Sample records for exact solution shows

  1. Approach to first-order exact solutions of the Ablowitz-Ladik equation.

    PubMed

    Ankiewicz, Adrian; Akhmediev, Nail; Lederer, Falk

    2011-05-01

    We derive exact solutions of the Ablowitz-Ladik (A-L) equation using a special ansatz that linearly relates the real and imaginary parts of the complex function. This ansatz allows us to derive a family of first-order solutions of the A-L equation with two independent parameters. This novel technique shows that every exact solution of the A-L equation has a direct analog among first-order solutions of the nonlinear Schrödinger equation (NLSE). © 2011 American Physical Society

  2. Nonexistence of exact solutions agreeing with the Gaussian beam on the beam axis or in the focal plane

    NASA Astrophysics Data System (ADS)

    Lekner, John; Andrejic, Petar

    2018-01-01

    Solutions of the Helmholtz equation which describe electromagnetic beams (and also acoustic or particle beams) are discussed. We show that an exact solution which reproduces the Gaussian beam waveform on the beam axis does not exist. This is surprising, since the Gaussian beam is a solution of the paraxial equation, and thus supposedly accurate on and near the beam axis. Likewise, a solution of the Helmholtz equation which exactly reproduces the Gaussian beam in the focal plane does not exist. We show that the last statement also holds for Bessel-Gauss beams. However, solutions of the Helmholtz equation (one of which is discussed in detail) can approximate the Gaussian waveform within the central focal region.

  3. Some new traveling wave exact solutions of the (2+1)-dimensional Boiti-Leon-Pempinelli equations.

    PubMed

    Qi, Jian-ming; Zhang, Fu; Yuan, Wen-jun; Huang, Zi-feng

    2014-01-01

    We employ the complex method to obtain all meromorphic exact solutions of complex (2+1)-dimensional Boiti-Leon-Pempinelli equations (BLP system of equations). The idea introduced in this paper can be applied to other nonlinear evolution equations. Our results show that all rational and simply periodic traveling wave exact solutions of the equations (BLP) are solitary wave solutions, the complex method is simpler than other methods, and there exist some rational solutions ur,2 (z) and simply periodic solutions us,2-6(z) which are not only new but also not degenerated successively by the elliptic function solutions. We believe that this method should play an important role for finding exact solutions in the mathematical physics. For these new traveling wave solutions, we give some computer simulations to illustrate our main results.

  4. Nonlinear oscillator with power-form elastic-term: Fourier series expansion of the exact solution

    NASA Astrophysics Data System (ADS)

    Beléndez, Augusto; Francés, Jorge; Beléndez, Tarsicio; Bleda, Sergio; Pascual, Carolina; Arribas, Enrique

    2015-05-01

    A family of conservative, truly nonlinear, oscillators with integer or non-integer order nonlinearity is considered. These oscillators have only one odd power-form elastic-term and exact expressions for their period and solution were found in terms of Gamma functions and a cosine-Ateb function, respectively. Only for a few values of the order of nonlinearity, is it possible to obtain the periodic solution in terms of more common functions. However, for this family of conservative truly nonlinear oscillators we show in this paper that it is possible to obtain the Fourier series expansion of the exact solution, even though this exact solution is unknown. The coefficients of the Fourier series expansion of the exact solution are obtained as an integral expression in which a regularized incomplete Beta function appears. These coefficients are a function of the order of nonlinearity only and are computed numerically. One application of this technique is to compare the amplitudes for the different harmonics of the solution obtained using approximate methods with the exact ones computed numerically as shown in this paper. As an example, the approximate amplitudes obtained via a modified Ritz method are compared with the exact ones computed numerically.

  5. Applications of exact traveling wave solutions of Modified Liouville and the Symmetric Regularized Long Wave equations via two new techniques

    NASA Astrophysics Data System (ADS)

    Lu, Dianchen; Seadawy, Aly R.; Ali, Asghar

    2018-06-01

    In this current work, we employ novel methods to find the exact travelling wave solutions of Modified Liouville equation and the Symmetric Regularized Long Wave equation, which are called extended simple equation and exp(-Ψ(ξ))-expansion methods. By assigning the different values to the parameters, different types of the solitary wave solutions are derived from the exact traveling wave solutions, which shows the efficiency and precision of our methods. Some solutions have been represented by graphical. The obtained results have several applications in physical science.

  6. Solutions of the cylindrical nonlinear Maxwell equations.

    PubMed

    Xiong, Hao; Si, Liu-Gang; Ding, Chunling; Lü, Xin-You; Yang, Xiaoxue; Wu, Ying

    2012-01-01

    Cylindrical nonlinear optics is a burgeoning research area which describes cylindrical electromagnetic wave propagation in nonlinear media. Finding new exact solutions for different types of nonlinearity and inhomogeneity to describe cylindrical electromagnetic wave propagation is of great interest and meaningful for theory and application. This paper gives exact solutions for the cylindrical nonlinear Maxwell equations and presents an interesting connection between the exact solutions for different cylindrical nonlinear Maxwell equations. We also provide some examples and discussion to show the application of the results we obtained. Our results provide the basis for solving complex systems of nonlinearity and inhomogeneity with simple systems.

  7. How hairpin vortices emerge from exact invariant solutions

    NASA Astrophysics Data System (ADS)

    Schneider, Tobias M.; Farano, Mirko; de Palma, Pietro; Robinet, Jean-Christoph; Cherubini, Stefania

    2017-11-01

    Hairpin vortices are among the most commonly observed flow structures in wall-bounded shear flows. However, within the dynamical system approach to turbulence, those structures have not yet been described. They are not captured by known exact invariant solutions of the Navier-Stokes equations nor have other state-space structures supporting hairpins been identified. We show that hairpin structures are observed along an optimally growing trajectory leaving a well known exact traveling wave solution of plane Poiseuille flow. The perturbation triggering hairpins does not correspond to an unstable mode of the exact traveling wave but lies in the stable manifold where non-normality causes strong transient amplification.

  8. Gravitational Instantons and Minimal Surfaces

    NASA Astrophysics Data System (ADS)

    Nutku, Y.

    1996-12-01

    We show that for every minimal surface in E3 there is a gravitational instanton, an exact solution of the Einstein field equations with Euclidean signature and anti-self-dual curvature. The explicit metric establishing this correspondence is presented and a new class of exact solutions are obtained.

  9. Perturbational blowup solutions to the compressible Euler equations with damping.

    PubMed

    Cheung, Ka Luen

    2016-01-01

    The N-dimensional isentropic compressible Euler system with a damping term is one of the most fundamental equations in fluid dynamics. Since it does not have a general solution in a closed form for arbitrary well-posed initial value problems. Constructing exact solutions to the system is a useful way to obtain important information on the properties of its solutions. In this article, we construct two families of exact solutions for the one-dimensional isentropic compressible Euler equations with damping by the perturbational method. The two families of exact solutions found include the cases [Formula: see text] and [Formula: see text], where [Formula: see text] is the adiabatic constant. With analysis of the key ordinary differential equation, we show that the classes of solutions include both blowup type and global existence type when the parameters are suitably chosen. Moreover, in the blowup cases, we show that the singularities are of essential type in the sense that they cannot be smoothed by redefining values at the odd points. The two families of exact solutions obtained in this paper can be useful to study of related numerical methods and algorithms such as the finite difference method, the finite element method and the finite volume method that are applied by scientists to simulate the fluids for applications.

  10. Exact soliton solutions and their stability control in the nonlinear Schrödinger equation with spatiotemporally modulated nonlinearity.

    PubMed

    Tian, Qing; Wu, Lei; Zhang, Jie-Fang; Malomed, Boris A; Mihalache, D; Liu, W M

    2011-01-01

    We put forward a generic transformation which helps to find exact soliton solutions of the nonlinear Schrödinger equation with a spatiotemporal modulation of the nonlinearity and external potentials. As an example, we construct exact solitons for the defocusing nonlinearity and harmonic potential. When the soliton's eigenvalue is fixed, the number of exact solutions is determined by energy levels of the linear harmonic oscillator. In addition to the stable fundamental solitons, stable higher-order modes, describing array of dark solitons nested in a finite-width background, are constructed too. We also show how to control the instability domain of the nonstationary solitons.

  11. Perturbed Coulomb Potentials in the Klein-Gordon Equation: Quasi-Exact Solution

    NASA Astrophysics Data System (ADS)

    Baradaran, M.; Panahi, H.

    2018-05-01

    Using the Lie algebraic approach, we present the quasi-exact solutions of the relativistic Klein-Gordon equation for perturbed Coulomb potentials namely the Cornell potential, the Kratzer potential and the Killingbeck potential. We calculate the general exact expressions for the energies, corresponding wave functions and the allowed values of the parameters of the potential within the representation space of sl(2) Lie algebra. In addition, we show that the considered equations can be transformed into the Heun's differential equations and then we reproduce the results using the associated special functions. Also, we study the special case of the Coulomb potential and show that in the non-relativistic limit, the solution of the Klein-Gordon equation converges to that of Schrödinger equation.

  12. Revealing Numerical Solutions of a Differential Equation

    ERIC Educational Resources Information Center

    Glaister, P.

    2006-01-01

    In this article, the author considers a student exercise that involves determining the exact and numerical solutions of a particular differential equation. He shows how a typical student solution is at variance with a numerical solution, suggesting that the numerical solution is incorrect. However, further investigation shows that this numerical…

  13. 5D Lovelock gravity: New exact solutions with torsion

    NASA Astrophysics Data System (ADS)

    Cvetković, B.; Simić, D.

    2016-10-01

    Five-dimensional Lovelock gravity is investigated in the first order formalism. A new class of exact solutions is constructed: the Bañados, Teitelboim, Zanelli black rings with and without torsion. We show that our solution with torsion exists in a different sector of the Lovelock gravity, as compared to the Lovelock Chern-Simons sector or the one investigated by Canfora et al. The conserved charges of the solutions are found using Nester's formula, and the results are confirmed by the canonical method. We show that the theory linearized around the background with torsion possesses two additional degrees of freedom with respect to general relativity.

  14. Interaction and charge transfer between dielectric spheres: Exact and approximate analytical solutions.

    PubMed

    Lindén, Fredrik; Cederquist, Henrik; Zettergren, Henning

    2016-11-21

    We present exact analytical solutions for charge transfer reactions between two arbitrarily charged hard dielectric spheres. These solutions, and the corresponding exact ones for sphere-sphere interaction energies, include sums that describe polarization effects to infinite orders in the inverse of the distance between the sphere centers. In addition, we show that these exact solutions may be approximated by much simpler analytical expressions that are useful for many practical applications. This is exemplified through calculations of Langevin type cross sections for forming a compound system of two colliding spheres and through calculations of electron transfer cross sections. We find that it is important to account for dielectric properties and finite sphere sizes in such calculations, which for example may be useful for describing the evolution, growth, and dynamics of nanometer sized dielectric objects such as molecular clusters or dust grains in different environments including astrophysical ones.

  15. Exact time-dependent solutions for a self-regulating gene.

    PubMed

    Ramos, A F; Innocentini, G C P; Hornos, J E M

    2011-06-01

    The exact time-dependent solution for the stochastic equations governing the behavior of a binary self-regulating gene is presented. Using the generating function technique to rephrase the master equations in terms of partial differential equations, we show that the model is totally integrable and the analytical solutions are the celebrated confluent Heun functions. Self-regulation plays a major role in the control of gene expression, and it is remarkable that such a microscopic model is completely integrable in terms of well-known complex functions.

  16. Instant Insanity II

    ERIC Educational Resources Information Center

    Richmond, Tom; Young, Aaron

    2013-01-01

    "Instant Insanity II" is a sliding mechanical puzzle whose solution requires the special alignment of 16 colored tiles. We count the number of solutions of the puzzle's classic challenge and show that the more difficult ultimate challenge has, up to row permutation, exactly two solutions, and further show that no…

  17. Computational method for exact frequency-dependent rays on the basis of the solution of the Helmholtz equation

    NASA Astrophysics Data System (ADS)

    Protasov, M.; Gadylshin, K.

    2017-07-01

    A numerical method is proposed for the calculation of exact frequency-dependent rays when the solution of the Helmholtz equation is known. The properties of frequency-dependent rays are analysed and compared with classical ray theory and with the method of finite-difference modelling for the first time. In this paper, we study the dependence of these rays on the frequency of signals and show the convergence of the exact rays to the classical rays with increasing frequency. A number of numerical experiments demonstrate the distinctive features of exact frequency-dependent rays, in particular, their ability to penetrate into shadow zones that are impenetrable for classical rays.

  18. Wide localized solutions of the parity-time-symmetric nonautonomous nonlinear Schrödinger equation

    NASA Astrophysics Data System (ADS)

    Meza, L. E. Arroyo; Dutra, A. de Souza; Hott, M. B.; Roy, P.

    2015-01-01

    By using canonical transformations we obtain localized (in space) exact solutions of the nonlinear Schrödinger equation (NLSE) with cubic and quintic space and time modulated nonlinearities and in the presence of time-dependent and inhomogeneous external potentials and amplification or absorption (source or drain) coefficients. We obtain a class of wide localized exact solutions of NLSE in the presence of a number of non-Hermitian parity-time (PT )-symmetric external potentials, which are constituted by a mixing of external potentials and source or drain terms. The exact solutions found here can be applied to theoretical studies of ultrashort pulse propagation in optical fibers with focusing and defocusing nonlinearities. We show that, even in the presence of gain or loss terms, stable solutions can be found and that the PT symmetry is an important feature to guarantee the conservation of the average energy of the system.

  19. Weakly collisional Landau damping and three-dimensional Bernstein-Greene-Kruskal modes: New results on old problems

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ng, C.; Bhattacharjee, A.; Skiff, F.

    2006-05-15

    Landau damping and Bernstein-Greene-Kruskal (BGK) modes are among the most fundamental concepts in plasma physics. While the former describes the surprising damping of linear plasma waves in a collisionless plasma, the latter describes exact undamped nonlinear solutions of the Vlasov equation. There does exist a relationship between the two: Landau damping can be described as the phase mixing of undamped eigenmodes, the so-called Case-Van Kampen modes, which can be viewed as BGK modes in the linear limit. While these concepts have been around for a long time, unexpected new results are still being discovered. For Landau damping, we show thatmore » the textbook picture of phase mixing is altered profoundly in the presence of collision. In particular, the continuous spectrum of Case-Van Kampen modes is eliminated and replaced by a discrete spectrum, even in the limit of zero collision. Furthermore, we show that these discrete eigenmodes form a complete set of solutions. Landau-damped solutions are then recovered as true eigenmodes (which they are not in the collisionless theory). For BGK modes, our interest is motivated by recent discoveries of electrostatic solitary waves in magnetospheric plasmas. While one-dimensional BGK theory is quite mature, there appear to be no exact three-dimensional solutions in the literature (except for the limiting case when the magnetic field is sufficiently strong so that one can apply the guiding-center approximation). We show, in fact, that two- and three-dimensional solutions that depend only on energy do not exist. However, if solutions depend on both energy and angular momentum, we can construct exact three-dimensional solutions for the unmagnetized case, and two-dimensional solutions for the case with a finite magnetic field. The latter are shown to be exact, fully electromagnetic solutions of the steady-state Vlasov-Poisson-Ampere system.« less

  20. Quantum decay model with exact explicit analytical solution

    NASA Astrophysics Data System (ADS)

    Marchewka, Avi; Granot, Er'El

    2009-01-01

    A simple decay model is introduced. The model comprises a point potential well, which experiences an abrupt change. Due to the temporal variation, the initial quantum state can either escape from the well or stay localized as a new bound state. The model allows for an exact analytical solution while having the necessary features of a decay process. The results show that the decay is never exponential, as classical dynamics predicts. Moreover, at short times the decay has a fractional power law, which differs from perturbation quantum method predictions. At long times the decay includes oscillations with an envelope that decays algebraically. This is a model where the final state can be either continuous or localized, and that has an exact analytical solution.

  1. Closed timelike curves produced by pairs of moving cosmic strings - Exact solutions

    NASA Technical Reports Server (NTRS)

    Gott, J. Richard, III

    1991-01-01

    Exact solutions of Einstein's field equations are presented for the general case of two moving straight cosmic strings that do not intersect. The solutions for parallel cosmic strings moving in opposite directions show closed timelike curves (CTCs) that circle the two strings as they pass, allowing observers to visit their own past. Similar results occur for nonparallel strings, and for masses in (2+1)-dimensional spacetime. For finite string loops the possibility that black-hole formation may prevent the formation of CTCs is discussed.

  2. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Singleton, Jr., Robert; Israel, Daniel M.; Doebling, Scott William

    For code verification, one compares the code output against known exact solutions. There are many standard test problems used in this capacity, such as the Noh and Sedov problems. ExactPack is a utility that integrates many of these exact solution codes into a common API (application program interface), and can be used as a stand-alone code or as a python package. ExactPack consists of python driver scripts that access a library of exact solutions written in Fortran or Python. The spatial profiles of the relevant physical quantities, such as the density, fluid velocity, sound speed, or internal energy, are returnedmore » at a time specified by the user. The solution profiles can be viewed and examined by a command line interface or a graphical user interface, and a number of analysis tools and unit tests are also provided. We have documented the physics of each problem in the solution library, and provided complete documentation on how to extend the library to include additional exact solutions. ExactPack’s code architecture makes it easy to extend the solution-code library to include additional exact solutions in a robust, reliable, and maintainable manner.« less

  3. Exact results for models of multichannel quantum nonadiabatic transitions

    DOE PAGES

    Sinitsyn, N. A.

    2014-12-11

    We consider nonadiabatic transitions in explicitly time-dependent systems with Hamiltonians of the form Hˆ(t)=Aˆ+Bˆt+Cˆ/t, where t is time and Aˆ,Bˆ,Cˆ are Hermitian N × N matrices. We show that in any model of this type, scattering matrix elements satisfy nontrivial exact constraints that follow from the absence of the Stokes phenomenon for solutions with specific conditions at t→–∞. This allows one to continue such solutions analytically to t→+∞, and connect their asymptotic behavior at t→–∞ and t→+∞. This property becomes particularly useful when a model shows additional discrete symmetries. Specifically, we derive a number of simple exact constraints and explicitmore » expressions for scattering probabilities in such systems.« less

  4. Some new exact solitary wave solutions of the van der Waals model arising in nature

    NASA Astrophysics Data System (ADS)

    Bibi, Sadaf; Ahmed, Naveed; Khan, Umar; Mohyud-Din, Syed Tauseef

    2018-06-01

    This work proposes two well-known methods, namely, Exponential rational function method (ERFM) and Generalized Kudryashov method (GKM) to seek new exact solutions of the van der Waals normal form for the fluidized granular matter, linked with natural phenomena and industrial applications. New soliton solutions such as kink, periodic and solitary wave solutions are established coupled with 2D and 3D graphical patterns for clarity of physical features. Our comparison reveals that the said methods excel several existing methods. The worked-out solutions show that the suggested methods are simple and reliable as compared to many other approaches which tackle nonlinear equations stemming from applied sciences.

  5. Knotted optical vortices in exact solutions to Maxwell's equations

    NASA Astrophysics Data System (ADS)

    de Klerk, Albertus J. J. M.; van der Veen, Roland I.; Dalhuisen, Jan Willem; Bouwmeester, Dirk

    2017-05-01

    We construct a family of exact solutions to Maxwell's equations in which the points of zero intensity form knotted lines topologically equivalent to a given but arbitrary algebraic link. These lines of zero intensity, more commonly referred to as optical vortices, and their topology are preserved as time evolves and the fields have finite energy. To derive explicit expressions for these new electromagnetic fields that satisfy the nullness property, we make use of the Bateman variables for the Hopf field as well as complex polynomials in two variables whose zero sets give rise to algebraic links. The class of algebraic links includes not only all torus knots and links thereof, but also more intricate cable knots. While the unknot has been considered before, the solutions presented here show that more general knotted structures can also arise as optical vortices in exact solutions to Maxwell's equations.

  6. Renormalization of the fragmentation equation: exact self-similar solutions and turbulent cascades.

    PubMed

    Saveliev, V L; Gorokhovski, M A

    2012-12-01

    Using an approach developed earlier for renormalization of the Boltzmann collision integral [Saveliev and Nanbu, Phys. Rev. E 65, 051205 (2002)], we derive an exact divergence form for the fragmentation operator. Then we reduce the fragmentation equation to the continuity equation in size space, with the flux given explicitly. This allows us to obtain self-similar solutions and to find the integral of motion for these solutions (we call it the bare flux). We show how these solutions can be applied as a description of cascade processes in three- and two-dimensional turbulence. We also suggested an empirical cascade model of impact fragmentation of brittle materials.

  7. Exact solution of large asymmetric traveling salesman problems.

    PubMed

    Miller, D L; Pekny, J F

    1991-02-15

    The traveling salesman problem is one of a class of difficult problems in combinatorial optimization that is representative of a large number of important scientific and engineering problems. A survey is given of recent applications and methods for solving large problems. In addition, an algorithm for the exact solution of the asymmetric traveling salesman problem is presented along with computational results for several classes of problems. The results show that the algorithm performs remarkably well for some classes of problems, determining an optimal solution even for problems with large numbers of cities, yet for other classes, even small problems thwart determination of a provably optimal solution.

  8. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Xu, Xin-Ping, E-mail: xuxp@mail.ihep.ac.cn; Ide, Yusuke

    In the literature, there are numerous studies of one-dimensional discrete-time quantum walks (DTQWs) using a moving shift operator. However, there is no exact solution for the limiting probability distributions of DTQWs on cycles using a general coin or swapping shift operator. In this paper, we derive exact solutions for the limiting probability distribution of quantum walks using a general coin and swapping shift operator on cycles for the first time. Based on the exact solutions, we show how to generate symmetric quantum walks and determine the condition under which a symmetric quantum walk appears. Our results suggest that choosing various coinmore » and initial state parameters can achieve a symmetric quantum walk. By defining a quantity to measure the variation of symmetry, deviation and mixing time of symmetric quantum walks are also investigated.« less

  9. Exact models for isotropic matter

    NASA Astrophysics Data System (ADS)

    Thirukkanesh, S.; Maharaj, S. D.

    2006-04-01

    We study the Einstein-Maxwell system of equations in spherically symmetric gravitational fields for static interior spacetimes. The condition for pressure isotropy is reduced to a recurrence equation with variable, rational coefficients. We demonstrate that this difference equation can be solved in general using mathematical induction. Consequently, we can find an explicit exact solution to the Einstein-Maxwell field equations. The metric functions, energy density, pressure and the electric field intensity can be found explicitly. Our result contains models found previously, including the neutron star model of Durgapal and Bannerji. By placing restrictions on parameters arising in the general series, we show that the series terminate and there exist two linearly independent solutions. Consequently, it is possible to find exact solutions in terms of elementary functions, namely polynomials and algebraic functions.

  10. Gödel metrics with chronology protection in Horndeski gravities

    NASA Astrophysics Data System (ADS)

    Geng, Wei-Jian; Li, Shou-Long; Lü, H.; Wei, Hao

    2018-05-01

    Gödel universe, one of the most interesting exact solutions predicted by General Relativity, describes a homogeneous rotating universe containing naked closed time-like curves (CTCs). It was shown that such CTCs are the consequence of the null energy condition in General Relativity. In this paper, we show that the Gödel-type metrics with chronology protection can emerge in Einstein-Horndeski gravity. We construct such exact solutions also in Einstein-Horndeski-Maxwell and Einstein-Horndeski-Proca theories.

  11. Eshelby problem of polygonal inclusions in anisotropic piezoelectric full- and half-planes

    NASA Astrophysics Data System (ADS)

    Pan, E.

    2004-03-01

    This paper presents an exact closed-form solution for the Eshelby problem of polygonal inclusion in anisotropic piezoelectric full- and half-planes. Based on the equivalent body-force concept of eigenstrain, the induced elastic and piezoelectric fields are first expressed in terms of line integral on the boundary of the inclusion with the integrand being the Green's function. Using the recently derived exact closed-form line-source Green's function, the line integral is then carried out analytically, with the final expression involving only elementary functions. The exact closed-form solution is applied to a square-shaped quantum wire within semiconductor GaAs full- and half-planes, with results clearly showing the importance of material orientation and piezoelectric coupling. While the elastic and piezoelectric fields within the square-shaped quantum wire could serve as benchmarks to other numerical methods, the exact closed-form solution should be useful to the analysis of nanoscale quantum-wire structures where large strain and electric fields could be induced by the misfit strain.

  12. Causal properties of nonlinear gravitational waves in modified gravity

    NASA Astrophysics Data System (ADS)

    Suvorov, Arthur George; Melatos, Andrew

    2017-09-01

    Some exact, nonlinear, vacuum gravitational wave solutions are derived for certain polynomial f (R ) gravities. We show that the boundaries of the gravitational domain of dependence, associated with events in polynomial f (R ) gravity, are not null as they are in general relativity. The implication is that electromagnetic and gravitational causality separate into distinct notions in modified gravity, which may have observable astrophysical consequences. The linear theory predicts that tachyonic instabilities occur, when the quadratic coefficient a2 of the Taylor expansion of f (R ) is negative, while the exact, nonlinear, cylindrical wave solutions presented here can be superluminal for all values of a2. Anisotropic solutions are found, whose wave fronts trace out time- or spacelike hypersurfaces with complicated geometric properties. We show that the solutions exist in f (R ) theories that are consistent with Solar System and pulsar timing experiments.

  13. An efficient technique for higher order fractional differential equation.

    PubMed

    Ali, Ayyaz; Iqbal, Muhammad Asad; Ul-Hassan, Qazi Mahmood; Ahmad, Jamshad; Mohyud-Din, Syed Tauseef

    2016-01-01

    In this study, we establish exact solutions of fractional Kawahara equation by using the idea of [Formula: see text]-expansion method. The results of different studies show that the method is very effective and can be used as an alternative for finding exact solutions of nonlinear evolution equations (NLEEs) in mathematical physics. The solitary wave solutions are expressed by the hyperbolic, trigonometric, exponential and rational functions. Graphical representations along with the numerical data reinforce the efficacy of the used procedure. The specified idea is very effective, expedient for fractional PDEs, and could be extended to other physical problems.

  14. Exact solutions and phenomenological constraints from massive scalars in a gravity's rainbow spacetime

    NASA Astrophysics Data System (ADS)

    Bezerra, V. B.; Christiansen, H. R.; Cunha, M. S.; Muniz, C. R.

    2017-07-01

    We obtain the exact (confluent Heun) solutions to the massive scalar field in a gravity's rainbow Schwarzschild metric. With these solutions at hand, we study the Hawking radiation resulting from the tunneling rate through the event horizon. We show that the emission spectrum obeys nonextensive statistics and is halted when a certain mass remnant is reached. Next, we infer constraints on the rainbow parameters from recent LHC particle physics experiments and Hubble STIS astrophysics measurements. Finally, we study the low frequency limit in order to find the modified energy spectrum around the source.

  15. Exact time-dependent nonlinear dispersive wave solutions in compressible magnetized plasmas exhibiting collapse.

    PubMed

    Chakrabarti, Nikhil; Maity, Chandan; Schamel, Hans

    2011-04-08

    Compressional waves in a magnetized plasma of arbitrary resistivity are treated with the lagrangian fluid approach. An exact nonlinear solution with a nontrivial space and time dependence is obtained with boundary conditions as in Harris' current sheet. The solution shows competition among hydrodynamic convection, magnetic field diffusion, and dispersion. This results in a collapse of density and the magnetic field in the absence of dispersion. The dispersion effects arrest the collapse of density but not of the magnetic field. A possible application is in the early stage of magnetic star formation.

  16. Exact and approximate solutions for transient squeezing flow

    NASA Astrophysics Data System (ADS)

    Lang, Ji; Santhanam, Sridhar; Wu, Qianhong

    2017-10-01

    In this paper, we report two novel theoretical approaches to examine a fast-developing flow in a thin fluid gap, which is widely observed in industrial applications and biological systems. The problem is featured by a very small Reynolds number and Strouhal number, making the fluid convective acceleration negligible, while its local acceleration is not. We have developed an exact solution for this problem which shows that the flow starts with an inviscid limit when the viscous effect has no time to appear and is followed by a subsequent developing flow, in which the viscous effect continues to penetrate into the entire fluid gap. An approximate solution is also developed using a boundary layer integral method. This solution precisely captures the general behavior of the transient fluid flow process and agrees very well with the exact solution. We also performed numerical simulation using Ansys-CFX. Excellent agreement between the analytical and the numerical solutions is obtained, indicating the validity of the analytical approaches. The study presented herein fills the gap in the literature and will have a broad impact on industrial and biomedical applications.

  17. Studying the validity of relativistic hydrodynamics with a new exact solution of the Boltzmann equation

    NASA Astrophysics Data System (ADS)

    Denicol, Gabriel; Heinz, Ulrich; Martinez, Mauricio; Noronha, Jorge; Strickland, Michael

    2014-12-01

    We present an exact solution to the Boltzmann equation which describes a system undergoing boost-invariant longitudinal and azimuthally symmetric radial expansion for arbitrary shear viscosity to entropy density ratio. This new solution is constructed by considering the conformal map between Minkowski space and the direct product of three-dimensional de Sitter space with a line. The resulting solution respects S O (3 )q⊗S O (1 ,1 )⊗Z2 symmetry. We compare the exact kinetic solution with exact solutions of the corresponding macroscopic equations that were obtained from the kinetic theory in ideal and second-order viscous hydrodynamic approximations. The macroscopic solutions are obtained in de Sitter space and are subject to the same symmetries used to obtain the exact kinetic solution.

  18. Analysis of thin plates with holes by using exact geometrical representation within XFEM.

    PubMed

    Perumal, Logah; Tso, C P; Leng, Lim Thong

    2016-05-01

    This paper presents analysis of thin plates with holes within the context of XFEM. New integration techniques are developed for exact geometrical representation of the holes. Numerical and exact integration techniques are presented, with some limitations for the exact integration technique. Simulation results show that the proposed techniques help to reduce the solution error, due to the exact geometrical representation of the holes and utilization of appropriate quadrature rules. Discussion on minimum order of integration order needed to achieve good accuracy and convergence for the techniques presented in this work is also included.

  19. Gravitational waves in ghost free bimetric gravity

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mohseni, Morteza, E-mail: m-mohseni@pnu.ac.ir

    2012-11-01

    We obtain a set of exact gravitational wave solutions for the ghost free bimetric theory of gravity. With a flat reference metric, the theory admits the vacuum Brinkmann plane wave solution for suitable choices of the coefficients of different terms in the interaction potential. An exact gravitational wave solution corresponding to a massive scalar mode is also admitted for arbitrary choice of the coefficients with the reference metric being proportional to the spacetime metric. The proportionality factor and the speed of the wave are calculated in terms of the parameters of the theory. We also show that a F(R) extensionmore » of the theory admits similar solutions but in general is plagued with ghost instabilities.« less

  20. Renormalization of the fragmentation equation: Exact self-similar solutions and turbulent cascades

    NASA Astrophysics Data System (ADS)

    Saveliev, V. L.; Gorokhovski, M. A.

    2012-12-01

    Using an approach developed earlier for renormalization of the Boltzmann collision integral [Saveliev and Nanbu, Phys. Rev. E1539-375510.1103/PhysRevE.65.051205 65, 051205 (2002)], we derive an exact divergence form for the fragmentation operator. Then we reduce the fragmentation equation to the continuity equation in size space, with the flux given explicitly. This allows us to obtain self-similar solutions and to find the integral of motion for these solutions (we call it the bare flux). We show how these solutions can be applied as a description of cascade processes in three- and two-dimensional turbulence. We also suggested an empirical cascade model of impact fragmentation of brittle materials.

  1. Study of analytical method to seek for exact solutions of variant Boussinesq equations.

    PubMed

    Khan, Kamruzzaman; Akbar, M Ali

    2014-01-01

    In this paper, we have been acquired the soliton solutions of the Variant Boussinesq equations. Primarily, we have used the enhanced (G'/G)-expansion method to find exact solutions of Variant Boussinesq equations. Then, we attain some exact solutions including soliton solutions, hyperbolic and trigonometric function solutions of this equation. 35 K99; 35P05; 35P99.

  2. Study of coupled nonlinear partial differential equations for finding exact analytical solutions.

    PubMed

    Khan, Kamruzzaman; Akbar, M Ali; Koppelaar, H

    2015-07-01

    Exact solutions of nonlinear partial differential equations (NPDEs) are obtained via the enhanced (G'/G)-expansion method. The method is subsequently applied to find exact solutions of the Drinfel'd-Sokolov-Wilson (DSW) equation and the (2+1)-dimensional Painlevé integrable Burgers (PIB) equation. The efficiency of this method for finding these exact solutions is demonstrated. The method is effective and applicable for many other NPDEs in mathematical physics.

  3. Graph rigidity, cyclic belief propagation, and point pattern matching.

    PubMed

    McAuley, Julian J; Caetano, Tibério S; Barbosa, Marconi S

    2008-11-01

    A recent paper [1] proposed a provably optimal polynomial time method for performing near-isometric point pattern matching by means of exact probabilistic inference in a chordal graphical model. Its fundamental result is that the chordal graph in question is shown to be globally rigid, implying that exact inference provides the same matching solution as exact inference in a complete graphical model. This implies that the algorithm is optimal when there is no noise in the point patterns. In this paper, we present a new graph that is also globally rigid but has an advantage over the graph proposed in [1]: Its maximal clique size is smaller, rendering inference significantly more efficient. However, this graph is not chordal, and thus, standard Junction Tree algorithms cannot be directly applied. Nevertheless, we show that loopy belief propagation in such a graph converges to the optimal solution. This allows us to retain the optimality guarantee in the noiseless case, while substantially reducing both memory requirements and processing time. Our experimental results show that the accuracy of the proposed solution is indistinguishable from that in [1] when there is noise in the point patterns.

  4. Tachyon and quintessence in brane worlds

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chimento, Luis P.; Forte, Monica; Richarte, Martin G.

    2009-04-15

    Using tachyon or quintessence fields along with a barotropic fluid on the brane we examine the different cosmological stages in a Friedmann-Robertson-Walker universe, from the first radiation scenario to the later era dominated by cosmic string networks. We introduce a new algorithm to generalize previous works on exact solutions and apply it to study tachyon and quintessence fields localized on the brane. We also explore the low and high energy regimes of the solutions. Besides, we show that the tachyon and quintessence fields are driven by an inverse power law potential. Finally, we find several simple exacts solutions for tachyonmore » and/or quintessence fields.« less

  5. ADM For Solving Linear Second-Order Fredholm Integro-Differential Equations

    NASA Astrophysics Data System (ADS)

    Karim, Mohd F.; Mohamad, Mahathir; Saifullah Rusiman, Mohd; Che-Him, Norziha; Roslan, Rozaini; Khalid, Kamil

    2018-04-01

    In this paper, we apply Adomian Decomposition Method (ADM) as numerically analyse linear second-order Fredholm Integro-differential Equations. The approximate solutions of the problems are calculated by Maple package. Some numerical examples have been considered to illustrate the ADM for solving this equation. The results are compared with the existing exact solution. Thus, the Adomian decomposition method can be the best alternative method for solving linear second-order Fredholm Integro-Differential equation. It converges to the exact solution quickly and in the same time reduces computational work for solving the equation. The result obtained by ADM shows the ability and efficiency for solving these equations.

  6. Regularization of moving boundaries in a laplacian field by a mixed Dirichlet-Neumann boundary condition: exact results.

    PubMed

    Meulenbroek, Bernard; Ebert, Ute; Schäfer, Lothar

    2005-11-04

    The dynamics of ionization fronts that generate a conducting body are in the simplest approximation equivalent to viscous fingering without regularization. Going beyond this approximation, we suggest that ionization fronts can be modeled by a mixed Dirichlet-Neumann boundary condition. We derive exact uniformly propagating solutions of this problem in 2D and construct a single partial differential equation governing small perturbations of these solutions. For some parameter value, this equation can be solved analytically, which shows rigorously that the uniformly propagating solution is linearly convectively stable and that the asymptotic relaxation is universal and exponential in time.

  7. Revisiting the Langer-Ambegaokar-McCumber-Halperin theory of resistive transitions in one-dimensional superconductors with exact solutions.

    PubMed

    Joshi, Darshan G; Bhattacharyay, A

    2011-08-31

    We present an important correction to the Langer-Ambegaokar-McCumber-Halperin theory for the resistive state of a 1D superconductor. We establish that the identification of the saddle on the free energy surface over which Langer and Ambegaokar had claimed the system to move in order to form thermally excited phase slip centres is wrong. With the help of an exact solution we show that the system has to overcome a similar free energy barrier but can actually have vanishing amplitude of the superconducting phase at a point, unlike the Langer-Ambegaokar solution.

  8. Study of coupled nonlinear partial differential equations for finding exact analytical solutions

    PubMed Central

    Khan, Kamruzzaman; Akbar, M. Ali; Koppelaar, H.

    2015-01-01

    Exact solutions of nonlinear partial differential equations (NPDEs) are obtained via the enhanced (G′/G)-expansion method. The method is subsequently applied to find exact solutions of the Drinfel'd–Sokolov–Wilson (DSW) equation and the (2+1)-dimensional Painlevé integrable Burgers (PIB) equation. The efficiency of this method for finding these exact solutions is demonstrated. The method is effective and applicable for many other NPDEs in mathematical physics. PMID:26587256

  9. Fingering patterns in magnetic fluids: Perturbative solutions and the stability of exact stationary shapes

    NASA Astrophysics Data System (ADS)

    Anjos, Pedro H. A.; Lira, Sérgio A.; Miranda, José A.

    2018-04-01

    We examine the formation of interfacial patterns when a magnetic liquid droplet (ferrofluid, or a magnetorheological fluid), surrounded by a nonmagnetic fluid, is subjected to a radial magnetic field in a Hele-Shaw cell. By using a vortex-sheet formalism, we find exact stationary solutions for the fluid-fluid interface in the form of n -fold polygonal shapes. A weakly nonlinear, mode-coupling method is then utilized to find time-evolving perturbative solutions for the interfacial patterns. The stability of such nonzero surface tension exact solutions is checked and discussed, by trying to systematically approach the exact stationary shapes through perturbative solutions containing an increasingly larger number of participating Fourier modes. Our results indicate that the exact stationary solutions of the problem are stable, and that a good matching between exact and perturbative shape solutions is achieved just by using a few Fourier modes. The stability of such solutions is substantiated by a linearization process close to the stationary shape, where a system of mode-coupling equations is diagonalized, determining the eigenvalues which dictate the stability of a fixed point.

  10. Normal stress differences from Oldroyd 8-constant framework: Exact analytical solution for large-amplitude oscillatory shear flow

    NASA Astrophysics Data System (ADS)

    Saengow, C.; Giacomin, A. J.

    2017-12-01

    The Oldroyd 8-constant framework for continuum constitutive theory contains a rich diversity of popular special cases for polymeric liquids. In this paper, we use part of our exact solution for shear stress to arrive at unique exact analytical solutions for the normal stress difference responses to large-amplitude oscillatory shear (LAOS) flow. The nonlinearity of the polymeric liquids, triggered by LAOS, causes these responses at even multiples of the test frequency. We call responses at a frequency higher than twice the test frequency higher harmonics. We find the new exact analytical solutions to be compact and intrinsically beautiful. These solutions reduce to those of our previous work on the special case of the corotational Maxwell fluid. Our solutions also agree with our new truncated Goddard integral expansion for the special case of the corotational Jeffreys fluid. The limiting behaviors of these exact solutions also yield new explicit expressions. Finally, we use our exact solutions to see how η∞ affects the normal stress differences in LAOS.

  11. Constructing exact symmetric informationally complete measurements from numerical solutions

    NASA Astrophysics Data System (ADS)

    Appleby, Marcus; Chien, Tuan-Yow; Flammia, Steven; Waldron, Shayne

    2018-04-01

    Recently, several intriguing conjectures have been proposed connecting symmetric informationally complete quantum measurements (SIC POVMs, or SICs) and algebraic number theory. These conjectures relate the SICs to their minimal defining algebraic number field. Testing or sharpening these conjectures requires that the SICs are expressed exactly, rather than as numerical approximations. While many exact solutions of SICs have been constructed previously using Gröbner bases, this method has probably been taken as far as is possible with current computer technology (except in special cases where there are additional symmetries). Here, we describe a method for converting high-precision numerical solutions into exact ones using an integer relation algorithm in conjunction with the Galois symmetries of an SIC. Using this method, we have calculated 69 new exact solutions, including nine new dimensions, where previously only numerical solutions were known—which more than triples the number of known exact solutions. In some cases, the solutions require number fields with degrees as high as 12 288. We use these solutions to confirm that they obey the number-theoretic conjectures, and address two questions suggested by the previous work.

  12. Applying the Zel'dovich approximation to general relativity

    NASA Astrophysics Data System (ADS)

    Croudace, K. M.; Parry, J.; Salopek, D. S.; Stewart, J. M.

    1994-03-01

    Starting from general relativity, we give a systematic derivation of the Zel'dovich approximation describing the nonlinear evolution of collisionless dust. We begin by evolving dust along world lines, and we demonstrate that the Szekeres line element is an exact but apparently unstable solution of the evolution equations describing pancake collapse. Next, we solve the Einstein field equations by employing Hamilton-Jacobi techniques and a spatial gradient expansion. We give a prescription for evolving a primordial or 'seed' metric up to the formation of pancakes, and demonstrate its validity by rederiving the Szekeres solution approximately at third order and exactly at fifth order in spatial gradients. Finally we show that the range of validity of the expansion can be improved quite significantly if one notes that the 3-metric must have nonnegative eigenvalues. With this improvement the exact Szekeres solution is obtained after only one iteration.

  13. Well balancing of the SWE schemes for moving-water steady flows

    NASA Astrophysics Data System (ADS)

    Caleffi, Valerio; Valiani, Alessandro

    2017-08-01

    In this work, the exact reproduction of a moving-water steady flow via the numerical solution of the one-dimensional shallow water equations is studied. A new scheme based on a modified version of the HLLEM approximate Riemann solver (Dumbser and Balsara (2016) [18]) that exactly preserves the total head and the discharge in the simulation of smooth steady flows and that correctly dissipates mechanical energy in the presence of hydraulic jumps is presented. This model is compared with a selected set of schemes from the literature, including models that exactly preserve quiescent flows and models that exactly preserve moving-water steady flows. The comparison highlights the strengths and weaknesses of the different approaches. In particular, the results show that the increase in accuracy in the steady state reproduction is counterbalanced by a reduced robustness and numerical efficiency of the models. Some solutions to reduce these drawbacks, at the cost of increased algorithm complexity, are presented.

  14. New exact solutions for a discrete electrical lattice using the analytical methods

    NASA Astrophysics Data System (ADS)

    Manafian, Jalil; Lakestani, Mehrdad

    2018-03-01

    This paper retrieves soliton solutions to an equation in nonlinear electrical transmission lines using the semi-inverse variational principle method (SIVPM), the \\exp(-Ω(ξ)) -expansion method (EEM) and the improved tan(φ/2) -expansion method (ITEM), with the aid of the symbolic computation package Maple. As a result, the SIVPM, EEM and ITEM methods are successfully employed and some new exact solitary wave solutions are acquired in terms of kink-singular soliton solution, hyperbolic solution, trigonometric solution, dark and bright soliton solutions. All solutions have been verified back into their corresponding equations with the aid of the Maple package program. We depicted the physical explanation of the extracted solutions with the choice of different parameters by plotting some 2D and 3D illustrations. Finally, we show that the used methods are robust and more efficient than other methods. More importantly, the solutions found in this work can have significant applications in telecommunication systems where solitons are used to codify data.

  15. FAST TRACK COMMUNICATION Time-dependent exact solutions of the nonlinear Kompaneets equation

    NASA Astrophysics Data System (ADS)

    Ibragimov, N. H.

    2010-12-01

    Time-dependent exact solutions of the Kompaneets photon diffusion equation are obtained for several approximations of this equation. One of the approximations describes the case when the induced scattering is dominant. In this case, the Kompaneets equation has an additional symmetry which is used for constructing some exact solutions as group invariant solutions.

  16. A class of exact classical solutions to string theory.

    PubMed

    Coley, A A

    2002-12-31

    We show that the recently obtained class of spacetimes for which all of the scalar curvature invariants vanish (which can be regarded as generalizations of pp-wave spacetimes) are exact solutions in string theory to all perturbative orders in the string tension scale. As a result the spectrum of the theory can be explicitly obtained, and these spacetimes are expected to provide some hints for the study of superstrings on more general backgrounds. Since these Lorentzian spacetimes suffer no quantum corrections to all loop orders they may also offer insights into quantum gravity.

  17. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Coughlin, Eric R., E-mail: eric_coughlin@berkeley.edu

    We present the exact solutions for the collapse of a spherically symmetric cold (i.e., pressureless) cloud under its own self-gravity, valid for arbitrary initial density profiles and not restricted to the realm of self-similarity. These solutions exhibit a number of remarkable features, including the self-consistent formation of and subsequent accretion onto a central point mass. A number of specific examples are provided, and we show that Penston’s solution of pressureless self-similar collapse is recovered for polytropic density profiles; importantly, however, we demonstrate that the time over which this solution holds is fleetingly short, implying that much of the collapse proceedsmore » non-self-similarly. We show that our solutions can naturally incorporate turbulent pressure support, and we investigate the evolution of overdensities—potentially generated by such turbulence—as the collapse proceeds. Finally, we analyze the evolution of the angular velocity and magnetic fields in the limit that their dynamical influence is small, and we recover exact solutions for these quantities. Our results may provide important constraints on numerical models that attempt to elucidate the details of protostellar collapse when the initial conditions are far less idealized.« less

  18. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sinitsyn, N. A.

    We consider nonadiabatic transitions in explicitly time-dependent systems with Hamiltonians of the form Hˆ(t)=Aˆ+Bˆt+Cˆ/t, where t is time and Aˆ,Bˆ,Cˆ are Hermitian N × N matrices. We show that in any model of this type, scattering matrix elements satisfy nontrivial exact constraints that follow from the absence of the Stokes phenomenon for solutions with specific conditions at t→–∞. This allows one to continue such solutions analytically to t→+∞, and connect their asymptotic behavior at t→–∞ and t→+∞. This property becomes particularly useful when a model shows additional discrete symmetries. Specifically, we derive a number of simple exact constraints and explicitmore » expressions for scattering probabilities in such systems.« less

  19. Traveling wave and exact solutions for the perturbed nonlinear Schrödinger equation with Kerr law nonlinearity

    NASA Astrophysics Data System (ADS)

    Akram, Ghazala; Mahak, Nadia

    2018-06-01

    The nonlinear Schrödinger equation (NLSE) with the aid of three order dispersion terms is investigated to find the exact solutions via the extended (G'/G2)-expansion method and the first integral method. Many exact traveling wave solutions, such as trigonometric, hyperbolic, rational, soliton and complex function solutions, are characterized with some free parameters of the problem studied. It is corroborated that the proposed techniques are manageable, straightforward and powerful tools to find the exact solutions of nonlinear partial differential equations (PDEs). Some figures are plotted to describe the propagation of traveling wave solutions expressed by the hyperbolic functions, trigonometric functions and rational functions.

  20. Exact traveling soliton solutions for the generalized Benjamin-Bona-Mahony equation

    NASA Astrophysics Data System (ADS)

    Boudoue Hubert, Malwe; Kudryashov, Nikolai A.; Justin, Mibaile; Abbagari, Souleymanou; Betchewe, Gambo; Doka, Serge Y.

    2018-03-01

    In this paper, we investigate the generalized Benjamin-Bona-Mahony equation which better describes long waves with arbitrary power-law nonlinearity. As a result, we obtain exact travelling wave soliton solutions, such as anti-kink soliton solution, bright soliton solution, dark soliton solution and periodic solution. These solutions have many free parameters such that they may be used to simulate many experimental situations. The main contribution, in this work, is to not apply the computer codes for construction of exact solutions and not consider the integration constants as zero, because they give all variants for solutions.

  1. A new class of exact, nonlinear solutions to the Grad-Shafranov equation

    NASA Technical Reports Server (NTRS)

    Roumeliotis, George

    1993-01-01

    We have constructed a new class of exact, nonlinear solutions to the Grad-Shafranov equation, representing force-free magnetic fields with translational symmetry. These exact solutions are pertinent to the study of magnetic structures in the solar corona that are subjected to photospheric shearing motions.

  2. Laplace-Beltrami operator and exact solutions for branes

    NASA Astrophysics Data System (ADS)

    Zheltukhin, A. A.

    2013-02-01

    Proposed is a new approach to finding exact solutions of nonlinear p-brane equations in D-dimensional Minkowski space based on the use of various initial value constraints. It is shown that the constraints Δx→=0 and Δx→=-Λ(t,σr)x→ give two sets of exact solutions.

  3. Eigen model with general fitness functions and degradation rates

    NASA Astrophysics Data System (ADS)

    Hu, Chin-Kun; Saakian, David B.

    2006-03-01

    We present an exact solution of Eigen's quasispecies model with a general degradation rate and fitness functions, including a square root decrease of fitness with increasing Hamming distance from the wild type. The found behavior of the model with a degradation rate is analogous to a viral quasi-species under attack by the immune system of the host. Our exact solutions also revise the known results of neutral networks in quasispecies theory. To explain the existence of mutants with large Hamming distances from the wild type, we propose three different modifications of the Eigen model: mutation landscape, multiple adjacent mutations, and frequency-dependent fitness in which the steady state solution shows a multi-center behavior.

  4. High-Order Hyperbolic Residual-Distribution Schemes on Arbitrary Triangular Grids

    NASA Technical Reports Server (NTRS)

    Mazaheri, Alireza; Nishikawa, Hiroaki

    2015-01-01

    In this paper, we construct high-order hyperbolic residual-distribution schemes for general advection-diffusion problems on arbitrary triangular grids. We demonstrate that the second-order accuracy of the hyperbolic schemes can be greatly improved by requiring the scheme to preserve exact quadratic solutions. We also show that the improved second-order scheme can be easily extended to third-order by further requiring the exactness for cubic solutions. We construct these schemes based on the LDA and the SUPG methodology formulated in the framework of the residual-distribution method. For both second- and third-order-schemes, we construct a fully implicit solver by the exact residual Jacobian of the second-order scheme, and demonstrate rapid convergence of 10-15 iterations to reduce the residuals by 10 orders of magnitude. We demonstrate also that these schemes can be constructed based on a separate treatment of the advective and diffusive terms, which paves the way for the construction of hyperbolic residual-distribution schemes for the compressible Navier-Stokes equations. Numerical results show that these schemes produce exceptionally accurate and smooth solution gradients on highly skewed and anisotropic triangular grids, including curved boundary problems, using linear elements. We also present Fourier analysis performed on the constructed linear system and show that an under-relaxation parameter is needed for stabilization of Gauss-Seidel relaxation.

  5. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dubrovsky, V. G.; Topovsky, A. V.

    New exact solutions, nonstationary and stationary, of Veselov-Novikov (VN) equation in the forms of simple nonlinear and linear superpositions of arbitrary number N of exact special solutions u{sup (n)}, n= 1, Horizontal-Ellipsis , N are constructed via Zakharov and Manakov {partial_derivative}-dressing method. Simple nonlinear superpositions are represented up to a constant by the sums of solutions u{sup (n)} and calculated by {partial_derivative}-dressing on nonzero energy level of the first auxiliary linear problem, i.e., 2D stationary Schroedinger equation. It is remarkable that in the zero energy limit simple nonlinear superpositions convert to linear ones in the form of the sums ofmore » special solutions u{sup (n)}. It is shown that the sums u=u{sup (k{sub 1})}+...+u{sup (k{sub m})}, 1 Less-Than-Or-Slanted-Equal-To k{sub 1} < k{sub 2} < Horizontal-Ellipsis < k{sub m} Less-Than-Or-Slanted-Equal-To N of arbitrary subsets of these solutions are also exact solutions of VN equation. The presented exact solutions include as superpositions of special line solitons and also superpositions of plane wave type singular periodic solutions. By construction these exact solutions represent also new exact transparent potentials of 2D stationary Schroedinger equation and can serve as model potentials for electrons in planar structures of modern electronics.« less

  6. A new generalized exponential rational function method to find exact special solutions for the resonance nonlinear Schrödinger equation

    NASA Astrophysics Data System (ADS)

    Ghanbari, Behzad; Inc, Mustafa

    2018-04-01

    The present paper suggests a novel technique to acquire exact solutions of nonlinear partial differential equations. The main idea of the method is to generalize the exponential rational function method. In order to examine the ability of the method, we consider the resonant nonlinear Schrödinger equation (R-NLSE). Many variants of exact soliton solutions for the equation are derived by the proposed method. Physical interpretations of some obtained solutions is also included. One can easily conclude that the new proposed method is very efficient and finds the exact solutions of the equation in a relatively easy way.

  7. Exact solutions for (1 + 1)-dimensional nonlinear dispersive modified Benjamin-Bona-Mahony equation and coupled Klein-Gordon equations.

    PubMed

    Khan, Kamruzzaman; Akbar, M Ali; Islam, S M Rayhanul

    2014-01-01

    In this work, recently developed modified simple equation (MSE) method is applied to find exact traveling wave solutions of nonlinear evolution equations (NLEEs). To do so, we consider the (1 + 1)-dimensional nonlinear dispersive modified Benjamin-Bona-Mahony (DMBBM) equation and coupled Klein-Gordon (cKG) equations. Two classes of explicit exact solutions-hyperbolic and trigonometric solutions of the associated equations are characterized with some free parameters. Then these exact solutions correspond to solitary waves for particular values of the parameters. 02.30.Jr; 02.70.Wz; 05.45.Yv; 94.05.Fg.

  8. Exact PsTd invariant and PsTd symmetric breaking solutions, symmetry reductions and Bäcklund transformations for an AB-KdV system

    NASA Astrophysics Data System (ADS)

    Jia, Man; Lou, Sen Yue

    2018-05-01

    In natural and social science, many events happened at different space-times may be closely correlated. Two events, A (Alice) and B (Bob) are defined as correlated if one event is determined by another, say, B = f ˆ A for suitable f ˆ operators. A nonlocal AB-KdV system with shifted-parity (Ps, parity with a shift), delayed time reversal (Td, time reversal with a delay) symmetry where B =Ps ˆ Td ˆ A is constructed directly from the normal KdV equation to describe two-area physical event. The exact solutions of the AB-KdV system, including PsTd invariant and PsTd symmetric breaking solutions are shown by different methods. The PsTd invariant solution show that the event happened at A will happen also at B. These solutions, such as single soliton solutions, infinitely many singular soliton solutions, soliton-cnoidal wave interaction solutions, and symmetry reduction solutions etc., show the AB-KdV system possesses rich structures. Also, a special Bäcklund transformation related to residual symmetry is presented via the localization of the residual symmetry to find interaction solutions between the solitons and other types of the AB-KdV system.

  9. Nonminimal coupling for the gravitational and electromagnetic fields: Traversable electric wormholes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Balakin, Alexander B.; Zayats, Alexei E.; Lemos, Jose P. S.

    2010-04-15

    We discuss new exact solutions of a three-parameter nonminimal Einstein-Maxwell model. The solutions describe static spherically symmetric objects with and without center, supported by an electric field nonminimally coupled to gravity. We focus on a unique one-parameter model, which admits an exact solution for a traversable electrically charged wormhole connecting two universes, one asymptotically flat the other asymptotically de Sitter ones. The relation between the asymptotic mass and charge of the wormhole and its throat radius is analyzed. The wormhole solution found is thus a nonminimal realization of Wheeler's idea about charge without charge and shows that, if the worldmore » is somehow nonminimal in the coupling of gravity to electromagnetism, then wormhole appearance, or perhaps construction, is possible.« less

  10. Exact solutions for the static bending of Euler-Bernoulli beams using Eringen's two-phase local/nonlocal model

    NASA Astrophysics Data System (ADS)

    Wang, Y. B.; Zhu, X. W.; Dai, H. H.

    2016-08-01

    Though widely used in modelling nano- and micro- structures, Eringen's differential model shows some inconsistencies and recent study has demonstrated its differences between the integral model, which then implies the necessity of using the latter model. In this paper, an analytical study is taken to analyze static bending of nonlocal Euler-Bernoulli beams using Eringen's two-phase local/nonlocal model. Firstly, a reduction method is proved rigorously, with which the integral equation in consideration can be reduced to a differential equation with mixed boundary value conditions. Then, the static bending problem is formulated and four types of boundary conditions with various loadings are considered. By solving the corresponding differential equations, exact solutions are obtained explicitly in all of the cases, especially for the paradoxical cantilever beam problem. Finally, asymptotic analysis of the exact solutions reveals clearly that, unlike the differential model, the integral model adopted herein has a consistent softening effect. Comparisons are also made with existing analytical and numerical results, which further shows the advantages of the analytical results obtained. Additionally, it seems that the once controversial nonlocal bar problem in the literature is well resolved by the reduction method.

  11. [Studies for analyzing restricted ingredients such as phenylbenzoimidazole sulfonic acid].

    PubMed

    Tokunaga, Hiroshi; Mori, Kenichiro; Onuki, Nahomi; Nosaka, Tomio; Doi, Kayo; Sakaguchi, Hiroshi; Fujii, Makiko; Takano, Katuhiro; Hayashi, Masato; Yoshizawa, Kenichi; Shimamura, Kimio; Sato, Nobuo

    2006-01-01

    Phenylbenzoimidazol sulfonic acid (PBS) is a kind of sunscreens in cosmetics and is nominated as the restricted ingredients in cosmetics in Japanese Pharmaceutical Affairs Act. So the analytical method for PBS was investigated by HPLC. 1.0 g of the lotions with 1.0% PBS was exactly weighed, put into a 50-mL volumetric flask. Water was added to make exactly 50 mL and this mixture was used as the sample solution. On the other hand, 1.0 g of the creams with 1.0% PBS was exactly weighed, put into a beaker. After adding 1 mL of tetrahydrofuran and dissolving the cream, that mixture was transferred to a 50-mL volumetric flask. And then the beaker was rinsed with 1 mL of tetrahydrofuran and the rinsed solution was put together into the volumetric flask. After adding water to the volumetric flask to make exactly 50 mL, this mixture was used as the sample solution. If necessary, the mixture was filtrated with a membrane filter (0.45 microm). 5.0 mL of the sample solution was pipetted and put into a 200-mL volumetric flask. After adding water to make exactly 200 mL, 20 microL of this solution was analyzed by HPLC using the ODS column (CAPCELL PAK C18 column, 4.6 mm i.d. x 250 mm), the mixture of 40 mmol/L acetic buffer (pH 3.4) and acetonitrile (3:1) with 0.8 mmol/L dodecyltrimethyl ammonium bromide and the detection wavelength of 305 nm. The working curve from 0.5 to 20.0 microg/mL showed a linear line between the concentrations of PBS and the peak areas. There was no interference of peak of PBS from the lotion and cream.

  12. Solving large-scale fixed cost integer linear programming models for grid-based location problems with heuristic techniques

    NASA Astrophysics Data System (ADS)

    Noor-E-Alam, Md.; Doucette, John

    2015-08-01

    Grid-based location problems (GBLPs) can be used to solve location problems in business, engineering, resource exploitation, and even in the field of medical sciences. To solve these decision problems, an integer linear programming (ILP) model is designed and developed to provide the optimal solution for GBLPs considering fixed cost criteria. Preliminary results show that the ILP model is efficient in solving small to moderate-sized problems. However, this ILP model becomes intractable in solving large-scale instances. Therefore, a decomposition heuristic is proposed to solve these large-scale GBLPs, which demonstrates significant reduction of solution runtimes. To benchmark the proposed heuristic, results are compared with the exact solution via ILP. The experimental results show that the proposed method significantly outperforms the exact method in runtime with minimal (and in most cases, no) loss of optimality.

  13. Exact three-dimensional spectral solution to surface-groundwater interactions with arbitrary surface topography

    USGS Publications Warehouse

    Worman, A.; Packman, A.I.; Marklund, L.; Harvey, J.W.; Stone, S.H.

    2006-01-01

    It has been long known that land surface topography governs both groundwater flow patterns at the regional-to-continental scale and on smaller scales such as in the hyporheic zone of streams. Here we show that the surface topography can be separated in a Fourier-series spectrum that provides an exact solution of the underlying three-dimensional groundwater flows. The new spectral solution offers a practical tool for fast calculation of subsurface flows in different hydrological applications and provides a theoretical platform for advancing conceptual understanding of the effect of landscape topography on subsurface flows. We also show how the spectrum of surface topography influences the residence time distribution for subsurface flows. The study indicates that the subsurface head variation decays exponentially with depth faster than it would with equivalent two-dimensional features, resulting in a shallower flow interaction. Copyright 2006 by the American Geophysical Union.

  14. Exact traveling-wave and spatiotemporal soliton solutions to the generalized (3+1)-dimensional Schrödinger equation with polynomial nonlinearity of arbitrary order.

    PubMed

    Petrović, Nikola Z; Belić, Milivoj; Zhong, Wei-Ping

    2011-02-01

    We obtain exact traveling wave and spatiotemporal soliton solutions to the generalized (3+1)-dimensional nonlinear Schrödinger equation with variable coefficients and polynomial Kerr nonlinearity of an arbitrarily high order. Exact solutions, given in terms of Jacobi elliptic functions, are presented for the special cases of cubic-quintic and septic models. We demonstrate that the widely used method for finding exact solutions in terms of Jacobi elliptic functions is not applicable to the nonlinear Schrödinger equation with saturable nonlinearity. ©2011 American Physical Society

  15. Gravity Gradient Tensor of Arbitrary 3D Polyhedral Bodies with up to Third-Order Polynomial Horizontal and Vertical Mass Contrasts

    NASA Astrophysics Data System (ADS)

    Ren, Zhengyong; Zhong, Yiyuan; Chen, Chaojian; Tang, Jingtian; Kalscheuer, Thomas; Maurer, Hansruedi; Li, Yang

    2018-03-01

    During the last 20 years, geophysicists have developed great interest in using gravity gradient tensor signals to study bodies of anomalous density in the Earth. Deriving exact solutions of the gravity gradient tensor signals has become a dominating task in exploration geophysics or geodetic fields. In this study, we developed a compact and simple framework to derive exact solutions of gravity gradient tensor measurements for polyhedral bodies, in which the density contrast is represented by a general polynomial function. The polynomial mass contrast can continuously vary in both horizontal and vertical directions. In our framework, the original three-dimensional volume integral of gravity gradient tensor signals is transformed into a set of one-dimensional line integrals along edges of the polyhedral body by sequentially invoking the volume and surface gradient (divergence) theorems. In terms of an orthogonal local coordinate system defined on these edges, exact solutions are derived for these line integrals. We successfully derived a set of unified exact solutions of gravity gradient tensors for constant, linear, quadratic and cubic polynomial orders. The exact solutions for constant and linear cases cover all previously published vertex-type exact solutions of the gravity gradient tensor for a polygonal body, though the associated algorithms may differ in numerical stability. In addition, to our best knowledge, it is the first time that exact solutions of gravity gradient tensor signals are derived for a polyhedral body with a polynomial mass contrast of order higher than one (that is quadratic and cubic orders). Three synthetic models (a prismatic body with depth-dependent density contrasts, an irregular polyhedron with linear density contrast and a tetrahedral body with horizontally and vertically varying density contrasts) are used to verify the correctness and the efficiency of our newly developed closed-form solutions. Excellent agreements are obtained between our solutions and other published exact solutions. In addition, stability tests are performed to demonstrate that our exact solutions can safely be used to detect shallow subsurface targets.

  16. Exact and Approximate Solutions for Transient Squeezing Flow

    NASA Astrophysics Data System (ADS)

    Lang, Ji; Santhanam, Sridhar; Wu, Qianhong

    2017-11-01

    In this paper, we report two novel theoretical approaches to examine a fast-developing flow in a thin fluid gap, which is widely observed in industrial applications and biological systems. The problem is featured by a very small Reynolds number and Strouhal number, making the fluid convective acceleration is negligible, while its local acceleration is not. We have developed an exact solution for this problem which shows that the flow starts with an inviscid limit when the viscous effect has no time to appear, and is followed by a subsequent developing flow, in which the viscous effect continues to penetrate into the entire fluid gap. An approximate solution is also developed using a boundary layer integral method. This solution precisely captures the general behavior of the transient fluid flow process, and agrees very well with the exact solution. We also performed numerical simulation using Ansys-CFX. Excellent agreement between the analytical and the numerical solutions is obtained, indicating the validity of the analytical approaches. The study presented herein fills the gap in the literature, and will have a broad impact in industrial and biomedical applications. This work is supported by National Science Foundation CBET Fluid Dynamics Program under Award #1511096, and supported by the Seed Grant from The Villanova Center for the Advancement of Sustainability in Engineering (VCASE).

  17. Exact Solutions, Symmetry Reductions, Painlevé Test and Bäcklund Transformations of A Coupled KdV Equation

    NASA Astrophysics Data System (ADS)

    Min-Hui, XU; Man, JIA

    2017-10-01

    A coupled KdV equation is studied in this manuscript. The exact solutions, such as the periodic wave solutions and solitary wave solutions by means of the deformation and mapping approach from the solutions of the nonlinear ϕ 4 model are given. Using the symmetry theory, the Lie point symmetries and symmetry reductions of the coupled KdV equation are presented. The results show that the coupled KdV equation possesses infinitely many symmetries and may be considered as an integrable system. Also, the Painlevé test shows the coupled KdV equation possesses Painlevé property. The Bäcklund transformations of the coupled KdV equation related to Painlevé property and residual symmetry are shown. Supported by the National Natural Science Foundation of China under Grant Nos. 11675084 and 11435005, Ningbo Natural Science Foundation under Grant No. 2015A610159 and granted by the Opening Project of Zhejiang Provincial Top Key Discipline of Physics Sciences in Ningbo University under Grant No. xkzwl1502, and the authors are sponsored by K. C. Wong Magna Fund in Ningbo University

  18. Soliton and periodic solutions for time-dependent coefficient non-linear equation

    NASA Astrophysics Data System (ADS)

    Guner, Ozkan

    2016-01-01

    In this article, we establish exact solutions for the generalized (3+1)-dimensional variable coefficient Kadomtsev-Petviashvili (GVCKP) equation. Using solitary wave ansatz in terms of ? functions and the modified sine-cosine method, we find exact analytical bright soliton solutions and exact periodic solutions for the considered model. The physical parameters in the soliton solutions are obtained as function of the dependent model coefficients. The effectiveness and reliability of the method are shown by its application to the GVCKP equation.

  19. Exact analytical solution to a transient conjugate heat-transfer problem

    NASA Technical Reports Server (NTRS)

    Sucec, J.

    1973-01-01

    An exact analytical solution is found for laminar, constant-property, slug flow over a thin plate which is also convectively cooled from below. The solution is found by means of two successive Laplace transformations when a transient in the plate and the fluid is initiated by a step change in the fluid inlet temperature. The exact solution yields the transient fluid temperature, surface heat flux, and surface temperature distributions. The results of the exact transient solution for the surface heat flux are compared to the quasi-steady values, and a criterion for the validity of the quasi-steady results is found. Also the effect of the plate coupling parameter on the surface heat flux are investigated.

  20. Unbinding slave spins in the Anderson impurity model

    NASA Astrophysics Data System (ADS)

    Guerci, Daniele; Fabrizio, Michele

    2017-11-01

    We show that a generic single-orbital Anderson impurity model, lacking, for instance, any kind of particle-hole symmetry, can be exactly mapped without any constraint onto a resonant level model coupled to two Ising variables, which reduce to one if the hybridization is particle-hole symmetric. The mean-field solution of this model is found to be stable to unphysical spontaneous magnetization of the impurity, unlike the saddle-point solution in the standard slave-boson representation. Remarkably, the mean-field estimate of the Wilson ratio approaches the exact value RW=2 in the Kondo regime.

  1. Bosonized Supersymmetric Sawada-Kotera Equations: Symmetries and Exact Solutions

    NASA Astrophysics Data System (ADS)

    Liu, Ping; Zeng, Bao-Qing; Liu, Li-Ming

    2015-04-01

    The Bosonized Supersymmetric Sawada-Kotera (BSSK) system is constructed by applying bosonization method to a Supersymmetric Sawada-Kotera system in this paper. The symmetries on the BSSK equations are researched and the calculation shows that the BSSK equations are invariant under the scaling transformations, the space-time translations and Galilean boosts. The one-parameter invariant subgroups and the corresponding invariant solutions are researched for the BSSK equations. Four types of reduction equations and similarity solutions are proposed. Period Cnoidal wave solutions, dark solitary wave solutions and bright solitary wave solutions of the BSSK equations are demonstrated and some evolution curves of the exact solutions are figured out. Supported by the National Natural Science Foundation of China under Grant No. 11305031, the Natural Science Foundation of Guangdong Province under Grant No. S2013010011546, the Science and Technology Project Foundation of Zhongshan under Grant Nos. 2013A3FC0264 and 2013A3FC0334, and Training Programme Foundation for Outstanding Young Teachers in Higher Education Institutions of Guangdong Province under Grant No. Yq2013205

  2. A generalized simplest equation method and its application to the Boussinesq-Burgers equation.

    PubMed

    Sudao, Bilige; Wang, Xiaomin

    2015-01-01

    In this paper, a generalized simplest equation method is proposed to seek exact solutions of nonlinear evolution equations (NLEEs). In the method, we chose a solution expression with a variable coefficient and a variable coefficient ordinary differential auxiliary equation. This method can yield a Bäcklund transformation between NLEEs and a related constraint equation. By dealing with the constraint equation, we can derive infinite number of exact solutions for NLEEs. These solutions include the traveling wave solutions, non-traveling wave solutions, multi-soliton solutions, rational solutions, and other types of solutions. As applications, we obtained wide classes of exact solutions for the Boussinesq-Burgers equation by using the generalized simplest equation method.

  3. A Generalized Simplest Equation Method and Its Application to the Boussinesq-Burgers Equation

    PubMed Central

    Sudao, Bilige; Wang, Xiaomin

    2015-01-01

    In this paper, a generalized simplest equation method is proposed to seek exact solutions of nonlinear evolution equations (NLEEs). In the method, we chose a solution expression with a variable coefficient and a variable coefficient ordinary differential auxiliary equation. This method can yield a Bäcklund transformation between NLEEs and a related constraint equation. By dealing with the constraint equation, we can derive infinite number of exact solutions for NLEEs. These solutions include the traveling wave solutions, non-traveling wave solutions, multi-soliton solutions, rational solutions, and other types of solutions. As applications, we obtained wide classes of exact solutions for the Boussinesq-Burgers equation by using the generalized simplest equation method. PMID:25973605

  4. Exact solution for the Poisson field in a semi-infinite strip.

    PubMed

    Cohen, Yossi; Rothman, Daniel H

    2017-04-01

    The Poisson equation is associated with many physical processes. Yet exact analytic solutions for the two-dimensional Poisson field are scarce. Here we derive an analytic solution for the Poisson equation with constant forcing in a semi-infinite strip. We provide a method that can be used to solve the field in other intricate geometries. We show that the Poisson flux reveals an inverse square-root singularity at a tip of a slit, and identify a characteristic length scale in which a small perturbation, in a form of a new slit, is screened by the field. We suggest that this length scale expresses itself as a characteristic spacing between tips in real Poisson networks that grow in response to fluxes at tips.

  5. Einstein-aether theory: dynamics of relativistic particles with spin or polarization in a Gödel-type universe

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Balakin, Alexander B.; Popov, Vladimir A., E-mail: alexander.balakin@kpfu.ru, E-mail: vladipopov@mail.ru

    In the framework of the Einstein-aether theory we consider a cosmological model, which describes the evolution of the unit dynamic vector field with activated rotational degree of freedom. We discuss exact solutions of the Einstein-aether theory, for which the space-time is of the Gödel-type, the velocity four-vector of the aether motion is characterized by a non-vanishing vorticity, thus the rotational vectorial modes can be associated with the source of the universe rotation. The main goal of our paper is to study the motion of test relativistic particles with a vectorial internal degree of freedom (spin or polarization), which is coupledmore » to the unit dynamic vector field. The particles are considered as the test ones in the given space-time background of the Gödel-type; the spin (polarization) coupling to the unit dynamic vector field is modeled using exact solutions of three types. The first exact solution describes the aether with arbitrary Jacobson's coupling constants; the second one relates to the case, when the Jacobson's constant responsible for the vorticity is vanishing; the third exact solution is obtained using three constraints for the coupling constants. The analysis of the exact expressions, which are obtained for the particle momentum and for the spin (polarization) four-vector components, shows that the interaction of the spin (polarization) with the unit vector field induces a rotation, which is additional to the geodesic precession of the spin (polarization) associated with the universe rotation as a whole.« less

  6. Exact solutions for laminated composite cylindrical shells in cylindrical bending

    NASA Technical Reports Server (NTRS)

    Yuan, F. G.

    1992-01-01

    Analytic elasticity solutions for laminated composite cylindrical shells under cylindrical bending are presented. The material of the shell is assumed to be general cylindrically anisotropic. Based on the theory of cylindrical anisotropic elasticity, coupled governing partial differential equations are developed. The general expressions for the stresses and displacements in the laminated composite cylinders are discussed. The closed form solutions based on Classical Shell Theory (CST) and Donnell's (1933) theory are also derived for comparison purposes. Three examples illustrate the effect of radius-to-thickness ratio, coupling and stacking sequence. The results show that, in general, CST yields poor stress and displacement distributions for thick-section composite shells, but converges to the exact elasticity solution as the radius-to-thickness ratio increases. It is also shown that Donnell's theory significantly underestimates the stress and displacement response.

  7. Many-body Green’s function theory for electron-phonon interactions: Ground state properties of the Holstein dimer

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Säkkinen, Niko; Leeuwen, Robert van; Peng, Yang

    2015-12-21

    We study ground-state properties of a two-site, two-electron Holstein model describing two molecules coupled indirectly via electron-phonon interaction by using both exact diagonalization and self-consistent diagrammatic many-body perturbation theory. The Hartree and self-consistent Born approximations used in the present work are studied at different levels of self-consistency. The governing equations are shown to exhibit multiple solutions when the electron-phonon interaction is sufficiently strong, whereas at smaller interactions, only a single solution is found. The additional solutions at larger electron-phonon couplings correspond to symmetry-broken states with inhomogeneous electron densities. A comparison to exact results indicates that this symmetry breaking is stronglymore » correlated with the formation of a bipolaron state in which the two electrons prefer to reside on the same molecule. The results further show that the Hartree and partially self-consistent Born solutions obtained by enforcing symmetry do not compare well with exact energetics, while the fully self-consistent Born approximation improves the qualitative and quantitative agreement with exact results in the same symmetric case. This together with a presented natural occupation number analysis supports the conclusion that the fully self-consistent approximation describes partially the bipolaron crossover. These results contribute to better understanding how these approximations cope with the strong localizing effect of the electron-phonon interaction.« less

  8. Communication: An exact bound on the bridge function in integral equation theories.

    PubMed

    Kast, Stefan M; Tomazic, Daniel

    2012-11-07

    We show that the formal solution of the general closure relation occurring in Ornstein-Zernike-type integral equation theories in terms of the Lambert W function leads to an exact relation between the bridge function and correlation functions, most notably to an inequality that bounds possible bridge values. The analytical results are illustrated on the example of the Lennard-Jones fluid for which the exact bridge function is known from computer simulations under various conditions. The inequality has consequences for the development of bridge function models and rationalizes numerical convergence issues.

  9. Exact analytical solution of a classical Josephson tunnel junction problem

    NASA Astrophysics Data System (ADS)

    Kuplevakhsky, S. V.; Glukhov, A. M.

    2010-10-01

    We give an exact and complete analytical solution of the classical problem of a Josephson tunnel junction of arbitrary length W ɛ(0,∞) in the presence of external magnetic fields and transport currents. Contrary to a wide-spread belief, the exact analytical solution unambiguously proves that there is no qualitative difference between so-called "small" (W≪1) and "large" junctions (W≫1). Another unexpected physical implication of the exact analytical solution is the existence (in the current-carrying state) of unquantized Josephson vortices carrying fractional flux and located near one of the edges of the junction. We also refine the mathematical definition of critical transport current.

  10. Classes of exact Einstein Maxwell solutions

    NASA Astrophysics Data System (ADS)

    Komathiraj, K.; Maharaj, S. D.

    2007-12-01

    We find new classes of exact solutions to the Einstein Maxwell system of equations for a charged sphere with a particular choice of the electric field intensity and one of the gravitational potentials. The condition of pressure isotropy is reduced to a linear, second order differential equation which can be solved in general. Consequently we can find exact solutions to the Einstein Maxwell field equations corresponding to a static spherically symmetric gravitational potential in terms of hypergeometric functions. It is possible to find exact solutions which can be written explicitly in terms of elementary functions, namely polynomials and product of polynomials and algebraic functions. Uncharged solutions are regainable with our choice of electric field intensity; in particular we generate the Einstein universe for particular parameter values.

  11. On exact traveling-wave solutions for local fractional Korteweg-de Vries equation.

    PubMed

    Yang, Xiao-Jun; Tenreiro Machado, J A; Baleanu, Dumitru; Cattani, Carlo

    2016-08-01

    This paper investigates the Korteweg-de Vries equation within the scope of the local fractional derivative formulation. The exact traveling wave solutions of non-differentiable type with the generalized functions defined on Cantor sets are analyzed. The results for the non-differentiable solutions when fractal dimension is 1 are also discussed. It is shown that the exact solutions for the local fractional Korteweg-de Vries equation characterize the fractal wave on shallow water surfaces.

  12. Exact solution of the hidden Markov processes.

    PubMed

    Saakian, David B

    2017-11-01

    We write a master equation for the distributions related to hidden Markov processes (HMPs) and solve it using a functional equation. Thus the solution of HMPs is mapped exactly to the solution of the functional equation. For a general case the latter can be solved only numerically. We derive an exact expression for the entropy of HMPs. Our expression for the entropy is an alternative to the ones given before by the solution of integral equations. The exact solution is possible because actually the model can be considered as a generalized random walk on a one-dimensional strip. While we give the solution for the two second-order matrices, our solution can be easily generalized for the L values of the Markov process and M values of observables: We should be able to solve a system of L functional equations in the space of dimension M-1.

  13. Exact solution of the hidden Markov processes

    NASA Astrophysics Data System (ADS)

    Saakian, David B.

    2017-11-01

    We write a master equation for the distributions related to hidden Markov processes (HMPs) and solve it using a functional equation. Thus the solution of HMPs is mapped exactly to the solution of the functional equation. For a general case the latter can be solved only numerically. We derive an exact expression for the entropy of HMPs. Our expression for the entropy is an alternative to the ones given before by the solution of integral equations. The exact solution is possible because actually the model can be considered as a generalized random walk on a one-dimensional strip. While we give the solution for the two second-order matrices, our solution can be easily generalized for the L values of the Markov process and M values of observables: We should be able to solve a system of L functional equations in the space of dimension M -1 .

  14. Exact and approximate solutions to the oblique shock equations for real-time applications

    NASA Technical Reports Server (NTRS)

    Hartley, T. T.; Brandis, R.; Mossayebi, F.

    1991-01-01

    The derivation of exact solutions for determining the characteristics of an oblique shock wave in a supersonic flow is investigated. Specifically, an explicit expression for the oblique shock angle in terms of the free stream Mach number, the centerbody deflection angle, and the ratio of the specific heats, is derived. A simpler approximate solution is obtained and compared to the exact solution. The primary objectives of obtaining these solutions is to provide a fast algorithm that can run in a real time environment.

  15. Multi-layer hydrostatic equilibrium of planets and synchronous moons: theory and application to Ceres and to solar system moons

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tricarico, Pasquale

    2014-02-20

    The hydrostatic equilibrium of multi-layer bodies lacks a satisfactory theoretical treatment despite its wide range of applicability. Here we show that by using the exact analytical potential of homogeneous ellipsoids we can obtain recursive analytical solutions and an exact numerical method for the hydrostatic equilibrium shape problem of multi-layer planets and synchronous moons. The recursive solutions rely on the series expansion of the potential in terms of the polar and equatorial shape eccentricities, while the numerical method uses the exact potential expression. These solutions can be used to infer the interior structure of planets and synchronous moons from their observedmore » shape, rotation, and gravity. When applied to the dwarf planet Ceres, we show that it is most likely a differentiated body with an icy crust of equatorial thickness 30-90 km and a rocky core of density 2.4-3.1 g cm{sup –3}. For synchronous moons, we show that the J {sub 2}/C {sub 22} ≅ 10/3 and the (b – c)/(a – c) ≅ 1/4 ratios have significant corrections of order Ω{sup 2}/(πGρ), with important implications for how their gravitational coefficients are determined from fly-by radio science data and for how we assess their hydrostatic equilibrium state.« less

  16. Exact Solutions for the Integrable Sixth-Order Drinfeld-Sokolov-Satsuma-Hirota System by the Analytical Methods.

    PubMed

    Manafian Heris, Jalil; Lakestani, Mehrdad

    2014-01-01

    We establish exact solutions including periodic wave and solitary wave solutions for the integrable sixth-order Drinfeld-Sokolov-Satsuma-Hirota system. We employ this system by using a generalized (G'/G)-expansion and the generalized tanh-coth methods. These methods are developed for searching exact travelling wave solutions of nonlinear partial differential equations. It is shown that these methods, with the help of symbolic computation, provide a straightforward and powerful mathematical tool for solving nonlinear partial differential equations.

  17. Exact solution for spin precession in the radiationless relativistic Kepler problem

    NASA Astrophysics Data System (ADS)

    Mane, S. R.

    2014-11-01

    There is interest in circulating beams of polarized particles in all-electric storage rings to search for nonzero permanent electric dipole moments of subatomic particles. To this end, it is helpful to derive exact analytical solutions of the spin precession in idealized models, both for pedagogical reasons and to serve as benchmark tests for analysis and design of experiments. This paper derives exact solutions for the spin precession in the relativistic Kepler problem. Some counterintuitive properties of the solutions are pointed out.

  18. Homotopy decomposition method for solving one-dimensional time-fractional diffusion equation

    NASA Astrophysics Data System (ADS)

    Abuasad, Salah; Hashim, Ishak

    2018-04-01

    In this paper, we present the homotopy decomposition method with a modified definition of beta fractional derivative for the first time to find exact solution of one-dimensional time-fractional diffusion equation. In this method, the solution takes the form of a convergent series with easily computable terms. The exact solution obtained by the proposed method is compared with the exact solution obtained by using fractional variational homotopy perturbation iteration method via a modified Riemann-Liouville derivative.

  19. Modified method of simplest equation: Powerful tool for obtaining exact and approximate traveling-wave solutions of nonlinear PDEs

    NASA Astrophysics Data System (ADS)

    Vitanov, Nikolay K.

    2011-03-01

    We discuss the class of equations ∑i,j=0mAij(u){∂iu}/{∂ti}∂+∑k,l=0nBkl(u){∂ku}/{∂xk}∂=C(u) where Aij( u), Bkl( u) and C( u) are functions of u( x, t) as follows: (i) Aij, Bkl and C are polynomials of u; or (ii) Aij, Bkl and C can be reduced to polynomials of u by means of Taylor series for small values of u. For these two cases the above-mentioned class of equations consists of nonlinear PDEs with polynomial nonlinearities. We show that the modified method of simplest equation is powerful tool for obtaining exact traveling-wave solution of this class of equations. The balance equations for the sub-class of traveling-wave solutions of the investigated class of equations are obtained. We illustrate the method by obtaining exact traveling-wave solutions (i) of the Swift-Hohenberg equation and (ii) of the generalized Rayleigh equation for the cases when the extended tanh-equation or the equations of Bernoulli and Riccati are used as simplest equations.

  20. Exact solution for the hydrogen atom confined by a dielectric continuum and the correct basis set to study many-electron atoms under similar confinements

    NASA Astrophysics Data System (ADS)

    Martínez-Sánchez, Michael-Adán; Aquino, Norberto; Vargas, Rubicelia; Garza, Jorge

    2017-12-01

    The Schrödinger equation associated to the hydrogen atom confined by a dielectric continuum is solved exactly and suggests the appropriate basis set to be used when an atom is immersed in a dielectric continuum. Exact results show that this kind of confinement spread the electron density, which is confirmed through the Shannon entropy. The basis set suggested by the exact results is similar to Slater type orbitals and it was applied on two-electron atoms, where the H- ion ejects one electron for moderate confinements for distances much larger than those commonly used to generate cavities in solvent models.

  1. Exact solution of the generalized Peierls equation for arbitrary n-fold screw dislocation

    NASA Astrophysics Data System (ADS)

    Wang, Shaofeng; Hu, Xiangsheng

    2018-05-01

    The exact solution of the generalized Peierls equation is presented and proved for arbitrary n-fold screw dislocation. The displacement field, stress field and the energy of the n-fold dislocation are also evaluated explicitly. It is found that the solution defined on each individual fold is given by the tail cut from the original Peierls solution. In viewpoint of energetics, a screw dislocation has a tendency to spread the distribution on all possible slip planes which are contained in the dislocation line zone. Based on the exact solution, the approximated solution of the improved Peierls equation is proposed for the modified γ-surface.

  2. Time-Harmonic Gaussian Beams: Exact Solutions of the Helmhotz Equation in Free Space

    NASA Astrophysics Data System (ADS)

    Kiselev, A. P.

    2017-12-01

    An exact solution of the Helmholtz equation u xx + u yy + u zz + k 2 u = 0 is presented, which describes propagation of monochromatic waves in the free space. The solution has the form of a superposition of plane waves with a specific weight function dependent on a certain free parameter a. If ka→∞, the solution is localized in the Gaussian manner in a vicinity of a certain straight line and asymptotically coincides with the famous approximate solution known as the fundamental mode of a paraxial Gaussian beam. The asymptotics of the aforementioned exact solution does not include a backward wave.

  3. Exact anisotropic viscous fluid solutions of Einstein's equations

    NASA Astrophysics Data System (ADS)

    Goenner, H. F. M.; Kowalewski, F.

    1989-05-01

    A method for obtaining anisotropic, rotationless viscous fluid matter solutions of Bianchi type I and Segré type [1, 111] with the barotropic equation of state is presented. Solutions for which the anisotropy decreases exponentially or with a power law as well as solutions with average Hubble parameterH ˜t -1 are discussed. Also, a class of solutions with constant anisotropy and Bianchi type VIh is found. The dominant energy condition holds and the transport coefficients show the right sign.

  4. Exact solutions in oscillating airfoil theory

    NASA Technical Reports Server (NTRS)

    Williams, M. H.

    1977-01-01

    A result obtained by Williams (1977) for two-dimensional airfoils oscillating in an arbitrary subsonic parallel flowfield is reformulated to show that the pressure distribution induced by any deformation can be construed from the particular solutions for heaving and pitching motions. Specific formulas are presented for an oscillating control surface with a sealed gap.

  5. Remarks on the general solution for the flat Friedmann universe with exponential scalar-field potential and dust

    NASA Astrophysics Data System (ADS)

    Andrianov, A. A.; Cannata, F.; Kamenshchik, A. Yu.

    2012-11-01

    We show that the simple extension of the method of obtaining the general exact solution for the cosmological model with the exponential scalar-field potential to the case when the dust is present fails, and we discuss the reasons of this puzzling phenomenon.

  6. Exact solutions for the collaborative pickup and delivery problem.

    PubMed

    Gansterer, Margaretha; Hartl, Richard F; Salzmann, Philipp E H

    2018-01-01

    In this study we investigate the decision problem of a central authority in pickup and delivery carrier collaborations. Customer requests are to be redistributed among participants, such that the total cost is minimized. We formulate the problem as multi-depot traveling salesman problem with pickups and deliveries. We apply three well-established exact solution approaches and compare their performance in terms of computational time. To avoid unrealistic solutions with unevenly distributed workload, we extend the problem by introducing minimum workload constraints. Our computational results show that, while for the original problem Benders decomposition is the method of choice, for the newly formulated problem this method is clearly dominated by the proposed column generation approach. The obtained results can be used as benchmarks for decentralized mechanisms in collaborative pickup and delivery problems.

  7. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Vieira, H.S., E-mail: horacio.santana.vieira@hotmail.com; Centro de Ciências, Tecnologia e Saúde, Universidade Estadual da Paraíba, CEP 58233-000, Araruna, PB; Bezerra, V.B., E-mail: valdir@fisica.ufpb.br

    Charged massive scalar fields are considered in the gravitational and electromagnetic field produced by a dyonic black hole with a cosmic string along its axis of symmetry. Exact solutions of both angular and radial parts of the covariant Klein–Gordon equation in this background are obtained, and are given in terms of the confluent Heun functions. The role of the presence of the cosmic string in these solutions is showed up. From the radial solution, we obtain the exact wave solutions near the exterior horizon of the black hole, and discuss the Hawking radiation spectrum and the energy flux. -- Highlights:more » •A cosmic string is introduced along the axis of symmetry of the dyonic black hole. •The covariant Klein–Gordon equation for a charged massive scalar field in this background is analyzed. •Both angular and radial parts are transformed to a confluent Heun equation. •The resulting Hawking radiation spectrum and the energy flux are obtained.« less

  8. Exact Magnetic Diffusion Solutions for Magnetohydrodynamic Code Verification

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Miller, D S

    In this paper, the authors present several new exact analytic space and time dependent solutions to the problem of magnetic diffusion in R-Z geometry. These problems serve to verify several different elements of an MHD implementation: magnetic diffusion, external circuit time integration, current and voltage energy sources, spatially dependent conductivities, and ohmic heating. The exact solutions are shown in comparison with 2D simulation results from the Ares code.

  9. On solutions of the fifth-order dispersive equations with porous medium type non-linearity

    NASA Astrophysics Data System (ADS)

    Kocak, Huseyin; Pinar, Zehra

    2018-07-01

    In this work, we focus on obtaining the exact solutions of the fifth-order semi-linear and non-linear dispersive partial differential equations, which have the second-order diffusion-like (porous-type) non-linearity. The proposed equations were not studied in the literature in the sense of the exact solutions. We reveal solutions of the proposed equations using the classical Riccati equations method. The obtained exact solutions, which can play a key role to simulate non-linear waves in the medium with dispersion and diffusion, are illustrated and discussed in details.

  10. Exact and heuristic algorithms for Space Information Flow.

    PubMed

    Uwitonze, Alfred; Huang, Jiaqing; Ye, Yuanqing; Cheng, Wenqing; Li, Zongpeng

    2018-01-01

    Space Information Flow (SIF) is a new promising research area that studies network coding in geometric space, such as Euclidean space. The design of algorithms that compute the optimal SIF solutions remains one of the key open problems in SIF. This work proposes the first exact SIF algorithm and a heuristic SIF algorithm that compute min-cost multicast network coding for N (N ≥ 3) given terminal nodes in 2-D Euclidean space. Furthermore, we find that the Butterfly network in Euclidean space is the second example besides the Pentagram network where SIF is strictly better than Euclidean Steiner minimal tree. The exact algorithm design is based on two key techniques: Delaunay triangulation and linear programming. Delaunay triangulation technique helps to find practically good candidate relay nodes, after which a min-cost multicast linear programming model is solved over the terminal nodes and the candidate relay nodes, to compute the optimal multicast network topology, including the optimal relay nodes selected by linear programming from all the candidate relay nodes and the flow rates on the connection links. The heuristic algorithm design is also based on Delaunay triangulation and linear programming techniques. The exact algorithm can achieve the optimal SIF solution with an exponential computational complexity, while the heuristic algorithm can achieve the sub-optimal SIF solution with a polynomial computational complexity. We prove the correctness of the exact SIF algorithm. The simulation results show the effectiveness of the heuristic SIF algorithm.

  11. Two-lane traffic-flow model with an exact steady-state solution.

    PubMed

    Kanai, Masahiro

    2010-12-01

    We propose a stochastic cellular-automaton model for two-lane traffic flow based on the misanthrope process in one dimension. The misanthrope process is a stochastic process allowing for an exact steady-state solution; hence, we have an exact flow-density diagram for two-lane traffic. In addition, we introduce two parameters that indicate, respectively, driver's driving-lane preference and passing-lane priority. Due to the additional parameters, the model shows a deviation of the density ratio for driving-lane use and a biased lane efficiency in flow. Then, a mean-field approach explicitly describes the asymmetric flow by the hop rates, the driving-lane preference, and the passing-lane priority. Meanwhile, the simulation results are in good agreement with an observational data, and we thus estimate these parameters. We conclude that the proposed model successfully produces two-lane traffic flow particularly with the driving-lane preference and the passing-lane priority.

  12. Exact geodesic distances in FLRW spacetimes

    NASA Astrophysics Data System (ADS)

    Cunningham, William J.; Rideout, David; Halverson, James; Krioukov, Dmitri

    2017-11-01

    Geodesics are used in a wide array of applications in cosmology and astrophysics. However, it is not a trivial task to efficiently calculate exact geodesic distances in an arbitrary spacetime. We show that in spatially flat (3 +1 )-dimensional Friedmann-Lemaître-Robertson-Walker (FLRW) spacetimes, it is possible to integrate the second-order geodesic differential equations, and derive a general method for finding both timelike and spacelike distances given initial-value or boundary-value constraints. In flat spacetimes with either dark energy or matter, whether dust, radiation, or a stiff fluid, we find an exact closed-form solution for geodesic distances. In spacetimes with a mixture of dark energy and matter, including spacetimes used to model our physical universe, there exists no closed-form solution, but we provide a fast numerical method to compute geodesics. A general method is also described for determining the geodesic connectedness of an FLRW manifold, provided only its scale factor.

  13. The Exact Solution to Rank-1 L1-Norm TUCKER2 Decomposition

    NASA Astrophysics Data System (ADS)

    Markopoulos, Panos P.; Chachlakis, Dimitris G.; Papalexakis, Evangelos E.

    2018-04-01

    We study rank-1 {L1-norm-based TUCKER2} (L1-TUCKER2) decomposition of 3-way tensors, treated as a collection of $N$ $D \\times M$ matrices that are to be jointly decomposed. Our contributions are as follows. i) We prove that the problem is equivalent to combinatorial optimization over $N$ antipodal-binary variables. ii) We derive the first two algorithms in the literature for its exact solution. The first algorithm has cost exponential in $N$; the second one has cost polynomial in $N$ (under a mild assumption). Our algorithms are accompanied by formal complexity analysis. iii) We conduct numerical studies to compare the performance of exact L1-TUCKER2 (proposed) with standard HOSVD, HOOI, GLRAM, PCA, L1-PCA, and TPCA-L1. Our studies show that L1-TUCKER2 outperforms (in tensor approximation) all the above counterparts when the processed data are outlier corrupted.

  14. Reproduction of exact solutions of Lipkin model by nonlinear higher random-phase approximation

    NASA Astrophysics Data System (ADS)

    Terasaki, J.; Smetana, A.; Šimkovic, F.; Krivoruchenko, M. I.

    2017-10-01

    It is shown that the random-phase approximation (RPA) method with its nonlinear higher generalization, which was previously considered as approximation except for a very limited case, reproduces the exact solutions of the Lipkin model. The nonlinear higher RPA is based on an equation nonlinear on eigenvectors and includes many-particle-many-hole components in the creation operator of the excited states. We demonstrate the exact character of solutions analytically for the particle number N = 2 and numerically for N = 8. This finding indicates that the nonlinear higher RPA is equivalent to the exact Schrödinger equation.

  15. Exact BPS domain walls at finite gauge coupling

    NASA Astrophysics Data System (ADS)

    Blaschke, Filip

    2017-01-01

    Bogomol'nyi-Prasad-Sommerfield solitons in models with spontaneously broken gauge symmetry have been intensively studied at the infinite gauge coupling limit, where the governing equation-the so-called master equation-is exactly solvable. Except for a handful of special solutions, the standing impression is that analytic results at finite coupling are generally unavailable. The aim of this paper is to demonstrate, using domain walls in Abelian-Higgs models as the simplest example, that exact solitons at finite gauge coupling can be readily obtained if the number of Higgs fields (NF ) is large enough. In particular, we present a family of exact solutions, describing N domain walls at arbitrary positions in models with at least NF≥2 N +1 . We have also found that adding together any pair of solutions can produce a new exact solution if the combined tension is below a certain limit.

  16. Exact solution of matricial Φ23 quantum field theory

    NASA Astrophysics Data System (ADS)

    Grosse, Harald; Sako, Akifumi; Wulkenhaar, Raimar

    2017-12-01

    We apply a recently developed method to exactly solve the Φ3 matrix model with covariance of a two-dimensional theory, also known as regularised Kontsevich model. Its correlation functions collectively describe graphs on a multi-punctured 2-sphere. We show how Ward-Takahashi identities and Schwinger-Dyson equations lead in a special large- N limit to integral equations that we solve exactly for all correlation functions. The solved model arises from noncommutative field theory in a special limit of strong deformation parameter. The limit defines ordinary 2D Schwinger functions which, however, do not satisfy reflection positivity.

  17. Time-dependent flow model of a generalized Burgers' fluid with fractional derivatives through a cylindrical domain: An exact and numerical approach

    NASA Astrophysics Data System (ADS)

    Safdar, Rabia; Imran, M.; Khalique, Chaudry Masood

    2018-06-01

    Exact solutions for velocity field and tangential stress for rotational flow of a generalized Burgers' fluid within an infinite circular pipe are derived by using the methods of Laplace and finite Hankel transformations. Firstly we take the position of fluid at rest and then the fluid flow due to the rotation of the pipe around the axis of flow having time dependant angular velocity. The exact solutions are presented in terms of the generalized Ga,b,c (., t) -functions. The corresponding results can be freely specified for the same results of Burgers', Oldroyd B, Maxwell, second grade and Newtonian fluids (performing the same motion) as particular cases of the results obtained earlier. The impact of the different parameters, individually and in comparison, are represented by graphical demonstrations. Secondly the numerical solutions for velocity and stress are also obtained with the help of Laplace transformation, Gaver Stehfest's algorithm and MATHCAD. Finally a comparison of both methods for the same problem is done and shows the consistency of results.

  18. Exact analytic solution of position-dependent mass Schrödinger equation

    NASA Astrophysics Data System (ADS)

    Rajbongshi, Hangshadhar

    2018-03-01

    Exact analytic solution of position-dependent mass Schrödinger equation is generated by using extended transformation, a method of mapping a known system into a new system equipped with energy eigenvalues and corresponding wave functions. First order transformation is performed on D-dimensional radial Schrödinger equation with constant mass by taking trigonometric Pöschl-Teller potential as known system. The exactly solvable potentials with position-dependent mass generated for different choices of mass functions through first order transformation are also taken as known systems in the second order transformation performed on D-dimensional radial position-dependent mass Schrödinger equation. The solutions are fitted for "Zhu and Kroemer" ordering of ambiguity. All the wave functions corresponding to nonzero energy eigenvalues are normalizable. The new findings are that the normalizability condition of the wave functions remains independent of mass functions, and some of the generated potentials show a family relationship among themselves where power law potentials also get related to non-power law potentials and vice versa through the transformation.

  19. Collisionless tearing instability of a bi-Maxwellian neutral sheet - An integrodifferential treatment with exact particle orbits

    NASA Technical Reports Server (NTRS)

    Burkhart, G. R.; Chen, J.

    1989-01-01

    The integrodifferential equation describing the linear tearing instability in the bi-Maxwellian neutral sheet is solved without approximating the particle orbits or the eigenfunction psi. Results of this calculation are presented. Comparison between the exact solution and the three-region approximation motivates the piecewise-straight-line approximation, a simplification that allows faster solution of the integrodifferential equation, yet retains the important features of the exact solution.

  20. New Exact Solutions of Relativistic Hydrodynamics for Longitudinally Expanding Fireballs

    NASA Astrophysics Data System (ADS)

    Csörgő, Tamás; Kasza, Gábor; Csanád, Máté; Jiang, Zefang

    2018-06-01

    We present new, exact, finite solutions of relativistic hydrodynamics for longitudinally expanding fireballs for arbitrary constant value of the speed of sound. These new solutions generalize earlier, longitudinally finite, exact solutions, from an unrealistic to a reasonable equation of state, characterized by a temperature independent (average) value of the speed of sound. Observables like the rapidity density and the pseudorapidity density are evaluated analytically, resulting in simple and easy to fit formulae that can be matched to the high energy proton-proton and heavy ion collision data at RHIC and LHC. In the longitudinally boost-invariant limit, these new solutions approach the Hwa-Bjorken solution and the corresponding rapidity distributions approach a rapidity plateaux.

  1. Explicit and exact nontraveling wave solutions of the (3+1)-dimensional potential Yu-Toda-Sasa-Fukuyama equation

    NASA Astrophysics Data System (ADS)

    Yuan, Na

    2018-04-01

    With the aid of the symbolic computation, we present an improved ( G ‧ / G ) -expansion method, which can be applied to seek more types of exact solutions for certain nonlinear evolution equations. In illustration, we choose the (3 + 1)-dimensional potential Yu-Toda-Sasa-Fukuyama equation to demonstrate the validity and advantages of the method. As a result, abundant explicit and exact nontraveling wave solutions are obtained including two solitary waves solutions, nontraveling wave solutions and dromion soliton solutions. Some particular localized excitations and the interactions between two solitary waves are researched. The method can be also applied to other nonlinear partial differential equations.

  2. Exact traveling wave solutions of fractional order Boussinesq-like equations by applying Exp-function method

    NASA Astrophysics Data System (ADS)

    Rahmatullah; Ellahi, Rahmat; Mohyud-Din, Syed Tauseef; Khan, Umar

    2018-03-01

    We have computed new exact traveling wave solutions, including complex solutions of fractional order Boussinesq-Like equations, occurring in physical sciences and engineering, by applying Exp-function method. The method is blended with fractional complex transformation and modified Riemann-Liouville fractional order operator. Our obtained solutions are verified by substituting back into their corresponding equations. To the best of our knowledge, no other technique has been reported to cope with the said fractional order nonlinear problems combined with variety of exact solutions. Graphically, fractional order solution curves are shown to be strongly related to each other and most importantly, tend to fixate on their integer order solution curve. Our solutions comprise high frequencies and very small amplitude of the wave responses.

  3. Phase-locked patterns of the Kuramoto model on 3-regular graphs

    NASA Astrophysics Data System (ADS)

    DeVille, Lee; Ermentrout, Bard

    2016-09-01

    We consider the existence of non-synchronized fixed points to the Kuramoto model defined on sparse networks: specifically, networks where each vertex has degree exactly three. We show that "most" such networks support multiple attracting phase-locked solutions that are not synchronized and study the depth and width of the basins of attraction of these phase-locked solutions. We also show that it is common in "large enough" graphs to find phase-locked solutions where one or more of the links have angle difference greater than π/2.

  4. Phase-locked patterns of the Kuramoto model on 3-regular graphs.

    PubMed

    DeVille, Lee; Ermentrout, Bard

    2016-09-01

    We consider the existence of non-synchronized fixed points to the Kuramoto model defined on sparse networks: specifically, networks where each vertex has degree exactly three. We show that "most" such networks support multiple attracting phase-locked solutions that are not synchronized and study the depth and width of the basins of attraction of these phase-locked solutions. We also show that it is common in "large enough" graphs to find phase-locked solutions where one or more of the links have angle difference greater than π/2.

  5. Nodal-line dynamics via exact polynomial solutions for coherent waves traversing aberrated imaging systems.

    PubMed

    Paganin, David M; Beltran, Mario A; Petersen, Timothy C

    2018-03-01

    We obtain exact polynomial solutions for two-dimensional coherent complex scalar fields propagating through arbitrary aberrated shift-invariant linear imaging systems. These solutions are used to model nodal-line dynamics of coherent fields output by such systems.

  6. Exact solutions and low-frequency instability of the adiabatic auroral arc model

    NASA Technical Reports Server (NTRS)

    Cornwall, John M.

    1988-01-01

    The adiabatic auroral arc model couples a kinetic theory parallel current driven by mirror forces to horizontal ionospheric currents; the resulting equations are nonlinear. Some exact stationary solutions to these equations, some of them based on the Liouville equation, are developed, with both latitudinal and longitudinal spatial variations. These Liouville equation exact solutions are related to stability boundaries of low-frequency instabilities such as Kelvin-Helmholtz, as shown by a study of a simplified model.

  7. Assessment of the further improved (G'/G)-expansion method and the extended tanh-method in probing exact solutions of nonlinear PDEs.

    PubMed

    Akbar, M Ali; Ali, Norhashidah Hj Mohd; Mohyud-Din, Syed Tauseef

    2013-01-01

    The (G'/G)-expansion method is one of the most direct and effective method for obtaining exact solutions of nonlinear partial differential equations (PDEs). In the present article, we construct the exact traveling wave solutions of nonlinear evolution equations in mathematical physics via the (2 + 1)-dimensional breaking soliton equation by using two methods: namely, a further improved (G'/G)-expansion method, where G(ξ) satisfies the auxiliary ordinary differential equation (ODE) [G'(ξ)](2) = p G (2)(ξ) + q G (4)(ξ) + r G (6)(ξ); p, q and r are constants and the well known extended tanh-function method. We demonstrate, nevertheless some of the exact solutions bring out by these two methods are analogous, but they are not one and the same. It is worth mentioning that the first method has not been exercised anybody previously which gives further exact solutions than the second one. PACS numbers 02.30.Jr, 05.45.Yv, 02.30.Ik.

  8. Exact solution of a model DNA-inversion genetic switch with orientational control.

    PubMed

    Visco, Paolo; Allen, Rosalind J; Evans, Martin R

    2008-09-12

    DNA inversion is an important mechanism by which bacteria and bacteriophage switch reversibly between phenotypic states. In such switches, the orientation of a short DNA element is flipped by a site-specific recombinase enzyme. We propose a simple model for a DNA-inversion switch in which recombinase production is dependent on the switch state (orientational control). Our model is inspired by the fim switch in E. coli. We present an exact analytical solution of the chemical master equation for the model switch, as well as stochastic simulations. Orientational control causes the switch to deviate from Poissonian behavior: the distribution of times in the on state shows a peak and successive flip times are correlated.

  9. Exact Solution of Klein-Gordon and Dirac Equations with Snyder-de Sitter Algebra

    NASA Astrophysics Data System (ADS)

    Merad, M.; Hadj Moussa, M.

    2018-01-01

    In this paper, we present the exact solution of the (1+1)-dimensional relativistic Klein-Gordon and Dirac equations with linear vector and scalar potentials in the framework of deformed Snyder-de Sitter model. We introduce some changes of variables, we show that a one-dimensional linear potential for the relativistic system in a space deformed can be equivalent to the trigonometric Rosen-Morse potential in a regular space. In both cases, we determine explicitly the energy eigenvalues and their corresponding eigenfunctions expressed in terms of Romonovski polynomials. The limiting cases are analyzed for α 1 and α 2 → 0 and are compared with those of literature.

  10. Bright, dark and W-shaped solitons with extended nonlinear Schrödinger's equation for odd and even higher-order terms

    NASA Astrophysics Data System (ADS)

    Bendahmane, Issam; Triki, Houria; Biswas, Anjan; Saleh Alshomrani, Ali; Zhou, Qin; Moshokoa, Seithuti P.; Belic, Milivoj

    2018-02-01

    We present solitary wave solutions of an extended nonlinear Schrödinger equation with higher-order odd (third-order) and even (fourth-order) terms by using an ansatz method. The including high-order dispersion terms have significant physical applications in fiber optics, the Heisenberg spin chain, and ocean waves. Exact envelope solutions comprise bright, dark and W-shaped solitary waves, illustrating the potentially rich set of solitary wave solutions of the extended model. Furthermore, we investigate the properties of these solitary waves in nonlinear and dispersive media. Moreover, specific constraints on the system parameters for the existence of these structures are discussed exactly. The results show that the higher-order dispersion and nonlinear effects play a crucial role for the formation and properties of propagating waves.

  11. An exact solution of a simplified two-phase plume model. [for solid propellant rocket

    NASA Technical Reports Server (NTRS)

    Wang, S.-Y.; Roberts, B. B.

    1974-01-01

    An exact solution of a simplified two-phase, gas-particle, rocket exhaust plume model is presented. It may be used to make the upper-bound estimation of the heat flux and pressure loads due to particle impingement on the objects existing in the rocket exhaust plume. By including the correction factors to be determined experimentally, the present technique will provide realistic data concerning the heat and aerodynamic loads on these objects for design purposes. Excellent agreement in trend between the best available computer solution and the present exact solution is shown.

  12. Exact solutions of the Wheeler–DeWitt equation and the Yamabe construction

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ita III, Eyo Eyo, E-mail: ita@usna.edu; Soo, Chopin, E-mail: cpsoo@mail.ncku.edu.tw

    Exact solutions of the Wheeler–DeWitt equation of the full theory of four dimensional gravity of Lorentzian signature are obtained. They are characterized by Schrödinger wavefunctionals having support on 3-metrics of constant spatial scalar curvature, and thus contain two full physical field degrees of freedom in accordance with the Yamabe construction. These solutions are moreover Gaussians of minimum uncertainty and they are naturally associated with a rigged Hilbert space. In addition, in the limit the regulator is removed, exact 3-dimensional diffeomorphism and local gauge invariance of the solutions are recovered.

  13. Exact solutions of fractional mBBM equation and coupled system of fractional Boussinesq-Burgers

    NASA Astrophysics Data System (ADS)

    Javeed, Shumaila; Saif, Summaya; Waheed, Asif; Baleanu, Dumitru

    2018-06-01

    The new exact solutions of nonlinear fractional partial differential equations (FPDEs) are established by adopting first integral method (FIM). The Riemann-Liouville (R-L) derivative and the local conformable derivative definitions are used to deal with the fractional order derivatives. The proposed method is applied to get exact solutions for space-time fractional modified Benjamin-Bona-Mahony (mBBM) equation and coupled time-fractional Boussinesq-Burgers equation. The suggested technique is easily applicable and effectual which can be implemented successfully to obtain the solutions for different types of nonlinear FPDEs.

  14. Exact quantum numbers of collapsed and non-collapsed two-string solutions in the spin-1/2 Heisenberg spin chain

    NASA Astrophysics Data System (ADS)

    Deguchi, Tetsuo; Ranjan Giri, Pulak

    2016-04-01

    Every solution of the Bethe-ansatz equations (BAEs) is characterized by a set of quantum numbers, by which we can evaluate it numerically. However, no general rule is known how to give quantum numbers for the physical solutions of BAE. For the spin-1/2 XXX chain we rigorously derive all the quantum numbers for the complete set of the Bethe-ansatz eigenvectors in the two down-spin sector with any chain length N. Here we obtain them both for real and complex solutions. We also show that all the solutions associated with them are distinct. Consequently, we prove the completeness of the Bethe ansatz and give an exact expression for the number of real solutions which correspond to collapsed bound-state solutions (i.e., two-string solutions) in the sector: 2[(N-1)/2-(N/π ){{tan}}-1(\\sqrt{N-1})] in terms of Gauss’ symbol. Moreover, we prove in the sector the scheme conjectured by Takahashi for solving BAE systematically. We also suggest that by applying the present method we can derive the quantum numbers for the spin-1/2 XXZ chain.

  15. Exact Analytical Solutions for Elastodynamic Impact

    DTIC Science & Technology

    2015-11-30

    corroborated by derivation of exact discrete solutions from recursive equations for the impact problems. 15. SUBJECT TERMS One-dimensional impact; Elastic...wave propagation; Laplace transform; Floor function; Discrete solutions 16. SECURITY CLASSIFICATION OF: 17. LIMITATION OF ABSTRACT UU 18...impact Elastic wave propagation Laplace transform Floor function Discrete solutionsWe consider the one-dimensional impact problem in which a semi

  16. Exact analytic solution for the spin-up maneuver of an axially symmetric spacecraft

    NASA Astrophysics Data System (ADS)

    Ventura, Jacopo; Romano, Marcello

    2014-11-01

    The problem of spinning-up an axially symmetric spacecraft subjected to an external torque constant in magnitude and parallel to the symmetry axis is considered. The existing exact analytic solution for an axially symmetric body is applied for the first time to this problem. The proposed solution is valid for any initial conditions of attitude and angular velocity and for any length of time and rotation amplitude. Furthermore, the proposed solution can be numerically evaluated up to any desired level of accuracy. Numerical experiments and comparison with an existing approximated solution and with the integration of the equations of motion are reported in the paper. Finally, a new approximated solution obtained from the exact one is introduced in this paper.

  17. Harbingers and latecomers - the order of appearance of exact coherent structures in plane Poiseuille flow

    NASA Astrophysics Data System (ADS)

    Zammert, Stefan; Eckhardt, Bruno

    2017-02-01

    The transition to turbulence in plane Poiseuille flow (PPF) is connected with the presence of exact coherent structures. We here discuss a variety of different structures that are relevant for the transition, compare the critical Reynolds numbers and optimal wavelengths for their appearance, and explore the differences between flows operating at constant mass flux or at constant pressure drop. The Reynolds numbers quoted here are based on the mean flow velocity and refer to constant mass flux. Reynolds numbers based on constant pressure drop are always higher. The Tollmien-Schlichting (TS) waves bifurcate subcritically from the laminar profile at Re = 5772 at wavelength 6.16 and reach down to Re = 2610 at a different optimal wave length of 4.65. Their streamwise localised counter part bifurcates at the even lower value Re = 2334. Three-dimensional exact solutions appear at much lower Reynolds numbers. We describe one exact solutions that has a critical Reynolds number of 316. Streamwise localised versions of this state require higher Reynolds numbers, with the lowest bifurcation occurring near Re = 1018. The analysis shows that the various branches of TS-waves cannot be connected with transition observed near Re ≈ 1000 and that the exact coherent structures related to downstream vortices come in at lower Reynolds numbers and prepare for the transition.

  18. On symmetries, conservation laws and exact solutions of the nonlinear Schrödinger-Hirota equation

    NASA Astrophysics Data System (ADS)

    Akbulut, Arzu; Taşcan, Filiz

    2018-04-01

    In this paper, conservation laws and exact solution are found for nonlinear Schrödinger-Hirota equation. Conservation theorem is used for finding conservation laws. We get modified conservation laws for given equation. Modified simple equation method is used to obtain the exact solutions of the nonlinear Schrödinger-Hirota equation. It is shown that the suggested method provides a powerful mathematical instrument for solving nonlinear equations in mathematical physics and engineering.

  19. A strategy for reducing gross errors in the generalized Born models of implicit solvation

    PubMed Central

    Onufriev, Alexey V.; Sigalov, Grigori

    2011-01-01

    The “canonical” generalized Born (GB) formula [C. Still, A. Tempczyk, R. C. Hawley, and T. Hendrickson, J. Am. Chem. Soc. 112, 6127 (1990)] is known to provide accurate estimates for total electrostatic solvation energies ΔGel of biomolecules if the corresponding effective Born radii are accurate. Here we show that even if the effective Born radii are perfectly accurate, the canonical formula still exhibits significant number of gross errors (errors larger than 2kBT relative to numerical Poisson equation reference) in pairwise interactions between individual atomic charges. Analysis of exact analytical solutions of the Poisson equation (PE) for several idealized nonspherical geometries reveals two distinct spatial modes of the PE solution; these modes are also found in realistic biomolecular shapes. The canonical GB Green function misses one of two modes seen in the exact PE solution, which explains the observed gross errors. To address the problem and reduce gross errors of the GB formalism, we have used exact PE solutions for idealized nonspherical geometries to suggest an alternative analytical Green function to replace the canonical GB formula. The proposed functional form is mathematically nearly as simple as the original, but depends not only on the effective Born radii but also on their gradients, which allows for better representation of details of nonspherical molecular shapes. In particular, the proposed functional form captures both modes of the PE solution seen in nonspherical geometries. Tests on realistic biomolecular structures ranging from small peptides to medium size proteins show that the proposed functional form reduces gross pairwise errors in all cases, with the amount of reduction varying from more than an order of magnitude for small structures to a factor of 2 for the largest ones. PMID:21528947

  20. The escape of high explosive products: An exact-solution problem for verification of hydrodynamics codes

    DOE PAGES

    Doebling, Scott William

    2016-10-22

    This paper documents the escape of high explosive (HE) products problem. The problem, first presented by Fickett & Rivard, tests the implementation and numerical behavior of a high explosive detonation and energy release model and its interaction with an associated compressible hydrodynamics simulation code. The problem simulates the detonation of a finite-length, one-dimensional piece of HE that is driven by a piston from one end and adjacent to a void at the other end. The HE equation of state is modeled as a polytropic ideal gas. The HE detonation is assumed to be instantaneous with an infinitesimal reaction zone. Viamore » judicious selection of the material specific heat ratio, the problem has an exact solution with linear characteristics, enabling a straightforward calculation of the physical variables as a function of time and space. Lastly, implementation of the exact solution in the Python code ExactPack is discussed, as are verification cases for the exact solution code.« less

  1. Exact vacuum solution to conformal Weyl gravity and galactic rotation curves

    NASA Technical Reports Server (NTRS)

    Mannheim, Philip D.; Kazanas, Demosthenes

    1989-01-01

    The complete, exact exterior solution for a static, spherically symmetric source in locally conformal invariant Weyl gravity is presented. The solution includes the familiar exterior Schwarzschild solution as a special case and contains an extra gravitational potential term which grows linearly with distance. The obtained solution provides a potential explanation for observed galactic rotation curves without the need for dark matter. The solution also has some interesting implications for cosmology.

  2. The exact solutions and approximate analytic solutions of the (2 + 1)-dimensional KP equation based on symmetry method.

    PubMed

    Gai, Litao; Bilige, Sudao; Jie, Yingmo

    2016-01-01

    In this paper, we successfully obtained the exact solutions and the approximate analytic solutions of the (2 + 1)-dimensional KP equation based on the Lie symmetry, the extended tanh method and the homotopy perturbation method. In first part, we obtained the symmetries of the (2 + 1)-dimensional KP equation based on the Wu-differential characteristic set algorithm and reduced it. In the second part, we constructed the abundant exact travelling wave solutions by using the extended tanh method. These solutions are expressed by the hyperbolic functions, the trigonometric functions and the rational functions respectively. It should be noted that when the parameters are taken as special values, some solitary wave solutions are derived from the hyperbolic function solutions. Finally, we apply the homotopy perturbation method to obtain the approximate analytic solutions based on four kinds of initial conditions.

  3. Extensions of the Einstein-Schrodinger non-symmetric theory of gravity

    NASA Astrophysics Data System (ADS)

    Shifflett, James A.

    We modify the Einstein-Schrödinger theory to include a cosmological constant L z which multiplies the symmetric metric. The cosmological constant L z is assumed to be nearly cancelled by Schrödinger's cosmological constant L b which multiplies the nonsymmetric fundamental tensor, such that the total L = L z + L b matches measurement. The resulting theory becomes exactly Einstein-Maxwell theory in the limit as |L z | [arrow right] oo. For |L z | ~ 1/(Planck length) 2 the field equations match the ordinary Einstein and Maxwell equations except for extra terms which are < 10 -16 of the usual terms for worst-case field strengths and rates-of-change accessible to measurement. Additional fields can be included in the Lagrangian, and these fields may couple to the symmetric metric and the electromagnetic vector potential, just as in Einstein-Maxwell theory. The ordinary Lorentz force equation is obtained by taking the divergence of the Einstein equations when sources are included. The Einstein- Infeld-Hoffmann (EIH) equations of motion match the equations of motion for Einstein-Maxwell theory to Newtonian/Coulombian order, which proves the existence of a Lorentz force without requiring sources. An exact charged solution matches the Reissner-Nordström solution except for additional terms which are ~ 10 -66 of the usual terms for worst-case radii accessible to measurement. An exact electromagnetic plane-wave solution is identical to its counterpart in Einstein-Maxwell theory. Peri-center advance, deflection of light and time delay of light have a fractional difference of < 10 -56 compared to Einstein-Maxwell theory for worst-case parameters. When a spin-1/2 field is included in the Lagrangian, the theory gives the ordinary Dirac equation, and the charged solution results in fractional shifts of < 10 -50 in Hydrogen atom energy levels. Newman-Penrose methods are used to derive an exact solution of the connection equations, and to show that the charged solution is Petrov type- D like the Reissner-Nordström solution. The Newman-Penrose asymptotically flat [Special characters omitted.] (1/ r 2 ) expansion of the field equations is shown to match Einstein-Maxwell theory. Finally we generalize the theory to non-Abelian fields, and show that a special case of the resulting theory closely approximates Einstein-Weinberg-Salam theory.

  4. Ranking and clustering of nodes in networks with smart teleportation

    NASA Astrophysics Data System (ADS)

    Lambiotte, R.; Rosvall, M.

    2012-05-01

    Random teleportation is a necessary evil for ranking and clustering directed networks based on random walks. Teleportation enables ergodic solutions, but the solutions must necessarily depend on the exact implementation and parametrization of the teleportation. For example, in the commonly used PageRank algorithm, the teleportation rate must trade off a heavily biased solution with a uniform solution. Here we show that teleportation to links rather than nodes enables a much smoother trade-off and effectively more robust results. We also show that, by not recording the teleportation steps of the random walker, we can further reduce the effect of teleportation with dramatic effects on clustering.

  5. Charged black holes in quartic quasi-topological gravity

    NASA Astrophysics Data System (ADS)

    Ghanaatian, M.; Naeimipour, F.; Bazrafshan, A.; Abkar, M.

    2018-05-01

    In this paper, we construct exact solutions of charged black holes in the presence of quartic quasi-topological gravity. We obtain thermodynamics and conserved quantities of the solutions and check the first law of thermodynamics. In studying the physical properties of the solutions, we consider anti-de Sitter, de Sitter, and flat solutions of charged black holes in quartic quasi-topological gravity and compare them with Einstein and third-order quasi-topological gravities. We also investigate the thermal stability of the solutions and show that thermal stability is just for anti-de Sitter solutions, not for de Sitter and flat ones.

  6. Analytical and numerical solutions of the equation for the beam propagation in a photovoltaic-photorefractive media

    NASA Astrophysics Data System (ADS)

    Lin, Ji; Wang, Hou

    2013-07-01

    We use the classical Lie-group method to study the evolution equation describing a photovoltaic-photorefractive media with the effects of diffusion process and the external electric field. We reduce it to some similarity equations firstly, and then obtain some analytically exact solutions including the soliton solution, the exponential solution and the oscillatory solution. We also obtain the numeric solitons from these similarity equations. Moreover, We show theoretically that these solutions have two types of trajectories. One type is a straight line. The other is a parabolic curve, which indicates these solitons have self-deflection.

  7. An exact solution of the van der Waals interaction between two ground-state hydrogen atoms

    NASA Astrophysics Data System (ADS)

    Koga, Toshikatsu; Matsumoto, Shinya

    1985-06-01

    A momentum space treatment shows that perturbation equations for the H(1s)-H(1s) van der Waals interaction can be exactly solved in their Schrödinger forms without invoking any variational methods. Using the Fock transformation, which projects the momentum vector of an electron from the three-dimensional hyperplane onto the four-dimensional hypersphere, we solve the third order integral-type perturbation equation with respect to the reciprocal of the internuclear distance R. An exact third order wave function is found as a linear combination of infinite number of four-dimensional spherical harmonics. The result allows us to evaluate the exact dispersion energy E6R-6, which is completely determined by the first three coefficients of the above linear combination.

  8. Bounce universe and black holes from critical Einsteinian cubic gravity

    NASA Astrophysics Data System (ADS)

    Feng, Xing-Hui; Huang, Hyat; Mai, Zhan-Feng; Lü, Hong

    2017-11-01

    We show that there exists a critical point for the coupling constants in Einsteinian cubic gravity in which the linearized equations on the maximally symmetric vacuum vanish identically. We construct an exact isotropic bounce universe in the critical theory in four dimensions. The comoving time runs from minus infinity to plus infinity, yielding a smooth universe bouncing between two de Sitter vacua. In five dimensions, we adopt a numerical approach to construct a bounce solution, in which a singularity occurs before the bounce takes place. We then construct exact anisotropic bounces that connect two isotropic de Sitter spacetimes with flat spatial sections. We further construct exact anti-de Sitter black holes in the critical theory in four and five dimensions and obtain an exact anti-de Sitter worm brane in four dimensions.

  9. Exact Riemann solutions of the Ripa model for flat and non-flat bottom topographies

    NASA Astrophysics Data System (ADS)

    Rehman, Asad; Ali, Ishtiaq; Qamar, Shamsul

    2018-03-01

    This article is concerned with the derivation of exact Riemann solutions for Ripa model considering flat and non-flat bottom topographies. The Ripa model is a system of shallow water equations accounting for horizontal temperature gradients. In the case of non-flat bottom topography, the mass, momentum and energy conservation principles are utilized to relate the left and right states across the step-type bottom topography. The resulting system of algebraic equations is solved iteratively. Different numerical case studies of physical interest are considered. The solutions obtained from developed exact Riemann solvers are compared with the approximate solutions of central upwind scheme.

  10. A Numerical Scheme for Ordinary Differential Equations Having Time Varying and Nonlinear Coefficients Based on the State Transition Matrix

    NASA Technical Reports Server (NTRS)

    Bartels, Robert E.

    2002-01-01

    A variable order method of integrating initial value ordinary differential equations that is based on the state transition matrix has been developed. The method has been evaluated for linear time variant and nonlinear systems of equations. While it is more complex than most other methods, it produces exact solutions at arbitrary time step size when the time variation of the system can be modeled exactly by a polynomial. Solutions to several nonlinear problems exhibiting chaotic behavior have been computed. Accuracy of the method has been demonstrated by comparison with an exact solution and with solutions obtained by established methods.

  11. Fully Nonlinear Modeling and Analysis of Precision Membranes

    NASA Technical Reports Server (NTRS)

    Pai, P. Frank; Young, Leyland G.

    2003-01-01

    High precision membranes are used in many current space applications. This paper presents a fully nonlinear membrane theory with forward and inverse analyses of high precision membrane structures. The fully nonlinear membrane theory is derived from Jaumann strains and stresses, exact coordinate transformations, the concept of local relative displacements, and orthogonal virtual rotations. In this theory, energy and Newtonian formulations are fully correlated, and every structural term can be interpreted in terms of vectors. Fully nonlinear ordinary differential equations (ODES) governing the large static deformations of known axisymmetric membranes under known axisymmetric loading (i.e., forward problems) are presented as first-order ODES, and a method for obtaining numerically exact solutions using the multiple shooting procedure is shown. A method for obtaining the undeformed geometry of any axisymmetric membrane with a known inflated geometry and a known internal pressure (i.e., inverse problems) is also derived. Numerical results from forward analysis are verified using results in the literature, and results from inverse analysis are verified using known exact solutions and solutions from the forward analysis. Results show that the membrane theory and the proposed numerical methods for solving nonlinear forward and inverse membrane problems are accurate.

  12. Exact solutions in 3D new massive gravity.

    PubMed

    Ahmedov, Haji; Aliev, Alikram N

    2011-01-14

    We show that the field equations of new massive gravity (NMG) consist of a massive (tensorial) Klein-Gordon-type equation with a curvature-squared source term and a constraint equation. We also show that, for algebraic type D and N spacetimes, the field equations of topologically massive gravity (TMG) can be thought of as the "square root" of the massive Klein-Gordon-type equation. Using this fact, we establish a simple framework for mapping all types D and N solutions of TMG into NMG. Finally, we present new examples of types D and N solutions to NMG.

  13. Exact Solutions in 3D New Massive Gravity

    NASA Astrophysics Data System (ADS)

    Ahmedov, Haji; Aliev, Alikram N.

    2011-01-01

    We show that the field equations of new massive gravity (NMG) consist of a massive (tensorial) Klein-Gordon-type equation with a curvature-squared source term and a constraint equation. We also show that, for algebraic type D and N spacetimes, the field equations of topologically massive gravity (TMG) can be thought of as the “square root” of the massive Klein-Gordon-type equation. Using this fact, we establish a simple framework for mapping all types D and N solutions of TMG into NMG. Finally, we present new examples of types D and N solutions to NMG.

  14. Analytical study of exact solutions of the nonlinear Korteweg-de Vries equation with space-time fractional derivatives

    NASA Astrophysics Data System (ADS)

    Liu, Jiangen; Zhang, Yufeng

    2018-01-01

    This paper gives an analytical study of dynamic behavior of the exact solutions of nonlinear Korteweg-de Vries equation with space-time local fractional derivatives. By using the improved (G‧ G )-expansion method, the explicit traveling wave solutions including periodic solutions, dark soliton solutions, soliton solutions and soliton-like solutions, are obtained for the first time. They can better help us further understand the physical phenomena and provide a strong basis. Meanwhile, some solutions are presented through 3D-graphs.

  15. Exact solution for the time evolution of network rewiring models

    NASA Astrophysics Data System (ADS)

    Evans, T. S.; Plato, A. D. K.

    2007-05-01

    We consider the rewiring of a bipartite graph using a mixture of random and preferential attachment. The full mean-field equations for the degree distribution and its generating function are given. The exact solution of these equations for all finite parameter values at any time is found in terms of standard functions. It is demonstrated that these solutions are an excellent fit to numerical simulations of the model. We discuss the relationship between our model and several others in the literature, including examples of urn, backgammon, and balls-in-boxes models, the Watts and Strogatz rewiring problem, and some models of zero range processes. Our model is also equivalent to those used in various applications including cultural transmission, family name and gene frequencies, glasses, and wealth distributions. Finally some Voter models and an example of a minority game also show features described by our model.

  16. Republication of: Geometrodynamics in the null case. Exact solutions of the field equations of the general theory of relativity III

    NASA Astrophysics Data System (ADS)

    Jordan, Pascual; Kundt, Wolfgang

    2014-03-01

    This is an English translation of a paper by Pascual Jordan and Wolfgang Kundt, first published in 1961 in the proceedings of the Academy of Sciences and Literature in Mainz (Germany). The original paper was part 3 of a five-part series of articles containing the first summary of knowledge about exact solutions of Einstein's equations found until then. (Parts 1, 2 and 4 of the series have already been reprinted, part 5 will be printed as a Golden Oldie in near future.) This third paper shows how solutions of the Einstein-Maxwell equations with null Maxwell field can be incorporated into the scheme of geometrodynamics. It has been selected by the Editors of General Relativity and Gravitation for republication in the Golden Oldies series of the journal. The republication is accompanied by an editorial note written by Charles Misner.

  17. Exact solutions to the Mo-Papas and Landau-Lifshitz equations

    NASA Astrophysics Data System (ADS)

    Rivera, R.; Villarroel, D.

    2002-10-01

    Two exact solutions of the Mo-Papas and Landau-Lifshitz equations for a point charge in classical electrodynamics are presented here. Both equations admit as an exact solution the motion of a charge rotating with constant speed in a circular orbit. These equations also admit as an exact solution the motion of two identical charges rotating with constant speed at the opposite ends of a diameter. These exact solutions allow one to obtain, starting from the equation of motion, a definite formula for the rate of radiation. In both cases the rate of radiation can also be obtained, with independence of the equation of motion, from the well known fields of a point charge, that is, from the Maxwell equations. The rate of radiation obtained from the Mo-Papas equation in the one-charge case coincides with the rate of radiation that comes from the Maxwell equations; but in the two-charge case the results do not coincide. On the other hand, the rate of radiation obtained from the Landau-Lifshitz equation differs from the one that follows from the Maxwell equations in both the one-charge and two-charge cases. This last result does not support a recent statement by Rohrlich in favor of considering the Landau-Lifshitz equation as the correct and exact equation of motion for a point charge in classical electrodynamics.

  18. An exact solution for the Hawking effect in a dispersive fluid

    NASA Astrophysics Data System (ADS)

    Philbin, T. G.

    2016-09-01

    We consider the wave equation for sound in a moving fluid with a fourth-order anomalous dispersion relation. The velocity of the fluid is a linear function of position, giving two points in the flow where the fluid velocity matches the group velocity of low-frequency waves. We find the exact solution for wave propagation in the flow. The scattering shows amplification of classical waves, leading to spontaneous emission when the waves are quantized. In the dispersionless limit the system corresponds to a 1 +1 -dimensional black-hole or white-hole binary and there is a thermal spectrum of Hawking radiation from each horizon. Dispersion changes the scattering coefficients so that the quantum emission is no longer thermal. The scattering coefficients were previously obtained by Busch and Parentani in a study of dispersive fields in de Sitter space [Phys. Rev. D 86, 104033 (2012)]. Our results give further details of the wave propagation in this exactly solvable case, where our focus is on laboratory systems.

  19. Black holes in vector-tensor theories

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Heisenberg, Lavinia; Kase, Ryotaro; Tsujikawa, Shinji

    We study static and spherically symmetric black hole (BH) solutions in second-order generalized Proca theories with nonminimal vector field derivative couplings to the Ricci scalar, the Einstein tensor, and the double dual Riemann tensor. We find concrete Lagrangians which give rise to exact BH solutions by imposing two conditions of the two identical metric components and the constant norm of the vector field. These exact solutions are described by either Reissner-Nordström (RN), stealth Schwarzschild, or extremal RN solutions with a non-trivial longitudinal mode of the vector field. We then numerically construct BH solutions without imposing these conditions. For cubic andmore » quartic Lagrangians with power-law couplings which encompass vector Galileons as the specific cases, we show the existence of BH solutions with the difference between two non-trivial metric components. The quintic-order power-law couplings do not give rise to non-trivial BH solutions regular throughout the horizon exterior. The sixth-order and intrinsic vector-mode couplings can lead to BH solutions with a secondary hair. For all the solutions, the vector field is regular at least at the future or past horizon. The deviation from General Relativity induced by the Proca hair can be potentially tested by future measurements of gravitational waves in the nonlinear regime of gravity.« less

  20. New analytical exact solutions of time fractional KdV-KZK equation by Kudryashov methods

    NASA Astrophysics Data System (ADS)

    S Saha, Ray

    2016-04-01

    In this paper, new exact solutions of the time fractional KdV-Khokhlov-Zabolotskaya-Kuznetsov (KdV-KZK) equation are obtained by the classical Kudryashov method and modified Kudryashov method respectively. For this purpose, the modified Riemann-Liouville derivative is used to convert the nonlinear time fractional KdV-KZK equation into the nonlinear ordinary differential equation. In the present analysis, the classical Kudryashov method and modified Kudryashov method are both used successively to compute the analytical solutions of the time fractional KdV-KZK equation. As a result, new exact solutions involving the symmetrical Fibonacci function, hyperbolic function and exponential function are obtained for the first time. The methods under consideration are reliable and efficient, and can be used as an alternative to establish new exact solutions of different types of fractional differential equations arising from mathematical physics. The obtained results are exhibited graphically in order to demonstrate the efficiencies and applicabilities of these proposed methods of solving the nonlinear time fractional KdV-KZK equation.

  1. Exact solutions for postbuckling of a graded porous beam

    NASA Astrophysics Data System (ADS)

    Ma, L. S.; Ou, Z. Y.

    2018-06-01

    An exact, closed-form solution for the postbuckling responses of graded porous beams subjected to axially loading is obtained. It was assumed that the properties of the graded porous materials vary continuously through thickness of the beams, the equations governing the axial and transverse deformations are derived based on the classical beam theory and the physical neutral surface concept. The two equations are reduced to a single nonlinear fourth-order integral-differential equation governing the transverse deformations. The nonlinear equation is directly solved without any use of approximation and a closed-form solution for postbuckled deformation is obtained as a function of the applied load. The exact solutions explicitly describe the nonlinear equilibrium paths of the buckled beam and thus are able to provide insight into deformation problems. Based on the exact solutions obtained herein, the effects of various factors such as porosity distribution pattern, porosity coefficient and boundary conditions on postbuckling behavior of graded porous beams have been investigated.

  2. Exact axisymmetric solutions of the Maxwell equations in a nonlinear nondispersive medium.

    PubMed

    Petrov, E Yu; Kudrin, A V

    2010-05-14

    The features of propagation of intense waves are of great interest for theory and experiment in electrodynamics and acoustics. The behavior of nonlinear waves in a bounded volume is of special importance and, at the same time, is an extremely complicated problem. It seems almost impossible to find a rigorous solution to such a problem even for any model of nonlinearity. We obtain the first exact solution of this type. We present a new method for deriving exact solutions of the Maxwell equations in a nonlinear medium without dispersion and give examples of the obtained solutions that describe propagation of cylindrical electromagnetic waves in a nonlinear nondispersive medium and free electromagnetic oscillations in a cylindrical cavity resonator filled with such a medium.

  3. New exact periodic solitary-wave solutions for the new (3+1)-dimensional generalized Kadomtsev-Petviashvili equation in multi-temperature electron plasmas

    NASA Astrophysics Data System (ADS)

    Liu, Jian-Guo; Tian, Yu; Zeng, Zhi-Fang

    2017-10-01

    In this paper, we aim to introduce a new form of the (3+1)-dimensional generalized Kadomtsev-Petviashvili equation for the long waves of small amplitude with slow dependence on the transverse coordinate. By using the Hirota's bilinear form and the extended homoclinic test approach, new exact periodic solitary-wave solutions for the new (3+1)-dimensional generalized Kadomtsev-Petviashvili equation are presented. Moreover, the properties and characteristics for these new exact periodic solitary-wave solutions are discussed with some figures.

  4. The mu-derivative and its applications to finding exact solutions of the Cahn-Hilliard, Korteveg-de Vries, and Burgers equations.

    PubMed

    Mitlin, Vlad

    2005-10-15

    A new transformation termed the mu-derivative is introduced. Applying it to the Cahn-Hilliard equation yields dynamical exact solutions. It is shown that the mu-transformed Cahn-Hilliard equation can be presented in a separable form. This transformation also yields dynamical exact solutions and separable forms for other nonlinear models such as the modified Korteveg-de Vries and the Burgers equations. The general structure of a nonlinear partial differential equation that becomes separable upon applying the mu-derivative is described.

  5. Low rank approximation method for efficient Green's function calculation of dissipative quantum transport

    NASA Astrophysics Data System (ADS)

    Zeng, Lang; He, Yu; Povolotskyi, Michael; Liu, XiaoYan; Klimeck, Gerhard; Kubis, Tillmann

    2013-06-01

    In this work, the low rank approximation concept is extended to the non-equilibrium Green's function (NEGF) method to achieve a very efficient approximated algorithm for coherent and incoherent electron transport. This new method is applied to inelastic transport in various semiconductor nanodevices. Detailed benchmarks with exact NEGF solutions show (1) a very good agreement between approximated and exact NEGF results, (2) a significant reduction of the required memory, and (3) a large reduction of the computational time (a factor of speed up as high as 150 times is observed). A non-recursive solution of the inelastic NEGF transport equations of a 1000 nm long resistor on standard hardware illustrates nicely the capability of this new method.

  6. Alternate Solution to Generalized Bernoulli Equations via an Integrating Factor: An Exact Differential Equation Approach

    ERIC Educational Resources Information Center

    Tisdell, C. C.

    2017-01-01

    Solution methods to exact differential equations via integrating factors have a rich history dating back to Euler (1740) and the ideas enjoy applications to thermodynamics and electromagnetism. Recently, Azevedo and Valentino presented an analysis of the generalized Bernoulli equation, constructing a general solution by linearizing the problem…

  7. Self-similar solutions to isothermal shock problems

    NASA Astrophysics Data System (ADS)

    Deschner, Stephan C.; Illenseer, Tobias F.; Duschl, Wolfgang J.

    We investigate exact solutions for isothermal shock problems in different one-dimensional geometries. These solutions are given as analytical expressions if possible, or are computed using standard numerical methods for solving ordinary differential equations. We test the numerical solutions against the analytical expressions to verify the correctness of all numerical algorithms. We use similarity methods to derive a system of ordinary differential equations (ODE) yielding exact solutions for power law density distributions as initial conditions. Further, the system of ODEs accounts for implosion problems (IP) as well as explosion problems (EP) by changing the initial or boundary conditions, respectively. Taking genuinely isothermal approximations into account leads to additional insights of EPs in contrast to earlier models. We neglect a constant initial energy contribution but introduce a parameter to adjust the initial mass distribution of the system. Moreover, we show that due to this parameter a constant initial density is not allowed for isothermal EPs. Reasonable restrictions for this parameter are given. Both, the (genuinely) isothermal implosion as well as the explosion problem are solved for the first time.

  8. Automatic Assignment of Methyl-NMR Spectra of Supramolecular Machines Using Graph Theory.

    PubMed

    Pritišanac, Iva; Degiacomi, Matteo T; Alderson, T Reid; Carneiro, Marta G; Ab, Eiso; Siegal, Gregg; Baldwin, Andrew J

    2017-07-19

    Methyl groups are powerful probes for the analysis of structure, dynamics and function of supramolecular assemblies, using both solution- and solid-state NMR. Widespread application of the methodology has been limited due to the challenges associated with assigning spectral resonances to specific locations within a biomolecule. Here, we present Methyl Assignment by Graph Matching (MAGMA), for the automatic assignment of methyl resonances. A graph matching protocol examines all possibilities for each resonance in order to determine an exact assignment that includes a complete description of any ambiguity. MAGMA gives 100% accuracy in confident assignments when tested against both synthetic data, and 9 cross-validated examples using both solution- and solid-state NMR data. We show that this remarkable accuracy enables a user to distinguish between alternative protein structures. In a drug discovery application on HSP90, we show the method can rapidly and efficiently distinguish between possible ligand binding modes. By providing an exact and robust solution to methyl resonance assignment, MAGMA can facilitate significantly accelerated studies of supramolecular machines using methyl-based NMR spectroscopy.

  9. Exact solutions in 3D gravity with torsion

    NASA Astrophysics Data System (ADS)

    González, P. A.; Vásquez, Yerko

    2011-08-01

    We study the three-dimensional gravity with torsion given by the Mielke-Baekler (MB) model coupled to gravitational Chern-Simons term, and that possess electric charge described by Maxwell-Chern-Simons electrodynamics. We find and discuss this theory's charged black holes solutions and uncharged solutions. We find that for vanishing torsion our solutions by means of a coordinate transformation can be written as three-dimensional Chern-Simons black holes. We also discuss a special case of this theory, Topologically Massive Gravity (TMG) at chiral point, and we show that the logarithmic solution of TMG is also a solution of the MB model at a fixed point in the space of parameters. Furthermore, we show that our solutions generalize Gödel type solutions in a particular case. Also, we recover BTZ black hole in Riemann-Cartan spacetime for vanishing charge.

  10. An exact conformal symmetry Ansatz on Kaluza-Klein reduced TMG

    NASA Astrophysics Data System (ADS)

    Moutsopoulos, George; Ritter, Patricia

    2011-11-01

    Using a Kaluza-Klein dimensional reduction, and further imposing a conformal Killing symmetry on the reduced metric generated by the dilaton, we show an Ansatz that yields many of the known stationary axisymmetric solutions to TMG.

  11. Extended Reissner-Nordström solutions sourced by dynamical torsion

    NASA Astrophysics Data System (ADS)

    Cembranos, Jose A. R.; Valcarcel, Jorge Gigante

    2018-04-01

    We find a new exact vacuum solution in the framework of the Poincaré Gauge field theory with massive torsion. In this model, torsion operates as an independent field and introduces corrections to the vacuum structure present in General Relativity. The new static and spherically symmetric configuration shows a Reissner-Nordström-like geometry characterized by a spin charge. It extends the known massless torsion solution to the massive case. The corresponding Reissner-Nordström-de Sitter solution is also compatible with a cosmological constant and additional U (1) gauge fields.

  12. Some exact velocity profiles for granular flow in converging hoppers

    NASA Astrophysics Data System (ADS)

    Cox, Grant M.; Hill, James M.

    2005-01-01

    Gravity flow of granular materials through hoppers occurs in many industrial processes. For an ideal cohesionless granular material, which satisfies the Coulomb-Mohr yield condition, the number of known analytical solutions is limited. However, for the special case of the angle of internal friction δ equal to ninety degrees, there exist exact parametric solutions for the governing coupled ordinary differential equations for both two-dimensional wedges and three-dimensional cones, both of which involve two arbitrary constants of integration. These solutions are the only known analytical solutions of this generality. Here, we utilize the double-shearing theory of granular materials to determine the velocity field corresponding to these exact parametric solutions for the two problems of gravity flow through converging wedge and conical hoppers. An independent numerical solution for other angles of internal friction is shown to coincide with the analytical solution.

  13. Comment on "Collision of plane gravitational waves without singularities"

    NASA Astrophysics Data System (ADS)

    Nutku, Y.

    1981-08-01

    An incorrect paper was published by B. J. Stoyanov carrying the title above. Here we shall point out a coordinate transformation whereby "the new exact solution" of his paper is recognized as a Kasner universe. Further, we shall show that Stoyanov's interpretation of the Kasner solution as colliding plane gravitational waves runs into the difficulty that the Einstein field equations are not satisfied everywhere.

  14. Comment on ''Collision of plane gravitational waves without singularities''

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Nutku, Y.

    1981-08-15

    An incorrect paper was published by B. J. Stoyanov carrying the title above. Here we shall point out a coordinate transformation whereby ''the new exact solution'' of his paper is recognized as a Kasner universe. Further, we shall show that Stoyanov's interpretation of the Kasner solution as colliding plane gravitational waves runs into the difficulty that the Einstein field equations are not satisfied everywhere.

  15. Analytical approach for the fractional differential equations by using the extended tanh method

    NASA Astrophysics Data System (ADS)

    Pandir, Yusuf; Yildirim, Ayse

    2018-07-01

    In this study, we consider analytical solutions of space-time fractional derivative foam drainage equation, the nonlinear Korteweg-de Vries equation with time and space-fractional derivatives and time-fractional reaction-diffusion equation by using the extended tanh method. The fractional derivatives are defined in the modified Riemann-Liouville context. As a result, various exact analytical solutions consisting of trigonometric function solutions, kink-shaped soliton solutions and new exact solitary wave solutions are obtained.

  16. More exact solutions of the constant astigmatism equation

    NASA Astrophysics Data System (ADS)

    Hlaváč, Adam

    2018-01-01

    By using Bäcklund transformation for the sine-Gordon equation, new periodic exact solutions of the constant astigmatism equation zyy +(1 / z) xx + 2 = 0 are generated from a seed which corresponds to Lipschitz surfaces of constant astigmatism.

  17. A Large Class of Exact Solutions to the One-Dimensional Schrodinger Equation

    ERIC Educational Resources Information Center

    Karaoglu, Bekir

    2007-01-01

    A remarkable property of a large class of functions is exploited to generate exact solutions to the one-dimensional Schrodinger equation. The method is simple and easy to implement. (Contains 1 table and 1 figure.)

  18. Numerical Uncertainty Analysis for Computational Fluid Dynamics using Student T Distribution -- Application of CFD Uncertainty Analysis Compared to Exact Analytical Solution

    NASA Technical Reports Server (NTRS)

    Groves, Curtis E.; Ilie, marcel; Shallhorn, Paul A.

    2014-01-01

    Computational Fluid Dynamics (CFD) is the standard numerical tool used by Fluid Dynamists to estimate solutions to many problems in academia, government, and industry. CFD is known to have errors and uncertainties and there is no universally adopted method to estimate such quantities. This paper describes an approach to estimate CFD uncertainties strictly numerically using inputs and the Student-T distribution. The approach is compared to an exact analytical solution of fully developed, laminar flow between infinite, stationary plates. It is shown that treating all CFD input parameters as oscillatory uncertainty terms coupled with the Student-T distribution can encompass the exact solution.

  19. Exact closed-form solutions of a fully nonlinear asymptotic two-fluid model

    NASA Astrophysics Data System (ADS)

    Cheviakov, Alexei F.

    2018-05-01

    A fully nonlinear model of Choi and Camassa (1999) describing one-dimensional incompressible dynamics of two non-mixing fluids in a horizontal channel, under a shallow water approximation, is considered. An equivalence transformation is presented, leading to a special dimensionless form of the system, involving a single dimensionless constant physical parameter, as opposed to five parameters present in the original model. A first-order dimensionless ordinary differential equation describing traveling wave solutions is analyzed. Several multi-parameter families of physically meaningful exact closed-form solutions of the two-fluid model are derived, corresponding to periodic, solitary, and kink-type bidirectional traveling waves; specific examples are given, and properties of the exact solutions are analyzed.

  20. Some exact solutions for maximally symmetric topological defects in Anti de Sitter space

    NASA Astrophysics Data System (ADS)

    Alvarez, Orlando; Haddad, Matthew

    2018-03-01

    We obtain exact analytical solutions for a class of SO( l) Higgs field theories in a non-dynamic background n-dimensional anti de Sitter space. These finite transverse energy solutions are maximally symmetric p-dimensional topological defects where n = ( p + 1) + l. The radius of curvature of anti de Sitter space provides an extra length scale that allows us to study the equations of motion in a limit where the masses of the Higgs field and the massive vector bosons are both vanishing. We call this the double BPS limit. In anti de Sitter space, the equations of motion depend on both p and l. The exact analytical solutions are expressed in terms of standard special functions. The known exact analytical solutions are for kink-like defects ( p = 0 , 1 , 2 , . . . ; l = 1), vortex-like defects ( p = 1 , 2 , 3; l = 2), and the 't Hooft-Polyakov monopole ( p = 0; l = 3). A bonus is that the double BPS limit automatically gives a maximally symmetric classical glueball type solution. In certain cases where we did not find an analytic solution, we present numerical solutions to the equations of motion. The asymptotically exponentially increasing volume with distance of anti de Sitter space imposes different constraints than those found in the study of defects in Minkowski space.

  1. Closed solutions to a differential-difference equation and an associated plate solidification problem.

    PubMed

    Layeni, Olawanle P; Akinola, Adegbola P; Johnson, Jesse V

    2016-01-01

    Two distinct and novel formalisms for deriving exact closed solutions of a class of variable-coefficient differential-difference equations arising from a plate solidification problem are introduced. Thereupon, exact closed traveling wave and similarity solutions to the plate solidification problem are obtained for some special cases of time-varying plate surface temperature.

  2. The mean and variance of phylogenetic diversity under rarefaction

    PubMed Central

    Matsen, Frederick A.

    2013-01-01

    Summary Phylogenetic diversity (PD) depends on sampling depth, which complicates the comparison of PD between samples of different depth. One approach to dealing with differing sample depth for a given diversity statistic is to rarefy, which means to take a random subset of a given size of the original sample. Exact analytical formulae for the mean and variance of species richness under rarefaction have existed for some time but no such solution exists for PD.We have derived exact formulae for the mean and variance of PD under rarefaction. We confirm that these formulae are correct by comparing exact solution mean and variance to that calculated by repeated random (Monte Carlo) subsampling of a dataset of stem counts of woody shrubs of Toohey Forest, Queensland, Australia. We also demonstrate the application of the method using two examples: identifying hotspots of mammalian diversity in Australasian ecoregions, and characterising the human vaginal microbiome.There is a very high degree of correspondence between the analytical and random subsampling methods for calculating mean and variance of PD under rarefaction, although the Monte Carlo method requires a large number of random draws to converge on the exact solution for the variance.Rarefaction of mammalian PD of ecoregions in Australasia to a common standard of 25 species reveals very different rank orderings of ecoregions, indicating quite different hotspots of diversity than those obtained for unrarefied PD. The application of these methods to the vaginal microbiome shows that a classical score used to quantify bacterial vaginosis is correlated with the shape of the rarefaction curve.The analytical formulae for the mean and variance of PD under rarefaction are both exact and more efficient than repeated subsampling. Rarefaction of PD allows for many applications where comparisons of samples of different depth is required. PMID:23833701

  3. The mean and variance of phylogenetic diversity under rarefaction.

    PubMed

    Nipperess, David A; Matsen, Frederick A

    2013-06-01

    Phylogenetic diversity (PD) depends on sampling depth, which complicates the comparison of PD between samples of different depth. One approach to dealing with differing sample depth for a given diversity statistic is to rarefy, which means to take a random subset of a given size of the original sample. Exact analytical formulae for the mean and variance of species richness under rarefaction have existed for some time but no such solution exists for PD.We have derived exact formulae for the mean and variance of PD under rarefaction. We confirm that these formulae are correct by comparing exact solution mean and variance to that calculated by repeated random (Monte Carlo) subsampling of a dataset of stem counts of woody shrubs of Toohey Forest, Queensland, Australia. We also demonstrate the application of the method using two examples: identifying hotspots of mammalian diversity in Australasian ecoregions, and characterising the human vaginal microbiome.There is a very high degree of correspondence between the analytical and random subsampling methods for calculating mean and variance of PD under rarefaction, although the Monte Carlo method requires a large number of random draws to converge on the exact solution for the variance.Rarefaction of mammalian PD of ecoregions in Australasia to a common standard of 25 species reveals very different rank orderings of ecoregions, indicating quite different hotspots of diversity than those obtained for unrarefied PD. The application of these methods to the vaginal microbiome shows that a classical score used to quantify bacterial vaginosis is correlated with the shape of the rarefaction curve.The analytical formulae for the mean and variance of PD under rarefaction are both exact and more efficient than repeated subsampling. Rarefaction of PD allows for many applications where comparisons of samples of different depth is required.

  4. Topological soliton solutions for three shallow water waves models

    NASA Astrophysics Data System (ADS)

    Liu, Jiangen; Zhang, Yufeng; Wang, Yan

    2018-07-01

    In this article, we investigate three distinct physical structures for shallow water waves models by the improved ansatz method. The method was improved and can be used to obtain more generalized form topological soliton solutions than the original method. As a result, some new exact solutions of the shallow water equations are successfully established and the obtained results are exhibited graphically. The results showed that the improved ansatz method can be applied to solve other nonlinear differential equations arising from mathematical physics.

  5. Padé approximant for normal stress differences in large-amplitude oscillatory shear flow

    NASA Astrophysics Data System (ADS)

    Poungthong, P.; Saengow, C.; Giacomin, A. J.; Kolitawong, C.; Merger, D.; Wilhelm, M.

    2018-04-01

    Analytical solutions for the normal stress differences in large-amplitude oscillatory shear flow (LAOS), for continuum or molecular models, normally take the inexact form of the first few terms of a series expansion in the shear rate amplitude. Here, we improve the accuracy of these truncated expansions by replacing them with rational functions called Padé approximants. The recent advent of exact solutions in LAOS presents an opportunity to identify accurate and useful Padé approximants. For this identification, we replace the truncated expansion for the corotational Jeffreys fluid with its Padé approximants for the normal stress differences. We uncover the most accurate and useful approximant, the [3,4] approximant, and then test its accuracy against the exact solution [C. Saengow and A. J. Giacomin, "Normal stress differences from Oldroyd 8-constant framework: Exact analytical solution for large-amplitude oscillatory shear flow," Phys. Fluids 29, 121601 (2017)]. We use Ewoldt grids to show the stunning accuracy of our [3,4] approximant in LAOS. We quantify this accuracy with an objective function and then map it onto the Pipkin space. Our two applications illustrate how to use our new approximant reliably. For this, we use the Spriggs relations to generalize our best approximant to multimode, and then, we compare with measurements on molten high-density polyethylene and on dissolved polyisobutylene in isobutylene oligomer.

  6. Separated flows near the nose of a body of revolution

    NASA Technical Reports Server (NTRS)

    Lin, S. P.

    1986-01-01

    The solution of the Navier-Stokes equations for the problem of cross-flow separataion about a deforming cylinder was achieved by iteration. It was shown that the separation starts at the rear stagnation point and the point of primary separation moves upstram along the cylinder surface. A general method of linear stability analysis for nonparallel external flows was constructed, which consists of representing the eigenfunctions with complete orthogonal sets and forms characteristic equations with the Galerkin method. The method was applied to the Kovasznay flow which is an exact solution of the Navier-Stokes equation. The results show that when the critical parameter is exceeded, there are only a few isolated unstable eigen-frequencies. Another exact solution is shown to be absolutely and monotonically stable with respect to infinitesimal disturbances of all frequencies. The flow is also globally, asymptotically, and monotonically stable in the mean with respect o three-dimensional disturbances. This result forms the sound foundation of rigorous stability analysis for nonparallel flows, and provides an invaluable test ground for future studies of nonparallel flows in which the basic states do not posses exact solutions. The application of this method to the study of the formation of spiral vorticies near the nose of a rotating body of revolution is underway. The same method will be applied to the stability analysis of reversed flow over a plate with suction.

  7. On the Debye-Hückel effect of electric screening

    NASA Astrophysics Data System (ADS)

    Campos, L. M. B. C.; Lau, F. J. P.

    2014-07-01

    The paper considers non-linear self-consistent electric potential equation (Sec. I), due to a cloud made of a single species of electric charges, satisfying a Boltzmann distribution law (Sec. II). Exact solutions are obtained in a simple logarithmic form, in three cases: (Sec. III) spherical radial symmetry; (Sec. IV) plane parallel symmetry; (Sec. V) a special case of azimuthal-cylindrical symmetry. All these solutions, and their transformations (Sec. VI), involve the Debye-Hückel radius; the latter was originally defined from a solution of the linearized self-consistent potential equation. Using an exact solution of the self-consistent potential equation, the distance at which the potential vanishes differs from the Debye-Hückel radius by a factor of √2 . The preceding (Secs. II-VI) simple logarithmic exact solutions of the self-consistent potential equations involve no arbitrary constants, and thus are special or singular integrals not the general integral. The general solution of the self-consistent potential equation is obtained in the plane parallel case (Sec. VII), and it involves two arbitrary constants that can be reduced to one via a translation (Sec. VIII). The plots of dimensionless potential (Figure 1), electric field (Figure 2), charge density (Figure 3), and total charge between ζ and infinity (Figure 4), versus distance normalized to Debye-Hückel radius ζ ≡ z/a, show that (Sec. IX) there is a continuum of solutions, ranging from a charge distribution concentrated inside the Debye-Hückel radius to one spread-out beyond it. The latter case leads to the limiting case of logarithmic potential, and stronger electric field; the former case, of very concentrated charge distribution, leads to a fratricide effect and weaker electric field.

  8. On the Debye–Hückel effect of electric screening

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Campos, L. M. B. C.; Lau, F. J. P.

    2014-07-15

    The paper considers non-linear self-consistent electric potential equation (Sec. I), due to a cloud made of a single species of electric charges, satisfying a Boltzmann distribution law (Sec. II). Exact solutions are obtained in a simple logarithmic form, in three cases: (Sec. III) spherical radial symmetry; (Sec. IV) plane parallel symmetry; (Sec. V) a special case of azimuthal-cylindrical symmetry. All these solutions, and their transformations (Sec. VI), involve the Debye-Hückel radius; the latter was originally defined from a solution of the linearized self-consistent potential equation. Using an exact solution of the self-consistent potential equation, the distance at which the potentialmore » vanishes differs from the Debye-Hückel radius by a factor of √(2). The preceding (Secs. II–VI) simple logarithmic exact solutions of the self-consistent potential equations involve no arbitrary constants, and thus are special or singular integrals not the general integral. The general solution of the self-consistent potential equation is obtained in the plane parallel case (Sec. VII), and it involves two arbitrary constants that can be reduced to one via a translation (Sec. VIII). The plots of dimensionless potential (Figure 1), electric field (Figure 2), charge density (Figure 3), and total charge between ζ and infinity (Figure 4), versus distance normalized to Debye-Hückel radius ζ ≡ z/a, show that (Sec. IX) there is a continuum of solutions, ranging from a charge distribution concentrated inside the Debye-Hückel radius to one spread-out beyond it. The latter case leads to the limiting case of logarithmic potential, and stronger electric field; the former case, of very concentrated charge distribution, leads to a fratricide effect and weaker electric field.« less

  9. Exact solutions for the source-excited cylindrical electromagnetic waves in a nonlinear nondispersive medium.

    PubMed

    Es'kin, V A; Kudrin, A V; Petrov, E Yu

    2011-06-01

    The behavior of electromagnetic fields in nonlinear media has been a topical problem since the discovery of materials with a nonlinearity of electromagnetic properties. The problem of finding exact solutions for the source-excited nonlinear waves in curvilinear coordinates has been regarded as unsolvable for a long time. In this work, we present the first solution of this type for a cylindrically symmetric field excited by a pulsed current filament in a nondispersive medium that is simultaneously inhomogeneous and nonlinear. Assuming that the medium has a power-law permittivity profile in the linear regime and lacks a center of inversion, we derive an exact solution for the electromagnetic field excited by a current filament in such a medium and discuss the properties of this solution.

  10. Asymptotically and exactly energy balanced augmented flux-ADER schemes with application to hyperbolic conservation laws with geometric source terms

    NASA Astrophysics Data System (ADS)

    Navas-Montilla, A.; Murillo, J.

    2016-07-01

    In this work, an arbitrary order HLL-type numerical scheme is constructed using the flux-ADER methodology. The proposed scheme is based on an augmented Derivative Riemann solver that was used for the first time in Navas-Montilla and Murillo (2015) [1]. Such solver, hereafter referred to as Flux-Source (FS) solver, was conceived as a high order extension of the augmented Roe solver and led to the generation of a novel numerical scheme called AR-ADER scheme. Here, we provide a general definition of the FS solver independently of the Riemann solver used in it. Moreover, a simplified version of the solver, referred to as Linearized-Flux-Source (LFS) solver, is presented. This novel version of the FS solver allows to compute the solution without requiring reconstruction of derivatives of the fluxes, nevertheless some drawbacks are evidenced. In contrast to other previously defined Derivative Riemann solvers, the proposed FS and LFS solvers take into account the presence of the source term in the resolution of the Derivative Riemann Problem (DRP), which is of particular interest when dealing with geometric source terms. When applied to the shallow water equations, the proposed HLLS-ADER and AR-ADER schemes can be constructed to fulfill the exactly well-balanced property, showing that an arbitrary quadrature of the integral of the source inside the cell does not ensure energy balanced solutions. As a result of this work, energy balanced flux-ADER schemes that provide the exact solution for steady cases and that converge to the exact solution with arbitrary order for transient cases are constructed.

  11. Lie symmetry analysis, exact solutions and conservation laws for the time fractional Caudrey-Dodd-Gibbon-Sawada-Kotera equation

    NASA Astrophysics Data System (ADS)

    Baleanu, Dumitru; Inc, Mustafa; Yusuf, Abdullahi; Aliyu, Aliyu Isa

    2018-06-01

    In this work, we investigate the Lie symmetry analysis, exact solutions and conservation laws (Cls) to the time fractional Caudrey-Dodd-Gibbon-Sawada-Kotera (CDGDK) equation with Riemann-Liouville (RL) derivative. The time fractional CDGDK is reduced to nonlinear ordinary differential equation (ODE) of fractional order. New exact traveling wave solutions for the time fractional CDGDK are obtained by fractional sub-equation method. In the reduced equation, the derivative is in Erdelyi-Kober (EK) sense. Ibragimov's nonlocal conservation method is applied to construct Cls for time fractional CDGDK.

  12. Asymptotically exact parabolic solutions of the generalized nonlinear Schrödinger equation with varying parameters

    NASA Astrophysics Data System (ADS)

    Kruglov, Vladimir I.; Harvey, John D.

    2006-12-01

    We present exact asymptotic similariton solutions of the generalized nonlinear Schrödinger equation (NLSE) with gain or loss terms for a normal-dispersion fiber amplifier with dispersion, nonlinearity, and gain profiles that depend on the propagation distance. Our treatment is based on the mapping of the NLSE with varying parameters to the NLSE with constant dispersion and nonlinearity coefficients and an arbitrary varying gain function. We formulate an effective procedure that leads directly, under appropriate conditions, to a wide range of exact asymptotic similariton solutions of NLSE demonstrating self-similar propagating regimes with linear chirp.

  13. Rogue wave solutions for the infinite integrable nonlinear Schrödinger equation hierarchy.

    PubMed

    Ankiewicz, A; Akhmediev, N

    2017-07-01

    We present rogue wave solutions of the integrable nonlinear Schrödinger equation hierarchy with an infinite number of higher-order terms. The latter include higher-order dispersion and higher-order nonlinear terms. In particular, we derive the fundamental rogue wave solutions for all orders of the hierarchy, with exact expressions for velocities, phase, and "stretching factors" in the solutions. We also present several examples of exact solutions of second-order rogue waves, including rogue wave triplets.

  14. Gravitational field of a concentrated mass in Jordan—Brans—Dicke theory

    NASA Astrophysics Data System (ADS)

    Arutyunyan, G. G.; Papoyan, V. V.

    1994-04-01

    The problem of determining the gravitational field of a static, spherically symmetric, self-gravitating object is formulated. The small number of physically applicable exact solutions of the equations in Jordan—Brans—Dicke theory is augmented with new exact solutions describing the external gravitational field of the given body. Once a solution has been found, it can be rewritten in modified curvature, homogeneous, and other coordinates by appropriate gauging. In a special case the solution coincides with the well-known Schwarzschild solution.

  15. Analytical solution for boundary heat fluxes from a radiating rectangular medium

    NASA Technical Reports Server (NTRS)

    Siegel, R.

    1991-01-01

    Reference is made to the work of Shah (1979) which demonstrated the possibility of partially integrating the radiative equations analytically to obtain an 'exact' solution. Shah's solution was given as a double integration of the modified Bessel function of order zero. Here, it is shown that the 'exact' solution for a rectangular region radiating to cold black walls can be conveniently derived, and expressed in simple form, by using an integral function, Sn, analogous to the exponential integral function appearing in plane-layer solutions.

  16. Exact solutions to force-free electrodynamics in black hole backgrounds

    NASA Astrophysics Data System (ADS)

    Brennan, T. Daniel; Gralla, Samuel E.; Jacobson, Ted

    2013-10-01

    A shared property of several of the known exact solutions to the equations of force-free electrodynamics is that their charge-current four-vector is null. We examine the general properties of null-current solutions and then focus on the principal congruences of the Kerr black hole spacetime. We obtain a large class of exact solutions, which are in general time-dependent and non-axisymmetric. These solutions include waves that, surprisingly, propagate without scattering on the curvature of the black hole’s background. They may be understood as generalizations to Robinson’s solutions to vacuum electrodynamics associated with a shear-free congruence of null geodesics. When stationary and axisymmetric, our solutions reduce to those of Menon and Dermer, the only previously known solutions in Kerr. In Kerr, all of our solutions have null electromagnetic fields (\\vec{E} \\cdot \\vec{B} = 0 and E2 = B2). However, in Schwarzschild or flat spacetime there is freedom to add a magnetic monopole field, making the solutions magnetically dominated (B2 > E2). This freedom may be used to reproduce the various flat-spacetime and Schwarzschild-spacetime (split) monopole solutions available in the literature (due to Michel and later authors), and to obtain a large class of time-dependent, non-axisymmetric generalizations. These generalizations may be used to model the magnetosphere of a conducting star that rotates with arbitrary prescribed time-dependent rotation axis and speed. We thus significantly enlarge the class of known exact solutions, while organizing and unifying previously discovered solutions in terms of their null structure.

  17. On exact solutions for disturbances to the asymptotic suction boundary layer: transformation of Barnes integrals to convolution integrals

    NASA Astrophysics Data System (ADS)

    Russell, John

    2000-11-01

    A modified Orr-Sommerfeld equation that applies to the asymptotic suction boundary layer was reported by Bussmann & Münz in a wartime report dated 1942 and by Hughes & Reid in J.F.M. ( 23, 1965, p715). Fundamental systems of exact solutions of the Orr-Sommerfeld equation for this mean velocity distribution were reported by D. Grohne in an unpublished typescript dated 1950. Exact solutions of the equation of Bussmann, Münz, Hughes, & Reid were reported by P. Baldwin in Mathematika ( 17, 1970, p206). Grohne and Baldwin noticed that these exact solutions may be expressed either as Barnes integrals or as convolution integrals. In a later paper (Phil. Trans. Roy. Soc. A, 399, 1985, p321), Baldwin applied the convolution integrals in the contruction of large-Reynolds number asymptotic approximations that hold uniformly. The present talk discusses the subtleties that arise in the construction of such convolution integrals, including several not reported by Grohne or Baldwin. The aim is to recover the full set of seven solutions (one well balanced, three balanced, and three dominant-recessive) postulated by W.H. Reid in various works on the uniformly valid solutions.

  18. Exact solutions for a type of electron pairing model with spin-orbit interactions and Zeeman coupling.

    PubMed

    Liu, Jia; Han, Qiang; Shao, L B; Wang, Z D

    2011-07-08

    A type of electron pairing model with spin-orbit interactions or Zeeman coupling is solved exactly in the framework of the Richardson ansatz. Based on the exact solutions for the case with spin-orbit interactions, it is shown rigorously that the pairing symmetry is of the p + ip wave and the ground state possesses time-reversal symmetry, regardless of the strength of the pairing interaction. Intriguingly, how Majorana fermions can emerge in the system is also elaborated. Exact results are illustrated for two systems, respectively, with spin-orbit interactions and Zeeman coupling.

  19. Logical gaps in the approximate solutions of the social learning game and an exact solution.

    PubMed

    Dai, Wenjie; Wang, Xin; Di, Zengru; Wu, Jinshan

    2014-01-01

    After the social learning models were proposed, finding solutions to the games becomes a well-defined mathematical question. However, almost all papers on the games and their applications are based on solutions built either upon an ad-hoc argument or a twisted Bayesian analysis of the games. Here, we present logical gaps in those solutions and offer an exact solution of our own. We also introduce a minor extension to the original game so that not only logical differences but also differences in action outcomes among those solutions become visible.

  20. Focusing of noncircular self-similar shock waves.

    PubMed

    Betelu, S I; Aronson, D G

    2001-08-13

    We study the focusing of noncircular shock waves in a perfect gas. We construct an explicit self-similar solution by combining three convergent plane waves with regular shock reflections between them. We then show, with a numerical Riemann solver, that there are initial conditions with smooth shocks whose intermediate asymptotic stage is described by the exact solution. Unlike the focusing of circular shocks, our self-similar shocks have bounded energy density.

  1. Binary black hole in a double magnetic monopole field

    NASA Astrophysics Data System (ADS)

    Rodriguez, Maria J.

    2018-01-01

    Ambient magnetic fields are thought to play a critical role in black hole jet formation. Furthermore, dual electromagnetic signals could be produced during the inspiral and merger of binary black hole systems. In this paper, we derive the exact solution for the electromagnetic field occurring when a static, axisymmetric binary black hole system is placed in the field of two magnetic or electric monopoles. As a by-product of this derivation, we also find the exact solution of the binary black hole configuration in a magnetic or electric dipole field. The presence of conical singularities in the static black hole binaries represent the gravitational attraction between the black holes that also drag the external two monopole field. We show that these off-balance configurations generate no energy outflows.

  2. Solutions of conformal Israel-Stewart relativistic viscous fluid dynamics

    NASA Astrophysics Data System (ADS)

    Marrochio, Hugo; Noronha, Jorge; Denicol, Gabriel S.; Luzum, Matthew; Jeon, Sangyong; Gale, Charles

    2015-01-01

    We use symmetry arguments developed by Gubser to construct the first radially expanding explicit solutions of the Israel-Stewart formulation of hydrodynamics. Along with a general semi-analytical solution, an exact analytical solution is given which is valid in the cold plasma limit where viscous effects from shear viscosity and the relaxation time coefficient are important. The radially expanding solutions presented in this paper can be used as nontrivial checks of numerical algorithms employed in hydrodynamic simulations of the quark-gluon plasma formed in ultrarelativistic heavy ion collisions. We show this explicitly by comparing such analytic and semi-analytic solutions with the corresponding numerical solutions obtained using the music viscous hydrodynamics simulation code.

  3. Kitaev honeycomb tensor networks: Exact unitary circuits and applications

    NASA Astrophysics Data System (ADS)

    Schmoll, Philipp; Orús, Román

    2017-01-01

    The Kitaev honeycomb model is a paradigm of exactly solvable models, showing nontrivial physical properties such as topological quantum order, Abelian and non-Abelian anyons, and chirality. Its solution is one of the most beautiful examples of the interplay of different mathematical techniques in condensed matter physics. In this paper, we show how to derive a tensor network (TN) description of the eigenstates of this spin-1/2 model in the thermodynamic limit, and in particular for its ground state. In our setting, eigenstates are naturally encoded by an exact 3d TN structure made of fermionic unitary operators, corresponding to the unitary quantum circuit building up the many-body quantum state. In our derivation we review how the different "solution ingredients" of the Kitaev honeycomb model can be accounted for in the TN language, namely, Jordan-Wigner transformation, braidings of Majorana modes, fermionic Fourier transformation, and Bogoliubov transformation. The TN built in this way allows for a clear understanding of several properties of the model. In particular, we show how the fidelity diagram is straightforward both at zero temperature and at finite temperature in the vortex-free sector. We also show how the properties of two-point correlation functions follow easily. Finally, we also discuss the pros and cons of contracting of our 3d TN down to a 2d projected entangled pair state (PEPS) with finite bond dimension. The results in this paper can be extended to generalizations of the Kitaev model, e.g., to other lattices, spins, and dimensions.

  4. Traveling wavefront solutions to nonlinear reaction-diffusion-convection equations

    NASA Astrophysics Data System (ADS)

    Indekeu, Joseph O.; Smets, Ruben

    2017-08-01

    Physically motivated modified Fisher equations are studied in which nonlinear convection and nonlinear diffusion is allowed for besides the usual growth and spread of a population. It is pointed out that in a large variety of cases separable functions in the form of exponentially decaying sharp wavefronts solve the differential equation exactly provided a co-moving point source or sink is active at the wavefront. The velocity dispersion and front steepness may differ from those of some previously studied exact smooth traveling wave solutions. For an extension of the reaction-diffusion-convection equation, featuring a memory effect in the form of a maturity delay for growth and spread, also smooth exact wavefront solutions are obtained. The stability of the solutions is verified analytically and numerically.

  5. Interior radiances in optically deep absorbing media. 1: Exact solutions for one-dimensional model

    NASA Technical Reports Server (NTRS)

    Kattawar, G. W.; Plass, G. N.

    1973-01-01

    The exact solutions are obtained for a one dimensional model of a scattering and absorbing medium. The results are given for both the reflected and transmitted radiance for any arbitrary surface albedo as well as for the interior radiance. These same quantities are calculated by the matrix operator method. The relative error of the solutions is obtained by comparison with the exact solutions as well as by an error analysis of the equations. The importance of an accurate starting value for the reflection and transmission operators is shown. A fourth order Runge-Kutta method can be used to solve the differential equations satisfied by these operators in order to obtain such accurate starting values.

  6. Exact solution for four-order acousto-optic Bragg diffraction with arbitrary initial conditions.

    PubMed

    Pieper, Ron; Koslover, Deborah; Poon, Ting-Chung

    2009-03-01

    An exact solution to the four-order acousto-optic (AO) Bragg diffraction problem with arbitrary initial conditions compatible with exact Bragg angle incident light is developed. The solution, obtained by solving a 4th-order differential equation, is formalized into a transition matrix operator predicting diffracted light orders at the exit of the AO cell in terms of the same diffracted light orders at the entrance. It is shown that the transition matrix is unitary and that this unitary matrix condition is sufficient to guarantee energy conservation. A comparison of analytical solutions with numerical predictions validates the formalism. Although not directly related to the approach used to obtain the solution, it was discovered that all four generated eigenvalues from the four-order AO differential matrix operator are expressed simply in terms of Euclid's Divine Proportion.

  7. OPTRAN- OPTIMAL LOW THRUST ORBIT TRANSFERS

    NASA Technical Reports Server (NTRS)

    Breakwell, J. V.

    1994-01-01

    OPTRAN is a collection of programs that solve the problem of optimal low thrust orbit transfers between non-coplanar circular orbits for spacecraft with chemical propulsion systems. The programs are set up to find Hohmann-type solutions, with burns near the perigee and apogee of the transfer orbit. They will solve both fairly long burn-arc transfers and "divided-burn" transfers. Program modeling includes a spherical earth gravity model and propulsion system models for either constant thrust or constant acceleration. The solutions obtained are optimal with respect to fuel use: i.e., final mass of the spacecraft is maximized with respect to the controls. The controls are the direction of thrust and the thrust on/off times. Two basic types of programs are provided in OPTRAN. The first type is for "exact solution" which results in complete, exact tkme-histories. The exact spacecraft position, velocity, and optimal thrust direction are given throughout the maneuver, as are the optimal thrust switch points, the transfer time, and the fuel costs. Exact solution programs are provided in two versions for non-coplanar transfers and in a fast version for coplanar transfers. The second basic type is for "approximate solutions" which results in approximate information on the transfer time and fuel costs. The approximate solution is used to estimate initial conditions for the exact solution. It can be used in divided-burn transfers to find the best number of burns with respect to time. The approximate solution is useful by itself in relatively efficient, short burn-arc transfers. These programs are written in FORTRAN 77 for batch execution and have been implemented on a DEC VAX series computer with the largest program having a central memory requirement of approximately 54K of 8 bit bytes. The OPTRAN program were developed in 1983.

  8. Markovian master equations for quantum thermal machines: local versus global approach

    NASA Astrophysics Data System (ADS)

    Hofer, Patrick P.; Perarnau-Llobet, Martí; Miranda, L. David M.; Haack, Géraldine; Silva, Ralph; Bohr Brask, Jonatan; Brunner, Nicolas

    2017-12-01

    The study of quantum thermal machines, and more generally of open quantum systems, often relies on master equations. Two approaches are mainly followed. On the one hand, there is the widely used, but often criticized, local approach, where machine sub-systems locally couple to thermal baths. On the other hand, in the more established global approach, thermal baths couple to global degrees of freedom of the machine. There has been debate as to which of these two conceptually different approaches should be used in situations out of thermal equilibrium. Here we compare the local and global approaches against an exact solution for a particular class of thermal machines. We consider thermodynamically relevant observables, such as heat currents, as well as the quantum state of the machine. Our results show that the use of a local master equation is generally well justified. In particular, for weak inter-system coupling, the local approach agrees with the exact solution, whereas the global approach fails for non-equilibrium situations. For intermediate coupling, the local and the global approach both agree with the exact solution and for strong coupling, the global approach is preferable. These results are backed by detailed derivations of the regimes of validity for the respective approaches.

  9. Minimizing the average distance to a closest leaf in a phylogenetic tree.

    PubMed

    Matsen, Frederick A; Gallagher, Aaron; McCoy, Connor O

    2013-11-01

    When performing an analysis on a collection of molecular sequences, it can be convenient to reduce the number of sequences under consideration while maintaining some characteristic of a larger collection of sequences. For example, one may wish to select a subset of high-quality sequences that represent the diversity of a larger collection of sequences. One may also wish to specialize a large database of characterized "reference sequences" to a smaller subset that is as close as possible on average to a collection of "query sequences" of interest. Such a representative subset can be useful whenever one wishes to find a set of reference sequences that is appropriate to use for comparative analysis of environmentally derived sequences, such as for selecting "reference tree" sequences for phylogenetic placement of metagenomic reads. In this article, we formalize these problems in terms of the minimization of the Average Distance to the Closest Leaf (ADCL) and investigate algorithms to perform the relevant minimization. We show that the greedy algorithm is not effective, show that a variant of the Partitioning Around Medoids (PAM) heuristic gets stuck in local minima, and develop an exact dynamic programming approach. Using this exact program we note that the performance of PAM appears to be good for simulated trees, and is faster than the exact algorithm for small trees. On the other hand, the exact program gives solutions for all numbers of leaves less than or equal to the given desired number of leaves, whereas PAM only gives a solution for the prespecified number of leaves. Via application to real data, we show that the ADCL criterion chooses chimeric sequences less often than random subsets, whereas the maximization of phylogenetic diversity chooses them more often than random. These algorithms have been implemented in publicly available software.

  10. Dark energy fingerprints in the nonminimal Wu-Yang wormhole structure

    NASA Astrophysics Data System (ADS)

    Balakin, Alexander B.; Zayats, Alexei E.

    2014-08-01

    We discuss new exact solutions to nonminimally extended Einstein-Yang-Mills equations describing spherically symmetric static wormholes supported by the gauge field of the Wu-Yang type in a dark energy environment. We focus on the analysis of three types of exact solutions to the gravitational field equations. Solutions of the first type relate to the model, in which the dark energy is anisotropic; i.e., the radial and tangential pressures do not coincide. Solutions of the second type correspond to the isotropic pressure tensor; in particular, we discuss the exact solution, for which the dark energy is characterized by the equation of state for a string gas. Solutions of the third type describe the dark energy model with constant pressure and energy density. For the solutions of the third type, we consider in detail the problem of horizons and find constraints for the parameters of nonminimal coupling and for the constitutive parameters of the dark energy equation of state, which guarantee that the nonminimal wormholes are traversable.

  11. Exact Solutions of Atmospheric (2+1)-Dimensional Nonlinear Incompressible Non-hydrostatic Boussinesq Equations

    NASA Astrophysics Data System (ADS)

    Liu, Ping; Wang, Ya-Xiong; Ren, Bo; Li, Jin-Hua

    2016-12-01

    Exact solutions of the atmospheric (2+1)-dimensional nonlinear incompressible non-hydrostatic Boussinesq (INHB) equations are researched by Combining function expansion and symmetry method. By function expansion, several expansion coefficient equations are derived. Symmetries and similarity solutions are researched in order to obtain exact solutions of the INHB equations. Three types of symmetry reduction equations and similarity solutions for the expansion coefficient equations are proposed. Non-traveling wave solutions for the INHB equations are obtained by symmetries of the expansion coefficient equations. Making traveling wave transformations on expansion coefficient equations, we demonstrate some traveling wave solutions of the INHB equations. The evolutions on the wind velocities, temperature perturbation and pressure perturbation are demonstrated by figures, which demonstrate the periodic evolutions with time and space. Supported by the National Natural Science Foundation of China under Grant Nos. 11305031 and 11305106, and Training Programme Foundation for Outstanding Young Teachers in Higher Education Institutions of Guangdong Province under Grant No. Yq2013205

  12. Symmetry reduction and exact solutions of two higher-dimensional nonlinear evolution equations.

    PubMed

    Gu, Yongyi; Qi, Jianming

    2017-01-01

    In this paper, symmetries and symmetry reduction of two higher-dimensional nonlinear evolution equations (NLEEs) are obtained by Lie group method. These NLEEs play an important role in nonlinear sciences. We derive exact solutions to these NLEEs via the [Formula: see text]-expansion method and complex method. Five types of explicit function solutions are constructed, which are rational, exponential, trigonometric, hyperbolic and elliptic function solutions of the variables in the considered equations.

  13. Applications of He's semi-inverse method, ITEM and GGM to the Davey-Stewartson equation

    NASA Astrophysics Data System (ADS)

    Zinati, Reza Farshbaf; Manafian, Jalil

    2017-04-01

    We investigate the Davey-Stewartson (DS) equation. Travelling wave solutions were found. In this paper, we demonstrate the effectiveness of the analytical methods, namely, He's semi-inverse variational principle method (SIVPM), the improved tan(φ/2)-expansion method (ITEM) and generalized G'/G-expansion method (GGM) for seeking more exact solutions via the DS equation. These methods are direct, concise and simple to implement compared to other existing methods. The exact solutions containing four types solutions have been achieved. The results demonstrate that the aforementioned methods are more efficient than the Ansatz method applied by Mirzazadeh (2015). Abundant exact travelling wave solutions including solitons, kink, periodic and rational solutions have been found by the improved tan(φ/2)-expansion and generalized G'/G-expansion methods. By He's semi-inverse variational principle we have obtained dark and bright soliton wave solutions. Also, the obtained semi-inverse variational principle has profound implications in physical understandings. These solutions might play important role in engineering and physics fields. Moreover, by using Matlab, some graphical simulations were done to see the behavior of these solutions.

  14. Condensates of p-wave pairs are exact solutions for rotating two-component Bose gases.

    PubMed

    Papenbrock, T; Reimann, S M; Kavoulakis, G M

    2012-02-17

    We derive exact analytical results for the wave functions and energies of harmonically trapped two-component Bose-Einstein condensates with weakly repulsive interactions under rotation. The isospin symmetric wave functions are universal and do not depend on the matrix elements of the two-body interaction. The comparison with the results from numerical diagonalization shows that the ground state and low-lying excitations consist of condensates of p-wave pairs for repulsive contact interactions, Coulomb interactions, and the repulsive interactions between aligned dipoles.

  15. Parallel dynamics between non-Hermitian and Hermitian systems

    NASA Astrophysics Data System (ADS)

    Wang, P.; Lin, S.; Jin, L.; Song, Z.

    2018-06-01

    We reveals a connection between non-Hermitian and Hermitian systems by studying the connection between a family of non-Hermitian and Hermitian Hamiltonians based on exact solutions. In general, for a dynamic process in a non-Hermitian system H , there always exists a parallel dynamic process governed by the corresponding Hermitian conjugate system H†. We show that a linear superposition of the two parallel dynamics is exactly equivalent to the time evolution of a state under a Hermitian Hamiltonian H , and we present the relations between {H ,H ,H†} .

  16. Asymptotic solution of Fokker-Planck equation for plasma in Paul traps

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Shah, Kushal

    2010-05-15

    An exact analytic solution of the Vlasov equation for the plasma distribution in a Paul trap is known to be a Maxwellian and thus, immune to collisions under the assumption of infinitely fast relaxation [K. Shah and H. S. Ramachandran, Phys. Plasmas 15, 062303 (2008)]. In this paper, it is shown that even for a more realistic situation of finite time relaxation, solutions of the Fokker-Planck equation lead to an equilibrium solution of the form of a Maxwellian with oscillatory temperature. This shows that the rf heating observed in Paul traps cannot be caused due to collisional effects alone.

  17. Analytical solutions for systems of partial differential-algebraic equations.

    PubMed

    Benhammouda, Brahim; Vazquez-Leal, Hector

    2014-01-01

    This work presents the application of the power series method (PSM) to find solutions of partial differential-algebraic equations (PDAEs). Two systems of index-one and index-three are solved to show that PSM can provide analytical solutions of PDAEs in convergent series form. What is more, we present the post-treatment of the power series solutions with the Laplace-Padé (LP) resummation method as a useful strategy to find exact solutions. The main advantage of the proposed methodology is that the procedure is based on a few straightforward steps and it does not generate secular terms or depends of a perturbation parameter.

  18. Size-dependent error of the density functional theory ionization potential in vacuum and solution

    DOE PAGES

    Sosa Vazquez, Xochitl A.; Isborn, Christine M.

    2015-12-22

    Density functional theory is often the method of choice for modeling the energetics of large molecules and including explicit solvation effects. It is preferable to use a method that treats systems of different sizes and with different amounts of explicit solvent on equal footing. However, recent work suggests that approximate density functional theory has a size-dependent error in the computation of the ionization potential. We here investigate the lack of size-intensivity of the ionization potential computed with approximate density functionals in vacuum and solution. We show that local and semi-local approximations to exchange do not yield a constant ionization potentialmore » for an increasing number of identical isolated molecules in vacuum. Instead, as the number of molecules increases, the total energy required to ionize the system decreases. Rather surprisingly, we find that this is still the case in solution, whether using a polarizable continuum model or with explicit solvent that breaks the degeneracy of each solute, and we find that explicit solvent in the calculation can exacerbate the size-dependent delocalization error. We demonstrate that increasing the amount of exact exchange changes the character of the polarization of the solvent molecules; for small amounts of exact exchange the solvent molecules contribute a fraction of their electron density to the ionized electron, but for larger amounts of exact exchange they properly polarize in response to the cationic solute. As a result, in vacuum and explicit solvent, the ionization potential can be made size-intensive by optimally tuning a long-range corrected hybrid functional.« less

  19. Size-dependent error of the density functional theory ionization potential in vacuum and solution

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sosa Vazquez, Xochitl A.; Isborn, Christine M., E-mail: cisborn@ucmerced.edu

    2015-12-28

    Density functional theory is often the method of choice for modeling the energetics of large molecules and including explicit solvation effects. It is preferable to use a method that treats systems of different sizes and with different amounts of explicit solvent on equal footing. However, recent work suggests that approximate density functional theory has a size-dependent error in the computation of the ionization potential. We here investigate the lack of size-intensivity of the ionization potential computed with approximate density functionals in vacuum and solution. We show that local and semi-local approximations to exchange do not yield a constant ionization potentialmore » for an increasing number of identical isolated molecules in vacuum. Instead, as the number of molecules increases, the total energy required to ionize the system decreases. Rather surprisingly, we find that this is still the case in solution, whether using a polarizable continuum model or with explicit solvent that breaks the degeneracy of each solute, and we find that explicit solvent in the calculation can exacerbate the size-dependent delocalization error. We demonstrate that increasing the amount of exact exchange changes the character of the polarization of the solvent molecules; for small amounts of exact exchange the solvent molecules contribute a fraction of their electron density to the ionized electron, but for larger amounts of exact exchange they properly polarize in response to the cationic solute. In vacuum and explicit solvent, the ionization potential can be made size-intensive by optimally tuning a long-range corrected hybrid functional.« less

  20. Exact solutions to the time-fractional differential equations via local fractional derivatives

    NASA Astrophysics Data System (ADS)

    Guner, Ozkan; Bekir, Ahmet

    2018-01-01

    This article utilizes the local fractional derivative and the exp-function method to construct the exact solutions of nonlinear time-fractional differential equations (FDEs). For illustrating the validity of the method, it is applied to the time-fractional Camassa-Holm equation and the time-fractional-generalized fifth-order KdV equation. Moreover, the exact solutions are obtained for the equations which are formed by different parameter values related to the time-fractional-generalized fifth-order KdV equation. This method is an reliable and efficient mathematical tool for solving FDEs and it can be applied to other non-linear FDEs.

  1. Exact Solutions for Nonlinear Development of a Kelvin-Helmholtz Instability for the Counterflow of Superfluid and Normal Components of Helium II.

    PubMed

    Lushnikov, Pavel M; Zubarev, Nikolay M

    2018-05-18

    Relative motion of the normal and superfluid components of helium II results in the quantum Kelvin-Helmholtz instability (KHI) at their common free surface. We found the integrability and exact growing solutions for the nonlinear stage of the development of that instability. Contrary to the usual KHI of the interface between two classical fluids, the dynamics of a helium II free surface allows reduction to the Laplace growth equation, which has an infinite number of exact solutions, including the generic formation of sharp cusps at the free surface in a finite time.

  2. Exact Solutions for Nonlinear Development of a Kelvin-Helmholtz Instability for the Counterflow of Superfluid and Normal Components of Helium II

    NASA Astrophysics Data System (ADS)

    Lushnikov, Pavel M.; Zubarev, Nikolay M.

    2018-05-01

    Relative motion of the normal and superfluid components of helium II results in the quantum Kelvin-Helmholtz instability (KHI) at their common free surface. We found the integrability and exact growing solutions for the nonlinear stage of the development of that instability. Contrary to the usual KHI of the interface between two classical fluids, the dynamics of a helium II free surface allows reduction to the Laplace growth equation, which has an infinite number of exact solutions, including the generic formation of sharp cusps at the free surface in a finite time.

  3. New exact solutions of the Tzitzéica-type equations in non-linear optics using the expa function method

    NASA Astrophysics Data System (ADS)

    Hosseini, K.; Ayati, Z.; Ansari, R.

    2018-04-01

    One specific class of non-linear evolution equations, known as the Tzitzéica-type equations, has received great attention from a group of researchers involved in non-linear science. In this article, new exact solutions of the Tzitzéica-type equations arising in non-linear optics, including the Tzitzéica, Dodd-Bullough-Mikhailov and Tzitzéica-Dodd-Bullough equations, are obtained using the expa function method. The integration technique actually suggests a useful and reliable method to extract new exact solutions of a wide range of non-linear evolution equations.

  4. Asymptotically flat black holes in Horndeski theory and beyond

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Babichev, E.; Charmousis, C.; Lehébel, A., E-mail: eugeny.babichev@th.u-psud.fr, E-mail: christos.charmousis@th.u-psud.fr, E-mail: antoine.lehebel@th.u-psud.fr

    We find spherically symmetric and static black holes in shift-symmetric Horndeski and beyond Horndeski theories. They are asymptotically flat and sourced by a non trivial static scalar field. The first class of solutions is constructed in such a way that the Noether current associated with shift symmetry vanishes, while the scalar field cannot be trivial. This in certain cases leads to hairy black hole solutions (for the quartic Horndeski Lagrangian), and in others to singular solutions (for a Gauss-Bonnet term). Additionally, we find the general spherically symmetric and static solutions for a pure quartic Lagrangian, the metric of which ismore » Schwarzschild. We show that under two requirements on the theory in question, any vacuum GR solution is also solution to the quartic theory. As an example, we show that a Kerr black hole with a non-trivial scalar field is an exact solution to these theories.« less

  5. Nondiffracting wave beams in non-Hermitian Glauber-Fock lattice

    NASA Astrophysics Data System (ADS)

    Oztas, Z.

    2018-05-01

    We theoretically study non-Hermitian Glauber-Fock lattice with nonuniform hopping. We show how to engineer this lattice to get nondiffracting wave beams and find an exact analytical solution to nondiffracting localized waves. The exceptional points in the energy spectrum are also analyzed.

  6. The Aharonov-Bohm effect and Tonomura et al. experiments: Rigorous results

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ballesteros, Miguel; Weder, Ricardo

    The Aharonov-Bohm effect is a fundamental issue in physics. It describes the physically important electromagnetic quantities in quantum mechanics. Its experimental verification constitutes a test of the theory of quantum mechanics itself. The remarkable experiments of Tonomura et al. ['Observation of Aharonov-Bohm effect by electron holography', Phys. Rev. Lett 48, 1443 (1982) and 'Evidence for Aharonov-Bohm effect with magnetic field completely shielded from electron wave', Phys. Rev. Lett 56, 792 (1986)] are widely considered as the only experimental evidence of the physical existence of the Aharonov-Bohm effect. Here we give the first rigorous proof that the classical ansatz of Aharonovmore » and Bohm of 1959 ['Significance of electromagnetic potentials in the quantum theory', Phys. Rev. 115, 485 (1959)], that was tested by Tonomura et al., is a good approximation to the exact solution to the Schroedinger equation. This also proves that the electron, that is, represented by the exact solution, is not accelerated, in agreement with the recent experiment of Caprez et al. in 2007 ['Macroscopic test of the Aharonov-Bohm effect', Phys. Rev. Lett. 99, 210401 (2007)], that shows that the results of the Tonomura et al. experiments can not be explained by the action of a force. Under the assumption that the incoming free electron is a Gaussian wave packet, we estimate the exact solution to the Schroedinger equation for all times. We provide a rigorous, quantitative error bound for the difference in norm between the exact solution and the Aharonov-Bohm Ansatz. Our bound is uniform in time. We also prove that on the Gaussian asymptotic state the scattering operator is given by a constant phase shift, up to a quantitative error bound that we provide. Our results show that for intermediate size electron wave packets, smaller than the ones used in the Tonomura et al. experiments, quantum mechanics predicts the results observed by Tonomura et al. with an error bound smaller than 10{sup -99}. It would be quite interesting to perform experiments with electron wave packets of intermediate size. Furthermore, we provide a physical interpretation of our error bound.« less

  7. Hierarchic models for laminated plates. Ph.D. Thesis

    NASA Technical Reports Server (NTRS)

    Actis, Ricardo Luis

    1991-01-01

    Structural plates and shells are three-dimensional bodies, one dimension of which happens to be much smaller than the other two. Thus, the quality of a plate or shell model must be judged on the basis of how well its exact solution approximates the corresponding three-dimensional problem. Of course, the exact solution depends not only on the choice of the model but also on the topology, material properties, loading and constraints. The desired degree of approximation depends on the analyst's goals in performing the analysis. For these reasons models have to be chosen adaptively. Hierarchic sequences of models make adaptive selection of the model which is best suited for the purposes of a particular analysis possible. The principles governing the formulation of hierarchic models for laminated plates are presented. The essential features of the hierarchic models described models are: (1) the exact solutions corresponding to the hierarchic sequence of models converge to the exact solution of the corresponding problem of elasticity for a fixed laminate thickness; and (2) the exact solution of each model converges to the same limit as the exact solution of the corresponding problem of elasticity with respect to the laminate thickness approaching zero. The formulation is based on one parameter (beta) which characterizes the hierarchic sequence of models, and a set of constants whose influence was assessed by a numerical sensitivity study. The recommended selection of these constants results in the number of fields increasing by three for each increment in the power of beta. Numerical examples analyzed with the proposed sequence of models are included and good correlation with the reference solutions was found. Results were obtained for laminated strips (plates in cylindrical bending) and for square and rectangular plates with uniform loading and with homogeneous boundary conditions. Cross-ply and angle-ply laminates were evaluated and the results compared with those of MSC/PROBE. Hierarchic models make the computation of any engineering data possible to an arbitrary level of precision within the framework of the theory of elasticity.

  8. Some Exact Solutions of a Nonintegrable Toda-type Equation

    NASA Astrophysics Data System (ADS)

    Kim, Chanju

    2018-05-01

    We study a Toda-type equation with two scalar fields which is not integrable and construct two families of exact solutions which are expressed in terms of rational functions. The equation appears in U(1) Chern-Simons theories coupled to two nonrelativistic matter fields with opposite charges. One family of solutions is a trivial embedding of Liouville-type solutions. The other family is obtained by transforming the equation into the Taubes vortex equation on the hyperbolic space. Though the Taubes equation is not integrable, a trivial vacuum solution provides nontrivial solutions to the original Toda-type equation.

  9. Solution of the advection-dispersion equation: Continuous load of finite duration

    USGS Publications Warehouse

    Runkel, R.L.

    1996-01-01

    Field studies of solute fate and transport in streams and rivers often involve an. experimental release of solutes at an upstream boundary for a finite period of time. A review of several standard references on surface-water-quality modeling indicates that the analytical solution to the constant-parameter advection-dispersion equation for this type of boundary condition has been generally overlooked. Here an exact analytical solution that considers a continuous load of unite duration is compared to an approximate analytical solution presented elsewhere. Results indicate that the exact analytical solution should be used for verification of numerical solutions and other solute-transport problems wherein a high level of accuracy is required. ?? ASCE.

  10. Exact-solution for cone-plate viscometry

    NASA Astrophysics Data System (ADS)

    Giacomin, A. J.; Gilbert, P. H.

    2017-11-01

    The viscosity of a Newtonian fluid is often measured by confining the fluid to the gap between a rotating cone that is perpendicular to a fixed disk. We call this experiment cone-plate viscometry. When the cone angle approaches π/2 , the viscometer gap is called narrow. The shear stress in the fluid, throughout a narrow gap, hardly departs from the shear stress exerted on the plate, and we thus call cone-plate flow nearly homogeneous. In this paper, we derive an exact solution for this slight heterogeneity, and from this, we derive the correction factors for the shear rate on the cone and plate, for the torque, and thus, for the measured Newtonian viscosity. These factors thus allow the cone-plate viscometer to be used more accurately, and with cone-angles well below π/2 . We find cone-plate flow field heterogeneity to be far slighter than previously thought. We next use our exact solution for the velocity to arrive at the exact solution for the temperature rise, due to viscous dissipation, in cone-plate flow subject to isothermal boundaries. Since Newtonian viscosity is a strong function of temperature, we expect our new exact solution for the temperature rise be useful to those measuring Newtonian viscosity, and especially so, to those using wide gaps. We include two worked examples to teach practitioners how to use our main results.

  11. Numerical solution of the electron transport equation

    NASA Astrophysics Data System (ADS)

    Woods, Mark

    The electron transport equation has been solved many times for a variety of reasons. The main difficulty in its numerical solution is that it is a very stiff boundary value problem. The most common numerical methods for solving boundary value problems are symmetric collocation methods and shooting methods. Both of these types of methods can only be applied to the electron transport equation if the boundary conditions are altered with unrealistic assumptions because they require too many points to be practical. Further, they result in oscillating and negative solutions, which are physically meaningless for the problem at hand. For these reasons, all numerical methods for this problem to date are a bit unusual because they were designed to try and avoid the problem of extreme stiffness. This dissertation shows that there is no need to introduce spurious boundary conditions or invent other numerical methods for the electron transport equation. Rather, there already exists methods for very stiff boundary value problems within the numerical analysis literature. We demonstrate one such method in which the fast and slow modes of the boundary value problem are essentially decoupled. This allows for an upwind finite difference method to be applied to each mode as is appropriate. This greatly reduces the number of points needed in the mesh, and we demonstrate how this eliminates the need to define new boundary conditions. This method is verified by showing that under certain restrictive assumptions, the electron transport equation has an exact solution that can be written as an integral. We show that the solution from the upwind method agrees with the quadrature evaluation of the exact solution. This serves to verify that the upwind method is properly solving the electron transport equation. Further, it is demonstrated that the output of the upwind method can be used to compute auroral light emissions.

  12. An exact solution for a rotating black hole in modified gravity

    NASA Astrophysics Data System (ADS)

    Filippini, Francesco; Tasinato, Gianmassimo

    2018-01-01

    Exact solutions describing rotating black holes can offer important tests for alternative theories of gravity, motivated by the dark energy and dark matter problems. We present an analytic rotating black hole solution for a class of vector-tensor theories of modified gravity, valid for arbitrary values of the rotation parameter. The new configuration is characterised by parametrically large deviations from the Kerr-Newman geometry, controlled by non-minimal couplings between vectors and gravity. It has an oblate horizon in Boyer-Lindquist coordinates, and it can rotate more rapidly and have a larger ergosphere than black holes in General Relativity (GR) with the same asymptotic properties. We analytically investigate the features of the innermost stable circular orbits for massive objects on the equatorial plane, and show that stable orbits lie further away from the black hole horizon with respect to rotating black holes in GR. We also comment on possible applications of our findings for the extraction of rotational energy from the black hole.

  13. Bright and singular soliton solutions of the conformable time-fractional Klein-Gordon equations with different nonlinearities

    NASA Astrophysics Data System (ADS)

    Hosseini, Kamyar; Mayeli, Peyman; Ansari, Reza

    2018-07-01

    Finding the exact solutions of nonlinear fractional differential equations has gained considerable attention, during the past two decades. In this paper, the conformable time-fractional Klein-Gordon equations with quadratic and cubic nonlinearities are studied. Several exact soliton solutions, including the bright (non-topological) and singular soliton solutions are formally extracted by making use of the ansatz method. Results demonstrate that the method can efficiently handle the time-fractional Klein-Gordon equations with different nonlinearities.

  14. An exact plane-stress solution for a class of problems in orthotropic elasticity

    NASA Technical Reports Server (NTRS)

    Erb, D. A.; Cooper, P. A.; Weisshaar, T. A.

    1982-01-01

    An exact solution for the stress field within a rectangular slab of orthotropic material is found using a two dimensional Fourier series formulation. The material is required to be in plane stress, with general stress boundary conditions, and the principle axes of the material must be parallel to the sides of the rectangle. Two load cases similar to those encountered in materials testing are investigated using the solution. The solution method has potential uses in stress analysis of composite structures.

  15. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cembranos, Jose A.R.; Valcarcel, Jorge Gigante, E-mail: cembra@fis.ucm.es, E-mail: jorgegigante@ucm.es

    We derive a new exact static and spherically symmetric vacuum solution in the framework of the Poincaré gauge field theory with dynamical massless torsion. This theory is built in such a form that allows to recover General Relativity when the first Bianchi identity of the model is fulfilled by the total curvature. The solution shows a Reissner-Nordström type geometry with a Coulomb-like curvature provided by the torsion field. It is also shown the existence of a generalized Reissner-Nordström-de Sitter solution when additional electromagnetic fields and/or a cosmological constant are coupled to gravity.

  16. Analytical solution for wave propagation through a graded index interface between a right-handed and a left-handed material.

    PubMed

    Dalarsson, Mariana; Tassin, Philippe

    2009-04-13

    We have investigated the transmission and reflection properties of structures incorporating left-handed materials with graded index of refraction. We present an exact analytical solution to Helmholtz' equation for a graded index profile changing according to a hyperbolic tangent function along the propagation direction. We derive expressions for the field intensity along the graded index structure, and we show excellent agreement between the analytical solution and the corresponding results obtained by accurate numerical simulations. Our model straightforwardly allows for arbitrary spectral dispersion.

  17. New soliton solution to the longitudinal wave equation in a magneto-electro-elastic circular rod

    NASA Astrophysics Data System (ADS)

    Seadawy, Aly R.; Manafian, Jalil

    2018-03-01

    This paper examines the effectiveness of an integration scheme which called the extended trial equation method (ETEM) in exactly solving a well-known nonlinear equation of partial differential equations (PDEs). In this respect, the longitudinal wave equation (LWE) that arises in mathematical physics with dispersion caused by the transverse Poisson's effect in a magneto-electro-elastic (MEE) circular rod, which a series of exact traveling wave solutions for the aforementioned equation is formally extracted. Explicit new exact solutions are derived in different form such as dark solitons, bright solitons, solitary wave, periodic solitary wave, rational function, and elliptic function solutions of the longitudinal wave equation. The movements of obtained solutions are shown graphically, which helps to understand the physical phenomena of this longitudinal wave equation. Many other such types of nonlinear equations arising in non-destructive evaluation of structures made of the advanced MEE material can also be solved by this method.

  18. Exact Solution of a Faraday's Law Problem that Includes a Nonlinear Term and Its Implication for Perturbation Theory.

    ERIC Educational Resources Information Center

    Fulcher, Lewis P.

    1979-01-01

    Presents an exact solution to the nonlinear Faraday's law problem of a rod sliding on frictionless rails with resistance. Compares the results with perturbation calculations based on the methods of Poisson and Pincare and of Kryloff and Bogoliuboff. (Author/GA)

  19. Exact solution for a non-Markovian dissipative quantum dynamics.

    PubMed

    Ferialdi, Luca; Bassi, Angelo

    2012-04-27

    We provide the exact analytic solution of the stochastic Schrödinger equation describing a harmonic oscillator interacting with a non-Markovian and dissipative environment. This result represents an arrival point in the study of non-Markovian dynamics via stochastic differential equations. It is also one of the few exactly solvable models for infinite-dimensional systems. We compute the Green's function; in the case of a free particle and with an exponentially correlated noise, we discuss the evolution of Gaussian wave functions.

  20. Exact Solution of Mutator Model with Linear Fitness and Finite Genome Length

    NASA Astrophysics Data System (ADS)

    Saakian, David B.

    2017-08-01

    We considered the infinite population version of the mutator phenomenon in evolutionary dynamics, looking at the uni-directional mutations in the mutator-specific genes and linear selection. We solved exactly the model for the finite genome length case, looking at the quasispecies version of the phenomenon. We calculated the mutator probability both in the statics and dynamics. The exact solution is important for us because the mutator probability depends on the genome length in a highly non-trivial way.

  1. Exact Cosmological Models with Yang–Mills Fields on Lyra Manifold

    NASA Astrophysics Data System (ADS)

    Shchigolev, V. K.; Bezbatko, D. N.

    2018-04-01

    The present study deals with the Friedmann-Robertson-Walker cosmological models with Yang-Mills (YM) fields in Lyra geometry. The energy-momentum tensor of the YM fields for our models is obtained with the help of an exact solution to the YM equations with minimal coupling to gravity. Two specific exact solutions of the model are obtained regarding the effective equation of state and the exponential law of expansion. The physical and geometric behavior of the model is also discussed.

  2. Exact Exchange calculations for periodic systems: a real space approach

    NASA Astrophysics Data System (ADS)

    Natan, Amir; Marom, Noa; Makmal, Adi; Kronik, Leeor; Kuemmel, Stephan

    2011-03-01

    We present a real-space method for exact-exchange Kohn-Sham calculations of periodic systems. The method is based on self-consistent solutions of the optimized effective potential (OEP) equation on a three-dimensional non-orthogonal grid, using norm conserving pseudopotentials. These solutions can be either exact, using the S-iteration approach, or approximate, using the Krieger, Li, and Iafrate (KLI) approach. We demonstrate, using a variety of systems, the importance of singularity corrections and use of appropriate pseudopotentials.

  3. Exact solutions for kinetic models of macromolecular dynamics.

    PubMed

    Chemla, Yann R; Moffitt, Jeffrey R; Bustamante, Carlos

    2008-05-15

    Dynamic biological processes such as enzyme catalysis, molecular motor translocation, and protein and nucleic acid conformational dynamics are inherently stochastic processes. However, when such processes are studied on a nonsynchronized ensemble, the inherent fluctuations are lost, and only the average rate of the process can be measured. With the recent development of methods of single-molecule manipulation and detection, it is now possible to follow the progress of an individual molecule, measuring not just the average rate but the fluctuations in this rate as well. These fluctuations can provide a great deal of detail about the underlying kinetic cycle that governs the dynamical behavior of the system. However, extracting this information from experiments requires the ability to calculate the general properties of arbitrarily complex theoretical kinetic schemes. We present here a general technique that determines the exact analytical solution for the mean velocity and for measures of the fluctuations. We adopt a formalism based on the master equation and show how the probability density for the position of a molecular motor at a given time can be solved exactly in Fourier-Laplace space. With this analytic solution, we can then calculate the mean velocity and fluctuation-related parameters, such as the randomness parameter (a dimensionless ratio of the diffusion constant and the velocity) and the dwell time distributions, which fully characterize the fluctuations of the system, both commonly used kinetic parameters in single-molecule measurements. Furthermore, we show that this formalism allows calculation of these parameters for a much wider class of general kinetic models than demonstrated with previous methods.

  4. A second-order unconstrained optimization method for canonical-ensemble density-functional methods

    NASA Astrophysics Data System (ADS)

    Nygaard, Cecilie R.; Olsen, Jeppe

    2013-03-01

    A second order converging method of ensemble optimization (SOEO) in the framework of Kohn-Sham Density-Functional Theory is presented, where the energy is minimized with respect to an ensemble density matrix. It is general in the sense that the number of fractionally occupied orbitals is not predefined, but rather it is optimized by the algorithm. SOEO is a second order Newton-Raphson method of optimization, where both the form of the orbitals and the occupation numbers are optimized simultaneously. To keep the occupation numbers between zero and two, a set of occupation angles is defined, from which the occupation numbers are expressed as trigonometric functions. The total number of electrons is controlled by a built-in second order restriction of the Newton-Raphson equations, which can be deactivated in the case of a grand-canonical ensemble (where the total number of electrons is allowed to change). To test the optimization method, dissociation curves for diatomic carbon are produced using different functionals for the exchange-correlation energy. These curves show that SOEO favors symmetry broken pure-state solutions when using functionals with exact exchange such as Hartree-Fock and Becke three-parameter Lee-Yang-Parr. This is explained by an unphysical contribution to the exact exchange energy from interactions between fractional occupations. For functionals without exact exchange, such as local density approximation or Becke Lee-Yang-Parr, ensemble solutions are favored at interatomic distances larger than the equilibrium distance. Calculations on the chromium dimer are also discussed. They show that SOEO is able to converge to ensemble solutions for systems that are more complicated than diatomic carbon.

  5. Exact Solutions for Wind-Driven Coastal Upwelling and Downwelling over Sloping Topography

    NASA Astrophysics Data System (ADS)

    Choboter, P.; Duke, D.; Horton, J.; Sinz, P.

    2009-12-01

    The dynamics of wind-driven coastal upwelling and downwelling are studied using a simplified dynamical model. Exact solutions are examined as a function of time and over a family of sloping topographies. Assumptions in the two-dimensional model include a frictionless ocean interior below the surface Ekman layer, and no alongshore dependence of the variables; however, dependence in the cross-shore and vertical directions is retained. Additionally, density and alongshore momentum are advected by the cross-shore velocity in order to maintain thermal wind. The time-dependent initial-value problem is solved with constant initial stratification and no initial alongshore flow. An alongshore pressure gradient is added to allow the cross-shore flow to be geostrophically balanced far from shore. Previously, this model has been used to study upwelling over flat-bottom and sloping topographies, but the novel feature in this work is the discovery of exact solutions for downwelling. These exact solutions are compared to numerical solutions from a primitive-equation ocean model, based on the Princeton Ocean Model, configured in a similar two-dimensional geometry. Many typical features of the evolution of density and velocity during downwelling are displayed by the analytical model.

  6. Exact results relating spin-orbit interactions in two-dimensional strongly correlated systems

    NASA Astrophysics Data System (ADS)

    Kucska, Nóra; Gulácsi, Zsolt

    2018-06-01

    A 2D square, two-bands, strongly correlated and non-integrable system is analysed exactly in the presence of many-body spin-orbit interactions via the method of Positive Semidefinite Operators. The deduced exact ground states in the high concentration limit are strongly entangled, and given by the spin-orbit coupling are ferromagnetic and present an enhanced carrier mobility, which substantially differs for different spin projections. The described state emerges in a restricted parameter space region, which however is clearly accessible experimentally. The exact solutions are provided via the solution of a matching system of equations containing 74 coupled, non-linear and complex algebraic equations. In our knowledge, other exact results for 2D interacting systems with spin-orbit interactions are not present in the literature.

  7. Analysis of Dynamic Geometric Configuration of the Aortic Channel from the Perspective of Tornado-Like Flow Organization of Blood Flow.

    PubMed

    Zhorzholiani, Sh T; Mironov, A A; Talygin, E A; Tsyganokov, Yu M; Agafonov, A M; Kiknadze, G I; Gorodkov, A Yu; Bokeriya, L A

    2018-03-01

    Analysis of the data of morphometry of aortic casts, aortography at different pressures, and multispiral computer tomography of the aorta with contrast and normal pulse pressure showed that geometric configuration of the flow channel of the aorta during the whole cardiac cycle corresponded to the conditions of self-organization of tornado-like quasipotential flow described by exact solutions of the Navier-Stokes equation and continuity of viscous fluid typical for this type of fluid flows. Increasing pressure in the aorta leads to a decrease in the degree of approximation of the channel geometry to the ratio of exact solution and increases the risk of distortions in the structure of the flow. A mechanism of evolution of tornado-like flow in the aorta was proposed.

  8. Strongly Correlated Electron Systems: An Operatorial Perspective

    NASA Astrophysics Data System (ADS)

    Di Ciolo, Andrea; Avella, Adolfo

    2018-05-01

    We discuss the operatorial approach to the study of strongly correlated electron systems and show how the exact solution of target models on small clusters chosen ad-hoc (minimal models) can suggest very efficient bulk approximations. We use the Hubbard model as case study (target model) and we analyze and discuss the crucial role of spin fluctuations in its 2-site realization (minimal model). Accordingly, we devise a novel three-pole approximation for the 2D case, including in the basic field an operator describing the dressing of the electronic one by the nearest-neighbor spin-fluctuations. Such a solution is in very good agreement with the exact one in the minimal model (2-site case) and performs very well once compared to advanced (semi-)numerical methods in the 2D case, being by far less computational-resource demanding.

  9. Alternate solution to generalized Bernoulli equations via an integrating factor: an exact differential equation approach

    NASA Astrophysics Data System (ADS)

    Tisdell, C. C.

    2017-08-01

    Solution methods to exact differential equations via integrating factors have a rich history dating back to Euler (1740) and the ideas enjoy applications to thermodynamics and electromagnetism. Recently, Azevedo and Valentino presented an analysis of the generalized Bernoulli equation, constructing a general solution by linearizing the problem through a substitution. The purpose of this note is to present an alternative approach using 'exact methods', illustrating that a substitution and linearization of the problem is unnecessary. The ideas may be seen as forming a complimentary and arguably simpler approach to Azevedo and Valentino that have the potential to be assimilated and adapted to pedagogical needs of those learning and teaching exact differential equations in schools, colleges, universities and polytechnics. We illustrate how to apply the ideas through an analysis of the Gompertz equation, which is of interest in biomathematical models of tumour growth.

  10. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Doebling, Scott William

    This paper documents the escape of high explosive (HE) products problem. The problem, first presented by Fickett & Rivard, tests the implementation and numerical behavior of a high explosive detonation and energy release model and its interaction with an associated compressible hydrodynamics simulation code. The problem simulates the detonation of a finite-length, one-dimensional piece of HE that is driven by a piston from one end and adjacent to a void at the other end. The HE equation of state is modeled as a polytropic ideal gas. The HE detonation is assumed to be instantaneous with an infinitesimal reaction zone. Viamore » judicious selection of the material specific heat ratio, the problem has an exact solution with linear characteristics, enabling a straightforward calculation of the physical variables as a function of time and space. Lastly, implementation of the exact solution in the Python code ExactPack is discussed, as are verification cases for the exact solution code.« less

  11. Accuracy of perturbative master equations.

    PubMed

    Fleming, C H; Cummings, N I

    2011-03-01

    We consider open quantum systems with dynamics described by master equations that have perturbative expansions in the system-environment interaction. We show that, contrary to intuition, full-time solutions of order-2n accuracy require an order-(2n+2) master equation. We give two examples of such inaccuracies in the solutions to an order-2n master equation: order-2n inaccuracies in the steady state of the system and order-2n positivity violations. We show how these arise in a specific example for which exact solutions are available. This result has a wide-ranging impact on the validity of coupling (or friction) sensitive results derived from second-order convolutionless, Nakajima-Zwanzig, Redfield, and Born-Markov master equations.

  12. Exact coherent structures in an asymptotically reduced description of parallel shear flows

    NASA Astrophysics Data System (ADS)

    Beaume, Cédric; Knobloch, Edgar; Chini, Gregory P.; Julien, Keith

    2015-02-01

    A reduced description of shear flows motivated by the Reynolds number scaling of lower-branch exact coherent states in plane Couette flow (Wang J, Gibson J and Waleffe F 2007 Phys. Rev. Lett. 98 204501) is constructed. Exact time-independent nonlinear solutions of the reduced equations corresponding to both lower and upper branch states are found for a sinusoidal, body-forced shear flow. The lower branch solution is characterized by fluctuations that vary slowly along the critical layer while the upper branch solutions display a bimodal structure and are more strongly focused on the critical layer. The reduced equations provide a rational framework for investigations of subcritical spatiotemporal patterns in parallel shear flows.

  13. A new class of exact solutions of the Klein-Gordon equation of a charged particle interacting with an electromagnetic plane wave in a medium

    NASA Astrophysics Data System (ADS)

    Varró, Sándor

    2014-01-01

    Exact solutions are presented of the Klein-Gordon equation of a charged particle moving in a transverse monochromatic plasmon wave of arbitrary high amplitude, which propagates in an underdense plasma. These solutions are expressed in terms of Ince polynomials, forming a doubly infinite set, parametrized by discrete momentum components of the charged particle’s de Broglie wave along the polarization vector and along the propagation direction of the plasmon radiation. The envelope of the exact wavefunctions describes a high-contrast periodic structure of the particle density on the plasma length scale, which may have relevance in novel particle acceleration mechanisms.

  14. F-Expansion Method and New Exact Solutions of the Schrödinger-KdV Equation

    PubMed Central

    Filiz, Ali; Ekici, Mehmet; Sonmezoglu, Abdullah

    2014-01-01

    F-expansion method is proposed to seek exact solutions of nonlinear evolution equations. With the aid of symbolic computation, we choose the Schrödinger-KdV equation with a source to illustrate the validity and advantages of the proposed method. A number of Jacobi-elliptic function solutions are obtained including the Weierstrass-elliptic function solutions. When the modulus m of Jacobi-elliptic function approaches to 1 and 0, soliton-like solutions and trigonometric-function solutions are also obtained, respectively. The proposed method is a straightforward, short, promising, and powerful method for the nonlinear evolution equations in mathematical physics. PMID:24672327

  15. F-expansion method and new exact solutions of the Schrödinger-KdV equation.

    PubMed

    Filiz, Ali; Ekici, Mehmet; Sonmezoglu, Abdullah

    2014-01-01

    F-expansion method is proposed to seek exact solutions of nonlinear evolution equations. With the aid of symbolic computation, we choose the Schrödinger-KdV equation with a source to illustrate the validity and advantages of the proposed method. A number of Jacobi-elliptic function solutions are obtained including the Weierstrass-elliptic function solutions. When the modulus m of Jacobi-elliptic function approaches to 1 and 0, soliton-like solutions and trigonometric-function solutions are also obtained, respectively. The proposed method is a straightforward, short, promising, and powerful method for the nonlinear evolution equations in mathematical physics.

  16. Exact solution of a quantum forced time-dependent harmonic oscillator

    NASA Technical Reports Server (NTRS)

    Yeon, Kyu Hwang; George, Thomas F.; Um, Chung IN

    1992-01-01

    The Schrodinger equation is used to exactly evaluate the propagator, wave function, energy expectation values, uncertainty values, and coherent state for a harmonic oscillator with a time dependent frequency and an external driving time dependent force. These quantities represent the solution of the classical equation of motion for the time dependent harmonic oscillator.

  17. Rayleigh-Bloch waves trapped by a periodic perturbation: exact solutions

    NASA Astrophysics Data System (ADS)

    Merzon, A.; Zhevandrov, P.; Romero Rodríguez, M. I.; De la Paz Méndez, J. E.

    2018-06-01

    Exact solutions describing the Rayleigh-Bloch waves for the two-dimensional Helmholtz equation are constructed in the case when the refractive index is a sum of a constant and a small amplitude function which is periodic in one direction and of finite support in the other. These solutions are quasiperiodic along the structure and exponentially decay in the orthogonal direction. A simple formula for the dispersion relation of these waves is obtained.

  18. Exact solutions of the Navier-Stokes equations generalized for flow in porous media

    NASA Astrophysics Data System (ADS)

    Daly, Edoardo; Basser, Hossein; Rudman, Murray

    2018-05-01

    Flow of Newtonian fluids in porous media is often modelled using a generalized version of the full non-linear Navier-Stokes equations that include additional terms describing the resistance to flow due to the porous matrix. Because this formulation is becoming increasingly popular in numerical models, exact solutions are required as a benchmark of numerical codes. The contribution of this study is to provide a number of non-trivial exact solutions of the generalized form of the Navier-Stokes equations for parallel flow in porous media. Steady-state solutions are derived in the case of flows in a medium with constant permeability along the main direction of flow and a constant cross-stream velocity in the case of both linear and non-linear drag. Solutions are also presented for cases in which the permeability changes in the direction normal to the main flow. An unsteady solution for a flow with velocity driven by a time-periodic pressure gradient is also derived. These solutions form a basis for validating computational models across a wide range of Reynolds and Darcy numbers.

  19. ACCURATE CHEMICAL MASTER EQUATION SOLUTION USING MULTI-FINITE BUFFERS

    PubMed Central

    Cao, Youfang; Terebus, Anna; Liang, Jie

    2016-01-01

    The discrete chemical master equation (dCME) provides a fundamental framework for studying stochasticity in mesoscopic networks. Because of the multi-scale nature of many networks where reaction rates have large disparity, directly solving dCMEs is intractable due to the exploding size of the state space. It is important to truncate the state space effectively with quantified errors, so accurate solutions can be computed. It is also important to know if all major probabilistic peaks have been computed. Here we introduce the Accurate CME (ACME) algorithm for obtaining direct solutions to dCMEs. With multi-finite buffers for reducing the state space by O(n!), exact steady-state and time-evolving network probability landscapes can be computed. We further describe a theoretical framework of aggregating microstates into a smaller number of macrostates by decomposing a network into independent aggregated birth and death processes, and give an a priori method for rapidly determining steady-state truncation errors. The maximal sizes of the finite buffers for a given error tolerance can also be pre-computed without costly trial solutions of dCMEs. We show exactly computed probability landscapes of three multi-scale networks, namely, a 6-node toggle switch, 11-node phage-lambda epigenetic circuit, and 16-node MAPK cascade network, the latter two with no known solutions. We also show how probabilities of rare events can be computed from first-passage times, another class of unsolved problems challenging for simulation-based techniques due to large separations in time scales. Overall, the ACME method enables accurate and efficient solutions of the dCME for a large class of networks. PMID:27761104

  20. Path Following in the Exact Penalty Method of Convex Programming.

    PubMed

    Zhou, Hua; Lange, Kenneth

    2015-07-01

    Classical penalty methods solve a sequence of unconstrained problems that put greater and greater stress on meeting the constraints. In the limit as the penalty constant tends to ∞, one recovers the constrained solution. In the exact penalty method, squared penalties are replaced by absolute value penalties, and the solution is recovered for a finite value of the penalty constant. In practice, the kinks in the penalty and the unknown magnitude of the penalty constant prevent wide application of the exact penalty method in nonlinear programming. In this article, we examine a strategy of path following consistent with the exact penalty method. Instead of performing optimization at a single penalty constant, we trace the solution as a continuous function of the penalty constant. Thus, path following starts at the unconstrained solution and follows the solution path as the penalty constant increases. In the process, the solution path hits, slides along, and exits from the various constraints. For quadratic programming, the solution path is piecewise linear and takes large jumps from constraint to constraint. For a general convex program, the solution path is piecewise smooth, and path following operates by numerically solving an ordinary differential equation segment by segment. Our diverse applications to a) projection onto a convex set, b) nonnegative least squares, c) quadratically constrained quadratic programming, d) geometric programming, and e) semidefinite programming illustrate the mechanics and potential of path following. The final detour to image denoising demonstrates the relevance of path following to regularized estimation in inverse problems. In regularized estimation, one follows the solution path as the penalty constant decreases from a large value.

  1. Path Following in the Exact Penalty Method of Convex Programming

    PubMed Central

    Zhou, Hua; Lange, Kenneth

    2015-01-01

    Classical penalty methods solve a sequence of unconstrained problems that put greater and greater stress on meeting the constraints. In the limit as the penalty constant tends to ∞, one recovers the constrained solution. In the exact penalty method, squared penalties are replaced by absolute value penalties, and the solution is recovered for a finite value of the penalty constant. In practice, the kinks in the penalty and the unknown magnitude of the penalty constant prevent wide application of the exact penalty method in nonlinear programming. In this article, we examine a strategy of path following consistent with the exact penalty method. Instead of performing optimization at a single penalty constant, we trace the solution as a continuous function of the penalty constant. Thus, path following starts at the unconstrained solution and follows the solution path as the penalty constant increases. In the process, the solution path hits, slides along, and exits from the various constraints. For quadratic programming, the solution path is piecewise linear and takes large jumps from constraint to constraint. For a general convex program, the solution path is piecewise smooth, and path following operates by numerically solving an ordinary differential equation segment by segment. Our diverse applications to a) projection onto a convex set, b) nonnegative least squares, c) quadratically constrained quadratic programming, d) geometric programming, and e) semidefinite programming illustrate the mechanics and potential of path following. The final detour to image denoising demonstrates the relevance of path following to regularized estimation in inverse problems. In regularized estimation, one follows the solution path as the penalty constant decreases from a large value. PMID:26366044

  2. Propagation of sound waves through a linear shear layer: A closed form solution

    NASA Technical Reports Server (NTRS)

    Scott, J. N.

    1978-01-01

    Closed form solutions are presented for sound propagation from a line source in or near a shear layer. The analysis was exact for all frequencies and was developed assuming a linear velocity profile in the shear layer. This assumption allowed the solution to be expressed in terms of parabolic cyclinder functions. The solution is presented for a line monopole source first embedded in the uniform flow and then in the shear layer. Solutions are also discussed for certain types of dipole and quadrupole sources. Asymptotic expansions of the exact solutions for small and large values of Strouhal number gave expressions which correspond to solutions previously obtained for these limiting cases.

  3. Details of Exact Low Prandtl Number Boundary-Layer Solutions for Forced and For Free Convection

    NASA Technical Reports Server (NTRS)

    Sparrow, E. M.; Gregg, J. L.

    1959-01-01

    A detailed report is given of exact (numerical) solutions of the laminar-boundary-layer equations for the Prandtl number range appropriate to liquid metals (0.003 to 0.03). Consideration is given to the following situations: (1) forced convection over a flat plate for the conditions of uniform wall temperature and uniform wall heat flux, and (2) free convection over an isothermal vertical plate. Tabulations of the new solutions are given in detail. Results are presented for the heat-transfer and shear-stress characteristics; temperature and velocity distributions are also shown. The heat-transfer results are correlated in terms of dimensionless parameters that vary only slightly over the entire liquid-metal range. Previous analytical and experimental work on low Prandtl number boundary layers is surveyed and compared with the new exact solutions.

  4. Exact finite element method analysis of viscoelastic tapered structures to transient loads

    NASA Technical Reports Server (NTRS)

    Spyrakos, Constantine Chris

    1987-01-01

    A general method is presented for determining the dynamic torsional/axial response of linear structures composed of either tapered bars or shafts to transient excitations. The method consists of formulating and solving the dynamic problem in the Laplace transform domain by the finite element method and obtaining the response by a numerical inversion of the transformed solution. The derivation of the torsional and axial stiffness matrices is based on the exact solution of the transformed governing equation of motion, and it consequently leads to the exact solution of the problem. The solution permits treatment of the most practical cases of linear tapered bars and shafts, and employs modeling of structures with only one element per member which reduces the number of degrees of freedom involved. The effects of external viscous or internal viscoelastic damping are also taken into account.

  5. Antigravity: Spin-gravity coupling in action

    NASA Astrophysics Data System (ADS)

    Plyatsko, Roman; Fenyk, Mykola

    2016-08-01

    The typical motions of a spinning test particle in Schwarzschild's background which show the strong repulsive action of the highly relativistic spin-gravity coupling are considered using the exact Mathisson-Papapetrou equations. An approximated approach to choice solutions of these equations which describe motions of the particle's proper center of mass is developed.

  6. Constraints on Janus Cosmological model from recent observations of supernovae type Ia

    NASA Astrophysics Data System (ADS)

    D'Agostini, G.; Petit, J. P.

    2018-07-01

    From our exact solution of the Janus Cosmological equation we derive the relation of the predicted magnitude of distant sources versus their red shift. The comparison, through this one free parameter model, to the available data from 740 distant supernovae shows an excellent fit.

  7. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sanchez-Monroy, J.A., E-mail: antosan@gmail.com; Quimbay, C.J., E-mail: cjquimbayh@unal.edu.co; Centro Internacional de Fisica, Bogota D.C.

    In the context of a semiclassical approach where vectorial gauge fields can be considered as classical fields, we obtain exact static solutions of the SU(N) Yang-Mills equations in an (n+1)-dimensional curved space-time, for the cases n=1,2,3. As an application of the results obtained for the case n=3, we consider the solutions for the anti-de Sitter and Schwarzschild metrics. We show that these solutions have a confining behavior and can be considered as a first step in the study of the corrections of the spectra of quarkonia in a curved background. Since the solutions that we find in this work aremore » valid also for the group U(1), the case n=2 is a description of the (2+1) electrodynamics in the presence of a point charge. For this case, the solution has a confining behavior and can be considered as an application of the planar electrodynamics in a curved space-time. Finally we find that the solution for the case n=1 is invariant under a parity transformation and has the form of a linear confining solution. - Highlights: Black-Right-Pointing-Pointer We study exact static confining solutions of the SU(N) Yang-Mills equations in an (n+1)-dimensional curved space-time. Black-Right-Pointing-Pointer The solutions found are a first step in the study of the corrections on the spectra of quarkonia in a curved background. Black-Right-Pointing-Pointer A expression for the confinement potential in low dimensionality is found.« less

  8. Successive phase transitions and kink solutions in Φ⁸, Φ¹⁰, and Φ¹² field theories

    DOE PAGES

    Khare, Avinash; Christov, Ivan C.; Saxena, Avadh

    2014-08-27

    We obtain exact solutions for kinks in Φ⁸, Φ¹⁰, and Φ¹² field theories with degenerate minima, which can describe a second-order phase transition followed by a first-order one, a succession of two first-order phase transitions and a second-order phase transition followed by two first-order phase transitions, respectively. Such phase transitions are known to occur in ferroelastic and ferroelectric crystals and in meson physics. In particular, we find that the higher-order field theories have kink solutions with algebraically-decaying tails and also asymmetric cases with mixed exponential-algebraic tail decay, unlike the lower-order Φ⁴ and Φ⁶ theories. Additionally, we construct distinct kinks withmore » equal energies in all three field theories considered, and we show the co-existence of up to three distinct kinks (for a Φ¹² potential with six degenerate minima). We also summarize phonon dispersion relations for these systems, showing that the higher-order field theories have specific cases in which only nonlinear phonons are allowed. For the Φ¹⁰ field theory, which is a quasi-exactly solvable (QES) model akin to Φ⁶, we are also able to obtain three analytical solutions for the classical free energy as well as the probability distribution function in the thermodynamic limit.« less

  9. Exact finite elements for conduction and convection

    NASA Technical Reports Server (NTRS)

    Thornton, E. A.; Dechaumphai, P.; Tamma, K. K.

    1981-01-01

    An approach for developing exact one dimensional conduction-convection finite elements is presented. Exact interpolation functions are derived based on solutions to the governing differential equations by employing a nodeless parameter. Exact interpolation functions are presented for combined heat transfer in several solids of different shapes, and for combined heat transfer in a flow passage. Numerical results demonstrate that exact one dimensional elements offer advantages over elements based on approximate interpolation functions.

  10. Laplace transform homotopy perturbation method for the approximation of variational problems.

    PubMed

    Filobello-Nino, U; Vazquez-Leal, H; Rashidi, M M; Sedighi, H M; Perez-Sesma, A; Sandoval-Hernandez, M; Sarmiento-Reyes, A; Contreras-Hernandez, A D; Pereyra-Diaz, D; Hoyos-Reyes, C; Jimenez-Fernandez, V M; Huerta-Chua, J; Castro-Gonzalez, F; Laguna-Camacho, J R

    2016-01-01

    This article proposes the application of Laplace Transform-Homotopy Perturbation Method and some of its modifications in order to find analytical approximate solutions for the linear and nonlinear differential equations which arise from some variational problems. As case study we will solve four ordinary differential equations, and we will show that the proposed solutions have good accuracy, even we will obtain an exact solution. In the sequel, we will see that the square residual error for the approximate solutions, belongs to the interval [0.001918936920, 0.06334882582], which confirms the accuracy of the proposed methods, taking into account the complexity and difficulty of variational problems.

  11. Estimate of blow-up and relaxation time for self-gravitating Brownian particles and bacterial populations.

    PubMed

    Chavanis, P-H; Sire, C

    2004-08-01

    We determine an exact asymptotic expression of the blow-up time t(coll) for self-gravitating Brownian particles or bacterial populations (chemotaxis) close to the critical point in d=3. We show that t(coll) = t(*) (eta- eta(c) )(-1/2) with t(*) =0.917 677 02..., where eta represents the inverse temperature (for Brownian particles) or the mass (for bacterial colonies), and eta(c) is the critical value of eta above which the system blows up. This result is in perfect agreement with the numerical solution of the Smoluchowski-Poisson system. We also determine the exact asymptotic expression of the relaxation time close to but above the critical temperature and derive a large time asymptotic expansion for the density profile exactly at the critical point.

  12. On the exact solutions of high order wave equations of KdV type (I)

    NASA Astrophysics Data System (ADS)

    Bulut, Hasan; Pandir, Yusuf; Baskonus, Haci Mehmet

    2014-12-01

    In this paper, by means of a proper transformation and symbolic computation, we study high order wave equations of KdV type (I). We obtained classification of exact solutions that contain soliton, rational, trigonometric and elliptic function solutions by using the extended trial equation method. As a result, the motivation of this paper is to utilize the extended trial equation method to explore new solutions of high order wave equation of KdV type (I). This method is confirmed by applying it to this kind of selected nonlinear equations.

  13. Entanglement Hamiltonians for Chiral Fermions with Zero Modes.

    PubMed

    Klich, Israel; Vaman, Diana; Wong, Gabriel

    2017-09-22

    In this Letter, we study the effect of topological zero modes on entanglement Hamiltonians and the entropy of free chiral fermions in (1+1)D. We show how Riemann-Hilbert solutions combined with finite rank perturbation theory allow us to obtain exact expressions for entanglement Hamiltonians. In the absence of the zero mode, the resulting entanglement Hamiltonians consist of local and bilocal terms. In the periodic sector, the presence of a zero mode leads to an additional nonlocal contribution to the entanglement Hamiltonian. We derive an exact expression for this term and for the resulting change in the entanglement entropy.

  14. Exact coupling threshold for structural transition reveals diversified behaviors in interconnected networks.

    PubMed

    Darabi Sahneh, Faryad; Scoglio, Caterina; Van Mieghem, Piet

    2015-10-01

    An interconnected network features a structural transition between two regimes [F. Radicchi and A. Arenas, Nat. Phys. 9, 717 (2013)]: one where the network components are structurally distinguishable and one where the interconnected network functions as a whole. Our exact solution for the coupling threshold uncovers network topologies with unexpected behaviors. Specifically, we show conditions that superdiffusion, introduced by Gómez et al. [Phys. Rev. Lett. 110, 028701 (2013)], can occur despite the network components functioning distinctly. Moreover, we find that components of certain interconnected network topologies are indistinguishable despite very weak coupling between them.

  15. Expanded solutions of force-free electrodynamics on general Kerr black holes

    NASA Astrophysics Data System (ADS)

    Li, Huiquan; Wang, Jiancheng

    2017-07-01

    In this work, expanded solutions of force-free magnetospheres on general Kerr black holes are derived through a radial distance expansion method. From the regular conditions both at the horizon and at spatial infinity, two previously known asymptotical solutions (one of them is actually an exact solution) are identified as the only solutions that satisfy the same conditions at the two boundaries. Taking them as initial conditions at the boundaries, expanded solutions up to the first few orders are derived by solving the stream equation order by order. It is shown that our extension of the exact solution can (partially) cure the problems of the solution: it leads to magnetic domination and a mostly timelike current for restricted parameters.

  16. On the dispersionless Kadomtsev-Petviashvili equation with arbitrary nonlinearity and dimensionality: exact solutions, longtime asymptotics of the Cauchy problem, wave breaking and shocks

    NASA Astrophysics Data System (ADS)

    Santucci, F.; Santini, P. M.

    2016-10-01

    We study the generalization of the dispersionless Kadomtsev-Petviashvili (dKP) equation in n+1 dimensions and with nonlinearity of degree m+1, a model equation describing the propagation of weakly nonlinear, quasi one-dimensional waves in the absence of dispersion and dissipation, and arising in several physical contexts, like acoustics, plasma physics, hydrodynamics and nonlinear optics. In 2 + 1 dimensions and with quadratic nonlinearity, this equation is integrable through a novel inverse scattering transform, and it has been recently shown to be a prototype model equation in the description of the two-dimensional wave breaking of localized initial data. In higher dimensions and with higher nonlinearity, the generalized dKP equations are not integrable, but their invariance under motions on the paraboloid allows one to construct in this paper a family of exact solutions describing waves constant on their paraboloidal wave front and breaking simultaneously in all points of it, developing after breaking either multivaluedness or single-valued discontinuous profiles (shocks). Then such exact solutions are used to build the longtime behavior of the solutions of the Cauchy problem, for small and localized initial data, showing that wave breaking of small initial data takes place in the longtime regime if and only if m(n-1)≤slant 2. Lastly, the analytic aspects of such wave breaking are investigated in detail in terms of the small initial data, in both cases in which the solution becomes multivalued after breaking or it develops a shock. These results, contained in the 2012 master’s thesis of one of the authors (FS) [1], generalize those obtained in [2] for the dKP equation in n+1 dimensions with quadratic nonlinearity, and are obtained following the same strategy.

  17. Some Remarks on Space-Time Decompositions, and Degenerate Metrics, in General Relativity

    NASA Astrophysics Data System (ADS)

    Bengtsson, Ingemar

    Space-time decomposition of the Hilbert-Palatini action, written in a form which admits degenerate metrics, is considered. Simple numerology shows why D = 3 and 4 are singled out as admitting a simple phase space. The canonical structure of the degenerate sector turns out to be awkward. However, the real degenerate metrics obtained as solutions are the same as those that occur in Ashtekar's formulation of complex general relativity. An exact solution of Ashtekar's equations, with degenerate metric, shows that the manifestly four-dimensional form of the action, and its 3 + 1 form, are not quite equivalent.

  18. Exact nonparaxial beams of the scalar Helmholtz equation.

    PubMed

    Rodríguez-Morales, Gustavo; Chávez-Cerda, Sabino

    2004-03-01

    It is shown that three-dimensional nonparaxial beams are described by the oblate spheroidal exact solutions of the Helmholtz equation. For what is believed to be the first time, their beam behavior is investigated and their corresponding parameters are defined. Using the fact that the beam width of the family of paraxial Gaussian beams is described by a hyperbola, we formally establish the connection between the physical parameters of nonparaxial spheroidal beam solutions and those of paraxial beams. These results are also helpful for investigating exact vector nonparaxial beams.

  19. Exact solutions to model surface and volume charge distributions

    NASA Astrophysics Data System (ADS)

    Mukhopadhyay, S.; Majumdar, N.; Bhattacharya, P.; Jash, A.; Bhattacharya, D. S.

    2016-10-01

    Many important problems in several branches of science and technology deal with charges distributed along a line, over a surface and within a volume. Recently, we have made use of new exact analytic solutions of surface charge distributions to develop the nearly exact Boundary Element Method (neBEM) toolkit. This 3D solver has been successful in removing some of the major drawbacks of the otherwise elegant Green's function approach and has been found to be very accurate throughout the computational domain, including near- and far-field regions. Use of truly distributed singularities (in contrast to nodally concentrated ones) on rectangular and right-triangular elements used for discretizing any three-dimensional geometry has essentially removed many of the numerical and physical singularities associated with the conventional BEM. In this work, we will present this toolkit and the development of several numerical models of space charge based on exact closed-form expressions. In one of the models, Particles on Surface (ParSur), the space charge inside a small elemental volume of any arbitrary shape is represented as being smeared on several surfaces representing the volume. From the studies, it can be concluded that the ParSur model is successful in getting the estimates close to those obtained using the first-principles, especially close to and within the cell. In the paper, we will show initial applications of ParSur and other models in problems related to high energy physics.

  20. Using exact solutions to develop an implicit scheme for the baroclinic primitive equations

    NASA Technical Reports Server (NTRS)

    Marchesin, D.

    1984-01-01

    The exact solutions presently obtained by means of a novel method for nonlinear initial value problems are used in the development of numerical schemes for the computer solution of these problems. The method is applied to a new, fully implicit scheme on a vertical slice of the isentropic baroclinic equations. It was not possible to find a global scale phenomenon that could be simulated by the baroclinic primitive equations on a vertical slice.

  1. Benchmark problems and solutions

    NASA Technical Reports Server (NTRS)

    Tam, Christopher K. W.

    1995-01-01

    The scientific committee, after careful consideration, adopted six categories of benchmark problems for the workshop. These problems do not cover all the important computational issues relevant to Computational Aeroacoustics (CAA). The deciding factor to limit the number of categories to six was the amount of effort needed to solve these problems. For reference purpose, the benchmark problems are provided here. They are followed by the exact or approximate analytical solutions. At present, an exact solution for the Category 6 problem is not available.

  2. Spatial correlations and exact solution of the problem of the boson peak profile in amorphous media

    NASA Astrophysics Data System (ADS)

    Kirillov, Sviatoslav A.; A. Voyiatzis, George; Kolomiyets, Tatiana M.; H. Anastasiadis, Spiros

    1999-11-01

    Based on a model correlation function which covers spatial correlations from Gaussian to exponential, we have arrived at an exact analytic solution of the problem of the Boson peak profile in amorphous media. Probe fits made for polyisoprene and triacetin prove the working ability of the formulae obtained.

  3. Exact Solutions to Time-dependent Mdps

    NASA Technical Reports Server (NTRS)

    Boyan, Justin A.; Littman, Michael L.

    2000-01-01

    We describe an extension of the Markov decision process model in which a continuous time dimension is included in the state space. This allows for the representation and exact solution of a wide range of problems in which transitions or rewards vary over time. We examine problems based on route planning with public transportation and telescope observation scheduling.

  4. Ferrofluid patterns in Hele-Shaw cells: Exact, stable, stationary shape solutions.

    PubMed

    Lira, Sérgio A; Miranda, José A

    2016-01-01

    We investigate a quasi-two-dimensional system composed of an initially circular ferrofluid droplet surrounded by a nonmagnetic fluid of higher density. These immiscible fluids flow in a rotating Hele-Shaw cell, under the influence of an in-plane radial magnetic field. We focus on the situation in which destabilizing bulk magnetic field effects are balanced by stabilizing centrifugal forces. In this framing, we consider the interplay of capillary and magnetic normal traction effects in determining the fluid-fluid interface morphology. By employing a vortex-sheet formalism, we have been able to find a family of exact stationary N-fold polygonal shape solutions for the interface. A weakly nonlinear theory is then used to verify that such exact interfacial solutions are in fact stable.

  5. Twisted gravitational waves

    NASA Astrophysics Data System (ADS)

    Bini, Donato; Chicone, Carmen; Mashhoon, Bahram

    2018-03-01

    In general relativity (GR), linearized gravitational waves propagating in empty Minkowski spacetime along a fixed spatial direction have the property that the wave front is the Euclidean plane. Beyond the linear regime, exact plane waves in GR have been studied theoretically for a long time and many exact vacuum solutions of the gravitational field equations are known that represent plane gravitational waves. These have parallel rays and uniform wave fronts. It turns out, however, that GR also admits exact solutions representing gravitational waves propagating along a fixed direction that are nonplanar. The wave front is then nonuniform and the bundle of rays is twisted. We find a class of solutions representing nonplanar unidirectional gravitational waves and study some of the properties of these twisted waves.

  6. Rotation relaxation splitting for optimizing parallel RF excitation pulses with T1 - and T2 -relaxations in MRI

    NASA Astrophysics Data System (ADS)

    Majewski, Kurt

    2018-03-01

    Exact solutions of the Bloch equations with T1 - and T2 -relaxation terms for piecewise constant magnetic fields are numerically challenging. We therefore investigate an approximation for the achieved magnetization in which rotations and relaxations are split into separate operations. We develop an estimate for its accuracy and explicit first and second order derivatives with respect to the complex excitation radio frequency voltages. In practice, the deviation between an exact solution of the Bloch equations and this rotation relaxation splitting approximation seems negligible. Its computation times are similar to exact solutions without relaxation terms. We apply the developed theory to numerically optimize radio frequency excitation waveforms with T1 - and T2 -relaxations in several examples.

  7. The solution of the dam-break problem in the Porous Shallow water Equations

    NASA Astrophysics Data System (ADS)

    Cozzolino, Luca; Pepe, Veronica; Cimorelli, Luigi; D'Aniello, Andrea; Della Morte, Renata; Pianese, Domenico

    2018-04-01

    The Porous Shallow water Equations are commonly used to evaluate the propagation of flooding waves in the urban environment. These equations may exhibit not only classic shocks, rarefactions, and contact discontinuities, as in the ordinary two-dimensional Shallow water Equations, but also special discontinuities at abrupt porosity jumps. In this paper, an appropriate parameterization of the stationary weak solutions of one-dimensional Porous Shallow water Equations supplies the inner structure of the porosity jumps. The exact solution of the corresponding dam-break problem is presented, and six different wave configurations are individuated, proving that the solution exists and it is unique for given initial conditions and geometric characteristics. These results can be used as a benchmark in order to validate one- and two-dimensional numerical models for the solution of the Porous Shallow water Equations. In addition, it is presented a novel Finite Volume scheme where the porosity jumps are taken into account by means of a variables reconstruction approach. The dam-break results supplied by this numerical scheme are compared with the exact dam-break results, showing the promising capabilities of this numerical approach. Finally, the advantages of the novel porosity jump definition are shown by comparison with other definitions available in the literature, demonstrating its advantages, and the issues raising in real world applications are discussed.

  8. Conformally symmetric traversable wormholes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Boehmer, Christian G.; Harko, Tiberiu; Lobo, Francisco S. N.

    2007-10-15

    Exact solutions of traversable wormholes are found under the assumption of spherical symmetry and the existence of a nonstatic conformal symmetry, which presents a more systematic approach in searching for exact wormhole solutions. In this work, a wide variety of solutions are deduced by considering choices for the form function, a specific linear equation of state relating the energy density and the pressure anisotropy, and various phantom wormhole geometries are explored. A large class of solutions impose that the spatial distribution of the exotic matter is restricted to the throat neighborhood, with a cutoff of the stress-energy tensor at amore » finite junction interface, although asymptotically flat exact solutions are also found. Using the 'volume integral quantifier', it is found that the conformally symmetric phantom wormhole geometries may, in principle, be constructed by infinitesimally small amounts of averaged null energy condition violating matter. Considering the tidal acceleration traversability conditions for the phantom wormhole geometry, specific wormhole dimensions and the traversal velocity are also deduced.« less

  9. Iterative solution of the inverse Cauchy problem for an elliptic equation by the conjugate gradient method

    NASA Astrophysics Data System (ADS)

    Vasil'ev, V. I.; Kardashevsky, A. M.; Popov, V. V.; Prokopev, G. A.

    2017-10-01

    This article presents results of computational experiment carried out using a finite-difference method for solving the inverse Cauchy problem for a two-dimensional elliptic equation. The computational algorithm involves an iterative determination of the missing boundary condition from the override condition using the conjugate gradient method. The results of calculations are carried out on the examples with exact solutions as well as at specifying an additional condition with random errors are presented. Results showed a high efficiency of the iterative method of conjugate gradients for numerical solution

  10. Modeling of dispersed-drug delivery from planar polymeric systems: optimizing analytical solutions.

    PubMed

    Helbling, Ignacio M; Ibarra, Juan C D; Luna, Julio A; Cabrera, María I; Grau, Ricardo J A

    2010-11-15

    Analytical solutions for the case of controlled dispersed-drug release from planar non-erodible polymeric matrices, based on Refined Integral Method, are presented. A new adjusting equation is used for the dissolved drug concentration profile in the depletion zone. The set of equations match the available exact solution. In order to illustrate the usefulness of this model, comparisons with experimental profiles reported in the literature are presented. The obtained results show that the model can be employed in a broad range of applicability. Copyright © 2010 Elsevier B.V. All rights reserved.

  11. Solving fractional optimal control problems within a Chebyshev-Legendre operational technique

    NASA Astrophysics Data System (ADS)

    Bhrawy, A. H.; Ezz-Eldien, S. S.; Doha, E. H.; Abdelkawy, M. A.; Baleanu, D.

    2017-06-01

    In this manuscript, we report a new operational technique for approximating the numerical solution of fractional optimal control (FOC) problems. The operational matrix of the Caputo fractional derivative of the orthonormal Chebyshev polynomial and the Legendre-Gauss quadrature formula are used, and then the Lagrange multiplier scheme is employed for reducing such problems into those consisting of systems of easily solvable algebraic equations. We compare the approximate solutions achieved using our approach with the exact solutions and with those presented in other techniques and we show the accuracy and applicability of the new numerical approach, through two numerical examples.

  12. A Bivariate Chebyshev Spectral Collocation Quasilinearization Method for Nonlinear Evolution Parabolic Equations

    PubMed Central

    Motsa, S. S.; Magagula, V. M.; Sibanda, P.

    2014-01-01

    This paper presents a new method for solving higher order nonlinear evolution partial differential equations (NPDEs). The method combines quasilinearisation, the Chebyshev spectral collocation method, and bivariate Lagrange interpolation. In this paper, we use the method to solve several nonlinear evolution equations, such as the modified KdV-Burgers equation, highly nonlinear modified KdV equation, Fisher's equation, Burgers-Fisher equation, Burgers-Huxley equation, and the Fitzhugh-Nagumo equation. The results are compared with known exact analytical solutions from literature to confirm accuracy, convergence, and effectiveness of the method. There is congruence between the numerical results and the exact solutions to a high order of accuracy. Tables were generated to present the order of accuracy of the method; convergence graphs to verify convergence of the method and error graphs are presented to show the excellent agreement between the results from this study and the known results from literature. PMID:25254252

  13. A bivariate Chebyshev spectral collocation quasilinearization method for nonlinear evolution parabolic equations.

    PubMed

    Motsa, S S; Magagula, V M; Sibanda, P

    2014-01-01

    This paper presents a new method for solving higher order nonlinear evolution partial differential equations (NPDEs). The method combines quasilinearisation, the Chebyshev spectral collocation method, and bivariate Lagrange interpolation. In this paper, we use the method to solve several nonlinear evolution equations, such as the modified KdV-Burgers equation, highly nonlinear modified KdV equation, Fisher's equation, Burgers-Fisher equation, Burgers-Huxley equation, and the Fitzhugh-Nagumo equation. The results are compared with known exact analytical solutions from literature to confirm accuracy, convergence, and effectiveness of the method. There is congruence between the numerical results and the exact solutions to a high order of accuracy. Tables were generated to present the order of accuracy of the method; convergence graphs to verify convergence of the method and error graphs are presented to show the excellent agreement between the results from this study and the known results from literature.

  14. Tag SNP selection via a genetic algorithm.

    PubMed

    Mahdevar, Ghasem; Zahiri, Javad; Sadeghi, Mehdi; Nowzari-Dalini, Abbas; Ahrabian, Hayedeh

    2010-10-01

    Single Nucleotide Polymorphisms (SNPs) provide valuable information on human evolutionary history and may lead us to identify genetic variants responsible for human complex diseases. Unfortunately, molecular haplotyping methods are costly, laborious, and time consuming; therefore, algorithms for constructing full haplotype patterns from small available data through computational methods, Tag SNP selection problem, are convenient and attractive. This problem is proved to be an NP-hard problem, so heuristic methods may be useful. In this paper we present a heuristic method based on genetic algorithm to find reasonable solution within acceptable time. The algorithm was tested on a variety of simulated and experimental data. In comparison with the exact algorithm, based on brute force approach, results show that our method can obtain optimal solutions in almost all cases and runs much faster than exact algorithm when the number of SNP sites is large. Our software is available upon request to the corresponding author.

  15. Exact closed-form solution of the hyperbolic equation of string vibrations with material relaxation properties taken into account

    NASA Astrophysics Data System (ADS)

    Kudinov, I. V.; Kudinov, V. A.

    2014-09-01

    The differential equation of damped string vibrations was obtained with the finite speed of extension and strain propagation in the Hooke's law formula taken into account. In contrast to the well-known equations, the obtained equation contains the first and third time derivatives of the displacement and the mixed derivative with respect to the space and time variables. Separation of variables was used to obtain its exact closed-form solution, whose analysis showed that, for large values of the relaxation coefficient, the string return to the initial state after its escape from equilibrium is accompanied by high-frequency low-amplitude damped vibrations, which occur on the initial time interval only in the region of positive displacements. And in the limit, for some large values of the relaxation coefficient, the string return to the initial state occurs practically without any oscillatory process.

  16. Surface wave scattering from sharp lateral discontinuities

    NASA Astrophysics Data System (ADS)

    Pollitz, Fred F.

    1994-11-01

    The problem of surface wave scattering is re-explored, with quasi-degenerate normal mode coupling as the starting point. For coupling among specified spheroidal and toroidal mode dispersion branches, a set of coupled wave equations is derived in the frequency domain for first-arriving Rayleigh and Love waves. The solutions to these coupled wave equations using linear perturbation theory are surface integrals over the unit sphere covering the lateral distribution of perturbations in Earth structure. For isotropic structural perturbations and surface topographic perturbations, these solutions agree with the Born scattering theory previously obtained by Snieder and Romanowicz. By transforming these surface integrals into line integrals along the boundaries of the heterogeneous regions in the case of sharp discontinuities, and by using uniformly valid Green's functions, it is possible to extend the solution to the case of multiple scattering interactions. The proposed method allows the relatively rapid calculation of exact second order scattered wavefield potentials for scattering by sharp discontinuities, and it has many advantages not realized in earlier treatments. It employs a spherical Earth geometry, uses no far field approximation, and implicitly contains backward as well as forward scattering. Comparisons of asymptotic scattering and an exact solution with single scattering and multiple scattering integral formulations show that the phase perturbation predicted by geometrical optics breaks down for scatterers less than about six wavelengths in diameter, and second-order scattering predicts well both the amplitude and phase pattern of the exact wavefield for sufficiently small scatterers, less than about three wavelengths in diameter for anomalies of a few percent.

  17. Opera: reconstructing optimal genomic scaffolds with high-throughput paired-end sequences.

    PubMed

    Gao, Song; Sung, Wing-Kin; Nagarajan, Niranjan

    2011-11-01

    Scaffolding, the problem of ordering and orienting contigs, typically using paired-end reads, is a crucial step in the assembly of high-quality draft genomes. Even as sequencing technologies and mate-pair protocols have improved significantly, scaffolding programs still rely on heuristics, with no guarantees on the quality of the solution. In this work, we explored the feasibility of an exact solution for scaffolding and present a first tractable solution for this problem (Opera). We also describe a graph contraction procedure that allows the solution to scale to large scaffolding problems and demonstrate this by scaffolding several large real and synthetic datasets. In comparisons with existing scaffolders, Opera simultaneously produced longer and more accurate scaffolds demonstrating the utility of an exact approach. Opera also incorporates an exact quadratic programming formulation to precisely compute gap sizes (Availability: http://sourceforge.net/projects/operasf/ ).

  18. Opera: Reconstructing Optimal Genomic Scaffolds with High-Throughput Paired-End Sequences

    PubMed Central

    Gao, Song; Sung, Wing-Kin

    2011-01-01

    Abstract Scaffolding, the problem of ordering and orienting contigs, typically using paired-end reads, is a crucial step in the assembly of high-quality draft genomes. Even as sequencing technologies and mate-pair protocols have improved significantly, scaffolding programs still rely on heuristics, with no guarantees on the quality of the solution. In this work, we explored the feasibility of an exact solution for scaffolding and present a first tractable solution for this problem (Opera). We also describe a graph contraction procedure that allows the solution to scale to large scaffolding problems and demonstrate this by scaffolding several large real and synthetic datasets. In comparisons with existing scaffolders, Opera simultaneously produced longer and more accurate scaffolds demonstrating the utility of an exact approach. Opera also incorporates an exact quadratic programming formulation to precisely compute gap sizes (Availability: http://sourceforge.net/projects/operasf/). PMID:21929371

  19. Solution of the exact equations for three-dimensional atmospheric entry using directly matched asymptotic expansions

    NASA Technical Reports Server (NTRS)

    Busemann, A.; Vinh, N. X.; Culp, R. D.

    1976-01-01

    The problem of determining the trajectories, partially or wholly contained in the atmosphere of a spherical, nonrotating planet, is considered. The exact equations of motion for three-dimensional, aerodynamically affected flight are derived. Modified Chapman variables are introduced and the equations are transformed into a set suitable for analytic integration using asymptotic expansions. The trajectory is solved in two regions: the outer region, where the force may be considered a gravitational field with aerodynamic perturbations, and the inner region, where the force is predominantly aerodynamic, with gravity as a perturbation. The two solutions are matched directly. A composite solution, valid everywhere, is constructed by additive composition. This approach of directly matched asymptotic expansions applied to the exact equations of motion couched in terms of modified Chapman variables yields an analytical solution which should prove to be a powerful tool for aerodynamic orbit calculations.

  20. Effect of zone size on the convergence of exact solutions for diffusion in single phase systems with planar, cylindrical or spherical geometry

    NASA Technical Reports Server (NTRS)

    Unnam, J.; Tenney, D. R.

    1981-01-01

    Exact solutions for diffusion in single phase binary alloy systems with constant diffusion coefficient and zero-flux boundary condition have been evaluated to establish the optimum zone size of applicability. Planar, cylindrical and spherical interface geometry, and finite, singly infinite, and doubly infinite systems are treated. Two solutions are presented for each geometry, one well suited to short diffusion times, and one to long times. The effect of zone-size on the convergence of these solutions is discussed. A generalized form of the diffusion solution for doubly infinite systems is proposed.

  1. Exact traveling wave solutions of the KP-BBM equation by using the new approach of generalized (G'/G)-expansion method.

    PubMed

    Alam, Md Nur; Akbar, M Ali

    2013-01-01

    The new approach of the generalized (G'/G)-expansion method is an effective and powerful mathematical tool in finding exact traveling wave solutions of nonlinear evolution equations (NLEEs) in science, engineering and mathematical physics. In this article, the new approach of the generalized (G'/G)-expansion method is applied to construct traveling wave solutions of the Kadomtsev-Petviashvili-Benjamin-Bona-Mahony (KP-BBM) equation. The solutions are expressed in terms of the hyperbolic functions, the trigonometric functions and the rational functions. By means of this scheme, we found some new traveling wave solutions of the above mentioned equation.

  2. Strong anti-gravity Life in the shock wave

    NASA Astrophysics Data System (ADS)

    Fabbrichesi, Marco; Roland, Kaj

    1992-12-01

    Strong anti-gravity is the vanishing of the net force between two massive particles at rest, to all orders in Newton's constant. We study this phenomenon and show that it occurs in any effective theory of gravity which is obtained from a higher-dimensional model by compactification on a manifold with flat directions. We find the exact solution of the Einstein equations in the presence of a point-like source of strong anti-gravity by dimensional reduction of a shock-wave solution in the higher-dimensional model.

  3. Master equation for a kinetic model of a trading market and its analytic solution

    NASA Astrophysics Data System (ADS)

    Chatterjee, Arnab; Chakrabarti, Bikas K.; Stinchcombe, Robin B.

    2005-08-01

    We analyze an ideal-gas-like model of a trading market with quenched random saving factors for its agents and show that the steady state income (m) distribution P(m) in the model has a power law tail with Pareto index ν exactly equal to unity, confirming the earlier numerical studies on this model. The analysis starts with the development of a master equation for the time development of P(m) . Precise solutions are then obtained in some special cases.

  4. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sharif, M., E-mail: msharif.math@pu.edu.pk; Nawazish, I., E-mail: iqranawazish07@gmail.com

    We attempt to find exact solutions of the Bianchi I model in f(R) gravity using the Noether symmetry approach. For this purpose, we take a perfect fluid and formulate conserved quantities for the power-law f(R) model. We discuss some cosmological parameters for the resulting solution which are responsible for expanding behavior of the universe. We also explore Noether gauge symmetry and the corresponding conserved quantity. It is concluded that symmetry generators as well as conserved quantities exist in all cases and the behavior of cosmological parameters shows consistency with recent observational data.

  5. Master equation for a kinetic model of a trading market and its analytic solution.

    PubMed

    Chatterjee, Arnab; Chakrabarti, Bikas K; Stinchcombe, Robin B

    2005-08-01

    We analyze an ideal-gas-like model of a trading market with quenched random saving factors for its agents and show that the steady state income (m) distribution P(m) in the model has a power law tail with Pareto index nu exactly equal to unity, confirming the earlier numerical studies on this model. The analysis starts with the development of a master equation for the time development of P(m) . Precise solutions are then obtained in some special cases.

  6. Exact calculations of survival probability for diffusion on growing lines, disks, and spheres: The role of dimension.

    PubMed

    Simpson, Matthew J; Baker, Ruth E

    2015-09-07

    Unlike standard applications of transport theory, the transport of molecules and cells during embryonic development often takes place within growing multidimensional tissues. In this work, we consider a model of diffusion on uniformly growing lines, disks, and spheres. An exact solution of the partial differential equation governing the diffusion of a population of individuals on the growing domain is derived. Using this solution, we study the survival probability, S(t). For the standard non-growing case with an absorbing boundary, we observe that S(t) decays to zero in the long time limit. In contrast, when the domain grows linearly or exponentially with time, we show that S(t) decays to a constant, positive value, indicating that a proportion of the diffusing substance remains on the growing domain indefinitely. Comparing S(t) for diffusion on lines, disks, and spheres indicates that there are minimal differences in S(t) in the limit of zero growth and minimal differences in S(t) in the limit of fast growth. In contrast, for intermediate growth rates, we observe modest differences in S(t) between different geometries. These differences can be quantified by evaluating the exact expressions derived and presented here.

  7. Quantum propagation across cosmological singularities

    NASA Astrophysics Data System (ADS)

    Gielen, Steffen; Turok, Neil

    2017-05-01

    The initial singularity is the most troubling feature of the standard cosmology, which quantum effects are hoped to resolve. In this paper, we study quantum cosmology with conformal (Weyl) invariant matter. We show that it is natural to extend the scale factor to negative values, allowing a large, collapsing universe to evolve across a quantum "bounce" into an expanding universe like ours. We compute the Feynman propagator for Friedmann-Robertson-Walker backgrounds exactly, identifying curious pathologies in the case of curved (open or closed) universes. We then include anisotropies, fixing the operator ordering of the quantum Hamiltonian by imposing covariance under field redefinitions and again finding exact solutions. We show how complex classical solutions allow one to circumvent the singularity while maintaining the validity of the semiclassical approximation. The simplest isotropic universes sit on a critical boundary, beyond which there is qualitatively different behavior, with potential for instability. Additional scalars improve the theory's stability. Finally, we study the semiclassical propagation of inhomogeneous perturbations about the flat, isotropic case, at linear and nonlinear order, showing that, at least at this level, there is no particle production across the bounce. These results form the basis for a promising new approach to quantum cosmology and the resolution of the big bang singularity.

  8. Hydrodynamics beyond Navier-Stokes: exact solution to the lattice Boltzmann hierarchy.

    PubMed

    Ansumali, S; Karlin, I V; Arcidiacono, S; Abbas, A; Prasianakis, N I

    2007-03-23

    The exact solution to the hierarchy of nonlinear lattice Boltzmann (LB) kinetic equations in the stationary planar Couette flow is found at nonvanishing Knudsen numbers. A new method of solving LB kinetic equations which combines the method of moments with boundary conditions for populations enables us to derive closed-form solutions for all higher-order moments. A convergence of results suggests that the LB hierarchy with larger velocity sets is the novel way to approximate kinetic theory.

  9. An exact solution of the Currie-Hill equations in 1 + 1 dimensional Minkowski space

    NASA Astrophysics Data System (ADS)

    Balog, János

    2014-11-01

    We present an exact two-particle solution of the Currie-Hill equations of Predictive Relativistic Mechanics in 1 + 1 dimensional Minkowski space. The instantaneous accelerations are given in terms of elementary functions depending on the relative particle position and velocities. The general solution of the equations of motion is given and by studying the global phase space of this system it is shown that this is a subspace of the full kinematic phase space.

  10. Exact finite elements for conduction and convection

    NASA Technical Reports Server (NTRS)

    Thornton, E. A.; Dechaumphai, P.; Tamma, K. K.

    1981-01-01

    An appproach for developing exact one dimensional conduction-convection finite elements is presented. Exact interpolation functions are derived based on solutions to the governing differential equations by employing a nodeless parameter. Exact interpolation functions are presented for combined heat transfer in several solids of different shapes, and for combined heat transfer in a flow passage. Numerical results demonstrate that exact one dimensional elements offer advantages over elements based on approximate interpolation functions. Previously announced in STAR as N81-31507

  11. Dual exponential polynomials and linear differential equations

    NASA Astrophysics Data System (ADS)

    Wen, Zhi-Tao; Gundersen, Gary G.; Heittokangas, Janne

    2018-01-01

    We study linear differential equations with exponential polynomial coefficients, where exactly one coefficient is of order greater than all the others. The main result shows that a nontrivial exponential polynomial solution of such an equation has a certain dual relationship with the maximum order coefficient. Several examples illustrate our results and exhibit possibilities that can occur.

  12. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wang, Y. B.; Zhu, X. W., E-mail: xiaowuzhu1026@znufe.edu.cn; Dai, H. H.

    Though widely used in modelling nano- and micro- structures, Eringen’s differential model shows some inconsistencies and recent study has demonstrated its differences between the integral model, which then implies the necessity of using the latter model. In this paper, an analytical study is taken to analyze static bending of nonlocal Euler-Bernoulli beams using Eringen’s two-phase local/nonlocal model. Firstly, a reduction method is proved rigorously, with which the integral equation in consideration can be reduced to a differential equation with mixed boundary value conditions. Then, the static bending problem is formulated and four types of boundary conditions with various loadings aremore » considered. By solving the corresponding differential equations, exact solutions are obtained explicitly in all of the cases, especially for the paradoxical cantilever beam problem. Finally, asymptotic analysis of the exact solutions reveals clearly that, unlike the differential model, the integral model adopted herein has a consistent softening effect. Comparisons are also made with existing analytical and numerical results, which further shows the advantages of the analytical results obtained. Additionally, it seems that the once controversial nonlocal bar problem in the literature is well resolved by the reduction method.« less

  13. Nonstationary magnetosonic wave dynamics in plasmas exhibiting collapse.

    PubMed

    Chakrabarti, Nikhil; Maity, Chandan; Schamel, Hans

    2013-08-01

    In a Lagrangian fluid approach, an explicit method has been presented previously to obtain an exact nonstationary magnetosonic-type wave solution in compressible magnetized plasmas of arbitrary resistivity showing competition among hydrodynamic convection, magnetic field diffusion, and dispersion [Chakrabarti et al., Phys. Rev. Lett. 106, 145003 (2011)]. The purpose of the present work is twofold: it serves (i) to describe the physical and mathematical background of the involved magnetosonic wave dynamics in more detail, as proposed by our original Letter, and (ii) to present an alternative approach, which utilizes the Lagrangian mass variable as a new spatial coordinate [Schamel, Phys. Rep. 392, 279 (2004)]. The obtained exact nonlinear wave solutions confirm the correctness of our previous results, indicating a collapse of the magnetic field irrespective of the presence of dispersion and resistivity. The mean plasma density, on the other hand, is less singular, showing collapse only when dispersive effects are negligible. These results may contribute to our understanding of the generation of strongly localized magnetic fields (and currents) in plasmas, and they are expected to be of special importance in the astrophysical context of magnetic star formation.

  14. Numerical Solution of the Electron Transport Equation in the Upper Atmosphere

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Woods, Mark Christopher; Holmes, Mark; Sailor, William C

    A new approach for solving the electron transport equation in the upper atmosphere is derived. The problem is a very stiff boundary value problem, and to obtain an accurate numerical solution, matrix factorizations are used to decouple the fast and slow modes. A stable finite difference method is applied to each mode. This solver is applied to a simplifieed problem for which an exact solution exists using various versions of the boundary conditions that might arise in a natural auroral display. The numerical and exact solutions are found to agree with each other to at least two significant digits.

  15. The general Lie group and similarity solutions for the one-dimensional Vlasov-Maxwell equations

    NASA Technical Reports Server (NTRS)

    Roberts, D.

    1985-01-01

    The general Lie point transformation group and the associated reduced differential equations and similarity forms for the solutions are derived here for the coupled (nonlinear) Vlasov-Maxwell equations in one spatial dimension. The case of one species in a background is shown to admit a larger group than the multispecies case. Previous exact solutions are shown to be special cases of the above solutions, and many of the new solutions are found to constrain the form of the distribution function much more than, for example, the BGK solutions do. The individual generators of the Lie group are used to find the possible subgroups. Finally, a simple physical argument is given to show that the asymptotic solution for a one-species, one-dimensional plasma is one of the general similarity solutions.

  16. Problem solving during artificial selection of self-replicating loops

    NASA Astrophysics Data System (ADS)

    Chou, Hui-Hsien; Reggia, James A.

    1998-05-01

    Past cellular automata models of self-replication have generally done only one thing: replicate themselves. However, it has recently been demonstrated that such self-replicating structures can be programmed to also carry out a task during the replication process. Past models of this sort have been limited in that the “program” involved is copied unchanged from parent to child, so that each generation of replicants is executing exactly the same program on exactly the same data. Here we take a different approach in which each replicant receives a distinct partial solution that is modified during replication. Under artificial selection, replicants with promising solutions proliferate while those with failed solutions are lost. We show that this approach can be applied successfully to solve an NP-complete problem, the satisfiability problem. Bounds are given on the cellular space size and time needed to solve a given problem, and simulations demonstrate that this approach works effectively. These and other recent results raise the possibility of evolving self-replicating structures that have a simulated metabolism or that carry out useful tasks.

  17. The exact rogue wave recurrence in the NLS periodic setting via matched asymptotic expansions, for 1 and 2 unstable modes

    NASA Astrophysics Data System (ADS)

    Grinevich, P. G.; Santini, P. M.

    2018-04-01

    The focusing Nonlinear Schrödinger (NLS) equation is the simplest universal model describing the modulation instability (MI) of quasi monochromatic waves in weakly nonlinear media, the main physical mechanism for the generation of rogue (anomalous) waves (RWs) in Nature. In this paper we investigate the x-periodic Cauchy problem for NLS for a generic periodic initial perturbation of the unstable constant background solution, in the case of N = 1 , 2 unstable modes. We use matched asymptotic expansion techniques to show that the solution of this problem describes an exact deterministic alternate recurrence of linear and nonlinear stages of MI, and that the nonlinear RW stages are described by the N-breather solution of Akhmediev type, whose parameters, different at each RW appearance, are always given in terms of the initial data through elementary functions. This paper is motivated by a preceding work of the authors in which a different approach, the finite gap method, was used to investigate periodic Cauchy problems giving rise to RW recurrence.

  18. Localized light waves: Paraxial and exact solutions of the wave equation (a review)

    NASA Astrophysics Data System (ADS)

    Kiselev, A. P.

    2007-04-01

    Simple explicit localized solutions are systematized over the whole space of a linear wave equation, which models the propagation of optical radiation in a linear approximation. Much attention has been paid to exact solutions (which date back to the Bateman findings) that describe wave beams (including Bessel-Gauss beams) and wave packets with a Gaussian localization with respect to the spatial variables and time. Their asymptotics with respect to free parameters and at large distances are presented. A similarity between these exact solutions and harmonic in time fields obtained in the paraxial approximation based on the Leontovich-Fock parabolic equation has been studied. Higher-order modes are considered systematically using the separation of variables method. The application of the Bateman solutions of the wave equation to the construction of solutions to equations with dispersion and nonlinearity and their use in wavelet analysis, as well as the summation of Gaussian beams, are discussed. In addition, solutions localized at infinity known as the Moses-Prosser “acoustic bullets”, as well as their harmonic in time counterparts, “ X waves”, waves from complex sources, etc., have been considered. Everywhere possible, the most elementary mathematical formalism is used.

  19. The stationary sine-Gordon equation on metric graphs: Exact analytical solutions for simple topologies

    NASA Astrophysics Data System (ADS)

    Sabirov, K.; Rakhmanov, S.; Matrasulov, D.; Susanto, H.

    2018-04-01

    We consider the stationary sine-Gordon equation on metric graphs with simple topologies. Exact analytical solutions are obtained for different vertex boundary conditions. It is shown that the method can be extended for tree and other simple graph topologies. Applications of the obtained results to branched planar Josephson junctions and Josephson junctions with tricrystal boundaries are discussed.

  20. Exact Solution of Gas Dynamics Equations Through Reduced Differential Transform and Sumudu Transform Linked with Pades Approximants

    NASA Astrophysics Data System (ADS)

    Rao, T. R. Ramesh

    2018-04-01

    In this paper, we study the analytical method based on reduced differential transform method coupled with sumudu transform through Pades approximants. The proposed method may be considered as alternative approach for finding exact solution of Gas dynamics equation in an effective manner. This method does not require any discretization, linearization and perturbation.

  1. Exact Solutions of Linear Reaction-Diffusion Processes on a Uniformly Growing Domain: Criteria for Successful Colonization

    PubMed Central

    Simpson, Matthew J

    2015-01-01

    Many processes during embryonic development involve transport and reaction of molecules, or transport and proliferation of cells, within growing tissues. Mathematical models of such processes usually take the form of a reaction-diffusion partial differential equation (PDE) on a growing domain. Previous analyses of such models have mainly involved solving the PDEs numerically. Here, we present a framework for calculating the exact solution of a linear reaction-diffusion PDE on a growing domain. We derive an exact solution for a general class of one-dimensional linear reaction—diffusion process on 0

  2. Exact solutions of linear reaction-diffusion processes on a uniformly growing domain: criteria for successful colonization.

    PubMed

    Simpson, Matthew J

    2015-01-01

    Many processes during embryonic development involve transport and reaction of molecules, or transport and proliferation of cells, within growing tissues. Mathematical models of such processes usually take the form of a reaction-diffusion partial differential equation (PDE) on a growing domain. Previous analyses of such models have mainly involved solving the PDEs numerically. Here, we present a framework for calculating the exact solution of a linear reaction-diffusion PDE on a growing domain. We derive an exact solution for a general class of one-dimensional linear reaction-diffusion process on 0

  3. Fractional analysis for nonlinear electrical transmission line and nonlinear Schroedinger equations with incomplete sub-equation

    NASA Astrophysics Data System (ADS)

    Fendzi-Donfack, Emmanuel; Nguenang, Jean Pierre; Nana, Laurent

    2018-02-01

    We use the fractional complex transform with the modified Riemann-Liouville derivative operator to establish the exact and generalized solutions of two fractional partial differential equations. We determine the solutions of fractional nonlinear electrical transmission lines (NETL) and the perturbed nonlinear Schroedinger (NLS) equation with the Kerr law nonlinearity term. The solutions are obtained for the parameters in the range (0<α≤1) of the derivative operator and we found the traditional solutions for the limiting case of α =1. We show that according to the modified Riemann-Liouville derivative, the solutions found can describe physical systems with memory effect, transient effects in electrical systems and nonlinear transmission lines, and other systems such as optical fiber.

  4. The method of generating functions in exact scalar field inflationary cosmology

    NASA Astrophysics Data System (ADS)

    Chervon, Sergey V.; Fomin, Igor V.; Beesham, Aroonkumar

    2018-04-01

    The construction of exact solutions in scalar field inflationary cosmology is of growing interest. In this work, we review the results which have been obtained with the help of one of the most effective methods, viz., the method of generating functions for the construction of exact solutions in scalar field cosmology. We also include in the debate the superpotential method, which may be considered as the bridge to the slow roll approximation equations. Based on the review, we suggest a classification for the generating functions, and find a connection for all of them with the superpotential.

  5. Comparison of two leading uniform theories of edge diffraction with the exact uniform asymptotic solution

    NASA Technical Reports Server (NTRS)

    Boersma, J.; Rahmat-Samii, Y.

    1980-01-01

    The diffraction of an arbitrary cylindrical wave by a half-plane has been treated by Rahmat-Samii and Mittra who used a spectral domain approach. In this paper, their exact solution for the total field is expressed in terms of a new integral representation. For large wave number k, two rigorous procedures are described for the exact uniform asymptotic expansion of the total field solution. The uniform expansions obtained are valid in the entire space, including transition regions around the shadow boundaries. The final results are compared with the formulations of two leading uniform theories of edge diffraction, namely, the uniform asymptotic theory and the uniform theory of diffraction. Some unique observations and conclusions are made in relating the two theories.

  6. Algebraic Construction of Exact Difference Equations from Symmetry of Equations

    NASA Astrophysics Data System (ADS)

    Itoh, Toshiaki

    2009-09-01

    Difference equations or exact numerical integrations, which have general solutions, are treated algebraically. Eliminating the symmetries of the equation, we can construct difference equations (DCE) or numerical integrations equivalent to some ODEs or PDEs that means both have the same solution functions. When arbitrary functions are given, whether we can construct numerical integrations that have solution functions equal to given function or not are treated in this work. Nowadays, Lie's symmetries solver for ODE and PDE has been implemented in many symbolic software. Using this solver we can construct algebraic DCEs or numerical integrations which are correspond to some ODEs or PDEs. In this work, we treated exact correspondence between ODE or PDE and DCE or numerical integration with Gröbner base and Janet base from the view of Lie's symmetries.

  7. Accurate chemical master equation solution using multi-finite buffers

    DOE PAGES

    Cao, Youfang; Terebus, Anna; Liang, Jie

    2016-06-29

    Here, the discrete chemical master equation (dCME) provides a fundamental framework for studying stochasticity in mesoscopic networks. Because of the multiscale nature of many networks where reaction rates have a large disparity, directly solving dCMEs is intractable due to the exploding size of the state space. It is important to truncate the state space effectively with quantified errors, so accurate solutions can be computed. It is also important to know if all major probabilistic peaks have been computed. Here we introduce the accurate CME (ACME) algorithm for obtaining direct solutions to dCMEs. With multifinite buffers for reducing the state spacemore » by $O(n!)$, exact steady-state and time-evolving network probability landscapes can be computed. We further describe a theoretical framework of aggregating microstates into a smaller number of macrostates by decomposing a network into independent aggregated birth and death processes and give an a priori method for rapidly determining steady-state truncation errors. The maximal sizes of the finite buffers for a given error tolerance can also be precomputed without costly trial solutions of dCMEs. We show exactly computed probability landscapes of three multiscale networks, namely, a 6-node toggle switch, 11-node phage-lambda epigenetic circuit, and 16-node MAPK cascade network, the latter two with no known solutions. We also show how probabilities of rare events can be computed from first-passage times, another class of unsolved problems challenging for simulation-based techniques due to large separations in time scales. Overall, the ACME method enables accurate and efficient solutions of the dCME for a large class of networks.« less

  8. Accurate chemical master equation solution using multi-finite buffers

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cao, Youfang; Terebus, Anna; Liang, Jie

    Here, the discrete chemical master equation (dCME) provides a fundamental framework for studying stochasticity in mesoscopic networks. Because of the multiscale nature of many networks where reaction rates have a large disparity, directly solving dCMEs is intractable due to the exploding size of the state space. It is important to truncate the state space effectively with quantified errors, so accurate solutions can be computed. It is also important to know if all major probabilistic peaks have been computed. Here we introduce the accurate CME (ACME) algorithm for obtaining direct solutions to dCMEs. With multifinite buffers for reducing the state spacemore » by $O(n!)$, exact steady-state and time-evolving network probability landscapes can be computed. We further describe a theoretical framework of aggregating microstates into a smaller number of macrostates by decomposing a network into independent aggregated birth and death processes and give an a priori method for rapidly determining steady-state truncation errors. The maximal sizes of the finite buffers for a given error tolerance can also be precomputed without costly trial solutions of dCMEs. We show exactly computed probability landscapes of three multiscale networks, namely, a 6-node toggle switch, 11-node phage-lambda epigenetic circuit, and 16-node MAPK cascade network, the latter two with no known solutions. We also show how probabilities of rare events can be computed from first-passage times, another class of unsolved problems challenging for simulation-based techniques due to large separations in time scales. Overall, the ACME method enables accurate and efficient solutions of the dCME for a large class of networks.« less

  9. A Genetic Algorithm Approach for the TV Self-Promotion Assignment Problem

    NASA Astrophysics Data System (ADS)

    Pereira, Paulo A.; Fontes, Fernando A. C. C.; Fontes, Dalila B. M. M.

    2009-09-01

    We report on the development of a Genetic Algorithm (GA), which has been integrated into a Decision Support System to plan the best assignment of the weekly self-promotion space for a TV station. The problem addressed consists on deciding which shows to advertise and when such that the number of viewers, of an intended group or target, is maximized. The GA proposed incorporates a greedy heuristic to find good initial solutions. These solutions, as well as the solutions later obtained through the use of the GA, go then through a repair procedure. This is used with two objectives, which are addressed in turn. Firstly, it checks the solution feasibility and if unfeasible it is fixed by removing some shows. Secondly, it tries to improve the solution by adding some extra shows. Since the problem faced by the commercial TV station is too big and has too many features it cannot be solved exactly. Therefore, in order to test the quality of the solutions provided by the proposed GA we have randomly generated some smaller problem instances. For these problems we have obtained solutions on average within 1% of the optimal solution value.

  10. Exactly solvable Schrödinger equation with double-well potential for hydrogen bond

    NASA Astrophysics Data System (ADS)

    Sitnitsky, A. E.

    2017-05-01

    We construct a double-well potential for which the Schrödinger equation can be exactly solved via reducing to the confluent Heun's one. Thus the wave function is expressed via the confluent Heun's function. The latter is tabulated in Maple so that the obtained solution is easily treated. The potential is infinite at the boundaries of the final interval that makes it to be highly suitable for modeling hydrogen bonds (both ordinary and low-barrier ones). We exemplify theoretical results by detailed treating the hydrogen bond in KHCO3 and show their good agreement with literature experimental data.

  11. Variational analysis of the coupling between a geometrically exact Cosserat rod and an elastic continuum

    NASA Astrophysics Data System (ADS)

    Sander, Oliver; Schiela, Anton

    2014-12-01

    We formulate the static mechanical coupling of a geometrically exact Cosserat rod to a nonlinearly elastic continuum. In this setting, appropriate coupling conditions have to connect a one-dimensional model with director variables to a three-dimensional model without directors. Two alternative coupling conditions are proposed, which correspond to two different configuration trace spaces. For both, we show existence of solutions of the coupled problems, using the direct method of the calculus of variations. From the first-order optimality conditions, we also derive the corresponding conditions for the dual variables. These are then interpreted in mechanical terms.

  12. Black hole perturbations in vector-tensor theories: the odd-mode analysis

    NASA Astrophysics Data System (ADS)

    Kase, Ryotaro; Minamitsuji, Masato; Tsujikawa, Shinji; Zhang, Ying-li

    2018-02-01

    In generalized Proca theories with vector-field derivative couplings, a bunch of hairy black hole solutions have been derived on a static and spherically symmetric background. In this paper, we formulate the odd-parity black hole perturbations in generalized Proca theories by expanding the corresponding action up to second order and investigate whether or not black holes with vector hair suffer ghost or Laplacian instabilities. We show that the models with cubic couplings G3(X), where X=‑AμAμ/2 with a vector field Aμ, do not provide any additional stability condition as in General Relativity. On the other hand, the exact charged stealth Schwarzschild solution with a nonvanishing longitudinal vector component A1, which originates from the coupling to the Einstein tensor GμνAμ Aν equivalent to the quartic coupling G4(X) containing a linear function of X, is unstable in the vicinity of the event horizon. The same instability problem also persists for hairy black holes arising from general quartic power-law couplings G4(X) ⊃ β4 Xn with the nonvanishing A1, while the other branch with A1=0 can be consistent with conditions for the absence of ghost and Laplacian instabilities. We also discuss the case of other exact and numerical black hole solutions associated with intrinsic vector-field derivative couplings and show that there exists a wide range of parameter spaces in which the solutions suffer neither ghost nor Laplacian instabilities against odd-parity perturbations.

  13. Species tree inference by minimizing deep coalescences.

    PubMed

    Than, Cuong; Nakhleh, Luay

    2009-09-01

    In a 1997 seminal paper, W. Maddison proposed minimizing deep coalescences, or MDC, as an optimization criterion for inferring the species tree from a set of incongruent gene trees, assuming the incongruence is exclusively due to lineage sorting. In a subsequent paper, Maddison and Knowles provided and implemented a search heuristic for optimizing the MDC criterion, given a set of gene trees. However, the heuristic is not guaranteed to compute optimal solutions, and its hill-climbing search makes it slow in practice. In this paper, we provide two exact solutions to the problem of inferring the species tree from a set of gene trees under the MDC criterion. In other words, our solutions are guaranteed to find the tree that minimizes the total number of deep coalescences from a set of gene trees. One solution is based on a novel integer linear programming (ILP) formulation, and another is based on a simple dynamic programming (DP) approach. Powerful ILP solvers, such as CPLEX, make the first solution appealing, particularly for very large-scale instances of the problem, whereas the DP-based solution eliminates dependence on proprietary tools, and its simplicity makes it easy to integrate with other genomic events that may cause gene tree incongruence. Using the exact solutions, we analyze a data set of 106 loci from eight yeast species, a data set of 268 loci from eight Apicomplexan species, and several simulated data sets. We show that the MDC criterion provides very accurate estimates of the species tree topologies, and that our solutions are very fast, thus allowing for the accurate analysis of genome-scale data sets. Further, the efficiency of the solutions allow for quick exploration of sub-optimal solutions, which is important for a parsimony-based criterion such as MDC, as we show. We show that searching for the species tree in the compatibility graph of the clusters induced by the gene trees may be sufficient in practice, a finding that helps ameliorate the computational requirements of optimization solutions. Further, we study the statistical consistency and convergence rate of the MDC criterion, as well as its optimality in inferring the species tree. Finally, we show how our solutions can be used to identify potential horizontal gene transfer events that may have caused some of the incongruence in the data, thus augmenting Maddison's original framework. We have implemented our solutions in the PhyloNet software package, which is freely available at: http://bioinfo.cs.rice.edu/phylonet.

  14. Comment on "exact solutions of the derivative nonlinear Schrödinger equation for a nonlinear transmission line".

    PubMed

    Nickel, J; Schürmann, H W

    2007-03-01

    In a recent article Kengne and Liu [Phys. Rev. E 73, 026603 (2006)] have presented a number of exact elliptic solutions for a derivative nonlinear Schrödinger equation. It is the aim of this Comment to point out that all these solutions given in Secs. II and III of this article (referred to as KL in the following) are subcases of the general solution of Eq. (KL.9). Conditions for the parameters A-E of the solutions given by Kengne and Liu can be found from general conditions for solitary and periodic elliptic solutions as shown in the following. Positive and bounded solutions can be found by considering the phase diagram. Therefore, the comment of Kengne and Liu that "we find its particular positive bounded solutions" can be specified.

  15. An entropy maximization problem related to optical communication

    NASA Technical Reports Server (NTRS)

    Mceliece, R. J.; Rodemich, E. R.; Swanson, L.

    1986-01-01

    In relation to a problem in optical communication, the paper considers the general problem of maximizing the entropy of a stationary radom process that is subject to an average transition cost constraint. By using a recent result of Justesen and Hoholdt, an exact solution to the problem is presented and a class of finite state encoders that give a good approximation to the exact solution is suggested.

  16. Chapter 5. Hidden Symmetry and Exact Solutions in Einstein Gravity

    NASA Astrophysics Data System (ADS)

    Yasui, Y.; Houri, T.

    Conformal Killing-Yano tensors are introduced as ageneralization of Killing vectors. They describe symmetries of higher-dimensional rotating black holes. In particular, a rank-2 closed conformal Killing-Yano tensor generates the tower of both hidden symmetries and isometries. We review a classification of higher-dimensional spacetimes admitting such a tensor, and present exact solutions to the Einstein equations for these spacetimes.

  17. Exact solutions for layered thermocapillary convection of a viscous incompressible fluid with specified stresses on the bottom

    NASA Astrophysics Data System (ADS)

    Prosviryakov, E. Yu.; Spevak, L. F.

    2017-12-01

    A new exact solution of the Oberbeck-Boussinesq system is found. The Marangoni thermocapillary convection in an infinite fluid layer is described. It is demonstrated that the specification of tangential stresses at both boundaries of the layered velocity field is nonstationary. Velocities describe a superposition of unidirectional flows with an intermediate time interval when there are counterflows.

  18. Exact periodic solutions of the sixth-order generalized Boussinesq equation

    NASA Astrophysics Data System (ADS)

    Kamenov, O. Y.

    2009-09-01

    This paper examines a class of nonlinear sixth-order generalized Boussinesq-like equations (SGBE): utt = uxx + 3(u2)xx + uxxxx + αuxxxxxx, α in R, depending on the positive parameter α. Hirota's bilinear transformation method is applied to the above class of non-integrable equations and exact periodic solutions have been obtained. The results confirmed the well-known nonlinear superposition principle.

  19. Bianchi class A models in Sàez-Ballester's theory

    NASA Astrophysics Data System (ADS)

    Socorro, J.; Espinoza-García, Abraham

    2012-08-01

    We apply the Sàez-Ballester (SB) theory to Bianchi class A models, with a barotropic perfect fluid in a stiff matter epoch. We obtain exact classical solutions à la Hamilton for Bianchi type I, II and VIh=-1 models. We also find exact quantum solutions to all Bianchi Class A models employing a particular ansatz for the wave function of the universe.

  20. Steady-state solution of the semi-empirical diffusion equation for area sources. [air pollution studies

    NASA Technical Reports Server (NTRS)

    Lebedeff, S. A.; Hameed, S.

    1975-01-01

    The problem investigated can be solved exactly in a simple manner if the equations are written in terms of a similarity variable. The exact solution is used to explore two questions of interest in the modelling of urban air pollution, taking into account the distribution of surface concentration downwind of an area source and the distribution of concentration with height.

  1. Ferrofluid patterns in a radial magnetic field: linear stability, nonlinear dynamics, and exact solutions.

    PubMed

    Oliveira, Rafael M; Miranda, José A; Leandro, Eduardo S G

    2008-01-01

    The response of a ferrofluid droplet to a radial magnetic field is investigated, when the droplet is confined in a Hele-Shaw cell. We study how the stability properties of the interface and the shape of the emerging patterns react to the action of the magnetic field. At early linear stages, it is found that the radial field is destabilizing and determines the growth of fingering structures at the interface. In the weakly nonlinear regime, we have verified that the magnetic field favors the formation of peaked patterned structures that tend to become sharper and sharper as the magnitude of the magnetic effects is increased. A more detailed account of the pattern morphology is provided by the determination of nontrivial exact stationary solutions for the problem with finite surface tension. These solutions are obtained analytically and reveal the development of interesting polygon-shaped and starfishlike patterns. For sufficiently large applied fields or magnetic susceptibilities, pinch-off phenomena are detected, tending to occur near the fingertips. We have found that the morphological features obtained from the exact solutions are consistent with our linear and weakly nonlinear predictions. By contrasting the exact solutions for ferrofluids under radial field with those obtained for rotating Hele-Shaw flows with ordinary nonmagnetic fluids, we deduce that they coincide in the limit of very small susceptibilities.

  2. Exact simulation of polarized light reflectance by particle deposits

    NASA Astrophysics Data System (ADS)

    Ramezan Pour, B.; Mackowski, D. W.

    2015-12-01

    The use of polarimetric light reflection measurements as a means of identifying the physical and chemical characteristics of particulate materials obviously relies on an accurate model of predicting the effects of particle size, shape, concentration, and refractive index on polarized reflection. The research examines two methods for prediction of reflection from plane parallel layers of wavelength—sized particles. The first method is based on an exact superposition solution to Maxwell's time harmonic wave equations for a deposit of spherical particles that are exposed to a plane incident wave. We use a FORTRAN-90 implementation of this solution (the Multiple Sphere T Matrix (MSTM) code), coupled with parallel computational platforms, to directly simulate the reflection from particle layers. The second method examined is based upon the vector radiative transport equation (RTE). Mie theory is used in our RTE model to predict the extinction coefficient, albedo, and scattering phase function of the particles, and the solution of the RTE is obtained from adding—doubling method applied to a plane—parallel configuration. Our results show that the MSTM and RTE predictions of the Mueller matrix elements converge when particle volume fraction in the particle layer decreases below around five percent. At higher volume fractions the RTE can yield results that, depending on the particle size and refractive index, significantly depart from the exact predictions. The particle regimes which lead to dependent scattering effects, and the application of methods to correct the vector RTE for particle interaction, will be discussed.

  3. Exact analytic solution for non-linear density fluctuation in a ΛCDM universe

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yoo, Jaiyul; Gong, Jinn-Ouk, E-mail: jyoo@physik.uzh.ch, E-mail: jinn-ouk.gong@apctp.org

    We derive the exact third-order analytic solution of the matter density fluctuation in the proper-time hypersurface in a ΛCDM universe, accounting for the explicit time-dependence and clarifying the relation to the initial condition. Furthermore, we compare our analytic solution to the previous calculation in the comoving gauge, and to the standard Newtonian perturbation theory by providing Fourier kernels for the relativistic effects. Our results provide an essential ingredient for a complete description of galaxy bias in the relativistic context.

  4. An exact solution for a thick domain wall in general relativity

    NASA Technical Reports Server (NTRS)

    Goetz, Guenter; Noetzold, Dirk

    1989-01-01

    An exact solution of the Einstein equations for a static, planar domain wall with finite thickness is presented. At infinity, density and pressure vanish and the space-time tends to the Minkowski vacuum on one side of the wall and to the Taub vacuum on the other side. A surprising feature of this solution is that the density and pressure distribution are symmetric about the central plane of the wall whereas the space-time metric and therefore also the gravitational field experienced by a test particle is asymmetric.

  5. Exact solutions for network rewiring models

    NASA Astrophysics Data System (ADS)

    Evans, T. S.

    2007-03-01

    Evolving networks with a constant number of edges may be modelled using a rewiring process. These models are used to describe many real-world processes including the evolution of cultural artifacts such as family names, the evolution of gene variations, and the popularity of strategies in simple econophysics models such as the minority game. The model is closely related to Urn models used for glasses, quantum gravity and wealth distributions. The full mean field equation for the degree distribution is found and its exact solution and generating solution are given.

  6. Exact Solution of the Gyration Radius of an Individual's Trajectory for a Simplified Human Regular Mobility Model

    NASA Astrophysics Data System (ADS)

    Yan, Xiao-Yong; Han, Xiao-Pu; Zhou, Tao; Wang, Bing-Hong

    2011-12-01

    We propose a simplified human regular mobility model to simulate an individual's daily travel with three sequential activities: commuting to workplace, going to do leisure activities and returning home. With the assumption that the individual has a constant travel speed and inferior limit of time at home and in work, we prove that the daily moving area of an individual is an ellipse, and finally obtain an exact solution of the gyration radius. The analytical solution captures the empirical observation well.

  7. Dark- and bright-rogue-wave solutions for media with long-wave-short-wave resonance.

    PubMed

    Chen, Shihua; Grelu, Philippe; Soto-Crespo, J M

    2014-01-01

    Exact explicit rogue-wave solutions of intricate structures are presented for the long-wave-short-wave resonance equation. These vector parametric solutions feature coupled dark- and bright-field counterparts of the Peregrine soliton. Numerical simulations show the robustness of dark and bright rogue waves in spite of the onset of modulational instability. Dark fields originate from the complex interplay between anomalous dispersion and the nonlinearity driven by the coupled long wave. This unusual mechanism, not available in scalar nonlinear wave equation models, can provide a route to the experimental realization of dark rogue waves in, for instance, negative index media or with capillary-gravity waves.

  8. Corridor of existence of thermodynamically consistent solution of the Ornstein-Zernike equation.

    PubMed

    Vorob'ev, V S; Martynov, G A

    2007-07-14

    We obtain the exact equation for a correction to the Ornstein-Zernike (OZ) equation based on the assumption of the uniqueness of thermodynamical functions. We show that this equation is reduced to a differential equation with one arbitrary parameter for the hard sphere model. The compressibility factor within narrow limits of this parameter variation can either coincide with one of the formulas obtained on the basis of analytical solutions of the OZ equation or assume all intermediate values lying in a corridor between these solutions. In particular, we find the value of this parameter when the thermodynamically consistent compressibility factor corresponds to the Carnahan-Stirling formula.

  9. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Szankowski, Piotr; Trippenbach, Marek; Infeld, Eryk

    We introduce a class of solitonlike entities in spinor three-component Bose-Einstein condensates. These entities generalize well-known solitons. For special values of coupling constants, the system considered is completely integrable and supports N soliton solutions. The one-soliton solutions can be generalized to systems with different values of coupling constants. However, they no longer interact elastically. When two so-generalized solitons collide, a spin component oscillation is observed in both emerging entities. We propose to call these newfound entities oscillatons. They propagate without dispersion and retain their character after collisions. We derive an exact mathematical model for oscillatons and show that the well-knownmore » one-soliton solutions are a particular case.« less

  10. Particle swarm optimization - Genetic algorithm (PSOGA) on linear transportation problem

    NASA Astrophysics Data System (ADS)

    Rahmalia, Dinita

    2017-08-01

    Linear Transportation Problem (LTP) is the case of constrained optimization where we want to minimize cost subject to the balance of the number of supply and the number of demand. The exact method such as northwest corner, vogel, russel, minimal cost have been applied at approaching optimal solution. In this paper, we use heurisitic like Particle Swarm Optimization (PSO) for solving linear transportation problem at any size of decision variable. In addition, we combine mutation operator of Genetic Algorithm (GA) at PSO to improve optimal solution. This method is called Particle Swarm Optimization - Genetic Algorithm (PSOGA). The simulations show that PSOGA can improve optimal solution resulted by PSO.

  11. Regular black holes in f(T) Gravity through a nonlinear electrodynamics source

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Junior, Ednaldo L.B.; Rodrigues, Manuel E.; Houndjo, Mahouton J.S., E-mail: ednaldobarrosjr@gmail.com, E-mail: esialg@gmail.com, E-mail: sthoundjo@yahoo.fr

    2015-10-01

    We seek to obtain a new class of exact solutions of regular black holes in f(T) Gravity with non-linear electrodynamics material content, with spherical symmetry in 4D. The equations of motion provide the regaining of various solutions of General Relativity, as a particular case where the function f(T)=T. We developed a powerful method for finding exact solutions, where we get the first new class of regular black holes solutions in the f(T) Theory, where all the geometrics scalars disappear at the origin of the radial coordinate and are finite everywhere, as well as a new class of singular black holes.

  12. ALARA: The next link in a chain of activation codes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wilson, P.P.H.; Henderson, D.L.

    1996-12-31

    The Adaptive Laplace and Analytic Radioactivity Analysis [ALARA] code has been developed as the next link in the chain of DKR radioactivity codes. Its methods address the criticisms of DKR while retaining its best features. While DKR ignored loops in the transmutation/decay scheme to preserve the exactness of the mathematical solution, ALARA incorporates new computational approaches without jeopardizing the most important features of DKR`s physical modelling and mathematical methods. The physical model uses `straightened-loop, linear chains` to achieve the same accuracy in the loop solutions as is demanded in the rest of the scheme. In cases where a chain hasmore » no loops, the exact DKR solution is used. Otherwise, ALARA adaptively chooses between a direct Laplace inversion technique and a Laplace expansion inversion technique to optimize the accuracy and speed of the solution. All of these methods result in matrix solutions which allow the fastest and most accurate solution of exact pulsing histories. Since the entire history is solved for each chain as it is created, ALARA achieves the optimum combination of high accuracy, high speed and low memory usage. 8 refs., 2 figs.« less

  13. Localized solutions of Lugiato-Lefever equations with focused pump.

    PubMed

    Cardoso, Wesley B; Salasnich, Luca; Malomed, Boris A

    2017-12-04

    Lugiato-Lefever (LL) equations in one and two dimensions (1D and 2D) accurately describe the dynamics of optical fields in pumped lossy cavities with the intrinsic Kerr nonlinearity. The external pump is usually assumed to be uniform, but it can be made tightly focused too-in particular, for building small pixels. We obtain solutions of the LL equations, with both the focusing and defocusing intrinsic nonlinearity, for 1D and 2D confined modes supported by the localized pump. In the 1D setting, we first develop a simple perturbation theory, based in the sech ansatz, in the case of weak pump and loss. Then, a family of exact analytical solutions for spatially confined modes is produced for the pump focused in the form of a delta-function, with a nonlinear loss (two-photon absorption) added to the LL model. Numerical findings demonstrate that these exact solutions are stable, both dynamically and structurally (the latter means that stable numerical solutions close to the exact ones are found when a specific condition, necessary for the existence of the analytical solution, does not hold). In 2D, vast families of stable confined modes are produced by means of a variational approximation and full numerical simulations.

  14. An outer approximation method for the road network design problem

    PubMed Central

    2018-01-01

    Best investment in the road infrastructure or the network design is perceived as a fundamental and benchmark problem in transportation. Given a set of candidate road projects with associated costs, finding the best subset with respect to a limited budget is known as a bilevel Discrete Network Design Problem (DNDP) of NP-hard computationally complexity. We engage with the complexity with a hybrid exact-heuristic methodology based on a two-stage relaxation as follows: (i) the bilevel feature is relaxed to a single-level problem by taking the network performance function of the upper level into the user equilibrium traffic assignment problem (UE-TAP) in the lower level as a constraint. It results in a mixed-integer nonlinear programming (MINLP) problem which is then solved using the Outer Approximation (OA) algorithm (ii) we further relax the multi-commodity UE-TAP to a single-commodity MILP problem, that is, the multiple OD pairs are aggregated to a single OD pair. This methodology has two main advantages: (i) the method is proven to be highly efficient to solve the DNDP for a large-sized network of Winnipeg, Canada. The results suggest that within a limited number of iterations (as termination criterion), global optimum solutions are quickly reached in most of the cases; otherwise, good solutions (close to global optimum solutions) are found in early iterations. Comparative analysis of the networks of Gao and Sioux-Falls shows that for such a non-exact method the global optimum solutions are found in fewer iterations than those found in some analytically exact algorithms in the literature. (ii) Integration of the objective function among the constraints provides a commensurate capability to tackle the multi-objective (or multi-criteria) DNDP as well. PMID:29590111

  15. An outer approximation method for the road network design problem.

    PubMed

    Asadi Bagloee, Saeed; Sarvi, Majid

    2018-01-01

    Best investment in the road infrastructure or the network design is perceived as a fundamental and benchmark problem in transportation. Given a set of candidate road projects with associated costs, finding the best subset with respect to a limited budget is known as a bilevel Discrete Network Design Problem (DNDP) of NP-hard computationally complexity. We engage with the complexity with a hybrid exact-heuristic methodology based on a two-stage relaxation as follows: (i) the bilevel feature is relaxed to a single-level problem by taking the network performance function of the upper level into the user equilibrium traffic assignment problem (UE-TAP) in the lower level as a constraint. It results in a mixed-integer nonlinear programming (MINLP) problem which is then solved using the Outer Approximation (OA) algorithm (ii) we further relax the multi-commodity UE-TAP to a single-commodity MILP problem, that is, the multiple OD pairs are aggregated to a single OD pair. This methodology has two main advantages: (i) the method is proven to be highly efficient to solve the DNDP for a large-sized network of Winnipeg, Canada. The results suggest that within a limited number of iterations (as termination criterion), global optimum solutions are quickly reached in most of the cases; otherwise, good solutions (close to global optimum solutions) are found in early iterations. Comparative analysis of the networks of Gao and Sioux-Falls shows that for such a non-exact method the global optimum solutions are found in fewer iterations than those found in some analytically exact algorithms in the literature. (ii) Integration of the objective function among the constraints provides a commensurate capability to tackle the multi-objective (or multi-criteria) DNDP as well.

  16. Small-on-large geometric anelasticity

    PubMed Central

    2016-01-01

    In this paper, we are concerned with finding exact solutions for the stress fields of nonlinear solids with non-symmetric distributions of defects (or more generally finite eigenstrains) that are small perturbations of symmetric distributions of defects with known exact solutions. In the language of geometric mechanics, this corresponds to finding a deformation that is a result of a perturbation of the metric of the Riemannian material manifold. We present a general framework that can be used for a systematic analysis of this class of anelasticity problems. This geometric formulation can be thought of as a material analogue of the classical small-on-large theory in nonlinear elasticity. We use the present small-on-large anelasticity theory to find exact solutions for the stress fields of some non-symmetric distributions of screw dislocations in incompressible isotropic solids. PMID:27956887

  17. Agent-based model for the h-index - exact solution

    NASA Astrophysics Data System (ADS)

    Żogała-Siudem, Barbara; Siudem, Grzegorz; Cena, Anna; Gagolewski, Marek

    2016-01-01

    Hirsch's h-index is perhaps the most popular citation-based measure of scientific excellence. In 2013, Ionescu and Chopard proposed an agent-based model describing a process for generating publications and citations in an abstract scientific community [G. Ionescu, B. Chopard, Eur. Phys. J. B 86, 426 (2013)]. Within such a framework, one may simulate a scientist's activity, and - by extension - investigate the whole community of researchers. Even though the Ionescu and Chopard model predicts the h-index quite well, the authors provided a solution based solely on simulations. In this paper, we complete their results with exact, analytic formulas. What is more, by considering a simplified version of the Ionescu-Chopard model, we obtained a compact, easy to compute formula for the h-index. The derived approximate and exact solutions are investigated on a simulated and real-world data sets.

  18. Rainfall-runoff response informed by exact solutions of Boussinesq equation on hillslopes

    NASA Astrophysics Data System (ADS)

    Bartlett, M. S., Jr.; Porporato, A. M.

    2017-12-01

    The Boussinesq equation offers a powerful approach forunderstanding the flow dynamics of unconfined aquifers. Though this nonlinear equation allows for concise representation of both soil and geomorphological controls on groundwater flow, it has only been solved exactly for a limited number of initial and boundary conditions. These solutions do not include source/sink terms (evapotranspiration, recharge, and seepage to bedrock) and are typically limited to horizontal aquifers. Here we present a class of exact solutions that are general to sloping aquifers and a time varying source/sink term. By incorporating the source/sink term, they may describe aquifers with both time varying recharge over seasonal or weekly time scales, as well as a loss of water from seepage to the bedrock interface, which is a common feature in hillslopes. These new solutions shed light on the hysteretic relationship between streamflow and groundwater and the behavior of the hydrograph recession curves, thus providing a robust basis for deriving a runoff curves for the partition of rainfall into infiltration and runoff.

  19. Exact solutions for an oscillator with anti-symmetric quadratic nonlinearity

    NASA Astrophysics Data System (ADS)

    Beléndez, A.; Martínez, F. J.; Beléndez, T.; Pascual, C.; Alvarez, M. L.; Gimeno, E.; Arribas, E.

    2018-04-01

    Closed-form exact solutions for an oscillator with anti-symmetric quadratic nonlinearity are derived from the first integral of the nonlinear differential equation governing the behaviour of this oscillator. The mathematical model is an ordinary second order differential equation in which the sign of the quadratic nonlinear term changes. Two parameters characterize this oscillator: the coefficient of the linear term and the coefficient of the quadratic term. Not only the common case in which both coefficients are positive but also all possible combinations of positive and negative signs of these coefficients which provide periodic motions are considered, giving rise to four different cases. Three different periods and solutions are obtained, since the same result is valid in two of these cases. An interesting feature is that oscillatory motions whose equilibrium points are not at x = 0 are also considered. The periods are given in terms of an incomplete or complete elliptic integral of the first kind, and the exact solutions are expressed as functions including Jacobi elliptic cosine or sine functions.

  20. A two-mass expanding exact space-time solution

    NASA Astrophysics Data System (ADS)

    Uzan, Jean-Philippe; Ellis, George F. R.; Larena, Julien

    2011-01-01

    In order to understand how locally static configurations around gravitationally bound bodies can be embedded in an expanding universe, we investigate the solutions of general relativity describing a space-time whose spatial sections have the topology of a 3-sphere with two identical masses at the poles. We show that Israel junction conditions imply that two spherically symmetric static regions around the masses cannot be glued together. If one is interested in an exterior solution, this prevents the geometry around the masses to be of the Schwarzschild type and leads to the introduction of a cosmological constant. The study of the extension of the Kottler space-time shows that there exists a non-static solution consisting of two static regions surrounding the masses that match a Kantowski-Sachs expanding region on the cosmological horizon. The comparison with a Swiss-Cheese construction is also discussed.

  1. Non-monotonic resonance in a spatially forced Lengyel-Epstein model

    DOE PAGES

    Haim, Lev; Hagberg, Aric; Meron, Ehud

    2015-06-02

    Here, we study resonant spatially periodic solutions of the Lengyel-Epstein model modified to describe the chlorine dioxide-iodine-malonic acid reaction under spatially periodic illumination. Using multiple-scale analysis and numerical simulations, we obtain the stability ranges of 2:1 resonant solutions, i.e., solutions with wavenumbers that are exactly half of the forcing wavenumber. We show that the width of resonant wavenumber response is a non-monotonic function of the forcing strength, and diminishes to zero at sufficiently strong forcing. Furthermore, we show that strong forcing may result in a π/2 phase shift of the resonant solutions, and argue that the nonequilibrium Ising-Bloch front bifurcationmore » can be reversed. Finally, we attribute these behaviors to an inherent property of forcing by periodic illumination, namely, the increase of the mean spatial illumination as the forcing amplitude is increased.« less

  2. Early-time solution of the horizontal unconfined aquifer in the build-up phase

    NASA Astrophysics Data System (ADS)

    Gravanis, Elias; Akylas, Evangelos

    2017-04-01

    The Boussinesq equation is a dynamical equation for the free surface of saturated subsurface flows over an impervious bed. Boussinesq equation is non-linear. The non-linearity comes from the reduction of the dimensionality of the problem: The flow is assumed to be vertically homogeneous, therefore the flow rate through a cross section of the flow is proportional to the free surface height times the hydraulic gradient, which is assumed to be equal to the slope of the free surface (Dupuit approximation). In general, 'vertically' means normally on the bed; combining the Dupuit approximation with the continuity equation leads to the Boussinesq equation. There are very few transient exact solutions. Self- similar solutions have been constructed in the past by various authors. A power series type of solution was derived for a self-similar Boussinesq equation by Barenblatt in 1990. That type of solution has generated a certain amount of literature. For the unconfined flow case for zero recharge rate Boussinesq derived for the horizontal aquifer an exact solution assuming separation of variables. This is actually an exact asymptotic solution of the horizontal aquifer recession phase for late times. The kinematic wave is an interesting solution obtained by dropping the non-linear term in the Boussinesq equation. Although it is an approximate solution, and holds well only for small values of the Henderson and Wooding λ parameter (that is, for steep slopes, high conductivity or small recharge rate), it becomes less and less approximate for smaller values of the parameter, that is, it is asymptotically exact with respect to that parameter. In the present work we consider the case of the unconfined subsurface flow over horizontal bed in the build-up phase under constant recharge rate. This is a case with an infinite Henderson and Wooding parameter, that is, it is the limiting case where the non-linear term is present in the Boussinesq while the linear spatial derivative term goes away. Nonetheless, no analogue of the kinematic wave or the Boussinesq separable solution exists in this case. The late time state of the build-up phase under constant recharge rate is very simply the steady state solution. Our aim is to construct the early time asymptotic solution of this problem. The solution is expressed as a power series of a suitable similarity variable, which is constructed so that to satisfy the boundary conditions at both ends of the aquifer, that is, it is a polynomial approximation of the exact solution. The series turn out to be asymptotic and it is regularized by re-summation techniques which are used to define divergent series. The outflow rate in this regime is linear in time, and the (dimensionless) coefficient is calculated to eight significant figures. The local error of the series is quantified by its deviation from satisfying the self-similar Boussinesq equation at every point. The local error turns out to be everywhere positive, hence, so is the integrated error, which in turn quantifies the degree of convergence of the series to the exact solution.

  3. Quantifying risks with exact analytical solutions of derivative pricing distribution

    NASA Astrophysics Data System (ADS)

    Zhang, Kun; Liu, Jing; Wang, Erkang; Wang, Jin

    2017-04-01

    Derivative (i.e. option) pricing is essential for modern financial instrumentations. Despite of the previous efforts, the exact analytical forms of the derivative pricing distributions are still challenging to obtain. In this study, we established a quantitative framework using path integrals to obtain the exact analytical solutions of the statistical distribution for bond and bond option pricing for the Vasicek model. We discuss the importance of statistical fluctuations away from the expected option pricing characterized by the distribution tail and their associations to value at risk (VaR). The framework established here is general and can be applied to other financial derivatives for quantifying the underlying statistical distributions.

  4. Exact asymmetric Skyrmion in anisotropic ferromagnet and its helimagnetic application

    NASA Astrophysics Data System (ADS)

    Kundu, Anjan

    2016-08-01

    Topological Skyrmions as intricate spin textures were observed experimentally in helimagnets on 2d plane. Theoretical foundation of such solitonic states to appear in pure ferromagnetic model, as exact solutions expressed through any analytic function, was made long ago by Belavin and Polyakov (BP). We propose an innovative generalization of the BP solution for an anisotropic ferromagnet, based on a physically motivated geometric (in-)equality, which takes the exact Skyrmion to a new class of functions beyond analyticity. The possibility of stabilizing such metastable states in helimagnets is discussed with the construction of individual Skyrmion, Skyrmion crystal and lattice with asymmetry, likely to be detected in precision experiments.

  5. The microscopic structure of an exactly solvable model binary solution that exhibits two closed loops in the phase diagram.

    PubMed

    Lungu, Radu P; Huckaby, Dale A

    2008-07-21

    An exactly solvable lattice model describing a binary solution is considered where rodlike molecules of types AA and BB cover the links of a honeycomb lattice, the neighboring molecular ends having three-body and orientation-dependent bonding interactions. At phase coexistence of AA-rich and BB-rich phases, the average fraction of each type of triangle of neighboring molecular ends is calculated exactly. The fractions of the different types of triangles are then used to deduce the local microscopic structure of the coexisting phases for a case of the model that contains two closed loops in the phase diagram.

  6. Exact relativistic Toda chain eigenfunctions from Separation of Variables and gauge theory

    NASA Astrophysics Data System (ADS)

    Sciarappa, Antonio

    2017-10-01

    We provide a proposal, motivated by Separation of Variables and gauge theory arguments, for constructing exact solutions to the quantum Baxter equation associated to the N-particle relativistic Toda chain and test our proposal against numerical results. Quantum Mechanical non-perturbative corrections, essential in order to obtain a sensible solution, are taken into account in our gauge theory approach by considering codimension two defects on curved backgrounds (squashed S 5 and degenerate limits) rather than flat space; this setting also naturally incorporates exact quantization conditions and energy spectrum of the relativistic Toda chain as well as its modular dual structure.

  7. Application of the θ-method to a telegraphic model of fluid flow in a dual-porosity medium

    NASA Astrophysics Data System (ADS)

    González-Calderón, Alfredo; Vivas-Cruz, Luis X.; Herrera-Hernández, Erik César

    2018-01-01

    This work focuses mainly on the study of numerical solutions, which are obtained using the θ-method, of a generalized Warren and Root model that includes a second-order wave-like equation in its formulation. The solutions approximately describe the single-phase hydraulic head in fractures by considering the finite velocity of propagation by means of a Cattaneo-like equation. The corresponding discretized model is obtained by utilizing a non-uniform grid and a non-uniform time step. A simple relationship is proposed to give the time-step distribution. Convergence is analyzed by comparing results from explicit, fully implicit, and Crank-Nicolson schemes with exact solutions: a telegraphic model of fluid flow in a single-porosity reservoir with relaxation dynamics, the Warren and Root model, and our studied model, which is solved with the inverse Laplace transform. We find that the flux and the hydraulic head have spurious oscillations that most often appear in small-time solutions but are attenuated as the solution time progresses. Furthermore, we show that the finite difference method is unable to reproduce the exact flux at time zero. Obtaining results for oilfield production times, which are in the order of months in real units, is only feasible using parallel implicit schemes. In addition, we propose simple parallel algorithms for the memory flux and for the explicit scheme.

  8. Determining linear vibration frequencies of a ferromagnetic shell

    NASA Astrophysics Data System (ADS)

    Bagdoev, A. G.; Vardanyan, A. V.; Vardanyan, S. V.; Kukudzhanov, V. N.

    2007-10-01

    The problems of determining the roots of dispersion equations for free bending vibrations of thin magnetoelastic plates and shells are of both theoretical and practical interest, in particular, in studying vibrations of metallic structures used in controlled thermonuclear reactors. These problems were solved on the basis of the Kirchhoff hypothesis in [1-5]. In [6], an exact spatial approach to determining the vibration frequencies of thin plates was suggested, and it was shown that it completely agrees with the solution obtained according to the Kirchhoff hypothesis. In [7-9], this exact approach was used to solve the problem on vibrations of thin magnetoelastic plates, and it was shown by cumbersome calculations that the solutions obtained according to the exact theory and the Kirchhoff hypothesis differ substantially except in a single case. In [10], the equations of the dynamic theory of elasticity in the axisymmetric problem are given. In [11], the equations for the vibration frequencies of thin ferromagnetic plates with arbitrary conductivity were obtained in the exact statement. In [12], the Kirchhoff hypothesis was used to obtain dispersion relations for a magnetoelastic thin shell. In [5, 13-16], the relations for the Maxwell tensor and the ponderomotive force for magnetics were presented. In [17], the dispersion relations for thin ferromagnetic plates in the transverse field in the spatial statement were studied analytically and numerically. In the present paper, on the basis of the exact approach, we study free bending vibrations of a thin ferromagnetic cylindrical shell. We obtain the exact dispersion equation in the form of a sixth-order determinant, which can be solved numerically in the case of a magnetoelastic thin shell. The numerical results are presented in tables and compared with the results obtained by the Kirchhoff hypothesis. We show a large number of differences in the results, even for the least frequency.

  9. Solving Equations Today.

    ERIC Educational Resources Information Center

    Shumway, Richard J.

    1989-01-01

    Illustrated is the problem of solving equations and some different strategies students might employ when using available technology. Gives illustrations for: exact solutions, approximate solutions, and approximate solutions which are graphically generated. (RT)

  10. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Liemert, André, E-mail: andre.liemert@ilm.uni-ulm.de; Kienle, Alwin

    Purpose: Explicit solutions of the monoenergetic radiative transport equation in the P{sub 3} approximation have been derived which can be evaluated with nearly the same computational effort as needed for solving the standard diffusion equation (DE). In detail, the authors considered the important case of a semi-infinite medium which is illuminated by a collimated beam of light. Methods: A combination of the classic spherical harmonics method and the recently developed method of rotated reference frames is used for solving the P{sub 3} equations in closed form. Results: The derived solutions are illustrated and compared to exact solutions of the radiativemore » transport equation obtained via the Monte Carlo (MC) method as well as with other approximated analytical solutions. It is shown that for the considered cases which are relevant for biomedical optics applications, the P{sub 3} approximation is close to the exact solution of the radiative transport equation. Conclusions: The authors derived exact analytical solutions of the P{sub 3} equations under consideration of boundary conditions for defining a semi-infinite medium. The good agreement to Monte Carlo simulations in the investigated domains, for example, in the steady-state and time domains, as well as the short evaluation time needed suggests that the derived equations can replace the often applied solutions of the diffusion equation for the homogeneous semi-infinite medium.« less

  11. Use of variational methods in the determination of wind-driven ocean circulation

    NASA Technical Reports Server (NTRS)

    Gelos, R.; Laura, P. A. A.

    1976-01-01

    Simple polynomial approximations and a variational approach were used to predict wind-induced circulation in rectangular ocean basins. Stommel's and Munk's models were solved in a unified fashion by means of the proposed method. Very good agreement with exact solutions available in the literature was shown to exist. The method was then applied to more complex situations where an exact solution seems out of the question.

  12. Exact solutions to Brans-Dicke cosmologies in flat Friedmann universes.

    NASA Technical Reports Server (NTRS)

    Morganstern, R. E.

    1971-01-01

    The Brans-Dicke cosmological equations for flat Friedmann-type expanding universes are solved parametrically for time, density, expansion parameter, and scalar field. These results reduce to a previously obtained exact solution to the radiation cosmology. Although the scalar field may be undetectable at the present epoch, it is felt that, if it exists, it must play an important role as one approaches the initial singularity of the cosmology.

  13. Finite element analysis of wrinkling membranes

    NASA Technical Reports Server (NTRS)

    Miller, R. K.; Hedgepeth, J. M.; Weingarten, V. I.; Das, P.; Kahyai, S.

    1984-01-01

    The development of a nonlinear numerical algorithm for the analysis of stresses and displacements in partly wrinkled flat membranes, and its implementation on the SAP VII finite-element code are described. A comparison of numerical results with exact solutions of two benchmark problems reveals excellent agreement, with good convergence of the required iterative procedure. An exact solution of a problem involving axisymmetric deformations of a partly wrinkled shallow curved membrane is also reported.

  14. Exact Solution of a Two-Species Quantum Dimer Model for Pseudogap Metals

    NASA Astrophysics Data System (ADS)

    Feldmeier, Johannes; Huber, Sebastian; Punk, Matthias

    2018-05-01

    We present an exact ground state solution of a quantum dimer model introduced by Punk, Allais, and Sachdev [Quantum dimer model for the pseudogap metal, Proc. Natl. Acad. Sci. U.S.A. 112, 9552 (2015)., 10.1073/pnas.1512206112], which features ordinary bosonic spin-singlet dimers as well as fermionic dimers that can be viewed as bound states of spinons and holons in a hole-doped resonating valence bond liquid. Interestingly, this model captures several essential properties of the metallic pseudogap phase in high-Tc cuprate superconductors. We identify a line in parameter space where the exact ground state wave functions can be constructed at an arbitrary density of fermionic dimers. At this exactly solvable line the ground state has a huge degeneracy, which can be interpreted as a flat band of fermionic excitations. Perturbing around the exactly solvable line, this degeneracy is lifted and the ground state is a fractionalized Fermi liquid with a small pocket Fermi surface in the low doping limit.

  15. The extended Einstein-Maxwell-aether-axion model: Exact solutions for axionically controlled pp-wave aether modes

    NASA Astrophysics Data System (ADS)

    Balakin, Alexander B.

    2018-03-01

    The extended Einstein-Maxwell-aether-axion model describes internal interactions inside the system, which contains gravitational, electromagnetic fields, the dynamic unit vector field describing the velocity of an aether, and the pseudoscalar field associated with the axionic dark matter. The specific feature of this model is that the axion field controls the dynamics of the aether through the guiding functions incorporated into Jacobson’s constitutive tensor. Depending on the state of the axion field, these guiding functions can control and switch on or switch off the influence of acceleration, shear, vorticity and expansion of the aether flow on the state of physical system as a whole. We obtain new exact solutions, which possess the pp-wave symmetry, and indicate them by the term pp-wave aether modes in contrast to the pure pp-waves, which cannot propagate in this field conglomerate. These exact solutions describe a specific dynamic state of the pseudoscalar field, which corresponds to one of the minima of the axion potential and switches off the influence of shear and expansion of the aether flow; the model does not impose restrictions on Jacobson’s coupling constants and on the axion mass. Properties of these new exact solutions are discussed.

  16. Multiple-solution problems in a statistics classroom: an example

    NASA Astrophysics Data System (ADS)

    Chu, Chi Wing; Chan, Kevin L. T.; Chan, Wai-Sum; Kwong, Koon-Shing

    2017-11-01

    The mathematics education literature shows that encouraging students to develop multiple solutions for given problems has a positive effect on students' understanding and creativity. In this paper, we present an example of multiple-solution problems in statistics involving a set of non-traditional dice. In particular, we consider the exact probability mass distribution for the sum of face values. Four different ways of solving the problem are discussed. The solutions span various basic concepts in different mathematical disciplines (sample space in probability theory, the probability generating function in statistics, integer partition in basic combinatorics and individual risk model in actuarial science) and thus promotes upper undergraduate students' awareness of knowledge connections between their courses. All solutions of the example are implemented using the R statistical software package.

  17. A mixed shear flexible finite element for the analysis of laminated plates

    NASA Technical Reports Server (NTRS)

    Putcha, N. S.; Reddy, J. N.

    1984-01-01

    A mixed shear flexible finite element based on the Hencky-Mindlin type shear deformation theory of laminated plates is presented and their behavior in bending is investigated. The element consists of three displacements, two rotations, and three moments as the generalized degrees of freedom per node. The numerical convergence and accuracy characteristics of the element are investigated by comparing the finite element solutions with the exact solutions. The present study shows that reduced-order integration of the stiffness coefficients due to shear is necessary to obtain accurate results for thin plates.

  18. On High-Order Radiation Boundary Conditions

    NASA Technical Reports Server (NTRS)

    Hagstrom, Thomas

    1995-01-01

    In this paper we develop the theory of high-order radiation boundary conditions for wave propagation problems. In particular, we study the convergence of sequences of time-local approximate conditions to the exact boundary condition, and subsequently estimate the error in the solutions obtained using these approximations. We show that for finite times the Pade approximants proposed by Engquist and Majda lead to exponential convergence if the solution is smooth, but that good long-time error estimates cannot hold for spatially local conditions. Applications in fluid dynamics are also discussed.

  19. Varieties of operator manipulation. [for solving differential equations and calculating finite differences

    NASA Technical Reports Server (NTRS)

    Doohovskoy, A.

    1977-01-01

    A change in MACSYMA syntax is proposed to accommodate the operator manipulators necessary to implement direct and indirect methods for the solution of differential equations, calculus of finite differences, and the fractional calculus, as well as their modern counterparts. To illustrate the benefits and convenience of this syntax extension, an example is given to show how MACSYMA's pattern-matching capability can be used to implement a particular set of operator identities which can then be used to obtain exact solutions to nonlinear differential equations.

  20. Particle-fluid interaction corrections for flow measurements with a laser Doppler flowmeter

    NASA Technical Reports Server (NTRS)

    Berman, N. S.

    1972-01-01

    A discussion is given of particle lags in mean flows, acoustic oscillations at single frequencies and in turbulent flows. Some simplified cases lead to exact solutions. For turbulent flows linearization of the equation of motion after assuming the fluid and particle streamlines coincide also leads to a solution. The results show that particle lags are a function of particle size and frequency of oscillation. Additional studies are necessary to evaluate the effect of turbulence when a major portion of the energy is concentrated in small eddies.

  1. Lagrangian analysis of the laminar flat plate boundary layer

    NASA Astrophysics Data System (ADS)

    Gabr, Mohammad

    2016-10-01

    The flow properties at the leading edge of a flat plate represent a singularity to the Blasius laminar boundary layer equations; by applying the Lagrangian approach, the leading edge velocity profiles of the laminar boundary layer over a flat plate are studied. Experimental observations as well as the theoretical analysis show an exact Gaussian distribution curve as the original starting profile of the laminar flow. Comparisons between the Blasius solution and the Gaussian curve solution are carried out providing a new insight into the physics of the laminar flow.

  2. Non-perturbative String Theory from Water Waves

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Iyer, Ramakrishnan; Johnson, Clifford V.; /Southern California U.

    2012-06-14

    We use a combination of a 't Hooft limit and numerical methods to find non-perturbative solutions of exactly solvable string theories, showing that perturbative solutions in different asymptotic regimes are connected by smooth interpolating functions. Our earlier perturbative work showed that a large class of minimal string theories arise as special limits of a Painleve IV hierarchy of string equations that can be derived by a similarity reduction of the dispersive water wave hierarchy of differential equations. The hierarchy of string equations contains new perturbative solutions, some of which were conjectured to be the type IIA and IIB string theoriesmore » coupled to (4, 4k ? 2) superconformal minimal models of type (A, D). Our present paper shows that these new theories have smooth non-perturbative extensions. We also find evidence for putative new string theories that were not apparent in the perturbative analysis.« less

  3. A Path Algorithm for Constrained Estimation

    PubMed Central

    Zhou, Hua; Lange, Kenneth

    2013-01-01

    Many least-square problems involve affine equality and inequality constraints. Although there are a variety of methods for solving such problems, most statisticians find constrained estimation challenging. The current article proposes a new path-following algorithm for quadratic programming that replaces hard constraints by what are called exact penalties. Similar penalties arise in l1 regularization in model selection. In the regularization setting, penalties encapsulate prior knowledge, and penalized parameter estimates represent a trade-off between the observed data and the prior knowledge. Classical penalty methods of optimization, such as the quadratic penalty method, solve a sequence of unconstrained problems that put greater and greater stress on meeting the constraints. In the limit as the penalty constant tends to ∞, one recovers the constrained solution. In the exact penalty method, squared penalties!are replaced by absolute value penalties, and the solution is recovered for a finite value of the penalty constant. The exact path-following method starts at the unconstrained solution and follows the solution path as the penalty constant increases. In the process, the solution path hits, slides along, and exits from the various constraints. Path following in Lasso penalized regression, in contrast, starts with a large value of the penalty constant and works its way downward. In both settings, inspection of the entire solution path is revealing. Just as with the Lasso and generalized Lasso, it is possible to plot the effective degrees of freedom along the solution path. For a strictly convex quadratic program, the exact penalty algorithm can be framed entirely in terms of the sweep operator of regression analysis. A few well-chosen examples illustrate the mechanics and potential of path following. This article has supplementary materials available online. PMID:24039382

  4. Modulation instability, Fermi-Pasta-Ulam recurrence, rogue waves, nonlinear phase shift, and exact solutions of the Ablowitz-Ladik equation.

    PubMed

    Akhmediev, Nail; Ankiewicz, Adrian

    2011-04-01

    We study modulation instability (MI) of the discrete constant-background wave of the Ablowitz-Ladik (A-L) equation. We derive exact solutions of the A-L equation which are nonlinear continuations of MI at longer times. These periodic solutions comprise a family of two-parameter solutions with an arbitrary background field and a frequency of initial perturbation. The solutions are recurrent, since they return the field state to the original constant background solution after the process of nonlinear evolution has passed. These solutions can be considered as a complete resolution of the Fermi-Pasta-Ulam paradox for the A-L system. One remarkable consequence of the recurrent evolution is the nonlinear phase shift gained by the constant background wave after the process. A particular case of this family is the rational solution of the first-order or fundamental rogue wave.

  5. Traveling wave solutions of the Boussinesq equation via the new approach of generalized (G'/G)-expansion method.

    PubMed

    Alam, Md Nur; Akbar, M Ali; Roshid, Harun-Or-

    2014-01-01

    Exact solutions of nonlinear evolution equations (NLEEs) play a vital role to reveal the internal mechanism of complex physical phenomena. In this work, the exact traveling wave solutions of the Boussinesq equation is studied by using the new generalized (G'/G)-expansion method. Abundant traveling wave solutions with arbitrary parameters are successfully obtained by this method and the wave solutions are expressed in terms of the hyperbolic, trigonometric, and rational functions. It is shown that the new approach of generalized (G'/G)-expansion method is a powerful and concise mathematical tool for solving nonlinear partial differential equations in mathematical physics and engineering. 05.45.Yv, 02.30.Jr, 02.30.Ik.

  6. Front and pulse solutions for the complex Ginzburg-Landau equation with higher-order terms.

    PubMed

    Tian, Huiping; Li, Zhonghao; Tian, Jinping; Zhou, Guosheng

    2002-12-01

    We investigate one-dimensional complex Ginzburg-Landau equation with higher-order terms and discuss their influences on the multiplicity of solutions. An exact analytic front solution is presented. By stability analysis for the original partial differential equation, we derive its necessary stability condition for amplitude perturbations. This condition together with the exact front solution determine the region of parameter space where the uniformly translating front solution can exist. In addition, stable pulses, chaotic pulses, and attenuation pulses appear generally if the parameters are out of the range. Finally, applying these analysis into the optical transmission system numerically we find that the stable transmission of optical pulses can be achieved if the parameters are appropriately chosen.

  7. On exact solutions for some oscillating motions of a generalized Oldroyd-B fluid

    NASA Astrophysics Data System (ADS)

    Khan, M.; Anjum, Asia; Qi, Haitao; Fetecau, C.

    2010-02-01

    This paper deals with exact solutions for some oscillating motions of a generalized Oldroyd-B fluid. The fractional calculus approach is used in the constitutive relationship of fluid model. Analytical expressions for the velocity field and the corresponding shear stress for flows due to oscillations of an infinite flat plate as well as those induced by an oscillating pressure gradient are determined using Fourier sine and Laplace transforms. The obtained solutions are presented under integral and series forms in terms of the Mittag-Leffler functions. For α = β = 1, our solutions tend to the similar solutions for ordinary Oldroyd-B fluid. A comparison between generalized and ordinary Oldroyd-B fluids is shown by means of graphical illustrations.

  8. There aren't Non-Standard Solutions for the Braid Group Representations of the QYBE Associated with 10-D Representations of SU(4)

    NASA Technical Reports Server (NTRS)

    Yijun, Huang; Guochen, Yu; Hong, Sun

    1996-01-01

    It is well known that the quantum Yang-Baxter equations (QYBE) play an important role in various theoretical and mathematical physics, such as completely integrable system in (1 + 1)-dimensions, exactly solvable models in statistical mechanics, the quantum inverse scattering method and the conformal field theories in 2-dimensions. Recently, much remarkable progress has been made in constructing the solutions of the QYBE associated with the representations of lie algebras. It is shown that for some cases except the standard solutions, there also exist new solutions, but the others have not non-standard solutions. In this paper by employing the weight conservation and the diagrammatic techniques we show that the solution associated with the 10-D representations of SU (4) are standard alone.

  9. Exact solutions for unsteady free convection flow over an oscillating plate due to non-coaxial rotation.

    PubMed

    Mohamad, Ahmad Qushairi; Khan, Ilyas; Ismail, Zulkhibri; Shafie, Sharidan

    2016-01-01

    Non-coaxial rotation has wide applications in engineering devices, e.g. in food processing such as mixer machines and stirrers with a two-axis kneader, in cooling turbine blades, jet engines, pumps and vacuum cleaners, in designing thermal syphon tubes, and in geophysical flows. Therefore, this study aims to investigate unsteady free convection flow of viscous fluid due to non-coaxial rotation and fluid at infinity over an oscillating vertical plate with constant wall temperature. The governing equations are modelled by a sudden coincidence of the axes of a disk and the fluid at infinity rotating with uniform angular velocity, together with initial and boundary conditions. Some suitable non-dimensional variables are introduced. The Laplace transform method is used to obtain the exact solutions of the corresponding non-dimensional momentum and energy equations with conditions. Solutions of the velocity for cosine and sine oscillations as well as for temperature fields are obtained and displayed graphically for different values of time ( t ), the Grashof number ( Gr ), the Prandtl number ([Formula: see text]), and the phase angle ([Formula: see text]). Skin friction and the Nusselt number are also evaluated. The exact solutions are obtained and in limiting cases, the present solutions are found to be identical to the published results. Further, the obtained exact solutions also validated by comparing with results obtained by using Gaver-Stehfest algorithm. The interested physical property such as velocity, temperature, skin friction and Nusselt number are affected by the embedded parameters time ( t ), the Grashof number ( Gr ), the Prandtl number ([Formula: see text]), and the phase angle ([Formula: see text]).

  10. On Traveling Waves in Lattices: The Case of Riccati Lattices

    NASA Astrophysics Data System (ADS)

    Dimitrova, Zlatinka

    2012-09-01

    The method of simplest equation is applied for analysis of a class of lattices described by differential-difference equations that admit traveling-wave solutions constructed on the basis of the solution of the Riccati equation. We denote such lattices as Riccati lattices. We search for Riccati lattices within two classes of lattices: generalized Lotka-Volterra lattices and generalized Holling lattices. We show that from the class of generalized Lotka-Volterra lattices only the Wadati lattice belongs to the class of Riccati lattices. Opposite to this many lattices from the Holling class are Riccati lattices. We construct exact traveling wave solutions on the basis of the solution of Riccati equation for three members of the class of generalized Holling lattices.

  11. FAST TRACK COMMUNICATION: Soliton solutions of the KP equation with V-shape initial waves

    NASA Astrophysics Data System (ADS)

    Kodama, Y.; Oikawa, M.; Tsuji, H.

    2009-08-01

    We consider the initial value problems of the Kadomtsev-Petviashvili (KP) equation for symmetric V-shape initial waves consisting of two semi-infinite line solitons with the same amplitude. Those are particularly important for studies of large amplitude waves such as tsunami in shallow water. Numerical simulations show that the solutions of the initial value problem approach asymptotically to certain exact solutions of the KP equation found recently in [1]. We then use a chord diagram to explain the asymptotic result. This provides an analytical method to study asymptotic behavior for the initial value problem of the KP equation. We also demonstrate a real experiment of shallow water waves which may represent the solution discussed in this communication.

  12. Homogenization of one-dimensional draining through heterogeneous porous media including higher-order approximations

    NASA Astrophysics Data System (ADS)

    Anderson, Daniel M.; McLaughlin, Richard M.; Miller, Cass T.

    2018-02-01

    We examine a mathematical model of one-dimensional draining of a fluid through a periodically-layered porous medium. A porous medium, initially saturated with a fluid of a high density is assumed to drain out the bottom of the porous medium with a second lighter fluid replacing the draining fluid. We assume that the draining layer is sufficiently dense that the dynamics of the lighter fluid can be neglected with respect to the dynamics of the heavier draining fluid and that the height of the draining fluid, represented as a free boundary in the model, evolves in time. In this context, we neglect interfacial tension effects at the boundary between the two fluids. We show that this problem admits an exact solution. Our primary objective is to develop a homogenization theory in which we find not only leading-order, or effective, trends but also capture higher-order corrections to these effective draining rates. The approximate solution obtained by this homogenization theory is compared to the exact solution for two cases: (1) the permeability of the porous medium varies smoothly but rapidly and (2) the permeability varies as a piecewise constant function representing discrete layers of alternating high/low permeability. In both cases we are able to show that the corrections in the homogenization theory accurately predict the position of the free boundary moving through the porous medium.

  13. Numerical solution of the exact cavity equations of motion for an unstable optical resonator.

    PubMed

    Bowers, M S; Moody, S E

    1990-09-20

    We solve numerically, we believe for the first time, the exact cavity equations of motion for a realistic unstable resonator with a simple gain saturation model. The cavity equations of motion, first formulated by Siegman ["Exact Cavity Equations for Lasers with Large Output Coupling," Appl. Phys. Lett. 36, 412-414 (1980)], and which we term the dynamic coupled modes (DCM) method of solution, solve for the full 3-D time dependent electric field inside the optical cavity by expanding the field in terms of the actual diffractive transverse eigenmodes of the bare (gain free) cavity with time varying coefficients. The spatially varying gain serves to couple the bare cavity transverse modes and to scatter power from mode to mode. We show that the DCM method numerically converges with respect to the number of eigenmodes in the basis set. The intracavity intensity in the numerical example shown reaches a steady state, and this steady state distribution is compared with that computed from the traditional Fox and Li approach using a fast Fourier transform propagation algorithm. The output wavefronts from both methods are quite similar, and the computed output powers agree to within 10%. The usefulness and advantages of using this method for predicting the output of a laser, especially pulsed lasers used for coherent detection, are discussed.

  14. Magnetic black holes and monopoles in a nonminimal Einstein-Yang-Mills theory with a cosmological constant: Exact solutions

    NASA Astrophysics Data System (ADS)

    Balakin, Alexander B.; Lemos, José P. S.; Zayats, Alexei E.

    2016-04-01

    Alternative theories of gravity and their solutions are of considerable importance since, at some fundamental level, the world can reveal new features. Indeed, it is suspected that the gravitational field might be nonminimally coupled to the other fields at scales not yet probed, bringing into the forefront nonminimally coupled theories. In this mode, we consider a nonminimal Einstein-Yang-Mills theory with a cosmological constant. Imposing spherical symmetry and staticity for the spacetime and a magnetic Wu-Yang ansatz for the Yang-Mills field, we find expressions for the solutions of the theory. Further imposing constraints on the nonminimal parameters, we find a family of exact solutions of the theory depending on five parameters—two nonminimal parameters, the cosmological constant, the magnetic charge, and the mass. These solutions represent magnetic monopoles and black holes in magnetic monopoles with de Sitter, Minkowskian, and anti-de Sitter asymptotics, depending on the sign and value of the cosmological constant Λ . We classify completely the family of solutions with respect to the number and the type of horizons and show that the spacetime solutions can have, at most, four horizons. For particular sets of the parameters, these horizons can become double, triple, and quadruple. For instance, for a positive cosmological constant Λ , there is a critical Λc for which the solution admits a quadruple horizon, evocative of the Λc that appears for a given energy density in both the Einstein static and Eddington-Lemaître dynamical universes. As an example of our classification, we analyze solutions in the Drummond-Hathrell nonminimal theory that describe nonminimal black holes. Another application is with a set of regular black holes previously treated.

  15. ELASTIC NET FOR COX'S PROPORTIONAL HAZARDS MODEL WITH A SOLUTION PATH ALGORITHM.

    PubMed

    Wu, Yichao

    2012-01-01

    For least squares regression, Efron et al. (2004) proposed an efficient solution path algorithm, the least angle regression (LAR). They showed that a slight modification of the LAR leads to the whole LASSO solution path. Both the LAR and LASSO solution paths are piecewise linear. Recently Wu (2011) extended the LAR to generalized linear models and the quasi-likelihood method. In this work we extend the LAR further to handle Cox's proportional hazards model. The goal is to develop a solution path algorithm for the elastic net penalty (Zou and Hastie (2005)) in Cox's proportional hazards model. This goal is achieved in two steps. First we extend the LAR to optimizing the log partial likelihood plus a fixed small ridge term. Then we define a path modification, which leads to the solution path of the elastic net regularized log partial likelihood. Our solution path is exact and piecewise determined by ordinary differential equation systems.

  16. Exactly and quasi-exactly solvable 'discrete' quantum mechanics.

    PubMed

    Sasaki, Ryu

    2011-03-28

    A brief introduction to discrete quantum mechanics is given together with the main results on various exactly solvable systems. Namely, the intertwining relations, shape invariance, Heisenberg operator solutions, annihilation/creation operators and dynamical symmetry algebras, including the q-oscillator algebra and the Askey-Wilson algebra. A simple recipe to construct exactly and quasi-exactly solvable (QES) Hamiltonians in one-dimensional 'discrete' quantum mechanics is presented. It reproduces all the known Hamiltonians whose eigenfunctions consist of the Askey scheme of hypergeometric orthogonal polynomials of a continuous or a discrete variable. Several new exactly and QES Hamiltonians are constructed. The sinusoidal coordinate plays an essential role.

  17. Quantum preservation of the measurements precision using ultra-short strong pulses in exact analytical solution

    NASA Astrophysics Data System (ADS)

    Berrada, K.; Eleuch, H.

    2017-09-01

    Various schemes have been proposed to improve the parameter-estimation precision. In the present work, we suggest an alternative method to preserve the estimation precision by considering a model that closely describes a realistic experimental scenario. We explore this active way to control and enhance the measurements precision for a two-level quantum system interacting with classical electromagnetic field using ultra-short strong pulses with an exact analytical solution, i.e. beyond the rotating wave approximation. In particular, we investigate the variation of the precision with a few cycles pulse and a smooth phase jump over a finite time interval. We show that by acting on the shape of the phase transient and other parameters of the considered system, the amount of information may be increased and has smaller decay rate in the long time. These features make two-level systems incorporated in ultra-short, of-resonant and gradually changing phase good candidates for implementation of schemes for the quantum computation and the coherent information processing.

  18. A numerical study of nonlinear waves in a transcritical flow of stratified fluid past an obstacle

    NASA Astrophysics Data System (ADS)

    Hanazaki, Hideshi

    1992-10-01

    A numerical study of the flow of stratified fluid past an obstacle in a horizontal channel is described. Upstream advancing of waves near critically (resonance) appears in the case of ordinary two-layer flow, in which case the flow is described well by the solution of the forced extended Korteweg-de Vries (KdV) equation which has a cubic nonlinear term. It is shown theoretically that the upstream waves in the general two-layer flow cannot be well described by the forced KdV equation except when the wave amplitude is very small. The critical-level flow is also governed by the forced extended KdV equation. However, because of the smallness of the coefficient of the quadratic nonlinear term, the bore cannot propagate upstream at exact resonance. The results for the linearly stratified Boussinesq flow show good agreement with the solution of the Grimshaw and Yi (1991) equation, at least for exact resonance.

  19. Anisotropic hydrodynamics for conformal Gubser flow

    NASA Astrophysics Data System (ADS)

    Nopoush, Mohammad; Ryblewski, Radoslaw; Strickland, Michael

    2015-02-01

    We derive the equations of motion for a system undergoing boost-invariant longitudinal and azimuthally symmetric transverse "Gubser flow" using leading-order anisotropic hydrodynamics. This is accomplished by assuming that the one-particle distribution function is ellipsoidally symmetric in the momenta conjugate to the de Sitter coordinates used to parametrize the Gubser flow. We then demonstrate that the S O (3 )q symmetry in de Sitter space further constrains the anisotropy tensor to be of spheroidal form. The resulting system of two coupled ordinary differential equations for the de Sitter-space momentum scale and anisotropy parameter are solved numerically and compared to a recently obtained exact solution of the relaxation-time-approximation Boltzmann equation subject to the same flow. We show that anisotropic hydrodynamics describes the spatiotemporal evolution of the system better than all currently known dissipative hydrodynamics approaches. In addition, we prove that anisotropic hydrodynamics gives the exact solution of the relaxation-time approximation Boltzmann equation in the ideal, η /s →0 , and free-streaming, η /s →∞, limits.

  20. Study of the exact analytical solution of the equation of longitudinal waves in a liquid with account of its relaxation properties

    NASA Astrophysics Data System (ADS)

    Kudinov, I. V.; Kudinov, V. A.

    2013-09-01

    A mathematical model of elastic vibrations of an incompressible liquid has been developed based on the hypothesis on the finite velocity of propagation of field potentials in this liquid. A hyperbolic equation of vibrations of such a liquid with account of its relaxation properties has been obtained. An exact analytical solution of this equation has been found and investigated in detail.

  1. Resonant vibrations of a submerged beam

    NASA Astrophysics Data System (ADS)

    Achenbach, J. D.; Qu, J.

    1986-03-01

    Forced vibration of a simply supported submerged beam of circular cross section is investigated by the use of two mathematical methods. In the first approach the problem formulation is reduced to a singular integro-differential equation for the transverse deflection. In the second approach the method of matched asymptotic expansions is employed. The integro-differential equation is solved numerically, to yield an exact solution for the frequency response. Subsequent use of a representation integral yields the radiated far field acoustic pressure. The exact results for the beam deflection are compared with approximate results that are available in the literature. Next, a matched asymptotic expansion is worked out by constructing "inner" and "outer" expansions for frequencies near and not near resonance frequencies, respectively. The two expansions are matched in an appropriate manner to yield a uniformly valid solution. The leading term of the matched asymptotic solution is compared with exact numerical results.

  2. Optimum three-dimensional atmospheric entry from the analytical solution of Chapman's exact equations

    NASA Technical Reports Server (NTRS)

    Busemann, A.; Vinh, N. X.; Culp, R. D.

    1974-01-01

    The general solution for the optimum three-dimensional aerodynamic control of a lifting vehicle entering a planetary atmosphere is developed. A set of dimensionless variables, modified Chapman variables, is introduced. The resulting exact equations of motion, referred to as Chapman's exact equations, have the advantage that they are completely free of the physical characteristics of the vehicle. Furthermore, a completely general lift-drag relationship is used in the derivation. The results obtained apply to any type of vehicle of arbitrary weight, dimensions and shape, having an arbitrary drag polar, and entering any planetary atmosphere. The aerodynamic controls chosen are the lift coefficient and the bank angle. General optimum control laws for these controls are developed. Several earlier particular solutions are shown to be special cases of this general result. Results are valid for both free and constrained terminal position.

  3. A note on improved F-expansion method combined with Riccati equation applied to nonlinear evolution equations.

    PubMed

    Islam, Md Shafiqul; Khan, Kamruzzaman; Akbar, M Ali; Mastroberardino, Antonio

    2014-10-01

    The purpose of this article is to present an analytical method, namely the improved F-expansion method combined with the Riccati equation, for finding exact solutions of nonlinear evolution equations. The present method is capable of calculating all branches of solutions simultaneously, even if multiple solutions are very close and thus difficult to distinguish with numerical techniques. To verify the computational efficiency, we consider the modified Benjamin-Bona-Mahony equation and the modified Korteweg-de Vries equation. Our results reveal that the method is a very effective and straightforward way of formulating the exact travelling wave solutions of nonlinear wave equations arising in mathematical physics and engineering.

  4. A note on improved F-expansion method combined with Riccati equation applied to nonlinear evolution equations

    PubMed Central

    Islam, Md. Shafiqul; Khan, Kamruzzaman; Akbar, M. Ali; Mastroberardino, Antonio

    2014-01-01

    The purpose of this article is to present an analytical method, namely the improved F-expansion method combined with the Riccati equation, for finding exact solutions of nonlinear evolution equations. The present method is capable of calculating all branches of solutions simultaneously, even if multiple solutions are very close and thus difficult to distinguish with numerical techniques. To verify the computational efficiency, we consider the modified Benjamin–Bona–Mahony equation and the modified Korteweg-de Vries equation. Our results reveal that the method is a very effective and straightforward way of formulating the exact travelling wave solutions of nonlinear wave equations arising in mathematical physics and engineering. PMID:26064530

  5. Time-evolving bubbles in two-dimensional stokes flow

    NASA Technical Reports Server (NTRS)

    Tanveer, Saleh; Vasconcelos, Giovani L.

    1994-01-01

    A general class of exact solutions is presented for a time evolving bubble in a two-dimensional slow viscous flow in the presence of surface tension. These solutions can describe a bubble in a linear shear flow as well as an expanding or contracting bubble in an otherwise quiescent flow. In the case of expanding bubbles, the solutions have a simple behavior in the sense that for essentially arbitrary initial shapes the bubble will asymptote an expanding circle. Contracting bubbles, on the other hand, can develop narrow structures ('near-cusps') on the interface and may undergo 'break up' before all the bubble-fluid is completely removed. The mathematical structure underlying the existence of these exact solutions is also investigated.

  6. Large-amplitude hydromagnetic waves in collisionless relativistic plasma - Exact solution for the fast-mode magnetoacoustic wave

    NASA Technical Reports Server (NTRS)

    Barnes, A.

    1983-01-01

    An exact nonlinear solution is found to the relativistic kinetic and electrodynamic equations (in their hydromagnetic limit) that describes the large-amplitude fast-mode magnetoacoustic wave propagating normal to the magnetic field in a collisionless, previously uniform plasma. It is pointed out that a wave of this kind will be generated by transverse compression of any collisionless plasma. The solution is in essence independent of the detailed form of the particle momentum distribution functions. The solution is obtained, in part, through the method of characteristics; the wave exhibits the familiar properties of steepening and shock formation. A detailed analysis is given of the ultrarelativistic limit of this wave.

  7. A class of traveling wave solutions for space-time fractional biological population model in mathematical physics

    NASA Astrophysics Data System (ADS)

    Akram, Ghazala; Batool, Fiza

    2017-10-01

    The (G'/G)-expansion method is utilized for a reliable treatment of space-time fractional biological population model. The method has been applied in the sense of the Jumarie's modified Riemann-Liouville derivative. Three classes of exact traveling wave solutions, hyperbolic, trigonometric and rational solutions of the associated equation are characterized with some free parameters. A generalized fractional complex transform is applied to convert the fractional equations to ordinary differential equations which subsequently resulted in number of exact solutions. It should be mentioned that the (G'/G)-expansion method is very effective and convenient for solving nonlinear partial differential equations of fractional order whose balancing number is a negative integer.

  8. Density-Dependent Conformable Space-time Fractional Diffusion-Reaction Equation and Its Exact Solutions

    NASA Astrophysics Data System (ADS)

    Hosseini, Kamyar; Mayeli, Peyman; Bekir, Ahmet; Guner, Ozkan

    2018-01-01

    In this article, a special type of fractional differential equations (FDEs) named the density-dependent conformable fractional diffusion-reaction (DDCFDR) equation is studied. Aforementioned equation has a significant role in the modelling of some phenomena arising in the applied science. The well-organized methods, including the \\exp (-φ (\\varepsilon )) -expansion and modified Kudryashov methods are exerted to generate the exact solutions of this equation such that some of the solutions are new and have been reported for the first time. Results illustrate that both methods have a great performance in handling the DDCFDR equation.

  9. Exact solution of some linear matrix equations using algebraic methods

    NASA Technical Reports Server (NTRS)

    Djaferis, T. E.; Mitter, S. K.

    1979-01-01

    Algebraic methods are used to construct the exact solution P of the linear matrix equation PA + BP = - C, where A, B, and C are matrices with real entries. The emphasis of this equation is on the use of finite algebraic procedures which are easily implemented on a digital computer and which lead to an explicit solution to the problem. The paper is divided into six sections which include the proof of the basic lemma, the Liapunov equation, and the computer implementation for the rational, integer and modular algorithms. Two numerical examples are given and the entire calculation process is depicted.

  10. Exact and explicit optimal solutions for trajectory planning and control of single-link flexible-joint manipulators

    NASA Technical Reports Server (NTRS)

    Chen, Guanrong

    1991-01-01

    An optimal trajectory planning problem for a single-link, flexible joint manipulator is studied. A global feedback-linearization is first applied to formulate the nonlinear inequality-constrained optimization problem in a suitable way. Then, an exact and explicit structural formula for the optimal solution of the problem is derived and the solution is shown to be unique. It turns out that the optimal trajectory planning and control can be done off-line, so that the proposed method is applicable to both theoretical analysis and real time tele-robotics control engineering.

  11. An exact solution for the steady state phase distribution in an array of oscillators coupled on a hexagonal lattice

    NASA Technical Reports Server (NTRS)

    Pogorzelski, Ronald J.

    2004-01-01

    When electronic oscillators are coupled to nearest neighbors to form an array on a hexagonal lattice, the planar phase distributions desired for excitation of a phased array antenna are not steady state solutions of the governing non-linear equations describing the system. Thus the steady state phase distribution deviates from planar. It is shown to be possible to obtain an exact solution for the steady state phase distribution and thus determine the deviation from the desired planar distribution as a function of beam steering angle.

  12. Exact periodic cross-kink wave solutions for the new (2+1)-dimensional KdV equation in fluid flows and plasma physics.

    PubMed

    Liu, Jian-Guo; Du, Jian-Qiang; Zeng, Zhi-Fang; Ai, Guo-Ping

    2016-10-01

    The Korteweg-de Vries (KdV)-type models have been shown to describe many important physical situations such as fluid flows, plasma physics, and solid state physics. In this paper, a new (2 + 1)-dimensional KdV equation is discussed. Based on the Hirota's bilinear form and a generalized three-wave approach, we obtain new exact solutions for the new (2 + 1)-dimensional KdV equation. With the help of symbolic computation, the properties for some new solutions are presented with some figures.

  13. Exact solutions for STO and (3+1)-dimensional KdV-ZK equations using (G‧/G2) -expansion method

    NASA Astrophysics Data System (ADS)

    Bibi, Sadaf; Mohyud-Din, Syed Tauseef; Ullah, Rahmat; Ahmed, Naveed; Khan, Umar

    This article deals with finding some exact solutions of nonlinear fractional differential equations (NLFDEs) by applying a relatively new method known as (G‧/G2) -expansion method. Solutions of space-time fractional Sharma-Tasso-Olever (STO) equation of fractional order and (3+1)-dimensional KdV-Zakharov Kuznetsov (KdV-ZK) equation of fractional order are reckoned to demonstrate the validity of this method. The fractional derivative version of modified Riemann-Liouville, linked with Fractional complex transform is employed to transform fractional differential equations into the corresponding ordinary differential equations.

  14. The exact fundamental solution for the Benes tracking problem

    NASA Astrophysics Data System (ADS)

    Balaji, Bhashyam

    2009-05-01

    The universal continuous-discrete tracking problem requires the solution of a Fokker-Planck-Kolmogorov forward equation (FPKfe) for an arbitrary initial condition. Using results from quantum mechanics, the exact fundamental solution for the FPKfe is derived for the state model of arbitrary dimension with Benes drift that requires only the computation of elementary transcendental functions and standard linear algebra techniques- no ordinary or partial differential equations need to be solved. The measurement process may be an arbitrary, discrete-time nonlinear stochastic process, and the time step size can be arbitrary. Numerical examples are included, demonstrating its utility in practical implementation.

  15. A Time Integration Algorithm Based on the State Transition Matrix for Structures with Time Varying and Nonlinear Properties

    NASA Technical Reports Server (NTRS)

    Bartels, Robert E.

    2003-01-01

    A variable order method of integrating the structural dynamics equations that is based on the state transition matrix has been developed. The method has been evaluated for linear time variant and nonlinear systems of equations. When the time variation of the system can be modeled exactly by a polynomial it produces nearly exact solutions for a wide range of time step sizes. Solutions of a model nonlinear dynamic response exhibiting chaotic behavior have been computed. Accuracy of the method has been demonstrated by comparison with solutions obtained by established methods.

  16. Comment on "Exact solution of resonant modes in a rectangular resonator".

    PubMed

    Gutiérrez-Vega, Julio C; Bandres, Miguel A

    2006-08-15

    We comment on the recent Letter by J. Wu and A. Liu [Opt. Lett. 31, 1720 (2006)] in which an exact scalar solution to the resonant modes and the resonant frequencies in a two-dimensional rectangular microcavity were presented. The analysis is incorrect because (a) the field solutions were imposed to satisfy simultaneously both Dirichlet and Neumann boundary conditions at the four sides of the rectangle, leading to an overdetermined problem, and (b) the modes in the cavity were expanded using an incorrect series ansatz, leading to an expression for the mode fields that does not satisfy the Helmholtz equation.

  17. A first-order k-space model for elastic wave propagation in heterogeneous media.

    PubMed

    Firouzi, K; Cox, B T; Treeby, B E; Saffari, N

    2012-09-01

    A pseudospectral model of linear elastic wave propagation is described based on the first order stress-velocity equations of elastodynamics. k-space adjustments to the spectral gradient calculations are derived from the dyadic Green's function solution to the second-order elastic wave equation and used to (a) ensure the solution is exact for homogeneous wave propagation for timesteps of arbitrarily large size, and (b) also allows larger time steps without loss of accuracy in heterogeneous media. The formulation in k-space allows the wavefield to be split easily into compressional and shear parts. A perfectly matched layer (PML) absorbing boundary condition was developed to effectively impose a radiation condition on the wavefield. The staggered grid, which is essential for accurate simulations, is described, along with other practical details of the implementation. The model is verified through comparison with exact solutions for canonical examples and further examples are given to show the efficiency of the method for practical problems. The efficiency of the model is by virtue of the reduced point-per-wavelength requirement, the use of the fast Fourier transform (FFT) to calculate the gradients in k space, and larger time steps made possible by the k-space adjustments.

  18. Symmetric solitonic excitations of the (1 + 1)-dimensional Abelian-Higgs classical vacuum.

    PubMed

    Diakonos, F K; Katsimiga, G C; Maintas, X N; Tsagkarakis, C E

    2015-02-01

    We study the classical dynamics of the Abelian-Higgs model in (1 + 1) space-time dimensions for the case of strongly broken gauge symmetry. In this limit the wells of the potential are almost harmonic and sufficiently deep, presenting a scenario far from the associated critical point. Using a multiscale perturbation expansion, the equations of motion for the fields are reduced to a system of coupled nonlinear Schrödinger equations. Exact solutions of the latter are used to obtain approximate analytical solutions for the full dynamics of both the gauge and Higgs field in the form of oscillons and oscillating kinks. Numerical simulations of the exact dynamics verify the validity of these solutions. We explore their persistence for a wide range of the model's single parameter, which is the ratio of the Higgs mass (m(H)) to the gauge-field mass (m(A)). We show that only oscillons oscillating symmetrically with respect to the "classical vacuum," for both the gauge and the Higgs field, are long lived. Furthermore, plane waves and oscillating kinks are shown to decay into oscillon-like patterns, due to the modulation instability mechanism.

  19. Analytical solution for the diffusion of a capacitor discharge generated magnetic field pulse in a conductor

    NASA Astrophysics Data System (ADS)

    Grants, Ilmārs; Bojarevičs, Andris; Gerbeth, Gunter

    2016-06-01

    Powerful forces arise when a pulse of a magnetic field in the order of a few tesla diffuses into a conductor. Such pulses are used in electromagnetic forming, impact welding of dissimilar materials and grain refinement of solidifying alloys. Strong magnetic field pulses are generated by the discharge current of a capacitor bank. We consider analytically the penetration of such pulse into a conducting half-space. Besides the exact solution we obtain two simple self-similar approximate solutions for two sequential stages of the initial transient. Furthermore, a general solution is provided for the external field given as a power series of time. Each term of this solution represents a self-similar function for which we obtain an explicit expression. The validity range of various approximate analytical solutions is evaluated by comparison to the exact solution.

  20. Electromagnetic fields radiated from a lightning return stroke - Application of an exact solution to Maxwell's equations

    NASA Technical Reports Server (NTRS)

    Le Vine, D. M.; Meneghini, R.

    1978-01-01

    A solution is presented for the electromagnetic fields radiated by an arbitrarily oriented current filament over a conducting ground plane in the case where the current propagates along the filament at the speed of light, and this solution is interpreted in terms of radiation from lightning return strokes. The solution is exact in the fullest sense; no mathematical approximations are made, and the governing differential equations and boundary conditions are satisfied. The solution has the additional attribute of being specified in closed form in terms of elementary functions. This solution is discussed from the point of view of deducing lightning current wave forms from measurements of the electromagnetic fields and understanding the effects of channel tortuosity on the radiated fields. In addition, it is compared with two approximate solutions, the traditional moment approximation and the Fraunhofer approximation, and a set of criteria describing their applicability are presented and interpreted.

  1. Radiating black hole solutions in Einstein-Gauss-Bonnet gravity

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dominguez, Alfredo E.; Instituto Universitario Aeronautico, Avenida Fuerza Aerea km 6.5.; Gallo, Emanuel

    2006-03-15

    In this paper, we find some new exact solutions to the Einstein-Gauss-Bonnet equations. First, we prove a theorem which allows us to find a large family of solutions to the Einstein-Gauss-Bonnet gravity in n-dimensions. This family of solutions represents dynamic black holes and contains, as particular cases, not only the recently found Vaidya-Einstein-Gauss-Bonnet black hole, but also other physical solutions that we think are new, such as the Gauss-Bonnet versions of the Bonnor-Vaidya (de Sitter/anti-de Sitter) solution, a global monopole, and the Husain black holes. We also present a more general version of this theorem in which less restrictive conditionsmore » on the energy-momentum tensor are imposed. As an application of this theorem, we present the exact solution describing a black hole radiating a charged null fluid in a Born-Infeld nonlinear electrodynamics.« less

  2. Resolvent analysis of exact coherent solutions

    NASA Astrophysics Data System (ADS)

    Rosenberg, Kevin; McKeon, Beverley

    2017-11-01

    Exact coherent solutions have been hypothesized to constitute the state-space skeleton of turbulent trajectories and thus are of interest as a means to better understand the underlying dynamics of turbulent flows. An asymptotic description of how these types of solutions self-sustain was provided by Hall & Sherwin. Here we offer a fully-nonlinear perspective on the self-sustainment of these solutions in terms of triadic scale interactions and use the resolvent framework of McKeon & Sharma to interpret these results from an input/output point of view. We analyze traveling wave solutions and periodic orbits in channel flow, and demonstrate how resolvent analysis can be used to obtain low-dimensional representations of these flows. We gratefully acknowledge funding from the AFOSR (FA9550-16-1-0361) and J.S. Park, M.D. Graham, and J.F. Gibson for providing data for the ECS solutions.

  3. The problem of exact interior solutions for rotating rigid bodies in general relativity

    NASA Technical Reports Server (NTRS)

    Wahlquist, H. D.

    1993-01-01

    The (3 + 1) dyadic formalism for timelike congruences is applied to derive interior solutions for stationary, axisymmetric, rigidly rotating bodies. In this approach the mathematics is formulated in terms of three-space-covariant, first-order, vector-dyadic, differential equations for a and Omega, the acceleration and angular velocity three-vectors of the rigid body; for T, the stress dyadic of the matter; and for A and B, the 'electric' and 'magnetic' Weyl curvature dyadics which describe the gravitational field. It is shown how an appropriate ansatz for the forms of these dyadics can be used to discover exact rotating interior solutions such as the perfect fluid solution first published in 1968. By incorporating anisotropic stresses, a generalization is found of that previous solution and, in addition, a very simple new solution that can only exist in toroidal configurations.

  4. Quasimonochromatic exact solutions to Maxwell's equations with finite total energy and arbitrary frequencies in the vacuum.

    PubMed

    Ma, Xiaolu; Thompson, Richard S

    2017-12-01

    We analyze a family of exact finite energy solutions to Maxwell's equations. These solutions are a subset of the modified-power-spectrum solutions found by Ziolkowski [Phys. Rev. A 39, 2005 (1989)10.1103/PhysRevA.39.2005]. There are three characteristic parameters in the solutions: q_{1},q_{2}, and k_{0}. q_{1} and q_{2} are related to the frequency bandwidth of the solution. In the parameter space of k_{0}q_{1}≫1 and k_{0}q_{2}≫1, they represent quasimonochromatic continuous wave fields with the main angular frequency k_{0}c and energy localized in the transverse directions. Under the restriction of q_{1}≪q_{2}, the beam propagates mainly in the +z direction with velocity c and limited diffraction.

  5. Numerical simulation of KdV equation by finite difference method

    NASA Astrophysics Data System (ADS)

    Yokus, A.; Bulut, H.

    2018-05-01

    In this study, the numerical solutions to the KdV equation with dual power nonlinearity by using the finite difference method are obtained. Discretize equation is presented in the form of finite difference operators. The numerical solutions are secured via the analytical solution to the KdV equation with dual power nonlinearity which is present in the literature. Through the Fourier-Von Neumann technique and linear stable, we have seen that the FDM is stable. Accuracy of the method is analyzed via the L2 and L_{∞} norm errors. The numerical, exact approximations and absolute error are presented in tables. We compare the numerical solutions with the exact solutions and this comparison is supported with the graphic plots. Under the choice of suitable values of parameters, the 2D and 3D surfaces for the used analytical solution are plotted.

  6. Integral Equations and Scattering Solutions for a Square-Well Potential.

    ERIC Educational Resources Information Center

    Bagchi, B.; Seyler, R. G.

    1979-01-01

    Derives Green's functions and integral equations for scattering solutions subject to a variety of boundary conditions. Exact solutions are obtained for the case of a finite spherical square-well potential, and properties of these solutions are discussed. (Author/HM)

  7. Stability of exact solutions describing two-layer flows with evaporation at the interface

    NASA Astrophysics Data System (ADS)

    Bekezhanova, V. B.; Goncharova, O. N.

    2016-12-01

    A new exact solution of the equations of free convection has been constructed in the framework of the Oberbeck-Boussinesq approximation of the Navier-Stokes equations. The solution describes the joint flow of an evaporating viscous heat-conducting liquid and gas-vapor mixture in a horizontal channel. In the gas phase the Dufour and Soret effects are taken into account. The consideration of the exact solution allows one to describe different classes of flows depending on the values of the problem parameters and boundary conditions for the vapor concentration. A classification of solutions and results of the solution analysis are presented. The effects of the external disturbing influences (of the liquid flow rates and longitudinal gradients of temperature on the channel walls) on the stability characteristics have been numerically studied for the system HFE7100-nitrogen in the common case, when the longitudinal temperature gradients on the boundaries of the channel are not equal. In the system both monotonic and oscillatory modes can be formed, which damp or grow depending on the values of the initial perturbations, flow rates and temperature gradients. Hydrodynamic perturbations are most dangerous under large gas flow rates. The increasing oscillatory perturbations are developed due to the thermocapillary effect under large longitudinal gradients of temperature. The typical forms of the disturbances are shown.

  8. Exact phase boundaries and topological phase transitions of the X Y Z spin chain

    NASA Astrophysics Data System (ADS)

    Jafari, S. A.

    2017-07-01

    Within the block spin renormalization group, we give a very simple derivation of the exact phase boundaries of the X Y Z spin chain. First, we identify the Ising order along x ̂ or y ̂ as attractive renormalization group fixed points of the Kitaev chain. Then, in a global phase space composed of the anisotropy λ of the X Y interaction and the coupling Δ of the Δ σzσz interaction, we find that the above fixed points remain attractive in the two-dimesional parameter space. We therefore classify the gapped phases of the X Y Z spin chain as: (1) either attracted to the Ising limit of the Kitaev-chain, which in turn is characterized by winding number ±1 , depending on whether the Ising order parameter is along x ̂ or y ̂ directions; or (2) attracted to the charge density wave (CDW) phases of the underlying Jordan-Wigner fermions, which is characterized by zero winding number. We therefore establish that the exact phase boundaries of the X Y Z model in Baxter's solution indeed correspond to topological phase transitions. The topological nature of the phase transitions of the X Y Z model justifies why our analytical solution of the three-site problem that is at the core of the present renormalization group treatment is able to produce the exact phase boundaries of Baxter's solution. We argue that the distribution of the winding numbers between the three Ising phases is a matter of choice of the coordinate system, and therefore the CDW-Ising phase is entitled to host appropriate form of zero modes. We further observe that in the Kitaev-chain the renormalization group flow can be cast into a geometric progression of a properly identified parameter. We show that this new parameter is actually the size of the (Majorana) zero modes.

  9. An exact closed form solution for constant area compressible flow with friction and heat transfer

    NASA Technical Reports Server (NTRS)

    Sturas, J. I.

    1971-01-01

    The well-known differential equation for the one-dimensional flow of a compressible fluid with heat transfer and wall friction has no known solution in closed form for the general case. This report presents a closed form solution for the special case of constant heat flux per unit length and constant specific heat. The solution was obtained by choosing the square of a dimensionless flow parameter as one of the independent variables to describe the flow. From this exact solution, an approximate simplified form is derived that is applicable for predicting subsonic flow performance characteristics for many types of constant area passages in internal flow. The data included in this report are considered sufficiently accurate for use as a guide in analyzing and designing internal gas flow systems.

  10. An accuracy assessment of Cartesian-mesh approaches for the Euler equations

    NASA Technical Reports Server (NTRS)

    Coirier, William J.; Powell, Kenneth G.

    1995-01-01

    A critical assessment of the accuracy of Cartesian-mesh approaches for steady, transonic solutions of the Euler equations of gas dynamics is made. An exact solution of the Euler equations (Ringleb's flow) is used not only to infer the order of the truncation error of the Cartesian-mesh approaches, but also to compare the magnitude of the discrete error directly to that obtained with a structured mesh approach. Uniformly and adaptively refined solutions using a Cartesian-mesh approach are obtained and compared to each other and to uniformly refined structured mesh results. The effect of cell merging is investigated as well as the use of two different K-exact reconstruction procedures. The solution methodology of the schemes is explained and tabulated results are presented to compare the solution accuracies.

  11. Gaussian and Airy wave packets of massive particles with orbital angular momentum

    NASA Astrophysics Data System (ADS)

    Karlovets, Dmitry V.

    2015-01-01

    While wave-packet solutions for relativistic wave equations are oftentimes thought to be approximate (paraxial), we demonstrate, by employing a null-plane- (light-cone-) variable formalism, that there is a family of such solutions that are exact. A scalar Gaussian wave packet in the transverse plane is generalized so that it acquires a well-defined z component of the orbital angular momentum (OAM), while it may not acquire a typical "doughnut" spatial profile. Such quantum states and beams, in contrast to the Bessel states, may have an azimuthal-angle-dependent probability density and finite uncertainty of the OAM, which is determined by the packet's width. We construct a well-normalized Airy wave packet, which can be interpreted as a one-particle state for a relativistic massive boson, show that its center moves along the same quasiclassical straight path, and, which is more important, spreads with time and distance exactly as a Gaussian wave packet does, in accordance with the uncertainty principle. It is explained that this fact does not contradict the well-known "nonspreading" feature of the Airy beams. While the effective OAM for such states is zero, its uncertainty (or the beam's OAM bandwidth) is found to be finite, and it depends on the packet's parameters. A link between exact solutions for the Klein-Gordon equation in the null-plane-variable formalism and the approximate ones in the usual approach is indicated; generalizations of these states for a boson in the external field of a plane electromagnetic wave are also presented.

  12. Exact solutions of a hierarchy of mixing speeds models

    NASA Astrophysics Data System (ADS)

    Cornille, H.; Platkowski, T.

    1992-07-01

    This paper presents several new aspects of discrete kinetic theory (DKT). First a hierarchy of d-dimensional (d=1,2,3) models is proposed with (2d+3) velocities and three moduli speeds: 0, 2, and a third one that can be arbitrary. It is assumed that the particles at rest have an internal energy which, for microscopic collisions, supplies for the loss of the kinetic energy. In a more general way than usual, collisions are allowed that mix particles with different speeds. Second, for the (1+1)-dimensional restriction of the systems of PDE for these models which have two independent quadratic collision terms we construct different exact solutions. The usual types of exact solutions are studied: periodic solutions and shock wave solutions obtained from the standard linearization of the scalar Riccati equations called Riccatian shock waves. Then other types of solutions of the coupled Riccati equations are found called non-Riccatian shock waves and they are compared with the previous ones. The main new result is that, between the upstream and downstream states, these new solutions are not necessarily monotonous. Further, for the shock problem, a two-dimensional dynamical system of ODE is solved numerically with limit values corresponding to the upstream and downstream states. As a by-product of this study two new linearizations for the Riccati coupled equations with two functions are proposed.

  13. A procedure to construct exact solutions of nonlinear fractional differential equations.

    PubMed

    Güner, Özkan; Cevikel, Adem C

    2014-01-01

    We use the fractional transformation to convert the nonlinear partial fractional differential equations with the nonlinear ordinary differential equations. The Exp-function method is extended to solve fractional partial differential equations in the sense of the modified Riemann-Liouville derivative. We apply the Exp-function method to the time fractional Sharma-Tasso-Olver equation, the space fractional Burgers equation, and the time fractional fmKdV equation. As a result, we obtain some new exact solutions.

  14. Comparison of high-angle-of-attack slender-body theory and exact solutions for potential flow over an ellipsoid

    NASA Technical Reports Server (NTRS)

    Hemsch, Michael J.

    1990-01-01

    The accuracy of high-alpha slender-body theory (HASBT) for bodies with elliptical cross-sections is presently demonstrated by means of a comparison with exact solutions for incompressible potential flow over a wide range of ellipsoid geometries and angles of attack and sideslip. The addition of the appropriate trigonometric coefficients to the classical slender-body theory decomposition yields the formally correct HASBT, and results in accuracies previously considered unattainable.

  15. An exact solution to the relativistic equation of motion of a charged particle driven by a linearly polarized electromagnetic wave

    NASA Technical Reports Server (NTRS)

    Shebalin, John V.

    1988-01-01

    An exact analytic solution is found for a basic electromagnetic wave-charged particle interaction by solving the nonlinear equations of motion. The particle position, velocity, and corresponding time are found to be explicit functions of the total phase of the wave. Particle position and velocity are thus implicit functions of time. Applications include describing the motion of a free electron driven by an intense laser beam..

  16. Exact Solutions for Stationary and Unsteady Layered Convection of a Viscous Incompressible Fluid with the Specified Velocities at the Bottom

    NASA Astrophysics Data System (ADS)

    Prosviryakov, E. Yu; Spevak, L. F.

    2017-06-01

    The layered convective flow of a viscous incompressible fluid is considered with the specified velocities at the bottom of an infinite layer. A new exact stationary and nonstationary solution of the Oberbeck-Boussinesq system is presented. The account of fluid velocity at the bottom is characterized by the presence of two stagnant points, this being indicative of the nonmonotonic kinetic energy profile with two local extrema.

  17. De Sitter and scaling solutions in a higher-order modified teleparallel theory

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Paliathanasis, Andronikos, E-mail: anpaliat@phys.uoa.gr

    The existence and the stability conditions for some exact relativistic solutions of special interest are studied in a higher-order modified teleparallel gravitational theory. The theory with the use of a Lagrange multiplier is equivalent with that of General Relativity with a minimally coupled noncanonical field. The conditions for the existence of de Sitter solutions and ideal gas solutions in the case of vacuum are studied as also the stability criteria. Furthermore, in the presence of matter the behaviour of scaling solutions is given. Finally, we discuss the degrees of freedom of the field equations and we reduce the field equationsmore » in an algebraic equation, where in order to demonstrate our result we show how this noncanonical scalar field can reproduce the Hubble function of Λ-cosmology.« less

  18. Exact Solutions of Coupled Multispecies Linear Reaction–Diffusion Equations on a Uniformly Growing Domain

    PubMed Central

    Simpson, Matthew J.; Sharp, Jesse A.; Morrow, Liam C.; Baker, Ruth E.

    2015-01-01

    Embryonic development involves diffusion and proliferation of cells, as well as diffusion and reaction of molecules, within growing tissues. Mathematical models of these processes often involve reaction–diffusion equations on growing domains that have been primarily studied using approximate numerical solutions. Recently, we have shown how to obtain an exact solution to a single, uncoupled, linear reaction–diffusion equation on a growing domain, 0 < x < L(t), where L(t) is the domain length. The present work is an extension of our previous study, and we illustrate how to solve a system of coupled reaction–diffusion equations on a growing domain. This system of equations can be used to study the spatial and temporal distributions of different generations of cells within a population that diffuses and proliferates within a growing tissue. The exact solution is obtained by applying an uncoupling transformation, and the uncoupled equations are solved separately before applying the inverse uncoupling transformation to give the coupled solution. We present several example calculations to illustrate different types of behaviour. The first example calculation corresponds to a situation where the initially–confined population diffuses sufficiently slowly that it is unable to reach the moving boundary at x = L(t). In contrast, the second example calculation corresponds to a situation where the initially–confined population is able to overcome the domain growth and reach the moving boundary at x = L(t). In its basic format, the uncoupling transformation at first appears to be restricted to deal only with the case where each generation of cells has a distinct proliferation rate. However, we also demonstrate how the uncoupling transformation can be used when each generation has the same proliferation rate by evaluating the exact solutions as an appropriate limit. PMID:26407013

  19. Exact Solutions of Coupled Multispecies Linear Reaction-Diffusion Equations on a Uniformly Growing Domain.

    PubMed

    Simpson, Matthew J; Sharp, Jesse A; Morrow, Liam C; Baker, Ruth E

    2015-01-01

    Embryonic development involves diffusion and proliferation of cells, as well as diffusion and reaction of molecules, within growing tissues. Mathematical models of these processes often involve reaction-diffusion equations on growing domains that have been primarily studied using approximate numerical solutions. Recently, we have shown how to obtain an exact solution to a single, uncoupled, linear reaction-diffusion equation on a growing domain, 0 < x < L(t), where L(t) is the domain length. The present work is an extension of our previous study, and we illustrate how to solve a system of coupled reaction-diffusion equations on a growing domain. This system of equations can be used to study the spatial and temporal distributions of different generations of cells within a population that diffuses and proliferates within a growing tissue. The exact solution is obtained by applying an uncoupling transformation, and the uncoupled equations are solved separately before applying the inverse uncoupling transformation to give the coupled solution. We present several example calculations to illustrate different types of behaviour. The first example calculation corresponds to a situation where the initially-confined population diffuses sufficiently slowly that it is unable to reach the moving boundary at x = L(t). In contrast, the second example calculation corresponds to a situation where the initially-confined population is able to overcome the domain growth and reach the moving boundary at x = L(t). In its basic format, the uncoupling transformation at first appears to be restricted to deal only with the case where each generation of cells has a distinct proliferation rate. However, we also demonstrate how the uncoupling transformation can be used when each generation has the same proliferation rate by evaluating the exact solutions as an appropriate limit.

  20. Radiative interactions in multi-dimensional chemically reacting flows using Monte Carlo simulations

    NASA Technical Reports Server (NTRS)

    Liu, Jiwen; Tiwari, Surendra N.

    1994-01-01

    The Monte Carlo method (MCM) is applied to analyze radiative heat transfer in nongray gases. The nongray model employed is based on the statistical narrow band model with an exponential-tailed inverse intensity distribution. The amount and transfer of the emitted radiative energy in a finite volume element within a medium are considered in an exact manner. The spectral correlation between transmittances of two different segments of the same path in a medium makes the statistical relationship different from the conventional relationship, which only provides the non-correlated results for nongray methods is discussed. Validation of the Monte Carlo formulations is conducted by comparing results of this method of other solutions. In order to further establish the validity of the MCM, a relatively simple problem of radiative interactions in laminar parallel plate flows is considered. One-dimensional correlated Monte Carlo formulations are applied to investigate radiative heat transfer. The nongray Monte Carlo solutions are also obtained for the same problem and they also essentially match the available analytical solutions. the exact correlated and non-correlated Monte Carlo formulations are very complicated for multi-dimensional systems. However, by introducing the assumption of an infinitesimal volume element, the approximate correlated and non-correlated formulations are obtained which are much simpler than the exact formulations. Consideration of different problems and comparison of different solutions reveal that the approximate and exact correlated solutions agree very well, and so do the approximate and exact non-correlated solutions. However, the two non-correlated solutions have no physical meaning because they significantly differ from the correlated solutions. An accurate prediction of radiative heat transfer in any nongray and multi-dimensional system is possible by using the approximate correlated formulations. Radiative interactions are investigated in chemically reacting compressible flows of premixed hydrogen and air in an expanding nozzle. The governing equations are based on the fully elliptic Navier-Stokes equations. Chemical reaction mechanisms were described by a finite rate chemistry model. The correlated Monte Carlo method developed earlier was employed to simulate multi-dimensional radiative heat transfer. Results obtained demonstrate that radiative effects on the flowfield are minimal but radiative effects on the wall heat transfer are significant. Extensive parametric studies are conducted to investigate the effects of equivalence ratio, wall temperature, inlet flow temperature, and nozzle size on the radiative and conductive wall fluxes.

  1. Applications of IBSOM and ETEM for solving the nonlinear chains of atoms with long-range interactions

    NASA Astrophysics Data System (ADS)

    Foroutan, Mohammadreza; Zamanpour, Isa; Manafian, Jalil

    2017-10-01

    This paper presents a number of new solutions obtained for solving a complex nonlinear equation describing dynamics of nonlinear chains of atoms via the improved Bernoulli sub-ODE method (IBSOM) and the extended trial equation method (ETEM). The proposed solutions are kink solitons, anti-kink solitons, soliton solutions, hyperbolic solutions, trigonometric solutions, and bellshaped soliton solutions. Then our new results are compared with the well-known results. The methods used here are very simple and succinct and can be also applied to other nonlinear models. The balance number of these methods is not constant contrary to other methods. The proposed methods also allow us to establish many new types of exact solutions. By utilizing the Maple software package, we show that all obtained solutions satisfy the conditions of the studied model. More importantly, the solutions found in this work can have significant applications in Hamilton's equations and generalized momentum where solitons are used for long-range interactions.

  2. Coherent pulses in the diffusive transport of charged particles`

    NASA Technical Reports Server (NTRS)

    Kota, J.

    1994-01-01

    We present exact solutions to the diffusive transport of charged particles following impulsive injection for a simple model of scattering. A modified, two-parameter relaxation-time model is considered that simulates the low rate of scattering through perpendicular pitch-angle. Scattering is taken to be isotropic within each of the foward- and backward-pointing hemispheres, respectively, but, at the same time, a reduced rate of sccattering is assumed from one hemisphere to the other one. By applying a technique of Fourier- and Laplace-transform, the inverse transformation can be performed and exact solutions can be reached. By contrast with the first, and so far only exact solutions of Federov and Shakov, this wider class of solutions gives rise to coherent pulses to appear. The present work addresses omnidirectional densities for isotropic injection from an instantaneous and localized source. The dispersion relations are briefly discussed. We find, for this particular model, two diffusive models to exist up to a certain limiting wavenumber. The corresponding eigenvalues are real at the lowest wavenumbers. Complex eigenvalues, which are responsible for coherent pulses, appear at higher wavenumbers.

  3. Analytical theory of mesoscopic Bose-Einstein condensation in an ideal gas

    NASA Astrophysics Data System (ADS)

    Kocharovsky, Vitaly V.; Kocharovsky, Vladimir V.

    2010-03-01

    We find the universal structure and scaling of the Bose-Einstein condensation (BEC) statistics and thermodynamics (Gibbs free energy, average energy, heat capacity) for a mesoscopic canonical-ensemble ideal gas in a trap with an arbitrary number of atoms, any volume, and any temperature, including the whole critical region. We identify a universal constraint-cutoff mechanism that makes BEC fluctuations strongly non-Gaussian and is responsible for all unusual critical phenomena of the BEC phase transition in the ideal gas. The main result is an analytical solution to the problem of critical phenomena. It is derived by, first, calculating analytically the universal probability distribution of the noncondensate occupation, or a Landau function, and then using it for the analytical calculation of the universal functions for the particular physical quantities via the exact formulas which express the constraint-cutoff mechanism. We find asymptotics of that analytical solution as well as its simple analytical approximations which describe the universal structure of the critical region in terms of the parabolic cylinder or confluent hypergeometric functions. The obtained results for the order parameter, all higher-order moments of BEC fluctuations, and thermodynamic quantities perfectly match the known asymptotics outside the critical region for both low and high temperature limits. We suggest two- and three-level trap models of BEC and find their exact solutions in terms of the cutoff negative binomial distribution (which tends to the cutoff gamma distribution in the continuous limit) and the confluent hypergeometric distribution, respectively. Also, we present an exactly solvable cutoff Gaussian model of BEC in a degenerate interacting gas. All these exact solutions confirm the universality and constraint-cutoff origin of the strongly non-Gaussian BEC statistics. We introduce a regular refinement scheme for the condensate statistics approximations on the basis of the infrared universality of higher-order cumulants and the method of superposition and show how to model BEC statistics in the actual traps. In particular, we find that the three-level trap model with matching the first four or five cumulants is enough to yield remarkably accurate results for all interesting quantities in the whole critical region. We derive an exact multinomial expansion for the noncondensate occupation probability distribution and find its high-temperature asymptotics (Poisson distribution) and corrections to it. Finally, we demonstrate that the critical exponents and a few known terms of the Taylor expansion of the universal functions, which were calculated previously from fitting the finite-size simulations within the phenomenological renormalization-group theory, can be easily obtained from the presented full analytical solutions for the mesoscopic BEC as certain approximations in the close vicinity of the critical point.

  4. Penetrable square-well fluids: exact results in one dimension.

    PubMed

    Santos, Andrés; Fantoni, Riccardo; Giacometti, Achille

    2008-05-01

    We introduce a model of attractive penetrable spheres by adding a short-range attractive square well outside a penetrable core, and we provide a detailed analysis of structural and thermodynamical properties in one dimension using the exact impenetrable counterpart as a starting point. The model is expected to describe star polymers in regimes of good and moderate solvent under dilute conditions. We derive the exact coefficients of a low-density expansion up to second order for the radial distribution function and up to fourth order in the virial expansion. These exact results are used as a benchmark to test the reliability of approximate theories (Percus-Yevick and hypernetted chain). Notwithstanding the lack of an exact solution for arbitrary densities, our results are expected to be rather precise within a wide range of temperatures and densities. A detailed analysis of some limiting cases is carried out. In particular, we provide a complete solution of the sticky penetrable-sphere model in one dimension up to the same order in density. The issue of Ruelle's thermodynamics stability is analyzed and the region of a well-defined thermodynamic limit is identified.

  5. The Poisson-Boltzmann theory for the two-plates problem: some exact results.

    PubMed

    Xing, Xiang-Jun

    2011-12-01

    The general solution to the nonlinear Poisson-Boltzmann equation for two parallel charged plates, either inside a symmetric electrolyte, or inside a 2q:-q asymmetric electrolyte, is found in terms of Weierstrass elliptic functions. From this we derive some exact asymptotic results for the interaction between charged plates, as well as the exact form of the renormalized surface charge density.

  6. Linearization instability for generic gravity in AdS spacetime

    NASA Astrophysics Data System (ADS)

    Altas, Emel; Tekin, Bayram

    2018-01-01

    In general relativity, perturbation theory about a background solution fails if the background spacetime has a Killing symmetry and a compact spacelike Cauchy surface. This failure, dubbed as linearization instability, shows itself as non-integrability of the perturbative infinitesimal deformation to a finite deformation of the background. Namely, the linearized field equations have spurious solutions which cannot be obtained from the linearization of exact solutions. In practice, one can show the failure of the linear perturbation theory by showing that a certain quadratic (integral) constraint on the linearized solutions is not satisfied. For non-compact Cauchy surfaces, the situation is different and for example, Minkowski space having a non-compact Cauchy surface, is linearization stable. Here we study, the linearization instability in generic metric theories of gravity where Einstein's theory is modified with additional curvature terms. We show that, unlike the case of general relativity, for modified theories even in the non-compact Cauchy surface cases, there are some theories which show linearization instability about their anti-de Sitter backgrounds. Recent D dimensional critical and three dimensional chiral gravity theories are two such examples. This observation sheds light on the paradoxical behavior of vanishing conserved charges (mass, angular momenta) for non-vacuum solutions, such as black holes, in these theories.

  7. Thermodynamical properties of hairy black holes in n spacetime dimensions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Nadalini, Mario; Vanzo, Luciano; Zerbini, Sergio

    The issue concerning the existence of exact black hole solutions in the presence of a nonvanishing cosmological constant and scalar fields is reconsidered. With regard to this, in investigating no-hair theorem violations, exact solutions of gravity having as a source an interacting and conformally coupled scalar field are revisited in arbitrary dimensional nonasymptotically flat space-times. New and known hairy black hole solutions are discussed. The thermodynamical properties associated with these solutions are investigated and the invariance of the black hole entropy with respect to different conformal frames is proved. The issue of the positivity of the entropy is discussed andmore » resolved for the case of black holes immersed in de Sitter space.« less

  8. A new mathematical solution for predicting char activation reactions

    USGS Publications Warehouse

    Rafsanjani, H.H.; Jamshidi, E.; Rostam-Abadi, M.

    2002-01-01

    The differential conservation equations that describe typical gas-solid reactions, such as activation of coal chars, yield a set of coupled second-order partial differential equations. The solution of these coupled equations by exact analytical methods is impossible. In addition, an approximate or exact solution only provides predictions for either reaction- or diffusion-controlling cases. A new mathematical solution, the quantize method (QM), was applied to predict the gasification rates of coal char when both chemical reaction and diffusion through the porous char are present. Carbon conversion rates predicted by the QM were in closer agreement with the experimental data than those predicted by the random pore model and the simple particle model. ?? 2002 Elsevier Science Ltd. All rights reserved.

  9. Asymptotically Exact Solution of the Problem of Harmonic Vibrations of an Elastic Parallelepiped

    NASA Astrophysics Data System (ADS)

    Papkov, S. O.

    2017-11-01

    An asymptotically exact solution of the classical problem of elasticity about the steadystate forced vibrations of an elastic rectangular parallelepiped is constructed. The general solution of the vibration equations is constructed in the form of double Fourier series with undetermined coefficients, and an infinite system of linear algebraic equations is obtained for determining these coefficients. An analysis of the infinite system permits determining the asymptotics of the unknowns which are used to convolve the double series in both equations of the infinite systems and the displacement and stress components. The efficiency of this approach is illustrated by numerical examples and comparison with known solutions. The spectrum of the parallelepiped symmetric vibrations is studied for various ratios of its sides.

  10. Class of Exact Solutions for a Cosmological Model of Unified Gravitational and Quintessence Fields

    NASA Astrophysics Data System (ADS)

    Asenjo, Felipe A.; Hojman, Sergio A.

    2017-07-01

    A new approach to tackle Einstein equations for an isotropic and homogeneous Friedmann-Robertson-Walker Universe in the presence of a quintessence scalar field is devised. It provides a way to get a simple exact solution to these equations. This solution determines the quintessence potential uniquely and it differs from solutions which have been used to study inflation previously. It relays on a unification of geometry and dark matter implemented through the definition of a functional relation between the scale factor of the Universe and the quintessence field. For a positive curvature Universe, this solution produces perpetual accelerated expansion rate of the Universe, while the Hubble parameter increases abruptly, attains a maximum value and decreases thereafter. The behavior of this cosmological solution is discussed and its main features are displayed. The formalism is extended to include matter and radiation.

  11. Khater method for nonlinear Sharma Tasso-Olever (STO) equation of fractional order

    NASA Astrophysics Data System (ADS)

    Bibi, Sadaf; Mohyud-Din, Syed Tauseef; Khan, Umar; Ahmed, Naveed

    In this work, we have implemented a direct method, known as Khater method to establish exact solutions of nonlinear partial differential equations of fractional order. Number of solutions provided by this method is greater than other traditional methods. Exact solutions of nonlinear fractional order Sharma Tasso-Olever (STO) equation are expressed in terms of kink, travelling wave, periodic and solitary wave solutions. Modified Riemann-Liouville derivative and Fractional complex transform have been used for compatibility with fractional order sense. Solutions have been graphically simulated for understanding the physical aspects and importance of the method. A comparative discussion between our established results and the results obtained by existing ones is also presented. Our results clearly reveal that the proposed method is an effective, powerful and straightforward technique to work out new solutions of various types of differential equations of non-integer order in the fields of applied sciences and engineering.

  12. Large deviation approach to the generalized random energy model

    NASA Astrophysics Data System (ADS)

    Dorlas, T. C.; Dukes, W. M. B.

    2002-05-01

    The generalized random energy model is a generalization of the random energy model introduced by Derrida to mimic the ultrametric structure of the Parisi solution of the Sherrington-Kirkpatrick model of a spin glass. It was solved exactly in two special cases by Derrida and Gardner. A complete solution for the thermodynamics in the general case was given by Capocaccia et al. Here we use large deviation theory to analyse the model in a very straightforward way. We also show that the variational expression for the free energy can be evaluated easily using the Cauchy-Schwarz inequality.

  13. Integrable model for density-modulated quantum condensates: Solitons passing through a soliton lattice.

    PubMed

    Takahashi, Daisuke A

    2016-06-01

    An integrable model possessing inhomogeneous ground states is proposed as an effective model of nonuniform quantum condensates such as supersolids and Fulde-Ferrell-Larkin-Ovchinnikov superfluids. The model is a higher-order analog of the nonlinear Schrödinger equation. We derive an n-soliton solution via the inverse scattering theory with elliptic-functional background and reveal various kinds of soliton dynamics such as dark soliton billiards, dislocations, gray solitons, and envelope solitons. We also provide the exact bosonic and fermionic quasiparticle eigenstates and show their tunneling phenomena. The solutions are expressed by a determinant of theta functions.

  14. Exact surface-plasmon polariton solutions at a lossy interface.

    PubMed

    Norrman, Andreas; Setälä, Tero; Friberg, Ari T

    2013-04-01

    Making use of a rigorous electromagnetic treatment, we demonstrate that the approximate results that are customarily employed for the analysis of a plasmon field at a metal/dielectric boundary are incorrect even in some situations in which they are supposed to hold. We show further that a new type of surface-plasmon solution exists that does not follow from the standard approximate analysis. Energy-flow considerations indicate that the new polariton is a backward-propagating surface wave, as encountered in manmade structures. Our results are likely to find applications in metal/semiconductor and metamaterial plasmonics.

  15. Stochastic solution to quantum dynamics

    NASA Technical Reports Server (NTRS)

    John, Sarah; Wilson, John W.

    1994-01-01

    The quantum Liouville equation in the Wigner representation is solved numerically by using Monte Carlo methods. For incremental time steps, the propagation is implemented as a classical evolution in phase space modified by a quantum correction. The correction, which is a momentum jump function, is simulated in the quasi-classical approximation via a stochastic process. The technique, which is developed and validated in two- and three- dimensional momentum space, extends an earlier one-dimensional work. Also, by developing a new algorithm, the application to bound state motion in an anharmonic quartic potential shows better agreement with exact solutions in two-dimensional phase space.

  16. Exact solutions of the Schrödinger equation with a coulomb ring-shaped potential in the cosmic string spacetime

    NASA Astrophysics Data System (ADS)

    Wang, Zhi; Long, Zheng-wen; Long, Chao-yun; Teng, Jing

    2015-05-01

    We study the Schrödinger equation with a Coulomb ring-shaped potential in the spacetime of a cosmic string, and the solutions of the system are obtained by using the generalized parametric Nikiforov-Uvarov (NU) method. They show that the quantum dynamics of a physical system depend on the non-trivial topological features of the cosmic string spacetime and the energy levels of the considered quantum system depend explicitly on the angular deficit α which characterizes the global structure of the metric in the cosmic string spacetime.

  17. Numerical investigation of sixth order Boussinesq equation

    NASA Astrophysics Data System (ADS)

    Kolkovska, N.; Vucheva, V.

    2017-10-01

    We propose a family of conservative finite difference schemes for the Boussinesq equation with sixth order dispersion terms. The schemes are of second order of approximation. The method is conditionally stable with a mild restriction τ = O(h) on the step sizes. Numerical tests are performed for quadratic and cubic nonlinearities. The numerical experiments show second order of convergence of the discrete solution to the exact one.

  18. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Smith, R.; Harrison, D. E. Jr.

    A variable time step integration algorithm for carrying out molecular dynamics simulations of atomic collision cascades is proposed which evaluates the interaction forces only once per time step. The algorithm is tested on some model problems which have exact solutions and is compared against other common methods. These comparisons show that the method has good stability and accuracy. Applications to Ar/sup +/ bombardment of Cu and Si show good accuracy and improved speed to the original method (D. E. Harrison, W. L. Gay, and H. M. Effron, J. Math. Phys. /bold 10/, 1179 (1969)).

  19. An exact solution for ideal dam-break floods on steep slopes

    USGS Publications Warehouse

    Ancey, C.; Iverson, R.M.; Rentschler, M.; Denlinger, R.P.

    2008-01-01

    The shallow-water equations are used to model the flow resulting from the sudden release of a finite volume of frictionless, incompressible fluid down a uniform slope of arbitrary inclination. The hodograph transformation and Riemann's method make it possible to transform the governing equations into a linear system and then deduce an exact analytical solution expressed in terms of readily evaluated integrals. Although the solution treats an idealized case never strictly realized in nature, it is uniquely well-suited for testing the robustness and accuracy of numerical models used to model shallow-water flows on steep slopes. Copyright 2008 by the American Geophysical Union.

  20. Numerical method for solving the nonlinear four-point boundary value problems

    NASA Astrophysics Data System (ADS)

    Lin, Yingzhen; Lin, Jinnan

    2010-12-01

    In this paper, a new reproducing kernel space is constructed skillfully in order to solve a class of nonlinear four-point boundary value problems. The exact solution of the linear problem can be expressed in the form of series and the approximate solution of the nonlinear problem is given by the iterative formula. Compared with known investigations, the advantages of our method are that the representation of exact solution is obtained in a new reproducing kernel Hilbert space and accuracy of numerical computation is higher. Meanwhile we present the convergent theorem, complexity analysis and error estimation. The performance of the new method is illustrated with several numerical examples.

  1. ANALYZING NUMERICAL ERRORS IN DOMAIN HEAT TRANSPORT MODELS USING THE CVBEM.

    USGS Publications Warehouse

    Hromadka, T.V.

    1987-01-01

    Besides providing an exact solution for steady-state heat conduction processes (Laplace-Poisson equations), the CVBEM (complex variable boundary element method) can be used for the numerical error analysis of domain model solutions. For problems where soil-water phase change latent heat effects dominate the thermal regime, heat transport can be approximately modeled as a time-stepped steady-state condition in the thawed and frozen regions, respectively. The CVBEM provides an exact solution of the two-dimensional steady-state heat transport problem, and also provides the error in matching the prescribed boundary conditions by the development of a modeling error distribution or an approximate boundary generation.

  2. On the motion of a quantum particle in the spinning cosmic string space–time

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hassanabadi, H., E-mail: h.hasanabadi@shahroodut.ac.ir; Afshardoost, A.; Zarrinkamar, S.

    2015-05-15

    We analyze the energy spectrum and the wave function of a particle subjected to magnetic field in the spinning cosmic string space–time and investigate the influence of the spinning reference frame and topological defect on the system. To do this we solve Schrödinger equation in the spinning cosmic string background. In our work, instead of using an approximation in the calculations, we use the quasi-exact ansatz approach which gives the exact solutions for some primary levels. - Highlights: • Solving the Schrödinger equation in the spinning cosmic string space time. • Proposing a quasi-exact analytical solution to the general formmore » of the corresponding equation. • Generalizing the previous works.« less

  3. Exact Solutions to Several Nonlinear Cases of Generalized Grad-Shafranov Equation for Ideal Magnetohydrodynamic Flows in Axisymmetric Domain

    NASA Astrophysics Data System (ADS)

    Adem, Abdullahi Rashid; Moawad, Salah M.

    2018-05-01

    In this paper, the steady-state equations of ideal magnetohydrodynamic incompressible flows in axisymmetric domains are investigated. These flows are governed by a second-order elliptic partial differential equation as a type of generalized Grad-Shafranov equation. The problem of finding exact equilibria to the full governing equations in the presence of incompressible mass flows is considered. Two different types of constraints on position variables are presented to construct exact solution classes for several nonlinear cases of the governing equations. Some of the obtained results are checked for their applications to magnetic confinement plasma. Besides, they cover many previous configurations and include new considerations about the nonlinearity of magnetic flux stream variables.

  4. A simple and fast heuristic for protein structure comparison.

    PubMed

    Pelta, David A; González, Juan R; Moreno Vega, Marcos

    2008-03-25

    Protein structure comparison is a key problem in bioinformatics. There exist several methods for doing protein comparison, being the solution of the Maximum Contact Map Overlap problem (MAX-CMO) one of the alternatives available. Although this problem may be solved using exact algorithms, researchers require approximate algorithms that obtain good quality solutions using less computational resources than the formers. We propose a variable neighborhood search metaheuristic for solving MAX-CMO. We analyze this strategy in two aspects: 1) from an optimization point of view the strategy is tested on two different datasets, obtaining an error of 3.5%(over 2702 pairs) and 1.7% (over 161 pairs) with respect to optimal values; thus leading to high accurate solutions in a simpler and less expensive way than exact algorithms; 2) in terms of protein structure classification, we conduct experiments on three datasets and show that is feasible to detect structural similarities at SCOP's family and CATH's architecture levels using normalized overlap values. Some limitations and the role of normalization are outlined for doing classification at SCOP's fold level. We designed, implemented and tested.a new tool for solving MAX-CMO, based on a well-known metaheuristic technique. The good balance between solution's quality and computational effort makes it a valuable tool. Moreover, to the best of our knowledge, this is the first time the MAX-CMO measure is tested at SCOP's fold and CATH's architecture levels with encouraging results.

  5. A hybrid heuristic for the multiple choice multidimensional knapsack problem

    NASA Astrophysics Data System (ADS)

    Mansi, Raïd; Alves, Cláudio; Valério de Carvalho, J. M.; Hanafi, Saïd

    2013-08-01

    In this article, a new solution approach for the multiple choice multidimensional knapsack problem is described. The problem is a variant of the multidimensional knapsack problem where items are divided into classes, and exactly one item per class has to be chosen. Both problems are NP-hard. However, the multiple choice multidimensional knapsack problem appears to be more difficult to solve in part because of its choice constraints. Many real applications lead to very large scale multiple choice multidimensional knapsack problems that can hardly be addressed using exact algorithms. A new hybrid heuristic is proposed that embeds several new procedures for this problem. The approach is based on the resolution of linear programming relaxations of the problem and reduced problems that are obtained by fixing some variables of the problem. The solutions of these problems are used to update the global lower and upper bounds for the optimal solution value. A new strategy for defining the reduced problems is explored, together with a new family of cuts and a reformulation procedure that is used at each iteration to improve the performance of the heuristic. An extensive set of computational experiments is reported for benchmark instances from the literature and for a large set of hard instances generated randomly. The results show that the approach outperforms other state-of-the-art methods described so far, providing the best known solution for a significant number of benchmark instances.

  6. Optimal Chunking of Large Multidimensional Arrays for Data Warehousing

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Otoo, Ekow J; Otoo, Ekow J.; Rotem, Doron

    2008-02-15

    Very large multidimensional arrays are commonly used in data intensive scientific computations as well as on-line analytical processingapplications referred to as MOLAP. The storage organization of such arrays on disks is done by partitioning the large global array into fixed size sub-arrays called chunks or tiles that form the units of data transfer between disk and memory. Typical queries involve the retrieval of sub-arrays in a manner that access all chunks that overlap the query results. An important metric of the storage efficiency is the expected number of chunks retrieved over all such queries. The question that immediately arises is"whatmore » shapes of array chunks give the minimum expected number of chunks over a query workload?" The problem of optimal chunking was first introduced by Sarawagi and Stonebraker who gave an approximate solution. In this paper we develop exact mathematical models of the problem and provide exact solutions using steepest descent and geometric programming methods. Experimental results, using synthetic and real life workloads, show that our solutions are consistently within than 2.0percent of the true number of chunks retrieved for any number of dimensions. In contrast, the approximate solution of Sarawagi and Stonebraker can deviate considerably from the true result with increasing number of dimensions and also may lead to suboptimal chunk shapes.« less

  7. A Procedure to Construct Exact Solutions of Nonlinear Fractional Differential Equations

    PubMed Central

    Güner, Özkan; Cevikel, Adem C.

    2014-01-01

    We use the fractional transformation to convert the nonlinear partial fractional differential equations with the nonlinear ordinary differential equations. The Exp-function method is extended to solve fractional partial differential equations in the sense of the modified Riemann-Liouville derivative. We apply the Exp-function method to the time fractional Sharma-Tasso-Olver equation, the space fractional Burgers equation, and the time fractional fmKdV equation. As a result, we obtain some new exact solutions. PMID:24737972

  8. Exact dark soliton solutions for a family of N coupled nonlinear Schrödinger equations in optical fiber media.

    PubMed

    Nakkeeran, K

    2001-10-01

    We consider a family of N coupled nonlinear Schrödinger equations which govern the simultaneous propagation of N fields in the normal dispersion regime of an optical fiber with various important physical effects. The linear eigenvalue problem associated with the integrable form of all the equations is constructed with the help of the Ablowitz-Kaup-Newell-Segur method. Using the Hirota bilinear method, exact dark soliton solutions are explicitly derived.

  9. Overshooting thunderstorm cloud top dynamics as approximated by a linear Lagrangian parcel model with analytic exact solutions

    NASA Technical Reports Server (NTRS)

    Schlesinger, Robert E.

    1990-01-01

    Results are presented from a linear Lagrangian entraining parcel model of an overshooting thunderstorm cloud top. The model, which is similar to that of Adler and Mack (1986), gives analytic exact solutions for vertical velocity and temperature by representing mixing with Rayleigh damping instead of nonlinearly. Model results are presented for various combinations of stratospheric lapse rate, drag intensity, and mixing strength. The results are compared to those of Adler and Mack.

  10. Using trees to compute approximate solutions to ordinary differential equations exactly

    NASA Technical Reports Server (NTRS)

    Grossman, Robert

    1991-01-01

    Some recent work is reviewed which relates families of trees to symbolic algorithms for the exact computation of series which approximate solutions of ordinary differential equations. It turns out that the vector space whose basis is the set of finite, rooted trees carries a natural multiplication related to the composition of differential operators, making the space of trees an algebra. This algebraic structure can be exploited to yield a variety of algorithms for manipulating vector fields and the series and algebras they generate.

  11. Exact solution for flow in a porous pipe with unsteady wall suction and/or injection

    NASA Astrophysics Data System (ADS)

    Tsangaris, S.; Kondaxakis, D.; Vlachakis, N. W.

    2007-10-01

    This paper presents an extension of the exact solution of the steady laminar axisymmetric flow in a straight pipe of circular cross section with porous wall, given by R.M. Terrill, to the case of unsteady wall injection and/or suction. The cases of the pulsating parabolic profile and of the developed pulsating flow are investigated as examples. The pulsating flow in porous ducts has many applications in biomedical engineering and in other engineering areas.

  12. Exact solution to the Schrödinger’s equation with pseudo-Gaussian potential

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Iacob, Felix, E-mail: felix@physics.uvt.ro; Lute, Marina, E-mail: marina.lute@upt.ro

    2015-12-15

    We consider the radial Schrödinger equation with the pseudo-Gaussian potential. By making an ansatz to the solution of the eigenvalue equation for the associate Hamiltonian, we arrive at the general exact eigenfunction. The values of energy levels for the bound states are calculated along with their corresponding normalized wave-functions. The case of positive energy levels, known as meta-stable states, is also discussed and the magnitude of transmission coefficient through the potential barrier is evaluated.

  13. The Exact Solution for Linear Thermoelastic Axisymmetric Deformations of Generally Laminated Circular Cylindrical Shells

    NASA Technical Reports Server (NTRS)

    Nemeth, Michael P.; Schultz, Marc R.

    2012-01-01

    A detailed exact solution is presented for laminated-composite circular cylinders with general wall construction and that undergo axisymmetric deformations. The overall solution is formulated in a general, systematic way and is based on the solution of a single fourth-order, nonhomogeneous ordinary differential equation with constant coefficients in which the radial displacement is the dependent variable. Moreover, the effects of general anisotropy are included and positive-definiteness of the strain energy is used to define uniquely the form of the basis functions spanning the solution space of the ordinary differential equation. Loading conditions are considered that include axisymmetric edge loads, surface tractions, and temperature fields. Likewise, all possible axisymmetric boundary conditions are considered. Results are presented for five examples that demonstrate a wide range of behavior for specially orthotropic and fully anisotropic cylinders.

  14. Thermal quantum time-correlation functions from classical-like dynamics

    NASA Astrophysics Data System (ADS)

    Hele, Timothy J. H.

    2017-07-01

    Thermal quantum time-correlation functions are of fundamental importance in quantum dynamics, allowing experimentally measurable properties such as reaction rates, diffusion constants and vibrational spectra to be computed from first principles. Since the exact quantum solution scales exponentially with system size, there has been considerable effort in formulating reliable linear-scaling methods involving exact quantum statistics and approximate quantum dynamics modelled with classical-like trajectories. Here, we review recent progress in the field with the development of methods including centroid molecular dynamics , ring polymer molecular dynamics (RPMD) and thermostatted RPMD (TRPMD). We show how these methods have recently been obtained from 'Matsubara dynamics', a form of semiclassical dynamics which conserves the quantum Boltzmann distribution. We also apply the Matsubara formalism to reaction rate theory, rederiving t → 0+ quantum transition-state theory (QTST) and showing that Matsubara-TST, like RPMD-TST, is equivalent to QTST. We end by surveying areas for future progress.

  15. Using the Domenico Solution to Teach Contaminant Transport Modeling

    ERIC Educational Resources Information Center

    Devlin, J. F.; Brookfield, A.; Huang, B.; Schillig, P. C.

    2012-01-01

    The Domenico solution is a heuristic simplification of a solution to the transport equation. Although there is a growing consensus that the Domenico solution is undesirable for use in professional and research applications due to departures from exact solutions under certain conditions, it behaves well under conditions suitable for instruction.…

  16. Exact image theory for the problem of dielectric/magnetic slab

    NASA Technical Reports Server (NTRS)

    Lindell, I. V.

    1987-01-01

    Exact image method, recently introduced for the exact solution of electromagnetic field problems involving homogeneous half spaces and microstrip-like geometries, is developed for the problem of homogeneous slab of dielectric and/or magnetic material in free space. Expressions for image sources, creating the exact reflected and transmitted fields, are given and their numerical evaluation is demonstrated. Nonradiating modes, guided by the slab and responsible for the loss of convergence of the image functions, are considered and extracted. The theory allows, for example, an analysis of finite ground planes in microstrip antenna structures.

  17. Generic features of the wealth distribution in ideal-gas-like markets.

    PubMed

    Mohanty, P K

    2006-07-01

    We provide an exact solution to the ideal-gas-like models studied in econophysics to understand the microscopic origin of Pareto law. In these classes of models the key ingredient necessary for having a self-organized scale-free steady-state distribution is the trading or collision rule where agents or particles save a definite fraction of their wealth or energy and invest the rest for trading. Using a Gibbs ensemble approach we could obtain the exact distribution of wealth in this model. Moreover we show that in this model (a) good savers are always rich and (b) every agent poor or rich invests the same amount for trading. Nonlinear trading rules could alter the generic scenario observed here.

  18. On the synchrotron radiation reaction in external magnetic field

    NASA Astrophysics Data System (ADS)

    Tursunov, Arman; Kološ, Martin

    2017-12-01

    We study the dynamics of point electric charges undergoing radiation reaction force due to synchrotron radiation in the presence of external uniform magnetic field. The radiation reaction force cannot be neglected in many physical situations and its presence modifies the equations of motion significantly. The exact form of the equation of motion known as the Lorentz-Dirac equation contains higher order Schott term which leads to the appearance of the runaway solutions. We demonstrate effective computational ways to avoid such unphysical solutions and perform numerical integration of the dynamical equations. We show that in the ultrarelativistic case the Schott term is small and does not have considerable effect to the trajectory of a particle. We compare results with the covariant Landau-Lifshitz equation which is the first iteration of the Lorentz-Dirac equation. Even though the Landau-Lifshitz equation is thought to be approximative solution, we show that in realistic scenarios both approaches lead to identical results.

  19. Statistical mechanics of an ideal active fluid confined in a channel

    NASA Astrophysics Data System (ADS)

    Wagner, Caleb; Baskaran, Aparna; Hagan, Michael

    The statistical mechanics of ideal active Brownian particles (ABPs) confined in a channel is studied by obtaining the exact solution of the steady-state Smoluchowski equation for the 1-particle distribution function. The solution is derived using results from the theory of two-way diffusion equations, combined with an iterative procedure that is justified by numerical results. Using this solution, we quantify the effects of confinement on the spatial and orientational order of the ensemble. Moreover, we rigorously show that both the bulk density and the fraction of particles on the channel walls obey simple scaling relations as a function of channel width. By considering a constant-flux steady state, an effective diffusivity for ABPs is derived which shows signatures of the persistent motion that characterizes ABP trajectories. Finally, we discuss how our techniques generalize to other active models, including systems whose activity is modeled in terms of an Ornstein-Uhlenbeck process.

  20. High order finite volume WENO schemes for the Euler equations under gravitational fields

    NASA Astrophysics Data System (ADS)

    Li, Gang; Xing, Yulong

    2016-07-01

    Euler equations with gravitational source terms are used to model many astrophysical and atmospheric phenomena. This system admits hydrostatic balance where the flux produced by the pressure is exactly canceled by the gravitational source term, and two commonly seen equilibria are the isothermal and polytropic hydrostatic solutions. Exact preservation of these equilibria is desirable as many practical problems are small perturbations of such balance. High order finite difference weighted essentially non-oscillatory (WENO) schemes have been proposed in [22], but only for the isothermal equilibrium state. In this paper, we design high order well-balanced finite volume WENO schemes, which can preserve not only the isothermal equilibrium but also the polytropic hydrostatic balance state exactly, and maintain genuine high order accuracy for general solutions. The well-balanced property is obtained by novel source term reformulation and discretization, combined with well-balanced numerical fluxes. Extensive one- and two-dimensional simulations are performed to verify well-balanced property, high order accuracy, as well as good resolution for smooth and discontinuous solutions.

  1. Exact Green's functions for a Brownian particle reversibly binding to a fixed target in a finite, two-dimensional, circular domain

    NASA Astrophysics Data System (ADS)

    Kalay, Ziya

    2012-06-01

    Despite the apparent need to study reversible reactions between molecules confined to a two-dimensional space such as the cell membrane, exact Green’s functions for this case have not been reported. Here we present exact analytical Green’s functions for a Brownian particle reversibly reacting with a fixed reaction center in a finite two-dimensional circular region with reflecting or absorbing boundaries, considering either a spherically symmetric initial distribution or a particle that is initially bound. We show that Green’s function can be used to predict the effect of measurement uncertainties on the outcome of single-particle/molecule-tracking experiments in which molecular interactions are investigated. Hence, we bridge the gap between previously known solutions in one dimension (Agmon 1984 J. Chem. Phys. 81 2811) and three dimensions (Kim and Shin 1999 Phys. Rev. Lett. 82 1578), and provide an example of how the knowledge of Green’s function can be used to predict experimentally accessible quantities.

  2. A large class of solvable multistate Landau–Zener models and quantum integrability

    NASA Astrophysics Data System (ADS)

    Chernyak, Vladimir Y.; Sinitsyn, Nikolai A.; Sun, Chen

    2018-06-01

    The concept of quantum integrability has been introduced recently for quantum systems with explicitly time-dependent Hamiltonians (Sinitsyn et al 2018 Phys. Rev. Lett. 120 190402). Within the multistate Landau–Zener (MLZ) theory, however, there has been a successful alternative approach to identify and solve complex time-dependent models (Sinitsyn and Chernyak 2017 J. Phys. A: Math. Theor. 50 255203). Here we compare both methods by applying them to a new class of exactly solvable MLZ models. This class contains systems with an arbitrary number of interacting states and shows quick growth with N number of exact adiabatic energy crossing points, which appear at different moments of time. At each N, transition probabilities in these systems can be found analytically and exactly but complexity and variety of solutions in this class also grow with N quickly. We illustrate how common features of solvable MLZ systems appear from quantum integrability and develop an approach to further classification of solvable MLZ problems.

  3. Erratum: Nonlinear Dirac equation solitary waves in external fields [Phys. Rev. E 86, 046602 (2012)

    DOE PAGES

    Mertens, Franz G.; Quintero, Niurka R.; Cooper, Fred; ...

    2016-05-10

    In Sec. IV of our original paper, we assumed a particular conservation law Eq. (4.6), which was true in the absence of external potentials, to derive some particular potentials for which we obtained solutions to the nonlinear Dirac equation (NLDE). Because the conservation law of Eq. (4.6) for the component T 11 of the energy-momentum tensor is not true in the presence of these external potentials, the solutions we found do not satisfy the NLDEs in the presence of these potentials. Thus all the equations from Eq. (4.6) through Eq. (4.44) are not correct, since the exact solutions that followedmore » in that section presumed Eq. (4.6) was true. Also Eqs. (A3)–(A5) are a restatement of Eq. (4.6) and also are not correct. These latter equations are also not used in Sec. V and beyond. The rest of our original paper (starting with Sec. V) was not concerned with exact solutions, rather it was concerned with how the exact solitary-wave solutions to the NLDE in the absence of an external potential responded to being in the presence of various external potentials. This Erratum corrects this mistake.« less

  4. Analytical and exact solutions of the spherical and cylindrical diodes of Langmuir-Blodgett law

    NASA Astrophysics Data System (ADS)

    Torres-Cordoba, Rafael; Martinez-Garcia, Edgar

    2017-10-01

    This paper discloses the exact solutions of a mathematical model that describes the cylindrical and spherical electron current emissions within the context of a physics approximation method. The solution involves analyzing the 1D nonlinear Poisson equation, for the radial component. Although an asymptotic solution has been previously obtained, we present a theoretical solution that satisfies arbitrary boundary conditions. The solution is found in its parametric form (i.e., φ(r )=φ(r (τ)) ) and is valid when the electric field at the cathode surface is non-zero. Furthermore, the non-stationary spatial solution of the electric potential between the anode and the cathode is also presented. In this work, the particle-beam interface is considered to be at the end of the plasma sheath as described by Sutherland et al. [Phys. Plasmas 12, 033103 2005]. Three regimes of space charge effects—no space charge saturation, space charge limited, and space charge saturation—are also considered.

  5. Cosmological solutions of low-energy heterotic M theory

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Copeland, Edmund J.; Ellison, James; Roberts, Jonathan

    We derive a set of exact cosmological solutions to the D=4, N=1 supergravity description of heterotic M theory. Having identified a new and exact SU(3) Toda model solution, we then apply symmetry transformations to both this solution and to a previously known SU(2) Toda model, in order to derive two further sets of new cosmological solutions. In the symmetry-transformed SU(3) Toda case we find an unusual bouncing motion for the M5 brane, such that this brane can be made to reverse direction part way through its evolution. This bounce occurs purely through the interaction of nonstandard kinetic terms, as theremore » are no explicit potentials in the action. We also present a perturbation calculation which demonstrates that, in a simple static limit, heterotic M theory possesses a scale-invariant isocurvature mode. This mode persists in certain asymptotic limits of all the solutions we have derived, including the bouncing solution.« less

  6. An Exact Solution of Einstein-Maxwell Gravity Coupled to a Scalar Field

    NASA Technical Reports Server (NTRS)

    Turyshev, S. G.

    1995-01-01

    The general solution to low-energy string theory representing static spherically symmetric solution of the Einstein-Maxwell gravity with a massless scalar field has been found. Some of the partial cases appear to coincide with known solutions to black holes, naked singularities, and gravity and electromagnetic fields.

  7. Integration of the Rotation of an Earth-like Body as a Perturbed Spherical Rotor

    NASA Astrophysics Data System (ADS)

    Ferrer, Sebastián; Lara, Martin

    2010-05-01

    For rigid bodies close to a sphere, we propose an analytical solution that is free from elliptic integrals and functions, and can be fundamental for application to perturbed problems. After reordering the Hamiltonian as a perturbed spherical rotor, the Lie-series solution is generated up to an arbitrary order. Using the inertia parameters of different solar system bodies, the comparison of the approximate series solution with the exact analytical one shows that the precision reached with relatively low orders is at the same level of the observational accuracy for the Earth and Mars. Thus, for instance, the periodic errors of the mathematical solution are confined to the microarcsecond level with a simple second-order truncation for the Earth. On the contrary, higher orders are required for the mathematical solution to reach a precision at the expected level of accuracy of proposed new theories for the rotational dynamics of the Moon.

  8. Weierstrass traveling wave solutions for dissipative Benjamin, Bona, and Mahony (BBM) equation

    NASA Astrophysics Data System (ADS)

    Mancas, Stefan C.; Spradlin, Greg; Khanal, Harihar

    2013-08-01

    In this paper the effect of a small dissipation on waves is included to find exact solutions to the modified Benjamin, Bona, and Mahony (BBM) equation by viscosity. Using Lyapunov functions and dynamical systems theory, we prove that when viscosity is added to the BBM equation, in certain regions there still exist bounded traveling wave solutions in the form of solitary waves, periodic, and elliptic functions. By using the canonical form of Abel equation, the polynomial Appell invariant makes the equation integrable in terms of Weierstrass ℘ functions. We will use a general formalism based on Ince's transformation to write the general solution of dissipative BBM in terms of ℘ functions, from which all the other known solutions can be obtained via simplifying assumptions. Using ODE (ordinary differential equations) analysis we show that the traveling wave speed is a bifurcation parameter that makes transition between different classes of waves.

  9. Solving optimization problems by the public goods game

    NASA Astrophysics Data System (ADS)

    Javarone, Marco Alberto

    2017-09-01

    We introduce a method based on the Public Goods Game for solving optimization tasks. In particular, we focus on the Traveling Salesman Problem, i.e. a NP-hard problem whose search space exponentially grows increasing the number of cities. The proposed method considers a population whose agents are provided with a random solution to the given problem. In doing so, agents interact by playing the Public Goods Game using the fitness of their solution as currency of the game. Notably, agents with better solutions provide higher contributions, while those with lower ones tend to imitate the solution of richer agents for increasing their fitness. Numerical simulations show that the proposed method allows to compute exact solutions, and suboptimal ones, in the considered search spaces. As result, beyond to propose a new heuristic for combinatorial optimization problems, our work aims to highlight the potentiality of evolutionary game theory beyond its current horizons.

  10. Exact solutions for the entropy production rate of several irreversible processes.

    PubMed

    Ross, John; Vlad, Marcel O

    2005-11-24

    We investigate thermal conduction described by Newton's law of cooling and by Fourier's transport equation and chemical reactions based on mass action kinetics where we detail a simple example of a reaction mechanism with one intermediate. In these cases we derive exact expressions for the entropy production rate and its differential. We show that at a stationary state the entropy production rate is an extremum if and only if the stationary state is a state of thermodynamic equilibrium. These results are exact and independent of any expansions of the entropy production rate. In the case of thermal conduction we compare our exact approach with the conventional approach based on the expansion of the entropy production rate near equilibrium. If we expand the entropy production rate in a series and keep terms up to the third order in the deviation variables and then differentiate, we find out that the entropy production rate is not an extremum at a nonequilibrium steady state. If there is a strict proportionality between fluxes and forces, then the entropy production rate is an extremum at the stationary state even if the stationary state is far away from equilibrium.

  11. Complexity of line-seru conversion for different scheduling rules and two improved exact algorithms for the multi-objective optimization.

    PubMed

    Yu, Yang; Wang, Sihan; Tang, Jiafu; Kaku, Ikou; Sun, Wei

    2016-01-01

    Productivity can be greatly improved by converting the traditional assembly line to a seru system, especially in the business environment with short product life cycles, uncertain product types and fluctuating production volumes. Line-seru conversion includes two decision processes, i.e., seru formation and seru load. For simplicity, however, previous studies focus on the seru formation with a given scheduling rule in seru load. We select ten scheduling rules usually used in seru load to investigate the influence of different scheduling rules on the performance of line-seru conversion. Moreover, we clarify the complexities of line-seru conversion for ten different scheduling rules from the theoretical perspective. In addition, multi-objective decisions are often used in line-seru conversion. To obtain Pareto-optimal solutions of multi-objective line-seru conversion, we develop two improved exact algorithms based on reducing time complexity and space complexity respectively. Compared with the enumeration based on non-dominated sorting to solve multi-objective problem, the two improved exact algorithms saves computation time greatly. Several numerical simulation experiments are performed to show the performance improvement brought by the two proposed exact algorithms.

  12. Breather-to-soliton transformation rules in the hierarchy of nonlinear Schrödinger equations.

    PubMed

    Chowdury, Amdad; Krolikowski, Wieslaw

    2017-06-01

    We study the exact first-order soliton and breather solutions of the integrable nonlinear Schrödinger equations hierarchy up to fifth order. We reveal the underlying physical mechanism which transforms a breather into a soliton. Furthermore, we show how the dynamics of the Akhmediev breathers which exist on a constant background as a result of modulation instability, is connected with solitons on a zero background. We also demonstrate that, while a first-order rogue wave can be directly transformed into a soliton, higher-order rogue wave solutions become rational two-soliton solutions with complex collisional structure on a background. Our results will have practical implications in supercontinuum generation, turbulence, and similar other complex nonlinear scenarios.

  13. Hairy black holes and duality in an extended supergravity model

    NASA Astrophysics Data System (ADS)

    Anabalón, Andrés; Astefanesei, Dumitru; Gallerati, Antonio; Trigiante, Mario

    2018-04-01

    We consider a D = 4, N=2 gauged supergravity with an electromagnetic Fayet-Iliopoulos term. We restrict to the uncharged, single dilaton consistent truncation and point out that the bulk Lagrangian is self-dual under electromagnetic duality. Within this truncation, we construct two families of exact hairy black hole solutions, which are asymptotically AdS 4. When a duality transformation is applied on these solutions, they are mapped to two other inequivalent families of hairy black hole solutions. The mixed boundary conditions of the scalar field correspond to adding a triple-trace operator to the dual field theory action. We also show that this truncation contains all the consistent single dilaton truncations of gauged N=8 supergravity with a possible ω-deformation.

  14. New perspectives on constant-roll inflation

    NASA Astrophysics Data System (ADS)

    Cicciarella, Francesco; Mabillard, Joel; Pieroni, Mauro

    2018-01-01

    We study constant-roll inflation using the β-function formalism. We show that the constant rate of the inflaton roll is translated into a first order differential equation for the β-function which can be solved easily. The solutions to this equation correspond to the usual constant-roll models. We then construct, by perturbing these exact solutions, more general classes of models that satisfy the constant-roll equation asymptotically. In the case of an asymptotic power law solution, these corrections naturally provide an end to the inflationary phase. Interestingly, while from a theoretical point of view (in particular in terms of the holographic interpretation) these models are intrinsically different from standard slow-roll inflation, they may have phenomenological predictions in good agreement with present cosmological data.

  15. On the classification of the spectrally stable standing waves of the Hartree problem

    NASA Astrophysics Data System (ADS)

    Georgiev, Vladimir; Stefanov, Atanas

    2018-05-01

    We consider the fractional Hartree model, with general power non-linearity and arbitrary spatial dimension. We construct variationally the "normalized" solutions for the corresponding Choquard-Pekar model-in particular a number of key properties, like smoothness and bell-shapedness are established. As a consequence of the construction, we show that these solitons are spectrally stable as solutions to the time-dependent Hartree model. In addition, we analyze the spectral stability of the Moroz-Van Schaftingen solitons of the classical Hartree problem, in any dimensions and power non-linearity. A full classification is obtained, the main conclusion of which is that only and exactly the "normalized" solutions (which exist only in a portion of the range) are spectrally stable.

  16. Effect of triangular element orientation on finite element solutions of the Helmholtz equation

    NASA Technical Reports Server (NTRS)

    Baumeister, K. J.

    1986-01-01

    The Galerkin finite element solutions for the scalar homogeneous Helmholtz equation are presented for no reflection, hard wall, and potential relief exit terminations with a variety of triangular element orientations. For this group of problems, the correlation between the accuracy of the solution and the orientation of the linear triangle is examined. Nonsymmetric element patterns are found to give generally poor results in the model problems investigated, particularly for cases where standing waves exist. For a fixed number of vertical elements, the results showed that symmetric element patterns give much better agreement with corresponding exact analytical results. In laminated wave guide application, the symmetric pyramid pattern is convenient to use and is shown to give excellent results.

  17. Exact solutions of unsteady Korteweg-de Vries and time regularized long wave equations.

    PubMed

    Islam, S M Rayhanul; Khan, Kamruzzaman; Akbar, M Ali

    2015-01-01

    In this paper, we implement the exp(-Φ(ξ))-expansion method to construct the exact traveling wave solutions for nonlinear evolution equations (NLEEs). Here we consider two model equations, namely the Korteweg-de Vries (KdV) equation and the time regularized long wave (TRLW) equation. These equations play significant role in nonlinear sciences. We obtained four types of explicit function solutions, namely hyperbolic, trigonometric, exponential and rational function solutions of the variables in the considered equations. It has shown that the applied method is quite efficient and is practically well suited for the aforementioned problems and so for the other NLEEs those arise in mathematical physics and engineering fields. PACS numbers: 02.30.Jr, 02.70.Wz, 05.45.Yv, 94.05.Fq.

  18. Exact solutions for rate and synchrony in recurrent networks of coincidence detectors.

    PubMed

    Mikula, Shawn; Niebur, Ernst

    2008-11-01

    We provide analytical solutions for mean firing rates and cross-correlations of coincidence detector neurons in recurrent networks with excitatory or inhibitory connectivity, with rate-modulated steady-state spiking inputs. We use discrete-time finite-state Markov chains to represent network state transition probabilities, which are subsequently used to derive exact analytical solutions for mean firing rates and cross-correlations. As illustrated in several examples, the method can be used for modeling cortical microcircuits and clarifying single-neuron and population coding mechanisms. We also demonstrate that increasing firing rates do not necessarily translate into increasing cross-correlations, though our results do support the contention that firing rates and cross-correlations are likely to be coupled. Our analytical solutions underscore the complexity of the relationship between firing rates and cross-correlations.

  19. Models for the dynamics of dust-like matter in the self-gravity field: The method of hydrodynamic substitutions

    NASA Astrophysics Data System (ADS)

    Zhuravlev, V. M.

    2017-09-01

    Models for the dynamics of a dust-like medium in the self-gravity field are investigated. Solutions of the corresponding problems are constructed by the method of hydrodynamic substitutions generalizing the Cole-Hopf substitutions. The method is extended to multidimensional ideal and viscous fluid flows with cylindrical and spherical symmetries for which exact solutions are constructed. Solutions for the dynamics of self-gravitating dust with arbitrary initial distributions of both fluid density and velocity are constructed using special coordinate transformations. In particular, the problem of cosmological expansion is considered in terms of Newton's gravity theory. Models of a one-dimensional viscous dust fluid flow and some problems of gas hydrodynamics are considered. Examples of exact solutions and their brief analysis are provided.

  20. An Exactly Solvable Model for the Spread of Disease

    ERIC Educational Resources Information Center

    Mickens, Ronald E.

    2012-01-01

    We present a new SIR epidemiological model whose exact analytical solution can be calculated. In this model, unlike previous models, the infective population becomes zero at a finite time. Remarkably, these results can be derived from only an elementary knowledge of differential equations.

Top