompressible isotropic solids. PMID:27956887

  18. Agent-based model for the h-index - exact solution

    NASA Astrophysics Data System (ADS)

    Żogała-Siudem, Barbara; Siudem, Grzegorz; Cena, Anna; Gagolewski, Marek

    2016-01-01

    Hirsch's h-index is perhaps the most popular citation-based measure of scientific excellence. In 2013, Ionescu and Chopard proposed an agent-based model describing a process for generating publications and citations in an abstract scientific community [G. Ionescu, B. Chopard, Eur. Phys. J. B 86, 426 (2013)]. Within such a framework, one may simulate a scientist's activity, and - by extension - investigate the whole community of researchers. Even though the Ionescu and Chopard model predicts the h-index quite well, the authors provided a solution based solely on simulations. In this paper, we complete their results with exact, analytic formulas. What is more, by considering a simplified version of the Ionescu-Chopard model, we obtained a compact, easy to compute formula for the h-index. The derived approximate and exact solutions are investigated on a simulated and real-world data sets.

  19. Rainfall-runoff response informed by exact solutions of Boussinesq equation on hillslopes

    NASA Astrophysics Data System (ADS)

    Bartlett, M. S., Jr.; Porporato, A. M.

    2017-12-01

    The Boussinesq equation offers a powerful approach forunderstanding the flow dynamics of unconfined aquifers. Though this nonlinear equation allows for concise representation of both soil and geomorphological controls on groundwater flow, it has only been solved exactly for a limited number of initial and boundary conditions. These solutions do not include source/sink terms (evapotranspiration, recharge, and seepage to bedrock) and are typically limited to horizontal aquifers. Here we present a class of exact solutions that are general to sloping aquifers and a time varying source/sink term. By incorporating the source/sink term, they may describe aquifers with both time varying recharge over seasonal or weekly time scales, as well as a loss of water from seepage to the bedrock interface, which is a common feature in hillslopes. These new solutions shed light on the hysteretic relationship between streamflow and groundwater and the behavior of the hydrograph recession curves, thus providing a robust basis for deriving a runoff curves for the partition of rainfall into infiltration and runoff.

  20. Exact solutions for an oscillator with anti-symmetric quadratic nonlinearity

    NASA Astrophysics Data System (ADS)

    Beléndez, A.; Martínez, F. J.; Beléndez, T.; Pascual, C.; Alvarez, M. L.; Gimeno, E.; Arribas, E.

    2018-04-01

    Closed-form exact solutions for an oscillator with anti-symmetric quadratic nonlinearity are derived from the first integral of the nonlinear differential equation governing the behaviour of this oscillator. The mathematical model is an ordinary second order differential equation in which the sign of the quadratic nonlinear term changes. Two parameters characterize this oscillator: the coefficient of the linear term and the coefficient of the quadratic term. Not only the common case in which both coefficients are positive but also all possible combinations of positive and negative signs of these coefficients which provide periodic motions are considered, giving rise to four different cases. Three different periods and solutions are obtained, since the same result is valid in two of these cases. An interesting feature is that oscillatory motions whose equilibrium points are not at x = 0 are also considered. The periods are given in terms of an incomplete or complete elliptic integral of the first kind, and the exact solutions are expressed as functions including Jacobi elliptic cosine or sine functions.

  1. Early-time solution of the horizontal unconfined aquifer in the build-up phase

    NASA Astrophysics Data System (ADS)

    Gravanis, Elias; Akylas, Evangelos

    2017-04-01

    The Boussinesq equation is a dynamical equation for the free surface of saturated subsurface flows over an impervious bed. Boussinesq equation is non-linear. The non-linearity comes from the reduction of the dimensionality of the problem: The flow is assumed to be vertically homogeneous, therefore the flow rate through a cross section of the flow is proportional to the free surface height times the hydraulic gradient, which is assumed to be equal to the slope of the free surface (Dupuit approximation). In general, 'vertically' means normally on the bed; combining the Dupuit approximation with the continuity equation leads to the Boussinesq equation. There are very few transient exact solutions. Self- similar solutions have been constructed in the past by various authors. A power series type of solution was derived for a self-similar Boussinesq equation by Barenblatt in 1990. That type of solution has generated a certain amount of literature. For the unconfined flow case for zero recharge rate Boussinesq derived for the horizontal aquifer an exact solution assuming separation of variables. This is actually an exact asymptotic solution of the horizontal aquifer recession phase for late times. The kinematic wave is an interesting solution obtained by dropping the non-linear term in the Boussinesq equation. Although it is an approximate solution, and holds well only for small values of the Henderson and Wooding λ parameter (that is, for steep slopes, high conductivity or small recharge rate), it becomes less and less approximate for smaller values of the parameter, that is, it is asymptotically exact with respect to that parameter. In the present work we consider the case of the unconfined subsurface flow over horizontal bed in the build-up phase under constant recharge rate. This is a case with an infinite Henderson and Wooding parameter, that is, it is the limiting case where the non-linear term is present in the Boussinesq while the linear spatial derivative term goes away. Nonetheless, no analogue of the kinematic wave or the Boussinesq separable solution exists in this case. The late time state of the build-up phase under constant recharge rate is very simply the steady state solution. Our aim is to construct the early time asymptotic solution of this problem. The solution is expressed as a power series of a suitable similarity variable, which is constructed so that to satisfy the boundary conditions at both ends of the aquifer, that is, it is a polynomial approximation of the exact solution. The series turn out to be asymptotic and it is regularized by re-summation techniques which are used to define divergent series. The outflow rate in this regime is linear in time, and the (dimensionless) coefficient is calculated to eight significant figures. The local error of the series is quantified by its deviation from satisfying the self-similar Boussinesq equation at every point. The local error turns out to be everywhere positive, hence, so is the integrated error, which in turn quantifies the degree of convergence of the series to the exact solution.

  2. Quantifying risks with exact analytical solutions of derivative pricing distribution

    NASA Astrophysics Data System (ADS)

    Zhang, Kun; Liu, Jing; Wang, Erkang; Wang, Jin

    2017-04-01

    Derivative (i.e. option) pricing is essential for modern financial instrumentations. Despite of the previous efforts, the exact analytical forms of the derivative pricing distributions are still challenging to obtain. In this study, we established a quantitative framework using path integrals to obtain the exact analytical solutions of the statistical distribution for bond and bond option pricing for the Vasicek model. We discuss the importance of statistical fluctuations away from the expected option pricing characterized by the distribution tail and their associations to value at risk (VaR). The framework established here is general and can be applied to other financial derivatives for quantifying the underlying statistical distributions.

  3. Exact asymmetric Skyrmion in anisotropic ferromagnet and its helimagnetic application

    NASA Astrophysics Data System (ADS)

    Kundu, Anjan

    2016-08-01

    Topological Skyrmions as intricate spin textures were observed experimentally in helimagnets on 2d plane. Theoretical foundation of such solitonic states to appear in pure ferromagnetic model, as exact solutions expressed through any analytic function, was made long ago by Belavin and Polyakov (BP). We propose an innovative generalization of the BP solution for an anisotropic ferromagnet, based on a physically motivated geometric (in-)equality, which takes the exact Skyrmion to a new class of functions beyond analyticity. The possibility of stabilizing such metastable states in helimagnets is discussed with the construction of individual Skyrmion, Skyrmion crystal and lattice with asymmetry, likely to be detected in precision experiments.

  4. The microscopic structure of an exactly solvable model binary solution that exhibits two closed loops in the phase diagram.

    PubMed

    Lungu, Radu P; Huckaby, Dale A

    2008-07-21

    An exactly solvable lattice model describing a binary solution is considered where rodlike molecules of types AA and BB cover the links of a honeycomb lattice, the neighboring molecular ends having three-body and orientation-dependent bonding interactions. At phase coexistence of AA-rich and BB-rich phases, the average fraction of each type of triangle of neighboring molecular ends is calculated exactly. The fractions of the different types of triangles are then used to deduce the local microscopic structure of the coexisting phases for a case of the model that contains two closed loops in the phase diagram.

  5. Exact relativistic Toda chain eigenfunctions from Separation of Variables and gauge theory

    NASA Astrophysics Data System (ADS)

    Sciarappa, Antonio

    2017-10-01

    We provide a proposal, motivated by Separation of Variables and gauge theory arguments, for constructing exact solutions to the quantum Baxter equation associated to the N-particle relativistic Toda chain and test our proposal against numerical results. Quantum Mechanical non-perturbative corrections, essential in order to obtain a sensible solution, are taken into account in our gauge theory approach by considering codimension two defects on curved backgrounds (squashed S 5 and degenerate limits) rather than flat space; this setting also naturally incorporates exact quantization conditions and energy spectrum of the relativistic Toda chain as well as its modular dual structure.

  6. Solving Equations Today.

    ERIC Educational Resources Information Center

    Shumway, Richard J.

    1989-01-01

    Illustrated is the problem of solving equations and some different strategies students might employ when using available technology. Gives illustrations for: exact solutions, approximate solutions, and approximate solutions which are graphically generated. (RT)

  7. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Liemert, André, E-mail: andre.liemert@ilm.uni-ulm.de; Kienle, Alwin

    Purpose: Explicit solutions of the monoenergetic radiative transport equation in the P{sub 3} approximation have been derived which can be evaluated with nearly the same computational effort as needed for solving the standard diffusion equation (DE). In detail, the authors considered the important case of a semi-infinite medium which is illuminated by a collimated beam of light. Methods: A combination of the classic spherical harmonics method and the recently developed method of rotated reference frames is used for solving the P{sub 3} equations in closed form. Results: The derived solutions are illustrated and compared to exact solutions of the radiativemore » transport equation obtained via the Monte Carlo (MC) method as well as with other approximated analytical solutions. It is shown that for the considered cases which are relevant for biomedical optics applications, the P{sub 3} approximation is close to the exact solution of the radiative transport equation. Conclusions: The authors derived exact analytical solutions of the P{sub 3} equations under consideration of boundary conditions for defining a semi-infinite medium. The good agreement to Monte Carlo simulations in the investigated domains, for example, in the steady-state and time domains, as well as the short evaluation time needed suggests that the derived equations can replace the often applied solutions of the diffusion equation for the homogeneous semi-infinite medium.« less

  8. Use of variational methods in the determination of wind-driven ocean circulation

    NASA Technical Reports Server (NTRS)

    Gelos, R.; Laura, P. A. A.

    1976-01-01

    Simple polynomial approximations and a variational approach were used to predict wind-induced circulation in rectangular ocean basins. Stommel's and Munk's models were solved in a unified fashion by means of the proposed method. Very good agreement with exact solutions available in the literature was shown to exist. The method was then applied to more complex situations where an exact solution seems out of the question.

  9. Exact solutions to Brans-Dicke cosmologies in flat Friedmann universes.

    NASA Technical Reports Server (NTRS)

    Morganstern, R. E.

    1971-01-01

    The Brans-Dicke cosmological equations for flat Friedmann-type expanding universes are solved parametrically for time, density, expansion parameter, and scalar field. These results reduce to a previously obtained exact solution to the radiation cosmology. Although the scalar field may be undetectable at the present epoch, it is felt that, if it exists, it must play an important role as one approaches the initial singularity of the cosmology.

  10. Finite element analysis of wrinkling membranes

    NASA Technical Reports Server (NTRS)

    Miller, R. K.; Hedgepeth, J. M.; Weingarten, V. I.; Das, P.; Kahyai, S.

    1984-01-01

    The development of a nonlinear numerical algorithm for the analysis of stresses and displacements in partly wrinkled flat membranes, and its implementation on the SAP VII finite-element code are described. A comparison of numerical results with exact solutions of two benchmark problems reveals excellent agreement, with good convergence of the required iterative procedure. An exact solution of a problem involving axisymmetric deformations of a partly wrinkled shallow curved membrane is also reported.

  11. Exact Solution of a Two-Species Quantum Dimer Model for Pseudogap Metals

    NASA Astrophysics Data System (ADS)

    Feldmeier, Johannes; Huber, Sebastian; Punk, Matthias

    2018-05-01

    We present an exact ground state solution of a quantum dimer model introduced by Punk, Allais, and Sachdev [Quantum dimer model for the pseudogap metal, Proc. Natl. Acad. Sci. U.S.A. 112, 9552 (2015)., 10.1073/pnas.1512206112], which features ordinary bosonic spin-singlet dimers as well as fermionic dimers that can be viewed as bound states of spinons and holons in a hole-doped resonating valence bond liquid. Interestingly, this model captures several essential properties of the metallic pseudogap phase in high-Tc cuprate superconductors. We identify a line in parameter space where the exact ground state wave functions can be constructed at an arbitrary density of fermionic dimers. At this exactly solvable line the ground state has a huge degeneracy, which can be interpreted as a flat band of fermionic excitations. Perturbing around the exactly solvable line, this degeneracy is lifted and the ground state is a fractionalized Fermi liquid with a small pocket Fermi surface in the low doping limit.

  12. The extended Einstein-Maxwell-aether-axion model: Exact solutions for axionically controlled pp-wave aether modes

    NASA Astrophysics Data System (ADS)

    Balakin, Alexander B.

    2018-03-01

    The extended Einstein-Maxwell-aether-axion model describes internal interactions inside the system, which contains gravitational, electromagnetic fields, the dynamic unit vector field describing the velocity of an aether, and the pseudoscalar field associated with the axionic dark matter. The specific feature of this model is that the axion field controls the dynamics of the aether through the guiding functions incorporated into Jacobson’s constitutive tensor. Depending on the state of the axion field, these guiding functions can control and switch on or switch off the influence of acceleration, shear, vorticity and expansion of the aether flow on the state of physical system as a whole. We obtain new exact solutions, which possess the pp-wave symmetry, and indicate them by the term pp-wave aether modes in contrast to the pure pp-waves, which cannot propagate in this field conglomerate. These exact solutions describe a specific dynamic state of the pseudoscalar field, which corresponds to one of the minima of the axion potential and switches off the influence of shear and expansion of the aether flow; the model does not impose restrictions on Jacobson’s coupling constants and on the axion mass. Properties of these new exact solutions are discussed.

  13. Investigation of Change in the Computational Technique of the Sun’s Physical Ephemeris in The Astronomical Almanac

    DTIC Science & Technology

    2007-03-22

    the new method. Initially, Fig. 1 might look a little odd since one might expect P to show a signature of the obliquity , that is, a 23.5◦ oscillation... ecliptic . To clarify the changes and to ensure that the program is working as expected, it is useful to set the Sun’s pole orthogonal to the ecliptic ...Figure 2 shows the same data as Fig. 1, but with this change. The dot-dash line in Fig. 2 shows the effect of obliquity , exactly as expected. The

  14. A Path Algorithm for Constrained Estimation

    PubMed Central

    Zhou, Hua; Lange, Kenneth

    2013-01-01

    Many least-square problems involve affine equality and inequality constraints. Although there are a variety of methods for solving such problems, most statisticians find constrained estimation challenging. The current article proposes a new path-following algorithm for quadratic programming that replaces hard constraints by what are called exact penalties. Similar penalties arise in l1 regularization in model selection. In the regularization setting, penalties encapsulate prior knowledge, and penalized parameter estimates represent a trade-off between the observed data and the prior knowledge. Classical penalty methods of optimization, such as the quadratic penalty method, solve a sequence of unconstrained problems that put greater and greater stress on meeting the constraints. In the limit as the penalty constant tends to ∞, one recovers the constrained solution. In the exact penalty method, squared penalties!are replaced by absolute value penalties, and the solution is recovered for a finite value of the penalty constant. The exact path-following method starts at the unconstrained solution and follows the solution path as the penalty constant increases. In the process, the solution path hits, slides along, and exits from the various constraints. Path following in Lasso penalized regression, in contrast, starts with a large value of the penalty constant and works its way downward. In both settings, inspection of the entire solution path is revealing. Just as with the Lasso and generalized Lasso, it is possible to plot the effective degrees of freedom along the solution path. For a strictly convex quadratic program, the exact penalty algorithm can be framed entirely in terms of the sweep operator of regression analysis. A few well-chosen examples illustrate the mechanics and potential of path following. This article has supplementary materials available online. PMID:24039382

  15. Modulation instability, Fermi-Pasta-Ulam recurrence, rogue waves, nonlinear phase shift, and exact solutions of the Ablowitz-Ladik equation.

    PubMed

    Akhmediev, Nail; Ankiewicz, Adrian

    2011-04-01

    We study modulation instability (MI) of the discrete constant-background wave of the Ablowitz-Ladik (A-L) equation. We derive exact solutions of the A-L equation which are nonlinear continuations of MI at longer times. These periodic solutions comprise a family of two-parameter solutions with an arbitrary background field and a frequency of initial perturbation. The solutions are recurrent, since they return the field state to the original constant background solution after the process of nonlinear evolution has passed. These solutions can be considered as a complete resolution of the Fermi-Pasta-Ulam paradox for the A-L system. One remarkable consequence of the recurrent evolution is the nonlinear phase shift gained by the constant background wave after the process. A particular case of this family is the rational solution of the first-order or fundamental rogue wave.

  16. The future is no longer what it used to be. Managing health telematics projects.

    PubMed

    Demeester, M; Beuscart, R

    1997-09-01

    Future used to mean global progress and convergence of science and technology and society. Today, we observe the decoupling of the two poles of knowledge formation and application (i.e. science and technology, and culture and society, respectively) and also fierce confrontation between them. The key issue to reconcile the two poles is to re-invent the link between them. The new future lies in the development of mental and technical capacities for change and the creation of new forms of solidarity. We propose, as a general attitude, to reactivate and develop the four principles of efficacy-effectiveness-efficiency, hospitality, responsibility and pertinence. Translated into driving forces for the development of health care telematic projects, they amount to the acceptance of and capacity for enterprise-wide solutions, hospitality and capacity to acquire outside knowledge, self-managed, multi-functional team work spirit, reengineering mentality to achieve pertinent technico-cultural solutions.

  17. Traveling wave solutions of the Boussinesq equation via the new approach of generalized (G'/G)-expansion method.

    PubMed

    Alam, Md Nur; Akbar, M Ali; Roshid, Harun-Or-

    2014-01-01

    Exact solutions of nonlinear evolution equations (NLEEs) play a vital role to reveal the internal mechanism of complex physical phenomena. In this work, the exact traveling wave solutions of the Boussinesq equation is studied by using the new generalized (G'/G)-expansion method. Abundant traveling wave solutions with arbitrary parameters are successfully obtained by this method and the wave solutions are expressed in terms of the hyperbolic, trigonometric, and rational functions. It is shown that the new approach of generalized (G'/G)-expansion method is a powerful and concise mathematical tool for solving nonlinear partial differential equations in mathematical physics and engineering. 05.45.Yv, 02.30.Jr, 02.30.Ik.

  18. Front and pulse solutions for the complex Ginzburg-Landau equation with higher-order terms.

    PubMed

    Tian, Huiping; Li, Zhonghao; Tian, Jinping; Zhou, Guosheng

    2002-12-01

    We investigate one-dimensional complex Ginzburg-Landau equation with higher-order terms and discuss their influences on the multiplicity of solutions. An exact analytic front solution is presented. By stability analysis for the original partial differential equation, we derive its necessary stability condition for amplitude perturbations. This condition together with the exact front solution determine the region of parameter space where the uniformly translating front solution can exist. In addition, stable pulses, chaotic pulses, and attenuation pulses appear generally if the parameters are out of the range. Finally, applying these analysis into the optical transmission system numerically we find that the stable transmission of optical pulses can be achieved if the parameters are appropriately chosen.

  19. On exact solutions for some oscillating motions of a generalized Oldroyd-B fluid

    NASA Astrophysics Data System (ADS)

    Khan, M.; Anjum, Asia; Qi, Haitao; Fetecau, C.

    2010-02-01

    This paper deals with exact solutions for some oscillating motions of a generalized Oldroyd-B fluid. The fractional calculus approach is used in the constitutive relationship of fluid model. Analytical expressions for the velocity field and the corresponding shear stress for flows due to oscillations of an infinite flat plate as well as those induced by an oscillating pressure gradient are determined using Fourier sine and Laplace transforms. The obtained solutions are presented under integral and series forms in terms of the Mittag-Leffler functions. For α = β = 1, our solutions tend to the similar solutions for ordinary Oldroyd-B fluid. A comparison between generalized and ordinary Oldroyd-B fluids is shown by means of graphical illustrations.

  20. Exact solutions for unsteady free convection flow over an oscillating plate due to non-coaxial rotation.

    PubMed

    Mohamad, Ahmad Qushairi; Khan, Ilyas; Ismail, Zulkhibri; Shafie, Sharidan

    2016-01-01

    Non-coaxial rotation has wide applications in engineering devices, e.g. in food processing such as mixer machines and stirrers with a two-axis kneader, in cooling turbine blades, jet engines, pumps and vacuum cleaners, in designing thermal syphon tubes, and in geophysical flows. Therefore, this study aims to investigate unsteady free convection flow of viscous fluid due to non-coaxial rotation and fluid at infinity over an oscillating vertical plate with constant wall temperature. The governing equations are modelled by a sudden coincidence of the axes of a disk and the fluid at infinity rotating with uniform angular velocity, together with initial and boundary conditions. Some suitable non-dimensional variables are introduced. The Laplace transform method is used to obtain the exact solutions of the corresponding non-dimensional momentum and energy equations with conditions. Solutions of the velocity for cosine and sine oscillations as well as for temperature fields are obtained and displayed graphically for different values of time ( t ), the Grashof number ( Gr ), the Prandtl number ([Formula: see text]), and the phase angle ([Formula: see text]). Skin friction and the Nusselt number are also evaluated. The exact solutions are obtained and in limiting cases, the present solutions are found to be identical to the published results. Further, the obtained exact solutions also validated by comparing with results obtained by using Gaver-Stehfest algorithm. The interested physical property such as velocity, temperature, skin friction and Nusselt number are affected by the embedded parameters time ( t ), the Grashof number ( Gr ), the Prandtl number ([Formula: see text]), and the phase angle ([Formula: see text]).

  1. Homogeneous solutions of stationary Navier-Stokes equations with isolated singularities on the unit sphere. II. Classification of axisymmetric no-swirl solutions

    NASA Astrophysics Data System (ADS)

    Li, Li; Li, YanYan; Yan, Xukai

    2018-05-01

    We classify all (- 1)-homogeneous axisymmetric no-swirl solutions of incompressible stationary Navier-Stokes equations in three dimension which are smooth on the unit sphere minus the south and north poles, parameterizing them as a four dimensional surface with boundary in appropriate function spaces. Then we establish smoothness properties of the solution surface in the four parameters. The smoothness properties will be used in a subsequent paper where we study the existence of (- 1)-homogeneous axisymmetric solutions with non-zero swirl on S2 ∖ { S , N }, emanating from the four dimensional solution surface.

  2. Weakly collisional Landau damping and three-dimensional Bernstein-Greene-Kruskal modes: New results on old problems

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ng, C.; Bhattacharjee, A.; Skiff, F.

    2006-05-15

    Landau damping and Bernstein-Greene-Kruskal (BGK) modes are among the most fundamental concepts in plasma physics. While the former describes the surprising damping of linear plasma waves in a collisionless plasma, the latter describes exact undamped nonlinear solutions of the Vlasov equation. There does exist a relationship between the two: Landau damping can be described as the phase mixing of undamped eigenmodes, the so-called Case-Van Kampen modes, which can be viewed as BGK modes in the linear limit. While these concepts have been around for a long time, unexpected new results are still being discovered. For Landau damping, we show thatmore » the textbook picture of phase mixing is altered profoundly in the presence of collision. In particular, the continuous spectrum of Case-Van Kampen modes is eliminated and replaced by a discrete spectrum, even in the limit of zero collision. Furthermore, we show that these discrete eigenmodes form a complete set of solutions. Landau-damped solutions are then recovered as true eigenmodes (which they are not in the collisionless theory). For BGK modes, our interest is motivated by recent discoveries of electrostatic solitary waves in magnetospheric plasmas. While one-dimensional BGK theory is quite mature, there appear to be no exact three-dimensional solutions in the literature (except for the limiting case when the magnetic field is sufficiently strong so that one can apply the guiding-center approximation). We show, in fact, that two- and three-dimensional solutions that depend only on energy do not exist. However, if solutions depend on both energy and angular momentum, we can construct exact three-dimensional solutions for the unmagnetized case, and two-dimensional solutions for the case with a finite magnetic field. The latter are shown to be exact, fully electromagnetic solutions of the steady-state Vlasov-Poisson-Ampere system.« less

  3. A Solution to the Fundamental Linear Fractional Order Differential Equation

    NASA Technical Reports Server (NTRS)

    Hartley, Tom T.; Lorenzo, Carl F.

    1998-01-01

    This paper provides a solution to the fundamental linear fractional order differential equation, namely, (sub c)d(sup q, sub t) + ax(t) = bu(t). The impulse response solution is shown to be a series, named the F-function, which generalizes the normal exponential function. The F-function provides the basis for a qth order "fractional pole". Complex plane behavior is elucidated and a simple example, the inductor terminated semi- infinite lossy line, is used to demonstrate the theory.

  4. A model for the motion of the Philippine Sea plate consistent with NUVEL-1 and geological data

    NASA Technical Reports Server (NTRS)

    Seno, Tetsuzo; Stein, Seth; Gripp, Alice E.

    1993-01-01

    We investigate angular velocity vectors of the Philippine Sea (PH) plate relative to the adjacent major plates, Eurasia (EU) and Pacific (PA), and the smaller Caroline (CR) plate. Earthquake slip vector data along the Philippine Sea plate are inverted, subject to the constraint that EU-PA motion equals that predicted by the global relative plate model NUVEL-1. The resulting solution fails to satisfy geological constraints along the Caroline-Pacific boundary: convergence along the Mussau Trench and divergence along the Sorol Trough. We then seek solutions satisfying both the CR-PA boundary conditions and the Philippine Sea slip vector data, by adjusting the PA-PH and EU-PH best fitting poles within their error ellipses. We also consider northern Honshu to be part of the North American plate and impose the constraint that the Philippine Sea plate subducts beneath northern Honshu along the Sagmi Trough in a NNW-NW direction. Of the solutions satisfying these conditions, we select the best EU-PH as 48.2 deg N, 157.0 deg E, 1.09 deg/my, corresponding to a pole far from Japan and south of Kamchatka, and PA-PH, 1.2 deg N, 134.2 deg E, 1.00 deg/my. Predicted NA-PH and EU-PH convergence rates in central Honshu are consistent with estimated seismic slip rates. Previous estimates of the EU-PH pole close to central Honshu are inconsistent with extension within the Bonin backarc implied by earthquake slip vectors and NNW-NW convergence of the Bonin forearc at the Sagami Trough.

  5. Exactly and quasi-exactly solvable 'discrete' quantum mechanics.

    PubMed

    Sasaki, Ryu

    2011-03-28

    A brief introduction to discrete quantum mechanics is given together with the main results on various exactly solvable systems. Namely, the intertwining relations, shape invariance, Heisenberg operator solutions, annihilation/creation operators and dynamical symmetry algebras, including the q-oscillator algebra and the Askey-Wilson algebra. A simple recipe to construct exactly and quasi-exactly solvable (QES) Hamiltonians in one-dimensional 'discrete' quantum mechanics is presented. It reproduces all the known Hamiltonians whose eigenfunctions consist of the Askey scheme of hypergeometric orthogonal polynomials of a continuous or a discrete variable. Several new exactly and QES Hamiltonians are constructed. The sinusoidal coordinate plays an essential role.

  6. Levitation Performance of Two Opposed Permanent Magnet Pole-Pair Separated Conical Bearingless Motors

    NASA Technical Reports Server (NTRS)

    Kascak, Peter; Jansen, Ralph; Dever, Timothy; Nagorny, Aleksandr; Loparo, Kenneth

    2013-01-01

    In standard motor applications, rotor suspension with traditional mechanical bearings represents the most economical solution. However, in certain high performance applications, rotor suspension without contacting bearings is either required or highly beneficial. Examples include applications requiring very high speed or extreme environment operation, or with limited access for maintenance. This paper expands upon a novel bearingless motor concept, in which two motors with opposing conical air-gaps are used to achieve full five-axis levitation and rotation of the rotor. Force in this motor is created by deliberately leaving the motor s pole-pairs unconnected, which allows the creation of different d-axis flux in each pole pair. This flux imbalance is used to create lateral force. This approach is different than previous bearingless motor designs, which require separate windings for levitation and rotation. This paper examines the predicted and achieved suspension performance of a fully levitated prototype bearingless system.

  7. Einstein-aether theory: dynamics of relativistic particles with spin or polarization in a Gödel-type universe

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Balakin, Alexander B.; Popov, Vladimir A., E-mail: alexander.balakin@kpfu.ru, E-mail: vladipopov@mail.ru

    In the framework of the Einstein-aether theory we consider a cosmological model, which describes the evolution of the unit dynamic vector field with activated rotational degree of freedom. We discuss exact solutions of the Einstein-aether theory, for which the space-time is of the Gödel-type, the velocity four-vector of the aether motion is characterized by a non-vanishing vorticity, thus the rotational vectorial modes can be associated with the source of the universe rotation. The main goal of our paper is to study the motion of test relativistic particles with a vectorial internal degree of freedom (spin or polarization), which is coupledmore » to the unit dynamic vector field. The particles are considered as the test ones in the given space-time background of the Gödel-type; the spin (polarization) coupling to the unit dynamic vector field is modeled using exact solutions of three types. The first exact solution describes the aether with arbitrary Jacobson's coupling constants; the second one relates to the case, when the Jacobson's constant responsible for the vorticity is vanishing; the third exact solution is obtained using three constraints for the coupling constants. The analysis of the exact expressions, which are obtained for the particle momentum and for the spin (polarization) four-vector components, shows that the interaction of the spin (polarization) with the unit vector field induces a rotation, which is additional to the geodesic precession of the spin (polarization) associated with the universe rotation as a whole.« less

  8. Paleomagnetism and tectonics of the Southern Tarim Basin, northwestern China

    NASA Astrophysics Data System (ADS)

    Gilder, Stuart; Zhao, Xixi; Coe, Robert; Meng, Zifang; Courtillot, Vincent; Besse, Jean

    1996-10-01

    We report Late Carboniferous, Permian, and early Tertiary paleomagnetic data from the southern Tarim basin. Prefolding magnetizations were isolated in each case. The Late Carboniferous-Permian and early Tertiary poles lie at 64.6°N, 166.5°E, A95 = 6.3° and 58.1°N, 202.0°E, A95 = 12.7°, respectively. The Late Jurassic to early Tertiary (J3-E1) paleolatitudes of Tarim and several basins throughout central Asia are similar, yet significantly (10° to 20°) shallower than those predicted by the Eurasian apparent polar wander path. Resolving this discrepancy remains a major problem in Asian paleomagnetism. Discordance of the late Paleozoic poles from Tarim and Siberia suggest that Tarim has rotated about 30° counterclockwise with respect to Siberia since the Permian. Where paleomagnetic samples of both Late Carboniferous to Early Triassic (C3-T1) and J3-E1 ages were collected from the same area of Tarim, a great circle passes through the means of the poles and the sampling locality. This suggests that (1) only a difference in inclination (and not declination) distinguishes the two data sets, and (2) vertical axis block rotations of the C3-E1 strata occurred after E1. Although based on data of lesser quality, the mean Early to Middle Jurassic (J1-2) pole from Tarim differs significantly from the Eurasian reference pole, requiring radical tectonic solutions to resolve them. The Tarim J1-2 pole is indistinguishable from both the mean J3-E1 and C3-T1 poles. The similarity of all the poles and the analogous tectonic setting of present-day central Asia to that of the late Paleozoic in eastern North America raises the question whether all the data from Tarim are overprinted.

  9. New exact solutions for a discrete electrical lattice using the analytical methods

    NASA Astrophysics Data System (ADS)

    Manafian, Jalil; Lakestani, Mehrdad

    2018-03-01

    This paper retrieves soliton solutions to an equation in nonlinear electrical transmission lines using the semi-inverse variational principle method (SIVPM), the \\exp(-Ω(ξ)) -expansion method (EEM) and the improved tan(φ/2) -expansion method (ITEM), with the aid of the symbolic computation package Maple. As a result, the SIVPM, EEM and ITEM methods are successfully employed and some new exact solitary wave solutions are acquired in terms of kink-singular soliton solution, hyperbolic solution, trigonometric solution, dark and bright soliton solutions. All solutions have been verified back into their corresponding equations with the aid of the Maple package program. We depicted the physical explanation of the extracted solutions with the choice of different parameters by plotting some 2D and 3D illustrations. Finally, we show that the used methods are robust and more efficient than other methods. More importantly, the solutions found in this work can have significant applications in telecommunication systems where solitons are used to codify data.

  10. Study of the exact analytical solution of the equation of longitudinal waves in a liquid with account of its relaxation properties

    NASA Astrophysics Data System (ADS)

    Kudinov, I. V.; Kudinov, V. A.

    2013-09-01

    A mathematical model of elastic vibrations of an incompressible liquid has been developed based on the hypothesis on the finite velocity of propagation of field potentials in this liquid. A hyperbolic equation of vibrations of such a liquid with account of its relaxation properties has been obtained. An exact analytical solution of this equation has been found and investigated in detail.

  11. Resonant vibrations of a submerged beam

    NASA Astrophysics Data System (ADS)

    Achenbach, J. D.; Qu, J.

    1986-03-01

    Forced vibration of a simply supported submerged beam of circular cross section is investigated by the use of two mathematical methods. In the first approach the problem formulation is reduced to a singular integro-differential equation for the transverse deflection. In the second approach the method of matched asymptotic expansions is employed. The integro-differential equation is solved numerically, to yield an exact solution for the frequency response. Subsequent use of a representation integral yields the radiated far field acoustic pressure. The exact results for the beam deflection are compared with approximate results that are available in the literature. Next, a matched asymptotic expansion is worked out by constructing "inner" and "outer" expansions for frequencies near and not near resonance frequencies, respectively. The two expansions are matched in an appropriate manner to yield a uniformly valid solution. The leading term of the matched asymptotic solution is compared with exact numerical results.

  12. Optimum three-dimensional atmospheric entry from the analytical solution of Chapman's exact equations

    NASA Technical Reports Server (NTRS)

    Busemann, A.; Vinh, N. X.; Culp, R. D.

    1974-01-01

    The general solution for the optimum three-dimensional aerodynamic control of a lifting vehicle entering a planetary atmosphere is developed. A set of dimensionless variables, modified Chapman variables, is introduced. The resulting exact equations of motion, referred to as Chapman's exact equations, have the advantage that they are completely free of the physical characteristics of the vehicle. Furthermore, a completely general lift-drag relationship is used in the derivation. The results obtained apply to any type of vehicle of arbitrary weight, dimensions and shape, having an arbitrary drag polar, and entering any planetary atmosphere. The aerodynamic controls chosen are the lift coefficient and the bank angle. General optimum control laws for these controls are developed. Several earlier particular solutions are shown to be special cases of this general result. Results are valid for both free and constrained terminal position.

  13. Applying the Zel'dovich approximation to general relativity

    NASA Astrophysics Data System (ADS)

    Croudace, K. M.; Parry, J.; Salopek, D. S.; Stewart, J. M.

    1994-03-01

    Starting from general relativity, we give a systematic derivation of the Zel'dovich approximation describing the nonlinear evolution of collisionless dust. We begin by evolving dust along world lines, and we demonstrate that the Szekeres line element is an exact but apparently unstable solution of the evolution equations describing pancake collapse. Next, we solve the Einstein field equations by employing Hamilton-Jacobi techniques and a spatial gradient expansion. We give a prescription for evolving a primordial or 'seed' metric up to the formation of pancakes, and demonstrate its validity by rederiving the Szekeres solution approximately at third order and exactly at fifth order in spatial gradients. Finally we show that the range of validity of the expansion can be improved quite significantly if one notes that the 3-metric must have nonnegative eigenvalues. With this improvement the exact Szekeres solution is obtained after only one iteration.

  14. A note on improved F-expansion method combined with Riccati equation applied to nonlinear evolution equations.

    PubMed

    Islam, Md Shafiqul; Khan, Kamruzzaman; Akbar, M Ali; Mastroberardino, Antonio

    2014-10-01

    The purpose of this article is to present an analytical method, namely the improved F-expansion method combined with the Riccati equation, for finding exact solutions of nonlinear evolution equations. The present method is capable of calculating all branches of solutions simultaneously, even if multiple solutions are very close and thus difficult to distinguish with numerical techniques. To verify the computational efficiency, we consider the modified Benjamin-Bona-Mahony equation and the modified Korteweg-de Vries equation. Our results reveal that the method is a very effective and straightforward way of formulating the exact travelling wave solutions of nonlinear wave equations arising in mathematical physics and engineering.

  15. A note on improved F-expansion method combined with Riccati equation applied to nonlinear evolution equations

    PubMed Central

    Islam, Md. Shafiqul; Khan, Kamruzzaman; Akbar, M. Ali; Mastroberardino, Antonio

    2014-01-01

    The purpose of this article is to present an analytical method, namely the improved F-expansion method combined with the Riccati equation, for finding exact solutions of nonlinear evolution equations. The present method is capable of calculating all branches of solutions simultaneously, even if multiple solutions are very close and thus difficult to distinguish with numerical techniques. To verify the computational efficiency, we consider the modified Benjamin–Bona–Mahony equation and the modified Korteweg-de Vries equation. Our results reveal that the method is a very effective and straightforward way of formulating the exact travelling wave solutions of nonlinear wave equations arising in mathematical physics and engineering. PMID:26064530

  16. Time-evolving bubbles in two-dimensional stokes flow

    NASA Technical Reports Server (NTRS)

    Tanveer, Saleh; Vasconcelos, Giovani L.

    1994-01-01

    A general class of exact solutions is presented for a time evolving bubble in a two-dimensional slow viscous flow in the presence of surface tension. These solutions can describe a bubble in a linear shear flow as well as an expanding or contracting bubble in an otherwise quiescent flow. In the case of expanding bubbles, the solutions have a simple behavior in the sense that for essentially arbitrary initial shapes the bubble will asymptote an expanding circle. Contracting bubbles, on the other hand, can develop narrow structures ('near-cusps') on the interface and may undergo 'break up' before all the bubble-fluid is completely removed. The mathematical structure underlying the existence of these exact solutions is also investigated.

  17. Large-amplitude hydromagnetic waves in collisionless relativistic plasma - Exact solution for the fast-mode magnetoacoustic wave

    NASA Technical Reports Server (NTRS)

    Barnes, A.

    1983-01-01

    An exact nonlinear solution is found to the relativistic kinetic and electrodynamic equations (in their hydromagnetic limit) that describes the large-amplitude fast-mode magnetoacoustic wave propagating normal to the magnetic field in a collisionless, previously uniform plasma. It is pointed out that a wave of this kind will be generated by transverse compression of any collisionless plasma. The solution is in essence independent of the detailed form of the particle momentum distribution functions. The solution is obtained, in part, through the method of characteristics; the wave exhibits the familiar properties of steepening and shock formation. A detailed analysis is given of the ultrarelativistic limit of this wave.

  18. Gravitational waves in ghost free bimetric gravity

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mohseni, Morteza, E-mail: m-mohseni@pnu.ac.ir

    2012-11-01

    We obtain a set of exact gravitational wave solutions for the ghost free bimetric theory of gravity. With a flat reference metric, the theory admits the vacuum Brinkmann plane wave solution for suitable choices of the coefficients of different terms in the interaction potential. An exact gravitational wave solution corresponding to a massive scalar mode is also admitted for arbitrary choice of the coefficients with the reference metric being proportional to the spacetime metric. The proportionality factor and the speed of the wave are calculated in terms of the parameters of the theory. We also show that a F(R) extensionmore » of the theory admits similar solutions but in general is plagued with ghost instabilities.« less

  19. Renormalization of the fragmentation equation: Exact self-similar solutions and turbulent cascades

    NASA Astrophysics Data System (ADS)

    Saveliev, V. L.; Gorokhovski, M. A.

    2012-12-01

    Using an approach developed earlier for renormalization of the Boltzmann collision integral [Saveliev and Nanbu, Phys. Rev. E1539-375510.1103/PhysRevE.65.051205 65, 051205 (2002)], we derive an exact divergence form for the fragmentation operator. Then we reduce the fragmentation equation to the continuity equation in size space, with the flux given explicitly. This allows us to obtain self-similar solutions and to find the integral of motion for these solutions (we call it the bare flux). We show how these solutions can be applied as a description of cascade processes in three- and two-dimensional turbulence. We also suggested an empirical cascade model of impact fragmentation of brittle materials.

  20. A class of traveling wave solutions for space-time fractional biological population model in mathematical physics

    NASA Astrophysics Data System (ADS)

    Akram, Ghazala; Batool, Fiza

    2017-10-01

    The (G'/G)-expansion method is utilized for a reliable treatment of space-time fractional biological population model. The method has been applied in the sense of the Jumarie's modified Riemann-Liouville derivative. Three classes of exact traveling wave solutions, hyperbolic, trigonometric and rational solutions of the associated equation are characterized with some free parameters. A generalized fractional complex transform is applied to convert the fractional equations to ordinary differential equations which subsequently resulted in number of exact solutions. It should be mentioned that the (G'/G)-expansion method is very effective and convenient for solving nonlinear partial differential equations of fractional order whose balancing number is a negative integer.

  1. A novel nomenclature to classify parathyroid adenomas.

    PubMed

    Perrier, Nancy D; Edeiken, Beth; Nunez, Rodolfo; Gayed, Isis; Jimenez, Camilo; Busaidy, Naifa; Potylchansky, Elena; Kee, Spencer; Vu, Thinh

    2009-03-01

    A uniform and reliable description of the exact locations of adenomatous parathyroid glands is necessary for accurate communications between surgeons and other specialists. We developed a nomenclature that provides a precise means of communicating the most frequently encountered parathyroid adenoma locations. This classification scheme is based on the anatomic detail provided by imaging and can be used in radiology reports, operative records, and pathology reports. It is based on quadrants and anterior-posterior depth relative to the course of the recurrent laryngeal nerve and the thyroid parenchyma. The system uses the letters A-G to describe exact gland locations. A type A parathyroid gland is a gland that originates from a superior pedicle, lateral to the recurrent laryngeal nerve compressed within the capsule of the thyroid parenchyma. A type B gland is a superior gland that has fallen posteriorly into the tracheoesophageal groove and is in the same cross-sectional plane as the superior portion of the thyroid parenchyma. A type C gland is a gland that has fallen posteriorly into the tracheoesophageal groove and on a cross-sectional view lies at the level of or below the inferior pole of the thyroid gland. A type D gland lies in the midregion of the posterior surface of the thyroid parenchyma, near the junction of the recurrent laryngeal nerve and the inferior thyroid artery or middle thyroidal vein; because of this location, dissection is difficult. A type E gland is an inferior gland close to the inferior pole of the thyroid parenchyma, lying in the lateral plane with the thyroid parenchyma and anterior half of the trachea. A type F gland is an inferior gland that has descended (fallen) into the thyrothymic ligament or superior thymus; it may appear to be "ectopic" or within the superior mediastinum. An anterior-posterior view shows the type F gland to be anterior to the trachea. A type G gland is a rare, truly intrathyroidal parathyroid gland. A reproducible nomenclature can provide a means of consistent communication about parathyroid adenoma location. If uniformly adopted, it has the potential to reliably communicate exact gland location without lengthy descriptions. This system may be beneficial for surgical planning as well as operative and pathology reporting.

  2. Toward Green Challenge Courses.

    ERIC Educational Resources Information Center

    Johnson, Karl E.

    1999-01-01

    Designing environmentally friendly challenge courses involves considering factors such as clearing, trees versus poles, soil erosion and compaction, toilet design, waste disposal, and carrying capacity. Strategies used in "green development" such as systems thinking, solution multipliers, and brainstorming with stakeholders could promote…

  3. VINCIA for hadron colliders

    DOE PAGES

    Fischer, Nadine; Prestel, S.; Ritzmann, M.; ...

    2016-10-28

    We present the first public implementation of antenna-based QCD initial- and final-state showers. The shower kernels are 2→3 antenna functions, which capture not only the collinear dynamics but also the leading soft (coherent) singularities of QCD matrix elements. We define the evolution measure to be inversely proportional to the leading poles, hence gluon emissions are evolved in a p ⊥ measure inversely proportional to the eikonal, while processes that only contain a single pole (e.g., g → qq¯) are evolved in virtuality. Non-ordered emissions are allowed, suppressed by an additional power of 1/Q 2. Recoils and kinematics are governed bymore » exact on-shell 2 → 3 phase-space factorisations. This first implementation is limited to massless QCD partons and colourless resonances. Tree-level matrix-element corrections are included for QCD up to O(α 4 s) (4 jets), and for Drell–Yan and Higgs production up to O(α 3 s) (V / H + 3 jets). Finally, the resulting algorithm has been made publicly available in Vincia 2.0.« less

  4. Density-Dependent Conformable Space-time Fractional Diffusion-Reaction Equation and Its Exact Solutions

    NASA Astrophysics Data System (ADS)

    Hosseini, Kamyar; Mayeli, Peyman; Bekir, Ahmet; Guner, Ozkan

    2018-01-01

    In this article, a special type of fractional differential equations (FDEs) named the density-dependent conformable fractional diffusion-reaction (DDCFDR) equation is studied. Aforementioned equation has a significant role in the modelling of some phenomena arising in the applied science. The well-organized methods, including the \\exp (-φ (\\varepsilon )) -expansion and modified Kudryashov methods are exerted to generate the exact solutions of this equation such that some of the solutions are new and have been reported for the first time. Results illustrate that both methods have a great performance in handling the DDCFDR equation.

  5. An efficient technique for higher order fractional differential equation.

    PubMed

    Ali, Ayyaz; Iqbal, Muhammad Asad; Ul-Hassan, Qazi Mahmood; Ahmad, Jamshad; Mohyud-Din, Syed Tauseef

    2016-01-01

    In this study, we establish exact solutions of fractional Kawahara equation by using the idea of [Formula: see text]-expansion method. The results of different studies show that the method is very effective and can be used as an alternative for finding exact solutions of nonlinear evolution equations (NLEEs) in mathematical physics. The solitary wave solutions are expressed by the hyperbolic, trigonometric, exponential and rational functions. Graphical representations along with the numerical data reinforce the efficacy of the used procedure. The specified idea is very effective, expedient for fractional PDEs, and could be extended to other physical problems.

  6. Exact solutions and phenomenological constraints from massive scalars in a gravity's rainbow spacetime

    NASA Astrophysics Data System (ADS)

    Bezerra, V. B.; Christiansen, H. R.; Cunha, M. S.; Muniz, C. R.

    2017-07-01

    We obtain the exact (confluent Heun) solutions to the massive scalar field in a gravity's rainbow Schwarzschild metric. With these solutions at hand, we study the Hawking radiation resulting from the tunneling rate through the event horizon. We show that the emission spectrum obeys nonextensive statistics and is halted when a certain mass remnant is reached. Next, we infer constraints on the rainbow parameters from recent LHC particle physics experiments and Hubble STIS astrophysics measurements. Finally, we study the low frequency limit in order to find the modified energy spectrum around the source.

  7. Exact solution of some linear matrix equations using algebraic methods

    NASA Technical Reports Server (NTRS)

    Djaferis, T. E.; Mitter, S. K.

    1979-01-01

    Algebraic methods are used to construct the exact solution P of the linear matrix equation PA + BP = - C, where A, B, and C are matrices with real entries. The emphasis of this equation is on the use of finite algebraic procedures which are easily implemented on a digital computer and which lead to an explicit solution to the problem. The paper is divided into six sections which include the proof of the basic lemma, the Liapunov equation, and the computer implementation for the rational, integer and modular algorithms. Two numerical examples are given and the entire calculation process is depicted.

  8. Exact and explicit optimal solutions for trajectory planning and control of single-link flexible-joint manipulators

    NASA Technical Reports Server (NTRS)

    Chen, Guanrong

    1991-01-01

    An optimal trajectory planning problem for a single-link, flexible joint manipulator is studied. A global feedback-linearization is first applied to formulate the nonlinear inequality-constrained optimization problem in a suitable way. Then, an exact and explicit structural formula for the optimal solution of the problem is derived and the solution is shown to be unique. It turns out that the optimal trajectory planning and control can be done off-line, so that the proposed method is applicable to both theoretical analysis and real time tele-robotics control engineering.

  9. An exact solution for the steady state phase distribution in an array of oscillators coupled on a hexagonal lattice

    NASA Technical Reports Server (NTRS)

    Pogorzelski, Ronald J.

    2004-01-01

    When electronic oscillators are coupled to nearest neighbors to form an array on a hexagonal lattice, the planar phase distributions desired for excitation of a phased array antenna are not steady state solutions of the governing non-linear equations describing the system. Thus the steady state phase distribution deviates from planar. It is shown to be possible to obtain an exact solution for the steady state phase distribution and thus determine the deviation from the desired planar distribution as a function of beam steering angle.

  10. Exact time-dependent nonlinear dispersive wave solutions in compressible magnetized plasmas exhibiting collapse.

    PubMed

    Chakrabarti, Nikhil; Maity, Chandan; Schamel, Hans

    2011-04-08

    Compressional waves in a magnetized plasma of arbitrary resistivity are treated with the lagrangian fluid approach. An exact nonlinear solution with a nontrivial space and time dependence is obtained with boundary conditions as in Harris' current sheet. The solution shows competition among hydrodynamic convection, magnetic field diffusion, and dispersion. This results in a collapse of density and the magnetic field in the absence of dispersion. The dispersion effects arrest the collapse of density but not of the magnetic field. A possible application is in the early stage of magnetic star formation.

  11. Exact periodic cross-kink wave solutions for the new (2+1)-dimensional KdV equation in fluid flows and plasma physics.

    PubMed

    Liu, Jian-Guo; Du, Jian-Qiang; Zeng, Zhi-Fang; Ai, Guo-Ping

    2016-10-01

    The Korteweg-de Vries (KdV)-type models have been shown to describe many important physical situations such as fluid flows, plasma physics, and solid state physics. In this paper, a new (2 + 1)-dimensional KdV equation is discussed. Based on the Hirota's bilinear form and a generalized three-wave approach, we obtain new exact solutions for the new (2 + 1)-dimensional KdV equation. With the help of symbolic computation, the properties for some new solutions are presented with some figures.

  12. Exact solutions for STO and (3+1)-dimensional KdV-ZK equations using (G‧/G2) -expansion method

    NASA Astrophysics Data System (ADS)

    Bibi, Sadaf; Mohyud-Din, Syed Tauseef; Ullah, Rahmat; Ahmed, Naveed; Khan, Umar

    This article deals with finding some exact solutions of nonlinear fractional differential equations (NLFDEs) by applying a relatively new method known as (G‧/G2) -expansion method. Solutions of space-time fractional Sharma-Tasso-Olever (STO) equation of fractional order and (3+1)-dimensional KdV-Zakharov Kuznetsov (KdV-ZK) equation of fractional order are reckoned to demonstrate the validity of this method. The fractional derivative version of modified Riemann-Liouville, linked with Fractional complex transform is employed to transform fractional differential equations into the corresponding ordinary differential equations.

  13. The exact fundamental solution for the Benes tracking problem

    NASA Astrophysics Data System (ADS)

    Balaji, Bhashyam

    2009-05-01

    The universal continuous-discrete tracking problem requires the solution of a Fokker-Planck-Kolmogorov forward equation (FPKfe) for an arbitrary initial condition. Using results from quantum mechanics, the exact fundamental solution for the FPKfe is derived for the state model of arbitrary dimension with Benes drift that requires only the computation of elementary transcendental functions and standard linear algebra techniques- no ordinary or partial differential equations need to be solved. The measurement process may be an arbitrary, discrete-time nonlinear stochastic process, and the time step size can be arbitrary. Numerical examples are included, demonstrating its utility in practical implementation.

  14. A Time Integration Algorithm Based on the State Transition Matrix for Structures with Time Varying and Nonlinear Properties

    NASA Technical Reports Server (NTRS)

    Bartels, Robert E.

    2003-01-01

    A variable order method of integrating the structural dynamics equations that is based on the state transition matrix has been developed. The method has been evaluated for linear time variant and nonlinear systems of equations. When the time variation of the system can be modeled exactly by a polynomial it produces nearly exact solutions for a wide range of time step sizes. Solutions of a model nonlinear dynamic response exhibiting chaotic behavior have been computed. Accuracy of the method has been demonstrated by comparison with solutions obtained by established methods.

  15. Comment on "Exact solution of resonant modes in a rectangular resonator".

    PubMed

    Gutiérrez-Vega, Julio C; Bandres, Miguel A

    2006-08-15

    We comment on the recent Letter by J. Wu and A. Liu [Opt. Lett. 31, 1720 (2006)] in which an exact scalar solution to the resonant modes and the resonant frequencies in a two-dimensional rectangular microcavity were presented. The analysis is incorrect because (a) the field solutions were imposed to satisfy simultaneously both Dirichlet and Neumann boundary conditions at the four sides of the rectangle, leading to an overdetermined problem, and (b) the modes in the cavity were expanded using an incorrect series ansatz, leading to an expression for the mode fields that does not satisfy the Helmholtz equation.

  16. Analytical solution for the diffusion of a capacitor discharge generated magnetic field pulse in a conductor

    NASA Astrophysics Data System (ADS)

    Grants, Ilmārs; Bojarevičs, Andris; Gerbeth, Gunter

    2016-06-01

    Powerful forces arise when a pulse of a magnetic field in the order of a few tesla diffuses into a conductor. Such pulses are used in electromagnetic forming, impact welding of dissimilar materials and grain refinement of solidifying alloys. Strong magnetic field pulses are generated by the discharge current of a capacitor bank. We consider analytically the penetration of such pulse into a conducting half-space. Besides the exact solution we obtain two simple self-similar approximate solutions for two sequential stages of the initial transient. Furthermore, a general solution is provided for the external field given as a power series of time. Each term of this solution represents a self-similar function for which we obtain an explicit expression. The validity range of various approximate analytical solutions is evaluated by comparison to the exact solution.

  17. Electromagnetic fields radiated from a lightning return stroke - Application of an exact solution to Maxwell's equations

    NASA Technical Reports Server (NTRS)

    Le Vine, D. M.; Meneghini, R.

    1978-01-01

    A solution is presented for the electromagnetic fields radiated by an arbitrarily oriented current filament over a conducting ground plane in the case where the current propagates along the filament at the speed of light, and this solution is interpreted in terms of radiation from lightning return strokes. The solution is exact in the fullest sense; no mathematical approximations are made, and the governing differential equations and boundary conditions are satisfied. The solution has the additional attribute of being specified in closed form in terms of elementary functions. This solution is discussed from the point of view of deducing lightning current wave forms from measurements of the electromagnetic fields and understanding the effects of channel tortuosity on the radiated fields. In addition, it is compared with two approximate solutions, the traditional moment approximation and the Fraunhofer approximation, and a set of criteria describing their applicability are presented and interpreted.

  18. Radiating black hole solutions in Einstein-Gauss-Bonnet gravity

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dominguez, Alfredo E.; Instituto Universitario Aeronautico, Avenida Fuerza Aerea km 6.5.; Gallo, Emanuel

    2006-03-15

    In this paper, we find some new exact solutions to the Einstein-Gauss-Bonnet equations. First, we prove a theorem which allows us to find a large family of solutions to the Einstein-Gauss-Bonnet gravity in n-dimensions. This family of solutions represents dynamic black holes and contains, as particular cases, not only the recently found Vaidya-Einstein-Gauss-Bonnet black hole, but also other physical solutions that we think are new, such as the Gauss-Bonnet versions of the Bonnor-Vaidya (de Sitter/anti-de Sitter) solution, a global monopole, and the Husain black holes. We also present a more general version of this theorem in which less restrictive conditionsmore » on the energy-momentum tensor are imposed. As an application of this theorem, we present the exact solution describing a black hole radiating a charged null fluid in a Born-Infeld nonlinear electrodynamics.« less

  19. Resolvent analysis of exact coherent solutions

    NASA Astrophysics Data System (ADS)

    Rosenberg, Kevin; McKeon, Beverley

    2017-11-01

    Exact coherent solutions have been hypothesized to constitute the state-space skeleton of turbulent trajectories and thus are of interest as a means to better understand the underlying dynamics of turbulent flows. An asymptotic description of how these types of solutions self-sustain was provided by Hall & Sherwin. Here we offer a fully-nonlinear perspective on the self-sustainment of these solutions in terms of triadic scale interactions and use the resolvent framework of McKeon & Sharma to interpret these results from an input/output point of view. We analyze traveling wave solutions and periodic orbits in channel flow, and demonstrate how resolvent analysis can be used to obtain low-dimensional representations of these flows. We gratefully acknowledge funding from the AFOSR (FA9550-16-1-0361) and J.S. Park, M.D. Graham, and J.F. Gibson for providing data for the ECS solutions.

  20. The problem of exact interior solutions for rotating rigid bodies in general relativity

    NASA Technical Reports Server (NTRS)

    Wahlquist, H. D.

    1993-01-01

    The (3 + 1) dyadic formalism for timelike congruences is applied to derive interior solutions for stationary, axisymmetric, rigidly rotating bodies. In this approach the mathematics is formulated in terms of three-space-covariant, first-order, vector-dyadic, differential equations for a and Omega, the acceleration and angular velocity three-vectors of the rigid body; for T, the stress dyadic of the matter; and for A and B, the 'electric' and 'magnetic' Weyl curvature dyadics which describe the gravitational field. It is shown how an appropriate ansatz for the forms of these dyadics can be used to discover exact rotating interior solutions such as the perfect fluid solution first published in 1968. By incorporating anisotropic stresses, a generalization is found of that previous solution and, in addition, a very simple new solution that can only exist in toroidal configurations.

  1. Quasimonochromatic exact solutions to Maxwell's equations with finite total energy and arbitrary frequencies in the vacuum.

    PubMed

    Ma, Xiaolu; Thompson, Richard S

    2017-12-01

    We analyze a family of exact finite energy solutions to Maxwell's equations. These solutions are a subset of the modified-power-spectrum solutions found by Ziolkowski [Phys. Rev. A 39, 2005 (1989)10.1103/PhysRevA.39.2005]. There are three characteristic parameters in the solutions: q_{1},q_{2}, and k_{0}. q_{1} and q_{2} are related to the frequency bandwidth of the solution. In the parameter space of k_{0}q_{1}≫1 and k_{0}q_{2}≫1, they represent quasimonochromatic continuous wave fields with the main angular frequency k_{0}c and energy localized in the transverse directions. Under the restriction of q_{1}≪q_{2}, the beam propagates mainly in the +z direction with velocity c and limited diffraction.

  2. Numerical simulation of KdV equation by finite difference method

    NASA Astrophysics Data System (ADS)

    Yokus, A.; Bulut, H.

    2018-05-01

    In this study, the numerical solutions to the KdV equation with dual power nonlinearity by using the finite difference method are obtained. Discretize equation is presented in the form of finite difference operators. The numerical solutions are secured via the analytical solution to the KdV equation with dual power nonlinearity which is present in the literature. Through the Fourier-Von Neumann technique and linear stable, we have seen that the FDM is stable. Accuracy of the method is analyzed via the L2 and L_{∞} norm errors. The numerical, exact approximations and absolute error are presented in tables. We compare the numerical solutions with the exact solutions and this comparison is supported with the graphic plots. Under the choice of suitable values of parameters, the 2D and 3D surfaces for the used analytical solution are plotted.

  3. Integral Equations and Scattering Solutions for a Square-Well Potential.

    ERIC Educational Resources Information Center

    Bagchi, B.; Seyler, R. G.

    1979-01-01

    Derives Green's functions and integral equations for scattering solutions subject to a variety of boundary conditions. Exact solutions are obtained for the case of a finite spherical square-well potential, and properties of these solutions are discussed. (Author/HM)

  4. Well balancing of the SWE schemes for moving-water steady flows

    NASA Astrophysics Data System (ADS)

    Caleffi, Valerio; Valiani, Alessandro

    2017-08-01

    In this work, the exact reproduction of a moving-water steady flow via the numerical solution of the one-dimensional shallow water equations is studied. A new scheme based on a modified version of the HLLEM approximate Riemann solver (Dumbser and Balsara (2016) [18]) that exactly preserves the total head and the discharge in the simulation of smooth steady flows and that correctly dissipates mechanical energy in the presence of hydraulic jumps is presented. This model is compared with a selected set of schemes from the literature, including models that exactly preserve quiescent flows and models that exactly preserve moving-water steady flows. The comparison highlights the strengths and weaknesses of the different approaches. In particular, the results show that the increase in accuracy in the steady state reproduction is counterbalanced by a reduced robustness and numerical efficiency of the models. Some solutions to reduce these drawbacks, at the cost of increased algorithm complexity, are presented.

  5. Exact and Approximate Solutions for Transient Squeezing Flow

    NASA Astrophysics Data System (ADS)

    Lang, Ji; Santhanam, Sridhar; Wu, Qianhong

    2017-11-01

    In this paper, we report two novel theoretical approaches to examine a fast-developing flow in a thin fluid gap, which is widely observed in industrial applications and biological systems. The problem is featured by a very small Reynolds number and Strouhal number, making the fluid convective acceleration is negligible, while its local acceleration is not. We have developed an exact solution for this problem which shows that the flow starts with an inviscid limit when the viscous effect has no time to appear, and is followed by a subsequent developing flow, in which the viscous effect continues to penetrate into the entire fluid gap. An approximate solution is also developed using a boundary layer integral method. This solution precisely captures the general behavior of the transient fluid flow process, and agrees very well with the exact solution. We also performed numerical simulation using Ansys-CFX. Excellent agreement between the analytical and the numerical solutions is obtained, indicating the validity of the analytical approaches. The study presented herein fills the gap in the literature, and will have a broad impact in industrial and biomedical applications. This work is supported by National Science Foundation CBET Fluid Dynamics Program under Award #1511096, and supported by the Seed Grant from The Villanova Center for the Advancement of Sustainability in Engineering (VCASE).

  6. Stability of exact solutions describing two-layer flows with evaporation at the interface

    NASA Astrophysics Data System (ADS)

    Bekezhanova, V. B.; Goncharova, O. N.

    2016-12-01

    A new exact solution of the equations of free convection has been constructed in the framework of the Oberbeck-Boussinesq approximation of the Navier-Stokes equations. The solution describes the joint flow of an evaporating viscous heat-conducting liquid and gas-vapor mixture in a horizontal channel. In the gas phase the Dufour and Soret effects are taken into account. The consideration of the exact solution allows one to describe different classes of flows depending on the values of the problem parameters and boundary conditions for the vapor concentration. A classification of solutions and results of the solution analysis are presented. The effects of the external disturbing influences (of the liquid flow rates and longitudinal gradients of temperature on the channel walls) on the stability characteristics have been numerically studied for the system HFE7100-nitrogen in the common case, when the longitudinal temperature gradients on the boundaries of the channel are not equal. In the system both monotonic and oscillatory modes can be formed, which damp or grow depending on the values of the initial perturbations, flow rates and temperature gradients. Hydrodynamic perturbations are most dangerous under large gas flow rates. The increasing oscillatory perturbations are developed due to the thermocapillary effect under large longitudinal gradients of temperature. The typical forms of the disturbances are shown.

  7. An exact closed form solution for constant area compressible flow with friction and heat transfer

    NASA Technical Reports Server (NTRS)

    Sturas, J. I.

    1971-01-01

    The well-known differential equation for the one-dimensional flow of a compressible fluid with heat transfer and wall friction has no known solution in closed form for the general case. This report presents a closed form solution for the special case of constant heat flux per unit length and constant specific heat. The solution was obtained by choosing the square of a dimensionless flow parameter as one of the independent variables to describe the flow. From this exact solution, an approximate simplified form is derived that is applicable for predicting subsonic flow performance characteristics for many types of constant area passages in internal flow. The data included in this report are considered sufficiently accurate for use as a guide in analyzing and designing internal gas flow systems.

  8. An accuracy assessment of Cartesian-mesh approaches for the Euler equations

    NASA Technical Reports Server (NTRS)

    Coirier, William J.; Powell, Kenneth G.

    1995-01-01

    A critical assessment of the accuracy of Cartesian-mesh approaches for steady, transonic solutions of the Euler equations of gas dynamics is made. An exact solution of the Euler equations (Ringleb's flow) is used not only to infer the order of the truncation error of the Cartesian-mesh approaches, but also to compare the magnitude of the discrete error directly to that obtained with a structured mesh approach. Uniformly and adaptively refined solutions using a Cartesian-mesh approach are obtained and compared to each other and to uniformly refined structured mesh results. The effect of cell merging is investigated as well as the use of two different K-exact reconstruction procedures. The solution methodology of the schemes is explained and tabulated results are presented to compare the solution accuracies.

  9. Exact partition functions for deformed N=2 theories with N_f=4 flavours

    NASA Astrophysics Data System (ADS)

    Beccaria, Matteo; Fachechi, Alberto; Macorini, Guido; Martina, Luigi

    2016-12-01

    We consider the Ω-deformed N=2 SU(2) gauge theory in four dimensions with N f = 4 massive fundamental hypermultiplets. The low energy effective action depends on the deformation parameters ɛ 1 , ɛ 2, the scalar field expectation value a, and the hypermultiplet masses m = ( m 1 , m 2 , m 3 , m 4). Motivated by recent findings in the N={2}^{*} theory, we explore the theories that are characterized by special fixed ratios ɛ 2 /ɛ 1 and m /ɛ 1 and propose a simple condition on the structure of the multi-instanton contributions to the prepotential determining the effective action. This condition determines a finite set Π N of special points such that the prepotential has N poles at fixed positions independent on the instanton number. In analogy with what happens in the N={2}^{*} gauge theory, the full prepotential of the Π N theories may be given in closed form as an explicit function of a and the modular parameter q appearing in special combinations of Eisenstein series and Jacobi theta functions with well defined modular properties. The resulting finite pole partition functions are related by AGT correspondence to special 4-point spherical conformal blocks of the Virasoro algebra. We examine in full details special cases where the closed expression of the block is known and confirms our Ansatz. We systematically study the special features of Zamolodchikov's recursion for the Π N conformal blocks. As a result, we provide a novel effective recursion relation that can be exactly solved and allows to prove the conjectured closed expressions analytically in the case of the Π1 and Π2 conformal blocks.

  10. Analysis of thin plates with holes by using exact geometrical representation within XFEM.

    PubMed

    Perumal, Logah; Tso, C P; Leng, Lim Thong

    2016-05-01

    This paper presents analysis of thin plates with holes within the context of XFEM. New integration techniques are developed for exact geometrical representation of the holes. Numerical and exact integration techniques are presented, with some limitations for the exact integration technique. Simulation results show that the proposed techniques help to reduce the solution error, due to the exact geometrical representation of the holes and utilization of appropriate quadrature rules. Discussion on minimum order of integration order needed to achieve good accuracy and convergence for the techniques presented in this work is also included.

  11. A comparative analysis of permanent magnet-type bearingless synchronous motors for fully magnetically levitated rotors

    NASA Astrophysics Data System (ADS)

    Charpentier, J. F.; Lemarquand, G.

    1998-06-01

    Radial instability of synchronous motors is important data to design magnetic bearings. Moreover, original motor structures must be proposed to decrease the instability. In this article, four structures with a permanent magnet rotor, six poles, and the same main mechanical dimensions are analyzed and compared. The first concerns a rotor with six tiles of permanent magnets radially magnetized and adhered to an iron core. The second is a rotor with six axial permanent magnets tangentially magnetized and separated by iron pole pieces, where the shaft is amagnetic. The third design proposes a rotor with six contiguous tiles of permanent magnets tangentially magnetized and an amagnetic shaft. In the fourth structure each north pole is made up of two contiguous tiles of permanent magnets tangentially magnetized in opposite direction and each south pole is made up of an iron pole piece. The shaft of this structure is amagnetic. The stator structure and the currents in stator windings produce a six poles flux distribution. A finite element method program is employed to study the forces and the torques. The four structures are designed to provide the same motor performance (torque). The radial instability is modeled by outcentering the rotor. The relationships between the radial force and the type of structure are analyzed. The result is that the third structure is the best solution for fully magnetically levitated rotors. It has a small instability and does not generate any disturbing force whose frequency is the double of the rotation frequency. This structure also has good properties to be used as a radial magnetic bearing.

  12. Exact solutions of a hierarchy of mixing speeds models

    NASA Astrophysics Data System (ADS)

    Cornille, H.; Platkowski, T.

    1992-07-01

    This paper presents several new aspects of discrete kinetic theory (DKT). First a hierarchy of d-dimensional (d=1,2,3) models is proposed with (2d+3) velocities and three moduli speeds: 0, 2, and a third one that can be arbitrary. It is assumed that the particles at rest have an internal energy which, for microscopic collisions, supplies for the loss of the kinetic energy. In a more general way than usual, collisions are allowed that mix particles with different speeds. Second, for the (1+1)-dimensional restriction of the systems of PDE for these models which have two independent quadratic collision terms we construct different exact solutions. The usual types of exact solutions are studied: periodic solutions and shock wave solutions obtained from the standard linearization of the scalar Riccati equations called Riccatian shock waves. Then other types of solutions of the coupled Riccati equations are found called non-Riccatian shock waves and they are compared with the previous ones. The main new result is that, between the upstream and downstream states, these new solutions are not necessarily monotonous. Further, for the shock problem, a two-dimensional dynamical system of ODE is solved numerically with limit values corresponding to the upstream and downstream states. As a by-product of this study two new linearizations for the Riccati coupled equations with two functions are proposed.

  13. A procedure to construct exact solutions of nonlinear fractional differential equations.

    PubMed

    Güner, Özkan; Cevikel, Adem C

    2014-01-01

    We use the fractional transformation to convert the nonlinear partial fractional differential equations with the nonlinear ordinary differential equations. The Exp-function method is extended to solve fractional partial differential equations in the sense of the modified Riemann-Liouville derivative. We apply the Exp-function method to the time fractional Sharma-Tasso-Olver equation, the space fractional Burgers equation, and the time fractional fmKdV equation. As a result, we obtain some new exact solutions.

  14. Comparison of high-angle-of-attack slender-body theory and exact solutions for potential flow over an ellipsoid

    NASA Technical Reports Server (NTRS)

    Hemsch, Michael J.

    1990-01-01

    The accuracy of high-alpha slender-body theory (HASBT) for bodies with elliptical cross-sections is presently demonstrated by means of a comparison with exact solutions for incompressible potential flow over a wide range of ellipsoid geometries and angles of attack and sideslip. The addition of the appropriate trigonometric coefficients to the classical slender-body theory decomposition yields the formally correct HASBT, and results in accuracies previously considered unattainable.

  15. Gödel metrics with chronology protection in Horndeski gravities

    NASA Astrophysics Data System (ADS)

    Geng, Wei-Jian; Li, Shou-Long; Lü, H.; Wei, Hao

    2018-05-01

    Gödel universe, one of the most interesting exact solutions predicted by General Relativity, describes a homogeneous rotating universe containing naked closed time-like curves (CTCs). It was shown that such CTCs are the consequence of the null energy condition in General Relativity. In this paper, we show that the Gödel-type metrics with chronology protection can emerge in Einstein-Horndeski gravity. We construct such exact solutions also in Einstein-Horndeski-Maxwell and Einstein-Horndeski-Proca theories.

  16. An exact solution to the relativistic equation of motion of a charged particle driven by a linearly polarized electromagnetic wave

    NASA Technical Reports Server (NTRS)

    Shebalin, John V.

    1988-01-01

    An exact analytic solution is found for a basic electromagnetic wave-charged particle interaction by solving the nonlinear equations of motion. The particle position, velocity, and corresponding time are found to be explicit functions of the total phase of the wave. Particle position and velocity are thus implicit functions of time. Applications include describing the motion of a free electron driven by an intense laser beam..

  17. Exact Solutions for Stationary and Unsteady Layered Convection of a Viscous Incompressible Fluid with the Specified Velocities at the Bottom

    NASA Astrophysics Data System (ADS)

    Prosviryakov, E. Yu; Spevak, L. F.

    2017-06-01

    The layered convective flow of a viscous incompressible fluid is considered with the specified velocities at the bottom of an infinite layer. A new exact stationary and nonstationary solution of the Oberbeck-Boussinesq system is presented. The account of fluid velocity at the bottom is characterized by the presence of two stagnant points, this being indicative of the nonmonotonic kinetic energy profile with two local extrema.

  18. Many-body Green’s function theory for electron-phonon interactions: Ground state properties of the Holstein dimer

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Säkkinen, Niko; Leeuwen, Robert van; Peng, Yang

    2015-12-21

    We study ground-state properties of a two-site, two-electron Holstein model describing two molecules coupled indirectly via electron-phonon interaction by using both exact diagonalization and self-consistent diagrammatic many-body perturbation theory. The Hartree and self-consistent Born approximations used in the present work are studied at different levels of self-consistency. The governing equations are shown to exhibit multiple solutions when the electron-phonon interaction is sufficiently strong, whereas at smaller interactions, only a single solution is found. The additional solutions at larger electron-phonon couplings correspond to symmetry-broken states with inhomogeneous electron densities. A comparison to exact results indicates that this symmetry breaking is stronglymore » correlated with the formation of a bipolaron state in which the two electrons prefer to reside on the same molecule. The results further show that the Hartree and partially self-consistent Born solutions obtained by enforcing symmetry do not compare well with exact energetics, while the fully self-consistent Born approximation improves the qualitative and quantitative agreement with exact results in the same symmetric case. This together with a presented natural occupation number analysis supports the conclusion that the fully self-consistent approximation describes partially the bipolaron crossover. These results contribute to better understanding how these approximations cope with the strong localizing effect of the electron-phonon interaction.« less

  19. Exact Solutions of Coupled Multispecies Linear Reaction–Diffusion Equations on a Uniformly Growing Domain

    PubMed Central

    Simpson, Matthew J.; Sharp, Jesse A.; Morrow, Liam C.; Baker, Ruth E.

    2015-01-01

    Embryonic development involves diffusion and proliferation of cells, as well as diffusion and reaction of molecules, within growing tissues. Mathematical models of these processes often involve reaction–diffusion equations on growing domains that have been primarily studied using approximate numerical solutions. Recently, we have shown how to obtain an exact solution to a single, uncoupled, linear reaction–diffusion equation on a growing domain, 0 < x < L(t), where L(t) is the domain length. The present work is an extension of our previous study, and we illustrate how to solve a system of coupled reaction–diffusion equations on a growing domain. This system of equations can be used to study the spatial and temporal distributions of different generations of cells within a population that diffuses and proliferates within a growing tissue. The exact solution is obtained by applying an uncoupling transformation, and the uncoupled equations are solved separately before applying the inverse uncoupling transformation to give the coupled solution. We present several example calculations to illustrate different types of behaviour. The first example calculation corresponds to a situation where the initially–confined population diffuses sufficiently slowly that it is unable to reach the moving boundary at x = L(t). In contrast, the second example calculation corresponds to a situation where the initially–confined population is able to overcome the domain growth and reach the moving boundary at x = L(t). In its basic format, the uncoupling transformation at first appears to be restricted to deal only with the case where each generation of cells has a distinct proliferation rate. However, we also demonstrate how the uncoupling transformation can be used when each generation has the same proliferation rate by evaluating the exact solutions as an appropriate limit. PMID:26407013

  20. Exact Solutions of Coupled Multispecies Linear Reaction-Diffusion Equations on a Uniformly Growing Domain.

    PubMed

    Simpson, Matthew J; Sharp, Jesse A; Morrow, Liam C; Baker, Ruth E

    2015-01-01

    Embryonic development involves diffusion and proliferation of cells, as well as diffusion and reaction of molecules, within growing tissues. Mathematical models of these processes often involve reaction-diffusion equations on growing domains that have been primarily studied using approximate numerical solutions. Recently, we have shown how to obtain an exact solution to a single, uncoupled, linear reaction-diffusion equation on a growing domain, 0 < x < L(t), where L(t) is the domain length. The present work is an extension of our previous study, and we illustrate how to solve a system of coupled reaction-diffusion equations on a growing domain. This system of equations can be used to study the spatial and temporal distributions of different generations of cells within a population that diffuses and proliferates within a growing tissue. The exact solution is obtained by applying an uncoupling transformation, and the uncoupled equations are solved separately before applying the inverse uncoupling transformation to give the coupled solution. We present several example calculations to illustrate different types of behaviour. The first example calculation corresponds to a situation where the initially-confined population diffuses sufficiently slowly that it is unable to reach the moving boundary at x = L(t). In contrast, the second example calculation corresponds to a situation where the initially-confined population is able to overcome the domain growth and reach the moving boundary at x = L(t). In its basic format, the uncoupling transformation at first appears to be restricted to deal only with the case where each generation of cells has a distinct proliferation rate. However, we also demonstrate how the uncoupling transformation can be used when each generation has the same proliferation rate by evaluating the exact solutions as an appropriate limit.

  1. Radiative interactions in multi-dimensional chemically reacting flows using Monte Carlo simulations

    NASA Technical Reports Server (NTRS)

    Liu, Jiwen; Tiwari, Surendra N.

    1994-01-01

    The Monte Carlo method (MCM) is applied to analyze radiative heat transfer in nongray gases. The nongray model employed is based on the statistical narrow band model with an exponential-tailed inverse intensity distribution. The amount and transfer of the emitted radiative energy in a finite volume element within a medium are considered in an exact manner. The spectral correlation between transmittances of two different segments of the same path in a medium makes the statistical relationship different from the conventional relationship, which only provides the non-correlated results for nongray methods is discussed. Validation of the Monte Carlo formulations is conducted by comparing results of this method of other solutions. In order to further establish the validity of the MCM, a relatively simple problem of radiative interactions in laminar parallel plate flows is considered. One-dimensional correlated Monte Carlo formulations are applied to investigate radiative heat transfer. The nongray Monte Carlo solutions are also obtained for the same problem and they also essentially match the available analytical solutions. the exact correlated and non-correlated Monte Carlo formulations are very complicated for multi-dimensional systems. However, by introducing the assumption of an infinitesimal volume element, the approximate correlated and non-correlated formulations are obtained which are much simpler than the exact formulations. Consideration of different problems and comparison of different solutions reveal that the approximate and exact correlated solutions agree very well, and so do the approximate and exact non-correlated solutions. However, the two non-correlated solutions have no physical meaning because they significantly differ from the correlated solutions. An accurate prediction of radiative heat transfer in any nongray and multi-dimensional system is possible by using the approximate correlated formulations. Radiative interactions are investigated in chemically reacting compressible flows of premixed hydrogen and air in an expanding nozzle. The governing equations are based on the fully elliptic Navier-Stokes equations. Chemical reaction mechanisms were described by a finite rate chemistry model. The correlated Monte Carlo method developed earlier was employed to simulate multi-dimensional radiative heat transfer. Results obtained demonstrate that radiative effects on the flowfield are minimal but radiative effects on the wall heat transfer are significant. Extensive parametric studies are conducted to investigate the effects of equivalence ratio, wall temperature, inlet flow temperature, and nozzle size on the radiative and conductive wall fluxes.

  2. Revealing Numerical Solutions of a Differential Equation

    ERIC Educational Resources Information Center

    Glaister, P.

    2006-01-01

    In this article, the author considers a student exercise that involves determining the exact and numerical solutions of a particular differential equation. He shows how a typical student solution is at variance with a numerical solution, suggesting that the numerical solution is incorrect. However, further investigation shows that this numerical…

  3. Coherent pulses in the diffusive transport of charged particles`

    NASA Technical Reports Server (NTRS)

    Kota, J.

    1994-01-01

    We present exact solutions to the diffusive transport of charged particles following impulsive injection for a simple model of scattering. A modified, two-parameter relaxation-time model is considered that simulates the low rate of scattering through perpendicular pitch-angle. Scattering is taken to be isotropic within each of the foward- and backward-pointing hemispheres, respectively, but, at the same time, a reduced rate of sccattering is assumed from one hemisphere to the other one. By applying a technique of Fourier- and Laplace-transform, the inverse transformation can be performed and exact solutions can be reached. By contrast with the first, and so far only exact solutions of Federov and Shakov, this wider class of solutions gives rise to coherent pulses to appear. The present work addresses omnidirectional densities for isotropic injection from an instantaneous and localized source. The dispersion relations are briefly discussed. We find, for this particular model, two diffusive models to exist up to a certain limiting wavenumber. The corresponding eigenvalues are real at the lowest wavenumbers. Complex eigenvalues, which are responsible for coherent pulses, appear at higher wavenumbers.

  4. Penetrable square-well fluids: exact results in one dimension.

    PubMed

    Santos, Andrés; Fantoni, Riccardo; Giacometti, Achille

    2008-05-01

    We introduce a model of attractive penetrable spheres by adding a short-range attractive square well outside a penetrable core, and we provide a detailed analysis of structural and thermodynamical properties in one dimension using the exact impenetrable counterpart as a starting point. The model is expected to describe star polymers in regimes of good and moderate solvent under dilute conditions. We derive the exact coefficients of a low-density expansion up to second order for the radial distribution function and up to fourth order in the virial expansion. These exact results are used as a benchmark to test the reliability of approximate theories (Percus-Yevick and hypernetted chain). Notwithstanding the lack of an exact solution for arbitrary densities, our results are expected to be rather precise within a wide range of temperatures and densities. A detailed analysis of some limiting cases is carried out. In particular, we provide a complete solution of the sticky penetrable-sphere model in one dimension up to the same order in density. The issue of Ruelle's thermodynamics stability is analyzed and the region of a well-defined thermodynamic limit is identified.

  5. The Poisson-Boltzmann theory for the two-plates problem: some exact results.

    PubMed

    Xing, Xiang-Jun

    2011-12-01

    The general solution to the nonlinear Poisson-Boltzmann equation for two parallel charged plates, either inside a symmetric electrolyte, or inside a 2q:-q asymmetric electrolyte, is found in terms of Weierstrass elliptic functions. From this we derive some exact asymptotic results for the interaction between charged plates, as well as the exact form of the renormalized surface charge density.

  6. Thermodynamical properties of hairy black holes in n spacetime dimensions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Nadalini, Mario; Vanzo, Luciano; Zerbini, Sergio

    The issue concerning the existence of exact black hole solutions in the presence of a nonvanishing cosmological constant and scalar fields is reconsidered. With regard to this, in investigating no-hair theorem violations, exact solutions of gravity having as a source an interacting and conformally coupled scalar field are revisited in arbitrary dimensional nonasymptotically flat space-times. New and known hairy black hole solutions are discussed. The thermodynamical properties associated with these solutions are investigated and the invariance of the black hole entropy with respect to different conformal frames is proved. The issue of the positivity of the entropy is discussed andmore » resolved for the case of black holes immersed in de Sitter space.« less

  7. A new mathematical solution for predicting char activation reactions

    USGS Publications Warehouse

    Rafsanjani, H.H.; Jamshidi, E.; Rostam-Abadi, M.

    2002-01-01

    The differential conservation equations that describe typical gas-solid reactions, such as activation of coal chars, yield a set of coupled second-order partial differential equations. The solution of these coupled equations by exact analytical methods is impossible. In addition, an approximate or exact solution only provides predictions for either reaction- or diffusion-controlling cases. A new mathematical solution, the quantize method (QM), was applied to predict the gasification rates of coal char when both chemical reaction and diffusion through the porous char are present. Carbon conversion rates predicted by the QM were in closer agreement with the experimental data than those predicted by the random pore model and the simple particle model. ?? 2002 Elsevier Science Ltd. All rights reserved.

  8. Asymptotically Exact Solution of the Problem of Harmonic Vibrations of an Elastic Parallelepiped

    NASA Astrophysics Data System (ADS)

    Papkov, S. O.

    2017-11-01

    An asymptotically exact solution of the classical problem of elasticity about the steadystate forced vibrations of an elastic rectangular parallelepiped is constructed. The general solution of the vibration equations is constructed in the form of double Fourier series with undetermined coefficients, and an infinite system of linear algebraic equations is obtained for determining these coefficients. An analysis of the infinite system permits determining the asymptotics of the unknowns which are used to convolve the double series in both equations of the infinite systems and the displacement and stress components. The efficiency of this approach is illustrated by numerical examples and comparison with known solutions. The spectrum of the parallelepiped symmetric vibrations is studied for various ratios of its sides.

  9. Class of Exact Solutions for a Cosmological Model of Unified Gravitational and Quintessence Fields

    NASA Astrophysics Data System (ADS)

    Asenjo, Felipe A.; Hojman, Sergio A.

    2017-07-01

    A new approach to tackle Einstein equations for an isotropic and homogeneous Friedmann-Robertson-Walker Universe in the presence of a quintessence scalar field is devised. It provides a way to get a simple exact solution to these equations. This solution determines the quintessence potential uniquely and it differs from solutions which have been used to study inflation previously. It relays on a unification of geometry and dark matter implemented through the definition of a functional relation between the scale factor of the Universe and the quintessence field. For a positive curvature Universe, this solution produces perpetual accelerated expansion rate of the Universe, while the Hubble parameter increases abruptly, attains a maximum value and decreases thereafter. The behavior of this cosmological solution is discussed and its main features are displayed. The formalism is extended to include matter and radiation.

  10. Khater method for nonlinear Sharma Tasso-Olever (STO) equation of fractional order

    NASA Astrophysics Data System (ADS)

    Bibi, Sadaf; Mohyud-Din, Syed Tauseef; Khan, Umar; Ahmed, Naveed

    In this work, we have implemented a direct method, known as Khater method to establish exact solutions of nonlinear partial differential equations of fractional order. Number of solutions provided by this method is greater than other traditional methods. Exact solutions of nonlinear fractional order Sharma Tasso-Olever (STO) equation are expressed in terms of kink, travelling wave, periodic and solitary wave solutions. Modified Riemann-Liouville derivative and Fractional complex transform have been used for compatibility with fractional order sense. Solutions have been graphically simulated for understanding the physical aspects and importance of the method. A comparative discussion between our established results and the results obtained by existing ones is also presented. Our results clearly reveal that the proposed method is an effective, powerful and straightforward technique to work out new solutions of various types of differential equations of non-integer order in the fields of applied sciences and engineering.

  11. Metal explosion chambers: designing, manufacturing, application

    NASA Astrophysics Data System (ADS)

    Stoyanovskii, O. I.; Zlobin, B. S.; Shtertser, A. A.; Meshcheryakov, Y. P.

    2017-10-01

    Designing of explosion chambers is based on research investigations of the chamber body stress-strain state, which is determined by numerical computation and experimentally by the strain gage technique. Studies show that chamber bottoms are the most loaded elements, and maximal stresses arise in chamber poles. Increasing the shell thickness around poles by welding-in an insert is a simple and saving way to solve this problem. There are structural solutions, enabling reliable hermetic closure and preventing leakage of detonation products from the chamber. Explosion chambers are employed in scientific research and in different industrial applications: explosive welding and hardening, synthesis of new materials, disposal of expired ammunition, and etc.

  12. On the extraction of P 11 resonances from πN data

    DOE PAGES

    Hiroyuki Kamano; Nakamura, Satoshi X.; Lee, Tsung -Shung; ...

    2010-06-22

    With the accuracy of the available P 11 amplitudes of πΔ scattering, we show that two resonance poles near the pi Delta threshold, obtained in several analyses, are stable against large variations of parameters within a dynamical coupled-channels analysis. The number of poles in the 1.5 GeV < W < 2 GeV region could be more than one, depending on how the structure of the single-energy solution of SAID is fitted. Lastly, our results indicate the need of more accurate πN scattering data in the W > 1.6 GeV region for high precision resonance extractions.

  13. Combinatorics of Generalized Bethe Equations

    NASA Astrophysics Data System (ADS)

    Kozlowski, Karol K.; Sklyanin, Evgeny K.

    2013-10-01

    A generalization of the Bethe ansatz equations is studied, where a scalar two-particle S-matrix has several zeroes and poles in the complex plane, as opposed to the ordinary single pole/zero case. For the repulsive case (no complex roots), the main result is the enumeration of all distinct solutions to the Bethe equations in terms of the Fuss-Catalan numbers. Two new combinatorial interpretations of the Fuss-Catalan and related numbers are obtained. On the one hand, they count regular orbits of the permutation group in certain factor modules over {{Z}^M}, and on the other hand, they count integer points in certain M-dimensional polytopes.

  14. Tachyon and quintessence in brane worlds

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chimento, Luis P.; Forte, Monica; Richarte, Martin G.

    2009-04-15

    Using tachyon or quintessence fields along with a barotropic fluid on the brane we examine the different cosmological stages in a Friedmann-Robertson-Walker universe, from the first radiation scenario to the later era dominated by cosmic string networks. We introduce a new algorithm to generalize previous works on exact solutions and apply it to study tachyon and quintessence fields localized on the brane. We also explore the low and high energy regimes of the solutions. Besides, we show that the tachyon and quintessence fields are driven by an inverse power law potential. Finally, we find several simple exacts solutions for tachyonmore » and/or quintessence fields.« less

  15. ADM For Solving Linear Second-Order Fredholm Integro-Differential Equations

    NASA Astrophysics Data System (ADS)

    Karim, Mohd F.; Mohamad, Mahathir; Saifullah Rusiman, Mohd; Che-Him, Norziha; Roslan, Rozaini; Khalid, Kamil

    2018-04-01

    In this paper, we apply Adomian Decomposition Method (ADM) as numerically analyse linear second-order Fredholm Integro-differential Equations. The approximate solutions of the problems are calculated by Maple package. Some numerical examples have been considered to illustrate the ADM for solving this equation. The results are compared with the existing exact solution. Thus, the Adomian decomposition method can be the best alternative method for solving linear second-order Fredholm Integro-Differential equation. It converges to the exact solution quickly and in the same time reduces computational work for solving the equation. The result obtained by ADM shows the ability and efficiency for solving these equations.

  16. Regularization of moving boundaries in a laplacian field by a mixed Dirichlet-Neumann boundary condition: exact results.

    PubMed

    Meulenbroek, Bernard; Ebert, Ute; Schäfer, Lothar

    2005-11-04

    The dynamics of ionization fronts that generate a conducting body are in the simplest approximation equivalent to viscous fingering without regularization. Going beyond this approximation, we suggest that ionization fronts can be modeled by a mixed Dirichlet-Neumann boundary condition. We derive exact uniformly propagating solutions of this problem in 2D and construct a single partial differential equation governing small perturbations of these solutions. For some parameter value, this equation can be solved analytically, which shows rigorously that the uniformly propagating solution is linearly convectively stable and that the asymptotic relaxation is universal and exponential in time.

  17. Revisiting the Langer-Ambegaokar-McCumber-Halperin theory of resistive transitions in one-dimensional superconductors with exact solutions.

    PubMed

    Joshi, Darshan G; Bhattacharyay, A

    2011-08-31

    We present an important correction to the Langer-Ambegaokar-McCumber-Halperin theory for the resistive state of a 1D superconductor. We establish that the identification of the saddle on the free energy surface over which Langer and Ambegaokar had claimed the system to move in order to form thermally excited phase slip centres is wrong. With the help of an exact solution we show that the system has to overcome a similar free energy barrier but can actually have vanishing amplitude of the superconducting phase at a point, unlike the Langer-Ambegaokar solution.

  18. An exact solution for ideal dam-break floods on steep slopes

    USGS Publications Warehouse

    Ancey, C.; Iverson, R.M.; Rentschler, M.; Denlinger, R.P.

    2008-01-01

    The shallow-water equations are used to model the flow resulting from the sudden release of a finite volume of frictionless, incompressible fluid down a uniform slope of arbitrary inclination. The hodograph transformation and Riemann's method make it possible to transform the governing equations into a linear system and then deduce an exact analytical solution expressed in terms of readily evaluated integrals. Although the solution treats an idealized case never strictly realized in nature, it is uniquely well-suited for testing the robustness and accuracy of numerical models used to model shallow-water flows on steep slopes. Copyright 2008 by the American Geophysical Union.

  19. Numerical method for solving the nonlinear four-point boundary value problems

    NASA Astrophysics Data System (ADS)

    Lin, Yingzhen; Lin, Jinnan

    2010-12-01

    In this paper, a new reproducing kernel space is constructed skillfully in order to solve a class of nonlinear four-point boundary value problems. The exact solution of the linear problem can be expressed in the form of series and the approximate solution of the nonlinear problem is given by the iterative formula. Compared with known investigations, the advantages of our method are that the representation of exact solution is obtained in a new reproducing kernel Hilbert space and accuracy of numerical computation is higher. Meanwhile we present the convergent theorem, complexity analysis and error estimation. The performance of the new method is illustrated with several numerical examples.

  20. ANALYZING NUMERICAL ERRORS IN DOMAIN HEAT TRANSPORT MODELS USING THE CVBEM.

    USGS Publications Warehouse

    Hromadka, T.V.

    1987-01-01

    Besides providing an exact solution for steady-state heat conduction processes (Laplace-Poisson equations), the CVBEM (complex variable boundary element method) can be used for the numerical error analysis of domain model solutions. For problems where soil-water phase change latent heat effects dominate the thermal regime, heat transport can be approximately modeled as a time-stepped steady-state condition in the thawed and frozen regions, respectively. The CVBEM provides an exact solution of the two-dimensional steady-state heat transport problem, and also provides the error in matching the prescribed boundary conditions by the development of a modeling error distribution or an approximate boundary generation.

  1. On the motion of a quantum particle in the spinning cosmic string space–time

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hassanabadi, H., E-mail: h.hasanabadi@shahroodut.ac.ir; Afshardoost, A.; Zarrinkamar, S.

    2015-05-15

    We analyze the energy spectrum and the wave function of a particle subjected to magnetic field in the spinning cosmic string space–time and investigate the influence of the spinning reference frame and topological defect on the system. To do this we solve Schrödinger equation in the spinning cosmic string background. In our work, instead of using an approximation in the calculations, we use the quasi-exact ansatz approach which gives the exact solutions for some primary levels. - Highlights: • Solving the Schrödinger equation in the spinning cosmic string space time. • Proposing a quasi-exact analytical solution to the general formmore » of the corresponding equation. • Generalizing the previous works.« less

  2. Exact Solutions to Several Nonlinear Cases of Generalized Grad-Shafranov Equation for Ideal Magnetohydrodynamic Flows in Axisymmetric Domain

    NASA Astrophysics Data System (ADS)

    Adem, Abdullahi Rashid; Moawad, Salah M.

    2018-05-01

    In this paper, the steady-state equations of ideal magnetohydrodynamic incompressible flows in axisymmetric domains are investigated. These flows are governed by a second-order elliptic partial differential equation as a type of generalized Grad-Shafranov equation. The problem of finding exact equilibria to the full governing equations in the presence of incompressible mass flows is considered. Two different types of constraints on position variables are presented to construct exact solution classes for several nonlinear cases of the governing equations. Some of the obtained results are checked for their applications to magnetic confinement plasma. Besides, they cover many previous configurations and include new considerations about the nonlinearity of magnetic flux stream variables.

  3. A Procedure to Construct Exact Solutions of Nonlinear Fractional Differential Equations

    PubMed Central

    Güner, Özkan; Cevikel, Adem C.

    2014-01-01

    We use the fractional transformation to convert the nonlinear partial fractional differential equations with the nonlinear ordinary differential equations. The Exp-function method is extended to solve fractional partial differential equations in the sense of the modified Riemann-Liouville derivative. We apply the Exp-function method to the time fractional Sharma-Tasso-Olver equation, the space fractional Burgers equation, and the time fractional fmKdV equation. As a result, we obtain some new exact solutions. PMID:24737972

  4. Exact dark soliton solutions for a family of N coupled nonlinear Schrödinger equations in optical fiber media.

    PubMed

    Nakkeeran, K

    2001-10-01

    We consider a family of N coupled nonlinear Schrödinger equations which govern the simultaneous propagation of N fields in the normal dispersion regime of an optical fiber with various important physical effects. The linear eigenvalue problem associated with the integrable form of all the equations is constructed with the help of the Ablowitz-Kaup-Newell-Segur method. Using the Hirota bilinear method, exact dark soliton solutions are explicitly derived.

  5. Overshooting thunderstorm cloud top dynamics as approximated by a linear Lagrangian parcel model with analytic exact solutions

    NASA Technical Reports Server (NTRS)

    Schlesinger, Robert E.

    1990-01-01

    Results are presented from a linear Lagrangian entraining parcel model of an overshooting thunderstorm cloud top. The model, which is similar to that of Adler and Mack (1986), gives analytic exact solutions for vertical velocity and temperature by representing mixing with Rayleigh damping instead of nonlinearly. Model results are presented for various combinations of stratospheric lapse rate, drag intensity, and mixing strength. The results are compared to those of Adler and Mack.

  6. Using trees to compute approximate solutions to ordinary differential equations exactly

    NASA Technical Reports Server (NTRS)

    Grossman, Robert

    1991-01-01

    Some recent work is reviewed which relates families of trees to symbolic algorithms for the exact computation of series which approximate solutions of ordinary differential equations. It turns out that the vector space whose basis is the set of finite, rooted trees carries a natural multiplication related to the composition of differential operators, making the space of trees an algebra. This algebraic structure can be exploited to yield a variety of algorithms for manipulating vector fields and the series and algebras they generate.

  7. Exact solution for flow in a porous pipe with unsteady wall suction and/or injection

    NASA Astrophysics Data System (ADS)

    Tsangaris, S.; Kondaxakis, D.; Vlachakis, N. W.

    2007-10-01

    This paper presents an extension of the exact solution of the steady laminar axisymmetric flow in a straight pipe of circular cross section with porous wall, given by R.M. Terrill, to the case of unsteady wall injection and/or suction. The cases of the pulsating parabolic profile and of the developed pulsating flow are investigated as examples. The pulsating flow in porous ducts has many applications in biomedical engineering and in other engineering areas.

  8. Exact solution to the Schrödinger’s equation with pseudo-Gaussian potential

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Iacob, Felix, E-mail: felix@physics.uvt.ro; Lute, Marina, E-mail: marina.lute@upt.ro

    2015-12-15

    We consider the radial Schrödinger equation with the pseudo-Gaussian potential. By making an ansatz to the solution of the eigenvalue equation for the associate Hamiltonian, we arrive at the general exact eigenfunction. The values of energy levels for the bound states are calculated along with their corresponding normalized wave-functions. The case of positive energy levels, known as meta-stable states, is also discussed and the magnitude of transmission coefficient through the potential barrier is evaluated.

  9. On the Discrete Spectrum of the Nonstationary Schrödinger Equation and Multipole Lumps of the Kadomtsev-Petviashvili I Equation

    NASA Astrophysics Data System (ADS)

    Villarroel, Javier; Ablowitz, Mark J.

    The discrete spectrum of the nonstationary Schrödinger equation and localized solutions of the Kadomtsev-Petviashvili-I (KPI) equation are studied via the inverse scattering transform. It is shown that there exist infinitely many real and rationally decaying potentials which correspond to a discrete spectrum whose related eigenfunctions have multiple poles in the spectral parameter. An index or winding number is asssociated with each of these solutions. The resulting localized solutions of KPI behave as collection of individual humps with nonuniform dynamics.

  10. Spin generalization of the Calogero–Moser hierarchy and the matrix KP hierarchy

    NASA Astrophysics Data System (ADS)

    Pashkov, V.; Zabrodin, A.

    2018-05-01

    We establish a correspondence between rational solutions to the matrix KP hierarchy and the spin generalization of the Calogero–Moser system on the level of hierarchies. Namely, it is shown that the rational solutions to the matrix KP hierarchy appear to be isomorphic to the spin Calogero–Moser system in a sense that the dynamics of poles of solutions to the matrix KP hierarchy in the higher times is governed by the higher Hamiltonians of the spin Calogero–Moser integrable hierarchy with rational potential.

  11. The Exact Solution for Linear Thermoelastic Axisymmetric Deformations of Generally Laminated Circular Cylindrical Shells

    NASA Technical Reports Server (NTRS)

    Nemeth, Michael P.; Schultz, Marc R.

    2012-01-01

    A detailed exact solution is presented for laminated-composite circular cylinders with general wall construction and that undergo axisymmetric deformations. The overall solution is formulated in a general, systematic way and is based on the solution of a single fourth-order, nonhomogeneous ordinary differential equation with constant coefficients in which the radial displacement is the dependent variable. Moreover, the effects of general anisotropy are included and positive-definiteness of the strain energy is used to define uniquely the form of the basis functions spanning the solution space of the ordinary differential equation. Loading conditions are considered that include axisymmetric edge loads, surface tractions, and temperature fields. Likewise, all possible axisymmetric boundary conditions are considered. Results are presented for five examples that demonstrate a wide range of behavior for specially orthotropic and fully anisotropic cylinders.

  12. Using the Domenico Solution to Teach Contaminant Transport Modeling

    ERIC Educational Resources Information Center

    Devlin, J. F.; Brookfield, A.; Huang, B.; Schillig, P. C.

    2012-01-01

    The Domenico solution is a heuristic simplification of a solution to the transport equation. Although there is a growing consensus that the Domenico solution is undesirable for use in professional and research applications due to departures from exact solutions under certain conditions, it behaves well under conditions suitable for instruction.…

  13. Exact image theory for the problem of dielectric/magnetic slab

    NASA Technical Reports Server (NTRS)

    Lindell, I. V.

    1987-01-01

    Exact image method, recently introduced for the exact solution of electromagnetic field problems involving homogeneous half spaces and microstrip-like geometries, is developed for the problem of homogeneous slab of dielectric and/or magnetic material in free space. Expressions for image sources, creating the exact reflected and transmitted fields, are given and their numerical evaluation is demonstrated. Nonradiating modes, guided by the slab and responsible for the loss of convergence of the image functions, are considered and extracted. The theory allows, for example, an analysis of finite ground planes in microstrip antenna structures.

  14. Post-earthquake relaxation using a spectral element method: 2.5-D case

    USGS Publications Warehouse

    Pollitz, Fred

    2014-01-01

    The computation of quasi-static deformation for axisymmetric viscoelastic structures on a gravitating spherical earth is addressed using the spectral element method (SEM). A 2-D spectral element domain is defined with respect to spherical coordinates of radius and angular distance from a pole of symmetry, and 3-D viscoelastic structure is assumed to be azimuthally symmetric with respect to this pole. A point dislocation source that is periodic in azimuth is implemented with a truncated sequence of azimuthal order numbers. Viscoelasticity is limited to linear rheologies and is implemented with the correspondence principle in the Laplace transform domain. This leads to a series of decoupled 2-D problems which are solved with the SEM. Inverse Laplace transform of the independent 2-D solutions leads to the time-domain solution of the 3-D equations of quasi-static equilibrium imposed on a 2-D structure. The numerical procedure is verified through comparison with analytic solutions for finite faults embedded in a laterally homogeneous viscoelastic structure. This methodology is applicable to situations where the predominant structure varies in one horizontal direction, such as a structural contrast across (or parallel to) a long strike-slip fault.

  15. High order finite volume WENO schemes for the Euler equations under gravitational fields

    NASA Astrophysics Data System (ADS)

    Li, Gang; Xing, Yulong

    2016-07-01

    Euler equations with gravitational source terms are used to model many astrophysical and atmospheric phenomena. This system admits hydrostatic balance where the flux produced by the pressure is exactly canceled by the gravitational source term, and two commonly seen equilibria are the isothermal and polytropic hydrostatic solutions. Exact preservation of these equilibria is desirable as many practical problems are small perturbations of such balance. High order finite difference weighted essentially non-oscillatory (WENO) schemes have been proposed in [22], but only for the isothermal equilibrium state. In this paper, we design high order well-balanced finite volume WENO schemes, which can preserve not only the isothermal equilibrium but also the polytropic hydrostatic balance state exactly, and maintain genuine high order accuracy for general solutions. The well-balanced property is obtained by novel source term reformulation and discretization, combined with well-balanced numerical fluxes. Extensive one- and two-dimensional simulations are performed to verify well-balanced property, high order accuracy, as well as good resolution for smooth and discontinuous solutions.

  16. Exact and heuristic algorithms for Space Information Flow.

    PubMed

    Uwitonze, Alfred; Huang, Jiaqing; Ye, Yuanqing; Cheng, Wenqing; Li, Zongpeng

    2018-01-01

    Space Information Flow (SIF) is a new promising research area that studies network coding in geometric space, such as Euclidean space. The design of algorithms that compute the optimal SIF solutions remains one of the key open problems in SIF. This work proposes the first exact SIF algorithm and a heuristic SIF algorithm that compute min-cost multicast network coding for N (N ≥ 3) given terminal nodes in 2-D Euclidean space. Furthermore, we find that the Butterfly network in Euclidean space is the second example besides the Pentagram network where SIF is strictly better than Euclidean Steiner minimal tree. The exact algorithm design is based on two key techniques: Delaunay triangulation and linear programming. Delaunay triangulation technique helps to find practically good candidate relay nodes, after which a min-cost multicast linear programming model is solved over the terminal nodes and the candidate relay nodes, to compute the optimal multicast network topology, including the optimal relay nodes selected by linear programming from all the candidate relay nodes and the flow rates on the connection links. The heuristic algorithm design is also based on Delaunay triangulation and linear programming techniques. The exact algorithm can achieve the optimal SIF solution with an exponential computational complexity, while the heuristic algorithm can achieve the sub-optimal SIF solution with a polynomial computational complexity. We prove the correctness of the exact SIF algorithm. The simulation results show the effectiveness of the heuristic SIF algorithm.

  17. Erratum: Nonlinear Dirac equation solitary waves in external fields [Phys. Rev. E 86, 046602 (2012)

    DOE PAGES

    Mertens, Franz G.; Quintero, Niurka R.; Cooper, Fred; ...

    2016-05-10

    In Sec. IV of our original paper, we assumed a particular conservation law Eq. (4.6), which was true in the absence of external potentials, to derive some particular potentials for which we obtained solutions to the nonlinear Dirac equation (NLDE). Because the conservation law of Eq. (4.6) for the component T 11 of the energy-momentum tensor is not true in the presence of these external potentials, the solutions we found do not satisfy the NLDEs in the presence of these potentials. Thus all the equations from Eq. (4.6) through Eq. (4.44) are not correct, since the exact solutions that followedmore » in that section presumed Eq. (4.6) was true. Also Eqs. (A3)–(A5) are a restatement of Eq. (4.6) and also are not correct. These latter equations are also not used in Sec. V and beyond. The rest of our original paper (starting with Sec. V) was not concerned with exact solutions, rather it was concerned with how the exact solitary-wave solutions to the NLDE in the absence of an external potential responded to being in the presence of various external potentials. This Erratum corrects this mistake.« less

  18. Analytical and exact solutions of the spherical and cylindrical diodes of Langmuir-Blodgett law

    NASA Astrophysics Data System (ADS)

    Torres-Cordoba, Rafael; Martinez-Garcia, Edgar

    2017-10-01

    This paper discloses the exact solutions of a mathematical model that describes the cylindrical and spherical electron current emissions within the context of a physics approximation method. The solution involves analyzing the 1D nonlinear Poisson equation, for the radial component. Although an asymptotic solution has been previously obtained, we present a theoretical solution that satisfies arbitrary boundary conditions. The solution is found in its parametric form (i.e., φ(r )=φ(r (τ)) ) and is valid when the electric field at the cathode surface is non-zero. Furthermore, the non-stationary spatial solution of the electric potential between the anode and the cathode is also presented. In this work, the particle-beam interface is considered to be at the end of the plasma sheath as described by Sutherland et al. [Phys. Plasmas 12, 033103 2005]. Three regimes of space charge effects—no space charge saturation, space charge limited, and space charge saturation—are also considered.

  19. Bosonized Supersymmetric Sawada-Kotera Equations: Symmetries and Exact Solutions

    NASA Astrophysics Data System (ADS)

    Liu, Ping; Zeng, Bao-Qing; Liu, Li-Ming

    2015-04-01

    The Bosonized Supersymmetric Sawada-Kotera (BSSK) system is constructed by applying bosonization method to a Supersymmetric Sawada-Kotera system in this paper. The symmetries on the BSSK equations are researched and the calculation shows that the BSSK equations are invariant under the scaling transformations, the space-time translations and Galilean boosts. The one-parameter invariant subgroups and the corresponding invariant solutions are researched for the BSSK equations. Four types of reduction equations and similarity solutions are proposed. Period Cnoidal wave solutions, dark solitary wave solutions and bright solitary wave solutions of the BSSK equations are demonstrated and some evolution curves of the exact solutions are figured out. Supported by the National Natural Science Foundation of China under Grant No. 11305031, the Natural Science Foundation of Guangdong Province under Grant No. S2013010011546, the Science and Technology Project Foundation of Zhongshan under Grant Nos. 2013A3FC0264 and 2013A3FC0334, and Training Programme Foundation for Outstanding Young Teachers in Higher Education Institutions of Guangdong Province under Grant No. Yq2013205

  20. Cosmological solutions of low-energy heterotic M theory

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Copeland, Edmund J.; Ellison, James; Roberts, Jonathan

    We derive a set of exact cosmological solutions to the D=4, N=1 supergravity description of heterotic M theory. Having identified a new and exact SU(3) Toda model solution, we then apply symmetry transformations to both this solution and to a previously known SU(2) Toda model, in order to derive two further sets of new cosmological solutions. In the symmetry-transformed SU(3) Toda case we find an unusual bouncing motion for the M5 brane, such that this brane can be made to reverse direction part way through its evolution. This bounce occurs purely through the interaction of nonstandard kinetic terms, as theremore » are no explicit potentials in the action. We also present a perturbation calculation which demonstrates that, in a simple static limit, heterotic M theory possesses a scale-invariant isocurvature mode. This mode persists in certain asymptotic limits of all the solutions we have derived, including the bouncing solution.« less

  1. An Exact Solution of Einstein-Maxwell Gravity Coupled to a Scalar Field

    NASA Technical Reports Server (NTRS)

    Turyshev, S. G.

    1995-01-01

    The general solution to low-energy string theory representing static spherically symmetric solution of the Einstein-Maxwell gravity with a massless scalar field has been found. Some of the partial cases appear to coincide with known solutions to black holes, naked singularities, and gravity and electromagnetic fields.

  2. The effect of the Earth's oblateness on the Moon's physical libration in latitude

    NASA Astrophysics Data System (ADS)

    Kondratyev, B. P.

    2013-05-01

    The Moon's physical libration in latitude generated by gravitational forces caused by the Earth's oblateness has been examined by a vector analytical method. Libration oscillations are described by a close set of five linear inhomogeneous differential equations, the dispersion equation has five roots, one of which is zero. A complete solution is obtained. It is revealed that the Earth's oblateness: a) has little effect on the instantaneous axis of Moon's rotation, but causes an oscillatory rotation of the body of the Moon with an amplitude of 0.072″ and pulsation period of 16.88 Julian years; b) causes small nutations of poles of the orbit and of the ecliptic along tight spirals, which occupy a disk with a cut in a center and with radius of 0.072″. Perturbations caused by the spherical Earth generate: a) physical librations in latitude with an amplitude of 34.275″; b) nutational motion for centers of small spiral nutations of orbit (ecliptic) pole over ellipses with semi-major axes of 113.850″ (85.158″) and the first pole rotates round the second one along a circle with radius of 28.691″; c) nutation of the Moon's celestial pole over an ellipse with a semi-major axis of 45.04″ and with an axes ratio of about 0.004 with a period of T = 27.212 days. The principal ellipse's axis is directed tangentially with respect to the precession circumference, along which the celestial pole moves nonuniformly nearly in one dimension. In contrast to the accepted concept, the latitude does not change while the Moon's poles of rotation move. The dynamical reason for the inclination of the Moon's mean equator with respect to the ecliptic is oblateness of the body of the Moon.

  3. Generalized cable equation model for myelinated nerve fiber.

    PubMed

    Einziger, Pinchas D; Livshitz, Leonid M; Mizrahi, Joseph

    2005-10-01

    Herein, the well-known cable equation for nonmyelinated axon model is extended analytically for myelinated axon formulation. The myelinated membrane conductivity is represented via the Fourier series expansion. The classical cable equation is thereby modified into a linear second order ordinary differential equation with periodic coefficients, known as Hill's equation. The general internal source response, expressed via repeated convolutions, uniformly converges provided that the entire periodic membrane is passive. The solution can be interpreted as an extended source response in an equivalent nonmyelinated axon (i.e., the response is governed by the classical cable equation). The extended source consists of the original source and a novel activation function, replacing the periodic membrane in the myelinated axon model. Hill's equation is explicitly integrated for the specific choice of piecewise constant membrane conductivity profile, thereby resulting in an explicit closed form expression for the transmembrane potential in terms of trigonometric functions. The Floquet's modes are recognized as the nerve fiber activation modes, which are conventionally associated with the nonlinear Hodgkin-Huxley formulation. They can also be incorporated in our linear model, provided that the periodic membrane point-wise passivity constraint is properly modified. Indeed, the modified condition, enforcing the periodic membrane passivity constraint on the average conductivity only leads, for the first time, to the inclusion of the nerve fiber activation modes in our novel model. The validity of the generalized transmission-line and cable equation models for a myelinated nerve fiber, is verified herein through a rigorous Green's function formulation and numerical simulations for transmembrane potential induced in three-dimensional myelinated cylindrical cell. It is shown that the dominant pole contribution of the exact modal expansion is the transmembrane potential solution of our generalized model.

  4. Exact solutions of unsteady Korteweg-de Vries and time regularized long wave equations.

    PubMed

    Islam, S M Rayhanul; Khan, Kamruzzaman; Akbar, M Ali

    2015-01-01

    In this paper, we implement the exp(-Φ(ξ))-expansion method to construct the exact traveling wave solutions for nonlinear evolution equations (NLEEs). Here we consider two model equations, namely the Korteweg-de Vries (KdV) equation and the time regularized long wave (TRLW) equation. These equations play significant role in nonlinear sciences. We obtained four types of explicit function solutions, namely hyperbolic, trigonometric, exponential and rational function solutions of the variables in the considered equations. It has shown that the applied method is quite efficient and is practically well suited for the aforementioned problems and so for the other NLEEs those arise in mathematical physics and engineering fields. PACS numbers: 02.30.Jr, 02.70.Wz, 05.45.Yv, 94.05.Fq.

  5. Exact solutions for rate and synchrony in recurrent networks of coincidence detectors.

    PubMed

    Mikula, Shawn; Niebur, Ernst

    2008-11-01

    We provide analytical solutions for mean firing rates and cross-correlations of coincidence detector neurons in recurrent networks with excitatory or inhibitory connectivity, with rate-modulated steady-state spiking inputs. We use discrete-time finite-state Markov chains to represent network state transition probabilities, which are subsequently used to derive exact analytical solutions for mean firing rates and cross-correlations. As illustrated in several examples, the method can be used for modeling cortical microcircuits and clarifying single-neuron and population coding mechanisms. We also demonstrate that increasing firing rates do not necessarily translate into increasing cross-correlations, though our results do support the contention that firing rates and cross-correlations are likely to be coupled. Our analytical solutions underscore the complexity of the relationship between firing rates and cross-correlations.

  6. Models for the dynamics of dust-like matter in the self-gravity field: The method of hydrodynamic substitutions

    NASA Astrophysics Data System (ADS)

    Zhuravlev, V. M.

    2017-09-01

    Models for the dynamics of a dust-like medium in the self-gravity field are investigated. Solutions of the corresponding problems are constructed by the method of hydrodynamic substitutions generalizing the Cole-Hopf substitutions. The method is extended to multidimensional ideal and viscous fluid flows with cylindrical and spherical symmetries for which exact solutions are constructed. Solutions for the dynamics of self-gravitating dust with arbitrary initial distributions of both fluid density and velocity are constructed using special coordinate transformations. In particular, the problem of cosmological expansion is considered in terms of Newton's gravity theory. Models of a one-dimensional viscous dust fluid flow and some problems of gas hydrodynamics are considered. Examples of exact solutions and their brief analysis are provided.

  7. Nonminimal coupling for the gravitational and electromagnetic fields: Traversable electric wormholes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Balakin, Alexander B.; Zayats, Alexei E.; Lemos, Jose P. S.

    2010-04-15

    We discuss new exact solutions of a three-parameter nonminimal Einstein-Maxwell model. The solutions describe static spherically symmetric objects with and without center, supported by an electric field nonminimally coupled to gravity. We focus on a unique one-parameter model, which admits an exact solution for a traversable electrically charged wormhole connecting two universes, one asymptotically flat the other asymptotically de Sitter ones. The relation between the asymptotic mass and charge of the wormhole and its throat radius is analyzed. The wormhole solution found is thus a nonminimal realization of Wheeler's idea about charge without charge and shows that, if the worldmore » is somehow nonminimal in the coupling of gravity to electromagnetism, then wormhole appearance, or perhaps construction, is possible.« less

  8. An Exactly Solvable Model for the Spread of Disease

    ERIC Educational Resources Information Center

    Mickens, Ronald E.

    2012-01-01

    We present a new SIR epidemiological model whose exact analytical solution can be calculated. In this model, unlike previous models, the infective population becomes zero at a finite time. Remarkably, these results can be derived from only an elementary knowledge of differential equations.

  9. Continual Lie algebras and noncommutative counterparts of exactly solvable models

    NASA Astrophysics Data System (ADS)

    Zuevsky, A.

    2004-01-01

    Noncommutative counterparts of exactly solvable models are introduced on the basis of a generalization of Saveliev-Vershik continual Lie algebras. Examples of noncommutative Liouville and sin/h-Gordon equations are given. The simplest soliton solution to the noncommutative sine-Gordon equation is found.

  10. Exact solution of the relativistic quantum Toda chain

    NASA Astrophysics Data System (ADS)

    Zhang, Xin; Cao, Junpeng; Yang, Wen-Li; Shi, Kangjie; Wang, Yupeng

    2017-03-01

    The relativistic quantum Toda chain model is studied with the generalized algebraic Bethe Ansatz method. By employing a set of local gauge transformations, proper local vacuum states can be obtained for this model. The exact spectrum and eigenstates of the model are thus constructed simultaneously.

  11. Entanglement dynamics in a non-Markovian environment: An exactly solvable model

    NASA Astrophysics Data System (ADS)

    Wilson, Justin H.; Fregoso, Benjamin M.; Galitski, Victor M.

    2012-05-01

    We study the non-Markovian effects on the dynamics of entanglement in an exactly solvable model that involves two independent oscillators, each coupled to its own stochastic noise source. First, we develop Lie algebraic and functional integral methods to find an exact solution to the single-oscillator problem which includes an analytic expression for the density matrix and the complete statistics, i.e., the probability distribution functions for observables. For long bath time correlations, we see nonmonotonic evolution of the uncertainties in observables. Further, we extend this exact solution to the two-particle problem and find the dynamics of entanglement in a subspace. We find the phenomena of “sudden death” and “rebirth” of entanglement. Interestingly, all memory effects enter via the functional form of the energy and hence the time of death and rebirth is controlled by the amount of noisy energy added into each oscillator. If this energy increases above (decreases below) a threshold, we obtain sudden death (rebirth) of entanglement.

  12. Exact-Output Tracking Theory for Systems with Parameter Jumps

    NASA Technical Reports Server (NTRS)

    Devasia, Santosh; Paden, Brad; Rossi, Carlo

    1996-01-01

    In this paper we consider the exact output tracking problem for systems with parameter jumps. Necessary and sufficient conditions are derived for the elimination of switching-introduced output transient. Previous works have studied this problem by developing a regulator that maintains exact tracking through parameter jumps (switches). Such techniques are, however, only applicable to minimum-phase systems. In contrast, our approach is applicable to nonminimum-phase systems and obtains bounded but possibly non-causal solutions. If the reference trajectories are generated by an exo-system, then we develop an exact-tracking controller in a feedback form. As in standard regulator theory, we obtain a linear map from the states of the exo-system to the desired system state which is defined via a matrix differential equation. The constant solution of this differential equation provides asymptotic tracking, and coincides with the feedback law used in standard regulator theory. The obtained results are applied to a simple flexible manipulator with jumps in the pay-load mass.

  13. Exact-Output Tracking Theory for Systems with Parameter Jumps

    NASA Technical Reports Server (NTRS)

    Devasia, Santosh; Paden, Brad; Rossi, Carlo

    1997-01-01

    We consider the exact output tracking problem for systems with parameter jumps. Necessary and sufficient conditions are derived for the elimination of switching-introduced output transient. Previous works have studied this problem by developing a regulator that maintains exact tracking through parameter jumps (switches). Such techniques are, however, only applicable to minimum-phase systems. In contrast, our approach is applicable to non-minimum-phase systems and it obtains bounded but possibly non-causal solutions. If the reference trajectories are generated by an exosystem, then we develop an exact-tracking controller in a feed-back form. As in standard regulator theory, we obtain a linear map from the states of the exosystem to the desired system state which is defined via a matrix differential equation. The constant solution of this differential equation provides asymptotic tracking, and coincides with the feedback law used in standard regulator theory. The obtained results are applied to a simple flexible manipulator with jumps in the pay-load mass.

  14. Recent results on output feedback problems

    NASA Technical Reports Server (NTRS)

    Byrnes, C. I.

    1980-01-01

    Given a real linear system sigma = (A, B, C) with m inputs, p outputs and degree n, the problem of generic pole placement by output feedback is studied, which is to compute the constant C(m,p) such that the inequality C(m,p) not less than n is necessary and sufficient for generically positioning the poles of the generic linear system by constant output feedback. A constant C prime (m,p) is determined, which gives a sufficient condition for generic pole placement and which, to the best of the author's knowledge, is at least as good an estimate of C(m,p) as any in the literature. Some results on the construction of solutions in case mp = n are announced, based on the degree formula of Brockett and Byrnes and the Galois theory. In particular, a question raised by Anderson, Bose, and Jury, on the existence of a rational procedure for computing the feedback law from the desired characteristic polynomial is answered.

  15. Acoustic wave filter based on periodically poled lithium niobate.

    PubMed

    Courjon, Emilie; Bassignot, Florent; Ulliac, Gwenn; Benchabane, Sarah; Ballandras, Sylvain

    2012-09-01

    Solutions for the development of compact RF passive transducers as an alternative to standard surface or bulk acoustic wave devices are receiving increasing interest. This article presents results on the development of an acoustic band-pass filter based on periodically poled ferroelectric domains in lithium niobate. The fabrication of periodically poled transducers (PPTs) operating in the range of 20 to 650 MHz has been achieved on 3-in (76.2-mm) 500-μm-thick wafers. This kind of transducer is able to excite elliptical as well as longitudinal modes, yielding phase velocities of about 3800 and 6500 ms(-1), respectively. A new type of acoustic band-pass filter is proposed, based on the use of PPTs instead of the SAWs excited by classical interdigital transducers. The design and the fabrication of such a filter are presented, as well as experimental measurements of its electrical response and transfer function. The feasibility of such a PPT-based filter is thereby demonstrated and the limitations of this method are discussed.

  16. An Astronomical Test of CCD Photometric Precision

    NASA Technical Reports Server (NTRS)

    Koch, David; Dunham, Edward; Borucki, William; Jenkins, Jon; DeVingenzi, D. (Technical Monitor)

    1998-01-01

    This article considers a posteriori error estimation of specified functionals for first-order systems of conservation laws discretized using the discontinuous Galerkin (DG) finite element method. Using duality techniques. we derive exact error representation formulas for both linear and nonlinear functionals given an associated bilinear or nonlinear variational form. Weighted residual approximations of the exact error representation formula are then proposed and numerically evaluated for Ringleb flow, an exact solution of the 2-D Euler equations.

  17. Exact results for models of multichannel quantum nonadiabatic transitions

    DOE PAGES

    Sinitsyn, N. A.

    2014-12-11

    We consider nonadiabatic transitions in explicitly time-dependent systems with Hamiltonians of the form Hˆ(t)=Aˆ+Bˆt+Cˆ/t, where t is time and Aˆ,Bˆ,Cˆ are Hermitian N × N matrices. We show that in any model of this type, scattering matrix elements satisfy nontrivial exact constraints that follow from the absence of the Stokes phenomenon for solutions with specific conditions at t→–∞. This allows one to continue such solutions analytically to t→+∞, and connect their asymptotic behavior at t→–∞ and t→+∞. This property becomes particularly useful when a model shows additional discrete symmetries. Specifically, we derive a number of simple exact constraints and explicitmore » expressions for scattering probabilities in such systems.« less

  18. An exact sum-rule for the Hubbard model: an historical/pedagogical approach

    NASA Astrophysics Data System (ADS)

    Di Matteo, S.; Claveau, Y.

    2017-07-01

    The aim of the present article is to derive an exact integral equation for the Green function of the Hubbard model through an equation-of-motion procedure, like in the original Hubbard papers. Though our exact integral equation does not allow to solve the Hubbard model, it represents a strong constraint on its approximate solutions. An analogous sum rule has been already obtained in the literature, through the use of a spectral moment technique. We think however that our equation-of-motion procedure can be more easily related to the historical procedure of the original Hubbard papers. We also discuss examples of possible applications of the sum rule and propose and analyse a solution, fulfilling it, that can be used for a pedagogical introduction to the Mott-Hubbard metal-insulator transition.

  19. Anomalous diffusion associated with nonlinear fractional derivative fokker-planck-like equation: exact time-dependent solutions

    PubMed

    Bologna; Tsallis; Grigolini

    2000-08-01

    We consider the d=1 nonlinear Fokker-Planck-like equation with fractional derivatives ( partial differential/ partial differentialt)P(x,t)=D( partial differential(gamma)/ partial differentialx(gamma))[P(x,t)](nu). Exact time-dependent solutions are found for nu=(2-gamma)/(1+gamma)(-infinity

  20. Applications of the ETEM for obtaining optical soliton solutions for the Lakshmanan-Porsezian-Daniel model

    NASA Astrophysics Data System (ADS)

    Manafian, Jalil; Foroutan, Mohammadreza; Guzali, Aref

    2017-11-01

    This paper examines the effectiveness of an integration scheme which is called the extended trial equation method (ETEM) for solving a well-known nonlinear equation of partial differential equations (PDEs). In this respect, the Lakshmanan-Porsezian-Daniel (LPD) equation with Kerr and power laws of nonlinearity which describes higher-order dispersion, full nonlinearity and spatiotemporal dispersion is considered, and as an achievement, a series of exact travelling-wave solutions for the aforementioned equation is formally extracted. Explicit new exact solutions are derived in different form such as dark solitons, bright solitons, solitary wave, periodic solitary wave, rational function, and elliptic function solutions of LPD equation. The movement of obtained solutions is shown graphically, which helps to understand the physical phenomena of this optical soliton equation. Many other such types of nonlinear equations arising in basic fabric of communications network technology and nonlinear optics can also be solved by this method.

  1. New exact solutions of the Dirac and Klein-Gordon equations of a charged particle propagating in a strong laser field in an underdense plasma

    NASA Astrophysics Data System (ADS)

    Varró, Sándor

    2014-03-01

    Exact solutions are presented of the Dirac and Klein-Gordon equations of a charged particle propagating in a classical monochromatic electromagnetic plane wave in a medium of index of refraction nm<1. In the Dirac case the solutions are expressed in terms of new complex polynomials, and in the Klein-Gordon case the found solutions are expressed in terms of Ince polynomials. In each case they form a doubly infinite set, labeled by two integer quantum numbers. These integer numbers represent quantized momentum components of the charged particle along the polarization vector and along the propagation direction of the electromagnetic radiation. Since this radiation may represent a plasmon wave of arbitrary high amplitude, propagating in an underdense plasma, the solutions obtained may have relevance in describing possible quantum features of novel acceleration mechanisms.

  2. Tikekar superdense stars in electric fields

    NASA Astrophysics Data System (ADS)

    Komathiraj, K.; Maharaj, S. D.

    2007-04-01

    We present exact solutions to the Einstein-Maxwell system of equations with a specified form of the electric field intensity by assuming that the hypersurface {t=constant} are spheroidal. The solution of the Einstein-Maxwell system is reduced to a recurrence relation with variable rational coefficients which can be solved in general using mathematical induction. New classes of solutions of linearly independent functions are obtained by restricting the spheroidal parameter K and the electric field intensity parameter α. Consequently, it is possible to find exact solutions in terms of elementary functions, namely, polynomials and algebraic functions. Our result contains models found previously including the superdense Tikekar neutron star model [J. Math. Phys. 31, 2454 (1990)] when K=-7 and α=0. Our class of charged spheroidal models generalize the uncharged isotropic Maharaj and Leach solutions [J. Math. Phys. 37, 430 (1996)]. In particular, we find an explicit relationship directly relating the spheroidal parameter K to the electromagnetic field.

  3. Exact general relativistic disks with magnetic fields

    NASA Astrophysics Data System (ADS)

    Letelier, Patricio S.

    1999-11-01

    The well-known ``displace, cut, and reflect'' method used to generate cold disks from given solutions of Einstein equations is extended to solutions of Einstein-Maxwell equations. Four exact solutions of the these last equations are used to construct models of hot disks with surface density, azimuthal pressure, and azimuthal current. The solutions are closely related to Kerr, Taub-NUT, Lynden-Bell-Pinault, and to a one-soliton solution. We find that the presence of the magnetic field can change in a nontrivial way the different properties of the disks. In particular, the pure general relativistic instability studied by Bic̆ák, Lynden-Bell, and Katz [Phys. Rev. D 47, 4334 (1993)] can be enhanced or cured by different distributions of currents inside the disk. These currents, outside the disk, generate a variety of axial symmetric magnetic fields. As far as we know these are the first models of hot disks studied in the context of general relativity.

  4. Modified method of simplest equation: Powerful tool for obtaining exact and approximate traveling-wave solutions of nonlinear PDEs

    NASA Astrophysics Data System (ADS)

    Vitanov, Nikolay K.

    2011-03-01

    We discuss the class of equations ∑i,j=0mAij(u){∂iu}/{∂ti}∂+∑k,l=0nBkl(u){∂ku}/{∂xk}∂=C(u) where Aij( u), Bkl( u) and C( u) are functions of u( x, t) as follows: (i) Aij, Bkl and C are polynomials of u; or (ii) Aij, Bkl and C can be reduced to polynomials of u by means of Taylor series for small values of u. For these two cases the above-mentioned class of equations consists of nonlinear PDEs with polynomial nonlinearities. We show that the modified method of simplest equation is powerful tool for obtaining exact traveling-wave solution of this class of equations. The balance equations for the sub-class of traveling-wave solutions of the investigated class of equations are obtained. We illustrate the method by obtaining exact traveling-wave solutions (i) of the Swift-Hohenberg equation and (ii) of the generalized Rayleigh equation for the cases when the extended tanh-equation or the equations of Bernoulli and Riccati are used as simplest equations.

  5. Interference effects in phased beam tracing using exact half-space solutions.

    PubMed

    Boucher, Matthew A; Pluymers, Bert; Desmet, Wim

    2016-12-01

    Geometrical acoustics provides a correct solution to the wave equation for rectangular rooms with rigid boundaries and is an accurate approximation at high frequencies with nearly hard walls. When interference effects are important, phased geometrical acoustics is employed in order to account for phase shifts due to propagation and reflection. Error increases, however, with more absorption, complex impedance values, grazing incidence, smaller volumes and lower frequencies. Replacing the plane wave reflection coefficient with a spherical one reduces the error but results in slower convergence. Frequency-dependent stopping criteria are then applied to avoid calculating higher order reflections for frequencies that have already converged. Exact half-space solutions are used to derive two additional spherical wave reflection coefficients: (i) the Sommerfeld integral, consisting of a plane wave decomposition of a point source and (ii) a line of image sources located at complex coordinates. Phased beam tracing using exact half-space solutions agrees well with the finite element method for rectangular rooms with absorbing boundaries, at low frequencies and for rooms with different aspect ratios. Results are accurate even for long source-to-receiver distances. Finally, the crossover frequency between the plane and spherical wave reflection coefficients is discussed.

  6. Exact, E = 0, classical and quantum solutions for general power-law oscillators

    NASA Technical Reports Server (NTRS)

    Nieto, Michael Martin; Daboul, Jamil

    1995-01-01

    For zero energy, E = 0, we derive exact, classical and quantum solutions for all power-law oscillators with potentials V(r) = -gamma/r(exp nu), gamma greater than 0 and -infinity less than nu less than infinity. When the angular momentum is non-zero, these solutions lead to the classical orbits (p(t) = (cos mu(phi(t) - phi(sub 0)t))(exp 1/mu) with mu = nu/2 - 1 does not equal 0. For nu greater than 2, the orbits are bound and go through the origin. We calculate the periods and precessions of these bound orbits, and graph a number of specific examples. The unbound orbits are also discussed in detail. Quantum mechanically, this system is also exactly solvable. We find that when nu is greater than 2 the solutions are normalizable (bound), as in the classical case. Further, there are normalizable discrete, yet unbound, states. They correspond to unbound classical particles which reach infinity in a finite time. Finally, the number of space dimensions of the system can determine whether or not an E = 0 state is bound. These and other interesting comparisons to the classical system will be discussed.

  7. A remark on fractional differential equation involving I-function

    NASA Astrophysics Data System (ADS)

    Mishra, Jyoti

    2018-02-01

    The present paper deals with the solution of the fractional differential equation using the Laplace transform operator and its corresponding properties in the fractional calculus; we derive an exact solution of a complex fractional differential equation involving a special function known as I-function. The analysis of the some fractional integral with two parameters is presented using the suggested Theorem 1. In addition, some very useful corollaries are established and their proofs presented in detail. Some obtained exact solutions are depicted to see the effect of each fractional order. Owing to the wider applicability of the I-function, we can conclude that, the obtained results in our work generalize numerous well-known results obtained by specializing the parameters.

  8. Analysis of dynamic system response to product random processes

    NASA Technical Reports Server (NTRS)

    Sidwell, K.

    1978-01-01

    The response of dynamic systems to the product of two independent Gaussian random processes is developed by use of the Fokker-Planck and associated moment equations. The development is applied to the amplitude modulated process which is used to model atmospheric turbulence in aeronautical applications. The exact solution for the system response is compared with the solution obtained by the quasi-steady approximation which omits the dynamic properties of the random amplitude modulation. The quasi-steady approximation is valid as a limiting case of the exact solution for the dynamic response of linear systems to amplitude modulated processes. In the nonlimiting case the quasi-steady approximation can be invalid for dynamic systems with low damping.

  9. Exact solutions of laminar-boundary-layer equations with constant property values for porous wall with variable temperature

    NASA Technical Reports Server (NTRS)

    Donoughe, Patrick L; Livingood, John N B

    1955-01-01

    Exact solution of the laminar-boundary-layer equations for wedge-type flow with constant property values are presented for transpiration-cooled surfaces with variable wall temperatures. The difference between wall and stream temperature is assumed proportional to a power of the distance from the leading edge. Solutions are given for a Prandtl number of 0.7 and ranges of pressure-gradient, cooling-air-flow, and wall-temperature-gradient parameters. Boundary-layer profiles, dimensionless boundary-layer thicknesses, and convective heat-transfer coefficients are given in both tabular and graphical form. Corresponding results for constant wall temperature and for impermeable surfaces are included for comparison purposes.

  10. Exact traveling wave solutions for system of nonlinear evolution equations.

    PubMed

    Khan, Kamruzzaman; Akbar, M Ali; Arnous, Ahmed H

    2016-01-01

    In this work, recently deduced generalized Kudryashov method is applied to the variant Boussinesq equations, and the (2 + 1)-dimensional breaking soliton equations. As a result a range of qualitative explicit exact traveling wave solutions are deduced for these equations, which motivates us to develop, in the near future, a new approach to obtain unsteady solutions of autonomous nonlinear evolution equations those arise in mathematical physics and engineering fields. It is uncomplicated to extend this method to higher-order nonlinear evolution equations in mathematical physics. And it should be possible to apply the same method to nonlinear evolution equations having more general forms of nonlinearities by utilizing the traveling wave hypothesis.

  11. Exact Schwarzschild-like solution in a bumblebee gravity model

    NASA Astrophysics Data System (ADS)

    Casana, R.; Cavalcante, A.; Poulis, F. P.; Santos, E. B.

    2018-05-01

    We obtain an exact vacuum solution from the gravity sector contained in the minimal standard-model extension. The theoretical model assumes a Riemann spacetime coupled to the bumblebee field which is responsible for the spontaneous Lorentz symmetry breaking. The solution achieved in a static and spherically symmetric scenario establishes a Schwarzschild-like black hole. In order to study the effects of the spontaneous Lorentz symmetry breaking we investigate some classic tests, including the advance of perihelion, the bending of light, and Shapiro's time delay. Furthermore, we compute some upper bounds, among which the most stringent associated with existing experimental data provides a sensitivity at the 10-15 level and that for future missions at the 10-19 level.

  12. Exact solutions to three-dimensional generalized nonlinear Schrödinger equations with varying potential and nonlinearities.

    PubMed

    Yan, Zhenya; Konotop, V V

    2009-09-01

    It is shown that using the similarity transformations, a set of three-dimensional p-q nonlinear Schrödinger (NLS) equations with inhomogeneous coefficients can be reduced to one-dimensional stationary NLS equation with constant or varying coefficients, thus allowing for obtaining exact localized and periodic wave solutions. In the suggested reduction the original coordinates in the (1+3) space are mapped into a set of one-parametric coordinate surfaces, whose parameter plays the role of the coordinate of the one-dimensional equation. We describe the algorithm of finding solutions and concentrate on power (linear and nonlinear) potentials presenting a number of case examples. Generalizations of the method are also discussed.

  13. Loss compensation symmetry in dimers made of gain and lossy nanoparticles

    NASA Astrophysics Data System (ADS)

    Klimov, V. V.; Zabkov, I. V.; Guzatov, D. V.; Vinogradov, A. P.

    2018-03-01

    The eigenmodes in a two-dimensional dimer made of gain and lossy nanoparticles have been investigated within an exact analytical approach. It has been shown that there are eigenmodes for which all Joule losses are exactly compensated by the gain. Among such solutions there are solutions with a new type of symmetry, which we refer to as loss compensation symmetry, as well as well-known parity-time (PT) symmetric solutions. Unlike PT symmetric ones, the modes with loss compensation symmetry allow one to achieve full loss compensation with significantly less gain that in the case of PT symmetry. This effect paves the way to new loss compensation methods in optics.

  14. Eigen model with general fitness functions and degradation rates

    NASA Astrophysics Data System (ADS)

    Hu, Chin-Kun; Saakian, David B.

    2006-03-01

    We present an exact solution of Eigen's quasispecies model with a general degradation rate and fitness functions, including a square root decrease of fitness with increasing Hamming distance from the wild type. The found behavior of the model with a degradation rate is analogous to a viral quasi-species under attack by the immune system of the host. Our exact solutions also revise the known results of neutral networks in quasispecies theory. To explain the existence of mutants with large Hamming distances from the wild type, we propose three different modifications of the Eigen model: mutation landscape, multiple adjacent mutations, and frequency-dependent fitness in which the steady state solution shows a multi-center behavior.

  15. Exact solitary wave solution for higher order nonlinear Schrodinger equation using He's variational iteration method

    NASA Astrophysics Data System (ADS)

    Rani, Monika; Bhatti, Harbax S.; Singh, Vikramjeet

    2017-11-01

    In optical communication, the behavior of the ultrashort pulses of optical solitons can be described through nonlinear Schrodinger equation. This partial differential equation is widely used to contemplate a number of physically important phenomena, including optical shock waves, laser and plasma physics, quantum mechanics, elastic media, etc. The exact analytical solution of (1+n)-dimensional higher order nonlinear Schrodinger equation by He's variational iteration method has been presented. Our proposed solutions are very helpful in studying the solitary wave phenomena and ensure rapid convergent series and avoid round off errors. Different examples with graphical representations have been given to justify the capability of the method.

  16. Linear quadratic regulators with eigenvalue placement in a horizontal strip

    NASA Technical Reports Server (NTRS)

    Shieh, Leang S.; Dib, Hani M.; Ganesan, Sekar

    1987-01-01

    A method for optimally shifting the imaginary parts of the open-loop poles of a multivariable control system to the desirable closed-loop locations is presented. The optimal solution with respect to a quadratic performance index is obtained by solving a linear matrix Liapunov equation.

  17. A Preliminary Shape Model of 27 Euterpe

    NASA Astrophysics Data System (ADS)

    Stephens, R.; Warner, B. D.; Megna, R.; Coley, D.

    2011-10-01

    We obtained dense rotational lightcurves for the Main-Belt asteroid (27) Euterpe during three apparitions in 2000, 2009 and 2010 with planned observations in the summer of 2011. These were combined with sparse lightcurve data from the USNO to determine a preliminary spin vector and model shape (see Durech et al. [2] for a discussion regarding the differences between dense and sparse data sets). The analysis suggests that Euterpe has albedo features making the determination of an unambiguous spin vector and model shape difficult. So far, Euterpe's near spherical shape, low inclination, pole within 30 degrees of the plane of the solar system, and possible albedo features cause multiple pole and shape solutions to be present.

  18. Exact multisoliton solutions of general nonlinear Schrödinger equation with derivative.

    PubMed

    Li, Qi; Duan, Qiu-yuan; Zhang, Jian-bing

    2014-01-01

    Multisoliton solutions are derived for a general nonlinear Schrödinger equation with derivative by using Hirota's approach. The dynamics of one-soliton solution and two-soliton interactions are also illustrated. The considered equation can reduce to nonlinear Schrödinger equation with derivative as well as the solutions.

  19. A class of exact classical solutions to string theory.

    PubMed

    Coley, A A

    2002-12-31

    We show that the recently obtained class of spacetimes for which all of the scalar curvature invariants vanish (which can be regarded as generalizations of pp-wave spacetimes) are exact solutions in string theory to all perturbative orders in the string tension scale. As a result the spectrum of the theory can be explicitly obtained, and these spacetimes are expected to provide some hints for the study of superstrings on more general backgrounds. Since these Lorentzian spacetimes suffer no quantum corrections to all loop orders they may also offer insights into quantum gravity.

  20. Heun Polynomials and Exact Solutions for the Massless Dirac Particle in the C-Metric

    NASA Astrophysics Data System (ADS)

    Kar, Priyasri; Singh, Ritesh K.; Dasgupta, Ananda; Panigrahi, Prasanta K.

    2018-03-01

    The equation of motion of a massless Dirac particle in the C-metric leads to the general Heun equation (GHE) for the radial and the polar variables. The GHE, under certain parametric conditions, is cast in terms of a new set of su(1, 1) generators involving differential operators of degrees ±1/2 and 0. Additional Heun polynomials are obtained using this new algebraic structure and are used to construct some exact solutions for the radial and the polar parts of the Dirac equation.

  1. Bilinear, trilinear forms, and exact solution of certain fourth order integrable difference equations

    NASA Astrophysics Data System (ADS)

    Sahadevan, R.; Rajakumar, S.

    2008-03-01

    A systematic investigation of finding bilinear or trilinear representations of fourth order autonomous ordinary difference equation, x(n +4)=F(x(n),x(n+1),x(n+2),x(n+3)) or xn +4=F(xn,xn +1,xn +2,xn +3), is made. As an illustration, we consider fourth order symplectic integrable difference equations reported by [Capel and Sahadevan, Physica A 289, 86 (2001)] and derived their bilinear or trilinear forms. Also, it is shown that the obtained bilinear representations admit exact solution of rational form.

  2. Interior radiances in optically deep absorbing media. I - Exact solutions for one-dimensional model.

    NASA Technical Reports Server (NTRS)

    Kattawar, G. W.; Plass, G. N.

    1973-01-01

    An exact analytic solution to the one-dimensional scattering problem with arbitrary single scattering albedo and arbitrary surface albedo is presented. Expressions are given for the emergent flux from a homogeneous layer, the internal flux within the layer, and the radiative heating. A comparison of these results with the values calculated from the matrix operator theory indicates an exceedingly high accuracy. A detailed study is made of the error in the matrix operator results and its dependence on the accuracy of the starting value.

  3. A review of some exact solutions to the planar equations of motion of a thrusting spacecraft

    NASA Technical Reports Server (NTRS)

    Petropoulos, A. E.; Sims, J. A.

    2002-01-01

    With the complexities in computing optimal low thrust trajectories, easily-computed, good sub-optimal trajectories provide both a practical alternative for mission designers and a starting point for optimisation. The present paper collects in one place for easy reference and comparison several exact solutions that have been obtained in the literature over the last few decades: the logarithmic spiral, Pinkham's variant thereof, Forbes spiral, the exponential sinusoid, the case of constant radial thrust, Markopoulos's Keplerian thrust arcs, Lawden's spiral, and the analogous Bishop and Azimov spiral.

  4. Exact period-four solutions of a family of n-dimensional quadratic maps via harmonic balance and Gröbner bases.

    PubMed

    D'Amico, María Belén; Calandrini, Guillermo L

    2015-11-01

    Analytical solutions of the period-four orbits exhibited by a classical family of n-dimensional quadratic maps are presented. Exact expressions are obtained by applying harmonic balance and Gröbner bases to a single-input single-output representation of the system. A detailed study of a generalized scalar quadratic map and a well-known delayed logistic model is included for illustration. In the former example, conditions for the existence of bistability phenomenon are also introduced.

  5. Analytical solution of the optimal three dimensional reentry problem using Chapman's exact equations

    NASA Technical Reports Server (NTRS)

    Vinh, N. X.; Busemann, A.; Culp, R. D.

    1974-01-01

    This paper presents the general solution for the optimal three dimensional aerodynamic control of a lifting vehicle entering a planetary atmosphere. A set of dimensionless variables is introduced, and the resulting exact equations of motion have the distinctive advantage that they are completely free of the physical characteristics of the vehicle. Furthermore, a general lift-drag polar is used to define the aerodynamic control. Hence, the results obtained apply to any type of vehicle of arbitrary weight, dimensions and shape, having an arbitrary polar and entering any planetary atmosphere.

  6. Exact period-four solutions of a family of n-dimensional quadratic maps via harmonic balance and Gröbner bases

    NASA Astrophysics Data System (ADS)

    D'Amico, María Belén; Calandrini, Guillermo L.

    2015-11-01

    Analytical solutions of the period-four orbits exhibited by a classical family of n-dimensional quadratic maps are presented. Exact expressions are obtained by applying harmonic balance and Gröbner bases to a single-input single-output representation of the system. A detailed study of a generalized scalar quadratic map and a well-known delayed logistic model is included for illustration. In the former example, conditions for the existence of bistability phenomenon are also introduced.

  7. Nonminimally coupled massive scalar field in a 2D black hole: Exactly solvable model

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Frolov, V.; Zelnikov, A.

    2001-06-15

    We study a nonminimal massive scalar field in the background of a two-dimensional black hole spacetime. We consider the black hole which is the solution of the 2D dilaton gravity derived from string-theoretical models. We find an explicit solution in a closed form for all modes and the Green function of the scalar field with an arbitrary mass and a nonminimal coupling to the curvature. Greybody factors, the Hawking radiation, and 2>{sup ren} are calculated explicitly for this exactly solvable model.

  8. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Svendsen, Harald G.

    In this paper we study a solution of heterotic string theory corresponding to a rotating Kerr-Taub-NUT spacetime. It has an exact CFT description as a heterotic coset model, and a Lagrangian formulation as a gauged WZNW model. It is a generalization of a recently discussed stringy Taub-NUT solution, and is interesting as another laboratory for studying the fate of closed timelike curves and cosmological singularities in string theory. We extend the computation of the exact metric and dilaton to this rotating case, and then discuss some properties of the metric, with particular emphasis on the curvature singularities.

  9. Langevin synchronization in a time-dependent, harmonic basin: An exact solution in 1D

    NASA Astrophysics Data System (ADS)

    Cadilhe, A.; Voter, Arthur F.

    2018-02-01

    The trajectories of two particles undergoing Langevin dynamics while sharing a common noise sequence can merge into a single (master) trajectory. Here, we present an exact solution for a particle undergoing Langevin dynamics in a harmonic, time-dependent potential, thus extending the idea of synchronization to nonequilibrium systems. We calculate the synchronization level, i.e., the mismatch between two trajectories sharing a common noise sequence, in the underdamped, critically damped, and overdamped regimes. Finally, we provide asymptotic expansions in various limiting cases and compare to the time independent case.

  10. Exact Closed-form Solutions for Lamb's Problem

    NASA Astrophysics Data System (ADS)

    Feng, Xi; Zhang, Haiming

    2018-04-01

    In this article, we report on an exact closed-form solution for the displacement at the surface of an elastic half-space elicited by a buried point source that acts at some point underneath that surface. This is commonly referred to as the 3-D Lamb's problem, for which previous solutions were restricted to sources and receivers placed at the free surface. By means of the reciprocity theorem, our solution should also be valid as a means to obtain the displacements at interior points when the source is placed at the free surface. We manage to obtain explicit results by expressing the solution in terms of elementary algebraic expression as well as elliptic integrals. We anchor our developments on Poisson's ratio 0.25 starting from Johnson's (1974) integral solutions which must be computed numerically. In the end, our closed-form results agree perfectly with the numerical results of Johnson (1974), which strongly confirms the correctness of our explicit formulas. It is hoped that in due time, these formulas may constitute a valuable canonical solution that will serve as a yardstick against which other numerical solutions can be compared and measured.

  11. Exact closed-form solutions for Lamb's problem

    NASA Astrophysics Data System (ADS)

    Feng, Xi; Zhang, Haiming

    2018-07-01

    In this paper, we report on an exact closed-form solution for the displacement at the surface of an elastic half-space elicited by a buried point source that acts at some point underneath that surface. This is commonly referred to as the 3-D Lamb's problem for which previous solutions were restricted to sources and receivers placed at the free surface. By means of the reciprocity theorem, our solution should also be valid as a means to obtain the displacements at interior points when the source is placed at the free surface. We manage to obtain explicit results by expressing the solution in terms of elementary algebraic expression as well as elliptic integrals. We anchor our developments on Poisson's ratio 0.25 starting from Johnson's integral solutions which must be computed numerically. In the end, our closed-form results agree perfectly with the numerical results of Johnson, which strongly confirms the correctness of our explicit formulae. It is hoped that in due time, these formulae may constitute a valuable canonical solution that will serve as a yardstick against which other numerical solutions can be compared and measured.

  12. Unified bulk-boundary correspondence for band insulators

    NASA Astrophysics Data System (ADS)

    Rhim, Jun-Won; Bardarson, Jens H.; Slager, Robert-Jan

    2018-03-01

    The bulk-boundary correspondence, a topic of intensive research interest over the past decades, is one of the quintessential ideas in the physics of topological quantum matter. Nevertheless, it has not been proven in all generality and has in certain scenarios even been shown to fail, depending on the boundary profiles of the terminated system. Here, we introduce bulk numbers that capture the exact number of in-gap modes, without any such subtleties in one spatial dimension. Similarly, based on these 1D bulk numbers, we define a new 2D winding number, which we call the pole winding number, that specifies the number of robust metallic surface bands in the gap as well as their topological character. The underlying general methodology relies on a simple continuous extrapolation from the bulk to the boundary, while tracking the evolution of Green's function's poles in the vicinity of the bulk band edges. As a main result we find that all the obtained numbers can be applied to the known insulating phases in a unified manner regardless of the specific symmetries. Additionally, from a computational point of view, these numbers can be effectively evaluated without any gauge fixing problems. In particular, we directly apply our bulk-boundary correspondence construction to various systems, including 1D examples without a traditional bulk-boundary correspondence, and predict the existence of boundary modes on various experimentally studied graphene edges, such as open boundaries and grain boundaries. Finally, we sketch the 3D generalization of the pole winding number by in the context of topological insulators.

  13. NEMA count-rate evaluation of the first and second generation of the Ecat Exact and Ecat Exact HR family of scanners

    NASA Astrophysics Data System (ADS)

    Eriksson, L.; Wienhard, K.; Eriksson, M.; Casey, M. E.; Knoess, C.; Bruckbauer, T.; Hamill, J.; Mulnix, T.; Vollmar, S.; Bendriem, B.; Heiss, W. D.; Nutt, R.

    2002-06-01

    The first and second generation of the Exact and Exact HR family of scanners has been evaluated in terms of noise equivalent count rate (NEC) and count-rate capabilities. The new National Electrical Manufacturers Association standard was used for the evaluation. In spite of improved electronics and improved count-rate capabilities, the peak NEC was found to be fairly constant between the generations. The results are discussed in terms of the different electronic solutions for the two generations and its implications on system dead time and NEC count-rate capability.

  14. Analytical solutions for efficient interpretation of single-well push-pull tracer tests

    EPA Science Inventory

    Single-well push-pull tracer tests have been used to characterize the extent, fate, and transport of subsurface contamination. Analytical solutions provide one alternative for interpreting test results. In this work, an exact analytical solution to two-dimensional equations descr...

  15. An exact solution for the history-dependent material and delamination behavior of laminated plates subjected to cylindrical bending

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Williams, Todd O

    2009-01-01

    The exact solution for the history-dependent behavior of laminated plates subjected to cylindrical bending is presented. The solution represents the extension of Pagano's solution to consider arbitrary types of constitutive behaviors for the individual lamina as well as arbitrary types of cohesive zones models for delamination behavior. Examples of the possible types of material behavior are plasticity, viscoelasticity, viscoplasticity, and damaging. Examples of possible CZMs that can be considered are linear, nonlinear hardening, as well as nonlinear with softening. The resulting solution is intended as a benchmark solution for considering the predictive capabilities of different plate theories. Initial results aremore » presented for several types of history-dependent material behaviors. It is shown that the plate response in the presence of history-dependent behaviors can differ dramatically from the elastic response. These results have strong implications for what constitutes an appropriate plate theory for modeling such behaviors.« less

  16. Adaptive Identification by Systolic Arrays.

    DTIC Science & Technology

    1987-12-01

    BIBLIOGRIAPHY Anton , Howard, Elementary Linear Algebra , John Wiley & Sons, 19S4. Cristi, Roberto, A Parallel Structure Jor Adaptive Pole Placement...10 11. SYSTEM IDENTIFICATION M*YETHODS ....................... 12 A. LINEAR SYSTEM MODELING ......................... 12 B. SOLUTION OF SYSTEMS OF... LINEAR EQUATIONS ......... 13 C. QR DECOMPOSITION ................................ 14 D. RECURSIVE LEAST SQUARES ......................... 16 E. BLOCK

  17. A Posteriori Error Estimation for Discontinuous Galerkin Approximations of Hyperbolic Systems

    NASA Technical Reports Server (NTRS)

    Larson, Mats G.; Barth, Timothy J.

    1999-01-01

    This article considers a posteriori error estimation of specified functionals for first-order systems of conservation laws discretized using the discontinuous Galerkin (DG) finite element method. Using duality techniques, we derive exact error representation formulas for both linear and nonlinear functionals given an associated bilinear or nonlinear variational form. Weighted residual approximations of the exact error representation formula are then proposed and numerically evaluated for Ringleb flow, an exact solution of the 2-D Euler equations.

  18. Similarity solutions of reaction–diffusion equation with space- and time-dependent diffusion and reaction terms

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ho, C.-L.; Lee, C.-C., E-mail: chieh.no27@gmail.com

    2016-01-15

    We consider solvability of the generalized reaction–diffusion equation with both space- and time-dependent diffusion and reaction terms by means of the similarity method. By introducing the similarity variable, the reaction–diffusion equation is reduced to an ordinary differential equation. Matching the resulting ordinary differential equation with known exactly solvable equations, one can obtain corresponding exactly solvable reaction–diffusion systems. Several representative examples of exactly solvable reaction–diffusion equations are presented.

  19. Adaptive control: Myths and realities

    NASA Technical Reports Server (NTRS)

    Athans, M.; Valavani, L.

    1984-01-01

    It was found that all currently existing globally stable adaptive algorithms have three basic properties in common: positive realness of the error equation, square-integrability of the parameter adjustment law and, need for sufficient excitation for asymptotic parameter convergence. Of the three, the first property is of primary importance since it satisfies a sufficient condition for stabillity of the overall system, which is a baseline design objective. The second property has been instrumental in the proof of asymptotic error convergence to zero, while the third addresses the issue of parameter convergence. Positive-real error dynamics can be generated only if the relative degree (excess of poles over zeroes) of the process to be controlled is known exactly; this, in turn, implies perfect modeling. This and other assumptions, such as absence of nonminimum phase plant zeros on which the mathematical arguments are based, do not necessarily reflect properties of real systems. As a result, it is natural to inquire what happens to the designs under less than ideal assumptions. The issues arising from violation of the exact modeling assumption which is extremely restrictive in practice and impacts the most important system property, stability, are discussed.

  20. Spherical indentation of a freestanding circular membrane revisited: Analytical solutions and experiments

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jin, Congrui; Davoodabadi, Ali; Li, Jianlin

    Because of the development of novel micro-fabrication techniques to produce ultra-thin materials and increasing interest in thin biological membranes, in recent years, the mechanical characterization of thin films has received a significant amount of attention. To provide a more accurate solution for the relationship among contact radius, load and deflection, the fundamental and widely applicable problem of spherical indentation of a freestanding circular membrane have been revisited. The work presented here significantly extends the previous contributions by providing an exact analytical solution to the governing equations of Föppl–Hecky membrane indented by a frictionless spherical indenter. In this study, experiments ofmore » spherical indentation has been performed, and the exact analytical solution presented in this article is compared against experimental data from existing literature as well as our own experimental results.« less

  1. Causal properties of nonlinear gravitational waves in modified gravity

    NASA Astrophysics Data System (ADS)

    Suvorov, Arthur George; Melatos, Andrew

    2017-09-01

    Some exact, nonlinear, vacuum gravitational wave solutions are derived for certain polynomial f (R ) gravities. We show that the boundaries of the gravitational domain of dependence, associated with events in polynomial f (R ) gravity, are not null as they are in general relativity. The implication is that electromagnetic and gravitational causality separate into distinct notions in modified gravity, which may have observable astrophysical consequences. The linear theory predicts that tachyonic instabilities occur, when the quadratic coefficient a2 of the Taylor expansion of f (R ) is negative, while the exact, nonlinear, cylindrical wave solutions presented here can be superluminal for all values of a2. Anisotropic solutions are found, whose wave fronts trace out time- or spacelike hypersurfaces with complicated geometric properties. We show that the solutions exist in f (R ) theories that are consistent with Solar System and pulsar timing experiments.

  2. The modified alternative (G'/G)-expansion method to nonlinear evolution equation: application to the (1+1)-dimensional Drinfel'd-Sokolov-Wilson equation.

    PubMed

    Akbar, M Ali; Mohd Ali, Norhashidah Hj; Mohyud-Din, Syed Tauseef

    2013-01-01

    Over the years, (G'/G)-expansion method is employed to generate traveling wave solutions to various wave equations in mathematical physics. In the present paper, the alternative (G'/G)-expansion method has been further modified by introducing the generalized Riccati equation to construct new exact solutions. In order to illustrate the novelty and advantages of this approach, the (1+1)-dimensional Drinfel'd-Sokolov-Wilson (DSW) equation is considered and abundant new exact traveling wave solutions are obtained in a uniform way. These solutions may be imperative and significant for the explanation of some practical physical phenomena. It is shown that the modified alternative (G'/G)-expansion method an efficient and advance mathematical tool for solving nonlinear partial differential equations in mathematical physics.

  3. Spherical indentation of a freestanding circular membrane revisited: Analytical solutions and experiments

    DOE PAGES

    Jin, Congrui; Davoodabadi, Ali; Li, Jianlin; ...

    2017-01-11

    Because of the development of novel micro-fabrication techniques to produce ultra-thin materials and increasing interest in thin biological membranes, in recent years, the mechanical characterization of thin films has received a significant amount of attention. To provide a more accurate solution for the relationship among contact radius, load and deflection, the fundamental and widely applicable problem of spherical indentation of a freestanding circular membrane have been revisited. The work presented here significantly extends the previous contributions by providing an exact analytical solution to the governing equations of Föppl–Hecky membrane indented by a frictionless spherical indenter. In this study, experiments ofmore » spherical indentation has been performed, and the exact analytical solution presented in this article is compared against experimental data from existing literature as well as our own experimental results.« less

  4. An exact solution of solute transport by one-dimensional random velocity fields

    USGS Publications Warehouse

    Cvetkovic, V.D.; Dagan, G.; Shapiro, A.M.

    1991-01-01

    The problem of one-dimensional transport of passive solute by a random steady velocity field is investigated. This problem is representative of solute movement in porous media, for example, in vertical flow through a horizontally stratified formation of variable porosity with a constant flux at the soil surface. Relating moments of particle travel time and displacement, exact expressions for the advection and dispersion coefficients in the Focker-Planck equation are compared with the perturbation results for large distances. The first- and second-order approximations for the dispersion coefficient are robust for a lognormal velocity field. The mean Lagrangian velocity is the harmonic mean of the Eulerian velocity for large distances. This is an artifact of one-dimensional flow where the continuity equation provides for a divergence free fluid flux, rather than a divergence free fluid velocity. ?? 1991 Springer-Verlag.

  5. Exact solutions for laminated composite cylindrical shells in cylindrical bending

    NASA Technical Reports Server (NTRS)

    Yuan, F. G.

    1992-01-01

    Analytic elasticity solutions for laminated composite cylindrical shells under cylindrical bending are presented. The material of the shell is assumed to be general cylindrically anisotropic. Based on the theory of cylindrical anisotropic elasticity, coupled governing partial differential equations are developed. The general expressions for the stresses and displacements in the laminated composite cylinders are discussed. The closed form solutions based on Classical Shell Theory (CST) and Donnell's (1933) theory are also derived for comparison purposes. Three examples illustrate the effect of radius-to-thickness ratio, coupling and stacking sequence. The results show that, in general, CST yields poor stress and displacement distributions for thick-section composite shells, but converges to the exact elasticity solution as the radius-to-thickness ratio increases. It is also shown that Donnell's theory significantly underestimates the stress and displacement response.

  6. Exact Solutions for Rate and Synchrony in Recurrent Networks of Coincidence Detectors

    PubMed Central

    Mikula, Shawn; Niebur, Ernst

    2009-01-01

    We provide analytical solutions for mean firing rates and cross-correlations of coincidence detector neurons in recurrent networks with excitatory or inhibitory connectivity with rate-modulated steady-state spiking inputs. We use discrete-time finite-state Markov chains to represent network state transition probabilities, which are subsequently used to derive exact analytical solutions for mean firing rates and cross-correlations. As illustrated in several examples, the method can be used for modeling cortical microcircuits and clarifying single-neuron and population coding mechanisms. We also demonstrate that increasing firing rates do not necessarily translate into increasing cross-correlations, though our results do support the contention that firing rates and cross-correlations are likely to be coupled. Our analytical solutions underscore the complexity of the relationship between firing rates and cross-correlations. PMID:18439133

  7. {001} Oriented piezoelectric films prepared by chemical solution deposition on Ni foils

    NASA Astrophysics Data System (ADS)

    Yeo, Hong Goo; Trolier-McKinstry, Susan

    2014-07-01

    Flexible metal foil substrates are useful in some microelectromechanical systems applications including wearable piezoelectric sensors or energy harvesters based on Pb(Zr,Ti)O3 (PZT) thin films. Full utilization of the potential of piezoelectrics on metal foils requires control of the film crystallographic texture. In this study, {001} oriented PZT thin films were grown by chemical solution deposition (CSD) on Ni foil and Si substrates. Ni foils were passivated using HfO2 grown by atomic layer deposition in order to suppress substrate oxidation during subsequent thermal treatment. To obtain the desired orientation of PZT film, strongly (100) oriented LaNiO3 films were integrated by CSD on the HfO2 coated substrates. A high level of {001} LaNiO3 and PZT film orientation were confirmed by X-ray diffraction patterns. Before poling, the low field dielectric permittivity and loss tangents of (001) oriented PZT films on Ni are near 780 and 0.04 at 1 kHz; the permittivity drops significantly on poling due to in-plane to out-of-plane domain switching. (001) oriented PZT film on Ni displayed a well-saturated hysteresis loop with a large remanent polarization ˜36 μC/cm2, while (100) oriented PZT on Si showed slanted P-E hysteresis loops with much lower remanent polarizations. The |e31,f| piezoelectric coefficient was around 10.6 C/m2 for hot-poled (001) oriented PZT film on Ni.

  8. RBT-GA: a novel metaheuristic for solving the Multiple Sequence Alignment problem.

    PubMed

    Taheri, Javid; Zomaya, Albert Y

    2009-07-07

    Multiple Sequence Alignment (MSA) has always been an active area of research in Bioinformatics. MSA is mainly focused on discovering biologically meaningful relationships among different sequences or proteins in order to investigate the underlying main characteristics/functions. This information is also used to generate phylogenetic trees. This paper presents a novel approach, namely RBT-GA, to solve the MSA problem using a hybrid solution methodology combining the Rubber Band Technique (RBT) and the Genetic Algorithm (GA) metaheuristic. RBT is inspired by the behavior of an elastic Rubber Band (RB) on a plate with several poles, which is analogues to locations in the input sequences that could potentially be biologically related. A GA attempts to mimic the evolutionary processes of life in order to locate optimal solutions in an often very complex landscape. RBT-GA is a population based optimization algorithm designed to find the optimal alignment for a set of input protein sequences. In this novel technique, each alignment answer is modeled as a chromosome consisting of several poles in the RBT framework. These poles resemble locations in the input sequences that are most likely to be correlated and/or biologically related. A GA-based optimization process improves these chromosomes gradually yielding a set of mostly optimal answers for the MSA problem. RBT-GA is tested with one of the well-known benchmarks suites (BALiBASE 2.0) in this area. The obtained results show that the superiority of the proposed technique even in the case of formidable sequences.

  9. Instant Insanity II

    ERIC Educational Resources Information Center

    Richmond, Tom; Young, Aaron

    2013-01-01

    "Instant Insanity II" is a sliding mechanical puzzle whose solution requires the special alignment of 16 colored tiles. We count the number of solutions of the puzzle's classic challenge and show that the more difficult ultimate challenge has, up to row permutation, exactly two solutions, and further show that no…

  10. Quantum entanglement of a harmonic oscillator with an electromagnetic field.

    PubMed

    Makarov, Dmitry N

    2018-05-29

    At present, there are many methods for obtaining quantum entanglement of particles with an electromagnetic field. Most methods have a low probability of quantum entanglement and not an exact theoretical apparatus based on an approximate solution of the Schrodinger equation. There is a need for new methods for obtaining quantum-entangled particles and mathematically accurate studies of such methods. In this paper, a quantum harmonic oscillator (for example, an electron in a magnetic field) interacting with a quantized electromagnetic field is considered. Based on the exact solution of the Schrodinger equation for this system, it is shown that for certain parameters there can be a large quantum entanglement between the electron and the electromagnetic field. Quantum entanglement is analyzed on the basis of a mathematically exact expression for the Schmidt modes and the Von Neumann entropy.

  11. Exact vibration analysis of a double-nanobeam-systems embedded in an elastic medium by a Hamiltonian-based method

    NASA Astrophysics Data System (ADS)

    Zhou, Zhenhuan; Li, Yuejie; Fan, Junhai; Rong, Dalun; Sui, Guohao; Xu, Chenghui

    2018-05-01

    A new Hamiltonian-based approach is presented for finding exact solutions for transverse vibrations of double-nanobeam-systems embedded in an elastic medium. The continuum model is established within the frameworks of the symplectic methodology and the nonlocal Euler-Bernoulli and Timoshenko beam beams. The symplectic eigenfunctions are obtained after expressing the governing equations in a Hamiltonian form. Exact frequency equations, vibration modes and displacement amplitudes are obtained by using symplectic eigenfunctions and end conditions. Comparisons with previously published work are presented to illustrate the accuracy and reliability of the proposed method. The comprehensive results for arbitrary boundary conditions could serve as benchmark results for verifying numerically obtained solutions. In addition, a study on the difference between the nonlocal beam and the nonlocal plate is also included.

  12. Octet baryons in large magnetic fields

    NASA Astrophysics Data System (ADS)

    Deshmukh, Amol; Tiburzi, Brian C.

    2018-01-01

    Magnetic properties of octet baryons are investigated within the framework of chiral perturbation theory. Utilizing a power counting for large magnetic fields, the Landau levels of charged mesons are treated exactly giving rise to baryon energies that depend nonanalytically on the strength of the magnetic field. In the small-field limit, baryon magnetic moments and polarizabilities emerge from the calculated energies. We argue that the magnetic polarizabilities of hyperons provide a testing ground for potentially large contributions from decuplet pole diagrams. In external magnetic fields, such contributions manifest themselves through decuplet-octet mixing, for which possible results are compared in a few scenarios. These scenarios can be tested with lattice QCD calculations of the octet baryon energies in magnetic fields.

  13. Scattering amplitude and bosonization duality in general Chern-Simons vector models

    NASA Astrophysics Data System (ADS)

    Yokoyama, Shuichi

    2016-09-01

    We present the exact large N calculus of four point functions in general Chern-Simons bosonic and fermionic vector models. Applying the LSZ formula to the four point function we determine the two body scattering amplitudes in these theories taking a special care for a non-analytic term to achieve unitarity in the singlet channel. We show that the S-matrix enjoys the bosonization duality, an unusual crossing relation and a non-relativistic reduction to Aharonov-Bohm scattering. We also argue that the S-matrix develops a pole in a certain range of coupling constants, which disappears in the range where the theory reduces to the Chern-Simons theory interacting with free fermions.

  14. Nonlinear dielectric response and transient current: An effective potential for ferroelectric domain wall displacement

    NASA Astrophysics Data System (ADS)

    Placeres Jiménez, Rolando; Pedro Rino, José; Marino Gonçalves, André; Antonio Eiras, José

    2013-09-01

    Ferroelectric domain walls are modeled as rigid bodies moving under the action of a potential field in a dissipative medium. Assuming that the dielectric permittivity follows the dependence ɛ '∝1/(α+βE2), it obtained the exact expression for the effective potential. Simulations of polarization current correctly predict a power law. Such results could be valuable in the study of domain wall kinetic and ultrafast polarization processes. The model is extended to poled samples allowing the study of nonlinear dielectric permittivity under subswitching electric fields. Experimental nonlinear data from PZT 20/80 thin films and Fe+3 doped PZT 40/60 ceramic are reproduced.

  15. Modeling and control of flexible space structures

    NASA Technical Reports Server (NTRS)

    Wie, B.; Bryson, A. E., Jr.

    1981-01-01

    The effects of actuator and sensor locations on transfer function zeros are investigated, using uniform bars and beams as generic models of flexible space structures. It is shown how finite element codes may be used directly to calculate transfer function zeros. The impulse response predicted by finite-dimensional models is compared with the exact impulse response predicted by the infinite dimensional models. It is shown that some flexible structures behave as if there were a direct transmission between actuator and sensor (equal numbers of zeros and poles in the transfer function). Finally, natural damping models for a vibrating beam are investigated since natural damping has a strong influence on the appropriate active control logic for a flexible structure.

  16. Exact solutions with AdS asymptotics of Einstein and Einstein-Maxwell gravity minimally coupled to a scalar field

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cadoni, Mariano; Serra, Matteo; Mignemi, Salvatore

    We propose a general method for solving exactly the static field equations of Einstein and Einstein-Maxwell gravity minimally coupled to a scalar field. Our method starts from an ansatz for the scalar field profile, and determines, together with the metric functions, the corresponding form of the scalar self-interaction potential. Using this method we prove a new no-hair theorem about the existence of hairy black-hole and black-brane solutions and derive broad classes of static solutions with radial symmetry of the theory, which may play an important role in applications of the AdS/CFT correspondence to condensed matter and strongly coupled QFTs. Thesemore » solutions include: (1) four- or generic (d+2)-dimensional solutions with planar, spherical or hyperbolic horizon topology; (2) solutions with anti-de Sitter, domain wall and Lifshitz asymptotics; (3) solutions interpolating between an anti-de Sitter spacetime in the asymptotic region and a domain wall or conformal Lifshitz spacetime in the near-horizon region.« less

  17. Rogue periodic waves of the focusing nonlinear Schrödinger equation

    NASA Astrophysics Data System (ADS)

    Chen, Jinbing; Pelinovsky, Dmitry E.

    2018-02-01

    Rogue periodic waves stand for rogue waves on a periodic background. The nonlinear Schrödinger equation in the focusing case admits two families of periodic wave solutions expressed by the Jacobian elliptic functions dn and cn. Both periodic waves are modulationally unstable with respect to long-wave perturbations. Exact solutions for the rogue periodic waves are constructed by using the explicit expressions for the periodic eigenfunctions of the Zakharov-Shabat spectral problem and the Darboux transformations. These exact solutions generalize the classical rogue wave (the so-called Peregrine's breather). The magnification factor of the rogue periodic waves is computed as a function of the elliptic modulus. Rogue periodic waves constructed here are compared with the rogue wave patterns obtained numerically in recent publications.

  18. Rogue periodic waves of the focusing nonlinear Schrödinger equation.

    PubMed

    Chen, Jinbing; Pelinovsky, Dmitry E

    2018-02-01

    Rogue periodic waves stand for rogue waves on a periodic background. The nonlinear Schrödinger equation in the focusing case admits two families of periodic wave solutions expressed by the Jacobian elliptic functions dn and cn . Both periodic waves are modulationally unstable with respect to long-wave perturbations. Exact solutions for the rogue periodic waves are constructed by using the explicit expressions for the periodic eigenfunctions of the Zakharov-Shabat spectral problem and the Darboux transformations. These exact solutions generalize the classical rogue wave (the so-called Peregrine's breather). The magnification factor of the rogue periodic waves is computed as a function of the elliptic modulus. Rogue periodic waves constructed here are compared with the rogue wave patterns obtained numerically in recent publications.

  19. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Vieira, H.S., E-mail: horacio.santana.vieira@hotmail.com; Bezerra, V.B., E-mail: valdir@fisica.ufpb.br; Muniz, C.R., E-mail: celiomuniz@yahoo.com

    This work considers the influence of the gravitational field produced by a charged and rotating black hole (Kerr–Newman spacetime) on a charged massive scalar field. We obtain exact solutions of both angular and radial parts of the Klein–Gordon equation in this spacetime, which are given in terms of the confluent Heun functions. From the radial solution, we obtain the exact wave solutions near the exterior horizon of the black hole, and discuss the Hawking radiation of charged massive scalar particles. - Highlights: • The covariant Klein–Gordon equation for a charged massive scalar field in the Kerr–Newman black hole is solved.more » • Both angular and radial parts are transformed to a Heun-type equation. • The resulting Hawking radiation spectrum of scalar particles has a thermal character.« less

  20. Exact Solution of a Strongly Coupled Gauge Theory in 0 +1 Dimensions

    NASA Astrophysics Data System (ADS)

    Krishnan, Chethan; Kumar, K. V. Pavan

    2018-05-01

    Gauged tensor models are a class of strongly coupled quantum mechanical theories. We present the exact analytic solution of a specific example of such a theory: namely, the smallest colored tensor model due to Gurau and Witten that exhibits nonlinearities. We find explicit analytic expressions for the eigenvalues and eigenstates, and the former agree precisely with previous numerical results on (a subset of) eigenvalues of the ungauged theory. The physics of the spectrum, despite the smallness of N , exhibits rudimentary signatures of chaos. This Letter is a summary of our main results: the technical details will appear in companion paper [C. Krishnan and K. V. Pavan Kumar, Complete solution of a gauged tensor model, arXiv:1804.10103].

  1. Exact solution for the Poisson field in a semi-infinite strip.

    PubMed

    Cohen, Yossi; Rothman, Daniel H

    2017-04-01

    The Poisson equation is associated with many physical processes. Yet exact analytic solutions for the two-dimensional Poisson field are scarce. Here we derive an analytic solution for the Poisson equation with constant forcing in a semi-infinite strip. We provide a method that can be used to solve the field in other intricate geometries. We show that the Poisson flux reveals an inverse square-root singularity at a tip of a slit, and identify a characteristic length scale in which a small perturbation, in a form of a new slit, is screened by the field. We suggest that this length scale expresses itself as a characteristic spacing between tips in real Poisson networks that grow in response to fluxes at tips.

  2. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Prakash, S. Arun; Malathi, V.; Mani Rajan, M. S., E-mail: senthilmanirajanofc@gmail.com

    We obtain the bright similariton solutions for generalized inhomogeneous nonlinear Schrödinger equation (GINLSE) which governs the pulse propagation in a tapered graded index diffraction decreasing waveguide (DDW). The exact solutions have been worked out by employing similarity transformations which involve the mapping of the GINLSE to standard NLSE for the certain conditions of the parameters. By making use of the exact analytical solutions, we have investigated the dynamical behavior of optical similariton pairs and have suggested the methods to control them as they propagate through DDW. Moreover, pulse width of similariton is controlled through various profiles. These results are helpfulmore » to understand the similaritons in DDW and can be potentially useful for future experiments in optical communications which involve optical amplifiers and long-haul telecommunication networks.« less

  3. Possible ring material around centaur (2060) Chiron

    NASA Astrophysics Data System (ADS)

    Ortiz, J. L.; Duffard, R.; Pinilla-Alonso, N.; Alvarez-Candal, A.; Santos-Sanz, P.; Morales, N.; Fernández-Valenzuela, E.; Licandro, J.; Campo Bagatin, A.; Thirouin, A.

    2015-04-01

    We propose that several short-duration events observed in past stellar occultations by Chiron were produced by ring material. Some similarities between these events and the characteristics of Chariklo's rings could indicate common mechanisms around centaurs. From a reanalysis of the stellar occultation data in the literature, we determined two possible orientations of the pole of Chiron's rings, with ecliptic coordinates λ = (352 ± 10)°, β = (37 ± 10)° or λ = (144 ± 10)°, β = (24 ± 10)°. The mean radius of the rings is (324 ± 10) km. One can use the rotational lightcurve amplitude of Chiron at different epochs to distinguish between the two solutions for the pole. Both solutions imply a lower lightcurve amplitude in 2013 than in 1988, when the rotational lightcurve was first determined. We derived Chiron's rotational lightcurve in 2013 from observations at the 1.23 m CAHA telescope, and indeed its amplitude was smaller than in 1988. We also present a rotational lightcurve in 2000 from images taken at the CASLEO 2.15 m telescope that is consistent with our predictions. Out of the two poles, the λ = (144 ± 10)°, β = (24 ± 10)° solution provides a better match to a compilation of rotational lightcurve amplitudes from the literature and those presented here. We also show that using this preferred pole orientation, Chiron's long-term brightness variations are compatible with a simple model that incorporates the changing brightness of the rings while the tilt angle with respect to the Earth is changing with time. Also, the variability of the water ice band in Chiron's spectra as seen in the literature can be explained to a large degree by an icy ring system whose tilt angle changes with time and whose composition includes water ice, analogously to the case of Chariklo. We present several possible formation scenarios for the rings from qualitative points of view and speculate on why rings might be common in centaurs. We also speculate on whether the known bimodal color distribution of the centaurs could be due to centaurs with rings and centaurs without rings. Table 1 is only available at the CDS via anonymous ftp to http://cdsarc.u-strasbg.fr (ftp://130.79.128.5) or via http://cdsarc.u-strasbg.fr/viz-bin/qcat?J/A+A/576/A18

  4. Locations of stationary/periodic solutions in mean motion resonances according to the properties of dust grains

    NASA Astrophysics Data System (ADS)

    Pástor, P.

    2016-07-01

    The equations of secular evolution for dust grains in mean motion resonances with a planet are solved for stationary points. Non-gravitational effects caused by stellar radiation (the Poynting-Robertson effect and the stellar wind) are taken into account. The solutions are stationary in the semimajor axis, eccentricity and resonant angle, but allow the pericentre to advance. The semimajor axis of stationary solutions can be slightly shifted from the exact resonant value. The periodicity of the stationary solutions in a reference frame orbiting with the planet is proved analytically. The existence of periodic solutions in mean motion resonances means that analytical theory enables infinitely long capture times for dust particles. The stationary solutions are periodic motions to which the eccentricity asymptotically approaches and around which the libration occurs. Initial conditions corresponding to the stationary solutions are successfully found by numerically integrating the equation of motion. Numerically and analytically determined shifts of the semimajor axis from the exact resonance for the stationary solutions are in excellent agreement. The stationary solutions can be plotted by the locations of pericentres in the reference frame orbiting with the planet. The pericentres are distributed in space according to the properties of the dust particles.

  5. Graph rigidity, cyclic belief propagation, and point pattern matching.

    PubMed

    McAuley, Julian J; Caetano, Tibério S; Barbosa, Marconi S

    2008-11-01

    A recent paper [1] proposed a provably optimal polynomial time method for performing near-isometric point pattern matching by means of exact probabilistic inference in a chordal graphical model. Its fundamental result is that the chordal graph in question is shown to be globally rigid, implying that exact inference provides the same matching solution as exact inference in a complete graphical model. This implies that the algorithm is optimal when there is no noise in the point patterns. In this paper, we present a new graph that is also globally rigid but has an advantage over the graph proposed in [1]: Its maximal clique size is smaller, rendering inference significantly more efficient. However, this graph is not chordal, and thus, standard Junction Tree algorithms cannot be directly applied. Nevertheless, we show that loopy belief propagation in such a graph converges to the optimal solution. This allows us to retain the optimality guarantee in the noiseless case, while substantially reducing both memory requirements and processing time. Our experimental results show that the accuracy of the proposed solution is indistinguishable from that in [1] when there is noise in the point patterns.

  6. Three friendly walkers

    NASA Astrophysics Data System (ADS)

    Jensen, Iwan

    2017-01-01

    More than 15 years ago Guttmann and Vöge (2002 J. Stat. Plan. Inference 101 107), introduced a model of friendly walkers. Since then it has remained unsolved. In this paper we provide the exact solution to a closely allied model which essentially only differs in the boundary conditions. The exact solution is expressed in terms of the reciprocal of the generating function for vicious walkers which is a D-finite function. However, ratios of D-finite functions are inherently not D-finite and in this case we prove that the friendly walkers generating function is the solution to a non-linear differential equation with polynomial coefficients, it is in other words D-algebraic. We find using numerically exact calculations a conjectured expression for the generating function of the original model as a ratio of a D-finite function and the generating function for vicious walkers. We obtain an expression for this D-finite function in terms of a {{}2}{{F}1} hypergeometric function with a rational pullback and its first and second derivatives. Dedicated to Tony Guttmann on the occasion of his 70th birthday.

  7. Time-dependent flow model of a generalized Burgers' fluid with fractional derivatives through a cylindrical domain: An exact and numerical approach

    NASA Astrophysics Data System (ADS)

    Safdar, Rabia; Imran, M.; Khalique, Chaudry Masood

    2018-06-01

    Exact solutions for velocity field and tangential stress for rotational flow of a generalized Burgers' fluid within an infinite circular pipe are derived by using the methods of Laplace and finite Hankel transformations. Firstly we take the position of fluid at rest and then the fluid flow due to the rotation of the pipe around the axis of flow having time dependant angular velocity. The exact solutions are presented in terms of the generalized Ga,b,c (., t) -functions. The corresponding results can be freely specified for the same results of Burgers', Oldroyd B, Maxwell, second grade and Newtonian fluids (performing the same motion) as particular cases of the results obtained earlier. The impact of the different parameters, individually and in comparison, are represented by graphical demonstrations. Secondly the numerical solutions for velocity and stress are also obtained with the help of Laplace transformation, Gaver Stehfest's algorithm and MATHCAD. Finally a comparison of both methods for the same problem is done and shows the consistency of results.

  8. Exact analytic solution of position-dependent mass Schrödinger equation

    NASA Astrophysics Data System (ADS)

    Rajbongshi, Hangshadhar

    2018-03-01

    Exact analytic solution of position-dependent mass Schrödinger equation is generated by using extended transformation, a method of mapping a known system into a new system equipped with energy eigenvalues and corresponding wave functions. First order transformation is performed on D-dimensional radial Schrödinger equation with constant mass by taking trigonometric Pöschl-Teller potential as known system. The exactly solvable potentials with position-dependent mass generated for different choices of mass functions through first order transformation are also taken as known systems in the second order transformation performed on D-dimensional radial position-dependent mass Schrödinger equation. The solutions are fitted for "Zhu and Kroemer" ordering of ambiguity. All the wave functions corresponding to nonzero energy eigenvalues are normalizable. The new findings are that the normalizability condition of the wave functions remains independent of mass functions, and some of the generated potentials show a family relationship among themselves where power law potentials also get related to non-power law potentials and vice versa through the transformation.

  9. Exact axially symmetric galactic dynamos

    NASA Astrophysics Data System (ADS)

    Henriksen, R. N.; Woodfinden, A.; Irwin, J. A.

    2018-05-01

    We give a selection of exact dynamos in axial symmetry on a galactic scale. These include some steady examples, at least one of which is wholly analytic in terms of simple functions and has been discussed elsewhere. Most solutions are found in terms of special functions, such as associated Lagrange or hypergeometric functions. They may be considered exact in the sense that they are known to any desired accuracy in principle. The new aspect developed here is to present scale-invariant solutions with zero resistivity that are self-similar in time. The time dependence is either a power law or an exponential factor, but since the geometry of the solution is self-similar in time we do not need to fix a time to study it. Several examples are discussed. Our results demonstrate (without the need to invoke any other mechanisms) X-shaped magnetic fields and (axially symmetric) magnetic spiral arms (both of which are well observed and documented) and predict reversing rotation measures in galaxy haloes (now observed in the CHANG-ES sample) as well as the fact that planar magnetic spirals are lifted into the galactic halo.

  10. A Scalar Product Model for the Multidimensional Scaling of Choice

    ERIC Educational Resources Information Center

    Bechtel, Gordon G.; And Others

    1971-01-01

    Contains a solution for the multidimensional scaling of pairwise choice when individuals are represented as dimensional weights. The analysis supplies an exact least squares solution and estimates of group unscalability parameters. (DG)

  11. Exact Green's function method of solar force-free magnetic-field computations with constant alpha. I - Theory and basic test cases

    NASA Technical Reports Server (NTRS)

    Chiu, Y. T.; Hilton, H. H.

    1977-01-01

    Exact closed-form solutions to the solar force-free magnetic-field boundary-value problem are obtained for constant alpha in Cartesian geometry by a Green's function approach. The uniqueness of the physical problem is discussed. Application of the exact results to practical solar magnetic-field calculations is free of series truncation errors and is at least as economical as the approximate methods currently in use. Results of some test cases are presented.

  12. Class of cooperative stochastic models: Exact and approximate solutions, simulations, and experiments using ionic self-assembly of nanoparticles.

    PubMed

    Mazilu, I; Mazilu, D A; Melkerson, R E; Hall-Mejia, E; Beck, G J; Nshimyumukiza, S; da Fonseca, Carlos M

    2016-03-01

    We present exact and approximate results for a class of cooperative sequential adsorption models using matrix theory, mean-field theory, and computer simulations. We validate our models with two customized experiments using ionically self-assembled nanoparticles on glass slides. We also address the limitations of our models and their range of applicability. The exact results obtained using matrix theory can be applied to a variety of two-state systems with cooperative effects.

  13. MODELING SMALL-SCALE SPILLS OF AQUEOUS SOLUTIONS IN THE INDOOR ENVIRONMENT

    EPA Science Inventory

    A mass transfer model is proposed to estimate the rates of chemical emissions from aqueous solutions spilled on hard surfaces inside buildings. The model is presented in two forms: a set of four ordinary differential equations and a simplified exact solution. The latter can be ...

  14. 47 CFR 20.18 - 911 Service.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... data from both network-based solutions and handset-based solutions may be blended to measure compliance... shall be applied to the accuracy data from each solution and measured against the network-based accuracy... the 911 operator will not be able to call the user back, and that the user should convey the exact...

  15. Solving Simple Kinetics without Integrals

    ERIC Educational Resources Information Center

    de la Pen~a, Lisandro Herna´ndez

    2016-01-01

    The solution of simple kinetic equations is analyzed without referencing any topic from differential equations or integral calculus. Guided by the physical meaning of the rate equation, a systematic procedure is used to generate an approximate solution that converges uniformly to the exact solution in the case of zero, first, and second order…

  16. Hamiltonian formulation of systems with balanced loss-gain and exactly solvable models

    NASA Astrophysics Data System (ADS)

    Ghosh, Pijush K.; Sinha, Debdeep

    2018-01-01

    A Hamiltonian formulation of generic many-body systems with balanced loss and gain is presented. It is shown that a Hamiltonian formulation is possible only if the balancing of loss and gain terms occurs in a pairwise fashion. It is also shown that with the choice of a suitable co-ordinate, the Hamiltonian can always be reformulated in the background of a pseudo-Euclidean metric. If the equations of motion of some of the well-known many-body systems like Calogero models are generalized to include balanced loss and gain, it appears that the same may not be amenable to a Hamiltonian formulation. A few exactly solvable systems with balanced loss and gain, along with a set of integrals of motion are constructed. The examples include a coupled chain of nonlinear oscillators and a many-particle Calogero-type model with four-body inverse square plus two-body pair-wise harmonic interactions. For the case of nonlinear oscillators, stable solution exists even if the loss and gain parameter has unbounded upper range. Further, the range of the parameter for which the stable solutions are obtained is independent of the total number of the oscillators. The set of coupled nonlinear equations are solved exactly for the case when the values of all the constants of motions except the Hamiltonian are equal to zero. Exact, analytical classical solutions are presented for all the examples considered.

  17. Exact solutions for species tree inference from discordant gene trees.

    PubMed

    Chang, Wen-Chieh; Górecki, Paweł; Eulenstein, Oliver

    2013-10-01

    Phylogenetic analysis has to overcome the grant challenge of inferring accurate species trees from evolutionary histories of gene families (gene trees) that are discordant with the species tree along whose branches they have evolved. Two well studied approaches to cope with this challenge are to solve either biologically informed gene tree parsimony (GTP) problems under gene duplication, gene loss, and deep coalescence, or the classic RF supertree problem that does not rely on any biological model. Despite the potential of these problems to infer credible species trees, they are NP-hard. Therefore, these problems are addressed by heuristics that typically lack any provable accuracy and precision. We describe fast dynamic programming algorithms that solve the GTP problems and the RF supertree problem exactly, and demonstrate that our algorithms can solve instances with data sets consisting of as many as 22 taxa. Extensions of our algorithms can also report the number of all optimal species trees, as well as the trees themselves. To better asses the quality of the resulting species trees that best fit the given gene trees, we also compute the worst case species trees, their numbers, and optimization score for each of the computational problems. Finally, we demonstrate the performance of our exact algorithms using empirical and simulated data sets, and analyze the quality of heuristic solutions for the studied problems by contrasting them with our exact solutions.

  18. 21 CFR 1304.11 - Inventory requirements.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... solutions), identified by the batch number or other appropriate identifying number, and if possible the... listed in Schedule I or II, make an exact count or measure of the contents, or (ii) If the substance is... holds more than 1,000 tablets or capsules in which case he/she must make an exact count of the contents...

  19. 21 CFR 1304.11 - Inventory requirements.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... solutions), identified by the batch number or other appropriate identifying number, and if possible the... listed in Schedule I or II, make an exact count or measure of the contents, or (ii) If the substance is... holds more than 1,000 tablets or capsules in which case he/she must make an exact count of the contents...

  20. 21 CFR 1304.11 - Inventory requirements.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... solutions), identified by the batch number or other appropriate identifying number, and if possible the... listed in Schedule I or II, make an exact count or measure of the contents, or (ii) If the substance is... holds more than 1,000 tablets or capsules in which case he/she must make an exact count of the contents...

Top