Science.gov

Sample records for exaggerated glucagon-like peptide-1

  1. Glucagon-like peptide 1 (GLP-1) and eating.

    PubMed

    Gutzwiller, Jean-Pierre; Degen, Lukas; Heuss, Ludwig; Beglinger, Christoph

    2004-08-01

    New information regarding gastrointestinal mechanisms that participate in the control of food intake has extended our understanding of appetite control. Although each new signaling pathway discovered in the gut is a potential target for drug development in the treatment of obesity, the growing number of such signaling molecules indicates that a highly complex process controls food intake. The present summary focuses on the role of glucagon-like peptide 1 (GLP-1) in this regulatory process. The different biological effects of GLP-1 (glucose-lowering properties, inhibition of appetite and food intake) provide a powerful impetus for development of GLP-1-based new drugs.

  2. The discovery of glucagon-like peptide 1.

    PubMed

    Lund, P Kay

    2005-06-15

    The discovery of glucagon-like peptide 1 (GLP-1) began more than two decades ago with the observations that anglerfish islet proglucagon messenger RNAs (mRNAs) contained coding sequences for two glucagon-related peptides arranged in tandem. Subsequent analyses revealed that mammalian proglucagon mRNAs encoded a precursor containing the sequence of pancreatic glucagon, intestinal glicentin and two glucagon-related peptides termed GLP-1 and GLP-2. Multidisciplinary approaches were then required to define the structure of biologically active GLP-1 7-36 amide and its role as an incretin, satiety hormone and, most recently, a neuroprotective peptide. This historial perspective outlines the use of traditional recombinant DNA approaches to derive the GLP-1 sequence and highlights the challenges and combination of clinical and basic science approaches required to define the physiology and pathophysiology of bioactive peptides discovered through genomics. PMID:15780428

  3. Multiple Factors Related to the Secretion of Glucagon-Like Peptide-1

    PubMed Central

    Wang, XingChun; Liu, Huan; Chen, Jiaqi; Li, Yan; Qu, Shen

    2015-01-01

    The glucagon-like peptide-1 is secreted by intestinal L cells in response to nutrient ingestion. It regulates the secretion and sensitivity of insulin while suppressing glucagon secretion and decreasing postprandial glucose levels. It also improves beta-cell proliferation and prevents beta-cell apoptosis induced by cytotoxic agents. Additionally, glucagon-like peptide-1 delays gastric emptying and suppresses appetite. The impaired secretion of glucagon-like peptide-1 has negative influence on diabetes, hyperlipidemia, and insulin resistance related diseases. Thus, glucagon-like peptide-1-based therapies (glucagon-like peptide-1 receptor agonists and dipeptidyl peptidase-4 inhibitors) are now well accepted in the management of type 2 diabetes. The levels of glucagon-like peptide-1 are influenced by multiple factors including a variety of nutrients. The component of a meal acts as potent stimulants of glucagon-like peptide-1 secretion. The levels of its secretion change with the intake of different nutrients. Some drugs also have influence on GLP-1 secretion. Bariatric surgery may improve metabolism through the action on GLP-1 levels. In recent years, there has been a great interest in developing effective methods to regulate glucagon-like peptide-1 secretion. This review summarizes the literature on glucagon-like peptide-1 and related factors affecting its levels. PMID:26366173

  4. Glucagon-like peptide 1 and the cardiovascular system.

    PubMed

    Fava, Stephen

    2014-01-01

    Glucagon-like peptide 1 (GLP1) is a major incretin hormone. This means that it is secreted by the gut in response to food and helps in reducing post-prandial glucose exertion. It achieves this through a number of mechanisms, including stimulating insulin release by pancreatic β-cells in a glucose-dependent manner; inhibition of glucagon release by pancreatic α-cells (also in a glucose-dependent manner); induction of central appetite suppression and by delaying gastric empting thereby inducing satiety and also reducing the rate of absorption of nutrients. However, GLP1 receptors have been described in a number of extra-pancreatic tissues, including the endothelium and the myocardium. This suggests that the physiological effects of GLP1 extend beyond post-prandial glucose control and raises the possibility that GLP1 might have cardiovascular effects. This is of importance in our understanding of incretin hormone physiology and especially because of the possible implications that it might have with regard to cardiovascular effects of incretin-based therapies, namely DPP-IV inhibitors (gliptins) and GLP1 analogues. This review analyzes the animal and human data on the effects of GLP1 on the cardiovascular system in health and in disease and the currently available data on cardiovascular effects of incretin-based therapies. It is the author's view that the physiological role of GLP1 is not only to minimize postprandial hypoglycaemia, but also protect against it.

  5. Glucagon-like peptide-1 binding to rat skeletal muscle.

    PubMed

    Delgado, E; Luque, M A; Alcántara, A; Trapote, M A; Clemente, F; Galera, C; Valverde, I; Villanueva-Peñacarrillo, M L

    1995-01-01

    We have found [125I]glucagon-like peptide-1(7-36)-amide-specific binding activity in rat skeletal muscle plasma membranes, with an estimated M(r) of 63,000 by cross-linking and SDS-PAGE. The specific binding was time and membrane protein concentration dependent, and displaceable by unlabeled GLP-1(7-36)-amide with an ID50 of 3 x 10(-9) M of the peptide; GLP-1(1-36)-amide also competed, whereas glucagon and insulin did not. GLP-1(7-36)-amide did not modify the basal adenylate cyclase activity in skeletal muscle plasma membranes. These data, together with our previous finding of a potent glycogenic effect of GLP-1(7-36)-amide in rat soleus muscle, and also in isolated hepatocytes, which was not accompanied by a rise in the cell cyclic AMP content, lead use to believe that the insulin-like effects of this peptide on glucose metabolism in the muscle could be mediated by a type of receptor somehow different to that described for GLP-1 in pancreatic B cells, where GLP-1 action is mediated by the cyclic AMP-adenylate cyclase system.

  6. Cardiovascular Effects of Glucagon-Like Peptide-1 Receptor Agonists

    PubMed Central

    Kang, Yu Mi

    2016-01-01

    Glucagon-like peptide-1 (GLP-1) is a member of the proglucagon incretin family, and GLP-1 receptor agonists (RAs) have been introduced as a new class of antidiabetic medications in the past decade. The benefits of GLP-1 RAs are derived from their pleiotropic effects, which include glucose-dependent insulin secretion, suppressed glucagon secretion, and reduced appetite. Moreover, GLP-1 RAs also exert beneficial roles on multiple organ systems in which the GLP-1 receptors exist, including the cardiovascular system. Cardiovascular effects of GLP-1 RAs have been of great interest since the burden from cardiovascular diseases (CVD) has been unbearably increasing in a diabetic population worldwide, despite strict glycemic control and advanced therapeutic techniques to treat CVD. Preclinical studies have already demonstrated the beneficial effects of GLP-1 on myocardium and vascular endothelium, and many clinical studies evaluating changes in surrogate markers of CVD have suggested potential benefits from the use of GLP-1 RAs. Data from numerous clinical trials primarily evaluating the antihyperglycemic effects of multiple GLP-1 RAs have also revealed that changes in most CVD risk markers reported as secondary outcomes have been in favor of GLP-1 RAs treatment. However, to date, there is only one randomized clinical trial of GLP-1 RAs (the ELIXA study) evaluating major cardiovascular events as their primary outcomes, and in this study, a neutral cardiovascular effect of lixisenatide was observed in high-risk diabetic subjects. Therefore, the results of ongoing CVD outcome trials with the use of GLP-1 RAs should be awaited to elucidate the translation of benefits previously seen in CVD risk marker studies into large clinical trials with primary cardiovascular outcomes. PMID:27118277

  7. Glucagon-like peptide-1: The missing link in the metabolic clock?

    PubMed

    Brubaker, Patricia L; Gil-Lozano, Manuel

    2016-04-01

    Circadian expression of clock genes in peripheral tissues is critical to the coordinated regulation of intestinal digestive and absorptive functions, insulin secretion, and peripheral tissue nutrient deposition during periods of nutrient ingestion, thereby preventing metabolic dysregulation. As glucagon-like peptide-1 is a key incretin hormone that regulates glucose-dependent insulin secretion, we hypothesized that this intestinal hormone is a player in the peripheral metabolic clock, linking nutrient ingestion to insulin secretion. We have now established that secretion of glucagon-like peptide-1 from the intestinal L cell shows a rhythmic pattern in rats and humans in vivo that is altered by circadian disruptors, such as constant light exposure, consumption of a Western diet and feeding at inappropriate times (i.e., during the light period in rodents). Interestingly, the alterations in the rhythm of the glucagon-like peptide-1 secretory responses were found to parallel the changes in the pattern of insulin responses in association with significant impairments in glucose tolerance. Furthermore, we have detected circadian clock gene expression, and showed circadian secretion of glucagon-like peptide-1 from both the murine and human L cell in vitro. These findings demonstrate that glucagon-like peptide-1 is a functional component of the peripheral metabolic clock, and suggest that altered release of glucagon-like peptide-1 might play a role in the metabolic perturbations that result from circadian disruption. PMID:27186359

  8. Glucagon-like peptide-1 binding to rat hepatic membranes.

    PubMed

    Villanueva-Peñacarrillo, M L; Delgado, E; Trapote, M A; Alcántara, A; Clemente, F; Luque, M A; Perea, A; Valverde, I

    1995-07-01

    We have found [125I]glucagon-like peptide (GLP)-1(7-36)amide specific binding activity in rat liver and isolated hepatocyte plasma membranes, with an M(r) of approximately 63,000, estimated by cross-linking and SDS-PAGE. The specific binding was time- and membrane protein concentration-dependent, and equally displaced by unlabelled GLP-1(7-36)amide and by GLP-1(1-36)amide, achieving its ID50 at 3 x 10(-9) M of the peptides. GLP-1(7-36)amide did not modify the basal or the glucagon (10(-8) M)-stimulated adenylate cyclase in the hepatocyte plasma membranes. These data, together with our previous findings of a potent glycogenic effect of GLP-1(7-36)amide in isolated rat hepatocytes, led us to postulate that the insulin-like effects of this peptide on glucose liver metabolism could be mediated by a type of receptor probably different from that described for GLP-1 in pancreatic B-cells or, alternatively, by the same receptor which, in this tissue as well as in muscle, uses a different transduction system.

  9. The mechanism of glucagon-like peptide-1 participation in the osmotic homeostasis.

    PubMed

    Natochin, Yu V; Marina, A S; Kutina, A V; Balbotkina, E V; Karavashkina, T A

    2016-07-01

    We have found the physiological mechanism of intensification of the excessive fluid removal from the body under the action of glucagon-like peptide-1 and its analog exenatide. Under the water load in rats, exenatide significantly increased the clearance of lithium, reduced fluid reabsorption in the proximal tubule of the nephron and intensified reabsorption of sodium ions in the distal parts, which contributed to the formation of sodium-free water and faster recovery of osmotic homeostasis. Blocking this pathway with a selective antagonist of glucagon-like peptide-1 receptors slowed down the elimination of excessive water from the body. PMID:27595820

  10. Mechanisms underlying glucose-dependent insulinotropic polypeptide and glucagon-like peptide-1 secretion.

    PubMed

    Reimann, Frank; Gribble, Fiona M

    2016-04-01

    The incretin hormones, glucose-dependent insulinotropic peptide and glucagon-like peptide-1, are secreted from intestinal K- and L cells, respectively, with the former being most abundant in the proximal small intestine, whereas the latter increase in number towards the distal gut. Although an overlap between K- and L cells can be observed immunohistochemically or in murine models expressing fluorescent markers under the control of the two hormone promoters, the majority (>80%) of labeled cells seems to produce only one of these hormones. Transcriptomic analysis showed a close relationship between small intestinal K- and L cells, and glucose sensing mechanisms appear similar in both cell types with a predominant role of electrogenic glucose uptake through sodium-coupled glucose transporter 1. Similarly, both cell types produce the long-chain fatty acid sensing G-protein-coupled receptors, FFAR1 (GPR40) and FFAR4 (GPR120), but differ in the expression/functionality of other lipid sensing receptors. GPR119 and FFAR2/3, for example, have clearly documented roles in glucagon-like peptide-1 secretion, whereas agonists for the endocannabinoid receptor type 1 have been found to show largely selective inhibition of glucose-dependent insulinotropic peptide secretion. In conclusion, although K- and L cell populations overlap and share key molecular nutrient-sensing mechanisms, subtle differences between the responsiveness of the different cell types might be exploited to differentially modulate glucose-dependent insulinotropic peptide or glucagon-like peptide-1 secretion. PMID:27186350

  11. Exendin-4, a glucagon-like peptide-1 receptor agonist, reduces intimal thickening after vascular injury

    SciTech Connect

    Goto, Hiromasa; Nomiyama, Takashi; Mita, Tomoya; Yasunari, Eisuke; Azuma, Kosuke; Komiya, Koji; Arakawa, Masayuki; Jin, Wen Long; Kanazawa, Akio; Kawamori, Ryuzo; Fujitani, Yoshio; Hirose, Takahisa; Watada, Hirotaka

    2011-02-04

    Research highlights: {yields} Exendin-4 reduces neointimal formation after vascular injury in a mouse model. {yields} Exendin-4 dose not alter metabolic parameters in non-diabetic, non-obese mouse model. {yields} Exendin-4 reduces PDGF-induced cell proliferation in cultured SMCs. {yields} Exendin-4 may reduces neointimal formation after vascular injury at least in part through its direct action on SMCs. -- Abstract: Glucagon-like peptide-1 is a hormone secreted by L cells of the small intestine and stimulates glucose-dependent insulin response. Glucagon-like peptide-1 receptor agonists such as exendin-4 are currently used in type 2 diabetes, and considered to have beneficial effects on the cardiovascular system. To further elucidate the effect of glucagon-like peptide-1 receptor agonists on cardiovascular diseases, we investigated the effects of exendin-4 on intimal thickening after endothelial injury. Under continuous infusion of exendin-4 at 24 nmol/kg/day, C57BL/6 mice were subjected to endothelial denudation injury of the femoral artery. Treatment of mice with exendin-4 reduced neointimal formation at 4 weeks after arterial injury without altering body weight or various metabolic parameters. In addition, in vitro studies of isolated murine, rat and human aortic vascular smooth muscle cells showed the expression of GLP-1 receptor. The addition of 10 nM exendin-4 to cultured smooth muscle cells significantly reduced their proliferation induced by platelet-derived growth factor. Our results suggested that exendin-4 reduced intimal thickening after vascular injury at least in part by the suppression of platelet-derived growth factor-induced smooth muscle cells proliferation.

  12. Glucagon-like peptide-1, diabetes, and cognitive decline: possible pathophysiological links and therapeutic opportunities.

    PubMed

    Mossello, Enrico; Ballini, Elena; Boncinelli, Marta; Monami, Matteo; Lonetto, Giuseppe; Mello, Anna Maria; Tarantini, Francesca; Baldasseroni, Samuele; Mannucci, Edoardo; Marchionni, Niccolò

    2011-01-01

    Metabolic and neurodegenerative disorders have a growing prevalence in Western countries. Available epidemiologic and neurobiological evidences support the existence of a pathophysiological link between these conditions. Glucagon-like peptide 1 (GLP-1), whose activity is reduced in insulin resistance, has been implicated in central nervous system function, including cognition, synaptic plasticity, and neurogenesis. We review the experimental researches suggesting that GLP-1 dysfunction might be a mediating factor between Type 2 diabetes mellitus (T2DM) and neurodegeneration. Drug treatments enhancing GLP-1 activity hold out hope for treatment and prevention of Alzheimer's disease (AD) and cognitive decline.

  13. Oral Delivery of Glucagon-Like Peptide-1 and Analogs: Alternatives for Diabetes Control?

    PubMed Central

    Araújo, Francisca; Fonte, Pedro; Santos, Hélder A.; Sarmento, Bruno

    2012-01-01

    Type 2 diabetes mellitus (T2DM) is one of the most prevalent diseases worldwide. Current treatments are often associated with off-target effects and do not significantly impact disease progression. New therapies are therefore urgently needed to overcome this social burden. Glucagon-like peptide-1 (GLP-1), an incretin hormone, has been used to control T2DM symptomatology. However, the administration of peptide or proteins drugs is still a huge challenge in the pharmaceutical field, requiring administration by parenteral routes. This article reviews the main hurdles in oral administration of GLP-1 and focuses on the strategies utilized to overcome them. PMID:23294796

  14. The complexity of signalling mediated by the glucagon-like peptide-1 receptor.

    PubMed

    Fletcher, Madeleine M; Halls, Michelle L; Christopoulos, Arthur; Sexton, Patrick M; Wootten, Denise

    2016-04-15

    The glucagon-like peptide-1 receptor (GLP-1R) is a class B GPCR that is a major therapeutic target for the treatment of type 2 diabetes. The receptor is activated by the incretin peptide GLP-1 promoting a broad range of physiological effects including glucose-dependent insulin secretion and biosynthesis, improved insulin sensitivity of peripheral tissues, preservation of β-cell mass and weight loss, all of which are beneficial in the treatment of type 2 diabetes. Despite this, existing knowledge surrounding the underlying signalling mechanisms responsible for the physiological actions downstream of GLP-1R activation is limited. Here, we review the current understanding around GLP-1R-mediated signalling, in particular highlighting recent contributions to the field on biased agonism, the spatial and temporal aspects for the control of signalling and how these concepts may influence future drug development. PMID:27068973

  15. Glucagon-Like Peptide 1 Analogs and their Effects on Pancreatic Islets.

    PubMed

    Tudurí, Eva; López, Miguel; Diéguez, Carlos; Nadal, Angel; Nogueiras, Rubén

    2016-05-01

    Glucagon-like peptide 1 (GLP-1) exerts many actions that improve glycemic control. GLP-1 stimulates glucose-stimulated insulin secretion and protects β cells, while its extrapancreatic effects include cardioprotection, reduction of hepatic glucose production, and regulation of satiety. Although an appealing antidiabetic drug candidate, the rapid degradation of GLP-1 by dipeptidyl peptidase 4 (DPP-4) means that its therapeutic use is unfeasible, and this prompted the development of two main GLP-1 therapies: long-acting GLP-1 analogs and DPP-4 inhibitors. In this review, we focus on the pancreatic effects exerted by current GLP-1 derivatives used to treat diabetes. Based on the results from in vitro and in vivo studies in humans and animal models, we describe the specific actions of GLP-1 analogs on the synthesis, processing, and secretion of insulin, islet morphology, and β cell proliferation and apoptosis. PMID:27062006

  16. Pharmacological Actions of Glucagon-Like Peptide-1, Gastric Inhibitory Polypeptide, and Glucagon.

    PubMed

    Sekar, R; Singh, K; Arokiaraj, A W R; Chow, B K C

    2016-01-01

    Glucagon family of peptide hormones is a group of structurally related brain-gut peptides that exert their pleiotropic actions through interactions with unique members of class B1 G protein-coupled receptors (GPCRs). They are key regulators of hormonal homeostasis and are important drug targets for metabolic disorders such as type-2 diabetes mellitus (T2DM), obesity, and dysregulations of the nervous systems such as migraine, anxiety, depression, neurodegeneration, psychiatric disorders, and cardiovascular diseases. The current review aims to provide a detailed overview of the current understanding of the pharmacological actions and therapeutic advances of three members within this family including glucagon-like peptide-1 (GLP-1), gastric inhibitory polypeptide (GIP), and glucagon. PMID:27572131

  17. Glucagon-like Peptide-1 (GLP-1) Analogs: Recent Advances, New Possibilities, and Therapeutic Implications

    PubMed Central

    2015-01-01

    Glucagon-like peptide-1 (GLP-1) is an incretin that plays important physiological roles in glucose homeostasis. Produced from intestine upon food intake, it stimulates insulin secretion and keeps pancreatic β-cells healthy and proliferating. Because of these beneficial effects, it has attracted a great deal of attention in the past decade, and an entirely new line of diabetic therapeutics has emerged based on the peptide. In addition to the therapeutic applications, GLP-1 analogs have demonstrated a potential in molecular imaging of pancreatic β-cells; this may be useful in early detection of the disease and evaluation of therapeutic interventions, including islet transplantation. In this Perspective, we focus on GLP-1 analogs for their studies on improvement of biological activities, enhancement of metabolic stability, investigation of receptor interaction, and visualization of the pancreatic islets. PMID:25349901

  18. Pharmacokinetics and pharmacodynamics of the glucagon-like peptide-1 analog liraglutide in healthy cats.

    PubMed

    Hall, M J; Adin, C A; Borin-Crivellenti, S; Rudinsky, A J; Rajala-Schultz, P; Lakritz, J; Gilor, C

    2015-04-01

    Glucagon-like peptide-1 (GLP-1) is an intestinal hormone that induces glucose-dependent stimulation of insulin secretion while suppressing glucagon secretion. Glucagon-like peptide-1 also increases beta cell mass and satiation while decelerating gastric emptying. Liraglutide is a fatty-acid derivative of GLP-1 with a protracted pharmacokinetic profile that is used in people for treatment of type II diabetes mellitus and obesity. The aim of this study was to determine the pharmacokinetics and pharmacodynamics of liraglutide in healthy cats. Hyperglycemic clamps were performed on days 0 (HGC) and 14 (LgHGC) in 7 healthy cats. Liraglutide was administered subcutaneously (0.6 mg/cat) once daily on days 8 through 14. Compared with the HGC (mean ± standard deviation; 455.5 ± 115.8 ng/L), insulin concentrations during LgHGC were increased (760.8 ± 350.7 ng/L; P = 0.0022), glucagon concentrations decreased (0.66 ± 0.4 pmol/L during HGC vs 0.5 ± 0.4 pmol/L during LgHGC; P = 0.0089), and there was a trend toward an increased total glucose infused (median [range] = 1.61 (1.11-2.54) g/kg and 2.25 (1.64-3.10) g/kg, respectively; P = 0.087). Appetite reduction and decreased body weight (9% ± 3%; P = 0.006) were observed in all cats. Liraglutide has similar effects and pharmacokinetics profile in cats to those reported in people. With a half-life of approximately 12 h, once daily dosing might be feasible; however, significant effects on appetite and weight loss may necessitate dosage or dosing frequency reductions. Further investigation of liraglutide in diabetic cats and overweight cats is warranted.

  19. Glucagon-like peptide-1 inhibits vascular smooth muscle cell dedifferentiation through mitochondrial dynamics regulation.

    PubMed

    Torres, Gloria; Morales, Pablo E; García-Miguel, Marina; Norambuena-Soto, Ignacio; Cartes-Saavedra, Benjamín; Vidal-Peña, Gonzalo; Moncada-Ruff, David; Sanhueza-Olivares, Fernanda; San Martín, Alejandra; Chiong, Mario

    2016-03-15

    Glucagon-like peptide-1 (GLP-1) is a neuroendocrine hormone produced by gastrointestinal tract in response to food ingestion. GLP-1 plays a very important role in the glucose homeostasis by stimulating glucose-dependent insulin secretion, inhibiting glucagon secretion, inhibiting gastric emptying, reducing appetite and food intake. Because of these actions, the GLP-1 peptide-mimetic exenatide is one of the most promising new medicines for the treatment of type 2 diabetes. In vivo treatments with GLP-1 or exenatide prevent neo-intima layer formation in response to endothelial damage and atherosclerotic lesion formation in aortic tissue. Whether GLP-1 modulates vascular smooth muscle cell (VSMC) migration and proliferation by controlling mitochondrial dynamics is unknown. In this report, we showed that GLP-1 increased mitochondrial fusion and activity in a PKA-dependent manner in the VSMC cell line A7r5. GLP-1 induced a Ser-637 phosphorylation in the mitochondrial fission protein Drp1, and decreased Drp1 mitochondrial localization. GLP-1 inhibited PDGF-BB-induced VSMC migration and proliferation, actions inhibited by overexpressing wild type Drp1 and mimicked by the Drp1 inhibitor Mdivi-1 and by overexpressing dominant negative Drp1. These results show that GLP-1 stimulates mitochondrial fusion, increases mitochondrial activity and decreases PDGF-BB-induced VSMC dedifferentiation by a PKA/Drp1 signaling pathway. Our data suggest that GLP-1 inhibits vascular remodeling through a mitochondrial dynamics-dependent mechanism.

  20. Glucagon-Like Peptide-1 Receptor Agonist Treatment for Pediatric Obesity.

    PubMed

    Kelly, Aaron S

    2016-01-01

    Obesity is a complex and retractable disease for which effective and durable treatments are elusive. Successful treatment of severe obesity with lifestyle modification therapy alone is highly unlikely, particularly for adolescents. Pharmacotherapy, if appropriately prescribed, can be an effective tool to use in conjunction with lifestyle modification therapy to achieve better weight loss outcomes. Only a few obesity medications have been evaluated in children and adolescents with results suggesting modest efficacy. However, a new pipeline of obesity drugs has been recently approved for use among adults. Among these, glucagon-like peptide-1 receptor agonist (GLP-1RA) treatment appears to have reasonable weight loss efficacy along with other beneficial pleiotropic effects. Although larger trials will be required to confirm the results, two small pediatric clinical trials have suggested that GLP-1RA treatment may be useful in adolescents with severe obesity. Once sufficient evidence is generated supporting the safety and efficacy of GLP-1RAs and other obesity medications in youth, the pediatric medical community needs to become less resistant to the use of pharmacotherapy. Otherwise, poor outcomes will continue to be the norm.

  1. Glucagon-like peptide-1 is specifically involved in sweet taste transmission.

    PubMed

    Takai, Shingo; Yasumatsu, Keiko; Inoue, Mayuko; Iwata, Shusuke; Yoshida, Ryusuke; Shigemura, Noriatsu; Yanagawa, Yuchio; Drucker, Daniel J; Margolskee, Robert F; Ninomiya, Yuzo

    2015-06-01

    Five fundamental taste qualities (sweet, bitter, salty, sour, umami) are sensed by dedicated taste cells (TCs) that relay quality information to gustatory nerve fibers. In peripheral taste signaling pathways, ATP has been identified as a functional neurotransmitter, but it remains to be determined how specificity of different taste qualities is maintained across synapses. Recent studies demonstrated that some gut peptides are released from taste buds by prolonged application of particular taste stimuli, suggesting their potential involvement in taste information coding. In this study, we focused on the function of glucagon-like peptide-1 (GLP-1) in initial responses to taste stimulation. GLP-1 receptor (GLP-1R) null mice had reduced neural and behavioral responses specifically to sweet compounds compared to wild-type (WT) mice. Some sweet responsive TCs expressed GLP-1 and its receptors were expressed in gustatory neurons. GLP-1 was released immediately from taste bud cells in response to sweet compounds but not to other taste stimuli. Intravenous administration of GLP-1 elicited transient responses in a subset of sweet-sensitive gustatory nerve fibers but did not affect other types of fibers, and this response was suppressed by pre-administration of the GLP-1R antagonist Exendin-4(3-39). Thus GLP-1 may be involved in normal sweet taste signal transmission in mice.

  2. Glucagon-like peptide 1 (GLP-1) in the gastrointestinal tract of the pheasant (Phasianus colchicus).

    PubMed

    Pirone, Andrea; Ding, Bao An; Giannessi, Elisabetta; Coli, Alessandra; Stornelli, Maria Rita; di Cossato, Margherita Marzoni Fecia; Piano, Ilaria; Lenzi, Carla

    2012-10-01

    The distribution of Glucagon-like peptide 1 (GLP-1) was investigated in the gastrointestinal tract of the pheasant using immunohistochemistry. GLP-1 immunoreactive cells were common in the small intestine, in the proventriculus and in the pancreas. Immunostained cells were not seen in the crop, in the gizzard and in the large intestine. Double labelling demonstrated that GLP-1 and pituitary adenylate cyclase-activating polypeptide (PACAP) were occasionally co-localized only in the duodenal villi. In contrast to what was previously described in the chicken and ostrich, we noted GLP-1 positive cells in the duodenum. These data were consistent with the presence of proglucagon mRNA in the chicken duodenum. Our findings indicate that GLP-1 might have an inhibitory effect on gastric and crop emptying and on acid secretion also in the pheasant. Moreover, the results of the present research regarding the initial region of the small intestine suggest a further direct mechanism of the GLP-1 release during the early digestion phase and an enhancement of its incretin role.

  3. Activation of spinal glucagon-like peptide-1 receptors specifically suppresses pain hypersensitivity.

    PubMed

    Gong, Nian; Xiao, Qi; Zhu, Bin; Zhang, Chang-Yue; Wang, Yan-Chao; Fan, Hui; Ma, Ai-Niu; Wang, Yong-Xiang

    2014-04-01

    This study aims to identify the inhibitory role of the spinal glucagon like peptide-1 receptor (GLP-1R) signaling in pain hypersensitivity and its mechanism of action in rats and mice. First, GLP-1Rs were identified to be specifically expressed on microglial cells in the spinal dorsal horn, and profoundly upregulated after peripheral nerve injury. In addition, intrathecal GLP-1R agonists GLP-1(7-36) and exenatide potently alleviated formalin-, peripheral nerve injury-, bone cancer-, and diabetes-induced hypersensitivity states by 60-90%, without affecting acute nociceptive responses. The antihypersensitive effects of exenatide and GLP-1 were completely prevented by GLP-1R antagonism and GLP-1R gene knockdown. Furthermore, exenatide evoked β-endorphin release from both the spinal cord and cultured microglia. Exenatide antiallodynia was completely prevented by the microglial inhibitor minocycline, β-endorphin antiserum, and opioid receptor antagonist naloxone. Our results illustrate a novel spinal dorsal horn microglial GLP-1R/β-endorphin inhibitory pathway in a variety of pain hypersensitivity states. PMID:24719110

  4. [Glucagon-like peptide-1 (GLP-1) mimetics: a new treatment for Alzheimer's disease?].

    PubMed

    García-Casares, Natalia; García-Arnés, Juan Antonio; Gómez-Huelgas, Ricardo; Valdivielso-Felices, Pedro; García-Arias, Carlota; González-Santos, Pedro

    2014-12-01

    Introduccion. Los analogos del glucagon-like peptide-1 (GLP-1) son una opcion terapeutica establecida en los pacientes con diabetes tipo 2. Sin embargo, las propiedades de los analogos del GLP-1 van mas alla del control estrictamente metabolico del paciente diabetico. Los efectos neuroprotectores de los analogos del GLP-1 se han puesto de manifiesto en estudios recientes y han abierto nuevos campos de investigacion en trastornos neurodegenerativos como la enfermedad de Alzheimer (EA), entre otros. Objetivo. Revision sistematica de los estudios experimentales y ensayos clinicos en humanos que demuestran las propiedades neuroprotectoras de los analogos del GLP-1 en la EA. Desarrollo. Los estudios experimentales que se han llevado a cabo en modelos de roedores con EA demuestran las propiedades neuroprotectoras de los analogos del GLP-1 sobre el sistema nervioso central que reducen las placas de beta-amiloide, el estres oxidativo y la respuesta inflamatoria cerebral. Recientemente se han puesto en marcha estudios con analogos del GLP-1 en humanos con deterioro cognitivo y EA. Conclusiones. Los analogos del GLP-1 presentan propiedades neuroprotectoras. Al considerarse la diabetes tipo 2 un factor de riesgo para el deterioro cognitivo y la demencia, deben considerarse los beneficios de los analogos del GLP-1 sobre la cognicion. Del mismo modo, los analogos del GLP-1 suponen un tratamiento prometedor en la EA.

  5. Farnesoid X receptor inhibits glucagon-like peptide-1 production by enteroendocrine L cells.

    PubMed

    Trabelsi, Mohamed-Sami; Daoudi, Mehdi; Prawitt, Janne; Ducastel, Sarah; Touche, Véronique; Sayin, Sama I; Perino, Alessia; Brighton, Cheryl A; Sebti, Yasmine; Kluza, Jérôme; Briand, Olivier; Dehondt, Hélène; Vallez, Emmanuelle; Dorchies, Emilie; Baud, Grégory; Spinelli, Valeria; Hennuyer, Nathalie; Caron, Sandrine; Bantubungi, Kadiombo; Caiazzo, Robert; Reimann, Frank; Marchetti, Philippe; Lefebvre, Philippe; Bäckhed, Fredrik; Gribble, Fiona M; Schoonjans, Kristina; Pattou, François; Tailleux, Anne; Staels, Bart; Lestavel, Sophie

    2015-01-01

    Bile acids are signalling molecules, which activate the transmembrane receptor TGR5 and the nuclear receptor FXR. BA sequestrants (BAS) complex bile acids in the intestinal lumen and decrease intestinal FXR activity. The BAS-BA complex also induces glucagon-like peptide-1 (GLP-1) production by L cells which potentiates β-cell glucose-induced insulin secretion. Whether FXR is expressed in L cells and controls GLP-1 production is unknown. Here, we show that FXR activation in L cells decreases proglucagon expression by interfering with the glucose-responsive factor Carbohydrate-Responsive Element Binding Protein (ChREBP) and GLP-1 secretion by inhibiting glycolysis. In vivo, FXR deficiency increases GLP-1 gene expression and secretion in response to glucose hence improving glucose metabolism. Moreover, treatment of ob/ob mice with the BAS colesevelam increases intestinal proglucagon gene expression and improves glycaemia in a FXR-dependent manner. These findings identify the FXR/GLP-1 pathway as a new mechanism of BA control of glucose metabolism and a pharmacological target for type 2 diabetes. PMID:26134028

  6. Male fertility and obesity: are ghrelin, leptin and glucagon-like peptide-1 pharmacologically relevant?

    PubMed

    Alves, Marco G; Jesus, Tito T; Sousa, Mário; Goldberg, Erwin; Silva, Branca M; Oliveira, Pedro F

    2016-01-01

    Obesity is rising to unprecedented numbers, affecting a growing number of children, adolescents and young adult men. These individuals face innumerous health problems, including subfertility or even infertility. Overweight and obese men present severe alterations in their body composition and hormonal profile, particularly in ghrelin, leptin and glucagon-like peptide-1 (GLP-1) levels. It is well known that male reproductive health is under the control of the individual's nutritional status and also of a tight network of regulatory signals, particularly hormonal signaling. However, few studies have been focused on the effects of ghrelin, leptin and GLP-1 in male reproduction and how energy homeostasis and male reproductive function are linked. These hormones regulate body glucose homeostasis and several studies suggest that they can serve as targets for anti-obesity drugs. In recent years, our understanding of the mechanisms of action of these hormones has grown significantly. Curiously, their effect on male reproductive potential, that is highly dependent of the metabolic cooperation established between testicular cells, remains a matter of debate. Herein, we review general concepts of male fertility and obesity, with a special focus on the effects of ghrelin, leptin and GLP-1 on male reproductive health. We also discuss the possible pharmacological relevance of these hormones to counteract the fertility problems that overweight and obese men face.

  7. Medicinal Plants Qua Glucagon-Like Peptide-1 Secretagogue via Intestinal Nutrient Sensors

    PubMed Central

    Kim, Ki-Suk; Jang, Hyeung-Jin

    2015-01-01

    Glucagon-like peptide-1 (GLP-1) participates in glucose homeostasis and feeding behavior. Because GLP-1 is rapidly inactivated by the enzymatic cleavage of dipeptidyl peptidase-4 (DPP4) long-acting GLP-1 analogues, for example, exenatide and DPP4 inhibitors, for example, liraglutide, have been developed as therapeutics for type 2 diabetes mellitus (T2DM). However, the inefficient clinical performance and the incidence of side effects reported on the existing therapeutics for T2DM have led to the development of a novel therapeutic strategy to stimulate endogenous GLP-1 secretion from enteroendocrine L cells. Since the GLP-1 secretion of enteroendocrine L cells depends on the luminal nutrient constituents, the intestinal nutrient sensors involved in GLP-1 secretion have been investigated. In particular, nutrient sensors for tastants, cannabinoids, and bile acids are able to recognize the nonnutritional chemical compounds, which are abundant in medicinal plants. These GLP-1 secretagogues derived from medicinal plants are easy to find in our surroundings, and their effectiveness has been demonstrated through traditional remedies. The finding of GLP-1 secretagogues is directly linked to understanding of the role of intestinal nutrient sensors and their recognizable nutrients. Concurrently, this study demonstrates the possibility of developing novel therapeutics for metabolic disorders such as T2DM and obesity using nutrients that are readily accessible in our surroundings. PMID:26788106

  8. [Albiglutide (Eperzan): a new once-weekly agonist of glucagon-like peptide-1 receptors].

    PubMed

    Scheen, A J

    2015-04-01

    Albiglutide (Eperzan) is a new once-weekly agonist of Glucagon-Like Peptide-1 (GLP-1) receptors that is indicated in the treatment of type 2 diabetes. Two doses are available, 30 mg and 50 mg, to be injected subcutaneously once a week. It has been extensively evaluated in the HARMONY programme of eight large randomised controlled trials that were performed at different stages of type 2 diabetes, in comparison with placebo or an active comparator. The endocrine and metabolic effects of albiglutide are similar to those of other GLP-1 receptor agonists: stimulation of insulin secretion (incretin effect) and inhibition of glucagon secretion, both in a glucose-dependent manner, retardation of gastric emptying and increase of satiety. These effects lead to a reduction in glycated haemoglobin (HbA(1c)) levels, combined with a weight reduction. The overall tolerance profile is good. Albiglutide is currently reimbursed in Belgium after failure (HbA(1c) > 7.5%) of and in combination with a dual therapy with metformin and a sulfonylurea as well as in combination with a basal insulin (with or without oral antidiabetic drugs). To avoid hypoglycaemia, a reduction in the dose of sulfonylurea or insulin may be recommended. A once-weekly administration should increase patient's acceptance of injectable therapy and improve compliance.

  9. Glucagon-like peptide 1 and dysglycemia: Conflict in incretin science.

    PubMed

    Singh, Awadhesh Kumar

    2015-01-01

    Although GLP-1 (glucagon like peptide-1) based therapies (GLP-1 agonists and dipeptidyl peptidase-4 inhibitors) is currently playing a cornerstone role in the treatment of type 2 diabetes, dilemma does exist about some of its basic physiology. So far, we know that GLP-1 is secreted by the direct actions of luminal contents on the L cells in distal jejunum and proximal ileum. However, there is growing evidence now, which suggest that other mechanism via "neural" or "upper gut" signals may be playing a second fiddle and could stimulate GLP-1 secretion even before the luminal contents have reached into the proximities of L cells. Therefore, the contribution of direct and indirect mechanism to GLP-1 secretion remains elusive. Furthermore, no clear consensus exists about the pattern of GLP-1 secretion, although many believe it is monophasic. One of the most exciting issues in incretin science is GLP-1 level and GLP-1 responsiveness. It is not exactly known as to what happens to endogenous GLP-1 with progressive worsening of dysglycemia from normal glucose tolerance to impaired glucose to frank diabetes and furthermore with increasing duration of diabetes. Although, conventional wisdom suggests that there may be a decrease in endogenous GLP-1 level with the worsening of dysglycemia, literature showed discordant results. Furthermore, there is emerging evidence to suggest that GLP-1 response can vary with ethnicity. This mini review is an attempt to put a brief perspective on all these issues. PMID:25593851

  10. Farnesoid X Receptor Inhibits Glucagon-Like Peptide-1 Production by Enteroendocrine L-cells

    PubMed Central

    TRABELSI, Mohamed-Sami; DAOUDI, Mehdi; PRAWITT, Janne; DUCASTEL, Sarah; TOUCHE, Véronique; SAYIN, Sama I.; PERINO, Alessia; BRIGHTON, Cheryl A.; SEBTI, Yasmine; KLUZA, Jérôme; BRIAND, Olivier; DEHONDT, Hélène; VALLEZ, Emmanuelle; DORCHIES, Emilie; BAUD, Grégory; SPINELLI, Valeria; HENNUYER, Nathalie; CARON, Sandrine; BANTUBUNGI, Kadiombo; CAIAZZO, Robert; REIMANN, Frank; MARCHETTI, Philippe; LEFEBVRE, Philippe; BÄCKHED, Fredrik; GRIBBLE, Fiona M.; SCHOONJANS, Kristina; PATTOU, François; TAILLEUX, Anne; STAELS, Bart; LESTAVEL, Sophie

    2015-01-01

    Bile acids (BA) are signalling molecules which activate the transmembrane receptor TGR5 and the nuclear receptor FXR. BA sequestrants (BAS) complex BA in the intestinal lumen and decrease intestinal FXR activity. The BAS-BA complex also induces Glucagon-Like Peptide-1 (GLP-1) production by L-cells which potentiates β-cell glucose-induced insulin secretion. Whether FXR is expressed in L-cells and controls GLP-1 production is unknown. Here we show that FXR activation in L-cells decreases proglucagon expression by interfering with the glucose-responsive factor Carbohydrate-Responsive Element Binding Protein (ChREBP) and GLP-1 secretion by inhibiting glycolysis. In vivo, FXR-deficiency increases GLP-1 gene expression and secretion in response to glucose hence improving glucose metabolism. Moreover, treatment of ob/ob mice with the BAS colesevelam increases intestinal proglucagon gene expression and improves glycemia in a FXR-dependent manner. These findings identify the FXR/GLP-1 pathway as a new mechanism of BA control of glucose metabolism and a pharmacological target for type 2 diabetes. PMID:26134028

  11. Glucagon-like peptide-1 receptor agonists favorably address all components of metabolic syndrome

    PubMed Central

    Chatterjee, Sanjay; Ghosal, Samit; Chatterjee, Saurav

    2016-01-01

    Cardiovascular death is the leading cause of mortality for patients with type 2 diabetes mellitus. The etiology of cardiovascular disease in diabetes may be divided into hyperglycemia per se and factors operating through components of metabolic syndrome (MetS). Hyperglycemia causes direct injury to vascular endothelium and possibly on cardiac myocytes. MetS is a cluster of risk factors like obesity, hyperglycemia, hypertension and dyslipidemia. The incidence of this syndrome is rising globally. Glucagon-like peptide-1 receptor agonists (GLP-1RA) are a group of drugs, which address all components of this syndrome favorably. Experimental evidence suggests that they have favorable actions on myocardium as well. Several compounds belonging to GLP-1RA class are in market now and a large number awaiting their entry. Although, originally this class of drugs emerged as a treatment for type 2 diabetes mellitus, more recent data generated revealed beneficial effects on multiple metabolic parameters. We have studied literature published between 2000 and 2016 to look into effects of GLP-1RA on components of MetS. Results from recently concluded clinical trials suggest that some of the molecules in this class may have favorable effects on cardiovascular outcome. PMID:27795818

  12. Oligomerization of a Glucagon-like Peptide 1 Analog: Bridging Experiment and Simulations

    PubMed Central

    Frederiksen, Tine M.; Sønderby, Pernille; Ryberg, Line A.; Harris, Pernille; Bukrinski, Jens T.; Scharff-Poulsen, Anne M.; Elf-Lind, Maria N.; Peters, Günther H.

    2015-01-01

    The glucagon-like peptide 1 (GLP-1) analog, liraglutide, is a GLP-1 agonist and is used in the treatment of type-2 diabetes mellitus and obesity. From a pharmaceutical perspective, it is important to know the oligomerization state of liraglutide with respect to stability. Compared to GLP-1, liraglutide has an added fatty acid (FA) moiety that causes oligomerization of liraglutide as suggested by small-angle x-ray scattering (SAXS) and multiangle static light scattering (MALS) results. SAXS data suggested a global shape of a hollow elliptical cylinder of size hexa-, hepta-, or octamer, whereas MALS data indicate a hexamer. To elaborate further on the stability of these oligomers and the role of the FA chains, a series of molecular-dynamics simulations were carried out on 11 different hexa-, hepta-, and octameric systems. Our results indicate that interactions of the fatty acid chains contribute noticeably to the stabilization. The simulation results indicate that the heptamer with paired FA chains is the most stable oligomer when compared to the 10 other investigated structures. Theoretical SAXS curves extracted from the simulations qualitatively agree with the experimentally determined SAXS curves supporting the view that liraglutide forms heptamers in solution. In agreement with the SAXS data, the heptamer forms a water-filled oligomer of elliptical cylindrical shape. PMID:26340816

  13. Glucagon-like peptide-1 receptor agonists increase pancreatic mass by induction of protein synthesis.

    PubMed

    Koehler, Jacqueline A; Baggio, Laurie L; Cao, Xiemin; Abdulla, Tahmid; Campbell, Jonathan E; Secher, Thomas; Jelsing, Jacob; Larsen, Brett; Drucker, Daniel J

    2015-03-01

    Glucagon-like peptide-1 (GLP-1) controls glucose homeostasis by regulating secretion of insulin and glucagon through a single GLP-1 receptor (GLP-1R). GLP-1R agonists also increase pancreatic weight in some preclinical studies through poorly understood mechanisms. Here we demonstrate that the increase in pancreatic weight following activation of GLP-1R signaling in mice reflects an increase in acinar cell mass, without changes in ductal compartments or β-cell mass. GLP-1R agonists did not increase pancreatic DNA content or the number of Ki67(+) cells in the exocrine compartment; however, pancreatic protein content was increased in mice treated with exendin-4 or liraglutide. The increased pancreatic mass and protein content was independent of cholecystokinin receptors, associated with a rapid increase in S6 phosphorylation, and mediated through the GLP-1R. Rapamycin abrogated the GLP-1R-dependent increase in pancreatic mass but had no effect on the robust induction of Reg3α and Reg3β gene expression. Mass spectrometry analysis identified GLP-1R-dependent upregulation of Reg family members, as well as proteins important for translation and export, including Fam129a, eIF4a1, Wars, and Dmbt1. Hence, pharmacological GLP-1R activation induces protein synthesis, leading to increased pancreatic mass, independent of changes in DNA content or cell proliferation in mice.

  14. Diabetes and cardiovascular disease: focus on glucagon-like peptide-1 based therapies

    PubMed Central

    Stranges, Paul

    2012-01-01

    Type 2 diabetes is a well known risk factor for cardiovascular disease (CVD). While glycemic control has consistently been shown to prevent microvascular complications, large randomized trials have not demonstrated the same consistent beneficial effects of intensive glycemic control in improving cardiovascular (CV) outcomes. Thus, optimal glucose control alone is not sufficient to reduce CV risk. Aggressive management of CV risk factors such as blood pressure, lipids, and body weight is also necessary. A growing body of evidence suggests that the recently available glucagon-like peptide 1 receptor (GLP-1R) agonists have beneficial CV effects beyond glucose control. Studies have demonstrated beneficial effects in the myocardium, endothelium, vasculature and various markers of cardiovascular risk such as body weight, blood pressure and dyslipidemia. Despite the growing evidence, large, randomized, blinded clinical trials with hard CV endpoints have not been performed. Most human studies have been small, and have focused on surrogate endpoints. The findings need to be confirmed by prospective, randomized cardiovascular outcomes trials. In this review we examine the GLP-1R agonist data on weight reduction, blood pressure lowering, beneficial changes in dyslipidemia, and improvements in myocardial and endothelial function. The safety as well as potential role of these agents in treatment regimens for type 2 diabetes is also addressed. PMID:25083236

  15. Glucagon-like peptide-1 inhibits vascular smooth muscle cell dedifferentiation through mitochondrial dynamics regulation.

    PubMed

    Torres, Gloria; Morales, Pablo E; García-Miguel, Marina; Norambuena-Soto, Ignacio; Cartes-Saavedra, Benjamín; Vidal-Peña, Gonzalo; Moncada-Ruff, David; Sanhueza-Olivares, Fernanda; San Martín, Alejandra; Chiong, Mario

    2016-03-15

    Glucagon-like peptide-1 (GLP-1) is a neuroendocrine hormone produced by gastrointestinal tract in response to food ingestion. GLP-1 plays a very important role in the glucose homeostasis by stimulating glucose-dependent insulin secretion, inhibiting glucagon secretion, inhibiting gastric emptying, reducing appetite and food intake. Because of these actions, the GLP-1 peptide-mimetic exenatide is one of the most promising new medicines for the treatment of type 2 diabetes. In vivo treatments with GLP-1 or exenatide prevent neo-intima layer formation in response to endothelial damage and atherosclerotic lesion formation in aortic tissue. Whether GLP-1 modulates vascular smooth muscle cell (VSMC) migration and proliferation by controlling mitochondrial dynamics is unknown. In this report, we showed that GLP-1 increased mitochondrial fusion and activity in a PKA-dependent manner in the VSMC cell line A7r5. GLP-1 induced a Ser-637 phosphorylation in the mitochondrial fission protein Drp1, and decreased Drp1 mitochondrial localization. GLP-1 inhibited PDGF-BB-induced VSMC migration and proliferation, actions inhibited by overexpressing wild type Drp1 and mimicked by the Drp1 inhibitor Mdivi-1 and by overexpressing dominant negative Drp1. These results show that GLP-1 stimulates mitochondrial fusion, increases mitochondrial activity and decreases PDGF-BB-induced VSMC dedifferentiation by a PKA/Drp1 signaling pathway. Our data suggest that GLP-1 inhibits vascular remodeling through a mitochondrial dynamics-dependent mechanism. PMID:26807480

  16. Functional Consequences of Glucagon-like Peptide-1 Receptor Cross-talk and Trafficking*

    PubMed Central

    Roed, Sarah Noerklit; Nøhr, Anne Cathrine; Wismann, Pernille; Iversen, Helle; Bräuner-Osborne, Hans; Knudsen, Sanne Moeller; Waldhoer, Maria

    2015-01-01

    The signaling capacity of seven-transmembrane/G-protein-coupled receptors (7TM/GPCRs) can be regulated through ligand-mediated receptor trafficking. Classically, the recycling of internalized receptors is associated with resensitization, whereas receptor degradation terminates signaling. We have shown previously that the incretin glucagon-like peptide-1 receptor (GLP-1R) internalizes fast and is primarily resensitized through recycling back to the cell surface. GLP-1R is expressed in pancreatic islets together with the closely related glucose-dependent insulinotropic polypeptide (GIPR) and glucagon (GCGR) receptors. The interaction and cross-talk between coexpressed receptors is a wide phenomenon of the 7TM/GPCR superfamily. Numerous reports show functional consequences for signaling and trafficking of the involved receptors. On the basis of the high structural similarity and tissue coexpression, we here investigated the potential cross-talk between GLP-1R and GIPR or GCGR in both trafficking and signaling pathways. Using a real-time time-resolved FRET-based internalization assay, we show that GLP-1R, GIPR, and GCGR internalize with differential properties. Remarkably, upon coexpression of the internalizing GLP-1R and the non-internalizing GIPR, GLP-1-mediated GLP-1R internalization was impaired in a GIPR concentration-dependent manner. As a functional consequence of such impaired internalization capability, GLP-1-mediated GLP-1R signaling was abrogated. A similar compromised signaling was found when GLP-1R internalization was abrogated by a dominant-negative version of dynamin (dynamin-1 K44E), which provides a mechanistic link between GLP-1R trafficking and signaling. This study highlights the importance of receptor internalization for full functionality of GLP-1R. Moreover, cross-talk between the two incretin receptors GLP-1R and GIPR is shown to alter receptor trafficking with functional consequences for GLP-1R signaling. PMID:25451942

  17. Role of lateral septum glucagon-like peptide 1 receptors in food intake.

    PubMed

    Terrill, Sarah J; Jackson, Christine M; Greene, Hayden E; Lilly, Nicole; Maske, Calyn B; Vallejo, Samantha; Williams, Diana L

    2016-07-01

    Hindbrain glucagon-like peptide 1 (GLP-1) neurons project to numerous forebrain areas, including the lateral septum (LS). Using a fluorescently labeled GLP-1 receptor (GLP-1R) agonist, Exendin 4 (Ex4), we demonstrated GLP-1 receptor binding throughout the rat LS. We examined the feeding effects of Ex4 and the GLP-1R antagonist Exendin (9-39) (Ex9) at doses subthreshold for effect when delivered to the lateral ventricle. Intra-LS Ex4 suppressed overnight chow and high-fat diet (HFD) intake, and Ex9 increased chow and HFD intake relative to vehicle. During 2-h tests, intra-LS Ex9 significantly increased 0.25 M sucrose and 4% corn oil. Ex4 can cause nausea, but intra-LS administration of Ex4 did not induce pica. Furthermore, intra-LS Ex4 had no effect on anxiety-like behavior in the elevated plus maze. We investigated the role of LS GLP-1R in motivation for food by examining operant responding for sucrose on a progressive ratio (PR) schedule, with and without a nutrient preload to maximize GLP-1 neuron activation. The preload strongly suppressed PR responding, but blockade of GLP-1R in the intermediate subdivision of the LS did not affect motivation for sucrose under either load condition. The ability of the nutrient load to suppress subsequent chow intake was significantly attenuated by intermediate LS Ex9 treatment. By contrast, blockade of GLP-1R in the dorsal subdivision of the LS increased both PR responding and overnight chow intake. Together, these studies suggest that endogenous activity of GLP-1R in the LS influence feeding, and dLS GLP-1Rs, in particular, play a role in motivation. PMID:27194565

  18. Effects of glucagon-like peptide-1 in diabetic rat small resistance arteries.

    PubMed

    Bayram, Zeliha; Nacitarhan, Cahit; Ozdem, Sadi S

    2014-09-01

    We investigated the functional effects of glucagon-like peptide-1 [GLP-1(7-36)] and GLP-1(9-36) and the mechanism(s) playing a role in the effects of these agents in isolated small resistance arteries from control and diabetic rats. Cumulative concentrations of GLP-1(7-36) and GLP-1(9-36) produced concentration-dependent relaxations in endothelium-intact but not endothelium-denuded arteries that were significantly decreased in diabetic rats. GLP-1 receptor antagonist exendin(9-39) significantly inhibited responses to GLP-1 analogs. Nitric oxide/cyclic guanosine monophosphate pathway blockers, but not indomethacin, significantly decreased responses to GLP-1(7-36) or GLP-1(9-36) in control and diabetic rats. 4-Aminopyridine or glibenclamide incubation did not alter relaxations to GLP-1 analogs. GLP-1(7-36)- and GLP-1(9-36)-induced relaxations were blunted significantly and to similar extends by charybdotoxin and apamin combination in control and diabetic rats. Catalase did not affect, whereas superoxide dismutase (SOD) caused a significant increase in relaxations to GLP-1 analogs only in diabetic rats. We provided evidence about the relaxant effects of GLP-1(7-36) and GLP-1(9-36) in resistance arteries that were reduced in diabetic rats. Both calcium-activated potassium channels and endothelium played a major role in relaxations. Increment in certain reactive oxygen species and/or reduction in superoxide dismutase function might play a role in reduced relaxant responses of resistance arteries to GLP-1(7-36) and GLP-1(9-36) in diabetic rats.

  19. The glucagon-like peptide 1 analogue Exendin-4 attenuates alcohol mediated behaviors in rodents.

    PubMed

    Egecioglu, Emil; Steensland, Pia; Fredriksson, Ida; Feltmann, Kristin; Engel, Jörgen A; Jerlhag, Elisabet

    2013-08-01

    Development of alcohol use disorders largely depends on the effects of alcohol on the brain reward systems. Emerging evidence indicate that common mechanisms regulate food and alcohol intake and raise the possibility that endocrine signals from the gut may play an important role for alcohol consumption, alcohol-induced reward and the motivation to consume alcohol. Glucagon-like peptide 1 (GLP-1), a gastrointestinal peptide regulating food intake and glucose homeostasis, has recently been shown to target central brain areas involved in reward and motivation, including the ventral tegmental area and nucleus accumbens. Herein we investigated the effects of the GLP-1 receptor agonist, Exendin-4 (Ex4), on various measures of alcohol-induced reward as well as on alcohol intake and alcohol seeking behavior in rodents. Treatment with Ex4, at a dose with no effect per se, attenuated alcohol-induced locomotor stimulation and accumbal dopamine release in mice. Furthermore, conditioned place preference for alcohol was abolished by both acute and chronic treatment with Ex4 in mice. Finally we found that Ex4 treatment decreased alcohol intake, using the intermittent access 20% alcohol two-bottle-choice model, as well as alcohol seeking behavior, using the progressive ratio test in the operant self-administration model, in rats. These novel findings indicate that GLP-1 signaling attenuates the reinforcing properties of alcohol implying that the physiological role of GLP-1 extends beyond glucose homeostasis and food intake regulation. Collectively these findings implicate that the GLP-1 receptor may be a potential target for the development of novel treatment strategies for alcohol use disorders.

  20. Oral Delivery of Pentameric Glucagon-Like Peptide-1 by Recombinant Lactobacillus in Diabetic Rats

    PubMed Central

    Krogh-Andersen, Kasper; Pelletier, Julien; Marcotte, Harold; Östenson, Claes-Göran; Hammarström, Lennart

    2016-01-01

    Glucagon-like peptide-1 (GLP-1) is an incretin hormone produced by intestinal cells and stimulates insulin secretion from the pancreas in a glucose-dependent manner. Exogenously supplied GLP-1 analogues are used in the treatment of type 2 diabetes. An anti-diabetic effect of Lactobacillus in lowering plasma glucose levels and its use as a vehicle for delivery of protein and antibody fragments has been shown previously. The aim of this study was to employ lactobacilli as a vehicle for in situ production and delivery of GLP-1 analogue to normalize blood glucose level in diabetic GK (Goto-Kakizaki) rats. In this study, we designed pentameric GLP-1 (5×GLP-1) analogues which were both expressed in a secreted form and anchored to the surface of lactobacilli. Intestinal trypsin sites were introduced within 5×GLP-1, leading to digestion of the pentamer into an active monomeric form. The E. coli-produced 5×GLP-1 peptides delivered by intestinal intubation to GK rats resulted in a significant improvement of glycemic control demonstrated by an intraperitoneal glucose tolerance test. Meanwhile, the purified 5×GLP-1 (trypsin-digested) from the Lactobacillus cultures stimulated insulin secretion from HIT-T15 cells, similar to the E. coli-produced 5×GLP-1 peptides. When delivered by gavage to GK rats, non-expressor L. paracasei significantly lowered the blood glucose level but 5×GLP-1 expression did not provide an additional anti-diabetic effect, possibly due to the low levels produced. Our results indicate that lactobacilli themselves might be used as an alternative treatment method for type 2 diabetes, but further work is needed to increase the expression level of GLP-1 by lactobacilli in order to obtain a significant insulinotropic effect in vivo. PMID:27610615

  1. Parabrachial Nucleus Contributions to Glucagon-Like Peptide-1 Receptor Agonist-Induced Hypophagia

    PubMed Central

    Swick, Jennifer C; Alhadeff, Amber L; Grill, Harvey J; Urrea, Paula; Lee, Stephanie M; Roh, Hyunsun; Baird, John-Paul

    2015-01-01

    Exendin-4 (Ex4), a glucagon-like peptide-1 receptor (GLP-1R) agonist approved to treat type 2 diabetes mellitus, is well known to induce hypophagia in human and animal models. We evaluated the contributions of the hindbrain parabrachial nucleus (PBN) to systemic Ex4-induced hypophagia, as the PBN receives gustatory and visceral afferent relays and descending input from several brain nuclei associated with feeding. Rats with ibotenic-acid lesions targeted to the lateral PBN (PBNx) and sham controls received Ex4 (1 μg/kg) before 24 h home cage chow or 90 min 0.3 M sucrose access tests, and licking microstructure was analyzed to identify components of feeding behavior affected by Ex4. PBN lesion efficacy was confirmed using conditioned taste aversion (CTA) tests. As expected, sham control but not PBNx rats developed a CTA. In sham-lesioned rats, Ex4 reduced chow intake within 4 h of injection and sucrose intake within 90 min. PBNx rats did not show reduced chow or sucrose intake after Ex4 treatment, indicating that the PBN is necessary for Ex4 effects under the conditions tested. In sham-treated rats, Ex4 affected licking microstructure measures associated with hedonic taste evaluation, appetitive behavior, oromotor coordination, and inhibitory postingestive feedback. Licking microstructure responses in PBNx rats after Ex4 treatment were similar to sham-treated rats with the exception of inhibitory postingestive feedback measures. Together, the results suggest that the PBN critically contributes to the hypophagic effects of systemically delivered GLP-1R agonists by enhancing visceral feedback. PMID:25703200

  2. Glucagon-Like Peptide-1 Regulates Cholecystokinin Production in β-Cells to Protect From Apoptosis

    PubMed Central

    Linnemann, Amelia K.; Neuman, Joshua C.; Battiola, Therese J.; Wisinski, Jaclyn A.; Kimple, Michelle E.

    2015-01-01

    Cholecystokinin (CCK) is a classic gut hormone that is also expressed in the pancreatic islet, where it is highly up-regulated with obesity. Loss of CCK results in increased β-cell apoptosis in obese mice. Similarly, islet α-cells produce increased amounts of another gut peptide, glucagon-like peptide 1 (GLP-1), in response to cytokine and nutrient stimulation. GLP-1 also protects β-cells from apoptosis via cAMP-mediated mechanisms. Therefore, we hypothesized that the activation of islet-derived CCK and GLP-1 may be linked. We show here that both human and mouse islets secrete active GLP-1 as a function of body mass index/obesity. Furthermore, GLP-1 can rapidly stimulate β-cell CCK production and secretion through direct targeting by the cAMP-modulated transcription factor, cAMP response element binding protein (CREB). We find that cAMP-mediated signaling is required for Cck expression, but CCK regulation by cAMP does not require stimulatory levels of glucose or insulin secretion. We also show that CREB directly targets the Cck promoter in islets from obese (Leptinob/ob) mice. Finally, we demonstrate that the ability of GLP-1 to protect β-cells from cytokine-induced apoptosis is partially dependent on CCK receptor signaling. Taken together, our work suggests that in obesity, active GLP-1 produced in the islet stimulates CCK production and secretion in a paracrine manner via cAMP and CREB. This intraislet incretin loop may be one mechanism whereby GLP-1 protects β-cells from apoptosis. PMID:25984632

  3. Septal Glucagon-Like Peptide 1 Receptor Expression Determines Suppression of Cocaine-Induced Behavior

    PubMed Central

    Harasta, Anne E; Power, John M; von Jonquieres, Georg; Karl, Tim; Drucker, Daniel J; Housley, Gary D; Schneider, Miriam; Klugmann, Matthias

    2015-01-01

    Glucagon-like peptide 1 (GLP-1) and its receptor GLP-1R are a key component of the satiety signaling system, and long-acting GLP-1 analogs have been approved for the treatment of type-2 diabetes mellitus. Previous reports demonstrate that GLP-1 regulates glucose homeostasis alongside the rewarding effects of food. Both palatable food and illicit drugs activate brain reward circuitries, and pharmacological studies suggest that central nervous system GLP-1 signaling holds potential for the treatment of addiction. However, the role of endogenous GLP-1 in the attenuation of reward-oriented behavior, and the essential domains of the mesolimbic system mediating these beneficial effects, are largely unknown. We hypothesized that the central regions of highest Glp-1r gene activity are essential in mediating responses to drugs of abuse. Here, we show that Glp-1r-deficient (Glp-1r−/−) mice have greatly augmented cocaine-induced locomotor responses and enhanced conditional place preference compared with wild-type (Glp-1r+/+) controls. Employing mRNA in situ hybridization we located peak Glp-1r mRNA expression in GABAergic neurons of the dorsal lateral septum, an anatomical site with a crucial function in reward perception. Whole-cell patch-clamp recordings of dorsal lateral septum neurons revealed that genetic Glp-1r ablation leads to increased excitability of these cells. Viral vector-mediated Glp-1r gene delivery to the dorsal lateral septum of Glp-1r−/− animals reduced cocaine-induced locomotion and conditional place preference to wild-type levels. This site-specific genetic complementation did not affect the anxiogenic phenotype observed in Glp-1r−/− controls. These data reveal a novel role of GLP-1R in dorsal lateral septum function driving behavioral responses to cocaine. PMID:25669605

  4. Oral Delivery of Pentameric Glucagon-Like Peptide-1 by Recombinant Lactobacillus in Diabetic Rats.

    PubMed

    Lin, Yin; Krogh-Andersen, Kasper; Pelletier, Julien; Marcotte, Harold; Östenson, Claes-Göran; Hammarström, Lennart

    2016-01-01

    Glucagon-like peptide-1 (GLP-1) is an incretin hormone produced by intestinal cells and stimulates insulin secretion from the pancreas in a glucose-dependent manner. Exogenously supplied GLP-1 analogues are used in the treatment of type 2 diabetes. An anti-diabetic effect of Lactobacillus in lowering plasma glucose levels and its use as a vehicle for delivery of protein and antibody fragments has been shown previously. The aim of this study was to employ lactobacilli as a vehicle for in situ production and delivery of GLP-1 analogue to normalize blood glucose level in diabetic GK (Goto-Kakizaki) rats. In this study, we designed pentameric GLP-1 (5×GLP-1) analogues which were both expressed in a secreted form and anchored to the surface of lactobacilli. Intestinal trypsin sites were introduced within 5×GLP-1, leading to digestion of the pentamer into an active monomeric form. The E. coli-produced 5×GLP-1 peptides delivered by intestinal intubation to GK rats resulted in a significant improvement of glycemic control demonstrated by an intraperitoneal glucose tolerance test. Meanwhile, the purified 5×GLP-1 (trypsin-digested) from the Lactobacillus cultures stimulated insulin secretion from HIT-T15 cells, similar to the E. coli-produced 5×GLP-1 peptides. When delivered by gavage to GK rats, non-expressor L. paracasei significantly lowered the blood glucose level but 5×GLP-1 expression did not provide an additional anti-diabetic effect, possibly due to the low levels produced. Our results indicate that lactobacilli themselves might be used as an alternative treatment method for type 2 diabetes, but further work is needed to increase the expression level of GLP-1 by lactobacilli in order to obtain a significant insulinotropic effect in vivo. PMID:27610615

  5. Investigating G protein signalling bias at the glucagon-like peptide-1 receptor in yeast

    PubMed Central

    Weston, C; Poyner, D; Patel, V; Dowell, S; Ladds, G

    2014-01-01

    BACKGROUND AND PURPOSE The glucagon-like peptide 1 (GLP-1) receptor performs an important role in glycaemic control, stimulating the release of insulin. It is an attractive target for treating type 2 diabetes. Recently, several reports of adverse side effects following prolonged use of GLP-1 receptor therapies have emerged: most likely due to an incomplete understanding of signalling complexities. EXPERIMENTAL APPROACH We describe the expression of the GLP-1 receptor in a panel of modified yeast strains that couple receptor activation to cell growth via single Gα/yeast chimeras. This assay enables the study of individual ligand–receptor G protein coupling preferences and the quantification of the effect of GLP-1 receptor ligands on G protein selectivity. KEY RESULTS The GLP-1 receptor functionally coupled to the chimeras representing the human Gαs, Gαi and Gαq subunits. Calculation of the dissociation constant for a receptor antagonist, exendin-3 revealed no significant difference between the two systems. We obtained previously unobserved differences in G protein signalling bias for clinically relevant therapeutic agents, liraglutide and exenatide; the latter displaying significant bias for the Gαi pathway. We extended the use of the system to investigate small-molecule allosteric compounds and the closely related glucagon receptor. CONCLUSIONS AND IMPLICATIONS These results provide a better understanding of the molecular events involved in GLP-1 receptor pleiotropic signalling and establish the yeast platform as a robust tool to screen for more selective, efficacious compounds acting at this important class of receptors in the future. PMID:24712679

  6. Expression, purification, and C-terminal amidation of recombinant human glucagon-like peptide-1.

    PubMed

    Zhang, Zhi-Zhen; Yang, Sheng-Sheng; Dou, Hong; Mao, Ji-Fang; Li, Kang-Sheng

    2004-08-01

    Human glucagon-like peptide-1 (hGLP-1) (7-36) amide, a gastrointestinal hormone with a pharmaceutical potential in treating type 2 diabetes mellitus, is composed of 30 amino acid residues as a mature protein. We report here the development of a method for high-level expression and purification of recombinant hGLP-1 (7-36) amide (rhGLP-1) through glutathione S-transferase (GST) fusion expression system. The cDNA of hGLP-1-Leu, the 31st-residue leucine-extended precursor peptide, was prepared by annealing and ligating of artificially synthetic oligonucleotide fragments, inserted into pBluescript SK (+/-) plasmid, and then cloned into pGEX-4T-3 GST fusion vector. The fusion protein GST-hGLP-1-Leu, expressed in Escherichia coli strain BL21 (DE3), was purified by affinity chromatography after high-level culture and sonication of bacteria. Following cleavage of GST-hGLP-1-Leu by cyanogen bromide, the recombinant hGLP-1-Leu was released from fusion protein, and purified using QAE Sepharose ion exchange and RP C(18) chromatography. After purification, the precursor hGLP-1-Leu was transacylated by carboxypeptidase Y, Arg-NH(2) as a nucleophile, to produce rhGLP-1. Electrospray ionization mass spectrometry showed the molecular weight was as expected. The biological activity of rhGLP-1 in a rat model demonstrated that plasma glucose concentrations were significantly lower and insulin concentrations higher after intraperitoneal injection of rhGLP-1 together with glucose compared with glucose alone (P < 0.001). PMID:15249052

  7. Nutrient-induced glucagon like peptide-1 release is modulated by serotonin.

    PubMed

    Ripken, Dina; van der Wielen, Nikkie; Wortelboer, Heleen M; Meijerink, Jocelijn; Witkamp, Renger F; Hendriks, Henk F J

    2016-06-01

    Glucagon like peptide-1 (GLP-1) and serotonin are both involved in food intake regulation. GLP-1 release is stimulated upon nutrient interaction with G-protein coupled receptors by enteroendocrine cells (EEC), whereas serotonin is released from enterochromaffin cells (ECC). The central hypothesis for the current study was that nutrient-induced GLP-1 release from EECs is modulated by serotonin through a process involving serotonin receptor interaction. This was studied by assessing the effects of serotonin reuptake inhibition by fluoxetine on nutrient-induced GLP-1, PYY and CCK release from isolated pig intestinal segments. Next, serotonin-induced GLP-1 release was studied in enteroendocrine STC-1 cells, where effects of serotonin receptor inhibition were studied using specific and non-specific antagonists. Casein (1% w/v), safflower oil (3.35% w/v), sucrose (50mM) and rebaudioside A (12.5mM) stimulated GLP-1 release from intestinal segments, whereas casein only stimulated PYY and CCK release. Combining nutrients with fluoxetine further increased nutrient-induced GLP-1, PYY and CCK release. Serotonin release from intestinal tissue segments was stimulated by casein and safflower oil while sucrose and rebaudioside A had no effect. The combination with fluoxetine (0.155μM) further enhanced casein and safflower oil induced-serotonin release. Exposure of ileal tissue segments to serotonin (30μM) stimulated GLP-1 release whereas it did not induce PYY and CCK release. Serotonin (30 and 100μM) also stimulated GLP-1 release from STC-1 cells, which was inhibited by the non-specific 5HT receptor antagonist asenapine (1 and 10μM). These data suggest that nutrient-induced GLP-1 release is modulated by serotonin through a receptor mediated process. PMID:27142747

  8. Protective Role of Glucagon-Like Peptide-1 Against High-Glucose-Induced Endothelial Oxidative Damage

    PubMed Central

    Guo, Lixin; Qiao, Yue; Zhang, Lina; Pan, Qi

    2015-01-01

    Abstract To investigate the protective effect of glucagon-like peptide-1 (GLP-1) against cell damage induced by high glucose. Human umbilical vein endothelial cells (HUVECs) were divided into control group (5.5 mmol/L) and high glucose groups (19, 33, or 47 mmol/L), which were cultured with different concentrations of glucose for 48 hours, respectively. Cell viability was measured with MTT assay. Levels of intracellular reactive oxygen species (ROS) were monitored by flow cytometry and apoptotic cell death was measured by staining with Annexin V-FITC and propidium iodide. Cultured cells were detected with intercellular adhesion molecule 1 (ICAM-1), VCAM-1, and JNK on protein. Compared with the control group, cell viability was decreased by 20% and 37%, respectively, when cultured under 33 and 47 mM, while increased in different GLP-1-treated groups (0.01 L, 0.1, 1, and 10 nmol/L). The GLP-1 treatment significantly reduced the ROS level of high glucose treatment group but not impact on the control group. Meanwhile, the level of apoptosis was elevated in the high glucose treatment group. Early apoptosis was significantly reversed in the GLP-1-treated group (0.1, 1, and 10 nmol/L). Late apoptosis was uniquely decreased in the GLP-1 concentrations of 10 nmol/L. Furthermore, GLP-1 could also reduce the protein levels of ICAM-1, VCAM-1, and phospho JNK in the endothelial cells with high glucose treatment. GLP-1 could inhibit cell apoptosis and reduce ROS generation and JNK-Bax signaling pathway activation, which were induced by high glucose treatment. PMID:26632709

  9. Oral administration of osteocalcin improves glucose utilization by stimulating glucagon-like peptide-1 secretion.

    PubMed

    Mizokami, Akiko; Yasutake, Yu; Higashi, Sen; Kawakubo-Yasukochi, Tomoyo; Chishaki, Sakura; Takahashi, Ichiro; Takeuchi, Hiroshi; Hirata, Masato

    2014-12-01

    Uncarboxylated osteocalcin (GluOC), a bone-derived hormone, regulates energy metabolism by stimulating insulin secretion and pancreatic β-cell proliferation. We previously showed that the effect of GluOC on insulin secretion is mediated largely by glucagon-like peptide-1 (GLP-1) secreted from the intestine in response to GluOC exposure. We have now examined the effect of oral administration of GluOC on glucose utilization as well as the fate of such administered GluOC in mice. Long-term intermittent or daily oral administration of GluOC reduced the fasting blood glucose level and improved glucose tolerance in mice without affecting insulin sensitivity. It also increased the fasting serum insulin concentration as well as the β-cell area in the pancreas. A small proportion of orally administered GluOC reached the small intestine and remained there for at least 24h. GluOC also entered the general circulation, and the serum GLP-1 concentration was increased in association with the presence of GluOC in the intestine and systemic circulation. The putative GluOC receptor, GPRC6A was detected in intestinal cells, and was colocalized with GLP-1 in some of these cells. Our results suggest that orally administered GluOC improved glucose handling likely by acting from both the intestinal lumen and the general circulation, with this effect being mediated in part by stimulation of GLP-1 secretion. Oral administration of GluOC warrants further study as a safe and convenient option for the treatment or prevention of metabolic disorders. PMID:25230237

  10. Glucagon-like peptide-1 receptor agonist administration suppresses both water and saline intake in rats.

    PubMed

    McKay, N J; Daniels, D

    2013-10-01

    Glucagon-like peptide-1 (GLP-1) plays an important role in energy homeostasis. Injections of GLP-1 receptor (GLP-1R) agonists suppress food intake, and endogenous GLP-1 is released when nutrients enter the gut. There is also growing evidence that the GLP-1 system is involved in the regulation of body fluid homeostasis. GLP-1R agonists suppress water intake independent of their effects on food intake. It is unknown, however, whether this suppressive effect of GLP-1R agonists extends to saline intake. Accordingly, we tested the effect of the GLP-1R agonists liraglutide (0.05 μg) and exendin-4 (0.05 μg) on water and saline intake, as stimulated either by angiotensin II (AngII) or by water deprivation with partial rehydration (WD-PR). Each agonist suppressed AngII-induced water intake; however, only exendin-4 suppressed saline intake. WD-PR-induced water and saline intakes were both attenuated by each agonist. Analysis of drinking microstructure after WD-PR found a reliable effect of the agonists on burst number. Furthermore, exendin-4 conditioned a robust taste avoidance to saccharine; however, there was no similar effect of liraglutide. To evaluate the relevance of the conditioned taste avoidance, we tested whether inducing visceral malaise by injection of lithium chloride (LiCl) suppressed fluid intake. Injection of LiCl did not suppress water or saline intakes. Overall, these results indicate that the fluid intake suppression by GLP-1R activation is not selective to water intake, is a function of post-ingestive feedback, and is not secondary to visceral malaise.

  11. Glucagon-like peptide-1 receptor agonists suppress water intake independent of effects on food intake.

    PubMed

    McKay, Naomi J; Kanoski, Scott E; Hayes, Matthew R; Daniels, Derek

    2011-12-01

    Glucagon-like peptide-1 (GLP-1) is produced by and released from the small intestine following ingestion of nutrients. GLP-1 receptor (GLP-1R) agonists applied peripherally or centrally decrease food intake and increase glucose-stimulated insulin secretion. These effects make the GLP-1 system an attractive target for the treatment of type 2 diabetes mellitus and obesity. In addition to these more frequently studied effects of GLP-1R stimulation, previous reports indicate that GLP-1R agonists suppress water intake. The present experiments were designed to provide greater temporal resolution and site specificity for the effect of GLP-1 and the long-acting GLP-1R agonists, exendin-4 and liraglutide, on unstimulated water intake when food was and was not available. All three GLP-1R ligands suppressed water intake after peripheral intraperitoneal administration, both in the presence of and the absence of food; however, the magnitude and time frame of water intake suppression varied by drug. GLP-1 had an immediate, but transient, hypodipsic effect when administered peripherally, whereas the water intake suppression by IP exendin-4 and liraglutide was much more persistent. Additionally, intracerebroventricular administration of GLP-1R agonists suppressed water intake when food was absent, but the suppression of intake showed modest differences depending on whether the drug was administered to the lateral or fourth ventricle. To the best of our knowledge, this is the first demonstration of GLP-1 receptor agonists affecting unstimulated, overnight intake in the absence of food, the first test for antidipsogenic effects of hindbrain application of GLP-1 receptor agonists, and the first test of a central effect (forebrain or hindbrain) of liraglutide on water intake. Overall, these results show that GLP-1R agonists have a hypodipsic effect that is independent of GLP-1R-mediated effects on food intake, and this occurs, in part, through central nervous system GLP-1R activation.

  12. The role of apolipoprotein A-IV in regulating glucagon-like peptide-1 secretion.

    PubMed

    Wang, Fei; Yang, Qing; Huesman, Sarah; Xu, Min; Li, Xiaoming; Lou, Danwen; Woods, Stephen C; Marziano, Corina; Tso, Patrick

    2015-10-15

    Both glucagon-like peptide-1 (GLP-1) and apolipoprotein A-IV (apoA-IV) are produced from the gut and enhance postprandial insulin secretion. This study investigated whether apoA-IV regulates nutrient-induced GLP-1 secretion and whether apoA-IV knockout causes compensatory GLP-1 release. Using lymph-fistula-mice, we first determined lymphatic GLP-1 secretion by administering apoA-IV before an intraduodenal Ensure infusion. apoA-IV changed neither basal nor Ensure-induced GLP-1 secretion relative to saline administration. We then assessed GLP-1 in apoA-IV-/- and wild-type (WT) mice administered intraduodenal Ensure. apoA-IV-/- mice had comparable lymph flow, lymphatic triglyceride, glucose, and protein outputs as WT mice. Intriguingly, apoA-IV-/- mice had higher lymphatic GLP-1 concentration and output than WT mice 30 min after Ensure administration. Increased GLP-1 was also observed in plasma of apoA-IV-/- mice at 30 min. apoA-IV-/- mice had comparable total gut GLP-1 content relative to WT mice under fasting, but a lower GLP-1 content 30 min after Ensure administration, suggesting that more GLP-1 was secreted. Moreover, an injection of apoA-IV protein did not reverse the increased GLP-1 secretion in apoA-IV-/- mice. Finally, we assessed gene expression of GLUT-2 and the lipid receptors, including G protein-coupled receptor (GPR) 40, GPR119, and GPR120 in intestinal segments. GLUT-2, GPR40 and GPR120 mRNAs were unaltered by apoA-IV knockout. However, ileal GPR119 mRNA was significantly increased in apoA-IV-/- mice. GPR119 colocalizes with GLP-1 in ileum and stimulates GLP-1 secretion by sensing OEA, lysophosphatidylcholine, and 2-monoacylglycerols. We suggest that increased ileal GPR119 is a potential mechanism by which GLP-1 secretion is enhanced in apoA-IV-/- mice. PMID:26294669

  13. Glucagon-like peptide 1 decreases lipotoxicity in non-alcoholic steatohepatitis

    PubMed Central

    Armstrong, Matthew J.; Hull, Diana; Guo, Kathy; Barton, Darren; Hazlehurst, Jonathan M.; Gathercole, Laura L.; Nasiri, Maryam; Yu, Jinglei; Gough, Stephen C.; Newsome, Philip N.; Tomlinson, Jeremy W.

    2016-01-01

    Background & Aims Insulin resistance and lipotoxicity are pathognomonic in non-alcoholic steatohepatitis (NASH). Glucagon-like peptide-1 (GLP-1) analogues are licensed for type 2 diabetes, but no prospective experimental data exists in NASH. This study determined the effect of a long-acting GLP-1 analogue, liraglutide, on organ-specific insulin sensitivity, hepatic lipid handling and adipose dysfunction in biopsy-proven NASH. Methods Fourteen patients were randomised to 1.8 mg liraglutide or placebo for 12-weeks of the mechanistic component of a double-blind, randomised, placebo-controlled trial (ClinicalTrials.gov-NCT01237119). Patients underwent paired hyperinsulinaemic euglycaemic clamps, stable isotope tracers, adipose microdialysis and serum adipocytokine/metabolic profiling. In vitro isotope experiments on lipid flux were performed on primary human hepatocytes. Results Liraglutide reduced BMI (−1.9 vs. +0.04 kg/m2; p <0.001), HbA1c (−0.3 vs. +0.3%; p <0.01), cholesterol-LDL (−0.7 vs. +0.05 mmol/L; p <0.01), ALT (−54 vs. −4.0 IU/L; p <0.01) and serum leptin, adiponectin, and CCL-2 (all p <0.05). Liraglutide increased hepatic insulin sensitivity (−9.36 vs. −2.54% suppression of hepatic endogenous glucose production with low-dose insulin; p <0.05). Liraglutide increased adipose tissue insulin sensitivity enhancing the ability of insulin to suppress lipolysis both globally (−24.9 vs. +54.8 pmol/L insulin required to ½ maximally suppress serum non-esterified fatty acids; p <0.05), and specifically within subcutaneous adipose tissue (p <0.05). In addition, liraglutide decreased hepatic de novo lipogenesis in vivo (−1.26 vs. +1.30%; p <0.05); a finding endorsed by the effect of GLP-1 receptor agonist on primary human hepatocytes (24.6% decrease in lipogenesis vs. untreated controls; p <0.01). Conclusions Liraglutide reduces metabolic dysfunction, insulin resistance and lipotoxicity in the key metabolic organs in the pathogenesis of

  14. Positive Allosteric Modulation of the Glucagon-like Peptide-1 Receptor by Diverse Electrophiles.

    PubMed

    Bueno, Ana B; Showalter, Aaron D; Wainscott, David B; Stutsman, Cynthia; Marín, Aranzazu; Ficorilli, James; Cabrera, Over; Willard, Francis S; Sloop, Kyle W

    2016-05-13

    Therapeutic intervention to activate the glucagon-like peptide-1 receptor (GLP-1R) enhances glucose-dependent insulin secretion and improves energy balance in patients with type 2 diabetes mellitus. Studies investigating mechanisms whereby peptide ligands activate GLP-1R have utilized mutagenesis, receptor chimeras, photo-affinity labeling, hydrogen-deuterium exchange, and crystallography of the ligand-binding ectodomain to establish receptor homology models. However, this has not enabled the design or discovery of drug-like non-peptide GLP-1R activators. Recently, studies investigating 4-(3-benzyloxyphenyl)-2-ethylsulfinyl-6-(trifluoromethyl)pyrimidine (BETP), a GLP-1R-positive allosteric modulator, determined that Cys-347 in the GLP-1R is required for positive allosteric modulator activity via covalent modification. To advance small molecule activation of the GLP-1R, we characterized the insulinotropic mechanism of BETP. In guanosine 5'-3-O-(thio)triphosphate binding and INS1 832-3 insulinoma cell cAMP assays, BETP enhanced GLP-1(9-36)-NH2-stimulated cAMP signaling. Using isolated pancreatic islets, BETP potentiated insulin secretion in a glucose-dependent manner that requires both the peptide ligand and GLP-1R. In studies of the covalent mechanism, PAGE fluorography showed labeling of GLP-1R in immunoprecipitation experiments from GLP-1R-expressing cells incubated with [(3)H]BETP. Furthermore, we investigated whether other reported GLP-1R activators and compounds identified from screening campaigns modulate GLP-1R by covalent modification. Similar to BETP, several molecules were found to enhance GLP-1R signaling in a Cys-347-dependent manner. These chemotypes are electrophiles that react with GSH, and LC/MS determined the cysteine adducts formed upon conjugation. Together, our results suggest covalent modification may be used to stabilize the GLP-1R in an active conformation. Moreover, the findings provide pharmacological guidance for the discovery and

  15. Glucagon-like peptide-1 (GLP-1) and glucose metabolism in human myocytes.

    PubMed

    Luque, M A; González, N; Márquez, L; Acitores, A; Redondo, A; Morales, M; Valverde, I; Villanueva-Peñacarrillo, M L

    2002-06-01

    Glucagon-like peptide-1 (GLP-1) has been shown to have insulin-like effects upon the metabolism of glucose in rat liver, muscle and fat, and on that of lipids in rat and human adipocytes. These actions seem to be exerted through specific receptors which, unlike that of the pancreas, are not - at least in liver and muscle - cAMP-associated. Here we have investigated the effect, its characteristics, and possible second messengers of GLP-1 on the glucose metabolism of human skeletal muscle, in tissue strips and primary cultured myocytes. In muscle strips, GLP-1, like insulin, stimulated glycogen synthesis, glycogen synthase a activity, and glucose oxidation and utilization, and inhibited glycogen phosphorylase a activity, all of this at physiological concentrations of the peptide. In cultured myotubes, GLP-1 exerted, from 10(-13) mol/l, a dose-related increase of the D-[U-(14)C]glucose incorporation into glycogen, with the same potency as insulin, together with an activation of glycogen synthase a; the effect of 10(-11) mol/l GLP-1 on both parameters was additive to that induced by the equimolar amount of insulin. Synthase a was still activated in cells after 2 days of exposure to GLP-1, as compared with myotubes maintained in the absence of peptide. In human muscle cells, exendin-4 and its truncated form 9-39 amide (Ex-9) are both agonists of the GLP-1 effect on glycogen synthesis and synthase a activity; but while neither GLP-1 nor exendin-4 affected the cellular cAMP content after 5-min incubation in the absence of 3-isobutyl-1-methylxantine (IBMX), an increase was detected with Ex-9. GLP-1, exendin-4, Ex-9 and insulin all induced the prompt hydrolysis of glycosylphosphatidylinositols (GPIs). This work shows a potent stimulatory effect of GLP-1 on the glucose metabolism of human skeletal muscle, and supports the long-term therapeutic value of the peptide. Further evidence for a GLP-1 receptor in this tissue, different from that of the pancreas, is also illustrated

  16. Positive Allosteric Modulation of the Glucagon-like Peptide-1 Receptor by Diverse Electrophiles*

    PubMed Central

    Showalter, Aaron D.; Wainscott, David B.; Stutsman, Cynthia; Marín, Aranzazu; Ficorilli, James; Cabrera, Over

    2016-01-01

    Therapeutic intervention to activate the glucagon-like peptide-1 receptor (GLP-1R) enhances glucose-dependent insulin secretion and improves energy balance in patients with type 2 diabetes mellitus. Studies investigating mechanisms whereby peptide ligands activate GLP-1R have utilized mutagenesis, receptor chimeras, photo-affinity labeling, hydrogen-deuterium exchange, and crystallography of the ligand-binding ectodomain to establish receptor homology models. However, this has not enabled the design or discovery of drug-like non-peptide GLP-1R activators. Recently, studies investigating 4-(3-benzyloxyphenyl)-2-ethylsulfinyl-6-(trifluoromethyl)pyrimidine (BETP), a GLP-1R-positive allosteric modulator, determined that Cys-347 in the GLP-1R is required for positive allosteric modulator activity via covalent modification. To advance small molecule activation of the GLP-1R, we characterized the insulinotropic mechanism of BETP. In guanosine 5′-3-O-(thio)triphosphate binding and INS1 832-3 insulinoma cell cAMP assays, BETP enhanced GLP-1(9–36)-NH2-stimulated cAMP signaling. Using isolated pancreatic islets, BETP potentiated insulin secretion in a glucose-dependent manner that requires both the peptide ligand and GLP-1R. In studies of the covalent mechanism, PAGE fluorography showed labeling of GLP-1R in immunoprecipitation experiments from GLP-1R-expressing cells incubated with [3H]BETP. Furthermore, we investigated whether other reported GLP-1R activators and compounds identified from screening campaigns modulate GLP-1R by covalent modification. Similar to BETP, several molecules were found to enhance GLP-1R signaling in a Cys-347-dependent manner. These chemotypes are electrophiles that react with GSH, and LC/MS determined the cysteine adducts formed upon conjugation. Together, our results suggest covalent modification may be used to stabilize the GLP-1R in an active conformation. Moreover, the findings provide pharmacological guidance for the discovery and

  17. [Protective effects of glucagon-like peptide-1 on beta-cells: preclinical and clinical data].

    PubMed

    Consoli, Agostino; Di Biagio, Rosamaria

    2011-12-01

    Dipartimento di Medicina Interna e Scienze dell'Invecchiamento, Università degli Studi "G. d'Annunzio", Chieti Continuing b-cell mass and function loss represents the key mechanism for the pathogenesis and the progression of type 2 diabetes mellitus. Drugs capable of arresting b-cell loss and eventually able to bring b-cell function close to be back to normal would then be a formidable help in type 2 diabetes mellitus treatment. The glucagon-like peptide-1 (GLP-1) receptor agonists exenatide and liraglutide can stimulate in vitro neogenesis and prevent apoptosis in b-cell-like cell lines. Consistently, treatment with GLP-1 receptor agonists ameliorates glucose metabolism, preserves b-cell mass and improves b-cell function in several animal models of diabetes. For instance, in the db/db mice, liraglutide protects the b-cell from oxidative stress and endoplasmic reticulum stress-related damage. Data in humans, in vivo, are less definitive and often based on scarcely reliable indexes of b-cell function. However, short-term treatment (14 weeks) with liraglutide increased b-cell maximal response capacity in a dose-response fashion. A longer (1 year) exenatide treatment also was able to increase b-cell maximal response capacity, but the effect was no longer there after a 4-week washout period. However, a marginal, although significant as compared to glargine treatment, improvement in another b-cell function index (disposition index) was observed after a 4-week washout period following 3-year exenatide treatment. Finally, although no clinical trials with a long enough follow-up period are presently available, durable glucose control has been obtained during 2 years of liraglutide treatment in monotherapy. Since the durability of good control is strictly dependent upon a lack of further b-cell function deterioration, these clinical data may foster hope that GLP-1 receptor antagonist treatment might help preserving b-cell function also in individuals affected by type 2

  18. Dual-purpose linker for alpha helix stabilization and imaging agent conjugation to glucagon-like peptide-1 receptor ligands.

    PubMed

    Zhang, Liang; Navaratna, Tejas; Liao, Jianshan; Thurber, Greg M

    2015-02-18

    Peptides display many characteristics of efficient imaging agents such as rapid targeting, fast background clearance, and low non-specific cellular uptake. However, poor stability, low affinity, and loss of binding after labeling often preclude their use in vivo. Using glucagon-like peptide-1 receptor (GLP-1R) ligands exendin and GLP-1 as a model system, we designed a novel α-helix-stabilizing linker to simultaneously address these limitations. The stabilized and labeled peptides showed an increase in helicity, improved protease resistance, negligible loss or an improvement in binding affinity, and excellent in vivo targeting. The ease of incorporating azidohomoalanine in peptides and efficient reaction with the dialkyne linker enable this technique to potentially be used as a general method for labeling α helices. This strategy should be useful for imaging beta cells in diabetes research and in developing and testing other peptide targeting agents. PMID:25594741

  19. Multifunctional Antibody Agonists Targeting Glucagon-like Peptide-1, Glucagon, and Glucose-Dependent Insulinotropic Polypeptide Receptors.

    PubMed

    Wang, Ying; Du, Jintang; Zou, Huafei; Liu, Yan; Zhang, Yuhan; Gonzalez, Jose; Chao, Elizabeth; Lu, Lucy; Yang, Pengyu; Parker, Holly; Nguyen-Tran, Van; Shen, Weijun; Wang, Danling; Schultz, Peter G; Wang, Feng

    2016-09-26

    Glucagon-like peptide-1 (GLP-1) receptor (GLP-1R), glucagon (GCG) receptor (GCGR), and glucose-dependent insulinotropic polypeptide (GIP, also known as gastric inhibitory polypeptide) receptor (GIPR), are three metabolically related peptide hormone receptors. A novel approach to the generation of multifunctional antibody agonists that activate these receptors has been developed. Native or engineered peptide agonists for GLP-1R, GCGR, and GIPR were fused to the N-terminus of the heavy chain or light chain of an antibody, either alone or in pairwise combinations. The fusion proteins have similar in vitro biological activities on the cognate receptors as the corresponding peptides, but circa 100-fold longer plasma half-lives. The GLP-1R mono agonist and GLP-1R/GCGR dual agonist antibodies both exhibit potent effects on glucose control and body weight reduction in mice, with the dual agonist antibody showing enhanced activity in the latter. PMID:27595986

  20. [The physiology of glucagon-like peptide-1 and its role in the pathophysiology of type 2 diabetes mellitus].

    PubMed

    Escalada, Francisco Javier

    2014-09-01

    The hormone glucagon-like peptide-1 (GLP-1) is synthesized and secreted by L cells in the small intestine in response to food ingestion. After reaching the general circulation it has a half-life of 2-3 minutes due to degradation by the enzyme dipeptidyl peptidase-4. Its physiological role is directed to control plasma glucose concentration, though GLP-1 also plays other different metabolic functions following nutrient absorption. Biological activities of GLP-1 include stimulation of insulin biosynthesis and glucose-dependent insulin secretion by pancreatic beta cell, inhibition of glucagon secretion, delay of gastric emptying and inhibition of food intake. GLP-1 is able to reduce plasma glucose levels in patients with type 2 diabetes and also can restore beta cell sensitivity to exogenous secretagogues, suggesting that the increasing GLP-1 concentration may be an useful therapeutic strategy for the treatment of patients with type 2 diabetes.

  1. [The physiology of glucagon-like peptide-1 and its role in the pathophysiology of type 2 diabetes mellitus].

    PubMed

    Escalada, Francisco Javier

    2014-01-01

    The hormone glucagon-like peptide-1 (GLP-1) is synthesized and secreted by L cells in the small intestine in response to food ingestion. After reaching the general circulation it has a half-life of 2-3 minutes due to degradation by the enzyme dipeptidyl peptidase-4. Its physiological role is directed to control plasma glucose concentration, though GLP-1 also plays other different metabolic functions following nutrient absorption. Biological activities of GLP-1 include stimulation of insulin biosynthesis and glucose-dependent insulin secretion by pancreatic beta cell, inhibition of glucagon secretion, delay of gastric emptying and inhibition of food intake. GLP-1 is able to reduce plasma glucose levels in patients with type 2 diabetes and also can restore beta cell sensitivity to exogenous secretagogues, suggesting that the increasing GLP-1 concentration may be an useful therapeutic strategy for the treatment of patients with type 2 diabetes.

  2. [The physiology of glucagon-like peptide-1 and its role in the pathophysiology of type 2 diabetes mellitus].

    PubMed

    Escalada, Francisco Javier

    2014-01-01

    The hormone glucagon-like peptide-1 (GLP-1) is synthesized and secreted by L cells in the small intestine in response to food ingestion. After reaching the general circulation it has a half-life of 2-3 minutes due to degradation by the enzyme dipeptidyl peptidase-4. Its physiological role is directed to control plasma glucose concentration, though GLP-1 also plays other different metabolic functions following nutrient absorption. Biological activities of GLP-1 include stimulation of insulin biosynthesis and glucose-dependent insulin secretion by pancreatic beta cell, inhibition of glucagon secretion, delay of gastric emptying and inhibition of food intake. GLP-1 is able to reduce plasma glucose levels in patients with type 2 diabetes and also can restore beta cell sensitivity to exogenous secretagogues, suggesting that the increasing GLP-1 concentration may be an useful therapeutic strategy for the treatment of patients with type 2 diabetes. PMID:25326836

  3. [The physiology of glucagon-like peptide-1 and its role in the pathophysiology of type 2 diabetes mellitus].

    PubMed

    Escalada, Francisco Javier

    2014-09-01

    The hormone glucagon-like peptide-1 (GLP-1) is synthesized and secreted by L cells in the small intestine in response to food ingestion. After reaching the general circulation it has a half-life of 2-3 minutes due to degradation by the enzyme dipeptidyl peptidase-4. Its physiological role is directed to control plasma glucose concentration, though GLP-1 also plays other different metabolic functions following nutrient absorption. Biological activities of GLP-1 include stimulation of insulin biosynthesis and glucose-dependent insulin secretion by pancreatic beta cell, inhibition of glucagon secretion, delay of gastric emptying and inhibition of food intake. GLP-1 is able to reduce plasma glucose levels in patients with type 2 diabetes and also can restore beta cell sensitivity to exogenous secretagogues, suggesting that the increasing GLP-1 concentration may be an useful therapeutic strategy for the treatment of patients with type 2 diabetes. PMID:25437458

  4. Molecular Characterisation of Small Molecule Agonists Effect on the Human Glucagon Like Peptide-1 Receptor Internalisation

    PubMed Central

    Thompson, Aiysha; Stephens, Jeffrey W.; Bain, Stephen C.

    2016-01-01

    The glucagon-like peptide receptor (GLP-1R), which is a G-protein coupled receptor (GPCR), signals through both Gαs and Gαq coupled pathways and ERK phosphorylation to stimulate insulin secretion. The aim of this study was to determine molecular details of the effect of small molecule agonists, compounds 2 and B, on GLP-1R mediated cAMP production, intracellular Ca2+ accumulation, ERK phosphorylation and its internalisation. In human GLP-1R (hGLP-1R) expressing cells, compounds 2 and B induced cAMP production but caused no intracellular Ca2+ accumulation, ERK phosphorylation or hGLP-1R internalisation. GLP-1 antagonists Ex(9–39) and JANT-4 and the orthosteric binding site mutation (V36A) in hGLP-1R failed to inhibit compounds 2 and B induced cAMP production, confirming that their binding site distinct from the GLP-1 binding site on GLP-1R. However, K334A mutation of hGLP-1R, which affects Gαs coupling, inhibited GLP-1 as well as compounds 2 and B induced cAMP production, indicating that GLP-1, compounds 2 and B binding induce similar conformational changes in the GLP-1R for Gαs coupling. Additionally, compound 2 or B binding to the hGLP-1R had significantly reduced GLP-1 induced intracellular Ca2+ accumulation, ERK phosphorylation and hGLP-1R internalisation. This study illustrates pharmacology of differential activation of GLP-1R by GLP-1 and compounds 2 and B. PMID:27100083

  5. The insulinotropic effect of exogenous glucagon-like peptide-1 is not affected by acute vagotomy in anaesthetized pigs.

    PubMed

    Veedfald, Simon; Hansen, Marie; Christensen, Louise Wulff; Larsen, Sara Agnete Hjort; Hjøllund, Karina Rahr; Plamboeck, Astrid; Hartmann, Bolette; Deacon, Carolyn Fiona; Holst, Jens Juul

    2016-07-01

    What is the central question of this study? We investigated whether intestinal vagal afferents are necessary for the insulinotropic effect of glucagon-like peptide-1 (GLP-1) infused into a mesenteric artery or a peripheral vein before and after acute truncal vagotomy. What is the main finding and its importance? We found no effect of truncal vagotomy on the insulinotropic effect of exogenous GLP-1 and speculate that high circulating concentrations of GLP-1 after i.v. and i.a. infusion might have overshadowed any neural signalling component. We propose that further investigations into the possible vagal afferent signalling of GLP-1 would best be pursued using enteral stimuli to provide high subepithelial levels of endogenous GLP-1. Glucagon-like peptide 1 (GLP-1) is secreted from the gut in response to luminal stimuli and stimulates insulin secretion in a glucose-dependent manner. As a result of rapid enzymatic degradation of GLP-1 by dipeptidyl peptidase-4, a signalling pathway involving activation of intestinal vagal afferents has been proposed. We conducted two series of experiments in α-chloralose-anaesthetized pigs. In protocol I, pigs (n = 14) were allocated for either i.v. or i.a. (mesenteric) GLP-1 infusions (1 and 2 pmol kg(-1)  min(-1) , 30 min) while maintaining permissive glucose concentrations at 6 mmol l(-1) by i.v. glucose infusion. The GLP-1 infusions were repeated after acute truncal vagotomy. In protocol II, pigs (n = 27) were allocated into six groups. Glucagon-like peptide 1 was infused i.v. or i.a. (mesenteric) for 1 h at 3 or 30 pmol kg(-1)  min(-1) . During the steady state (21 min into the GLP-1 infusion), glucose (0.2 g kg(-1) , i.v.) was administered over 9 min to stimulate β-cell secretion. Thirty minutes after the glucose infusion, GLP-1 infusions were discontinued. Following a washout period, the vagal trunks were severed in four of six groups (vagal trunks were left intact in two of six groups), whereupon all

  6. The glucagon-like peptide 1 receptor agonist enhances intrinsic peroxisome proliferator-activated receptor γ activity in endothelial cells

    SciTech Connect

    Onuma, Hirohisa; Inukai, Kouichi Kitahara, Atsuko; Moriya, Rie; Nishida, Susumu; Tanaka, Toshiaki; Katsuta, Hidenori; Takahashi, Kazuto; Sumitani, Yoshikazu; Hosaka, Toshio; Ishida, Hitoshi

    2014-08-22

    Highlights: • PPARγ activation was involved in the GLP-1-mediated anti-inflammatory action. • Exendin-4 enhanced endogenous PPARγ transcriptional activity in HUVECs. • H89, a PKA inhibitor, abolished GLP-1-induced PPARγ enhancement. • The anti-inflammatory effects of GLP-1 may be explained by PPARγ activation. - Abstract: Recent studies have suggested glucagon-like peptide-1 (GLP-1) signaling to exert anti-inflammatory effects on endothelial cells, although the precise underlying mechanism remains to be elucidated. In the present study, we investigated whether PPARγ activation is involved in the GLP-1-mediated anti-inflammatory action on endothelial cells. When we treated HUVEC cells with 0.2 ng/ml exendin-4, a GLP-1 receptor agonist, endogenous PPARγ transcriptional activity was significantly elevated, by approximately 20%, as compared with control cells. The maximum PPARγ activity enhancing effect of exendin-4 was observed 12 h after the initiation of incubation with exendin-4. As H89, a PKA inhibitor, abolished GLP-1-induced PPARγ enhancement, the signaling downstream from GLP-1 cross-talk must have been involved in PPARγ activation. In conclusion, our results suggest that GLP-1 has the potential to induce PPARγ activity, partially explaining the anti-inflammatory effects of GLP-1 on endothelial cells. Cross-talk between GLP-1 signaling and PPARγ activation would have major impacts on treatments for patients at high risk for cardiovascular disease.

  7. Spergularia marina Induces Glucagon-Like Peptide-1 Secretion in NCI-H716 Cells Through Bile Acid Receptor Activation

    PubMed Central

    Kim, Kyong; Lee, Yu Mi; Rhyu, Mee-Ra

    2014-01-01

    Abstract Spergularia marina Griseb. (SM) is a halophyte that grows in mud flats. The aerial portions of SM have been eaten as vegetables and traditionally used to prevent chronic diseases in Korea. However, there has been no scientific report that demonstrates the pharmacological effects of SM. Glucagon-like peptide-1 (GLP-1) is important for the maintenance of glucose and energy homeostasis through acting as a signal in peripheral and neural systems. To discover a functional food for regulating glucose and energy homeostasis, we evaluated the effect of an aqueous ethanolic extract (AEE) of SM on GLP-1 release from enteroendocrine NCI-H716 cells. In addition, we explored the Takeda G-protein-coupled receptor 5 (TGR5) agonist activity of AEE-SM in Chinese hamster ovary (CHO)-K1 cells transiently transfected with human TGR5. As a result, treatment of NCI-H716 cells with AEE-SM increased GLP-1 secretion and intracellular Ca2+ and cyclic AMP (cAMP) levels in a dose-dependent manner. Transfection of NCI-H716 cells with TGR5-specific small interference RNA inhibited AEE-SM-induced GLP-1 secretion and the increase in Ca2+ and cAMP levels. Moreover, AEE-SM showed that the TGR5 agonist activity in CHO-K1 cells transiently transfected with TGR5. The results suggest that AEE-SM might be a candidate for a functional food to regulate glucose and energy homeostasis. PMID:25260089

  8. Glucagon-like peptide-1 receptor agonists in the treatment of type 2 diabetes: Past, present, and future

    PubMed Central

    Kalra, Sanjay; Baruah, Manash P.; Sahay, Rakesh K.; Unnikrishnan, Ambika Gopalakrishnan; Uppal, Shweta; Adetunji, Omolara

    2016-01-01

    Glucagon-like peptide-1 (GLP-1)–based therapy improves glycaemic control through multiple mechanisms, with a low risk of hypoglycaemia and the additional benefit of clinically relevant weight loss. Since Starling and Bayliss first proposed the existence of intestinal secretions that stimulate the pancreas, tremendous progress has been made in the area of incretins. As a number of GLP-1 receptor agonists (GLP-1 RAs) continue to become available, physicians will soon face the challenge of selecting the right option customized to their patient's needs. The following discussion, derived from an extensive literature search using the PubMed database, applying the terms incretin, GLP-1, exenatide, liraglutide, albiglutide, dulaglutide, lixisenatide, semaglutide, and taspoglutide, provides a comprehensive review of existing and upcoming molecules in the GLP-1 RA class in terms of their structure, pharmacological profiles, efficacy, safety, and convenience. Search Methodology: A literature search was conducted using the PubMed database, applying the terms incretin, GLP-1, exenatide, liraglutide, albiglutide, dulaglutide, lixisenatide, semaglutide, and taspoglutide. Relevant articles were those that discussed structural, pharmacokinetic and pharmacodynamic differences, classification, long-acting and short-acting GLP-1 RAs, phase 3 trials, and expert opinions. Additional targeted searches were conducted on diabetes treatment guidelines and reviews on safety, as well as the American Diabetes Association/European Society for Study of Diabetes (ADA/EASD) statement on pancreatic safety. PMID:27042424

  9. An Emerging Role of Glucagon-Like Peptide-1 in Preventing Advanced-Glycation-End-Product-Mediated Damages in Diabetes

    PubMed Central

    Puddu, Alessandra; Mach, François; Nencioni, Alessio; Viviani, Giorgio Luciano; Montecucco, Fabrizio

    2013-01-01

    Glucagon-like peptide-1 (GLP-1) is a gut hormone produced in the intestinal epithelial endocrine L cells by differential processing of the proglucagon gene. Released in response to the nutrient ingestion, GLP-1 plays an important role in maintaining glucose homeostasis. GLP-1 has been shown to regulate blood glucose levels by stimulating glucose-dependent insulin secretion and inhibiting glucagon secretion, gastric emptying, and food intake. These antidiabetic activities highlight GLP-1 as a potential therapeutic molecule in the clinical management of type 2 diabetes, (a disease characterized by progressive decline of beta-cell function and mass, increased insulin resistance, and final hyperglycemia). Since chronic hyperglycemia contributed to the acceleration of the formation of Advanced Glycation End-Products (AGEs, a heterogeneous group of compounds derived from the nonenzymatic reaction of reducing sugars with free amino groups of proteins implicated in vascular diabetic complications), the administration of GLP-1 might directly counteract diabetes pathophysiological processes (such as pancreatic β-cell dysfunction). This paper outlines evidence on the protective role of GLP-1 in preventing the deleterious effects mediated by AGEs in type 2 diabetes. PMID:23365488

  10. Neuroendocrine function and response to stress in mice with complete disruption of glucagon-like peptide-1 receptor signaling.

    PubMed

    MacLusky, N J; Cook, S; Scrocchi, L; Shin, J; Kim, J; Vaccarino, F; Asa, S L; Drucker, D J

    2000-02-01

    Glucagon-like peptide-1 (GLP-1), a potent regulator of glucose homeostasis, is also produced in the central nervous system, where GLP-1 has been implicated in the neuroendocrine control of hypothalamic-pituitary function, food intake, and the response to stress. The finding that intracerebroventricular GLP-1 stimulates LH, TSH, corticosterone, and vasopressin secretion in rats prompted us to assess the neuroendocrine consequences of disrupting GLP-1 signaling in mice in vivo. Male GLP-1 receptor knockout (GLP-1R-/-) mice exhibit reduced gonadal weights, and females exhibit a slight delay in the onset of puberty; however, male and female GLP-1R-/- animals reproduce successfully and respond appropriately to fluid restriction. Although adrenal weights are reduced in GLP-1R-/- mice, hypothalamic CRH gene expression and circulating levels of corticosterone, thyroid hormone, testosterone, estradiol, and progesterone are normal in the absence of GLP-1R-/- signaling. Intriguingly, GLP-1R-/- mice exhibit paradoxically increased corticosterone responses to stress as well as abnormal responses to acoustic startle that are corrected by glucocorticoid treatment. These findings suggest that although GLP-1R signaling is not essential for development and basal function of the murine hypothalamic-pituitary-adrenal axis, abrogation of GLP-1 signaling is associated with impairment of the behavioral and neuroendocrine responses to stress.

  11. Glucagon-like peptide-1 receptor agonist therapeutics for total diabetes management: assessment of composite end-points.

    PubMed

    Yabe, Daisuke; Kuwata, Hitoshi; Usui, Ryota; Kurose, Takeshi; Seino, Yutaka

    2015-01-01

    Assessment of the benefits of anti-diabetic drugs for type 2 diabetes requires analysis of composite end-points, taking HbA1c, bodyweight, hypoglycemia and other metabolic parameters into consideration; continuous, optimal glycemic control as well as bodyweight, blood pressure and lipid levels are critical to prevent micro- and macro-vascular complications. Glucagon-like peptide-1 receptor agonists (GLP-1RAs) are now established as an important total treatment strategy for type 2 diabetes, exerting glucose-lowering effects with little hypoglycemia risk and also ameliorating bodyweight, blood pressure and lipid levels, which are therapeutic targets for prevention of complications of the disease. The available data strongly suggest only beneficial effects of GLP-1RAs; however, long-term evaluation of the relevant composite end-points including health-related quality of life and cost-effectiveness remain to be investigated in adequately powered, prospective, controlled clinical trials. In the meantime, healthcare professionals need to be scrupulously attentive for potential, rare adverse events in patients using GLP-1RAs. PMID:25916903

  12. The glucagon-like peptide 1 (GLP-1) receptor agonist exendin-4 reduces cocaine self-administration in mice.

    PubMed

    Sørensen, Gunnar; Reddy, India A; Weikop, Pia; Graham, Devon L; Stanwood, Gregg D; Wortwein, Gitta; Galli, Aurelio; Fink-Jensen, Anders

    2015-10-01

    Glucagon-like peptide 1 (GLP-1) analogues are used for the treatment of type 2 diabetes. The ability of the GLP-1 system to decrease food intake in rodents has been well described and parallels results from clinical trials. GLP-1 receptors are expressed in the brain, including within the ventral tegmental area (VTA) and the nucleus accumbens (NAc). Dopaminergic neurons in the VTA project to the NAc, and these neurons play a pivotal role in the rewarding effects of drugs of abuse. Based on the anatomical distribution of GLP-1 receptors in the brain and the well-established effects of GLP-1 on food reward, we decided to investigate the effect of the GLP-1 analogue exendin-4 on cocaine- and dopamine D1-receptor agonist-induced hyperlocomotion, on acute and chronic cocaine self-administration, on cocaine-induced striatal dopamine release in mice and on cocaine-induced c-fos activation. Here, we report that GLP-1 receptor stimulation reduces acute and chronic cocaine self-administration and attenuates cocaine-induced hyperlocomotion. In addition, we show that peripheral administration of exendin-4 reduces cocaine-induced elevation of striatal dopamine levels and striatal c-fos expression implicating central GLP-1 receptors in these responses. The present results demonstrate that the GLP-1 system modulates cocaine's effects on behavior and dopamine homeostasis, indicating that the GLP-1 receptor may be a novel target for the pharmacological treatment of drug addiction.

  13. Subthreshold α₂-adrenergic activation counteracts glucagon-like peptide-1 potentiation of glucose-stimulated insulin secretion.

    PubMed

    Pan, Minglin; Yang, Guang; Cui, Xiuli; Yang, Shao-Nian

    2011-01-01

    The pancreatic β cell harbors α₂-adrenergic and glucagon-like peptide-1 (GLP-1) receptors on its plasma membrane to sense the corresponding ligands adrenaline/noradrenaline and GLP-1 to govern glucose-stimulated insulin secretion. However, it is not known whether these two signaling systems interact to gain the adequate and timely control of insulin release in response to glucose. The present work shows that the α₂-adrenergic agonist clonidine concentration-dependently depresses glucose-stimulated insulin secretion from INS-1 cells. On the contrary, GLP-1 concentration-dependently potentiates insulin secretory response to glucose. Importantly, the present work reveals that subthreshold α₂-adrenergic activation with clonidine counteracts GLP-1 potentiation of glucose-induced insulin secretion. This counteractory process relies on pertussis toxin- (PTX-) sensitive Gi proteins since it no longer occurs following PTX-mediated inactivation of Gi proteins. The counteraction of GLP-1 potentiation of glucose-stimulated insulin secretion by subthreshold α₂-adrenergic activation is likely to serve as a molecular mechanism for the delicate regulation of insulin release.

  14. Function and expression of sulfonylurea, adrenergic, and glucagon-like peptide 1 receptors in isolated porcine islets.

    PubMed

    Kelly, Amy C; Steyn, Leah V; Kitzmann, Jenna P; Anderson, Miranda J; Mueller, Kate R; Hart, Nathaniel J; Lynch, Ronald M; Papas, Klearchos K; Limesand, Sean W

    2014-01-01

    The scarcity of human cadaveric pancreata limits large-scale application of islet transplantation for patients with diabetes. Islets isolated from pathogen-free pigs provide an economical and abundant alternative source assuming immunologic barriers are appropriate. Membrane receptors involved in insulin secretion that also have potential as imaging targets were investigated in isolated porcine islets. Quantitative (q)PCR revealed that porcine islets express mRNA transcripts for sulfonylurea receptor 1 (Sur1), inward rectifying potassium channel (Kir6.2, associated with Sur1), glucagon-like peptide 1 receptor (GLP1R), and adrenergic receptor alpha 2A (ADRα2A). Receptor function was assessed in static incubations with stimulatory glucose concentrations, and in the presence of receptor agonists. Glibenclamide, an anti-diabetic sulfonylurea, and exendin-4, a GLP-1 mimetic, potentiated glucose-stimulated insulin secretion >2-fold. Conversely, epinephrine maximally reduced insulin secretion 72 ± 9% (P < 0.05) and had a half maximal inhibitory concentration of 60 nm in porcine islets (95% confidence interval of 45-830 nm). The epinephrine action was inhibited by the ADRα2A antagonist yohimbine. Our findings demonstrate that porcine islets express and are responsive to both stimulatory and inhibitory membrane localized receptors, which can be used as imaging targets after transplantation or to modify insulin secretion.

  15. Glucagon-like peptide 1 induces natriuresis in healthy subjects and in insulin-resistant obese men.

    PubMed

    Gutzwiller, Jean-Pierre; Tschopp, Stefan; Bock, Andreas; Zehnder, Carlos E; Huber, Andreas R; Kreyenbuehl, Monika; Gutmann, Heike; Drewe, Jürgen; Henzen, Christoph; Goeke, Burkhard; Beglinger, Christoph

    2004-06-01

    Glucagon-like peptide-1-(7-36)-amide (GLP-1) is involved in satiety control and glucose homeostasis. Animal studies suggest a physiological role for GLP-1 in water and salt homeostasis. This study's aim was to define the effects of GLP-1 on water and sodium excretion in both healthy and obese men. Fifteen healthy subjects and 16 obese men (mean body mass index, 36 kg/m2) were examined in a double-blind, placebo-controlled, crossover study to demonstrate the effects of a 3-h infusion of GLP-1 on urinary sodium excretion, urinary output, and the glomerular filtration rate after an i.v. 9.9-g salt load. Infusion of GLP-1 evoked a dose-dependent increase in urinary sodium excretion in healthy subjects (from 74 +/- 8 to 143 +/- 18 mmol/180 min, P = 0.0013). In obese men, there was a significant increase in urinary sodium excretion (from 59 to 96 mmol/180 min, P = 0.015), a decrease in urinary H+ secretion (from 1.1 to 0.3 pmol/180 min, P = 0.013), and a 6% decrease in the glomerular filtration rate (from 151 +/- 8 to 142 +/- 8 ml/min, P = 0.022). Intravenous infusions of GLP-1 enhance sodium excretion, reduce H+ secretion, and reduce glomerular hyperfiltration in obese men. These findings suggest an action at the proximal renal tubule and a potential renoprotective effect.

  16. Glucagon-like peptide-1 inhibits angiotensin II-induced mesangial cell damage via protein kinase A.

    PubMed

    Ishibashi, Yuji; Matsui, Takanori; Ojima, Ayako; Nishino, Yuri; Nakashima, Sae; Maeda, Sayaka; Yamagishi, Sho-ichi

    2012-11-01

    There is a growing body of evidence that renin-angiotensin system plays a role in diabetic nephropathy. Recently, we have found that glucagon-like peptide-1 (GLP-1), one of the incretins, a gut hormone secreted from L cells in the intestine in response to food intake, inhibits advanced glycation end product-induced monocyte chemoattractant protein-1 gene expression in mesangial cells thorugh the interaction with the receptor of GLP-1. However, effects of GLP-1 on angiotensin II-exposed mesangial cells are unknown. This study investigated whether and how GLP-1 blocked the angiotensin II-induced mesangial cell damage in vitro. GLP-1 completely blocked the angiotensin II-induced superoxide generation, NF-κB activation, up-regulation of mRNA levels of intercellular adhesion molecule-1 and plasminogen activator inhibitor-1 in mesangial cells, all of which were prevented by the treatments with H-89, an inhibitor of protein kinase A. The present results demonstrated for the first time that GLP-1 blocked the angiotensin II-induced mesangial cell injury by inhibiting superoxide-mediated NF-κB activation via protein kinase C pathway. Our present study suggests that strategies to enhance the biological actions of GLP-1 may be a promising strategy for the treatment of diabetic nephropathy.

  17. Glucagon Like Peptide-1 Promotes Adipocyte Differentiation via the Wnt4 Mediated Sequestering of Beta-Catenin.

    PubMed

    Liu, Rui; Li, Na; Lin, Yi; Wang, Mei; Peng, Yongde; Lewi, Keidren; Wang, Qinghua

    2016-01-01

    Glucagon-like peptide-1 (GLP-1) plays a role in the regulation of adipogenesis; however, the precise underlying molecular mechanism has not been fully defined. Wnt was recently identified as an important regulator of adipogenesis. This study aimed to investigate the involvement of the Wnt signaling pathway in the effects of GLP-1 on adipocyte differentiation. 3T3-L1 cells were induced to differentiate. The changes in the expression levels of adipogenic transcription factors and Wnts and the phosphorylation level and subcellular localization of β-catenin were quantified after GLP-1 treatment. GLP-1 stimulated adipocyte differentiation and lipid accumulation, which were accompanied by the expression of adipocyte marker genes. The expression of Wnt4 was upregulated in the process of adipocyte differentiation, which was further enhanced by treatment with GLP-1. β-catenin, an important mediator of the Wnt pathway, was immediately dephosphorylated and translocated from cytoplasm to nucleus when differentiation was induced. In the presence of GLP-1, however, β-catenin was redirected to the cell plasma membrane leading to its decreased accumulation in the nucleus. Knockdown of Wnt4 blocked the effect of GLP-1 on the cellular localization of β-catenin and expression level of adipogenic transcription factors. Our findings showed that GLP-1 promoted adipogenesis through the modulation of the Wnt4/β-catenin signaling pathway, suggesting that the GLP-1-Wntβ-catenin system might be a new target for the treatment of metabolic disease. PMID:27504979

  18. The inactivation of extracellular signal-regulated kinase by glucagon-like peptide-1 contributes to neuroprotection against oxidative stress.

    PubMed

    Nakajima, Shingo; Numakawa, Tadahiro; Adachi, Naoki; Yoon, Hyung Shin; Odaka, Haruki; Ooshima, Yoshiko; Kunugi, Hiroshi

    2016-03-11

    Glucagon-like peptide-1 (GLP-1), an insulinotropic peptide secreted from enteroendocrine cells, has been known to have a neuroprotective effect. However, it is not fully understood the intracellular mediator of GLP-1 signaling in neuronal cells. In the present study, we examined the change in intracellular signaling of cortical neurons after GLP-1 application and luminal glucose stimulation in vitro and in vivo. GLP-1 receptor was highly expressed in cultured cortical neurons and brain tissues including the prefrontal cortex and hippocampus. The activation of GLP-1 receptor (5min) significantly decreased levels of phosphorylated extracellular signal-regulated kinase (pERK), which is involved in neuronal cell survival and death, in cultured cortical neurons. Oral glucose administration also rapidly reduced pERK levels in the prefrontal cortex, while intraperitoneal glucose injection did not show such an effect. Further, GLP-1 attenuated hydrogen peroxide-induced cell death and hyperactivity of ERK in cultured cortical neurons. It is possible that increased GLP-1 by luminal glucose stimulation affects cortical system including the maintenance of neuronal cell survival. PMID:26827720

  19. Selective targeting of glucagon-like peptide-1 signalling as a novel therapeutic approach for cardiovascular disease in diabetes

    PubMed Central

    Tate, Mitchel; Chong, Aaron; Robinson, Emma; Green, Brian D; Grieve, David J

    2015-01-01

    Glucagon-like peptide-1 (GLP-1) is an incretin hormone whose glucose-dependent insulinotropic actions have been harnessed as a novel therapy for glycaemic control in type 2 diabetes. Although it has been known for some time that the GLP-1 receptor is expressed in the CVS where it mediates important physiological actions, it is only recently that specific cardiovascular effects of GLP-1 in the setting of diabetes have been described. GLP-1 confers indirect benefits in cardiovascular disease (CVD) under both normal and hyperglycaemic conditions via reducing established risk factors, such as hypertension, dyslipidaemia and obesity, which are markedly increased in diabetes. Emerging evidence indicates that GLP-1 also exerts direct effects on specific aspects of diabetic CVD, such as endothelial dysfunction, inflammation, angiogenesis and adverse cardiac remodelling. However, the majority of studies have employed experimental models of diabetic CVD and information on the effects of GLP-1 in the clinical setting is limited, although several large-scale trials are ongoing. It is clearly important to gain a detailed knowledge of the cardiovascular actions of GLP-1 in diabetes given the large number of patients currently receiving GLP-1-based therapies. This review will therefore discuss current understanding of the effects of GLP-1 on both cardiovascular risk factors in diabetes and direct actions on the heart and vasculature in this setting and the evidence implicating specific targeting of GLP-1 as a novel therapy for CVD in diabetes. PMID:25231355

  20. Dietary Mannoheptulose Increases Fasting Serum Glucagon Like Peptide-1 and Post-Prandial Serum Ghrelin Concentrations in Adult Beagle Dogs.

    PubMed

    McKnight, Leslie L; Eyre, Ryan; Gooding, Margaret A; Davenport, Gary M; Shoveller, Anna Kate

    2015-01-01

    There is a growing interest in the use of nutraceuticals for weight management in companion animals. The purpose of this study was to determine the effects of mannoheptulose (MH), a sugar in avocados that inhibits glycolysis, on energy metabolism in adult Beagle dogs. The study was a double-blind, randomized controlled trial where dogs were allocated to a control (CON, n = 10, 10.1 ± 0.4 kg) or MH containing diet (168 mg/kg, n = 10, 10.3 ± 0.4 kg). Blood was collected after an overnight fast and 1 h post-feeding (week 12) to determine serum satiety related hormones and biochemistry. Resting and post-prandial energy expenditure and respiratory quotient were determined by indirect calorimetry (weeks 4 and 8). Physical activity was measured using an accelerometer (weeks 3, 7, 11). Body composition was assessed using dual X-ray absorptiometry (week 12). MH significantly (p < 0.05) increased fasting serum glucagon-like peptide-1 and post-prandial serum ghrelin. MH tended (p < 0.1) to increase fasting serum gastric inhibitory peptide and decrease physical activity. Together, these findings suggest that dietary MH has the ability to promote satiation and lowers daily energy expenditure. PMID:26479244

  1. Glucagon Like Peptide-1 Promotes Adipocyte Differentiation via the Wnt4 Mediated Sequestering of Beta-Catenin

    PubMed Central

    Liu, Rui; Li, Na; Lin, Yi; Wang, Mei; Peng, Yongde; Lewi, Keidren; Wang, Qinghua

    2016-01-01

    Glucagon-like peptide-1 (GLP-1) plays a role in the regulation of adipogenesis; however, the precise underlying molecular mechanism has not been fully defined. Wnt was recently identified as an important regulator of adipogenesis. This study aimed to investigate the involvement of the Wnt signaling pathway in the effects of GLP-1 on adipocyte differentiation. 3T3-L1 cells were induced to differentiate. The changes in the expression levels of adipogenic transcription factors and Wnts and the phosphorylation level and subcellular localization of β-catenin were quantified after GLP-1 treatment. GLP-1 stimulated adipocyte differentiation and lipid accumulation, which were accompanied by the expression of adipocyte marker genes. The expression of Wnt4 was upregulated in the process of adipocyte differentiation, which was further enhanced by treatment with GLP-1. β-catenin, an important mediator of the Wnt pathway, was immediately dephosphorylated and translocated from cytoplasm to nucleus when differentiation was induced. In the presence of GLP-1, however, β-catenin was redirected to the cell plasma membrane leading to its decreased accumulation in the nucleus. Knockdown of Wnt4 blocked the effect of GLP-1 on the cellular localization of β-catenin and expression level of adipogenic transcription factors. Our findings showed that GLP-1 promoted adipogenesis through the modulation of the Wnt4/β-catenin signaling pathway, suggesting that the GLP-1-Wntβ-catenin system might be a new target for the treatment of metabolic disease. PMID:27504979

  2. Transient Receptor Potential Vanilloid 1 Activation Enhances Gut Glucagon-Like Peptide-1 Secretion and Improves Glucose Homeostasis

    PubMed Central

    Wang, Peijian; Yan, Zhencheng; Zhong, Jian; Chen, Jing; Ni, Yinxing; Li, Li; Ma, Liqun; Zhao, Zhigang; Liu, Daoyan; Zhu, Zhiming

    2012-01-01

    Type 2 diabetes mellitus (T2DM) is rapidly prevailing as a serious global health problem. Current treatments for T2DM may cause side effects, thus highlighting the need for newer and safer therapies. We tested the hypothesis that dietary capsaicin regulates glucose homeostasis through the activation of transient receptor potential vanilloid 1 (TRPV1)-mediated glucagon-like peptide-1 (GLP-1) secretion in the intestinal cells and tissues. Wild-type (WT) and TRPV1 knockout (TRPV1−/−) mice were fed dietary capsaicin for 24 weeks. TRPV1 was localized in secretin tumor cell-1 (STC-1) cells and ileum. Capsaicin stimulated GLP-1 secretion from STC-1 cells in a calcium-dependent manner through TRPV1 activation. Acute capsaicin administration by gastric gavage increased GLP-1 and insulin secretion in vivo in WT but not in TRPV1−/− mice. Furthermore, chronic dietary capsaicin not only improved glucose tolerance and increased insulin levels but also lowered daily blood glucose profiles and increased plasma GLP-1 levels in WT mice. However, this effect was absent in TRPV1−/− mice. In db/db mice, TRPV1 activation by dietary capsaicin ameliorated abnormal glucose homeostasis and increased GLP-1 levels in the plasma and ileum. The present findings suggest that TRPV1 activation–stimulated GLP-1 secretion could be a promising approach for the intervention of diabetes. PMID:22664955

  3. Glucagon-like peptide-1 receptor stimulation increases blood pressure and heart rate and activates autonomic regulatory neurons

    PubMed Central

    Yamamoto, Hiroshi; Lee, Charlotte E.; Marcus, Jacob N.; Williams, Todd D.; Overton, J. Michael; Lopez, Marisol E.; Hollenberg, Anthony N.; Baggio, Laurie; Saper, Clifford B.; Drucker, Daniel J.; Elmquist, Joel K.

    2002-01-01

    Glucagon-like peptide-1 (GLP-1) released from the gut functions as an incretin that stimulates insulin secretion. GLP-1 is also a brain neuropeptide that controls feeding and drinking behavior and gastric emptying and elicits neuroendocrine responses including development of conditioned taste aversion. Although GLP-1 receptor (GLP-1R) agonists are under development for the treatment of diabetes, GLP-1 administration may increase blood pressure and heart rate in vivo. We report here that centrally and peripherally administered GLP-1R agonists dose-dependently increased blood pressure and heart rate. GLP-1R activation induced c-fos expression in the adrenal medulla and neurons in autonomic control sites in the rat brain, including medullary catecholamine neurons providing input to sympathetic preganglionic neurons. Furthermore, GLP-1R agonists rapidly activated tyrosine hydroxylase transcription in brainstem catecholamine neurons. These findings suggest that the central GLP-1 system represents a regulator of sympathetic outflow leading to downstream activation of cardiovascular responses in vivo. PMID:12093887

  4. Glucagon-like peptide-1 receptor agonists in the treatment of type 2 diabetes: Past, present, and future.

    PubMed

    Kalra, Sanjay; Baruah, Manash P; Sahay, Rakesh K; Unnikrishnan, Ambika Gopalakrishnan; Uppal, Shweta; Adetunji, Omolara

    2016-01-01

    Glucagon-like peptide-1 (GLP-1)-based therapy improves glycaemic control through multiple mechanisms, with a low risk of hypoglycaemia and the additional benefit of clinically relevant weight loss. Since Starling and Bayliss first proposed the existence of intestinal secretions that stimulate the pancreas, tremendous progress has been made in the area of incretins. As a number of GLP-1 receptor agonists (GLP-1 RAs) continue to become available, physicians will soon face the challenge of selecting the right option customized to their patient's needs. The following discussion, derived from an extensive literature search using the PubMed database, applying the terms incretin, GLP-1, exenatide, liraglutide, albiglutide, dulaglutide, lixisenatide, semaglutide, and taspoglutide, provides a comprehensive review of existing and upcoming molecules in the GLP-1 RA class in terms of their structure, pharmacological profiles, efficacy, safety, and convenience. Search Methodology: A literature search was conducted using the PubMed database, applying the terms incretin, GLP-1, exenatide, liraglutide, albiglutide, dulaglutide, lixisenatide, semaglutide, and taspoglutide. Relevant articles were those that discussed structural, pharmacokinetic and pharmacodynamic differences, classification, long-acting and short-acting GLP-1 RAs, phase 3 trials, and expert opinions. Additional targeted searches were conducted on diabetes treatment guidelines and reviews on safety, as well as the American Diabetes Association/European Society for Study of Diabetes (ADA/EASD) statement on pancreatic safety.

  5. Glucagon-Like Peptide-1 as Predictor of Body Mass Index and Dentate Gyrus Neurogenesis: Neuroplasticity and the Metabolic Milieu

    PubMed Central

    Coplan, Jeremy D.; Perera, Tarique D.; Fulton, Sasha L.; Banerji, Mary Ann; Dwork, Andrew J.; Kral, John G.

    2014-01-01

    Glucagon-like peptide-1 (GLP-1) regulates carbohydrate metabolism and promotes neurogenesis. We reported an inverse correlation between adult body mass and neurogenesis in nonhuman primates. Here we examine relationships between physiological levels of the neurotrophic incretin, plasma GLP-1 (pGLP-1), and body mass index (BMI) in adolescence to adult neurogenesis and associations with a diabesity diathesis and infant stress. Morphometry, fasting pGLP-1, insulin resistance, and lipid profiles were measured in early adolescence in 10 stressed and 4 unstressed male bonnet macaques. As adults, dentate gyrus neurogenesis was assessed by doublecortin staining. High pGLP-1, low body weight, and low central adiposity, yet peripheral insulin resistance and high plasma lipids, during adolescence were associated with relatively high adult neurogenesis rates. High pGLP-1 also predicted low body weight with, paradoxically, insulin resistance and high plasma lipids. No rearing effects for neurogenesis rates were observed. We replicated an inverse relationship between BMI and neurogenesis. Adolescent pGLP-1 directly predicted adult neurogenesis. Two divergent processes relevant to human diabesity emerge—high BMI, low pGLP-1, and low neurogenesis and low BMI, high pGLP-1, high neurogenesis, insulin resistance, and lipid elevations. Diabesity markers putatively reflect high nutrient levels necessary for neurogenesis at the expense of peripheral tissues. PMID:25506432

  6. The influence of restricted feeding on glucagon-like peptide-1 (GLP-1)-containing cells in the chicken small intestine.

    PubMed

    Monir, M M; Hiramatsu, K; Yamasaki, A; Nishimura, K; Watanabe, T

    2014-04-01

    The influence of restricted feeding on the distribution of glucagon-like peptide-1 (GLP-1)-containing endocrine cells in the chicken small intestine was investigated using immunohistochemical and morphometrical techniques. This study demonstrated that the restricted feeding had an influence on the activity of GLP-1-immunoreactive cells in the chicken small intestine. There were differences in the localization and the frequency of occurrence of GLP-1-immunoreactive cells in the small intestine between control and restricted groups, especially 25% feed supply group provided with 25% of the intake during the adapting period. GLP-1-immunoreactive cells in the control chickens were mainly located in epithelium from crypts to the lower part of intestinal villi. Those in restricted groups, however, tended to be located from crypts to the middle part of intestinal villi. The frequency of occurrence of GLP-1-immunoreactive cells was lowest in the control group, medium in 50% feed supply group and highest in 25% feed supply group at each intestinal region examined in this study, that is, increased with the advancement of restricting the amount of feed supply. These data show that the quantity of food intake is one of signals that have an influence on the secretion of GLP-1 from L cells in the chicken small intestine.

  7. Albiglutide, an albumin-based fusion of glucagon-like peptide 1 for the potential treatment of type 2 diabetes.

    PubMed

    Tomkin, Gerald H

    2009-10-01

    Albiglutide, under development by GlaxoSmithKline plc for the treatment of type 2 diabetes mellitus (T2DM), is an albumin-fusion peptide. The compound is a mimetic of glucagon-like peptide 1 (GLP-1), a hormone that decreases glucose levels, but has a short half-life because of degradation by dipeptidyl peptidase (DPP)-4. Albiglutide has a longer half-life as a result of its fusion with albumin and its resistance to degradation by DPP-4, caused by an amino acid substitution (Ala to Glu) at the DPP-4-sensitive hydrolysis site. Data from phase II clinical trials in patients with T2DM revealed that albiglutide was well tolerated and that the drug significantly reduced HbA1c levels compared with placebo. At the time of publication, phase III trials assessing albiglutide alone and in combination with other antidiabetic drugs were recruiting patients with T2DM. Albiglutide represents a promising new drug for the treatment of patients with T2DM; the results of long-term trials are awaited with interest.

  8. Effects of glucagon-like peptide-1 and feeding on gastric volumes in diabetes mellitus with cardio-vagal dysfunction.

    PubMed

    Delgado-Aros, S; Vella, A; Camilleri, M; Low, P A; Burton, D D; Thomforde, G M; Stephens, D

    2003-08-01

    Glucagon-like peptide-1 (GLP-1) increases gastric volume in humans possibly through the vagus nerve. Gastric volume response to feeding is preserved after vagal denervation in animals. We evaluated gastric volume responses to GLP-1 and placebo in seven diabetic patients with vagal neuropathy in a crossover study. We also compared gastric volume response to feeding in diabetes with that in healthy controls. We measured gastric volume using SPECT imaging. Data are median (interquartile range). In diabetic patients, GLP-1 did not increase gastric volume during fasting [5 mL (-3; 30)] relative to placebo [4 mL (-14; 50) P = 0.5], or postprandially [Delta postprandial minus fasting volume 469 mL (383; 563) with GLP-1 and 452 mL (400; 493) with placebo P = 0.3]. Change in gastric volume over fasting in diabetic patients on placebo was comparable to that of healthy controls [452 mL (400; 493)], P = 0.5. In contrast to effects in health, GLP-1 did not increase gastric volume in diabetics with vagal neuropathy, suggesting GLP-1's effects on stomach volume are vagally mediated. Normal gastric volume response to feeding in diabetics with vagal neuropathy suggests that other mechanisms compensate for vagal denervation.

  9. REVIEW: Role of cyclic AMP signaling in the production and function of the incretin hormone glucagon-like peptide-1

    NASA Astrophysics Data System (ADS)

    Yu, Zhiwen; Jin, Tianru

    2008-01-01

    Pancreatic cells express the proglucagon gene (gcg) and thereby produce the peptide hormone glucagon, which stimulates hepatic glucose production and thereby increases blood glucose levels. The same gcg gene is also expressed in the intestinal endocrine L cells and certain neural cells in the brain. In the gut, gcg expression leads to the production of glucagon-like peptide-1 (GLP-1). This incretin hormone stimulates insulin secretion when blood glucose level is high. In addition, GLP-1 stimulates pancreatic cell proliferation, inhibits cell apoptosis, and has been utilized in the trans-differentiation of insulin producing cells. Today, a long-term effective GLP-1 receptor agonist has been developed as a drug in treating diabetes and potentially other metabolic disorders. Extensive investigations have shown that the expression of gcg and the production of GLP-1 can be activated by the elevation of the second messenger cyclic AMP (cAMP). Recent studies suggest that in addition to protein kinase A (PKA), exchange protein activated by cAMP (Epac), another effector of cAMP signaling, and the crosstalk between PKA and Wnt signaling pathway, are also involved in cAMP-stimulated gcg expression and GLP-1 production. Furthermore, functions of GLP-1 in pancreatic cells are mainly mediated by cAMP-PKA, cAMP-Epac and Wnt signaling pathways as well.

  10. Metformin ameliorates lipotoxicity-induced mesangial cell apoptosis partly via upregulation of glucagon like peptide-1 receptor (GLP-1R).

    PubMed

    Kim, Dong-il; Park, Min-jung; Heo, Young-ran; Park, Soo-hyun

    2015-10-15

    Glucagon like peptide-1 receptor (GLP-1R), known to be expressed in pancreatic beta cells, is also expressed in glomerular mesangial cells and its agonist has protective effects in diabetic nephropathy. However, its regulatory mechanisms by lipotoxicity in glomerular mesangial cells are not understood. We found that palmitate-mediated lipotoxicity increased apoptosis and decreased GLP-1R expression in a rat mesangial cell line. Silencing GLP-1R expression also increased mesangial cell apoptosis. Interestingly, metformin, one of the biguanide drugs that has anti-diabetic effects, attenuated lipotoxicity-induced mesangial cell apoptosis and restored GLP-1R expression. Moreover, this treatment alleviated GLP-1R knockdown-induced mesangial cell apoptosis. To further evaluate in vivo, diabetic obese db/db mice were administered metformin. Glomerular GLP-1R expression was diminished in db/db mice, as compared with db/m control mice. However, this decrease significantly recovered on metformin administration. Together, these data provide novel evidence that lipotoxicity decreases the mesangial GLP-1R expression in intact cells and in vivo. The decrease induced mesangial cell apoptosis. Furthermore, we provided the evidence that metformin treatment has a renal protective effect partly via increased mesangial GLP-1R expression. Our data suggested that regulation of GLP-1R expression could be a promising approach to treat diabetic nephropathy and the novel mechanism of metformin mediated GLP-1R regulation.

  11. Clinical Application of Glucagon-Like Peptide 1 Receptor Agonists for the Treatment of Type 2 Diabetes Mellitus

    PubMed Central

    Cho, Young Min; Wideman, Rhonda D.

    2013-01-01

    Glucagon-like peptide 1 (GLP-1) is secreted from enteroendocrine L-cells in response to oral nutrient intake and elicits glucose-stimulated insulin secretion while suppressing glucagon secretion. It also slows gastric emptying, which contributes to decreased postprandial glycemic excursions. In the 1990s, chronic subcutaneous infusion of GLP-1 was found to lower blood glucose levels in patients with type 2 diabetes. However, GLP-1's very short half-life, arising from cleavage by the enzyme dipeptidyl peptidase 4 (DPP-4) and glomerular filtration by the kidneys, presented challenges for clinical use. Hence, DPP-4 inhibitors were developed, as well as several GLP-1 analogs engineered to circumvent DPP-4-mediated breakdown and/or rapid renal elimination. Three categories of GLP-1 analogs, are being developed and/or are in clinical use: short-acting, long-acting, and prolonged-acting GLP-1 analogs. Each class has different plasma half-lives, molecular size, and homology to native GLP-1, and consequently different characteristic effects on glucose metabolism. In this article, we review current clinical data derived from each class of GLP-1 analogs, and consider the clinical effects reported for each category in recent head to head comparison studies. Given the relatively brief clinical history of these compounds, we also highlight several important efficacy and safety issues which will require further investigation. PMID:24396690

  12. Glucagon-like peptide-1 receptor is present in pancreatic acinar cells and regulates amylase secretion through cAMP.

    PubMed

    Hou, Yanan; Ernst, Stephen A; Heidenreich, Kaeli; Williams, John A

    2016-01-01

    Glucagon-like peptide-1 (GLP-1) is a glucoincretin hormone that can act through its receptor (GLP-1R) on pancreatic β-cells and increase insulin secretion and production. GLP-1R agonists are used clinically to treat type 2 diabetes. GLP-1 may also regulate the exocrine pancreas at multiple levels, including inhibition through the central nervous system, stimulation indirectly through insulin, and stimulation directly on acinar cells. However, it has been unclear whether GLP-1R is present in pancreatic acini and what physiological functions these receptors regulate. In the current study we utilized GLP-1R knockout (KO) mice to study the role of GLP-1R in acinar cells. RNA expression of GLP-1R was detected in acutely isolated pancreatic acini. Acinar cell morphology and expression of digestive enzymes were not affected by loss of GLP-1R. GLP-1 induced amylase secretion in wild-type (WT) acini. In GLP-1R KO mice, this effect was abolished, whereas vasoactive intestinal peptide-induced amylase release in KO acini showed a pattern similar to that in WT acini. GLP-1 stimulated cAMP production and increased protein kinase A-mediated protein phosphorylation in WT acini, and these effects were absent in KO acini. These data show that GLP-1R is present in pancreatic acinar cells and that GLP-1 can regulate secretion through its receptor and cAMP signaling pathway.

  13. Isolation of Positive Modulator of Glucagon-like Peptide-1 Signaling from Trigonella foenum-graecum (Fenugreek) Seed.

    PubMed

    King, Klim; Lin, Nai-Pin; Cheng, Yu-Hong; Chen, Gao-Hui; Chein, Rong-Jie

    2015-10-23

    The glucagon-like peptide-1 receptor (GLP-1R) is expressed in many tissues and has been implicated in diverse physiological functions, such as energy homeostasis and cognition. GLP-1 analogs are approved for treatment of type 2 diabetes and are undergoing clinical trials for other disorders, including neurodegenerative diseases. GLP-1 analog therapies maintain chronically high plasma levels of the analog and can lead to loss of spatiotemporal control of GLP-1R activation. To avoid adverse effects associated with current therapies, we characterized positive modulators of GLP-1R signaling. We screened extracts from edible plants using an intracellular cAMP biosensor and GLP-1R endocytosis assays. Ethanol extracts from fenugreek seeds enhanced GLP-1 signaling. These seeds have previously been found to reduce glucose and glycated hemoglobin levels in humans. An active compound (N55) with a new N-linoleoyl-2-amino-γ-butyrolactone structure was purified from fenugreek seeds. N55 promoted GLP-1-dependent cAMP production and GLP-1R endocytosis in a dose-dependent and saturable manner. N55 specifically enhanced GLP-1 potency more than 40-fold, but not that of exendin 4, to stimulate cAMP production. In contrast to the current allosteric modulators that bind to GLP-1R, N55 binds to GLP-1 peptide and facilitates trypsin-mediated GLP-1 inactivation. These findings identify a new class of modulators of GLP-1R signaling and suggest that GLP-1 might be a viable target for drug discovery. Our results also highlight a feasible approach for screening bioactive activity of plant extracts. PMID:26336108

  14. Prediction of the effect on antihyperglycaemic action of sitagliptin by plasma active form glucagon-like peptide-1

    PubMed Central

    Kushiyama, Akifumi; Kikuchi, Takako; Tanaka, Kentaro; Tahara, Tazu; Takao, Toshiko; Onishi, Yukiko; Yoshida, Yoko; Kawazu, Shoji; Iwamoto, Yasuhiko

    2016-01-01

    AIM: To investigate whether active glucagon-like peptide-1 (GLP-1) is a prediction Factor of Effect of sitagliptin on patients with type 2 diabetes mellitus (GLP-1 FEST:UMIN000010645). METHODS: Seventy-six patients with type 2 diabetes, who had insufficient glycemic control [Hemoglobin A1c (HbA1c) ≥ 7%] in spite of treatment with metformin and/or sulfonylurea, were included in the investigation. Patients were divided into three groups by tertiles of fasting plasma active GLP-1 level, before the administration of 50 mg sitagliptin. RESULTS: At baseline, body mass index, serum UA, insulin and HOMA-IR were higher in the high active GLP-1 group than in the other two groups. The high active GLP-1 group did not show any decline of HbA1c (7.6% ± 1.4% to 7.5% ± 1.5%), whereas the middle and low groups indicated significant decline of HbA1c (7.4 ± 0.7 to 6.8 ± 0.6 and 7.4 ± 1.2 to 6.9 ± 1.3, respectively) during six months. Only the low and middle groups showed a significant increment of active GLP-1, C-peptide level, a decreased log and proinsulin/insulin ratio after administration. In logistic analysis, the low or middle group is a significant explanatory variable for an HbA1c decrease of ≥ 0.5%, and its odds ratio is 4.5 (1.40-17.6) (P = 0.01) against the high active GLP-1 group. This remains independent when adjusted for HbA1c level before administration, patients’ medical history, medications, insulin secretion and insulin resistance. CONCLUSION: Plasma fasting active GLP-1 is an independent predictive marker for the efficacy of dipeptidyl peptidase 4 inhibitor sitagliptin. PMID:27326345

  15. Protein kinase A mediates glucagon-like peptide 1-induced nitric oxide production and muscle microvascular recruitment

    PubMed Central

    Dong, Zhenhua; Chai, Weidong; Wang, Wenhui; Zhao, Lina; Fu, Zhuo; Cao, Wenhong

    2013-01-01

    Glucagon-like peptide-1 (GLP-1) causes vasodilation and increases muscle glucose uptake independent of insulin. Recently, we have shown that GLP-1 recruits muscle microvasculature and increases muscle glucose use via a nitric oxide (NO)-dependent mechanism. Protein kinase A (PKA) is a major signaling intermediate downstream of GLP-1 receptors. To examine whether PKA mediates GLP-1's microvascular action in muscle, GLP-1 was infused to overnight-fasted male rats for 120 min in the presence or absence of H89, a PKA inhibitor. Hindleg muscle microvascular recruitment and glucose use were determined. GLP-1 infusion acutely increased muscle microvascular blood volume within 30 min without altering microvascular blood flow velocity or blood pressure. This effect persisted throughout the 120-min infusion period, leading to a significant increase in muscle microvascular blood flow. These changes were paralleled with an approximately twofold increase in plasma NO levels and hindleg glucose extraction. Systemic infusion of H89 completely blocked GLP-1-mediated muscle microvascular recruitment and increases in NO production and muscle glucose extraction. In cultured endothelial cells, GLP-1 acutely increased PKA activity and stimulated endothelial NO synthase phosphorylation at Ser1177 and NO production. PKA inhibition abolished these effects. In ex vivo studies, perfusion of the distal saphenous artery with GLP-1 induced significant vasorelaxation that was also abolished by pretreatment of the vessels with PKA inhibitor H89. We conclude that GLP-1 recruits muscle microvasculature by expanding microvascular volume and increases glucose extraction in muscle via a PKA/NO-dependent pathway in the vascular endothelium. This may contribute to postprandial glycemic control and complication prevention in diabetes. PMID:23193054

  16. Obesity alters molecular and functional cardiac responses to ischemia/reperfusion and glucagon-like peptide-1 receptor agonism.

    PubMed

    Sassoon, Daniel J; Goodwill, Adam G; Noblet, Jillian N; Conteh, Abass M; Herring, B Paul; McClintick, Jeanette N; Tune, Johnathan D; Mather, Kieren J

    2016-07-01

    This study tested the hypothesis that obesity alters the cardiac response to ischemia/reperfusion and/or glucagon like peptide-1 (GLP-1) receptor activation, and that these differences are associated with alterations in the obese cardiac proteome and microRNA (miRNA) transcriptome. Ossabaw swine were fed normal chow or obesogenic diet for 6 months. Cardiac function was assessed at baseline, during a 30-minutes coronary occlusion, and during 2 hours of reperfusion in anesthetized swine treated with saline or exendin-4 for 24 hours. Cardiac biopsies were obtained from normal and ischemia/reperfusion territories. Fat-fed animals were heavier, and exhibited hyperinsulinemia, hyperglycemia, and hypertriglyceridemia. Plasma troponin-I concentration (index of myocardial injury) was increased following ischemia/reperfusion and decreased by exendin-4 treatment in both groups. Ischemia/reperfusion produced reductions in systolic pressure and stroke volume in lean swine. These indices were higher in obese hearts at baseline and relatively maintained throughout ischemia/reperfusion. Exendin-4 administration increased systolic pressure in lean swine but did not affect the blood pressure in obese swine. End-diastolic volume was reduced by exendin-4 following ischemia/reperfusion in obese swine. These divergent physiologic responses were associated with obesity-related differences in proteins related to myocardial structure/function (e.g. titin) and calcium handling (e.g. SERCA2a, histidine-rich Ca(2+) binding protein). Alterations in expression of cardiac miRs in obese hearts included miR-15, miR-27, miR-130, miR-181, and let-7. Taken together, these observations validate this discovery approach and reveal novel associations that suggest previously undiscovered mechanisms contributing to the effects of obesity on the heart and contributing to the actions of GLP-1 following ischemia/reperfusion. PMID:27234258

  17. Dietary Mannoheptulose Increases Fasting Serum Glucagon Like Peptide-1 and Post-Prandial Serum Ghrelin Concentrations in Adult Beagle Dogs

    PubMed Central

    McKnight, Leslie L.; Eyre, Ryan; Gooding, Margaret A.; Davenport, Gary M.; Shoveller, Anna Kate

    2015-01-01

    Simple Summary There is increased interest in the use of nutraceuticals for weight management in companion animals. A nutraceutical can broadly be considered a food (or a part of) that provides a health benefit. Mannoheptulose (MH), a sugar found in avocados, is being investigated as a nutraceutical for dogs. In this study, dogs fed a diet containing MH had increased concentrations of blood biomarkers related to energy intake. In addition, dogs fed MH were less physically active than dogs fed a control diet. These findings suggest that dietary MH has the ability to alter energy intake and lower daily energy expenditure. Abstract There is a growing interest in the use of nutraceuticals for weight management in companion animals. The purpose of this study was to determine the effects of mannoheptulose (MH), a sugar in avocados that inhibits glycolysis, on energy metabolism in adult Beagle dogs. The study was a double-blind, randomized controlled trial where dogs were allocated to a control (CON, n = 10, 10.1 ± 0.4 kg) or MH containing diet (168 mg/kg, n = 10, 10.3 ± 0.4 kg). Blood was collected after an overnight fast and 1 h post-feeding (week 12) to determine serum satiety related hormones and biochemistry. Resting and post-prandial energy expenditure and respiratory quotient were determined by indirect calorimetry (weeks 4 and 8). Physical activity was measured using an accelerometer (weeks 3, 7, 11). Body composition was assessed using dual X-ray absorptiometry (week 12). MH significantly (p < 0.05) increased fasting serum glucagon-like peptide-1 and post-prandial serum ghrelin. MH tended (p < 0.1) to increase fasting serum gastric inhibitory peptide and decrease physical activity. Together, these findings suggest that dietary MH has the ability to promote satiation and lowers daily energy expenditure. PMID:26479244

  18. Emerging cardiovascular actions of the incretin hormone glucagon-like peptide-1: potential therapeutic benefits beyond glycaemic control?

    PubMed Central

    Grieve, David J; Cassidy, Roslyn S; Green, Brian D

    2009-01-01

    Glucagon-like peptide-1 (GLP-1) is an incretin hormone secreted by the small intestine in response to nutrient ingestion. It has wide-ranging effects on glucose metabolism, including stimulation of insulin release, inhibition of glucagon secretion, reduction of gastric emptying and augmentation of satiety. Importantly, the insulinotropic actions of GLP-1 are uniquely dependent on ambient glucose concentrations, and it is this particular characteristic which has led to its recent emergence as a treatment for type 2 diabetes. Although the major physiological function of GLP-1 appears to be in relation to glycaemic control, there is growing evidence to suggest that it may also play an important role in the cardiovascular system. GLP-1 receptors (GLP-1Rs) are expressed in the heart and vasculature of both rodents and humans, and recent studies have demonstrated that GLP-1R agonists have wide-ranging cardiovascular actions, such as modulation of heart rate, blood pressure, vascular tone and myocardial contractility. Importantly, it appears that these agents may also have beneficial effects in the setting of cardiovascular disease (CVD). For example, GLP-1 has been found to exert cardioprotective actions in experimental models of dilated cardiomyopathy, hypertensive heart failure and myocardial infarction (MI). Preliminary clinical studies also indicate that GLP-1 infusion may improve cardiac contractile function in chronic heart failure patients with and without diabetes, and in MI patients after successful angioplasty. This review will discuss the current understanding of GLP-1 biology, examine its emerging cardiovascular actions in both health and disease and explore the potential use of GLP-1 as a novel treatment for CVD. PMID:19681866

  19. Crosstalk between diabetes and brain: glucagon-like peptide-1 mimetics as a promising therapy against neurodegeneration.

    PubMed

    Duarte, A I; Candeias, E; Correia, S C; Santos, R X; Carvalho, C; Cardoso, S; Plácido, A; Santos, M S; Oliveira, C R; Moreira, P I

    2013-04-01

    According to World Health Organization estimates, type 2 diabetes (T2D) is an epidemic (particularly in under development countries) and a socio-economic challenge. This is even more relevant since increasing evidence points T2D as a risk factor for Alzheimer's disease (AD), supporting the hypothesis that AD is a "type 3 diabetes" or "brain insulin resistant state". Despite the limited knowledge on the molecular mechanisms and the etiological complexity of both pathologies, evidence suggests that neurodegeneration/death underlying cognitive dysfunction (and ultimately dementia) upon long-term T2D may arise from a complex interplay between T2D and brain aging. Additionally, decreased brain insulin levels/signaling and glucose metabolism in both pathologies further suggests that an effective treatment strategy for one disorder may be also beneficial in the other. In this regard, one such promising strategy is a novel successful anti-T2D class of drugs, the glucagon-like peptide-1 (GLP-1) mimetics (e.g. exendin-4 or liraglutide), whose potential neuroprotective effects have been increasingly shown in the last years. In fact, several studies showed that, besides improving peripheral (and probably brain) insulin signaling, GLP-1 analogs minimize cell loss and possibly rescue cognitive decline in models of AD, Parkinson's (PD) or Huntington's disease. Interestingly, exendin-4 is undergoing clinical trials to test its potential as an anti-PD therapy. Herewith, we aim to integrate the available data on the metabolic and neuroprotective effects of GLP-1 mimetics in the central nervous system (CNS) with the complex crosstalk between T2D-AD, as well as their potential therapeutic value against T2D-associated cognitive dysfunction.

  20. Endogenous glucagon-like peptide-1 reduces drinking behavior and is differentially engaged by water and food intakes in rats.

    PubMed

    McKay, Naomi J; Galante, Daniela L; Daniels, Derek

    2014-12-01

    Glucagon-like peptide-1 (GLP-1) is produced in the ileum and the nucleus of the solitary tract. It is well known that GLP-1 controls food intake, but there is a growing literature indicating that GLP-1 also is involved in fluid intake. It is not known, however, if the observed effects are pharmacological or if endogenous GLP-1 and its receptor contribute to physiological fluid intake control. Accordingly, we blocked endogenous GLP-1 by application of a receptor antagonist and measured subsequent drinking. Furthermore, we measured changes in GLP-1-associated gene expression after water intake, and compared the effects of fluid intake to those caused by food intake. Rats injected with the antagonist exendin-9 (Ex-9) drank more fluid in response to either subcutaneous hypertonic saline or water deprivation with partial rehydration than did vehicle-treated rats. Analysis of licking behavior showed that Ex-9 increased fluid intake by increasing the number of licking bursts, without having an effect on the number of licks per burst, suggesting that endogenous GLP-1 suppresses fluid intake by influencing satiety. Subsequent experiments showed that water intake had a selective effect on central GLP-1-related gene expression, unlike food intake, which affected both central and peripheral GLP-1. Although water and food intakes both affected central GLP-1-relevant gene expression, there were notable differences in the timing of the effect. These results show a novel role of the endogenous GLP-1 system in fluid intake, and indicate that elements of the GLP-1 system can be engaged separately by different forms of ingestive behavior.

  1. Enzymatic mono-pegylation of glucagon-like peptide 1 towards long lasting treatment of type 2 diabetes

    PubMed Central

    Selis, Fabio; Schrepfer, Rodolfo; Sanna, Riccardo; Scaramuzza, Silvia; Tonon, Giancarlo; Dedoni, Simona; Onali, Pierluigi; Orsini, Gaetano; Genovese, Stefano

    2012-01-01

    Human glucagon-like peptide-1 (GLP-1) is a physiological gastrointestinal peptide with glucose-dependent insulinotropic effects which is therefore considered an interesting antidiabetic agent. However, after in vivo administration, exogenous GLP-1 does not exert its physiological action due to the combination of rapid proteolytic degradation by ubiquitous dipeptidyldipeptidase IV (DPP IV) enzyme and renal clearance resulting in an extremely short circulating half-life. In this work we describe the conjugation of GLP-1-(7-36)-amide derivatives with polyethylene glycol (PEG) by enzymatic site-specific transglutamination reaction as an approach to reduce both the proteolysis and the renal clearance rates. The compound GLP-1-(7-36)-amide-Q23-PEG 20 kDa monopegylated on the single glutamine residue naturally present in position 23 maintained the ability to activate the GLP-1 receptor expressed in the rat β-cell line RIN-m5F with nanomolar potency along with an increased in vitro resistance to DDP IV and a circulating half-life of about 12 h after subcutaneous administration in rats. These properties enabled GLP-(7-36)-amide-Q23-PEG 20 kDa to exert a glucose-stabilizing effect for a period as long as 8 h, as demonstrated by a single subcutaneous injection to diabetic mice concomitantly challenged with an oral glucose load. The results reported in this work indicate that GLP-(7-36)-amide-Q23-PEG 20 kDa could be a lead compound for the development of long-lasting anti-diabetic agents useful in the treatment of type 2 diabetes affected patients. PMID:25755995

  2. Novel Glucagon-Like Peptide-1 Analog Delivered Orally Reduces Postprandial Glucose Excursions in Porcine and Canine Models

    PubMed Central

    Eldor, Roy; Kidron, Miriam; Greenberg-Shushlav, Yael; Arbit, Ehud

    2010-01-01

    Background Glucagon-like peptide-1 (GLP-1) and its analogs are associated with a gamut of physiological processes, including induction of insulin release, support of normoglycemia, β-cell function preservation, improved lipid profiles, and increased insulin sensitivity. Thus, GLP-1 harbors significant therapeutic potential for regulating type 2 diabetes mellitus, where its physiological impact is markedly impaired. To date, GLP-1 analogs are only available as injectable dosage forms, and its oral delivery is expected to provide physiological portal/peripheral concentration ratios while fostering patient compliance and adherence. Methods Healthy, fasting, enterically cannulated pigs and beagle canines were administered a single dose of the exenatide-based ORMD-0901 formulation 30 min before oral glucose challenges. Blood samples were collected every 15 min for evaluation of ORMD-0901 safety and efficacy in regulating postchallenge glucose excursions. Results Enterically delivered ORMD-0901 was well tolerated by all animals. ORMD-0901 formulations RG3 and AG2 led to reduced glucose excursions in pigs when delivered prior to a 5 g/kg glucose challenge, where area under the curve (AUC)0–120 values were up to 43% lower than in control sessions. All canines challenged with a glucose load with no prior exposure to exenatide, demonstrated higher AUC0–150 values than in their exenatide-treated sessions. Subcutaneous exenatide delivery amounted to a 51% reduction in mean glucose AUC0–150, while formulations AG4 and AG3 prompted 43% and 29% reductions, respectively. Conclusions When delivered enterically, GLP-1 (ORMD-0901) is absorbed from the canine and porcine gastrointestinal tracts and retains its biological activity. Further development of this drug class in an oral dosage form is expected to enhance diabetes control and patient compliance. PMID:21129350

  3. Glucagon-like peptide-1 improves beta-cell antioxidant capacity via extracellular regulated kinases pathway and Nrf2 translocation.

    PubMed

    Fernández-Millán, E; Martín, M A; Goya, L; Lizárraga-Mollinedo, E; Escrivá, F; Ramos, S; Álvarez, C

    2016-06-01

    Oxidative stress plays an important role in the development of beta-cell dysfunction and insulin resistance, two major pathophysiological abnormalities of type 2 diabetes. Expression levels of antioxidant enzymes in beta cells are very low, rendering them more susceptible to damage caused by reactive oxygen species (ROS). Although the antioxidant effects of glucagon-like peptide-1 (GLP-1) and its analogs have been previously reported, the exact mechanisms involved are still unclear. In this study, we demonstrated that GLP-1 was able to effectively inhibit oxidative stress and cell death of INS-1E beta cells induced by the pro-oxidant tert-butyl hydroperoxide (tert-BOOH). Incubation with GLP-1 enhanced cellular levels of glutathione and the activity of its related enzymes, glutathione-peroxidase (GPx) and -reductase (GR) in beta cells. However, inhibition of ERK, but not of the PI3K/AKT pathway abolished, at least in part, the antioxidant effect of GLP-1. Moreover, ERK activation seems to be protein kinase A (PKA)-dependent because inhibition of PKA with H-89 was sufficient to block the GLP-1-derived protective effect on beta cells. GLP-1 likewise increased the synthesis of GR and favored the translocation of the nuclear transcription factor erythroid 2p45-related factor (Nrf2), a transcription factor implicated in the expression of several antioxidant/detoxificant enzymes. Glucose-stimulated insulin secretion was also preserved in beta-cells challenged with tert-BOOH but pre-treated with GLP-1, probably through the down-regulation of the mitochondrial uncoupling-protein2 (UCP2). Thus, our results provide additional mechanisms of action of GLP-1 to prevent oxidative damage in beta cells through the modulation of signaling pathways involved in antioxidant enzyme regulation. PMID:26968794

  4. Isolation of Positive Modulator of Glucagon-like Peptide-1 Signaling from Trigonella foenum-graecum (Fenugreek) Seed*

    PubMed Central

    King, Klim; Lin, Nai-Pin; Cheng, Yu-Hong; Chen, Gao-Hui; Chein, Rong-Jie

    2015-01-01

    The glucagon-like peptide-1 receptor (GLP-1R) is expressed in many tissues and has been implicated in diverse physiological functions, such as energy homeostasis and cognition. GLP-1 analogs are approved for treatment of type 2 diabetes and are undergoing clinical trials for other disorders, including neurodegenerative diseases. GLP-1 analog therapies maintain chronically high plasma levels of the analog and can lead to loss of spatiotemporal control of GLP-1R activation. To avoid adverse effects associated with current therapies, we characterized positive modulators of GLP-1R signaling. We screened extracts from edible plants using an intracellular cAMP biosensor and GLP-1R endocytosis assays. Ethanol extracts from fenugreek seeds enhanced GLP-1 signaling. These seeds have previously been found to reduce glucose and glycated hemoglobin levels in humans. An active compound (N55) with a new N-linoleoyl-2-amino-γ-butyrolactone structure was purified from fenugreek seeds. N55 promoted GLP-1-dependent cAMP production and GLP-1R endocytosis in a dose-dependent and saturable manner. N55 specifically enhanced GLP-1 potency more than 40-fold, but not that of exendin 4, to stimulate cAMP production. In contrast to the current allosteric modulators that bind to GLP-1R, N55 binds to GLP-1 peptide and facilitates trypsin-mediated GLP-1 inactivation. These findings identify a new class of modulators of GLP-1R signaling and suggest that GLP-1 might be a viable target for drug discovery. Our results also highlight a feasible approach for screening bioactive activity of plant extracts. PMID:26336108

  5. Neuroprotective and neurotrophic actions of glucagon-like peptide-1: an emerging opportunity to treat neurodegenerative and cerebrovascular disorders

    PubMed Central

    Salcedo, Isidro; Tweedie, David; Li, Yazhou; Greig, Nigel H

    2012-01-01

    Like type-2 diabetes mellitus (T2DM), neurodegenerative disorders and stroke are an ever increasing, health, social and economic burden for developed Westernized countries. Age is an important risk factor in all of these; due to the rapidly increasing rise in the elderly population T2DM and neurodegenerative disorders, both represent a looming threat to healthcare systems. Whereas several efficacious drugs are currently available to ameliorate T2DM, effective treatments to counteract pathogenic processes of neurodegenerative disorders are lacking and represent a major scientific and pharmaceutical challenge. Epidemiological data indicate an association between T2DM and most major neurodegenerative disorders, including Alzheimer's and Parkinson's diseases. Likewise, there is an association between T2DM and stroke incidence. Studies have revealed that common pathophysiological features, including oxidative stress, insulin resistance, abnormal protein processing and cognitive decline, occur across these. Based on the presence of shared mechanisms and signalling pathways in these seemingly distinct diseases, one could hypothesize that an effective treatment for one disorder could prove beneficial in the others. Glucagon-like peptide-1 (GLP-1)-based anti-diabetic drugs have drawn particular attention as an effective new strategy to not only regulate blood glucose but also to reduce apoptotic cell death of pancreatic beta cells in T2DM. Evidence supports a neurotrophic and neuroprotective role of GLP-1 receptor (R) stimulation in an increasing array of cellular and animal neurodegeneration models as well as in neurogenesis. Herein, we review the physiological role of GLP-1 in the nervous system, focused towards the potential benefit of GLP-1R stimulation as an immediately translatable treatment strategy for acute and chronic neurological disorders. PMID:22519295

  6. The effect of glucagon-like peptide-1 in the management of diabetes mellitus: cellular and molecular mechanisms.

    PubMed

    Lotfy, Mohamed; Singh, Jaipaul; Rashed, Hameed; Tariq, Saeed; Zilahi, Erika; Adeghate, Ernest

    2014-11-01

    Incretins, such as glucagon-like peptide-1 (GLP)-1, have been shown to elevate plasma insulin concentration. The purpose of this study is to investigate the cellular and molecular basis of the beneficial effects of GLP-1. Normal and diabetic male Wistar rats were treated with GLP-1 (50 ng/kg body weight) for 10 weeks. At the end of the experiment, pancreatic tissues were taken for immunohistochemistry, immunoelectron microscopy and real-time polymerase chain reaction studies. Samples of blood were retrieved from the animals for the measurement of enzymes and insulin. The results show that treatment of diabetic rats with GLP-1 caused significant (P < 0.05) reduction in body weight gain and blood glucose level. GLP-1 (10(-12)-10(-6) M) induced significant (P < 0.01) dose-dependent increases in insulin release from the pancreas of normal and diabetic rats compared to basal. Diabetes-induced abnormal liver (aspartate aminotransferase and alanine aminotransferase) and kidney (blood urea nitrogen and uric acid) parameters were corrected in GLP-1-treated rats compared to controls. GLP-1 treatment induced significant (P < 0.05) elevation in the expression of pancreatic duodenal homeobox-1, heat shock protein-70, glutathione peroxidase, insulin receptor and GLP-1-receptor genes in diabetic animals compared to controls. GLP-1 is present in pancreatic beta cells and significantly (P < 0.05) increased the number of insulin-, glutathione reductase- and catalase-immunoreactive islet cells. The results of this study show that GLP-1 is co-localized with insulin and seems to exert its beneficial effects by increasing cellular concentrations of endogenous antioxidant genes and other genes involved in the maintenance of pancreatic beta cell structure and function.

  7. 64Cu Labeled Sarcophagine Exendin-4 for MicroPET Imaging of Glucagon like Peptide-1 Receptor Expression

    PubMed Central

    Wu, Zhanhong; Liu, Shuanglong; Nair, Indu; Omori, Keiko; Scott, Stephen; Todorov, Ivan; Shively, John E.; Conti, Peter S.; Li, Zibo; Kandeel, Fouad

    2014-01-01

    The Glucagon-like peptide 1 receptor (GLP-1R) has become an important target for imaging due to its elevated expression profile in pancreatic islets, insulinoma, and the cardiovascular system. Because native GLP-1 is degraded rapidly by dipeptidyl peptidase-IV (DPP-IV), several studies have conjugated different chelators to a more stable analog of GLP-1 (such as exendin-4) as PET or SPECT imaging agents with various advantages and disadvantages. Based on the recently developed Sarcophagin chelator, here, we describe the construction of GLP-1R targeted PET probes containing monomeric and dimeric exendin-4 subunit. The in vitro binding affinity of BarMalSar-exendin-4 and Mal2Sar-(exendin-4)2 was evaluated in INS-1 cells, which over-express GLP-1R. Mal2Sar-(exendin-4)2 demonstrated around 3 times higher binding affinity compared with BaMalSar-exendin-4. After 64Cu labeling, microPET imaging of 64Cu-BaMalSar-exendin-4 and 64Cu-Mal2Sar-(exendin-4)2 were performed on subcutaneous INS-1 tumors, which were clearly visualized with both probes. The tumor uptake of 64Cu-Mal2Sar-(exendin-4)2 was significantly higher than that of 64Cu-BaMaSarl-exendin-4, which could be caused by polyvalency effect. The receptor specificity of these probes was confirmed by effective blocking of the uptake in both tumor and normal positive organs with 20-fold excess of unlabeled exendin-4. In conclusion, sarcophagine cage conjugated exendin-4 demonstrated persistent and specific uptake in INS-1 insulinoma model. Dimerization of exendin-4 could successfully lead to increased tumor uptake in vivo. Both 64Cu-BaMalSar-exendin-4 and 64Cu-Mal2Sar-(exendin-4)2 hold a great potential for GLP-1R targeted imaging. PMID:24955138

  8. Dipeptidylpeptidase-4 (DPP-4) inhibitors are favourable to glucagon-like peptide-1 (GLP-1) receptor agonists: yes.

    PubMed

    Scheen, André J

    2012-03-01

    The pharmacological treatment of type 2 diabetes (T2DM) is becoming increasingly complex, especially since the availability of incretin-based therapies. Compared with other glucose-lowering strategies, these novel drugs offer some advantages such as an absence of weight gain and a negligible risk of hypoglycaemia and, possibly, better cardiovascular and β-cell protection. The physician has now multiple choices to manage his/her patient after secondary failure of metformin, and the question whether it is preferable to add an oral dipeptidylpeptidase-4 (DPP-4) inhibitor (gliptin) or an injectable glucagon-like peptide-1 (GLP-1) receptor agonist will emerge. Obviously, DPP-4 inhibitors offer several advantages compared with GLP-1 receptor agonists, especially regarding easiness of use, tolerance profile and cost. However, because they can only increase endogenous GLP-1 concentrations to physiological (rather than pharmacological) levels, they are less potent to improve glucose control, promote weight reduction ("weight neutrality") and reduce blood pressure compared to GLP-1 receptor agonists. Of note, none of the two classes have proven long-term safety and positive impact on diabetic complications yet. The role of DPP-4 inhibitors and GLP-1 receptor agonists in the therapeutic armamentarium of T2DM is rapidly evolving, but their respective potential strengths and weaknesses should be better defined in long-term head-to-head comparative controlled trials. Instead of trying to answer the question whether DPP-4 inhibitors are favourable to GLP-1 receptor agonists (or vice versa), it is probably more clinically relevant to look at which T2DM patient will benefit more from one or the other therapy considering all his/her individual clinical characteristics ("personalized medicine").

  9. Resistant maltodextrin promotes fasting glucagon-like peptide-1 secretion and production together with glucose tolerance in rats.

    PubMed

    Hira, Tohru; Ikee, Asuka; Kishimoto, Yuka; Kanahori, Sumiko; Hara, Hiroshi

    2015-07-14

    Glucagon-like peptide-1 (GLP-1), which is produced and released from enteroendocrine L cells, plays pivotal roles in postprandial glycaemia. The ingestion of resistant maltodextrin (RMD), a water-soluble non-digestible saccharide, improves the glycaemic response. In the present study, we examined whether the continuous feeding of RMD to rats affected GLP-1 levels and glycaemic control. Male Sprague-Dawley rats (6 weeks of age) were fed an American Institute of Nutrition (AIN)-93G-based diet containing either cellulose (5 %) as a control, RMD (2.5 or 5 %), or fructo-oligosaccharides (FOS, 2.5 or 5 %) for 7 weeks. During the test period, an intraperitoneal glucose tolerance test (IPGTT) was performed after 6 weeks. Fasting GLP-1 levels were significantly higher in the 5 % RMD group than in the control group after 6 weeks. The IPGTT results showed that the glycaemic response was lower in the 5 % RMD group than in the control group. Lower caecal pH, higher caecal tissue and content weights were observed in the RMD and FOS groups. Proglucagon mRNA levels were increased in the caecum and colon of both RMD and FOS groups, whereas caecal GLP-1 content was increased in the 5 % RMD group. In addition, a 1 h RMD exposure induced GLP-1 secretion in an enteroendocrine L-cell model, and single oral administration of RMD increased plasma GLP-1 levels in conscious rats. The present study demonstrates that continuous ingestion of RMD increased GLP-1 secretion and production in normal rats, which could be stimulated by its direct and indirect (enhanced gut fermentation) effects on GLP-1-producing cells, and contribute to improving glucose tolerance.

  10. Neural effects of gut- and brain-derived glucagon-like peptide-1 and its receptor agonist.

    PubMed

    Katsurada, Kenichi; Yada, Toshihiko

    2016-04-01

    Glucagon-like peptide-1 (GLP-1) is derived from both the enteroendocrine L cells and preproglucagon-expressing neurons in the nucleus tractus solitarius (NTS) of the brain stem. As GLP-1 is cleaved by dipeptidyl peptidase-4 yielding a half-life of less than 2 min, it is plausible that the gut-derived GLP-1, released postprandially, exerts its effects on the brain mainly by interacting with vagal afferent neurons located at the intestinal or hepatic portal area. GLP-1 neurons in the NTS widely project in the central nervous system and act as a neurotransmitter. One of the physiological roles of brain-derived GLP-1 is restriction of feeding. GLP-1 receptor agonists have recently been used to treat type 2 diabetic patients, and have been shown to exhibit pleiotropic effects beyond incretin action, which involve brain functions. GLP-1 receptor agonist administered in the periphery is stable because of its resistance to dipeptidyl peptidase-4, and is highly likely to act on the brain by passing through the blood-brain barrier (BBB), as well as interacting with vagal afferent nerves. Central actions of GLP-1 have various roles including regulation of feeding, weight, glucose and lipid metabolism, cardiovascular functions, cognitive functions, and stress and emotional responses. In the present review, we focus on the source of GLP-1 and the pathway by which peripheral GLP-1 informs the brain, and then discuss recent findings on the central effects of GLP-1 and GLP-1 receptor agonists. PMID:27186358

  11. Novel Small Molecule Glucagon-Like Peptide-1 Receptor Agonist Stimulates Insulin Secretion in Rodents and From Human Islets

    PubMed Central

    Sloop, Kyle W.; Willard, Francis S.; Brenner, Martin B.; Ficorilli, James; Valasek, Kathleen; Showalter, Aaron D.; Farb, Thomas B.; Cao, Julia X.C.; Cox, Amy L.; Michael, M. Dodson; Gutierrez Sanfeliciano, Sonia Maria; Tebbe, Mark J.; Coghlan, Michael J.

    2010-01-01

    OBJECTIVE The clinical effectiveness of parenterally-administered glucagon-like peptide-1 (GLP-1) mimetics to improve glucose control in patients suffering from type 2 diabetes strongly supports discovery pursuits aimed at identifying and developing orally active, small molecule GLP-1 receptor agonists. The purpose of these studies was to identify and characterize novel nonpeptide agonists of the GLP-1 receptor. RESEARCH DESIGN AND METHODS Screening using cells expressing the GLP-1 receptor and insulin secretion assays with rodent and human islets were used to identify novel molecules. The intravenous glucose tolerance test (IVGTT) and hyperglycemic clamp characterized the insulinotropic effects of compounds in vivo. RESULTS Novel low molecular weight pyrimidine-based compounds that activate the GLP-1 receptor and stimulate glucose-dependent insulin secretion are described. These molecules induce GLP-1 receptor-mediated cAMP signaling in HEK293 cells expressing the GLP-1 receptor and increase insulin secretion from rodent islets in a dose-dependent manner. The compounds activate GLP-1 receptor signaling, both alone or in an additive fashion when combined with the endogenous GLP-1 peptide; however, these agonists do not compete with radiolabeled GLP-1 in receptor-binding assays. In vivo studies using the IVGTT and the hyperglycemic clamp in Sprague Dawley rats demonstrate increased insulin secretion in compound-treated animals. Further, perifusion assays with human islets isolated from a donor with type 2 diabetes show near-normalization of insulin secretion upon compound treatment. CONCLUSIONS These studies characterize the insulinotropic effects of an early-stage, small molecule GLP-1 receptor agonist and provide compelling evidence to support pharmaceutical optimization. PMID:20823098

  12. Glucagon-like peptide-1 improves beta-cell antioxidant capacity via extracellular regulated kinases pathway and Nrf2 translocation.

    PubMed

    Fernández-Millán, E; Martín, M A; Goya, L; Lizárraga-Mollinedo, E; Escrivá, F; Ramos, S; Álvarez, C

    2016-06-01

    Oxidative stress plays an important role in the development of beta-cell dysfunction and insulin resistance, two major pathophysiological abnormalities of type 2 diabetes. Expression levels of antioxidant enzymes in beta cells are very low, rendering them more susceptible to damage caused by reactive oxygen species (ROS). Although the antioxidant effects of glucagon-like peptide-1 (GLP-1) and its analogs have been previously reported, the exact mechanisms involved are still unclear. In this study, we demonstrated that GLP-1 was able to effectively inhibit oxidative stress and cell death of INS-1E beta cells induced by the pro-oxidant tert-butyl hydroperoxide (tert-BOOH). Incubation with GLP-1 enhanced cellular levels of glutathione and the activity of its related enzymes, glutathione-peroxidase (GPx) and -reductase (GR) in beta cells. However, inhibition of ERK, but not of the PI3K/AKT pathway abolished, at least in part, the antioxidant effect of GLP-1. Moreover, ERK activation seems to be protein kinase A (PKA)-dependent because inhibition of PKA with H-89 was sufficient to block the GLP-1-derived protective effect on beta cells. GLP-1 likewise increased the synthesis of GR and favored the translocation of the nuclear transcription factor erythroid 2p45-related factor (Nrf2), a transcription factor implicated in the expression of several antioxidant/detoxificant enzymes. Glucose-stimulated insulin secretion was also preserved in beta-cells challenged with tert-BOOH but pre-treated with GLP-1, probably through the down-regulation of the mitochondrial uncoupling-protein2 (UCP2). Thus, our results provide additional mechanisms of action of GLP-1 to prevent oxidative damage in beta cells through the modulation of signaling pathways involved in antioxidant enzyme regulation.

  13. Molecular Basis of Glucagon-like Peptide 1 Docking to Its Intact Receptor Studied with Carboxyl-terminal Photolabile Probes*

    PubMed Central

    Chen, Quan; Pinon, Delia I.; Miller, Laurence J.; Dong, Maoqing

    2009-01-01

    The glucagon-like peptide 1 (GLP1) receptor is a member of Family B G protein-coupled receptors and represents an important drug target for type 2 diabetes. Despite recent solution of the structure of the amino-terminal domain of this receptor and that of several close family members, understanding of the molecular basis of natural ligand GLP1 binding to its intact receptor remains limited. The goal of this study was to explore spatial approximations between specific receptor residues within the carboxyl terminus of GLP1 and its receptor as normally docked. Therefore, we developed and characterized two high affinity, full-agonist photolabile GLP1 probes having sites for covalent attachment in positions 24 and 35. Both probes labeled the receptor specifically and saturably. Subsequent peptide mapping using chemical and proteinase cleavages of purified wild-type and mutant GLP1 receptor identified that the Arg131–Lys136 segment at the juxtamembrane region of the receptor amino terminus contained the site of labeling for the position 24 probe, and the specific receptor residue labeled by this probe was identified as Glu133 by radiochemical sequencing. Similarly, nearby residue Glu125 within the same region of the receptor amino-terminal domain was identified as the site of labeling by the position 35 probe. These data represent the first direct demonstration of spatial approximation between GLP1 and its intact receptor as docked, providing two important constraints for the modeling of this interaction. This should expand our understanding of the molecular basis of natural agonist ligand binding to the GLP1 receptor and may be relevant to other family members. PMID:19815559

  14. Efficacy and tolerability of glucagon-like peptide-1 receptor agonists in patients with type 2 diabetes mellitus

    PubMed Central

    McCarty, Delilah J.

    2015-01-01

    Glucagon-like peptide-1 (GLP-1) has been evaluated for use in the treatment of type 2 diabetes mellitus (T2DM) due to its role in glucose regulation. Four GLP-1 receptor agonists (RAs) are currently indicated for T2DM in the USA. Exenatide and liraglutide are short-acting and require twice-daily and daily dosing, respectively. Two longer acting agents, exenatide long-acting release (LAR) and albiglutide, were formulated to allow for once-weekly dosing. All four GLP-1 RAs have demonstrated reductions in hemoglobin A1c, fasting blood glucose, and body weight both as monotherapy and in combination with first- and second-line diabetes agents including metformin, sulfonylureas, thiazolidinediones, and insulin. Greater glycemic control was seen with liraglutide compared with the other GLP-1 treatment options; however, the two long-acting agents were superior to exenatide twice daily. All agents were well tolerated with most adverse events being mild or moderate in nature. The most common adverse event was transient nausea which typically resolved 4–8 weeks after treatment initiation. Long-acting agents had lower rates of nausea but an increased incidence of injection site reactions. Trials have suggested GLP-1 RAs may improve cardiovascular risk factors including blood pressure, lipid parameters and inflammatory markers. Future trials are needed to confirm the clinical outcomes of these agents. Overall, GLP-1 RAs will provide benefit for patients with T2DM intolerable to or not reaching glycemic goals with first-line agents, especially in patients in need of weight loss. PMID:25678952

  15. Glucagon-like peptide-1 modulates neurally evoked mucosal chloride secretion in guinea pig small intestine in vitro.

    PubMed

    Baldassano, Sara; Wang, Guo-Du; Mulè, Flavia; Wood, Jackie D

    2012-02-01

    Glucagon-like peptide-1 (GLP-1) acts at the G protein-coupled receptor, GLP-1R, to stimulate secretion of insulin and to inhibit secretion of glucagon and gastric acid. Involvement in mucosal secretory physiology has received negligible attention. We aimed to study involvement of GLP-1 in mucosal chloride secretion in the small intestine. Ussing chamber methods, in concert with transmural electrical field stimulation (EFS), were used to study actions on neurogenic chloride secretion. ELISA was used to study GLP-1R effects on neural release of acetylcholine (ACh). Intramural localization of GLP-1R was assessed with immunohistochemistry. Application of GLP-1 to serosal or mucosal sides of flat-sheet preparations in Ussing chambers did not change baseline short-circuit current (I(sc)), which served as a marker for chloride secretion. Transmural EFS evoked neurally mediated biphasic increases in I(sc) that had an initial spike-like rising phase followed by a sustained plateau-like phase. Blockade of the EFS-evoked responses by tetrodotoxin indicated that the responses were neurally mediated. Application of GLP-1 reduced the EFS-evoked biphasic responses in a concentration-dependent manner. The GLP-1 receptor antagonist exendin-(9-39) suppressed this action of GLP-1. The GLP-1 inhibitory action on EFS-evoked responses persisted in the presence of nicotinic or vasoactive intestinal peptide receptor antagonists but not in the presence of a muscarinic receptor antagonist. GLP-1 significantly reduced EFS-evoked ACh release. In the submucosal plexus, GLP-1R immunoreactivity (IR) was expressed by choline acetyltransferase-IR neurons, neuropeptide Y-IR neurons, somatostatin-IR neurons, and vasoactive intestinal peptide-IR neurons. Our results suggest that GLP-1R is expressed in guinea pig submucosal neurons and that its activation leads to a decrease in neurally evoked chloride secretion by suppressing release of ACh at neuroepithelial junctions in the enteric neural networks

  16. β-Cell Glucagon-Like Peptide-1 Receptor Contributes to Improved Glucose Tolerance After Vertical Sleeve Gastrectomy.

    PubMed

    Garibay, Darline; McGavigan, Anne K; Lee, Seon A; Ficorilli, James V; Cox, Amy L; Michael, M Dodson; Sloop, Kyle W; Cummings, Bethany P

    2016-09-01

    Vertical sleeve gastrectomy (VSG) produces high rates of type 2 diabetes remission; however, the mechanisms responsible for this remain incompletely defined. Glucagon-like peptide-1 (GLP-1) is a gut hormone that contributes to the maintenance of glucose homeostasis and is elevated after VSG. VSG-induced increases in postprandial GLP-1 secretion have been proposed to contribute to the glucoregulatory benefits of VSG; however, previous work has been equivocal. In order to test the contribution of enhanced β-cell GLP-1 receptor (GLP-1R) signaling we used a β-cell-specific tamoxifen-inducible GLP-1R knockout mouse model. Male β-cell-specific Glp-1r(β-cell+/+) wild type (WT) and Glp-1r(β-cell-/-) knockout (KO) littermates were placed on a high-fat diet for 6 weeks and then switched to high-fat diet supplemented with tamoxifen for the rest of the study. Mice underwent sham or VSG surgery after 2 weeks of tamoxifen diet and were fed ad libitum postoperatively. Mice underwent oral glucose tolerance testing at 3 weeks and were euthanized at 6 weeks after surgery. VSG reduced body weight and food intake independent of genotype. However, glucose tolerance was only improved in VSG WT compared with sham WT, whereas VSG KO had impaired glucose tolerance relative to VSG WT. Augmentation of glucose-stimulated insulin secretion during the oral glucose tolerance test was blunted in VSG KO compared with VSG WT. Therefore, our data suggest that enhanced β-cell GLP-1R signaling contributes to improved glucose regulation after VSG by promoting increased glucose-stimulated insulin secretion. PMID:27501183

  17. Evidence for glucagon-like peptide-1 receptor signaling to activate ATP-sensitive potassium channels in pancreatic beta cells.

    PubMed

    Kwon, Hye-Jung; Park, Hyun-Sun; Park, Sung-Hee; Park, Jae-Hyung; Shin, Su-Kyung; Song, Seung Eun; Hwang, Meeyul; Cho, Ho-Chan; Song, Dae-Kyu

    2016-01-01

    Glucagon-like peptide-1 (GLP-1) is a gut peptide that promotes insulin release from pancreatic beta cells. GLP-1 has been shown to confer glucose-insensitive beta cells with glucose sensitivity by modulation of the activity of the ATP-sensitive potassium (KATP) channel. The channel closing effect of GLP-1, interacting with corresponding G-protein-coupled receptors, has been well established; however, to our knowledge, no study has shown whether GLP-1 directly induces activation of beta-cell KATP channels. Here, we aimed to evaluate whether the activation of beta-cell KATP channels by GLP-1 exists and affects intracellular Ca(2+) levels ([Ca(2+)]i). KATP channel activity was measured in isolated rat pancreatic beta cells by whole-cell perforated patch-clamp recordings with a diazoxide-containing pipette solution. Changes in [Ca(2+)]i and the subcellular localization of KATP channels were observed using the calcium-sensitive dye fura-4/AM and anti-Kir6.2 antibodies in INS-1 beta cells, respectively. To eliminate the well-known inhibitory effects of GLP-1 on KATP channel activity, channels were fully inhibited by pretreatment with methyl pyruvate and epigallocatechin-3-gallate. In the pretreated beta cells, GLP-1 and exendin-4 promptly activated the channels, reducing [Ca(2+)]i. The phosphoinositide 3-kinase (PI3K) inhibitor LY294002 blocked the effects of GLP-1 on channel activity. Moreover, phosphatidylinositol-3,4,5-trisphosphate mimicked the effects of GLP-1. These results suggested that beta-cell GLP-1 receptor signaling involved activation of KATP channels via a PI3K-dependent pathway. This alternative mechanism of GLP-1 function may act as a negative feedback pathway, modulating the glucose-dependent GLP-1 inhibition on KATP channel activity. PMID:26655814

  18. Importance of Large Intestine in Regulating Bile Acids and Glucagon-Like Peptide-1 in Germ-Free Mice.

    PubMed

    Selwyn, Felcy Pavithra; Csanaky, Iván L; Zhang, Youcai; Klaassen, Curtis D

    2015-10-01

    It is known that 1) elevated serum bile acids (BAs) are associated with decreased body weight, 2) elevated glucagon-like peptide-1 (GLP-1) levels can decrease body weight, and 3) germ-free (GF) mice are resistant to diet-induced obesity. The purpose of this study was to test the hypothesis that a lack of intestinal microbiota results in more BAs in the body, resulting in increased BA-mediated transmembrane G protein-coupled receptor 5 (TGR5) signaling and increased serum GLP-1 as a mechanism of resistance of GF mice to diet-induced obesity. GF mice had 2- to 4-fold increased total BAs in the serum, liver, bile, and ileum. Fecal excretion of BAs was 63% less in GF mice. GF mice had decreased secondary BAs and increased taurine-conjugated BAs, as anticipated. Surprisingly, there was an increase in non-12α-OH BAs, namely, β-muricholic acid, ursodeoxycholic acid (UDCA), and their taurine conjugates, in GF mice. Further, in vitro experiments confirmed that UDCA is a primary BA in mice. There were minimal changes in the mRNA of farnesoid X receptor target genes in the ileum (Fibroblast growth factor 15, small heterodimer protein, and ileal bile acid-binding protein), in the liver (small heterodimer protein, liver receptor homolog-1, and cytochrome P450 7a1), and BA transporters (apical sodium dependent bile acid transporter, organic solute transporter α, and organic solute transporter β) in the ileum of GF mice. Surprisingly, there were marked increases in BA transporters in the large intestine. Increased GLP-1 levels and gallbladder size were observed in GF mice, suggesting activation of TGR5 signaling. In summary, the GF condition results in increased expression of BA transporters in the colon, resulting in 1) an increase in total BA concentrations in tissues, 2) a change in BA composition to favor an increase in non-12α-OH BAs, and 3) activation of TGR5 signaling with increased gallbladder size and GLP-1.

  19. Importance of Large Intestine in Regulating Bile Acids and Glucagon-Like Peptide-1 in Germ-Free Mice

    PubMed Central

    Selwyn, Felcy Pavithra; Csanaky, Iván L.; Zhang, Youcai

    2015-01-01

    It is known that 1) elevated serum bile acids (BAs) are associated with decreased body weight, 2) elevated glucagon-like peptide-1 (GLP-1) levels can decrease body weight, and 3) germ-free (GF) mice are resistant to diet-induced obesity. The purpose of this study was to test the hypothesis that a lack of intestinal microbiota results in more BAs in the body, resulting in increased BA-mediated transmembrane G protein–coupled receptor 5 (TGR5) signaling and increased serum GLP-1 as a mechanism of resistance of GF mice to diet-induced obesity. GF mice had 2- to 4-fold increased total BAs in the serum, liver, bile, and ileum. Fecal excretion of BAs was 63% less in GF mice. GF mice had decreased secondary BAs and increased taurine-conjugated BAs, as anticipated. Surprisingly, there was an increase in non–12α-OH BAs, namely, β-muricholic acid, ursodeoxycholic acid (UDCA), and their taurine conjugates, in GF mice. Further, in vitro experiments confirmed that UDCA is a primary BA in mice. There were minimal changes in the mRNA of farnesoid X receptor target genes in the ileum (Fibroblast growth factor 15, small heterodimer protein, and ileal bile acid–binding protein), in the liver (small heterodimer protein, liver receptor homolog-1, and cytochrome P450 7a1), and BA transporters (apical sodium dependent bile acid transporter, organic solute transporter α, and organic solute transporter β) in the ileum of GF mice. Surprisingly, there were marked increases in BA transporters in the large intestine. Increased GLP-1 levels and gallbladder size were observed in GF mice, suggesting activation of TGR5 signaling. In summary, the GF condition results in increased expression of BA transporters in the colon, resulting in 1) an increase in total BA concentrations in tissues, 2) a change in BA composition to favor an increase in non–12α-OH BAs, and 3) activation of TGR5 signaling with increased gallbladder size and GLP-1. PMID:26199423

  20. Oleic acid and glucose regulate glucagon-like peptide 1 receptor expression in a rat pancreatic ductal cell line

    SciTech Connect

    Zhang, Leshuai W.; McMahon Tobin, Grainne A.; Rouse, Rodney L.

    2012-10-15

    The glucagon-like peptide 1 receptor (GLP1R) plays a critical role in glucose metabolism and has become an important target for a growing class of drugs designed to treat type 2 diabetes. In vitro studies were designed to investigate the effect of the GLP1R agonist, exenatide (Ex4), in “on-target” RIN-5mF (islet) cells as well as in “off-target” AR42J (acinar) and DSL-6A/C1 (ductal) cells in a diabetic environment. Ex4 increased islet cell proliferation but did not affect acinar cells or ductal cells at relevant concentrations. A high caloric, high fat diet is a risk factor for impaired glucose tolerance and type-2 diabetes. An in vitro Oleic acid (OA) model was used to investigate the effect of Ex4 in a high calorie, high fat environment. At 0.1 and 0.4 mM, OA mildly decreased the proliferation of all pancreatic cell types. Ex4 did not potentiate the inhibitory effect of OA on cell proliferation. Akt phosphorylation in response to Ex4 was diminished in OA-treated ductal cells. GLP1R protein detected by western blot was time and concentration dependently decreased after glucose stimulation in OA-treated ductal cells. In ductal cells, OA treatment altered the intracellular localization of GLP1R and its co-localization with early endosome and recycling endosomes. Chloroquine (lysosomal inhibitor), N-acetyl-L-cysteine (reactive oxygen species scavenger) and wortmannin (a phosphatidylinositol-3-kinase inhibitor), fully or partially, rescued GLP1R protein in OA-pretreated, glucose-stimulated ductal cells. The impact of altered regulation on phenotype/function is presently unknown. However, these data suggest that GLP1R regulation in ductal cells can be altered by a high fat, high calorie environment. -- Highlights: ► Exenatide did not inhibit islet, acinar or ductal cell proliferation. ► GLP1R protein decreased after glucose stimulation in oleic acid-treated ductal cells. ► Oleic acid treatment altered localization of GLP1R with early and recycling

  1. GLP-1(28-36)amide, the Glucagon-like peptide-1 metabolite: friend, foe, or pharmacological folly?

    PubMed

    Taing, Meng-Wong; Rose, Felicity J; Whitehead, Jonathan P

    2014-01-01

    The glucagon-like peptide-1 (GLP-1) axis has emerged as a major therapeutic target for the treatment of type 2 diabetes. GLP-1 mediates its key insulinotropic effects via a G-protein coupled receptor expressed on β-cells and other pancreatic cell types. The insulinotropic activity of GLP-1 is terminated via enzymatic cleavage by dipeptidyl peptidase-4. Until recently, GLP-1-derived metabolites were generally considered metabolically inactive; however, accumulating evidence indicates some have biological activity that may contribute to the pleiotropic effects of GLP-1 independent of the GLP-1 receptor. Recent reports describing the putative effects of one such metabolite, the GLP-1-derived nonapeptide GLP-1(28-36) amide, are the focus of this review. Administration of the nonapeptide elevates cyclic adenosine monophosphate (cAMP) and activates protein kinase A, β-catenin, and cAMP response-element binding protein in pancreatic β-cells and hepatocytes. In stressed cells, the nonapeptide targets the mitochondria and, via poorly defined mechanisms, helps to maintain mitochondrial membrane potential and cellular adenosine triphosphate levels and to reduce cytotoxicity and apoptosis. In mouse models of diet-induced obesity, treatment with the nonapeptide reduces weight gain and ameliorates associated pathophysiology, including hyperglycemia, hyperinsulinemia, and hepatic steatosis. Nonapeptide administration in a streptozotocin-induced model of type 1 diabetes also improves glucose disposal concomitant with elevated insulin levels and increased β-cell mass and proliferation. Collectively, these results suggest some of the beneficial effects of GLP-1 receptor analogs may be mediated by the nonapeptide. However, the concentrations required to elicit some of these effects are in the micromolar range, leading to reservations about potentially related therapeutic benefits. Moreover, although controversial, concerns have been raised about the potential for incretin

  2. Glucagon-like peptide 1 receptor stimulation reverses key deficits in distinct rodent models of Parkinson's disease

    PubMed Central

    Harkavyi, Alexander; Abuirmeileh, Amjad; Lever, Rebecca; Kingsbury, Ann E; Biggs, Christopher S; Whitton, Peter S

    2008-01-01

    Background It has recently become apparent that neuroinflammation may play a significant role in Parkinson's disease (PD). This is also the case in animal paradigms of the disease. The potential neuroprotective action of the glucagon-like peptide 1 receptor (GLP-1R) agonist exendin-4 (EX-4), which is protective against cytokine mediated apoptosis and may stimulate neurogenesis, was investigated In paradigms of PD. Methods Two rodent 'models' of PD, 6-hydroxydopamine (6-OHDA) and lipopolysaccaride (LPS), were used to test the effects of EX-4. Rats were then investigated in vivo and ex vivo with a wide range of behavioural, neurochemical and histological tests to measure integrity of the nigrostriatal system. Results EX-4 (0.1 and 0.5 μg/kg) was given seven days after intracerebral toxin injection. Seven days later circling behaviour was measured following apomorphine challenge. Circling was significantly lower in rats given EX-4 at both doses compared to animals given 6-OHDA/LPS and vehicle. Consistent with these observations, striatal tissue DA concentrations were markedly higher in 6-OHDA/LPS + EX-4 treated rats versus 6-OHDA/LPS + vehicle groups, whilst assay of L-DOPA production by tyrosine hydroxylase was greatly reduced in the striata of 6-OHDA/LPS + vehicle rats, but this was not the case in rats co-administered EX-4. Furthermore nigral TH staining recorded in 6-OHDA/LPS + vehicle treated animals was markedly lower than in sham-operated or EX-4 treated rats. Finally, EX-4 clearly reversed the loss of extracellular DA in the striata of toxin lesioned freely moving rats. Conclusion The apparent ability of EX-4 to arrest progression of, or even reverse nigral lesions once established, suggests that pharmacological manipulation of the GLP-1 receptor system could have substantial therapeutic utility in PD. Critically, in contrast to other peptide agents that have been demonstrated to possess neuroprotective properties in pre-clinical models of PD, EX-4 is in

  3. Postprandial glucose, insulin, and glucagon-like peptide-1 responses of different equine breeds adapted to meals containing micronized maize.

    PubMed

    Bamford, N J; Baskerville, C L; Harris, P A; Bailey, S R

    2015-07-01

    The enteroinsular axis is a complex system that includes the release of incretin hormones from the gut to promote the absorption and utilization of glucose after a meal. The insulinogenic effect of incretin hormones such as glucagon-like peptide-1 (GLP-1) remains poorly characterized in the horse. The aim of this study was to compare postprandial glucose, insulin, and GLP-1 responses of different equine breeds adapted to twice-daily meals containing micronized maize. Four Standardbred horses, 4 mixed-breed ponies, and 4 Andalusian cross horses in moderate BCS (5.5 ± 0.2 out of 9) were fed meals at 0800 and 1600 h each day. The meals contained micronized maize (mixed with soaked soybean hulls and lucerne chaff), with the amount of maize gradually increased over 12 wk to reach a final quantity of 1.7 g/kg BW (1.1 g/kg BW starch) in each meal. Animals had ad libitum access to the same hay throughout. After 12 wk of acclimation, serial blood samples were collected from all animals over a 14-h period to measure concentrations of glucose, insulin, and GLP-1, with meals fed immediately after the 0 and 8 h samples. Glucose area under the curve (AUC) values were similar between breed groups (P = 0.41); however, ponies and Andalusian horses exhibited significantly higher insulin AUC values after both meals compared with Standardbred horses (both P < 0.005). Postprandial GLP-1 AUC values were also significantly higher in ponies and Andalusian horses compared with Standardbred horses (breed × time interaction; P < 0.001). Correlation analysis demonstrated a strong positive association between concentrations of insulin and GLP-1 over time (rs = 0.752; P < 0.001). The increased insulin concentrations in ponies and Andalusian horses may partly reflect lower insulin sensitivity but could also be attributed to increased GLP-1 release. Given that hyperinsulinemia is a recognized risk factor for the development of laminitis in domestic equids, this study provides evidence that the

  4. Taspoglutide, an analog of human glucagon-like Peptide-1 with enhanced stability and in vivo potency.

    PubMed

    Sebokova, Elena; Christ, Andreas D; Wang, Haiyan; Sewing, Sabine; Dong, Jesse Z; Taylor, John; Cawthorne, Michael A; Culler, Michael D

    2010-06-01

    Taspoglutide is a novel analog of human glucagon-like peptide-1 [hGLP-1(7-36)NH2] in clinical development for the treatment of type 2 diabetes. Taspoglutide contains alpha-aminoisobutyric acid substitutions replacing Ala(8) and Gly(35) of hGLP-1(7-36)NH2. The binding affinity [radioligand binding assay using [(125)I]hGLP-1(7-36)NH2], potency (cAMP production in CHO cells stably overexpressing hGLP-1 receptor), and in vitro plasma stability of taspoglutide compared with hGLP-1(7-36)NH2 have been evaluated. Effects on basal and glucose-stimulated insulin secretion were determined in vitro in INS-1E cells and in vivo in normal rats. Taspoglutide has comparable affinity (affinity constant 1.1 +/- 0.2 nm) to the natural ligand (affinity constant 1.5 +/- 0.3 nm) for the hGLP-1 receptor and exhibits comparable potency in stimulating cAMP production (EC(50) Taspo 0.06 nm and EC(50) hGLP-1(7-36)NH2 0.08 nm). Taspoglutide exerts insulinotropic action in vitro and in vivo and retains the glucoincretin property of hGLP-1(7-36)NH2. Stimulation of insulin secretion is concentration dependent and evident in the presence of high-glucose concentrations (16.7 mm) with a taspoglutide concentration as low as 0.001 nm. Taspoglutide is fully resistant to dipeptidyl peptidase-4 cleavage (during 1 h incubation at room temperature with purified enzyme) and has an extended in vitro plasma half-life relative to hGLP-1(7-36)NH2 (9.8 h vs. 50 min). In vitro, taspoglutide does not inhibit dipeptidyl peptidase-4 activity. This study provides the biochemical and pharmacological basis for the sustained plasma drug levels and prolonged therapeutic activity seen in early clinical trials of taspoglutide. Excellent stability and potency with substantial glucoincretin effects position taspoglutide as a promising new agent for treatment of type 2 diabetes.

  5. Effects of prepartum fat supplementation on plasma concentrations of glucagon-like peptide-1, peptide YY, adropin, insulin, and leptin in periparturient dairy cows.

    PubMed

    Zapata, Rizaldy C; Salehi, Reza; Ambrose, Divakar J; Chelikani, Prasanth K

    2015-10-01

    Dietary fat supplementation during the periparturient period is one strategy to increase energy intake and attenuate the degree of negative energy balance during early lactation; however, little is known of the underlying hormonal and metabolic adaptations. We evaluated the effects of prepartum fat supplementation on energy-balance parameters and plasma concentrations of glucagon-like peptide-1, peptide tyrosine-tyrosine (PYY), adropin, insulin, leptin, glucose, nonesterified fatty acid, and β-hydroxybutyric acid in dairy cows. Twenty-four pregnant dairy cows were randomized to diets containing either rolled canola or sunflower seed at 8% of dry matter, or no oilseed supplementation, during the last 5 wk of gestation and then assigned to a common lactation diet postpartum. Blood samples were collected at -2, +2, and +14 h relative to feeding, at 2 wk after the initiation of the diets, and at 2 wk postpartum. Dietary canola and sunflower supplementation alone did not affect energy balance, body weight, and plasma concentrations of glucagon-like peptide-1, PYY, adropin, insulin, leptin, nonesterified fatty acid, and β-hydroxybutyric acid; however, canola decreased and sunflower tended to decrease dry matter intake. We also observed that the physiological stage had a significant, but divergent, effect on circulating hormones and metabolite concentrations. Plasma glucagon-like peptide-1, PYY, adropin, nonesterified fatty acid, and β-hydroxybutyric acid concentrations were greater postpartum than prepartum, whereas glucose, insulin, leptin, body weight, and energy balance were greater prepartum than postpartum. Furthermore, the interaction of treatment and stage was significant for leptin and adropin, and tended toward significance for PYY and insulin; only insulin exhibited an apparent postprandial increase. Postpartum PYY concentrations exhibited a strong negative correlation with body weight, suggesting that PYY may be associated with body weight regulation during

  6. Exploration of structure-activity relationships at the two C-terminal residues of potent 11mer Glucagon-Like Peptide-1 receptor agonist peptides via parallel synthesis.

    PubMed

    Haque, Tasir S; Martinez, Rogelio L; Lee, Ving G; Riexinger, Douglas G; Lei, Ming; Feng, Ming; Koplowitz, Barry; Mapelli, Claudio; Cooper, Christopher B; Zhang, Ge; Huang, Christine; Ewing, William R; Krupinski, John

    2010-07-01

    We report the identification of potent agonists of the Glucagon-Like Peptide-1 receptor (GLP-1R) via evaluation of two positional scanning libraries and a two-dimensional focused library, synthesized in part on SynPhase Lanterns. These compounds are 11 amino acid peptides containing several unnatural amino acids, including (in particular) analogs of biphenylalanine (Bip) at the two C-terminal positions. Typical activities of the most potent peptides in this class are in the picomolar range in an in vitro functional assay using human GLP-1 receptor.

  7. Identification of potent 11mer glucagon-like peptide-1 receptor agonist peptides with novel C-terminal amino acids: Homohomophenylalanine analogs.

    PubMed

    Haque, Tasir S; Lee, Ving G; Riexinger, Douglas; Lei, Ming; Malmstrom, Sarah; Xin, Li; Han, Songping; Mapelli, Claudio; Cooper, Christopher B; Zhang, Ge; Ewing, William R; Krupinski, John

    2010-05-01

    We report the identification of potent agonists of the Glucagon-Like Peptide-1 Receptor (GLP-1R). These compounds are short, 11 amino acid peptides containing several unnatural amino acids, including (in particular) analogs of homohomophenylalanine (hhPhe) at the C-terminal position. Typically the functional activity of the more potent peptides in this class is in the low picomolar range in an in vitro cAMP assay, with one example demonstrating excellent in vivo activity in an ob/ob mouse model of diabetes.

  8. The putative signal peptide of glucagon-like peptide-1 receptor is not required for receptor synthesis but promotes receptor expression

    PubMed Central

    Ge, Yunjun; Yang, Dehua; Dai, Antao; Zhou, Caihong; Zhu, Yue; Wang, Ming-Wei

    2014-01-01

    GLP-1R (glucagon-like peptide-1 receptor) mediates the ‘incretin effect’ and many other anti-diabetic actions of its cognate ligand, GLP-1 (glucagon-like peptide-1). It belongs to the class B family of GPCRs (G protein-coupled receptors) and possesses an N-terminal putative SP (signal peptide). It has been reported that this sequence is required for the synthesis of GLP-1R and is cleaved after receptor synthesis. In the present study, we conducted an in-depth exploration towards the role of the putative SP in GLP-1R synthesis. A mutant GLP-1R without this sequence was expressed in HEK293 cells (human embryonic kidney 293 cells) and displayed normal functionality with respect to ligand binding and activation of adenylate cyclase. Thus the putative SP does not seem to be required for receptor synthesis. Immunoblotting analysis shows that the amount of GLP-1R synthesized in HEK293 cells is low when the putative SP is absent. This indicates that the role of the sequence is to promote the expression of GLP-1R. Furthermore, epitopes tagged at the N-terminal of GLP-1R are detectable by immunofluorescence and immunoblotting in our experiments. In conclusion, the present study points to different roles of SP in GLP-1R expression which broadens our understanding of the functionality of this putative SP of GLP-1R and possibly other Class B GPCRs. PMID:25330813

  9. A Dual-Purpose Linker for Alpha Helix Stabilization and Imaging Agent Conjugation to Glucagon-Like Peptide-1 Receptor Ligands

    PubMed Central

    Zhang, Liang; Navaratna, Tejas; Liao, Jianshan; Thurber, Greg M.

    2016-01-01

    Peptides display many characteristics of efficient imaging agents such as rapid targeting, fast background clearance, and low non-specific cellular uptake. However, poor stability, low affinity, and loss of binding after labeling often preclude their use in vivo. Using the glucagon-like peptide-1 receptor (GLP-1R) ligands exendin and GLP-1 as a model system, we designed a novel alpha helix stabilizing linker to simultaneously address these limitations. The stabilized and labeled peptides showed an increase in helicity, improved protease resistance, negligible loss or an improvement in binding affinity, and excellent in vivo targeting. The ease of incorporating azidohomoalanine in peptides and efficient reaction with the dialkyne linker enables this technique to potentially be used as a general method for labeling alpha helices. This strategy should be useful for imaging beta cells in diabetes research and in developing and testing other peptide targeting agents. PMID:25594741

  10. [Dulaglutide (Trulicity®), a new once-weekly agonist of glucagon-like peptide-1 receptors for type 2 diabetes].

    PubMed

    Scheen, A J

    2016-03-01

    Dulaglutide (Trulicity®) is a new once-weekly agonist of Glucagon-Like Peptide-1 (GLP-1) receptors indicated in the treatment of type 2 diabetes. Phase III clinical trials in AWARD programme demonstrated the efficacy and safety of dulaglutide in patients with type 2 diabetes treated by diet and exercise, metformin, a combination of metformin and a sulfonylurea or metformin and pioglitazone or even by supplements of prandial insulin. In the AWARD programme, dulaglutide (subcutaneous 0.75 or 1.5 mg once weekly) exerted a greater glucose-lowering activity than metformin, sitagliptin, exenatide or insulin glargine, and was non-inferior to liraglutide 1.8 mg once daily. Dulaglutide is currently reimbursed in Belgium after failure of and in combination with a dual oral therapy with metformin and a sulfonylurea or metformin and pioglitazone.

  11. [Impact of anti-diabetic therapy based on glucagon-like peptide-1 receptor agonists on the cardiovascular risk of patients with type 2 diabetes mellitus].

    PubMed

    Camafort-Babkowski, Miguel

    2013-08-17

    Anti-diabetic drugs have, in addition to their well-known glucose lowering-effect, different effects in the rest of cardiovascular factors that are associated with diabetes mellitus. Glucagon-like peptide-1 (GLP-1) receptor agonists have recently been incorporated to the therapeutic arsenal of type 2 diabetes mellitus. The objective of this review is to summarize the available evidence on the effect of the GLP-1 receptor agonists on different cardiovascular risk factors, mediated by the effect of GLP-1 receptor agonists on the control of hyperglycaemia and the GLP-1 receptor agonists effect on other cardiovascular risk factors (weight control, blood pressure control, lipid profile and all other cardiovascular risk biomarkers). In addition, we present the emerging evidence with regards to the impact that GLP-1 receptor agonists therapy could have in the reduction of cardiovascular events and the currently ongoing studies addressing this issue.

  12. [Dulaglutide (Trulicity®), a new once-weekly agonist of glucagon-like peptide-1 receptors for type 2 diabetes].

    PubMed

    Scheen, A J

    2016-03-01

    Dulaglutide (Trulicity®) is a new once-weekly agonist of Glucagon-Like Peptide-1 (GLP-1) receptors indicated in the treatment of type 2 diabetes. Phase III clinical trials in AWARD programme demonstrated the efficacy and safety of dulaglutide in patients with type 2 diabetes treated by diet and exercise, metformin, a combination of metformin and a sulfonylurea or metformin and pioglitazone or even by supplements of prandial insulin. In the AWARD programme, dulaglutide (subcutaneous 0.75 or 1.5 mg once weekly) exerted a greater glucose-lowering activity than metformin, sitagliptin, exenatide or insulin glargine, and was non-inferior to liraglutide 1.8 mg once daily. Dulaglutide is currently reimbursed in Belgium after failure of and in combination with a dual oral therapy with metformin and a sulfonylurea or metformin and pioglitazone. PMID:27311248

  13. [Impact of anti-diabetic therapy based on glucagon-like peptide-1 receptor agonists on the cardiovascular risk of patients with type 2 diabetes mellitus].

    PubMed

    Camafort-Babkowski, Miguel

    2013-08-17

    Anti-diabetic drugs have, in addition to their well-known glucose lowering-effect, different effects in the rest of cardiovascular factors that are associated with diabetes mellitus. Glucagon-like peptide-1 (GLP-1) receptor agonists have recently been incorporated to the therapeutic arsenal of type 2 diabetes mellitus. The objective of this review is to summarize the available evidence on the effect of the GLP-1 receptor agonists on different cardiovascular risk factors, mediated by the effect of GLP-1 receptor agonists on the control of hyperglycaemia and the GLP-1 receptor agonists effect on other cardiovascular risk factors (weight control, blood pressure control, lipid profile and all other cardiovascular risk biomarkers). In addition, we present the emerging evidence with regards to the impact that GLP-1 receptor agonists therapy could have in the reduction of cardiovascular events and the currently ongoing studies addressing this issue. PMID:23332622

  14. Imaging exocytosis of single glucagon-like peptide-1 containing granules in a murine enteroendocrine cell line with total internal reflection fluorescent microscopy

    SciTech Connect

    Ohara-Imaizumi, Mica; Aoyagi, Kyota; Akimoto, Yoshihiro; Nakamichi, Yoko; Nishiwaki, Chiyono; Kawakami, Hayato; Nagamatsu, Shinya

    2009-12-04

    To analyze the exocytosis of glucagon-like peptide-1 (GLP-1) granules, we imaged the motion of GLP-1 granules labeled with enhanced yellow fluorescent protein (Venus) fused to human growth hormone (hGH-Venus) in an enteroendocrine cell line, STC-1 cells, by total internal reflection fluorescent (TIRF) microscopy. We found glucose stimulation caused biphasic GLP-1 granule exocytosis: during the first phase, fusion events occurred from two types of granules (previously docked granules and newcomers), and thereafter continuous fusion was observed mostly from newcomers during the second phase. Closely similar to the insulin granule fusion from pancreatic {beta} cells, the regulated biphasic exocytosis from two types of granules may be a common mechanism in glucose-evoked hormone release from endocrine cells.

  15. Imaging exocytosis of single glucagon-like peptide-1 containing granules in a murine enteroendocrine cell line with total internal reflection fluorescent microscopy.

    PubMed

    Ohara-Imaizumi, Mica; Aoyagi, Kyota; Akimoto, Yoshihiro; Nakamichi, Yoko; Nishiwaki, Chiyono; Kawakami, Hayato; Nagamatsu, Shinya

    2009-12-01

    To analyze the exocytosis of glucagon-like peptide-1 (GLP-1) granules, we imaged the motion of GLP-1 granules labeled with enhanced yellow fluorescent protein (Venus) fused to human growth hormone (hGH-Venus) in an enteroendocrine cell line, STC-1 cells, by total internal reflection fluorescent (TIRF) microscopy. We found glucose stimulation caused biphasic GLP-1 granule exocytosis: during the first phase, fusion events occurred from two types of granules (previously docked granules and newcomers), and thereafter continuous fusion was observed mostly from newcomers during the second phase. Closely similar to the insulin granule fusion from pancreatic beta cells, the regulated biphasic exocytosis from two types of granules may be a common mechanism in glucose-evoked hormone release from endocrine cells.

  16. Glucagon-Like Peptide-1 and Its Class B G Protein-Coupled Receptors: A Long March to Therapeutic Successes.

    PubMed

    Graaf, Chris de; Donnelly, Dan; Wootten, Denise; Lau, Jesper; Sexton, Patrick M; Miller, Laurence J; Ahn, Jung-Mo; Liao, Jiayu; Fletcher, Madeleine M; Yang, Dehua; Brown, Alastair J H; Zhou, Caihong; Deng, Jiejie; Wang, Ming-Wei

    2016-10-01

    The glucagon-like peptide (GLP)-1 receptor (GLP-1R) is a class B G protein-coupled receptor (GPCR) that mediates the action of GLP-1, a peptide hormone secreted from three major tissues in humans, enteroendocrine L cells in the distal intestine, α cells in the pancreas, and the central nervous system, which exerts important actions useful in the management of type 2 diabetes mellitus and obesity, including glucose homeostasis and regulation of gastric motility and food intake. Peptidic analogs of GLP-1 have been successfully developed with enhanced bioavailability and pharmacological activity. Physiologic and biochemical studies with truncated, chimeric, and mutated peptides and GLP-1R variants, together with ligand-bound crystal structures of the extracellular domain and the first three-dimensional structures of the 7-helical transmembrane domain of class B GPCRs, have provided the basis for a two-domain-binding mechanism of GLP-1 with its cognate receptor. Although efforts in discovering therapeutically viable nonpeptidic GLP-1R agonists have been hampered, small-molecule modulators offer complementary chemical tools to peptide analogs to investigate ligand-directed biased cellular signaling of GLP-1R. The integrated pharmacological and structural information of different GLP-1 analogs and homologous receptors give new insights into the molecular determinants of GLP-1R ligand selectivity and functional activity, thereby providing novel opportunities in the design and development of more efficacious agents to treat metabolic disorders. PMID:27630114

  17. Glucagon-Like Peptide-1 and Its Class B G Protein–Coupled Receptors: A Long March to Therapeutic Successes

    PubMed Central

    de Graaf, Chris; Donnelly, Dan; Wootten, Denise; Lau, Jesper; Sexton, Patrick M.; Miller, Laurence J.; Ahn, Jung-Mo; Liao, Jiayu; Fletcher, Madeleine M.; Brown, Alastair J. H.; Zhou, Caihong; Deng, Jiejie; Wang, Ming-Wei

    2016-01-01

    The glucagon-like peptide (GLP)-1 receptor (GLP-1R) is a class B G protein–coupled receptor (GPCR) that mediates the action of GLP-1, a peptide hormone secreted from three major tissues in humans, enteroendocrine L cells in the distal intestine, α cells in the pancreas, and the central nervous system, which exerts important actions useful in the management of type 2 diabetes mellitus and obesity, including glucose homeostasis and regulation of gastric motility and food intake. Peptidic analogs of GLP-1 have been successfully developed with enhanced bioavailability and pharmacological activity. Physiologic and biochemical studies with truncated, chimeric, and mutated peptides and GLP-1R variants, together with ligand-bound crystal structures of the extracellular domain and the first three-dimensional structures of the 7-helical transmembrane domain of class B GPCRs, have provided the basis for a two-domain–binding mechanism of GLP-1 with its cognate receptor. Although efforts in discovering therapeutically viable nonpeptidic GLP-1R agonists have been hampered, small-molecule modulators offer complementary chemical tools to peptide analogs to investigate ligand-directed biased cellular signaling of GLP-1R. The integrated pharmacological and structural information of different GLP-1 analogs and homologous receptors give new insights into the molecular determinants of GLP-1R ligand selectivity and functional activity, thereby providing novel opportunities in the design and development of more efficacious agents to treat metabolic disorders. PMID:27630114

  18. Renal extraction and acute effects of glucagon-like peptide-1 on central and renal hemodynamics in healthy men.

    PubMed

    Asmar, Ali; Simonsen, Lene; Asmar, Meena; Madsbad, Sten; Holst, Jens J; Frandsen, Erik; Moro, Cedric; Jonassen, Thomas; Bülow, Jens

    2015-04-15

    The present experiments were performed to elucidate the acute effects of intravenous infusion of glucagon-like peptide (GLP)-1 on central and renal hemodynamics in healthy men. Seven healthy middle-aged men were examined on two different occasions in random order. During a 3-h infusion of either GLP-1 (1.5 pmol·kg⁻¹·min⁻¹) or saline, cardiac output was estimated noninvasively, and intraarterial blood pressure and heart rate were measured continuously. Renal plasma flow, glomerular filtration rate, and uptake/release of hormones and ions were measured by Fick's Principle after catheterization of a renal vein. Subjects remained supine during the experiments. During GLP-1 infusion, both systolic blood pressure and arterial pulse pressure increased by 5±1 mmHg (P=0.015 and P=0.002, respectively). Heart rate increased by 5±1 beats/min (P=0.005), and cardiac output increased by 18% (P=0.016). Renal plasma flow and glomerular filtration rate as well as the clearance of Na⁺ and Li⁺ were not affected by GLP-1. However, plasma renin activity decreased (P=0.037), whereas plasma levels of atrial natriuretic peptide were unaffected. Renal extraction of intact GLP-1 was 43% (P<0.001), whereas 60% of the primary metabolite GLP-1 9-36amide was extracted (P=0.017). In humans, an acute intravenous administration of GLP-1 leads to increased cardiac output due to a simultaneous increase in stroke volume and heart rate, whereas no effect on renal hemodynamics could be demonstrated despite significant extraction of both the intact hormone and its primary metabolite. PMID:25670826

  19. Differential effects of glucagon-like peptide-1 on microvascular recruitment and glucose metabolism in short- and long-term insulin resistance

    PubMed Central

    Sjøberg, Kim A; Rattigan, Stephen; Jeppesen, Jacob F; Lundsgaard, Anne-Marie; Holst, Jens J; Kiens, Bente

    2015-01-01

    Abstract Acute infusion of glucagon-like peptide-1 (GLP-1) has potent effects on blood flow distribution through the microcirculation in healthy humans and rats. A high fat diet induces impairments in insulin-mediated microvascular recruitment (MVR) and muscle glucose uptake, and here we examined whether this could be reversed by GLP-1. Using contrast-enhanced ultrasound, microvascular recruitment was assessed by continuous real-time imaging of gas-filled microbubbles in the microcirculation after acute (5 days) and prolonged (8 weeks) high fat diet (HF)-induced insulin resistance in rats. A euglycaemic hyperinsulinaemic clamp (3 mU min−1 kg−1), with or without a co-infusion of GLP-1 (100 pmol l−1), was performed in anaesthetized rats. Consumption of HF attenuated the insulin-mediated MVR in both 5 day and 8 week HF interventions which was associated with a 50% reduction in insulin-mediated glucose uptake compared to controls. Acute administration of GLP-1 restored the normal microvascular response by increasing the MVR after both 5 days and 8 weeks of HF intervention (P < 0.05). This effect of GLP-1 was associated with a restoration of both whole body insulin sensitivity and increased insulin-mediated glucose uptake in skeletal muscle by 90% (P < 0.05) after 5 days of HF but not after 8 weeks of HF. The present study demonstrates that GLP-1 increases MVR in rat skeletal muscle and can reverse early stages of high fat diet-induced insulin resistance in vivo. Key points Acute glucagon-like peptide-1 (GLP-1) infusion reversed the high fat diet-induced microvascular insulin resistance that occurred after both 5 days and 8 weeks of a high fat diet intervention. When GLP-1 was co-infused with insulin it had overt effects on whole body insulin sensitivity as well as insulin-mediated skeletal muscle glucose uptake after 5 days of a high fat diet, but not after 8 weeks of high fat diet intervention. Acute GLP-1 infusion did not have an additive

  20. Evaluating preferences for profiles of glucagon-like peptide-1 receptor agonists among injection-naive type 2 diabetes patients in Japan

    PubMed Central

    Gelhorn, Heather L; Bacci, Elizabeth D; Poon, Jiat Ling; Boye, Kristina S; Suzuki, Shuichi; Babineaux, Steven M

    2016-01-01

    Objective The objective of this study was to use a discrete choice experiment (DCE) to estimate patients’ preferences for the treatment features, safety, and efficacy of two specific glucagon-like peptide-1 receptor agonists, dulaglutide and liraglutide, among patients with type 2 diabetes mellitus (T2DM) in Japan. Methods In Japan, patients with self-reported T2DM and naive to treatment with self-injectable medications were administered a DCE through an in-person interview. The DCE examined the following six attributes of T2DM treatment, each described by two levels: “dosing frequency”, “hemoglobin A1c change”, “weight change”, “type of delivery system”, “frequency of nausea”, and “frequency of hypoglycemia”. Part-worth utilities were estimated using logit models and were used to calculate the relative importance (RI) of each attribute. A chi-square test was used to determine the differences in preferences for the dulaglutide versus liraglutide profiles. Results The final evaluable sample consisted of 182 participants (mean age: 58.9 [standard deviation =10.0] years; 64.3% male; mean body mass index: 26.1 [standard deviation =5.0] kg/m2). The RI values for the attributes in rank order were dosing frequency (44.1%), type of delivery system (26.3%), frequency of nausea (15.1%), frequency of hypoglycemia (7.4%), weight change (6.2%), and hemoglobin A1c change (1.0%). Significantly more participants preferred the dulaglutide profile (94.5%) compared to the liraglutide profile (5.5%; P<0.0001). Conclusion This study elicited the preferences of Japanese T2DM patients for attributes and levels representing the actual characteristics of two existing glucagon-like peptide-1 receptor agonists. In this comparison, dosing frequency and type of delivery system were the two most important characteristics, accounting for >70% of the RI. These findings are similar to those of a previous UK study, providing information about patients’ preferences that

  1. Involvement of glucagon-like peptide 1 in the glucose homeostasis regulation in obese and pituitary-dependent hyperadrenocorticism affected dogs.

    PubMed

    Miceli, D D; Cabrera Blatter, M F; Gallelli, M F; Pignataro, O P; Castillo, V A

    2014-10-01

    The incretin glucagon-like peptide 1 (GLP-1) enhances insulin secretion. The aim of this study was to assess GLP-1, glucose and insulin concentrations, Homeostatic Model Assessment (HOMA insulin sensitivity and HOMA β-cell function) in dogs with pituitary-dependent hyperadrenocorticism (PDH), and compare these values with those in normal and obese dogs. The Oral Glucose Tolerance Test was performed and the glucose, GLP-1 and insulin concentrations were evaluated at baseline, and after 15, 30, 60 and 120 minutes. Both basal concentration and those corresponding to the subsequent times, for glucose, GLP-1 and insulin, were statistically elevated in PDH dogs compared to the other groups. Insulin followed a similar behaviour together with variations of GLP-1. HOMA insulin sensitivity was statistically decreased and HOMA β-cell function increased in dogs with PDH. The higher concentrations of GLP-1 in PDH could play an important role in the impairment of pancreatic β-cells thus predisposing to diabetes mellitus.

  2. Changes in the concentrations of glucagon-like peptide-1(7-36)amide and gastric inhibitory polypeptide during the lactation cycle in goats.

    PubMed

    Faulkner, A; Martin, P A

    1998-08-01

    Plasma concentrations of glucagon-like peptide-1(7-36)amide (GLP) and gastric inhibitory polypeptide (GIP) were determined at fortnightly intervals for over a year throughout the pregnancy-lactation cycle of goats. Both GIP and GLP concentrations were elevated during lactation and fell rapidly when milk secretion was terminated. At the onset of lactation GLP concentrations rose rapidly whereas GIP concentrations showed a delayed response. GLP concentrations remained high throughout lactation but those of GIP declined linearly as milk yields fell. Serum insulin concentrations correlated positively with plasma glucose concentrations but not with either GIP or GLP concentrations. Negative correlations were found between serum insulin concentrations and milk yield and plasma non-esterified fatty acid concentrations. The results are consistent with plasma GIP and GLP concentrations being determined by other factors in addition to nutrient intake and absorption. Changes in GIP concentrations mirrored reported changes in the hypertrophy and atrophy of the intestine in ruminants while GLP concentrations may be more dependent on the neural and endocrine factors associated with lactation. The elevated concentrations of both peptides indicated a specific role in lactation independent of their normal anabolic and insulinotropic effects.

  3. GSK2374697, a long duration glucagon-like peptide-1 (GLP-1) receptor agonist, reduces postprandial circulating endogenous total GLP-1 and peptide YY in healthy subjects.

    PubMed

    Lin, J; Hodge, R J; O'Connor-Semmes, R L; Nunez, D J

    2015-10-01

    We investigated the effects of a long-duration glucagon-like peptide-1 (GLP-1) receptor agonist, GSK2374697, on postprandial endogenous total GLP-1 and peptide YY (PYY). Two cohorts of healthy subjects, one normal/overweight and one obese, were randomized to receive GSK2374697 2 mg (n = 8 each) or placebo (n = 4 and n = 2) subcutaneously on days 1, 4 and 7. Samples for plasma endogenous GLP-1 and PYY were collected after breakfast on days -1 and 12. Weighted mean area under the curve (0-4 h) of total GLP-1 and PYY in treated subjects was reduced compared with placebo. The least squares mean difference for change from baseline was -1.24 pmol/l [95% confidence interval (CI) -2.33, -0.16] and -4.47 pmol/l (95% CI -8.74, -0.20) for total GLP-1 and PYY, respectively, in normal/overweight subjects (p < 0.05 for both), and -1.56 (95% CI -2.95, -0.16) and -3.02 (95% CI -8.58, 2.55), respectively, in obese subjects (p < 0.05 for GLP-1). In healthy subjects, GSK2374697 reduced postprandial total GLP-1 and PYY levels, suggesting feedback suppression of enteroendocrine L-cell secretion of these peptides.

  4. Risk of bone fractures associated with glucagon-like peptide-1 receptor agonists' treatment: a meta-analysis of randomized controlled trials.

    PubMed

    Su, Bin; Sheng, Hui; Zhang, Manna; Bu, Le; Yang, Peng; Li, Liang; Li, Fei; Sheng, Chunjun; Han, Yuqi; Qu, Shen; Wang, Jiying

    2015-02-01

    Traditional anti-diabetic drugs may have negative or positive effects on risk of bone fractures. Yet the relationship between the new class glucagon-like peptide-1 receptor agonists (GLP-1 RA) and risk of bone fractures has not been established. We performed a meta-analysis including randomized controlled trials (RCT) to study the risk of bone fractures associated with liraglutide or exenatide, compared to placebo or other active drugs. We searched MEDLINE, EMBASE, and clinical trial registration websites for published or unpublished RCTs comparing the effects of liraglutide or exenatide with comparators. Only studies with disclosed bone fracture data were included. Separate pooled analysis was performed for liraglutide or exenatide, respectively, by calculating Mantel-Haenszel odds ratio (MH-OR). 16 RCTs were identified including a total of 11,206 patients. Liraglutide treatment was associated with a significant reduced risk of incident bone fractures (MH-OR=0.38, 95% CI 0.17-0.87); however, exenatide treatment was associated with an elevated risk of incident bone fractures (MH-OR=2.09, 95% CI 1.03-4.21). Publication bias and heterogeneity between studies were not observed. Our study demonstrated a divergent risk of bone fractures associated with different GLP-1 RA treatments. The current findings need to be confirmed by future well-designed prospective or RCT studies.

  5. Low incidence of anti-drug antibodies in patients with type 2 diabetes treated with once-weekly glucagon-like peptide-1 receptor agonist dulaglutide.

    PubMed

    Milicevic, Z; Anglin, G; Harper, K; Konrad, R J; Skrivanek, Z; Glaesner, W; Karanikas, C A; Mace, K

    2016-05-01

    Therapeutic administration of peptides may result in anti-drug antibody (ADA) formation, hypersensitivity adverse events (AEs) and reduced efficacy. As a large peptide, the immunogenicity of once-weekly glucagon-like peptide-1 (GLP-1) receptor agonist dulaglutide is of considerable interest. The present study assessed the incidence of treatment-emergent dulaglutide ADAs, hypersensitivity AEs, injection site reactions (ISRs), and glycaemic control in ADA-positive patients in nine phase II and phase III trials (dulaglutide, N = 4006; exenatide, N = 276; non-GLP-1 comparators, N = 1141). Treatment-emergent dulaglutide ADAs were detected using a solid-phase extraction acid dissociation binding assay. Neutralizing ADAs were detected using a cell-based assay derived from human endothelial kidney cells (HEK293). A total of 64 dulaglutide-treated patients (1.6% of the population) tested ADA-positive versus eight (0.7%) from the non-GLP-1 comparator group. Of these 64 patients, 34 (0.9%) had dulaglutide-neutralizing ADAs, 36 (0.9%) had native-sequence GLP-1 (nsGLP-1) cross-reactive ADAs and four (0.1%) had nsGLP-1 neutralization ADAs. The incidence of hypersensitivity AEs and ISRs was similar in the dulaglutide versus placebo groups. No dulaglutide ADA-positive patient reported hypersensitivity AEs. Because of the low incidence of ADAs, it was not possible to establish their effect on glycaemic control. PMID:26847401

  6. Glucagon-like Peptide-1 receptor signaling in the lateral parabrachial nucleus contributes to the control of food intake and motivation to feed.

    PubMed

    Alhadeff, Amber L; Baird, John-Paul; Swick, Jennifer C; Hayes, Matthew R; Grill, Harvey J

    2014-08-01

    Central glucagon-like peptide-1 receptor (GLP-1R) activation reduces food intake and the motivation to work for food, but the neurons and circuits mediating these effects are not fully understood. Although lateral parabrachial nucleus (lPBN) neurons are implicated in the control of food intake and reward, the specific role of GLP-1R-expressing lPBN neurons is unexplored. Here, neuroanatomical tracing, immunohistochemical, and behavioral/pharmacological techniques are used to test the hypothesis that lPBN neurons contribute to the anorexic effect of central GLP-1R activation. Results indicate that GLP-1-producing neurons in the nucleus tractus solitarius project monosynaptically to the lPBN, providing a potential endogenous mechanism by which lPBN GLP-1R signaling may exert effects on food intake control. Pharmacological activation of GLP-1R in the lPBN reduced food intake, and conversely, antagonism of GLP-1R in the lPBN increased food intake. In addition, lPBN GLP-1R activation reduced the motivation to work for food under a progressive ratio schedule of reinforcement. Taken together, these data establish the lPBN as a novel site of action for GLP-1R-mediated control of food intake and reward. PMID:24681814

  7. The aglycone of ginsenoside Rg3 enables glucagon-like peptide-1 secretion in enteroendocrine cells and alleviates hyperglycemia in type 2 diabetic mice

    PubMed Central

    Kim, Ki-Suk; Jung Yang, Hea; Lee, In-Seung; Kim, Kang-Hoon; Park, Jiyoung; Jeong, Hyeon-Soo; Kim, Yoomi; Seok Ahn, Kwang; Na, Yun-Cheol; Jang, Hyeung-Jin

    2015-01-01

    Ginsenosides can be classified on the basis of the skeleton of their aglycones. Here, we hypothesized that the sugar moieties attached to the dammarane backbone enable binding of the ginsenosides to the sweet taste receptor, eliciting glucagon-like peptide-1 (GLP-1) secretion in the enteroendocrine L cells. Using the human enteroendocrine NCI-H716 cells, we demonstrated that 15 ginsenosides stimulate GLP-1 secretion according to the position of their sugar moieties. Through a pharmacological approach and RNA interference technique to inhibit the cellular signal cascade and using the Gαgust−/− mice, we elucidated that GLP-1 secreting effect of Rg3 mediated by the sweet taste receptor mediated the signaling pathway. Rg3, a ginsenoside metabolite that transformed the structure through a steaming process, showed the strongest GLP-1 secreting effects in NCI-H716 cells and also showed an anti-hyperglycemic effect on a type 2 diabetic mouse model through increased plasma GLP-1 and plasma insulin levels during an oral glucose tolerance test. Our study reveals a novel mechanism where the sugar moieties of ginsenosides Rg3 stimulates GLP-1 secretion in enteroendocrine L cells through a sweet taste receptor-mediated signal transduction pathway and thus has an anti-hyperglycemic effect on the type 2 diabetic mouse model. PMID:26675132

  8. Application of Adaptive Design Methodology in Development of a Long-Acting Glucagon-Like Peptide-1 Analog (Dulaglutide): Statistical Design and Simulations

    PubMed Central

    Skrivanek, Zachary; Berry, Scott; Berry, Don; Chien, Jenny; Geiger, Mary Jane; Anderson, James H.; Gaydos, Brenda

    2012-01-01

    Background Dulaglutide (dula, LY2189265), a long-acting glucagon-like peptide-1 analog, is being developed to treat type 2 diabetes mellitus. Methods To foster the development of dula, we designed a two-stage adaptive, dose-finding, inferentially seamless phase 2/3 study. The Bayesian theoretical framework is used to adaptively randomize patients in stage 1 to 7 dula doses and, at the decision point, to either stop for futility or to select up to 2 dula doses for stage 2. After dose selection, patients continue to be randomized to the selected dula doses or comparator arms. Data from patients assigned the selected doses will be pooled across both stages and analyzed with an analysis of covariance model, using baseline hemoglobin A1c and country as covariates. The operating characteristics of the trial were assessed by extensive simulation studies. Results Simulations demonstrated that the adaptive design would identify the correct doses 88% of the time, compared to as low as 6% for a fixed-dose design (the latter value based on frequentist decision rules analogous to the Bayesian decision rules for adaptive design). Conclusions This article discusses the decision rules used to select the dula dose(s); the mathematical details of the adaptive algorithm—including a description of the clinical utility index used to mathematically quantify the desirability of a dose based on safety and efficacy measurements; and a description of the simulation process and results that quantify the operating characteristics of the design. PMID:23294775

  9. Inositolphosphoglycans possibly mediate the effects of glucagon-like peptide-1(7-36)amide on rat liver and adipose tissue.

    PubMed

    Márquez, L; Trapote, M A; Luque, M A; Valverde, I; Villanueva-Peñacarrillo, M L

    1998-03-01

    Insulin-like effects of glucagon-like peptide-1(7-36)amide (GLP-1) in rat liver, skeletal muscle and fat, and also the presence of GLP-1 receptors in these extrapancreatic tissues, have been documented. In skeletal muscle and liver, the action of GLP-1 is not associated with an activation of adenylate cyclase, and in cultured murine myocytes and hepatoma cell lines, it was found that GLP-1 provokes the generation of inositolphosphoglycan molecules (IPGs), which are considered second messengers of insulin action. In the present work, we document in isolated normal rat adipocytes and hepatocytes that GLP-1 exerts a rapid decrease of the radiolabelled glycosylphosphatidylinositols (GPIs)--precursors of IPGs--in the same manner as insulin, indicating their hydrolysis and the immediate short-lived generation of IPGs. Thus, IPGs could be mediators in the GLP-1 actions in adipose tissue and liver, as well as in skeletal muscle, through GLP-1 receptors which are, at least functionally, different from that of the pancreatic B-cell.

  10. Presence and characterization of glucagon-like peptide-1(7-36) amide receptors in solubilized membranes of rat adipose tissue.

    PubMed

    Valverde, I; Mérida, E; Delgado, E; Trapote, M A; Villanueva-Peñacarrillo, M L

    1993-01-01

    Specific binding of [125I]glucagon-like peptide-1(7-36)amide ([125I]GLP-1(7-36)amide) to solubilized rat adipose tissue membranes was found to be dependent on temperature, time, and membrane protein concentration and readily dissociated. GLP-1(1-36)amide, GLP-2, or glucagon (10(-6) M) did not compete with [125I]GLP-1(7-36)amide binding. Half-maximal binding was achieved with 8 x 10(-10) M unlabeled GLP-1(7-36)amide, and the Scatchard plot revealed the presence of high and low affinity binding sites with Kd values of approximately 0.6 and 20 nM, respectively. The binding capacity of [125I]GLP-1(7-36)amide was about 3 times higher than that of [125I]glucagon, while the high affinity Kd and the half-maximal binding of the two peptides were similar. The presence and abundance of GLP-1(7-36)amide receptors in fat tissue together with the previous findings that the peptide stimulates glycerol and cAMP production in rat adipocytes and stimulates fatty acid synthesis in explants of rat adipose tissue open the possibility that this insulinotropic intestinal peptide may also be involved in the regulation of lipid metabolism in health and disease.

  11. The cytoplasmic domain close to the transmembrane region of the glucagon-like peptide-1 receptor contains sequence elements that regulate agonist-dependent internalisation.

    PubMed

    Vázquez, Patricia; Roncero, Isabel; Blázquez, Enrique; Alvarez, Elvira

    2005-07-01

    In order to gain better insight into the molecular events involved in the signal transduction generated through glucagon-like peptide-1 (GLP-1) receptors, we tested the effect of deletions and point mutations within the cytoplasmic tail of this receptor with a view to establishing relationships between signal transduction desensitisation and receptor internalisation. Wild-type and truncated (deletion of the last 27 amino acids (GLPR 435R) and deletion of 44 amino acids (GLPR 418R)) GLP-1 receptors bound the agonist with similar affinity. Deletion of the last 27 amino acids decreased the internalisation rate by 78%, while deletion of 44 amino acids containing all the phosphorylation sites hitherto described in this receptor decreased the internalisation rate by only 47%. Binding of the ligand to both receptors stimulated adenylyl cyclase. In contrast, deletion of the region containing amino acids 419 to 435 (GLPR 419delta435) increased the internalisation rate by 268%, and the replacement of EVQ(408-410) by alanine (GLPR A(408-410)) increased this process to 296%. In both receptors, the efficacy in stimulating adenylate cyclase was decreased. All the receptors studied were internalised by coated pits, except for the receptor with a deletion of the last 44 amino acids, which also had a faster resensitisation rate. Our findings indicate that the neighbouring trans-membrane domain of the carboxyl-terminal tail of the GLP-1 receptor contains sequence elements that regulate agonist-dependent internalisation and transmembrane signalling.

  12. The aglycone of ginsenoside Rg3 enables glucagon-like peptide-1 secretion in enteroendocrine cells and alleviates hyperglycemia in type 2 diabetic mice.

    PubMed

    Kim, Ki-Suk; Jung Yang, Hea; Lee, In-Seung; Kim, Kang-Hoon; Park, Jiyoung; Jeong, Hyeon-Soo; Kim, Yoomi; Ahn, Kwang Seok; Na, Yun-Cheol; Jang, Hyeung-Jin

    2015-01-01

    Ginsenosides can be classified on the basis of the skeleton of their aglycones. Here, we hypothesized that the sugar moieties attached to the dammarane backbone enable binding of the ginsenosides to the sweet taste receptor, eliciting glucagon-like peptide-1 (GLP-1) secretion in the enteroendocrine L cells. Using the human enteroendocrine NCI-H716 cells, we demonstrated that 15 ginsenosides stimulate GLP-1 secretion according to the position of their sugar moieties. Through a pharmacological approach and RNA interference technique to inhibit the cellular signal cascade and using the Gαgust(-/-) mice, we elucidated that GLP-1 secreting effect of Rg3 mediated by the sweet taste receptor mediated the signaling pathway. Rg3, a ginsenoside metabolite that transformed the structure through a steaming process, showed the strongest GLP-1 secreting effects in NCI-H716 cells and also showed an anti-hyperglycemic effect on a type 2 diabetic mouse model through increased plasma GLP-1 and plasma insulin levels during an oral glucose tolerance test. Our study reveals a novel mechanism where the sugar moieties of ginsenosides Rg3 stimulates GLP-1 secretion in enteroendocrine L cells through a sweet taste receptor-mediated signal transduction pathway and thus has an anti-hyperglycemic effect on the type 2 diabetic mouse model. PMID:26675132

  13. The Role of Glucagon-Like Peptide-1 Receptor Agonists in Type 2 Diabetes: Understanding How Data Can Inform Clinical Practice in Korea

    PubMed Central

    Chon, Suk; Ahn, Kyu Jeong; Jeong, In-Kyung; Kim, Byung-Joon; Kang, Jun Goo

    2015-01-01

    Glucagon-like peptide-1 receptor agonists (GLP-1RAs) reduce glycosylated hemoglobin (HbA1c, 0.5% to 1.0%), and are associated with moderate weight loss and a relatively low risk of hypoglycemia. There are differences between Asian and non-Asian populations. We reviewed available data on GLP-1RAs, focusing on Korean patients, to better understand their risk/benefit profile and help inform local clinical practice. Control of postprandial hyperglycemia is important in Asians in whom the prevalence of post-challenge hyperglycemia is higher (vs. non-Asians). The weight lowering effects of GLP-1RAs are becoming more salient as the prevalence of overweight and obesity among Korean patients increases. The higher rate of gastrointestinal adverse events amongst Asian patients in clinical trials may be caused by higher drug exposure due to the lower body mass index of the participants (vs. non-Asian studies). Data on the durability of weight loss, clinically important health outcomes, safety and optimal dosing in Korean patients are lacking. Use of GLP-1RAs is appropriate in several patient groups, including patients whose HbA1c is uncontrolled, especially if this is due to postprandial glucose excursions and patients who are overweight or obese due to dietary problems (e.g., appetite control). The potential for gastrointestinal adverse events should be explained to patients at treatment initiation to facilitate the promotion of better compliance. PMID:26124987

  14. A depot-forming glucagon-like peptide-1 fusion protein reduces blood glucose for five days with a single injection

    PubMed Central

    Amiram, M.; Luginbuhl, K. M.; Li, X.; Feinglos, M. N.; Chilkoti, A.

    2013-01-01

    Peptide drugs are an exciting class of pharmaceuticals for the treatment of a variety of diseases; however, their short half-life dictates multiple and frequent injections causing undesirable side-effects. Herein, we describe a novel peptide delivery system that seeks to combine the attractive features of prolonged circulation time with a prolonged release formulation. This system consists of glucagon-like peptide-1, a type-2 diabetes drug fused to a thermally responsive, elastin-like-polypeptide (ELP) that undergoes a soluble-insoluble phase transition between room temperature and body temperature, thereby forming an injectable depot. We synthesized a set of GLP-1-ELP fusions and verified their proteolytic stability and potency in vitro. Significantly, a single injection of depot forming GLP-1-ELP fusions reduced blood glucose levels in mice for up to 5 days, 120 times longer than an injection of the native peptide. These findings demonstrate the unique advantages of using ELPs to release peptide-ELP fusions from a depot combined with enhanced systemic circulation to create a tunable peptide delivery system. PMID:23928357

  15. The glucagon-like peptide 1 receptor agonist exendin-4 improves reference memory performance and decreases immobility in the forced swim test.

    PubMed

    Isacson, Ruben; Nielsen, Elisabet; Dannaeus, Karin; Bertilsson, Göran; Patrone, Cesare; Zachrisson, Olof; Wikström, Lilian

    2011-01-10

    We have earlier shown that the glucagon-like peptide 1 receptor agonist exendin-4 stimulates neurogenesis in the subventricular zone and excerts anti-parkinsonian behavior. The aim of this study was to assess the effects of exendin-4 treatment on hippocampus-associated cognitive and mood-related behavior in adult rodents. To investigate potential effects of exendin-4 on hippocampal function, radial maze and forced swim test were employed. The time necessary to solve a radial maze task and the duration of immobility in the forced swim test were significantly reduced compared to respective vehicle groups if the animals had received exendin-4 during 1-2weeks before testing. In contrast to the positive control imipramine, single administration of exendin-4 1h before the challenge in the forced swim test had no effect. Immunohistochemical analysis showed that the incorporation of bromodeoxyuridine, a marker for DNA synthesis, as well as doublecortin expression was increased in the hippocampal dentate gyrus following chronic treatment with exendin-4 compared to vehicle-treated controls. The neurogenic effect of exendin-4 on hippocampus was confirmed by quantitative PCR showing an upregulation of mRNA expression for Ki-67, doublecortin and Mash-1. Since exendin-4 significantly improves hippocampus-associated behavior in adult rodents, it may be a candidate for alleviation of mood and cognitive disorders.

  16. Ingestion of coffee polyphenols increases postprandial release of the active glucagon-like peptide-1 (GLP-1(7-36)) amide in C57BL/6J mice.

    PubMed

    Fujii, Yoshie; Osaki, Noriko; Hase, Tadashi; Shimotoyodome, Akira

    2015-01-01

    The widespread prevalence of diabetes, caused by impaired insulin secretion and insulin resistance, is now a worldwide health problem. Glucagon-like peptide 1 (GLP-1) is a major intestinal hormone that stimulates glucose-induced insulin secretion from β cells. Prolonged activation of the GLP-1 signal has been shown to attenuate diabetes in animals and human subjects. Therefore, GLP-1 secretagogues are attractive targets for the treatment of diabetes. Recent epidemiological studies have reported that an increase in daily coffee consumption lowers diabetes risk. The present study examined the hypothesis that the reduction in diabetes risk associated with coffee consumption may be mediated by the stimulation of GLP-1 release by coffee polyphenol extract (CPE). GLP-1 secretion by human enteroendocrine NCI-H716 cells was augmented in a dose-dependent manner by the addition of CPE, and was compatible with the increase in observed active GLP-1(7-36) amide levels in the portal blood after administration with CPE alone in mice. CPE increased intracellular cyclic AMP (cAMP) levels in a dose-dependent manner, but this was not mediated by G protein-coupled receptor 119 (GPR119). The oral administration of CPE increased diet (starch and glyceryl trioleate)-induced active GLP-1 secretion and decreased glucose-dependent insulinotropic polypeptide release. Although CPE administration did not affect diet-induced insulin secretion, it decreased postprandial hyperglycaemia, which indicates that higher GLP-1 levels after the ingestion of CPE may improve insulin sensitivity. We conclude that dietary coffee polyphenols augment gut-derived active GLP-1 secretion via the cAMP-dependent pathway, which may contribute to the reduced risk of type 2 diabetes associated with daily coffee consumption.

  17. Correlation of Glypican-4 Level with Basal Active Glucagon-Like Peptide 1 Level in Patients with Type 2 Diabetes Mellitus

    PubMed Central

    Koh, Gwanpyo; Cho, Suk Ju; Yoo, So-Yeon; Chin, Sang Ouk

    2016-01-01

    Background Previous studies have reported that glypican-4 (GPC4) regulates insulin signaling by interacting with insulin receptor and through adipocyte differentiation. However, GPC4 has not been studied with regard to its effects on clinical factors in patients with type 2 diabetes mellitus (T2DM). We aimed to identify factors associated with GPC4 level in T2DM. Methods Between January 2010 and December 2013, we selected 152 subjects with T2DM and collected serum and plasma into tubes pretreated with aprotinin and dipeptidyl peptidase-4 inhibitor to preserve active gastric inhibitory polypeptide (GIP) and glucagon-like peptide 1 (GLP-1). GPC4, active GLP-1, active GIP, and other factors were measured in these plasma samples. We performed a linear regression analysis to identify factors associated with GPC4 level. Results The subjects had a mean age of 58.1 years, were mildly obese (mean body mass index [BMI], 26.1 kg/m2), had T2DM of long-duration (mean, 101.3 months), glycated hemoglobin 7.5%, low insulin secretion, and low insulin resistance (mean homeostatic model assessment of insulin resistance [HOMA-IR], 1.2). Their mean GPC4 was 2.0±0.2 ng/mL. In multivariate analysis, GPC4 was independently associated with age (β=0.224, P=0.009), and levels of active GLP-1 (β=0.171, P=0.049) and aspartate aminotransferase (AST; β=–0.176, P=0.043) after being adjusted for other clinical factors. Conclusion GPC4 was independently associated with age, active GLP-1, and AST in T2DM patients, but was not associated with HOMA-IR and BMI, which are well known factors related to GPC4. Further study is needed to identify the mechanisms of the association between GPC4 and basal active GLP-1 levels. PMID:27704740

  18. Expression and Distribution of Glucagon-Like Peptide-1 Receptor mRNA, Protein and Binding in the Male Nonhuman Primate (Macaca mulatta) Brain

    PubMed Central

    Heppner, Kristy M.; Kirigiti, Melissa; Secher, Anna; Paulsen, Sarah Juel; Buckingham, Rikley; Pyke, Charles; Knudsen, Lotte B.

    2015-01-01

    Glucagon-like peptide-1 (GLP-1) is released from endocrine L-cells lining the gut in response to food ingestion. However, GLP-1 is also produced in the nucleus of the solitary tract, where it acts as an anorectic neurotransmitter and key regulator of many autonomic and neuroendocrine functions. The expression and projections of GLP-1-producing neurons is highly conserved between rodent and primate brain, although a few key differences have been identified. The GLP-1 receptor (GLP-1R) has been mapped in the rodent brain, but no studies have described the distribution of GLP-1Rs in the nonhuman primate central nervous system. Here, we characterized the distribution of GLP-1R mRNA and protein in the adult macaque brain using in situ hybridization, radioligand receptor autoradiography, and immunohistochemistry with a primate specific GLP-1R antibody. Immunohistochemistry demonstrated that the GLP-1R is localized to cell bodies and fiber terminals in a very selective distribution throughout the brain. Consistent with the functional role of the GLP-1R system, we find the highest concentration of GLP-1R-immunoreactivity present in select hypothalamic and brainstem regions that regulate feeding, including the paraventricular and arcuate hypothalamic nuclei, as well as the area postrema, nucleus of the solitary tract, and dorsal motor nucleus of the vagus. Together, our data demonstrate that GLP-1R distribution is highly conserved between rodent and primate, although a few key species differences were identified, including the amygdala, where GLP-1R expression is much higher in primate than in rodent. PMID:25380238

  19. Glucagon-like peptide 1 receptor activation regulates cocaine actions and dopamine homeostasis in the lateral septum by decreasing arachidonic acid levels.

    PubMed

    Reddy, I A; Pino, J A; Weikop, P; Osses, N; Sørensen, G; Bering, T; Valle, C; Bluett, R J; Erreger, K; Wortwein, G; Reyes, J G; Graham, D; Stanwood, G D; Hackett, T A; Patel, S; Fink-Jensen, A; Torres, G E; Galli, A

    2016-01-01

    Agonism of the glucagon-like peptide 1 (GLP-1) receptor (GLP-1R) has been effective at treating aspects of addictive behavior for a number of abused substances, including cocaine. However, the molecular mechanisms and brain circuits underlying the therapeutic effects of GLP-1R signaling on cocaine actions remain elusive. Recent evidence has revealed that endogenous signaling at the GLP-1R within the forebrain lateral septum (LS) acts to reduce cocaine-induced locomotion and cocaine conditioned place preference, both considered dopamine (DA)-associated behaviors. DA terminals project from the ventral tegmental area to the LS and express the DA transporter (DAT). Cocaine acts by altering DA bioavailability by targeting the DAT. Therefore, GLP-1R signaling might exert effects on DAT to account for its regulation of cocaine-induced behaviors. We show that the GLP-1R is highly expressed within the LS. GLP-1, in LS slices, significantly enhances DAT surface expression and DAT function. Exenatide (Ex-4), a long-lasting synthetic analog of GLP-1 abolished cocaine-induced elevation of DA. Interestingly, acute administration of Ex-4 reduces septal expression of the retrograde messenger 2-arachidonylglycerol (2-AG), as well as a product of its presynaptic degradation, arachidonic acid (AA). Notably, AA reduces septal DAT function pointing to AA as a novel regulator of central DA homeostasis. We further show that AA oxidation product γ-ketoaldehyde (γ-KA) forms adducts with the DAT and reduces DAT plasma membrane expression and function. These results support a mechanism in which postsynaptic septal GLP-1R activation regulates 2-AG levels to alter presynaptic DA homeostasis and cocaine actions through AA. PMID:27187231

  20. Glucagon-Like Peptide 1 Protects against Hyperglycemic-Induced Endothelial-to-Mesenchymal Transition and Improves Myocardial Dysfunction by Suppressing Poly(ADP-Ribose) Polymerase 1 Activity

    PubMed Central

    Yan, Fei; Zhang, Guang-hao; Feng, Min; Zhang, Wei; Zhang, Jia-ning; Dong, Wen-qian; Zhang, Cheng; Zhang, Yun; Chen, Li; Zhang, Ming-Xiang

    2015-01-01

    Under high glucose conditions, endothelial cells respond by acquiring fibroblast characteristics, that is, endothelial-to-mesenchymal transition (EndMT), contributing to diabetic cardiac fibrosis. Glucagon-like peptide-1 (GLP-1) has cardioprotective properties independent of its glucose-lowering effect. However, the potential mechanism has not been fully clarified. Here we investigated whether GLP-1 inhibits myocardial EndMT in diabetic mice and whether this is mediated by suppressing poly(ADP-ribose) polymerase 1 (PARP-1). Streptozotocin diabetic C57BL/6 mice were treated with or without GLP-1 analog (24 nmol/kg daily) for 24 wks. Transthoracic echocardiography was performed to assess cardiac function. Human aortic endothelial cells (HAECs) were cultured in normal glucose (NG) (5.5 mmol/L) or high glucose (HG) (30 mmol/L) medium with or without GLP-1analog. Immunofluorescent staining and Western blot were performed to evaluate EndMT and PARP-1 activity. Diabetes mellitus attenuated cardiac function and increased cardiac fibrosis. Treatment with the GLP-1 analog improved diabetes mellitus–related cardiac dysfunction and cardiac fibrosis. Immunofluorescence staining revealed that hyperglycemia markedly increased the percentage of von Willebrand factor (vWF)+/alpha smooth muscle actin (α-SMA)+ cells in total α-SMA+ cells in diabetic hearts compared with controls, which was attenuated by GLP-1 analog treatment. In cultured HAECs, immunofluorescent staining and Western blot also showed that both GLP-1 analog and PARP-1 gene silencing could inhibit the HG-induced EndMT. In addition, GLP-1 analog could attenuate PARP-1 activation by decreasing the level of reactive oxygen species (ROS). Therefore, GLP-1 treatment could protect against the hyperglycemia-induced EndMT and myocardial dysfunction. This effect is mediated, at least partially, by suppressing PARP-1 activation. PMID:25715248

  1. Progesterone receptor membrane component 1 is a functional part of the glucagon-like peptide-1 (GLP-1) receptor complex in pancreatic β cells.

    PubMed

    Zhang, Ming; Robitaille, Mélanie; Showalter, Aaron D; Huang, Xinyi; Liu, Ying; Bhattacharjee, Alpana; Willard, Francis S; Han, Junfeng; Froese, Sean; Wei, Li; Gaisano, Herbert Y; Angers, Stéphane; Sloop, Kyle W; Dai, Feihan F; Wheeler, Michael B

    2014-11-01

    Glucagon-like peptide-1 (GLP-1) is an incretin hormone that regulates glucose homeostasis. Because of their direct stimulation of insulin secretion from pancreatic β cells, GLP-1 receptor (GLP-1R) agonists are now important therapeutic options for the treatment of type 2 diabetes. To better understand the mechanisms that control the insulinotropic actions of GLP-1, affinity purification and mass spectrometry (AP-MS) were employed to uncover potential proteins that functionally interact with the GLP-1R. AP-MS performed on Chinese hamster ovary cells or MIN6 β cells, both expressing the human GLP-1R, revealed 99 proteins potentially associated with the GLP-1R. Three novel GLP-1R interactors (PGRMC1, Rab5b, and Rab5c) were further validated through co-immunoprecipitation/immunoblotting, fluorescence resonance energy transfer, and immunofluorescence. Functional studies revealed that overexpression of PGRMC1, a novel cell surface receptor that associated with liganded GLP-1R, enhanced GLP-1-induced insulin secretion (GIIS) with the most robust effect. Knockdown of PGRMC1 in β cells decreased GIIS, indicative of positive interaction with GLP-1R. To gain insight mechanistically, we demonstrated that the cell surface PGRMC1 ligand P4-BSA increased GIIS, whereas its antagonist AG-205 decreased GIIS. It was then found that PGRMC1 increased GLP-1-induced cAMP accumulation. PGRMC1 activation and GIIS induced by P4-BSA could be blocked by inhibition of adenylyl cyclase/EPAC signaling or the EGF receptor-PI3K signal transduction pathway. These data reveal a dual mechanism for PGRMC1-increased GIIS mediated through cAMP and EGF receptor signaling. In conclusion, we identified several novel GLP-1R interacting proteins. PGRMC1 expressed on the cell surface of β cells was shown to interact with the activated GLP-1R to enhance the insulinotropic actions of GLP-1.

  2. Incretin therapies: highlighting common features and differences in the modes of action of glucagon-like peptide-1 receptor agonists and dipeptidyl peptidase-4 inhibitors.

    PubMed

    Nauck, M

    2016-03-01

    Over the last few years, incretin-based therapies have emerged as important agents in the treatment of type 2 diabetes (T2D). These agents exert their effect via the incretin system, specifically targeting the receptor for the incretin hormone glucagon-like peptide 1 (GLP-1), which is partly responsible for augmenting glucose-dependent insulin secretion in response to nutrient intake (the 'incretin effect'). In patients with T2D, pharmacological doses/concentrations of GLP-1 can compensate for the inability of diabetic β cells to respond to the main incretin hormone glucose-dependent insulinotropic polypeptide, and this is therefore a suitable parent compound for incretin-based glucose-lowering medications. Two classes of incretin-based therapies are available: GLP-1 receptor agonists (GLP-1RAs) and dipeptidyl peptidase-4 (DPP-4) inhibitors. GLP-1RAs promote GLP-1 receptor (GLP-1R) signalling by providing GLP-1R stimulation through 'incretin mimetics' circulating at pharmacological concentrations, whereas DPP-4 inhibitors prevent the degradation of endogenously released GLP-1. Both agents produce reductions in plasma glucose and, as a result of their glucose-dependent mode of action, this is associated with low rates of hypoglycaemia; however, there are distinct modes of action resulting in differing efficacy and tolerability profiles. Furthermore, as their actions are not restricted to stimulating insulin secretion, these agents have also been associated with additional non-glycaemic benefits such as weight loss, improvements in β-cell function and cardiovascular risk markers. These attributes have made incretin therapies attractive treatments for the management of T2D and have presented physicians with an opportunity to tailor treatment plans. This review endeavours to outline the commonalities and differences among incretin-based therapies and to provide guidance regarding agents most suitable for treating T2D in individual patients.

  3. Glucagon-like peptide-1 mobilizes intracellular Ca2+ and stimulates mitochondrial ATP synthesis in pancreatic MIN6 beta-cells.

    PubMed Central

    Tsuboi, Takashi; da Silva Xavier, Gabriela; Holz, George G; Jouaville, Laurence S; Thomas, Andrew P; Rutter, Guy A

    2003-01-01

    Glucagon-like peptide-1 (GLP-1) is a potent regulator of glucose-stimulated insulin secretion whose mechanisms of action are only partly understood. In the present paper, we show that at low (3 mM) glucose concentrations, GLP-1 increases the free intramitochondrial concentrations of both Ca(2+) ([Ca(2+)](m)), and ATP ([ATP](m)) in clonal MIN6 beta-cells. Suggesting that cAMP-mediated release of Ca(2+) from intracellular stores is responsible for these effects, increases in [ATP](m) that were induced by GLP-1 were completely blocked by the Rp isomer of adenosine-3',5'-cyclic monophosphothioate (Rp-cAMPS), or by chelation of intracellular Ca(2+). Furthermore, inhibition of Ins(1,4,5) P (3) (IP(3)) receptors with xestospongin C, or application of ryanodine, partially inhibited GLP-1-induced [ATP](m) increases, and the simultaneous blockade of both IP(3) and ryanodine receptors (RyR) completely eliminated the rise in [ATP](m). GLP-1 appeared to prompt Ca(2+)-induced Ca(2+) release through IP(3) receptors via a protein kinase A (PKA)-mediated phosphorylation event, since ryanodine-insensitive [ATP](m) increases were abrogated with the PKA inhibitor, H89. In contrast, the effects of GLP-1 on RyR-mediated [ATP](m) increases were apparently mediated by the cAMP-regulated guanine nucleotide exchange factor cAMP-GEFII, since xestospongin C-insensitive [ATP](m) increases were blocked by a dominant-negative form of cAMP-GEFII (G114E,G422D). Taken together, these results demonstrate that GLP-1 potentiates glucose-stimulated insulin release in part via the mobilization of intracellular Ca(2+), and the stimulation of mitochondrial ATP synthesis. PMID:12410638

  4. Glucagon-like peptide-1 attenuates advanced oxidation protein product-mediated damage in islet microvascular endothelial cells partly through the RAGE pathway

    PubMed Central

    Zhang, Zhen; Yang, Lei; Lei, Lei; Chen, Rongping; Chen, Hong; Zhang, Hua

    2016-01-01

    Advanced oxidation protein products (AOPPs) are knownt to play a role in the pathogenesis of diseases and related complications. However, whether AOPPs affect the survival of islet microvascular endothelial cells (IMECs) has not been reported to date, at least to the best of our knowledge. In this study, we aimed to investigate the mechanisms underlying AOPP-mediated damage in IMECs and the protective role of glucagon-like peptide-1 (GLP-1), which has been suggested to exert beneficial effects on the cardiovascular system. IMECs were treated with AOPPs (0–200 µg/ml) for 0–72 h in the presence or absence of GLP-1 (100 nmol/l). Apoptosis, cell viability and reactive oxygen species (ROS) production were examined, the expression levels of p53, Bax, receptor for advanced glycation end-products (RAGE) and NAD(P)H oxidase subunit were determined, and the activity of NAD(P)H oxidase, caspase-9 and caspase-3 was also determined. The results revealed that AOPPs increased the expression of RAGE, p47phox and p22phox; induced NAD(P)H oxidase-dependent ROS generation, increased p53 and Bax expression, enhanced the activity of caspase-9 and caspase-3, and induced cell apoptosis. Treatment with GLP-1 decreased the expression of RAGE, inhibited NAD(P)H oxidase activity, decreased cell apoptosis and increased cell viability. On the whole, our findings indicate that AOPPs induce the apoptosis of IMECs via the RAGE-NAD(P) H oxidase-dependent pathway and that treatment with GLP-1 effectively reverses these detrimental effects by decreasing AOPP-induced RAGE expression and restoring the redox balance. Our data may indicate that GLP-1 may prove to be beneficial in attenuating the progression of diabetes mellitus. PMID:27574116

  5. Plasma Free Amino Acid Responses to Intraduodenal Whey Protein, and Relationships with Insulin, Glucagon-Like Peptide-1 and Energy Intake in Lean Healthy Men.

    PubMed

    Luscombe-Marsh, Natalie D; Hutchison, Amy T; Soenen, Stijn; Steinert, Robert E; Clifton, Peter M; Horowitz, Michael; Feinle-Bisset, Christine

    2016-01-04

    This study determined the effects of increasing loads of intraduodenal (ID) dairy protein on plasma amino acid (AA) concentrations, and their relationships with serum insulin, plasma glucagon-like peptide-1 (GLP-1) and energy intake. Sixteen healthy men had concentrations of AAs, GLP-1 and insulin measured in response to 60-min ID infusions of hydrolysed whey protein administered, in double-blinded and randomised order, at 2.1 (P2.1), 6.3 (P6.3) or 12.5 (P12.5) kJ/min (encompassing the range of nutrient emptying from the stomach), or saline control (C). Energy intake was quantified immediately afterwards. Compared with C, the concentrations of 19/20 AAs, the exception being cysteine, were increased, and this was dependent on the protein load. The relationship between AA concentrations in the infusions and the area under the curve from 0 to 60 min (AUC0-60 min) of each AA profile was strong for essential AAs (R² range, 0.61-0.67), but more variable for non-essential (0.02-0.54) and conditional (0.006-0.64) AAs. The AUC0-60 min for each AA was correlated directly with the AUC0-60 min of insulin (R² range 0.3-0.6), GLP-1 (0.2-0.6) and energy intake (0.09-0.3) (p < 0.05, for all), with the strongest correlations being for branched-chain AAs, lysine, methionine and tyrosine. These findings indicate that ID whey protein infused at loads encompassing the normal range of gastric emptying increases plasma concentrations of 19/20 AAs in a load-dependent manner, and provide novel information on the close relationships between the essential AAs, leucine, valine, isoleucine, lysine, methionine, and the conditionally-essential AA, tyrosine, with energy intake, insulin and GLP-1.

  6. Exendin-4, a glucagon-like peptide 1 receptor agonist, protects against amyloid-β peptide-induced impairment of spatial learning and memory in rats.

    PubMed

    Jia, Xiao-Tao; Ye-Tian; Yuan-Li; Zhang, Ge-Juan; Liu, Zhi-Qin; Di, Zheng-Li; Ying, Xiao-Ping; Fang, Yan; Song, Er-Fei; Qi, Jin-Shun; Pan, Yan-Fang

    2016-05-15

    Type 2 diabetes mellitus (T2DM) and Alzheimer's disease (AD) share specific molecular mechanisms, and agents with proven efficacy in one may be useful against the other. The glucagon-like peptide-1 (GLP-1) receptor agonist exendin-4 has similar properties to GLP-1 and is currently in clinical use for T2DM treatment. Thus, this study was designed to characterize the effects of exendin-4 on the impairment of learning and memory induced by amyloid protein (Aβ) and its probable molecular underlying mechanisms. The results showed that (1) intracerebroventricular (i.c.v.) injection of Aβ1-42 resulted in a significant decline of spatial learning and memory of rats in water maze tests; (2) pretreatment with exendin-4 effectively and dose-dependently protected against the Aβ1-42-induced impairment of spatial learning and memory; (3) exendin-4 treatment significantly decreased the expression of Bax and cleaved caspase-3 and increased the expression of Bcl2 in Aβ1-42-induced Alzheimer's rats. The vision and swimming speed of the rats among all groups in the visible platform tests did not show any difference. These findings indicate that systemic pretreatment with exendin-4 can effectively prevent the behavioral impairment induced by neurotoxic Aβ1-42, and the underlying protective mechanism of exendin-4 may be involved in the Bcl2, Bax and caspase-3 pathways. Thus, the application of exendin-4 or the activation of its signaling pathways may be a promising strategy to ameliorate the degenerative processes observed in AD. PMID:26992957

  7. Cardioprotection Resulting from Glucagon-Like Peptide-1 Administration Involves Shifting Metabolic Substrate Utilization to Increase Energy Efficiency in the Rat Heart

    PubMed Central

    Aravindhan, Karpagam; Bao, Weike; Harpel, Mark R.; Willette, Robert N.; Lepore, John J.; Jucker, Beat M.

    2015-01-01

    Previous studies have shown that glucagon-like peptide-1 (GLP-1) provides cardiovascular benefits independent of its role on peripheral glycemic control. However, the precise mechanism(s) by which GLP-1 treatment renders cardioprotection during myocardial ischemia remain unresolved. Here we examined the role for GLP-1 treatment on glucose and fatty acid metabolism in normal and ischemic rat hearts following a 30 min ischemia and 24 h reperfusion injury, and in isolated cardiomyocytes (CM). Relative carbohydrate and fat oxidation levels were measured in both normal and ischemic hearts using a 1-13C glucose clamp coupled with NMR-based isotopomer analysis, as well as in adult rat CMs by monitoring pH and O2 consumption in the presence of glucose or palmitate. In normal heart, GLP-1 increased glucose uptake (↑64%, p<0.05) without affecting glycogen levels. In ischemic hearts, GLP-1 induced metabolic substrate switching by increasing the ratio of carbohydrate versus fat oxidation (↑14%, p<0.01) in the LV area not at risk, without affecting cAMP levels. Interestingly, no substrate switching occurred in the LV area at risk, despite an increase in cAMP (↑106%, p<0.05) and lactate (↑121%, p<0.01) levels. Furthermore, in isolated CMs GLP-1 treatment increased glucose utilization (↑14%, p<0.05) and decreased fatty acid oxidation (↓15%, p<0.05) consistent with in vivo finding. Our results show that this benefit may derive from distinct and complementary roles of GLP-1 treatment on metabolism in myocardial sub-regions in response to this injury. In particular, a switch to anaerobic glycolysis in the ischemic area provides a compensatory substrate switch to overcome the energetic deficit in this region in the face of reduced tissue oxygenation, whereas a switch to more energetically favorable carbohydrate oxidation in more highly oxygenated remote regions supports maintaining cardiac contractility in a complementary manner. PMID:26098939

  8. Cardioprotection Resulting from Glucagon-Like Peptide-1 Administration Involves Shifting Metabolic Substrate Utilization to Increase Energy Efficiency in the Rat Heart.

    PubMed

    Aravindhan, Karpagam; Bao, Weike; Harpel, Mark R; Willette, Robert N; Lepore, John J; Jucker, Beat M

    2015-01-01

    Previous studies have shown that glucagon-like peptide-1 (GLP-1) provides cardiovascular benefits independent of its role on peripheral glycemic control. However, the precise mechanism(s) by which GLP-1 treatment renders cardioprotection during myocardial ischemia remain unresolved. Here we examined the role for GLP-1 treatment on glucose and fatty acid metabolism in normal and ischemic rat hearts following a 30 min ischemia and 24 h reperfusion injury, and in isolated cardiomyocytes (CM). Relative carbohydrate and fat oxidation levels were measured in both normal and ischemic hearts using a 1-13C glucose clamp coupled with NMR-based isotopomer analysis, as well as in adult rat CMs by monitoring pH and O2 consumption in the presence of glucose or palmitate. In normal heart, GLP-1 increased glucose uptake (↑64%, p<0.05) without affecting glycogen levels. In ischemic hearts, GLP-1 induced metabolic substrate switching by increasing the ratio of carbohydrate versus fat oxidation (↑14%, p<0.01) in the LV area not at risk, without affecting cAMP levels. Interestingly, no substrate switching occurred in the LV area at risk, despite an increase in cAMP (↑106%, p<0.05) and lactate (↑121%, p<0.01) levels. Furthermore, in isolated CMs GLP-1 treatment increased glucose utilization (↑14%, p<0.05) and decreased fatty acid oxidation (↓15%, p<0.05) consistent with in vivo finding. Our results show that this benefit may derive from distinct and complementary roles of GLP-1 treatment on metabolism in myocardial sub-regions in response to this injury. In particular, a switch to anaerobic glycolysis in the ischemic area provides a compensatory substrate switch to overcome the energetic deficit in this region in the face of reduced tissue oxygenation, whereas a switch to more energetically favorable carbohydrate oxidation in more highly oxygenated remote regions supports maintaining cardiac contractility in a complementary manner.

  9. Postprandial glucagon-like peptide-1 secretion is increased during the progression of glucose intolerance and obesity in high-fat/high-sucrose diet-fed rats.

    PubMed

    Nakajima, Shingo; Hira, Tohru; Hara, Hiroshi

    2015-05-14

    Glucagon-like peptide-1 (GLP-1) is secreted by distal enteroendocrine cells in response to luminal nutrients, and exerts insulinotropic and anorexigenic effects. Although GLP-1 secretory responses under established obese or diabetic conditions have been studied, it has not been investigated whether or how postprandial GLP-1 responses were affected during the progression of diet-induced obesity. In the present study, a meal tolerance test was performed every week in rats fed a high-fat and high-sucrose (HF/HS) diet to evaluate postprandial glycaemic, insulin and GLP-1 responses. In addition, gastric emptying was assessed by the acetaminophen method. After 8 weeks of HF/HS treatment, portal vein and intestinal mucosa were collected to examine GLP-1 production. Postprandial glucose in response to normal meal ingestion was increased in the HF/HS group within 2 weeks, and its elevation gradually returned close to that of the control group until day 50. Slower postprandial gastric emptying was observed in the HF/HS group on days 6, 13 and 34. Postprandial GLP-1 and insulin responses were increased in the HF/HS group at 7 weeks. Higher portal GLP-1 and insulin levels were observed in the HF/HS group, but mucosal gut hormone mRNA levels were unchanged. These results revealed that the postprandial GLP-1 response to meal ingestion is enhanced during the progression of diet-induced glucose intolerance and obesity in rats. The boosted postprandial GLP-1 secretion by chronic HF/HS diet treatment suggests increased sensitivity to luminal nutrients in the gut, and this may slow the establishment of glucose intolerance and obesity. PMID:25827219

  10. In vivo dual-delivery of glucagon like peptide-1 (GLP-1) and dipeptidyl peptidase-4 (DPP4) inhibitor through composites prepared by microfluidics for diabetes therapy

    NASA Astrophysics Data System (ADS)

    Araújo, F.; Shrestha, N.; Gomes, M. J.; Herranz-Blanco, B.; Liu, D.; Hirvonen, J. J.; Granja, P. L.; Santos, H. A.; Sarmento, B.

    2016-05-01

    Oral delivery of proteins is still a challenge in the pharmaceutical field. Nanoparticles are among the most promising carrier systems for the oral delivery of proteins by increasing their oral bioavailability. However, most of the existent data regarding nanosystems for oral protein delivery is from in vitro studies, lacking in vivo experiments to evaluate the efficacy of these systems. Herein, a multifunctional composite system, tailored by droplet microfluidics, was used for dual delivery of glucagon like peptide-1 (GLP-1) and dipeptidyl peptidase-4 inhibitor (iDPP4) in vivo. Oral delivery of GLP-1 with nano- or micro-systems has been studied before, but the simultaneous nanodelivery of GLP-1 with iDPP4 is a novel strategy presented here. The type 2 diabetes mellitus (T2DM) rat model, induced through the combined administration of streptozotocin and nicotinamide, a non-obese model of T2DM, was used. The combination of both drugs resulted in an increase in the hypoglycemic effects in a sustained, but prolonged manner, where the iDPP4 improved the therapeutic efficacy of GLP-1. Four hours after the oral administration of the system, blood glucose levels were decreased by 44%, and were constant for another 4 h, representing half of the glucose area under the curve when compared to the control. An enhancement of the plasmatic insulin levels was also observed 6 h after the oral administration of the dual-drug composite system and, although no statistically significant differences existed, the amount of pancreatic insulin was also higher. These are promising results for the oral delivery of GLP-1 to be pursued further in a chronic diabetic model study.

  11. Postprandial glucagon-like peptide-1 secretion is increased during the progression of glucose intolerance and obesity in high-fat/high-sucrose diet-fed rats.

    PubMed

    Nakajima, Shingo; Hira, Tohru; Hara, Hiroshi

    2015-05-14

    Glucagon-like peptide-1 (GLP-1) is secreted by distal enteroendocrine cells in response to luminal nutrients, and exerts insulinotropic and anorexigenic effects. Although GLP-1 secretory responses under established obese or diabetic conditions have been studied, it has not been investigated whether or how postprandial GLP-1 responses were affected during the progression of diet-induced obesity. In the present study, a meal tolerance test was performed every week in rats fed a high-fat and high-sucrose (HF/HS) diet to evaluate postprandial glycaemic, insulin and GLP-1 responses. In addition, gastric emptying was assessed by the acetaminophen method. After 8 weeks of HF/HS treatment, portal vein and intestinal mucosa were collected to examine GLP-1 production. Postprandial glucose in response to normal meal ingestion was increased in the HF/HS group within 2 weeks, and its elevation gradually returned close to that of the control group until day 50. Slower postprandial gastric emptying was observed in the HF/HS group on days 6, 13 and 34. Postprandial GLP-1 and insulin responses were increased in the HF/HS group at 7 weeks. Higher portal GLP-1 and insulin levels were observed in the HF/HS group, but mucosal gut hormone mRNA levels were unchanged. These results revealed that the postprandial GLP-1 response to meal ingestion is enhanced during the progression of diet-induced glucose intolerance and obesity in rats. The boosted postprandial GLP-1 secretion by chronic HF/HS diet treatment suggests increased sensitivity to luminal nutrients in the gut, and this may slow the establishment of glucose intolerance and obesity.

  12. In vivo dual-delivery of glucagon like peptide-1 (GLP-1) and dipeptidyl peptidase-4 (DPP4) inhibitor through composites prepared by microfluidics for diabetes therapy

    PubMed Central

    Araújo, F.; Shrestha, N.; Gomes, M. J.; Herranz-Blanco, B.; Liu, D.; Hirvonen, J. J.; Granja, P. L.; Santos, H. A.

    2016-01-01

    Oral delivery of proteins is still a challenge in the pharmaceutical field. Nanoparticles are among the most promising carrier systems for the oral delivery of proteins by increasing their oral bioavailability. However, most of the existent data regarding nanosystems for oral protein delivery is from in vitro studies, lacking in vivo experiments to evaluate the efficacy of these systems. Herein, a multifunctional composite system, tailored by droplet microfluidics, was used for dual delivery of glucagon like peptide-1 (GLP-1) and dipeptidyl peptidase-4 inhibitor (iDPP4) in vivo. Oral delivery of GLP-1 with nano- or micro-systems has been studied before, but the simultaneous nanodelivery of GLP-1 with iDPP4 is a novel strategy presented here. The type 2 diabetes mellitus (T2DM) rat model, induced through the combined administration of streptozotocin and nicotinamide, a non-obese model of T2DM, was used. The combination of both drugs resulted in an increase in the hypoglycemic effects in a sustained, but prolonged manner, where the iDPP4 improved the therapeutic efficacy of GLP-1. Four hours after the oral administration of the system, blood glucose levels were decreased by 44%, and were constant for another 4 h, representing half of the glucose area under the curve when compared to the control. An enhancement of the plasmatic insulin levels was also observed 6 h after the oral administration of the dual-drug composite system and, although no statistically significant differences existed, the amount of pancreatic insulin was also higher. These are promising results for the oral delivery of GLP-1 to be pursued further in a chronic diabetic model study. PMID:27150301

  13. Glucagon-like peptide 1 receptor activation regulates cocaine actions and dopamine homeostasis in the lateral septum by decreasing arachidonic acid levels

    PubMed Central

    Reddy, I A; Pino, J A; Weikop, P; Osses, N; Sørensen, G; Bering, T; Valle, C; Bluett, R J; Erreger, K; Wortwein, G; Reyes, J G; Graham, D; Stanwood, G D; Hackett, T A; Patel, S; Fink-Jensen, A; Torres, G E; Galli, A

    2016-01-01

    Agonism of the glucagon-like peptide 1 (GLP-1) receptor (GLP-1R) has been effective at treating aspects of addictive behavior for a number of abused substances, including cocaine. However, the molecular mechanisms and brain circuits underlying the therapeutic effects of GLP-1R signaling on cocaine actions remain elusive. Recent evidence has revealed that endogenous signaling at the GLP-1R within the forebrain lateral septum (LS) acts to reduce cocaine-induced locomotion and cocaine conditioned place preference, both considered dopamine (DA)-associated behaviors. DA terminals project from the ventral tegmental area to the LS and express the DA transporter (DAT). Cocaine acts by altering DA bioavailability by targeting the DAT. Therefore, GLP-1R signaling might exert effects on DAT to account for its regulation of cocaine-induced behaviors. We show that the GLP-1R is highly expressed within the LS. GLP-1, in LS slices, significantly enhances DAT surface expression and DAT function. Exenatide (Ex-4), a long-lasting synthetic analog of GLP-1 abolished cocaine-induced elevation of DA. Interestingly, acute administration of Ex-4 reduces septal expression of the retrograde messenger 2-arachidonylglycerol (2-AG), as well as a product of its presynaptic degradation, arachidonic acid (AA). Notably, AA reduces septal DAT function pointing to AA as a novel regulator of central DA homeostasis. We further show that AA oxidation product γ-ketoaldehyde (γ-KA) forms adducts with the DAT and reduces DAT plasma membrane expression and function. These results support a mechanism in which postsynaptic septal GLP-1R activation regulates 2-AG levels to alter presynaptic DA homeostasis and cocaine actions through AA. PMID:27187231

  14. Spatial Approximations between Residues 6 and 12 in the Amino-terminal Region of Glucagon-like Peptide 1 and Its Receptor

    PubMed Central

    Chen, Quan; Pinon, Delia I.; Miller, Laurence J.; Dong, Maoqing

    2010-01-01

    Understanding the molecular basis of natural ligand binding and activation of the glucagon-like peptide 1 (GLP1) receptor may facilitate the development of agonist drugs useful for the management of type 2 diabetes mellitus. We previously reported molecular approximations between carboxyl-terminal residues 24 and 35 within GLP1 and its receptor. In this work, we have focused on the amino-terminal region of GLP1, known to be critical for receptor activation. We developed two high-affinity, full agonist photolabile GLP1 probes having sites of covalent attachment in positions 6 and 12 of the 30-residue peptide (GLP1(7–36)). Both probes bound to the receptor specifically and covalently labeled single distinct sites. Chemical and protease cleavage of the labeled receptor identified the juxtamembrane region of its amino-terminal domain as the region of covalent attachment of the position 12 probe, whereas the region of labeling by the position 6 probe was localized to the first extracellular loop. Radiochemical sequencing identified receptor residue Tyr145, adjacent to the first transmembrane segment, as the site of labeling by the position 12 probe, and receptor residue Tyr205, within the first extracellular loop, as the site of labeling by the position 6 probe. These data provide support for a common mechanism for natural ligand binding and activation of family B G protein-coupled receptors. This region of interaction of peptide amino-terminal domains with the receptor may provide a pocket that can be targeted by small molecule agonists. PMID:20529866

  15. Refinement of Glucagon-like Peptide 1 Docking to Its Intact Receptor Using Mid-region Photolabile Probes and Molecular Modeling*

    PubMed Central

    Miller, Laurence J.; Chen, Quan; Lam, Polo C.-H.; Pinon, Delia I.; Sexton, Patrick M.; Abagyan, Ruben; Dong, Maoqing

    2011-01-01

    The glucagon-like peptide 1 (GLP1) receptor is an important drug target within the B family of G protein-coupled receptors. Its natural agonist ligand, GLP1, has incretin-like actions and the receptor is a recognized target for management of type 2 diabetes mellitus. Despite recent solution of the structure of the amino terminus of the GLP1 receptor and several close family members, the molecular basis for GLP1 binding to and activation of the intact receptor remains unclear. We previously demonstrated molecular approximations between amino- and carboxyl-terminal residues of GLP1 and its receptor. In this work, we study spatial approximations with the mid-region of this peptide to gain insights into the orientation of the intact receptor and the ligand-receptor complex. We have prepared two new photolabile probes incorporating a p-benzoyl-l-phenylalanine into positions 16 and 20 of GLP1(7–36). Both probes bound to the GLP1 receptor specifically and with high affinity. These were each fully efficacious agonists, stimulating cAMP accumulation in receptor-bearing CHO cells in a concentration-dependent manner. Each probe specifically labeled a single receptor site. Protease cleavage and radiochemical sequencing identified receptor residue Leu141 above transmembrane segment one as its site of labeling for the position 16 probe, whereas the position 20 probe labeled receptor residue Trp297 within the second extracellular loop. Establishing ligand residue approximation with this loop region is unique among family members and may help to orient the receptor amino-terminal domain relative to its helical bundle region. PMID:21454562

  16. Split Ssp DnaB mini-intein-mediated production of recombinant human glucagon-like peptide-1/7-36.

    PubMed

    Jiang, Aiqin; Jin, Wenbo; Zhao, Feng; Tang, Yanchun; Sun, Ziyong; Liu, Jian-Ning

    2015-01-01

    Glucagon-like peptide-1 (GLP-1) plays an important role in the regulation of postprandial insulin release. Here, we used the split DnaB mini-intein system to produce recombinant human GLP-1/7-36 (rhGLP-1) in Escherichia coli. The C-terminal domain of DnaB mini-intein (IntC) was genetically fused at the N-terminus of rhGLP-1 to produce IntC-GLP-1. IntC-GLP-1 and N-terminal domain of DnaB mini-intein (IntN) protein were prepared in a denatured buffer of pH 8.0. IntC-GLP-1 was diluted 1:8 into the phosphate buffer of pH 6.6. IntN was added into the diluted solution of IntC-GLP-1 at the molar ratio of 1:2. Then, rhGLP-1 was released from IntC-GLP-1 via inducible C-terminal peptide-bond cleavage by shifting pH from 8.0 to 6.6 at 25 °C for 24-H incubation. Then, the supernatant was applied to a Ni-Sepharose column, and the pass through fraction was collected. About 5.34 mg of rhGLP-1 with the purity of 97% was obtained from 1 L of culture medium. Mass spectrometry showed the molecular weight of 3,300.45 Da, which was equal to the theoretical value of GLP-1/7-36. The glucose-lowering activity of rhGLP-1 was confirmed by the glucose tolerance test in mice. In conclusion, the reported method was an efficient strategy to produce rhGLP-1 without using enzyme or chemical reagents, which could also be used for other similar peptides.

  17. Characterization of liraglutide, a glucagon-like peptide-1 (GLP-1) receptor agonist, in rat partial and full nigral 6-hydroxydopamine lesion models of Parkinson's disease.

    PubMed

    Hansen, Henrik H; Fabricius, Katrine; Barkholt, Pernille; Mikkelsen, Jens D; Jelsing, Jacob; Pyke, Charles; Knudsen, Lotte Bjerre; Vrang, Niels

    2016-09-01

    Exendin-4, a glucagon-like peptide-1 (GLP-1) receptor agonist, have been demonstrated to promote neuroprotection in the rat 6-hydroxydopamine (6-OHDA) neurotoxin model of Parkinson's disease (PD), a neurodegenerative disorder characterized by progressive nigrostriatal dopaminergic neuron loss. In this report, we characterized the effect of a long-acting GLP-1 receptor agonist, liraglutide (500µg/kg/day, s.c.) in the context of a partial or advanced (full) 6-OHDA induced nigral lesion in the rat. Rats received a low (3µg, partial lesion) or high (13.5µg, full lesion) 6-OHDA dose stereotaxically injected into the right medial forebrain bundle (n=17-20 rats per experimental group). Six weeks after induction of a partial nigral dopaminergic lesion, vehicle or liraglutide was administered for four weeks. In the full lesion model, vehicle dosing or liraglutide treatment was applied for a total of six weeks starting three weeks pre-lesion, or administered for three weeks starting on the lesion day. Quantitative stereology was applied to assess the total number of midbrain tyrosine hydroxylase (TH) positive dopaminergic neurons. As compared to vehicle controls, liraglutide had no effect on the rotational responsiveness to d-amphetamine or apomorphine, respectively. In correspondence, while numbers of TH-positive nigral neurons were significantly reduced in the lesion side (partial lesion ≈55%; full lesion ≈90%) liraglutide administration had no influence dopaminergic neuronal loss in either PD model setting. In conclusion, liraglutide showed no neuroprotective effects in the context of moderate or substantial midbrain dopaminergic neuronal loss and associated functional motor deficits in the rat 6-OHDA lesion model of PD.

  18. Satiation and Stress-Induced Hypophagia: Examining the Role of Hindbrain Neurons Expressing Prolactin-Releasing Peptide or Glucagon-Like Peptide 1

    PubMed Central

    Maniscalco, James W.; Kreisler, Alison D.; Rinaman, Linda

    2013-01-01

    Neural circuits distributed within the brainstem, hypothalamus, and limbic forebrain interact to control food intake and energy balance under normal day-to-day conditions, and in response to stressful conditions under which homeostasis is threatened. Experimental studies using rats and mice have generated a voluminous literature regarding the functional organization of circuits that inhibit food intake in response to satiety signals, and in response to stress. Although the central neural bases of satiation and stress-induced hypophagia often are studied and discussed as if they were distinct, we propose that both behavioral states are generated, at least in part, by recruitment of two separate but intermingled groups of caudal hindbrain neurons. One group comprises a subpopulation of noradrenergic (NA) neurons within the caudal nucleus of the solitary tract (cNST; A2 cell group) that is immunopositive for prolactin-releasing peptide (PrRP). The second group comprises non-adrenergic neurons within the cNST and nearby reticular formation that synthesize glucagon-like peptide 1 (GLP-1). Axonal projections from PrRP and GLP-1 neurons target distributed brainstem and forebrain regions that shape behavioral, autonomic, and endocrine responses to actual or anticipated homeostatic challenge, including the challenge of food intake. Evidence reviewed in this article supports the view that hindbrain PrRP and GLP-1 neurons contribute importantly to satiation and stress-induced hypophagia by modulating the activity of caudal brainstem circuits that control food intake. Hindbrain PrRP and GLP-1 neurons also engage hypothalamic and limbic forebrain networks that drive parallel behavioral and endocrine functions related to food intake and homeostatic challenge, and modulate conditioned and motivational aspects of food intake. PMID:23346044

  19. Glucagon-like peptide-1 protects cardiomyocytes from advanced oxidation protein product-induced apoptosis via the PI3K/Akt/Bad signaling pathway.

    PubMed

    Zhang, Hua; Xiong, Zhouyi; Wang, Jiao; Zhang, Shuangshuang; Lei, Lei; Yang, Li; Zhang, Zhen

    2016-02-01

    Cardiomyocyte apoptosis is a major event in the pathogenesis of diabetic cardiomyopathy. Currently, no single effective treatment for diabetic cardiomyopathy exists. The present study investigated whether advanced oxidative protein products (AOPPs) have a detrimental role in the survival of cardiomyocytes and if glucagon-like peptide-1 (GLP-1) exerts a cardioprotective effect under these circumstances. The present study also aimed to determine the underlying mechanisms. H9c2 cells were exposed to increasing concentrations of AOPPs in the presence or absence of GLP-1, and the viability and apoptotic rate were detected using a cell counting kit-8 assay and flow cytometry, respectively. In addition, a phosphatidylinositol-4,5-bisphosphate 3-kinase (PI3K) inhibitor, LY294002, was employed to illustrate the mechanism of the antiapoptotic effect of GLP-1. The expression levels of the apoptotic-associated proteins, Akt, B-cell lymphoma (Bcl)-2, Bcl-2-associated death promoter (Bad), Bcl-2-associated X protein (Bax) and caspase-3 were measured by western blotting. It was revealed that GLP-1 significantly attenuated AOPP-induced cell toxicity and apoptosis. AOPPs inactivated the phosphorylation of Akt, reduced the phosphorylation of Bad, decreased the expression of Bcl-2, increased the expression of Bax and the activation of caspase-3 in H9c2 cells. GLP-1 reversed the above changes induced by AOPPs and the protective effects of GLP-1 were abolished by the PI3K inhibitor, LY294002. In conclusion, the present data suggested that GLP-1 protected cardiomyocytes against AOPP-induced apoptosis, predominantly via the PI3K/Akt/Bad pathway. These results provided a conceivable mechanism for the development of diabetic cardiomyopathy and rendered a novel application of GLP-1 exerting favorable cardiac effects for the treatment of diabetic cardiomyopathy.

  20. Substitution of the cysteine 438 residue in the cytoplasmic tail of the glucagon-like peptide-1 receptor alters signal transduction activity.

    PubMed

    Vázquez, Patricia; Roncero, Isabel; Blázquez, Enrique; Alvarez, Elvira

    2005-04-01

    Several G-protein-coupled receptors contain cysteine residues in the C-terminal tail that may modulate receptor function. In this work we analysed the substitution of Cys438 by alanine in the glucagon-like peptide-1 (GLP-1) receptor (GLPR), which led to a threefold decrease in cAMP production, although endocytosis and cellular redistribution of GLP-1 receptor agonist-induced processes were unaffected. Additionally, cysteine residues in the C-terminal tail of several G-protein-coupled receptors were found to act as substrates for palmitoylation, which might modify the access of protein kinases to this region. His-tagged GLP-1 receptors incorporated 3H-palmitate. Nevertheless, substitution of Cys438 prevented the incorporation of palmitate. Accordingly, we also investigated the effect of substitution of the consensus sequence by protein kinase C (PKC) Ser431/432 in both wild-type and Ala438 GLP-1 receptors. Substitution of Ser431/432 by alanine did not modify the ability of wild-type receptors to stimulate adenylate cyclase or endocytosis and recycling processes. By contrast, the substitution of Ser431/432 by alanine in the receptor containing Ala438 increased the ability to stimulate adenylate cyclase. All types of receptors were mainly internalised through coated pits. Thus, cysteine 438 in the cytoplasmic tail of the GLP-1 receptor would regulate its interaction with G-proteins and the stimulation of adenylyl cyclase. Palmitoylation of this residue might control the access of PKC to Ser431/432.

  1. Short-term sleep deprivation with nocturnal light exposure alters time-dependent glucagon-like peptide-1 and insulin secretion in male volunteers.

    PubMed

    Gil-Lozano, Manuel; Hunter, Paola M; Behan, Lucy-Ann; Gladanac, Bojana; Casper, Robert F; Brubaker, Patricia L

    2016-01-01

    The intestinal L cell is the principal source of glucagon-like peptide-1 (GLP-1), a major determinant of insulin release. Because GLP-1 secretion is regulated in a circadian manner in rodents, we investigated whether the activity of the human L cell is also time sensitive. Rhythmic fluctuations in the mRNA levels of canonical clock genes were found in the human NCI-H716 L cell model, which also showed a time-dependent pattern in their response to well-established secretagogues. A diurnal variation in GLP-1 responses to identical meals (850 kcal), served 12 h apart in the normal dark (2300) and light (1100) periods, was also observed in male volunteers maintained under standard sleep and light conditions. These findings suggest the existence of a daily pattern of activity in the human L cell. Moreover, we separately tested the short-term effects of sleep deprivation and nocturnal light exposure on basal and postprandial GLP-1, insulin, and glucose levels in the same volunteers. Sleep deprivation with nocturnal light exposure disrupted the melatonin and cortisol profiles and increased insulin resistance. Moreover, it also induced profound derangements in GLP-1 and insulin responses such that postprandial GLP-1 and insulin levels were markedly elevated and the normal variation in GLP-1 responses was abrogated. These alterations were not observed in sleep-deprived participants maintained under dark conditions, indicating a direct effect of light on the mechanisms that regulate glucose homeostasis. Accordingly, the metabolic abnormalities known to occur in shift workers may be related to the effects of irregular light-dark cycles on these glucoregulatory pathways. PMID:26530153

  2. Glucagon-like peptide-1 protects cardiomyocytes from advanced oxidation protein product-induced apoptosis via the PI3K/Akt/Bad signaling pathway

    PubMed Central

    ZHANG, HUA; XIONG, ZHOUYI; WANG, JIAO; ZHANG, SHUANGSHUANG; LEI, LEI; YANG, LI; ZHANG, ZHEN

    2016-01-01

    Cardiomyocyte apoptosis is a major event in the pathogenesis of diabetic cardiomyopathy. Currently, no single effective treatment for diabetic cardiomyopathy exists. The present study investigated whether advanced oxidative protein products (AOPPs) have a detrimental role in the survival of cardiomyocytes and if glucagon-like peptide-1 (GLP-1) exerts a cardioprotective effect under these circumstances. The present study also aimed to determine the underlying mechanisms. H9c2 cells were exposed to increasing concentrations of AOPPs in the presence or absence of GLP-1, and the viability and apoptotic rate were detected using a cell counting kit-8 assay and flow cytometry, respectively. In addition, a phosphatidylino-sitol-4,5-bisphosphate 3-kinase (PI3K) inhibitor, LY294002, was employed to illustrate the mechanism of the antiapoptotic effect of GLP-1. The expression levels of the apoptotic-associated proteins, Akt, B-cell lymphoma (Bcl)-2, Bcl-2-associated death promoter (Bad), Bcl-2-associated X protein (Bax) and caspase-3 were measured by western blotting. It was revealed that GLP-1 significantly attenuated AOPP-induced cell toxicity and apoptosis. AOPPs inactivated the phosphorylation of Akt, reduced the phosphorylation of Bad, decreased the expression of Bcl-2, increased the expression of Bax and the activation of caspase-3 in H9c2 cells. GLP-1 reversed the above changes induced by AOPPs and the protective effects of GLP-1 were abolished by the PI3K inhibitor, LY294002. In conclusion, the present data suggested that GLP-1 protected cardiomyocytes against AOPP-induced apoptosis, predominantly via the PI3K/Akt/Bad pathway. These results provided a conceivable mechanism for the development of diabetic cardiomyopathy and rendered a novel application of GLP-1 exerting favorable cardiac effects for the treatment of diabetic cardiomyopathy. PMID:26717963

  3. Short-term sleep deprivation with nocturnal light exposure alters time-dependent glucagon-like peptide-1 and insulin secretion in male volunteers.

    PubMed

    Gil-Lozano, Manuel; Hunter, Paola M; Behan, Lucy-Ann; Gladanac, Bojana; Casper, Robert F; Brubaker, Patricia L

    2016-01-01

    The intestinal L cell is the principal source of glucagon-like peptide-1 (GLP-1), a major determinant of insulin release. Because GLP-1 secretion is regulated in a circadian manner in rodents, we investigated whether the activity of the human L cell is also time sensitive. Rhythmic fluctuations in the mRNA levels of canonical clock genes were found in the human NCI-H716 L cell model, which also showed a time-dependent pattern in their response to well-established secretagogues. A diurnal variation in GLP-1 responses to identical meals (850 kcal), served 12 h apart in the normal dark (2300) and light (1100) periods, was also observed in male volunteers maintained under standard sleep and light conditions. These findings suggest the existence of a daily pattern of activity in the human L cell. Moreover, we separately tested the short-term effects of sleep deprivation and nocturnal light exposure on basal and postprandial GLP-1, insulin, and glucose levels in the same volunteers. Sleep deprivation with nocturnal light exposure disrupted the melatonin and cortisol profiles and increased insulin resistance. Moreover, it also induced profound derangements in GLP-1 and insulin responses such that postprandial GLP-1 and insulin levels were markedly elevated and the normal variation in GLP-1 responses was abrogated. These alterations were not observed in sleep-deprived participants maintained under dark conditions, indicating a direct effect of light on the mechanisms that regulate glucose homeostasis. Accordingly, the metabolic abnormalities known to occur in shift workers may be related to the effects of irregular light-dark cycles on these glucoregulatory pathways.

  4. Progesterone Receptor Membrane Component 1 Is a Functional Part of the Glucagon-like Peptide-1 (GLP-1) Receptor Complex in Pancreatic β Cells*

    PubMed Central

    Zhang, Ming; Robitaille, Mélanie; Showalter, Aaron D.; Huang, Xinyi; Liu, Ying; Bhattacharjee, Alpana; Willard, Francis S.; Han, Junfeng; Froese, Sean; Wei, Li; Gaisano, Herbert Y.; Angers, Stéphane; Sloop, Kyle W.; Dai, Feihan F.; Wheeler, Michael B.

    2014-01-01

    Glucagon-like peptide-1 (GLP-1) is an incretin hormone that regulates glucose homeostasis. Because of their direct stimulation of insulin secretion from pancreatic β cells, GLP-1 receptor (GLP-1R) agonists are now important therapeutic options for the treatment of type 2 diabetes. To better understand the mechanisms that control the insulinotropic actions of GLP-1, affinity purification and mass spectrometry (AP-MS) were employed to uncover potential proteins that functionally interact with the GLP-1R. AP-MS performed on Chinese hamster ovary cells or MIN6 β cells, both expressing the human GLP-1R, revealed 99 proteins potentially associated with the GLP-1R. Three novel GLP-1R interactors (PGRMC1, Rab5b, and Rab5c) were further validated through co-immunoprecipitation/immunoblotting, fluorescence resonance energy transfer, and immunofluorescence. Functional studies revealed that overexpression of PGRMC1, a novel cell surface receptor that associated with liganded GLP-1R, enhanced GLP-1-induced insulin secretion (GIIS) with the most robust effect. Knockdown of PGRMC1 in β cells decreased GIIS, indicative of positive interaction with GLP-1R. To gain insight mechanistically, we demonstrated that the cell surface PGRMC1 ligand P4-BSA increased GIIS, whereas its antagonist AG-205 decreased GIIS. It was then found that PGRMC1 increased GLP-1-induced cAMP accumulation. PGRMC1 activation and GIIS induced by P4-BSA could be blocked by inhibition of adenylyl cyclase/EPAC signaling or the EGF receptor–PI3K signal transduction pathway. These data reveal a dual mechanism for PGRMC1-increased GIIS mediated through cAMP and EGF receptor signaling. In conclusion, we identified several novel GLP-1R interacting proteins. PGRMC1 expressed on the cell surface of β cells was shown to interact with the activated GLP-1R to enhance the insulinotropic actions of GLP-1. PMID:25044020

  5. The peptide agonist-binding site of the glucagon-like peptide-1 (GLP-1) receptor based on site-directed mutagenesis and knowledge-based modelling

    PubMed Central

    Dods, Rachel L.; Donnelly, Dan

    2015-01-01

    Glucagon-like peptide-1 (7–36)amide (GLP-1) plays a central role in regulating blood sugar levels and its receptor, GLP-1R, is a target for anti-diabetic agents such as the peptide agonist drugs exenatide and liraglutide. In order to understand the molecular nature of the peptide–receptor interaction, we used site-directed mutagenesis and pharmacological profiling to highlight nine sites as being important for peptide agonist binding and/or activation. Using a knowledge-based approach, we constructed a 3D model of agonist-bound GLP-1R, basing the conformation of the N-terminal region on that of the receptor-bound NMR structure of the related peptide pituitary adenylate cyclase-activating protein (PACAP21). The relative position of the extracellular to the transmembrane (TM) domain, as well as the molecular details of the agonist-binding site itself, were found to be different from the model that was published alongside the crystal structure of the TM domain of the glucagon receptor, but were nevertheless more compatible with published mutagenesis data. Furthermore, the NMR-determined structure of a high-potency cyclic conformationally-constrained 11-residue analogue of GLP-1 was also docked into the receptor-binding site. Despite having a different main chain conformation to that seen in the PACAP21 structure, four conserved residues (equivalent to His-7, Glu-9, Ser-14 and Asp-15 in GLP-1) could be structurally aligned and made similar interactions with the receptor as their equivalents in the GLP-1-docked model, suggesting the basis of a pharmacophore for GLP-1R peptide agonists. In this way, the model not only explains current mutagenesis and molecular pharmacological data but also provides a basis for further experimental design. PMID:26598711

  6. Association of Anti-Diabetic Medications Targeting the Glucagon-Like Peptide-1 Pathway and Heart Failure Events in Patients with Diabetes

    PubMed Central

    Velez, Mauricio; Peterson, Edward L.; Wells, Karen; Swadia, Tanmay; Sabbah, Hani N.; Williams, L. Keoki; Lanfear, David E.

    2014-01-01

    Background Glucagon-like peptide-1 (GLP-1) agonists and dipeptidyl peptidase-4 (DPP-4) inhibitors (GLP-1 agents) may be protective in heart failure (HF). We set out to determine whether GLP-1 agent use is associated with HF risk in diabetics. Methods and Results Retrospective cohort study of members of a large health system. We identified >19,000 adult diabetics from January 1, 2000–July 1, 2012. GLP-1 agent users were matched 1:2 to controls using propensity matching based on age, race, gender, coronary disease, HF, diabetes duration, and number of anti-diabetic medications. The association of GLP-1 agents with time to HF hospitalization was tested with multivariable Cox regression. All-cause hospitalization and mortality were secondary endpoints. We identified 1,426 users of GLP-1 agents and 2,798 controls. Both were similar except for angiotensin-converting enzyme inhibitors/angiotensin receptor blocker (ACEi/ARB) use, number of anti-diabetic medications and age. There were 199 hospitalizations, of which 128 were for HF, and 114 deaths. GLP-1 agents were associated with reduced risk of HF hospitalization (adjusted hazard ratio [aHR] 0.51; 95% confidence interval [CI] 0.34–0.77, p=0.002), all-cause hospitalization (aHR 0.54; 95% CI 0.38–0.74, p=0.001), and death (aHR 0.31; 95% CI 0.18–0.53, p=0.001). Conclusions GLP-1 agents may reduce the risk of HF events in diabetics. PMID:25451709

  7. A silica-based pH-sensitive nanomatrix system improves the oral absorption and efficacy of incretin hormone glucagon-like peptide-1

    PubMed Central

    Qu, Wei; Li, Yong; Hovgaard, Lars; Li, Song; Dai, Wenbin; Wang, Jiancheng; Zhang, Xuan; Zhang, Qiang

    2012-01-01

    Background Glucagon-like peptide-1 (GLP-1) (7–36) is a peptide incretin hormone released from the endocrine L-cells of the intestinal mucosa with unique antidiabetic potential. Due to low absorption efficiency and instability in the gastrointestinal tract, the introduction of orally active GLP-1 is a large challenge. Here we developed a novel silica-based pH-sensitive nanomatrix of GLP-1 (SPN-GLP-1) in order to provide a strategy for oral peptide delivery. Methods SPN-GLP-1 composed of silica nanoparticles and pH-sensitive Eudragit® was prepared and characterized by dynamic light scattering, scanning electron microscope, transmission electron microscope, high-performance liquid chromatography, surface analysis, drug release, and so on. Its permeability across the Caco-2 cell monolayer and intestinal mucosa, proteolytic stability against the intestinal enzymes, pharmacokinetics, hypoglycemic effect in the intraperitoneal glucose tolerance test (IPGTT), and primary toxicity were then evaluated. Results It was indicated that the nanomatrix system obtained had a unique nanoscale structure and pH-sensitivity in drug release. It displayed a five-fold intestinal mucosa permeability and significantly higher proteolytic stability compared to native GLP-1 (P < 0.001). A longer half-life was observed after oral administration of SPN-GLP-1, and its relative bioavailability was 35.67% in comparison to intraperitoneal GLP-1. Oral delivery of SPN-GLP-1 significantly reduced the blood glucose level and its hypoglycemic effect over intraperitoneal GLP-1 reached 77%. There was no evident toxicity of SPN-GLP-1 found from both animal status and histochemical analysis of gastrointestinal tissues. Conclusion The silica-based pH-sensitive nanomatrix designed and prepared here might be considered as a potential oral delivery system not only for GLP-1, but also for other peptide or macromolecular drugs. PMID:23028226

  8. Combined contributions of over-secreted glucagon-like peptide 1 and suppressed insulin secretion to hyperglycemia induced by gatifloxacin in rats

    SciTech Connect

    Yu, Yunli; Wang, Xinting; Liu, Can; Yao, Dan; Hu, Mengyue; Li, Jia; Hu, Nan; Liu, Li; Liu, Xiaodong

    2013-02-01

    Accumulating evidences have showed that gatifloxacin causes dysglycemia in both diabetic and non-diabetic patients. Our preliminary study demonstrated that gatifloxacin stimulated glucagon-like peptide 1 (GLP-1) secretion from intestinal cells. The aim of the study was to investigate the association between gatifloxacin-stimulated GLP-1 release and dysglycemia in both normal and streptozotocin-induced diabetic rats and explore the possible mechanisms. Oral administration of gatifloxacin (100 mg/kg/day and 200 mg/kg/day) for 3 and 12 days led to marked elevation of GLP-1 levels, accompanied by significant decrease in insulin levels and increase in plasma glucose. Similar results were found in normal rats treated with 3-day gatifloxacin. Gatifloxacin-stimulated GLP-1 release was further confirmed in NCI-H716 cells, which was abolished by diazoxide, a K{sub ATP} channel opener. QT-PCR analysis showed that gatifloxacin also upregulated expression of proglucagon and prohormone convertase 3 mRNA. To clarify the contradiction on elevated GLP-1 without insulinotropic effect, effects of GLP-1 and gatifloxacin on insulin release were investigated using INS-1 cells. We found that short exposure (2 h) to GLP-1 stimulated insulin secretion and biosynthesis, whereas long exposure (24 h and 48 h) to high level of GLP-1 inhibited insulin secretion and biosynthesis. Moreover, we also confirmed gatifloxacin acutely stimulated insulin secretion while chronically inhibited insulin biosynthesis. All the results gave an inference that gatifloxacin stimulated over-secretion of GLP-1, in turn, high levels of GLP-1 and gatifloxacin synergistically impaired insulin release, worsening hyperglycemia. -- Highlights: ► Gatifloxacin induced hyperglycemia both in diabetic rats and normal rats. ► Gatifloxacin enhanced GLP-1 secretion but inhibited insulin secretion in rats. ► Long-term exposure to high GLP-1 inhibited insulin secretion and biosynthesis. ► GLP-1 over-secretion may be

  9. Circulating concentrations of glucagon-like peptide 1, glucose-dependent insulinotropic peptide, peptide YY, and insulin in client-owned lean, overweight, and diabetic cats.

    PubMed

    McMillan, C J; Zapata, R C; Chelikani, P K; Snead, E C R; Cosford, K

    2016-01-01

    Our objectives were to measure plasma concentrations of glucagon-like peptide 1 (GLP-1), glucose-dependent insulinotropic peptide (GIP), and peptide YY (PYY) in client-owned newly diagnosed diabetic cats and nondiabetic lean or overweight cats and to determine whether circulating concentrations of these hormones differed between study groups and if they increased postprandially as seen in other species. A total of 31 cats were recruited and placed into 1 of 3 study groups: lean (body condition score 4-5 on a scale of 1-9; n = 10), overweight (body condition score 6-8; n = 11), or diabetic (n = 10). Diabetics were newly diagnosed and had not had prior insulin therapy. Preprandial (fasting) and postprandial (60 min after meal) plasma hormone and glucose concentrations were measured at baseline and 2 and 4 wk. All cats were exclusively fed a commercially available high-protein and low-carbohydrate diet commonly prescribed to feline diabetic patients for 2 wk before the 2-wk assessment and continued through the 4-wk assessment. Results showed that plasma concentrations of GLP-1, GIP, PYY, and insulin increased in general after a meal in all study groups. Plasma PYY concentrations did not differ (P > 0.10) between study groups. Diabetics had greater plasma concentrations of GLP-1 and GIP compared with the other study groups at baseline (P < 0.05), and greater preprandial and postprandial GLP-1 concentrations than lean cats at 2 and 4 wk (P < 0.05). Preprandial plasma GIP concentrations were greater in diabetics than obese and lean (P < 0.05) cats at week 4. Postprandial plasma GIP concentrations in diabetics were greater than lean (P < 0.05) at week 2 and obese and lean cats (P < 0.05) at week 4. Together, our findings suggest that diabetic status is an important determinant of circulating concentrations of GLP-1 and GIP, but not PYY, in cats. The role of GLP-1, GIP, and PYY in the pathophysiology of feline obesity and diabetes remains to be determined.

  10. Plasma Free Amino Acid Responses to Intraduodenal Whey Protein, and Relationships with Insulin, Glucagon-Like Peptide-1 and Energy Intake in Lean Healthy Men

    PubMed Central

    Luscombe-Marsh, Natalie D.; Hutchison, Amy T.; Soenen, Stijn; Steinert, Robert E.; Clifton, Peter M.; Horowitz, Michael; Feinle-Bisset, Christine

    2016-01-01

    This study determined the effects of increasing loads of intraduodenal (ID) dairy protein on plasma amino acid (AA) concentrations, and their relationships with serum insulin, plasma glucagon-like peptide-1 (GLP-1) and energy intake. Sixteen healthy men had concentrations of AAs, GLP-1 and insulin measured in response to 60-min ID infusions of hydrolysed whey protein administered, in double-blinded and randomised order, at 2.1 (P2.1), 6.3 (P6.3) or 12.5 (P12.5) kJ/min (encompassing the range of nutrient emptying from the stomach), or saline control (C). Energy intake was quantified immediately afterwards. Compared with C, the concentrations of 19/20 AAs, the exception being cysteine, were increased, and this was dependent on the protein load. The relationship between AA concentrations in the infusions and the area under the curve from 0 to 60 min (AUC0–60 min) of each AA profile was strong for essential AAs (R2 range, 0.61–0.67), but more variable for non-essential (0.02–0.54) and conditional (0.006–0.64) AAs. The AUC0–60 min for each AA was correlated directly with the AUC0–60 min of insulin (R2 range 0.3–0.6), GLP-1 (0.2–0.6) and energy intake (0.09–0.3) (p < 0.05, for all), with the strongest correlations being for branched-chain AAs, lysine, methionine and tyrosine. These findings indicate that ID whey protein infused at loads encompassing the normal range of gastric emptying increases plasma concentrations of 19/20 AAs in a load-dependent manner, and provide novel information on the close relationships between the essential AAs, leucine, valine, isoleucine, lysine, methionine, and the conditionally-essential AA, tyrosine, with energy intake, insulin and GLP-1. PMID:26742062

  11. Dissociated effects of glucose-dependent insulinotropic polypeptide vs glucagon-like peptide-1 on beta-cell secretion and insulin clearance in mice.

    PubMed

    Pacini, Giovanni; Thomaseth, Karl; Ahrén, Bo

    2010-07-01

    Glucagon-like peptide-1 (GLP-1) and glucose-dependent insulinotropic polypeptide (GIP) potently augment insulin response to glucose. It is less known what their effects are insulin clearance, which also contributes to peripheral hyperinsulinemia observed after administration of incretins together with glucose. The aims of this study were the quantification of C-peptide secretion and the evaluation of insulin clearance after administration of GIP with glucose. This allows the assessment of GIP's effects on hyperinsulinemia. In addition, GIP's effects were compared with those of GLP-1. Anesthetized female NMRI mice were injected intravenously with glucose alone (1 g/kg, n = 35) or glucose together with GIP (50 microg/kg, n = 12). Samples were taken through the following 50 minutes, and C-peptide and insulin concentrations were used to reconstruct C-peptide secretion rate and insulin clearance. In a previous study, GLP-1 (10 microg/kg) was used in 12 mice; and we used those GLP-1 results to compare GIP effects with those of GLP-1. C-peptide secretion rate peaked at 1 minute after glucose injection, and the immediate part of the insulin-releasing process was markedly augmented by both incretin hormones (1-minute suprabasal increment secretory rate was 20 +/- 2 pmol/min for GIP and 28 +/- 2 pmol/min for GLP-1, vs only 9 +/- 1 pmol/min for glucose alone; P < .001). Until 10 minutes after administration, C-peptide secretion remained higher with incretins (P < .0001), whereas starting from 20 minutes, the 3 patterns were undistinguishable (P > .2). Insulin clearance, previously shown to be abridged by 46% with GLP-1, was reduced only by a nonsignificant (P = .27) 21% with GIP. This study thus shows that the 2 incretins markedly augment glucose-stimulated insulin secretion in mice by a preferential action on the immediate response to glucose of insulin secretion. However, the action of GIP is less effective than that of GLP-1. Insulin clearance with GIP is not significantly

  12. Effects of oligofructose on appetite profile, glucagon-like peptide 1 and peptide YY3-36 concentrations and energy intake.

    PubMed

    Verhoef, Sanne P M; Meyer, Diederick; Westerterp, Klaas R

    2011-12-01

    In rats, oligofructose has been shown to stimulate satiety hormone secretion, reduce energy intake and promote weight loss. The present study aimed to examine the effect of oligofructose supplementation on appetite profiles, satiety hormone concentrations and energy intake in human subjects. A total of thirty-one healthy subjects (ten men and twenty-one women) aged 28 (SEM 3) years with a BMI of 24·8 (SEM 0·3) kg/m(2) were included in a randomised double-blind, cross-over study. The subjects received 10 g oligofructose, 16 g oligofructose or 16 g placebo (maltodextrin) daily for 13 d, with a 2-week washout period between treatments. Appetite profile, active glucagon-like peptide 1 (GLP-1) and peptide YY3-36 (PYY) concentrations and energy intake were assessed on days 0 and 13 of the treatment period. Time × treatment interaction revealed a trend of reduction in energy intake over days 0-13 by oligofructose (P = 0·068). Energy intake was significantly reduced (11 %) over time on day 13 compared with day 0 with 16 g/d oligofructose (2801 (SEM 301) v. 3217 (SEM 320) kJ, P < 0·05). Moreover, energy intake was significantly lower with 16 g/d oligofructose compared with 10 g/d oligofructose on day 13 (2801 (SEM 301) v. 3177 (SEM 276) kJ, P < 0·05). Area under the curve (AUC) for GLP-1 on day 13 was significantly higher with 16 g/d oligofructose compared with 10 g/d oligofructose (45 (SEM 4) v. 41 (SEM 3) pmol/l × h, P < 0·05). In the morning until lunch, AUC(0-230 min) for PYY on day 13 was significantly higher with 16 g/d oligofructose compared with 10 g/d oligofructose and placebo (409 (SEM 35) v. 222 (SEM 19) and 211 (SEM 20) pg/ml × h, P < 0·01). In conclusion, 16 g/d and not 10 g/d oligofructose may be an effective dose to reduce energy intake, possibly supported by higher GLP-1 and PYY concentrations.

  13. Efficacy and Acceptability of Glycemic Control of Glucagon-Like Peptide-1 Receptor Agonists among Type 2 Diabetes: A Systematic Review and Network Meta-Analysis

    PubMed Central

    Li, Zhixia; Zhang, Yuan; Quan, Xiaochi; Yang, Zhirong; Zeng, Xiantao; Ji, Linong

    2016-01-01

    Objective To synthesize current evidence of the impact of Glucagon-like peptide-1 receptor agonists (GLP-1 RAs) on hypoglycemia, treatment discontinuation and glycemic level in patients with type 2 diabetes. Design Systematic review and network meta-analysis. Data Sources Literature search (Medline, Embase, the Cochrane library), website of clinical trial, bibliographies of published systematic reviews. Eligibility Criteria Randomized controlled trials with available data comparing GLP-1 RAs with placebo or traditional anti-diabetic drugs in patients with type 2 diabetes. Data Synthesis Traditional pairwise meta-analyses within DerSimonian-Laird random effects model and network meta-analysis within a Bayesian framework were performed to calculate odds ratios for the incidence of hypoglycemia, treatment discontinuation, HbA1c<7.0% and HbA1c<6.5%. Ranking probabilities for all treatments were estimated to obtain a treatment hierarchy using the surface under the cumulative ranking curve (SUCRA) and mean ranks. Results 78 trials with 13 treatments were included. Overall, all GLP-1 RAs except for albiglutide increased the risk of hypoglycemia when compared to placebo. Reduction in the incidence of hypoglycemia was found for all GLP-1 RAs versus insulin (except for dulaglutide) and sulphonylureas. For the incidence of treatment discontinuation, increase was found for exenatide, liraglutide, lixisenatide and taspoglutide versus placebo, insulin and sitagliptin. For glycemic level, decrease was found for all GLP-1 RAs versus placebo. Dulaglutide, exenatide long-acting release (exe_lar), liraglutide and taspoglutide had significant lowering effect when compared with sitagliptin (HbA1c<7.0%) and insulin (HbA1c<6.5%). Finally, according to SUCRAs, placebo, thiazolidinediones and albiglutide had the best decrease effect on hypoglycemia; sulphanylureas, sitagliptin and insulin decrease the incidence of treatment discontinuation most; exe_lar and dulaglutide had the highest

  14. Glucagon-like peptide-1 receptor agonists versus insulin glargine for type 2 diabetes mellitus: A systematic review and meta-analysis of randomized controlled trials

    PubMed Central

    Li, Wei-Xin; Gou, Jian-Feng; Tian, Jin-Hui; Yan, Xiang; Yang, Lin

    2010-01-01

    Background: Glucagon-like peptide-1 (GLP-1) receptor agonists are a new class of hypoglycemic drugs, including exenatide, liraglutide, albiglutide, lixisenatide, and taspoglutide. Insulin glargine is a standard agent used to supplement basal insulin in type 2 diabetes mellitus (T2DM). Objective: The aim of this study was to review the efficacy and safety profiles of GLP-1 receptor agonists versus insulin glargine in type 2 diabetic patients who have not achieved treatment goals with oral hypoglycemic agents. Methods: The Cochrane Library, MEDLINE, EMBASE, Science Citation Index Expanded, and the database of ongoing trials were searched from inception through April 2010. Additional data were sought from relevant Web sites, the American Diabetes Association, reference lists of included trials and related (systematic) reviews, and industry. Randomized controlled trials (RCTs) were selected if they were ≥3 months in duration, compared GLP-1 receptor agonists with insulin glargine in patients with T2DM, and included ≥1 of the following outcomes: mortality, complications of T2DM, glycemie control, weight, lipids, blood pressure, adverse effects, and health-related quality of life. Quasirandomized controlled trials were excluded. The quality of the eligible studies was assessed on the basis of the following aspects: randomization procedure, allocation concealment, blinding, incomplete outcome data (intent-to-treat [ITT] analysis), selective outcome reporting, and publication bias. Results: A total of 410 citations were retrieved; 5 multicenter RCTs that met the inclusion criteria were identified. They were all open-label designs with an insulin glargine arm, predefined outcomes reported, and ITT analysis. One trial had an unclear randomization procedure and allocation concealment. Publication bias was not able to be determined. No data wete found with regard to mortality or diabetes-associated complications, and few data were found on quality of life. The results of

  15. Pharmacokinetics and metabolism studies on the glucagon-like peptide-1 (GLP-1)-derived metabolite GLP-1(9-36)amide in male Beagle dogs.

    PubMed

    Eng, Heather; Sharma, Raman; McDonald, Thomas S; Landis, Margaret S; Stevens, Benjamin D; Kalgutkar, Amit S

    2014-09-01

    Glucagon-like peptide-1 (GLP-1)(7-36)amide is a 30-amino acid peptide hormone that is secreted from intestinal enteroendocrine L-cells in response to nutrients. GLP-1(7-36)amide possesses potent insulinotropic actions in the augmentation of glucose-dependent insulin secretion. GLP-1(7-36)amide is rapidly metabolized by dipeptidyl peptidase-IV to yield GLP-1(9-36)amide as the principal metabolite. Contrary to the earlier notion that peptide cleavage products of native GLP-1(7-36)amide [including GLP-1(9-36)amide] are pharmacologically inactive, recent studies have demonstrated cardioprotective and insulinomimetic effects with GLP-1(9-36)amide in mice, dogs and humans. In the present work, in vitro metabolism and pharmacokinetic properties of GLP-1(9-36)amide have been characterized in dogs, since this preclinical species has been used as an animal model to demonstrate the in vivo vasodilatory and cardioprotective effects of GLP-1(9-36)amide. A liquid chromatography tandem mass spectrometry assay was developed for the quantitation of the intact peptide in hepatocyte incubations as opposed to a previously reported enzyme-linked immunosorbent assay. Although GLP-1(9-36)amide was resistant to proteolytic cleavage in dog plasma and bovine serum albumin (t1/2>240 min), the peptide was rapidly metabolized in dog hepatocytes with a t1/2 of 110 min. Metabolite identification studies in dog hepatocytes revealed a variety of N-terminus cleavage products, most of which, have also been observed in human and mouse hepatocytes. Proteolysis at the C-terminus was not observed in GLP-1(9-36)amide. Following the administration of a single intravenous bolus dose (20 µg/kg) to male Beagle dogs, GLP-1(9-36)amide exhibited a mean plasma clearance of 15 ml/min/kg and a low steady state distribution volume of 0.05 l/kg, which translated into a short elimination half life of 0.05 h. Following subcutaneous administration of GLP-1(9-36)amide at 50 µg/kg, systemic exposure of

  16. Effects of Green Tea Extract on Insulin Resistance and Glucagon-Like Peptide 1 in Patients with Type 2 Diabetes and Lipid Abnormalities: A Randomized, Double-Blinded, and Placebo-Controlled Trial

    PubMed Central

    Liu, Chia-Yu; Huang, Chien-Jung; Huang, Lin-Huang; Chen, I-Ju; Chiu, Jung-Peng; Hsu, Chung-Hua

    2014-01-01

    The aim of this study is to investigate the effect of green tea extract on patients with type 2 diabetes mellitus and lipid abnormalities on glycemic and lipid profiles, and hormone peptides by a double-blinded, randomized and placebo-controlled clinical trial. This trial enrolled 92 subjects with type 2 diabetes mellitus and lipid abnormalities randomized into 2 arms, each arm comprising 46 participants. Of the participants, 39 in therapeutic arm took 500 mg green tea extract, three times a day, while 38 in control arm took cellulose with the same dose and frequency to complete the 16-week study. Anthropometrics measurements, glycemic and lipid profiles, safety parameters, and obesity-related hormone peptides were analyzed at screening and after 16-week course. Within-group comparisons showed that green tea extract caused a significant decrease in triglyceride and homeostasis model assessment of insulin resistance index after 16 weeks. Green tea extract also increased significantly high density lipoprotein cholesterol. The HOMA-IR index decreased from 5.4±3.9 to 3.5±2.0 in therapeutic arm only. Adiponectin, apolipoprotein A1, and apolipoprotein B100 increased significantly in both arms, but only glucagon-like peptide 1 increased in the therapeutic arm. However, only decreasing trend in triglyceride was found in between-group comparison. Our study suggested that green tea extract significantly improved insulin resistance and increased glucagon-like peptide 1 only in within-group comparison. The potential effects of green tea extract on insulin resistance and glucagon-like peptide 1 warrant further investigation. Trial Registration ClinicalTrials.gov NCT01360567 PMID:24614112

  17. The Melanocortin-4 Receptor is Expressed in Enteroendocrine L Cells and Regulates the Release of Peptide YY and Glucagon-Like Peptide 1 In Vivo

    PubMed Central

    Panaro, Brandon L.; Tough, Iain R.; Engelstoft, Maja Storm; Matthews, Robert T.; Digby, Gregory J.; Møller, Cathrine Laustrup; Svendsen, Berit; Gribble, Fiona; Reimann, Frank; Holst, Jens J.; Holst, Birgitte; Schwartz, Thue W.; Cox, Helen M.; Cone, Roger D.

    2014-01-01

    SUMMARY The melanocortin-4 receptor (MC4R) is expressed in the brainstem and vagal afferent nerves, and regulates a number of aspects of gastrointestinal function. Here we show that the receptor is also diffusely expressed in cells of the gastrointestinal system, from stomach to descending colon. Furthermore, MC4R is the second most highly expressed GPCR in peptide YY (PYY) and glucagon-like peptide one (GLP-1) expressing enteroendocrine L cells. When vectorial ion transport is measured across mouse or human intestinal mucosa, administration of α-MSH induces a MC4R-specific PYY-dependent anti-secretory response consistent with a role for the MC4R in paracrine inhibition of electrolyte secretion. Finally, MC4R-dependent acute PYY and GLP-1 release from L cells can be stimulated in vivo by intraperitoneal administration of melanocortin peptides to mice. This suggests physiological significance for MC4R in L cells, and indicates a previously unrecognized peripheral role for the MC4R, complementing vagal and central receptor functions. PMID:25453189

  18. The Incretins and Pancreatic beta-Cells: Use of Glucagon-Like Peptide-1 and Glucose-Dependent Insulinotropic Polypeptide to Cure Type 2 Diabetes Mellitus.

    PubMed

    Kim, Mi-Hyun; Lee, Moon-Kyu

    2010-02-01

    Type 2 diabetes mellitus (T2DM) is increasing in prevalence worldwide. The complications associated with T2DM result in increased mortality and financial cost for those affected. T2DM has long been known to be associated with insulin resistance in peripheral tissues and a relative degree of insulin deficiency. However, the concept that insulin secretion and insulin sensitivity are not linked through a hyperbolic relationship in T2DM has continuously been demonstrated in many clinical trials. Thus, in order to prevent and treat T2DM, it is necessary to identify the substance(s) that will improve the function and survival of the pancreatic beta-cells in both normal and pathologic conditions, so that production and secretion of insulin can be enhanced. Incretin hormones, such as glucagon-like peptide (GLP)-1 and glucose-dependent insulinotropic polypeptide (GIP), have been shown to lower the postprandial and fasting glucose and the glycated hemoglobin levels, suppress the elevated glucagon level, and stimulate glucose-dependent insulin synthesis and secretion. In this report, we will review the biological actions and mechanisms associated with the actions of incretin hormones, GLP-1 and GIP, on beta-cell health and compare the differences between GLP-1 and GIP.

  19. A Placebo-Controlled Study on the Effects of the Glucagon-Like Peptide-1 Mimetic, Exenatide, on Insulin Secretion, Body Composition and Adipokines in Obese, Client-Owned Cats.

    PubMed

    Hoelmkjaer, Kirsten M; Wewer Albrechtsen, Nicolai J; Holst, Jens J; Cronin, Anna M; Nielsen, Dorte H; Mandrup-Poulsen, Thomas; Bjornvad, Charlotte R

    2016-01-01

    Glucagon-like Peptide-1 mimetics increase insulin secretion and reduces body weight in humans. In lean, healthy cats, short-term treatment has produced similar results, whereas the effect in obese cats or with extended duration of treatment is unknown. Here, prolonged (12 weeks) treatment with the Glucagon-like Peptide-1 mimetic, exenatide, was evaluated in 12 obese, but otherwise healthy, client-owned cats. Cats were randomized to exenatide (1.0 μg/kg) or placebo treatment twice daily for 12 weeks. The primary endpoint was changes in insulin concentration; the secondary endpoints were glucose homeostasis, body weight, body composition as measured by dual-energy x-ray absorptiometry and overall safety. An intravenous glucose tolerance test (1 g/kg body weight) was conducted at week 0 and week 12. Exenatide did not change the insulin concentration, plasma glucose concentration or glucose tolerance (P>0.05 for all). Exenatide tended to reduce body weight on continued normal feeding. Median relative weight loss after 12 weeks was 5.1% (range 1.7 to 8.4%) in the exenatide group versus 3.2% (range -5.3 to 5.7%) in the placebo group (P = 0.10). Body composition and adipokine levels were unaffected by exenatide (P>0.05). Twelve weeks of exenatide was well-tolerated, with only two cases of mild, self-limiting gastrointestinal signs and a single case of mild hypoglycemia. The long-term insulinotropic effect of exenatide appeared less pronounced in obese cats compared to previous short-term studies in lean cats. Further investigations are required to fully elucidate the effect on insulin secretion, glucose tolerance and body weight in obese cats. PMID:27136422

  20. A Placebo-Controlled Study on the Effects of the Glucagon-Like Peptide-1 Mimetic, Exenatide, on Insulin Secretion, Body Composition and Adipokines in Obese, Client-Owned Cats

    PubMed Central

    Hoelmkjaer, Kirsten M.; Wewer Albrechtsen, Nicolai J.; Holst, Jens J.; Cronin, Anna M.; Nielsen, Dorte H.; Mandrup-Poulsen, Thomas; Bjornvad, Charlotte R.

    2016-01-01

    Glucagon-like Peptide-1 mimetics increase insulin secretion and reduces body weight in humans. In lean, healthy cats, short-term treatment has produced similar results, whereas the effect in obese cats or with extended duration of treatment is unknown. Here, prolonged (12 weeks) treatment with the Glucagon-like Peptide-1 mimetic, exenatide, was evaluated in 12 obese, but otherwise healthy, client-owned cats. Cats were randomized to exenatide (1.0 μg/kg) or placebo treatment twice daily for 12 weeks. The primary endpoint was changes in insulin concentration; the secondary endpoints were glucose homeostasis, body weight, body composition as measured by dual-energy x-ray absorptiometry and overall safety. An intravenous glucose tolerance test (1 g/kg body weight) was conducted at week 0 and week 12. Exenatide did not change the insulin concentration, plasma glucose concentration or glucose tolerance (P>0.05 for all). Exenatide tended to reduce body weight on continued normal feeding. Median relative weight loss after 12 weeks was 5.1% (range 1.7 to 8.4%) in the exenatide group versus 3.2% (range -5.3 to 5.7%) in the placebo group (P = 0.10). Body composition and adipokine levels were unaffected by exenatide (P>0.05). Twelve weeks of exenatide was well-tolerated, with only two cases of mild, self-limiting gastrointestinal signs and a single case of mild hypoglycemia. The long-term insulinotropic effect of exenatide appeared less pronounced in obese cats compared to previous short-term studies in lean cats. Further investigations are required to fully elucidate the effect on insulin secretion, glucose tolerance and body weight in obese cats. PMID:27136422

  1. Intrameal Hepatic Portal and Intraperitoneal Infusions of Glucagon-Like Peptide-1 Reduce Spontaneous Meal Size in the Rat via Different Mechanisms

    PubMed Central

    Rüttimann, Elisabeth B.; Arnold, Myrtha; Hillebrand, Jacquelien J.; Geary, Nori; Langhans, Wolfgang

    2009-01-01

    Peripheral administration of glucagon-like peptide (GLP)-1 reduces food intake in animals and humans, but the sites and mechanism of this effect and its physiological significance are not yet clear. To investigate these issues, we prepared rats with chronic catheters and infused GLP-1 (0.2 ml/min; 2.5 or 5.0 min) during the first spontaneous dark-phase meals. Infusions were remotely triggered 2–3 min after meal onset. Hepatic portal vein (HPV) infusion of 1.0 or 3.0 (but not 0.33) nmol/kg GLP-1 reduced the size of the ongoing meal compared with vehicle without affecting the subsequent intermeal interval, the size of subsequent meals, or cumulative food intake. In double-cannulated rats, HPV and vena cava infusions of 1.0 nmol/kg GLP-1 reduced meal size similarly. HPV GLP-1 infusions of 1.0 nmol/kg GLP-1 also reduced meal size similarly in rats with subdiaphragmatic vagal deafferentations and in sham-operated rats. Finally, HPV and ip infusions of 10 nmol/kg GLP-1 reduced meal size similarly in sham-operated rats, but only HPV GLP-1 reduced meal size in subdiaphragmatic vagal deafferentation rats. These data indicate that peripherally infused GLP-1 acutely and specifically reduces the size of ongoing meals in rats and that the satiating effect of ip, but not iv, GLP-1 requires vagal afferent signaling. The findings suggest that iv GLP-1 infusions do not inhibit eating via hepatic portal or hepatic GLP-1 receptors but may act directly on the brain. PMID:18948395

  2. Sardine protein diet increases plasma glucagon-like peptide-1 levels and prevents tissue oxidative stress in rats fed a high-fructose diet.

    PubMed

    Madani, Zohra; Sener, Abdullah; Malaisse, Willy J; Dalila, Ait Yahia

    2015-11-01

    The current study investigated whether sardine protein mitigates the adverse effects of fructose on plasma glucagon‑like peptide-1 (GLP-1) and oxidative stress in rats. Rats were fed casein (C) or sardine protein (S) with or without high‑fructose (HF) for 2 months. Plasma glucose, insulin, GLP‑1, lipid and protein oxidation and antioxidant enzymes were assayed. HF rats developed obesity, hyperglycemia, hyperinsulinemia, insulin resistance and oxidative stress despite reduced energy and food intakes. High plasma creatinine and uric acid levels, in addition to albuminuria were observed in the HF groups. The S‑HF diet reduced plasma glucose, insulin, creatinine, uric acid and homeostasis model assessment‑insulin resistance index levels, however increased GLP‑1 levels compared with the C‑HF diet. Hydroperoxides were reduced in the liver, kidney, heart and muscle of S‑HF fed rats compared with C‑HF fed rats. A reduction in liver, kidney and heart carbonyls was observed in S‑HF fed rats compared with C‑HF fed rats. Reduced levels of nitric oxide (NO) were detected in the liver, kidney and heart of the S‑HF fed rats compared with C‑HF fed rats. The S diet compared with the C diet reduced levels of liver hydroperoxides, heart carbonyls and kidney NO. The S‑HF diet compared with the C‑HF diet increased the levels of liver and kidney superoxide dismutase, liver and muscle catalase, liver, heart and muscle glutathione peroxidase and liver ascorbic acid. The S diet prevented and reversed insulin resistance and oxidative stress, and may have benefits in patients with metabolic syndrome.

  3. The effect of glucose when added to a fat load on the response of glucagon-like peptide-1 (GLP-1) and apolipoprotein B-48 in the postprandial phase.

    PubMed

    Zemánková, K; Mrázková, J; Piťha, J; Kovář, J

    2015-01-01

    Increased and prolonged postprandial lipemia has been identified as a risk factor of cardiovascular disease. However, there is no consensus on how to test postprandial lipemia, especially with respect to the composition of an experimental meal. To address this question of how glucose, when added to a fat load, affects the selected parameters of postprandial lipemia, we carried out a study in 30 healthy male volunteers. Men consumed an experimental meal containing either 75 g of fat + 25 g of glucose (F+G meal) or 75 g of fat (F meal) in a control experiment. Blood was taken before the meal and at selected time points within the following 8 h. Glucose, when added to a fat load, induced an increase of glycemia and insulinemia and, surprisingly, a 20 % reduction in the response of both total and active glucagon-like peptide-1 (GLP-1) concentration. The addition of glucose did not affect the magnitude of postprandial triglyceridemia and TRL-C and TRL-TG concentrations but stimulated a faster response of chylomicrons to the test meal, evaluated by changes in apolipoprotein B-48 concentrations. The addition of glucose induced the physiological response of insulin and the lower response of GLP-1 to the test meal during the early postprandial phase, but had no effect on changes of TRL-cholesterol and TRL-TG within 8 h after the meal. PMID:26680669

  4. Protection against the Metabolic Syndrome by Guar Gum-Derived Short-Chain Fatty Acids Depends on Peroxisome Proliferator-Activated Receptor γ and Glucagon-Like Peptide-1.

    PubMed

    den Besten, Gijs; Gerding, Albert; van Dijk, Theo H; Ciapaite, Jolita; Bleeker, Aycha; van Eunen, Karen; Havinga, Rick; Groen, Albert K; Reijngoud, Dirk-Jan; Bakker, Barbara M

    2015-01-01

    The dietary fiber guar gum has beneficial effects on obesity, hyperglycemia and hypercholesterolemia in both humans and rodents. The major products of colonic fermentation of dietary fiber, the short-chain fatty acids (SCFAs), have been suggested to play an important role. Recently, we showed that SCFAs protect against the metabolic syndrome via a signaling cascade that involves peroxisome proliferator-activated receptor (PPAR) γ repression and AMP-activated protein kinase (AMPK) activation. In this study we investigated the molecular mechanism via which the dietary fiber guar gum protects against the metabolic syndrome. C57Bl/6J mice were fed a high-fat diet supplemented with 0% or 10% of the fiber guar gum for 12 weeks and effects on lipid and glucose metabolism were studied. We demonstrate that, like SCFAs, also guar gum protects against high-fat diet-induced metabolic abnormalities by PPARγ repression, subsequently increasing mitochondrial uncoupling protein 2 expression and AMP/ATP ratio, leading to the activation of AMPK and culminating in enhanced oxidative metabolism in both liver and adipose tissue. Moreover, guar gum markedly increased peripheral glucose clearance, possibly mediated by the SCFA-induced colonic hormone glucagon-like peptide-1. Overall, this study provides novel molecular insights into the beneficial effects of guar gum on the metabolic syndrome and strengthens the potential role of guar gum as a dietary-fiber intervention. PMID:26292284

  5. Protection against the Metabolic Syndrome by Guar Gum-Derived Short-Chain Fatty Acids Depends on Peroxisome Proliferator-Activated Receptor γ and Glucagon-Like Peptide-1

    PubMed Central

    den Besten, Gijs; Gerding, Albert; van Dijk, Theo H.; Ciapaite, Jolita; Bleeker, Aycha; van Eunen, Karen; Havinga, Rick; Groen, Albert K.; Reijngoud, Dirk-Jan; Bakker, Barbara M.

    2015-01-01

    The dietary fiber guar gum has beneficial effects on obesity, hyperglycemia and hypercholesterolemia in both humans and rodents. The major products of colonic fermentation of dietary fiber, the short-chain fatty acids (SCFAs), have been suggested to play an important role. Recently, we showed that SCFAs protect against the metabolic syndrome via a signaling cascade that involves peroxisome proliferator-activated receptor (PPAR) γ repression and AMP-activated protein kinase (AMPK) activation. In this study we investigated the molecular mechanism via which the dietary fiber guar gum protects against the metabolic syndrome. C57Bl/6J mice were fed a high-fat diet supplemented with 0% or 10% of the fiber guar gum for 12 weeks and effects on lipid and glucose metabolism were studied. We demonstrate that, like SCFAs, also guar gum protects against high-fat diet-induced metabolic abnormalities by PPARγ repression, subsequently increasing mitochondrial uncoupling protein 2 expression and AMP/ATP ratio, leading to the activation of AMPK and culminating in enhanced oxidative metabolism in both liver and adipose tissue. Moreover, guar gum markedly increased peripheral glucose clearance, possibly mediated by the SCFA-induced colonic hormone glucagon-like peptide-1. Overall, this study provides novel molecular insights into the beneficial effects of guar gum on the metabolic syndrome and strengthens the potential role of guar gum as a dietary-fiber intervention. PMID:26292284

  6. The glucagon-like peptide-1 receptor as a potential treatment target in alcohol use disorder: evidence from human genetic association studies and a mouse model of alcohol dependence.

    PubMed

    Suchankova, P; Yan, J; Schwandt, M L; Stangl, B L; Caparelli, E C; Momenan, R; Jerlhag, E; Engel, J A; Hodgkinson, C A; Egli, M; Lopez, M F; Becker, H C; Goldman, D; Heilig, M; Ramchandani, V A; Leggio, L

    2015-06-16

    The hormone glucagon-like peptide-1 (GLP-1) regulates appetite and food intake. GLP-1 receptor (GLP-1R) activation also attenuates the reinforcing properties of alcohol in rodents. The present translational study is based on four human genetic association studies and one preclinical study providing data that support the hypothesis that GLP-1R may have a role in the pathophysiology of alcohol use disorder (AUD). Case-control analysis (N = 908) was performed on a sample of individuals enrolled in the National Institute on Alcohol Abuse and Alcoholism (NIAAA) intramural research program. The Study of Addiction: Genetics and Environment (SAGE) sample (N = 3803) was used for confirmation purposes. Post hoc analyses were carried out on data from a human laboratory study of intravenous alcohol self-administration (IV-ASA; N = 81) in social drinkers and from a functional magnetic resonance imaging study in alcohol-dependent individuals (N = 22) subjected to a Monetary Incentive Delay task. In the preclinical study, a GLP-1R agonist was evaluated in a mouse model of alcohol dependence to demonstrate the role of GLP-1R for alcohol consumption. The previously reported functional allele 168Ser (rs6923761) was nominally associated with AUD (P = 0.004) in the NIAAA sample, which was partially replicated in males of the SAGE sample (P = 0.033). The 168 Ser/Ser genotype was further associated with increased alcohol administration and breath alcohol measures in the IV-ASA experiment and with higher BOLD response in the right globus pallidus when receiving notification of outcome for high monetary reward. Finally, GLP-1R agonism significantly reduced alcohol consumption in a mouse model of alcohol dependence. These convergent findings suggest that the GLP-1R may be an attractive target for personalized pharmacotherapy treatment of AUD.

  7. Glucagon-like peptide-1 (7-36)amide and glucose-dependent insulinotropic polypeptide secretion in response to nutrient ingestion in man: acute post-prandial and 24-h secretion patterns.

    PubMed

    Elliott, R M; Morgan, L M; Tredger, J A; Deacon, S; Wright, J; Marks, V

    1993-07-01

    The acute effects of different macronutrients on the secretion of glucagon-like peptide-1(7-36)amide (GLP-1(7-36)amide) and glucose-dependent insulinotropic polypeptide (GIP) were compared in healthy human subjects. Circulating levels of the two hormones were measured over a 24-h period during which subjects consumed a mixed diet. In the first study, eight subjects consumed three equicaloric (375 kcal) test meals of carbohydrate, fat and protein. Small increases in plasma GLP-1(7-36) amide were found after all meals. Levels reached a maximum 30 min after the carbohydrate and 150 min after the fat load. Ingestion of both carbohydrate and fat induced substantial rises in GIP secretion, but the protein meal had no effect. In a second study, eight subjects consumed 75 g glucose or the equivalent portion of complex carbohydrate as boiled brown rice or barley. Plasma GIP, insulin and glucose levels increased after all three meals, the largest increase being observed following glucose and the smallest following the barley meal. Plasma GLP-1(7-36)amide levels rose only following the glucose meal. In the 24-h study, plasma GLP-1(7-36)amide and GIP concentrations were increased following every meal and remained elevated throughout the day, only falling to fasting levels at night. The increases in circulating GLP-1(7-36)amide and GIP levels following carbohydrate or a mixed meal are consistent with their role as incretins. The more sustained rises observed in the daytime during the 24-h study are consistent with an anabolic role in lipid metabolism.

  8. Modeling analysis of inositol 1,4,5-trisphosphate receptor-mediated Ca2+ mobilization under the control of glucagon-like peptide-1 in mouse pancreatic β-cells.

    PubMed

    Takeda, Yukari; Shimayoshi, Takao; Holz, George G; Noma, Akinori

    2016-03-01

    Glucagon-like peptide-1 (GLP-1) is an intestinally derived blood glucose-lowering hormone that potentiates glucose-stimulated insulin secretion from pancreatic β-cells. The secretagogue action of GLP-1 is explained, at least in part, by its ability to stimulate cAMP production so that cAMP may facilitate the release of Ca(2+) from inositol trisphosphate receptor (IP3R)-regulated Ca(2+) stores. However, a quantitative model has yet to be provided that explains the molecular mechanisms and dynamic processes linking GLP-1-stimulated cAMP production to Ca(2+) mobilization. Here, we performed simulation studies to investigate how GLP-1 alters the abilities of Ca(2+) and IP3 to act as coagonists at IP3R Ca(2+) release channels. A new dynamic model was constructed based on the Kaftan model, which demonstrates dual steady-state allosteric regulation of the IP3R by Ca(2+) and IP3. Data obtained from β-cells were then analyzed to understand how GLP-1 facilitates IP3R-mediated Ca(2+) mobilization when UV flash photolysis is used to uncage Ca(2+) and IP3 intracellularly. When the dynamic model for IP3R activation was incorporated into a minimal cell model, the Ca(2+) transients and oscillations induced by GLP-1 were successfully reconstructed. Simulation studies indicated that transient and oscillatory responses to GLP-1 were produced by sequential positive and negative feedback regulation due to fast activation and slow inhibition of the IP3R by Ca(2+). The slow rate of Ca(2+)-dependent inhibition was revealed to provide a remarkable contribution to the time course of the decay of cytosolic Ca(2+) transients. It also served to drive and pace Ca(2+) oscillations that are significant when evaluating how GLP-1 stimulates insulin secretion. PMID:26741144

  9. The glucagon-like peptide-1 receptor as a potential treatment target in alcohol use disorder: evidence from human genetic association studies and a mouse model of alcohol dependence

    PubMed Central

    Suchankova, P; Yan, J; Schwandt, M L; Stangl, B L; Caparelli, E C; Momenan, R; Jerlhag, E; Engel, J A; Hodgkinson, C A; Egli, M; Lopez, M F; Becker, H C; Goldman, D; Heilig, M; Ramchandani, V A; Leggio, L

    2015-01-01

    The hormone glucagon-like peptide-1 (GLP-1) regulates appetite and food intake. GLP-1 receptor (GLP-1R) activation also attenuates the reinforcing properties of alcohol in rodents. The present translational study is based on four human genetic association studies and one preclinical study providing data that support the hypothesis that GLP-1R may have a role in the pathophysiology of alcohol use disorder (AUD). Case–control analysis (N=908) was performed on a sample of individuals enrolled in the National Institute on Alcohol Abuse and Alcoholism (NIAAA) intramural research program. The Study of Addiction: Genetics and Environment (SAGE) sample (N=3803) was used for confirmation purposes. Post hoc analyses were carried out on data from a human laboratory study of intravenous alcohol self-administration (IV-ASA; N=81) in social drinkers and from a functional magnetic resonance imaging study in alcohol-dependent individuals (N=22) subjected to a Monetary Incentive Delay task. In the preclinical study, a GLP-1R agonist was evaluated in a mouse model of alcohol dependence to demonstrate the role of GLP-1R for alcohol consumption. The previously reported functional allele 168Ser (rs6923761) was nominally associated with AUD (P=0.004) in the NIAAA sample, which was partially replicated in males of the SAGE sample (P=0.033). The 168Ser/Ser genotype was further associated with increased alcohol administration and breath alcohol measures in the IV-ASA experiment and with higher BOLD response in the right globus pallidus when receiving notification of outcome for high monetary reward. Finally, GLP-1R agonism significantly reduced alcohol consumption in a mouse model of alcohol dependence. These convergent findings suggest that the GLP-1R may be an attractive target for personalized pharmacotherapy treatment of AUD. PMID:26080318

  10. Deoxynivalenol (Vomitoxin)-Induced Cholecystokinin and Glucagon-Like Peptide-1 Release in the STC-1 Enteroendocrine Cell Model Is Mediated by Calcium-Sensing Receptor and Transient Receptor Potential Ankyrin-1 Channel.

    PubMed

    Zhou, Hui-Ren; Pestka, James J

    2015-06-01

    Food refusal is a hallmark of exposure of experimental animals to the trichothecene mycotoxin deoxynivalenol (DON), a common foodborne contaminant. Although studies in the mouse suggest that DON suppresses food intake by aberrantly inducing the release of satiety hormones from enteroendocrine cells (EECs) found in the gut epithelium, the underlying mechanisms for this effect are not understood. To address this gap, we employed the murine neuroendocrine tumor STC-1 cell line, a widely used EEC model, to test the hypothesis that DON-induced hormone exocytosis is mediated by G protein-coupled receptor (GPCR)-mediated Ca(2+) signaling. The results indicate for the first time that DON elicits Ca(2)-dependent secretion of cholecystokinin (CCK) and glucagon-like peptide-1(7-36) amide (GLP-1), hormones that regulate food intake and energy homeostasis and that are products of 2 critical EEC populations--I cells of the small intestine and L cells of the large intestine, respectively. Furthermore, these effects were mediated by the GPCR Ca(2+)-sensing receptor (CaSR) and involved the following serial events: (1)PLC-mediated activation of the IP3 receptor and mobilization of intracellular Ca(2+) stores, (2) activation of transient receptor potential melastatin-5 ion channel and resultant L-type voltage-sensitive Ca(2+) channel-facilitated extracellular Ca(2+) entry, (3) amplification of extracellular Ca(2+) entry by transient receptor potential ankyrin-1 channel activation, and finally (4) Ca(2+)-driven CCK and GLP-1 excytosis. These in vitro findings provide a foundation for future investigation of mechanisms by which DON and other trichothecenes modulate EEC function in ex vivo and in vivo models. PMID:25787141

  11. Demonstration of the innate electrophilicity of 4-(3-(benzyloxy)phenyl)-2-(ethylsulfinyl)-6-(trifluoromethyl)pyrimidine (BETP), a small-molecule positive allosteric modulator of the glucagon-like peptide-1 receptor.

    PubMed

    Eng, Heather; Sharma, Raman; McDonald, Thomas S; Edmonds, David J; Fortin, Jean-Philippe; Li, Xianping; Stevens, Benjamin D; Griffith, David A; Limberakis, Chris; Nolte, Whitney M; Price, David A; Jackson, Margaret; Kalgutkar, Amit S

    2013-08-01

    4-(3-(Benzyloxy)phenyl)-2-(ethylsulfinyl)-6-(trifluoromethyl)pyrimidine (BETP) represents a novel small-molecule activator of the glucagon-like peptide-1 receptor (GLP-1R), and exhibits glucose-dependent insulin secretion in rats following i.v. (but not oral) administration. To explore the quantitative pharmacology associated with GLP-1R agonism in preclinical species, the in vivo pharmacokinetics of BETP were examined in rats after i.v. and oral dosing. Failure to detect BETP in circulation after oral administration of a 10-mg/kg dose in rats was consistent with the lack of an insulinotropic effect of orally administered BETP in this species. Likewise, systemic concentrations of BETP in the rat upon i.v. administration (1 mg/kg) were minimal (and sporadic). In vitro incubations in bovine serum albumin, plasma, and liver microsomes from rodents and humans indicated a facile degradation of BETP. Failure to detect metabolites in plasma and liver microsomal incubations in the absence of NADP was suggestive of a covalent interaction between BETP and a protein amino acid residue(s) in these matrices. Incubations of BETP with glutathione (GSH) in buffer revealed a rapid nucleophilic displacement of the ethylsulfoxide functionality by GSH to yield adduct M1, which indicated that BETP was intrinsically electrophilic. The structure of M1 was unambiguously identified by comparison of its chromatographic and mass spectral properties with an authentic standard. The GSH conjugate of BETP was also characterized in NADPH- and GSH-supplemented liver microsomes and in plasma samples from the pharmacokinetic studies. Unlike BETP, M1 was inactive as an allosteric modulator of the GLP-1R. PMID:23653442

  12. Role of capsaicin-sensitive peripheral sensory neurons in anorexic responses to intravenous infusions of cholecystokinin, peptide YY-(3-36), and glucagon-like peptide-1 in rats.

    PubMed

    Reidelberger, Roger; Haver, Alvin; Anders, Krista; Apenteng, Bettye

    2014-10-15

    Cholecystokinin (CCK)-induced suppression of feeding is mediated by vagal sensory neurons that are destroyed by the neurotoxin capsaicin (CAP). Here we determined whether CAP-sensitive neurons mediate anorexic responses to intravenous infusions of gut hormones peptide YY-(3-36) [PYY-(3-36)] and glucagon-like peptide-1 (GLP-1). Rats received three intraperitoneal injections of CAP or vehicle (VEH) in 24 h. After recovery, non-food-deprived rats received at dark onset a 3-h intravenous infusion of CCK-8 (5, 17 pmol·kg⁻¹·min⁻¹), PYY-(3-36) (5, 17, 50 pmol·kg⁻¹·min⁻¹), or GLP-1 (17, 50 pmol·kg⁻¹·min⁻¹). CCK-8 was much less effective in reducing food intake in CAP vs. VEH rats. CCK-8 at 5 and 17 pmol·kg⁻¹·min⁻¹ reduced food intake during the 3-h infusion period by 39 and 71% in VEH rats and 7 and 18% in CAP rats. In contrast, PYY-(3-36) and GLP-1 were similarly effective in reducing food intake in VEH and CAP rats. PYY-(3-36) at 5, 17, and 50 pmol·kg⁻¹·min⁻¹ reduced food intake during the 3-h infusion period by 15, 33, and 70% in VEH rats and 13, 30, and 33% in CAP rats. GLP-1 at 17 and 50 pmol·kg⁻¹·min⁻¹ reduced food intake during the 3-h infusion period by 48 and 60% in VEH rats and 30 and 52% in CAP rats. These results suggest that anorexic responses to PYY-(3-36) and GLP-1 are not primarily mediated by the CAP-sensitive peripheral sensory neurons (presumably vagal) that mediate CCK-8-induced anorexia.

  13. A Hydrogen-Bonded Polar Network in the Core of the Glucagon-Like Peptide-1 Receptor Is a Fulcrum for Biased Agonism: Lessons from Class B Crystal Structures

    PubMed Central

    Reynolds, Christopher A.; Koole, Cassandra; Smith, Kevin J.; Mobarec, Juan C.; Simms, John; Quon, Tezz; Coudrat, Thomas; Furness, Sebastian G. B.; Miller, Laurence J.; Christopoulos, Arthur; Sexton, Patrick M.

    2016-01-01

    The glucagon-like peptide 1 (GLP-1) receptor is a class B G protein-coupled receptor (GPCR) that is a key target for treatments for type II diabetes and obesity. This receptor, like other class B GPCRs, displays biased agonism, though the physiologic significance of this is yet to be elucidated. Previous work has implicated R2.60190, N3.43240, Q7.49394, and H6.52363 as key residues involved in peptide-mediated biased agonism, with R2.60190, N3.43240, and Q7.49394 predicted to form a polar interaction network. In this study, we used novel insight gained from recent crystal structures of the transmembrane domains of the glucagon and corticotropin releasing factor 1 (CRF1) receptors to develop improved models of the GLP-1 receptor that predict additional key molecular interactions with these amino acids. We have introduced E6.53364A, N3.43240Q, Q7.49394N, and N3.43240Q/Q7.49394N mutations to probe the role of predicted H-bonding and charge-charge interactions in driving cAMP, calcium, or extracellular signal-regulated kinase (ERK) signaling. A polar interaction between E6.53364 and R2.60190 was predicted to be important for GLP-1- and exendin-4-, but not oxyntomodulin-mediated cAMP formation and also ERK1/2 phosphorylation. In contrast, Q7.49394, but not R2.60190/E6.53364 was critical for calcium mobilization for all three peptides. Mutation of N3.43240 and Q7.49394 had differential effects on individual peptides, providing evidence for molecular differences in activation transition. Collectively, this work expands our understanding of peptide-mediated signaling from the GLP-1 receptor and the key role that the central polar network plays in these events. PMID:26700562

  14. Effects of glucagon-like peptide-1 receptor stimulation and blockade on food consumption and body weight in rats treated with a cannabinoid CB1 receptor agonist WIN 55,212-2

    PubMed Central

    Radziszewska, Elżbieta; Bojanowska, Ewa

    2013-01-01

    Background Glucagon-like peptide-1 (GLP-1) and endocannabinoids are involved in appetite control. Recently we have demonstrated that cannabinoid (CB)1 receptor antagonist and GLP-1 receptor agonist synergistically suppress food intake in the rat. The aim of the present study was to determine the effects of GLP-1 receptor stimulation or blockade on feeding behavior in rats treated with WIN 55,212-2, a CB1 receptor agonist. Material/Methods Experiments were performed on adult male Wistar rats. In the first experiment the effects of increasing doses (0.5–4.0 mg/kg) of WIN 55,212-2 injected intraperitoneally on 24-hour food consumption were tested. In further experiments a GLP-1 receptor antagonist, exendin (9-39), and WIN 55,212-2 or a GLP-1 receptor agonist, exendin-4, and WIN 55,212-2 were injected intraperitoneally at subthreshold doses (that alone did not change food intake and body weight) to investigate whether these agents may interact to affect food intake in rats. Results WIN 55,212-2 administered at low doses (0.5–2 mg/kg) did not markedly change 24-hour food consumption; however, at the highest dose, daily food intake was inhibited. Combined administration of WIN 55,212-2 and exendin (9-39) did not change the amount of food consumed compared to either the control group or to each agent injected alone. Combined injection of WIN 55,212-2 and exendin-4 at subthreshold doses resulted in a significant decrease in food intake and body weight in rats. Conclusions Stimulation of the peripheral CB1 receptor by its agonist WIN 55,212-2 can induce anorexigenic effects or potentiate, even at a subthreshold dose, the effects of exendin-4, a known anorectic agent. Hence, this dual action of the cannabinoid system should be considered in the medical use of CB1 agonists. PMID:23291632

  15. Potentiation of insulin secretion and improvement of glucose intolerance by combining a novel G protein-coupled receptor 40 agonist DS-1558 with glucagon-like peptide-1 receptor agonists.

    PubMed

    Nakashima, Ryutaro; Yano, Tatsuya; Ogawa, Junko; Tanaka, Naomi; Toda, Narihiro; Yoshida, Masao; Takano, Rieko; Inoue, Masahiro; Honda, Takeshi; Kume, Shoen; Matsumoto, Koji

    2014-08-15

    G protein-coupled receptor 40 (GPR40) is a Gq-coupled receptor for free fatty acids predominantly expressed in pancreatic β-cells. In recent years, GPR40 agonists have been investigated for use as novel therapeutic agents in the treatment of type 2 diabetes. We discovered a novel small molecule GPR40 agonist, (3S)-3-ethoxy-3-(4-{[(1R)-4-(trifluoromethyl)-2,3-dihydro-1H-inden-1-yl]oxy}phenyl)propanoic acid (DS-1558). The GPR40-mediated effects of DS-1558 on glucose-stimulated insulin secretion were evaluated in isolated islets from GPR40 knock-out and wild-type (littermate) mice. The GPR40-mediated effects on glucose tolerance and insulin secretion were also confirmed by an oral glucose tolerance test in these mice. Furthermore, oral administration of DS-1558 (0.03, 0.1 and 0.3mg/kg) significantly and dose-dependently improved hyperglycemia and increased insulin secretion during the oral glucose tolerance test in Zucker fatty rats, the model of insulin resistance and glucose intolerance. Next, we examined the combination effects of DS-1558 with glucagon like peptide-1 (GLP-1). DS-1558 not only increased the glucose-stimulated insulin secretion by GLP-1 but also potentiated the maximum insulinogenic effects of GLP-1 after an intravenous glucose injection in normal Sprague Dawley rats. Furthermore, the glucose lowering effects of exendin-4, a GLP-1 receptor agonist, were markedly potentiated by the DS-1558 (3mg/kg) add-on in diabetic db/db mice during an intraperitoneal glucose tolerance test. In conclusion, our results indicate that add-on GPR40 agonists to GLP-1 related agents might be a potential treatment compared to single administration of these compounds. Therefore the combinations of these agents are a novel therapeutic option for type 2 diabetes.

  16. Mycoprotein reduces energy intake and postprandial insulin release without altering glucagon-like peptide-1 and peptide tyrosine-tyrosine concentrations in healthy overweight and obese adults: a randomised-controlled trial.

    PubMed

    Bottin, Jeanne H; Swann, Jonathan R; Cropp, Eleanor; Chambers, Edward S; Ford, Heather E; Ghatei, Mohammed A; Frost, Gary S

    2016-07-01

    Dietary mycoprotein decreases energy intake in lean individuals. The effects in overweight individuals are unclear, and the mechanisms remain to be elucidated. This study aimed to investigate the effect of mycoprotein on energy intake, appetite regulation, and the metabolic phenotype in overweight and obese volunteers. In two randomised-controlled trials, fifty-five volunteers (age: 31 (95 % CI 27, 35) years), BMI: 28·0 (95 % CI 27·3, 28·7) kg/m2) consumed a test meal containing low (44 g), medium (88 g) or high (132 g) mycoprotein or isoenergetic chicken meals. Visual analogue scales and blood samples were collected to measure appetite, glucose, insulin, peptide tyrosine-tyrosine (PYY) and glucagon-like peptide-1 (GLP-1). Ad libitum energy intake was assessed after 3 h in part A (n 36). Gastric emptying by the paracetamol method, resting energy expenditure and substrate oxidation were recorded in part B (n 14). Metabonomics was used to compare plasma and urine samples in response to the test meals. Mycoprotein reduced energy intake by 10 % (280 kJ (67 kcal)) compared with chicken at the high content (P=0·009). All mycoprotein meals reduced insulin concentrations compared with chicken (incremental AUClow (IAUClow): -8 %, IAUCmedium: -12 %, IAUChigh: -21 %, P=0·004). There was no significant difference in glucose, PYY, GLP-1, gastric emptying rate and energy expenditure. Following chicken intake, paracetamol-glucuronide was positively associated with fullness. After mycoprotein, creatinine and the deamination product of isoleucine, α-keto-β-methyl-N-valerate, were inversely related to fullness, whereas the ketone body, β-hydroxybutyrate, was positively associated. In conclusion, mycoprotein reduces energy intake and insulin release in overweight volunteers. The mechanism does not involve changes in PYY and GLP-1. The metabonomics analysis may bring new understanding to the appetite regulatory properties of food.

  17. Efficacy and safety of liraglutide, a once-daily human glucagon-like peptide-1 analogue, in Latino/Hispanic patients with type 2 diabetes: post hoc analysis of data from four phase III trials.

    PubMed

    Davidson, J A; Ørsted, D D; Campos, C

    2016-07-01

    The aim of the present analysis was to evaluate the efficacy of the glucagon-like peptide-1 receptor agonist liraglutide in Latino/Hispanic individuals with type 2 diabetes, in addition to comparing its treatment effects with those observed in non-Latino/Hispanic individuals. Analyses were performed on patient-level data from a subset of individuals self-defined as Latino/Hispanic from four phase III studies, the LEAD-3, LEAD-4, LEAD-6 and 1860-LIRA-DPP-4 trials. Endpoints included change in glycated haemoglobin (HbA1c) and body weight from baseline. In Latino/Hispanic patients (n = 505; 323 treated with liraglutide) after 26 weeks, mean HbA1c reductions were significantly greater with both liraglutide 1.2 and 1.8 mg versus comparator or placebo in the LEAD-3 and LEAD-4 studies, and with 1.8 mg liraglutide in the 1860-LIRA-DPP-4 trial. In LEAD-3 both doses led to significant differences in body weight change among Latino/Hispanic patients versus the comparator. With 1.8 mg liraglutide, difference in weight change was significant only in the 1860-LIRA-DPP-4 trial versus sitagliptin. For both endpoints Latino/Hispanic and non-Latino/Hispanic patients responded to liraglutide similarly. In summary, liraglutide is efficacious for treatment of type 2 diabetes in Latino/Hispanic patients, with a similar efficacy to that seen in non-Latino/Hispanic patients. PMID:26936426

  18. Effects of glucagon-like peptide-1 on advanced glycation endproduct-induced aortic endothelial dysfunction in streptozotocin-induced diabetic rats: possible roles of Rho kinase- and AMP kinase-mediated nuclear factor κB signaling pathways.

    PubMed

    Tang, Song-Tao; Zhang, Qiu; Tang, Hai-Qin; Wang, Chang-Jiang; Su, Huan; Zhou, Qing; Wei, Wei; Zhu, Hua-Qing; Wang, Yuan

    2016-07-01

    Interaction between advanced glycation endproducts (AGEs) and receptor for AGEs (RAGE) as well as downstream pathways leads to vascular endothelial dysfunction in diabetes. Glucagon-like peptide-1 (GLP-1) has been reported to attenuate endothelial dysfunction in the models of atherosclerosis. However, whether GLP-1 exerts protective effects on aortic endothelium in diabetic animal model and the underlying mechanisms are still not well defined. Experimental diabetes was induced through administration with combination of high-fat diet and intraperitoneal injection of streptozotocin. Rats were randomly divided into four groups, including controls, diabetes, diabetes + sitagliptin (30 mg/kg/day), diabetes + exenatide (3 μg/kg/12 h). Eventually, endothelial damage, markers of inflammation and oxidative stress, were measured. After 12 weeks administration, diabetic rats received sitagliptin and exenatide showed significant elevation of serum NO level and reduction of ET-1 as well as inflammatory cytokines levels. Moreover, sitagliptin and exenatide significantly inhibited aortic oxidative stress level and improved aortic endothelial function in diabetic rats. Importantly, these drugs inhibited the protein expression level in AGE/RAGE-induced RhoA/ROCK/NF-κB/IκBα signaling pathways and activated AMPK in diabetic aorta. Finally, the target proteins of p-eNOS, iNOS, and ET-1, which reflect endothelial function, were also changed by these drugs. Our present study indicates that sitagliptin and exenatide administrations can improve endothelial function in diabetic aorta. Of note, RAGE/RhoA/ROCK and AMPK mediated NF-κB signaling pathways may be the intervention targets of these drugs to protect aortic endothelium. PMID:26758998

  19. JTT-130, a novel intestine-specific inhibitor of microsomal triglyceride transfer protein, suppresses food intake and gastric emptying with the elevation of plasma peptide YY and glucagon-like peptide-1 in a dietary fat-dependent manner.

    PubMed

    Hata, Takahiro; Mera, Yasuko; Ishii, Yukihito; Tadaki, Hironobu; Tomimoto, Daisuke; Kuroki, Yukiharu; Kawai, Takashi; Ohta, Takeshi; Kakutani, Makoto

    2011-03-01

    The microsomal triglyceride transfer protein (MTP) takes part in the mobilization and secretion of triglyceride-rich lipoproteins from enterocytes and hepatocytes. In this study, we investigated the effects of diethyl-2-({3-dimethylcarbamoyl-4-[(4'-trifluoromethylbiphenyl-2-carbonyl) amino] phenyl}acetyloxymethyl)-2-phenylmalonate (JTT-130), a novel intestine-specific MTP inhibitor, on food intake, gastric emptying, and gut peptides using Sprague-Dawley rats fed 3.1% fat, 13% fat, or 35% fat diets. JTT-130 treatment suppressed cumulative food intake and gastric emptying in rats fed a 35% fat diet, but not a 3.1% fat diet. In rats fed a 13% fat diet, JTT-130 treatment decreased cumulative food intake but not gastric emptying. In addition, treatment with orlistat, a lipase inhibitor, completely abolished the reduction of food intake and gastric emptying by JTT-130 in rats fed a 35% fat diet. On the other hand, JTT-130 treatment increased the plasma concentrations of gut peptides, peptide YY (PYY) and glucagon-like peptide-1 (GLP-1) but not cholecystokinin, in the portal vein in rats fed a 35% fat diet. These elevations in PYY and GLP-1 were also abolished by treatment with orlistat. Furthermore, JTT-130 treatment in rats fed a 35% fat diet increased the contents of triglycerides and free fatty acids in the intestinal lumen, which might contribute to the elevation of PYY and GLP-1 levels. The present findings indicate that JTT-130 causes satiety responses, decreased food intake, and gastric emptying in a dietary fat-dependent manner, with enhanced production of gut peptides such as PYY and GLP-1 from the intestine.

  20. Deoxynivalenol (Vomitoxin)-Induced Cholecystokinin and Glucagon-Like Peptide-1 Release in the STC-1 Enteroendocrine Cell Model Is Mediated by Calcium-Sensing Receptor and Transient Receptor Potential Ankyrin-1 Channel.

    PubMed

    Zhou, Hui-Ren; Pestka, James J

    2015-06-01

    Food refusal is a hallmark of exposure of experimental animals to the trichothecene mycotoxin deoxynivalenol (DON), a common foodborne contaminant. Although studies in the mouse suggest that DON suppresses food intake by aberrantly inducing the release of satiety hormones from enteroendocrine cells (EECs) found in the gut epithelium, the underlying mechanisms for this effect are not understood. To address this gap, we employed the murine neuroendocrine tumor STC-1 cell line, a widely used EEC model, to test the hypothesis that DON-induced hormone exocytosis is mediated by G protein-coupled receptor (GPCR)-mediated Ca(2+) signaling. The results indicate for the first time that DON elicits Ca(2)-dependent secretion of cholecystokinin (CCK) and glucagon-like peptide-1(7-36) amide (GLP-1), hormones that regulate food intake and energy homeostasis and that are products of 2 critical EEC populations--I cells of the small intestine and L cells of the large intestine, respectively. Furthermore, these effects were mediated by the GPCR Ca(2+)-sensing receptor (CaSR) and involved the following serial events: (1)PLC-mediated activation of the IP3 receptor and mobilization of intracellular Ca(2+) stores, (2) activation of transient receptor potential melastatin-5 ion channel and resultant L-type voltage-sensitive Ca(2+) channel-facilitated extracellular Ca(2+) entry, (3) amplification of extracellular Ca(2+) entry by transient receptor potential ankyrin-1 channel activation, and finally (4) Ca(2+)-driven CCK and GLP-1 excytosis. These in vitro findings provide a foundation for future investigation of mechanisms by which DON and other trichothecenes modulate EEC function in ex vivo and in vivo models.

  1. Glucagon-like peptide 1 (GLP-1) can reverse AMP-activated protein kinase (AMPK) and S6 kinase (P70S6K) activities induced by fluctuations in glucose levels in hypothalamic areas involved in feeding behaviour.

    PubMed

    Hurtado-Carneiro, Verónica; Sanz, Carmen; Roncero, Isabel; Vazquez, Patricia; Blazquez, Enrique; Alvarez, Elvira

    2012-04-01

    The anorexigenic peptide, glucagon-like peptide-1 (GLP-1), reduces glucose metabolism in the human hypothalamus and brain stem. The brain activity of metabolic sensors such as AMP-activated protein kinase (AMPK) responds to changes in glucose levels. The mammalian target of rapamycin (mTOR) and its downstream target, p70S6 kinase (p70S6K), integrate nutrient and hormonal signals. The hypothalamic mTOR/p70S6K pathway has been implicated in the control of feeding and the regulation of energy balances. Therefore, we investigated the coordinated effects of glucose and GLP-1 on the expression and activity of AMPK and p70S6K in the areas involved in the control of feeding. The effect of GLP-1 on the expression and activities of AMPK and p70S6K was studied in hypothalamic slice explants exposed to low- and high-glucose concentrations by quantitative real-time RT-PCR and by the quantification of active-phosphorylated protein levels by immunoblot. In vivo, the effects of exendin-4 on hypothalamic AMPK and p70S6K activation were analysed in male obese Zucker and lean controls 1 h after exendin-4 injection to rats fasted for 48 h or after re-feeding for 2-4 h. High-glucose levels decreased the expression of Ampk in the lateral hypothalamus and treatment with GLP-1 reversed this effect. GLP-1 treatment inhibited the activities of AMPK and p70S6K when the activation of these protein kinases was maximum in both the ventromedial and lateral hypothalamic areas. Furthermore, in vivo s.c. administration of exendin-4 modulated AMPK and p70S6K activities in those areas, in both fasted and re-fed obese Zucker and lean control rats.

  2. Comparative Effects of the Endogenous Agonist Glucagon-Like Peptide-1 (GLP-1)-(7-36) Amide and the Small-Molecule Ago-Allosteric Agent “Compound 2” at the GLP-1 Receptor

    PubMed Central

    Coopman, Karen; Huang, Yan; Johnston, Neil; Bradley, Sophie J.; Wilkinson, Graeme F.

    2010-01-01

    Glucagon-like peptide-1 (GLP-1) mediates antidiabetogenic effects through the GLP-1 receptor (GLP-1R), which is targeted for the treatment of type 2 diabetes. Small-molecule GLP-1R agonists have been sought due to difficulties with peptide therapeutics. Recently, 6,7-dichloro-2-methylsulfonyl-3-N-tert-butylaminoquinoxaline (compound 2) has been described as a GLP-1R allosteric modulator and agonist. Using human embryonic kidney-293 cells expressing human GLP-1Rs, we extended this work to consider the impact of compound 2 on G protein activation, Ca2+ signaling and receptor internalization and particularly to compare compound 2 and GLP-1 across a range of functional assays in intact cells. GLP-1 and compound 2 activated Gαs in cell membranes and increased cellular cAMP in intact cells, with compound 2 being a partial and almost full agonist, respectively. GLP-1 increased intracellular [Ca2+] by release from intracellular stores, which was mimicked by compound 2, with slower kinetics. In either intact cells or membranes, the orthosteric antagonist exendin-(9-39), inhibited GLP-1 cAMP generation but increased the efficacy of compound 2. GLP-1 internalized enhanced green fluorescent protein-tagged GLP-1Rs, but the speed and magnitude evoked by compound 2 were less. Exendin-(9-39) inhibited internalization by GLP-1 and also surprisingly that by compound 2. Compound 2 displays GLP-1R agonism consistent with action at an allosteric site, although an orthosteric antagonist increased its efficacy on cAMP and blocked compound 2-mediated receptor internalization. Full assessment of the properties of compound 2 was potentially hampered by damaging effects that were particularly manifest in either longer term assays with intact cells or in acute assays with membranes. PMID:20507928

  3. Simultaneous quantification of the glucagon-like peptide-1 (GLP-1) and cholecystokinin (CCK) receptor agonists in rodent plasma by on-line solid phase extraction and LC-MS/MS.

    PubMed

    Wang, Yan; Roth, Jonathan D; Taylor, Steven W

    2014-04-15

    Peptide agonists of the glucagon-like peptide-1 receptor (GLP-1R) and the cholecystokinin-1 receptor (CCK1-R) have therapeutic potential because of their marked anorexigenic and weight lowering effects. Furthermore, recent studies in rodents have shown that co-administration of these agents may prove more effective than treatment either of the peptide classes alone. To correlate the pharmacodynamic effects to the pharmacokinetics of these peptide drugs in vivo, a sensitive and robust bioanalytical method is essential. Furthermore, the simultaneous determination of both analytes in plasma samples by a single method offers obvious advantages. Liquid chromatography-tandem mass spectrometry (LC-MS/MS) is well suited to this goal through its ability to simultaneously monitor multiple analytes through selected reaction monitoring (SRM). However, it is a challenge to find appropriate conditions that allow two peptides with widely disparate physiochemical properties to be simultaneously analyzed while maintaining the necessary sensitivity for their accurate plasma concentrations. Herein, we report an on-line solid phase extraction (SPE) LC-MS/MS method for simultaneous quantification of the CCK1-R agonist AC170222 and the GLP-1R agonist AC3174 in rodent plasma. The assay has a linear range from 0.0975 to 100ng/mL, with lower limits of quantification of 0.0975ng/mL and 0.195ng/mL for AC3174 and AC170222, respectively. The intra- and inter-day precisions were below 15%. The developed LC-MS/MS method was used to simultaneously quantify AC3174 and AC170222, the results showed that the terminal plasma concentrations of AC3174 or AC170222 were comparable between groups of animals that were administered with the peptides alone (247±15pg/mL of AC3174 and 1306±48pg/mL of AC170222), or in combination (222±32pg/mL and 1136±47pg/mL of AC3174 and AC170222, respectively). These data provide information on the drug exposure to aid in assessing the combination effects of AC3174 and AC

  4. Long-Term Treatment with Liraglutide, a Glucagon-Like Peptide-1 (GLP-1) Receptor Agonist, Has No Effect on β-Amyloid Plaque Load in Two Transgenic APP/PS1 Mouse Models of Alzheimer's Disease.

    PubMed

    Hansen, Henrik H; Fabricius, Katrine; Barkholt, Pernille; Kongsbak-Wismann, Pernille; Schlumberger, Chantal; Jelsing, Jacob; Terwel, Dick; Termont, Annelies; Pyke, Charles; Knudsen, Lotte Bjerre; Vrang, Niels

    2016-01-01

    One of the major histopathological hallmarks of Alzheimer's disease (AD) is cerebral deposits of extracellular β-amyloid peptides. Preclinical studies have pointed to glucagon-like peptide 1 (GLP-1) receptors as a potential novel target in the treatment of AD. GLP-1 receptor agonists, including exendin-4 and liraglutide, have been shown to promote plaque-lowering and mnemonic effects of in a number of experimental models of AD. Transgenic mouse models carrying genetic mutations of amyloid protein precursor (APP) and presenilin-1 (PS1) are commonly used to assess the pharmacodynamics of potential amyloidosis-lowering and pro-cognitive compounds. In this study, effects of long-term liraglutide treatment were therefore determined in two double APP/PS1 transgenic mouse models of Alzheimer's disease carrying different clinical APP/PS1 mutations, i.e. the 'London' (hAPPLon/PS1A246E) and 'Swedish' mutation variant (hAPPSwe/PS1ΔE9) of APP, with co-expression of distinct PS1 variants. Liraglutide was administered in 5 month-old hAPPLon/PS1A246E mice for 3 months (100 or 500 ng/kg/day, s.c.), or 7 month-old hAPPSwe/PS1ΔE9 mice for 5 months (500 ng/kg/day, s.c.). In both models, regional plaque load was quantified throughout the brain using stereological methods. Vehicle-dosed hAPPSwe/PS1ΔE9 mice exhibited considerably higher cerebral plaque load than hAPPLon/PS1A246E control mice. Compared to vehicle-dosed transgenic controls, liraglutide treatment had no effect on the plaque levels in hAPPLon/PS1A246E and hAPPSwe/PS1ΔE9 mice. In conclusion, long-term liraglutide treatment exhibited no effect on cerebral plaque load in two transgenic mouse models of low- and high-grade amyloidosis, which suggests differential sensitivity to long-term liraglutide treatment in various transgenic mouse models mimicking distinct pathological hallmarks of AD. PMID:27421117

  5. The effect of a glucagon-like peptide-1 receptor agonist on glucose tolerance in women with previous gestational diabetes mellitus: protocol for an investigator-initiated, randomised, placebo-controlled, double-blinded, parallel intervention trial

    PubMed Central

    Foghsgaard, Signe; Vedtofte, Louise; Mathiesen, Elisabeth R; Svare, Jens A; Gluud, Lise L; Holst, Jens J; Damm, Peter; Knop, Filip K; Vilsbøll, Tina

    2013-01-01

    Introduction Pregnancy is associated with decreased insulin sensitivity, which is usually overcome by a compensatory increase in insulin secretion. Some pregnant women are not able to increase their insulin secretion sufficiently, and consequently develop gestational diabetes mellitus (GDM). The disease normally disappears after delivery. Nevertheless, women with previous GDM have a high risk of developing type 2 diabetes (T2D) later in life. We aim to investigate the early development of T2D in women with previous GDM and to evaluate whether treatment with the glucagon-like peptide-1 receptor (GLP-1R) agonist, liraglutide, may modify their risk of developing T2D. Methods and analyses 100 women with previous GDM will be randomised to either liraglutide or placebo treatment for 1 year (blinded) with an open-label extension for another 4 years. Additionally, 15 women without previous GDM will constitute a baseline control group. Women will be tested with an oral glucose tolerance test (primary endpoint: area under the curve for plasma glucose) and an isoglycaemic intravenous glucose infusion at baseline, after 1 year and after 5 years. Additional evaluations include a glucagon test, dual-energy X-ray absorptiometry, imaging of the liver (ultrasound elastography and fibroscanning), an ad libitum meal for food intake evaluation and questionnaires related to appetite, quality of life and alcohol consumption habits. Ethics and dissemination The protocol has been approved by the Danish Medicines Agency, the Scientific-Ethical Committee of the Capital Region of Denmark, and the Danish Data Protection Agency and will be carried out under the surveillance and guidance of the GCP unit at Copenhagen University Hospital Bispebjerg in compliance with the ICH-GCP guidelines and in accordance with the Helsinki Declaration. Positive, negative and inconclusive results will be published at scientific conferences and as one or more scientific manuscripts in peer

  6. Long-Term Treatment with Liraglutide, a Glucagon-Like Peptide-1 (GLP-1) Receptor Agonist, Has No Effect on β-Amyloid Plaque Load in Two Transgenic APP/PS1 Mouse Models of Alzheimer’s Disease

    PubMed Central

    Barkholt, Pernille; Kongsbak-Wismann, Pernille; Schlumberger, Chantal; Jelsing, Jacob; Terwel, Dick; Termont, Annelies; Pyke, Charles; Knudsen, Lotte Bjerre; Vrang, Niels

    2016-01-01

    One of the major histopathological hallmarks of Alzheimer’s disease (AD) is cerebral deposits of extracellular β-amyloid peptides. Preclinical studies have pointed to glucagon-like peptide 1 (GLP-1) receptors as a potential novel target in the treatment of AD. GLP-1 receptor agonists, including exendin-4 and liraglutide, have been shown to promote plaque-lowering and mnemonic effects of in a number of experimental models of AD. Transgenic mouse models carrying genetic mutations of amyloid protein precursor (APP) and presenilin-1 (PS1) are commonly used to assess the pharmacodynamics of potential amyloidosis-lowering and pro-cognitive compounds. In this study, effects of long-term liraglutide treatment were therefore determined in two double APP/PS1 transgenic mouse models of Alzheimer’s disease carrying different clinical APP/PS1 mutations, i.e. the ‘London’ (hAPPLon/PS1A246E) and ‘Swedish’ mutation variant (hAPPSwe/PS1ΔE9) of APP, with co-expression of distinct PS1 variants. Liraglutide was administered in 5 month-old hAPPLon/PS1A246E mice for 3 months (100 or 500 ng/kg/day, s.c.), or 7 month-old hAPPSwe/PS1ΔE9 mice for 5 months (500 ng/kg/day, s.c.). In both models, regional plaque load was quantified throughout the brain using stereological methods. Vehicle-dosed hAPPSwe/PS1ΔE9 mice exhibited considerably higher cerebral plaque load than hAPPLon/PS1A246E control mice. Compared to vehicle-dosed transgenic controls, liraglutide treatment had no effect on the plaque levels in hAPPLon/PS1A246E and hAPPSwe/PS1ΔE9 mice. In conclusion, long-term liraglutide treatment exhibited no effect on cerebral plaque load in two transgenic mouse models of low- and high-grade amyloidosis, which suggests differential sensitivity to long-term liraglutide treatment in various transgenic mouse models mimicking distinct pathological hallmarks of AD. PMID:27421117

  7. In vitro metabolism of the glucagon-like peptide-1 (GLP-1)-derived metabolites GLP-1(9-36)amide and GLP-1(28-36)amide in mouse and human hepatocytes.

    PubMed

    Sharma, Raman; McDonald, Thomas S; Eng, Heather; Limberakis, Chris; Stevens, Benjamin D; Patel, Sheena; Kalgutkar, Amit S

    2013-12-01

    Previous studies have revealed that the glucoincretin hormone glucagon-like peptide-1 (GLP-1)(7-36)amide is metabolized by dipeptidyl peptidase-IV (DPP-IV) and neutral endopeptidase 24.11 (NEP) to yield GLP-1(9-36)amide and GLP-1(28-36)amide, respectively, as the principal metabolites. Contrary to the previous notion that GLP-1(7-36)amide metabolites are pharmacologically inactive, recent studies have demonstrated cardioprotective and insulinomimetic effects with both GLP-1(9-36)amide and GLP-1(28-36)amide in animals and humans. In the present work, we examined the metabolic stability of the two GLP-1(7-36)amide metabolites in cryopreserved hepatocytes, which have been used to demonstrate the in vitro insulin-like effects of GLP-1(9-36)amide and GLP-1(28-36)amide on gluconeogenesis. To examine the metabolic stability of the GLP-1(7-36)amide metabolites, a liquid chromatography-tandem mass spectrometry assay was developed for the quantitation of the intact peptides in hepatocyte incubations. GLP-1(9-36)amide and GLP-1(28-36)amide were rapidly metabolized in mouse [GLP-1(9-36)amide: t(1/2) = 52 minutes; GLP-1(28-36)amide: t(1/2) = 13 minutes] and human hepatocytes [GLP-1(9-36)amide: t(1/2) = 180 minutes; GLP-1(28-36)amide: t(1/2) = 24 minutes), yielding a variety of N-terminal cleavage products that were characterized using mass spectrometry. Metabolism at the C terminus was not observed for either peptides. The DPP-IV and NEP inhibitors diprotin A and phosphoramidon, respectively, did not induce resistance in the two peptides toward proteolytic cleavage. Overall, our in vitro findings raise the intriguing possibility that the insulinomimetic effects of GLP-1(9-36)amide and GLP-1(28-36)amide on gluconeogenesis and oxidative stress might be due, at least in part, to the actions of additional downstream metabolites, which are obtained from the enzymatic cleavage of the peptide backbone in the parent compounds.

  8. Successful Pregnancy after Improving Insulin Resistance with the Glucagon-Like Peptide-1 Analogue in a Woman with Polycystic Ovary Syndrome: A Case Report and Review of the Literature.

    PubMed

    Yang, Qianying; Wang, Fang

    2016-01-01

    The polycystic ovary syndrome (PCOS) is a common cause of anovulatory infertility. It is diagnosed by the presence of hyperandrogenemia, insulin resistance (IR), obesity and other endocrine or metabolic disorders. Exenatide (EX) is a kind of glucagon-like peptide, which is a new option for patients with diabetes mellitus. We present a patient with infertility for PCOS. She was overweight and her medical history included IR, right-sided ovarian mucinous cystadenomas, and left-sided teratoma. Although she had been treated with ovarian surgery, clomiphene citrate and gonadotropins, weight loss and metformin, which have been effective for dominant follicle development, she still failed to conceive. Then EX was initiated to intervene for 2 months. EX treatment was successful to improve IR; after that the infertile woman with PCOS became pregnant. EX improves IR and reproduction capacity in PCOS patients, reducing insulin level and ameliorating endocrine disorders, thereby improving ovarian function, promoting follicle development, and providing new avenues for the treatment of infertility with PCOS. PMID:27300746

  9. Glucagon-like peptide 1: a potent glycogenic hormone.

    PubMed

    Valverde, I; Morales, M; Clemente, F; López-Delgado, M I; Delgado, E; Perea, A; Villanueva-Peñacarrillo, M L

    1994-08-01

    GLP-1(7-36)amide is an insulinotropic peptide derived from the intestinal post-translational proglucagon process, the release of which is increased mainly after a carbohydrate meal; also, its anti-diabetogenic effect in normal and diabetic states has been reported. In this study, GLP-1(7-36)amide stimulates the formation of glycogen from glucose in isolated rat hepatocytes, such a glycogenic effect being achieved with physiological concentrations of the peptide. The GLP-1(7-36)amide-induced glycogenesis is abolished by glucagon, and it is accompanied by stimulation of the glycogen synthase alpha activity and by a decrease in the basal and glucagon-stimulated cyclic AMP content. These findings could explain, at least in part, the GLP-1(7-36)amide insulin-independent plasma glucose lowering effect.

  10. Efficacy and safety of the glucagon-like peptide-1 receptor agonist liraglutide added to insulin therapy in poorly regulated patients with type 1 diabetes—a protocol for a randomised, double-blind, placebo-controlled study: The Lira-1 study

    PubMed Central

    Dejgaard, Thomas Fremming; Knop, Filip Krag; Tarnow, Lise; Frandsen, Christian Seerup; Hansen, Tanja Stenbæk; Almdal, Thomas; Holst, Jens Juul; Madsbad, Sten; Andersen, Henrik Ullits

    2015-01-01

    Introduction Intensive insulin therapy is recommended for the treatment of type 1 diabetes (T1D). Hypoglycaemia and weight gain are the common side effects of insulin treatment and may reduce compliance. In patients with insulin-treated type 2 diabetes, the addition of glucagon-like peptide-1 receptor agonist (GLP-1RA) therapy has proven effective in reducing weight gain and insulin dose. The present publication describes a protocol for a study evaluating the efficacy and safety of adding a GLP-1RA to insulin treatment in overweight patients with T1D in a randomised, double-blinded, controlled design. Methods and analysis In total, 100 patients with type 1 diabetes, poor glycaemic control (glycated haemoglobin (HbA1c) >8%) and overweight (body mass index >25 kg/m2) will be randomised to either liraglutide 1.8 mg once daily or placebo as an add-on to intensive insulin therapy in this investigator initiated, double-blinded, placebo-controlled parallel study. The primary end point is glycaemic control as measured by changes in HbA1c. Secondary end points include changes in the insulin dose, hypoglyacemic events, body weight, lean body mass, fat mass, food preferences and adverse events. Glycaemic excursions, postprandial glucagon levels and gastric emptying rate during a standardised liquid meal test will also be studied. Ethics and dissemination The study is approved by the Danish Medicines Authority, the Regional Scientific-Ethical Committee of the Capital Region of Denmark and the Data Protection Agency. The study will be carried out under the surveillance and guidance of the good clinical practice (GCP) unit at Copenhagen University Hospital Bispebjerg in accordance with the ICH-GCP guidelines and the Helsinki Declaration. Trial registration number NCT01612468. PMID:25838513

  11. Glucagon-Like Peptide-1 Excites Firing and Increases GABAergic Miniature Postsynaptic Currents (mPSCs) in Gonadotropin-Releasing Hormone (GnRH) Neurons of the Male Mice via Activation of Nitric Oxide (NO) and Suppression of Endocannabinoid Signaling Pathways

    PubMed Central

    Farkas, Imre; Vastagh, Csaba; Farkas, Erzsébet; Bálint, Flóra; Skrapits, Katalin; Hrabovszky, Erik; Fekete, Csaba; Liposits, Zsolt

    2016-01-01

    Glucagon-like peptide-1 (GLP-1), a metabolic signal molecule, regulates reproduction, although, the involved molecular mechanisms have not been elucidated, yet. Therefore, responsiveness of gonadotropin-releasing hormone (GnRH) neurons to the GLP-1 analog Exendin-4 and elucidation of molecular pathways acting downstream to the GLP-1 receptor (GLP-1R) have been challenged. Loose patch-clamp recordings revealed that Exendin-4 (100 nM–5 μM) elevated firing rate in hypothalamic GnRH-GFP neurons of male mice via activation of GLP-1R. Whole-cell patch-clamp measurements demonstrated increased excitatory GABAergic miniature postsynaptic currents (mPSCs) frequency after Exendin-4 administration, which was eliminated by the GLP-1R antagonist Exendin-3(9–39) (1 μM). Intracellular application of the G-protein inhibitor GDP-β-S (2 mM) impeded action of Exendin-4 on mPSCs, suggesting direct excitatory action of GLP-1 on GnRH neurons. Blockade of nitric-oxide (NO) synthesis by Nω-Nitro-L-arginine methyl ester hydrochloride (L-NAME; 100 μM) or N5-[Imino(propylamino)methyl]-L-ornithine hydrochloride (NPLA; 1 μM) or intracellular scavenging of NO by 2-(4-carboxyphenyl)-4,4,5,5-tetramethylimidazoline-1-oxyl-3-oxide (CPTIO; 1 mM) partially attenuated the excitatory effect of Exendin-4. Similar partial inhibition was achieved by hindering endocannabinoid pathway using cannabinoid receptor type-1 (CB1) inverse-agonist 1-(2,4-dichlorophenyl)-5-(4-iodophenyl)-4-methyl-N-(1-piperidyl) pyrazole-3-carboxamide (AM251; 1 μM). Simultaneous blockade of NO and endocannabinoid signaling mechanisms eliminated action of Exendin-4 suggesting involvement of both retrograde machineries. Intracellular application of the transient receptor potential vanilloid 1 (TRPV1)-antagonist 2E-N-(2, 3-Dihydro-1,4-benzodioxin-6-yl)-3-[4-(1, 1-dimethylethyl)phenyl]-2-Propenamide (AMG9810; 10 μM) or the fatty acid amide hydrolase (FAAH)-inhibitor PF3845 (5 μM) impeded the GLP-1-triggered endocannabinoid

  12. Glucagon-Like Peptide-1 Excites Firing and Increases GABAergic Miniature Postsynaptic Currents (mPSCs) in Gonadotropin-Releasing Hormone (GnRH) Neurons of the Male Mice via Activation of Nitric Oxide (NO) and Suppression of Endocannabinoid Signaling Pathways.

    PubMed

    Farkas, Imre; Vastagh, Csaba; Farkas, Erzsébet; Bálint, Flóra; Skrapits, Katalin; Hrabovszky, Erik; Fekete, Csaba; Liposits, Zsolt

    2016-01-01

    Glucagon-like peptide-1 (GLP-1), a metabolic signal molecule, regulates reproduction, although, the involved molecular mechanisms have not been elucidated, yet. Therefore, responsiveness of gonadotropin-releasing hormone (GnRH) neurons to the GLP-1 analog Exendin-4 and elucidation of molecular pathways acting downstream to the GLP-1 receptor (GLP-1R) have been challenged. Loose patch-clamp recordings revealed that Exendin-4 (100 nM-5 μM) elevated firing rate in hypothalamic GnRH-GFP neurons of male mice via activation of GLP-1R. Whole-cell patch-clamp measurements demonstrated increased excitatory GABAergic miniature postsynaptic currents (mPSCs) frequency after Exendin-4 administration, which was eliminated by the GLP-1R antagonist Exendin-3(9-39) (1 μM). Intracellular application of the G-protein inhibitor GDP-β-S (2 mM) impeded action of Exendin-4 on mPSCs, suggesting direct excitatory action of GLP-1 on GnRH neurons. Blockade of nitric-oxide (NO) synthesis by Nω-Nitro-L-arginine methyl ester hydrochloride (L-NAME; 100 μM) or N(5)-[Imino(propylamino)methyl]-L-ornithine hydrochloride (NPLA; 1 μM) or intracellular scavenging of NO by 2-(4-carboxyphenyl)-4,4,5,5-tetramethylimidazoline-1-oxyl-3-oxide (CPTIO; 1 mM) partially attenuated the excitatory effect of Exendin-4. Similar partial inhibition was achieved by hindering endocannabinoid pathway using cannabinoid receptor type-1 (CB1) inverse-agonist 1-(2,4-dichlorophenyl)-5-(4-iodophenyl)-4-methyl-N-(1-piperidyl) pyrazole-3-carboxamide (AM251; 1 μM). Simultaneous blockade of NO and endocannabinoid signaling mechanisms eliminated action of Exendin-4 suggesting involvement of both retrograde machineries. Intracellular application of the transient receptor potential vanilloid 1 (TRPV1)-antagonist 2E-N-(2, 3-Dihydro-1,4-benzodioxin-6-yl)-3-[4-(1, 1-dimethylethyl)phenyl]-2-Propenamide (AMG9810; 10 μM) or the fatty acid amide hydrolase (FAAH)-inhibitor PF3845 (5 μM) impeded the GLP-1-triggered endocannabinoid

  13. Glucagon-Like Peptide-1 Excites Firing and Increases GABAergic Miniature Postsynaptic Currents (mPSCs) in Gonadotropin-Releasing Hormone (GnRH) Neurons of the Male Mice via Activation of Nitric Oxide (NO) and Suppression of Endocannabinoid Signaling Pathways.

    PubMed

    Farkas, Imre; Vastagh, Csaba; Farkas, Erzsébet; Bálint, Flóra; Skrapits, Katalin; Hrabovszky, Erik; Fekete, Csaba; Liposits, Zsolt

    2016-01-01

    Glucagon-like peptide-1 (GLP-1), a metabolic signal molecule, regulates reproduction, although, the involved molecular mechanisms have not been elucidated, yet. Therefore, responsiveness of gonadotropin-releasing hormone (GnRH) neurons to the GLP-1 analog Exendin-4 and elucidation of molecular pathways acting downstream to the GLP-1 receptor (GLP-1R) have been challenged. Loose patch-clamp recordings revealed that Exendin-4 (100 nM-5 μM) elevated firing rate in hypothalamic GnRH-GFP neurons of male mice via activation of GLP-1R. Whole-cell patch-clamp measurements demonstrated increased excitatory GABAergic miniature postsynaptic currents (mPSCs) frequency after Exendin-4 administration, which was eliminated by the GLP-1R antagonist Exendin-3(9-39) (1 μM). Intracellular application of the G-protein inhibitor GDP-β-S (2 mM) impeded action of Exendin-4 on mPSCs, suggesting direct excitatory action of GLP-1 on GnRH neurons. Blockade of nitric-oxide (NO) synthesis by Nω-Nitro-L-arginine methyl ester hydrochloride (L-NAME; 100 μM) or N(5)-[Imino(propylamino)methyl]-L-ornithine hydrochloride (NPLA; 1 μM) or intracellular scavenging of NO by 2-(4-carboxyphenyl)-4,4,5,5-tetramethylimidazoline-1-oxyl-3-oxide (CPTIO; 1 mM) partially attenuated the excitatory effect of Exendin-4. Similar partial inhibition was achieved by hindering endocannabinoid pathway using cannabinoid receptor type-1 (CB1) inverse-agonist 1-(2,4-dichlorophenyl)-5-(4-iodophenyl)-4-methyl-N-(1-piperidyl) pyrazole-3-carboxamide (AM251; 1 μM). Simultaneous blockade of NO and endocannabinoid signaling mechanisms eliminated action of Exendin-4 suggesting involvement of both retrograde machineries. Intracellular application of the transient receptor potential vanilloid 1 (TRPV1)-antagonist 2E-N-(2, 3-Dihydro-1,4-benzodioxin-6-yl)-3-[4-(1, 1-dimethylethyl)phenyl]-2-Propenamide (AMG9810; 10 μM) or the fatty acid amide hydrolase (FAAH)-inhibitor PF3845 (5 μM) impeded the GLP-1-triggered endocannabinoid

  14. Glucagon-Like Peptide-1 Excites Firing and Increases GABAergic Miniature Postsynaptic Currents (mPSCs) in Gonadotropin-Releasing Hormone (GnRH) Neurons of the Male Mice via Activation of Nitric Oxide (NO) and Suppression of Endocannabinoid Signaling Pathways

    PubMed Central

    Farkas, Imre; Vastagh, Csaba; Farkas, Erzsébet; Bálint, Flóra; Skrapits, Katalin; Hrabovszky, Erik; Fekete, Csaba; Liposits, Zsolt

    2016-01-01

    Glucagon-like peptide-1 (GLP-1), a metabolic signal molecule, regulates reproduction, although, the involved molecular mechanisms have not been elucidated, yet. Therefore, responsiveness of gonadotropin-releasing hormone (GnRH) neurons to the GLP-1 analog Exendin-4 and elucidation of molecular pathways acting downstream to the GLP-1 receptor (GLP-1R) have been challenged. Loose patch-clamp recordings revealed that Exendin-4 (100 nM–5 μM) elevated firing rate in hypothalamic GnRH-GFP neurons of male mice via activation of GLP-1R. Whole-cell patch-clamp measurements demonstrated increased excitatory GABAergic miniature postsynaptic currents (mPSCs) frequency after Exendin-4 administration, which was eliminated by the GLP-1R antagonist Exendin-3(9–39) (1 μM). Intracellular application of the G-protein inhibitor GDP-β-S (2 mM) impeded action of Exendin-4 on mPSCs, suggesting direct excitatory action of GLP-1 on GnRH neurons. Blockade of nitric-oxide (NO) synthesis by Nω-Nitro-L-arginine methyl ester hydrochloride (L-NAME; 100 μM) or N5-[Imino(propylamino)methyl]-L-ornithine hydrochloride (NPLA; 1 μM) or intracellular scavenging of NO by 2-(4-carboxyphenyl)-4,4,5,5-tetramethylimidazoline-1-oxyl-3-oxide (CPTIO; 1 mM) partially attenuated the excitatory effect of Exendin-4. Similar partial inhibition was achieved by hindering endocannabinoid pathway using cannabinoid receptor type-1 (CB1) inverse-agonist 1-(2,4-dichlorophenyl)-5-(4-iodophenyl)-4-methyl-N-(1-piperidyl) pyrazole-3-carboxamide (AM251; 1 μM). Simultaneous blockade of NO and endocannabinoid signaling mechanisms eliminated action of Exendin-4 suggesting involvement of both retrograde machineries. Intracellular application of the transient receptor potential vanilloid 1 (TRPV1)-antagonist 2E-N-(2, 3-Dihydro-1,4-benzodioxin-6-yl)-3-[4-(1, 1-dimethylethyl)phenyl]-2-Propenamide (AMG9810; 10 μM) or the fatty acid amide hydrolase (FAAH)-inhibitor PF3845 (5 μM) impeded the GLP-1-triggered endocannabinoid

  15. Glucagon-like peptides activate hepatic gluconeogenesis.

    PubMed

    Mommsen, T P; Andrews, P C; Plisetskaya, E M

    1987-07-13

    Piscine (anglerfish, catfish, coho salmon) glucagon-like peptides (GLPs), applied at 3.5 nM, stimulate (1.1-1.9-fold) flux through gluconeogenesis above control levels in isolated trout and salmon hepatocytes. Human GLP-1 and GLP-2 also activate gluconeogenesis, but to a lesser degree than their piscine counterparts. Minor increases of substrate oxidation are noticed at times of peak gluconeogenic activation through GLPs. These hormones, which are derived from the same precursor peptide as glucagon are more potent activators of gluconeogenesis than glucagon when applied at equimolar concentrations, and do not appear to employ cAMP or cGMP as the intracellular messenger in hepatic tissue. PMID:3109952

  16. Glucagon-like receptor 1 agonists and DPP-4 inhibitors: potential therapies for the treatment of stroke

    PubMed Central

    Darsalia, Vladimer; Larsson, Martin; Nathanson, David; Klein, Thomas; Nyström, Thomas; Patrone, Cesare

    2015-01-01

    During the past decades, candidate drugs that have shown neuroprotective efficacy in the preclinical setting have failed in clinical stroke trials. As a result, no treatment for stroke based on neuroprotection is available today. The activation of the glucagon-like peptide 1 receptor (GLP-1) for reducing stroke damage is a relatively novel concept that has shown neuroprotective effects in animal models. In addition, clinical studies are currently ongoing. Herein, we review this emerging research field and discuss the next milestones to be achieved to develop a novel antistroke therapy. PMID:25669907

  17. Naturally-occurring TGR5 agonists modulating glucagon-like peptide-1 biosynthesis and secretion.

    PubMed

    Jafri, Laila; Saleem, Samreen; Calderwood, Danielle; Gillespie, Anna; Mirza, Bushra; Green, Brian D

    2016-04-01

    Selective GLP-1 secretagogues represent a novel potential therapy for type 2 diabetes mellitus. This study examined the GLP-1 secretory activity of the ethnomedicinal plant, Fagonia cretica, which is postulated to possess anti-diabetic activity. After extraction and fractionation extracts and purified compounds were tested for GLP-1 and GIP secretory activity in pGIP/neo STC-1 cells. Intracellular levels of incretin hormones and their gene expression were also determined. Crude F. cretica extracts stimulated both GLP-1 and GIP secretion, increased cellular hormone content, and upregulated gene expression of proglucagon, GIP and prohormone convertase. However, ethyl acetate partitioning significantly enriched GLP-1 secretory activity and this fraction underwent bioactivity-guided fractionation. Three isolated compounds were potent and selective GLP-1 secretagogues: quinovic acid (QA) and two QA derivatives, QA-3β-O-β-D-glycopyranoside and QA-3β-O-β-D-glucopyranosyl-(28→1)-β-D-glucopyranosyl ester. All QA compounds activated the TGR5 receptor and increased intracellular incretin levels and gene expression. QA derivatives were more potent GLP-1 secretagogues than QA. This is the first time that QA and its naturally-occurring derivatives have been shown to activate TGR5 and stimulate GLP-1 secretion. These data provide a plausible mechanism for the ethnomedicinal use of F. cretica and may assist in the ongoing development of selective GLP-1 agonists. PMID:26820940

  18. Gut adaptation and the glucagon-like peptides

    PubMed Central

    Drucker, D J

    2002-01-01

    The glucagon-like peptides GLP-1 and GLP-2 are synthesised and then released from enteroendocrine cells in the small and large intestine. GLP-1 promotes efficient nutrient assimilation while GLP-2 regulates energy absorption via effects on nutrient intake, gastric acid secretion and gastric emptying, nutrient absorption, and mucosal permeability. Preliminary human studies indicate that GLP-2 may enhance energy absorption and reduce fluid loss in subjects with short bowel syndrome suggesting that GLP-2 functions as a key regulator of mucosal integrity, permeability, and nutrient absorption. Hence GLP-2 may be therapeutically useful in diseases characterised by injury or dysfunction of the gastrointestinal epithelium. PMID:11839727

  19. Glucagon-like peptide-1 receptor agonist Liraglutide has anabolic bone effects in ovariectomized rats without diabetes.

    PubMed Central

    Yu, JingJia; Wang, Xiaojing; Liu, Dongmei; Zhao, Lin; Sun, Lihao; Zhao, Hongyan; Tao, Bei; Liu, Jianmin

    2015-01-01

    Recently, a number of studies have demonstrated the potential beneficial role for novel anti-diabetic GLP-1 receptor agonists (GLP-1RAs) in the skeleton metabolism in diabetic rodents and patients. In this study, we evaluated the impacts of the synthetic GLP-1RA Liraglutide on bone mass and quality in osteoporotic rats induced by ovariectomy (OVX) but without diabetes, as well as its effect on the adipogenic and osteoblastogenic differentiation of bone marrow stromal cells (BMSCs). Three months after sham surgery or bilateral OVX, eighteen 5-month old female Wistar rats were randomly divided into three groups to receive the following treatments for 2 months: (1) Sham + normal saline; (2) OVX + normal saline; and (3) OVX + Liraglutide (0.6 mg/day). As revealed by micro-CT analysis, Liraglutide improved trabecular volume, thickness and number, increased BMD, and reduced trabecular spacing in the femurs in OVX rats; similar results were observed in the lumbar vertebrae of OVX rats treated with Liraglutide. Following in vitro treatment of rat and human BMSCs with 10 nM Liraglutide, there was a significant increase in the mRNA expression of osteoblast-specific transcriptional factor Runx2 and the osteoblast markers alkaline phosphatase (ALP) and collagen α1 (Col-1), but a significant decrease in peroxisome proliferator-activated receptor γ (PPARγ). In conclusion, our results indicate that the anti-diabetic drug Liraglutide can exert a bone protective effect even in non-diabetic osteoporotic OVX rats. This protective effect is likely attributable to the impact of Liraglutide on the lineage fate determination of BMSCs. PMID:26177280

  20. Glucagon-like peptide-1 stimulates luteinizing hormone-releasing hormone secretion in a rodent hypothalamic neuronal cell line.

    PubMed Central

    Beak, S A; Heath, M M; Small, C J; Morgan, D G; Ghatei, M A; Taylor, A D; Buckingham, J C; Bloom, S R; Smith, D M

    1998-01-01

    To examine the influence of the putative satiety factor (GLP-1) on the hypothalamo-pituitary-gonadal axis, we used GT1-7 cells as a model of neuronal luteinizing hormone- releasing hormone (LHRH) release. GLP-1 caused a concentration-dependent increase in LHRH release from GT1-7 cells. Specific, saturable GLP-1 binding sites were demonstrated on these cells. The binding of [125I]GLP-1 was time-dependent and consistent with a single binding site (Kd = 0.07+/-0.016 nM; binding capacity = 160+/-11 fmol/mg protein). The specific GLP-1 receptor agonists, exendin-3 and exendin-4, also showed high affinity (Ki = 0.3+/-0.05 and 0.32+/-0.06 nM, respectively) as did the antagonist exendin-(9-39) (Ki = 0.98+/-0.24 nM). At concentrations that increased LHRH release, GLP-1 (0.5-10 nM) also caused an increase in intracellular cAMP in GT1-7 cells (10 nM GLP-1: 7.66+/-0.4 vs. control: 0.23+/-0.02 nmol/mg protein; P < 0.001). Intracerebroventricular injection of GLP-1 at a single concentration (10 microg) produced a prompt increase in the plasma luteinizing hormone concentration in male rats (GLP-1: 1.09+/-0.11 vs. saline: 0.69+/-0.06 ng/ml; P < 0.005). GLP-1 levels in the hypothalami of 48-h-fasted male rats showed a decrease, indicating a possible association of the satiety factor with the low luteinizing hormone levels in animals with a negative energy balance. PMID:9502775

  1. Inositolphosphoglycans are possible mediators of the glucagon-like peptide 1 (7-36)amide action in the liver.

    PubMed

    Trapote, M A; Clemente, F; Galera, C; Morales, M; Alcántara, A I; López-Delgado, M I; Villanueva-Peñacarrillo, M L; Valverde, I

    1996-02-01

    A potent glycogenic effect for GLP-1(7-36)amide has been found in rat hepatocytes and skeletal muscle, and the specific receptors detected for GLP-1(7-36)amide in these tissue membranes do not seem to be associated to adenylate cyclase. On the other hand, inositolphosphoglycan molecules (IPGs) have been implicated as second messengers in the action of insulin. In a human hepatoma cell line (HEP G-2), we have observed the presence of [125I]GLP-1(7-36)amide specific binding, and a stimulatory effect of the peptide upon glycogen synthesis, confirming the findings in isolated rat hepatocytes. Also, GLP-1(7-36)amide modulates the cell content of radiolabelled glycosylphosphatidylinositols (GPIs), in the same manner as insulin, indicating hydrolysis of GPIs and an immediate and short-lived generation of IPGs. Thus, IPGs could be mediators in the GLP-1(7-36)amide glycogenic action in the liver.

  2. Intestinal Permeability and Glucagon-Like Peptide-2 in Children with Autism: A Controlled Pilot Study

    ERIC Educational Resources Information Center

    Robertson, Marli A.; Sigalet, David L.; Holst, Jens J.; Meddings, Jon B.; Wood, Julie; Sharkey, Keith A.

    2008-01-01

    We measured small intestinal permeability using a lactulose:mannitol sugar permeability test in a group of children with autism, with current or previous gastrointestinal complaints. Secondly, we examined whether children with autism had an abnormal glucagon-like peptide-2 (GLP-2) response to feeding. Results were compared with sibling controls…

  3. Glucagon-like peptide-2 induces rapid digestive adaptation following intestinal resection in preterm neonates

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Short bowel syndrome (SBS) is a frequent complication after intestinal resection in infants suffering from intestinal disease. We tested whether treatment with the intestinotrophic hormone glucagon-like peptide-2 (GLP-2) increases intestinal volume and function in the period immediately following in...

  4. Isolation of alligator gar (Lepisosteus spatula) glucagon, oxyntomodulin, and glucagon-like peptide: amino acid sequences of oxyntomodulin and glucagon-like peptide.

    PubMed

    Pollock, H G; Kimmel, J R; Ebner, K E; Hamilton, J W; Rouse, J B; Lance, V; Rawitch, A B

    1988-01-01

    Oxyntomodulin, glucagon, and a glucagon-like peptide (GLP) have been isolated from the endocrine pancreas of the alligator gar (Lepisosteus spatula), a ganoid fish. The three peptides were isolated by gel filtration and HPLC and were identified by size, composition, and glucagon-like immunoreactivity. The amino acid sequences of the oxyntomodulin and GLP were determined. The oxyntomodulin contains 36 amino acid residues and its sequence is H S Q G T F T N D Y S K Y L D T R R A Q D F V Q W L M S T K R S G G I T. The composition of the glucagon is identical to the N-terminal 29 residues of the gar oxyntomodulin. The single form of GLP found contains 34 amino acid residues in the following sequence: H A D G T Y T S D V S S Y L Q D Q A A K K F V T W L K Q G Q D R R E. These findings suggest that all three peptides are derived from a common precursor. PMID:3282974

  5. Isolation of alligator gar (Lepisosteus spatula) glucagon, oxyntomodulin, and glucagon-like peptide: amino acid sequences of oxyntomodulin and glucagon-like peptide.

    PubMed

    Pollock, H G; Kimmel, J R; Ebner, K E; Hamilton, J W; Rouse, J B; Lance, V; Rawitch, A B

    1988-01-01

    Oxyntomodulin, glucagon, and a glucagon-like peptide (GLP) have been isolated from the endocrine pancreas of the alligator gar (Lepisosteus spatula), a ganoid fish. The three peptides were isolated by gel filtration and HPLC and were identified by size, composition, and glucagon-like immunoreactivity. The amino acid sequences of the oxyntomodulin and GLP were determined. The oxyntomodulin contains 36 amino acid residues and its sequence is H S Q G T F T N D Y S K Y L D T R R A Q D F V Q W L M S T K R S G G I T. The composition of the glucagon is identical to the N-terminal 29 residues of the gar oxyntomodulin. The single form of GLP found contains 34 amino acid residues in the following sequence: H A D G T Y T S D V S S Y L Q D Q A A K K F V T W L K Q G Q D R R E. These findings suggest that all three peptides are derived from a common precursor.

  6. Evidence for the presence of glucagon-like immunoreactivity (GLI) in the pancreas.

    PubMed

    Srikant, C B; Unger, R H

    1976-12-01

    Glucagon-like immunoreactivity (GLI), which can be separated from glucagon by isoelectric focusing, has been detected in partially purified canine pancreatic extracts. Like gastrointestinal GLI, this insular GLI reacts with crossreacting antiserum 78J but not with glucagon "specific" antiserum 30K and has an isoelectric point (pl) of 9.5, whereas canine pancreatic glucagon has a pl of 6.25. When combined with glucagon, the GLI-glucagon mixture gives 48J assay values between GLI and this crossreacting antiglucagon serum and thus conceals it in glucagon-containing extracts.

  7. Induction of intestinal epithelial proliferation by glucagon-like peptide 2.

    PubMed Central

    Drucker, D J; Erlich, P; Asa, S L; Brubaker, P L

    1996-01-01

    Injury, inflammation, or resection of the small intestine results in severe compromise of intestinal function. Nevertheless, therapeutic strategies for enhancing growth and repair of the intestinal mucosal epithelium are currently not available. We demonstrate that nude mice bearing subcutaneous proglucagon-producing tumors exhibit marked proliferation of the small intestinal epithelium. The factor responsible for inducing intestinal proliferation was identified as glucagon-like peptide 2 (GLP-2), a 33-aa peptide with no previously ascribed biological function. GLP-2 stimulated crypt cell proliferation and consistently induced a marked increase in bowel weight and villus growth of the jejunum and ileum that was evident within 4 days after initiation of GLP-2 administration. These observations define a novel biological role for GLP-2 as an intestinal-derived peptide stimulator of small bowel epithelial proliferation. Images Fig. 1 Fig. 5 PMID:8755576

  8. Pancreatic proglucagon processing: isolation and structures of glucagon and glucagon-like peptide from gene I.

    PubMed

    Nichols, R; Lee, T D; Andrews, P C

    1988-12-01

    The anglerfish endocrine pancreas expresses two different genes for preproglucagon. The regions of the two proglucagons that correspond to glucagon have different sequences, as do the two glucagon-like peptides (GLPs). The products derived from processing the more abundant proglucagon-II have recently been determined. However, it was not known whether proglucagon-I was processed to similar products. The two major biologically active products of preproglucagon-I processing (glucagon-I and GLP-I) have now been purified to homogeneity. Their structures were determined using automated gas phase Edman degradation, tryptic mapping, and fast atom bombardment mass spectrometry. The preproglucagon-I-processing sites were identified. Glucagon-I represents residues 53-81, and GLP-I corresponds to preproglucagon-I-(91-124) (numbering from the initiator Met). PMID:3058456

  9. Characterization of the hypotensive effects of glucagon-like peptide-2 in anesthetized rats.

    PubMed

    Iwai, Takashi; Kaneko, Maki; Sasaki-Hamada, Sachie; Oka, Jun-Ichiro

    2013-08-29

    Glucagon-like peptide-2 (GLP-2) is a proglucagon-derived peptide released from enteroendocrine cells and neurons. We recently reported that GLP-2 induced hypotension. In the present study, we characterized the mechanisms of GLP-2-induced hypotension. GLP-2 was administered peripherally or centrally to male Wistar rats anesthetized with urethane and α-chloralose. The rats were vagotomized or systemically pretreated with atropine, prazosin, or propranolol before the GLP-2 administration. The central and peripheral administration of GLP-2 reduced mean arterial blood pressure (MAP). The maximum change of MAP (maximum ΔMAP) was reduced by vagotomy or prazosin, but not propranolol. The effects of the central but not peripheral administration of GLP-2 were reduced by atropine. These results suggest that GLP-2 modulates vagal afferent inputs and inhibits the sympathetic nervous system in the brain to induce hypotension. PMID:23867714

  10. The CNS glucagon-like peptide-2 receptor in the control of energy balance and glucose homeostasis

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The gut-brain axis plays a key role in the control of energy balance and glucose homeostasis. In response to luminal stimulation of macronutrients and microbiotaderived metabolites (secondary bile acids and short chain fatty acids), glucagon-like peptides (GLP-1 and -2) are cosecreted from endocrine...

  11. Acute effects of the glucagon-like peptide 2 analogue, teduglutide, on intestinal adaptation in short bowel syndrome

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Neonatal short bowel syndrome following massive gut resection is associated with malabsorption of nutrients. The intestinotrophic factor glucagon-like peptide 2 (GLP-2) improves gut function in adult patients with short bowel syndrome, but its effect in pediatric patients remains unknown. Our object...

  12. Comparative physiology of glucagon-like peptide-2 – Implications and applications for production and health of ruminants

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Glucagon-like peptide-2 (GLP-2) is a 33-amino acid peptide derived from proteolytic cleavage of proglucagon by prohormone convertase 1/3 in enteroendocrine L-cells. Studies conducted in humans, rodent models, and in vitro indicate that GLP-2 is secreted in response to the presence of molecules in th...

  13. Bile acids induce glucagon-like peptide 2 secretion with limited effects on intestinal adaptation in early weaned pigs

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Early weaning is a stressful event characterized by a transient period of intestinal atrophy that may be mediated by reduced secretion of glucagon-like peptide (GLP) 2. We tested whether enterally fed bile acids or plant sterols could increase nutrient-dependent GLP-2 secretion and improve intestina...

  14. Glucagon-like peptide-2-loaded microspheres as treatment for ulcerative colitis in the murine model.

    PubMed

    Wu, Jie; Qi, Keke; Xu, Ziwei; Wan, Jin

    2015-01-01

    Glucagon-like peptide-2 (GLP-2) is an intestinal hormone that promotes intestinal growth, but the rapid degradation by dipeptidyl peptidase-IV limits its applications. PLGA microsphere is a well-developed drug delivery system, while seldom been studied as a solution for prolonging in vivo effects of GLP-2. In this study, we encapsulated porcine GLP-2 (pGLP-2) into microspheres and investigated its therapeutic effects in dextran sulfate sodium (DSS)-treated mice. pGLP-2 microspheres showed 20.36% in initial burst and constant release for at least 9 d. In the DSS-treated mice, a single injection of GLP-2 microspheres significantly increased the body weight, colonic length, small intestinal weight and mRNA expression of Occludin, decreased the colonic damage score, mRNA expression of IL-6, IL-10, TNF-α and IFN-γ. In conclusion, pGLP-2 microspheres were resistant to degradation and decreased the severity of DSS-induced ulcerative colitis which suggested that GLP-2-loaded microspheres could be a proper candidate for the treatment of ulcerative colitis.

  15. Dibutyl Phthalate Exposure Disrupts Evolutionarily Conserved Insulin and Glucagon-Like Signaling in Drosophila Males.

    PubMed

    Williams, Michael J; Wiemerslage, Lyle; Gohel, Priya; Kheder, Sania; Kothegala, Lakshmi V; Schiöth, Helgi B

    2016-06-01

    Phthalate diesters are commonly used as industrial plasticisers, as well as in cosmetics and skin care products, as a result people are constantly exposed to these xenobiotics. Recent epidemiological studies have found a correlation between circulating phthalate levels and type 2 diabetes, whereas animal studies indicate that phthalates are capable of disrupting endocrine signaling. Nonetheless, how phthalates interfere with metabolic function is still unclear. Here, we show that feeding Drosophila males the xenobiotic dibutyl phthalate (DBP) affects conserved insulin- and glucagon-like signaling. We report that raising flies on food containing DBP leads to starvation resistance, increased lipid storage, hyperglycemia, and hyperphagia. We go on to show that the starvation-resistance phenotype can be rescued by overexpression of the glucagon analogue adipokinetic hormone (Akh). Furthermore, although acute DBP exposure in adult flies is able to affect insulin levels, only chronic feeding influences Akh expression. We establish that raising flies on DBP-containing food or feeding adults DBP food affects the expression of homologous genes involved in xenobiotic and lipid metabolism (AHR [Drosophila ss], NR1I2 [Hr96], ABCB1 [MDR50], ABCC3 [MRP], and CYP3A4 [Cyp9f2]). Finally, we determined that the expression of these genes is also influenced by Akh. Our results provide comprehensive evidence that DBP can disrupt metabolism in Drosophila males, by regulating genes involved in glucose, lipid, and xenobiotic metabolism. PMID:27100621

  16. Glucagon-like peptide-2-induced memory improvement and anxiolytic effects in mice.

    PubMed

    Iwai, Takashi; Jin, Kazushi; Ohnuki, Tomoko; Sasaki-Hamada, Sachie; Nakamura, Minami; Saitoh, Akiyoshi; Sugiyama, Azusa; Ikeda, Masaatsu; Tanabe, Mitsuo; Oka, Jun-Ichiro

    2015-02-01

    We investigated the effectiveness of glucagon-like peptide-2 (GLP-2) on memory impairment in lipopolysaccharide (LPS)-treated mice, and anxiety-like behavior in adrenocorticotropic hormone (ACTH)-treated mice. In the Y-maze test, LPS (10 µg/mouse, i.c.v.) significantly decreased spontaneous alternation, which was prevented by pretreatment with GLP-2 (0.01-0.3 µg/mouse, i.c.v.). The GLP-2 treatment just before the Y-maze test also improved LPS-induced memory impairment. Continuous treatment with GLP-2 (3 µg/mouse, i.c.v.) had no effect on the open-field test in saline-treated or ACTH-treated mice. Chronic ACTH treatment did not cause anxiogenic effects in the elevated plus-maze test. GLP-2 showed weak anxiolytic-like effects in the elevated plus-maze test in ACTH-treated, but not saline-treated mice. Moreover, GLP-2 increased 5-HT, but not 5-HIAA and tryptophan hydroxylase 2 levels in the amygdala of ACTH-treated mice. Pharmacological depletion of 5-HT prevented the anxiolytic effects of GLP-2. These results suggest that GLP-2 protected and improved memory function in LPS-treated mice, and also had anxiolytic effects due to changes in the 5-HT system.

  17. Angioplastic necrolytic migratory erythema. Unique association of necrolytic migratory erythema, extensive angioplasia, and high molecular weight glucagon-like polypeptide

    SciTech Connect

    Franchimont, C.; Pierard, G.E.; Luyckx, A.S.; Gerard, J.; Lapiere, C.M.

    1982-12-01

    A diabetic patient developed necrolytic migratory erythema with extensive angioplasia and high molecular weight glucagon-like polypeptide. There was no associated neoplasm such as glucagonoma. Lesions in the skin were studied by standard optical microscopy and by radioautography after incorporation of tritiated thymidine. Alterations in the skin begin as focal necrosis in the epidermis and in epithelial structures of adnexa, followed by marked angioplasia and a superficial and deep perivascular dermatitis.

  18. Glucagon-Like Peptide-2 Improves Both Acute and Late Experimental Radiation Enteritis in the Rat

    SciTech Connect

    Torres, Sandra

    2007-12-01

    Purpose: Acute and/or chronic radiation enteritis can develop after radiotherapy for pelvic cancers. Experimental and clinical observations have provided evidence of a role played by acute mucosal disruption in the appearance of late effects. The therapeutic potential of acute administration of glucagon-like peptide-2 (GLP-2) against acute and chronic intestinal injury was investigated in this study. Methods and Materials: Intestinal segments were surgically exteriorized and exposed to 16.7 or 19 Gy X-rays. The rats were treated once daily with vehicle or a protease-resistant GLP-2 derivative for 14 days before irradiation, with or without 7 days of GLP-2 after treatment. Macroscopic and microscopic observations were made 2 and 15 weeks after radiation exposure. Results: In the control animals, GLP-2 induced an increase in intestinal mucosal mass, along with an increase in villus height and crypt depth. GLP-2 administration before and after irradiation completely prevented the acute radiation-induced mucosal ulcerations observed after exposure to 16.7 Gy. GLP-2 treatment strikingly reduced the late radiation damage observed after 19 Gy irradiation. Microscopic observations revealed an improved organization of the intestinal wall and an efficient wound healing process, especially in the smooth muscle layers. Conclusion: GLP-2 has a clear therapeutic potential against both acute and chronic radiation enteritis. This therapeutic effect is mediated through an increased mucosal mass before tissue injury and the stimulation of still unknown mechanisms of tissue response to radiation damage. Although these preliminary results still need to be confirmed, GLP-2 might be a way to limit patient discomfort during radiotherapy and reduce the risk of consequential late effects.

  19. Metabolic response of teleost hepatocytes to glucagon-like peptide and glucagon.

    PubMed

    Mommsen, T P; Moon, T W

    1990-07-01

    Salmon glucagon-like peptide (GLP), bovine glucagon (B-glucagon) and anglerfish glucagon (AF-glucagon), all activate glucose production in teleost hepatocytes through gluconeogenesis and glycogenolysis, but notable species differences exist in their respective effectiveness. In trout hepatocytes, gluconeogenesis appears to be the main target of hormone action. In eel cells, sampled in November, glycogenolysis was activated threefold, while gluconeogenesis was increased by 12% only. In March, glycogenolytic activation was 1.7-fold, while gluconeogenesis was increased by about 1.7-fold after exposure to B-glucagon. In brown bullhead cells, increases in glycogenolysis from seven- (GLP) to tenfold (B- and AF-glucagon) were noted, while activation of gluconeogenesis was slight. Fragments of two AF-glucagons (19-29) revealed only insignificant metabolic activity. Treatment of eel cells with B-glucagon led to large (up to 20-fold) increases in intracellular cyclic AMP (cAMP) concentrations, while exposure to GLP was accompanied by a modest (less than twofold) increase in cAMP, although metabolic effectiveness (gluconeogenesis and glycogenolysis) was similar for the two treatments. Under identical conditions, brown bullhead cellular cAMP responded poorly. Levels of cAMP peaked within 15 min following hormone application. The results imply that no simple or direct relationship exists between the amount of intracellular cAMP and the metabolic action of the glucagon family of hormones. It can further be concluded that GLPs are important regulators of hepatic metabolism, influencing identical targets as glucagon, while the mechanisms of action seem to differ. PMID:2166124

  20. Glucagon-like peptide-2 induces rapid digestive adaptation following intestinal resection in preterm neonates

    PubMed Central

    Vegge, Andreas; Thymann, Thomas; Lund, Pernille; Stoll, Barbara; Bering, Stine B.; Hartmann, Bolette; Jelsing, Jacob; Qvist, Niels; Burrin, Douglas G.; Jeppesen, Palle B.; Holst, Jens J.

    2013-01-01

    Short bowel syndrome (SBS) is a frequent complication after intestinal resection in infants suffering from intestinal disease. We tested whether treatment with the intestinotrophic hormone glucagon-like peptide-2 (GLP-2) increases intestinal volume and function in the period immediately following intestinal resection in preterm pigs. Preterm pigs were fed enterally for 48 h before undergoing resection of 50% of the small intestine and establishment of a jejunostomy. Following resection, pigs were maintained on total parenteral nutrition (TPN) without (SBS, n = 8) or with GLP-2 treatment (3.5 μg/kg body wt per h, SBS+GLP-2, n = 7) and compared with a group of unresected preterm pigs (control, n = 5). After 5 days of TPN, all piglets were fed enterally for 24 h, and a nutrient balance study was performed. Intestinal resection was associated with markedly reduced endogenous GLP-2 levels. GLP-2 increased the relative absorption of wet weight (46 vs. 22%), energy (79 vs. 64%), and all macronutrients (all parameters P < 0.05). These findings were supported by a 200% increase in sucrase and maltase activities, a 50% increase in small intestinal epithelial volume (P < 0.05), as well as increased DNA and protein contents and increased total protein synthesis rate in SBS+GLP-2 vs. SBS pigs (+100%, P < 0.05). Following intestinal resection in preterm pigs, GLP-2 induced structural and functional adaptation, resulting in a higher relative absorption of fluid and macronutrients. GLP-2 treatment may be a promising therapy to enhance intestinal adaptation and improve digestive function in preterm infants with jejunostomy following intestinal resection. PMID:23764891

  1. Glucagon-like polypeptide agonists in type 2 diabetes mellitus: efficacy and tolerability, a balance

    PubMed Central

    Tella, Sri Harsha

    2015-01-01

    Glucagon-like polypeptide (GLP-1) receptor agonist treatment has multiple effects on glucose metabolism, supports the β cell, and promotes weight loss. There are now five GLP-1 agonists in clinical use with more in development. GLP-1 treatment typically can induce a lowering of hemoglobin A1c (HbA1c) of 0.5–1.5% over time with weight loss of 2–5%. In some individuals, a progressive loss of weight occurs. There is evidence that GLP-1 therapy opposes the loss of β cells which is a feature of type 2 diabetes. The chief downside of GLP-1 treatment is the gastrointestinal motility disturbance which is one of the modes of action of the hormone; significant nausea, vomiting, and diarrhea may lead to discontinuation of treatment. Although daily injection of GLP-1 agents is successful, the development of extended release preparations allows for injection once weekly, and perhaps much longer in the future. The indication for GLP-1 use is diabetes, but now, liraglutide has been approved for primary treatment of obesity. When oral agents fail to control glucose levels in type 2 diabetes, there is a choice between long-acting insulin and GLP-1 agonists as additional treatments. The lowering of HbA1c by either modality is equivalent in most studies. Patients lose weight with GLP-1 treatment and gain weight on insulin. There is a lower incidence of hypoglycemia with GLP-1 therapy but a much higher incidence of gastrointestinal complaints. Insulin dosing is flexible while GLP-1 agents have historically been administered at fixed dosages. Now, the use of combined long-acting insulin and GLP-1 agonists is promising a major therapeutic change. Combined therapy takes advantage of the benefits of both insulin and GLP-1 agents. Furthermore, direct admixture of both in the same syringe will permit flexible dosing, improvement of glucose levels, and reduction of both hypoglycemia and gastrointestinal side effects. PMID:26137215

  2. Glucagon-like peptide-2 and mouse intestinal adaptation to a high-fat diet.

    PubMed

    Baldassano, Sara; Amato, Antonella; Cappello, Francesco; Rappa, Francesca; Mulè, Flavia

    2013-04-01

    Endogenous glucagon-like peptide-2 (GLP2) is a key mediator of refeeding-induced and resection-induced intestinal adaptive growth. This study investigated the potential role of GLP2 in mediating the mucosal responses to a chronic high-fat diet (HFD). In this view, the murine small intestine adaptive response to a HFD was analyzed and a possible involvement of endogenous GLP2 was verified using GLP2 (3-33) as GLP2 receptor (GLP2R) antagonist. In comparison with animals fed a standard diet, mice fed a HFD for 14 weeks exhibited an increase in crypt-villus mean height (duodenum, 27.5±3.0%; jejunum, 36.5±2.9%; P<0.01), in the cell number per villus (duodenum, 28.4±2.2%; jejunum, 32.0±2.9%; P<0.01), and in Ki67-positive cell number per crypt. No change in the percent of caspase-3-positive cell in the villus-crypt was observed. The chronic exposure to a HFD also caused a significant increase in GLP2 plasma levels and in GLP2R intestinal expression. Daily administration of GLP2 (3-33) (30-60  ng) for 4 weeks did not modify the crypt-villus height in control mice. In HFD-fed mice, chronic treatment with GLP2 (3-33) reduced the increase in crypt-villus height and in the cell number per villus through reduction of cell proliferation and increase in apoptosis. This study provides the first experimental evidence for a role of endogenous GLP2 in the intestinal adaptation to HFD in obese mice and for a dysregulation of the GLP2/GLP2R system after a prolonged HFD.

  3. Glucagon-like peptide-1 prevents methylglyoxal-induced apoptosis of beta cells through improving mitochondrial function and suppressing prolonged AMPK activation

    PubMed Central

    Chang, Tien-Jyun; Tseng, Hsing-Chi; Liu, Meng-Wei; Chang, Yi-Cheng; Hsieh, Meng-Lun; Chuang, Lee-Ming

    2016-01-01

    Accumulation of methylglyoxal (MG) contributes to glucotoxicity and mediates beta cell apoptosis. The molecular mechanism by which GLP-1 protects MG-induced beta cell apoptosis remains unclear. Metformin is a first-line drug for treating type 2 diabetes associated with AMPK activation. However, whether metformin prevents MG-induced beta cell apoptosis is controversial. Here, we explored the signaling pathway involved in the anti-apoptotic effect of GLP-1, and investigated whether metformin had an anti-apoptotic effect on beta cells. MG treatment induced apoptosis of beta cells, impaired mitochondrial function, and prolonged activation of AMP-dependent protein kinase (AMPK). The MG-induced pro-apoptotic effects were abolished by an AMPK inhibitor. Pretreatment of GLP-1 reversed MG-induced apoptosis, and mitochondrial dysfunction, and suppressed prolonged AMPK activation. Pretreatment of GLP-1 reversed AMPK activator 5-aminoimidazole-4-carboxamide riboside (AICAR)-induced apoptosis, and suppressed prolonged AMPK activation. However, metformin neither leads to beta cell apoptosis nor ameliorates MG-induced beta cell apoptosis. In parallel, GLP-1 also prevents MG-induced beta cell apoptosis through PKA and PI3K-dependent pathway. In conclusion, these data indicates GLP-1 but not metformin protects MG-induced beta cell apoptosis through improving mitochondrial function, and alleviating the prolonged AMPK activation. Whether adding GLP-1 to metformin provides better beta cell survival and delays disease progression remains to be validated. PMID:26997114

  4. Examination of mercaptobenzyl sulfonates as catalysts for native chemical ligation: application to the assembly of a glycosylated Glucagon-Like Peptide 1 (GLP-1) analogue.

    PubMed

    Cowper, Ben; Sze, Tsz Mei; Premdjee, Bhavesh; Bongat White, Aileen F; Hacking, Andrew; Macmillan, Derek

    2015-02-21

    3/4-Mercaptobenzyl sulfonates were investigated as aryl thiol catalysts for native chemical ligation (NCL). Whilst catalysing NCL processes at a similar rate to 4-mercaptophenyl acetic acid (MPAA), the increased polarity and solubility of 3-mercaptobenzyl sulfonate in particular may favour its selection as NCL catalyst in many instances. PMID:25605668

  5. 99mTc Labeled Glucagon-Like Peptide-1-Analogue (99mTc-GLP1) Scintigraphy in the Management of Patients with Occult Insulinoma

    PubMed Central

    Sowa-Staszczak, Anna; Trofimiuk-Müldner, Małgorzata; Stefańska, Agnieszka; Tomaszuk, Monika; Buziak-Bereza, Monika; Gilis-Januszewska, Aleksandra; Jabrocka-Hybel, Agata; Głowa, Bogusław; Małecki, Maciej; Bednarczuk, Tomasz; Kamiński, Grzegorz; Kowalska, Aldona; Mikołajczak, Renata; Janota, Barbara; Hubalewska-Dydejczyk, Alicja

    2016-01-01

    Introduction The aim of this study was to assess the utility of [Lys40(Ahx-HYNIC-99mTc/EDDA)NH2]-exendin-4 scintigraphy in the management of patients with hypoglycemia, particularly in the detection of occult insulinoma. Materials and Methods Forty patients with hypoglycemia and increased/confusing results of serum insulin and C-peptide concentration and negative/inconclusive results of other imaging examinations were enrolled in the study. In all patients GLP-1 receptor imaging was performed to localise potential pancreatic lesions. Results Positive results of GLP-1 scintigraphy were observed in 28 patients. In 18 patients postsurgical histopathological examination confirmed diagnosis of insulinoma. Two patients had contraindications to the surgery, one patient did not want to be operated. One patient, who presented with postprandial hypoglycemia, with positive result of GLP-1 imaging was not qualified for surgery and is in the observational group. Eight patients were lost for follow up, among them 6 patients with positive GLP-1 scintigraphy result. One patient with negative scintigraphy was diagnosed with malignant insulinoma. In two patients with negative scintigraphy Munchausen syndrome was diagnosed (patients were taking insulin). Other seven patients with negative results of 99mTcGLP-1 scintigraphy and postprandial hypoglycemia with C-peptide and insulin levels within the limits of normal ranges are in the observational group. We would like to mention that 99mTc-GLP1-SPECT/CT was also performed in 3 pts with nesidioblastosis (revealing diffuse tracer uptake in two and a focal lesion in one case) and in two patients with malignant insulinoma (with the a focal uptake in the localization of a removed pancreatic headin one case and negative GLP-1 1 scintigraphy in the other patient). Conclusions 99mTc-GLP1-SPECT/CT could be helpful examination in the management of patients with hypoglycemia enabling proper localization of the pancreatic lesion and effective surgical treatment. This imaging technique may eliminate the need to perform invasive procedures in case of occult insulinoma. PMID:27526057

  6. New Insights Concerning the Glucose-dependent Insulin Secretagogue Action of Glucagon-like Peptide-1 in Pancreatic β-Cells

    PubMed Central

    Holz, G.

    2010-01-01

    The GLP-1 receptor is a Class B heptahelical G-protein-coupled receptor that stimulates cAMP production in pancreatic β-cells. GLP-1 utilizes this receptor to activate two distinct classes of cAMP-binding proteins: protein kinase A (PKA) and the Epac family of cAMP-regulated guanine nucleotide exchange factors (cAMPGEFs). Actions of GLP-1 mediated by PKA and Epac include the recruitment and priming of secretory granules, thereby increasing the number of granules available for Ca2+-dependent exocytosis. Simultaneously, GLP-1 promotes Ca2+ influx and mobilizes an intracellular source of Ca2+. GLP-1 sensitizes intracellular Ca2+ release channels (ryanodine and IP3 receptors) to stimulatory effects of Ca2+, thereby promoting Ca2+-induced Ca2+ release (CICR). In the model presented here, CICR activates mitochondrial dehydrogenases, thereby upregulating glucose-dependent production of ATP. The resultant increase in cytosolic [ATP]/[ADP] concentration ratio leads to closure of ATP-sensitive K+ channels (K-ATP), membrane depolarization, and influx of Ca2+ through voltage-dependent Ca2+ channels (VDCCs). Ca2+ influx stimulates exocytosis of secretory granules by promoting their fusion with the plasma membrane. Under conditions where Ca2+ release channels are sensitized by GLP-1, Ca2+ influx also stimulates CICR, generating an additional round of ATP production and K-ATP channel closure. In the absence of glucose, no “fuel” is available to support ATP production, and GLP-1 fails to stimulate insulin secretion. This new “feed-forward” hypothesis of β-cell stimulus-secretion coupling may provide a mechanistic explanation as to how GLP-1 exerts a beneficial blood glucose-lowering effect in type 2 diabetic subjects. PMID:15655710

  7. [Roles of rs 6923761 gene variant in glucagon-like peptide 1 receptor on weight, cardiovascular risk factor and serum adipokine levels in morbid obese patients].

    PubMed

    de Luis, Daniel Antonio; Pacheco, David; Aller, Rocío; Izaola, Olatz; Bachiller, Rosario

    2014-04-01

    Antecedentes: Los estudios de receptor de GLP-1 se han dirigido a la identificación de polimorfismos en el gen receptor de GLP- 1 que pueden ser un factor que contribuye en la patogénesis de la diabetes mellitus y factores de riesgo cardiovascular. Sin embargo, el papel de las variantes del receptor de GLP-1 variantes en el peso corporal, factores de riesgo cardiovasculares y adipocitoquinas sigue estando poco estudiado en pacientes con obesidad morbida. Objetivo: Nuestro objetivo fue analizar los efectos del polimorfismo del receptor de GLP-1 rs6923761 sobre el peso corporal, factores de riesgo cardiovascular y los niveles de adipocitoquinas séricas en pacientes con obesidad mórbida. Diseño: Se estudió una muestra de 175 obesos mórbidos. La glucosa en ayunas, proteína C reactiva (PCR), insulina, resistencia a la insulina ( HOMA), colesterol total, LDL- colesterol, HDL- colesterol, triglicéridos y la concentración de adipoquinas se midieron. También se determinaron el peso, índice de masa corporal, circunferencia de la cintura, masa grasa a través de bioimpedancia y la presión arterial. Resultados: Un total de 87 obesos (49,7%) tenían el genotipo GG y 88 (50,3%) de los sujetos del estudio tenían los siguientes genotipos; GA (71 obesos, el 40,6%) o AA (17 sujetos del estudio, el 9,7%) ( segundo grupo) . En el grupo con genotipo GG, los niveles de glucosa (4,4 ± 2,3 mg/dl, p < 0,05), triglicéridos (6,8 ± 4,3 mg/dl , p < 0,05), insulina (4,5 ± 2,3 UI/l , p < 0,05) y HOMA (1,5 ± 0,9 unidades, p < 0,05 ) fueron mayores que en el grupo mutante. No se detectaron diferencias en el resto de parámetros analizados Conclusión: Existe una asociación entre los parámetros metabólicos y el alelo mutante (A) del polimorfismo rs6923761 del receptor de GLP- 1 en pacientes con obesidad mórbida. Los niveles de triglicéridos, insulina y resistencia a la insulina son más elevados en los sujetos portadores del alelo A.

  8. Combination of soya protein and polydextrose reduces energy intake and glycaemic response via modulation of gastric emptying rate, ghrelin and glucagon-like peptide-1 in Chinese.

    PubMed

    Soong, Yean Yean; Lim, Wen Xin; Leow, Melvin Khee Shing; Siow, Phei Ching; Teh, Ai Ling; Henry, Christiani Jeyakumar

    2016-06-01

    The short-term effect of soya protein, polydextrose and their combination on energy intake (EI) was investigated in Chinese. In total, twenty-seven healthy, normotensive and lean Chinese men aged 21-40 years were given four different soyabean curd preloads with or without polydextrose. The study was a repeated-measure, randomised, cross-over design. The consumption of high-protein soyabean curd alone or in addition with polydextrose as a preload led to greater reduction in EI at a subsequent meal. A similar observation was also found after intake of low-protein soyabean curd with polydextrose. The gut hormone responses mirrored the reduction in food intake. It appears that incorporation of polydextrose either with low- or high-protein soyabean curd could be a potential strategy to reduce EI and assist with weight management. The popular consumption of soyabean curd in Chinese makes it an ideal vehicle for incorporation of polydextrose. This evidence-based dietary approach can serve as a guideline for developing functional foods for weight reduction and weight maintenance. PMID:27185412

  9. Examination of mercaptobenzyl sulfonates as catalysts for native chemical ligation: application to the assembly of a glycosylated Glucagon-Like Peptide 1 (GLP-1) analogue.

    PubMed

    Cowper, Ben; Sze, Tsz Mei; Premdjee, Bhavesh; Bongat White, Aileen F; Hacking, Andrew; Macmillan, Derek

    2015-02-21

    3/4-Mercaptobenzyl sulfonates were investigated as aryl thiol catalysts for native chemical ligation (NCL). Whilst catalysing NCL processes at a similar rate to 4-mercaptophenyl acetic acid (MPAA), the increased polarity and solubility of 3-mercaptobenzyl sulfonate in particular may favour its selection as NCL catalyst in many instances.

  10. Glucagon-like peptide-1 (7-36) but not (9-36) augments cardiac output during myocardial ischemia via a Frank-Starling mechanism.

    PubMed

    Goodwill, Adam G; Tune, Johnathan D; Noblet, Jillian N; Conteh, Abass M; Sassoon, Daniel; Casalini, Eli D; Mather, Kieren J

    2014-01-01

    This study examined the cardiovascular effects of GLP-1 (7-36) or (9-36) on myocardial oxygen consumption, function and systemic hemodynamics in vivo during normal perfusion and during acute, regional myocardial ischemia. Lean Ossabaw swine received systemic infusions of saline vehicle or GLP-1 (7-36 or 9-36) at 1.5, 3.0, and 10.0 pmol/kg/min in sequence for 30 min at each dose, followed by ligation of the left circumflex artery during continued infusion at 10.0 pmol/kg/min. Systemic GLP-1 (9-36) had no effect on coronary flow, blood pressure, heart rate or indices of cardiac function before or during regional myocardial ischemia. Systemic GLP-1 (7-36) exerted no cardiometabolic or hemodynamic effects prior to ischemia. During ischemia, GLP-1 (7-36) increased cardiac output by approximately 2 L/min relative to vehicle-controls (p = 0.003). This response was not diminished by treatment with the non-depolarizing ganglionic blocker hexamethonium. Left ventricular pressure-volume loops measured during steady-state conditions with graded occlusion of the inferior vena cava to assess load-independent contractility revealed that GLP-1 (7-36) produced marked increases in end-diastolic volume (74 ± 1 to 92 ± 5 ml; p = 0.03) and volume axis intercept (8 ± 2 to 26 ± 8; p = 0.05), without any change in the slope of the end-systolic pressure-volume relationship vs. vehicle during regional ischemia. GLP-1 (9-36) produced no changes in any of these parameters compared to vehicle. These findings indicate that short-term systemic treatment with GLP-1 (7-36) but not GLP-1 (9-36) significantly augments cardiac output during regional myocardial ischemia, via increases in ventricular preload without changes in cardiac inotropy.

  11. Glucagon-like peptide-1 prevents methylglyoxal-induced apoptosis of beta cells through improving mitochondrial function and suppressing prolonged AMPK activation.

    PubMed

    Chang, Tien-Jyun; Tseng, Hsing-Chi; Liu, Meng-Wei; Chang, Yi-Cheng; Hsieh, Meng-Lun; Chuang, Lee-Ming

    2016-01-01

    Accumulation of methylglyoxal (MG) contributes to glucotoxicity and mediates beta cell apoptosis. The molecular mechanism by which GLP-1 protects MG-induced beta cell apoptosis remains unclear. Metformin is a first-line drug for treating type 2 diabetes associated with AMPK activation. However, whether metformin prevents MG-induced beta cell apoptosis is controversial. Here, we explored the signaling pathway involved in the anti-apoptotic effect of GLP-1, and investigated whether metformin had an anti-apoptotic effect on beta cells. MG treatment induced apoptosis of beta cells, impaired mitochondrial function, and prolonged activation of AMP-dependent protein kinase (AMPK). The MG-induced pro-apoptotic effects were abolished by an AMPK inhibitor. Pretreatment of GLP-1 reversed MG-induced apoptosis, and mitochondrial dysfunction, and suppressed prolonged AMPK activation. Pretreatment of GLP-1 reversed AMPK activator 5-aminoimidazole-4-carboxamide riboside (AICAR)-induced apoptosis, and suppressed prolonged AMPK activation. However, metformin neither leads to beta cell apoptosis nor ameliorates MG-induced beta cell apoptosis. In parallel, GLP-1 also prevents MG-induced beta cell apoptosis through PKA and PI3K-dependent pathway. In conclusion, these data indicates GLP-1 but not metformin protects MG-induced beta cell apoptosis through improving mitochondrial function, and alleviating the prolonged AMPK activation. Whether adding GLP-1 to metformin provides better beta cell survival and delays disease progression remains to be validated. PMID:26997114

  12. Do Lactation-Induced Changes in Ghrelin, Glucagon-Like Peptide-1, and Peptide YY Influence Appetite and Body Weight Regulation during the First Postpartum Year?

    PubMed Central

    Larson-Meyer, D. Enette; Schueler, Jessica; Kyle, Erin; Austin, Kathleen J.; Hart, Ann Marie; Alexander, Brenda M.

    2016-01-01

    To determine whether fasting and meal-induced appetite-regulating hormones are altered during lactation and associated with body weight retention after childbearing, we studied 24 exclusively breastfeeding women (BMI = 25.2 ± 3.6 kg/m2) at 4-5 weeks postpartum and 20 never-pregnant controls (BMI = 24.0 ± 3.1 kg/m2). Ghrelin, PYY, GLP-1, and appetite ratings were measured before/and 150 minutes after a standardized breakfast and 60 minutes after an ad libitum lunch. Body weight/composition were measured at 6 and 12 months. Fasting and area under-the-curve responses for appetite-regulating hormones did not differ between lactating and control groups; ghrelinacyl, however, tended to track higher after the standardized breakfast in lactating women and was higher (p < 0.05) after the ad libitum lunch despite a 24% higher energy intake (p < 0.05). By 12 months, lactating women lost 5.3 ± 2.2 kg (n = 18), whereas control women (n = 15) remained weight stable (p = 0.019); fifteen of the lactating women returned to within ±2.0 kg of prepregnancy weight but three retained >6.0 kg. The retainers had greater (p < 0.05) postmeal ghrelin rebound responses following breakfast. Overall these studies do not support the hypothesis that appetite-regulating hormones are altered during lactation and associated with postpartum weight retention. Altered ghrelin responses, however, deserve further exploration. PMID:27313876

  13. Alteration of gut microbiota by vancomycin and bacitracin improves insulin resistance via glucagon-like peptide 1 in diet-induced obesity.

    PubMed

    Hwang, Injae; Park, Yoon Jeong; Kim, Yeon-Ran; Kim, Yo Na; Ka, Sojeong; Lee, Ho Young; Seong, Je Kyung; Seok, Yeong-Jae; Kim, Jae Bum

    2015-06-01

    Firmicutes and Bacteroidetes, 2 major phyla of gut microbiota, are involved in lipid and bile acid metabolism to maintain systemic energy homeostasis in host. Recently, accumulating evidence has suggested that dietary changes promptly induce the alteration of abundance of both Firmicutes and Bacteroidetes in obesity and its related metabolic diseases. Nevertheless, the metabolic roles of Firmicutes and Bacteroidetes on such disease states remain unclear. The aim of this study was to determine the effects of antibiotic-induced depletion of Firmicutes and Bacteroidetes on dysregulation of energy homeostasis in obesity. Treatment of C57BL/6J mice with the antibiotics (vancomycin [V] and bacitracin [B]), in the drinking water, before diet-induced obesity (DIO) greatly decreased both Firmicutes and Bacteroidetes in the gut as revealed by pyrosequencing of the microbial 16S rRNA gene. Concomitantly, systemic glucose intolerance, hyperinsulinemia, and insulin resistance in DIO were ameliorated via augmentation of GLP-1 secretion (active form; 2.03-fold, total form; 5.09-fold) independently of obesity as compared with untreated DIO controls. Furthermore, there were increases in metabolically beneficial metabolites derived from the gut. Together, our data suggest that Firmicutes and Bacteroidetes potentially mediate insulin resistance through modulation of GLP-1 secretion in obesity.

  14. Glucagon-like peptide 2 therapy reduces negative effects of diarrhea on calf gut.

    PubMed

    Connor, E E; Kahl, S; Elsasser, T H; Baldwin, R L; Fayer, R; Santin-Duran, M; Sample, G L; Evock-Clover, C M

    2013-03-01

    Damage to the intestinal epithelium reduces nutrient absorption and animal growth, and can have negative long-term health effects on livestock. Because the intestinotropic hormone glucagon-like peptide 2 (GLP-2) has been shown to contribute to gut integrity, reduce inflammation, and improve nutrient absorption, the present study was designed to determine whether administration of GLP-2 to calves with coccidiosis in the first month of life affects intestinal growth and mediates negative effects of the proinflammatory response. Holstein bull calves (n=19) were assigned to 4 treatment groups of 4 to 5 calves each: (1) infected with Eimeria bovis, GLP-2 treated; (2) noninfected, GLP-2 treated; (3) infected with E. bovis, buffer treated; and (4) noninfected, buffer treated. Infected calves received 100,000 to 200,000 sporulated E. bovis oocysts suspended in milk replacer on d 0 of the study. On d 18, calves in the GLP-2 groups received a subcutaneous injection of 50 μg of bovine GLP-2/kg of body weight twice daily for 10 d, and calves in the buffer-treated groups received an equivalent volume of sodium bicarbonate buffer only. On d 28, calves were slaughtered 2h after injection of 5-bromo-2'-deoxyuridine (BrdU). Intestinal tissues were measured and villus height, crypt depth, and BrdU immunostaining were evaluated in segments of the small intestine. Nitrotyrosine immunostaining, a measure of nitro-oxidative damage, was evaluated in the ileum and cecum. No GLP-2 treatment by E. bovis infection interaction was observed for any parameter measured, with the exception of nitrotyrosine immunostaining in the cecum. Large intestinal weight was greater in infected than noninfected calves and with GLP-2 treatment relative to buffer treatment. Calves that received GLP-2 also had greater small intestinal weight but no difference in cell proliferation, as assessed by BrdU labeling, relative to buffer-treated calves. No treatment effects were detected for villus height, crypt depth

  15. Glucagon like peptide-2 induces intestinal restitution through VEGF release from subepithelial myofibroblasts.

    PubMed

    Bulut, Kerem; Pennartz, Christian; Felderbauer, Peter; Meier, Juris J; Banasch, Matthias; Bulut, Daniel; Schmitz, Frank; Schmidt, Wolfgang E; Hoffmann, Peter

    2008-01-14

    Glucagon like peptide-2 (GLP-2) exerts intestinotrophic actions, but the underlying mechanisms are still a matter of debate. Recent studies demonstrated the expression of the GLP-2 receptor on fibroblasts located in the subepithelial tissue, where it might induce the release of growth factors such as keratinocyte growth factor (KGF) or vascular endothelial growth factor (VEGF). Therefore, in the present studies we sought to elucidate the downstream mechanisms involved in improved intestinal adaptation by GLP-2. Human colonic fibroblasts (CCD-18Co), human colonic cancer cells (Caco-2 cells) and rat ileum IEC-18 cells were used. GLP-2 receptor mRNA expression was determined using real time RT-PCR. Conditioned media from CCD-18Co cells were obtained following incubation with GLP-2 (50-250 nM) for 24 h. Cell viability was assessed by a 3-[4, 5-dimethylthiazol-2-yl]-2, 5-diphenyl-tetrazolium bromide (MTT)-assay, and wound healing was determined with an established migration-assay. Transforming Growth Factor beta (TGF-beta), VEGF and KGF mRNA levels were determined by RT-PCR. Protein levels of VEGF and TGF-beta in CCD-18Co cells following GLP-2 stimulation were determined using ELISA. Neutralizing TGF-beta and VEGF-A antibodies were utilized to assess the role of TGF-beta and VEGF-A in the process of wound healing. GLP-2 receptor expression was detected in CCD-18Co cells. Conditioned media from CCD-18Co cells dose-dependently induced proliferation in Caco-2 cells, but not in IEC-18 cells. Conditioned media also enhanced cell migration in IEC-18 cells (P<0.01), while migration was even inhibited in Caco-2 cells (P<0.0012). GLP-2 significantly stimulated mRNA expression of VEGF and TGF-beta, but not of KGF in CCD-18Co. The migratory effects of GLP-2 were completely abolished in the presence of TGF-beta and VEGF-A antibodies. GLP-2 exerts differential effects on the epithelium of the small intestine and the colon. Thus, in small intestinal cells GLP-2 stimulates wound

  16. Glucagon-like peptide analogues for type 2 diabetes mellitus: systematic review and meta-analysis

    PubMed Central

    2010-01-01

    Background Glucagon-like peptide (GLP-1) analogues are a new class of drugs used in the treatment of type 2 diabetes. They are given by injection, and regulate glucose levels by stimulating glucose-dependent insulin secretion and biosynthesis, suppressing glucagon secretion, and delaying gastric emptying and promoting satiety. This systematic review aims to provide evidence on the clinical effectiveness of the GLP-1 agonists in patients not achieving satisfactory glycaemic control with one or more oral glucose lowering drugs. Methods MEDLINE, EMBASE, the Cochrane Library and Web of Science were searched to find the relevant papers. We identified 28 randomised controlled trials comparing GLP-1 analogues with placebo, other glucose-lowering agents, or another GLP-1 analogue, in patients with type 2 diabetes with inadequate control on a single oral agent, or on dual therapy. Primary outcomes included HbA1c, weight change and adverse events. Results Studies were mostly of short duration, usually 26 weeks. All GLP-1 agonists reduced HbA1c by about 1% compared to placebo. Exenatide twice daily and insulin gave similar reductions in HbA1c, but exenatide 2 mg once weekly and liraglutide 1.8 mg daily reduced it by 0.20% and 0.30% respectively more than glargine. Liraglutide 1.2 mg daily reduced HbA1c by 0.34% more than sitagliptin 100 mg daily. Exenatide and liraglutide gave similar improvements in HbA1c to sulphonylureas. Exenatide 2 mg weekly and liraglutide 1.8 mg daily reduced HbA1c by more than exenatide 10 μg twice daily and sitagliptin 100 mg daily. Exenatide 2 mg weekly reduced HbA1c by 0.3% more than pioglitazone 45 mg daily. Exenatide and liraglutide resulted in greater weight loss (from 2.3 to 5.5 kg) than active comparators. This was not due simply to nausea. Hypoglycaemia was uncommon, except when combined with a sulphonylurea. The commonest adverse events with all GLP-1 agonists were initial nausea and vomiting. The GLP-1 agonists have some effect on beta

  17. A novel, long-acting glucagon-like peptide receptor-agonist: dulaglutide

    PubMed Central

    Gurung, Tara; Shyangdan, Deepson S; O’Hare, Joseph Paul; Waugh, Norman

    2015-01-01

    Background Dulaglutide is a new, long-acting glucagon-like peptide analogue in the treatment of type 2 diabetes. It is available in two doses, 0.75 and 1.5 mg, given by injection once weekly. This systematic review reports the effectiveness and safety of dulaglutide in type 2 diabetes in dual and triple therapy. Methods MEDLINE, MEDLINE In-Process and Other Non-Indexed Citations, EMBASE, and conference abstracts were searched from 2005 to August 2014, and updated in January 2015. Company websites and references of included studies were checked for potentially relevant studies. European Medicines Agency and US Food and Drug Administration websites were searched. Results Four trials were included. All were manufacturer-funded randomized controlled trials from the Assessment of Weekly Administration of Dulaglutide in Diabetes (AWARD) program. AWARD-1 compared dulaglutide 1.5 mg against exenatide 10 µg twice daily and placebo, AWARD-2 compared dulaglutide 0.75 and 1.5 mg against insulin glargine, AWARD-5 compared dulaglutide 0.75 and 1.5 mg against sitagliptin 100 mg and placebo, and AWARD-6 compared dulaglutide 1.5 mg against liraglutide 1.8 mg. The duration of follow-up in the trials ranged from 26 to 104 weeks. The primary outcome of all the included trials was change in HbA1c. At 26 weeks, greater HbA1c reductions were seen with dulaglutide than with twice daily exenatide (dulaglutide 1.5/0.75 mg: −1.5%/−1.3%; exe: 0.99%) and sitagliptin (1.5/0.75 mg −1.22%/−1.01%; sitagliptin: −0.6%). HbA1c change was greater with dulaglutide 1.5 mg (−1.08%) than with glargine (−0.63%), but not with dulaglutide 0.75 mg (−0.76%). Dulaglutide 1.5 mg was found to be noninferior to liraglutide 1.8 mg. More patients treated with dulaglutide achieved HbA1c targets of <7% and ≤6.5%. Reduction in weight was greater with dulaglutide than with sitagliptin and exenatide. Hypoglycemia was infrequent. The main adverse events were nausea, diarrhea, and vomiting. Conclusion

  18. Towards exaggerated emphysema stereotypes

    NASA Astrophysics Data System (ADS)

    Chen, C.; Sørensen, L.; Lauze, F.; Igel, C.; Loog, M.; Feragen, A.; de Bruijne, M.; Nielsen, M.

    2012-03-01

    Classification is widely used in the context of medical image analysis and in order to illustrate the mechanism of a classifier, we introduce the notion of an exaggerated image stereotype based on training data and trained classifier. The stereotype of some image class of interest should emphasize/exaggerate the characteristic patterns in an image class and visualize the information the employed classifier relies on. This is useful for gaining insight into the classification and serves for comparison with the biological models of disease. In this work, we build exaggerated image stereotypes by optimizing an objective function which consists of a discriminative term based on the classification accuracy, and a generative term based on the class distributions. A gradient descent method based on iterated conditional modes (ICM) is employed for optimization. We use this idea with Fisher's linear discriminant rule and assume a multivariate normal distribution for samples within a class. The proposed framework is applied to computed tomography (CT) images of lung tissue with emphysema. The synthesized stereotypes illustrate the exaggerated patterns of lung tissue with emphysema, which is underpinned by three different quantitative evaluation methods.

  19. Glucagon-like peptide-2 intracellularly stimulates eNOS phosphorylation and specifically induces submucosal arteriole vasodilation via a sheer stress-independent, local neural mechanism

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Glucagon-like peptide-2 (GLP-2) is a nutrient-responsive neuropeptide that exerts diverse actions in the gastrointestinal tract, including enhancing mucosal cell survival and proliferation, mucosal blood flow, luminal nutrient uptake, and suppressing gastric motility and secretion. We have shown th...

  20. Glucagon-like peptide-2 (GLP-2) increases net amino acid utilization by the portal-drained viscera of ruminatinhg calves

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Glucagon-like peptide-2 (GLP-2) increases small intestinal mass and blood flow in ruminant calves, but its impact on nutrient metabolism across the portal-drained viscera (PDV) and liver is unknown. Eight Holstein calves with catheters in the carotid artery, mesenteric vein, portal vein and hepatic ...

  1. The glucagon-like peptide 2 receptor is expressed in enteric neurons and not in the epithelium of the intestine.

    PubMed

    Pedersen, Jens; Pedersen, Nis B; Brix, Sophie W; Grunddal, Kaare Villum; Rosenkilde, Mette M; Hartmann, Bolette; Ørskov, Cathrine; Poulsen, Steen S; Holst, Jens J

    2015-05-01

    Glucagon-like peptide 2 (GLP-2) is a potent intestinotrophic growth factor with therapeutic potential in the treatment of intestinal deficiencies. It has recently been approved for the treatment of short bowel syndrome. The effects of GLP-2 are mediated by specific binding of the hormone to the GLP-2 receptor (GLP-2R) which was cloned in 1999. However, consensus about the exact receptor localization in the intestine has never been established. By physical, chemical and enzymatic tissue fragmentation, we were able to divide rat jejunum into different compartments consisting of: (1) epithelium alone, (2) mucosa with lamina propria and epithelium, (3) the external muscle coat including myenteric plexus, (4) a compartment enriched for the myenteric plexus and (5) intestine without epithelium. Expression of Glp2r; chromogranin A; tubulin, beta 3; actin, gamma 2, smooth muscle, enteric and glial fibrillary acidic protein in these isolated tissue fractions was quantified with qRT-PCR. Expression of the Glp2r was confined to compartments containing enteric neurons and receptor expression was absent in the epithelium. Our findings provide evidence for the expression of the GLP-2R in intestinal compartments rich in enteric neurons and, importantly they exclude significant expression in the epithelium of rat jejunal mucosa.

  2. Structure and biological activity of glucagon and glucagon-like peptide from a primitive bony fish, the bowfin (Amia calva).

    PubMed Central

    Conlon, J M; Youson, J H; Mommsen, T P

    1993-01-01

    The bowfin, Amia calva (order Amiiformes) occupies an important position in phylogeny as a surviving representative of a group of primitive ray-finned fishes from which the present-day teleosts may have evolved. Glucagon and glucagon-like peptide (GLP) were isolated from an extract of bowfin pancreas and their primary structures determined. Bowfin glucagon shows only four amino acid substitutions compared with human glucagon, and bowfin glucagon was equipotent and equally effective as human glucagon in stimulation of glycogenolysis in dispersed hepatocytes from a teleost fish, the copper rockfish, Sebastes caurinus. In contrast, bowfin GLP shows 15 amino acid substitutions and three amino acid deletions compared with the corresponding region of human GLP-1-(7-37)-peptide. In particular, the bowfin peptide contains an N-terminal tyrosine residue rather than the N-terminal histidine residue found in all other glucagon-related peptides so far characterized. Bowfin GLP stimulated glycogenolysis in rockfish hepatocytes, but was 3-fold less effective and 23-fold less potent than human GLP-1-(7-37)-peptide. We speculate that selective mutations in the GLP domain of bowfin preproglucagon may be an adaptive response to the previously demonstrated low biological potency of bowfin insulin. PMID:8240302

  3. Exaggerated Claims for Interactive Stories

    NASA Astrophysics Data System (ADS)

    Thue, David; Bulitko, Vadim; Spetch, Marcia; Webb, Michael

    As advertising becomes more crucial to video games' success, developers risk promoting their products beyond the features that they can actually include. For features of interactive storytelling, the effects of making such exaggerations are not well known, as reports from industry have been anecdotal at best. In this paper, we explore the effects of making exaggerated claims for interactive stories, in the context of the theory of advertising. Results from a human user study show that female players find linear and branching stories to be significantly less enjoyable when they are advertised with exaggerated claims.

  4. [Exaggerated breed characteristics in dogs].

    PubMed

    Wilting, M M; Endenburg, N

    2012-01-01

    Dutch dog owners seem to be aware of bad dog breeding practices with regard to exaggerated breed characteristics that are detrimental to the dog's welfare. Yet they do not always look for these features when buying a dog. Most dog owners think that veterinarians could have an important role in preventing these exaggerated physical traits, by providing information about these traits and taking action in their capacity as veterinarian. Articles 36 and 55 of the Dutch GWWD (animal health and welfare law) provide opportunities to act against the breeding of dogs with exaggerated genetic traits.

  5. Isolation and structure of the principal products of preproglucagon processing, including an amidated glucagon-like peptide.

    PubMed

    Andrews, P C; Hawke, D H; Lee, T D; Legesse, K; Noe, B D; Shively, J E

    1986-06-25

    The principal products derived from in vivo processing of anglerfish preproglucagon II were isolated and their structures determined. The structures were confirmed by a combination of automated Edman degradation, amino acid analysis, and fast atom bombardment mass spectrometry. The peptide corresponding to anglerfish preproglucagon II-(22-49) (numbering from the amino terminus of preproglucagon) was isolated intact and defines the site of signal cleavage to be between Gln-21 and Met-22. Glucagon from the anglerfish preproglucagon gene II was found to correspond to preproglucagon II-(52-80) (numbering from the amino terminus). Three forms of a glucagon-like peptide derived from preproglucagon II were also isolated. The structure of the longest form was consistent with the sequence of preproglucagon II-(89-122) deduced from the cDNA, His-Ala-Asp-Gly-Thr-Tyr-Thr-Ser-Asp-Val-Ser-Ser-Tyr-Leu-Gln-Asp-Gln-Ala- Ala-Lys-Asp-Phe-Val-Ser-Trp-Leu-Lys-Ala-Gly-Arg-Gly-Arg-Arg-Glu. The carboxyl-terminal portion deduced from the cDNA remains intact in this form. A second form, preproglucagon II-(89-119) appears to result from proteolytic processing of the major form at the two adjacent arginine residues occurring at the carboxyl terminus. This second form has a glycine residue at its carboxyl terminus and is processed to the third form (preproglucagon II-(89-118)) which contains a carboxyl-terminal arginineamide. Radiolabeling studies in primary tissue culture support the observation that glucagon (preproglucagon II-(52-80], preproglucagon II-(89-122), and preproglucagon II-(89-119) are products of proglucagon processing in vivo. PMID:3755132

  6. Glucagon-like peptide-2 modulates neurally evoked mucosal chloride secretion in guinea pig small intestine in vitro

    PubMed Central

    Baldassano, Sara; Liu, Sumei; Qu, Mei-Hu; Mulè, Flavia

    2009-01-01

    Glucagon-like peptide-2 (GLP-2) is an important neuroendocrine peptide in intestinal physiology. It influences digestion, absorption, epithelial growth, motility, and blood flow. We studied involvement of GLP-2 in intestinal mucosal secretory behavior. Submucosal-mucosal preparations from guinea pig ileum were mounted in Ussing chambers for measurement of short-circuit current (Isc) as a surrogate for chloride secretion. GLP-2 action on neuronal release of acetylcholine was determined with ELISA. Enteric neuronal expression of the GLP-2 receptor (GLP-2R) was studied with immunohistochemical methods. Application of GLP-2 (0.1–100 nM) to the serosal or mucosal side of the preparations evoked no change in baseline Isc and did not alter transepithelial ionic conductance. Transmural electrical field stimulation (EFS) evoked characteristic biphasic increases in Isc, with an initially rapid rising phase followed by a sustained phase. Application of GLP-2 reduced the EFS-evoked biphasic responses in a concentration-dependent manner. The GLP-2R antagonist GLP-2-(3-33) significantly reversed suppression of the EFS-evoked responses by GLP-2. Tetrodotoxin, scopolamine, and hexamethonium, but not vasoactive intestinal peptide type 1 receptor (VPAC1) antagonist abolished or reduced to near zero the EFS-evoked responses. GLP-2 suppressed EFS-evoked acetylcholine release as measured by ELISA. Pretreatment with GLP-2-(3-33) offset this action of GLP-2. In the submucosal plexus, GLP-2R immunoreactivity (-IR) was expressed in choline acetyltransferase-IR neurons, somatostatin-IR neurons, neuropeptide Y-IR neurons, and vasoactive intestinal peptide-IR neurons. We conclude that submucosal neurons in the guinea pig ileum express GLP-2R. Activation of GLP-2R decreases neuronally evoked epithelial chloride secretion by suppressing acetylcholine release from secretomotor neurons. PMID:19628655

  7. Synthesis and Pharmacological Characterization of Novel Glucagon-like Peptide-2 (GLP-2) Analogues with Low Systemic Clearance.

    PubMed

    Wiśniewski, Kazimierz; Sueiras-Diaz, Javier; Jiang, Guangcheng; Galyean, Robert; Lu, Mark; Thompson, Dorain; Wang, Yung-Chih; Croston, Glenn; Posch, Alexander; Hargrove, Diane M; Wiśniewska, Halina; Laporte, Régent; Dwyer, John J; Qi, Steve; Srinivasan, Karthik; Hartwig, Jennifer; Ferdyan, Nicky; Mares, Monica; Kraus, John; Alagarsamy, Sudarkodi; Rivière, Pierre J M; Schteingart, Claudio D

    2016-04-14

    Glucagon-like peptide-2 receptor agonists have therapeutic potential for the treatment of intestinal diseases. The native hGLP-2, a 33 amino acid gastrointestinal peptide, is not a suitable clinical candidate, due to its very short half-life in humans. In search of GLP-2 receptor agonists with better pharmacokinetic characteristics, a series of GLP-2 analogues containing Gly substitution at position 2, norleucine in position 10, and hydrophobic substitutions in positions 11 and/or 16 was designed and synthesized. In vitro receptor potency at the human GLP-2, selectivity vs the human GLP-1 and GCG receptors, and PK profile in rats were determined for the new analogues. A number of compounds more potent at the hGLP-2R than the native hormone, showing excellent receptor selectivity and very low systemic clearance (CL) were discovered. Analogues 69 ([Gly(2),Nle(10),D-Thi(11),Phe(16)]hGLP-2-(1-30)-NH2), 72 ([Gly(2),Nle(10),D-Phe(11),Leu(16)]hGLP-2-(1-33)-OH), 73 ([Gly(2),Nle(10),D-Phe(11),Leu(16)]hGLP-2-(1-33)-NH2), 81 ([Gly(2),Nle(10),D-Phe(11),Leu(16)]hGLP-2-(1-33)-NHEt), and 85 ([Gly(2),Nle(10),D-Phe(11),Leu(16)]hGLP-2-(1-33)-NH-((CH2)2O)4-(CH2)2-CONH2) displayed the desired profiles (EC50 (hGLP-2R) < 100 pM, CL in rat <0.3 mL/min/kg, selective vs hGLP-1R and hGCGR). Compound 73 (FE 203799) was selected as a candidate for clinical development. PMID:26986178

  8. Effect of Glucagon-Like Peptide 2 on Hepatic, Renal, and Intestinal Disposition of 1-Chloro-2,4-dinitrobenzene

    PubMed Central

    Villanueva, Silvina S. M.; Perdomo, Virginia G.; Ruiz, María L.; Rigalli, Juan P.; Arias, Agostina; Luquita, Marcelo G.; Vore, Mary; Catania, Viviana A.

    2012-01-01

    The ability of the liver, small intestine, and kidney to synthesize and subsequently eliminate dinitrophenyl-S-glutathione (DNP-SG), a substrate for multidrug resistance-associated protein 2 (Mrp2), was assessed in rats treated with glucagon-like peptide 2 (GLP-2, 12 μg/100 g b.wt. s.c. every 12 h for 5 consecutive days). An in vivo perfused jejunum model with simultaneous bile and urine collection was used. A single intravenous dose of 30 μmol/kg b.wt. 1-chloro-2,4-dinitrobenzene (CDNB) was administered, and its conjugate, DNP-SG, and dinitrophenyl cysteinyl glycine (DNP-CG), resulting from the action of γ-glutamyltransferase on DNP-SG, were determined in bile, intestinal perfusate, and urine by high-performance liquid chromatography. Tissue content of DNP-SG was also assessed in liver, intestine, and kidneys. Biliary excretion of DNP-SG+DNP-CG was decreased in GLP-2 rats with respect to controls. In contrast, their intestinal excretion was substantially increased, whereas urinary elimination was not affected. Western blot and real-time polymerase chain reaction studies revealed preserved levels of Mrp2 protein and mRNA in liver and renal cortex and a significant increase in intestine in response to GLP-2 treatment. Tissue content of DNP-SG detected 5 min after CDNB administration was decreased in liver, increased in intestine, and unchanged in kidney in GLP-2 versus control group, consistent with GLP-2-induced down-regulation of expression of glutathione transferase (GST) Mu in liver and up-regulation of GST-Alpha in intestine at both protein and mRNA levels. In conclusion, GLP-2 induced selective changes in hepatic and intestinal disposition of a common GST and Mrp2 substrate administered systemically that could be of pharmacological or toxicological relevance under therapeutic treatment conditions. PMID:22453052

  9. Exaggerated trait growth in insects.

    PubMed

    Lavine, Laura; Gotoh, Hiroki; Brent, Colin S; Dworkin, Ian; Emlen, Douglas J

    2015-01-01

    Animal structures occasionally attain extreme proportions, eclipsing in size the surrounding body parts. We review insect examples of exaggerated traits, such as the mandibles of stag beetles (Lucanidae), the claspers of praying mantids (Mantidae), the elongated hindlimbs of grasshoppers (Orthoptera: Caelifera), and the giant heads of soldier ants (Formicidae) and termites (Isoptera). Developmentally, disproportionate growth can arise through trait-specific modifications to the activity of at least four pathways: the sex determination pathway, the appendage patterning pathway, the insulin/IGF signaling pathway, and the juvenile hormone/ecdysteroid pathway. Although most exaggerated traits have not been studied mechanistically, it is already apparent that distinct developmental mechanisms underlie the evolution of the different types of exaggerated traits. We suggest this reflects the nature of selection in each instance, revealing an exciting link between mechanism, form, and function. We use this information to make explicit predictions for the types of regulatory pathways likely to underlie each type of exaggerated trait.

  10. Exaggerated trait growth in insects

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Animal structures occasionally attain extreme proportions, eclipsing in size other, surrounding body parts. We review insect examples of exaggerated traits, such as the mandibles of stag beetles, the claspers of praying mantises, the elongated hindlimbs of grasshoppers, and the giant heads of soldie...

  11. Role of glial cell-line derived neurotropic factor family receptor alpha2 in the actions of the glucagon-like peptides on the murine intestine.

    PubMed

    McDonagh, Sean C; Lee, Jenny; Izzo, Angelo; Brubaker, Patricia L

    2007-08-01

    The intestinal glucagon-like peptides GLP-1 and GLP-2 inhibit intestinal motility, whereas GLP-2 also stimulates growth of the intestinal mucosa. However, the mechanisms of action of these peptides in the intestine remain poorly characterized. To determine the role of the enteric nervous system in the actions of GLP-1 and GLP-2 on the intestine, the glial cell line-derived neurotropic factor family receptor alpha(2) (GFRalpha2) knockout (KO) mouse was employed. The mice exhibited decreased cholinergic staining, as well as reduced mRNA transcripts for substance P-ergic excitatory motoneurons in the enteric nervous system (ENS) (P < 0.05). Examination of parameters of intestinal growth (including small and large intestinal weight and small intestinal villus height, crypt depth, and crypt cell proliferation) demonstrated no differences between wild-type and KO mice in either basal or GLP-2-stimulated mucosal growth. Nonetheless, KO mice exhibited reduced numbers of synaptophysin-positive enteroendocrine cells (P < 0.05), as well as a markedly impaired basal gastrointestinal (GI) transit rate (P < 0.05). Furthermore, acute administration of GLP-1 and GLP-2 significantly inhibited transit rates in wild-type mice (P < 0.05-0.01) but had no effect in GFRalpha2 KO mice. Despite these changes, expression of mRNA transcripts for the GLP receptors was not reduced in the ENS of KO animals, suggesting that GLP-1 and -2 modulate intestinal transit through enhancement of inhibitory input to cholinergic/substance P-ergic excitatory motoneurons. Together, these findings demonstrate a role for GFRalpha2-expressing enteric neurons in the downstream signaling of the glucagon-like peptides to inhibit GI motility, but not in intestinal growth.

  12. Exendin-4, a glucagon-like peptide-1 receptor agonist, inhibits Aβ25-35-induced apoptosis in PC12 cells by suppressing the expression of endoplasmic reticulum stress-related proteins

    PubMed Central

    Zhang, Jianfeng; Wu, Junfeng; Zeng, Weichen; Zhao, Yongfei; Zu, Hengbing

    2015-01-01

    Neurodegenerative disorders are chronic and progressive disease. Exendin-4 (Ex-4) can function as a neuroprotective agent and has novel therapeutic ability for the treatment of neurodegenerative disorders. In this study, we aimed to explore the neuroprotective effect of Ex-4 on PC12 cell apoptosis induced by Aβ25-35 in molecular level. The apoptosis of PC12 cells was detected by MTT assay, TUNEL staining and flow cytometry. The expression of ERS (endoplasmic reticulum stress, ERS) related proteins such as CHOP, GRP78 and Caspase-12 were determined by Western blot and cell immunocytochemistry. Results showed the apoptotic rate of PC12 cells significantly increased after Aβ25-35 addition, which was remarkably reduced after Ex-4 treatment. The expression of CHOP, GRP78 and Caspase-12 were significantly upregulated, and then remarkably reduced after Ex-4 treatment, while in the presence of Exendin9-39, the effect of Ex-4 was reversed. In conclusion, endoplasmic reticulum stress might be involved in the apoptosis process of PC12 cell induced by Aβ25-35 and Ex-4 might provide a potential strategy for the treatment and prevention of cell apoptosis-associated disorders. PMID:26722468

  13. Frog skin peptides (tigerinin-1R, magainin-AM1, -AM2, CPF-AM1, and PGla-AM1) stimulate secretion of glucagon-like peptide 1 (GLP-1) by GLUTag cells.

    PubMed

    Ojo, O O; Conlon, J M; Flatt, P R; Abdel-Wahab, Y H A

    2013-02-01

    Skin secretions of several frog species contain host-defense peptides with multiple biological activities including in vitro and in vivo insulin-releasing actions. This study investigates the effects of tigerinin-1R from Hoplobatrachus rugulosus (Dicroglossidae) and magainin-AM1, magainin-AM2, caerulein precursor fragment (CPF-AM1) and peptide glycine leucine amide (PGLa-AM1) from Xenopus amieti (Pipidae) on GLP-1 secretion from GLUTag cells. Tigerinin-1R showed the highest potency producing a significant (P<0.05) increase in GLP-1 release at a concentration of 0.1nM for the cyclic peptide and 0.3nM for the reduced form. All peptides from X. amieti significantly (P<0.05) stimulated GLP-1 release at concentrations ⩾300nM with magainin-AM2 exhibiting the greatest potency (minimum concentration producing a significant stimulation=1nM). The maximum stimulatory response (3.2-fold of basal rate, P<0.001) was produced by CPF-AM1 at a concentration of 3μM. No peptide stimulated release of the cytosolic enzyme, lactate dehydrogenase from GLUTag cells at concentrations up to 3μM indicating that the integrity of the plasma membrane had been preserved. The data indicate that frog skin peptides, by stimulating GLP-1 release as well as direct effects on insulin secretion, show therapeutic potential as agents for the treatment of type 2 diabetes.

  14. The primary structure of glucagon-like peptide but not insulin has been conserved between the American eel, Anguilla rostrata and the European eel, Anguilla anguilla.

    PubMed

    Conlon, J M; Andrews, P C; Thim, L; Moon, T W

    1991-04-01

    Insulin was isolated from the pancreas of the American eel, Anguilla rostrata, and its primary structure was established as (Formula: see text). Eel insulin contains unusual substitutions at B-21, B-22, and B-26 in the putative receptor-binding region of the molecule compared with other mammalian and fish insulins. The A-chain of insulin from the European eel contains an asparagine rather than a serine residue at position A-12. Similarly, amino acid composition data indicate the B-chain of insulin from the European eel is appreciably different from that from the American eel. The primary structure of glucagon-like peptide (GLP) from the American eel is identical to that from the European eel, Anguilla anguilla. The primary structure of the peptide was established as (Formula: see text). Fast-atom bombardment mass spectrometry demonstrated that the COOH-terminal arginyl residue is alpha-amidated. The strong evolutionary pressure to conserve the structure of GLP provides further support for the assertion that the peptide plays an important regulatory role in teleost fish.

  15. Sustained glucagon-like peptide-2 infusion is required for intestinal adaptation, and cessation reverses increased cellularity in rats with intestinal failure

    PubMed Central

    Koopmann, Matthew C.; Chen, Xueyan; Holst, Jens J.

    2010-01-01

    Glucagon-like peptide-2 (GLP-2) is a nutrient-dependent, proglucagon-derived hormone that is a proposed treatment for human short bowel syndrome (SBS). The objective was to determine how the timing, duration, and cessation of GLP-2 administration affect intestinal adaptation and enterocyte kinetics in a rat model of human SBS that results in intestinal failure requiring total parenteral nutrition (TPN). Rats underwent 60% jejunoileal resection plus cecectomy and jugular vein cannulation and were maintained exclusively with TPN for 18 days in these treatments: TPN control (no GLP-2); sustained GLP-2 (1–18 days); early GLP-2 (1–7 days, killed at 7 or 18 days); and delayed GLP-2 (12–18 days). Body weight gain was similar across groups, and plasma bioactive GLP-2 was significantly increased with coinfusion of GLP-2 (100 μg·kg−1·day−1) with TPN. GLP-2-treated rats showed significant increases in duodenum and jejunum mucosal dry mass, protein, DNA, and sucrase activity compared with TPN control. The increased jejunum cellularity reflected significantly decreased apoptosis and increased crypt mitosis and crypt fission due to GLP-2. When GLP-2 infusion stopped at 7 days, these effects were reversed at 18 days. Sustained GLP-2 infusion significantly increased duodenum length and decreased 18-day mortality to 0% from 37.5% deaths in TPN control (P = 0.08). Colon proglucagon expression quantified by real-time RT-qPCR was increased in TPN controls and attenuated by GLP-2 infusion; jejunal expression of the GLP-2 receptor did not differ among groups. In summary, early, sustained GLP-2 infusion reduces mortality, induces crypt fission, and is required for intestinal adaptation, whereas cessation of GLP-2 reverses gains in mucosal cellularity in a rat model of intestinal failure. PMID:20864657

  16. A pilot study examining the relationship among Crohn disease activity, glucagon-like peptide-2 signalling and intestinal function in pediatric patients

    PubMed Central

    Sigalet, David L; Kravarusic, Dragan; Butzner, Decker; Hartmann, Bolette; Holst, Jens J; Meddings, Jon

    2013-01-01

    BACKGROUND/OBJECTIVES: The relationship between the enteroendocrine hormone glucagon-like peptide 2 (GLP-2) and intestinal inflammation is unclear. GLP-2 promotes mucosal growth, decreases permeability and reduces inflammation in the intestine; physiological stimulation of GLP-2 release is triggered by nutrient contact. The authors hypothesized that ileal Crohn disease (CD) affects GLP-2 release. METHODS: With ethics board approval, pediatric patients hospitalized with CD were studied; controls were recruited from local schools. Inclusion criteria were endoscopy-confirmed CD (primarily of the small intestine) with a disease activity index >150. Fasting and post-prandial GLP-2 levels and quantitative urinary recovery of orally administered 3-O-methyl-glucose (active transport) and lactulose/mannitol (passive) were quantified during the acute and remission phases. RESULTS: Seven patients (mean [± SD] age 15.3±1.3 years) and 10 controls (10.3±1.6 years) were studied. In patients with active disease, fasting levels of GLP-2 remained stable but postprandial levels were reduced. Patients with active disease exhibited reduced glucose absorption and increased lactulose/mannitol recovery; all normalized with disease remission. The change in the lactulose/mannitol ratio was due to both reduced lactulose and increased mannitol absorption. CONCLUSIONS: These findings suggest that pediatric patients with acute ileal CD have decreased postprandial GLP-2 release, reduced glucose absorption and increased intestinal permeability. Healing of CD resulted in normalization of postprandial GLP-2 release and mucosal functioning (nutrient absorption and permeability), the latter due to an increase in mucosal surface area. These findings have implications for the use of GLP-2 and feeding strategies as a therapy in CD patients; further studies of the effects of inflammation and the GLP-2 axis are recommended. PMID:24106731

  17. Effects of the glucagon-like polypeptide-1 analogue (Val8)GLP-1 on learning, progenitor cell proliferation and neurogenesis in the C57B/16 mouse brain.

    PubMed

    McGovern, Stephen F J; Hunter, Kerry; Hölscher, Christian

    2012-09-14

    Type 2 diabetes (T2DM) has been identified as a risk factor for Alzheimer's disease. Here, we tested the properties of the glucagon-like polypetide-1 (GLP-1) analogue (Val8)GLP-1, a drug originally developed as a treatment for T2DM at a range of doses (2.5 nmol; 25 nmol; 100 nmol; or 250 nmol/kg bw ip.) in an acute memory study in wild type C57B/l6 mice. We also tested (Val8)GLP-1 and the GLP-1 receptor antagonist exendin (9-39) in a chronic study (3 weeks at 25 nmol/kg bw ip. once-daily). We found that (Val8)GLP-1 crossed the blood brain barrier readily and that peripheral injection increased levels in the brain 30 min post-injection ip. but not 2h post-injection in rats. In the acute study, the low dose of 2.5 nmol/kg ip. enhanced motor activity in the open field task, while total distance travelled, exploratory behaviour and anxiety was not affected at any dose. Learning an object recognition task was not affected either. In the chronic study, no effect was observed in the open field assessment. The antagonist exendin (9-39) impaired object recognition learning and spatial learning in a water maze task, demonstrating the importance of GLP-1 signalling in memory formation. Locomotor activity was also affected in some cases. Blood sugar levels and insulin sensitivity was not affected in chronically treated mice. Neuronal stem cells and neurogenesis was enhanced by (Val8)GLP-1 in the dentate gyrus of wild type mice. The results demonstrate that (Val8)GLP-1 is safe in a range of doses, crosses the BBB and has potentially beneficial effects in the CNS by enhancing neurogenesis. PMID:22867941

  18. COMPARATIVE GUT PHYSIOLOGY SYMPOSIUM: Comparative physiology of glucagon-like peptide-2: Implications and applications for production and health of ruminants.

    PubMed

    Connor, E E; Evock-Clover, C M; Walker, M P; Elsasser, T H; Kahl, S

    2015-02-01

    Glucagon-like peptide-2 (GLP-2) is a 33-amino acid peptide derived from proteolytic cleavage of proglucagon by prohormone convertase 1/3 in enteroendocrine L cells. Studies conducted in humans, in rodent models, and in vitro indicate that GLP-2 is secreted in response to the presence of molecules in the intestinal lumen, including fatty acids, carbohydrates, amino acids, and bile acids, which are detected by luminal chemosensors. The physiological actions of GLP-2 are mediated by its G protein-coupled receptor expressed primarily in the intestinal tract on enteric neurons, enteroendocrine cells, and myofibroblasts. The biological activity of GLP-2 is further regulated by dipeptidyl peptidase IV, which rapidly cleaves the N-terminus of GLP-2 that is responsible for GLP-2 receptor activation. Within the gut, GLP-2 increases nutrient absorption, crypt cell proliferation, and mesenteric blood flow and decreases gut permeability and motility, epithelial cell apoptosis, and inflammation. Outside the gut, GLP-2 reduces bone resorption, can suppress appetite, and is cytoprotective in the lung. Thus, GLP-2 has been studied intensively as a therapeutic to improve intestinal function of humans during parenteral nutrition and following small bowel resection and, more recently, as a treatment for osteoporosis and obesity-related disorders and to reduce cellular damage associated with inflammation of the gut and lungs. Recent studies demonstrate that many biological actions and properties of GLP-2 in ruminants are similar to those in nonruminants, including the potential to reduce intestinal nitro-oxidative stress in calves caused by parasitic diseases such as coccidiosis. Because of its beneficial impacts on nutrient absorption, gut healing, and normal gut development, GLP-2 therapy offers significant opportunities to improve calf health and production efficiency. However, GLP-2 therapies require an extended time course to achieve desired physiological responses, as well as

  19. PEGylated porcine glucagon-like peptide-2 improved the intestinal digestive function and prevented inflammation of weaning piglets challenged with LPS.

    PubMed

    Qi, K K; Wu, J; Deng, B; Li, Y M; Xu, Z W

    2015-09-01

    This study was conducted to determine the effects on intestinal function, anti-inflammatory role and possible mechanism of polyethylene glycosylated (PEGylated) porcine glucagon-like peptide-2 (pGLP-2), a long-acting form of pGLP-2, in weaning piglets challenged with Escherichia coli lipopolysaccharide (LPS). We divided 18 weaned piglets on day 21 into three groups (control, LPS and LPS+PEG-pGLP-2; n=6). The piglets from the LPS+PEG-pGLP-2 group were injected with PEG-pGLP-2 at 10 nmol/kg BW from 5 to 7 days of the trials daily. On 8th day, the piglets in the LPS and LPS+PEG-pGLP-2 groups were intraperitoneally administered with 100 µg LPS/kg. The control group was administered with the same volume of saline solution. The piglets were then sacrificed on day 28. Afterwards, serum, duodenum, jejunum and ileum samples were collected for analysis of structural and functional endpoints. LPS+PEG-pGLP-2 treatment increased (P<0.05) lactase activities in the duodenum and the jejunum compared with LPS treatment. LPS+PEG-pGLP-2 treatment also significantly increased sucrase activity in the jejunum compared with LPS treatment. Furthermore, LPS treatment increased (P<0.05) the mRNA expression levels of interleukin (IL)-8, tumour necrosis factor-α (TNF-α) and IL-10 in the ileum compared with the control treatment. By contrast, LPS+PEG-pGLP-2 treatment decreased (P<0.05) the mRNA expression levels of IL-8, IL-10 and TNF-α in the ileum compared with the LPS treatment. LPS treatment also increased (P<0.05) the mRNA expression level of GLP-2 receptor (GLP-2R) and the percentage of GLP-2R-positive cells in the ileum; by comparison, these results were (P<0.05) reduced by LPS+PEG-pGLP-2 treatment. Moreover, LPS+PEG-pGLP-2 treatment increased (P<0.05) the content of serum keratinocyte growth factor compared with the control group and the LPS group. The protective effects of PEG-pGLP-2 on intestinal digestive function were associated with the release of GLP-2R mediator (keratinocyte

  20. Glucagon-like peptide-2 activates beta-catenin signaling in the mouse intestinal crypt: role of insulin-like growth factor-I.

    PubMed

    Dubé, Philip E; Rowland, Katherine J; Brubaker, Patricia L

    2008-01-01

    Chronic administration of glucagon-like peptide-2 (GLP-2) induces intestinal growth and crypt cell proliferation through an indirect mechanism requiring IGF-I. However, the intracellular pathways through which IGF-I mediates GLP-2-induced epithelial tropic signaling remain undefined. Because beta-catenin and Akt are important regulators of crypt cell proliferation, we hypothesized that GLP-2 activates these signaling pathways through an IGF-I-dependent mechanism. In this study, fasted mice were administered Gly(2)-GLP-2 or LR(3)-IGF-I (positive control) for 0.5-4 h. Nuclear translocation of beta-catenin in non-Paneth crypt cells was assessed by immunohistochemistry and expression of its downstream proliferative markers, c-myc and Sox9, by quantitative RT-PCR. Akt phosphorylation and activation of its targets, glycogen synthase kinase-3beta and caspase-3, were determined by Western blot. IGF-I receptor (IGF-IR) and IGF-I signaling were blocked by preadministration of NVP-AEW541 and through the use of IGF-I knockout mice, respectively. We found that GLP-2 increased beta-catenin nuclear translocation in non-Paneth crypt cells by 72 +/- 17% (P < 0.05) and increased mucosal c-myc and Sox9 mRNA expression by 90 +/- 20 and 376 +/- 170%, respectively (P < 0.05-0.01), with similar results observed with IGF-I. This effect of GLP-2 was prevented by blocking the IGF-IR as well as ablation of IGF-I signaling. GLP-2 also produced a time- and dose-dependent activation of Akt in the intestinal mucosa (P < 0.01), most notably in the epithelium. This action was reduced by IGF-IR inhibition but not IGF-I knockout. We concluded that acute administration of GLP-2 activates beta-catenin and proliferative signaling in non-Paneth murine intestinal crypt cells as well as Akt signaling in the mucosa. However, IGF-I is required only for the GLP-2-induced alterations in beta-catenin.

  1. Exaggerated pain behavior: by what standard?

    PubMed

    Sullivan, Mark

    2004-01-01

    This paper provides a philosophical, historical, and clinical analysis of exaggerated pain behavior, focusing on the nature of the standards used to judge behavior as exaggerated. Malingering is understood as a special case of exaggerated pain behavior. Drawing upon the work of philosopher Ludwig Wittgenstein and psychiatrist-anthropologist Horacio Fabrega, I argue that these standards are primarily moral rather than scientific in nature. Pain behavior is not validated by matching public pain behavior with private pain experience. If this pain experience is truly private, it is not available to scientific investigation. Rather, pain behavior is judged as appropriate or exaggerated through complex assessments of the function of this behavior in its social context. As human social contexts have become more complex through history, so have the accommodations made for sick and disabled members of the group. Criteria for legitimate entry to the sick role have evolved with society, with only modern industrial society placing heavy emphasis on tissue damage demonstrated on medical tests. The highly variable relation between clinical pain and tissue damage, as well as the common problem of medically unexplained physical symptoms in primary care, pose serious challenges to this strategy of illness behavior validation. It will remain necessary to triage suffering presented to health care providers into that which should be addressed in the medical setting and that which is better addressed elsewhere. But we need to discard pseudoscientific reliance on medical tests and develop new standards that are openly acknowledged to be moral and social in nature.

  2. Characterization of glucagon-like peptide 2 receptor (GLP2R) gene in chickens: functional analysis, tissue distribution, and developmental expression profile of GLP2R in embryonic intestine.

    PubMed

    Mo, C; Zhong, Y; Wang, Y; Yan, Z; Li, J

    2014-07-01

    This study characterized the glucagon-like peptide 2 receptor (GLP2R) gene of chickens because relatively little is known about the underlying mechanism of GLP2 actions in nonmammalian species. With the use of reverse transcription PCR, we first cloned the chicken GLP2R (cGLP2R) from adult intestine, which was predicted to encode a 529-amino acid receptor precursor. With the use of a pGL3-CRE luciferase reporter system, we demonstrated that cGLP2R expressed in Chinese hamster ovary cells could be potently activated by cGLP2 (half maximal effective concentration, 1.06 nM) but not by its structurally related peptides, including the newly identified glucagon-like peptide, indicating that cGLP2R is a functional receptor specific to cGLP2. Reverse transcription PCR assay revealed that cGLP2R mRNA was widely expressed in adult chicken tissues, including pancreas and various parts of the gastrointestinal tract. With the use of quantitative real-time reverse transcription PCR assays, we further investigated the mRNA expression of cGLP2R and its potential downstream mediators, epidermal growth factor receptor (EGFR) ligands (heparin-binding EGF-like growth factor, epiregulin, and amphiregulin), in the distal duodenum of developing embryos. The mRNA expression levels of GLP2R and EGFR ligands (heparin-binding EGF-like growth factor and amphiregulin) were shown to increase (P < 0.05 or 0.01) during the late embryonic stages (E16 and E20), implying a potential coordinated action of GLP2 and EGFR ligands on embryonic intestine development. Taken together, our findings not only establish a molecular basis to explore the physiological roles of GLP2 in birds, but they also provide comparative insights into the roles of GLP2R and its ligand in vertebrates, such as its roles in embryonic intestine development.

  3. Jupiter's Equatorial Zone in Exaggerated Color

    NASA Technical Reports Server (NTRS)

    1979-01-01

    This special color composite made from Voyager 2 narrow-angle frames taken on June 28, 1979, has been processed to exaggerate color differences within the naturally colorful Jovian atmosphere. Such processing makes detailed structure in the clouds more apparent. The dark belt across the upper portion of the photograph is the North Equatorial Belt. One of the largest of the long-lived dark features found along the northern edge of this belt is seen in the upper middle of the photograph. Jupiter's Equatorial Zone, which lies across the middle of the photograph, is characterized by a series of wisp-like plume features. The northern bluish edges of these plumes are thought to lie within deeper, warmer levels of the atmosphere. South of the Equatorial Zone lies the chaotic region of whiter clouds found west of the Great Red Spot. kilometers (6.4 million miles) from Jupiter. The smallest features visible in this photograph are about 190 kilometers (119 miles) across.

  4. Intestinal regulation of urinary sodium excretion and the pathophysiology of diabetic kidney disease: a focus on glucagon-like peptide 1 and dipeptidyl peptidase 4.

    PubMed

    Vallon, Volker; Docherty, Neil G

    2014-09-01

    The tubular hypothesis of glomerular filtration and nephropathy in diabetes is a pathophysiological concept that assigns a critical role to the tubular system, including proximal tubular hyper-reabsorption and growth, which is relevant for early glomerular hyperfiltration and later chronic kidney disease. Here we focus on how harnessing the bioactivity of hormones released from the gut may ameliorate the early effects of diabetes on the kidney in part by attenuating proximal tubular hyper-reabsorption and growth. The endogenous tone of the glucagon-like peptide 1 (GLP-1)/GLP-1 receptor (GLP-1R) system and its pharmacological activation are nephroprotective in diabetes independent of changes in blood glucose. This is associated with suppression of increases in kidney weight and glomerular hyperfiltration, which may reflect, at least in part, its inhibitory effects on tubular hyper-reabsorption and growth. Inhibition of dipeptidyl peptidase 4 (DPP-4) is also nephroprotective independent of changes in blood glucose and involves GLP-1/GLP-1R-dependent and -independent mechanisms. The GLP-1R agonist exendin-4 induces natriuresis via activation of the GLP-1R. In contrast, DPP4 inhibition increases circulating GLP-1, but drives a GLP-1R-independent natriuretic response, implying a role for other DPP-4 substrates. The extent to which the intrarenal DPP-4/GLP-1 receptor system contributes to all these changes remains to be established, as does the direct impact of the system on renal inflammation. PMID:25085841

  5. Basal insulin combined incretin mimetic therapy with glucagon-like protein 1 receptor agonists as an upcoming option in the treatment of type 2 diabetes: a practical guide to decision making

    PubMed Central

    Fleischmann, Holger

    2014-01-01

    The combination of basal insulin and glucagon-like protein 1 receptor agonists (GLP-1 RAs) is a new intriguing therapeutic option for patients with type 2 diabetes. In our daily practice we abbreviate this therapeutic concept with the term BIT (basal insulin combined incretin mimetic therapy) in a certain analogy to BOT (basal insulin supported oral therapy). In most cases BIT is indeed an extension of BOT, if fasting, prandial or postprandial blood glucose values have not reached the target range. In our paper we discuss special features of combinations of short- or prandial-acting and long- or continuous-acting GLP-1 RAs like exenatide, lixisenatide and liraglutide with basal insulin in relation to different glycemic targets. Overall it seems appropriate to use a short-acting GLP-1 RA if, after the near normalization of fasting blood glucose with BOT, the prandial or postprandial values are elevated. A long-acting GLP-1 RA might well be given, if fasting blood glucose values are the problem. Based on pathophysiological findings, recent clinical studies and our experience with BIT and BOT as well as BOTplus we developed chart-supported algorithms for decision making, including features and conditions of patients. The development of these practical tools was guided by the need for a more individualized antidiabetic therapy and the availability of the new BIT principle. PMID:25419451

  6. The Effects of Glucagon-like Peptide-2 on the Tight Junction and Barrier Function in IPEC-J2 Cells through Phosphatidylinositol 3-kinase–Protein Kinase B–Mammalian Target of Rapamycin Signaling Pathway

    PubMed Central

    Yu, Changsong; Jia, Gang; Deng, Qiuhong; Zhao, Hua; Chen, Xiaoling; Liu, Guangmang; Wang, Kangning

    2016-01-01

    Glucagon-like peptide-2 (GLP-2) is important for intestinal barrier function and regulation of tight junction (TJ) proteins, but the intracellular mechanisms of action remain undefined. The purpose of this research was to determine the protective effect of GLP-2 mediated TJ and transepithelial electrical resistance (TER) in lipopolysaccharide (LPS) stressed IPEC-J2 cells and to test the hypothesis that GLP-2 regulate TJ and TER through the phosphatidylinositol 3-kinase (PI3K)-protein kinase B (Akt)-mammalian target of rapamycin (mTOR) signaling pathway in IPEC-J2 cells. Wortmannin and LY294002 are specific inhibitors of PI3K. The results showed that 100 μg/mL LPS stress decreased TER and TJ proteins occludin, claudin-1 and zonula occludens protein 1 (ZO-1) mRNA, proteins expressions (p<0.01) respectively. GLP-2 (100 nmol/L) promote TER and TJ proteins occludin, claudin-1, and zo-1 mRNA, proteins expressions in LPS stressed and normal IPEC-J2 cells (p<0.01) respectively. In normal cells, both wortmannin and LY294002, PI3K inhibitors, prevented the mRNA and protein expressions of Akt and mTOR increase induced by GLP-2 (p<0.01) following with the significant decreasing of occludin, claudin-1, ZO-1 mRNA and proteins expressions and TER (p<0.01). In conclusion, these results indicated that GLP-2 can promote TJ’s expression and TER in LPS stressed and normal IPEC-J2 cells and GLP-2 could regulate TJ and TER through the PI3K/Akt/mTOR pathway. PMID:26954146

  7. Immunoreactivity to peptides belonging to the pancreatic polypeptide family (NPY, aPY, PP, PYY) and to glucagon-like peptide in the endocrine pancreas and anterior intestine of adult lampreys, Petromyzon marinus: an immunohistochemical study.

    PubMed

    Cheung, R; Andrews, P C; Plisetskaya, E M; Youson, J H

    1991-01-01

    Immunoreactivity of antisera directed against human neuropeptide Y (NPY), anglerfish polypeptide YG (aPY), bovine pancreatic polypeptide (bPP), salmon pancreatic polypeptide (sPP), porcine peptide tyrosine tyrosine (PYY), and salmon glucagon-like peptide (GLP) was investigated in the endocrine pancreas and anterior intestine of adult lampreys, Petromyzon marinus, by immunohistochemical analysis. There was no immunoreactivity to anti-sPP and anti-bPP in any tissue and anti-GLP immunostaining was only present in the anterior intestine. The immunoreactivity to antisera raised against NPY, aPY, and PYY was colocalized within the same small number of cells in the caudal and cranial pancreas of juveniles and the caudal pancreas of upstream migrant adults. These antibodies did not immunostain B- or D-cells and thus, NPY, aPY, and PYY were likely localized in a third cell type (3a) in the lamprey pancreas. Immunostaining of a few cells with only anti-aPY suggested the possibility of a fourth cell type (3b). Immunoreactivity was similar in the cranial and caudal pancreas of male upstream migrants; however, in the female cranial pancreas, a few cells demonstrated intense immunoreaction to anti-aPY, while weaker immunostaining with this antiserum was observed in B-cells. In the intestine of juvenile and upstream migrant lampreys, positive immunostaining to GLP, NPY, aPY, and PYY antibodies was colocalized within the same cell. We believe that this cell may contain PYY/glucagon family peptides. Other intestinal cells immunostained with either GLP or somatostatin-34 antiserum. PMID:2026316

  8. Brassinosteroid-induced exaggerated growth in hydroponically grown Arabidopsis plants.

    PubMed

    Arteca, Jeannette M.; Arteca, Richard N.

    2001-05-01

    The effects of root application of brassinolide (BL) on the growth and development of Arabidopsis plants (Arabidopsis thaliana ecotype Columbia [L.] Heynh) were evaluated. Initially, all leaves were evaluated on plants 18, 22, 26 and 29 days old. The younger leaves were found to exhibit maximal petiole elongation and upward leaf bending in response to BL treatment. Therefore, based on these results leaves 6, 7 and 8 on 22-24-day-old plants were selected for all subsequent studies. Elongation along the length of the petiole in response to BL treatment was uniform with the exception of an approximately 4 mm region next to the leaf where upward curvature was observed. Both BL and 24-epibrassinolide (24-epiBL) were evaluated, with BL being more effective at lower concentrations than 24-epiBL. The exaggerated growth induced by 0.1 µM BL was not observed in plants treated with 1 000-fold higher concentrations of GA3, IAA, NAA or 2,4-D (100 µM). In addition, no exaggerated growth effects were observed when plants were treated with 200 ppm ethylene or 1 mM ACC. All treatments with BL, NAA, 2,4-D, IAA or ACC promoted ethylene and ACC production in wild type Arabidopsis plants, but only BL triggered exaggerated plant growth. BL also promoted exaggerated growth and elevated levels of ACC and ethylene in the ethylene insensitive mutant etr1-3, showing that the effect of BR on growth is independent of ethylene. This work provides evidence that BR-induced exaggerated growth of Arabidopsis plants is independent of gibberellins, auxins and ethylene.

  9. The evolution of acoustic size exaggeration in terrestrial mammals.

    PubMed

    Charlton, Benjamin D; Reby, David

    2016-01-01

    Recent studies have revealed that some mammals possess adaptations that enable them to produce vocal signals with much lower fundamental frequency (F0) and formant frequency spacing (ΔF) than expected for their size. Although these adaptations are assumed to reflect selection pressures for males to lower frequency components and exaggerate body size in reproductive contexts, this hypothesis has not been tested across a broad range of species. Here we show that male terrestrial mammals produce vocal signals with lower ΔF (but not F0) than expected for their size in mating systems with greater sexual size dimorphism. We also reveal that males produce calls with higher than expected F0 and ΔF in species with increased sperm competition. This investigation confirms that sexual selection favours the use of ΔF as an acoustic size exaggerator and supports the notion of an evolutionary trade-off between pre-copulatory signalling displays and sperm production. PMID:27598835

  10. Feederism: an exaggeration of a normative mate selection preference?

    PubMed

    Terry, Lesley L; Suschinsky, Kelly D; Lalumière, Martin L; Vasey, Paul L

    2012-02-01

    Quinsey and Lalumière (1995) suggested that some, if not most, paraphilias are exaggerated manifestations of more normative and functional mate selection preferences. The present study tested whether Feederism, a fat fetish focused on erotic eating, feeding, and gaining weight, is an exaggeration of a sexual arousal pattern commonly seen in the general population. Thirty participants (15 men and 15 women) recruited from the general population were assessed using penile plethysmography and vaginal photoplethysmography, respectively. None of the participants were self-identified Feeders or Feedees. Participants were shown sexual, neutral, and feeding still images while listening to audio recordings of sexual, neutral, and feeding stories. Participants did not genitally respond to feeding stimuli. However, both men and women subjectively rated feeding stimuli as more sexually arousing than neutral stimuli. We discuss the discordance between physiological and self-reported sexual arousal in the context of sex differences in sexual concordance and implications for future research.

  11. The evolution of acoustic size exaggeration in terrestrial mammals

    PubMed Central

    Charlton, Benjamin D.; Reby, David

    2016-01-01

    Recent studies have revealed that some mammals possess adaptations that enable them to produce vocal signals with much lower fundamental frequency (F0) and formant frequency spacing (ΔF) than expected for their size. Although these adaptations are assumed to reflect selection pressures for males to lower frequency components and exaggerate body size in reproductive contexts, this hypothesis has not been tested across a broad range of species. Here we show that male terrestrial mammals produce vocal signals with lower ΔF (but not F0) than expected for their size in mating systems with greater sexual size dimorphism. We also reveal that males produce calls with higher than expected F0 and ΔF in species with increased sperm competition. This investigation confirms that sexual selection favours the use of ΔF as an acoustic size exaggerator and supports the notion of an evolutionary trade-off between pre-copulatory signalling displays and sperm production. PMID:27598835

  12. Feederism: an exaggeration of a normative mate selection preference?

    PubMed

    Terry, Lesley L; Suschinsky, Kelly D; Lalumière, Martin L; Vasey, Paul L

    2012-02-01

    Quinsey and Lalumière (1995) suggested that some, if not most, paraphilias are exaggerated manifestations of more normative and functional mate selection preferences. The present study tested whether Feederism, a fat fetish focused on erotic eating, feeding, and gaining weight, is an exaggeration of a sexual arousal pattern commonly seen in the general population. Thirty participants (15 men and 15 women) recruited from the general population were assessed using penile plethysmography and vaginal photoplethysmography, respectively. None of the participants were self-identified Feeders or Feedees. Participants were shown sexual, neutral, and feeding still images while listening to audio recordings of sexual, neutral, and feeding stories. Participants did not genitally respond to feeding stimuli. However, both men and women subjectively rated feeding stimuli as more sexually arousing than neutral stimuli. We discuss the discordance between physiological and self-reported sexual arousal in the context of sex differences in sexual concordance and implications for future research. PMID:22392517

  13. Reducing and exaggerating escalation of commitment by option partitioning.

    PubMed

    Kwong, Jessica Y Y; Wong, Kin Fai Ellick

    2014-07-01

    Options under escalation situations can be presented as a general class (e.g., investing in electronic products) or be partitioned into disjunctive suboptions within that class (e.g., investing in MP3 players, portable TV game consoles, and other electronic products). Drawing from the theoretical bases of partition priming and mental accounting, this research found support from 4 experiments that (a) a decision maker's commitment to a failing course of action is exaggerated when the escalation options are partitioned into multiple suboptions, whereas such commitment is reduced when the alternative options are portioned into suboptions, and (b) these partitioning effects are mediated by the subjective utility, including subjective values and probability, of the escalation option.

  14. Exaggerated color perception in a patient with visual form agnosia.

    PubMed

    Yang, Jiongjiong; Wu, Ming; Shen, Zheng

    2007-10-01

    Previous studies on visual form agnosic patients have shown that their color perception is relatively preserved when monochromatic figures are used. However, it is unclear whether their color perception remains normal when figures are composed of two parts in different colors. The results showed that patient X.F. had difficulty in naming both colors when the two colors were placed next to each other, and in discriminating the two-color figure from the figure presented in its larger color. In contrast, X.F. could name the two colors when they were physically separated. These data suggest that X.F. manifests exaggerated color perception, producing a color filling-in effect that may be mediated by her spared early visual area.

  15. The association between exaggeration in health related science news and academic press releases: retrospective observational study

    PubMed Central

    Vivian-Griffiths, Solveiga; Boivin, Jacky; Williams, Andy; Venetis, Christos A; Davies, Aimée; Ogden, Jack; Whelan, Leanne; Hughes, Bethan; Dalton, Bethan; Boy, Fred

    2014-01-01

    Objective To identify the source (press releases or news) of distortions, exaggerations, or changes to the main conclusions drawn from research that could potentially influence a reader’s health related behaviour. Design Retrospective quantitative content analysis. Setting Journal articles, press releases, and related news, with accompanying simulations. Sample Press releases (n=462) on biomedical and health related science issued by 20 leading UK universities in 2011, alongside their associated peer reviewed research papers and news stories (n=668). Main outcome measures Advice to readers to change behaviour, causal statements drawn from correlational research, and inference to humans from animal research that went beyond those in the associated peer reviewed papers. Results 40% (95% confidence interval 33% to 46%) of the press releases contained exaggerated advice, 33% (26% to 40%) contained exaggerated causal claims, and 36% (28% to 46%) contained exaggerated inference to humans from animal research. When press releases contained such exaggeration, 58% (95% confidence interval 48% to 68%), 81% (70% to 93%), and 86% (77% to 95%) of news stories, respectively, contained similar exaggeration, compared with exaggeration rates of 17% (10% to 24%), 18% (9% to 27%), and 10% (0% to 19%) in news when the press releases were not exaggerated. Odds ratios for each category of analysis were 6.5 (95% confidence interval 3.5 to 12), 20 (7.6 to 51), and 56 (15 to 211). At the same time, there was little evidence that exaggeration in press releases increased the uptake of news. Conclusions Exaggeration in news is strongly associated with exaggeration in press releases. Improving the accuracy of academic press releases could represent a key opportunity for reducing misleading health related news. PMID:25498121

  16. Neural Coding of Formant-Exaggerated Speech in the Infant Brain

    ERIC Educational Resources Information Center

    Zhang, Yang; Koerner, Tess; Miller, Sharon; Grice-Patil, Zach; Svec, Adam; Akbari, David; Tusler, Liz; Carney, Edward

    2011-01-01

    Speech scientists have long proposed that formant exaggeration in infant-directed speech plays an important role in language acquisition. This event-related potential (ERP) study investigated neural coding of formant-exaggerated speech in 6-12-month-old infants. Two synthetic /i/ vowels were presented in alternating blocks to test the effects of…

  17. Endocrine Control of Exaggerated Trait Growth in Rhinoceros Beetles.

    PubMed

    Zinna, R; Gotoh, H; Brent, C S; Dolezal, A; Kraus, A; Niimi, T; Emlen, D; Lavine, L C

    2016-08-01

    Juvenile hormone (JH) is a key insect growth regulator frequently involved in modulating phenotypically plastic traits such as caste determination in eusocial species, wing polymorphisms in aphids, and mandible size in stag beetles. The jaw morphology of stag beetles is sexually-dimorphic and condition-dependent; males have larger jaws than females and those developing under optimum conditions are larger in overall body size and have disproportionately larger jaws than males raised under poor conditions. We have previously shown that large males have higher JH titers than small males during development, and ectopic application of fenoxycarb (JH analog) to small males can induce mandibular growth similar to that of larger males. What remains unknown is whether JH regulates condition-dependent trait growth in other insects with extreme sexually selected structures. In this study, we tested the hypothesis that JH mediates the condition-dependent expression of the elaborate horns of the Asian rhinoceros beetle, Trypoxylus dichotomus. The sexually dimorphic head horn of this beetle is sensitive to nutritional state during larval development. Like stag beetles, male rhinoceros beetles receiving copious food produce disproportionately large horns for their body size compared with males under restricted diets. We show that JH titers are correlated with body size during the late feeding and early prepupal periods, but this correlation disappears by the late prepupal period, the period of maximum horn growth. While ectopic application of fenoxycarb during the third larval instar significantly delayed pupation, it had no effect on adult horn size relative to body size. Fenoxycarb application to late prepupae also had at most a marginal effect on relative horn size. We discuss our results in context of other endocrine signals of condition-dependent trait exaggeration and suggest that different beetle lineages may have co-opted different physiological signaling mechanisms to

  18. Women and AIDS: the ethics of exaggerated harm.

    PubMed

    Mertz, David; Sushinsky, Mary Ann; Schüklenk, Udo

    1996-04-01

    This article examines the way in which some biomedical ethicists have constructed sexually transmitted AIDS as a significant threat to women's health. We demonstrate that the familiar claim that 'women are the fastest growing group' -- whether of HIV-infected or of AIDS patients -- is misleading because it obscures the distinction between proportional rate of growth and absolute increase. Feminist ethicists have suggested that misogyny of a male dominated health care system has led to underreporting of women AIDS cases in order to support these feminists' claim of AIDS being a real threat to women's health. Given the apparent rarity of tertiary transmissions of AIDS, the assertion that most or even many women are at significant risk for AIDS seems wrong. Particularly disturbing in this campaign is the fact that the theme of 'risky sex' has been extended all the way to lesbians, even though their risk to acquire AIDS sexually is non-existent to miniscule. We argue that actual harm is done to women by this exaggeration of their risk of contracting AIDS sexually. The scare has led to misappropriations of scarce health care funds. AIDS disproportionately affects women who inject drugs, and who suffer other diseases, poverty and malnutrition. It would have been better to concentrate health care efforts in this area instead of 'educating' women not at risk for AIDS how to prevent the acquisition of this disease. Unjustifiable AIDS anxiety has been created in women and has resulted in millions of unnecessary HIV-tests, and many broken relationships. This anxiety has inevitably reduced the pleasure of having sex for many women. We reject the kind of 'victim ideology' that lies at the heart of this strategy which has, unfortunately, been supported by a number of influential feminist ethicists.

  19. Measures of Symptom Exaggeration for Mental Health Disorders: A Systematic Review.

    PubMed

    Ebrahim, Shanil; Bance, Sheena; Mulla, Sohail M; Montoya, Luis; Malachowski, Cindy; Kamal El Din, Mostafa; Busse, Jason W

    2015-01-01

    Introduction .- Measures that help detect exaggeration of symptoms can be valuable for informing more accurate diagnoses and aid in treatment and case management. We completed a systematic review to identify measures that assess symptom exaggeration in mental health disorders. Methods .- Eligible studies assessed exaggeration of symptoms with a psychometrically validated measure in patients presenting with a mental health disorder. We searched MEDLINE and PsycINFO from inception to June 2013 for relevant studies. To determine study eligibility, reviewers screened title and abstracts of identified citations, and reviewed full texts of all potentially eligible citations. Data extractors completed data abstraction of eligible studies. Results .- Of 8435 unique citations, 105 studies consisting of 112 cohorts were eligible, and we identified 36 unique, validated measures assessing exaggeration of symptoms. The most frequently used measures were symptom validity indicators embedded in the Minnesota Multiphasic Personality Inventory (MMPI-2) (n=48, 46%), the Structured Interview of Reported Symptoms (SIRS) (n=12, 11%), and the Personality Assessment Inventory (PAI) (n=11, 10%). Most studies (n=96; 91%) failed to test reliability of their measure of symptom exaggeration. The symptom validity indicators in the MMPI/MMPI-2 and the SIRS both showed moderate to high internal consistency, range 0.47 to 0.85 and 0.48 to 0.95, respectively. Conclusions .- Multiple measures assessing symptom exaggeration have been used in patients with mental health disorders. The symptom validity indicators of the MMPI/MMPI-2 are the most widely used measures to assess symptom exaggeration. Assessment and reporting of reliability is poor across studies; we require further assessment of psychometric properties for existing measures of symptom exaggeration. PMID:27584846

  20. The role of movement exaggeration in the anticipation of deceptive soccer penalty kicks.

    PubMed

    Smeeton, N J; Williams, A M

    2012-11-01

    Human movement containing deception about the true outcome is thought to be perceived differently compared to the non-deceptive version. Exaggeration in the movement is thought to change the perceiver's mode of functioning from an invariant to a cue-based mode. We tested these ideas by examining anticipation in skilled and less skilled soccer players while they viewed temporally occluded (-240 ms, -160 ms, -80 ms, 0 ms, +80 ms) deceptive, non-deceptive, and non-deceptive-exaggerated penalty kicks. Kinematic analyses were used to ascertain that the kicking actions differed across conditions. The accuracy of judging the direction of an opponent's kick as well as response confidence were recorded. Players were over confident when anticipating deceptive penalty kicks compared to non-deceptive kicks, suggesting a cue-based mode was used. Furthermore, there was a significant relationship between less skilled players' confidence ratings and their accuracy 80 ms before ball-foot contact in the deceptive and non-deceptive-exaggerated conditions, but not the non-deceptive condition. Because both deceptive and non-deceptive-exaggerated kicks contained exaggeration, results suggest exaggerated movements in the kickers' action at 80 ms before ball-foot contact explains why a cue-based mode prevails when anticipating deceptive kicks at this time point.

  1. Exaggerated perception of facial expressions is increased in individuals with schizotypal traits.

    PubMed

    Uono, Shota; Sato, Wataru; Toichi, Motomi

    2015-01-01

    Emotional facial expressions are indispensable communicative tools, and social interactions involving facial expressions are impaired in some psychiatric disorders. Recent studies revealed that the perception of dynamic facial expressions was exaggerated in normal participants, and this exaggerated perception is weakened in autism spectrum disorder (ASD). Based on the notion that ASD and schizophrenia spectrum disorder are at two extremes of the continuum with respect to social impairment, we hypothesized that schizophrenic characteristics would strengthen the exaggerated perception of dynamic facial expressions. To test this hypothesis, we investigated the relationship between the perception of facial expressions and schizotypal traits in a normal population. We presented dynamic and static facial expressions, and asked participants to change an emotional face display to match the perceived final image. The presence of schizotypal traits was positively correlated with the degree of exaggeration for dynamic, as well as static, facial expressions. Among its subscales, the paranoia trait was positively correlated with the exaggerated perception of facial expressions. These results suggest that schizotypal traits, specifically the tendency to over-attribute mental states to others, exaggerate the perception of emotional facial expressions.

  2. Exaggerated perception of facial expressions is increased in individuals with schizotypal traits

    PubMed Central

    Uono, Shota; Sato, Wataru; Toichi, Motomi

    2015-01-01

    Emotional facial expressions are indispensable communicative tools, and social interactions involving facial expressions are impaired in some psychiatric disorders. Recent studies revealed that the perception of dynamic facial expressions was exaggerated in normal participants, and this exaggerated perception is weakened in autism spectrum disorder (ASD). Based on the notion that ASD and schizophrenia spectrum disorder are at two extremes of the continuum with respect to social impairment, we hypothesized that schizophrenic characteristics would strengthen the exaggerated perception of dynamic facial expressions. To test this hypothesis, we investigated the relationship between the perception of facial expressions and schizotypal traits in a normal population. We presented dynamic and static facial expressions, and asked participants to change an emotional face display to match the perceived final image. The presence of schizotypal traits was positively correlated with the degree of exaggeration for dynamic, as well as static, facial expressions. Among its subscales, the paranoia trait was positively correlated with the exaggerated perception of facial expressions. These results suggest that schizotypal traits, specifically the tendency to over-attribute mental states to others, exaggerate the perception of emotional facial expressions. PMID:26135081

  3. Neutrophil attractant/activating peptide-1/interleukin-8 in term and preterm parturition.

    PubMed

    Romero, R; Ceska, M; Avila, C; Mazor, M; Behnke, E; Lindley, I

    1991-10-01

    The neutrophil is the leukocyte most frequently recruited into the amniotic fluid in cases of microbial invasion of the amniotic cavity. Neutrophil attractant/activating peptide-1/interleukin-8 is a newly identified cytokine that is capable of inducing selective neutrophil chemotaxis and activation. The purpose of this study was to examine the relationship between amniotic fluid concentrations of neutrophil attractant/activating peptide-1/interleukin-8, microbial invasion of the amniotic cavity, and parturition (term and preterm). Amniotic fluid neutrophil attractant/activating peptide-1/interleukin-8 was measured with an immunoassay validated for human amniotic fluid (sensitivity 0.3 ng/ml). Fluid was obtained from women in the following groups: midtrimester (n = 38), term not in labor (n = 38), term in active labor (n = 67), and preterm labor with intact membranes (n = 62). Fluid was cultured for aerobic and anaerobic bacterial and Mycoplasma. Sterile amniotic fluid from most women in the midtrimester of pregnancy and women at term not in labor did not contain immunoreactive neutrophil attractant/activating peptide-1/interleukin-8. Microbial invasion of the amniotic cavity was associated with increased concentrations of neutrophil attractant/activating peptide-1/interleukin-8. The amniotic fluid of women with preterm labor and sterile amniotic fluid who had preterm delivery contained higher neutrophil attractant/activating peptide-1/interleukin-8 levels than did the amniotic fluid of women who responded to tocolysis and had delivery at term. Term parturition is associated with increased concentrations of neutrophil attractant/activating peptide-1/interleukin-8 in the amniotic fluid. We conclude that neutrophil attractant/activating peptide-1/interleukin-8 is part of the host response to microbial invasion of the amniotic cavity and that increased amniotic fluid availability of this cytokine occurs in term and preterm parturition. PMID:1951537

  4. Phonological theory informs the analysis of intonational exaggeration in Japanese infant-directed speech.

    PubMed

    Igarashi, Yosuke; Nishikawa, Ken'ya; Tanaka, Kuniyoshi; Mazuka, Reiko

    2013-08-01

    To date, the intonation of infant-directed speech (IDS) has been analyzed without reference to its phonological structure. Intonational phonology should, however, inform IDS research, discovering important properties that have previously been overlooked. The present study investigated "intonational exaggeration" in Japanese IDS using the intonational phonological framework. Although intonational exaggeration, which is most often measured by pitch-range expansion, is one of the best-known characteristics of IDS, Japanese has been reported to lack such exaggeration. The present results demonstrated that intonational exaggeration is in fact present and observed most notably at the location of boundary pitch movements, and that the effects of lexical pitch accents in the remainder of the utterances superficially mask the exaggeration. These results not only reveal dynamic aspects of Japanese IDS, but also in turn contribute to the theory of intonational phonology, suggesting that paralinguistic pitch-range modifications most clearly emerge where the intonation system of a language allows maximum flexibility in varying intonational contours.

  5. Phonological theory informs the analysis of intonational exaggeration in Japanese infant-directed speech.

    PubMed

    Igarashi, Yosuke; Nishikawa, Ken'ya; Tanaka, Kuniyoshi; Mazuka, Reiko

    2013-08-01

    To date, the intonation of infant-directed speech (IDS) has been analyzed without reference to its phonological structure. Intonational phonology should, however, inform IDS research, discovering important properties that have previously been overlooked. The present study investigated "intonational exaggeration" in Japanese IDS using the intonational phonological framework. Although intonational exaggeration, which is most often measured by pitch-range expansion, is one of the best-known characteristics of IDS, Japanese has been reported to lack such exaggeration. The present results demonstrated that intonational exaggeration is in fact present and observed most notably at the location of boundary pitch movements, and that the effects of lexical pitch accents in the remainder of the utterances superficially mask the exaggeration. These results not only reveal dynamic aspects of Japanese IDS, but also in turn contribute to the theory of intonational phonology, suggesting that paralinguistic pitch-range modifications most clearly emerge where the intonation system of a language allows maximum flexibility in varying intonational contours. PMID:23927126

  6. Receiver bias for exaggerated signals in honeybees and its implications for the evolution of floral displays.

    PubMed

    Naug, Dhruba; Arathi, H S

    2007-12-22

    Mechanistic models of animal signals posit the occurrence of biases on the part of receivers that could be potentially exploited by signallers. Such biases are most obvious when animals are confronted with exaggerated versions of signals they normally encounter. Signalling systems operating in plant-pollinator interactions are among the most highly coevolved, with plants using a variety of floral signals to attract pollinators. A number of observations suggest that pollinators preferentially visit larger floral displays although the benefit of this to either the plant or the pollinator is not always clear. We use a standard dual-choice experimental protocol to show that honeybees display a receiver bias for exaggerated size and colour contrast--two important components of floral signals--even when such signals do not indicate quality. We discuss the implications of this receiver bias for the evolution of floral displays and its possible exploitation by invading alien plants.

  7. The Moral Stereotypes of Liberals and Conservatives: Exaggeration of Differences across the Political Spectrum

    PubMed Central

    Graham, Jesse; Nosek, Brian A.; Haidt, Jonathan

    2012-01-01

    We investigated the moral stereotypes political liberals and conservatives have of themselves and each other. In reality, liberals endorse the individual-focused moral concerns of compassion and fairness more than conservatives do, and conservatives endorse the group-focused moral concerns of ingroup loyalty, respect for authorities and traditions, and physical/spiritual purity more than liberals do. 2,212 U.S. participants filled out the Moral Foundations Questionnaire with their own answers, or as a typical liberal or conservative would answer. Across the political spectrum, moral stereotypes about “typical” liberals and conservatives correctly reflected the direction of actual differences in foundation endorsement but exaggerated the magnitude of these differences. Contrary to common theories of stereotyping, the moral stereotypes were not simple underestimations of the political outgroup's morality. Both liberals and conservatives exaggerated the ideological extremity of moral concerns for the ingroup as well as the outgroup. Liberals were least accurate about both groups. PMID:23251357

  8. Clinically relevant exaggerated pharmacodynamic response to dual antiplatelet therapy detected by Thromboelastogram® Platelet Mapping™

    PubMed Central

    Hiller, Kenneth N.

    2016-01-01

    Dual antiplatelet therapy (DAPT) is the standard of care for primary and secondary prevention strategies in patients with coronary artery disease after stenting. Current guidelines recommend that DAPT be continued for 12 months in patients after receiving drug eluting stents. Approximately 5% of these patients will present within this 12-month period for noncardiac surgery. This case report describes a clinically relevant exaggerated pharmacodynamic response to DAPT detected by preoperative assessment of platelet function. Based on the clinical history and physical exam and subsequent lab results, a general anesthetic was performed rather than a spinal anesthetic and the surgical procedure was changed. An exaggerated pharmacodynamic response to DAPT poses its own set of risks (unexpected uncontrolled bleeding, epidural hematoma following neuraxial block placement) that point-of-care aggregation testing may decrease or mitigate by altering clinical decision making. If the clinical history and physical exam reveal possible platelet dysfunction in patients receiving DAPT, preoperative platelet function testing should be considered. PMID:27006555

  9. The moral stereotypes of liberals and conservatives: exaggeration of differences across the political spectrum.

    PubMed

    Graham, Jesse; Nosek, Brian A; Haidt, Jonathan

    2012-01-01

    We investigated the moral stereotypes political liberals and conservatives have of themselves and each other. In reality, liberals endorse the individual-focused moral concerns of compassion and fairness more than conservatives do, and conservatives endorse the group-focused moral concerns of ingroup loyalty, respect for authorities and traditions, and physical/spiritual purity more than liberals do. 2,212 U.S. participants filled out the Moral Foundations Questionnaire with their own answers, or as a typical liberal or conservative would answer. Across the political spectrum, moral stereotypes about "typical" liberals and conservatives correctly reflected the direction of actual differences in foundation endorsement but exaggerated the magnitude of these differences. Contrary to common theories of stereotyping, the moral stereotypes were not simple underestimations of the political outgroup's morality. Both liberals and conservatives exaggerated the ideological extremity of moral concerns for the ingroup as well as the outgroup. Liberals were least accurate about both groups. PMID:23251357

  10. A general mechanism for conditional expression of exaggerated sexually-selected traits.

    PubMed

    Warren, Ian A; Gotoh, Hiroki; Dworkin, Ian M; Emlen, Douglas J; Lavine, Laura C

    2013-10-01

    Sexually-selected exaggerated traits tend to be unusually reliable signals of individual condition, as their expression tends to be more sensitive to nutritional history and physiological circumstance than that of other phenotypes. As such, these traits are the foundation for many models of sexual selection and animal communication, such as "handicap" and "good genes" models. Exactly how expression of these traits is linked to the bearer's condition has been a central yet unresolved question, in part because the underlying physiological mechanisms regulating their development have remained largely unknown. Recent discoveries across animals as diverse as deer, beetles, and flies now implicate the widely conserved insulin-like signaling pathway, as a common physiological mechanism regulating condition-sensitive structures with extreme growth. This raises the exciting possibility that one highly conserved pathway may underlie the evolution of trait exaggeration in a multitude of sexually-selected signal traits across the animal kingdom.

  11. The Earliest Case of Extreme Sexual Display with Exaggerated Male Organs by Two Middle Jurassic Mecopterans

    PubMed Central

    Wang, Qi; Shih, Chungkun; Ren, Dong

    2013-01-01

    Background Many extant male animals exhibit exaggerated body parts for display, defense or offence in sexual selection, such as male birds of paradise showing off colorful and elegant feathers and male moose and reindeers bearing large structured antlers. For insects, male rhinoceros and stag beetles have huge horn-like structure for fighting and competition and some male Leptopanorpa scorpionflies have very long abdominal terminal segments for sexual display and competition. Fossil records of insects having exaggerated body parts for sexual display are fairly rare. One example is two male holcorpids with elongate abdominal segments from sixth (A6) to eighth (A8) and enlarged male genitalia from Eocene, suggesting evolution of these characters occurred fairly late. Principal Findings We document two mecopterans with exaggerated male body parts from the late Middle Jurassic Jiulongshan Formation in northeastern China. Both have extremely extended abdominal segments from A6 to A8 and enlarged genitalia, which might have been used for sexual display and, to less extent, for fighting with other males in the competition for mates. Although Fortiholcorpa paradoxa gen. et sp. nov. and Miriholcorpa forcipata gen. et sp. nov. seem to have affinities with Holcorpidae, we deem both as Family Incertae sedis mainly due to significant differences in branching pattern of Media (M) veins and relative length of A8 for F. paradoxa, and indiscernible preservation of 5-branched M veins in hind wing for M. forcipata. Conclusions/Significance These two new taxa have extended the records of exaggerated male body parts of mecopterans for sexual display and/or selection from the Early Eocene to the late Middle Jurassic. The similar character present in some Leptopanorpa of Panorpidae suggests that the sexual display and/or sexual selection due to extremely elongated male abdominal and sexual organs outweigh the negative impact of bulky body and poor mobility in the evolutionary process

  12. Exaggerated trait allometry, compensation and trade-offs in the New Zealand giraffe weevil (Lasiorhynchus barbicornis).

    PubMed

    Painting, Christina J; Holwell, Gregory I

    2013-01-01

    Sexual selection has driven the evolution of exaggerated traits among diverse animal taxa. The production of exaggerated traits can come at a cost to other traits through trade-offs when resources allocated to trait development are limited. Alternatively some traits can be selected for in parallel to support or compensate for the cost of bearing the exaggerated trait. Male giraffe weevils (Lasiorhynchus barbicornis) display an extremely elongated rostrum used as a weapon during contests for mates. Here we characterise the scaling relationship between rostrum and body size and show that males have a steep positive allometry, but that the slope is non-linear due to a relative reduction in rostrum length for the largest males, suggesting a limitation in resource allocation or a diminishing requirement for large males to invest increasingly into larger rostra. We also measured testes, wings, antennae, fore- and hind-tibia size and found no evidence of a trade-off between these traits and rostrum length when comparing phenotypic correlations. However, the relative length of wings, antennae, fore- and hind-tibia all increased with relative rostrum length suggesting these traits may be under correlational selection. Increased investment in wing and leg length is therefore likely to compensate for the costs of flying with, and wielding the exaggerated rostrum of larger male giraffe weevils. These results provide a first step in identifying the potential for trait compensation and trades-offs, but are phenotypic correlations only and should be interpreted with care in the absence of breeding experiments. PMID:24312425

  13. Multiple exaggerated weapon morphs: a novel form of male polymorphism in harvestmen

    PubMed Central

    Painting, Christina J.; Probert, Anna F.; Townsend, Daniel J.; Holwell, Gregory I.

    2015-01-01

    Alternative reproductive tactics in animals are commonly associated with distinct male phenotypes resulting in polymorphism of sexually selected weapons such as horns and spines. Typically, morphs are divided between small (unarmed) and large (armed) males according to one or more developmental thresholds in association with body size. Here, we describe remarkable weapon trimorphism within a single species, where two exaggerated weapon morphs and a third morph with reduced weaponry are present. Male Pantopsalis cheliferoides harvestmen display exaggerated chelicerae (jaws) which are highly variable in length among individuals. Across the same body size spectrum, however, some males belong to a distinct second exaggerated morph which possesses short, broad chelicerae. Multiple weapon morphs in a single species is a previously unknown phenomenon and our findings have significant implications for understanding weapon diversity and maintenance of polymorphism. Specifically, this species will be a valuable model for testing how weapons diverge by being able to test directly for the circumstances under which a certain weapon type is favoured and how weapon shape relates to performance. PMID:26542456

  14. Perceived azimuth direction is exaggerated: Converging evidence from explicit and implicit measures

    PubMed Central

    Li, Zhi; Durgin, Frank H.

    2016-01-01

    Recent observations suggest that perceived visual direction in the sagittal plane (angular direction in elevation, both upward and downward from eye level) is exaggerated. Foley, Ribeiro-Filho, and Da Silva's (2004) study of perceived size of exocentric ground extent implies that perceived angular direction in azimuth may also be exaggerated. In the present study, we directly examined whether perceived azimuth direction is overestimated. In Experiment 1, numeric estimates of azimuth direction (−48° to 48° relative to straight ahead) were obtained. The results showed a linear exaggeration in perceived azimuth direction with a gain of about 1.26. In Experiment 2, a perceptual extent-matching task served as an implicit measure of perceived azimuth direction. Participants matched an egocentric distance in one direction to a frontal extent in nearly the opposite direction. The angular biases implied by the matching data well replicated Foley et al.'s finding and were also fairly consistent with the azimuth bias function found in Experiment 1, although a slight overall shift was observed between the results of the two experiments. Experiment 3, in which half the observers were tilted sideways while making frontal/depth extent comparisons, suggested that the discrepancy between the results of Experiment 1 and 2 can partially be explained by a retinal horizontal vertical illusion affecting distance estimation tasks. Overall the present study provides converging evidence to suggest that the perception of azimuth direction is overestimated. PMID:26756174

  15. Perceived azimuth direction is exaggerated: Converging evidence from explicit and implicit measures.

    PubMed

    Li, Zhi; Durgin, Frank H

    2016-01-01

    Recent observations suggest that perceived visual direction in the sagittal plane (angular direction in elevation, both upward and downward from eye level) is exaggerated. Foley, Ribeiro-Filho, and Da Silva's (2004) study of perceived size of exocentric ground extent implies that perceived angular direction in azimuth may also be exaggerated. In the present study, we directly examined whether perceived azimuth direction is overestimated. In Experiment 1, numeric estimates of azimuth direction (-48° to 48° relative to straight ahead) were obtained. The results showed a linear exaggeration in perceived azimuth direction with a gain of about 1.26. In Experiment 2, a perceptual extent-matching task served as an implicit measure of perceived azimuth direction. Participants matched an egocentric distance in one direction to a frontal extent in nearly the opposite direction. The angular biases implied by the matching data well replicated Foley et al.'s finding and were also fairly consistent with the azimuth bias function found in Experiment 1, although a slight overall shift was observed between the results of the two experiments. Experiment 3, in which half the observers were tilted sideways while making frontal/depth extent comparisons, suggested that the discrepancy between the results of Experiment 1 and 2 can partially be explained by a retinal horizontal vertical illusion affecting distance estimation tasks. Overall the present study provides converging evidence to suggest that the perception of azimuth direction is overestimated. PMID:26756174

  16. Multiple exaggerated weapon morphs: a novel form of male polymorphism in harvestmen.

    PubMed

    Painting, Christina J; Probert, Anna F; Townsend, Daniel J; Holwell, Gregory I

    2015-11-06

    Alternative reproductive tactics in animals are commonly associated with distinct male phenotypes resulting in polymorphism of sexually selected weapons such as horns and spines. Typically, morphs are divided between small (unarmed) and large (armed) males according to one or more developmental thresholds in association with body size. Here, we describe remarkable weapon trimorphism within a single species, where two exaggerated weapon morphs and a third morph with reduced weaponry are present. Male Pantopsalis cheliferoides harvestmen display exaggerated chelicerae (jaws) which are highly variable in length among individuals. Across the same body size spectrum, however, some males belong to a distinct second exaggerated morph which possesses short, broad chelicerae. Multiple weapon morphs in a single species is a previously unknown phenomenon and our findings have significant implications for understanding weapon diversity and maintenance of polymorphism. Specifically, this species will be a valuable model for testing how weapons diverge by being able to test directly for the circumstances under which a certain weapon type is favoured and how weapon shape relates to performance.

  17. The role of exaggerated patellar tendon reflex in knee joint position sense in patients with cerebral palsy.

    PubMed

    Manikowska, Faustyna; Chen, Brian Po-Jung; Jóźwiak, Marek; Lebiedowska, Maria K

    2015-01-01

    The aim of this pilot study was to determine if exaggerated patellar tendon jerk affects knee joint position sense (JPS) in cerebral palsy (CP) patients, by comparing JPS of the knee between participants with normal and exaggerated reflexes. The thresholds for reflex classification were based upon the data from able-bodied volunteers. JPS was measured as the ability of a subject (with eyes closed) to replicate a knee joint position demonstrated by an examiner. Tendon jerk was measured as the moment of force in response to patellar tendon taps. Data was collected from 27 limbs of CP patients (N=14) and 36 limbs of able-bodied volunteers (N=18). JPS was less accurate (p=0.014) in limbs with non-exaggerated reflexes (50.28±43.63%) than in control limbs (11.84±10.85%). There was no significant difference (p=0.08) in JPS accuracy between limbs with exaggerated reflexes (18.66±15.50%) and control limbs. Our data suggests that one component of sensorimotor impairment, JPS, is not as commonly affected in CP patients as previously reported. JPS of the knee is reduced in limbs with non-exaggerated reflexes; however in limbs with exaggerated reflexes which is seen in the majority of CP patients, JPS is not affected.

  18. Diagnostic Value of Electrocardiogram in Predicting Exaggerated Blood Pressure Response to Exercise Stress Testing

    PubMed Central

    Eshraghi, Ali; Ebdali, Reyhaneh Takalloo; Sajjadi, Seyed Sajed; Golnezhad, Reza

    2016-01-01

    Introduction It is believed that an exaggerated blood pressure response (EBPR) to exercise stress test is associated with a higher risk of cardiovascular events. It is also assumed that QT dispersion (QT-d), which was originally proposed to measure the spatial dispersion of ventricular recovery times, may have a relationship to cardiovascular events. The objective of this study was to examine the difference of changes in QT-d, Maxi-QT, Mini-QT, and QT-c (corrected QT interval) of the electrocardiogram in two groups of patients with exaggerated blood pressure responses (EBPR group) and normal responses (control group) to exercise testing. Also, the diagnostic value of each of these criteria in the prediction of EBPR was studied. Methods This cross-sectional study was conducted from May 2015 to February 2016 on patients suspected of coronary artery disease (CAD) undergoing exercise testing who had been referred to Ghaem and Imam Reza hospitals in Mashhad (Iran). All patients underwent a treadmill exercise test with the 12-lead ECG, which was optically scanned and digitized for analysis of QT-d, QT max, and QT min. Patients were divided into two groups of normal and EBPR to exercise testing. QT changes of ECG were compared between the two groups, and the diagnostic accuracy of QT variables for prediction of EBPR to exercise testing was studied. A multiple linear regression analysis (MLR), Pearson Chi-qquare, independent samples t-test, and receiver operating characteristic (ROC) curve were used as statistical methods in IBM SPSS version 19. Results Sixty patients (55% male) with a mean age of 50.48 ± 10.89 years were studied in two groups of normal (n=30) and exaggerated blood pressure response (n=30) to exercise testing. Maximum QT and QT dispersion were statistically different in individuals’ exaggerated blood pressure response to exercise stress test (p < 0.05). The logistic regression analysis revealed that none of our parameters predicted the EBPR. The ROC

  19. Exaggerated object affordance and absent automatic inhibition in alien hand syndrome

    PubMed Central

    McBride, Jennifer; Sumner, Petroc; Jackson, Stephen R.; Bajaj, Nin; Husain, Masud

    2013-01-01

    Patients with alien hand syndrome (AHS) experience making apparently deliberate and purposeful movements with their hand against their will. However, the mechanisms contributing to these involuntary actions remain poorly understood. Here, we describe two experimental investigations in a patient with corticobasal syndrome (CBS) with alien hand behaviour in her right hand. First, we show that responses with the alien hand are made significantly more quickly to images of objects which afford an action with that hand compared to objects which afford an action with the unaffected hand. This finding suggests that involuntary grasping behaviours in AHS might be due to exaggerated, automatic motor activation evoked by objects which afford actions with that limb. Second, using a backwards masked priming task, we found normal automatic inhibition of primed responses in the patient's unaffected hand, but importantly there was no evidence of such suppression in the alien limb. Taken together, these findings suggest that grasping behaviours in AHS may result from exaggerated object affordance effects, which might potentially arise from disrupted inhibition of automatically evoked responses. PMID:23433243

  20. Exaggerated displays do not improve mounting success in male seaweed flies Fucellia tergina (Diptera: Anthomyiidae).

    PubMed

    Memmott, Ruth; Briffa, Mark

    2015-11-01

    Signals of individual quality are assumed to be difficult to exaggerate, either because they are directly linked to underlying traits (indices) or because they are costly to perform (handicaps). In practise advertisement displays may consist of conventional and costly components, for instance where a morphological structure related to body size is used in visual displays. In this case, there is the potential for dishonest displays, due to the population level variance around the relationship between body size and display structures. We examine the use of wing flicking displays that we observed in situ in a strandline dwelling seaweed fly Fucellia tergina, using overall body size and the size of their eyes as underlying indicators of condition. Males displayed far more frequently than females, and were also observed to frequently mount other flies, a behaviour that was rare in females. The rate of display was greater for males that had positive residual values from relationships between wing length and body length. In other words those males with larger than expected wings for their underlying quality displayed more frequently, indicating that these displays are open to exaggeration. Males with larger than expected wings (for the size of their body or eyes), however, mounted less frequently. We suggest that small bodied males are less successful in terms of mounting, but that those small males with relatively large wings may attempt to compensate for this through increased display effort.

  1. Dominant tree species are at risk from exaggerated drought under climate change.

    PubMed

    Fensham, Roderick J; Fraser, Josie; MacDermott, Harry J; Firn, Jenifer

    2015-10-01

    Predicting the consequences of climate change on forest systems is difficult because trees may display species-specific responses to exaggerated droughts that may not be reflected by the climatic envelope of their geographic range. Furthermore, few studies have examined the postdrought recovery potential of drought-susceptible tree species. This study develops a robust ranking of the drought susceptibility of 21 tree species based on their mortality after two droughts (1990s and 2000s) in the savanna of north-eastern Australia. Drought-induced mortality was positively related to species dominance, negatively related to the ratio of postdrought seedlings to adults and had no relationship to the magnitude of extreme drought within the species current geographic ranges. These results suggest that predicting the consequences of exaggerated drought on species' geographic ranges is difficult, but that dominant species like Eucalyptus with relatively slow rates of population recovery and dispersal are the most susceptible. The implications for savanna ecosystems are lower tree densities and basal area.

  2. Clinical categories of exaggerated skin reactions to mosquito bites and their pathophysiology.

    PubMed

    Tatsuno, Kazuki; Fujiyama, Toshiharu; Matsuoka, Hiroyuki; Shimauchi, Takatoshi; Ito, Taisuke; Tokura, Yoshiki

    2016-06-01

    Mosquito bites are skin irritating reactions, which usually resolve spontaneously without intensive medical care. However, in certain situations, mosquito bites may form a more vicious reaction, sometimes accompanying fever and systemic symptoms. In such cases, the presence of rare hematological disorders, abnormalities in eosinophils and/or association with Epstein-Barr virus (EBV) may underlie. Importantly, hypersensitivity to mosquito bites (HMB), which is characterized by necrotic skin reactions to mosquito bites with various systemic symptoms, is often observed in association with EBV infection and natural killer (NK) cell lymphoproliferative disorder. Exaggerated skin reaction to mosquito bites is also seen in Wells' syndrome. While strong Th2-skewing immune dysregulation is apparent in the patients, they also show robust CD4(+) T cell proliferation in response to mosquito salivary gland extracts, indicating close association between Wells' syndrome and mosquito bites. Similar skin reaction to mosquito bites is also noticed in certain types of B cell neoplasm, although the role of B cells in this peculiar reaction to mosquito bites is yet to be elucidated. In this review, we will discuss the current knowledge of exaggerated reaction toward mosquito bites seen in conjunction with these unique hematological disorders, and examine the scientific studies and observations reported in previous literatures to organize our current understanding of the pathogenesis of this distinct disorder.

  3. Simulated paraphilias: a preliminary study of patients who imitate or exaggerate paraphilic symptoms and behaviors.

    PubMed

    Fedoroff, J P; Hanson, A; McGuire, M; Malin, H M; Berlin, F S

    1992-05-01

    In a consecutive series of admissions to the Johns Hopkins Sexual Disorders Unit, 4 out of 20 patients appeared to have simulated paraphilic symptoms that further assessment indicated were either exaggerated or not present. The paper presents case histories of these 4 patients. A descriptive comparison is made between these patients and control groups of patients who admitted having paraphilic symptoms and a group of patients accused of having paraphilic symptoms but who denied them. Patients who simulated paraphilias tended to be self-referred (75%) and without current legal charges (100%). None of these patients was referred or sought treatment for pedophilia, in contrast to the other two patient groups, in which pedophilia accounted for 75% of the referrals. Several possible explanations for why patients might simulate paraphilias and implications for therapists who evaluate or treat sex offenders are discussed.

  4. The Rey AVLT Serial Position Effect: a useful indicator of symptom exaggeration?

    PubMed

    Powell, Matthew R; Gfeller, Jeffrey D; Oliveri, Michael V; Stanton, Shannon; Hendricks, Bryan

    2004-08-01

    This investigation explored the usefulness of serial position patterns during word recall on the Rey Auditory Verbal Learning Test (RAVLT; Rey, 1964) as an indicator of poor effort. Significantly better recall for early (primacy) and recent (recency) material defines the serial position effect (SPE; Rundus, 1971). The SPE on the RAVLT was examined in four groups: normal controls (NC), symptom-coached simulators (SC), test-coached simulators (TC), and a group of moderate to severe subacute traumatic brain injury (TBI) patients. Normal control participants and TBI patients demonstrated the expected SPE. Only the SC simulators clearly suppressed the primacy effect. The SPE appears neither sensitive nor specific enough to be used independently of more sensitive symptom validity tests in the detection of suboptimal effort. It may be especially problematic when used with clients presenting with sophisticated styles of exaggeration and in settings with lower base rates of compromised effort.

  5. A sex difference in facial contrast and its exaggeration by cosmetics.

    PubMed

    Russell, Richard

    2009-01-01

    This study demonstrates the existence of a sex difference in facial contrast. By measuring carefully controlled photographic images, female faces were shown to have greater luminance contrast between the eyes, lips, and the surrounding skin than did male faces. This sex difference in facial contrast was found to influence the perception of facial gender. An androgynous face can be made to appear female by increasing the facial contrast, or to appear male by decreasing the facial contrast. Application of cosmetics was found to consistently increase facial contrast. Female faces wearing cosmetics had greater facial contrast than the same faces not wearing cosmetics. Female facial beauty is known to be closely linked to sex differences, with femininity considered attractive. These results suggest that cosmetics may function in part by exaggerating a sexually dimorphic attribute-facial contrast-to make the face appear more feminine and hence attractive.

  6. Exaggerated NT-proBNP production in patients with hematologic malignancies: a case series.

    PubMed

    Andreu, Aileen; Guglin, Maya

    2012-01-01

    ©2011 Wiley Periodicals Inc. Extremely elevated serum brain natriuretic peptide (BNP) in cancer patients is a poorly understood phenomenon. The authors report three cases of patients with hematologic malignancies and serial N-terminal pro-BNP (NT-proBNP) measurements with values in the range of tens to hundred thousands pg/mL. Through matching NT-proBNP results with clinical, laboratory, echocardiographic and radiologic data, the authors found that these patients demonstrated exaggerated responses to fluid overload. Patients with hematologic malignancies may have higher than expected values of NT-proBNP in response to hypervolemic states. The authors hypothesize that this may be related to possible infiltration of the myocardium by substances produced in the setting of these diseases or due to proteins interfering with the assay.Congest Heart Fail. PMID:23167814

  7. Asymmetrical social mach bands: exaggeration of social identities on the more esteemed side of group borders.

    PubMed

    Rozin, Paul; Scott, Sydney E; Zickgraf, Hana F; Ahn, Flora; Jiang, Hong

    2014-10-01

    Perceptual processes generally enhance borders, because of their high information value. Mach bands are an example in vision. In the social world, borders are also of special significance; one side of a border is generally more esteemed or valued than the other. We claim that entities (individuals, groups) that are just over the border on the positive side tend to exaggerate their membership on the positive side (asymmetrical social Mach bands). We demonstrate this by showing that (a) master's-degree universities use the word university to describe themselves more than major graduate universities do, (b) small international airports use the word international to describe themselves more than major airports do, and (c) University of Pennsylvania students, who are affiliated with a "marginal" Ivy League school, use the word Ivy to describe their school more than Harvard students do.

  8. British English infants segment words only with exaggerated infant-directed speech stimuli.

    PubMed

    Floccia, Caroline; Keren-Portnoy, Tamar; DePaolis, Rory; Duffy, Hester; Delle Luche, Claire; Durrant, Samantha; White, Laurence; Goslin, Jeremy; Vihman, Marilyn

    2016-03-01

    The word segmentation paradigm originally designed by Jusczyk and Aslin (1995) has been widely used to examine how infants from the age of 7.5 months can extract novel words from continuous speech. Here we report a series of 13 studies conducted independently in two British laboratories, showing that British English-learning infants aged 8-10.5 months fail to show evidence of word segmentation when tested in this paradigm. In only one study did we find evidence of word segmentation at 10.5 months, when we used an exaggerated infant-directed speech style. We discuss the impact of variations in infant-directed style within and across languages in the course of language acquisition.

  9. The oestrogen pathway underlies the evolution of exaggerated male cranial shapes in Anolis lizards

    PubMed Central

    Sanger, Thomas J.; Seav, Susan M.; Tokita, Masayoshi; Langerhans, R. Brian; Ross, Lela M.; Losos, Jonathan B.; Abzhanov, Arhat

    2014-01-01

    Sexual dimorphisms vary widely among species. This variation must arise through sex-specific evolutionary modifications to developmental processes. Anolis lizards vary extensively in their expression of cranial dimorphism. Compared with other Anolis species, members of the carolinensis clade have evolved relatively high levels of cranial dimorphism; males of this clade have exceptionally long faces relative to conspecific females. Developmentally, this facial length dimorphism arises through an evolutionarily novel, clade-specific strategy. Our analyses herein reveal that sex-specific regulation of the oestrogen pathway underlies evolution of this exaggerated male phenotype, rather than the androgen or insulin growth factor pathways that have long been considered the primary regulators of male-biased dimorphism among vertebrates. Our results suggest greater intricacy in the genetic mechanisms that underlie sexual dimorphisms than previously appreciated. PMID:24741020

  10. Murine nonvolatile pheromones: isolation of exocrine-gland secreting Peptide 1.

    PubMed

    Kimoto, Hiroko; Touhara, Kazushige

    2013-01-01

    Our search for a substance recognized by the vomeronasal neurons revealed that the extra-orbital lacrimal gland (ELG) isolated from adult male mice produced the male-specific peptide pheromone exocrine gland-secreting peptide 1 (ESP1). The following protocol reveals how ESP1 may be extracted from the ELG, purified using anion-exchange and reverse-phase high-performance liquid chromatography (HPLC), and analyzed by mass spectrometry. This protocol has been specifically designed for the purification of ESP1, but may be modified to isolate a variety of peptides from the exocrine glands. Peptides purified in this manner may help further define the molecular mechanisms underlying pheromone communication in the vomeronasal system.

  11. Cold Exposure Can Induce an Exaggerated Early-Morning Blood Pressure Surge in Young Prehypertensives.

    PubMed

    Hong, Cian-Hui; Kuo, Terry B J; Huang, Bo-Chi; Lin, Yu-Cheng; Kuo, Kuan-Liang; Chern, Chang-Ming; Yang, Cheryl C H

    2016-01-01

    Prehypertension is related to a higher risk of cardiovascular events than normotension. Our previous study reported that cold exposure elevates the amplitude of the morning blood pressure surge (MBPS) and is associated with a sympathetic increase during the final sleep transition, which might be critical for sleep-related cardiovascular events in normotensives. However, few studies have explored the effects of cold exposure on autonomic function during sleep transitions and changes of autonomic function among prehypertensives. Therefore, we conducted an experiment for testing the effects of cold exposure on changes of autonomic function during sleep and the MBPS among young prehypertensives are more exaggerate than among young normotensives. The study groups consisted of 12 normotensive and 12 prehypertensive male adults with mean ages of 23.67 ± 0.70 and 25.25 ± 0.76 years, respectively. The subjects underwent cold (16°C) and warm (23°C) conditions randomly. The room temperature was maintained at either 23°C or 16°C by central air conditioning and recorded by a heat-sensitive sensor placed on the forehead and extended into the air. BP was measured every 30 minutes by using an autonomic BP monitor. Electroencephalograms, electrooculograms, electromyograms, electrocardiograms, and near body temperature were recorded by miniature polysomnography. Under cold exposure, a significantly higher amplitude of MBPS than under the warm condition among normotensives; however, this change was more exaggerated in prehypertensives. Furthermore, there was a significant decrease in parasympathetic-related RR and HF during the final sleep transition and a higher early-morning surge in BP and in LF% among prehypertensives, but no such change was found in normotensives. Our study supports that cold exposure might increase the risk of sleep-related cardiovascular events in prehypertensives.

  12. Cold Exposure Can Induce an Exaggerated Early-Morning Blood Pressure Surge in Young Prehypertensives.

    PubMed

    Hong, Cian-Hui; Kuo, Terry B J; Huang, Bo-Chi; Lin, Yu-Cheng; Kuo, Kuan-Liang; Chern, Chang-Ming; Yang, Cheryl C H

    2016-01-01

    Prehypertension is related to a higher risk of cardiovascular events than normotension. Our previous study reported that cold exposure elevates the amplitude of the morning blood pressure surge (MBPS) and is associated with a sympathetic increase during the final sleep transition, which might be critical for sleep-related cardiovascular events in normotensives. However, few studies have explored the effects of cold exposure on autonomic function during sleep transitions and changes of autonomic function among prehypertensives. Therefore, we conducted an experiment for testing the effects of cold exposure on changes of autonomic function during sleep and the MBPS among young prehypertensives are more exaggerate than among young normotensives. The study groups consisted of 12 normotensive and 12 prehypertensive male adults with mean ages of 23.67 ± 0.70 and 25.25 ± 0.76 years, respectively. The subjects underwent cold (16°C) and warm (23°C) conditions randomly. The room temperature was maintained at either 23°C or 16°C by central air conditioning and recorded by a heat-sensitive sensor placed on the forehead and extended into the air. BP was measured every 30 minutes by using an autonomic BP monitor. Electroencephalograms, electrooculograms, electromyograms, electrocardiograms, and near body temperature were recorded by miniature polysomnography. Under cold exposure, a significantly higher amplitude of MBPS than under the warm condition among normotensives; however, this change was more exaggerated in prehypertensives. Furthermore, there was a significant decrease in parasympathetic-related RR and HF during the final sleep transition and a higher early-morning surge in BP and in LF% among prehypertensives, but no such change was found in normotensives. Our study supports that cold exposure might increase the risk of sleep-related cardiovascular events in prehypertensives. PMID:26919177

  13. Genotoxicity testing of peptides: Folate deprivation as a marker of exaggerated pharmacology

    SciTech Connect

    Guérard, Melanie Zeller, Andreas; Festag, Matthias; Schubert, Christine; Singer, Thomas; Müller, Lutz

    2014-09-15

    The incidence of micronucleated-cells is considered to be a marker of a genotoxic event and can be caused by direct- or indirect-DNA reactive mechanisms. In particular, small increases in the incidence of micronuclei, which are not associated with toxicity in the target tissue or any structurally altering properties of the compound, trigger the suspicion that an indirect mechanism could be at play. In a bone marrow micronucleus test of a synthetic peptide (a dual agonist of the GLP-1 and GIP receptors) that had been integrated into a regulatory 13-week repeat-dose toxicity study in the rat, small increases in the incidence of micronuclei had been observed, together with pronounced reductions in food intake and body weight gain. Because it is well established that folate plays a crucial role in maintaining genomic integrity and pronounced reductions in food intake and body weight gain were observed, folate levels were determined from plasma samples initially collected for toxicokinetic analytics. A dose-dependent decrease in plasma folate levels was evident after 4 weeks of treatment at the mid and high dose levels, persisted until the end of the treatment duration of 13-weeks and returned to baseline levels during the recovery period of 4 weeks. Based on these properties, and the fact that the compound tested (peptide) per se is not expected to reach the nucleus and cause DNA damage, the rationale is supported that the elevated incidence of micronucleated polychromatic erythrocytes is directly linked to the exaggerated pharmacology of the compound resulting in a decreased folate level. - Highlights: • A synthetic peptide has been evaluated for potential genotoxicity • Small increases in an integrated (13-weeks) micronucleus test were observed • Further, animals had a pronounced reductions in food intake and body weight gain • A dose-dependent decrease in plasma folate levels was evident from week 4 onwards • Elevated micronuclei-incidence due to the

  14. Exaggerated sympathetic and cardiovascular responses to stimulation of the mesencephalic locomotor region in spontaneously hypertensive rats.

    PubMed

    Liang, Nan; Mitchell, Jere H; Smith, Scott A; Mizuno, Masaki

    2016-01-01

    The sympathetic and pressor responses to exercise are exaggerated in hypertension. However, the underlying mechanisms causing this abnormality remain to be fully elucidated. Central command, a neural drive originating in higher brain centers, is known to activate cardiovascular and locomotor control circuits concomitantly. As such, it is a viable candidate for the generation of the augmented vascular response to exercise in this disease. We hypothesized that augmentations in central command function contribute to the heightened cardiovascular response to exercise in hypertension. To test this hypothesis, changes in renal sympathetic nerve activity (RSNA) and mean arterial pressure (MAP) in response to electrical stimulation of mesencephalic locomotor region (MLR; 20-50 μA in 10-μA steps evoking fictive locomotion), a putative component of the central command pathway, were examined in decerebrate, paralyzed normotensive Wistar-Kyoto (WKY) and spontaneously hypertensive rats (SHR). Tibial nerve discharge during MLR stimulation significantly increased in an intensity-dependent manner in both WKY and SHR but was not different between groups. Stimulation of the MLR evoked significantly larger increases in RSNA and MAP with increasing stimulation intensity in both groups. Importantly, the increases in sympathetic and pressor responses to this fictive locomotion were significantly greater in SHR compared with WKY across all stimulation intensities (e.g., at 50 μA, ΔRSNA: WKY 153 ± 31%, SHR 287 ± 42%; ΔMAP: WKY 87 ± 9 mmHg, SHR 139 ± 7 mmHg). These findings provide the first evidence that central command may be a critical contributor to the exaggerated rise in sympathetic activity and blood pressure during exercise in hypertension. PMID:26545711

  15. Cold Exposure Can Induce an Exaggerated Early-Morning Blood Pressure Surge in Young Prehypertensives

    PubMed Central

    Huang, Bo-Chi; Lin, Yu-Cheng; Kuo, Kuan-Liang; Chern, Chang-Ming; Yang, Cheryl C. H.

    2016-01-01

    Prehypertension is related to a higher risk of cardiovascular events than normotension. Our previous study reported that cold exposure elevates the amplitude of the morning blood pressure surge (MBPS) and is associated with a sympathetic increase during the final sleep transition, which might be critical for sleep-related cardiovascular events in normotensives. However, few studies have explored the effects of cold exposure on autonomic function during sleep transitions and changes of autonomic function among prehypertensives. Therefore, we conducted an experiment for testing the effects of cold exposure on changes of autonomic function during sleep and the MBPS among young prehypertensives are more exaggerate than among young normotensives. The study groups consisted of 12 normotensive and 12 prehypertensive male adults with mean ages of 23.67 ± 0.70 and 25.25 ± 0.76 years, respectively. The subjects underwent cold (16°C) and warm (23°C) conditions randomly. The room temperature was maintained at either 23°C or 16°C by central air conditioning and recorded by a heat-sensitive sensor placed on the forehead and extended into the air. BP was measured every 30 minutes by using an autonomic BP monitor. Electroencephalograms, electrooculograms, electromyograms, electrocardiograms, and near body temperature were recorded by miniature polysomnography. Under cold exposure, a significantly higher amplitude of MBPS than under the warm condition among normotensives; however, this change was more exaggerated in prehypertensives. Furthermore, there was a significant decrease in parasympathetic-related RR and HF during the final sleep transition and a higher early-morning surge in BP and in LF% among prehypertensives, but no such change was found in normotensives. Our study supports that cold exposure might increase the risk of sleep-related cardiovascular events in prehypertensives. PMID:26919177

  16. Exaggerated sympathoexcitatory reflexes develop with changes in the rostral ventrolateral medulla in obese Zucker rats.

    PubMed

    Huber, Domitila A; Schreihofer, Ann M

    2016-08-01

    Obesity leads to altered autonomic reflexes that reduce stability of mean arterial pressure (MAP). Sympathoinhibitory reflexes such as baroreflexes are impaired, but reflexes that raise MAP appear to be augmented. In obese Zucker rats (OZR) sciatic nerve stimulation evokes larger increases in MAP by unknown mechanisms. We sought to determine the autonomic underpinnings of this enhanced somatic pressor reflex and whether other sympathoexcitatory reflexes are augmented. We also determined whether their final common pathway, glutamatergic activation of the rostral ventrolateral medulla (RVLM), was enhanced in male OZR compared with lean Zucker rats (LZR). Sciatic nerve stimulation or activation of the nasopharyngeal reflex evoked larger rises in splanchnic sympathetic nerve activity (SNA) (79% and 45% larger in OZR, respectively; P < 0.05) and MAP in urethane-anesthetized, ventilated, paralyzed adult OZR compared with LZR. After elimination of baroreflex feedback by pharmacological prevention of changes in MAP and heart rate, these two sympathoexcitatory reflexes were still exaggerated in OZR (167% and 69% larger, respectively, P < 0.05). In adult OZR microinjections of glutamate, AMPA, or NMDA into the RVLM produced larger rises in SNA (∼61% larger in OZR, P < 0.05 for each drug) and MAP, but stimulation of axonal fibers in the upper thoracic spinal cord yielded equivalent responses in OZR and LZR. In juvenile OZR and LZR, sympathoexcitatory reflexes and physiological responses to RVLM activation were comparable. These data suggest that the ability of glutamate to activate the RVLM becomes enhanced in adult OZR and may contribute to the development of exaggerated sympathoexcitatory responses independent of impaired baroreflexes. PMID:27280427

  17. Detecting Symptom Exaggeration in Combat Veterans Using the MMPI-2 Symptom Validity Scales: A Mixed Group Validation

    ERIC Educational Resources Information Center

    Tolin, David F.; Steenkamp, Maria M.; Marx, Brian P.; Litz, Brett T.

    2010-01-01

    Although validity scales of the Minnesota Multiphasic Personality Inventory-2 (MMPI-2; J. N. Butcher, W. G. Dahlstrom, J. R. Graham, A. Tellegen, & B. Kaemmer, 1989) have proven useful in the detection of symptom exaggeration in criterion-group validation (CGV) studies, usually comparing instructed feigners with known patient groups, the…

  18. Mechanism of exaggerated natriuresis in hypertensive man: impaired sodium transport in the loop of henle

    PubMed Central

    Buckalew, Vardaman M.; Puschett, Jules B.; Kintzel, James E.; Goldberg, Martin

    1969-01-01

    To evaluate the effects of saline loading on distal sodium reabsorption in hypertensive man, studies were performed during both water deprivation and water diuresis in eight hypertensive subjects, and the results were compared to data obtained from similar studies in normal subjects. All hypertensive patients exhibited an enhanced excretion of filtered sodium (CNa/CIn) at any level of distal delivery of sodium compared to normal controls. Free water reabsorption (TcH2O) during hypertonic saline loading was quantitatively abnormal in the hypertensives at high levels of osmolar clearance (COsm), and also the curve of TcH2O vs. COsm leveled off above a COsm of 18 ml/min per 1.73 m2 in the hypertensive group in contrast to the normal controls in whom TcH2O showed no evidence of achieving an upper limit. Sodium depletion exaggerated the abnormality in TcH2O in hypertensives, and resulted in a positive free water clearance (CH2O) during hydropenia. During hypotonic saline loading in water diuresis, changes in free water clearance per 100 ml of glomerular filtrate (CH2O/CIn) were less at any given increment in urine flow per 100 ml of glomerular filtrate (V/CIn) in the hypertensives compared to normal controls (P < 0.001). This abnormality in CH2O/CIn in the hypertensives in conjunction with the defect in TcH2O observed during hydropenia indicates that sodium reabsorption in the loop of Henle was abnormal at any given rate of distal delivery of sodium in hypertension. Furthermore, these abnormalities in TcH2O and CH2O coincided temporally with the development of the exaggerated natriuresis. Although the distal defect in sodium transport, in large part, accounted for the augmented natriuresis in hypertension, evidence was present also for enhanced rejection of sodium in the proximal tubule during saline loading in the hypertensives. Additional studies utilizing acetazolamide which increases distal delivery of sodium without extracellular fluid volume expansion showed only

  19. Glutamatergic receptor dysfunction in spinal cord contributes to the exaggerated exercise pressor reflex in heart failure

    PubMed Central

    Wang, Han-Jun; Cahoon, Rebecca; Cahoon, Edgar B.; Zheng, Hong; Patel, Kaushik P.

    2014-01-01

    Excitatory amino acids (e.g., glutamate) released by contraction-activated skeletal muscle afferents into the dorsal horn of the spinal cord initiate the central component of the exercise pressor reflex (EPR) in physiological conditions. However, the role of glutamate and glutamate receptors in mediating the exaggerated EPR in the chronic heart failure (CHF) state remains to be determined. In the present study, we performed microinjection of glutamate receptor antagonists into ipisilateral L4/L5 dorsal horns to investigate their effects on the pressor response to static contraction induced by stimulation of the peripheral end of L4/L5 ventral roots in decerebrate sham-operated (sham) and CHF rats. Microinjection of glutamate (10 mM, 100 nl) into the L4 or L5 dorsal horn caused a greater pressor response in CHF rats compared with sham rats. Furthermore, microinjection of either the broad-spectrum glutamate receptor antagonist kynurenate (10 mM, 100 nl) or the N-methyl-d-aspartate (NMDA) receptor antagonist dl-2-amino-5-phosphonovalerate (50 mM, 100 nl) or the non-NMDA-sensitive receptor antagonist 6-cyano-7-nitroquinoxaline-2,3-dione (5 mM, 100 nl) into L4/5 dorsal horns decreased the pressor response to static contraction in CHF rats to a greater extent than in sham rats. Molecular evidence showed that the protein expression of glutamate receptors (both non-NMDA and NMDA) was elevated in the dorsal horn of the lumbar spinal cord in CHF rats. In addition, data from microdialysis experiments demonstrated that although basal glutamate release at the dorsal horn at rest was similar between sham and CHF rats (225 ± 50 vs. 260 ± 63 nM in sham vs. CHF rats, n = 4, P > 0.05), CHF rats exhibit greater glutamate release into the dorsal horn during muscle contraction compared with sham rats (549 ± 60 vs. 980 ± 65 nM in sham vs. CHF rats, n = 4, P < 0.01). These data indicate that the spinal glutamate system contributes to the exaggerated EPR in the CHF state. PMID

  20. Arabidopsis thaliana sku mutant seedlings show exaggerated surface-dependent alteration in root growth vector.

    PubMed

    Rutherford, R; Masson, P H

    1996-08-01

    Roots of wild-type Arabidopsis thaliana seedlings in the Wassilewskija (WS) and Landsberg erecta (Ler) ecotypes often grow aslant on vertical agar surfaces. Slanted root growth always occurs to the right of the gravity vector when the root is viewed through the agar surface, and is not observed in the Columbia ecotype. Right-slanted root growth is surface-dependent and does not result directly from directional environmental stimuli or gradients in the plane of skewing. We have isolated two partially dominant mutations in WS (sku1 and sku2) that show an exaggerated right-slanting root-growth phenotype on agar surfaces. The right-slanting root-growth phenotype of wild-type and mutant roots is not the result of diagravitropism or of an alteration in root gravitropism. It is accompanied by a left-handed rotation of the root about its axis within the elongation zone, the rate of which positively correlates with the degree of right-slanted curvature. Our data suggest that the right-slanting root growth phenotype results from an endogenous structural asymmetry that expresses itself by a directional root-tip rotation.

  1. Arabidopsis thaliana sku mutant seedlings show exaggerated surface-dependent alteration in root growth vector

    NASA Technical Reports Server (NTRS)

    Rutherford, R.; Masson, P. H.

    1996-01-01

    Roots of wild-type Arabidopsis thaliana seedlings in the Wassilewskija (WS) and Landsberg erecta (Ler) ecotypes often grow aslant on vertical agar surfaces. Slanted root growth always occurs to the right of the gravity vector when the root is viewed through the agar surface, and is not observed in the Columbia ecotype. Right-slanted root growth is surface-dependent and does not result directly from directional environmental stimuli or gradients in the plane of skewing. We have isolated two partially dominant mutations in WS (sku1 and sku2) that show an exaggerated right-slanting root-growth phenotype on agar surfaces. The right-slanting root-growth phenotype of wild-type and mutant roots is not the result of diagravitropism or of an alteration in root gravitropism. It is accompanied by a left-handed rotation of the root about its axis within the elongation zone, the rate of which positively correlates with the degree of right-slanted curvature. Our data suggest that the right-slanting root growth phenotype results from an endogenous structural asymmetry that expresses itself by a directional root-tip rotation.

  2. Exaggerated Health Benefits of Physical Fitness and Activity dueto Self-selection.

    SciTech Connect

    Williams, Paul T.

    2006-01-17

    Background: The predicted health benefits of becomingphysically active or fit will be exaggerated if health outcomes causefitness and activity rather than the converse in prospective andcross-sectional epidemiological studies. Objective: Assess whether therelationships of adiposity to fitness and activity are explained byadiposity prior to exercising. Design: Cross-sectional study of physicalfitness (running speed during 10km foot race) and physical activity(weekly running distance) to current BMI (BMIcurrent) and BMI at thestart of running (BMIstarting) in 44,370 male and 25,252 femaleparticipants of the National Runners' Health Study. Results: BMIstartingexplained all of the association between fitness and BMIcurrent in bothsexes, but less than a third of the association between physical activityand BMIcurrent in men. In women, BMIstarting accounted for 58 percent ofthe association between BMIcurrent and activity levels. The 95thpercentile of BMIcurrent showed substantially greater declines withfitness and activity levels than the 5th percentile of BMIcurrent in men(i.e., the negative slope for 95th percentile was 2.6-fold greater thanthe 5th percentile for fitness and 3-fold greater for activity) and women(6-fold and 3.4-fold greater, respectively). At all percentiles, theregression slopes relating BMIstarting to fitness were comparable orgreater (more negative) than the slopes relating BMIcurrent to fitness,whereas the converse was true for activity. Conclusion: Self-selectionbias accounts for all of the association between fitness and adiposityand probably a portion of other health outcomes, but has less affect onassociations involving physical activity

  3. Lung cancer screening overdiagnosis: reports of overdiagnosis in screening for lung cancer are grossly exaggerated.

    PubMed

    Mortani Barbosa, Eduardo J

    2015-08-01

    The National Lung Cancer Screening Trial (NLST) demonstrated a mortality reduction benefit associated with low-dose computed tomography (LDCT) screening for lung cancer. There has been considerable debate regarding the benefits and harms of LDCT lung cancer screening, including the challenges related to its practical implementation. One of the controversies regards overdiagnosis, which conceptually denotes diagnosing a cancer that, either because of its indolent, low-aggressiveness biologic behavior or because of limited life expectancy, is unlikely to result in significant morbidity during the patient's remainder lifetime. In theory, diagnosing and treating these cancers offer no measurable benefit while incurring costs and risks. Therefore, if a screening test detects a substantial number of overdiagnosed cancers, it is less likely to be effective. It has been argued that LDCT screening for lung cancer results in an unacceptably high rate of overdiagnosis. This article aims to defend the opposite stance. Overdiagnosis does exist and to a certain extent is inherent to any cancer-screening test. Nonetheless, the concept is less dualistic and more nuanced than it has been suggested. Furthermore, the average estimates of overdiagnosis in LDCT lung cancer screening based on the totality of published data are likely much lower than the highest published estimates, if a careful definition of a positive screening test reflecting our current understanding of lung cancer biology is utilized. This article presents evidence on why reports of overdiagnosis in lung cancer screening have been exaggerated.

  4. Exaggerated blood pressure response during the exercise treadmill test as a risk factor for hypertension

    PubMed Central

    Lima, S.G.; Albuquerque, M.F.P.M.; Oliveira, J.R.M.; Ayres, C.F.J.; Cunha, J.E.G.; Oliveira, D.F.; Lemos, R.R.; Souza, M.B.R.; Silva, O. Barbosa e

    2013-01-01

    Exaggerated blood pressure response (EBPR) during the exercise treadmill test (ETT) has been considered to be a risk factor for hypertension. The relationship of polymorphisms of the renin-angiotensin system gene with hypertension has not been established. Our objective was to evaluate whether EBPR during exercise is a clinical marker for hypertension. The study concerned a historical cohort of normotensive individuals. The exposed individuals were those who presented EBPR. At the end of the observation period (41.7 months = 3.5 years), the development of hypertension was analyzed within the two groups. Genetic polymorphisms and blood pressure behavior were assessed as independent variables, together with the classical risk factors for hypertension. The I/D gene polymorphism of the angiotensin-converting enzyme and M235T of angiotensinogen were ruled out as risk factors for hypertension. EBPR during ETT is not an independent influence on the chances of developing hypertension. No differences were observed between the hypertensive and normotensive individuals regarding gender (P = 0.655), skin color (P = 0.636), family history of hypertension (P = 0.225), diabetes mellitus (P = 0.285), or hypertriglyceridemia (P = 0.734). The risk of developing hypertension increased with increasing body mass index (BMI) and advancing age. The risk factors, which independently influenced the development of hypertension, were age and BMI. EBPR did not constitute an independent risk factor for hypertension and is probably a preclinical phase in the spectrum of normotension and hypertension. PMID:23598646

  5. Pregnant women exaggerate cautious gait patterns during the transition between level and hill surfaces.

    PubMed

    Gottschall, Jinger S; Sheehan, Riley C; Downs, Danielle S

    2013-10-01

    Falls are the leading cause of nonfatal injury across all age groups and a common incident for pregnant women. Thus, there is a critical demand for research to evaluate if walking strategies in pregnant women change throughout pregnancy in order to effectively intervene and minimize the incidence rate. The aim of the present study was to analyze modifications in temporal-spatial parameters as well as muscle activity during hill walking transitions in pregnant women between gestational week 20 and 32. Based upon previous literature, we hypothesized that in comparison to level walking, the transition strides of pregnant women would be distinct between trimesters in order to accommodate the physical changes within twelve weeks. Thirteen pregnant women completed a series of randomly assigned walking conditions on level and hill surfaces during gestational week 20 and 32. Our results demonstrated that pregnant women modulated their gait patterns throughout pregnancy with additional joint flexion as well as muscle activity at the ankle, knee and hip. In summary, pregnant women exaggerate cautious gait patterns by walking slower and wider with greater joint flexion and muscle activity in order to safely transition between level and hill surfaces.

  6. Exaggerated Intergroup Bias in Economical Decision Making Games: Differential Effects of Primary and Secondary Psychopathic Traits

    PubMed Central

    Gillespie, Steven M.; Mitchell, Ian J.; Johnson, Ian; Dawson, Ellen; Beech, Anthony R.

    2013-01-01

    Psychopathic personality traits are linked with selfish and non-cooperative responses during economical decision making games. However, the possibility that these responses may vary when responding to members of the in-group and the out-group has not yet been explored. We aimed to examine the effects of primary (selfish, uncaring) and secondary (impulsive, irresponsible) psychopathic personality traits on the responses of non-offending participants to the in-group and the out-group (defined in terms of affiliation to a UK University) across a series of economical decision making games. We asked a total of 60 participants to act as the proposer in both the dictator game and the ultimatum game. We found that across both tasks, those who scored highly for secondary psychopathic traits showed an elevated intergroup bias, making more generous offers toward members of the in-group relative to the out-group. An exaggerated intergroup bias may therefore represent a motivational factor for the antisocial behavior of those with elevated secondary psychopathic traits. PMID:23950898

  7. Justice is not blind: visual attention exaggerates effects of group identification on legal punishment.

    PubMed

    Granot, Yael; Balcetis, Emily; Schneider, Kristin E; Tyler, Tom R

    2014-12-01

    Why do some people demand harsher legal punishments than do others after viewing the same video evidence? We predict that inconsistent patterns of punishment decisions can be reconciled by considering the simultaneous effects of social group identification and visual attention. We tested 2 competing predictions--the attention unites and attention divides hypotheses--to understand whether visual attention exaggerates or eliminates differences in legal decision making as a function of social identification with outgroups. We measured social identification with police (Studies 1a, 1b) or manipulated identification with a novel outgroup (Study 2). Participants watched videos depicting physical altercations in which the targets' culpability was ambiguous. We surreptitiously tracked (Studies 1a, 2) or manipulated (Study 1b) visual attention to outgroup targets. Results support the attention divides hypothesis. Among participants who fixated frequently on outgroup targets, prior identification influenced punishment decisions. This relationship did not emerge among participants who fixated infrequently on the target. Subjective interpretations of and accurate recall for targets' actions mediated the relationship between identification and attention on punishment. We discuss implications for bias in legal decision making and policy. PMID:25222261

  8. Model misspecification confounds the estimation of rates and exaggerates their time dependency.

    PubMed

    Emerson, Brent C; Alvarado-Serrano, Diego F; Hickerson, Michael J

    2015-12-01

    While welcoming the comment of Ho et al. (2015), we find little that undermines the strength of our criticism, and it would appear they have misunderstood our central argument. Here we respond with the purpose of reiterating that we are (i) generally critical of much of the evidence presented in support of the time-dependent molecular rate (TDMR) hypothesis and (ii) specifically critical of estimates of μ derived from tip-dated sequences that exaggerate the importance of purifying selection as an explanation for TDMR over extended timescales. In response to assertions put forward by Ho et al. (2015), we use panmictic coalescent simulations of temporal data to explore a fundamental assumption for tip-dated tree shape and associated mutation rate estimates, and the appropriateness and utility of the date randomization test. The results reveal problems for the joint estimation of tree topology, effective population size and μ with tip-dated sequences using BEAST. Given the simulations, BEAST consistently obtains incorrect topological tree structures that are consistent with the substantial overestimation of μ and underestimation of effective population size. Data generated from lower effective population sizes were less likely to fail the date randomization test yet still resulted in substantially upwardly biased estimates of rates, bringing previous estimates of μ from temporally sampled DNA sequences into question. We find that our general criticisms of both the hypothesis of time-dependent molecular evolution and Bayesian methods to estimate μ from temporally sampled DNA sequences are further reinforced. PMID:26769403

  9. Deficiency of heme oxygenase-1 impairs renal hemodynamics and exaggerates systemic inflammatory responses to renal ischemia

    PubMed Central

    Tracz, MJ; Juncos, JP; Croatt, AJ; Ackerman, AW; Grande, JP; Knutson, KL; Kane, GC; Terzic, A; Griffin, MD; Nath, KA

    2010-01-01

    Heme oxygenase-1 may exert cytoprotective effects. In this study we examined the sensitivity of heme oxygenase-1 knockout (HO-1−/−) mice to renal ischemia by assessing glomerular filtration rate (GFR) and cytokine expression in the kidney, and inflammatory responses in the systemic circulation and in vital extrarenal organs. Four hours after renal ischemia, the GFR of HO-1−/− mice was much lower than that of wild-type mice in the absence of changes in renal blood flow or cardiac output. Eight hours after renal ischemia, there was a marked induction of interleukin-6 (IL-6) mRNA and its downstream signaling effector, phosphorylated signal transducer and activator of transcription 3 (pSTAT3), in the kidney, lung, and heart in HO-1−/− mice. Systemic levels of IL-6 were markedly and uniquely increased in HO-1−/− mice after ischemia as compared to wild-type mice. The administration of an antibody to IL-6 protected against the renal dysfunction and mortality observed in HO-1−/− mice following ischemia. We suggest that the exaggerated production of IL-6, occurring regionally and systemically following localized renal ischemia, in an HO-1-deficient state may underlie the heightened sensitivity observed in this setting. PMID:17728706

  10. Chronic behavioral stress exaggerates motor deficit and neuroinflammation in the MPTP mouse model of Parkinson's disease

    PubMed Central

    Lauretti, E; Di Meco, A; Merali, S; Praticò, D

    2016-01-01

    Environmental stressor exposure is associated with a variety of age-related diseases including neurodegeneration. Although the initial events of sporadic Parkinson's disease (PD) are not known, consistent evidence supports the hypothesis that the disease results from the combined effect of genetic and environmental risk factors. Among them, behavioral stress has been shown to cause damage and neuronal loss in different areas of the brain, however, its effect on the dopaminergic system and PD pathogenesis remains to be characterized. The C57BL/6 mice underwent chronic restraint/isolation (RI) stress and were then treated with 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP), whereas the control mice were treated only with MPTP and the effect on the PD-like phenotype was evaluated. The mice that underwent RI before the administration of MPTP manifested an exaggerated motor deficit and impairment in the acquisition of motor skills, which were associated with a greater loss of neuronal tyrosine hydroxylase and astrocytes activation. By showing that RI influences the onset and progression of the PD-like phenotype, our study underlines the novel pathogenetic role that chronic behavioral stressor has in the disease process by triggering neuroinflammation and degeneration of the nigral dopaminergic system. PMID:26859816

  11. Central amygdaloid nucleus lesion attenuates exaggerated hemodynamic responses to noise stress in the spontaneously hypertensive rat.

    PubMed

    Galeno, T M; Van Hoesen, G W; Brody, M J

    1984-01-23

    The regional hemodynamic basis of the cardiovascular response to acute noise stress in spontaneously hypertensive (SHR) and Wistar-Kyoto (WKY) rats and the role of the central amygdaloid nucleus in mediating this response was investigated. Using the pulsed Doppler flow probe technique it was determined that in response to noise, SHR exhibit a significantly greater percent increase in renal and mesenteric vascular resistance than WKY. Vascular responses in the hindquarter were similar in both groups. Bilateral lesion of the central amygdaloid nucleus or its output pathways to the brainstem decreased the cardiovascular response to noise in both SHR and WKY, with SHR and WKY lesion rats responding similarly. The central amygdaloid nucleus appears to participate in the cardiovascular response to acute noise stress in SHR and WKY. Although other structures in the limbic system network may contribute to integration of responses that involve the amygdala the present data suggest that this structure may play a central role in mediating the exaggerated cardiovascular responsiveness of SHR to environmental stress.

  12. Volitional exaggeration of body size through fundamental and formant frequency modulation in humans

    PubMed Central

    Pisanski, Katarzyna; Mora, Emanuel C.; Pisanski, Annette; Reby, David; Sorokowski, Piotr; Frackowiak, Tomasz; Feinberg, David R.

    2016-01-01

    Several mammalian species scale their voice fundamental frequency (F0) and formant frequencies in competitive and mating contexts, reducing vocal tract and laryngeal allometry thereby exaggerating apparent body size. Although humans’ rare capacity to volitionally modulate these same frequencies is thought to subserve articulated speech, the potential function of voice frequency modulation in human nonverbal communication remains largely unexplored. Here, the voices of 167 men and women from Canada, Cuba, and Poland were recorded in a baseline condition and while volitionally imitating a physically small and large body size. Modulation of F0, formant spacing (∆F), and apparent vocal tract length (VTL) were measured using Praat. Our results indicate that men and women spontaneously and systemically increased VTL and decreased F0 to imitate a large body size, and reduced VTL and increased F0 to imitate small size. These voice modulations did not differ substantially across cultures, indicating potentially universal sound-size correspondences or anatomical and biomechanical constraints on voice modulation. In each culture, men generally modulated their voices (particularly formants) more than did women. This latter finding could help to explain sexual dimorphism in F0 and formants that is currently unaccounted for by sexual dimorphism in human vocal anatomy and body size. PMID:27687571

  13. [Potential of pharmacological modulation of level and activity incretins on diabetes mellitus type 2].

    PubMed

    Spasov, A A; Chepljaeva, N I

    2015-01-01

    This review summarizes data on the main approaches used for the search of biologically active compounds modulating the level and physiological activity of incretins. Currently two groups of drugs are used in clinical practice: they either replenish the deficit of incretins (glucagon-like peptide-1 receptor agonists) or inhibit the degradation processes (dipeptidyl peptidase 4 inhibitors). In addition, new groups of substances are actively searched. These include non-peptide agonists of glucagon-like peptide-1 receptors, agonists/antagonists of glucose-dependent insulinotropic peptide, the hybrid polypeptides based on glucagon-like peptide-1 and glucagon.

  14. Electrospun fibers immobilized with bone forming peptide-1 derived from BMP7 for guided bone regeneration.

    PubMed

    Lee, Young Jun; Lee, Ji-Hye; Cho, Hyeong-Jin; Kim, Hyung Keun; Yoon, Taek Rim; Shin, Heungsoo

    2013-07-01

    The development of ideal barrier membranes with appropriate porosity and bioactivity is essential for the guidance of new bone formation in orthopedic and craniomaxillofacial surgery. In this study, we developed bioactive electrospun fibers based on poly (lactide-co-glycolic acid) (PLGA) by immobilizing bone-forming peptide 1 (BFP1) derived from the immature region of bone morphogenetic protein 7 (BMP7). We exploited polydopamine chemistry for the immobilization of BFP1; polydopamine (PD) was coated on the electrospun PLGA fibers, on which BFP1 was subsequently immobilized under weakly basic conditions. The immobilization of BFP1 was verified by characterizing the surface chemical composition and quantitatively measured by fluorescamine assay. The immobilization of BPF1 on the electrospun fibers supported the compact distribution of collagen I and the spreading of human mesenchymal stem cells (hMSCs). SEM micrographs demonstrated the aggregation of globular mineral accretions, with significant increases in ALP activity and calcium deposition when hMSCs were cultured on fibers immobilized with BFP1 for 14 days. We then implanted the prepared fibers onto mouse calvarial defects and analyzed bone formation after 2 months. Semi-quantification of bone growth from representative X-ray images showed that the bone area was approximately 20% in the defect-only group, while the group implanted with PLGA fibers showed significant improvements of 44.27 ± 7.37% and 57.59 ± 15.24% in the groups implanted with PD-coated PLGA and with BFP1-coated PLGA, respectively. Based on these results, our approach may be a promising tool to develop clinically-applicable bioactive membranes for guided bone regeneration."

  15. Revisiting and re-engineering the classical zinc finger peptide: consensus peptide-1 (CP-1).

    PubMed

    Besold, Angelique N; Widger, Leland R; Namuswe, Frances; Michalek, Jamie L; Michel, Sarah L J; Goldberg, David P

    2016-04-01

    Zinc plays key structural and catalytic roles in biology. Structural zinc sites are often referred to as zinc finger (ZF) sites, and the classical ZF contains a Cys2His2 motif that is involved in coordinating Zn(II). An optimized Cys2His2 ZF, named consensus peptide 1 (CP-1), was identified more than 20 years ago using a limited set of sequenced proteins. We have reexamined the CP-1 sequence, using our current, much larger database of sequenced proteins that have been identified from high-throughput sequencing methods, and found the sequence to be largely unchanged. The CCHH ligand set of CP-1 was then altered to a CAHH motif to impart hydrolytic activity. This ligand set mimics the His2Cys ligand set of peptide deformylase (PDF), a hydrolytically active M(II)-centered (M = Zn or Fe) protein. The resultant peptide [CP-1(CAHH)] was evaluated for its ability to coordinate Zn(II) and Co(II) ions, adopt secondary structure, and promote hydrolysis. CP-1(CAHH) was found to coordinate Co(II) and Zn(II) and a pentacoordinate geometry for Co(II)-CP-1(CAHH) was implicated from UV-vis data. This suggests a His2Cys(H2O)2 environment at the metal center. The Zn(II)-bound CP-1(CAHH) was shown to adopt partial secondary structure by 1-D (1)H NMR spectroscopy. Both Zn(II)-CP-1(CAHH) and Co(II)-CP-1(CAHH) show good hydrolytic activity toward the test substrate 4-nitrophenyl acetate, exhibiting faster rates than most active synthetic Zn(II) complexes.

  16. SV-IV Peptide1–16 reduces coagulant power in normal Factor V and Factor V Leiden

    PubMed Central

    Di Micco, Biagio; Lepretti, Marilena; Rota, Lidia; Quaglia, Ilaria; Ferrazzi, Paola; Di Micco, Gianluca; Di Micco, Pierpaolo

    2007-01-01

    Native Factor V is an anticoagulant, but when activated by thrombin, Factor X or platelet proteases, it becomes a procoagulant. Due to these double properties, Factor V plays a crucial role in the regulation of coagulation/anticoagulation balance. Factor V Leiden (FVL) disorder may lead to thrombophilia. Whether a reduction in the activation of Factor V or Factor V Leiden may correct the disposition to thrombophilia is unknown. Therefore we tested SV-IV Peptide 1–16 (i.e. a peptide derived by seminal protein vescicle number IV, SV-IV) to assess its capacity to inhibit the procoagulant activity of normal clotting factor V or Factor V Leiden (FVL). We found that SV-IV protein has potent anti-inflammatory and immunomodulatory properties and also exerts procoagulant activity. In the present work we show that the SV-IV Peptide 1–16, incubated with plasma containing normal Factor V or FVL plasma for 5 minutes reduces the procoagulant capacity of both substances. This is an anticoagulant effect whereas SV-IV protein is a procoagulant. This activity is effective both in terms of the coagulation tests, where coagulation times are increased, and in terms of biochemical tests conducted with purified molecules, where Factor X activation is reduced. Peptide 1–16 was, in the pure molecule system, first incubated for 5 minutes with purified Factor V then it was added to the mix of phosphatidylserine, Ca2+, Factor X and its chromogenic molecule Chromozym X. We observed a more than 50% reduction in lysis of chromogenic molecule Chromozym X by Factor Xa, compared to the sample without Peptide 1–16. Such reduction in Chromozym X lysis, is explained with the reduced activation of Factor X by partial inactivation of Factor V by Peptide 1–16. Thus our study demonstrates that Peptide 1–16 reduces the coagulation capacity of Factor V and Factor V Leiden in vitro, and, in turn, causes factor X reduced activation. PMID:18154667

  17. Exaggerated Waiting Impulsivity Associated with Human Binge Drinking, and High Alcohol Consumption in Mice

    PubMed Central

    Sanchez-Roige, Sandra; Baro, Victor; Trick, Leanne; Peña-Oliver, Yolanda; Stephens, David N; Duka, Theodora

    2014-01-01

    There are well-established links between impulsivity and alcohol use in humans and animal models; however, whether exaggerated impulsivity is a premorbid risk factor or a consequence of alcohol intake remains unclear. In a first approach, human young (18–25 years) social binge and non-binge drinkers were tested for motor impulsivity and attentional abilities in a human version of the Five-Choice Serial Reaction Time Task (Sx-5CSRTT), modeled on the rodent 5CSRTT. Participants completed four variants of the Sx-5CSRT, in addition to being screened for impulsive traits (BIS-11 questionnaire) and impulsive behavior (by means of the Delay Discounting Questionnaire, Two-Choice Impulsivity Paradigm (TCIP), Stop Signal Reaction Time, and Time Estimation Task). Using a second approach, we compared one of these impulsivity measures, 5CSRTT performance, in two inbred strains of mice known to differ in alcohol intake. Compared with non-bingers (NBD; n=22), binge drinkers (BD, n=22) showed robust impairments in attention and premature responding when evaluated under increased attentional load, in addition to presenting deficits in decision making using the TCIP. The best predictors for high binge drinking score were premature responding in the Sx-5CSRTT, trait impulsivity in the BIS-11, and decision making in the TCIP. Alcohol-naïve C57BL/6J (B6) mice (alcohol preferring) were more impulsive in the 5CSRTT than DBA2/J (D2) mice (alcohol averse); the degree of impulsivity correlated with subsequent alcohol consumption. Homologous measures in animal and human studies indicate increased premature responding in young social BD and in the ethanol-preferring B6 strain of mice. PMID:24947901

  18. Exaggerated phosphorylation of brain tau protein in CRH KO mice exposed to repeated immobilization stress.

    PubMed

    Kvetnansky, Richard; Novak, Petr; Vargovic, Peter; Lejavova, Katarina; Horvathova, Lubica; Ondicova, Katarina; Manz, George; Filipcik, Peter; Novak, Michal; Mravec, Boris

    2016-07-01

    Neuroendocrine and behavioral stress responses are orchestrated by corticotropin-releasing hormone (CRH) and norepinephrine (NE) synthesizing neurons. Recent findings indicate that stress may promote development of neurofibrillary pathology in Alzheimer's disease. Therefore, we investigated relationships among stress, tau protein phosphorylation, and brain NE using wild-type (WT) and CRH-knockout (CRH KO) mice. We assessed expression of phosphorylated tau (p-tau) at the PHF-1 epitope and NE concentrations in the locus coeruleus (LC), A1/C1 and A2/C2 catecholaminergic cell groups, hippocampus, amygdala, nucleus basalis magnocellularis, and frontal cortex of unstressed, singly stressed or repeatedly stressed mice. Moreover, gene expression and protein levels of tyrosine hydroxylase (TH) and CRH receptor mRNA were determined in the LC. Plasma corticosterone levels were also measured. Exposure to a single stress increases tau phosphorylation throughout the brain in WT mice when compared to singly stressed CRH KO animals. In contrast, repeatedly stressed CRH KO mice showed exaggerated tau phosphorylation relative to WT controls. We also observed differences in extent of tau phosphorylation between investigated structures, e.g. the LC and hippocampus. Moreover, CRH deficiency leads to different responses to stress in gene expression of TH, NE concentrations, CRH receptor mRNA, and plasma corticosterone levels. Our data indicate that CRH effects on tau phosphorylation are dependent on whether stress is single or repeated, and differs between brain regions. Our findings indicate that CRH attenuates mechanisms responsible for development of stress-induced tau neuropathology, particularly in conditions of chronic stress. However, the involvement of central catecholaminergic neurons in these mechanisms remains unclear and is in need of further investigation. PMID:27484105

  19. Exaggerated phosphorylation of brain tau protein in CRH KO mice exposed to repeated immobilization stress.

    PubMed

    Kvetnansky, Richard; Novak, Petr; Vargovic, Peter; Lejavova, Katarina; Horvathova, Lubica; Ondicova, Katarina; Manz, George; Filipcik, Peter; Novak, Michal; Mravec, Boris

    2016-07-01

    Neuroendocrine and behavioral stress responses are orchestrated by corticotropin-releasing hormone (CRH) and norepinephrine (NE) synthesizing neurons. Recent findings indicate that stress may promote development of neurofibrillary pathology in Alzheimer's disease. Therefore, we investigated relationships among stress, tau protein phosphorylation, and brain NE using wild-type (WT) and CRH-knockout (CRH KO) mice. We assessed expression of phosphorylated tau (p-tau) at the PHF-1 epitope and NE concentrations in the locus coeruleus (LC), A1/C1 and A2/C2 catecholaminergic cell groups, hippocampus, amygdala, nucleus basalis magnocellularis, and frontal cortex of unstressed, singly stressed or repeatedly stressed mice. Moreover, gene expression and protein levels of tyrosine hydroxylase (TH) and CRH receptor mRNA were determined in the LC. Plasma corticosterone levels were also measured. Exposure to a single stress increases tau phosphorylation throughout the brain in WT mice when compared to singly stressed CRH KO animals. In contrast, repeatedly stressed CRH KO mice showed exaggerated tau phosphorylation relative to WT controls. We also observed differences in extent of tau phosphorylation between investigated structures, e.g. the LC and hippocampus. Moreover, CRH deficiency leads to different responses to stress in gene expression of TH, NE concentrations, CRH receptor mRNA, and plasma corticosterone levels. Our data indicate that CRH effects on tau phosphorylation are dependent on whether stress is single or repeated, and differs between brain regions. Our findings indicate that CRH attenuates mechanisms responsible for development of stress-induced tau neuropathology, particularly in conditions of chronic stress. However, the involvement of central catecholaminergic neurons in these mechanisms remains unclear and is in need of further investigation.

  20. Studies on the exaggerated natriuretic response to a saline infusion in the hypothyroid rat

    PubMed Central

    Holmes, Edward W.; DiScala, Vincent A.

    1970-01-01

    The exaggerated natriuresis of hypothyroid rats receiving a 5% saline infusion was studied to determine the mechanism and the site within the nephron responsible for this increase in sodium excretion. Sodium clearance (CNa) and fractional sodium excretion were both demonstrated to be greater in hypothyroid rats for any amount of sodium infused. The rate of increase in fractional sodium excretion in response to saline loading was 3.4 times greater in hypothyroid animals. At the conclusion of the diuresis some of the hypothyroid animals excreted greater than 45% of the filtered sodium load, while no control animal excreted more than 12% of the filtered sodium load. The mean clearance of insulin during the saline diuresis was 36.6% lower (P < 0.001) in the hypothyroid rats. D-Aldosterone given to hypothyroid animals 3 hr before the experiment did not alter the magnitude or rate of increase in fractional sodium excretion. Inulin space determinations in nephrectomized rats revealed that extracellular fluid volume was contracted by 17.1% in the hypothyroid rats (P < 0.01). Plasma sodium was not significantly different in hypothyroid and control animals. A limit on solute free water reabsorption (TeH2O) per osmolar clearance (COsm) was demonstrated in the hypothyroid rats when these animals excreted greater than 12% of the filtered osmotic load. The limit on TeH2O formation was associated with an acceleration in the rate of sodium excretion and a decline in the rate of potassium excretion. Early in the diuresis when COsm, CNa, and TeH2O were comparable in hypothyroid and control rats, the filtered sodium load was 31% lower (P < 0.01) in the hypothyroid animals. These findings indicate that diminished thyroid hormone activity decreases renal sodium reabsorptive capacity. Indirect evidence suggests that the distal and possibly the proximal tubules are the sites of this diminished sodium reabsorption in hypothyroid animals. PMID:5422024

  1. Exaggerated acquisition and resistance to extinction of avoidance behavior in treated heroin-dependent males

    PubMed Central

    Sheynin, Jony; Moustafa, Ahmed A.; Beck, Kevin D.; Servatius, Richard J.; Casbolt, Peter A.; Haber, Paul; Elsayed, Mahmoud; Hogarth, Lee; Myers, Catherine E.

    2015-01-01

    Objective Addiction is often conceptualized as a behavioral strategy for avoiding negative experiences. In rodents, opioid intake has been associated with abnormal acquisition and extinction of avoidance behavior. Here, we tested the hypothesis that these findings would generalize to human opioid-dependent subjects. Method Adults meeting DSM-IV criteria for heroin-dependence and treated with opioid medication (n=27), and healthy controls (n=26), were recruited between March–October 2013 and given a computer-based task to assess avoidance behavior. On this task, subjects controlled a spaceship and could either gain points by shooting an enemy spaceship, or hide in safe areas to avoid on-screen aversive events. Results While groups did not differ on escape responding (hiding) during the aversive event, heroin-dependent males (but not females) made more avoidance responses during a warning signal that predicted the aversive event (ANOVA, sex × group interaction, p=0.007). This group was also slower to extinguish the avoidance response when the aversive event no longer followed the warning signal (p=0.011). This behavioral pattern resulted in reduced opportunity to obtain reward without reducing risk of punishment. Results suggest that differences in avoidance behavior cannot be easily explained by impaired task performance or by exaggerated motor activity in male patients. Conclusion This study provides evidence for abnormal acquisition and extinction of avoidance behavior in opioid-dependent patients. Interestingly, data suggest abnormal avoidance is demonstrated only by male patients. Findings shed light on cognitive and behavioral manifestations of opioid addiction, and may facilitate development of therapeutic approaches to help affected individuals. PMID:27046310

  2. Wild bees preferentially visit Rudbeckia flower heads with exaggerated ultraviolet absorbing floral guides.

    PubMed

    Horth, Lisa; Campbell, Laura; Bray, Rebecca

    2014-01-01

    Here, we report on the results of an experimental study that assessed the visitation frequency of wild bees to conspecific flowers with different sized floral guides. UV absorbent floral guides are ubiquitous in Angiosperms, yet surprisingly little is known about conspecific variation in these guides and very few studies have evaluated pollinator response to UV guide manipulation. This is true despite our rich understanding about learning and color preferences in bees. Historical dogma indicates that flower color serves as an important long-range visual signal allowing pollinators to detect the flowers, while floral guides function as close-range signals that direct pollinators to a reward. We initiated the work presented here by first assessing the population level variation in UV absorbent floral guides for conspecific flowers. We assessed two species, Rudbeckia hirta and R. fulgida. We then used several petal cut-and-paste experiments to test whether UV floral guides can also function to attract visitors. We manipulated floral guide size and evaluated visitation frequency. In all experiments, pollinator visitation rates were clearly associated with floral guide size. Diminished floral guides recruited relatively few insect visitors. Exaggerated floral guides recruited more visitors than smaller or average sized guides. Thus, UV floral guides play an important role in pollinator recruitment and in determining the relative attractiveness of conspecific flower heads. Consideration of floral guides is therefore important when evaluating the overall conspicuousness of flower heads relative to background coloration. This work raises the issue of whether floral guides serve as honest indicators of reward, since guide size varies in nature for conspecific flowers at the same developmental stage and since preferences for larger guides were found. To our knowledge, these are the first cut-and-paste experiments conducted to examine whether UV absorbent floral guides affect

  3. Mitochondrial Gene Expression Profiles and Metabolic Pathways in the Amygdala Associated with Exaggerated Fear in an Animal Model of PTSD

    PubMed Central

    Li, He; Li, Xin; Smerin, Stanley E.; Zhang, Lei; Jia, Min; Xing, Guoqiang; Su, Yan A.; Wen, Jillian; Benedek, David; Ursano, Robert

    2014-01-01

    The metabolic mechanisms underlying the development of exaggerated fear in post-traumatic stress disorder (PTSD) are not well defined. In the present study, alteration in the expression of genes associated with mitochondrial function in the amygdala of an animal model of PTSD was determined. Amygdala tissue samples were excised from 10 non-stressed control rats and 10 stressed rats, 14 days post-stress treatment. Total RNA was isolated, cDNA was synthesized, and gene expression levels were determined using a cDNA microarray. During the development of the exaggerated fear associated with PTSD, 48 genes were found to be significantly upregulated and 37 were significantly downregulated in the amygdala complex based on stringent criteria (p < 0.01). Ingenuity pathway analysis revealed up- or downregulation in the amygdala complex of four signaling networks – one associated with inflammatory and apoptotic pathways, one with immune mediators and metabolism, one with transcriptional factors, and one with chromatin remodeling. Thus, informatics of a neuronal gene array allowed us to determine the expression profile of mitochondrial genes in the amygdala complex of an animal model of PTSD. The result is a further understanding of the metabolic and neuronal signaling mechanisms associated with delayed and exaggerated fear. PMID:25295026

  4. Exaggeration of Language-Specific Rhythms in English and French Children's Songs.

    PubMed

    Hannon, Erin E; Lévêque, Yohana; Nave, Karli M; Trehub, Sandra E

    2016-01-01

    PVI. Together, these findings suggest that language-based rhythmic structures are evident in children's songs, and that listeners expect exaggerated language-based rhythms in children's songs. The implications of these findings for enculturation processes and for the acquisition of music and language are discussed. PMID:27445907

  5. 6-Gingerol alleviates exaggerated vasoconstriction in diabetic rat aorta through direct vasodilation and nitric oxide generation

    PubMed Central

    Ghareib, Salah A; El-Bassossy, Hany M; Elberry, Ahmed A; Azhar, Ahmad; Watson, Malcolm L; Banjar, Zainy Mohammed

    2015-01-01

    The aim of the present study is to investigate the effect and potential mechanism of action of 6-gingerol on alterations of vascular reactivity in the isolated aorta from diabetic rats. Male Wistar rats were divided into two experimental groups, control and diabetics. Diabetes was induced by a single intraperitoneal injection of streptozotocin (50 mg kg−1), and the rats were left for 10 weeks to develop vascular complications. The effect of in vitro incubation with 6-gingerol (0.3–3 μM) on the vasoconstrictor response of the isolated diabetic aortae to phenylephrine and the vasodilator response to acetylcholine was examined. Effect of 6-gingerol was also examined on aortae incubated with methylglyoxal as an advanced glycation end product (AGE). To investigate the mechanism of action of 6-gingerol, the nitric oxide synthase inhibitor Nω-nitro-l-arginine methyl ester hydrochloride (100 μM), guanylate cyclase inhibitor methylene blue (5 μM), calcium-activated potassium channel blocker tetraethylammonium chloride (10 mM), and cyclooxygenase inhibitor indomethacin (5 μM) were added 30 minutes before assessing the direct vasorelaxant effect of 6-gingerol. Moreover, in vitro effects of 6-gingerol on NO release and the effect of 6-gingerol on AGE production were examined. Results showed that incubation of aortae with 6-gingerol (0.3–10 μM) alleviated the exaggerated vasoconstriction of diabetic aortae to phenylephrine in a concentration-dependent manner with no significant effect on the impaired relaxatory response to acetylcholine. Similar results were seen in the aortae exposed to methylglyoxal. In addition, 6-gingerol induced a direct vasodilation effect that was significantly inhibited by Nω-nitro-l-arginine methyl ester hydrochloride and methylene blue. Furthermore, 6-gingerol stimulated aortic NO generation but had no effect on AGE formation. In conclusion, 6-gingerol ameliorates enhanced vascular contraction in diabetic aortae, which may be partially

  6. Functional Correlates of Exaggerated Oscillatory Activity in Basal Ganglia Output in Hemiparkinsonian Rats

    PubMed Central

    Brazhnik, Elena; Novikov, Nikolay; McCoy, Alex J.; Cruz, Ana V.; Walters, Judith R.

    2014-01-01

    Exaggerated beta range (13–30 Hz) synchronized activity is observed in the basal ganglia of Parkinson’s disease (PD) patients during implantation of deep brain stimulation electrodes and is thought to contribute to the motor symptoms of this disorder. To explore the translational potential of similar activity observed in a rat model of PD, local field potentials (LFP) and spiking activity in basal ganglia output were characterized in rats with unilateral dopamine cell lesion during a range of behaviors. A circular treadmill was used to assess activity during walking; hemiparkinsonian rats could maintain a steady gait when oriented ipsiversive to the lesioned hemisphere, but were less effective at walking when oriented contraversive to lesion. Dramatic increases in substantia nigra pars reticulata (SNpr) LFP oscillatory activity and spike-LFP synchronization were observed within the beta/low gamma range (12–40 Hz) in the lesioned hemisphere, relative to the non-lesioned hemisphere, with the dominant frequency of spike-LFP entrainment and LFP power varying with behavioral state. At 3 weeks post-lesion, the mean dominant entrainment frequency during ipsiversive treadmill walking and grooming was 34 Hz. Other behaviors were associated with lower mean entrainment frequencies: 27–28 Hz during alert non-walking and REM, 17 Hz during rest and 21 Hz during urethane anesthesia with sensory stimulation. SNpr spike-LFP entrainment frequency was stable during individual treadmill walking epochs, but increased gradually over weeks post-lesion. In contrast, SNpr LFP power in the 25–40 Hz range was greatest at the initiation of each walking epoch, and decreased during walking to stabilize by 6 min at 49% of initial values. Power was further modulated in conjunction with the 1.5 s stepping rhythm. Administration of L-dopa improved contraversive treadmill walking in correlation with a reduction in SNpr 25–40 Hz LFP power and spike synchronization in the dopamine cell

  7. Exaggeration of Language-Specific Rhythms in English and French Children's Songs.

    PubMed

    Hannon, Erin E; Lévêque, Yohana; Nave, Karli M; Trehub, Sandra E

    2016-01-01

    PVI. Together, these findings suggest that language-based rhythmic structures are evident in children's songs, and that listeners expect exaggerated language-based rhythms in children's songs. The implications of these findings for enculturation processes and for the acquisition of music and language are discussed.

  8. Exaggeration of Language-Specific Rhythms in English and French Children's Songs

    PubMed Central

    Hannon, Erin E.; Lévêque, Yohana; Nave, Karli M.; Trehub, Sandra E.

    2016-01-01

    PVI. Together, these findings suggest that language-based rhythmic structures are evident in children's songs, and that listeners expect exaggerated language-based rhythms in children's songs. The implications of these findings for enculturation processes and for the acquisition of music and language are discussed. PMID:27445907

  9. Nine Galileo Views in Exaggerated Color of Main-Belt Asteroid Ida

    NASA Technical Reports Server (NTRS)

    1997-01-01

    This set of color images of asteroid 243 Ida was taken by the imaging system on the Galileo spacecraft as it approached and raced past the asteroid on August 28, 1993. These images were taken through the 4100-angstrom (violet), 7560-angstrom (infrared) and 9680- angstrom (infrared) filters and have been processed to show Ida in exaggerated color to bring out subtle color contrasts caused by small variations in composition and surface microtexture of the asteroid's soil. In natural color Ida appears gray with slight overtones of red or brown. Stark shadows portray Ida's irregular shape, which changes its silhouetted outline when seen from different angles. More subtle shadings reveal surface topography (such as craters) and differences in the physical state and composition of the soil ('regolith'). Note in particular the color differences associated with the rims and floors of certain impact craters, which may have excavated to layers of slightly differing composition or may have ingested material from impactors of different compositions. Analysis of the images show that Ida is 58 kilometers long and 23 kilometers wide (36 x 14 miles). Ida is the first asteroid discovered to have a natural satellite, Dactyl (not shown here). Ida and Dactyl are heavily cratered by impacts with smaller asteroids and comets, including some of the same populations of small objects that bombard Earth. These data, combined with reflectance spectra from Galileo's near-infrared mapping spectrometer, may allow scientists to determine whether Ida is a relatively unaltered primitive object made of material condensed from the primordial Solar Nebula at the origin of the Solar System or whether it has been altered by strong heating--evidence interpreted so far suggests that Ida is a piece of a larger object that has been severely heated. Whereas heating and melting of large planets is well understood, the cause of heating of small asteroids is more enigmatic--it may have involved exotic

  10. Oxidative stress exaggerates skeletal muscle contraction-evoked reflex sympathoexcitation in rats with hypertension induced by angiotensin II.

    PubMed

    Koba, Satoshi; Watanabe, Ryosuke; Kano, Naoko; Watanabe, Tatsuo

    2013-01-01

    Muscle contraction stimulates thin fiber muscle afferents and evokes reflex sympathoexcitation. In hypertension, this reflex is exaggerated. ANG II, which is elevated in hypertension, has been reported to trigger the production of superoxide and other reactive oxygen species. In the present study, we tested the hypothesis that increased ANG II in hypertension exaggerates skeletal muscle contraction-evoked reflex sympathoexcitation by inducing oxidative stress in the muscle. In rats, subcutaneous infusion of ANG II at 450 ng·kg(-1)·min(-1) for 14 days significantly (P < 0.05) elevated blood pressure compared with sham-operated (sham) rats. Electrically induced 30-s hindlimb muscle contraction in decerebrate rats with hypertension evoked larger renal sympathoexcitatory and pressor responses [+1,173 ± 212 arbitrary units (AU) and +35 ± 5 mmHg, n = 10] compared with sham normotensive rats (+419 ± 103 AU and +13 ± 2 mmHg, n = 11). Tempol, a SOD mimetic, injected intra-arterially into the hindlimb circulation significantly reduced responses in hypertensive rats, whereas this compound had no effect on responses in sham rats. Tiron, another SOD mimetic, also significantly reduced reflex renal sympathetic and pressor responses in a subset of hypertensive rats (n = 10). Generation of muscle superoxide, as evaluated by dihydroethidium staining, was increased in hypertensive rats. RT-PCR and immunoblot experiments showed that mRNA and protein for gp91(phox), a NADPH oxidase subunit, in skeletal muscle tissue were upregulated in hypertensive rats. Taken together, hese results suggest that increased ANG II in hypertension induces oxidative stress in skeletal muscle, thereby exaggerating the muscle reflex.

  11. Dietary zinc deficiency exaggerates ethanol-induced liver injury in mice: involvement of intrahepatic and extrahepatic factors.

    PubMed

    Zhong, Wei; Zhao, Yantao; Sun, Xinguo; Song, Zhenyuan; McClain, Craig J; Zhou, Zhanxiang

    2013-01-01

    Clinical studies have demonstrated that alcoholics have a lower dietary zinc intake compared to health controls. The present study was undertaken to determine the interaction between dietary zinc deficiency and ethanol consumption in the pathogenesis of alcoholic liver disease. C57BL/6N mice were subjected to 8-week feeding of 4 experimental liquid diets: (1) zinc adequate diet, (2) zinc adequate diet plus ethanol, (3) zinc deficient diet, and (4) zinc deficient diet plus ethanol. Ethanol exposure with adequate dietary zinc resulted in liver damage as indicated by elevated plasma alanine aminotransferase level and increased hepatic lipid accumulation and inflammatory cell infiltration. Dietary zinc deficiency alone increased hepatic lipid contents, but did not induce hepatic inflammation. Dietary zinc deficiency showed synergistic effects on ethanol-induced liver damage. Dietary zinc deficiency exaggerated ethanol effects on hepatic genes related to lipid metabolism and inflammatory response. Dietary zinc deficiency worsened ethanol-induced imbalance between hepatic pro-oxidant and antioxidant enzymes and hepatic expression of cell death receptors. Dietary zinc deficiency exaggerated ethanol-induced reduction of plasma leptin, although it did not affect ethanol-induced reduction of white adipose tissue mass. Dietary zinc deficiency also deteriorated ethanol-induced gut permeability increase and plasma endotoxin elevation. These results demonstrate, for the first time, that dietary zinc deficiency is a risk factor in alcoholic liver disease, and multiple intrahepatic and extrahepatic factors may mediate the detrimental effects of zinc deficiency.

  12. Exaggerated neurobiological sensitivity to threat as a mechanism linking anxiety with increased risk for diseases of aging

    PubMed Central

    O’Donovan, Aoife; Slavich, George M; Epel, Elissa S.; Neylan, Thomas C

    2015-01-01

    Anxiety disorders increase risk for the early development of several diseases of aging. Elevated inflammation, a common risk factor across diseases of aging, may play a key role in the relationship between anxiety and physical disease. However, the neurobiological mechanisms linking anxiety with elevated inflammation remain unclear. In this review, we present a neurobiological model of the mechanisms by which anxiety promotes inflammation. Specifically we propose that exaggerated neurobiological sensitivity to threat in anxious individuals may lead to sustained threat perception, which is accompanied by prolonged activation of threat-related neural circuitry and threat-responsive biological systems including the hypothalamic-pituitary-adrenal (HPA) axis, autonomic nervous system (ANS), and inflammatory response. Over time, this pattern of responding can promote chronic inflammation through structural and functional brain changes, altered sensitivity of immune cell receptors, dysregulation of the HPA axis and ANS, and accelerated cellular aging. Chronic inflammation, in turn, increases risk for diseases of aging. Exaggerated neurobiological sensitivity to threat may thus be a treatment target for reducing disease risk in anxious individuals. PMID:23127296

  13. Osteoinductive Effects of Free and Immobilized Bone Forming Peptide-1 on Human Adipose-Derived Stem Cells.

    PubMed

    Li, Wenyue; Zheng, Yunfei; Zhao, Xianghui; Ge, Yanjun; Chen, Tong; Liu, Yunsong; Zhou, Yongsheng

    2016-01-01

    Most synthetic polymeric materials currently used for bone tissue engineering lack specific signals through which cells can identify and interact with the surface, resulting in incompatibility and compromised osteogenic activity. Soluble inductive factors also have issues including a short half-live in vivo. Bone forming peptide-1 is a truncated peptide from the immature form of bone morphogenetic protein-7 (BMP-7) that displays higher osteogenic activity than full-length, mature BMP-7. In this study, we used a mussel-inspired immobilization strategy mediated by polymerization of dopamine to introduce recently discovered stimulators of bone forming peptide-1 (BFP-1) onto the surface of poly-lactic-co-glycolic acid (PLGA) substrate to form a biomaterial that overcomes these challenges. Human adipose-derived stem cells (hASCs), being abundant and easy accessible, were used to test the osteogenic activity of BFP-1 and the novel biomaterial. Under osteoinductive conditions, cells treated with both BFP-1 alone and BFP-1-coated biomaterials displayed elevated expression of the osteogenic markers alkaline phosphatase (ALP), osteocalcin (OC), and RUNX2. Furthermore, hASCs associated with poly-dopamine-assisted BFP-1-immobilized PLGA (pDA-BFP-1-PLGA) scaffolds promoted in vivo bone formation in nude mice. Our novel materials may hold great promise for future bone tissue engineering applications.

  14. Osteoinductive Effects of Free and Immobilized Bone Forming Peptide-1 on Human Adipose-Derived Stem Cells.

    PubMed

    Li, Wenyue; Zheng, Yunfei; Zhao, Xianghui; Ge, Yanjun; Chen, Tong; Liu, Yunsong; Zhou, Yongsheng

    2016-01-01

    Most synthetic polymeric materials currently used for bone tissue engineering lack specific signals through which cells can identify and interact with the surface, resulting in incompatibility and compromised osteogenic activity. Soluble inductive factors also have issues including a short half-live in vivo. Bone forming peptide-1 is a truncated peptide from the immature form of bone morphogenetic protein-7 (BMP-7) that displays higher osteogenic activity than full-length, mature BMP-7. In this study, we used a mussel-inspired immobilization strategy mediated by polymerization of dopamine to introduce recently discovered stimulators of bone forming peptide-1 (BFP-1) onto the surface of poly-lactic-co-glycolic acid (PLGA) substrate to form a biomaterial that overcomes these challenges. Human adipose-derived stem cells (hASCs), being abundant and easy accessible, were used to test the osteogenic activity of BFP-1 and the novel biomaterial. Under osteoinductive conditions, cells treated with both BFP-1 alone and BFP-1-coated biomaterials displayed elevated expression of the osteogenic markers alkaline phosphatase (ALP), osteocalcin (OC), and RUNX2. Furthermore, hASCs associated with poly-dopamine-assisted BFP-1-immobilized PLGA (pDA-BFP-1-PLGA) scaffolds promoted in vivo bone formation in nude mice. Our novel materials may hold great promise for future bone tissue engineering applications. PMID:26930062

  15. Osteoinductive Effects of Free and Immobilized Bone Forming Peptide-1 on Human Adipose-Derived Stem Cells

    PubMed Central

    Zhao, Xianghui; Ge, Yanjun; Chen, Tong; Liu, Yunsong; Zhou, Yongsheng

    2016-01-01

    Most synthetic polymeric materials currently used for bone tissue engineering lack specific signals through which cells can identify and interact with the surface, resulting in incompatibility and compromised osteogenic activity. Soluble inductive factors also have issues including a short half-live in vivo. Bone forming peptide-1 is a truncated peptide from the immature form of bone morphogenetic protein-7 (BMP-7) that displays higher osteogenic activity than full-length, mature BMP-7. In this study, we used a mussel-inspired immobilization strategy mediated by polymerization of dopamine to introduce recently discovered stimulators of bone forming peptide-1 (BFP-1) onto the surface of poly-lactic-co-glycolic acid (PLGA) substrate to form a biomaterial that overcomes these challenges. Human adipose-derived stem cells (hASCs), being abundant and easy accessible, were used to test the osteogenic activity of BFP-1 and the novel biomaterial. Under osteoinductive conditions, cells treated with both BFP-1 alone and BFP-1-coated biomaterials displayed elevated expression of the osteogenic markers alkaline phosphatase (ALP), osteocalcin (OC), and RUNX2. Furthermore, hASCs associated with poly-dopamine-assisted BFP-1-immobilized PLGA (pDA-BFP-1-PLGA) scaffolds promoted in vivo bone formation in nude mice. Our novel materials may hold great promise for future bone tissue engineering applications. PMID:26930062

  16. Exaggerated haemodynamic and neural responses to involuntary contractions induced by whole-body vibration in normotensive obese versus lean women.

    PubMed

    Dipla, Konstantina; Kousoula, Dimitra; Zafeiridis, Andreas; Karatrantou, Konstantina; Nikolaidis, Michalis G; Kyparos, Antonios; Gerodimos, Vassilis; Vrabas, Ioannis S

    2016-06-01

    What is the central question of this study? In obesity, the exaggerated blood pressure response to voluntary exercise is linked to hypertension, yet the mechanisms are not fully elucidated. We examined whether involuntary contractions elicit greater haemodynamic responses and altered neural control of blood pressure in normotensive obese versus lean women. What is the main finding and its importance? During involuntary contractions induced by whole-body vibration, there were augmented blood pressure and spontaneous baroreflex responses in obese compared with lean women. This finding is suggestive of an overactive mechanoreflex in the exercise-induced hypertensive response in obesity. Passive contractions did not elicit differential heart rate responses in obese compared with lean women, implying other mechanisms for the blunted heart rate response reported during voluntary exercise in obesity. In obesity, the exaggerated blood pressure (BP) response to exercise is linked to hypertension, yet the mechanisms are not fully elucidated. In this study, we examined whether involuntary mechanical oscillations, induced by whole-body vibration (WBV), elicit greater haemodynamic responses and altered neural control of BP in obese versus lean women. Twenty-two normotensive, premenopausal women (12 lean and 10 obese) randomly underwent a passive WBV (25 Hz) and a control protocol (similar posture without WVB). Beat-by-beat BP, heart rate, stroke volume, systemic vascular resistance, cardiac output, parasympathetic output (evaluated by heart rate variability) and spontaneous baroreceptor sensitivity (sBRS) were assessed. We found that during WBV, obese women exhibited an augmented systolic BP response compared with lean women that was correlated with body fat percentage (r = 0.77; P < 0.05). The exaggerated BP rise was driven mainly by the greater increase in cardiac output index in obese versus lean women, associated with a greater stroke volume index in obese women

  17. Effectiveness of symptom validity measures in identifying cognitive and behavioral symptom exaggeration in adult attention deficit hyperactivity disorder.

    PubMed

    Marshall, Paul; Schroeder, Ryan; O'Brien, Jeffrey; Fischer, Rebecca; Ries, Adam; Blesi, Brita; Barker, Jessica

    2010-10-01

    This study examines the effectiveness of symptom validity measures to detect suspect effort in cognitive testing and invalid completion of ADHD behavior rating scales in 268 adults referred for ADHD assessment. Patients were diagnosed with ADHD based on cognitive testing, behavior rating scales, and clinical interview. Suspect effort was diagnosed by at least two of the following: failure on embedded and free-standing SVT measures, a score > 2 SD below the ADD population average on tests, failure on an ADHD behavior rating scale validity scale, or a major discrepancy between reported and observed ADHD behaviors. A total of 22% of patients engaged in symptom exaggeration. The Word Memory test immediate recall and consistency score (both 64%), TOVA omission errors (63%) and reaction time variability (54%), CAT-A infrequency scale (58%), and b Test (47%) had good sensitivity as well as at least 90% specificity. Clearly, such measures should be used to help avoid making false positive diagnoses of ADHD.

  18. Exaggerated sexual swellings and male mate choice in primates: testing the reliable indicator hypothesis in the Amboseli baboons

    PubMed Central

    Fitzpatrick, Courtney L.; Altmann, Jeanne; Alberts, Susan C.

    2015-01-01

    The paradigm of competitive males vying to influence female mate choice has been repeatedly upheld, but, increasingly, studies also report competitive females and choosy males. One female trait that is commonly proposed to influence male mate choice is the exaggerated sexual swelling displayed by females of many Old World primate species. The reliable indicator hypothesis posits that females use the exaggerated swellings to compete for access to mates, and that the swellings advertise variation in female fitness. We tested the two main predictions of this hypothesis in a wild population of baboons (Papio cynocephalus). First, we examined the effect of swelling size on the probability of mate-guarding (‘consortship’) by the highest-ranking male and the behavior of those males that trailed consorshipts (‘follower males’). Second, we asked whether a female’s swelling size predicted several fitness measures. We found that high-ranking males do not prefer females with larger swellings (when controlling for cycle number and conception) and that females with larger swellings did not have higher reproductive success. Our study—the only complete test of the reliable indicator hypothesis in a primate population—rejects the idea that female baboons compete for mates by advertising heritable fitness differences. Furthermore, we found unambiguous evidence that males biased their mating decisions in favor of females who had experienced more sexual cycles since their most recent pregnancy. Thus, rather than tracking the potential differences in fitness between females, male baboons appear to track and target the potential for a given reproductive opportunity to result in fertilization. PMID:26752790

  19. Tetrahydrobiopterin ameliorates the exaggerated exercise pressor response in patients with chronic kidney disease: a randomized controlled trial.

    PubMed

    Lin, Ann M; Liao, Peizhou; Millson, Erin C; Quyyumi, Arshed A; Park, Jeanie

    2016-05-01

    Chronic kidney disease (CKD) patients have an exaggerated increase in blood pressure (BP) during rhythmic handgrip exercise (RHG 20%) and static handgrip exercise (SHG 30%). Nitric oxide levels increase during exercise and help prevent excessive hypertension by both increasing vasodilation and reducing sympathetic nerve activity (SNA). Therefore, we hypothesized that tetrahydrobiopterin (BH4), an essential cofactor for nitric oxide synthase, would ameliorate the exaggerated exercise pressor response in CKD patients. In a randomized, double-blinded, placebo-controlled trial, we tested the effects of 12 wk of sapropterin dihydrochloride (6R-BH4; n = 18) versus placebo (n = 14) treatement on BP and muscle SNA (MSNA) responses during RHG 20% and SHG 30% in CKD patients. The 6R-BH4-treated group had a significantly lower systolic BP (+6 ± 1 vs. +13 ± 2 mmHg, P = 0.002) and mean arterial pressure response (+5 ± 1 vs. +10 ± 2 mmHg, P = 0.020) during RHG 20% and a significantly lower systolic BP response (+19 ± 3 vs. +28 ± 3 mmHg, P = 0.043) during SHG 30%. Under baseline conditions, there was no significant difference in MSNA responses between the groups; however, when the BP response during exercise was equalized between the groups using nitroprusside, the 6R-BH4-treated group had a significantly lower MSNA response during RHG 20% (6R-BH4 vs. placebo, +12 ± 1 vs. +21 ± 2 bursts/min, P = 0.004) but not during SHG 30%. These findings suggest that 6R-BH4 ameliorates the augmented BP response during RHG 20% and SHG 30% in CKD patients. A reduction in reflex activation of SNA may contribute to the decreased exercise pressor response during RHG 20% but not during SHG 30% in CKD patients. PMID:26962106

  20. Large-scale production of soluble recombinant amyloid-β peptide 1-42 using cold-inducible expression system.

    PubMed

    Kim, Eun-Kyung; Moon, Jeong Chan; Lee, Jeong Mi; Jeong, Min Seop; Oh, Choongseob; Ahn, Sung-Min; Yoo, Yung Joon; Jang, Ho Hee

    2012-11-01

    Amyloid-β peptide 1-42 (Aβ(1-42)), the predominant form in senile plaques, plays important roles in the pathogenesis of Alzheimer's disease. Because Aβ(1-42) has aggregation-prone nature, it has been difficult to produce in a soluble state in bacterial expression systems. In this study, we modified our expression system to increase the soluble fraction of Aβ(1-42) in Escherichia coli (E. coli) cells. The expression level and solubility of recombinant Aβ(1-42) induced at the low temperature (16°C) is highly increased compared to that induced at 37°C. To optimize expression temperature, the coding region of Aβ(1-42) was constructed in a pCold vector, pCold-TF, which has a hexahistidine-tagged trigger factor (TF). Recombinant Aβ(1-42) was expressed primarily as a soluble protein using pCold vector system and purified with a nickel-chelating resin. When the toxic effect of recombinant Aβ(1-42) examined on human neuroblastoma SH-SY5Y cells, the purified Aβ(1-42) induced cell toxicity on SH-SY5Y cells. In conclusion, the system developed in this study will provide a useful method for the production of aggregation prone-peptide such as Aβ(1-42).

  1. Surface Behavior and Lipid Interaction of Alzheimer β-Amyloid Peptide 1–42: A Membrane-Disrupting Peptide

    PubMed Central

    Ambroggio, Ernesto E.; Kim, Dennis H.; Separovic, Frances; Barrow, Colin J.; Barnham, Kevin J.; Bagatolli, Luis A.; Fidelio, Gerardo D.

    2005-01-01

    Amyloid aggregates, found in patients that suffer from Alzheimer's disease, are composed of fibril-forming peptides in a β-sheet conformation. One of the most abundant components in amyloid aggregates is the β-amyloid peptide 1–42 (Aβ 1–42). Membrane alterations may proceed to cell death by either an oxidative stress mechanism, caused by the peptide and synergized by transition metal ions, or through formation of ion channels by peptide interfacial self-aggregation. Here we demonstrate that Langmuir films of Aβ 1–42, either in pure form or mixed with lipids, develop stable monomolecular arrays with a high surface stability. By using micropipette aspiration technique and confocal microscopy we show that Aβ 1–42 induces a strong membrane destabilization in giant unilamellar vesicles composed of palmitoyloleoyl-phosphatidylcholine, sphingomyelin, and cholesterol, lowering the critical tension of vesicle rupture. Additionally, Aβ 1–42 triggers the induction of a sequential leakage of low- and high-molecular-weight markers trapped inside the giant unilamellar vesicles, but preserving the vesicle shape. Consequently, the Aβ 1–42 sequence confers particular molecular properties to the peptide that, in turn, influence supramolecular properties associated to membranes that may result in toxicity, including: 1), an ability of the peptide to strongly associate with the membrane; 2), a reduction of lateral membrane cohesive forces; and 3), a capacity to break the transbilayer gradient and puncture sealed vesicles. PMID:15681641

  2. The glucagon‐like peptide 1 receptor agonist liraglutide attenuates the reinforcing properties of alcohol in rodents

    PubMed Central

    Vallöf, Daniel; Maccioni, Paola; Colombo, Giancarlo; Mandrapa, Minja; Jörnulf, Julia Winsa; Egecioglu, Emil; Engel, Jörgen A.

    2015-01-01

    Abstract The incretin hormone, glucagon‐like peptide 1 (GLP‐1), regulates gastric emptying, glucose‐dependent stimulation of insulin secretion and glucagon release, and GLP‐1 analogs are therefore approved for treatment of type II diabetes. GLP‐1 receptors are expressed in reward‐related areas such as the ventral tegmental area and nucleus accumbens, and GLP‐1 was recently shown to regulate several alcohol‐mediated behaviors as well as amphetamine‐induced, cocaine‐induced and nicotine‐induced reward. The present series of experiments were undertaken to investigate the effect of the GLP‐1 receptor agonist, liraglutide, on several alcohol‐related behaviors in rats that model different aspects of alcohol use disorder in humans. Acute liraglutide treatment suppressed the well‐documented effects of alcohol on the mesolimbic dopamine system, namely alcohol‐induced accumbal dopamine release and conditioned place preference in mice. In addition, acute administration of liraglutide prevented the alcohol deprivation effect and reduced alcohol intake in outbred rats, while repeated treatment of liraglutide decreased alcohol intake in outbred rats as well as reduced operant self‐administration of alcohol in selectively bred Sardinian alcohol‐preferring rats. Collectively, these data suggest that GLP‐1 receptor agonists could be tested for treatment of alcohol dependence in humans. PMID:26303264

  3. Self-expanding metallic stent placement with an exaggerated 5-cm proximal tumor covering for palliation of esophageal cancer

    PubMed Central

    Tahiri, Mehdi; Ferraro, Pasquale; Duranceau, André; Berthiaume, Melanie; Thiffault, Vicky; Liberman, Moishe

    2015-01-01

    Background The study aimed to evaluate the short- and long-term outcomes with a technique of self-expanding metallic stent insertion in palliative esophageal cancer patients. We hypothesized that a systematic attempt at exaggerated (5 cm) proximal tumor covering could prevent both stent migration and tumor overgrowth/undergrowth. Methods We reviewed retrospectively all patients who underwent esophageal stenting for palliation of malignant dysphagia over a 24-month period. Consecutive patients were identified from a prospective thoracic surgery interventional endoscopy database. This technique consisted of endoscopic stent insertion with the aim of landing the proximal portion of the stent 5 cm cephalad to the proximal extent of the tumor. All patients were followed at one month post-procedure and every three months thereafter, until death. Short- and long-term complications associated with the procedure and mortality were evaluated. Results Forty seven patients underwent endoscopic insertion of an esophageal stent in the context of an inoperable esophageal cancer using this technique over a 24-month period. The mean age was 70.4±9.6 years. Four (8.5%) patients underwent re-stenting due to proximal tumor overgrowth. No stent migration, perforation, tumor ingrowth or stent occlusion was reported. The mean patient survival was 146±26.5 days. Conclusions Esophageal stent insertion under endoscopic guidance with proximal tumor covering of 5 cm is effective and safe. No cases of stent migration and a low incidence of tumor overgrowth/undergrowth were observed with this technique. PMID:26126578

  4. Monocyte Subpopulations from Pre-Eclamptic Patients Are Abnormally Skewed and Exhibit Exaggerated Responses to Toll-Like Receptor Ligands

    PubMed Central

    Al-ofi, Ebtisam

    2012-01-01

    The leading cause of pregnancy-associated mortality and morbidity is pre-eclampsia (PE). Although information regarding the etiology of this disease is scant, its pathophysiology is characterized by abnormal placentation, endothelial dysfunction as well as an exaggerated inflammatory response. Clinical evidence also indicates that the abundance of many immune cells at the feto-maternal interface and in the circulation of PE patients is abnormal, when compared with normal pregnant (NP) controls. In addition, the phenotype and function of some of these cells is altered. To further characterize the systemic effects of PE on circulating cells, we analyzed monocytic subpopulations in NP and PE patients by flow cytometry. We found that non-classical CD14lowCD16+ monocytes are significantly increased in women with PE and they display irregular expression of several chemokine receptors and antigen presentation molecules. The most striking phenotypic difference among the cell surface molecules was the marked upregulation of TLR4 expression, where both CD14highCD16+ and CD14lowCD16+ monocytes demonstrated higher levels than their NP counterparts. Stimulation of PE monocytes with TLR ligands resulted in profound secretion of various cytokines in comparison with NP controls. These data suggest that PE monocytes are hyper-responsive to TLR ligands and this may contribute to exacerbation of the disease. PMID:22848746

  5. Hypoxia stress test reveals exaggerated cardiovascular effects in hypertensive rats after exposure to the air pollutant acrolein.

    PubMed

    Perez, Christina M; Ledbetter, Allen D; Hazari, Mehdi S; Haykal-Coates, Najwa; Carll, Alex P; Winsett, Darrell W; Costa, Daniel L; Farraj, Aimen K

    2013-04-01

    Exposure to air pollution increases the risk of cardiovascular morbidity and mortality, especially in susceptible populations. Despite increased risk, adverse responses are often delayed and require additional stress tests to reveal latent effects of exposure. The goal of this study was to use an episode of "transient hypoxia" as an extrinsic stressor to uncover latent susceptibility to environmental pollutants in a rodent model of hypertension. We hypothesized that exposure to acrolein, an unsaturated aldehyde and mucosal irritant found in cigarette smoke, diesel exhaust, and power plant emissions, would increase cardiopulmonary sensitivity to hypoxia, particularly in hypertensive rats. Spontaneously hypertensive and Wistar Kyoto (normotensive) rats, implanted with radiotelemeters, were exposed once for 3h to 3 ppm acrolein gas or filtered air in whole-body plethysmograph chambers and challenged with a 10% oxygen atmosphere (10min) 24h later. Acrolein exposure increased heart rate, blood pressure, breathing frequency, and minute volume in hypertensive rats and also increased the heart rate variability parameter LF, suggesting a potential role for increased sympathetic tone. Normotensive rats only had increased blood pressure during acrolein exposure. The hypoxia stress test after acrolein exposure revealed increased diastolic blood pressure only in hypertensive rats and increased minute volume and expiratory time only in normotensive rats. These results suggest that hypertension confers exaggerated sensitivity to air pollution and that the hypoxia stress test is a novel tool to reveal the potential latent effects of air pollution exposure.

  6. Cues to body size in the formant spacing of male koala (Phascolarctos cinereus) bellows: honesty in an exaggerated trait.

    PubMed

    Charlton, Benjamin D; Ellis, William A H; McKinnon, Allan J; Cowin, Gary J; Brumm, Jacqui; Nilsson, Karen; Fitch, W Tecumseh

    2011-10-15

    Determining the information content of vocal signals and understanding morphological modifications of vocal anatomy are key steps towards revealing the selection pressures acting on a given species' vocal communication system. Here, we used a combination of acoustic and anatomical data to investigate whether male koala bellows provide reliable information on the caller's body size, and to confirm whether male koalas have a permanently descended larynx. Our results indicate that the spectral prominences of male koala bellows are formants (vocal tract resonances), and show that larger males have lower formant spacing. In contrast, no relationship between body size and the fundamental frequency was found. Anatomical investigations revealed that male koalas have a permanently descended larynx: the first example of this in a marsupial. Furthermore, we found a deeply anchored sternothyroid muscle that could allow male koalas to retract their larynx into the thorax. While this would explain the low formant spacing of the exhalation and initial inhalation phases of male bellows, further research will be required to reveal the anatomical basis for the formant spacing of the later inhalation phases, which is predictive of vocal tract lengths of around 50 cm (nearly the length of an adult koala's body). Taken together, these findings show that the formant spacing of male koala bellows has the potential to provide receivers with reliable information on the caller's body size, and reveal that vocal adaptations allowing callers to exaggerate (or maximise) the acoustic impression of their size have evolved independently in marsupials and placental mammals.

  7. Insights into the Development and Evolution of Exaggerated Traits Using De Novo Transcriptomes of Two Species of Horned Scarab Beetles

    PubMed Central

    Warren, Ian A.; Vera, J. Cristobal; Johns, Annika; Zinna, Robert; Marden, James H.; Emlen, Douglas J.; Dworkin, Ian; Lavine, Laura C.

    2014-01-01

    Scarab beetles exhibit an astonishing variety of rigid exo-skeletal outgrowths, known as “horns”. These traits are often sexually dimorphic and vary dramatically across species in size, shape, location, and allometry with body size. In many species, the horn exhibits disproportionate growth resulting in an exaggerated allometric relationship with body size, as compared to other traits, such as wings, that grow proportionately with body size. Depending on the species, the smallest males either do not produce a horn at all, or they produce a disproportionately small horn for their body size. While the diversity of horn shapes and their behavioural ecology have been reasonably well studied, we know far less about the proximate mechanisms that regulate horn growth. Thus, using 454 pyrosequencing, we generated transcriptome profiles, during horn growth and development, in two different scarab beetle species: the Asian rhinoceros beetle, Trypoxylus dichotomus, and the dung beetle, Onthophagus nigriventris. We obtained over half a million reads for each species that were assembled into over 6,000 and 16,000 contigs respectively. We combined these data with previously published studies to look for signatures of molecular evolution. We found a small subset of genes with horn-biased expression showing evidence for recent positive selection, as is expected with sexual selection on horn size. We also found evidence of relaxed selection present in genes that demonstrated biased expression between horned and horn-less morphs, consistent with the theory of developmental decoupling of phenotypically plastic traits. PMID:24586317

  8. Insights into the development and evolution of exaggerated traits using de novo transcriptomes of two species of horned scarab beetles.

    PubMed

    Warren, Ian A; Vera, J Cristobal; Johns, Annika; Zinna, Robert; Marden, James H; Emlen, Douglas J; Dworkin, Ian; Lavine, Laura C

    2014-01-01

    Scarab beetles exhibit an astonishing variety of rigid exo-skeletal outgrowths, known as "horns". These traits are often sexually dimorphic and vary dramatically across species in size, shape, location, and allometry with body size. In many species, the horn exhibits disproportionate growth resulting in an exaggerated allometric relationship with body size, as compared to other traits, such as wings, that grow proportionately with body size. Depending on the species, the smallest males either do not produce a horn at all, or they produce a disproportionately small horn for their body size. While the diversity of horn shapes and their behavioural ecology have been reasonably well studied, we know far less about the proximate mechanisms that regulate horn growth. Thus, using 454 pyrosequencing, we generated transcriptome profiles, during horn growth and development, in two different scarab beetle species: the Asian rhinoceros beetle, Trypoxylus dichotomus, and the dung beetle, Onthophagus nigriventris. We obtained over half a million reads for each species that were assembled into over 6,000 and 16,000 contigs respectively. We combined these data with previously published studies to look for signatures of molecular evolution. We found a small subset of genes with horn-biased expression showing evidence for recent positive selection, as is expected with sexual selection on horn size. We also found evidence of relaxed selection present in genes that demonstrated biased expression between horned and horn-less morphs, consistent with the theory of developmental decoupling of phenotypically plastic traits.

  9. Sounds Exaggerate Visual Shape

    ERIC Educational Resources Information Center

    Sweeny, Timothy D.; Guzman-Martinez, Emmanuel; Ortega, Laura; Grabowecky, Marcia; Suzuki, Satoru

    2012-01-01

    While perceiving speech, people see mouth shapes that are systematically associated with sounds. In particular, a vertically stretched mouth produces a /woo/ sound, whereas a horizontally stretched mouth produces a /wee/ sound. We demonstrate that hearing these speech sounds alters how we see aspect ratio, a basic visual feature that contributes…

  10. Identification of an HIV-1 Mutation in Spacer Peptide 1 That Stabilizes the Immature CA-SP1 Lattice

    PubMed Central

    Keller, Paul W.; Urano, Emiko; Ablan, Sherimay D.

    2015-01-01

    ABSTRACT Upon release of HIV-1 particles from the infected cell, the viral protease cleaves the Gag polyprotein at specific sites, triggering maturation. During this process, which is essential for infectivity, the capsid protein (CA) reassembles into a conical core. Maturation inhibitors (MIs) block HIV-1 maturation by interfering with protease-mediated CA-spacer peptide 1 (CA-SP1) processing, concomitantly stabilizing the immature CA-SP1 lattice; virions from MI-treated cells retain an immature-like CA-SP1 lattice, whereas mutational abolition of cleavage at the CA-SP1 site results in virions in which the CA-SP1 lattice converts to a mature-like form. We previously reported that propagation of HIV-1 in the presence of MI PF-46396 selected for assembly-defective, compound-dependent mutants with amino acid substitutions in the major homology region (MHR) of CA. Propagation of these mutants in the absence of PF-46396 resulted in the acquisition of second-site compensatory mutations. These included a Thr-to-Ile substitution at SP1 residue 8 (T8I), which results in impaired CA-SP1 processing. Thus, the T8I mutation phenocopies PF-46396 treatment in terms of its ability to rescue the replication defect imposed by the MHR mutations and to impede CA-SP1 processing. Here, we use cryo-electron tomography to show that, like MIs, the T8I mutation stabilizes the immature-like CA-SP1 lattice. These results have important implications for the mechanism of action of HIV-1 MIs; they also suggest that T8I may provide a valuable tool for structural definition of the CA-SP1 boundary region, which has thus far been refractory to high-resolution analysis, apparently because of conformational flexibility in this region of Gag. IMPORTANCE HIV-1 maturation involves dissection of the Gag polyprotein by the viral protease and assembly of a conical capsid enclosing the viral ribonucleoprotein. Maturation inhibitors (MIs) prevent the final cleavage step at the site between the capsid protein

  11. Applying the ethoexperimental approach to neurodevelopmental syndrome research reveals exaggerated defensive behavior in Mecp2 mutant mice

    PubMed Central

    Pearson, Brandon L.; Defensor, Erwin B.; Blanchard, D. Caroline; Blanchard, Robert J.

    2015-01-01

    Rett syndrome is a Pervasive Developmental Disorder (PDD) associated with de novo mutations of the methyl CpG-binding protein 2 (MECP2) gene. Mecp2 functions as a transcription factor that regulating the expression of hundreds of genes. Identification of the role of Mecp2 in specific neurodevelopmental symptoms remains an important research aim. We previously demonstrated that male mice possessing a truncation mutation in Mecp2 are hyper-social. We predicted that reduced fear or anxiety might underlie this enhanced affiliation. In order to probe risk assessment and anxiety-like behavior, we compared Mecp2 truncation mutants to their wild-type littermates in the elevated plus maze and elevated zero maze. Additionally, subjects were administered the mouse defense test battery to evaluate unconditioned fear- and panic-like behavior to a graded set of threat scenarios and a predator stimulus. Mutant mice showed no significant changes in anxiety-like behavior. Yet, they displayed hyper-reactive escape and defensive behaviors to an animate predatory threat stimulus. Notably, mutant mice engaged in exaggerated active defense responding to threat stimuli at nearly all phases of the fear battery. These results reveal abnormalities in emotion regulation in Mecp2 mutants particularly in response to ecologically relevant threats. This hyper-responsivity suggests that transcriptional targets of Mecp2 are critical to emotion regulation. Moreover, we suggest that detailed analysis of defensive behavior and aggression with ethologically relevant tasks provides an avenue to interrogate gene-behavior mechanisms neurodevelopmental and other psychiatric conditions. PMID:26066729

  12. Applying the ethoexperimental approach to neurodevelopmental syndrome research reveals exaggerated defensive behavior in Mecp2 mutant mice.

    PubMed

    Pearson, Brandon L; Defensor, Erwin B; Blanchard, D Caroline; Blanchard, Robert J

    2015-07-01

    Rett syndrome is a Pervasive Developmental Disorder (PDD) associated with de novo mutations of the methyl CpG-binding protein 2 (MECP2) gene. Mecp2 functions as a transcription factor that regulates the expression of hundreds of genes. Identification of the role of Mecp2 in specific neurodevelopmental symptoms remains an important research aim. We previously demonstrated that male mice possessing a truncation mutation in Mecp2 are hyper-social. We predicted that reduced fear or anxiety might underlie this enhanced affiliation. In order to probe risk assessment and anxiety-like behavior, we compared Mecp2 truncation mutants to their wild-type littermates in the elevated plus maze and elevated zero maze. Additionally, subjects were administered the mouse defense test battery to evaluate unconditioned fear- and panic-like behavior to a graded set of threat scenarios and a predator stimulus. Mutant mice showed no significant changes in anxiety-like behavior. Yet, they displayed hyper-reactive escape and defensive behaviors to an animate predatory threat stimulus. Notably, mutant mice engaged in exaggerated active defense responding to threat stimuli at nearly all phases of the fear battery. These results reveal abnormalities in emotion regulation in Mecp2 mutants particularly in response to ecologically relevant threats. This hyper-responsivity suggests that transcriptional targets of Mecp2 are critical to emotion regulation. Moreover, we suggest that detailed analysis of defensive behavior and aggression with ethologically relevant tasks provides an avenue to interrogate gene-behavior mechanisms of neurodevelopmental and other psychiatric conditions. PMID:26066729

  13. High Fat Diet Feeding Exaggerates Perfluorooctanoic Acid-Induced Liver Injury in Mice via Modulating Multiple Metabolic Pathways

    PubMed Central

    Tan, Xiaobing; Xie, Guoxiang; Sun, Xiuhua; Li, Qiong; Zhong, Wei; Qiao, Peter; Sun, Xinguo; Jia, Wei; Zhou, Zhanxiang

    2013-01-01

    High fat diet (HFD) is closely linked to a variety of health issues including fatty liver. Exposure to perfluorooctanoic acid (PFOA), a synthetic perfluorinated carboxylic acid, also causes liver injury. The present study investigated the possible interactions between high fat diet and PFOA in induction of liver injury. Mice were pair-fed a high-fat diet (HFD) or low fat control with or without PFOA administration at 5 mg/kg/day for 3 weeks. Exposure to PFOA alone caused elevated plasma alanine aminotransferase (ALT) and alkaline phosphatase (ALP) levels and increased liver weight along with reduced body weight and adipose tissue mass. HFD alone did not cause liver damage, but exaggerated PFOA-induced hepatotoxicity as indicated by higher plasma ALT and AST levels, and more severe pathological changes including hepatocyte hypertrophy, lipid droplet accumulation and necrosis as well as inflammatory cell infiltration. These additive effects of HFD on PFOA-induced hepatotoxicity correlated with metabolic disturbance in liver and blood as well as up-regulation of hepatic proinflammatory cytokine genes. Metabolomic analysis demonstrated that both serum and hepatic metabolite profiles of PFOA, HFD, or HFD-PFOA group were clearly differentiated from that of controls. PFOA affected more hepatic metabolites than HFD, but HFD showed positive interaction with PFOA on fatty acid metabolites including long chain fatty acids and acylcarnitines. Taken together, dietary high fat potentiates PFOA-induced hepatic lipid accumulation, inflammation and necrotic cell death by disturbing hepatic metabolism and inducing inflammation. This study demonstrated, for the first time, that HFD increases the risk of PFOA in induction of hepatotoxicity. PMID:23626681

  14. Applying the ethoexperimental approach to neurodevelopmental syndrome research reveals exaggerated defensive behavior in Mecp2 mutant mice.

    PubMed

    Pearson, Brandon L; Defensor, Erwin B; Blanchard, D Caroline; Blanchard, Robert J

    2015-07-01

    Rett syndrome is a Pervasive Developmental Disorder (PDD) associated with de novo mutations of the methyl CpG-binding protein 2 (MECP2) gene. Mecp2 functions as a transcription factor that regulates the expression of hundreds of genes. Identification of the role of Mecp2 in specific neurodevelopmental symptoms remains an important research aim. We previously demonstrated that male mice possessing a truncation mutation in Mecp2 are hyper-social. We predicted that reduced fear or anxiety might underlie this enhanced affiliation. In order to probe risk assessment and anxiety-like behavior, we compared Mecp2 truncation mutants to their wild-type littermates in the elevated plus maze and elevated zero maze. Additionally, subjects were administered the mouse defense test battery to evaluate unconditioned fear- and panic-like behavior to a graded set of threat scenarios and a predator stimulus. Mutant mice showed no significant changes in anxiety-like behavior. Yet, they displayed hyper-reactive escape and defensive behaviors to an animate predatory threat stimulus. Notably, mutant mice engaged in exaggerated active defense responding to threat stimuli at nearly all phases of the fear battery. These results reveal abnormalities in emotion regulation in Mecp2 mutants particularly in response to ecologically relevant threats. This hyper-responsivity suggests that transcriptional targets of Mecp2 are critical to emotion regulation. Moreover, we suggest that detailed analysis of defensive behavior and aggression with ethologically relevant tasks provides an avenue to interrogate gene-behavior mechanisms of neurodevelopmental and other psychiatric conditions.

  15. Astrocytes Are Primed by Chronic Neurodegeneration to Produce Exaggerated Chemokine and Cell Infiltration Responses to Acute Stimulation with the Cytokines IL-1β and TNF-α

    PubMed Central

    Hennessy, Edel; Griffin, Éadaoin W.

    2015-01-01

    Microgliosis and astrogliosis are standard pathological features of neurodegenerative disease. Microglia are primed by chronic neurodegeneration such that toll-like receptor agonists, such as LPS, drive exaggerated cytokine responses on this background. However, sterile inflammatory insults are more common than direct CNS infection in the degenerating brain and these insults drive robust IL-1β and TNF-α responses. It is unclear whether these pro-inflammatory cytokines can directly induce exaggerated responses in the degenerating brain. We hypothesized that glial cells in the hippocampus of animals with chronic neurodegenerative disease (ME7 prion disease) would display exaggerated responses to central cytokine challenges. TNF-α or IL-1β were administered intrahippocampally to ME7-inoculated mice and normal brain homogenate-injected (NBH) controls. Both IL-1β and TNF-α produced much more robust IL-1β synthesis in ME7 than in NBH animals and this occurred exclusively in microglia. However, there was strong nuclear localization of the NFκB subunit p65 in the astrocyte population, associated with marked astrocytic synthesis of the chemokines CXCL1 and CCL2 in response to both cytokine challenges in ME7 animals. Conversely, very limited expression of these chemokines was apparent in NBH animals similarly challenged. Thus, astrocytes are primed in the degenerating brain to produce exaggerated chemokine responses to acute stimulation with pro-inflammatory cytokines. Furthermore, this results in markedly increased neutrophil, T-cell, and monocyte infiltration in the diseased brain. These data have significant implications for acute sterile inflammatory insults such as stroke and traumatic brain injury occurring on a background of aging or neurodegeneration. PMID:26041910

  16. PlanHab: hypoxia exaggerates the bed-rest-induced reduction in peak oxygen uptake during upright cycle ergometry.

    PubMed

    Keramidas, Michail E; Kölegård, Roger; Mekjavic, Igor B; Eiken, Ola

    2016-08-01

    The study examined the effects of hypoxia and horizontal bed rest, separately and in combination, on peak oxygen uptake (V̇o2 peak) during upright cycle ergometry. Ten male lowlanders underwent three 21-day confinement periods in a counterbalanced order: 1) normoxic bed rest [NBR; partial pressure of inspired O2 (PiO2 ) = 133.1 ± 0.3 mmHg]; 2) hypoxic bed rest (HBR; PiO2 = 90.0 ± 0.4 mmHg), and 3) hypoxic ambulation (HAMB; PiO2 = 90.0 ± 0.4 mmHg). Before and after each confinement, subjects performed two incremental-load trials to exhaustion, while inspiring either room air (AIR), or a hypoxic gas (HYPO; PiO2 = 90.0 ± 0.4 mmHg). Changes in regional oxygenation of the vastus lateralis muscle and the frontal cerebral cortex were monitored with near-infrared spectroscopy. Cardiac output (CO) was recorded using a bioimpedance method. The AIR V̇o2 peak was decreased by both HBR (∼13.5%; P ≤ 0.001) and NBR (∼8.6%; P ≤ 0.001), with greater drop after HBR (P = 0.01). The HYPO V̇o2 peak was also reduced by HBR (-9.7%; P ≤ 0.001) and NBR (-6.1%; P ≤ 0.001). Peak CO was lower after both bed-rest interventions, and especially after HBR (HBR: ∼13%, NBR: ∼7%; P ≤ 0.05). Exercise-induced alterations in muscle and cerebral oxygenation were blunted in a similar manner after both bed-rest confinements. No changes were observed in HAMB. Hence, the bed-rest-induced decrease in V̇o2 peak was exaggerated by hypoxia, most likely due to a reduction in convective O2 transport, as indicated by the lower peak values of CO. PMID:27342877

  17. Dysfunction of Inflammation-Resolving Pathways Is Associated with Exaggerated Postoperative Cognitive Decline in a Rat Model of the Metabolic Syndrome

    PubMed Central

    Su, Xiao; Feng, Xiaomei; Terrando, Niccolo; Yan, Yan; Chawla, Ajay; Koch, Lauren G; Britton, Steven L; Matthay, Michael A; Maze, Mervyn

    2012-01-01

    The cholinergic antiinflammatory pathway (CAP), which terminates in the spleen, attenuates postoperative cognitive decline (PCD) in rodents. Surgical patients with metabolic syndrome exhibit exaggerated and persistent PCD that is reproduced in postoperative rats selectively bred for easy fatigability and that contain all features of metabolic syndrome (low-capacity runners [LCRs]). We compared the CAP and lipoxin A4 (LXA4), another inflammation-resolving pathway in LCR, with its counterpart high-capacity runner (HCR) rats. Isoflurane-anesthetized LCR and HCR rats either underwent aseptic trauma involving tibial fracture (surgery) or not (sham). At postoperative d 3 (POD3), compared with HCR, LCR rats exhibited significantly exaggerated PCD (trace fear conditioning freezing time 43% versus 57%). Separate cohorts were killed at POD3 to collect plasma for LXA4 and to isolate splenic mononuclear cells (MNCs) to analyze CAP signaling, regulatory T cells (Tregs) and M2 macrophages (M2 Mφ). Under lipopolysaccharide (LPS) stimulation, tumor necrosis factor (TNF)-α produced by splenic MNCs was 117% higher in LCR sham and 52% higher in LCR surgery compared with HCR sham and surgery rats; LPS-stimulated TNF-α production could not be inhibited by an α7 nicotinic acetylcholine receptor agonist, whereas inhibition by the β2 adrenergic agonist, salmeterol, was significantly less (−35%) than that obtained in HCR rats. Compared to HCR, sham and surgery LCR rats had reduced β2 adrenergic receptor–expressing T lymphocytes (59%, 44%), Tregs (47%, 54%) and M2 Mφ (45%, 39%); surgical LCR rats’ hippocampal M2 Mφ was 66% reduced, and plasma LXA4 was decreased by 120%. Rats with the metabolic syndrome have ineffective inflammation-resolving mechanisms that represent plausible reasons for the exaggerated and persistent PCD. PMID:23296426

  18. Dysfunction of inflammation-resolving pathways is associated with exaggerated postoperative cognitive decline in a rat model of the metabolic syndrome.

    PubMed

    Su, Xiao; Feng, Xiaomei; Terrando, Niccolo; Yan, Yan; Chawla, Ajay; Koch, Lauren G; Britton, Steven L; Matthay, Michael A; Maze, Mervyn

    2013-02-08

    The cholinergic antiinflammatory pathway (CAP), which terminates in the spleen, attenuates postoperative cognitive decline (PCD) in rodents. Surgical patients with metabolic syndrome exhibit exaggerated and persistent PCD that is reproduced in postoperative rats selectively bred for easy fatigability and that contain all features of metabolic syndrome (low-capacity runners [LCRs]). We compared the CAP and lipoxin A(4) (LXA(4)), another inflammation-resolving pathway in LCR, with its counterpart high-capacity runner (HCR) rats. Isoflurane-anesthetized LCR and HCR rats either underwent aseptic trauma involving tibial fracture (surgery) or not (sham). At postoperative d 3 (POD3), compared with HCR, LCR rats exhibited significantly exaggerated PCD (trace fear conditioning freezing time 43% versus 57%). Separate cohorts were killed at POD3 to collect plasma for LXA4 and to isolate splenic mononuclear cells (MNCs) to analyze CAP signaling, regulatory T cells (Tregs) and M2 macrophages (M2 Mφ). Under lipopolysaccharide (LPS) stimulation, tumor necrosis factor (TNF)-α produced by splenic MNCs was 117% higher in LCR sham and 52% higher in LCR surgery compared with HCR sham and surgery rats; LPS-stimulated TNF-α production could not be inhibited by an α7 nicotinic acetylcholine receptor agonist, whereas inhibition by the β(2) adrenergic agonist, salmeterol, was significantly less (-35%) than that obtained in HCR rats. Compared to HCR, sham and surgery LCR rats had reduced β(2) adrenergic receptor-expressing T lymphocytes (59%, 44%), Tregs (47%, 54%) and M2 Mφ (45%, 39%); surgical LCR rats' hippocampal M2 Mφ was 66% reduced, and plasma LXA4 was decreased by 120%. Rats with the metabolic syndrome have ineffective inflammation-resolving mechanisms that represent plausible reasons for the exaggerated and persistent PCD.

  19. Enhanced Densification of Carbonyl Iron Powder Compacts by the Retardation of Exaggerated Grain Growth through the Use of High Heating Rates

    NASA Astrophysics Data System (ADS)

    Hwang, Kuen-Shyang; Lu, Yung-Chung; Shu, Guo-Jiun; Chen, Bor-Yuan

    2009-12-01

    An investigation of the effect of heating rates on the densification behavior of carbonyl iron powder compacts, particularly on the exaggerated grain growth during the α- γ phase transformation, was carried out in this study. Compacts heated at 1200 °C/min and then sintered for 90 minutes at 1200 °C attained 7.14 g/cm3, while those heated at 10 °C/min reached only 6.61 g/cm3. Dilatometer curves using heating rates of 2 °C/min, 5 °C/min, 10 °C/min, 30 °C/min, and 90 °C/min demonstrate that 90 °C/min yields the highest sintered density. The microstructure analysis shows that high heating rates inhibit exaggerated grain growth during the phase transformation by keeping the interparticle neck size small and pinning the grain boundaries. This explanation is supported by the calculation that shows that the energy barrier preventing the grain boundary from breaking away from the neck is reduced hyperbolically as the neck size and the amount of shrinkage increase. The high heating rate, however, shows little beneficial effect for materials that have no allotropic phase transformation or have less drastic grain growth during heating, such as nickel and copper. Thus, bypassing the low temperatures to suppress the surface diffusion mechanism, which does not contribute to densification, is ruled out as the main reason for the enhanced densification of carbonyl iron powders.

  20. Life-threatening misdiagnosis of bulbar onset myasthenia gravis as a motor neuron disease: How much can one rely on exaggerated deep tendon reflexes

    PubMed Central

    Basiri, Keivan; Ansari, Behnaz; Okhovat, Ali Asghar

    2015-01-01

    The autoimmune disease myasthenia gravis (MG), can mimic a variety of neurological disorders leading to a delay in diagnosis and treatment. On occasions, misdiagnosis of MG could lead to unnecessary therapeutic interventions. We report the case of a 50 year-old man, in whom MG was mistaken for motor neuron disease (MND). Subsequently, correct diagnosis and optimal management resulted in saving his life and significant improvement in his functional status. We discuss the importance of considering MG as one of the potential differential diagnoses among cases of new onset or recurrent unexplained bulbar symptoms, despite exaggerated deep tendon reflexes. Also, a literature review on the misdiagnosis of MG and the potential pitfalls in MG diagnosis are discussed. PMID:25802827

  1. Has the Impact of Rising CO2 on Plants been Exaggerated by Meta-Analysis of Free Air CO2 Enrichment Studies?

    PubMed

    Haworth, Matthew; Hoshika, Yasutomo; Killi, Dilek

    2016-01-01

    Meta-analysis is extensively used to synthesize the results of free air CO2 enrichment (FACE) studies to produce an average effect size, which is then used to model likely plant response to rising [CO2]. The efficacy of meta-analysis is reliant upon the use of data that characterizes the range of responses to a given factor. Previous meta-analyses of the effect of FACE on plants have not incorporated the potential impact of reporting bias in skewing data. By replicating the methodology of these meta-analytic studies, we demonstrate that meta-analysis of FACE has likely exaggerated the effect size of elevated [CO2] on plants by 20 to 40%; having significant implications for predictions of food security and vegetation response to climate change. Incorporation of the impact of reporting bias did not affect the significance or the direction of the [CO2] effect. PMID:27536310

  2. Has the Impact of Rising CO2 on Plants been Exaggerated by Meta-Analysis of Free Air CO2 Enrichment Studies?

    PubMed

    Haworth, Matthew; Hoshika, Yasutomo; Killi, Dilek

    2016-01-01

    Meta-analysis is extensively used to synthesize the results of free air CO2 enrichment (FACE) studies to produce an average effect size, which is then used to model likely plant response to rising [CO2]. The efficacy of meta-analysis is reliant upon the use of data that characterizes the range of responses to a given factor. Previous meta-analyses of the effect of FACE on plants have not incorporated the potential impact of reporting bias in skewing data. By replicating the methodology of these meta-analytic studies, we demonstrate that meta-analysis of FACE has likely exaggerated the effect size of elevated [CO2] on plants by 20 to 40%; having significant implications for predictions of food security and vegetation response to climate change. Incorporation of the impact of reporting bias did not affect the significance or the direction of the [CO2] effect.

  3. The exaggerated inflammatory response in Behçet's syndrome: identification of dysfunctional post-transcriptional regulation of the IFN-γ/CXCL10 IP-10 pathway.

    PubMed

    Ambrose, N; Khan, E; Ravindran, R; Lightstone, L; Abraham, S; Botto, M; Johns, M; Haskard, D O

    2015-09-01

    The mechanisms underlying the exaggerated inflammatory response in Behçet's syndrome (BS) remain poorly understood. We investigated the response of CD14(+) blood monocytes to interferon (IFN)-γ, focusing on the chemokine CXCL10. Chemokine synthesis and release were analysed at a protein and mRNA level following stimulation with IFN-γ. Findings in BS patients were compared with 25 healthy controls (HC), 15 rheumatoid arthritis (RA) and 15 systemic lupus erythematosus (SLE) disease control patients. BS monocytes produced significantly more CXCL10 protein than HC monocytes from 2 h following IFN-γ stimulation, despite equivalent quantities of mRNA, suggesting more efficient translation. This was significantly more pronounced in BS with high disease activity and in those with ocular and neurological clinical manifestations. The imbalance between CXCL10 protein and mRNA expression was not observed in either RA or SLE patients, and was not seen with other chemokines studied (CXCL9, CXCL11 and CCL2). Furthermore, BS monocytes treated with an alternative stimulant (LPS) did not show abnormal tumour necrosis factor (TNF)-α release. Sucrose density gradients to segregate monocyte CXCL10 mRNA into free RNA or polysome-associated RNA showed equal proportions in BS and HC samples, suggesting that the difference between BS and HC may be due to reduced negative control of CXCL10 translation in BS at a post-initiation level. We conclude that BS monocytes have dysfunctional post-transcriptional regulation of CXCL10 mRNA, resulting in over-expression of CXCL10 protein upon IFN-γ stimulation. As CXCL10 is a chemokine that recruits mononuclear cells, this abnormality may contribute to the exaggerated inflammatory responses that characterizes BS. PMID:25982097

  4. The exaggerated inflammatory response in Behçet's syndrome: identification of dysfunctional post-transcriptional regulation of the IFN-γ/CXCL10 IP-10 pathway.

    PubMed

    Ambrose, N; Khan, E; Ravindran, R; Lightstone, L; Abraham, S; Botto, M; Johns, M; Haskard, D O

    2015-09-01

    The mechanisms underlying the exaggerated inflammatory response in Behçet's syndrome (BS) remain poorly understood. We investigated the response of CD14(+) blood monocytes to interferon (IFN)-γ, focusing on the chemokine CXCL10. Chemokine synthesis and release were analysed at a protein and mRNA level following stimulation with IFN-γ. Findings in BS patients were compared with 25 healthy controls (HC), 15 rheumatoid arthritis (RA) and 15 systemic lupus erythematosus (SLE) disease control patients. BS monocytes produced significantly more CXCL10 protein than HC monocytes from 2 h following IFN-γ stimulation, despite equivalent quantities of mRNA, suggesting more efficient translation. This was significantly more pronounced in BS with high disease activity and in those with ocular and neurological clinical manifestations. The imbalance between CXCL10 protein and mRNA expression was not observed in either RA or SLE patients, and was not seen with other chemokines studied (CXCL9, CXCL11 and CCL2). Furthermore, BS monocytes treated with an alternative stimulant (LPS) did not show abnormal tumour necrosis factor (TNF)-α release. Sucrose density gradients to segregate monocyte CXCL10 mRNA into free RNA or polysome-associated RNA showed equal proportions in BS and HC samples, suggesting that the difference between BS and HC may be due to reduced negative control of CXCL10 translation in BS at a post-initiation level. We conclude that BS monocytes have dysfunctional post-transcriptional regulation of CXCL10 mRNA, resulting in over-expression of CXCL10 protein upon IFN-γ stimulation. As CXCL10 is a chemokine that recruits mononuclear cells, this abnormality may contribute to the exaggerated inflammatory responses that characterizes BS.

  5. Exaggerated myocardial oxLDL amount and LOX-1 receptor over-expression associated with coronary microvessel inflammation in unstable angina.

    PubMed

    Neri Serneri, Gian Gastone; Coppo, Mirella; Bandinelli, Manuela; Paoletti, Paoletto; Toscano, Thomas; Micalizzi, Ezio; Chiostri, Marco; Boddi, Maria

    2013-02-01

    The pathophysiological relationship between coronary atherosclerosis and coronary microvessels remains undefined and the specific causative role of oxidatively modified low density lipoprotein (oxLDL) in human atherosclerosis is debated. The purposes of this study are to investigate whether coronary microvessels are involved in coronary atherosclerosis and whether increased myocardial oxLDL amount can be associated with coronary microvessel inflammation. A combination of immunohistochemical, RT-PCR and real-time PCR studies performed on myocardial biopsy specimens from patients with mitral stenosis (control hearts, CHs) and from unstable and stable angina patients (UAP and SAP), demonstrated that myocardial oxLDL was associated with a chronic low-grade inflammation in SAP and with a severe high grade inflammation in UAP. oxLDL amount was notably higher in UAP than in SAP and in UAP the high grade of inflammation was correlated with the increased amount of oxLDL in endothelial cells and macrophages. The exaggerated amount of oxLDL in UAP and the interaction of oxLDL with lectin-like oxLDL (LOX-1) receptor are amplified by the activation of transcriptional factor octamere 1 (OCT-1) with consequent activation of a series of inflammatory endothelial feed-back mechanisms resulting in LOX-1 gene over-expression, endothelial inflammation as well as uncontrolled nuclear factor kappa B (NFkB) activation. Moreover, in UAP genes for signal transducer and activator transcriptional factor 1α (STAT1α), angiotensin converting enzyme (ACE) and numerous pro-inflammatory cytokines were over-expressed. The present results may have clinical relevance because they show that coronary atherosclerosis is a disease not confined to the large arteries but involving the whole coronary tree. In UAP the exaggerated amount of myocardial oxLDL is associated with widespread high grade microvessel inflammation. PMID:23237633

  6. Tight junction gene expression in gastrointestinal tract of dairy calves with coccidiosis and treated with glucagon-like peptide-2

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Selective permeability of the intestinal epithelium and efficient nutrient absorption are important functions for proper growth and development of calves. Damage to the intestinal mucosa can give rise to harmful long-term health effects and reduce productivity of the mature animal. Tight junction pr...

  7. Energy-Dependent Modulation of Glucagon-Like Signaling in Drosophila via the AMP-Activated Protein Kinase

    PubMed Central

    Braco, Jason T.; Gillespie, Emily L.; Alberto, Gregory E.; Brenman, Jay E.; Johnson, Erik C.

    2012-01-01

    Adipokinetic hormone (AKH) is the equivalent of mammalian glucagon, as it is the primary insect hormone that causes energy mobilization. In Drosophila, current knowledge of the mechanisms regulating AKH signaling is limited. Here, we report that AMP-activated protein kinase (AMPK) is critical for normal AKH secretion during periods of metabolic challenges. Reduction of AMPK in AKH cells causes a suite of behavioral and physiological phenotypes resembling AKH cell ablations. Specifically, reduced AMPK function increases life span during starvation and delays starvation-induced hyperactivity. Neither AKH cell survival nor gene expression is significantly impacted by reduced AMPK function. AKH immunolabeling was significantly higher in animals with reduced AMPK function; this result is paralleled by genetic inhibition of synaptic release, suggesting that AMPK promotes AKH secretion. We observed reduced secretion in AKH cells bearing AMPK mutations employing a specific secretion reporter, confirming that AMPK functions in AKH secretion. Live-cell imaging of wild-type AKH neuroendocrine cells shows heightened excitability under reduced sugar levels, and this response was delayed and reduced in AMPK-deficient backgrounds. Furthermore, AMPK activation in AKH cells increases intracellular calcium levels in constant high sugar levels, suggesting that the underlying mechanism of AMPK action is modification of ionic currents. These results demonstrate that AMPK signaling is a critical feature that regulates AKH secretion, and, ultimately, metabolic homeostasis. The significance of these findings is that AMPK is important in the regulation of glucagon signaling, suggesting that the organization of metabolic networks is highly conserved and that AMPK plays a prominent role in these networks. PMID:22798489

  8. Glucagon-like peptide 2 and its beneficial effects on gut function and health in production animals

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Numerous endocrine cell subtypes exist within the intestinal mucosa and produce peptides contributing to the regulation of critical physiological processes including appetite, energy metabolism, gut function, and gut health. The mechanisms of action and the extent of the physiological effects of the...

  9. Energy-dependent modulation of glucagon-like signaling in Drosophila via the AMP-activated protein kinase.

    PubMed

    Braco, Jason T; Gillespie, Emily L; Alberto, Gregory E; Brenman, Jay E; Johnson, Erik C

    2012-10-01

    Adipokinetic hormone (AKH) is the equivalent of mammalian glucagon, as it is the primary insect hormone that causes energy mobilization. In Drosophila, current knowledge of the mechanisms regulating AKH signaling is limited. Here, we report that AMP-activated protein kinase (AMPK) is critical for normal AKH secretion during periods of metabolic challenges. Reduction of AMPK in AKH cells causes a suite of behavioral and physiological phenotypes resembling AKH cell ablations. Specifically, reduced AMPK function increases life span during starvation and delays starvation-induced hyperactivity. Neither AKH cell survival nor gene expression is significantly impacted by reduced AMPK function. AKH immunolabeling was significantly higher in animals with reduced AMPK function; this result is paralleled by genetic inhibition of synaptic release, suggesting that AMPK promotes AKH secretion. We observed reduced secretion in AKH cells bearing AMPK mutations employing a specific secretion reporter, confirming that AMPK functions in AKH secretion. Live-cell imaging of wild-type AKH neuroendocrine cells shows heightened excitability under reduced sugar levels, and this response was delayed and reduced in AMPK-deficient backgrounds. Furthermore, AMPK activation in AKH cells increases intracellular calcium levels in constant high sugar levels, suggesting that the underlying mechanism of AMPK action is modification of ionic currents. These results demonstrate that AMPK signaling is a critical feature that regulates AKH secretion, and, ultimately, metabolic homeostasis. The significance of these findings is that AMPK is important in the regulation of glucagon signaling, suggesting that the organization of metabolic networks is highly conserved and that AMPK plays a prominent role in these networks. PMID:22798489

  10. Immunoreactive prohormone atrial natriuretic peptides 1-30 and 31-67 - Existence of a single circulating amino-terminal peptide

    NASA Technical Reports Server (NTRS)

    Chen, Yu-Ming; Whitson, Peggy A.; Cintron, Nitza M.

    1990-01-01

    Sep-Pak C18 extraction of human plasma and radioimmunoassay using antibodies which recognize atrial natriuretic peptide (99-128) and the prohormone sequences 1-30 and 31-67 resulted in mean values from 20 normal subjects of 26.2 (+/- 9.2), 362 (+/- 173) and 368 (+/- 160) pg/ml, respectively. A high correlation coefficient between values obtained using antibodies recognizing prohormone sequences 1-30 and 31-67 was observed (R = 0.84). Extracted plasma immunoreactivity of 1-30 and 31-67 both eluted at 46 percent acetonitrile. In contrast, chromatographic elution of synthetic peptides 1-30 and 31-67 was observed at 48 and 39 percent acetonitrile, respectively. Data suggest that the radioimmunoassay of plasma using antibodies recognizing prohormone sequences 1-30 and 31-67 may represent the measurement of a unique larger amino-terminal peptide fragment containing antigenic sites recognized by both antisera.

  11. Exaggerated Exercise Blood Pressure is Associated with Higher Left Ventricular Mass in Adolescence. The Avon Longitudinal Study of Parents and Children

    PubMed Central

    Schultz, Martin; Park, Chloe; Sharman, James; Fraser, Abigail; Howe, Laura; Lawlor, Debbie; Chaturvedi, Nish; Smith, George Davey; Hughes, Alun

    2016-01-01

    Objective Dynamic exercise results in an increase to systolic blood pressure (BP). Irrespective of resting BP, some individuals may experience an exaggerated rise in systolic BP with exercise, which in adulthood, is associated with greater risk of developing hypertension, cardiovascular morbidity and mortality. It is not known if exercise BP is associated with adverse cardiovascular risk during adolescence. We determined associations of exercise BP with left ventricular mass (LVM) in adolescents, with consideration of the possible confounding effect of body composition. Design and method We undertook a cross-sectional study of 3,949 adolescents (mean age 17.8 ± 0.4 years, 45% male) who were part of a UK population-based birth cohort study. A sub-maximal exercise step-test with automated BP measurement immediately post-exercise was completed and body composition (total fat and lean mass) assessed by dual-energy x-ray absorptiometry. A sub-sample (n = 1,241) underwent comprehensive echocardiographic assessment. Results Each 5 mmHg increase in post-exercise systolic BP was associated with 0.34 g/m2.7 (95% CI: 0.24, 0.45) greater LVM indexed to height2.7 with adjustment for age, sex and hypertension status (p < 0.001). Further adjustment for lean mass attenuated this association to 0.29 g/m2.7 (95% CI 0.19, 0.39; p < 0.001) for each 5 mmHg of post-exercise systolic BP, adjustment for fat mass attenuated it to 0.15 g/m2.7 (95% CI 0.05, 0.25; p = 0.003), and adjustment for both lean and fat mass attenuated it to 0.13 g/m2.7 (95% CI 0.03, 0.23; p = 0.012). Individuals with post-exercise systolic BP ≥150 mmHg (corresponding to post-exercise systolic BP >70th percentile) had a 7% greater LVM compared to those with post-exercise systolic BP < 150 mmHg (p < 0.001). Conclusions Exaggerated exercise systolic BP is associated with higher LVM, adjustment for body composition attenuates but does not abolish this association. These results may have important implications for

  12. PlanHab: Hypoxia counteracts the erythropoietin suppression, but seems to exaggerate the plasma volume reduction induced by 3 weeks of bed rest.

    PubMed

    Keramidas, Michail E; Mekjavic, Igor B; Kölegård, Roger; Choukèr, Alexander; Strewe, Claudia; Eiken, Ola

    2016-04-01

    The study examined the distinct and synergistic effects of hypoxia and bed rest on the erythropoietin (EPO) concentration and relative changes in plasma volume (PV). Eleven healthy male lowlanders underwent three 21-day confinement periods, in a counterbalanced order: (1) normoxic bed rest (NBR; PIO2: 133.1 ± 0.3 mmHg); (2) hypoxic bed rest (HBR; PIO2: 90.0 ± 0.4 mmHg, ambient simulated altitude of ~4000 m); and (3) hypoxic ambulation (HAMB; PIO2: 90.0 ± 0.4 mmHg). Blood samples were collected before, during (days 2, 5, 14, and 21) and 2 days after each confinement to determineEPOconcentration. Qualitative differences inPVchanges were also estimated by changes in hematocrit and hemoglobin concentration along with concomitant changes in plasma renin concentration.NBRcaused an initial reduction inEPOby ~39% (P = 0.04). By contrast,HBRenhancedEPO(P = 0.001), but the increase was less than that induced byHAMB(P < 0.01). All three confinements caused a significant reduction inPV(P < 0.05), with a substantially greater drop inHBRthan in the other conditions (P < 0.001). Thus, present results suggest that hypoxia prevents theEPOsuppression, whereas it seems to exaggerate thePVreduction induced by bed rest. PMID:27081163

  13. Supplementing vitamin B6 to a low vitamin B6 diet exaggerates UVB-induced skin tumorigenesis in DMBA-treated hairless mice.

    PubMed

    Lu, Tao; Xu, Yonghui; Monttinen, Elise Saiz; Kato, Norihisa

    2008-06-01

    7,12-Dimethylbenz[a]anthracene (DMBA)-treated hairless mice exposed to UVB radiation were used to examine the effect of graded levels of vitamin B(6) [1, 7 or 35 mg pyridoxine (PN) HCl/kg] on skin tumorigenesis for 18 wk. Compared to the 1 mg PN HCl/kg diet, the 35 mg PN HCl/kg diet significantly elevated the incidence and multiplicity of skin tumors, while there was no difference in skin tumorigenesis between the 7 and 35 mg PN HCl/kg diets. Skin levels of oxidative stress markers (lipid peroxides and protein carbonyls) were unaffected by dietary treatment. Compared to the 1 mg PN HCl/kg diet, the 7 and 35 mg PN HCl/kg diets significantly elevated serum pyridoxal 5'-phosphate (PLP) without affecting the skin level of PLP. The results suggest that dietary supplemental vitamin B(6) exaggerates UVB-induced skin tumorigenesis in hairless mice without affecting oxidative stress in the skin.

  14. Molecular cloning and expression analysis of liver-expressed antimicrobial peptide 1 (LEAP-1) and LEAP-2 genes in the blunt snout bream (Megalobrama amblycephala).

    PubMed

    Liang, Tao; Ji, Wei; Zhang, Gui-Rong; Wei, Kai-Jian; Feng, Ke; Wang, Wei-Min; Zou, Gui-Wei

    2013-08-01

    Liver-expressed antimicrobial peptide 1 (LEAP-1) and LEAP-2 are widespread in fish and extremely important components of the host innate immune system. In this study, full-length cDNAs of LEAP-1 and LEAP-2 were cloned and sequenced from blunt snout bream, Megalobrama amblycephala. The open reading frames (ORF) of LEAP-1 and LEAP-2 genes encode putative peptides of 94 and 92 amino acids, which possess eight and four conserved cysteine residues, respectively. The homologous identities of deduced amino acid sequences show that the LEAP-1 and LEAP-2 of blunt snout bream share considerable similarity with those of grass carp. The mRNA expressions of LEAP-1 and LEAP-2 were detectable at different early developmental stages of blunt snout bream and varied with embryonic and larval growth. LEAP-1 and LEAP-2 were expressed in a wide range of adult tissues, with the highest expression levels in the liver and midgut, respectively. Bacterial challenge experiments showed that the levels of LEAP-1 and LEAP-2 mRNA expression were up-regulated in the liver, spleen, gill and brain of juvenile blunt snout bream. These results indicate that the LEAP-1 and LEAP-2 may play important roles in early development of embryos and fry, and may contribute to the defense against the pathogenic bacterial invasion. This study will further our understanding of the function of LEAP-1 and LEAP-2 and the molecular mechanism of innate immunity in teleosts.

  15. Mutation-based structural modification and dynamics study of amyloid beta peptide (1-42): An in-silico-based analysis to cognize the mechanism of aggregation.

    PubMed

    Panda, Pritam Kumar; Patil, Abhaysinha Satish; Patel, Priyam; Panchal, Hetalkumar

    2016-03-01

    Alzheimer's disease is the prevalent cause of premature senility, a progressive mental disorder due to degeneration in brain and deposition of amyloid β peptide (1-42, a misfolded protein) in the form of aggregation that prevails for a prolonged time and obstructs every aspect of life. One of the primary hallmarks of the neuropathological disease is the accretion of amyloid β peptide in the brain that leads to Alzheimer's disease, but the mechanism is still a mystery. Several investigations have shown that mutations at specific positions have a significant impact in stability of the peptide as predicted from aggregation profiles. Here in our study, we have analyzed the mutations by substituting residues at position A22G, E22G, E22K, E22Q, D23N, L34V and molecular dynamics have been performed to check the deviation in stability and conformation of the peptide. The results validated that the mutations at specific positions lead to instability and the proline substitution at E22P and L34P stalled the aggregation of the peptide. PMID:26981406

  16. Mutation-based structural modification and dynamics study of amyloid beta peptide (1–42): An in-silico-based analysis to cognize the mechanism of aggregation

    PubMed Central

    Panda, Pritam Kumar; Patil, Abhaysinha Satish; Patel, Priyam; Panchal, Hetalkumar

    2016-01-01

    Alzheimer's disease is the prevalent cause of premature senility, a progressive mental disorder due to degeneration in brain and deposition of amyloid β peptide (1–42, a misfolded protein) in the form of aggregation that prevails for a prolonged time and obstructs every aspect of life. One of the primary hallmarks of the neuropathological disease is the accretion of amyloid β peptide in the brain that leads to Alzheimer's disease, but the mechanism is still a mystery. Several investigations have shown that mutations at specific positions have a significant impact in stability of the peptide as predicted from aggregation profiles. Here in our study, we have analyzed the mutations by substituting residues at position A22G, E22G, E22K, E22Q, D23N, L34V and molecular dynamics have been performed to check the deviation in stability and conformation of the peptide. The results validated that the mutations at specific positions lead to instability and the proline substitution at E22P and L34P stalled the aggregation of the peptide. PMID:26981406

  17. Exaggerated Claims About Earthquake Predictions

    NASA Astrophysics Data System (ADS)

    Kafka, Alan L.; Ebel, John E.

    2007-01-01

    The perennial promise of successful earthquake prediction captures the imagination of a public hungry for certainty in an uncertain world. Yet, given the lack of any reliable method of predicting earthquakes [e.g., Geller, 1997; Kagan and Jackson, 1996; Evans, 1997], seismologists regularly have to explain news stories of a supposedly successful earthquake prediction when it is far from clear just how successful that prediction actually was. When journalists and public relations offices report the latest `great discovery' regarding the prediction of earthquakes, seismologists are left with the much less glamorous task of explaining to the public the gap between the claimed success and the sober reality that there is no scientifically proven method of predicting earthquakes.

  18. Metformin exaggerates phenylephrine-induced AMPK phosphorylation independent of CaMKKβ and attenuates contractile response in endothelium-denuded rat aorta.

    PubMed

    Pyla, Rajkumar; Osman, Islam; Pichavaram, Prahalathan; Hansen, Paul; Segar, Lakshman

    2014-11-15

    Metformin, a widely prescribed antidiabetic drug, has been shown to reduce the risk of cardiovascular disease, including hypertension. Its beneficial effect toward improved vasodilation results from its ability to activate AMPK and enhance nitric oxide formation in the endothelium. To date, metformin regulation of AMPK has not been fully studied in intact arterial smooth muscle, especially during contraction evoked by G protein-coupled receptor (GPCR) agonists. In the present study, ex vivo incubation of endothelium-denuded rat aortic rings with 3mM metformin for 2h resulted in significant accumulation of metformin (∼ 600 pmoles/mg tissue), as revealed by LC-MS/MS MRM analysis. However, metformin did not show significant increase in AMPK phosphorylation under these conditions. Exposure of aortic rings to a GPCR agonist (e.g., phenylephrine) resulted in enhanced AMPK phosphorylation by ∼ 2.5-fold. Importantly, in metformin-treated aortic rings, phenylephrine challenge showed an exaggerated increase in AMPK phosphorylation by ∼ 9.7-fold, which was associated with an increase in AMP/ATP ratio. Pretreatment with compound C (AMPK inhibitor) prevented AMPK phosphorylation induced by phenylephrine alone and also that induced by phenylephrine after metformin treatment. However, pretreatment with STO-609 (CaMKKβ inhibitor) diminished AMPK phosphorylation induced by phenylephrine alone but not that induced by phenylephrine after metformin treatment. Furthermore, attenuation of phenylephrine-induced contraction (observed after metformin treatment) was prevented by AMPK inhibition but not by CaMKKβ inhibition. Together, these findings suggest that, upon endothelial damage in the vessel wall, metformin uptake by the underlying vascular smooth muscle would accentuate AMPK phosphorylation by GPCR agonists independent of CaMKKβ to promote vasorelaxation.

  19. APOL1 Risk Alleles Are Associated with Exaggerated Age-Related Changes in Glomerular Number and Volume in African-American Adults: An Autopsy Study.

    PubMed

    Hoy, Wendy E; Hughson, Michael D; Kopp, Jeffrey B; Mott, Susan A; Bertram, John F; Winkler, Cheryl A

    2015-12-01

    APOL1 genetic variants contribute to kidney disease in African Americans. We assessed correlations between APOL1 profiles and renal histological features in subjects without renal disease. Glomerular number (N glom) and mean glomerular volume (V glom) were measured by the dissector/fractionator method in kidneys of African-American and non-African-American adults without renal disease, undergoing autopsies in Jackson, Mississippi. APOL1 risk alleles were genotyped and the kidney findings were evaluated in the context of those profiles. The proportions of African Americans with none, one, and two APOL1 risk alleles were 38%, 43%, and 19%, respectively; 38% of African Americans had G1 allele variants and 31% of African Americans had G2 allele variants. Only APOL1-positive African Americans had significant reductions in N glom and increases in V glom with increasing age. Regression analysis predicted an annual average loss of 8834 (P=0.03, sex adjusted) glomeruli per single kidney over the first 38 years of adult life in African Americans with two risk alleles. Body mass index above the group medians, but below the obesity definition of ≥ 30 kg/m(2), enhanced the expression of age-related changes in N glom in African Americans with either one or two APOL1 risk alleles. These findings indicate that APOL1 risk alleles are associated with exaggerated age-related nephron loss, probably decaying from a larger pool of smaller glomeruli in early adult life, along with enlargement of the remaining glomeruli. These phenomena might mark mechanisms of accentuated susceptibility to kidney disease in APOL1-positive African Americans.

  20. EXENATIDE IMPROVES HYPERTENSION IN A RAT MODEL OF THE METABOLIC SYNDROME

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Exenatide is a peptide incretin mimetic that has glucoregulatory actions associated with weight reduction. Previous reports demonstrated acute increases in blood pressure after systemic or intracerebroventricular administration of exenatide or glucagon-like peptide-1 (GLP-1) in rats. However, there ...

  1. Brain GLP-1 and insulin sensitivity

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Type 2 diabetes is often treated with a class of drugs referred to as glucagon-like peptide-1 (GLP-1) analogs. GLP-1 is a peptide secreted by the gut that acts through only one known receptor, the GLP-1 receptor. The primary function of GLP-1 is thought to be lowering of postprandial glucose levels....

  2. Effects of endogenous GLP-1 and GIP on glucose tolerance after Roux-en-Y gastric bypass surgery.

    PubMed

    Svane, Maria S; Bojsen-Møller, Kirstine N; Nielsen, Signe; Jørgensen, Nils B; Dirksen, Carsten; Bendtsen, Flemming; Kristiansen, Viggo B; Hartmann, Bolette; Holst, Jens J; Madsbad, Sten

    2016-04-01

    Exaggerated secretion of glucagon-like peptide 1 (GLP-1) is important for postprandial glucose tolerance after Roux-en-Y gastric bypass (RYGB), whereas the role of glucose-dependent insulinotropic polypeptide (GIP) remains to be resolved. We aimed to explore the relative importance of endogenously secreted GLP-1 and GIP on glucose tolerance and β-cell function after RYGB. We used DPP-4 inhibition to enhance concentrations of intact GIP and GLP-1 and the GLP-1 receptor antagonist exendin-(9-39) (Ex-9) for specific blockage of GLP-1 actions. Twelve glucose-tolerant patients were studied after RYGB in a randomized, placebo-controlled, 4-day crossover study with standard mixed-meal tests and concurrent administration of placebo, oral sitagliptin, Ex-9 infusion, or combined Ex-9-sitagliptin. GLP-1 receptor antagonism increased glucose excursions, clearly attenuated β-cell function, and aggravated postprandial hyperglucagonemia compared with placebo, whereas sitagliptin had no effect despite two- to threefold increased concentrations of intact GLP-1 and GIP. Similarly, sitagliptin did not affect glucose tolerance or β-cell function during GLP-1R blockage. This study confirms the importance of GLP-1 for glucose tolerance after RYGB via increased insulin and attenuated glucagon secretion in the postprandial state, whereas amplification of the GIP signal (or other DPP-4-sensitive glucose-lowering mechanisms) did not appear to contribute to the improved glucose tolerance seen after RYGB. PMID:26786780

  3. Seasonal differences in finger skin temperature and microvascular blood flow in healthy men and women are exaggerated in women with primary Raynaud's phenomenon

    PubMed Central

    Gardner–medwin, J M; Macdonald, I A; Taylor, J Y; Riley, P H; Powell, R J

    2001-01-01

    .01). Conclusions There is a seasonal and persistent influence on finger Tsk, and microvascular blood flow in healthy men and women, which modifies the observed responses to immediate changes in finger Tsk. The seasonal differences are greater in women than men, and are further exaggerated in women with PRP, in whom this is associated with reduced endothelium-dependent vasodilatation. PMID:11453886

  4. The incretin hormone glucagon‐like peptide 1 increases mitral cell excitability by decreasing conductance of a voltage‐dependent potassium channel

    PubMed Central

    Llewellyn‐Smith, Ida J.; Gribble, Fiona; Reimann, Frank; Trapp, Stefan; Fadool, Debra Ann

    2016-01-01

    Key points The gut hormone called glucagon‐like peptide 1 (GLP‐1) is a strong moderator of energy homeostasis and communication between the peripheral organs and the brain.GLP‐1 signalling occurs in the brain; using a newly developed genetic reporter line of mice, we have discovered GLP‐synthesizing cells in the olfactory bulb.GLP‐1 increases the firing frequency of neurons (mitral cells) that encode olfactory information by decreasing activity of voltage‐dependent K channels (Kv1.3).Modifying GLP‐1 levels, either therapeutically or following the ingestion of food, could alter the excitability of neurons in the olfactory bulb in a nutrition or energy state‐dependent manner to influence olfactory detection or metabolic sensing.The results of the present study uncover a new function for an olfactory bulb neuron (deep short axon cells, Cajal cells) that could be capable of modifying mitral cell activity through the release of GLP‐1. This might be of relevance for the action of GLP‐1 mimetics now widely used in the treatment of diabetes. Abstract The olfactory system is intricately linked with the endocrine system where it may serve as a detector of the internal metabolic state or energy homeostasis in addition to its classical function as a sensor of external olfactory information. The recent development of transgenic mGLU‐yellow fluorescent protein mice that express a genetic reporter under the control of the preproglucagon reporter suggested the presence of the gut hormone, glucagon‐like peptide (GLP‐1), in deep short axon cells (Cajal cells) of the olfactory bulb and its neuromodulatory effect on mitral cell (MC) first‐order neurons. A MC target for the peptide was determined using GLP‐1 receptor binding assays, immunocytochemistry for the receptor and injection of fluorescence‐labelled GLP‐1 analogue exendin‐4. Using patch clamp recording of olfactory bulb slices in the whole‐cell configuration, we report that GLP‐1 and its

  5. SGLT2 inhibitors or GLP-1 receptor agonists as second-line therapy in type 2 diabetes: patient selection and perspectives

    PubMed Central

    Gurgle, Holly E; White, Karen; McAdam-Marx, Carrie

    2016-01-01

    Controversy exists regarding the selection of second-line therapy for patients with type 2 diabetes mellitus (T2DM) who are unable to achieve glycemic control with metformin therapy alone. Newer pharmacologic treatments for T2DM include glucagon-like peptide-1 receptor agonists and sodium–glucose cotransporter 2 inhibitors. Both the classes of medication are efficacious, exhibit positive effects on weight, and are associated with minimal risk of hypoglycemia. The purpose of this review is to compare the clinical trial and real-world effectiveness data of glucagon-like peptide-1 receptor agonists versus sodium–glucose cotransporter 2 inhibitors related to A1c reduction, weight loss, cost-effectiveness, cardiovascular outcomes, and safety in patients with T2DM. This review summarizes comparative evidence for providers who are determining which of the two classes may be the most appropriate for a specific patient. PMID:27350752

  6. Forum for Injection Technique (FIT), India: The Indian recommendations 2.0, for best practice in Insulin Injection Technique, 2015.

    PubMed

    Tandon, Nikhil; Kalra, Sanjay; Balhara, Yatan Pal Singh; Baruah, Manash P; Chadha, Manoj; Chandalia, Hemraj B; Chowdhury, Subhankar; Jothydev, Kesavadev; Kumar, Prasanna K M; V, Madhu S; Mithal, Ambrish; Modi, Sonal; Pitale, Shailesh; Sahay, Rakesh; Shukla, Rishi; Sundaram, Annamalai; Unnikrishnan, Ambika G; Wangnoo, Subhash K

    2015-01-01

    As injectable therapies such as human insulin, insulin analogs, and glucagon-like peptide-1 receptor agonists are used to manage diabetes, correct injection technique is vital for the achievement of glycemic control. The forum for injection technique India acknowledged this need for the first time in India and worked to develop evidence-based recommendations on insulin injection technique, to assist healthcare practitioners in their clinical practice.

  7. [Effects of GLP-1 receptor agonists on carbohydrate metabolism control].

    PubMed

    Fernández-García, José Carlos; Colomo, Natalia; Tinahones, Francisco José

    2014-09-01

    Glucagon-like peptide-1 (GLP-1) receptor agonists are a new group of drugs for the treatment of type 2 diabetes mellitus (DM2). In the present article, we review the available evidence on the efficacy of GLP-1 receptor agonists as glucose-lowering agents, their place in therapeutic algorithms, and the clinical factors associated with a favorable treatment response. Finally, we describe the clinical characteristics of patients who may benefit from these drugs.

  8. [Effects of GLP-1 receptor agonists on carbohydrate metabolism control].

    PubMed

    Fernández-García, José Carlos; Colomo, Natalia; Tinahones, Francisco José

    2014-01-01

    Glucagon-like peptide-1 (GLP-1) receptor agonists are a new group of drugs for the treatment of type 2 diabetes mellitus (DM2). In the present article, we review the available evidence on the efficacy of GLP-1 receptor agonists as glucose-lowering agents, their place in therapeutic algorithms, and the clinical factors associated with a favorable treatment response. Finally, we describe the clinical characteristics of patients who may benefit from these drugs.

  9. [Effects of GLP-1 receptor agonists on carbohydrate metabolism control].

    PubMed

    Fernández-García, José Carlos; Colomo, Natalia; Tinahones, Francisco José

    2014-09-01

    Glucagon-like peptide-1 (GLP-1) receptor agonists are a new group of drugs for the treatment of type 2 diabetes mellitus (DM2). In the present article, we review the available evidence on the efficacy of GLP-1 receptor agonists as glucose-lowering agents, their place in therapeutic algorithms, and the clinical factors associated with a favorable treatment response. Finally, we describe the clinical characteristics of patients who may benefit from these drugs. PMID:25437461

  10. [Effects of GLP-1 receptor agonists on carbohydrate metabolism control].

    PubMed

    Fernández-García, José Carlos; Colomo, Natalia; Tinahones, Francisco José

    2014-01-01

    Glucagon-like peptide-1 (GLP-1) receptor agonists are a new group of drugs for the treatment of type 2 diabetes mellitus (DM2). In the present article, we review the available evidence on the efficacy of GLP-1 receptor agonists as glucose-lowering agents, their place in therapeutic algorithms, and the clinical factors associated with a favorable treatment response. Finally, we describe the clinical characteristics of patients who may benefit from these drugs. PMID:25326839

  11. Forum for Injection Technique (FIT), India: The Indian recommendations 2.0, for best practice in Insulin Injection Technique, 2015

    PubMed Central

    Tandon, Nikhil; Kalra, Sanjay; Balhara, Yatan Pal Singh; Baruah, Manash P.; Chadha, Manoj; Chandalia, Hemraj B.; Chowdhury, Subhankar; Jothydev, Kesavadev; Kumar, Prasanna K. M.; V., Madhu S.; Mithal, Ambrish; Modi, Sonal; Pitale, Shailesh; Sahay, Rakesh; Shukla, Rishi; Sundaram, Annamalai; Unnikrishnan, Ambika G.; Wangnoo, Subhash K.

    2015-01-01

    As injectable therapies such as human insulin, insulin analogs, and glucagon-like peptide-1 receptor agonists are used to manage diabetes, correct injection technique is vital for the achievement of glycemic control. The forum for injection technique India acknowledged this need for the first time in India and worked to develop evidence-based recommendations on insulin injection technique, to assist healthcare practitioners in their clinical practice. PMID:25932385

  12. Targeting the TGR5-GLP-1 pathway to combat type 2 diabetes and non-alcoholic fatty liver disease.

    PubMed

    Pols, T W H; Auwerx, J; Schoonjans, K

    2010-01-01

    Incretin-based therapies have shown promise in the treatment of type 2 diabetes. Here we review our current understanding of TGR5 as a target to induce glucagon-like peptide-1 (GLP-1) secretion. These new observations suggest that TGR5 agonists may constitute a novel approach to treat type 2 diabetes, as well as complications of diabetes, such as non-alcoholic fatty liver disease. PMID:20444564

  13. Metabolic responses to xenin-25 are altered in humans with Roux-en-Y gastric bypass surgery.

    PubMed

    Sterl, Karin; Wang, Songyan; Oestricker, Lauren; Wallendorf, Michael J; Patterson, Bruce W; Reeds, Dominic N; Wice, Burton M

    2016-08-01

    Xenin-25 (Xen) is a neurotensin-related peptide secreted by a subset of enteroendocrine cells located in the proximal small intestine. Many effects of Xen are mediated by neurotensin receptor-1 on neurons. In healthy humans with normal glucose tolerance (NGT), Xen administration causes diarrhea and inhibits postprandial glucagon-like peptide-1 (GLP-1) release but not insulin secretion. This study determines (i) if Xen has similar effects in humans with Roux-en-Y gastric bypass (RYGB) and (ii) whether neural pathways potentially mediate effects of Xen on glucose homeostasis. Eight females with RYGB and no history of type 2 diabetes received infusions with 0, 4 or 12pmol Xen/kg/min with liquid meals on separate occasions. Plasma glucose and gastrointestinal hormone levels were measured and insulin secretion rates calculated. Pancreatic polypeptide and neuropeptide Y levels were surrogate markers for parasympathetic input to islets and sympathetic tone, respectively. Responses were compared to those in well-matched non-surgical participants with NGT from our earlier study. Xen similarly increased pancreatic polypeptide and neuropeptide Y responses in patients with and without RYGB. In contrast, the ability of Xen to inhibit GLP-1 release and cause diarrhea was severely blunted in patients with RYGB. With RYGB, Xen had no statistically significant effect on glucose, insulin secretory, GLP-1, glucose-dependent insulinotropic peptide, and glucagon responses. However, insulin and glucose-dependent insulinotropic peptide secretion preceded GLP-1 release suggesting circulating GLP-1 does not mediate exaggerated insulin release after RYGB. Thus, Xen has unmasked neural circuits to the distal gut that inhibit GLP-1 secretion, cause diarrhea, and are altered by RYGB. PMID:27288245

  14. REVIEWMolecular mechanisms underlying physiological and receptor pleiotropic effects mediated by GLP-1R activation

    PubMed Central

    Pabreja, K; Mohd, M A; Koole, C; Wootten, D; Furness, S G B

    2014-01-01

    The incidence of type 2 diabetes in developed countries is increasing yearly with a significant negative impact on patient quality of life and an enormous burden on the healthcare system. Current biguanide and thiazolidinedione treatments for type 2 diabetes have a number of clinical limitations, the most serious long-term limitation being the eventual need for insulin replacement therapy (Table 1). Since 2007, drugs targeting the glucagon-like peptide-1 (GLP-1) receptor have been marketed for the treatment of type 2 diabetes. These drugs have enjoyed a great deal of success even though our underlying understanding of the mechanisms for their pleiotropic effects remain poorly characterized even while major pharmaceutical companies actively pursue small molecule alternatives. Coupling of the GLP-1 receptor to more than one signalling pathway (pleiotropic signalling) can result in ligand-dependent signalling bias and for a peptide receptor such as the GLP-1 receptor this can be exaggerated with the use of small molecule agonists. Better consideration of receptor signalling pleiotropy will be necessary for future drug development. This is particularly important given the recent failure of taspoglutide, the report of increased risk of pancreatitis associated with GLP-1 mimetics and the observed clinical differences between liraglutide, exenatide and the newly developed long-acting exenatide long acting release, albiglutide and dulaglutide. Linked ArticlesThis article is part of a themed section on Molecular Pharmacology of GPCRs. To view the other articles in this section visit http://dx.doi.org/10.1111/bph.2014.171.issue-5 PMID:23889512

  15. Taste signaling elements expressed in gut enteroendocrine cells regulate nutrient-responsive secretion of gut hormones.

    PubMed

    Kokrashvili, Zaza; Mosinger, Bedrich; Margolskee, Robert F

    2009-09-01

    Many of the receptors and downstream signaling elements involved in taste detection and transduction are also expressed in enteroendocrine cells where they underlie the chemosensory functions of the gut. In one well-known example of gastrointestinal chemosensation (the "incretin effect"), it is known that glucose that is given orally, but not systemically, induces secretion of glucagon-like peptide 1 and glucose-dependent insulinotropic peptide (the incretin hormones), which in turn regulate appetite, insulin secretion, and gut motility. Duodenal L cells express sweet taste receptors, the taste G protein gustducin, and several other taste transduction elements. Knockout mice that lack gustducin or the sweet taste receptor subunit T1r3 have deficiencies in secretion of glucagon-like peptide 1 and glucose-dependent insulinotropic peptide and in the regulation of plasma concentrations of insulin and glucose in response to orally ingested carbohydrate-ie, their incretin effect is dysfunctional. Isolated small intestine and intestinal villi from gustducin null mice displayed markedly defective glucagon-like peptide 1 secretion in response to glucose, indicating that this is a local circuit of sugar detection by intestinal cells followed by hormone secretion from these same cells. Modulating hormone secretion from gut "taste cells" may provide novel treatments for obesity, diabetes, and malabsorption syndromes. PMID:19571229

  16. Expression transmission using exaggerated animation for Elfoid.

    PubMed

    Hori, Maiya; Tsuruda, Yu; Yoshimura, Hiroki; Iwai, Yoshio

    2015-01-01

    We propose an expression transmission system using a cellular-phone-type teleoperated robot called Elfoid. Elfoid has a soft exterior that provides the look and feel of human skin, and is designed to transmit the speaker's presence to their communication partner using a camera and microphone. To transmit the speaker's presence, Elfoid sends not only the voice of the speaker but also the facial expression captured by the camera. In this research, facial expressions are recognized using a machine learning technique. Elfoid cannot, however, display facial expressions because of its compactness and a lack of sufficiently small actuator motors. To overcome this problem, facial expressions are displayed using Elfoid's head-mounted mobile projector. In an experiment, we built a prototype system and experimentally evaluated it's subjective usability.

  17. Expression transmission using exaggerated animation for Elfoid.

    PubMed

    Hori, Maiya; Tsuruda, Yu; Yoshimura, Hiroki; Iwai, Yoshio

    2015-01-01

    We propose an expression transmission system using a cellular-phone-type teleoperated robot called Elfoid. Elfoid has a soft exterior that provides the look and feel of human skin, and is designed to transmit the speaker's presence to their communication partner using a camera and microphone. To transmit the speaker's presence, Elfoid sends not only the voice of the speaker but also the facial expression captured by the camera. In this research, facial expressions are recognized using a machine learning technique. Elfoid cannot, however, display facial expressions because of its compactness and a lack of sufficiently small actuator motors. To overcome this problem, facial expressions are displayed using Elfoid's head-mounted mobile projector. In an experiment, we built a prototype system and experimentally evaluated it's subjective usability. PMID:26347686

  18. Expression transmission using exaggerated animation for Elfoid

    PubMed Central

    Hori, Maiya; Tsuruda, Yu; Yoshimura, Hiroki; Iwai, Yoshio

    2015-01-01

    We propose an expression transmission system using a cellular-phone-type teleoperated robot called Elfoid. Elfoid has a soft exterior that provides the look and feel of human skin, and is designed to transmit the speaker's presence to their communication partner using a camera and microphone. To transmit the speaker's presence, Elfoid sends not only the voice of the speaker but also the facial expression captured by the camera. In this research, facial expressions are recognized using a machine learning technique. Elfoid cannot, however, display facial expressions because of its compactness and a lack of sufficiently small actuator motors. To overcome this problem, facial expressions are displayed using Elfoid's head-mounted mobile projector. In an experiment, we built a prototype system and experimentally evaluated it's subjective usability. PMID:26347686

  19. Curcumin Ameliorates the Reduction Effect of PGE2 on Fibrillar β-Amyloid Peptide (1-42)-Induced Microglial Phagocytosis through the Inhibition of EP2-PKA Signaling in N9 Microglial Cells

    PubMed Central

    Yang, Ju; Shen, Ting-ting; Chen, Yi; Yang, Xue-Sen

    2016-01-01

    Inflammatory activation of microglia and β amyloid (Aβ) deposition are considered to work both independently and synergistically to contribute to the increased risk of Alzheimer’s disease (AD). Recent studies indicate that long-term use of phenolic compounds provides protection against AD, primarily due to their anti-inflammatory actions. We previously suggested that phenolic compound curcumin ameliorated phagocytosis possibly through its anti-inflammatory effects rather than direct regulation of phagocytic function in electromagnetic field-exposed N9 microglial cells (N9 cells). Here, we explored the prostaglandin-E2 (PGE2)-related signaling pathway that involved in curcumin-mediated phagocytosis in fibrillar β-amyloid peptide (1–42) (fAβ42)-stimulated N9 cells. Treatment with fAβ42 increased phagocytosis of fluorescent-labeled latex beads in N9 cells. This increase was attenuated in a dose-dependent manner by endogenous and exogenous PGE2, as well as a selective EP2 or protein kinase A (PKA) agonist