Sample records for exaggerated startle reflex

  1. Extreme startle and photomyoclonic response in severe hypocalcaemia.

    PubMed

    Moccia, Marcello; Erro, Roberto; Nicolella, Elvira; Striano, Pasquale; Striano, Salvatore

    2014-03-01

    We report the case of 62-year-old woman referred to our department because of a clinical suspicion of tonic-clonic seizures. Clinical examination revealed an exaggerated startle reflex, EEG showed a photomyoclonic response, and blood tests indicated severe hypocalcaemia. Additional clinical data, treatment strategies, and long-term follow-up visits were reported. The present report discusses the difficulties in distinguishing between epileptic and non-epileptic startles, and shows, for the first time, exaggerated startle reflex and extreme photomyoclonic response due to severe hypocalcaemia.

  2. Anger and aggression problems in veterans are associated with an increased acoustic startle reflex.

    PubMed

    Heesink, Lieke; Kleber, Rolf; Häfner, Michael; van Bedaf, Laury; Eekhout, Iris; Geuze, Elbert

    2017-02-01

    Anger and aggression are frequent problems in deployed military personnel. A lowered threshold of perceiving and responding to threat can trigger impulsive aggression. This can be indicated by an exaggerated startle response. Fifty-two veterans with anger and aggression problems (Anger group) and 50 control veterans were tested using a startle experiment with 10 startle probes and 10 prepulse trials, presented in a random order and with a random interval between the trials. Predictors (demographics, Trait Anger, State Anger, Harm Avoidance and Anxious Arousal) for the startle response within the Anger group were tested. Increased EMG responses were found to the startle probes in the Anger Group compared to the Control group, but not to the prepulse trials. Furthermore, Harm Avoidance and State Anger predicted the increased startle reflex within the Anger group, whereas Trait Anger was negatively related to the startle reflex. These findings indicate that threat reactivity is increased in anger and aggression problems. These problems are not only caused by an anxious predisposition, the degree of anger also predicts the startle reflex. Copyright © 2016 Elsevier B.V. All rights reserved.

  3. [Clinical and genetic analysis of hyperekplexia in a Chinese child and literature review].

    PubMed

    Li, H; Yang, Z X; Xue, J; Qian, P; Liu, X Y

    2017-02-02

    Objective: To investigate the clinical and genetic features of a Chinese child with hyperekplexia and review the related literature. Method: The clinical and genetic data of one patient with hyperekplexia, who had visited the department of Pediatrics, Peking University First Hospital in July 2012, were analyzed. "Hyperekplexia" "startle disease" "GLRB" were used as key words to search at CNKI, Wanfang and PubMed from the database from creation to August 2016. Result: The one-year-old female patient showed exaggerated startle reflexes and generalized stiffness in response to external sudden, unexpected stimuli at 2 hours after birth, which existed every day. Her younger twin sister died of severe apnea due to a continuous generalized stiffness at the age of 7 months. Physical examination exhibited the positive nose-tapping reflex. There were no obvious abnormalities in laboratory tests, electroencephalogram (EEG) and neuroimaging tests. The patient was revealed to have compound heterozygous mutations in GLRB gene, c. 298-1G>A (or IVS4-1G>A) inherited from the father and c. 347T>C (p. L116P) inherited from the mother. The mutation L116P in GLRB gene was not reported before. During the follow-up until 5 years old, the girl's symptoms of startle reflexes and generalized stiffness were controlled with clonazepam treatment. Her mental development was normal, but she walked very carefully as wide-based gait to avoid of external sudden stimuli. Literature retrieval obtained 8 reports (all in English) with 39 GLRB-related cases. Combined analysis of the data of the 39 foreign cases and our case showed that the onset age of all 40 cases was in neonatal or in utero, and all presented exaggerated startle reflexes and generalized stiffness in response to external stimuli. Other symptoms included neonatal apneas (83%, 20/24), falls (56%, 15/27) and squint (42%, 10/24) etc. EEG (13/13) and brain imaging (90%, 28/31) were normal, or unrelated/nonspecific to hyperekplexia. In the total 17 mutations of GLRB gene found in 28 cases, the most frequent mutations were GLRB gene M177R (9 cases) and IVS5+ 5G>A (5 cases). Most cases (82%, 32/39) had received the treatment of clonazepam. The symptoms of hyperekplexia all could be improved in different degree after treatment, and 84% (32/38) of the cases were completely controlled or only existed exaggerated startle reflexes. The psychomotor development could be normal (13 cases) or retarded (25 cases). Conclusion: The patient presented typical clinical manifestations of hyperekplexia and had a good response to clonazepam. The patient carried GLRB gene mutations found by genetic analysis, and was finally diagnosed with hyperekplexia. The younger twin sister died due to lack of timely diagnosis and treatment, suggesting the significance of early detection and proper treatment for this disease.

  4. Affective and Neuroendocrine Effects of Withdrawal from Chronic, Long-Acting Opiate Administration

    PubMed Central

    Hamilton, Kathryn L.; Harris, Andrew C.; Gewirtz, Jonathan C.

    2013-01-01

    Although the long-acting opiate methadone is commonly used to treat drug addiction, relatively little is known about effects of withdrawal from this drug in preclinical models. The current study examined affective, neuroendocrine, and somatic signs of withdrawal from the longer-acting methadone derivative l-alpha-acetylmethydol (LAAM) in rats. Anxiety-like behavior during both spontaneous and antagonist-precipitated withdrawal was measured by potentiation of the startle reflex. Withdrawal elevated corticosterone and somatic signs and blunted circadian variations in baseline startle responding. In addition, fear to an explicit, Pavlovian conditioned stimulus (fear-potentiated startle) was enhanced. These data suggest that anxiety-like behavior as measured using potentiated startle responding does not emerge spontaneously during withdrawal from chronic opiate exposure – in contrast to withdrawal from acute drug exposure – but rather is manifested as exaggerated fear in response to explicit threat cues. PMID:24076207

  5. Electrophysiological responses to threat in youth with and without Posttraumatic Stress Disorder.

    PubMed

    Grasso, Damion J; Simons, Robert F

    2012-04-01

    The current study was designed to examine event-related brain potentials and autonomic responses to pictures indicating threat, relative to non-threat, and acoustic startle reflexes in traumatized youth diagnosed with PTSD, relative to non-exposed children, before and after receiving psychotherapy. Children in the control group were individually yoked and demographically matched to the PTSD group. Both groups displayed enhanced late positive potentials and more prolonged heart rate deceleration to pictures indicating threat, relative to non-threat, and larger skin conductance responses to pictures indicating threat, relative to non-threat, at time one. At time two, controls appeared to habituate, as reflected by an overall attenuated skin conductance response, whereas the PTSD group showed little change. Across time points the PTSD group exhibited greater acoustic startle reflexes than the control group. Psychotherapy and symptom reduction was not associated with electrophysiology. Drawing from the adult literature, this study was an attempt to address the scarcity of research examining electrophysiological irregularities in childhood PTSD. The overall results suggest that children and adolescents allocate more attention to threat-related stimuli regardless of PTSD status, and exaggerated startle and a possible failure to habituate skin conductance responses to threat-related stimuli in youth with versus without PTSD. Copyright © 2012 Elsevier B.V. All rights reserved.

  6. Suppressed acoustic startle response in traumatic brain injury masks post-traumatic stress disorder hyper-responsivity.

    PubMed

    Liska, Grant M; Lee, Jea-Young; Xu, Kaya; Sanberg, Paul R; Borlongan, Cesario V

    2018-05-21

    An exaggerated acoustic startle reflex (ASR) is a clinical indicator of anxiety disorders, such as post-traumatic stress disorder (PTSD). Given the prevalence of PTSD following traumatic brain injury (TBI), we studied the effects of TBI on ASR. Adult Sprague Dawley rats exposed to moderate controlled cortical impact injury model of TBI displayed suppression of ASR intensity and sensitivity. As patients with PTSD have been shown to display hyperactive startle responses, the present discrepant observation of TBI-induced suppression of ASR has clinical implications, in that the reduced, instead of elevated, startle response in patients with comorbid TBI/PTSD could be owing to a masking effect of TBI.This is an open-access article distributed under the terms of the Creative Commons Attribution-Non Commercial-No Derivatives License 4.0 (CCBY-NC-ND), where it is permissible to download and share the work provided it is properly cited. The work cannot be changed in any way or used commercially without permission from the journal. http://creativecommons.org/licenses/by-nc-nd/4.0/.

  7. Preimmunization with a heat-killed preparation of Mycobacterium vaccae enhances fear extinction in the fear-potentiated startle paradigm.

    PubMed

    Fox, James H; Hassell, James E; Siebler, Philip H; Arnold, Mathew R; Lamb, Andrew K; Smith, David G; Day, Heidi E W; Smith, Tessa M; Simmerman, Emma M; Outzen, Alexander A; Holmes, Kaley S; Brazell, Christopher J; Lowry, Christopher A

    2017-11-01

    The hygiene hypothesis or "Old Friends" hypothesis proposes that inflammatory diseases are increasing in modern urban societies, due in part to reduced exposure to microorganisms that drive immunoregulatory circuits, and a failure to terminate inappropriate inflammatory responses. Inappropriate inflammation is also emerging as a risk factor for trauma-related, anxiety, and affective disorders, including posttraumatic stress disorder (PTSD), which is characterized as persistent re-experiencing of the trauma after a traumatic experience. Traumatic experiences can lead to long-lasting fear memories and exaggerated fear potentiation of the acoustic startle reflex. The acoustic startle reflex is an ethologically relevant reflex and can be potentiated in both humans and rats through Pavlovian conditioning. Mycobacterium vaccae NCTC 11659 is a soil-derived bacterium with immunoregulatory and anti-inflammatory properties that has been demonstrated to confer stress resilience in mice. Here we immunized adult male Sprague Dawley rats 3×, once per week, with a heat-killed preparation of M. vaccae NCTC 11659 (0.1mg, s.c., in 100µl borate-buffered saline) or vehicle, and, then, 3weeks following the final immunization, tested them in the fear-potentiated startle paradigm; controls were maintained under home cage control conditions throughout the experiment (n=11-12 per group). Rats were tested on days 1 and 2 for baseline acoustic startle, received fear conditioning on days 3 and 4, and underwent fear extinction training on days 5-10. Rats were euthanized on day 11 and brain tissue was sectioned for analysis of mRNA expression for genes important in control of brain serotonergic signaling, including tph2, htr1a, slc6a4, and slc22a3, throughout the brainstem dorsal and median raphe nuclei. Immunization with M. vaccae had no effect on baseline acoustic startle or fear expression on day 5. However, M. vaccae-immunized rats showed enhanced between-session and within-session extinction on day 6, relative to vehicle-immunized controls. Immunization with M. vaccae and fear-potentiated startle altered serotonergic gene expression in a gene- and subregion-specific manner. These data are consistent with the hypothesis that immunoregulatory strategies, such as preimmunization with M. vaccae, have potential for prevention of stress- and trauma-related psychiatric disorders. Copyright © 2017 Elsevier Inc. All rights reserved.

  8. Anxiety and Depression Symptom Dimensions Demonstrate Unique Relationships with the Startle Reflex in Anticipation of Unpredictable Threat in 8 to 14 Year-Old Girls.

    PubMed

    Nelson, Brady D; Hajcak, Greg

    2017-02-01

    There is growing evidence that heightened sensitivity to unpredictability is a core mechanism of anxiety disorders. In adults, multiple anxiety disorders have been associated with a heightened startle reflex in anticipation of unpredictable threat. Child and adolescent anxiety has been linked to an increased startle reflex across baseline, safety, and threat conditions. However, it is unclear whether anxiety in youth is related to the startle reflex as a function of threat predictability. In a sample of 90 8 to 14 year-old girls, the present study examined the association between anxiety symptom dimensions and startle potentiation during a no, predictable, and unpredictable threat task. Depression symptom dimensions were also examined given their high comorbidity with anxiety and mixed relationship with the startle reflex and sensitivity to unpredictability. To assess current symptoms, participants completed the self-report Screen for Child Anxiety Related Emotional Disorders and Children's Depression Inventory. Results indicated that social phobia symptoms were associated with heightened startle potentiation in anticipation of unpredictable threat and attenuated startle potentiation in anticipation of predictable threat. Negative mood and negative self-esteem symptoms were associated with attenuated and heightened startle potentiation in anticipation of unpredictable threat, respectively. All results remained significant after controlling for the other symptom dimensions. The present study provides initial evidence that anxiety and depression symptom dimensions demonstrate unique associations with the startle reflex in anticipation of unpredictable threat in children and adolescents.

  9. Anxiety and Depression Symptom Dimensions Demonstrate Unique Relationships with the Startle Reflex in Anticipation of Unpredictable Threat in 8 to 14 Year-Old Girls

    PubMed Central

    Nelson, Brady D.; Hajcak, Greg

    2016-01-01

    There is growing evidence that heightened sensitivity to unpredictability is a core mechanism of anxiety disorders. In adults, multiple anxiety disorders have been associated with a heightened startle reflex in anticipation of unpredictable threat. Child and adolescent anxiety has been linked to an increased startle reflex across baseline, safety, and threat conditions. However, it is unclear whether anxiety in youth is related to the startle reflex as a function of threat predictability. In a sample of 90 8 to 14 year-old girls, the present study examined the association between anxiety symptom dimensions and startle potentiation during a no, predictable, and unpredictable threat task. Depression symptom dimensions were also examined given their high comorbidity with anxiety and mixed relationship with the startle reflex and sensitivity to unpredictability. To assess current symptoms, participants completed the self-report Screen for Child Anxiety Related Emotional Disorders and Children’s Depression Inventory. Results indicated that social phobia symptoms were associated with heightened startle potentiation in anticipation of unpredictable threat and attenuated startle potentiation in anticipation of predictable threat. Negative mood and negative self-esteem symptoms were associated with attenuated and heightened startle potentiation in anticipation of unpredictable threat, respectively. All results remained significant after controlling for the other symptom dimensions. The present study provides initial evidence that anxiety and depression symptom dimensions demonstrate unique associations with the startle reflex in anticipation of unpredictable threat in children and adolescents. PMID:27224989

  10. Fearful imagery in social phobia: generalization, comorbidity, and physiological reactivity.

    PubMed

    McTeague, Lisa M; Lang, Peter J; Laplante, Marie-Claude; Cuthbert, Bruce N; Strauss, Cyd C; Bradley, Margaret M

    2009-03-01

    Social phobia has been characterized as a disorder of exaggerated fear of social threat and heightened sensitivity to imagery of social failure. To assess the physiological basis of this description, social phobia patients (n=75) and demographically matched control participants (n=75) imagined neutral and fearful events while acoustic startle probes were occasionally presented and eye-blink responses (orbicularis occuli) recorded. Changes in heart rate, skin conductance level, and facial expressivity were also indexed. In addition to comparing control participants and social phobia patients, the influences of diagnostic subtype (circumscribed, generalized), comorbid depression, and chronicity were assessed. Patients exceeded control participants in startle reflex and autonomic responding during imagery of social threat, whereas the groups evinced commensurate reactivity to contents depicting commonly shared fears (survival threat). Individuals with circumscribed performance phobia were similar to control participants, with the exception of more robust reactions to idiographic, performance fear imagery. In contrast, generalized phobic patients were characterized by longer disorder chronicity and demonstrated heightened sensitivity to a broader range of fear contents. Those with generalized phobia plus comorbid depression showed attenuation of fear-potentiated startle and reported the most protracted social anxiety. Subtypes of social phobia can be objectively distinguished in patterns of physiological reactivity. Furthermore, subtypes vary systematically in chronicity and defensive engagement with the shortest disorder duration (circumscribed phobia) associated with the most robust and focal physiological reactivity, followed by broader defensive sensitivity in more chronic generalized phobia, and finally attenuation of the formerly exaggerated fear potentiation in the comorbidly depressed, the most chronic form.

  11. Fearful imagery in social phobia: Generalization, comorbidity, and physiological reactivity

    PubMed Central

    McTeague, Lisa M.; Lang, Peter J.; Laplante, Marie-Claude; Cuthbert, Bruce N.; Strauss, Cyd C.; Bradley, Margaret M.

    2009-01-01

    Background Social phobia has been characterized as a disorder of exaggerated fear of social threat and heightened sensitivity to imagery of social failure. Methods To assess the physiological basis of this description, social phobia patients (n=75) and demographically-matched controls (n=75) imagined neutral and fearful events while acoustic startle probes were occasionally presented and eye-blink responses (orbicularis occuli) recorded. Changes in heart rate, skin conductance level, and facial expressivity were also indexed. In addition to comparing controls and social phobia patients, the influences of diagnostic subtype (circumscribed, generalized), comorbid depression, and chronicity were assessed. Results Patients exceeded controls in startle reflex and autonomic responding during imagery of social threat whereas the groups evinced commensurate reactivity to contents depicting commonly shared fears (survival threat). Individuals with circumscribed performance phobia were similar to controls, with the exception of more robust reactions to idiographic, performance fear imagery. In contrast, generalized phobic patients were characterized by longer disorder chronicity and demonstrated heightened sensitivity to a broader range of fear contents. Those with generalized phobia plus comorbid depression showed attenuation of fear-potentiated startle and reported the most protracted social anxiety. Conclusions Subtypes of social phobia can be objectively distinguished in patterns of physiological reactivity. Furthermore, subtypes vary systematically in chronicity and defensive engagement with the shortest disorder duration (circumscribed phobia) associated with the most robust and focal physiological reactivity, followed by broader defensive sensitivity in more chronic generalized phobia, and finally attenuation of the formerly exaggerated fear potentiation in the comorbidly depressed—the most chronic form. PMID:18996510

  12. Effects of anticipated emotional category and temporal predictability on the startle reflex.

    PubMed

    Parisi, Elizabeth A; Hajcak, Greg; Aneziris, Eleni; Nelson, Brady D

    2017-09-01

    Anticipated emotional category and temporal predictability are key characteristics that have both been shown to impact psychophysiological indices of defensive motivation (e.g., the startle reflex). To date, research has primarily examined these features in isolation, and it is unclear whether they have additive or interactive effects on defensive motivation. In the present study, the startle reflex was measured in anticipation of low arousal neutral, moderate arousal pleasant, and high arousal unpleasant pictures that were presented with either predictable or unpredictable timing. Linear mixed-effects modeling was conducted to examine startle magnitude across time, and the intercept at the beginning and end of the task. Across the entire task, the anticipation of temporally unpredictable (relative to predictable) pictures and emotional (relative to neutral) pictures potentiated startle magnitude, but there was no interaction between the two features. However, examination of the intercept at the beginning of the task indicated a Predictability by Emotional Category interaction, such that temporal unpredictability enhanced startle potentiation in anticipation of unpleasant pictures only. Examination of the intercept at the end of the task indicated that the effects of predictability and emotional category on startle magnitude were largely diminished. The present study replicates previous reports demonstrating that emotional category and temporal predictability impact the startle reflex, and provides novel evidence suggesting an interactive effect on defensive motivation at the beginning of the task. This study also highlights the importance of examining the time course of the startle reflex. Copyright © 2017 Elsevier B.V. All rights reserved.

  13. A cost minimisation and Bayesian inference model predicts startle reflex modulation across species.

    PubMed

    Bach, Dominik R

    2015-04-07

    In many species, rapid defensive reflexes are paramount to escaping acute danger. These reflexes are modulated by the state of the environment. This is exemplified in fear-potentiated startle, a more vigorous startle response during conditioned anticipation of an unrelated threatening event. Extant explanations of this phenomenon build on descriptive models of underlying psychological states, or neural processes. Yet, they fail to predict invigorated startle during reward anticipation and instructed attention, and do not explain why startle reflex modulation evolved. Here, we fill this lacuna by developing a normative cost minimisation model based on Bayesian optimality principles. This model predicts the observed pattern of startle modification by rewards, punishments, instructed attention, and several other states. Moreover, the mathematical formalism furnishes predictions that can be tested experimentally. Comparing the model with existing data suggests a specific neural implementation of the underlying computations which yields close approximations to the optimal solution under most circumstances. This analysis puts startle modification into the framework of Bayesian decision theory and predictive coding, and illustrates the importance of an adaptive perspective to interpret defensive behaviour across species. Copyright © 2015 The Author. Published by Elsevier Ltd.. All rights reserved.

  14. Effect of stress and attention on startle response and prepulse inhibition.

    PubMed

    De la Casa, Luis Gonzalo; Mena, Auxiliadora; Ruiz-Salas, Juan Carlos

    2016-10-15

    The startle reflex magnitude can be modulated when a weak stimulus is presented before the onset of the startle stimulus, a phenomenon termed prepulse inhibition (PPI). Previous research has demonstrated that emotional processes can modulate PPI and startle intensity, but the available evidence is inconclusive. In order to obtain additional evidence in this domain, we conducted two experiments intended to analyze the effect of induced stress and attentional load on PPI and startle magnitude. Specifically, in Experiment 1 we used a between subject strategy to evaluate the effect on startle response and PPI magnitude of performing a difficult task intended to induce stress in the participants, as compared to a group exposed to a control task. In Experiment 2 we evaluated the effect of diverting attention from the acoustic stimulus on startle and PPI intensity. The results seem to indicate that induced stress can reduce PPI, and that startle reflex intensity is reduced when attention is directed away from the auditory stimulus that induces the reflex. Copyright © 2016 Elsevier Inc. All rights reserved.

  15. Additive Effects of Threat-of-Shock and Picture Valence on Startle Reflex Modulation

    PubMed Central

    Bublatzky, Florian; Guerra, Pedro M.; Pastor, M. Carmen; Schupp, Harald T.; Vila, Jaime

    2013-01-01

    The present study examined the effects of sustained anticipatory anxiety on the affective modulation of the eyeblink startle reflex. Towards this end, pleasant, neutral and unpleasant pictures were presented as a continuous stream during alternating threat-of-shock and safety periods, which were cued by colored picture frames. Orbicularis-EMG to auditory startle probes and electrodermal activity were recorded. Previous findings regarding affective picture valence and threat-of-shock modulation were replicated. Of main interest, anticipating aversive events and viewing affective pictures additively modulated defensive activation. Specifically, despite overall potentiated startle blink magnitude in threat-of-shock conditions, the startle reflex remained sensitive to hedonic picture valence. Finally, skin conductance level revealed sustained sympathetic activation throughout the entire experiment during threat- compared to safety-periods. Overall, defensive activation by physical threat appears to operate independently from reflex modulation by picture media. The present data confirms the importance of simultaneously manipulating phasic-fear and sustained-anxiety in studying both normal and abnormal anxiety. PMID:23342060

  16. GABAergic Neural Activity Involved in Salicylate-Induced Auditory Cortex Gain Enhancement

    PubMed Central

    Lu, Jianzhong; Lobarinas, Edward; Deng, Anchun; Goodey, Ronald; Stolzberg, Daniel; Salvi, Richard J.; Sun, Wei

    2011-01-01

    Although high doses of sodium salicylate impair cochlear function, it paradoxically enhances sound-evoked activity in the auditory cortex (AC) and augments acoustic startle reflex responses, neural and behavioral metrics associated with hyperexcitability and hyperacusis. To explore the neural mechanisms underlying salicylate-induced hyperexcitability and “increased central gain”, we examined the effects of γ-aminobutyric acid (GABA) receptor agonists and antagonists on salicylate-induced hyperexcitability in the AC and startle reflex responses. Consistent with our previous findings, local or systemic application of salicylate significantly increased the amplitude of sound-evoked AC neural activity, but generally reduced spontaneous activity in the AC. Systemic injection of salicylate also significantly increased the acoustic startle reflex. S-baclofen or R-baclofen, GABA-B agonists, which suppressed sound-evoked AC neural firing rate and local field potentials, also suppressed the salicylate-induced enhancement of the AC field potential and the acoustic startle reflex. Local application of vigabatrin, which enhances GABA concentration in the brain, suppressed the salicylate-induced enhancement of AC firing rate. Systemic injection of vigabatrin also reduced the salicylate-induced enhancement of acoustic startle reflex. Collectively, these results suggest that the sound-evoked behavioral and neural hyperactivity induced by salicylate may arise from a salicylate-induced suppression GABAergic inhibition in the AC. PMID:21664433

  17. THE ANXIETY SPECTRUM AND THE REFLEX PHYSIOLOGY OF DEFENSE: FROM CIRCUMSCRIBED FEAR TO BROAD DISTRESS

    PubMed Central

    McTeague, Lisa M.; Lang, Peter J.

    2013-01-01

    Guided by the diagnostic nosology, anxiety patients are expected to show defensive hyperarousal during affective challenge, irrespective of the principal phenotype. In the current study, patients representing the whole spectrum of anxiety disorders (i.e., specific phobia, social phobia, panic disorder with or without agoraphobia, obsessive-compulsive disorder, generalized anxiety disorder (GAD), posttraumatic stress disorder(PTSD)), and healthy community control participants, completed an imagery-based fear elicitation paradigm paralleling conventional intervention techniques. Participants imagined threatening and neutral narratives as physiological responses were recorded. Clear evidence emerged for exaggerated reactivity to clinically relevant imagery—most pronounced in startle reflex responding. However, defensive propensity varied across principal anxiety disorders. Disorders characterized by focal fear and impairment (e.g., specific phobia) showed robust fear potentiation. Conversely, for disorders of long-enduring, pervasive apprehension and avoidance with broad anxiety and depression comorbidity (e.g., PTSD secondary to cumulative trauma, GAD), startle responses were paradoxically diminished to all aversive contents. Patients whose expressed symptom profiles were intermediate between focal fearfulness and broad anxious-misery in both severity and chronicity exhibited a still heightened but more generalized physiological propensity to respond defensively. Importantly, this defensive physiological gradient—the inverse of self-reported distress—was evident not only between but also within disorders. These results highlight that fear circuitry could be dysregulated in chronic, pervasive anxiety, and preliminary functional neuroimaging findings suggest that deficient amygdala recruitment could underlie attenuated reflex responding. In summary, adaptive defensive engagement during imagery may be compromised by long-term dysphoria and stress—a phenomenon with implications for prognosis and treatment planning. Depression and Anxiety 29:264–281, 2012. PMID:22511362

  18. Dissociative identity disorder and prepulse inhibition of the acoustic startle reflex

    PubMed Central

    Dale, Karl Yngvar; Flaten, Magne Arve; Elden, Åke; Holte, Arne

    2008-01-01

    A group of persons with dissociative identity disorder (DID) was compared with a group of persons with other dissociative disorders, and a group of nondiagnosed controls with regard to prepulse inhibition (PPI) of the acoustic startle reflex. The findings suggest maladaptive attentional processes at a controlled level, but not at a preattentive automatic level, in persons with DID. The prepulse occupied more controlled attentional resources in the DID group compared with the other two groups. Preattentive automatic processing, on the other hand, was normal in the DID group. Moreover, startle reflexes did not habituate in the DID group. In conclusion, increased PPI and delayed habituation is consistent with increased vigilance in individuals with DID. The present findings of reduced habituation of startle reflexes and increased PPI in persons with DID suggest the operation of a voluntary process that directs attention away from unpleasant or threatening stimuli. Aberrant voluntary attentional processes may thus be a defining characteristic in DID. PMID:18830396

  19. Defensive mobilization in specific phobia: Fear specificity, negative affectivity and diagnostic prominence

    PubMed Central

    McTeague, Lisa M.; Lang, Peter J.; Wangelin, Bethany C.; Laplante, Marie-Claude; Bradley, Margaret M.

    2012-01-01

    Background Understanding of exaggerated responsivity in specific phobia—its physiology and neural mediators—has advanced considerably. However, despite strong phenotypic evidence that prominence of specific phobia relative to co-occurring conditions (i.e., principal versus non-principal disorder) is associated with dramatic differences in subjective distress, there is yet no consideration of such comorbidity issues on objective defensive reactivity. Methods A community sample of specific phobia (N=74 principal phobia; N=86 non-principal phobia) and control (n=76) participants imagined threatening and neutral events while acoustic startle probes were presented and eye-blink responses (orbicularis occuli) recorded. Changes in heart rate, skin conductance level, and facial expressivity were also measured. Results Principal specific phobia patients far exceeded controls in startle reflex and autonomic reactivity during imagery of idiographic fear scenes. Distinguishing between single and multiple phobias within principal phobia and comparing these to non-principal phobia revealed a continuum of decreasing defensive mobilization: single phobia patients were strongly reactive, multiple phobia intermediate, and non-principal patients reliably attenuated—the inverse of measures of pervasive anxiety and dysphoria (i.e., negative affectivity). Further, as more disorders supplanted specific phobia from principal disorder, overall defensive mobilization was systematically more impaired. Conclusions The exaggerated responsivity considered characteristic of specific phobia is limited to those patients for whom circumscribed fear is the most impairing condition, and coincident with little additional affective psychopathology. As specific phobia is superseded in severity by broad and chronic negative affectivity, defensive reactivity progressively diminishes. Focal fears may still be clinically-significant, but not reflected in objective measures of defensive mobilization. PMID:22386377

  20. Defensive mobilization in specific phobia: fear specificity, negative affectivity, and diagnostic prominence.

    PubMed

    McTeague, Lisa M; Lang, Peter J; Wangelin, Bethany C; Laplante, Marie-Claude; Bradley, Margaret M

    2012-07-01

    Understanding of exaggerated responsivity in specific phobia-its physiology and neural mediators-has advanced considerably. However, despite strong phenotypic evidence that prominence of specific phobia relative to co-occurring conditions (i.e., principal versus nonprincipal disorder) is associated with dramatic differences in subjective distress, there is yet no consideration of such comorbidity issues on objective defensive reactivity. A community sample of specific phobia (n = 74 principal; n = 86 nonprincipal) and control (n = 76) participants imagined threatening and neutral events while acoustic startle probes were presented and eyeblinks (orbicularis occuli) recorded. Changes in heart rate, skin conductance level, and facial expressivity were also measured. Principal specific phobia patients far exceeded control participants in startle reflex and autonomic reactivity during idiographic fear imagery. Distinguishing between single and multiple phobias within principal phobia and comparing these with nonprincipal phobia revealed a continuum of decreasing defensive mobilization: single patients were strongly reactive, multiple patients were intermediate, and nonprincipal patients were attenuated-the inverse of measures of pervasive anxiety and dysphoria (i.e., negative affectivity). Further, as more disorders supplanted specific phobia from principal disorder, overall defensive mobilization was systematically more impaired. The exaggerated responsivity characteristic of specific phobia is limited to those patients for whom circumscribed fear is the most impairing condition and coincident with little additional affective psychopathology. As specific phobia is superseded in severity by broad and chronic negative affectivity, defensive reactivity progressively diminishes. Focal fears may still be clinically significant but not reflected in objective defensive mobilization. Copyright © 2012 Society of Biological Psychiatry. Published by Elsevier Inc. All rights reserved.

  1. Emotion regulation of the affect-modulated startle reflex during different picture categories.

    PubMed

    Conzelmann, Annette; McGregor, Victoria; Pauli, Paul

    2015-09-01

    Previous studies on emotion regulation of the startle reflex found an increase in startle amplitude from down-, to non-, to up-regulation for pleasant and unpleasant stimuli. We wanted to clarify whether this regulation effect remains stable for different picture categories within pleasant and unpleasant picture sets. We assessed startle amplitude of 31 participants during down-, non-, or up-regulation of feelings elicited by pleasant erotic and adventure and unpleasant victim and threat pictures. Startle amplitude was smaller during adventure and erotic compared to victim and threat pictures and increased from down-, to non-, to up-regulation independently of the picture category. Results indicate that the motivational priming effect on startle modulation elicited by different picture categories is independent of emotion regulation instructions. In addition, the emotion regulation effect is independent of motivational priming effects. © 2015 Society for Psychophysiological Research.

  2. Cardiac Modulation of Startle: Effects on Eye Blink and Higher Cognitive Processing

    ERIC Educational Resources Information Center

    Schulz, Andre; Reichert, Carolin F.; Richter, Steffen; Lass-Hennemann, Johanna; Blumenthal, Terry D.; Schachinger, Hartmut

    2009-01-01

    Cardiac cycle time has been shown to affect pre-attentive brainstem startle processes, such as the magnitude of acoustically evoked reflexive startle eye blinks. These effects were attributed to baro-afferent feedback mechanisms. However, it remains unclear whether cardiac cycle time plays a role in higher startle-related cognitive processes, as…

  3. The Gap-Startle Paradigm for Tinnitus Screening in Animal Models: Limitations and Optimization

    PubMed Central

    Lobarinas, Edward; Hayes, Sarah H.; Allman, Brian L.

    2012-01-01

    In 2006, Turner and colleagues (Behav Neurosci, 120:188–195) introduced the gap-startle paradigm as a high-throughput method for tinnitus screening in rats. Under this paradigm, gap detection ability was assessed by determining the level of inhibition of the acoustic startle reflex produced by a short silent gap inserted in an otherwise continuous background sound prior to a loud startling stimulus. Animals with tinnitus were expected to show impaired gap detection ability (i.e., lack of inhibition of the acoustic startle reflex) if the background sound containing the gap was qualitatively similar to the tinnitus pitch. Thus, for the gap-startle paradigm to be a valid tool to screen for tinnitus, a robust startle response from which to inhibit must be present. Because recent studies have demonstrated that the acoustic startle reflex could be dramatically reduced following noise exposure, we endeavored to 1) modify the gap-startle paradigm to be more resilient in the presence of hearing loss, and 2) evaluate whether a reduction in startle reactivity could confound the interpretation of gap prepulse inhibition and lead to errors in screening for tinnitus. In the first experiment, the traditional broadband noise (BBN) startle stimulus was replaced by a bandpass noise in which the sound energy was concentrated in the lower frequencies (5–10 kHz) in order to maintain audibility of the startle stimulus after unilateral high frequency noise exposure (16 kHz). However, rats still showed a 57% reduction in startle amplitude to the bandpass noise post-noise exposure. A follow-up experiment on a separate group of rats with transiently-induced conductive hearing loss revealed that startle reactivity was better preserved when the BBN startle stimulus was replaced by a rapid airpuff to the back of the rats neck. Furthermore, it was found that transient unilateral conductive hearing loss, which was not likely to induce tinnitus, caused an impairment in gap prepulse inhibition as assessed with the traditional BBN gap-startle paradigm, resulting in a false-positive screening for tinnitus. Thus, the present study identifies significant caveats of the traditional gap-startle paradigm, and describes experimental parameters using an airpuff startle stimulus which may help to limit the negative consequences of reduced startle reactivity following noise exposure, thereby allowing researchers to better screen for tinnitus in animals with hearing loss. PMID:22728305

  4. Enhanced startle reflexivity during presentation of visual nurture cues in young adults who experienced parental divorce in early childhood.

    PubMed

    Hengesch, Xenia; Larra, Mauro F; Finke, Johannes B; Blumenthal, Terry D; Schächinger, Hartmut

    2017-10-01

    Adverse childhood experiences (ACE) may influence stress and affective processing in adulthood. Animal and human studies show enhanced startle reflexivity in adult participants with ACE. This study examined the impact of one of the most common ACE, parental divorce, on startle reflexivity in adulthood. Affective modulation of acoustically-elicited startle eye blink was assessed in a group of 23 young adults with self-reported history of parental divorce, compared to an age- and sex-matched control group (n=18). Foreground pictures were either aversive (e.g. mutilation and injury), standard appetitive (e.g. erotic, recreational sport), or nurture pictures (e.g. related to early life, parental care), intermixed with neutral pictures (e.g. household objects), and organized in three valence blocks delivered in a balanced, pseudo-randomized sequence. During picture viewing startle eye blinks were elicited by binaural white noise bursts (50ms, 105 dB) via headphones and recorded at the left orbicularis oculi muscle via EMG. A significant interaction of group×picture valence (p=0.01) was observed. Contrast with controls revealed blunted startle responsiveness of the ACE group during presentation of aversive pictures, but enhanced startle during presentation of nurture-related pictures. No group differences were found during presentation of standard appetitive pictures. ACE participants rated nurture pictures as more arousing (p=0.02) than did control participants. Results suggest that divorce in childhood led to altered affective context information processing in early adulthood. When exposed to unpleasant (vs. neutral) pictures participants with ACE showed less startle potentiation than controls. Nurture context, however, potentiated startle in ACE participants, suggesting visual cuing to activate protective behavioral responses. Copyright © 2017 Elsevier B.V. All rights reserved.

  5. Cardiopulmonary baroreceptors affect reflexive startle eye blink.

    PubMed

    Richter, S; Schulz, A; Port, J; Blumenthal, T D; Schächinger, H

    2009-12-07

    Baroafferent signals originating from the 'high pressure' arterial vascular system are known to impact reflexive startle eye blink responding. However, it is not known whether baroafferent feedback of the 'low pressure' cardiopulmonary system loading status exerts a similar effect. Lower Body Negative Pressure (LBNP) at gradients of 0, -10, -20, and -30mm Hg was applied to unload cardiopulmonary baroreceptors. Acoustic startle noise bursts were delivered 230 and 530ms after spontaneous R-waves, when arterial baroreceptors are either loaded or unloaded. Eye blink responses were measured by EMG, and psychomotor reaction time by button pushes to startle stimuli. The new finding of this study was that unloading of cardiopulmonary baroreceptors increases startle eye blink responsiveness. Furthermore, we replicated the effect of relative loading/unloading of arterial baroreceptors on startle eye blink responsiveness. Effects of either arterial or cardiopulmonary baroreceptor manipulations were not present for psychomotor reaction times. These results demonstrate that the loading status of cardiopulmonary baroreceptors has an impact on brainstem-based CNS processes.

  6. Intolerance of uncertainty and startle potentiation in relation to different threat reinforcement rates.

    PubMed

    Chin, Brian; Nelson, Brady D; Jackson, Felicia; Hajcak, Greg

    2016-01-01

    Fear conditioning research on threat predictability has primarily examined the impact of temporal (i.e., timing) predictability on the startle reflex. However, there are other key features of threat that can vary in predictability. For example, the reinforcement rate (i.e., frequency) of threat is a crucial factor underlying fear learning. The present study examined the impact of threat reinforcement rate on the startle reflex and self-reported anxiety during a fear conditioning paradigm. Forty-five participants completed a fear learning task in which the conditioned stimulus was reinforced with an electric shock to the forearm on 50% of trials in one block and 75% of trials in a second block, in counter-balanced order. The present study also examined whether intolerance of uncertainty (IU), the tendency to perceive or experience uncertainty as stressful or unpleasant, was associated with the startle reflex during conditions of low (50%) vs. high (75%) reinforcement. Results indicated that, across all participants, startle was greater during the 75% relative to the 50% reinforcement condition. IU was positively correlated with startle potentiation (i.e., increased startle response to the CS+ relative to the CS-) during the 50%, but not the 75%, reinforcement condition. Thus, despite receiving fewer electric shocks during the 50% reinforcement condition, individuals with high IU uniquely demonstrated greater defense system activation when impending threat was more uncertain. The association between IU and startle was independent of state anxiety. The present study adds to a growing literature on threat predictability and aversive responding, and suggests IU is associated with abnormal responding in the context of uncertain threat. Copyright © 2015 Elsevier B.V. All rights reserved.

  7. Hypnotizability, Hypnosis and Prepulse Inhibition of the Startle Reflex in Healthy Women: An ERP Analysis

    PubMed Central

    De Pascalis, Vilfredo; Russo, Emanuela

    2013-01-01

    A working model of the neurophysiology of hypnosis suggests that highly hypnotizable individuals (HHs) have more effective frontal attentional systems implementing control, monitoring performance, and inhibiting unwanted stimuli from conscious awareness, than low hypnotizable individuals (LHs). Recent studies, using prepulse inhibition (PPI) of the auditory startle reflex (ASR), suggest that HHs, in the waking condition, may show reduced sensory gating although they may selectively attend and disattend different stimuli. Using a within subject design and a strict subject selection procedure, in waking and hypnosis conditions we tested whether HHs compared to LHs showed a significantly lower inhibition of the ASR and startle-related brain activity in both time and intracerebral source localization domains. HHs, as compared to LH participants, exhibited (a) longer latency of the eyeblink startle reflex, (b) reduced N100 responses to startle stimuli, and (c) higher PPI of eyeblink startle and of the P200 and P300 waves. Hypnosis yielded smaller N100 waves to startle stimuli and greater PPI of this component than in the waking condition. sLORETA analysis revealed that, for the N100 (107 msec) elicited during startle trials, HHs had a smaller activation in the left parietal lobe (BA2/40) than LHs. Auditory pulses of pulse-with prepulse trials in HHs yielded less activity of the P300 (280 msec) wave than LHs, in the cingulate and posterior cingulate gyrus (BA23/31). The present results, on the whole, are in the opposite direction to PPI findings on hypnotizability previously reported in the literature. These results provide support to the neuropsychophysiological model that HHs have more effective sensory integration and gating (or filtering) of irrelevant stimuli than LHs. PMID:24278150

  8. Hypnotizability, hypnosis and prepulse inhibition of the startle reflex in healthy women: an ERP analysis.

    PubMed

    De Pascalis, Vilfredo; Russo, Emanuela

    2013-01-01

    A working model of the neurophysiology of hypnosis suggests that highly hypnotizable individuals (HHs) have more effective frontal attentional systems implementing control, monitoring performance, and inhibiting unwanted stimuli from conscious awareness, than low hypnotizable individuals (LHs). Recent studies, using prepulse inhibition (PPI) of the auditory startle reflex (ASR), suggest that HHs, in the waking condition, may show reduced sensory gating although they may selectively attend and disattend different stimuli. Using a within subject design and a strict subject selection procedure, in waking and hypnosis conditions we tested whether HHs compared to LHs showed a significantly lower inhibition of the ASR and startle-related brain activity in both time and intracerebral source localization domains. HHs, as compared to LH participants, exhibited (a) longer latency of the eyeblink startle reflex, (b) reduced N100 responses to startle stimuli, and (c) higher PPI of eyeblink startle and of the P200 and P300 waves. Hypnosis yielded smaller N100 waves to startle stimuli and greater PPI of this component than in the waking condition. sLORETA analysis revealed that, for the N100 (107 msec) elicited during startle trials, HHs had a smaller activation in the left parietal lobe (BA2/40) than LHs. Auditory pulses of pulse-with prepulse trials in HHs yielded less activity of the P300 (280 msec) wave than LHs, in the cingulate and posterior cingulate gyrus (BA23/31). The present results, on the whole, are in the opposite direction to PPI findings on hypnotizability previously reported in the literature. These results provide support to the neuropsychophysiological model that HHs have more effective sensory integration and gating (or filtering) of irrelevant stimuli than LHs.

  9. Addressing variability in the acoustic startle reflex for accurate gap detection assessment.

    PubMed

    Longenecker, Ryan J; Kristaponyte, Inga; Nelson, Gregg L; Young, Jesse W; Galazyuk, Alexander V

    2018-06-01

    The acoustic startle reflex (ASR) is subject to substantial variability. This inherent variability consequently shapes the conclusions drawn from gap-induced prepulse inhibition of the acoustic startle reflex (GPIAS) assessments. Recent studies have cast doubt as to the efficacy of this methodology as it pertains to tinnitus assessment, partially, due to variability in and between data sets. The goal of this study was to examine the variance associated with several common data collection variables and data analyses with the aim to improve GPIAS reliability. To study this the GPIAS tests were conducted in adult male and female CBA/CaJ mice. Factors such as inter-trial interval, circadian rhythm, sex differences, and sensory adaptation were each evaluated. We then examined various data analysis factors which influence GPIAS assessment. Gap-induced facilitation, data processing options, and assessments of tinnitus were studied. We found that the startle reflex is highly variable in CBA/CaJ mice, but this can be minimized by certain data collection factors. We also found that careful consideration of temporal fluctuations of the ASR and controlling for facilitation can lead to more accurate GPIAS results. This study provides a guide for reducing variance in the GPIAS methodology - thereby improving the diagnostic power of the test. Copyright © 2018 Elsevier B.V. All rights reserved.

  10. Jumping Frenchmen, Miryachit, and Latah: Culture-Specific Hyperstartle-Plus Syndromes.

    PubMed

    Lanska, Douglas J

    2018-01-01

    In the late 19th century, jumping (French Canadians in Maine, USA), miryachit (Siberia), and latah (Southeast Asia) were among a group of similar disorders described around the world, each of which manifests as an exaggerated startle response with additional late-response features that were felt by some to overlap with hysteria or tics. The later features following the exaggerated startle reaction variably include mimesis (e.g., echopraxia, echolalia) and automatic obedience. These reaction patterns tended to persist indefinitely in affected individuals. Because of their dramatic stimulus-driven behaviors, affected individuals were prone to be teased and tormented by being repeatedly and intentionally startled. Despite clinical overlap between jumping and Tourette syndrome, these entities are now recognized as distinct: in jumping, the key feature is an abnormal startle response, the abnormal reaction is always provoked, and tics are absent, whereas in Tourette syndrome, the key feature is spontaneous motor and vocal tics, although patients with Tourette syndrome may occasionally also have an exaggerated startle response. These disorders have been conceptualized from anthropological, psychodynamic, and neurobiologic perspectives, with no complete resolution to date. Attempts at treatment have been generally unsuccessful, including attempts with bromization and hypnosis, although anecdotal reports of successful deconditioning have been published. In population groups affected, these disorders are usually considered as behavioral peculiarities and not as diseases per se, and there is no apparent tendency to develop disabling mental illness or neurodegenerative disorders. The genesis of these disorders, their cultural and social components, and their interactions with the presumed underlying physiological substrate need further study. Careful descriptive and analytic epidemiological studies are also lacking for all of these disorders. © 2018 S. Karger AG, Basel.

  11. Control of ethanol withdrawal symptoms in mice by phenytoin.

    PubMed

    Sprague, G L; Craigmill, A L

    1976-12-01

    Mice were made physically dependent upon ethanol using either of two methods which involved ethanol vapor inhalation. Following the cessation of exposure to ethanol, the severity of handling-induced convulsions and changes in the response to an electric foot shock (startle reflex) were recorded. Animals given isotonic saline or propylene glycol:ethanol vehicle during withdrawal exhibited handling-induced convulsions, and ethanol (2.0-4.0 g/kg) or phenytoin (5-20 mg/kg) administration during withdrawal resulted in a reduction in the severity of these convulsions. A reduced startle reflex threshold was also evident during withdrawal in mice given isotonic saline or propylene glycol:ethanol vehicle. Ethanol (0.5-4.0 g/kg) or phenytoin (10-20 mg/kg) administration during withdrawal resulted in a significant elevation of the startle reflex threshold compared to control animals. The results are discussed as they relate to others obtained in experimental and clinical studies.

  12. Subjective and physiological reactivity to chocolate images in high and low chocolate cravers.

    PubMed

    Rodríguez, Sonia; Fernández, María Carmen; Cepeda-Benito, Antonio; Vila, Jaime

    2005-09-01

    Cue-reactivity to chocolate images was assessed using self-report and physiological measures. From a pre-screening sample of 454, young women were selected and assigned to high and low chocolate craving groups (N = 36/group). The experimental procedure consisted in the elicitation and measurement of the cardiac defense and startle reflexes while viewing chocolate and standard affective images selected from the International Affective Picture System. In response to chocolate images, high cravers reported more pleasure and arousal but less control than low cravers. In high cravers, viewing chocolate images inhibited the cardiac defense but potentiated the startle reflex, as compared to low cravers. The results confirmed at the physiological level that the motivational state that underlies the experience of chocolate craving include both appetitive (inhibition of the defense reflex) and aversive (potentiation of the startle response) components. The findings supported a motivational conflict theory of chocolate craving.

  13. Measuring anxious responses to predictable and unpredictable threat in children and adolescents

    PubMed Central

    Schmitz, Anja; Merikangas, Kathleen; Swendsen, Haruka; Cui, Lihong; Heaton, Leanne; Grillon, Christian

    2011-01-01

    Research has highlighted the need for new methods to assess emotions in children on multiple levels in order to gain better insight into the complex processes of emotional development. The startle reflex is a unique translational tool that has been utilized to study physiological processes during fear and anxiety in rodents and in human subjects. However, it has been challenging to implement developmentally-appropriate startle experiments in children. This paper describes a procedure that uses predictable and unpredictable aversive events to distinguish between phasic fear and sustained anxiety in children and adolescents. We investigated anxious responses, as measured with the startle reflex, in youth (N = 36, mean age[range] = 12.63 [7–17]) across three conditions: no aversive events (N), predictable aversive events (P), and unpredictable aversive events (U). Short-duration cues were presented several times in each condition. Aversive events were signaled by the cues in P, but were presented randomly in U. Participants showed fear-potentiated startle to the threat cue in P. Startle responses were also elevated between cues in U compared to N, suggesting that unpredictable aversive events can evoke a sustained state of anxiety in youth. This latter effect was influenced by sex, being greater in girls compared to boys. These findings indicate the feasibility of this experimental induction of the startle reflex in response to predictable and unpredictable events in children and adolescents, enabling future research on inter-individual differences in fear and anxiety and their development in youth. PMID:21440905

  14. Management of exaggerated gag reflex in dental patients using intravenous sedation with dexmedetomidine.

    PubMed

    Reshetnikov, Aleksei P; Kasatkin, Anton A; Urakov, Aleksandr L; Baimurzin, Dmitrii Y

    2017-01-01

    Pharmacological sedation is one of the effective ways of prevention of gag reflex development in patients experiencing anxiety and fright before dental treatment. We are reporting a case where we could successfully eliminate exaggerated gag reflex (intravenous [IV] Gagging Severity Index) in a dental patient using IV sedation with dexmedetomidine. IV administration of dexmedetomidine provided elimination of gag reflex at a depth of sedation for the patient with the Richmond Agitation-Sedation Scale score of -2 and -1. The patient received dexmedetomidine 1.0 μg/kg for 10 min and then a continuous infusion of dexmedetomidine 0.4 μg/kg/h. The use of dexmedetomidine for sedation may be an alternative to other pharmacological agents in patients with dental anxiety accompanied by exaggerated gag reflex.

  15. Affective Modulation of the Startle Eyeblink and Postauricular Reflexes in Autism Spectrum Disorder

    ERIC Educational Resources Information Center

    Dichter, Gabriel S.; Benning, Stephen D.; Holtzclaw, Tia N.; Bodfish, James W.

    2010-01-01

    Eyeblink and postauricular reflexes to standardized affective images were examined in individuals without (n = 37) and with (n = 20) autism spectrum disorders (ASDs). Affective reflex modulation in control participants replicated previous findings. The ASD group, however, showed anomalous reflex modulation patterns, despite similar self-report…

  16. Motivational priming and processing interrupt: startle reflex modulation during shallow and deep processing of emotional words.

    PubMed

    Herbert, Cornelia; Kissler, Johanna

    2010-05-01

    Valence-driven modulation of the startle reflex, that is larger eyeblinks during viewing of unpleasant pictures and inhibited blinks while viewing pleasant pictures, is well documented. The current study investigated, whether this motivational priming pattern also occurs during processing of unpleasant and pleasant words, and to what extent it is influenced by shallow vs. deep encoding of verbal stimuli. Emotional and neutral adjectives were presented for 5s, and the acoustically elicited startle eyeblink response was measured while subjects memorized the words by means of shallow or deep processing strategies. Results showed blink potentiation to unpleasant and blink inhibition to pleasant adjectives in subjects using shallow encoding strategies. In subjects using deep-encoding strategies, blinks were larger for pleasant than unpleasant or neutral adjectives. In line with this, free recall of pleasant words was also better in subjects who engaged in deep processing. The results suggest that motivational priming holds as long as processing is perceptual. However, during deep processing the startle reflex appears to represent a measure of "processing interrupt", facilitating blinks to those stimuli that are more deeply encoded. Copyright 2010 Elsevier B.V. All rights reserved.

  17. Effect of combined opioid receptor and α2-adrenoceptor blockade on anxiety and electrically evoked startle responses.

    PubMed

    Vo, Lechi; Drummond, Peter D

    2017-06-01

    The R3 component of the electrically evoked blink reflex may form part of a startle reaction. Acoustic startle responses are augmented by yohimbine, an α 2 -adrenoceptor antagonist that blocks α 2 -autoreceptors, and are potentiated by opioid receptor blockade. To investigate these influences on electrically evoked startle responses, 16 mg yohimbine, with (16 participants) or without 50 mg naltrexone (23 participants), was administered in separate double-blind placebo-controlled cross-over experiments. In each experiment, R3 (a probable component of the startle response) was examined before and after high-frequency electrical stimulation of the forearm, a procedure that initiates inhibitory pain controls. Anxiety and somatic symptoms were greater after yohimbine than placebo, and were potentiated by naltrexone. Pain ratings for the electrically evoked startle stimuli decreased after high-frequency electrical stimulation in the placebo session but remained stable after drug administration. Yohimbine with naltrexone, but not yohimbine alone, also blocked an inhibitory effect of high-frequency electrical stimulation on electrically evoked sharp sensations and R3. Together, the findings suggest that adding naltrexone to yohimbine potentiated anxiety and blocked inhibitory influences of high-frequency electrical stimulation on electrically evoked sensations and startle responses. Thus, opioid peptides could reduce activity in nociceptive and startle-reflex pathways, or inhibit crosstalk between these pathways. Failure of this inhibitory opioid influence might be important in chronically painful conditions that are aggravated by startle stimuli.

  18. Clarifying the Role of Defensive Reactivity Deficits in Psychopathy and Antisocial Personality Using Startle Reflex Methodology

    PubMed Central

    Vaidyanathan, Uma; Hall, Jason R.; Patrick, Christopher J.; Bernat, Edward M.

    2010-01-01

    Prior research has demonstrated deficits in defensive reactivity (indexed by potentiation of the startle blink reflex) in psychopathic individuals. However, the basis of this association remains unclear, as diagnostic criteria for psychopathy encompass two distinct phenotypic components that may reflect differing neurobiological mechanisms – an affective-interpersonal component, and an antisocial deviance component. Likewise, the role of defensive response deficits in antisocial personality disorder (APD), a related but distinct syndrome, remains to be clarified. The current study examined affective priming deficits in relation to factors of psychopathy and symptoms of APD using startle reflex methods in 108 adult male prisoners. Deficits in blink reflex potentiation during aversive picture viewing were found in relation to the affective-interpersonal (Factor 1) component of psychopathy, and to a lesser extent in relation to the antisocial deviance (Factor 2) component of psychopathy and symptoms of APD—but only as a function of their overlap with affective-interpersonal features of psychopathy. These findings provide clear evidence that deficits in defensive reactivity are linked specifically to the affective-interpersonal features of psychopathy, and not the antisocial deviance features represented most strongly in APD. PMID:20973594

  19. The startle response and toxicology: Methods, use and interpretation.

    EPA Science Inventory

    The startle response (SR) is a sensory-evoked motor reflex that has been used successfully in toxicology for decades. Advantages of this procedure include: rapidly objective measurement of a defined neural circuit, measurement of habituation of the response, and a high potential ...

  20. Supertaster, super reactive: oral sensitivity for bitter taste modulates emotional approach and avoidance behavior in the affective startle paradigm.

    PubMed

    Herbert, Cornelia; Platte, Petra; Wiemer, Julian; Macht, Michael; Blumenthal, Terry D

    2014-08-01

    People differ in both their sensitivity for bitter taste and their tendency to respond to emotional stimuli with approach or avoidance. The present study investigated the relationship between these sensitivities in an affective picture paradigm with startle responding. Emotion-induced changes in arousal and attention (pupil modulation), priming of approach and avoidance behavior (startle reflex modulation), and subjective evaluations (ratings) were examined. Sensitivity for bitter taste was assessed with the 6-n-propylthiouracil (PROP)-sensitivity test, which discriminated individuals who were highly sensitive to PROP compared to NaCl (PROP-tasters) and those who were less sensitive or insensitive to the bitter taste of PROP. Neither pupil responses nor picture ratings differed between the two taster groups. The startle eye blink response, however, significantly differentiated PROP-tasters from PROP-insensitive subjects. Facilitated response priming to emotional stimuli emerged in PROP-tasters but not in PROP-insensitive subjects at shorter startle lead intervals (200-300ms between picture onset and startle stimulus onset). At longer lead intervals (3-4.5s between picture onset and startle stimulus onset) affective startle modulation did not differ between the two taster groups. This implies that in PROP-sensitive individuals action tendencies of approach or avoidance are primed immediately after emotional stimulus exposure. These results suggest a link between PROP taste perception and biologically relevant patterns of emotional responding. Direct perception-action links have been proposed to underlie motivational priming effects of the startle reflex, and the present results extend these to the sensory dimension of taste. Copyright © 2014 Elsevier Inc. All rights reserved.

  1. Corticosteroid dependent and independent effects of a cannabinoid agonist on core temperature, motor activity, and prepulse inhibition of the acoustic startle reflex in Wistar rats.

    PubMed

    Avdesh, Avdesh; Cornelisse, Vincent; Martin-Iverson, Mathew Thomas

    2012-03-01

    There are inconsistent reports on the effects of cannabinoid agonists on prepulse inhibition of the startle reflex (PPI) with increases, decreases, and no effects. It has been hypothesized that the conflicting observations may be as a result of modulation of the effects of cannabinoid agonists by the regulation of corticosteroid release. The purpose of the present study was to determine the effects of CP55940, a cannabinoid agonist, and metyrapone, a corticosteroid synthesis inhibitor on core temperature, motor activity, the startle reflex, and PPI. Startle responses were measured in 64 male Wistar rats while varying startling stimulus intensities, analogous to dose-response curves. A stimulus potency measure (ES(50)) and a response measure, the maximal achievable response (R (MAX)) were derived from the stimulus-response curves. CP55940 reduced core temperature and motor activity; these effects were potentiated by metyrapone. CP55940 increased R (MAX) of startle in the absence of a prepulse by a corticosteroid-dependent mechanism but decreased it when metyrapone was administered before CP55940, a corticosteroid-independent mechanism. The inverse of stimulus potency (ES(50)) was not affected by either drug alone but was increased by the combined drugs. CP55940 increased the prepulse motor gating effects and decreased the prepulse sensory gating effects of the same prepulses but only when given after metyrapone. The most parsimonious interpretation of these effects is that CP55940 has some effects through corticosteroid-dependent actions and opposite effects by corticosteroid-independent actions. These two putative sites of actions affect stimulus gating opposite to their effects on response gating.

  2. Startle Reflex Potentiation During Aversive Picture Viewing as an Indicator of Trait Fear

    PubMed Central

    Vaidyanathan, Uma; Patrick, Christopher J.; Bernat, Edward M.

    2009-01-01

    Measures of fearfulness and measures of psychopathy show positive and negative associations, respectively, with startle reflex potentiation during unpleasant picture viewing. We tested the hypothesis that a common bipolar trait dimension underlies these differing associations. Blink responses to noise probes were recorded during pleasant, neutral, and unpleasant pictures in 88 undergraduates assessed with a battery of self-report scales indexing fear and psychopathy/fearlessness. A significant positive association was found between an omnibus index of fear, consisting of scores on the first component from a PCA of these various scales, and startle potentiation during aversive picture viewing. This association was most robust, across participants overall and within gender subgroups, for scenes that were most directly threatening. Implications for psychophysiological research on individual differences and psychopathology are discussed. PMID:19055499

  3. Emotion modulation of the startle reflex in essential tremor: Blunted reactivity to unpleasant and pleasant pictures.

    PubMed

    Lafo, Jacob A; Mikos, Ania; Mangal, Paul C; Scott, Bonnie M; Trifilio, Erin; Okun, Michael S; Bowers, Dawn

    2017-01-01

    Essential tremor is a highly prevalent movement disorder characterized by kinetic tremor and mild cognitive-executive changes. These features are commonly attributed to abnormal cerebellar changes, resulting in disruption of cerebellar-thalamo-cortical networks. Less attention has been paid to alterations in basic emotion processing in essential tremor, despite known cerebellar-limbic interconnectivity. In the current study, we tested the hypothesis that a psychophysiologic index of emotional reactivity, the emotion modulated startle reflex, would be muted in individuals with essential tremor relative to controls. Participants included 19 essential tremor patients and 18 controls, who viewed standard sets of unpleasant, pleasant, and neutral pictures for six seconds each. During picture viewing, white noise bursts were binaurally presented to elicit startle eyeblinks measured over the orbicularis oculi. Consistent with past literature, controls' startle eyeblink responses were modulated according to picture valence (unpleasant > neutral > pleasant). In essential tremor participants, startle eyeblinks were not modulated by emotion. This modulation failure was not due to medication effects, nor was it due to abnormal appraisal of emotional picture content. Neuroanatomically, it remains unclear whether diminished startle modulation in essential tremor is secondary to aberrant cerebellar input to the amygdala, which is involved in priming the startle response in emotional contexts, or due to more direct disruption between the cerebellum and brainstem startle circuitry. If the former is correct, these findings may be the first to reveal dysregulation of emotional networks in essential tremor. Copyright © 2016 Elsevier Ltd. All rights reserved.

  4. "Glass fairies" and "bone children": adolescents and young adults with anorexia nervosa show positive reactions towards extremely emaciated body pictures measured by the startle reflex paradigm.

    PubMed

    Reichel, Valeska A; Schneider, Nora; Grünewald, Barbara; Kienast, Thorsten; Pfeiffer, Ernst; Lehmkuhl, Ulrike; Korte, Alexander

    2014-02-01

    In this study, we investigated the emotional processing of extremely emaciated body cues in adolescents and young adults with (n  =  36) and without (n =  36) anorexia nervosa (AN), introducing a new picture type, which was taken from websites that promote extreme thinness and is targeted specifically at adolescents interested in extreme thinness. A startle reflex paradigm was used for implicit reactions, while a self-assessment instrument was used for subjective responses. We found a significant group difference with a startle inhibition (appetitive response) among the patients and a startle potentiation (aversive response) among the controls, whereas no such difference for subjective measures was found. The results are in contrast to previous studies, which proposed a general failure to activate the appetitive motivational system in AN, but in keeping with findings from other addictions, where the same response pattern has been found. Implications for prevention and therapy are discussed. Copyright © 2013 Society for Psychophysiological Research.

  5. In the Blink of an Eye: Investigating the Role of Awareness in Fear Responding by Measuring the Latency of Startle Potentiation

    PubMed Central

    Åsli, Ole; Flaten, Magne A.

    2012-01-01

    The latency of startle reflex potentiation may shed light on the aware and unaware processes underlying associative learning, especially associative fear learning. We review research suggesting that single-cue delay classical conditioning is independent of awareness of the contingency between the conditioned stimulus (CS) and the unconditioned stimulus (US). Moreover, we discuss research that argues that conditioning independent of awareness has not been proven. Subsequently, three studies from our lab are presented that have investigated the role of awareness in classical conditioning, by measuring the minimum latency from CS onset to observed changes in reflexive behavior. In sum, research using this method shows that startle is potentiated 30 to 100 ms after CS onset following delay conditioning. Following trace fear conditioning, startle is potentiated 1500 ms after CS presentation. These results indicate that the process underlying delay conditioned responding is independent of awareness, and that trace fear conditioned responding is dependent on awareness. Finally, this method of investigating the role of awareness is discussed and future research possibilities are proposed. PMID:24962686

  6. Anticipation of public speaking in virtual reality reveals a relationship between trait social anxiety and startle reactivity.

    PubMed

    Cornwell, Brian R; Johnson, Linda; Berardi, Luciano; Grillon, Christian

    2006-04-01

    Startle reflex modification has become valuable to the study of fear and anxiety, but few studies have explored startle reactivity in socially threatening situations. Healthy participants ranging in trait social anxiety entered virtual reality (VR) that simulates standing center-stage in front of an audience to anticipate giving a speech and count backward. We measured startle and autonomic reactivity during anticipation of both tasks inside VR after a single baseline recording outside VR. Trait social anxiety, but not general trait anxiety, was positively correlated with startle before entering VR and most clearly during speech anticipation inside VR. Speech anticipation inside VR also elicited stronger physiologic responses relative to anticipation of counting. Under social-evaluative threat, startle reactivity showed robust relationships with fear of negative evaluation, a central aspect of social anxiety and clinical social phobia. Context-specific startle modification may be an endophenotype for subtypes of pathological anxiety.

  7. Alarm pheromone is detected by the vomeronasal organ in male rats.

    PubMed

    Kiyokawa, Yasushi; Kodama, Yuka; Kubota, Takahiro; Takeuchi, Yukari; Mori, Yuji

    2013-10-01

    It is widely known that a stressed animal releases specific pheromones, possibly for alarming nearby conspecifics. We previously investigated an alarm pheromone in male rats and found that this alarm pheromone evokes several responses, including increases in the defensive and risk assessment behaviors in a modified open-field test, and enhancement of the acoustic startle reflex. However, the role of the vomeronasal organ in these pheromone effects remains unclear. To clarify this point, vomeronasal organ-excising or sham surgeries were performed in male rats for use in 2 experimental models, after which they were exposed to alarm pheromone. We found that the vomeronasal organ-excising surgery blocked the effects of this alarm pheromone in both the modified open-field test and acoustic startle reflex test. In addition, the results of habituation/dishabituation test and soybean agglutinin binding to the accessory olfactory bulb suggested that the vomeronasal organ-excising surgery completely ablated the vomeronasal organ while preserving the functioning of the main olfactory system. From the above results, we showed that the vomeronasal organ plays an important role in alarm pheromone effects in the modified open-field test and acoustic startle reflex test.

  8. Evidence of Fearlessness in Behaviourally Disordered Children: A Study on Startle Reflex Modulation

    ERIC Educational Resources Information Center

    van Goozen, Stephanie H. M.; Snoek, Heddeke; Matthys, Walter; van Rossum, Inge; van Engeland, Herman

    2004-01-01

    Background: Patterns of low heart rate, skin conductance and cortisol seem to characterise children with disruptive behaviour disorder (DBD). Until now, the startle paradigm has not been used in DBD children. We investigated whether DBD children, like adult psychopaths, process emotional stimuli in an abnormal way. Method: Twenty-one DBD and 33…

  9. Oxidative stress exaggerates skeletal muscle contraction-evoked reflex sympathoexcitation in rats with hypertension induced by angiotensin II.

    PubMed

    Koba, Satoshi; Watanabe, Ryosuke; Kano, Naoko; Watanabe, Tatsuo

    2013-01-01

    Muscle contraction stimulates thin fiber muscle afferents and evokes reflex sympathoexcitation. In hypertension, this reflex is exaggerated. ANG II, which is elevated in hypertension, has been reported to trigger the production of superoxide and other reactive oxygen species. In the present study, we tested the hypothesis that increased ANG II in hypertension exaggerates skeletal muscle contraction-evoked reflex sympathoexcitation by inducing oxidative stress in the muscle. In rats, subcutaneous infusion of ANG II at 450 ng·kg(-1)·min(-1) for 14 days significantly (P < 0.05) elevated blood pressure compared with sham-operated (sham) rats. Electrically induced 30-s hindlimb muscle contraction in decerebrate rats with hypertension evoked larger renal sympathoexcitatory and pressor responses [+1,173 ± 212 arbitrary units (AU) and +35 ± 5 mmHg, n = 10] compared with sham normotensive rats (+419 ± 103 AU and +13 ± 2 mmHg, n = 11). Tempol, a SOD mimetic, injected intra-arterially into the hindlimb circulation significantly reduced responses in hypertensive rats, whereas this compound had no effect on responses in sham rats. Tiron, another SOD mimetic, also significantly reduced reflex renal sympathetic and pressor responses in a subset of hypertensive rats (n = 10). Generation of muscle superoxide, as evaluated by dihydroethidium staining, was increased in hypertensive rats. RT-PCR and immunoblot experiments showed that mRNA and protein for gp91(phox), a NADPH oxidase subunit, in skeletal muscle tissue were upregulated in hypertensive rats. Taken together, hese results suggest that increased ANG II in hypertension induces oxidative stress in skeletal muscle, thereby exaggerating the muscle reflex.

  10. REFLEX MODIFICATION: AN APPROACH TO INCORPORATE INTO A DEVELOPMENTAL NEUROTOXICITY (DNT) STUDY DESIGN WITH COMMERCIAL EQUIPMENT.

    EPA Science Inventory

    Reflex modification (RM) of the startle response is a very useful tool for testing sensory function and the integrity of a well-defined complement of neural circuits. Advantages of this procedure include the ability to rapidly acquire objective measurements and differentiate sen...

  11. Neural Systems Involved in Fear and Anxiety Measured with Fear-Potentiated Startle

    ERIC Educational Resources Information Center

    Davis, Michael

    2006-01-01

    A good deal is now known about the neural circuitry involved in how conditioned fear can augment a simple reflex (fear-potentiated startle). This involves visual or auditory as well as shock pathways that project via the thalamus and perirhinal or insular cortex to the basolateral amygdala (BLA). The BLA projects to the central (CeA) and medial…

  12. 1996 Toxic Hazards Research Annual Report.

    DTIC Science & Technology

    1998-01-01

    gasoline , diesel fuel, and jet propulsion (JP) fuel (Staats, 1994). Millions of dollars are spent each year at petroleum contaminated sites for remediation...of locomotor activity and auditory startle reflex tests will be provided in the detailed technical report (in progress). Body Weights and Food...Olfactory Sensitization, Acoustic Startle, Prepulse Inhibition and Habituation, Total Locomotor Activity, Tail Flick Analgesia, and the Treadmill Test of

  13. Disturbed prepulse inhibition in patients with schizophrenia is consequential to dysfunction of selective attention.

    PubMed

    Scholes, Kirsty E; Martin-Iverson, Mathew T

    2010-03-01

    Controversy exists as to the cause of disturbed prepulse inhibition (PPI) in patients with schizophrenia. This study aimed to clarify the nature of PPI in schizophrenia using improved methodology. Startle and PPI were measured in 44 patients with schizophrenia and 32 controls across a range of startling stimulus intensities under two conditions, one while participants were attending to the auditory stimuli (ATTEND condition) and one while participants completed a visual task in order to ensure they were ignoring the auditory stimuli (IGNORE condition). Patients showed reduced PPI of R(MAX) (reflex capacity) and increased PPI of Hillslope (reflex efficacy) only under the INGORE condition, and failed to show the same pattern of attentional modulation of the reflex parameters as controls. In conclusion, disturbed PPI in schizophrenia appears to result from deficits in selective attention, rather than from preattentive dysfunction.

  14. Sleep duration, depression, and oxytocinergic genotype influence prepulse inhibition of the startle reflex in postpartum women.

    PubMed

    Comasco, Erika; Gulinello, Maria; Hellgren, Charlotte; Skalkidou, Alkistis; Sylven, Sara; Sundström-Poromaa, Inger

    2016-04-01

    The postpartum period is characterized by a post-withdrawal hormonal status, sleep deprivation, and susceptibility to affective disorders. Postpartum mothering involves automatic and attentional processes to screen out new external as well as internal stimuli. The present study investigated sensorimotor gating in relation to sleep duration, depression, as well as catecholaminergic and oxytocinergic genotypes in postpartum women. Prepulse inhibition (PPI) of the startle reflex and startle reactivity were assessed two months postpartum in 141 healthy and 29 depressed women. The catechol-O-methyltransferase (COMT) Val158Met, and oxytocin receptor (OXTR) rs237885 and rs53576 polymorphisms were genotyped, and data on sleep duration were collected. Short sleep duration (less than four hours in the preceding night) and postpartum depression were independently associated with lower PPI. Also, women with postpartum depression had higher startle reactivity in comparison with controls. The OXTR rs237885 genotype was related to PPI in an allele dose-dependent mode, with T/T healthy postpartum women carriers displaying the lowest PPI. Reduced sensorimotor gating was associated with sleep deprivation and depressive symptoms during the postpartum period. Individual neurophysiological vulnerability might be mediated by oxytocinergic genotype which relates to bonding and stress response. These findings implicate the putative relevance of lower PPI of the startle response as an objective physiological correlate of liability to postpartum depression. Copyright © 2016 Elsevier B.V. and ECNP. All rights reserved.

  15. More meditation, less habituation? The effect of mindfulness practice on the acoustic startle reflex.

    PubMed

    Antonova, Elena; Chadwick, Paul; Kumari, Veena

    2015-01-01

    Mindfulness as a mode of sustained and receptive attention promotes openness to each incoming stimulus, even if repetitive and/or aversive. Mindful attention has been shown to attenuate sensory habituation in expert meditators; however, others were not able to replicate this effect. The present study used acoustic startle reflex to investigate the effect of mindfulness practice intensity on sensory habituation. Auditory Startle Response (ASR) to 36 startling probes (12 trials x 3 block with 40 ms inter-block intervals), was measured using electromyography (EMG) in three groups of participants (N = 12/group): meditation-naïve, moderate practice, and intensive practice. Intensive practice group showed attenuated startle habituation as evidenced by significantly less habituation over the entire experiment relative to the meditation-naïve and moderate practice groups. Furthermore, there was a significant linear effect showing between-block habituation in meditation-naïve and moderate practice groups, but not in the intensive practice group. However, the Block x Group interaction between the intensive practice and the meditation-naive groups was not significant. Moderate practice group was not significantly different from the meditation-naïve in the overall measure of habituation, but showed significantly stronger habituation than both meditation-naïve and intensive practice groups in Block 1. Greater practice intensity was significantly correlated with slower overall habituation and habituation rate in Blocks 2 and 3 in the intensive, but not in the moderate, practice group. The study provides tentative evidence that intensive mindfulness practice attenuates acoustic startle habituation as measured by EMG, but the effect is modest.Moderate practice, on the other hand, appears to enhance habituation, suggesting the effect of mindfulness practice on startle habituation might be non-linear [corrected] . Better understanding of the effect of mindful attention on startle habituation may shed new light on sensory information processing capacity of the human brain and its potential for de-automatisation of hard-wired processes.

  16. Oxytocin Reduces Background Anxiety in a Fear-Potentiated Startle Paradigm: Peripheral vs Central Administration

    PubMed Central

    Ayers, Luke W; Missig, Galen; Schulkin, Jay; Rosen, Jeffrey B

    2011-01-01

    Oxytocin is known to have anti-anxiety and anti-stress effects. Using a fear-potentiated startle paradigm in rats, we previously demonstrated that subcutaneously administered oxytocin suppressed acoustic startle following fear conditioning compared with startle before fear conditioning (termed background anxiety), but did not have an effect on cue-specific fear-potentiated startle. The findings suggest oxytocin reduces background anxiety, an anxious state not directly related to cue-specific fear, but sustained beyond the immediate threat. The goal of the present study was to compare the effects of centrally and peripherally administered oxytocin on background anxiety and cue-specific fear. Male rats were given oxytocin either subcutaneously (SC) or intracerebroventricularly (ICV) into the lateral ventricles before fear-potentiated startle testing. Oxytocin doses of 0.01 and 0.1 μg/kg SC reduced background anxiety. ICV administration of oxytocin at doses from 0.002 to 20 μg oxytocin had no effect on background anxiety or cue-specific fear-potentiated startle. The 20 μg ICV dose of oxytocin did reduce acoustic startle in non-fear conditioned rats. These studies indicate that oxytocin is potent and effective in reducing background anxiety when delivered peripherally, but not when delivered into the cerebroventricular system. Oxytocin given systemically may have anti-anxiety properties that are particularly germane to the hypervigilance and exaggerated startle typically seen in many anxiety and mental health disorder patients. PMID:21796104

  17. Generalized versus partial reflex seizures: a review.

    PubMed

    Italiano, Domenico; Ferlazzo, Edoardo; Gasparini, Sara; Spina, Edoardo; Mondello, Stefania; Labate, Angelo; Gambardella, Antonio; Aguglia, Umberto

    2014-08-01

    In this review we assess our currently available knowledge about reflex seizures with special emphasis on the difference between "generalized" reflex seizures induced by visual stimuli, thinking, praxis and language tasks, and "focal" seizures induced by startle, eating, music, hot water, somatosensory stimuli and orgasm. We discuss in particular evidence from animal, clinical, neurophysiological and neuroimaging studies supporting the concept that "generalized" reflex seizures, usually occurring in the setting of IGE, should be considered as focal seizures with quick secondary generalization. We also review recent advances in genetic and therapeutic approach of reflex seizures. Copyright © 2014 British Epilepsy Association. Published by Elsevier Ltd. All rights reserved.

  18. Gender differences in emotional responses: a psychophysiological study.

    PubMed

    Bianchin, Marta; Angrilli, Alessandro

    2012-02-28

    Gender differences in emotional responses have been investigated in two groups of students, 22 males and 21 females. Participants watched a set of sixty emotional standardized slides divided into pleasant, neutral and unpleasant, while Startle reflex, Evoked Potentials, Heart Rate, facial EMG and Skin Conductance were recorded. Startle reflex amplitude, an index modulated by amygdala and orbitofrontal cortex and sensitive to aversive emotional stimuli, was overall larger in women. In addition, startle emotion modulation was greater in women with respect to men. Slow Evoked Potentials (400-800 ms), a measure representing the cognitive component of the emotional response, revealed gender differences in the left prefrontal site, with women showing greater positivity to unpleasant compared with pleasant slides while men had greater positivity to pleasant vs. neutral slides. Women, compared with men, perceived all slides as less pleasant and reported greater arousal to unpleasant condition. Results are in line with known functional brain differences, at level of limbic and paralimbic structures, between men and women, and point to biologically grounded greater sensitivity and vulnerability of women to adverse/stressful events. Copyright © 2011 Elsevier Inc. All rights reserved.

  19. Variable Foreperiod Deficits in Parkinson's Disease: Dissociation across Reflexive and Voluntary Behaviors

    ERIC Educational Resources Information Center

    Jurkowski, A.J.; Stepp, E.; Hackley, S.A.

    2005-01-01

    The effect of a visual warning signal (1.0-6.5s random foreperiod, FP) on the latency of voluntary (hand-grip) and reflexive (startle-eyeblink) reactions was investigated in Parkinson's disease (PD) patients and in young and aged control subjects. Equivalent FP effects on blink were observed across groups. By contrast, FP effects diverged for…

  20. Resting heart rate variability and the startle reflex to briefly presented affective pictures.

    PubMed

    Ruiz-Padial, Elisabeth; Thayer, Julian F

    2014-12-01

    We have previously shown that persons with low HRV showed potentiated startle responses to neutral stimuli. In the present study we replicated our prior findings and extended them to examine the effects of HRV on the startle magnitude to pictures that were presented outside of conscious awareness. A total of 85 male and female students were stratified via median split on their resting HRV. They were presented pictures for 6 s or for 30 ms. Results indicated that the high HRV group showed the context appropriate startle magnitude increase to unpleasant foreground. The low HRV group showed startle magnitude increase from pleasant to neutral pictures but no difference between the neutral and unpleasant pictures. This pattern of results was similar for the 30 ms and the 6 s conditions. These results suggest that having high HRV may allow persons to more efficiently process emotional stimuli and to better recognize threat and safety signals. Copyright © 2014 Elsevier B.V. All rights reserved.

  1. Planning of Ballistic Movement following Stroke: Insights from the Startle Reflex

    PubMed Central

    Honeycutt, Claire Fletcher; Perreault, Eric Jon

    2012-01-01

    Following stroke, reaching movements are slow, segmented, and variable. It is unclear if these deficits result from a poorly constructed movement plan or an inability to voluntarily execute an appropriate plan. The acoustic startle reflex provides a means to initiate a motor plan involuntarily. In the presence of a movement plan, startling acoustic stimulus triggers non-voluntary early execution of planned movement, a phenomenon known as the startReact response. In unimpaired individuals, the startReact response is identical to a voluntarily initiated movement, except that it is elicited 30–40 ms. As the startReact response is thought to be mediated by brainstem pathways, we hypothesized that the startReact response is intact in stroke subjects. If startReact is intact, it may be possible to elicit more task-appropriate patterns of muscle activation than can be elicited voluntarily. We found that startReact responses were intact following stroke. Responses were initiated as rapidly as those in unimpaired subjects, and with muscle coordination patterns resembling those seen during unimpaired volitional movements. Results were striking for elbow flexion movements, which demonstrated no significant differences between the startReact responses elicited in our stroke and unimpaired subject groups. The results during planned extension movements were less straightforward for stroke subjects, since the startReact response exhibited task inappropriate activity in the flexors. This inappropriate activity diminished over time. This adaptation suggests that the inappropriate activity was transient in nature and not related to the underlying movement plan. We hypothesize that the task-inappropriate flexor activity during extension results from an inability to suppress the classic startle reflex, which primarily influences flexor muscles and adapts rapidly with successive stimuli. These results indicate that stroke subjects are capable of planning ballistic elbow movements, and that when these planned movements are involuntarily executed they can be as rapid and appropriate as those in unimpaired individuals. PMID:22952634

  2. Methylphenidate and emotional-motivational processing in attention-deficit/hyperactivity disorder.

    PubMed

    Conzelmann, Annette; Woidich, Eva; Mucha, Ronald F; Weyers, Peter; Müller, Mathias; Lesch, Klaus-Peter; Jacob, Christian P; Pauli, Paul

    2016-08-01

    In line with the assumption that emotional-motivational deficits are one core dysfunction in ADHD, in one of our previous studies we observed a reduced reactivity towards pleasant pictures in adult ADHD patients as compared to controls. This was indicated by a lack of attenuation of the startle reflex specifically during pleasant pictures in ADHD patients. The first choice medical agents in ADHD, methylphenidate (MPH), is discussed to normalize these dysfunctions. However, experimental evidence in the sense of double-blind placebo-controlled study designs is lacking. Therefore, we investigated 61 adult ADHD patients twice, one time with placebo and one time with MPH with the same experimental design as in our study previously and assessed emotion processing during the presentation of pleasant, neutral and unpleasant pictures. We obtained startle reflex data as well as valence and arousal ratings in association with the pictures. As previously shown, ADHD patients showed a diminished startle attenuation during pleasant pictures while startle potentiation during unpleasant pictures was normal. Valence and arousal ratings unsuspiciously increased with increasing pleasantness and arousal of the pictures, respectively. There were no significant influences of MPH. The study replicates that ADHD patients show a reduced reactivity towards pleasant stimuli. MPH did not normalize this dysfunction. Possibly, MPH only influences emotions during more complex behavioural tasks that involve executive functions in adults with ADHD. Our results emphasize the importance for the use of double-blind placebo-controlled designs in psychopharmacological research.

  3. An acoustic startle alters knee joint stiffness and neuromuscular control.

    PubMed

    DeAngelis, A I; Needle, A R; Kaminski, T W; Royer, T R; Knight, C A; Swanik, C B

    2015-08-01

    Growing evidence suggests that the nervous system contributes to non-contact knee ligament injury, but limited evidence has measured the effect of extrinsic events on joint stability. Following unanticipated events, the startle reflex leads to universal stiffening of the limbs, but no studies have investigated how an acoustic startle influences knee stiffness and muscle activation during a dynamic knee perturbation. Thirty-six individuals were tested for knee stiffness and muscle activation of the quadriceps and hamstrings. Subjects were seated and instructed to resist a 40-degree knee flexion perturbation from a relaxed state. During some trials, an acoustic startle (50 ms, 1000 Hz, 100 dB) was applied 100 ms prior to the perturbation. Knee stiffness, muscle amplitude, and timing were quantified across time, muscle, and startle conditions. The acoustic startle increased short-range (no startle: 0.044 ± 0.011 N·m/deg/kg; average startle: 0.047 ± 0.01 N·m/deg/kg) and total knee stiffness (no startle: 0.036 ± 0.01 N·m/deg/kg; first startle 0.027 ± 0.02 N·m/deg/kg). Additionally, the startle contributed to decreased [vastus medialis (VM): 13.76 ± 33.6%; vastus lateralis (VL): 6.72 ± 37.4%] but earlier (VM: 0.133 ± 0.17 s; VL: 0.124 ± 0.17 s) activation of the quadriceps muscles. The results of this study indicate that the startle response can significantly disrupt knee stiffness regulation required to maintain joint stability. Further studies should explore the role of unanticipated events on unintentional injury. © 2014 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  4. Long-lasting changes in stress-induced corticosterone response and anxiety-like behaviors as a consequence of neonatal maternal separation in Long-Evans rats.

    PubMed

    Kalinichev, Mikhail; Easterling, Keith W; Plotsky, Paul M; Holtzman, Stephen G

    2002-08-01

    Early neonatal environmental factors appear to have powerful and long-lasting influences on an organism's physiology and behavior. Long-Evans male rats separated from their dam for 3 h daily over the first 2 weeks of life (maternally separated, MS rats) when tested as adults exhibit exaggerated behavioral and neuroendocrine responses to stress compared to 15-min separated (handled, H) animals. The purpose of this study was to compare male and female adult rats that were MS, H or were undisturbed (nonhandled, NH) as neonates in anxiety-like behaviors, in the elevated plus-maze, and in response to startle-inducing auditory stimuli. We confirmed that MS males oversecrete corticosterone (CORT; 2.5-5 times) in response to mild handling stress. MS males and females were less likely to explore open arms of the plus-maze. MS males exhibited 35% higher startle amplitudes compared to controls. Furthermore, MS males were more likely to emit ultrasonic vocalizations in response to startle than were H controls. However, MS and control females did not differ in auditory startle response or in startle-induced ultrasonic vocalizations. Therefore, experiencing maternal separation results in a long-lasting increase in anxiety-like behaviors that occurs in a sex-dependent manner.

  5. Methodological optimization of tinnitus assessment using prepulse inhibition of the acoustic startle reflex.

    PubMed

    Longenecker, R J; Galazyuk, A V

    2012-11-16

    Recently prepulse inhibition of the acoustic startle reflex (ASR) became a popular technique for tinnitus assessment in laboratory animals. This method confers a significant advantage over the previously used time-consuming behavioral approaches utilizing basic mechanisms of conditioning. Although this technique has been successfully used to assess tinnitus in different laboratory animals, many of the finer details of this methodology have not been described enough to be replicated, but are critical for tinnitus assessment. Here we provide detail description of key procedures and methodological issues that provide guidance for newcomers with the process of learning to correctly apply gap detection techniques for tinnitus assessment in laboratory animals. The major categories of these issues include: refinement of hardware for best performance, optimization of stimulus parameters, behavioral considerations, and identification of optimal strategies for data analysis. This article is part of a Special Issue entitled: Tinnitus Neuroscience. Copyright © 2012. Published by Elsevier B.V.

  6. Reduced Prepulse Inhibition as a Biomarker of Schizophrenia.

    PubMed

    Mena, Auxiliadora; Ruiz-Salas, Juan C; Puentes, Andrea; Dorado, Inmaculada; Ruiz-Veguilla, Miguel; De la Casa, Luis G

    2016-01-01

    The startle response is composed by a set of reflex behaviors intended to prepare the organism to face a potentially relevant stimulus. This response can be modulated by several factors as, for example, repeated presentations of the stimulus (startle habituation), or by previous presentation of a weak stimulus (Prepulse Inhibition [PPI]). Both phenomena appear disrupted in schizophrenia that is thought to reflect an alteration in dopaminergic and glutamatergic neurotransmission. In this paper we analyze whether the reported deficits are indicating a transient effect restricted to the acute phase of the disease, or if it reflects a more general biomarker or endophenotype of the disorder. To this end, we measured startle responses in the same set of thirteen schizophrenia patients with a cross-sectional design at two periods: 5 days after hospital admission and 3 months after discharge. The results showed that both startle habituation and PPI were impaired in the schizophrenia patients at the acute stage as compared to a control group composed by 13 healthy participants, and that PPI but not startle habituation remained disrupted when registered 3 months after the discharge. These data point to the consideration of PPI, but not startle habituation, as a schizophrenia biomarker.

  7. Reduced Prepulse Inhibition as a Biomarker of Schizophrenia

    PubMed Central

    Mena, Auxiliadora; Ruiz-Salas, Juan C.; Puentes, Andrea; Dorado, Inmaculada; Ruiz-Veguilla, Miguel; De la Casa, Luis G.

    2016-01-01

    The startle response is composed by a set of reflex behaviors intended to prepare the organism to face a potentially relevant stimulus. This response can be modulated by several factors as, for example, repeated presentations of the stimulus (startle habituation), or by previous presentation of a weak stimulus (Prepulse Inhibition [PPI]). Both phenomena appear disrupted in schizophrenia that is thought to reflect an alteration in dopaminergic and glutamatergic neurotransmission. In this paper we analyze whether the reported deficits are indicating a transient effect restricted to the acute phase of the disease, or if it reflects a more general biomarker or endophenotype of the disorder. To this end, we measured startle responses in the same set of thirteen schizophrenia patients with a cross-sectional design at two periods: 5 days after hospital admission and 3 months after discharge. The results showed that both startle habituation and PPI were impaired in the schizophrenia patients at the acute stage as compared to a control group composed by 13 healthy participants, and that PPI but not startle habituation remained disrupted when registered 3 months after the discharge. These data point to the consideration of PPI, but not startle habituation, as a schizophrenia biomarker. PMID:27803654

  8. Characterizing the Anomalous Cognition-Emotion Interactions in Externalizing

    PubMed Central

    Baskin-Sommers, Arielle R.; Curtin, John J.; Larson, Christine L.; Stout, Daniel; Kiehl, Kent A.; Newman, Joseph P.

    2012-01-01

    Externalizing traits are characterized by exaggerated emotional (e.g., frustration, anger) and behavioral (e.g., drug seeking, reactive aggression) reactions to motivationally-significant stimuli. Explanations for this exaggerated reactivity emphasize attention, executive function, and affective processes, but the associations among these processes is rarely investigated. To examine these interactions, we measure fear potentiated startle (FPS; Experiment 1) and neural activation (Experiment 2) in an instructed fear paradigm that manipulates attentional focus, demands on executive functioning, and emotion. In both studies, exaggerated emotional reactivity associated with externalizing was specific to conditions that focused attention on threat information and placed minimal demands on executive functioning. Results suggest that a crucial cognition-emotion interaction affecting externalizing is the over-prioritization and over-allocation of attention to motivationally-significant information, which in turn, may impair executive and affective regulation. PMID:22579718

  9. Reactivity to uncertain threat as a familial vulnerability factor for alcohol use disorder.

    PubMed

    Gorka, S M; Hee, D; Lieberman, L; Mittal, V A; Phan, K L; Shankman, S A

    2016-12-01

    When sober, problematic drinkers display exaggerated reactivity to threats that are uncertain (U-threat). Since this aversive affective state can be alleviated via acute alcohol intoxication, it has been posited that individuals who exhibit heightened reactivity to U-threat at baseline are motivated to use alcohol as a means of avoidance-based coping, setting the stage for excessive drinking. To date, however, no study has attempted to characterize the dispositional nature of exaggerated reactivity to U-threat and test whether it is a vulnerability factor or exclusively a disease marker of problematic alcohol use. The current investigation utilized a family study design to address these gaps by examining whether (1) reactivity to U-threat is associated with risk for problematic alcohol use, defined by family history of alcohol use disorder (AUD) and (2) reactivity to U-threat is correlated amongst adult biological siblings. A total of 157 families, and 458 individuals, participated in the study and two biological siblings completed a threat-of-shock task designed to probe reactivity to U-threat and predictable threat (P-threat). Startle potentiation was collected as an index of aversive responding. Within biological siblings, startle potentiation to U-threat [intraclass correlation (ICC) = 0.35] and P-threat (ICC = 0.63) was significantly correlated. In addition, independent of an individuals' own AUD status, startle potentiation to U-threat, but not P-threat, was positively associated with risk for AUD (i.e. AUD family history). This suggests that heightened reactivity to U-threat may be a familial vulnerability factor for problematic drinking and a novel prevention target for AUD.

  10. Enhanced startle responsivity 24 hours after acute stress exposure.

    PubMed

    Herten, Nadja; Otto, Tobias; Adolph, Dirk; Pause, Bettina M; Kumsta, Robert; Wolf, Oliver T

    2016-10-01

    Cortisol release in a stressful situation can be beneficial for memory encoding and memory consolidation. Stimuli, such as odors, related to the stressful episode may successfully cue memory contents of the stress experience. The current investigation aimed at testing the potency of stress to influence startle responsivity 24 hr later and to implicitly reactivate emotional memory traces triggered by an odor involved. Participants were assigned to either a stress (Trier Social Stress Test [TSST]) or control (friendly TSST [f-TSST]) condition featuring an ambient odor. On the next day, participants underwent an auditory startle paradigm while their eyeblink reflex was recorded by an electrooculogram. Three different olfactory stimuli were delivered, one being the target odor presented the day before. Additionally, negative, positive, and pictures of the committee members were included for comparing general startle responsivity and fear-potentiated startle. Participants of the stress group demonstrated an enhanced startle response across all stimuli compared to participants of the control group. There were no specific effects with regard to the target odor. The typical fear-potentiated startle response occurred. Stressed participants tended to rate the target odor more aversive than control participants. Odor recognition memory did not differ between the groups, suggesting an implicit effect on odor valence. Our results show that acute stress exposure enhances startle responsivity 24 hr later. This effect might be caused by a shift of amygdala function causing heightened sensitivity, but lower levels of specificity. (PsycINFO Database Record (c) 2016 APA, all rights reserved).

  11. Peritraumatic startle response predicts the vulnerability to develop PTSD-like behaviors in rats: a model for peritraumatic dissociation

    PubMed Central

    Dong, Xinwen; Li, Yonghui

    2014-01-01

    Peritraumatic dissociation, a state characterized by alteration in perception and reduced awareness of surroundings, is considered to be a risk factor for the development of post-traumatic stress disorder (PTSD). However, the predictive ability of peritraumatic dissociation is questioned for the inconsistent results in different time points of assessment. The startle reflex is an objective behavioral measurement of defensive response to abrupt and intense sensory stimulus of surroundings, with potential to be used as an assessment on the dissociative status in both humans and rodents. The present study examined the predictive effect of acoustic startle response (ASR) in different time points around the traumatic event in an animal model of PTSD. The PTSD-like symptoms, including hyperarousal, avoidance, and contextual fear, were assessed 2–3 weeks post-trauma. The results showed that (1) the startle amplitude attenuated immediate after intense footshock in almost half of the stress animals, and (2) the attenuated startle responses at 1 h but not 24 h after stress predicted the development of severe PTSD-like symptoms. These data indicate that the startle alteration at the immediate period after trauma, including 1 h, is more important in PTSD prediction than 24 h after trauma. Our study also suggests that the startle attenuation immediate after intense stress may serve as an objective measurement of peritraumatic dissociation in rats. PMID:24478660

  12. Altered Neuromodulatory Drive May Contribute to Exaggerated Tonic Vibration Reflexes in Chronic Hemiparetic Stroke

    PubMed Central

    McPherson, Jacob G.; McPherson, Laura M.; Thompson, Christopher K.; Ellis, Michael D.; Heckman, Charles J.; Dewald, Julius P. A.

    2018-01-01

    Exaggerated stretch-sensitive reflexes are a common finding in elbow flexors of the contralesional arm in chronic hemiparetic stroke, particularly when muscles are not voluntarily activated prior to stretch. Previous investigations have suggested that this exaggeration could arise either from an abnormal tonic ionotropic drive to motoneuron pools innervating the paretic limbs, which could bring additional motor units near firing threshold, or from an increased influence of descending monoaminergic neuromodulatory pathways, which could depolarize motoneurons and amplify their responses to synaptic inputs. However, previous investigations have been unable to differentiate between these explanations, leaving the source(s) of this excitability increase unclear. Here, we used tonic vibration reflexes (TVRs) during voluntary muscle contractions of increasing magnitude to infer the sources of spinal motor excitability in individuals with chronic hemiparetic stroke. We show that when the paretic and non-paretic elbow flexors are preactivated to the same percentage of maximum prior to vibration, TVRs remain significantly elevated in the paretic arm. We also show that the rate of vibration-induced torque development increases as a function of increasing preactivation in the paretic limb, even though the amplitude of vibration-induced torque remains conspicuously unchanged as preactivation increases. It is highly unlikely that these findings could be explained by a source that is either purely ionotropic or purely neuromodulatory, because matching preactivation should control for the effects of a potential ionotropic drive (and lead to comparable tonic vibration reflex responses between limbs), while a purely monoaminergic mechanism would increase reflex magnitude as a function of preactivation. Thus, our results suggest that increased excitability of motor pools innervating the paretic limb post-stroke is likely to arise from both ionotropic and neuromodulatory mechanisms. PMID:29686611

  13. The CRH1 antagonist GSK561679 increases human fear but not anxiety as assessed by startle.

    PubMed

    Grillon, Christian; Hale, Elizabeth; Lieberman, Lynne; Davis, Andrew; Pine, Daniel S; Ernst, Monique

    2015-03-13

    Fear to predictable threat and anxiety to unpredictable threat reflect distinct processes mediated by different brain structures, the central nucleus of the amygdala and the bed nucleus of the stria terminalis (BNST), respectively. This study tested the hypothesis that the corticotropin-releasing factor (CRF1) antagonist GSK561679 differentially reduces anxiety but increases fear in humans. A total of 31 healthy females received each of four treatments: placebo, 50 mg GSK561679 (low-GSK), 400 mg GSK561679 (high-GSK), and 1 mg alprazolam in a crossover design. Participants were exposed to three conditions during each of the four treatments. The three conditions included one in which predictable aversive shocks were signaled by a cue, a second during which shocks were administered unpredictably, and a third condition without shock. Fear and anxiety were assessed using the acoustic startle reflex. High-GSK had no effect on startle potentiation during unpredictable threat (anxiety) but increased startle potentiation during the predictable condition (fear). Low-GSK did not affect startle potentiation across conditions. Consistent with previous findings, alprazolam reduced startle potentiation during unpredictable threat but not during predictable threat. The increased fear by high-GSK replicates animal findings and suggests a lift of the inhibitory effect of the BNST on the amygdala by the CRF1 antagonist.

  14. Putative antipsychotics with pronounced agonism at serotonin 5-HT1A and partial agonist activity at dopamine D2 receptors disrupt basal PPI of the startle reflex in rats.

    PubMed

    Auclair, Agnès L; Galinier, Alexandra; Besnard, Joël; Newman-Tancredi, Adrian; Depoortère, Ronan

    2007-07-01

    Prepulse inhibition (PPI) of the startle reflex has been extensively studied because it is disrupted in several psychiatric diseases, most notably schizophrenia. In rats, and to a lesser extent, in humans, PPI can be diminished by dopamine (DA) D(2)/D(3) and serotonin 5-HT(1A) receptor agonists. A novel class of potential antipsychotics (SSR181507, bifeprunox, and SLV313) possess partial agonist/antagonist properties at D(2) receptors and various levels of 5-HT(1A) activation. It thus appeared warranted to assess, in Sprague-Dawley rats, the effects of these antipsychotics on basal PPI. SSR181507, sarizotan, and bifeprunox decreased PPI, with a near-complete abolition at 2.5-10 mg/kg; SLV313 had a significant effect at 0.16 mg/kg only. Co-treatment with the 5-HT(1A) receptor antagonist WAY100,635 (0.63 mg/kg) showed that the 5-HT(1A) agonist activity of SSR181507 was responsible for its effect. By contrast, antipsychotics with low affinity and/or efficacy at 5-HT(1A) receptors, such as aripiprazole (another DA D(2)/D(3) and 5-HT(1A) ligand), and established typical and atypical antipsychotics (haloperidol, clozapine, risperidone, olanzapine, quetiapine, and ziprasidone) had no effect on basal PPI (0.01-2.5 to 2.5-40 mg/kg). The present data demonstrate that some putative antipsychotics with pronounced 5-HT(1A) agonist activity, coupled with partial agonist activity at DA D(2) receptors, markedly diminish PPI of the startle reflex in rats. These data raise the issue of the influence of such compounds on sensorimotor gating in humans.

  15. The Onset of Puberty: Effects on the Psychophysiology of Defensive and Appetitive Motivation

    PubMed Central

    Quevedo, Karina; Benning, Stephen D; Gunnar, Megan R; Dahl, Ronald E

    2010-01-01

    We examined puberty-specific effects on affect-related behavior and on the psychophysiology of defensive and appetitive motivation while controlling for age. Adolescents (N=94, ages=12 and 13 years), viewed 75 pictures (IAPS: pleasant, neutral and aversive) while listening to auditory probes. Startle response and postauricular (PA) reflex were collected as measures of defensive and appetitive motivation respectively. Pubertal status and measures of anxiety/stress reaction and sensation/thrill seeking were obtained. Mid/late pubertal adolescents showed enhanced startle amplitude across all picture valences. A puberty by valence interaction revealed that mid/late pubertal adolescents showed appetitive potentiation of the PA, while pre/early pubertal adolescents showed no modulation of the PA reflex. Mid/late pubertal adolescents also scored significantly higher on measures of sensation/thrill seeking than did their pre/early pubertal peers and puberty moderated the association between psychophysiology and behavioral measures, suggesting that it plays a role in reorganizing defensive and appetitive motivational systems. PMID:19144221

  16. Moral identity and emotion in athletes.

    PubMed

    Kavussanu, Maria; Willoughby, Adrian; Ring, Christopher

    2012-12-01

    The purpose of this study was to investigate the effects of moral identity on physiological responses to affective pictures, namely, the startle blink reflex and pain-related evoked potential. Male (n = 48) and female (n = 46) athletes participating in contact team sports were randomly assigned to either a moral identity group or a non-moral identity group and viewed a series of unpleasant, neutral, and pleasant sport-specific pictures. During picture viewing, a noxious electrocutaneous stimulus was delivered as the startle probe and the startle blink and pain-related evoked potential were measured. Upon completion of physiological measures, participants reviewed the pictures and rated them for valence and arousal. ANOVAs revealed that participants in the moral identity group displayed larger startle blinks and smaller pain-related potentials than did those in the non-moral identity group across all picture valence categories. However, the difference in the magnitude of startle blinks between the moral and non-moral identity groups was larger in response to unpleasant than pleasant and neutral pictures. Our findings suggest that moral identity affects physiological responses to sport-specific affective pictures, thereby providing objective evidence for the link between moral identity and emotion in athletes.

  17. The nursing hypothesis: an evolutionary account of emotional modulation of the postauricular reflex.

    PubMed

    Johnson, Gabriella M; Valle-Inclán, Fernando; Geary, David C; Hackley, Steven A

    2012-02-01

    The postauricular reflex (PAR) is anomalous because it seems to be potentiated during positive emotions and inhibited during negative states, unlike eyeblink and other components of the startle reflex. Two evolutionary explanations based on simian facial emotion expressions were tested. Reflexes were elicited while 47 young adult volunteers made lip pursing or grimacing poses and viewed neutral, intimidating, or appetitive photos. The PAR was enhanced during appetitive slides, but only as subjects carried out the lip-pursing maneuver. These results support the nursing hypothesis, which assumes that infant mammals instinctively retract their pinnae while nursing in order to comfortably position the head. Appetitive emotions prime the ear-retraction musculature, even in higher primates whose postauricular muscles are vestigial. Copyright © 2011 Society for Psychophysiological Research.

  18. Defensive motivation and attention in anticipation of different types of predictable and unpredictable threat: A startle and event-related potential investigation.

    PubMed

    Nelson, Brady D; Hajcak, Greg

    2017-08-01

    Predictability is an important characteristic of threat that impacts defensive motivation and attentional engagement. Supporting research has primarily focused on actual threat (e.g., shocks), and it is unclear whether the predictability of less intense threat (e.g., unpleasant pictures) similarly affects motivation and attention. The present study utilized a within-subject design and examined defensive motivation (startle reflex and self-reported anxiety) and attention (probe N100 and P300) in anticipation of shocks and unpleasant pictures during a no, predictable, and unpredictable threat task. This study also examined the impact of predictability on the P300 to shocks and late positive potential (LPP) to unpleasant pictures. The startle reflex and self-reported anxiety were increased in anticipation of both types of threat relative to no threat. Furthermore, startle potentiation in anticipation of unpredictable threat was greater for shocks compared to unpleasant pictures, but there was no difference for predictable threat. The probe N100 was enhanced in anticipation of unpredictable threat relative to predictable threat and no threat, and the probe P300 was suppressed in anticipation of predictable and unpredictable threat relative to no threat. These effects did not differ between the shock and unpleasant picture trials. Finally, the P300 and early LPP component were increased in response to unpredictable relative to predictable shocks and unpleasant pictures, respectively. The present study suggests that the unpredictability of unpleasant pictures increases defensive motivation, but to a lesser degree relative to actual threat. Moreover, unpredictability enhances attentional engagement in anticipation of, and in reaction to, both types of threat. © 2017 Society for Psychophysiological Research.

  19. Prepulse inhibition of the startle reflex and its attentional modulation in the human S-ketamine and N,N-dimethyltryptamine (DMT) models of psychosis.

    PubMed

    Heekeren, K; Neukirch, A; Daumann, J; Stoll, M; Obradovic, M; Kovar, K-A; Geyer, M A; Gouzoulis-Mayfrank, E

    2007-05-01

    Patients with schizophrenia exhibit diminished prepulse inhibition (PPI) of the acoustic startle reflex and deficits in the attentional modulation of PPI. Pharmacological challenges with hallucinogens are used as models for psychosis in both humans and animals. Remarkably, in contrast to the findings in schizophrenic patients and in animal hallucinogen models of psychosis, previous studies with healthy volunteers demonstrated increased levels of PPI after administration of low to moderate doses of either the antiglutamatergic hallucinogen ketamine or the serotonergic hallucinogen psilocybin. The aim of the present study was to investigate the influence of moderate and high doses of the serotonergic hallucinogen N,N-dimethyltryptamine (DMT) and the N-methyl-D-aspartate antagonist S-ketamine on PPI and its attentional modulation in humans. Fifteen healthy volunteers were included in a double-blind cross-over study with two doses of DMT and S-ketamine. Effects on PPI and its attentional modulation were investigated. Nine subjects completed both experimental days with the two doses of both drugs. S-ketamine increased PPI in both dosages, whereas DMT had no significant effects on PPI. S-ketamine decreased and DMT tended to decrease startle magnitude. There were no significant effects of either drug on the attentional modulation of PPI. In human experimental hallucinogen psychoses, and even with high, clearly psychotogenic doses of DMT or S-ketamine, healthy subjects failed to exhibit the predicted attenuation of PPI. In contrast, PPI was augmented and the startle magnitude was decreased after S-ketamine. These data point to important differences between human hallucinogen models and both animal hallucinogen models of psychosis and naturally occurring schizophrenia.

  20. Acute episodes of predator exposure in conjunction with chronic social instability as an animal model of post-traumatic stress disorder

    PubMed Central

    Zoladz, Phillip R.; Conrad, Cheryl D.; Fleshner, Monika; Diamond, David M.

    2008-01-01

    People who are exposed to horrific, life-threatening experiences are at risk for developing post-traumatic stress disorder (PTSD). Some of the symptoms of PTSD include persistent anxiety, exaggerated startle, cognitive impairments and increased sensitivity to yohimbine, an α2-adrenergic receptor antagonist. We have taken into account the conditions known to induce PTSD, as well as factors responsible for long-term maintenance of the disorder, to develop an animal model of PTSD. Adult male Sprague–Dawley rats were administered a total of 31 days of psychosocial stress, composed of acute and chronic components. The acute component was a 1-h stress session (immobilization during cat exposure), which occurred on Days 1 and 11. The chronic component was that on all 31 days the rats were given unstable housing conditions. We found that psychosocially stressed rats had reduced growth rate, reduced thymus weight, increased adrenal gland weight, increased anxiety, an exaggerated startle response, cognitive impairments, greater cardiovascular and corticosterone reactivity to an acute stressor and heightened responsivity to yohimbine. This work demonstrates the effectiveness of acute inescapable episodes of predator exposure administered in conjunction with daily social instability as an animal model of PTSD. PMID:18574787

  1. The CRH1 Antagonist GSK561679 Increases Human Fear But Not Anxiety as Assessed by Startle

    PubMed Central

    Grillon, Christian; Hale, Elizabeth; Lieberman, Lynne; Davis, Andrew; Pine, Daniel S; Ernst, Monique

    2015-01-01

    Fear to predictable threat and anxiety to unpredictable threat reflect distinct processes mediated by different brain structures, the central nucleus of the amygdala and the bed nucleus of the stria terminalis (BNST), respectively. This study tested the hypothesis that the corticotropin-releasing factor (CRF1) antagonist GSK561679 differentially reduces anxiety but increases fear in humans. A total of 31 healthy females received each of four treatments: placebo, 50 mg GSK561679 (low-GSK), 400 mg GSK561679 (high-GSK), and 1 mg alprazolam in a crossover design. Participants were exposed to three conditions during each of the four treatments. The three conditions included one in which predictable aversive shocks were signaled by a cue, a second during which shocks were administered unpredictably, and a third condition without shock. Fear and anxiety were assessed using the acoustic startle reflex. High-GSK had no effect on startle potentiation during unpredictable threat (anxiety) but increased startle potentiation during the predictable condition (fear). Low-GSK did not affect startle potentiation across conditions. Consistent with previous findings, alprazolam reduced startle potentiation during unpredictable threat but not during predictable threat. The increased fear by high-GSK replicates animal findings and suggests a lift of the inhibitory effect of the BNST on the amygdala by the CRF1 antagonist. PMID:25430779

  2. Appetitive startle modulation in the human laboratory predicts Cannabis craving in the natural environment.

    PubMed

    Mereish, Ethan H; Padovano, Hayley Treloar; Wemm, Stephanie; Miranda, Robert

    2018-07-01

    Drug-related cues evoke craving and stimulate motivational systems in the brain. The acoustic startle reflex captures activation of these motivational processes and affords a unique measure of reactivity to drug cues. This study examined the effects of cannabis-related cues on subjective and eye blink startle reactivity in the human laboratory and tested whether these effects predicted youth's cue-elicited cannabis craving in the natural environment. Participants were 55 frequent cannabis users, ages 16 to 24 years (M = 19.9, SD = 1.9; 55% male; 56% met criteria for cannabis dependence), who were recruited from a clinical trial to reduce cannabis use. Eye blink electromyographic activity was recorded in response to acoustic probes that elicited startle reactivity while participants viewed pleasant, unpleasant, neutral, and cannabis picture cues. Following the startle assessment, participants completed an ecological momentary assessment protocol that involved repeated assessments of cue-elicited craving in real time in their real-world environments. Multilevel models included the presence or absence of visible cannabis cues in the natural environment, startle magnitude, and the cross-level interaction of cues by startle to test whether cue-modulated startle reactivity in the laboratory was associated with cue-elicited craving in the natural environment. Analyses showed that cannabis-related stimuli evoked an appetitive startle response pattern in the laboratory, and this effect was associated with increased cue-elicited craving in the natural environment, b = - 0.15, p = .022, 95% CI [- 0.28, - 0.02]. Pleasant stimuli also evoked an appetitive response pattern, but in this case, blunted response was associated with increased cue-elicited craving in the natural environment, b = 0.27, p < .001, 95% CI [0.12, 0.43]. Our findings support cue-modulated startle reactivity as an index of the phenotypic expression of cue-elicited cannabis craving.

  3. Emotion dysregulation in alexithymia: Startle reactivity to fearful affective imagery and its relation to heart rate variability.

    PubMed

    Panayiotou, Georgia; Constantinou, Elena

    2017-09-01

    Alexithymia is associated with deficiencies in recognizing and expressing emotions and impaired emotion regulation, though few studies have verified the latter assertion using objective measures. This study examined startle reflex modulation by fearful imagery and its associations with heart rate variability in alexithymia. Fifty-four adults (27 alexithymic) imagined previously normed fear scripts. Startle responses were assessed during baseline, first exposure, and reexposure. During first exposure, participants, in separate trials, engaged in either shallow or deep emotion processing, giving emphasis on descriptive or affective aspects of imagery, respectively. Resting heart rate variability was assessed during 2 min of rest prior to the experiment, with high alexithymic participants demonstrating significantly higher LF/HF (low frequency/high frequency) ratio than controls. Deep processing was associated with nonsignificantly larger and faster startle responses at first exposure for alexithymic participants. Lower LF/HF ratio, reflecting higher parasympathetic cardiac activity, predicted greater startle amplitude habituation for alexithymia but lower habituation for controls. Results suggest that, when exposed to prolonged threat, alexithymics may adjust poorly, showing a smaller initial defensive response but slower habituation. This pattern seems related to their low emotion regulation ability as indexed by heart rate variability. © 2017 Society for Psychophysiological Research.

  4. Effects of brain-derived and glial cell line-derived neurotrophic factors on startle response and disrupted prepulse inhibition in mice of DBA/2J inbred strain.

    PubMed

    Naumenko, Vladimir S; Bazovkina, Daria V; Morozova, Maryana V; Popova, Nina K

    2013-08-29

    Prepulse inhibition (PPI), the reduction in acoustic startle reflex when it is preceded by weak prepulse stimuli, is a measure of critical to normal brain functioning sensorimotor gating. PPI deficit was shown in a variety of psychiatric disorders including schizophrenia, and in DBA/2J mouse strain. In the current study, we examined the effects of brain-derived (BDNF) and glial cell line-derived (GDNF) neurotrophic factors on acoustic startle response and PPI in DBA/2J mice. It was found that BDNF (300 ng, i.c.v.) significantly increased amplitude of startle response and restored disrupted PPI in 7 days after acute administration. GDNF (800 ng, i.c.v.) did not produce significant alteration neither in amplitude of startle response nor in PPI in DBA/2J mice. The reversal effect of BDNF on PPI deficit was unusually long-lasting: significant increase in PPI was found 1.5 months after single acute BDNF administration. Long-term ameliorative effect BDNF on disrupted PPI suggested the implication of epigenetic mechanism in BDNF action on neurogenesis. BDNF rather than GDNF could be a perspective drug for the treatment of sensorimotor gating impairments. Copyright © 2013 Elsevier Ireland Ltd. All rights reserved.

  5. The Separate and Cumulative Effects of TBI and PTSD on Cognitive Function and Emotional Control

    DTIC Science & Technology

    2012-04-01

    indicate an altered profile of persistent hyper- arousal , exaggerated startle responses (Fani et al., 2012; Pole, 2007), larger eye-blink, eye pupil...were each compared. This separation kept variables such as word frequency, valence, arousal , and other properties as consistent as possible across...number of syllables and frequency. Only high arousal Negative and Positive words were used and arousal and valence ratings for Neutral, Negative and

  6. Sensorimotor Gating in Depressed and Euthymic Patients with Bipolar Disorder: Analysis on Prepulse Inhibition of Acoustic Startle Response Stratified by Gender and State.

    PubMed

    Matsuo, Junko; Ota, Miho; Hidese, Shinsuke; Teraishi, Toshiya; Hori, Hiroaki; Ishida, Ikki; Hiraishi, Moeko; Kunugi, Hiroshi

    2018-01-01

    Prepulse inhibition (PPI) of the acoustic startle reflex is an operational measure of sensorimotor gating. The findings on PPI deficits in bipolar disorder (BD) are inconsistent among studies due to various confounding factors such as gender. This study aimed to assess sensorimotor gating deficits in patients with BD stratified by gender and state (depressed/euthymic), and to explore related clinical variables. Subjects were 106 non-manic BD patients (26 BD I and 80 BD II; 63 with depression and 43 euthymic) and 232 age-, gender-, and ethnicity-matched (Japanese) healthy controls. Depression severity was assessed using the Hamilton Depression Rating Scale-21. The electromyographic activity of the orbicularis oculi muscle was measured by a computerized startle reflex test unit. Startle magnitude, habituation, and PPI were compared among the three clinical groups: depressed BD, euthymic BD, and healthy controls. In a second analysis, patients were divided into four groups using the quartile PPI levels of controls of each gender, and a ratio of the low-PPI group (<1st quartile of controls) was compared. Effects of psychosis and medication status were examined by the Mann-Whitney U test. Clinical correlates such as medication dosage and depression severity with startle measurements were examined by Spearman's correlation. Male patients with depression, but not euthymic male patients, showed significantly lower PPI at a prepulse of 86 dB and 120 ms lead interval than did male controls. More than half of the male patients with depression showed low-PPI. In contrast, PPI in female patients did not differ from that in female controls in either the depressed or euthymic state. Female patients with active psychosis showed significantly lower PPI than those without psychosis. Female patients on typical antipsychotics had significantly lower PPI, than those without such medication. PPI showed a significant positive correlation with lamotrigine dosage in male patients and lithium dosage in female patients. These findings suggest that sensorimotor gating is impaired in male BD patients with depression. However, we obtained no evidence for such abnormalities in female BD patients except for those with current psychosis. The observed associations between medication and startle measurements warrant further investigation.

  7. Increased auditory startle reflex in children with functional abdominal pain.

    PubMed

    Bakker, Mirte J; Boer, Frits; Benninga, Marc A; Koelman, Johannes H T M; Tijssen, Marina A J

    2010-02-01

    To test the hypothesis that children with abdominal pain-related functional gastrointestinal disorders have a general hypersensitivity for sensory stimuli. Auditory startle reflexes were assessed in 20 children classified according to Rome III classifications of abdominal pain-related functional gastrointestinal disorders (13 irritable bowel syndrome [IBS], 7 functional abdominal pain syndrome; mean age, 12.4 years; 15 girls) and 23 control subjects (14 girls; mean age, 12.3 years) using a case-control design. The activity of 6 left-sided muscles and the sympathetic skin response were obtained by an electromyogram. We presented sudden loud noises to the subjects through headphones. Both the combined response of 6 muscles and the blink response proved to be significantly increased in patients with abdominal pain compared with control subjects. A significant increase of the sympathetic skin response was not found. Comorbid anxiety disorders (8 patients with abdominal pain) or Rome III subclassification did not significantly affect these results. This study demonstrates an objective hyperresponsivity to nongastrointestinal stimuli. Children with abdominal pain-related functional gastrointestinal disorders may have a generalized hypersensitivity of the central nervous system. Copyright 2010 Mosby, Inc. All rights reserved.

  8. Round window closure affects cochlear responses to suprathreshold stimuli.

    PubMed

    Cai, Qunfeng; Whitcomb, Carolyn; Eggleston, Jessica; Sun, Wei; Salvi, Richard; Hu, Bo Hua

    2013-12-01

    The round window acts as a vent for releasing inner ear pressure and facilitating basilar membrane vibration. Loss of this venting function affects cochlear function, which leads to hearing impairment. In an effort to identify functional changes that might be used in clinical diagnosis of round window atresia, the current investigation was designed to examine how the cochlea responds to suprathreshold stimuli following round window closure. Prospective, controlled, animal study. A rat model of round window occlusion (RWO) was established. With this model, the thresholds of auditory brainstem responses (ABR) and the input/output (IO) functions of distortion product otoacoustic emissions (DPOAEs) and acoustic startle responses were examined. Round window closure caused a mild shift in the thresholds of the auditory brainstem response (13.5 ± 9.1 dB). It also reduced the amplitudes of the distortion product otoacoustic emissions and the slope of the input/output functions. This peripheral change was accompanied by a significant reduction in the amplitude, but not the threshold, of the acoustic startle reflex, a motor response to suprathreshold sounds. In addition to causing mild increase in the threshold of the auditory brainstem response, round window occlusion reduced the slopes of both distortion product otoacoustic emissions and startle reflex input/output functions. These changes differ from those observed for typical conductive or sensory hearing loss, and could be present in patients with round window atresia. However, future clinical observations in patients are needed to confirm these findings. Copyright © 2013 The American Laryngological, Rhinological and Otological Society, Inc.

  9. The startle paradigm in a forensic psychiatric setting: elucidating psychopathy.

    PubMed

    Loomans, Max M; Tulen, Joke H M; van Marle, Hjalmar J C

    2015-02-01

    Most people who meet the diagnostic criteria for anti-social personality disorder (ASPD) do not meet the criteria for psychopathy. A differentiating feature is affective-interpersonal style. Eye blink startle reflex paradigms have been used to study affect. The aim of this study is to explore an eye blink startle paradigm as a means of distinguishing between men with both ASPD and psychopathy, and men with ASPD alone. One hundred and thirty-six men were recruited as follows: 31 patients with ASPD and a Psychopathy Checklist-Revised (PCL-R) score of 26 or more, 22 patients with ASPD and a PCL-R score of 25 or less, 50 forensic hospital employees and 33 general population men, none in the latter two groups having abnormal personality traits. Each was presented with 16 pleasant, 16 unpleasant and 16 neutral pictures. Acoustic probes were presented during each category at 300, 800, 1300 and 3800 milliseconds (ms) after picture onset. Eye blink response was measured by electromyography. Overall, both patient groups showed significantly smaller eye blink responses to the startle stimuli compared with the community controls. Both the latter and the ASPD group showed the expected increase in eye blink response at longer startle latencies to unpleasant pictures than pleasant pictures, but this was not present either in the group with psychopathy or in the forensic hospital employees. With increasing startle latency onset, eye blink amplitude increased significantly in both the healthy comparison groups and the ASPD group, but not in the group with psychopathy. We replicated eye blink startle modulation deficiencies among men with psychopathy. We confirmed that the psychopathy and ASPD groups could be distinguished by startle stimulus onset asynchrony, but this pattern was also seen in one healthy group - the forensic hospital employees. This suggests a case for more research with more diverse comparison groups and more differentiation of personality traits before drawing definitive conclusions about distinctive startle response patterns among men with psychopathy. Copyright © 2014 John Wiley & Sons, Ltd.

  10. SALICYLATE INCREASES THE GAIN OF THE CENTRAL AUDITORY SYSTEM

    PubMed Central

    Sun, W.; Lu, J.; Stolzberg, D.; Gray, L.; Deng, A.; Lobarinas, E.; Salvi, R. J.

    2009-01-01

    High doses of salicylate, the anti-inflammatory component of aspirin, induce transient tinnitus and hearing loss. Systemic injection of 250 mg/kg of salicylate, a dose that reliably induces tinnitus in rats, significantly reduced the sound evoked output of the rat cochlea. Paradoxically, salicylate significantly increased the amplitude of the sound-evoked field potential from the auditory cortex (AC) of conscious rats, but not the inferior colliculus (IC). When rats were anesthetized with isoflurane, which increases GABA-mediated inhibition, the salicylate-induced AC amplitude enhancement was abolished, whereas ketamine, which blocks N-methyl-d-aspartate receptors, further increased the salicylate-induced AC amplitude enhancement. Direct application of salicylate to the cochlea, however, reduced the response amplitude of the cochlea, IC and AC, suggesting the AC amplitude enhancement induced by systemic injection of salicylate does not originate from the cochlea. To identify a behavioral correlate of the salicylate-induced AC enhancement, the acoustic startle response was measured before and after salicylate treatment. Salicylate significantly increased the amplitude of the startle response. Collectively, these results suggest that high doses of salicylate increase the gain of the central auditory system, presumably by down-regulating GABA-mediated inhibition, leading to an exaggerated acoustic startle response. The enhanced startle response may be the behavioral correlate of hyperacusis that often accompanies tinnitus and hearing loss. Published by Elsevier Ltd on behalf of IBRO. PMID:19154777

  11. Immobility and hyperthermia in the tail suspension test: association with the Porsolt test and the reflex startle reaction in 11 inbred mouse strains and the effects of genetic knockout of MAO A.

    PubMed

    Popova, N K; Tibeikina, M A

    2010-06-01

    Immobility and hyperthermia induced by unavoidable stress imposed by the tail suspension test (TST) and the acoustic startle reaction were assessed in mice of 11 inbred strains and in Tg8 mice, which have genetic knockout of MAO A. Sharp genotypic differences in immobility were seen, while there was no correlation with the hyperthermic response to the TST. A correlation was found between the extent of immobility in the TST and the startle reaction. Studies of 11 strains of mice revealed a positive correlation between the duration of immobility in the TST and the Porsolt "despair test." Genetic knockout of MAO A, one of the key enzymes in catecholamine and serotonin metabolism in the brain, weakened the startle reaction and TST-induced hyperthermia but had no significant effect on the immobility of Tg8 mice, which provides evidence of differences in the neurochemical regulation of these reactions. These data provide grounds for using the TST as a "dry" Porsolt test and identify TST-induced hyperthermia as a model for reactions to unavoidable stress.

  12. The gap-startle paradigm to assess auditory temporal processing: Bridging animal and human research.

    PubMed

    Fournier, Philippe; Hébert, Sylvie

    2016-05-01

    The gap-prepulse inhibition of the acoustic startle (GPIAS) paradigm is the primary test used in animal research to identify gap detection thresholds and impairment. When a silent gap is presented shortly before a loud startling stimulus, the startle reflex is inhibited and the extent of inhibition is assumed to reflect detection. Here, we applied the same paradigm in humans. One hundred and fifty-seven normal-hearing participants were tested using one of five gap durations (5, 25, 50, 100, 200 ms) in one of the following two paradigms-gap-embedded in or gap-following-the continuous background noise. The duration-inhibition relationship was observable for both conditions but followed different patterns. In the gap-embedded paradigm, GPIAS increased significantly with gap duration up to 50 ms and then more slowly up to 200 ms (trend only). In contrast, in the gap-following paradigm, significant inhibition-different from 0--was observable only at gap durations from 50 to 200 ms. The finding that different patterns are found depending on gap position within the background noise is compatible with distinct mechanisms underlying each of the two paradigms. © 2016 Society for Psychophysiological Research.

  13. Measuring Anxious Responses to Predictable and Unpredictable Threat in Children and Adolescents

    ERIC Educational Resources Information Center

    Schmitz, Anja; Merikangas, Kathleen; Swendsen, Haruka; Cui, Lihong; Heaton, Leann; Grillon, Christian

    2011-01-01

    Research has highlighted the need for new methods to assess emotions in children on multiple levels to gain better insight into the complex processes of emotional development. The startle reflex is a unique translational tool that has been used to study physiological processes during fear and anxiety in rodents and in human participants. However,…

  14. Distinct responses to predictable and unpredictable threat in anxiety pathologies: effect of panic attack.

    PubMed

    Grillon, Christian; O'Connell, Katherine; Lieberman, Lynne; Alvarez, Gabriella; Geraci, Marilla; Pine, Daniel S; Ernst, Monique

    2017-10-01

    Delineating specific clinical phenotypes of anxiety disorders is a crucial step toward better classification and understanding of these conditions. The present study sought to identify differential aversive responses to predictable and unpredictable threat of shock in healthy comparisons and in non-medicated anxiety patients with and without a history of panic attacks (PAs). 143 adults (72 healthy controls; 71 patients with generalized anxiety disorder (GAD) or/and social anxiety disorder (SAD), 24 with and 47 without PAs) were exposed to three conditions: 1) predictable shocks signaled by a cue, 2) unpredictable shocks, and 3) no shock. Startle magnitude was used to assess aversive responses. Across disorders, a PA history was specifically associated with hypersensitivity to unpredictable threat. By disorder, SAD was associated with hypersensitivity to predictable threat, whereas GAD was associated with exaggerated baseline startle. These results identified three physiological patterns. The first is hypersensitivity to unpredictable threat in individuals with PAs. The second is hypersensitivity to predictable threat, which characterizes SAD. The third is enhanced baseline startle in GAD, which may reflect propensity for self-generated anxious thoughts in the absence of imminent danger. These results inform current thinking by linking specific clinical features to particular physiology profiles.

  15. A large single ethnicity study of prepulse inhibition in schizophrenia: Separate analysis by sex focusing on effect of symptoms.

    PubMed

    Matsuo, Junko; Ota, Miho; Hori, Hiroaki; Hidese, Shinsuke; Teraishi, Toshiya; Ishida, Ikki; Hiraishi, Moeko; Kunugi, Hiroshi

    2016-11-01

    Deficits in sensorimotor gating, as measured with prepulse inhibition (PPI), have been considered an endophenotype of schizophrenia. However, the question remains whether these deficits are related to current symptoms. This single site study aimed to explore clinical features related to the modulation of startle reflex in a large sample of Japanese patients with schizophrenia (DSM-IV). The subjects comprised 181 patients and 250 healthy controls matched for age and sex. Schizophrenia symptoms were assessed with the Positive and Negative Syndrome Scale (PANSS). Startle reflex to acoustic stimuli was recorded using a startle stimulus of 115 dB and a prepulse of four different conditions (intensity: 86 dB or 90 dB; lead interval: 60 ms or 120 ms). Patients exhibited significantly reduced startle magnitude (p < 0.001), habituation (p = 0.001), and PPI (90 dB, 60 ms, p = 0.016; 90 dB, 120 ms, p = 0.001) compared with controls. Patients of both sexes exhibited significantly lower habituation and PPI (90 dB, 120 ms) compared with the same sex controls. We could not detect a significant correlation with any clinical variable in the entire patients, however, when men and women were examined separately, there was a negative correlation with the PANSS cognitive domain (ρ = -0.33, p = 0.008) in men, but not in women. Moreover, when patients were subdivided into four clusters, two clusters with high positive symptoms showed significant PPI deficits in men. Our results suggest that sensorimotor gating is impaired in schizophrenia of both sexes, and PPI deficits may be related to thought disturbance and disorganization in male patients with schizophrenia. Copyright © 2016 Elsevier Ltd. All rights reserved.

  16. Food deprivation and emotional reactions to food cues: implications for eating disorders.

    PubMed

    Drobes, D J; Miller, E J; Hillman, C H; Bradley, M M; Cuthbert, B N; Lang, P J

    2001-01-01

    Two studies examined emotional responding to food cues. In experiment 1, normal college students were assigned to 0-, 6- or 24-h of food deprivation prior to presentations of standard emotional and food-related pictures. Food deprivation had no impact on responses elicited by standard emotional pictures. However, subjective and psychophysiological reactions to food pictures were affected significantly by deprivation. Importantly, food-deprived subjects viewing food pictures showed an enhanced startle reflex and increased heart rate. Experiment 2 replicated the food deprivation effects from experiment 1, and examined participants reporting either a habitual pattern of restrained (anorexia-like) or binge (bulimia-like) eating. Food-deprived and binge eater groups showed startle potentiation to food cues, and rated these stimuli as more pleasant, relative to restrained eaters and control subjects. The results are interpreted from the perspective that startle modulation reflects activation of defensive or appetitive motivation. Implications of the data for understanding eating disorders are considered.

  17. The emotional startle effect is disrupted by a concurrent working memory task.

    PubMed

    King, Rosemary; Schaefer, Alexandre

    2011-02-01

    Working memory (WM) processes are often thought to play an important role in the cognitive regulation of negative emotions. However, little is known about how they influence emotional processing. We report two experiments that tested whether a concurrent working memory task could modulate the emotional startle eyeblink effect, a well-known index of emotional processing. In both experiments, emotionally negative and neutral pictures were viewed in two conditions: a "cognitive load" (CL) condition, in which participants had to actively maintain information in working memory (WM) while viewing the pictures, and a control "no load" (NL) condition. Picture-viewing instructions were identical across CL and NL. In both experiments, results showed a significant reduction of the emotional modulation of the startle eyeblink reflex in the CL condition compared to the NL condition. These findings suggest that a concurrent WM task disrupts emotional processing even when participants are directing visual focus on emotionally relevant information. Copyright © 2010 Society for Psychophysiological Research.

  18. Understanding the pathophysiology of reflex epilepsy using simultaneous EEG-fMRI.

    PubMed

    Sandhya, Manglore; Bharath, Rose Dawn; Panda, Rajanikant; Chandra, S R; Kumar, Naveen; George, Lija; Thamodharan, A; Gupta, Arun Kumar; Satishchandra, P

    2014-03-01

    Measuring neuro-haemodynamic correlates in the brain of epilepsy patients using EEG-fMRI has opened new avenues in clinical neuroscience, as these are two complementary methods for understanding brain function. In this study, we investigated three patients with drug-resistant reflex epilepsy using EEG-fMRI. Different types of reflex epilepsy such as eating, startle myoclonus, and hot water epilepsy were included in the study. The analysis of EEG-fMRI data was based on the visual identification of interictal epileptiform discharges on scalp EEG. The convolution of onset time and duration of these epilepsy spikes was estimated, and using these condition-specific effects in a general linear model approach, we evaluated activation of fMRI. Patients with startle myoclonus epilepsy experienced epilepsy in response to sudden sound or touch, in association with increased delta and theta activity with a spike-and-slow-wave pattern of interictal epileptiform discharges on EEG and fronto-parietal network activation pattern on SPECT and EEG-fMRI. Eating epilepsy was triggered by sight or smell of food and fronto-temporal discharges were noted on video-EEG (VEEG). Similarly, fronto-temporo-parietal involvement was noted on SPECT and EEG-fMRI. Hot water epilepsy was triggered by contact with hot water either in the bath or by hand immersion, and VEEG showed fronto-parietal involvement. SPECT and EEG fMRI revealed a similar fronto-parietal-occipital involvement. From these results, we conclude that continuous EEG recording can improve the modelling of BOLD changes related to interictal epileptic activity and this can thus be used to understand the neuro-haemodynamic substrates involved in reflex epilepsy.

  19. Effects of smoking on the acoustic startle response and prepulse inhibition in smokers with and without posttraumatic stress disorder.

    PubMed

    Vrana, Scott R; Calhoun, Patrick S; McClernon, F Joseph; Dennis, Michelle F; Lee, Sherman T; Beckham, Jean C

    2013-12-01

    Cigarette smokers smoke in part because nicotine helps regulate attention. Prepulse inhibition (PPI) of the startle reflex is a measure of early attentional gating that is reduced in abstinent smokers and in groups with attention regulation difficulties. Attention difficulties are found in people with posttraumatic stress disorder (PTSD). The aim of this study is to assess whether smoking and abstinence differentially affect the startle response and PPI in smokers with and without PTSD. Startle response and PPI (prepulses at 60, 120, or 240 ms) were measured in smokers with (N = 39) and without (N = 61) PTSD, while smoking and again while abstinent. Participants with PTSD produced both larger magnitude and faster latency startle responses than controls. Across groups, PPI was greater when smoking than when abstinent. The PTSD and control group exhibited different patterns of PPI across prepulse intervals when smoking and when abstinent. Older age was associated with reduced PPI, but only when abstinent from smoking. The effects of PTSD on startle magnitude and of smoking on PPI replicate earlier studies. The different pattern of PPI exhibited in PTSD and control groups across prepulse intervals, while smoking and abstinent suggests that previous research on smoking and PPI has been limited by not including longer prepulse intervals, and that nicotine may affect the time course as well as increasing the level of PPI. The reduced PPI among older participants during abstinence suggests that nicotine may play a role in maintaining attention in older smokers, which may motivate continued smoking in older individuals.

  20. Excitability of pontine startle processing neurones is regulated by the two-pore-domain K+ channel TASK-3 coupled to 5-HT2C receptors.

    PubMed

    Weber, Maruschka; Schmitt, Angelika; Wischmeyer, Erhard; Döring, Frank

    2008-09-01

    The mammalian startle reflex is a fast response to sudden intense sensory stimuli that can be increased by anxiety or decreased by reward. The cellular integration of sensory and modulatory information takes place in giant neurones of the caudal pontine reticular formation (PnC). The startle reflex is known to be enhanced by 5-hydroxytryptamine (5-HT); however, signalling mechanisms that change the excitability of the PnC giant neurones are poorly understood. Possible molecular candidates are two-pore-domain K(+) (K(2)P) channels that generate a variable K(+) background conductance and control neuronal excitability upon activation of G-protein-coupled receptors. We demonstrate by in situ hybridization that the K(2)P channel TASK-3 is substantially expressed in PnC giant neurones. Brain slice recordings revealed a corresponding background K(+) current in these cells that forms about 30% of the outward current at -30 mV. Inactivation of TASK-3 at pH 6.4 and by ruthenium red depolarized the cells by about 7 mV and increased the action potential frequency as well as duration. Specific activation of Galpha(q)-coupled 5-HT(2) receptors with alpha-methyl 5-HT evoked a similar increase of neuronal excitability. Consistently, we measured afferent synaptic inputs from serotonergic raphe neurones and detected 5-HT(2C) receptors in PnC giant neurones by immunohistochemistry. Thus, neuronal excitability of PnC giant neurones in vivo is most likely increased by serotonergic projections via the K(2)P channel TASK-3.

  1. Routine post-weaning handling of rats prevents isolation rearing-induced deficit in prepulse inhibition.

    PubMed

    Rosa, M L N M; Silva, R C B; Moura-de-Carvalho, F T; Brandão, M L; Guimarães, F S; Del Bel, E A

    2005-11-01

    Rats reared under isolation conditions from weaning present a number of behavioral changes compared to animals reared under social conditions (group housing). These changes include deficits in prepulse inhibition (PPI) of the startle reflex to a loud sound. PPI refers to the reduction of the magnitude of the startle reflex when a relatively weak stimulus (the prepulse) precedes by an appropriate time interval the intense startle-elicing stimulus (the pulse). PPI is useful for studying sensorimotor integration. The present study evaluated the effect of handling on the impairment of PPI induced by isolation-rearing. Male Wistar rats (N = 11-15/group) were housed in groups (5 per cage and handled three times a week) or isolated (housed individually) since weaning (21 days) for 10 weeks when they reach approximately 150 g. The isolated rats were divided into "minimally handled" animals (handled once a week for cleaning purposes only) or "handled" animals (handled three times a week). This handling consisted of grasping the rat by the tail and moving it to a clean cage (approximately 5 s). A statistically significant reduction (52%) in the PPI test was found only in the isolated group with minimal handling while no difference was seen between grouped animals and isolated handled animals. These results indicate that isolation rearing causes disruption in the PPI at adult age, which serves as an index of attention deficit. This change in the sensory processing of information induced by post-weaning isolation can be prevented by handling during the development of the animal.

  2. Aversive imagery in panic disorder: agoraphobia severity, comorbidity, and defensive physiology.

    PubMed

    McTeague, Lisa M; Lang, Peter J; Laplante, Marie-Claude; Bradley, Margaret M

    2011-09-01

    Panic is characterized as a disorder of interoceptive physiologic hyperarousal, secondary to persistent anticipation of panic attacks. The novel aim of this research was to investigate whether severity of agoraphobia within panic disorder covaries with the intensity of physiological reactions to imagery of panic attacks and other aversive scenarios. A community sample of principal panic disorder (n = 112; 41 without agoraphobia, 71 with agoraphobia) and control (n = 76) participants imagined threatening and neutral events while acoustic startle probes were presented and the eye-blink response (orbicularis oculi) recorded. Changes in heart rate, skin conductance level, and facial expressivity were also measured. Overall, panic disorder patients exceeded control participants in startle reflex and heart rate during imagery of standard panic attack scenarios, concordant with more extreme ratings of aversion and emotional arousal. Accounting for the presence of agoraphobia revealed that both panic disorder with and without situational apprehension showed the pronounced heart rate increases during standard panic attack imagery observed for the sample as a whole. In contrast, startle potentiation to aversive imagery was more robust in those without versus with agoraphobia. Reflex diminution was most dramatic in those with the most pervasive agoraphobia, coincident with the most extreme levels of comorbid broad negative affectivity, disorder chronicity, and functional impairment. Principal panic disorder may represent initial, heightened interoceptive fearfulness and concomitant defensive hyperactivity, which through progressive generalization of anticipatory anxiety ultimately transitions to a disorder of pervasive agoraphobic apprehension and avoidance, broad dysphoria, and compromised mobilization for defensive action. Copyright © 2011 Society of Biological Psychiatry. Published by Elsevier Inc. All rights reserved.

  3. Aversive imagery in panic disorder: Agoraphobia severity, comorbidity and defensive physiology

    PubMed Central

    McTeague, Lisa M.; Lang, Peter J.; Laplante, Marie-Claude; Bradley, Margaret M.

    2011-01-01

    Background Panic is characterized as a disorder of interoceptive physiological hyperarousal, secondary to persistent anticipation of panic attacks. The novel aim of the present research was to investigate whether severity of agoraphobia within panic disorder covaries with the intensity of physiological reactions to imagery of panic attacks and other aversive scenarios. Methods A community sample of principal panic disorder (n=112; 41 without agoraphobia, 71 with agoraphobia) and control (n=76) participants imagined threatening and neutral events while acoustic startle probes were presented and the eye-blink response (orbicularis oculi) recorded. Changes in heart rate, skin conductance level, and facial expressivity were also measured. Results Overall panic disorder patients exceeded controls in startle reflex and heart rate during imagery of standard panic attack scenarios, concordant with more extreme ratings of aversion and emotional arousal. Accounting for the presence of agoraphobia revealed that both panic disorder with and without situational apprehension showed the pronounced heart rate increases during standard panic attack imagery observed for the sample as a whole. In contrast, startle potentiation to aversive imagery was more robust in those without versus with agoraphobia. Reflex diminution was most dramatic in those with the most pervasive agoraphobia, coincident with the most extreme levels of comorbid broad negative affectivity, disorder chronicity, and functional impairment. Conclusions Principal panic disorder may represent initial, heightened interoceptive fearfulness and concomitant defensive hyperactivity, which through progressive generalization of anticipatory anxiety, ultimately transitions to a disorder of pervasive agoraphobic apprehension and avoidance, broad dysphoria and compromised mobilization for defensive action. PMID:21550590

  4. CRF receptor blockade prevents initiation and consolidation of stress effects on affect in the predator stress model of PTSD.

    PubMed

    Adamec, Robert; Fougere, Dennis; Risbrough, Victoria

    2010-07-01

    Post traumatic stress disorder (PTSD) is a chronic anxiety disorder initiated by an intensely threatening, traumatic event. There is a great need for more efficacious pharmacotherapy and preventive treatments for PTSD. In animals, corticotropin-releasing factor (CRF) and the CRF1 receptor play a critical role in behavioural and neuroendocrine responses to stress. We tested the hypothesis that CRF1 activation is required for initiation and consolidation of long-term effects of trauma on anxiety-like behaviour in the predator exposure (predator stress) model of PTSD. Male C57BL6 mice were treated with the selective CRF1 antagonist CRA0450 (2, 20 mg/kg) 30 min before or just after predator stress. Long-term effects of stress on rodent anxiety were measured 7 d later using acoustic startle, elevated plus maze (EPM), light/dark box, and hole-board tests. Predator stress increased startle amplitude and delayed startle habituation, increased time in and decreased exits from the dark chamber in the light/dark box test, and decreased risk assessment in the EPM. CRF1 antagonism had limited effects on these behaviours in non-stressed controls, with the high dose decreasing risk assessment in the EPM. However, in stressed animals CRF1 antagonism blocked initiation and consolidation of stressor effects on startle, and returned risk assessment to baseline levels in predator-stressed mice. These findings implicate CRF1 activation in initiation and post-trauma consolidation of predator stress effects on anxiety-like behaviour, specifically on increased arousal as measured by exaggerated startle behaviours. These data support further research of CRF1 antagonists as potential prophylactic treatments for PTSD.

  5. Social stimuli increase physiological reactivity but not defensive responses.

    PubMed

    Kosonogov, Vladimir; Sanchez-Navarro, Juan Pedro; Martinez-Selva, Jose Maria; Torrente, Ginesa; Carrillo-Verdejo, Eduvigis

    2016-10-01

    Emotional reactions are crucial in survival because they provide approach and withdrawal behaviors. However, an unsolved question is whether the social content of the affective stimuli has a specific effect on emotional responses. We studied whether the social content of affective pictures influenced the defensive response and response mobilization. For this purpose, we recorded startle blink reflex (a defensive response) and skin conductance responses (a measure of unspecific physiological reactivity or arousal) in 73 participants while they viewed a series of 81 pictures of varying affective valence and social content. Our results revealed that defense response, as indicated by increases in the magnitude of the startle blink reflex, was mainly dependent on threatening or unpleasant cues, but was unrelated to the social content of the pictures. The social content, however, had an influence on pleasant stimuli, provoking an increase in resource mobilization, as reflected by changes in electrodermal activity. Hence, the social content of the affective stimuli may increase the physiological arousal elicited by pleasant stimuli, and it appears to be unrelated to the defense reactivity provoked by unpleasant stimuli. © 2016 Scandinavian Psychological Associations and John Wiley & Sons Ltd.

  6. Atypical antipsychotic clozapine reversed deficit on prepulse inhibition of the acoustic startle reflex produced by microinjection of DOI into the inferior colliculus in rats.

    PubMed

    de Oliveira, Rodolpho Pereira; Nagaishi, Karen Yuriko; Barbosa Silva, Regina Cláudia

    2017-05-15

    Dysfunctions of the serotonergic system have been suggested to be important in the neurobiology of schizophrenia. Patients with schizophrenia exhibit deficits in an operational measure of sensorimotor gating: prepulse inhibition (PPI) of startle. PPI is the normal reduction in the startle response caused by a low intensity non-startling stimulus (prepulse) which is presented shortly before the startle stimulus (pulse). The hallucinogen 2,5-dimethoxy-4-iodoamphetamine (DOI), a 5-hydroxytryptamine(HT) 2 receptor agonist disrupted PPI in rats. The inferior colliculus (IC) is a critical nucleus of the auditory pathway mediating acoustic PPI. The activation of the IC by the acoustic prepulse reduces startle magnitude. The present study investigated the role of serotonergic transmission in the IC on the expression of acoustic PPI. For that we investigated whether 5-HT2A receptor activation or blockade would affect this response. Unilateral microinjection of DOI (10μg/0.3μl) into the IC disrupted PPI, while microinjection of the 5-HT2A receptor antagonist ritanserin (4μg/0.3μl), into this structure did not alter PPI. We also examined the ability of the atypical antipsychotic clozapine (5.0mg/kg; I.P.) to reverse the disruption of PPI produced by unilateral microinjections of DOI into the IC of rats. Pretreatment with clozapine blocked DOI-induced disruption of PPI. Altogether, these results suggest that serotonin-mediated mechanisms of the IC are involved in the expression of PPI in rodents and that this response is sensitive to atypical antipsychotic clozapine. Copyright © 2017 Elsevier B.V. All rights reserved.

  7. Atypical antipsychotic olanzapine reversed deficit on prepulse inhibition of the acoustic startle reflex produced by microinjection of dizocilpine (MK-801) into the inferior colliculus in rats.

    PubMed

    Zangrando, Julia; Carvalheira, Renata; Labbate, Giovanna; Medeiros, Priscila; Longo, Beatriz Monteiro; Melo-Thomas, Liana; Silva, Regina Claudia Barbosa

    2013-11-15

    Patients with schizophrenia exhibit deficits in an operational measure of sensorimotor gating: prepulse inhibition (PPI) of startle. PPI is the normal reduction in the startle response caused by a low intensity non-startling stimulus (prepulse) which is presented shortly before the startle stimulus (pulse). MK-801 is an NMDA receptor-antagonist known to produce hyperactivity, deficits in prepulse inhibition and social withdrawal, behaviors which correlate well with some of the positive, cognitive and negative symptoms of schizophrenia. The inferior colliculus (IC) is a critical part of the auditory pathway mediating acoustic PPI. The activation of the IC by the acoustic prepulse reduces startle magnitude. Thus, the purpose of the present study was to elucidate the role of glutamatergic transmission in the IC on the expression of acoustic PPI. For that we investigated whether NMDA receptor stimulation or blockade would affect this response. Unilateral microinjections of NMDA (30 nmol/0.5 μL) into the IC did not alter PPI while microinjections of MK-801 (30 nmol/0.5 μL) into this structure disrupted PPI. We also examined the ability of the atypical antipsychotic olanzapine (5.0mg/kg; i.p.) to reverse the disruption of pre-pulse inhibition produced by unilateral microinjections of MK-801 into the IC of rats. Pretreatment with olanzapine blocked MK-801-induced disruption of PPI. Altogether, these results suggest that glutamate-mediated mechanisms of the IC are involved in the expression of PPI in rodents and that this response is sensitive to atypical antipsychotic olanzapine. Copyright © 2013 Elsevier B.V. All rights reserved.

  8. An Anatomical Basis for Opponent Process Mechanisms of Opiate Withdrawal

    PubMed Central

    Radke, Anna K.; Rothwell, Patrick E.; Gewirtz, Jonathan C.

    2011-01-01

    Opponent process theory predicts that the first step in the induction of drug withdrawal is the activation of reward-related circuitry. Using the acoustic startle reflex as a model of anxiety-like behavior in rats, we show the emergence of a negative affective state during withdrawal after direct infusion of morphine into the ventral tegmental area (VTA), the origin of the mesolimbic dopamine system. Potentiation of startle during withdrawal from systemic morphine exposure requires a decrease in opiate receptor stimulation in the VTA and can be relieved by administration of the dopamine receptor agonist apomorphine. Together, our results suggest that the emergence of anxiety during withdrawal from acute opiate exposure begins with activation of VTA mesolimbic dopamine circuitry, providing a mechanism for the opponent process view of withdrawal. PMID:21593338

  9. Animal models of tinnitus.

    PubMed

    Brozoski, Thomas J; Bauer, Carol A

    2016-08-01

    Presented is a thematic review of animal tinnitus models from a functional perspective. Chronic tinnitus is a persistent subjective sound sensation, emergent typically after hearing loss. Although the sensation is experientially simple, it appears to have central a nervous system substrate of unexpected complexity that includes areas outside of those classically defined as auditory. Over the past 27 years animal models have significantly contributed to understanding tinnitus' complex neurophysiology. In that time, a diversity of models have been developed, each with its own strengths and limitations. None has clearly become a standard. Animal models trace their origin to the 1988 experiments of Jastreboff and colleagues. All subsequent models derive some of their features from those experiments. Common features include behavior-dependent psychophysical determination, acoustic conditions that contrast objective sound and silence, and inclusion of at least one normal-hearing control group. In the present review, animal models have been categorized as either interrogative or reflexive. Interrogative models use emitted behavior under voluntary control to indicate hearing. An example would be pressing a lever to obtain food in the presence of a particular sound. In this type of model animals are interrogated about their auditory sensations, analogous to asking a patient, "What do you hear?" These models require at least some training and motivation management, and reflect the perception of tinnitus. Reflexive models, in contrast, employ acoustic modulation of an auditory reflex, such as the acoustic startle response. An unexpected loud sound will elicit a reflexive motor response from many species, including humans. Although involuntary, acoustic startle can be modified by a lower-level preceding event, including a silent sound gap. Sound-gap modulation of acoustic startle appears to discriminate tinnitus in animals as well as humans, and requires no training or motivational manipulation, but its sensitivity, reliability, mechanism, and optimal implementation are incompletely understood. While to date animal models have significantly expanded the neuroscience of tinnitus, they have been limited to examining sensory features. In the human condition, emotional and cognitive factors are also important. It is not clear that the emotional features of tinnitus can be further understood using animal models, but models may be applied to examine cognitive factors. A recently developed model is described that reveals an interaction between tinnitus and auditory attention. This research suggests that effective tinnitus therapy could rely on modifying attention to the sensation rather than modifying the sensation itself. This article is part of a Special Issue entitled . Copyright © 2015 Elsevier B.V. All rights reserved.

  10. Effects of anxiety sensitivity and expectations on the modulation of the startle eyeblink response during a caffeine challenge.

    PubMed

    Benke, Christoph; Blumenthal, Terry D; Modeß, Christiane; Hamm, Alfons O; Pané-Farré, Christiane A

    2015-09-01

    The way in which the tendency to fear somatic arousal sensations (anxiety sensitivity), in interaction with the created expectations regarding arousal induction, might affect defensive responding to a symptom provocation challenge is not yet understood. The present study investigated the effect of anxiety sensitivity on autonomic arousal, startle eyeblink responses, and reported arousal and alertness to expected vs. unexpected caffeine consumption. To create a match/mismatch of expected and experienced arousal, high and low anxiety sensitive participants received caffeine vs. no drug either mixed in coffee (expectation of arousal induction) or in bitter lemon soda (no expectation of arousal induction) on four separate occasions. Autonomic arousal (heart rate, skin conductance level), respiration (end-tidal CO2, minute ventilation), defensive reflex responses (startle eyeblink), and reported arousal and alertness were recorded prior to, immediately and 30 min after beverage ingestion. Caffeine increased ventilation, autonomic arousal, and startle response magnitudes. Both groups showed comparable levels of autonomic and respiratory responses. The startle eyeblink responses were decreased when caffeine-induced arousal occurred unexpectedly, e.g., after administering caffeine in bitter lemon. This effect was more accentuated in high anxiety sensitive persons. Moreover, in high anxiety sensitive persons, the expectation of arousal (coffee consumption) led to higher subjective alertness when administering caffeine and increased arousal even if no drug was consumed. Unexpected symptom provocation leads to increased attention allocation toward feared arousal sensations in high anxiety sensitive persons. This finding broadens our understanding of modulatory mechanisms in defensive responding to bodily symptoms.

  11. Processing emotions: Effects of menstrual cycle phase and premenstrual symptoms on the startle reflex, facial EMG and heart rate.

    PubMed

    Armbruster, Diana; Grage, Tobias; Kirschbaum, Clemens; Strobel, Alexander

    2018-10-01

    Emotional reactivity varies across the menstrual cycle although physiological findings are not entirely consistent. We assessed facial EMG and heart rate (HR) changes in healthy free cycling women (N = 45) with an emotional startle paradigm both during the early follicular and the late luteal phase, verified by repeated salivary 17β-estradiol, progesterone and testosterone assessments. Cycle phase impacted startle responses with larger magnitudes during the luteal phase. Notably, this effect was only present when premenstrual symptoms and sequence of lab sessions were included as co-variates. At rest, participants showed a tendency towards higher HR and reduced high frequency (HF) power during the luteal phase indicating reduced parasympathetic tone. HF power was also negatively associated with startle magnitudes. HR changes in response to emotional images differed between the two cycle phases. Initial HR deceleration was more marked during the follicular phase particularly when viewing negative pictures. However, cycle phase did not significantly impact corrugator and zygomaticus activity in response to emotional pictures. Among the three gonadal steroids, correlation patterns were most consistent for testosterone. During the follicular phase, testosterone was associated with zygomaticus activity while viewing neutral or positive pictures and with less pronounced HR deceleration in response to negative images. During the luteal phase, testosterone was negatively associated with fear potentiated startle. The findings underscore the importance of considering menstrual cycle phase when investigating physiological indicators of emotion. However, the modulating effect of premenstrual symptoms also emphasizes potential inter-individual differences. Copyright © 2018 Elsevier B.V. All rights reserved.

  12. Context and explicit threat cue modulation of the startle reflex: Preliminary evidence of distinctions between adolescents with principal fear disorders versus distress disorders

    PubMed Central

    Waters, Allison M.; Nazarian, Maria; Mineka, Susan; Zinbarg, Richard E.; Griffith, James W.; Naliboff, Bruce; Ornitz, Edward M.; Craske, Michelle G.

    2014-01-01

    Anxiety and depression are prevalent, impairing disorders. High comorbidity has raised questions about how to define and classify them. Structural models emphasise distinctions between “fear” and “distress” disorders while other initiatives propose they be defined by neurobiological indicators that cut across disorders. This study examined startle reflex (SR) modulation in adolescents with principal fear disorders (specific phobia; social phobia) (n = 20), distress disorders (unipolar depressive disorders, dysthymia, generalized anxiety disorder; post-traumatic stress disorder) (n = 9), and controls (n = 29) during (a) baseline conditions, (b) threat context conditions (presence of contraction pads over the biceps muscle), and (c) an explicit threat cue paradigm involving phases that signalled safety from aversive stimuli (early and late stages of safe phases; early stages of danger phases) and phases that signalled immediate danger of an aversive stimulus (late stages of danger phases). Adolescents with principal fear disorders showed larger SRs than other groups throughout safe phases and early stages of danger phases. SRs did not differ between groups during late danger phases. Adolescents with principal distress disorders showed attenuated SRs during baseline and context conditions compared to other groups. Preliminary findings support initiatives to redefine emotional disorders based on neurobiological functioning. PMID:24679992

  13. Distinct Contributions of Median Raphe Nucleus to Contextual Fear Conditioning and Fear-Potentiated Startle

    PubMed Central

    Silva, R. C. B.; Cruz, A. P. M.; Avanzi, V.; Landeira-Fernandez, J.; Brandão, M. L.

    2002-01-01

    Ascending 5-HT projections from the median raphe nucleus (MRN), probably to the hippocampus, are implicated in the acquisition of contextual fear (background stimuli), as assessed by freezing behavior. Foreground cues like light, used as a conditioned stimulus (CS) in classical fear conditioning, also cause freezing through thalamic transmission to the amygdala. As the MRN projects to the hippocampus and amygdala, the role of this raphe nucleus in fear conditioning to explicit cues remains to be explained. Here we analyzed the behavior of rats with MRN electrolytic lesions in a contextual conditioning situation and in a fear-potentiated startle procedure. The animals received MRN electrolytic lesions either before or on the day after two consecutive training sessions in which they were submitted to 10 conditioning trials, each in an experimental chamber (same context) where they. received foot-shocks (0.6 mA, 1 sec) paired to a 4-sec light CS. Seven to ten days later, the animals were submitted to testing sessions for assessing conditioned fear when they were placed for five shocks, and the duration of contextual freezing was recorded. The animals were then submitted to a fear-potentiated startle in response to a 4-sec light-CS, followed by white noise (100 dB, 50 ms). Control rats (sham) tested in the same context showed more freezing than did rats with pre- or post-training MRN lesions. Startle was clearly potentiated in the presence of light CS in the sham-lesioned animals. Whereas pretraining lesions reduced both freezing and fear-potentiated startle, the post-training lesions reduced only freezing to context, without changing the fear-potentiated startle. In a second experiment, neurotoxic lesions of the MRN with local injections of N-methyl-D-aspartate or the activation of 5-HT1A somatodendritic auto-receptors of the MRN by microinjections of the 5-HT1A receptor agonist 8-hydroxy- 2-(di-n-propylamino)tetralin (8-OH-DPAT) before the training sessions also reduced the amount of freezing and the fear-potentiated startle. Freezing is a prominent response of contextual fear conditioning, but does not seem to be crucial for the enhancement of the startle reflex by explicit aversive cues. As fear-potentiated startle may be produced in posttraining lesioned rats that are unable to freeze to fear contextual stimuli, dissociable systems seem to be recruited in each condition. Thus, contextual fear and fear-potentiated startle are conveyed by distinct 5-HT-mediated circuits of the MRN. PMID:12959153

  14. Interactions of Stress and Nicotine on Amplitude, Pre-Pulse Inhibition and Habituation of the Acoustic Startle Reflex

    DTIC Science & Technology

    1992-09-24

    Marquez , Armario , & Gelpi, 1988) consistent with a stress response . Restraint stress has been reported to increase the amplitude of sensory...and NE in the brain (Adell , Garcia- Marquez , Armario , & Gelpi , 1988) consistent with a stress response. Restraint stress has been reported t o...and non- reactive strains. Al coholism. Clinical and Experimental Research, ~(2), 170-174. Adell, A., Garcia - Marquez, C., Armario , A. , & Gelpi , E

  15. Mutations in the human GlyT2 gene define a presynaptic component of human startle disease

    PubMed Central

    Rees, Mark I.; Harvey, Kirsten; Pearce, Brian R.; Chung, Seo-Kyung; Duguid, Ian C.; Thomas, Philip; Beatty, Sarah; Graham, Gail E.; Armstrong, Linlea; Shiang, Rita; Abbott, Kim J.; Zuberi, Sameer M.; Stephenson, John B.P.; Owen, Michael J.; Tijssen, Marina A.J.; van den Maagdenberg, Arn M.J.M.; Smart, Trevor G.; Supplisson, Stéphane; Harvey, Robert J.

    2011-01-01

    Hyperekplexia is a human neurological disorder characterized by an excessive startle response and is typically caused by missense and nonsense mutations in the gene encoding the inhibitory glycine receptor (GlyR) α1 subunit (GLRA1)1-3. Genetic heterogeneity has been confirmed in isolated sporadic cases with mutations in other postsynaptic glycinergic proteins including the GlyR β subunit (GLRB)4, gephyrin (GPHN)5 and RhoGEF collybistin (ARHGEF9)6. However, many sporadic patients diagnosed with hyperekplexia do not carry mutations in these genes2-7. Here we reveal that missense, nonsense and frameshift mutations in the presynaptic glycine transporter 2 (GlyT2) gene (SLC6A5)8 also cause hyperekplexia. Patients harbouring mutations in SLC6A5 presented with hypertonia, an exaggerated startle response to tactile or acoustic stimuli, and life-threatening neonatal apnoea episodes. GlyT2 mutations result in defective subcellular localisation and/or decreased glycine uptake, with selected mutations affecting predicted glycine and Na+ binding sites. Our results demonstrate that SLC6A5 is a major gene for hyperekplexia and define the first neurological disorder linked to mutations in a Na+/Cl−-dependent transporter for a classical fast neurotransmitter. By analogy, we suggest that in other human disorders where defects in postsynaptic receptors have been identified, similar symptoms could result from defects in the cognate presynaptic neurotransmitter transporter. PMID:16751771

  16. Developmental treatment with difluoromethylornithine has few effects on behavior or body weight in Sprague-Dawley rats.

    PubMed

    Ferguson, Sherry A; Cada, Amy M

    2004-01-01

    Developmental difluoromethylornithine (DFMO) treatment reduces cerebellar weight [Neuroscience 17 (1986) 399, Neurotoxicol. Teratol. 22 (2000) 415, Behav. Brain Res. 126 (2001) 135], but the functional alterations resulting from this have been little investigated. Here, Sprague-Dawley rats were subcutaneously injected with 500 mg/kg DFMO on postnatal days (PNDs) 5-12 and a comprehensive set of behavioral assessments measured early developmental behaviors (righting reflex, negative geotaxis), motor coordination, acoustic startle, short- and long-term activity, social behaviors, anxiety, and spatial learning and memory. DFMO treatment appeared to cause a decreased latency to perform the negative geotaxis behavior on PNDs 8-10 and increased latency to hang by the forelimbs on PNDs 12-14. Our previous study did not indicate similar effects, but age at testing differed between the two studies. DFMO treatment caused a decreased latency to maximum acoustic startle response in both the acoustic startle paradigm and in the pulse-alone trials of the prepulse inhibition test. This DFMO treatment paradigm induced a 10% decrease in adult cerebellar weight [Behav. Brain Res. 126 (2001) 135], but the results here imply that such developmental stunting has few functional alterations.

  17. Different effects of isolation-rearing and neonatal MK-801 treatment on attentional modulations of prepulse inhibition of startle in rats.

    PubMed

    Wu, Zhe-Meng; Ding, Yu; Jia, Hong-Xiao; Li, Liang

    2016-09-01

    Prepulse inhibition (PPI) is suppression of the startle reflex by a weaker sensory stimulus (prepulse) preceding the startling stimulus. In people with schizophrenia, impairment of attentional modulation of PPI, but not impairment of baseline PPI, is correlated with symptom severity. In rats, both fear conditioning of prepulse and perceptually spatial separation between the conditioned prepulse and a noise masker enhance PPI (the paradigms of attentional modulation of PPI). As a neurodevelopmental model of schizophrenia, isolation rearing impairs both baseline PPI and attentional modulations of PPI in rats. This study examined in Sprague-Dawley male rats whether neonatally blocking N-methyl-D-aspartate (NMDA) receptors specifically affects attentional modulations of PPI during adulthood. Both socially reared rats with neonatal exposure to the NMDA receptor antagonist MK-801 and isolation-reared rats exhibited augmented startle responses, but only isolation rearing impaired baseline PPI. Fear conditioning of the prepulse enhanced PPI in socially reared rats, but MK-801-treated rats lost the prepulse feature specificity. Perceptually spatial separation between the conditioned prepulse and a noise masker further enhanced PPI only in normally reared rats. Clozapine administration during adulthood generally weakened startle, enhanced baseline PPI in neonatally interrupted rats, and restored the fear conditioning-induced PPI enhancement in isolation-reared rats with a loss of the prepulse feature specificity. Clozapine administration also abolished both the perceptual separation-induced PPI enhancement in normally reared rats and the fear conditioning-induced PPI enhancement in MK-801-treated rats. Isolation rearing impairs both baseline PPI and attentional modulations of PPI, but neonatally disrupting NMDA receptor-mediated transmissions specifically impair attentional modulations of PPI. Clozapine has limited alleviating effects.

  18. Describing the interplay between anxiety and cognition: From impaired performance under low cognitive load to reduced anxiety under high load

    PubMed Central

    Vytal, Katherine; Cornwell, Brian; Arkin, Nicole; Grillon, Christian

    2012-01-01

    Anxiety impairs the ability to think and concentrate, suggesting that the interaction between emotion and cognition may elucidate the debilitating nature of pathological anxiety. Using a verbal n-back task that parametrically modulated cognitive load, we explored the effect of experimentally-induced anxiety on task performance and the startle reflex. Findings suggest there is a crucial inflection point between moderate and high cognitive load, where resources shift from anxious apprehension to focus on task demands. Specifically, we demonstrate that anxiety impairs performance under low-load, but is reduced when subjects engage in a difficult task that occupies executive resources. We propose a two-component model of anxiety that describes a cognitive mechanism behind performance impairment and an automatic response that supports sustained anxiety-potentiated startle. Implications for therapeutic interventions and emotional pathology are discussed. PMID:22332819

  19. Genetic variation in serotonin transporter function affects human fear expression indexed by fear-potentiated startle.

    PubMed

    Klumpers, Floris; Heitland, Ivo; Oosting, Ronald S; Kenemans, J Leon; Baas, Johanna M P

    2012-02-01

    The serotonin transporter (SERT) plays a crucial role in anxiety. Accordingly, variance in SERT functioning appears to constitute an important pathway to individual differences in anxiety. The current study tested the hypothesis that genetic variation in SERT function is associated with variability in the basic reflex physiology of defense. Healthy subjects (N=82) were presented with clearly instructed cues of shock threat and safety to induce robust anxiety reactions. Subjects carrying at least one short allele for the 5-HTTLPR polymorphism showed stronger fear-potentiated startle compared to long allele homozygotes. However, short allele carriers showed no deficit in the downregulation of fear after the offset of threat. These results suggest that natural variation in SERT function affects the magnitude of defensive reactions while not affecting the capacity for fear regulation. Copyright © 2011 Elsevier B.V. All rights reserved.

  20. Identification of a pheromone that increases anxiety in rats

    PubMed Central

    Inagaki, Hideaki; Kiyokawa, Yasushi; Tamogami, Shigeyuki; Watanabe, Hidenori; Takeuchi, Yukari; Mori, Yuji

    2014-01-01

    Chemical communication plays an important role in the social lives of various mammalian species. Some of these chemicals are called pheromones. Rats release a specific odor into the air when stressed. This stress-related odor increases the anxiety levels of other rats; therefore, it is possible that the anxiety-causing molecules are present in the stress-related odorants. Here, we have tried to identify the responsible molecules by using the acoustic startle reflex as a bioassay system to detect anxiogenic activity. After successive fractionation of the stress-related odor, we detected 4-methylpentanal and hexanal in the final fraction that still possessed anxiogenic properties. Using synthetic molecules, we found that minute amounts of the binary mixture, but not either molecule separately, increased anxiety in rats. Furthermore, we determined that the mixture increased a specific type of anxiety and evoked anxiety-related behavioral responses in an experimental model that was different from the acoustic startle reflex. Analyses of neural mechanisms proposed that the neural circuit related to anxiety was only activated when the two molecules were simultaneously perceived by two olfactory systems. We concluded that the mixture is a pheromone that increases anxiety in rats. To our knowledge, this is the first study identifying a rat pheromone. Our results could aid further research on rat pheromones, which would enhance our understanding of chemical communication in mammals. PMID:25512532

  1. Omega-3 prevents behavior response and brain oxidative damage in the ketamine model of schizophrenia.

    PubMed

    Zugno, A I; Chipindo, H L; Volpato, A M; Budni, J; Steckert, A V; de Oliveira, M B; Heylmann, A S; da Rosa Silveira, F; Mastella, G A; Maravai, S G; Wessler, P G; Binatti, A R; Panizzutti, B; Schuck, P F; Quevedo, J; Gama, C S

    2014-02-14

    Supplementation with omega-3 has been identified as an adjunctive alternative for the treatment of psychiatric disorders, in order to minimize symptoms. Considering the lack of understanding concerning the pathophysiology of schizophrenia, the present study hypothesized that omega 3 prevents the onset of symptoms similar to schizophrenia in young Wistar rats submitted to ketamine treatment. Moreover, the role of oxidative stress in this model was assessed. Omega-3 (0.8g/kg) or vehicle was given by orogastric gavage once daily. Both treatments were performed during 21days, starting at the 30th day of life in young rats. After 14days of treatment with omega-3 or vehicle, a concomitant treatment with saline or ketamine (25mg/kg ip daily) was started and maintained until the last day of the experiment. We evaluated the pre-pulse inhibition of the startle reflex, activity of antioxidant systems and damage to proteins and lipids. Our results demonstrate that supplementation of omega-3 prevented: decreased inhibition of startle reflex, damage to lipids in the hippocampus and striatum and damage to proteins in the prefrontal cortex. Furthermore, these changes are associated with decreased GPx in brain tissues evaluated. Together, our results suggest the prophylactic role of omega-3 against the outcome of symptoms associated with schizophrenia. Copyright © 2014. Published by Elsevier Ltd.

  2. Repetitive exposure: Brain and reflex measures of emotion and attention

    PubMed Central

    Ferrari, Vera; Bradley, Margaret M.; Codispoti, Maurizio; Lang, Peter J.

    2010-01-01

    Effects of massed repetition on the modulation of the late positive potential elicited during affective picture viewing were investigated in two experiments. Despite a difference in the number of repetitions across studies (from 5 to 30), results were quite similar: the late positive potential continued to be enhanced when viewing emotional, compared to neutral, pictures. On the other hand, massed repetition did prompt a reduction in the late positive potential that was most pronounced for emotional pictures. Startle probe P3 amplitude generally increased with repetition, suggesting diminished attention allocation to repeated pictures. The blink reflex, however, continued to be modulated by hedonic valence, despite massive massed repetition. Taken together, the data suggest that the amplitude of the late positive potential during picture viewing reflects both motivational significance and attention allocation. PMID:20701711

  3. Direct and indirect nigrofugal projections to the nucleus reticularis pontis caudalis mediate in the motor execution of the acoustic startle reflex.

    PubMed

    Hormigo, Sebastian; López, Dolores E; Cardoso, Antonio; Zapata, Gladys; Sepúlveda, Jacqueline; Castellano, Orlando

    2018-07-01

    The acoustic startle reflex (ASR) is a short and intense defensive reaction in response to a loud and unexpected acoustic stimulus. In the rat, a primary startle pathway encompasses three serially connected central structures: the cochlear root neurons, the giant neurons of the nucleus reticularis pontis caudalis (PnC), and the spinal motoneurons. As a sensorimotor interface, the PnC has a central role in the ASR circuitry, especially the integration of different sensory stimuli and brain states into initiation of motor responses. Since the basal ganglia circuits control movement and action selection, we hypothesize that their output via the substantia nigra (SN) may interplay with the ASR primary circuit by providing inputs to PnC. Moreover, the pedunculopontine tegmental nucleus (PPTg) has been proposed as a functional and neural extension of the SN, so it is another goal of this study to describe possible anatomical connections from the PPTg to PnC. Here, we made 6-OHDA neurotoxic lesions of the SN pars compacta (SNc) and submitted the rats to a custom-built ASR measurement session to assess amplitude and latency of motor responses. We found that following lesion of the SNc, ASR amplitude decreased and latency increased compared to those values from the sham-surgery and control groups. The number of dopamine neurons remaining in the SNc after lesion was also estimated using a stereological approach, and it correlated with our behavioral results. Moreover, we employed neural tract-tracing techniques to highlight direct projections from the SN to PnC, and indirect projections through the PPTg. Finally, we also measured levels of excitatory amino acid neurotransmitters in the PnC following lesion of the SN, and found that they change following an ipsi/contralateral pattern. Taken together, our results identify nigrofugal efferents onto the primary ASR circuit that may modulate motor responses.

  4. Psychosocial stress alters the strength of reticulospinal input to the human upper trapezius.

    PubMed

    Marker, Ryan J; Campeau, Serge; Maluf, Katrina S

    2017-01-01

    Psychosocial stress has been shown to influence several aspects of human motor control associated with the fight-or-flight response, including augmentation of upper trapezius muscle activity. Given the established role of the reticular formation in arousal, this study investigated the contribution of reticulospinal activation to trapezius muscle activity during exposure to an acute psychosocial stressor. Twenty-five healthy adults were exposed to startling acoustic stimuli (SAS) while performing a motor task during periods of low and high psychosocial stress. Acoustic startle reflexes (ASRs) were recorded in the upper trapezius during low intensity contractions using both surface and intramuscular electromyography. Exposure to the stressor increased subjective and physiological measures of arousal (P < 0.01). The majority of participants demonstrated inhibitory ASRs, whereas a small subgroup with significantly higher trait anxiety (n = 5) demonstrated excitatory ASRs in the low stress condition. Changes in synaptic input for inhibitory ASRs were confirmed by decreases in the discharge rate of single motor units in response to the SAS. ASRs decreased in magnitude for all participants during exposure to the acute psychosocial stressor. These findings suggest that the reticular formation has predominately inhibitory effects on the human upper trapezius during an ongoing motor task and that disinhibition caused by psychosocial stress may contribute to augmentation of trapezius muscle activity. Further research is required to investigate mechanisms underlying the complex ASRs characterized by this study, particularly the phase reversal to excitatory responses observed among more anxious individuals. This study is the first to quantify stress-evoked changes in the acoustic startle reflex in the upper trapezius muscle of humans, and our findings reveal a complex pattern of inhibitory and facilitatory responses consistent with observations in nonhuman primates. We further demonstrate that psychosocial stress consistently reduces the amplitude of these responses. These findings have implications for the control of motor behaviors in response to stress. Copyright © 2017 the American Physiological Society.

  5. Psychosocial stress alters the strength of reticulospinal input to the human upper trapezius

    PubMed Central

    Marker, Ryan J.; Campeau, Serge

    2016-01-01

    Psychosocial stress has been shown to influence several aspects of human motor control associated with the fight-or-flight response, including augmentation of upper trapezius muscle activity. Given the established role of the reticular formation in arousal, this study investigated the contribution of reticulospinal activation to trapezius muscle activity during exposure to an acute psychosocial stressor. Twenty-five healthy adults were exposed to startling acoustic stimuli (SAS) while performing a motor task during periods of low and high psychosocial stress. Acoustic startle reflexes (ASRs) were recorded in the upper trapezius during low intensity contractions using both surface and intramuscular electromyography. Exposure to the stressor increased subjective and physiological measures of arousal (P < 0.01). The majority of participants demonstrated inhibitory ASRs, whereas a small subgroup with significantly higher trait anxiety (n = 5) demonstrated excitatory ASRs in the low stress condition. Changes in synaptic input for inhibitory ASRs were confirmed by decreases in the discharge rate of single motor units in response to the SAS. ASRs decreased in magnitude for all participants during exposure to the acute psychosocial stressor. These findings suggest that the reticular formation has predominately inhibitory effects on the human upper trapezius during an ongoing motor task and that disinhibition caused by psychosocial stress may contribute to augmentation of trapezius muscle activity. Further research is required to investigate mechanisms underlying the complex ASRs characterized by this study, particularly the phase reversal to excitatory responses observed among more anxious individuals. NEW & NOTEWORTHY This study is the first to quantify stress-evoked changes in the acoustic startle reflex in the upper trapezius muscle of humans, and our findings reveal a complex pattern of inhibitory and facilitatory responses consistent with observations in nonhuman primates. We further demonstrate that psychosocial stress consistently reduces the amplitude of these responses. These findings have implications for the control of motor behaviors in response to stress. PMID:27832595

  6. Emotional Reactivity and Appraisal of Food in Relation to Eating Disorder Cognitions and Behaviours: Evidence to Support the Motivational Conflict Hypothesis.

    PubMed

    Racine, Sarah E; Hebert, Karen R; Benning, Stephen D

    2018-01-01

    Eating disorders are associated with both negative and positive emotional reactions towards food. Individual eating disorder symptoms may relate to distinct emotional responses to food, which could necessitate tailored treatments based on symptom presentation. We examined associations between eating disorder symptoms and psychophysiological responses to food versus neutral images in 87 college students [mean (SD) age = 19.70 (2.09); mean (SD) body mass index = 23.25(2.77)]. Reflexive and facial electromyography measures tapping negative emotional reactivity (startle blink reflex) and appraisal (corrugator muscle response) as well as positive emotional reactivity (postauricular reflex) and appraisal (zygomaticus muscle response) were collected. Eating disorder cognitions correlated with more corrugator activity to food versus neutral images, indicating negative appraisals of food. Binge eating was associated with increased postauricular reflex reactivity to food versus neutral images, suggesting enhanced appetitive motivation to food. The combination of cognitive eating disorder symptoms and binge eating may result in motivational conflict towards food. Copyright © 2017 John Wiley & Sons, Ltd and Eating Disorders Association. Copyright © 2017 John Wiley & Sons, Ltd and Eating Disorders Association.

  7. Dendritic spine dysgenesis contributes to hyperreflexia after spinal cord injury

    PubMed Central

    Bandaru, Samira P.; Liu, Shujun; Waxman, Stephen G.

    2014-01-01

    Hyperreflexia and spasticity are chronic complications in spinal cord injury (SCI), with limited options for safe and effective treatment. A central mechanism in spasticity is hyperexcitability of the spinal stretch reflex, which presents symptomatically as a velocity-dependent increase in tonic stretch reflexes and exaggerated tendon jerks. In this study we tested the hypothesis that dendritic spine remodeling within motor reflex pathways in the spinal cord contributes to H-reflex dysfunction indicative of spasticity after contusion SCI. Six weeks after SCI in adult Sprague-Dawley rats, we observed changes in dendritic spine morphology on α-motor neurons below the level of injury, including increased density, altered spine shape, and redistribution along dendritic branches. These abnormal spine morphologies accompanied the loss of H-reflex rate-dependent depression (RDD) and increased ratio of H-reflex to M-wave responses (H/M ratio). Above the level of injury, spine density decreased compared with below-injury spine profiles and spine distributions were similar to those for uninjured controls. As expected, there was no H-reflex hyperexcitability above the level of injury in forelimb H-reflex testing. Treatment with NSC23766, a Rac1-specific inhibitor, decreased the presence of abnormal dendritic spine profiles below the level of injury, restored RDD of the H-reflex, and decreased H/M ratios in SCI animals. These findings provide evidence for a novel mechanistic relationship between abnormal dendritic spine remodeling in the spinal cord motor system and reflex dysfunction in SCI. PMID:25505110

  8. The not-so-bitter pill: Effects of combined oral contraceptives on peripheral physiological indicators of emotional reactivity.

    PubMed

    Armbruster, Diana; Kirschbaum, Clemens; Strobel, Alexander

    2017-08-01

    Combined oral contraceptives (COC) are used by millions of women worldwide. Although findings are not entirely consistent, COC have been found to impact on brain function and, thus, to modulate affective processes. Here, we investigated electro-physiological responses to emotional stimuli in free cycling women in both the early follicular and late luteal phase as well as in COC users. Skin conductance response (SCR), startle reflex, corrugator and zygomaticus activity were assessed. COC users showed reduced overall startle magnitude and SCR amplitude, but heightened overall zygomaticus activity, although effect sizes were small. Thus, COC users displayed reduced physiological reactions indicating negative affect and enhanced physiological responses signifying positive affect. In free cycling women, endogenous 17β-estradiol levels were associated with fear potentiated startle in both cycle phases as well as with SCR and zygomaticus activity during the follicular phase. Testosterone was associated with corrugator and zygomaticus activity during the luteal phase, while progesterone levels correlated with corrugator activity in the follicular phase. To the contrary, in COC users, endogenous hormones were not associated with electro-physiological measures. The results further underscore the importance of considering COC use in psychophysiological studies on emotional processing. Copyright © 2017 Elsevier Inc. All rights reserved.

  9. Somatostatin-28 modulates prepulse inhibition of the acoustic startle response, reward processes and spontaneous locomotor activity in rats

    PubMed Central

    Semenova, Svetlana; Hoyer, Daniel; Geyer, Mark A.; Markou, Athina

    2011-01-01

    Somatostatins have been shown to be involved in the pathophysiology of motor and affective disorders, as well as psychiatry disorders, including schizophrenia. We hypothesized that in addition to motor function, somatostatin may be involved in somatosensory gating and reward processes that have been shown to be dysregulated in schizophrenia. Accordingly, we evaluated the effects of intracerebroventricular administration of somatostatin-28 on spontaneous locomotor and exploratory behavior measured in a behavioral pattern monitor, sensorimotor gating, prepulse inhibition (PPI) of the acoustic startle reflex, and brain reward function (measured in a discrete trial intracranial self-stimulation procedure) in rats. Somatostatin-28 decreased spontaneous locomotor activity during the first 10 min of a 60 min testing session with no apparent changes in the exploratory activity of rats. The highest somatostatin-28 dose (10 μg/5 μl/side) induced PPI deficits with no effect on the acoustic startle response or startle response habituation. The somatostatin-induced PPI deficit was partially reversed by administration of SRA-880, a selective somatostatin 1 (sst1) receptor antagonist. Somatostatin-28 also induced elevations in brain reward thresholds, reflecting an anhedonic-like state. SRA-880 had no effect on brain reward function under baseline conditions. Altogether these findings suggest that somatostatin-28 modulates PPI and brain reward function but does not have a robust effect on spontaneous exploratory activity. Thus, increases in somatostatin transmission may represent one of the neurochemical mechanisms underlying anhedonia, one of the negative symptoms of schizophrenia, and sensorimotor gating deficits associated with cognitive impairments in schizophrenia patients. PMID:20537385

  10. Effects of perinatal asphyxia on the neurobehavioral and retinal development of newborn rats.

    PubMed

    Kiss, Peter; Szogyi, Donat; Reglodi, Dora; Horvath, Gabor; Farkas, Jozsef; Lubics, Andrea; Tamas, Andrea; Atlasz, Tamas; Szabadfi, Krisztina; Babai, Norbert; Gabriel, Robert; Koppan, Miklos

    2009-02-19

    Perinatal asphyxia during delivery produces long-term deficits and represents a major problem in both neonatal and pediatric care. Several morphological, biochemical and behavioral changes have been described in rats exposed to perinatal asphyxia. The aim of the present study was to evaluate how perinatal asphyxia affects the complex early neurobehavioral development and retinal structure of newborn rats. Asphyxia was induced in ready-to-deliver mothers by removing the pups by cesarian section after 15 min of asphyxia. Somatic and neurobehavioral development was tested daily during the first 3 weeks, and motor coordination tests were performed on postnatal weeks 3-5. After completion of the testing procedure, retinas were removed for histological analysis. We found that in spite of the fast catch-up-growth of asphyctic pups, nearly all examined reflexes were delayed by 1-4 days: negative geotaxis, sensory reflexes, righting reflexes, development of fore- and hindlimb grasp and placing, gait and auditory startle reflexes. Time to perform negative geotaxis, surface righting and gait reflexes was significantly longer during the first few weeks in asphyctic pups. Among the motor coordination tests, a markedly weaker performance was observed in the grid walking and footfault test and in the walk initiation test. Retinal structure showed severe degeneration in the layer of the photoreceptor and bipolar cell bodies. In summary, our present study provided a detailed description of reflex and motor development following perinatal asphyxia, showing that asphyxia led to a marked delay in neurobehavioral development and a severe retinal degeneration.

  11. Habituation in acoustic startle reflex: individual differences in personality.

    PubMed

    Blanch, Angel; Balada, Ferran; Aluja, Anton

    2014-03-01

    This study analyzed the relationship of individual differences in personality with habituation in the acoustic startle response (ASR). Data from nine trials in ASR to white noise bursts and a personality questionnaire based on the alternative big five personality approach were modelled with a latent growth curve (LCM) including intercept and slope habituation growth factors. There was a negative correlation between the intercept and slope, indicating that individuals with higher initial ASR levels had also a more pronounced and faster decrease in the ASR. Contrary to expectations, Extraversion and Sensation Seeking did not relate with habituation in ASR. Neuroticism and Aggressiveness related asymmetrically with the habituation rate in ASR. Higher levels of Neuroticism were related with faster habituation, whereas higher levels of Aggressiveness were related with slower habituation. Further studies with the LCM should be undertaken to clarify in a greater extent the association of personality with habituation in ASR. Copyright © 2014 Elsevier B.V. All rights reserved.

  12. Emotion processing deficits in alexithymia and response to a depth of processing intervention.

    PubMed

    Constantinou, Elena; Panayiotou, Georgia; Theodorou, Marios

    2014-12-01

    Findings on alexithymic emotion difficulties have been inconsistent. We examined potential differences between alexithymic and control participants in general arousal, reactivity, facial and subjective expression, emotion labeling, and covariation between emotion response systems. A depth of processing intervention was introduced. Fifty-four participants (27 alexithymic), selected using the Toronto Alexithymia Scale-20, completed an imagery experiment (imagining joy, fear and neutral scripts), under instructions for shallow or deep emotion processing. Heart rate, skin conductance, facial electromyography and startle reflex were recorded along with subjective ratings. Results indicated hypo-reactivity to emotion among high alexithymic individuals, smaller and slower startle responses, and low covariation between physiology and self-report. No deficits in facial expression, labeling and emotion ratings were identified. Deep processing was associated with increased physiological reactivity and lower perceived dominance and arousal in high alexithymia. Findings suggest a tendency for avoidance of intense, unpleasant emotions and less defensive action preparation in alexithymia. Copyright © 2014 Elsevier B.V. All rights reserved.

  13. Manipulating affective state using extended picture presentations.

    PubMed

    Sutton, S K; Davidson, R J; Donzella, B; Irwin, W; Dottl, D A

    1997-03-01

    Separate, extended series of positive, negative, and neutral pictures were presented to 24 (12 men, 12 women) undergraduates. Each series was presented on a different day, with full counterbalancing of presentation orders. Affective state was measured using (a) orbicularis oculi activity in response to acoustic startle probes during picture presentation, (b) corrugator supercilii activity between and during picture presentation, and (c) changes in self-reports of positive and negative affect. Participants exhibited larger eyeblink reflex magnitudes when viewing negative than when viewing positive pictures. Corrugator activity was also greater during the negative than during the positive picture set, during both picture presentation and the period between pictures. Self-reports of negative affect increased in response to the negative picture set, and self-reports of positive affect were greatest following the positive picture set. These findings suggest that extended picture presentation is an effective method of manipulating affective state and further highlight the utility of startle probe and facial electromyographic measures in providing on-line readouts of affective state.

  14. Specific brainstem and cortico-spinal reflex abnormalities in coexisting essential tremor and Parkinson's disease (ET-PD).

    PubMed

    Yavuz, D; Gündüz, A; Ertan, S; Apaydın, H; Şifoğlu, A; Kiziltan, G; Kiziltan, M E

    2015-05-01

    We aimed to analyze functional changes at brainstem and spinal levels in essential tremor (ET), Parkinson's disease (PD) and coexisting essential tremor and Parkinson's disease (ET-PD). Age- and gender-matched patients with tremor (15 ET, 7 ET with resting tremor, 25 ET-PD and 10 PD) and 12 healthy subjects were enrolled in the study. Diagnosis was established according to standardized clinical criteria. Electrophysiological studies included blink reflex (BR), auditory startle reaction (ASR) and long latency reflex (LLR). Blink reflex was normal and similar in all groups. Probability of ASR was significantly lower in ET-PD group whereas it was similar to healthy subjects in ET and PD (P<0.001). LLR was recorded during voluntary activity in all three groups. LLR II was more common in ET, PD and ET-PD groups. LLR III was far more common in the PD group (n=3, 13.6% in ET; n=4, 16.0% in ET-PD and n=7, 46.7% in PD; p=0.037). Despite the integrity of BR pathways, ASR and LLR show distinctive abnormalities in ET-PD. In our opinion, our electrophysiological findings support the hypothesis that ET-PD is a distinct entity. Copyright © 2015 Elsevier Masson SAS. All rights reserved.

  15. The neural basis of visual behaviors in the larval zebrafish

    PubMed Central

    Portugues, Ruben; Engert, Florian

    2015-01-01

    We review visually guided behaviors in larval zebrafish and summarise what is known about the neural processing that results in these behaviors, paying particular attention to the progress made in the last 2 years. Using the examples of the optokinetic reflex, the optomotor response, prey tracking and the visual startle response, we illustrate how the larval zebrafish presents us with a very promising model vertebrate system that allows neurocientists to integrate functional and behavioral studies and from which we can expect illuminating insights in the near future. PMID:19896836

  16. Effects of combined exposure to pyridostigmine bromide and shaker stress on acoustic startle response, pre-pulse inhibition and open field behavior in mice.

    PubMed

    Dubovicky, M; Paton, S; Morris, M; Mach, M; Lucot, J B

    2007-01-01

    The present study investigated the effect of combined exposure of pyridostigmine bromide (PB) and chronic shaker stress on acoustic startle responses (ASR), pre-pulse inhibition (PPI) and open field behavior of adult C57BL/6J mice. PB (10 mg kg(-1) day(-1) for 7 days) or saline was administered subcutaneously using osmotic Alzet minipumps implanted under the skin on the back of the mice. At the same time, the mice were exposed to 7 days of intermittent shaker stress. They were tested for ASR (100 dB and 120 dB stimuli) and PPI (70 dB + 100 dB and 70 dB + 120 dB) in the acoustic startle monitor system. The mice were assessed during the shaker stress on days 2 and 7 and 7, 14, 21 and 28 days after discontinuation of treatment. Separate groups of mice were tested in the open field in 15 min sessions on days 1, 3 and 6 during shaker stress and PB treatment. Exposure of mice to PB resulted in an exaggerated ASR, reduced PPI and non-significant decrease in locomotor activity. These behavioral changes were apparent only during exposure to PB. Repeated shaker stress did not have any effect on sensorimotor functions or open field behavior of mice. There was no prolonged or delayed effect of PB and/or stress on individual behavioral variables. The study found C57BL/6J mice to be behaviorally sensitive to PB treatment. (c) 2007 John Wiley & Sons, Ltd.

  17. A Novel Dominant Hyperekplexia Mutation Y705C Alters Trafficking and Biochemical Properties of the Presynaptic Glycine Transporter GlyT2*

    PubMed Central

    Giménez, Cecilio; Pérez-Siles, Gonzalo; Martínez-Villarreal, Jaime; Arribas-González, Esther; Jiménez, Esperanza; Núñez, Enrique; de Juan-Sanz, Jaime; Fernández-Sánchez, Enrique; García-Tardón, Noemí; Ibáñez, Ignacio; Romanelli, Valeria; Nevado, Julián; James, Victoria M.; Topf, Maya; Chung, Seo-Kyung; Thomas, Rhys H.; Desviat, Lourdes R.; Aragón, Carmen; Zafra, Francisco; Rees, Mark I.; Lapunzina, Pablo; Harvey, Robert J.; López-Corcuera, Beatriz

    2012-01-01

    Hyperekplexia or startle disease is characterized by an exaggerated startle response, evoked by tactile or auditory stimuli, producing hypertonia and apnea episodes. Although rare, this orphan disorder can have serious consequences, including sudden infant death. Dominant and recessive mutations in the human glycine receptor (GlyR) α1 gene (GLRA1) are the major cause of this disorder. However, recessive mutations in the presynaptic Na+/Cl−-dependent glycine transporter GlyT2 gene (SLC6A5) are rapidly emerging as a second major cause of startle disease. In this study, systematic DNA sequencing of SLC6A5 revealed a new dominant GlyT2 mutation: pY705C (c.2114A→G) in transmembrane domain 11, in eight individuals from Spain and the United Kingdom. Curiously, individuals harboring this mutation show significant variation in clinical presentation. In addition to classical hyperekplexia symptoms, some individuals had abnormal respiration, facial dysmorphism, delayed motor development, or intellectual disability. We functionally characterized this mutation using molecular modeling, electrophysiology, [3H]glycine transport, cell surface expression, and cysteine labeling assays. We found that the introduced cysteine interacts with the cysteine pair Cys-311–Cys-320 in the second external loop of GlyT2. This interaction impairs transporter maturation through the secretory pathway, reduces surface expression, and inhibits transport function. Additionally, Y705C presents altered H+ and Zn2+ dependence of glycine transport that may affect the function of glycinergic neurotransmission in vivo. PMID:22753417

  18. Untangling the effects of tinnitus and hypersensitivity to sound (hyperacusis) in the gap detection test.

    PubMed

    Salloum, R H; Sandridge, S; Patton, D J; Stillitano, G; Dawson, G; Niforatos, J; Santiago, L; Kaltenbach, J A

    2016-01-01

    In recent years, there has been increasing use of the gap detection reflex test to demonstrate induction of tinnitus in animals. Animals with tinnitus show weakened gap detection ability for background noise that matches the pitch of the tinnitus. The usual explanation is that the tinnitus 'fills in the gap'. It has recently been shown, however, that tinnitus is commonly associated with hyperacusis-like enhancements of the acoustic startle response, a change which might potentially alter responses in the gap detection test. We hypothesized that such enhancements could lead to an apparent reduction of gap suppression, resembling that caused by tinnitus, by altering responses to the startle stimulus or the background noise. To test this hypothesis, we compared gap detection abilities in 3 subsets of noise-exposed animals with those in unexposed controls. The results showed that exposed animals demonstrated altered gap detection abilities, but these alterations were sometimes explained as consequences of hyper-responsiveness to either the startle stimulus or to the background noise. Two of the three subsets of animals studied, however, displayed weakened gap detection abilities that could not be explained by enhanced responses to these stimuli or by reduced sound sensitivity or a reduction of temporal processing speed, consistent with the induction of tinnitus. These results demonstrate that not only hearing loss but also changes in sensitivity to background noise or to startle stimuli are potential confounds that, when present, can underlie changes in gap detection irrespective of tinnitus. We discuss how such confounds can be recognized and how they can be avoided. Copyright © 2015 Elsevier B.V. All rights reserved.

  19. Lifelong disturbance of serotonin transporter functioning results in fear learning deficits: Reversal by blockade of CRF1 receptors.

    PubMed

    Bijlsma, Elisabeth Y; Hendriksen, Hendrikus; Baas, Johanna M P; Millan, Mark J; Groenink, Lucianne

    2015-10-01

    The inability to associate aversive events with relevant cues (i.e. fear learning) may lead to maladaptive anxiety. To further study the role of the serotonin transporter (SERT) in fear learning, classical fear conditioning was studied in SERT knockout rats (SERT(-/-)) using fear potentiation of the startle reflex. Next, fear acquisition and concomitant development of contextual conditioned fear were monitored during training. To differentiate between developmental and direct effects of reduced SERT functioning, effects of acute and chronic SSRI treatment were studied in adult rats. Considering the known interactions between serotonin and corticotropin-releasing factor (CRF), we studied the effect of the CRFR1 antagonist CP154,526 on behavioral changes observed and determined CRF1 receptor levels in SERT(-/-) rats. SERT(-/-) showed blunted fear potentiation and enhanced contextual fear, which resulted from a deficit in fear acquisition. Paroxetine treatment did not affect acquisition or expression of fear-potentiated startle, suggesting that disturbed fear learning in SERT(-/-) results from developmental changes and not from reduced SERT functioning. Although CRF1 receptor levels did not differ significantly between genotypes, CP154,526 treatment normalized both cue- and contextual fear in SERT(-/-) during acquisition, but not expression of fear-potentiated startle. The disrupted fear acquisition and concomitant increase in contextual conditioned fear-potentiated startle fear in SERT(-/-) resembles the associative learning deficit seen in patients with panic disorder and suggests that normal SERT functioning is crucial for the development of an adequate fear neuro-circuitry. Moreover, the normalization of fear acquisition by CP154,526 suggests a role for central CRF signaling in the generalization of fear. Copyright © 2015 Elsevier B.V. and ECNP. All rights reserved.

  20. Dynamic exercise training prevents exercise pressor reflex overactivity in spontaneously hypertensive rats

    PubMed Central

    Iwamoto, Gary A.; Vongpatanasin, Wanpen; Mitchell, Jere H.; Smith, Scott A.

    2015-01-01

    Cardiovascular responses to exercise are exaggerated in hypertension. We previously demonstrated that this heightened cardiovascular response to exercise is mediated by an abnormal skeletal muscle exercise pressor reflex (EPR) with important contributions from its mechanically and chemically sensitive components. Exercise training attenuates exercise pressor reflex function in healthy subjects as well as in heart failure rats. However, whether exercise training has similar physiological benefits in hypertension remains to be elucidated. Thus we tested the hypothesis that the EPR overactivity manifest in hypertension is mitigated by exercise training. Changes in mean arterial pressure (MAP) and renal sympathetic nerve activity (RSNA) in response to muscle contraction, passive muscle stretch, and hindlimb intra-arterial capsaicin administration were examined in untrained normotensive Wistar-Kyoto rats (WKYUT; n = 6), exercise-trained WKY (WKYET; n = 7), untrained spontaneously hypertensive rats (SHRUT; n = 8), and exercise-trained SHR (SHRET; n = 7). Baseline MAP after decerebration was significantly decreased by 3 mo of wheel running in SHRET (104 ± 9 mmHg) compared with SHRUT (125 ± 10 mmHg). As previously reported, the pressor and renal sympathetic responses to muscle contraction, stretch, and capsaicin administration were significantly higher in SHRUT than WKYUT. Exercise training significantly attenuated the enhanced contraction-induced elevations in MAP (SHRUT: 53 ± 11 mmHg; SHRET: 19 ± 3 mmHg) and RSNA (SHRUT: 145 ± 32%; SHRET: 57 ± 11%). Training produced similar attenuating effects in SHR during passive stretch and capsaicin administration. These data demonstrate that the abnormally exaggerated EPR function that develops in hypertensive rats is significantly diminished by exercise training. PMID:26163445

  1. Direct effects of diazepam on emotional processing in healthy volunteers

    PubMed Central

    Murphy, S. E.; Downham, C.; Cowen, P. J.

    2008-01-01

    Rationale Pharmacological agents used in the treatment of anxiety have been reported to decrease threat relevant processing in patients and healthy controls, suggesting a potentially relevant mechanism of action. However, the effects of the anxiolytic diazepam have typically been examined at sedative doses, which do not allow the direct actions on emotional processing to be fully separated from global effects of the drug on cognition and alertness. Objectives The aim of this study was to investigate the effect of a lower, but still clinically effective, dose of diazepam on emotional processing in healthy volunteers. Materials and methods Twenty-four participants were randomised to receive a single dose of diazepam (5 mg) or placebo. Sixty minutes later, participants completed a battery of psychological tests, including measures of non-emotional cognitive performance (reaction time and sustained attention) and emotional processing (affective modulation of the startle reflex, attentional dot probe, facial expression recognition, and emotional memory). Mood and subjective experience were also measured. Results Diazepam significantly modulated attentional vigilance to masked emotional faces and significantly decreased overall startle reactivity. Diazepam did not significantly affect mood, alertness, response times, facial expression recognition, or sustained attention. Conclusions At non-sedating doses, diazepam produces effects on attentional vigilance and startle responsivity that are consistent with its anxiolytic action. This may be an underlying mechanism through which benzodiazepines exert their therapeutic effects in clinical anxiety. PMID:18581100

  2. Association Study of CHRNA7 Promoter Variants with Sensory and Sensorimotor Gating in Schizophrenia Patients and Healthy Controls: A Danish Case-Control Study.

    PubMed

    Bertelsen, Birgitte; Oranje, Bob; Melchior, Linea; Fagerlund, Birgitte; Werge, Thomas M; Mikkelsen, Jens D; Tümer, Zeynep; Glenthøj, Birte Y

    2015-12-01

    Schizophrenia is a severe psychiatric disorder with a core component of impaired cognitive function still remaining as one of the greatest challenges in the pharmacological treatment of the disorder. The CHRNA7 gene, encoding the subunit of the human α7 nicotinic acetylcholine receptor (α7nAChR), is suggested as a susceptibility factor for schizophrenia. CHRNA7 has also been genetically linked to the P50 auditory evoked potential deficit, a candidate endophenotype of schizophrenia, but not to prepulse inhibition of the startle reflex (PPI). In this study, 95 antipsychotic-naïve schizophrenic patients and 450 unaffected controls were screened for CHRNA7 promoter variants to investigate the association with schizophrenia, P50 suppression and PPI. We found that the promoter variant -194C (rs28531779) was significantly associated with schizophrenia, but did not find any association of this variant with P50 suppression or PPI. In addition, individuals with CHRNA7 promoter variants had elevated startle magnitude in pulse-alone trials compared to individuals without a variant. The present findings provide further support for a role of the α7nAChR in schizophrenia and show a genetic link between CHRNA7 and startle magnitude, indicating that cholinergic neurotransmission involving the α7nAChR could be involved in sensory registration processes.

  3. The effects of Eph-ephrin mutations on pre-pulse inhibition in mice.

    PubMed

    Liuzzo, Andrea; Gray, Lincoln; Wallace, Matthew; Gabriele, Mark

    2014-08-01

    Eph-ephrin signaling is known to be important in directing topographic projections in the afferent auditory pathway, including connections to various subdivisions of the inferior colliculus (IC). The acoustic startle-response (ASR) is a reliable reflexive behavioral response in mammals elicited by an unexpected intense acoustic startle-eliciting stimulus (ES). It is mediated by a sub-cortical pathway that includes the IC. The ASR amplitude can be measured with an accelerometer under the subject and can be decreased in amplitude by presenting a less intense, non-startling stimulus 5-300ms before the ES. This reflexive decrement in ASR is called pre-pulse inhibition (PPI) and indicates that the relatively soft pre-pulse was heard. PPI is a general trait among mammals. Mice have been used recently to study this response and to reveal how genetic mutations affect neural circuits and hence the ASR and PPI. In this experiment, we measured the effect of Eph-ephrin mutations using control mice (C57BL/6J), mice with compromised EphA4 signaling (EphA4(lacZ/+), EphA4(lacZ/lacZ)), and knockout ephrin-B3 mice (ephrin-B3 (+/-, -/-)). Control and EphA4(lacZ/+s)trains showed robust PPI (up to 75% decrement in ASR) to an offset of a 70dB SPL background noise at 50ms before the ES. Ephrin-B3 knockout mice and EphA4 homozygous mutants were only marginally significant in PPI (<25% decrement and <33% decrement, respectively) to the same conditions. This decrement in PPI highlights the importance of ephrin-B3 and EphA4 interactions in ordering auditory behavioral circuits. Thus, different mutations in certain members of the signaling family produce a full range of changes in PPI, from minimal to nearly maximal. This technique can be easily adapted to study other aspects of hearing in a wider range of mutations. Along with ongoing neuroanatomical studies, this allows careful quantification of how the auditory anatomical, physiological and now behavioral phenotype is affected by changes in Eph-ephrin expression and functionality. Copyright © 2014 Elsevier Inc. All rights reserved.

  4. Iron Deficiency with or without Anemia Impairs Prepulse Inhibition of the Startle Reflex

    PubMed Central

    Pisansky, Marc T.; Wickham, Robert J.; Su, Jianjun; Fretham, Stephanie; Yuan, Li-Lian; Sun, Mu; Gewirtz, Jonathan C.; Georgieff, Michael K.

    2013-01-01

    Iron deficiency (ID) during early life causes long-lasting detrimental cognitive sequelae, many of which are linked to alterations in hippocampus function, dopamine synthesis, and the modulation of dopaminergic circuitry by the hippocampus. These same features have been implicated in the origins of schizophrenia, a neuropsychiatric disorder with significant cognitive impairments. Deficits in sensorimotor gating represent a reliable endophenotype of schizophrenia that can be measured by prepulse inhibition (PPI) of the acoustic startle reflex. Using two rodent model systems, we investigated the influence of early-life ID on PPI in adulthood. To isolate the role of hippocampal iron in PPI, our mouse model utilized a timed (embryonic day 18.5), hippocampus-specific knockout of Slc11a2, a gene coding an important regulator of cellular iron uptake, the divalent metal transport type 1 protein (DMT-1). Our second model used a classic rat dietary-based global ID during gestation, a condition that closely mimics human gestational ID anemia (IDA). Both models exhibited impaired PPI in adulthood. Furthermore, our DMT-1 knockout model displayed reduced long-term potentiation (LTP) and elevated paired pulse facilitation (PPF), electrophysiological results consistent with previous findings in the IDA rat model. These results, in combination with previous findings demonstrating impaired hippocampus functioning and altered dopaminergic and glutamatergic neurotransmission, suggest that iron availability within the hippocampus is critical for the neurodevelopmental processes underlying sensorimotor gating. Ultimately, evidence of reduced PPI in both of our models may offer insights into the roles of fetal ID and the hippocampus in the pathophysiology of schizophrenia. PMID:23733517

  5. Simultaneous characterizations of reflex and nonreflex dynamic and static changes in spastic hemiparesis

    PubMed Central

    Chung, Sun G.; Ren, Yupeng; Liu, Lin; Roth, Elliot J.; Rymer, W. Zev

    2013-01-01

    This study characterizes tonic and phasic stretch reflex and stiffness and viscosity changes associated with spastic hemiparesis. Perturbations were applied to the ankle of 27 hemiparetic and 36 healthy subjects under relaxed or active contracting conditions. A nonlinear delay differential equation model characterized phasic and tonic stretch reflex gains, elastic stiffness, and viscous damping. Tendon reflex was characterized with reflex gain and threshold. Reflexively, tonic reflex gain was increased in spastic ankles at rest (P < 0.038) and was not regulated with muscle contraction, indicating impaired tonic stretch reflex. Phasic-reflex gain in spastic plantar flexors was higher and increased faster with plantar flexor contraction (P < 0.012) than controls (P < 0.023) and higher in dorsi-flexors at lower torques (P < 0.038), primarily because of its increase at rest (P = 0.045), indicating exaggerated phasic stretch reflex especially in more spastic plantar flexors, which showed higher phasic stretch reflex gain than dorsi-flexors (P < 0.032). Spasticity was associated with increased tendon reflex gain (P = 0.002) and decreased threshold (P < 0.001). Mechanically, stiffness in spastic ankles was higher than that in controls across plantar flexion/dorsi-flexion torque levels (P < 0.032), and the more spastic plantar flexors were stiffer than dorsi-flexors at comparable torques (P < 0.031). Increased stiffness in spastic ankles was mainly due to passive stiffness increase (P < 0.001), indicating increased connective tissues/shortened fascicles. Viscous damping in spastic ankles was increased across the plantar flexion torque levels and at lower dorsi-flexion torques, reflecting increased passive viscous damping (P = 0.033). The more spastic plantar flexors showed higher viscous damping than dorsi-flexors at comparable torque levels (P < 0.047). Simultaneous characterizations of reflex and nonreflex changes in spastic hemiparesis may help to evaluate and treat them more effectively. PMID:23636726

  6. Sex differences in cough reflex.

    PubMed

    Plevkova, J; Buday, T; Kavalcikova-Bogdanova, N; Ioan, I; Demoulin-Alexikova, S

    2017-11-01

    Majority of patients visiting cough clinics are postmenopausal women, who are affected by intractable cough for years. Why the cough reflex becomes exaggerated in women is not known. Basic research excludes females from the studies contributing to the sex bias which may be responsible for lack of understanding of "hypersensitive" cough in women. Biological and behavioural differences between women and men are the factors affecting cough physiology. Gender also shapes the patterns of behaviour and determines the character of environmental exposures which differs between sexes. The article offers an insight into the physiology of the cough, differences in the maturation of it and biological, social and behavioural factors contributing to the sex differences in cough. Copyright © 2016 Elsevier B.V. All rights reserved.

  7. The Moro reaction: More than a reflex, a ritualized behavior of nonverbal communication.

    PubMed

    Rousseau, Pierre V; Matton, Florence; Lecuyer, Renaud; Lahaye, Willy

    2017-02-01

    To propose a phylogenetic significance to the Moro reflex which remains unexplained since its publication in 1918 because both hands are free at the end of the gesture. Among the 75 videos of healthy term newborns we have filmed in a research project on antenatal education to parenthood, we describe a sequence that clearly showed the successive movements of the Moro reflex and we report the occurrence of this reflex in the videos that were recorded from Time 0 of birth defined as the moment that lies between the birth of the thorax and the pelvis of the infant. The selected sequence showed the following succession of the newborn's actions: quick extension-adduction of both arms, the orientation of the body, head and eyes towards a human person, and full extension-abduction of both arms with spreading of the fingers, crying and a distressed face. There were 13 Moro reflexes between 2 and 14s from Time 0 of birth. We found a significant association between the occurrence of the Moro reflex and the placement of the newborn at birth in supine position on the mother's abdomen (p=0.002). The quick extension-adduction of both arms which started the sequence may be considered as a startle reflex controlled by the neural fear system and the arm extension-adduction which followed as a Moro reflex. The characteristics of all Moro reflexes were those of ritualization: amplitude, duration, stereotype of the gestures. This evolutionary process turns a physiological behavior, grasping in this case, to a non-verbal communicative behavior whose meaning is a request to be picked up in the arms. The gestures associated with the Moro reflex: crying and orientation of the body, head, and eyes towards a human person, are gestures of intention to communicate which support our hypothesis. The neural mechanism of the Moro reaction probably involves both the fear and the separation-distress systems. This paper proposes for the first time a phylogenetic significance to the Moro reflex: a ritualized behavior of nonverbal communication. Professionals should avoid stimulating the newborns' fear system by unnecessarily triggering Moro reflexes. Antenatal education should teach parents to respond to the Moro reflexes of their newborn infant by picking her up in their arms with mother talk. Copyright © 2017 Elsevier Inc. All rights reserved.

  8. The neural basis of visual behaviors in the larval zebrafish.

    PubMed

    Portugues, Ruben; Engert, Florian

    2009-12-01

    We review visually guided behaviors in larval zebrafish and summarise what is known about the neural processing that results in these behaviors, paying particular attention to the progress made in the last 2 years. Using the examples of the optokinetic reflex, the optomotor response, prey tracking and the visual startle response, we illustrate how the larval zebrafish presents us with a very promising model vertebrate system that allows neurocientists to integrate functional and behavioral studies and from which we can expect illuminating insights in the near future. Copyright 2009 Elsevier Ltd. All rights reserved.

  9. Does spasticity contribute to walking dysfunction after stroke?

    PubMed Central

    Ada, L.; Vattanasilp, W.; O'Dwyer, N.; Crosbie, J.

    1998-01-01

    OBJECTIVES—Clinically, it is assumed that spasticity of the calf muscles interferes with walking after stroke. The aim was to examine this assumption by evaluating the contribution of spasticity in the gastrocnemius muscle to walking dysfunction in an ambulant stroke population several months after stroke.
METHODS—Fourteen stroke patients who were able to walk independently and 15 neurologically normal control subjects were recruited. Both resting and action stretch reflexes of the gastrocnemius muscle were investigated under conditions that simulated walking. Resting tonic stretch reflexes were measured to assess spasticity whereas action tonic stretch reflexes were measured to assess the possible contribution of spasticity to gait dysfunction.
RESULTS—Two thirds of the stroke patients exhibited resting tonic stretch reflexes which indicate spasticity, whereas none of the control subjects did. However, the stroke patients exhibited action tonic stretch reflexes that were of similar magnitude to the control subjects, suggesting that their reflex activity during walking was not different from that of control subjects. Furthermore, there was no evidence that the action stretch reflex in the stroke patients contributed a higher resistance to stretch than the control subjects.
CONCLUSIONS—Whereas most of the stroke patients exhibited spasticity when measured both clinically and physiologically, they did not exhibit an increase in resistance to dorsiflexion due to exaggerated action tonic stretch reflexes. It is concluded that it is unlikely that spasticity causes problems in walking after stroke in ambulant patients. Therefore, it seems inappropriate to routinely reduce or inhibit the reflex response to improve functional movement in stroke rehabilitation. Factors other than spasticity should be considered when analysing walking after stroke, so that appropriate treatment is provided to patients.

 PMID:9598679

  10. [The effect of neonatal administration of monosodium glutamate on behavior and blood corticosterone level].

    PubMed

    Kuznetsova, E G; Amstislavskaia, T G; Bulygina, V V; Il'nitskaia, S I; Tibeĭkina, M A; Skrinskaia, Iu A

    2006-06-01

    DBA/2 male mice were treated with monosodium glutamate (MSG) in a dose of 4 mg/g on 1, 3, 5, 7, 9 days after birth. Saline treated and intact males were used as control groups. MSG treated males displayed decreased number of crossed squares, rearings, entries in the centre and time in the centre of open field in comparison with saline-treated but not intact animals. Time in the light compartment of the light-dark box was increased in MSG-treated mice versus both saline treated and intact animals. MSG administration reduced acoustic startle response but did not affect the magnitude of prepulse inhibition of the startle reflex. Sexual motivation in male mice was reduced by MSG, the same trend was observed after saline treatment. MSG administration increased corticosterone basal level 4-fold while saline treatment did not affect it. These data suggest that neonatal administration of MSG decreases locomotion, exploratory activity, anxiety in male mice, while corticosterone level is increased. Saline treatment increases these parameters (except sexual motivation), and this augmentation is not connected to changes in corticosterone basal level.

  11. Models and mechanisms of anxiety: evidence from startle studies

    PubMed Central

    Grillon, Christian

    2009-01-01

    Rationale Preclinical data indicates that threat stimuli elicit two classes of defensive behaviors, those that are associated with imminent danger and are characterized by avoidance or fight (fear), and those that are associated with temporally uncertain danger and are characterized by sustained apprehension and hypervigilance (anxiety). Objective To 1) review evidence for a distinction between fear and anxiety in animal and human experimental models using the startle reflex as an operational measure of aversive states, 2) describe experimental models of anxiety, as opposed to fear, in humans, 3) examine the relevance of these models to clinical anxiety. Results The distinction between phasic fear to imminent threat and sustained anxiety to temporally uncertain danger is suggested by psychopharmacological and behavioral evidence from ethological studies and can be traced back to distinct neuroanatomical systems, the amygdala and the bed nucleus of the stria terminalis. Experimental models of anxiety, not fear, are relevant to non-phobic anxiety disorders. Conclusions Progress in our understanding of normal and abnormal anxiety is critically dependent on our ability to model sustained aversive states to temporally uncertain threat. PMID:18058089

  12. Recurrent Moderate Hypoglycemia Suppresses Brain-Derived Neurotrophic Factor Expression in the Prefrontal Cortex and Impairs Sensorimotor Gating in the Post-Hypoglycemia Period in Young Rats

    PubMed Central

    Rao, Raghavendra; Ennis, Kathleen; Mitchell, Eugena P.; Tran, Phu V.; Gewirtz, Jonathan C.

    2016-01-01

    Recurrent hypoglycemia is common in infants and children. In developing rat models, recurrent moderate hypoglycemia leads to neuronal injury in the medial prefrontal cortex. To understand the effects beyond neuronal injury, three-week-old male rats were subjected to five episodes of moderate hypoglycemia (blood glucose concentration, approximately 30 mg/dl for 90 min) once daily from postnatal day 24 to 28. Neuronal injury was determined using Fluoro-jade B histochemistry on postnatal day 29. The effects on brain-derived neurotrophic factor (BDNF) and its cognate receptor, tyrosine kinase B (TrkB) expression, which is critical for prefrontal cortex development, were determined on postnatal day 29 and at adulthood. The effects on prefrontal cortex-mediated function were determined by assessing prepulse inhibition of the acoustic startle reflex on postnatal day 29 and two weeks later, and by testing for fear-potentiated startle at adulthood. Recurrent hypoglycemia led to neuronal injury confined primarily to the medial prefrontal cortex. BDNF and TrkB expression in the prefrontal cortex was suppressed on postnatal day 29 and was accompanied by lower prepulse inhibition, suggesting impaired sensorimotor gating. Following the cessation of recurrent hypoglycemia, prepulse inhibition had recovered at two weeks. BDNF/TrkB expression in the prefrontal cortex had normalized and fear-potentiated startle was intact at adulthood. Recurrent moderate hypoglycemia during development has significant adverse effects on the prefrontal cortex in the post-hypoglycemia period. PMID:26820887

  13. Origin and function of short-latency inputs to the neural substrates underlying the acoustic startle reflex

    PubMed Central

    Gómez-Nieto, Ricardo; Horta-Júnior, José de Anchieta C.; Castellano, Orlando; Millian-Morell, Lymarie; Rubio, Maria E.; López, Dolores E.

    2014-01-01

    The acoustic startle reflex (ASR) is a survival mechanism of alarm, which rapidly alerts the organism to a sudden loud auditory stimulus. In rats, the primary ASR circuit encompasses three serially connected structures: cochlear root neurons (CRNs), neurons in the caudal pontine reticular nucleus (PnC), and motoneurons in the medulla and spinal cord. It is well-established that both CRNs and PnC neurons receive short-latency auditory inputs to mediate the ASR. Here, we investigated the anatomical origin and functional role of these inputs using a multidisciplinary approach that combines morphological, electrophysiological and behavioral techniques. Anterograde tracer injections into the cochlea suggest that CRNs somata and dendrites receive inputs depending, respectively, on their basal or apical cochlear origin. Confocal colocalization experiments demonstrated that these cochlear inputs are immunopositive for the vesicular glutamate transporter 1 (VGLUT1). Using extracellular recordings in vivo followed by subsequent tracer injections, we investigated the response of PnC neurons after contra-, ipsi-, and bilateral acoustic stimulation and identified the source of their auditory afferents. Our results showed that the binaural firing rate of PnC neurons was higher than the monaural, exhibiting higher spike discharges with contralateral than ipsilateral acoustic stimulations. Our histological analysis confirmed the CRNs as the principal source of short-latency acoustic inputs, and indicated that other areas of the cochlear nucleus complex are not likely to innervate PnC. Behaviorally, we observed a strong reduction of ASR amplitude in monaural earplugged rats that corresponds with the binaural summation process shown in our electrophysiological findings. Our study contributes to understand better the role of neuronal mechanisms in auditory alerting behaviors and provides strong evidence that the CRNs-PnC pathway mediates fast neurotransmission and binaural summation of the ASR. PMID:25120419

  14. Reflex reticular myoclonus: relationship to some brainstem pathophysiological mechanisms.

    PubMed

    Rektor, I; Kadanka, Z; Bednarik, J

    1991-04-01

    Two patients with reflex reticular myoclonus [RRM] were tested electrophysiologically and pharmacologically. In one of the cases the underlying disease was chronic Lyme borreliosis. In the other, the RRM attacks may have been associated with procarbazine therapy applied for Hodgkin's disease. No cortical lesion could be demonstrated either clinically or electrophysiologically [EEG, averaged EEg preceeding the jerks, SSEP]. An EMG analysis of the jerks revealed the shortest latency in the muscles innervated by the accessory nerve. The latencies became longer in a more rostral muscle [masseter], as well as in a more caudal one, the muscles innervated by the facial nerve were spared. it is presumed that the complete movement pattern of the myoclonus residues in the jerk generating structure. RRM in the described cases differs from the startle by sparing the facial nerve and from the Papio papio baboon non-epileptic myoclonus by the activating effect of physostigmine. A partial therapeutic effect was achieved with a serotonine precursor, but a GABAergic therapy proved to be the most effective.

  15. Relationship between Toxoplasma gondii seropositivity and acoustic startle response in an inner-city population.

    PubMed

    Massa, Nick M; Duncan, Erica; Jovanovic, Tanja; Kerley, Kimberly; Weng, Lei; Gensler, Lauren; Lee, Samuel S; Norrholm, Seth; Powers, Abigail; Almli, Lynn M; Gillespie, Charles F; Ressler, Kerry; Pearce, Bradley D

    2017-03-01

    Toxoplasma gondii (TOXO) is a neuroinvasive protozoan parasite that induces the formation of persistent cysts in mammalian brains. It infects approximately 1.1million people in the United States annually. Latent TOXO infection is implicated in the etiology of psychiatric disorders, especially schizophrenia (SCZ), and has been correlated with modestly impaired cognition. The acoustic startle response (ASR) is a reflex seen in all mammals. It is mediated by a simple subcortical circuit, and provides an indicator of neural function. We previously reported the association of TOXO with slowed acoustic startle latency, an index of neural processing speed, in a sample of schizophrenia and healthy control subjects. The alterations in neurobiology with TOXO latent infection may not be specific to schizophrenia. Therefore we examined TOXO in relation to acoustic startle in an urban, predominately African American, population with mixed psychiatric diagnoses, and healthy controls. Physiological and diagnostic data along with blood samples were collected from 364 outpatients treated at an inner-city hospital. TOXO status was determined with an ELISA assay for TOXO-specific IgG. A discrete titer was calculated based on standard cut-points as an indicator of seropositivity, and the TOXO-specific IgG concentration served as serointensity. A series of linear regression models were used to assess the association of TOXO seropositivity and serointensity with ASR magnitude and latency in models adjusting for demographics and psychiatric diagnoses (PTSD, major depression, schizophrenia, psychosis, substance abuse). ASR magnitude was 11.5% higher in TOXO seropositive subjects compared to seronegative individuals (p=0.01). This effect was more pronounced in models with TOXO serointensity that adjusted for sociodemographic covariates (F=7.41, p=0.0068; F=10.05, p=0.0017), and remained significant when psychiatric diagnoses were stepped into the models. TOXO showed no association with startle latency (t=0.49, p=0.63) in an unadjusted model, nor was TOXO associated with latency in models that included demographic factors. After stepping in individual psychiatric disorders, we found a significant association of latency with a diagnosis of PTSD (F=5.15, p=0.024), but no other psychiatric diagnoses, such that subjects with PTSD had longer startle latency. The mechanism by which TOXO infection is associated with high startle magnitude is not known, but possible mechanisms include TOXO cyst burden in the brain, parasite recrudescence, or molecular mimicry of a host epitope by TOXO. Future studies will focus on the neurobiology underlying the effects of latent TOXO infection as a potential inroad to the development of novel treatment targets for psychiatric disease. Copyright © 2016 Elsevier Inc. All rights reserved.

  16. Sensorimotor Gating in Neurotensin-1 Receptor Null Mice

    PubMed Central

    Feifel, D.; Pang, Z.; Shilling, P.D.; Melendez, G.; Schreiber, R.; Button, D.

    2009-01-01

    BACKGROUND Converging evidence has implicated endogenous neurotensin (NT) in the pathophysiology of brain processes relevant to schizophrenia. Prepulse inhibition of the startle reflex (PPI) is a measure of sensorimotor gating and considered to be of strong relevance to neuropsychiatric disorders associated with psychosis and cognitive dysfunction. Mice genetically engineered to not express NT display deficits in PPI that model the PPI deficits seen in schizophrenia patients. NT1 receptors have been most strongly implicated in mediating the psychosis relevant effects of NT such as attenuating PPI deficits. To investigate the role of NT1 receptors in the regulation of PPI, we measured baseline PPI in wildtype (WT) and NT1 knockout (KO) mice. We also tested the effects of amphetamine and dizocilpine, a dopamine agonist and NMDA antagonist, respectively, that reduce PPI as well as the NT1 selective receptor agonist, PD149163, known to increase PPI in rats. METHODS Baseline PPI and acoustic startle response were measured in WT and NT1 knockout KO mice. After baseline testing, mice were tested again after receiving intraperatoneal (IP) saline or one of three doses of amphetamine (1.0, 3.0 and 10.0 mg/kg), dizocilpine (0.3, 1.0 and 3.0 mg/kg) and PD149163 (0.5, 2.0 and 6.0 mg/kg) on separate test days. RESULTS Baseline PPI and acoustic startle response in NT1 KO mice were not significantly different from NT1 WT mice. WT and KO mice exhibited similar responses to the PPI-disrupting effects of dizocilpine and amphetamine. PD149163 significantly facilitated PPI (P < 0.004) and decreased the acoustic startle response (P < 0.001) in WT but not NT1 KO mice. CONCLUSIONS The data does not support the regulation of baseline PPI or the PPI disruptive effects of amphetamine or dizocilpine by endogenous NT acting at the NT1 receptor, although they support the antipsychotic potential of pharmacological activation of NT1 receptors by NT1 agonists. PMID:19596359

  17. Dynamics of defensive reactivity in patients with panic disorder and agoraphobia: implications for the etiology of panic disorder.

    PubMed

    Richter, Jan; Hamm, Alfons O; Pané-Farré, Christiane A; Gerlach, Alexander L; Gloster, Andrew T; Wittchen, Hans-Ulrich; Lang, Thomas; Alpers, Georg W; Helbig-Lang, Sylvia; Deckert, Jürgen; Fydrich, Thomas; Fehm, Lydia; Ströhle, Andreas; Kircher, Tilo; Arolt, Volker

    2012-09-15

    The learning perspective of panic disorder distinguishes between acute panic and anxious apprehension as distinct emotional states. Following animal models, these clinical entities reflect different stages of defensive reactivity depending upon the imminence of interoceptive or exteroceptive threat cues. The current study tested this model by investigating the dynamics of defensive reactivity in a large group of patients with panic disorder and agoraphobia (PD/AG). Three hundred forty-five PD/AG patients participated in a standardized behavioral avoidance test (being entrapped in a small, dark chamber for 10 minutes). Defense reactivity was assessed measuring avoidance and escape behavior, self-reports of anxiety and panic symptoms, autonomic arousal (heart rate and skin conductance), and potentiation of the startle reflex before and during exposure of the behavioral avoidance test. Panic disorder and agoraphobia patients differed substantially in their defensive reactivity. While 31.6% of the patients showed strong anxious apprehension during this task (as indexed by increased reports of anxiety, elevated physiological arousal, and startle potentiation), 20.9% of the patients escaped from the test chamber. Active escape was initiated at the peak of the autonomic surge accompanied by an inhibition of the startle response as predicted by the animal model. These physiological responses resembled the pattern observed during the 34 reported panic attacks. We found evidence that defensive reactivity in PD/AG patients is dynamically organized ranging from anxious apprehension to panic with increasing proximity of interoceptive threat. These data support the learning perspective of panic disorder. Copyright © 2012 Society of Biological Psychiatry. Published by Elsevier Inc. All rights reserved.

  18. The much exaggerated death of positivism

    NASA Astrophysics Data System (ADS)

    Kincheloe, Joe L.; Tobin, Kenneth

    2009-09-01

    Approaches to research in the social sciences often embrace schema that are consistent with positivism, even though it is widely held that positivism is discredited and essentially dead. Accordingly, many of the methods used in present day scholarship are supported by the tenets of positivism, and are sources of hegemony. We exhort researchers to employ reflexive methods to identify the epistemologies, ontologies and axiologies that are salient in their scholarship and, when necessary, transform practices such that forms of oppression associated with crypto-positivism are identified and extinguished.

  19. Prenatal methylmercury poisoning: clinical observations over five years

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Amin-Zaki, L.; Majeed, M.A.; Elhassani, S.B.

    1979-02-01

    Thirty-two infants prenatally exposed to methylmercury and their mothers were examined over a five-year period after the Iraqi methylmercury epidemic. Severity of poisoning in mothers was related to the peak mercury concentration in their hair and in the infants to the maximum concentration in maternal hair during pregnancy. In nine cases of cerebral palsy, methylmercury exposure occurred only during the last trimester. All infants except three (two were orphaned soon after birth and one was bottle-fed) were exposed postnatally via suckling. Whereas the mother's symptoms usually improved, the damage to the fetal nervous system appears to be permanent. Milder casesmore » previously not identified in other studies are reported. The syndrome consists of varying degrees of developmental retardation in addition to exaggerated tendon reflexes and the pathologic extensor plantar reflex (minimal brain damage syndrome).« less

  20. Neurophysiological evidence of an association between cognitive control and defensive reactivity processes in young children.

    PubMed

    Lo, Sharon L; Schroder, Hans S; Moran, Tim P; Durbin, C Emily; Moser, Jason S

    2015-10-01

    Interactions between cognitive control and affective processes, such as defensive reactivity, are intimately involved in healthy and unhealthy human development. However, cognitive control and defensive reactivity processes are often studied in isolation and rarely examined in early childhood. To address these gaps, we examined the relationships between multiple neurophysiological measures of cognitive control and defensive reactivity in young children. Specifically, we assessed two event-related potentials thought to index cognitive control processes--the error-related negativity (ERN) and error positivity (Pe)--measured across two tasks, and two markers of defensive reactivity processes--startle reflex and resting parietal asymmetry--in a sample of 3- to 7-year old children. Results revealed that measures of cognitive control and defensive reactivity were related such that evidence of poor cognitive control (smaller ERN) was associated with high defensive reactivity (larger startle and greater right relative to left parietal activity). The strength of associations between the ERN and measures of defensive reactivity did not vary by age, providing evidence that poor cognitive control relates to greater defensive reactivity across early childhood years. Copyright © 2015 The Authors. Published by Elsevier Ltd.. All rights reserved.

  1. The effects of varenicline on sensory gating and exploratory behavior with pretreatment with nicotinic or 5-HT3A receptor antagonists.

    PubMed

    Kucinski, Aaron; Wersinger, Scott; Stachowiak, Ewa K; Becker, Chani; Lippiello, Pat; Bencherif, Merouane; Stachowiak, Michal K

    2015-02-01

    Individuals with schizophrenia smoke at high frequency relative to the general population. Despite the harmful effects of cigarette smoking, smoking among schizophrenic patients improves cognitive impairments not addressed or worsened by common neuroleptics. Varenicline, a nonselective neuronal nicotinic receptor (NNR) agonist and full agonist of 5-HT3A receptors, helps reduce smoking among schizophrenic patients. To determine whether varenicline also improves a cognitive symptom of schizophrenia, namely, impaired sensory gating, a transgenic mouse with schizophrenia, th-fgfr1(tk-), was used. Varenicline dose-dependently increased prepulse inhibition (PPI) of the startle response, a measure of sensory gating, in th-fgfr1(tk-) mice and normalized PPI deficits relative to nontransgenic controls. With the highest dose (10 mg/kg), however, there was a robust elevation of PPI and startle response, as well as reduced exploratory behavior in the open field and elevated plus maze. Pretreatment with the nonspecific NNR antagonist mecamylamine attenuated the exaggerated PPI response and, similar to the 5-HT3A receptor antagonist ondansetron, it prevented the reduction in exploratory behavior. Collectively, these results indicate that varenicline at low-to-moderate doses may be beneficial against impaired sensory gating in schizophrenia; however, higher doses may induce anxiogenic effects, which can be prevented with antagonists of NNRs or 5-HT3A receptors.

  2. Genetic and radiation hybrid mapping of the hyperekplexia region on chromosome 5q.

    PubMed Central

    Ryan, S G; Dixon, M J; Nigro, M A; Kelts, K A; Markand, O N; Terry, J C; Shiang, R; Wasmuth, J J; O'Connell, P

    1992-01-01

    Hyperekplexia, or startle disease (STHE), is an autosomal dominant neurologic disorder characterized by muscular rigidity of central nervous system origin, particularly in the neonatal period, and by an exaggerated startle response to sudden, unexpected acoustic or tactile stimuli. STHE responds dramatically to the benzodiazepine drug clonazepam, which acts at gamma-aminobutyric acid type A (GABA-A) receptors. The STHE locus (STHE) was recently assigned to chromosome 5q, on the basis of tight linkage to the colony-stimulating factor 1-receptor (CSF1-R) locus in a single large family. We performed linkage analysis in the original and three additional STHE pedigrees with eight chromosome 5q microsatellite markers and placed several of the most closely linked markers on an existing radiation hybrid (RH) map of the region. The results provide strong evidence for genetic locus homogeneity and assign STHE to a 5.9-cM interval defined by CSF1-R and D5S379, which are separated by an RH map distance of 74 centirays (roughly 2.2-3.7 Mb). Two polymorphic markers (D5S119 and D5S209) lie within this region, but they could not be ordered with respect to STHE. RH mapping eliminated the candidate genes GABRA1 and GABRG2, which encode GABA-A receptor components, by showing that they are telomeric to the target region. PMID:1334371

  3. Substance P in the nucleus of the solitary tract augments bronchopulmonary C fiber reflex output.

    PubMed

    Mutoh, T; Bonham, A C; Joad, J P

    2000-10-01

    Bronchopulmonary C fibers defend the lungs against injury from inhaled agents by a central nervous system reflex consisting of apnea, cough, bronchoconstriction, hypotension, and bradycardia. Glutamate is the putative neurotransmitter at the first central synapses in the nucleus of the solitary tract (NTS), but substance P, also released in the NTS, may modulate the transmission. To test the hypothesis that substance P in the NTS augments bronchopulmonary C fiber input and hence reflex output, we stimulated the C fibers with left atrial capsaicin (LA CAP) injections and compared the changes in phrenic nerve discharge, tracheal pressure (TP), arterial blood pressure (ABP), and heart rate (HR) in guinea pigs before and after substance P injections (200 microM, 25 nl) in the NTS. Substance P significantly augmented LA CAP-evoked increases in expiratory time by 10-fold and increases in TP and decreases in ABP and HR by threefold, effects prevented by neurokinin-1 (NK1) receptor antagonism. Thus substance P acting at NTS NK1 receptors can exaggerate bronchopulmonary C fiber reflex output. Because substance P synthesis in vagal airway C fibers may be enhanced in pathological conditions such as allergic asthma, the findings may help explain some of the associated respiratory symptoms including cough and bronchoconstriction.

  4. Abnormal Neurocirculatory Control During Exercise in Humans with Chronic Renal Failure

    PubMed Central

    Park, Jeanie; Middlekauff, Holly R.

    2014-01-01

    Abnormal neurocirculatory control during exercise is one important mechanism leading to exercise intolerance in patients with both end-stage renal disease (ESRD) and earlier stages of chronic kidney disease (CKD). This review will provide an overview of mechanisms underlying abnormal neurocirculatory and hemodynamic responses to exercise in patients with kidney disease. Recent studies have shown that ESRD and CKD patients have an exaggerated increase in blood pressure (BP) during both isometric and rhythmic exercise. Subsequent studies examining the role of the exercise pressor reflex in the augmented pressor response revealed that muscle sympathetic nerve activity (MSNA) was not augmented during exercise in these patients, and metaboreflex-mediated increases in MSNA were blunted, while mechanoreflex-mediated increases were preserved under basal conditions. However, normalizing the augmented BP response during exercise via infusion of nitroprusside (NTP), and thereby equalizing baroreflex-mediated suppression of MSNA, an important modulator of the final hemodynamic response to exercise, revealed that CKD patients had an exaggerated increase in MSNA during isometric and rhythmic exercise. In addition, mechanoreflex-mediated control was augmented, and metaboreceptor blunting was no longer apparent in CKD patients with baroreflex normalization. Factors leading to mechanoreceptor sensitization, and other mechanisms underlying the exaggerated exercise pressor response, such as impaired functional sympatholysis, should be investigated in future studies. PMID:25458430

  5. High doses of salicylate causes prepulse facilitation of onset-gap induced acoustic startle response.

    PubMed

    Sun, Wei; Doolittle, Lauren; Flowers, Elizabeth; Zhang, Chao; Wang, Qiuju

    2014-01-01

    Prepulse inhibition of acoustic startle reflex (PPI), a well-established method for evaluating sensorimotor gating function, has been used to detect tinnitus in animal models. Reduced gap induced PPI (gap-PPI) was considered as a sign of tinnitus. The silent gap used in the test contains both onset and offset signals. Tinnitus may affect these cues differently. In this experiment, we studied the effects of a high dose of salicylate (250 mg/kg, i.p.), an inducer of reversible tinnitus and sensorineural hearing loss, on gap-PPI induced by three different gaps: an onset-gap with 0.1 ms onset and 25 ms offset time, an offset-gap with 25 ms onset and 0.1 ms offset time, and an onset-offset-gap with 0.1 ms onset and offset time. We found that the onset-gaps induced smaller inhibitions than the offset-gaps before salicylate treatment. The offset-gap induced PPI was significantly reduced 1-3h after salicylate treatment. However, the onset-gap caused a facilitation of startle response. These results suggest that salicylate induced reduction of gap-PPI was not only caused by the decrease of offset-gap induced PPI, but also by the facilitation induced by the onset-gap. Since the onset-gap induced PPI is caused by neural offset response, our results suggest that salicylate may cause a facilitation of neural response to an offset acoustical signal. Treatment of vigabatrin (60 mg/kg/day, 14 days), which elevates the GABA level in the brain, blocked the offset-gap induced PPI and onset-gap induced facilitation caused by salicylate. These results suggest that enhancing GABAergic activities can alleviate salicylate induced tinnitus. Published by Elsevier B.V.

  6. Failure to extinguish fear and genetic variability in the human cannabinoid receptor 1.

    PubMed

    Heitland, I; Klumpers, F; Oosting, R S; Evers, D J J; Leon Kenemans, J; Baas, J M P

    2012-09-25

    Failure to extinguish fear can lead to persevering anxiety and has been postulated as an important mechanism in the pathogenesis of human anxiety disorders. In animals, it is well documented that the endogenous cannabinoid system has a pivotal role in the successful extinction of fear, most importantly through the cannabinoid receptor 1. However, no human studies have reported a translation of this preclinical evidence yet. Healthy medication-free human subjects (N=150) underwent a fear conditioning and extinction procedure in a virtual reality environment. Fear potentiation of the eyeblink startle reflex was measured to assess fear-conditioned responding, and subjective fear ratings were collected. Participants were genotyped for two polymorphisms located within the promoter region (rs2180619) and the coding region (rs1049353) of cannabinoid receptor 1. As predicted from the preclinical literature, acquisition and expression of conditioned fear did not differ between genotypes. Crucially, whereas both homozygote (G/G, N=23) and heterozygote (A/G, N=68) G-allele carriers of rs2180619 displayed robust extinction of fear, extinction of fear-potentiated startle was absent in A/A homozygotes (N=51). Additionally, this resistance to extinguish fear left A/A carriers of rs2180619 with significantly higher levels of fear-potentiated startle at the end of the extinction training. No effects of rs1049353 genotype were observed regarding fear acquisition and extinction. These results suggest for the first time involvement of the human endocannabinoid system in fear extinction. Implications are that genetic variability in this system may underlie individual differences in anxiety, rendering cannabinoid receptor 1 a potential target for novel pharmacological treatments of anxiety disorders.

  7. Nerve lesioning with direct current

    NASA Astrophysics Data System (ADS)

    Ravid, E. Natalie; Shi Gan, Liu; Todd, Kathryn; Prochazka, Arthur

    2011-02-01

    Spastic hypertonus (muscle over-activity due to exaggerated stretch reflexes) often develops in people with stroke, cerebral palsy, multiple sclerosis and spinal cord injury. Lesioning of nerves, e.g. with phenol or botulinum toxin is widely performed to reduce spastic hypertonus. We have explored the use of direct electrical current (DC) to lesion peripheral nerves. In a series of animal experiments, DC reduced muscle force by controlled amounts and the reduction could last several months. We conclude that in some cases controlled DC lesioning may provide an effective alternative to the less controllable molecular treatments available today.

  8. Review of first trial responses in balance control: influence of vestibular loss and Parkinson's disease.

    PubMed

    Allum, J H J; Tang, K-S; Carpenter, M G; Oude Nijhuis, L B; Bloem, B R

    2011-04-01

    The reaction to an unexpected balance disturbance is unpracticed, often startling and frequently associated with falls. This everyday situation can be reproduced in an experimental setting by exposing standing humans to sudden, unexpected and controlled movements of a support surface. In this review, we focus on the responses to the very first balance perturbation, the so-called first trial reactions (FTRs). Detailed analysis of FTRs may have important implications, both for clinical practice (providing new insights into the pathophysiological mechanisms underlying accidental falls in real life) and for understanding human physiology (what triggers and mediates these FTRs, and what is the relation to startle responses?). Several aspects of the FTRs have become clear. FTRs are characterized by an exaggerated postural reaction, with large EMG responses and co-contracting muscles in multiple body segments. This balance reaction is associated with marked postural instability (greater body sway to the perturbation). When the same perturbation is repeated, the size of the postural response habituates and the instability disappears. Other issues about FTRs remain largely unresolved, and these are addressed here. First, the functional role of FTRs is discussed. It appears that FTRs produce primarily increased trunk flexion during the multi-segmental response to postural perturbations, thus producing instability. Second, we consider which sensory signals trigger and modulate FTRs, placing specific emphasis on the role of vestibular signals. Surprisingly, vestibular signals appear to have no triggering role, but vestibular loss leads to excessive upper body FTRs due to loss of the normal modulatory influence. Third, we address the question whether startle-like responses are contributing to FTRs triggered by proprioceptive signals. We explain why this issue is still unresolved, mainly because of methodological difficulties involved in separating FTRs from 'pure' startle responses. Fourth, we review new work about the influence of perturbation direction on FTRs. Recent work from our group shows that the largest FTRs are obtained for toe-up support surface rotations which perturb the COM in the posterior direction. This direction corresponds to the directional preponderance for falls seen both in the balance laboratory and in daily life. Finally, we briefly touch upon clinical diagnostic issues, addressing whether FTRs (as opposed to habituated responses) could provide a more ecologically valid perspective of postural instability in patients compared to healthy subjects. We conclude that FTRs are an important source of information about human balance performance, both in health and disease. Future studies should no longer discard FTRs, but routinely include these in their analyses. Particular emphasis should be placed on the link between FTRs and everyday balance performance (including falls), and on the possible role played by startle reactions in triggering or modulating FTRs. Copyright © 2011 Elsevier B.V. All rights reserved.

  9. Environmental change during postnatal development alters behaviour, cognitions and neurogenesis of mice.

    PubMed

    Iso, Hiroyuki; Simoda, Shigero; Matsuyama, Tomohiro

    2007-04-16

    Four groups of male C57BL/6 mice were reared differing combinations of the two environments from 3 to 11 weeks after birth. At 12 and 13 weeks they were assessed by measures of behaviour and learning: open-field activity, auditory startle reflex and prepulse inhibition, water maze learning, and passive avoidance. Another four groups of mice reared under these varying conditions were examined for generation of neurons in hippocampus and cerebral cortex using bromodeoxyuridine (BrdU) at 12 weeks. Enriched (EE) and impoverished (PP) groups were housed in their respective environment for 8 weeks, enriched-impoverished (EP) and impoverished-enriched (PE) mice respectively were reared for 6 weeks in the first-mentioned environment and then for 2 weeks in the second. PP and EP mice showed hyperactivity, greater startle amplitude and significantly slower learning in a water maze than EE or PE animals, and also showed a memory deficit in a probe test, avoidance performance did not differ. Neural generation was greater in the EE and PE than PP and EP groups, especially in the hippocampus. These results suggest that environmental change critically affects behavioural and anatomic brain development, even if brief. In these mice, the effect of unfavourable early experience could be reversed by a later short of favourable experience.

  10. From normal fear to pathological anxiety.

    PubMed

    Rosen, J B; Schulkin, J

    1998-04-01

    In this article the authors address how pathological anxiety may develop from adaptive fear states. Fear responses (e.g., freezing, startle, heart rate and blood pressure changes, and increased vigilance) are functionally adaptive behavioral and perceptual responses elicited during danger to facilitate appropriate defensive responses that can reduce danger or injury (e.g., escape and avoidance). Fear is a central motive state of action tendencies subserved by fear circuits, with the amygdala playing a central role. Pathological anxiety is conceptualized as an exaggerated fear state in which hyperexcitability of fear circuits that include the amygdala and extended amygdala (i.e., bed nucleus of the stria terminalis) is expressed as hypervigilance and increased behavioral responsivity to fearful stimuli. Reduced thresholds for activation and hyperexcitability in fear circuits develop through sensitization- or kindling-like processes that involve neuropeptides, hormones, and other proteins. Hyperexcitability in fear circuits is expressed as pathological anxiety that is manifested in the various anxiety disorders.

  11. Vagal afferents contribute to exacerbated airway responses following ozone and allergen challenge

    PubMed Central

    Schelegle, Edward S.; Walby, William F.

    2012-01-01

    Brown-Norway rats (n = 113) sensitized and challenged with nDer f 1 allergen were used to examine the contribution of lung sensory nerves to ozone (O3) exacerbation of asthma. Prior to their third challenge rats inhaled 1.0 ppm O3 for 8 hours. There were three groups: 1) control; 2) vagus perineural capsaicin treatment (PCT) with or without hexamethonium; and 3) vagotomy. O3 inhalation resulted in a significant increase in lung resistance (RL) and an exaggerated response to subsequent allergen challenge. PCT abolished the O3-induced increase in RL and significantly reduced the increase in RL induced by a subsequent allergen challenge, while hexamethonium treatment reestablished bronchoconstriction induced by allergen challenge. Vagotomy resulted in a significant increase in the bronchoconstriction induced by O3 inhalation and subsequent challenge with allergen. In this model of O3 exacerbation of asthma, vagal C-fibers initiate reflex bronchoconstriction, vagal myelinated fibers initiate reflex bronchodilation, and mediators released within the airway initiate bronchoconstriction. PMID:22525484

  12. Effects of oxytocin on background anxiety in rats with high or low baseline startle

    PubMed Central

    Ayers, Luke; Agostini, Andrew; Schulkin, Jay; Rosen, Jeffrey B.

    2016-01-01

    Rationale Oxytocin has antianxiety properties in humans and rodents. However, the antianxiety effects have been variable. Objectives To reduce variability and strengthen to the antianxiety effect of oxytocin in fear-potentiated startle, two experiments were performed. First, different amounts of light-shock pairings were given to determine the optimal levels of cue-specific fear conditioning and non-predictable startle (background anxiety). Second, the antianxiety effects of oxytocin were examined in rats with high and low pre-fear conditioning baseline startle to determine if oxytocin differentially affects high and low trait anxiety rats. Methods Baseline pre-fear conditioning startle responses were first measured. Rats then received 1, 5 or 10 light-shock pairings. Fear-potentiated startle was then tested with two trial types: light-cued startle and non-cued startle trials. In the second experiment, rats fear conditioned with 10 light-shock pairings were administered either saline or oxytocin before a fear-potentiated startle test. Rats were categorized as low or high startlers by their pre-fear conditioning startle amplitude. Results Ten shock-pairings produced the largest non-cued startle responses (background anxiety), without increasing cue-specific fear-potentiated startle compared to 1 and 5 light-shock pairings. Cue-specific fear-potentiated startle was unaffected by oxytocin. Oxytocin reduced background anxiety only in rats with low pre-fear startle responses. Conclusions Oxytocin has population selective antianxiety effects on non-cued unpredictable threat, but only in rats with low pre-fear baseline startle responses. The low startle responses are reminiscent of humans with low startle responses and high trait anxiety. PMID:27004789

  13. Modification of spasticity by transcutaneous spinal cord stimulation in individuals with incomplete spinal cord injury

    PubMed Central

    Hofstoetter, Ursula S.; McKay, William B.; Tansey, Keith E.; Mayr, Winfried; Kern, Helmut; Minassian, Karen

    2014-01-01

    Context/objective To examine the effects of transcutaneous spinal cord stimulation (tSCS) on lower-limb spasticity. Design Interventional pilot study to produce preliminary data. Setting Department of Physical Medicine and Rehabilitation, Wilhelminenspital, Vienna, Austria. Participants Three subjects with chronic motor-incomplete spinal cord injury (SCI) who could walk ≥10 m. Interventions Two interconnected stimulating skin electrodes (Ø 5 cm) were placed paraspinally at the T11/T12 vertebral levels, and two rectangular electrodes (8 × 13 cm) on the abdomen for the reference. Biphasic 2 ms-width pulses were delivered at 50 Hz for 30 minutes at intensities producing paraesthesias but no motor responses in the lower limbs. Outcome measures The Wartenberg pendulum test and neurological recordings of surface-electromyography (EMG) were used to assess effects on exaggerated reflex excitability. Non-functional co-activation during volitional movement was evaluated. The timed 10-m walk test provided measures of clinical function. Results The index of spasticity derived from the pendulum test changed from 0.8 ± 0.4 pre- to 0.9 ± 0.3 post-stimulation, with an improvement in the subject with the lowest pre-stimulation index. Exaggerated reflex responsiveness was decreased after tSCS across all subjects, with the most profound effect on passive lower-limb movement (pre- to post-tSCS EMG ratio: 0.2 ± 0.1), as was non-functional co-activation during voluntary movement. Gait speed values increased in two subjects by 39%. Conclusion These preliminary results suggest that tSCS, similar to epidurally delivered stimulation, may be used for spasticity control, without negatively impacting residual motor control in incomplete SCI. Further study in a larger population is warranted. PMID:24090290

  14. Prenatal immune challenge in rats: effects of polyinosinic-polycytidylic acid on spatial learning, prepulse inhibition, conditioned fear, and responses to MK-801 and amphetamine.

    PubMed

    Vorhees, Charles V; Graham, Devon L; Braun, Amanda A; Schaefer, Tori L; Skelton, Matthew R; Richtand, Neil M; Williams, Michael T

    2015-01-01

    Prenatal maternal immune activation increases risk for schizophrenia and/or autism. Previous data suggest that maternal weight change in response to the immune activator polyinosinic-polycytidylic (Poly IC) in rats influences the severity of effect in the offspring as does the exposure period. We treated gravid Sprague-Dawley rats from E14 to 18 with 8mg/kg/day Poly IC or saline. The Poly IC group was divided into those that gained the least weight or lost (Poly IC (L)) and those that gained the most (Poly IC (H)) weight. There were no effects of Poly IC on anxiety (elevated zero-maze, open-field, object burying), or Morris water maze cued learning or working memory or Cincinnati water maze egocentric learning. The Poly IC (H) group males had decreased acoustic startle whereas Poly IC (L) females had reduced startle and increased PPI. Poly IC offspring showed exaggerated hyperactivity in response to amphetamine (primarily in the Poly IC (H) group) and attenuated hyperactivity in response to MK-801 challenge (primarily in the Poly IC (L) group). Poly IC (L) males showed reduced cued conditioned freezing; both sexes showed less time in the dark in a light-dark test, and the Poly IC groups showed impaired Morris water maze hidden platform acquisition and probe performance. The data demonstrate that offspring from the most affected dams were more affected than those from less reactive dams indicating that degree of maternal immune activation predicts severity of effects on offspring behavior. Copyright © 2014 Elsevier Inc. All rights reserved.

  15. Both Predator and Prey

    PubMed Central

    Löw, Andreas; Lang, Peter J.; Smith, J. Carson; Bradley, Margaret M.

    2013-01-01

    This research examined the psychophysiology of emotional arousal anticipatory to potentially aversive and highly pleasant outcomes. Human brain reactions (event-related potentials) and body reactions (heart rate, skin conductance, the probe startle reflex) were assessed along motivational gradients determined by apparent distance from sites of potential punishment or reward. A predator-prey survival context was simulated using cues that signaled possible money rewards or possible losses; the cues appeared to loom progressively closer to the viewer, until a final step when a rapid key response could ensure reward or avoid a punishing loss. The observed anticipatory response patterns of heightened vigilance and physiological mobilization are consistent with the view that the physiology of emotion is founded on action dispositions that evolved in mammals to facilitate survival by dealing with threats or capturing life-sustaining rewards. PMID:18947351

  16. Perinatal asphyxia in the guinea pig leads to morphologic but not neurologic, cognitive, or behavioral changes.

    PubMed

    Hoeger, Harald; Bubna-Littitz, Herrmann; Engelmann, Mario; Schwerdtner, Ingrid; Schmid, Diethard; Lahoda, Robert; Seidl, Rainer; Lubec, Gert; Lubec, Barbara

    2003-07-01

    In a recent publication, we described neurodegeneration along with neurotransmitter deficits and impaired differentiation in the guinea pig 3 months following severe perinatal asphyxia (PA). We were therefore interested in the clinical features in terms of neurology, cognitive functions, and behavior. We tested the long-term effects of PA in an animal model, which in the rat are well documented and resemble the clinical situation. Examinations consisted of an observational battery for motor and reflex functions and the acoustic startle response setting. We tested cognitive functions in the multiple T-maze and evaluated behavior using the elevated plus maze and open field studies. No neurologic deficits were observed in the observational battery, including the acoustic startle response. Cognitive functions of memory and learning were not impaired in the multiple T-maze. In the open field and in the elevated plus maze, the system to test anxiety-related behavior, guinea pigs performed well. Our findings of patent neurology, cognitive functions, and behavior do not reflect the prominent morphologic findings of neurodegeneration. This is in agreement with corresponding studies on PA in the rat at the identical time point. We learned from this study that both test systems, although representing the standard in neuroscience, are either not sensitive enough or central nervous system lesions are clinically fully compensated.

  17. Exposure to Bisphenol A Exacerbates Migraine-Like Behaviors in a Multibehavior Model of Rat Migraine

    PubMed Central

    Berman, Nancy E. J.

    2014-01-01

    Migraine is a common and debilitating neurological disorder suffered worldwide. Women experience this condition 3 times more frequently than men, with estrogen strongly implicated to play a role. Bisphenol A (BPA), a highly prevalent xenoestrogen, is known to have estrogenic activity and may have an effect in migraine onset, intensity, and duration through estrogen receptor signaling. It was hypothesized that BPA exposure exacerbates migraine symptoms through estrogen signaling and downstream activation of nociception related pathways. Utilizing a multibehavior model of migraine in ovariectomized female rats, changes in locomotion, light and sound sensitivity, grooming, and acoustic startle were examined. Furthermore, changes in the expression of genes related to estrogen (ERα, GPR30), and nociception (extracellular signal regulated kinase, ERK, sodium gated channel, Nav1.8, and fatty acid amide hydrolase, FAAH) were studied following behavioral experiments. The following results were obtained: BPA treatment significantly exacerbated migraine-like behaviors in rats. Rats exposed to BPA demonstrated decreased locomotion, exacerbated light and sound aversion, altered grooming habits, and enhanced startle reflexes. Furthermore, BPA exposure increased mRNA expression of estrogen receptors, total ERK mRNA and ERK activation, as well as Nav1.8, and FAAH mRNA, indicative of altered estrogen signaling and altered nociception. These results show that BPA, an environmentally pervasive xenoestrogen, exacerbates migraine-like behavior in a rat model and alters expression of estrogen and nociception-related genes. PMID:24189132

  18. Effects of administration of sodium glutamate during the neonatal period on behavior and blood corticosterone levels in male mice.

    PubMed

    Kuznetsova, E G; Amstislavskaya, T G; Bulygina, V V; Il'nitskaya, S I; Tibeikina, M A; Skrinskaya, Yu A

    2007-10-01

    Treatment of male DBA/2 mice with sodium glutamate (4 mg/g) on postnatal days 1, 3, 5, 7, and 9 induced reductions in the numbers of square crossings, vertical rearings, excursions to the center, and the time spent in the center in adulthood, as compared with a group of males given physiological saline at the same times. These measures showed no change as compared with intact animals. In the light-dark test, the time spent by mice in the light sector was greater after administration of sodium glutamate than after administration of physiological saline but did not differ from that in intact animals. In the acoustic startle reflex test, sodium glutamate decreased startle amplitude but had no effect on the magnitude of prestimulus inhibition. Sexual motivation in males decreased after sodium glutamate, physiological saline producing a tendency to decreased sexual motivation. Neonatal administration of sodium glutamate increased basal blood corticosterone in adult males by a factor of 4, while physiological saline had no effect on this measure. These results lead to the conclusion that neonatal administration of sodium glutamate decreases motor and investigative activity, anxiety, and sexual motivation in adult male mice and increases basal corticosterone. Physiological saline increased all these parameters apart from sexual motivation, though this was not associated with changes in basal corticosterone.

  19. Elevated Responding to Safe Conditions as a Specific Risk Factor for Anxiety Versus Depressive Disorders: Evidence From a Longitudinal Investigation

    PubMed Central

    Craske, Michelle G.; Wolitzky–Taylor, Kate B.; Mineka, Susan; Zinbarg, Richard; Waters, Allison M.; Vrshek–Schallhorn, Suzanne; Epstein, Alyssa; Naliboff, Bruce; Ornitz, Edward

    2013-01-01

    The current study evaluated the degree to which startle reflexes (SRs) in safe conditions versus danger conditions were predictive of the onset of anxiety disorders. Specificity of these effects to anxiety disorders was evaluated in comparison to unipolar depressive disorders and with consideration of level of neuroticism. A startle paradigm was administered at baseline to 132 nondisordered adolescents as part of a longitudinal study examining risk factors for emotional disorders. Participants underwent a repetition of eight safe-danger sequences and were told that delivery of an aversive stimulus leading to a muscle contraction of the arm would occur only in the late part of danger conditions. One aversive stimulus occurred midway in the safe-danger sequences. Participants were assessed for the onset of anxiety and unipolar depressive disorders annually over the next 3 to 4 years. Larger SR magnitude during safe conditions following delivery of the aversive stimulus predicted the subsequent first onset of anxiety disorders. Moreover, prediction of the onset of anxiety disorders remained significant above and beyond the effects of comorbid unipolar depression, neuroticism, and subjective ratings of intensity of the aversive stimulus. In sum, elevated responding to safe conditions following an aversive stimulus appears to be a specific, prospective risk factor for the first onset of anxiety disorders. PMID:21988452

  20. Gap-induced reductions of evoked potentials in the auditory cortex: A possible objective marker for the presence of tinnitus in animals.

    PubMed

    Berger, Joel I; Owen, William; Wilson, Caroline A; Hockley, Adam; Coomber, Ben; Palmer, Alan R; Wallace, Mark N

    2018-01-15

    Animal models of tinnitus are essential for determining the underlying mechanisms and testing pharmacotherapies. However, there is doubt over the validity of current behavioural methods for detecting tinnitus. Here, we applied a stimulus paradigm widely used in a behavioural test (gap-induced inhibition of the acoustic startle reflex GPIAS) whilst recording from the auditory cortex, and showed neural response changes that mirror those found in the behavioural tests. We implanted guinea pigs (GPs) with electrocorticographic (ECoG) arrays and recorded baseline auditory cortical responses to a startling stimulus. When a gap was inserted in otherwise continuous background noise prior to the startling stimulus, there was a clear reduction in the subsequent evoked response (termed gap-induced reductions in evoked potentials; GIREP), suggestive of a neural analogue of the GPIAS test. We then unilaterally exposed guinea pigs to narrowband noise (left ear; 8-10 kHz; 1 h) at one of two different sound levels - either 105 dB SPL or 120 dB SPL - and recorded the same responses seven-to-ten weeks following the noise exposure. Significant deficits in GIREP were observed for all areas of the auditory cortex (AC) in the 120 dB-exposed GPs, but not in the 105 dB-exposed GPs. These deficits could not simply be accounted for by changes in response amplitudes. Furthermore, in the contralateral (right) caudal AC we observed a significant increase in evoked potential amplitudes across narrowband background frequencies in both 105 dB and 120 dB-exposed GPs. Taken in the context of the large body of literature that has used the behavioural test as a demonstration of the presence of tinnitus, these results are suggestive of objective neural correlates of the presence of noise-induced tinnitus and hyperacusis. Copyright © 2017 The Authors. Published by Elsevier B.V. All rights reserved.

  1. Lead exposure and fear-potentiated startle in the VA Normative Aging Study: a pilot study of a novel physiological approach to investigating neurotoxicant effects.

    PubMed

    Grashow, Rachel; Miller, Mark W; McKinney, Ann; Nie, Linda H; Sparrow, David; Hu, Howard; Weisskopf, Marc G

    2013-01-01

    Physiologically-based indicators of neural plasticity in humans could provide mechanistic insights into toxicant actions on learning in the brain, and perhaps prove more objective and sensitive measures of such effects than other methods. We explored the association between lead exposure and classical conditioning of the acoustic startle reflex (ASR)-a simple form of associative learning in the brain-in a population of elderly men. Fifty-one men from the VA Normative Aging Study with cumulative bone lead exposure measurements made with K-X-Ray-Fluorescence participated in a fear-conditioning protocol. The mean age of the men was 75.5years (standard deviation [sd]=5.9) and mean patella lead concentration was 22.7μg/g bone (sd=15.9). Baseline ASR eyeblink response decreased with age, but was not associated with subsequent conditioning. Among 37 men with valid responses at the end of the protocol, higher patella lead was associated with decreased awareness of the conditioning contingency (declarative learning; adjusted odds ratio [OR] per 20μg/g patella lead=0.91, 95% confidence interval [CI]: 0.84, 0.99, p=0.03). Eyeblink conditioning (non-declarative learning) was 0.44sd less (95% CI: -0.91, 0.02; p=0.06) per 20μg/g patella lead after adjustment. Each result was stronger when correcting for the interval between lead measurement and startle testing (awareness: OR=0.88, 95% CI: 0.78, 0.99, p=0.04; conditioning: -0.79sd less, 95% CI: -1.56, 0.03, p=0.04). This initial exploration suggests that lead exposure interferes with specific neural mechanisms of learning and offers the possibility that the ASR may provide a new approach to physiologically explore the effects of neurotoxicant exposures on neural mechanisms of learning in humans with a paradigm that is directly comparable to animal models. Copyright © 2013 Elsevier Inc. All rights reserved.

  2. [Hypertension, cardiovascular reactivity to stress and sensibility to pain].

    PubMed

    Conde-Guzón, P A; Bartolomé-Albistegui, M T; Quirós-Expósito, P; Grzib-Schlosky, G

    To provide a review of empirical evidence of decreased pain perception in hypertensive persons or exaggerated cardiovascular reactivity to stress. To following article will briefly review the existing literature on the association between hypoalgesia and high blood pressure. In particular, evidence of hypoalgesia in normotensive individuals at increased risk for hypertension (exaggerated cardiovascular reactivity to stress) will be offered in support of the notion that high cardiovascular reactivity to stress and decreased pain perception may result from a common physiological dysfunction. Cardiovascular reactivity refers to changes in cardiovascular activity associated primarily with exposure to psychological stress. Different individuals show different amounts of reactivity under the same conditions. The greater cardiovascular reactivity to behavioral stressors may play some role in the development of sustained arterial hypertension. Central opioid hyposensitivity is hypothesized as a mechanism of both hypoalgesia and exaggerated autonomic and neuroendocrine responses to stress in individuals at risk for hypertension. The paraventricular nucleus of the hypothalamus (PVN) serves the crucial function of integrating cardiovascular and painful responses. The central opioid hyposensitivity model of hypoalgesia asserts that attenuation of inhibitory opioid input to the PVN may have important consequences for pain modulation. These consequences includes: 1) greater activation of baroreceptor reflex arcs, 2) enhanced release of endogenous opioids during stress, and 3) increased stimulation of descending pain modulation pathways. High elevated thresholds to painful thermal stressors might serve as a behavioral marker of risk for hypertension before the onset of high blood pressure levels.

  3. Various Manifestations of Hyperthyroidism in an Ambulatory Clinic: Case Studies

    PubMed Central

    Tripp, Warren; Rao, Vijaya; Creary, Ludlow B.

    1987-01-01

    This study reviews five cases of women with hyperthyroidism, three black women and two Hispanic women. Initially, two patients presented with voice changes, weight loss, and increased appetite. Only two patients presented with classical symptoms of hyperthyroidism. Examination showed all patients had diffusely enlarged thyroids and exaggerated reflexes. Two patients showed Graves' opthalmopathy. These cases document the variety of presentations of hyperthyroidism. Hence, a high index of suspicion must exist for this disease, even in the absence of a number of the classical manifestations of hyperthyroidism. When patients present to primary care centers with a constellation of symptoms, an examination of the thyroid gland is essential. PMID:3694696

  4. Increased whole-body auditory startle reflex and autonomic reactivity in children with anxiety disorders

    PubMed Central

    Bakker, Mirte J.; Tijssen, Marina A.J.; van der Meer, Johan N.; Koelman, Johannes H.T.M.; Boer, Frits

    2009-01-01

    Background Young patients with anxiety disorders are thought to have a hypersensitive fear system, including alterations of the early sensorimotor processing of threatening information. However, there is equivocal support in auditory blink response studies for an enlarged auditory startle reflex (ASR) in such patients. We sought to investigate the ASR measured over multiple muscles (whole-body) in children and adolescents with anxiety disorders. Methods Between August and December 2006, we assessed ASRs (elicited by 8 consecutive tones of 104 dB, interstimulus interval of about 2 min) in 25 patients and 25 matched controls using a case–control design and in 9 nonaffected siblings. We recorded the electromyographic activity of 6 muscles and the sympathetic skin response. We investigated response occurrence (probability %) and response magnitude (area under the curve in μV × ms) of the combined response of 6 muscles and of the single blink response. Results In patients (17 girls, mean age 12 years; 13 social phobia, 9 generalized anxiety, 3 other), the combined response probability (p = 0.027) of all muscles, the combined area under the curve of all muscles (p = 0.011) and the sympathetic skin response (p = 0.006) were enlarged compared with matched controls. The response probability (p = 0.48) and area under the curve (p = 0.07) of the blink response were normal in patients compared with controls. The ASR pattern was normal with normal latencies in patients compared with controls. In nonaffected siblings, the sympathetic skin response (p = 0.038), but not the combined response probability of all muscles (p = 0.15), was enlarged compared with controls. Limitations Limitations are the sample size and restricted comparison to the psychophysiological ASR paradigm. Conclusion The results point toward a hypersensitive central nervous system (fear system), including early sensorimotor processing alterations and autonomic hyperreactivity. The multiple muscle (whole-body) ASR is suggested to be a better tool to detect ASR abnormalities in patients with anxiety disorders than the blink response alone. Abnormalities in ASR serve as a candidate endophenotype of anxiety disorders. PMID:19568483

  5. Vagal afferents contribute to exacerbated airway responses following ozone and allergen challenge.

    PubMed

    Schelegle, Edward S; Walby, William F

    2012-05-31

    Brown-Norway rats (n=113) sensitized and challenged with nDer f 1 allergen were used to examine the contribution of lung sensory nerves to ozone (O(3)) exacerbation of asthma. Prior to their third challenge rats inhaled 1.0ppm O(3) for 8h. There were three groups: (1) control; (2) vagus perineural capsaicin treatment (PCT) with or without hexamethonium; and (3) vagotomy. O(3) inhalation resulted in a significant increase in lung resistance (R(L)) and an exaggerated response to subsequent allergen challenge. PCT abolished the O(3)-induced increase in R(L) and significantly reduced the increase in R(L) induced by a subsequent allergen challenge, while hexamethonium treatment reestablished bronchoconstriction induced by allergen challenge. Vagotomy resulted in a significant increase in the bronchoconstriction induced by O(3) inhalation and subsequent challenge with allergen. In this model of O(3) exacerbation of asthma, vagal C-fibers initiate reflex bronchoconstriction, vagal myelinated fibers initiate reflex bronchodilation, and mediators released within the airway initiate bronchoconstriction. Copyright © 2012 Elsevier B.V. All rights reserved.

  6. Molecular Basis of the Dominant Negative Effect of a Glycine Transporter 2 Mutation Associated with Hyperekplexia*

    PubMed Central

    Arribas-González, Esther; de Juan-Sanz, Jaime; Aragón, Carmen; López-Corcuera, Beatriz

    2015-01-01

    Hyperekplexia or startle disease is a rare clinical syndrome characterized by an exaggerated startle in response to trivial tactile or acoustic stimuli. This neurological disorder can have serious consequences in neonates, provoking brain damage and/or sudden death due to apnea episodes and cardiorespiratory failure. Hyperekplexia is caused by defective inhibitory glycinergic neurotransmission. Mutations in the human SLC6A5 gene encoding the neuronal GlyT2 glycine transporter are responsible for the presynaptic form of the disease. GlyT2 mediates synaptic glycine recycling, which constitutes the main source of releasable transmitter at glycinergic synapses. Although the majority of GlyT2 mutations detected so far are recessive, a dominant negative mutant that affects GlyT2 trafficking does exist. In this study, we explore the properties and structural alterations of the S512R mutation in GlyT2. We analyze its dominant negative effect that retains wild-type GlyT2 in the endoplasmic reticulum (ER), preventing surface expression. We show that the presence of an arginine rather than serine 512 provoked transporter misfolding, enhanced association to the ER-chaperone calnexin, altered association with the coat-protein complex II component Sec24D, and thereby impeded ER exit. The S512R mutant formed oligomers with wild-type GlyT2 causing its retention in the ER. Overexpression of calnexin rescued wild-type GlyT2 from the dominant negative effect of the mutant, increasing the amount of transporter that reached the plasma membrane and dampening the interaction between the wild-type and mutant GlyT2. The ability of chemical chaperones to overcome the dominant negative effect of the disease mutation on the wild-type transporter was demonstrated in heterologous cells and primary neurons. PMID:25480793

  7. Influence of Omega-3 Fatty Acid Status on the Way Rats Adapt to Chronic Restraint Stress

    PubMed Central

    Hennebelle, Marie; Balasse, Laure; Latour, Alizée; Champeil-Potokar, Gaelle; Denis, Stéphanie; Lavialle, Monique; Gisquet-Verrier, Pascale; Denis, Isabelle; Vancassel, Sylvie

    2012-01-01

    Omega-3 fatty acids are important for several neuronal and cognitive functions. Altered omega-3 fatty acid status has been implicated in reduced resistance to stress and mood disorders. We therefore evaluated the effects of repeated restraint stress (6 h/day for 21 days) on adult rats fed omega-3 deficient, control or omega-3 enriched diets from conception. We measured body weight, plasma corticosterone and hippocampus glucocorticoid receptors and correlated these data with emotional and depression-like behaviour assessed by their open-field (OF) activity, anxiety in the elevated-plus maze (EPM), the sucrose preference test and the startle response. We also determined their plasma and brain membrane lipid profiles by gas chromatography. Repeated restraint stress caused rats fed a control diet to lose weight. Their plasma corticosterone increased and they showed moderate behavioural changes, with increases only in grooming (OF test) and entries into the open arms (EPM). Rats fed the omega-3 enriched diet had a lower stress-induced weight loss and plasma corticosterone peak, and reduced grooming. Rats chronically lacking omega-3 fatty acid exhibited an increased startle response, a stress-induced decrease in locomotor activity and exaggerated grooming. The brain omega-3 fatty acids increased as the dietary omega-3 fatty acids increased; diets containing preformed long-chain omega-3 fatty acid were better than diets containing the precursor alpha-linolenic acid. However, the restraint stress reduced the amounts of omega-3 incorporated. These data showed that the response to chronic restraint stress was modulated by the omega-3 fatty acid supply, a dietary deficiency was deleterious while enrichment protecting against stress. PMID:22860066

  8. Recovery of motor performance following startle.

    DOT National Transportation Integrated Search

    1969-10-01

    Sudden, high-intensity sounds, such as those produced by sonic booms, can be quite startling. Although many studies have investigated physiological response to startle, much less is known concerning the effects of startle on performance. The present ...

  9. Objective Measures of Emotion Related to Brand Attitude: A New Way to Quantify Emotion-Related Aspects Relevant to Marketing

    PubMed Central

    Walla, Peter; Brenner, Gerhard; Koller, Monika

    2011-01-01

    With this study we wanted to test the hypothesis that individual like and dislike as occurring in relation to brand attitude can be objectively assessed. First, individuals rated common brands with respect to subjective preference. Then, they volunteered in an experiment during which their most liked and disliked brand names were visually presented while three different objective measures were taken. Participant's eye blinks as responses to acoustic startle probes were registered with electromyography (EMG) (i) and their skin conductance (ii) and their heart rate (iii) were recorded. We found significantly reduced eye blink amplitudes related to liked brand names compared to disliked brand names. This finding suggests that visual perception of liked brand names elicits higher degrees of pleasantness, more positive emotion and approach-oriented motivation than visual perception of disliked brand names. Also, skin conductance and heart rate were both reduced in case of liked versus disliked brand names. We conclude that all our physiological measures highlight emotion-related differences depending on the like and dislike toward individual brands. We suggest that objective measures should be used more frequently to quantify emotion-related aspects of brand attitude. In particular, there might be potential interest to introduce startle reflex modulation to measure emotion-related impact during product development, product design and various further fields relevant to marketing. Our findings are discussed in relation to the idea that self reported measures are most often cognitively polluted. PMID:22073192

  10. Affective picture modulation: valence, arousal, attention allocation and motivational significance.

    PubMed

    Leite, Jorge; Carvalho, Sandra; Galdo-Alvarez, Santiago; Alves, Jorge; Sampaio, Adriana; Gonçalves, Oscar F

    2012-03-01

    The present study analyses the modulatory effects of affective pictures in the early posterior negativity (EPN), the late positive potential (LPP) and the human startle response on both the peripheral (eye blink EMG) and central neurophysiological levels (Probe P3), during passive affective pictures viewing. The affective pictures categories were balanced in terms of valence (pleasant; unpleasant) and arousal (high; low). The data shows that EPN may be sensitive to specific stimulus characteristics (affective relevant pictures versus neutral pictures) associated with early stages of attentional processing. In later stages, the heightened attentional resource allocation as well as the motivated significance of the affective stimuli was found to elicit enhanced amplitudes of slow wave processes thought to be related to enhanced encoding, namely LPP,. Although pleasant low arousing pictures were effective in engaging the resources involved in the slow wave processes, the highly arousing affective stimuli (pleasant and unpleasant) were found to produce the largest enhancement of the LPP, suggesting that high arousing stimuli may are associated with increased motivational significance. Additionally the response to high arousing stimuli may be suggestive of increased motivational attention, given the heightened attentional allocation, as expressed in the P3 probe, especially for the pleasant pictures. The hedonic valence may then serve as a mediator of the attentional inhibition to the affective priming, potentiating or inhibiting a shift towards defensive activation, as measured by the startle reflex. Copyright © 2011 Elsevier B.V. All rights reserved.

  11. Objective measures of emotion related to brand attitude: a new way to quantify emotion-related aspects relevant to marketing.

    PubMed

    Walla, Peter; Brenner, Gerhard; Koller, Monika

    2011-01-01

    With this study we wanted to test the hypothesis that individual like and dislike as occurring in relation to brand attitude can be objectively assessed. First, individuals rated common brands with respect to subjective preference. Then, they volunteered in an experiment during which their most liked and disliked brand names were visually presented while three different objective measures were taken. Participant's eye blinks as responses to acoustic startle probes were registered with electromyography (EMG) (i) and their skin conductance (ii) and their heart rate (iii) were recorded. We found significantly reduced eye blink amplitudes related to liked brand names compared to disliked brand names. This finding suggests that visual perception of liked brand names elicits higher degrees of pleasantness, more positive emotion and approach-oriented motivation than visual perception of disliked brand names. Also, skin conductance and heart rate were both reduced in case of liked versus disliked brand names. We conclude that all our physiological measures highlight emotion-related differences depending on the like and dislike toward individual brands. We suggest that objective measures should be used more frequently to quantify emotion-related aspects of brand attitude. In particular, there might be potential interest to introduce startle reflex modulation to measure emotion-related impact during product development, product design and various further fields relevant to marketing. Our findings are discussed in relation to the idea that self reported measures are most often cognitively polluted.

  12. Dissecting genetic architecture of startle response in Drosophila melanogaster using multi-omics information.

    PubMed

    Xue, Angli; Wang, Hongcheng; Zhu, Jun

    2017-09-28

    Startle behavior is important for survival, and abnormal startle responses are related to several neurological diseases. Drosophila melanogaster provides a powerful system to investigate the genetic underpinnings of variation in startle behavior. Since mechanically induced, startle responses and environmental conditions can be readily quantified and precisely controlled. The 156 wild-derived fully sequenced lines of the Drosophila Genetic Reference Panel (DGRP) were used to identify SNPs and transcripts associated with variation in startle behavior. The results validated highly significant effects of 33 quantitative trait SNPs (QTSs) and 81 quantitative trait transcripts (QTTs) directly associated with phenotypic variation of startle response. We also detected QTT variation controlled by 20 QTSs (tQTSs) and 73 transcripts (tQTTs). Association mapping based on genomic and transcriptomic data enabled us to construct a complex genetic network that underlies variation in startle behavior. Based on principles of evolutionary conservation, human orthologous genes could be superimposed on this network. This study provided both genetic and biological insights into the variation of startle response behavior of Drosophila melanogaster, and highlighted the importance of genetic network to understand the genetic architecture of complex traits.

  13. Somatic and neuroendocrine responses to standard and biologically salient acoustic startle stimuli in monkeys

    PubMed Central

    Parker, Karen J.; Hyde, Shellie A.; Buckmaster, Christine L.; Tanaka, Serena M.; Brewster, Katharine K.; Schatzberg, Alan F.; Lyons, David M.; Woodward, Steven H.

    2010-01-01

    SUMMARY The startle response, a simple defensive response to a sudden stimulus signaling proximal threat, has been well studied in rodents and humans, but has been rarely examined in monkeys. The first goal of the present studies was to develop a minimally immobilizing startle measurement paradigm and validate its usefulness by testing two core features of the startle response (habituation and graded responsivity) in squirrel monkey subjects. Two different types of startle stimuli were used: standard broad-band noise bursts, and species-specific alarm vocalizations (“yaps”) which are elicited in response to threat in both wild and captive animals. The second goal of the present studies was to test whether yaps produce enhanced startle responsivity due to their increased biological salience compared to simple, non-biologically relevant noise bursts. The third goal of the present studies was to evaluate the hypothalamic pituitary-adrenal (HPA) axis response to startle stimuli, as little is known about the stress-activating role of startle stimuli in any species. These experiments determined that the whole-body startle response in relatively unrestrained squirrel monkeys habituates across repeated stimulus presentations and is proportional to stimulus intensity. In addition, differential habituation was observed across biologically salient vs. standard acoustic startle stimuli. Responses to “yaps” were larger initially but attenuated more rapidly over trials. Responses to “yaps” were also larger in the early subepochs of the response window but then achieved a lower level than responses to noise bursts in the later subepochs. Finally, adrenocorticotropic hormone and cortisol concentrations were significantly elevated above baseline after startle stimuli presentation, though monkeys did not exhibit differential HPA axis responses to the two types of startle stimuli. The development of monkey startle methodology may further enhance the utility of this paradigm in translational studies of human stress-related psychiatric disorders. PMID:20869176

  14. Involvement of noradrenergic and corticoid receptors in the consolidation of the lasting anxiogenic effects of predator stress.

    PubMed

    Adamec, R; Muir, C; Grimes, M; Pearcey, K

    2007-05-16

    The roles of beta-NER (beta-noradrenergic receptor), GR (glucocorticoid) and mineral corticoid receptors (MR) in the consolidation of anxiogenic effects of predator stress were studied. One minute after predator stress, different groups of rats were injected (ip) with vehicle, propranolol (beta-NER blocker, 5 and 10 mg/kg), mifepristone (RU486, GR blocker, 20 mg/kg), spironolactone (MR blocker, 50 mg/kg), propranolol (5 mg/kg) plus RU486 (20 mg/kg) or the anxiolytic, chloradiazepoxide (CPZ, 10 mg/kg). One week later, rodent anxiety was assessed in elevated plus maze, hole board, light/dark box, social interaction and acoustic startle. Considering all tests except startle, propranolol dose dependently blocked consolidation of lasting anxiogenic effects of predator stress in all tests. GR receptor block alone was ineffective. However, GR block in combination with an ineffective dose of propranolol did blocked consolidation of predator stress effects in all tests, suggesting a synergism between beta-NER and GR. Surprisingly, MR block prevented consolidation of anxiogenic effects in all tests except the light/dark box. CPZ post stress was ineffective against the anxiogenic impact of predator stress. Study of startle was complicated by the fact that anxiogenic effects of stress on startle amplitude manifested as both an increase and a decrease in startle amplitude. Suppression of startle occurred in stressed plus vehicle injected groups handled three times prior to predator stress. In contrast, stressed plus vehicle rats handled five times prior to predator stress showed increases in startle, as did all predator stressed only groups. Mechanisms of consolidation of the different startle responses appear to differ. CPZ post stress blocked startle suppression but not enhancement of startle. Propranolol post stress had no effect on either suppression or enhancement of startle. GR block alone post stress prevented suppression of startle, but not enhancement. In contrast blocking GR and beta-NER together prevented startle enhancement. MR block also prevented startle enhancement. Effects of MR block on startle suppression were not tested. Delay of habituation to startle was found in all stressed rats. Consolidation of delay of habituation was blocked or attenuated by post stress MR block, GR plus beta-NER block and CPZ but not by post stress GR or beta-NER block alone. Taken together, present findings suggest consolidation of lasting anxiogenic effects of predator stress may share some of the same neurochemical mechanisms implicated in some forms of fear memory consolidation. Implications of these findings for the study of stress-induced changes in affect including posttraumatic stress disorder (PTSD) are discussed.

  15. Noise and stress: a comprehensive approach.

    PubMed Central

    Westman, J C; Walters, J R

    1981-01-01

    The fundamental purposes of hearing are to alert and to warn. As a result sound directly evokes emotions and actions. The processing of sound by the brain is outlined to provide a biological and psychological basis for understanding the way in which sound can become a human stressor. The auditory orienting response, startle reflex and defensive response translate sound stimuli into action and sometimes into stress induced bodily changes through "fight or flight" neural mechanisms. The literature on the health and mental health effects of noise then is reviewed in the context of an integrated model that offers a holistic approach to noise research and public policy formulation. The thesis of this paper is that research upon, and efforts to prevent or minimize the harmful effects of noise have suffered from the lack of a full appreciation of the ways in which humans process and react to sound. PMID:7333243

  16. On the Modeling of Electrical Effects Experienced by Space Explorers During Extra Vehicular Activities: Intracorporal Currents, Resistances, and Electric Fields

    NASA Technical Reports Server (NTRS)

    Cela, Carlos J.; Loizos, Kyle; Lazzi, Gianluca; Hamilton, Douglas; Lee, Raphael C.

    2011-01-01

    Recent research has shown that space explorers engaged in Extra Vehicular Activities (EVAs) may be exposed, under certain conditions, to undesired electrical currents. This work focuses on determining whether these undesired induced electrical currents could be responsible for involuntary neuromuscular activity in the subjects, possibly caused by either large diameter peripheral nerve activation or reflex activity from cutaneous afferent stimulation. An efficient multiresolution variant of the admittance method along with a millimeter-resolution model of a male human body were used to calculate induced electric fields, resistance between contact electrodes used to simulate the potential exposure condition, and currents induced in the human body model. Results show that, under realistic exposure conditions using a 15V source, current density magnitudes and total current injected are well above previously reported startle reaction thresholds. This indicates that, under the considered conditions, the subjects could experience involuntary motor response.

  17. Heritability and molecular genetic basis of acoustic startle eye blink and affectively modulated startle response: A genome-wide association study

    PubMed Central

    VAIDYANATHAN, UMA; MALONE, STEPHEN M.; MILLER, MICHAEL B.; McGUE, MATT; IACONO, WILLIAM G.

    2014-01-01

    Acoustic startle responses have been studied extensively in relation to individual differences and psychopathology. We examined three indices of the blink response in a picture-viewing paradigm—overall startle magnitude across all picture types, and aversive and pleasant modulation scores—in 3,323 twins and parents. Biometric models and molecular genetic analyses showed that half the variance in overall startle was due to additive genetic effects. No single nucleotide polymorphism was genome-wide significant, but GRIK3 did produce a significant effect when examined as part of a candidate gene set. In contrast, emotion modulation scores showed little evidence of heritability in either biometric or molecular genetic analyses. However, in a genome-wide scan, PARP14 did produce a significant effect for aversive modulation. We conclude that, although overall startle retains potential as an endophenotype, emotion-modulated startle does not. PMID:25387708

  18. Empirically based comparisons of the reliability and validity of common quantification approaches for eyeblink startle potentiation in humans

    PubMed Central

    Bradford, Daniel E.; Starr, Mark J.; Shackman, Alexander J.

    2015-01-01

    Abstract Startle potentiation is a well‐validated translational measure of negative affect. Startle potentiation is widely used in clinical and affective science, and there are multiple approaches for its quantification. The three most commonly used approaches quantify startle potentiation as the increase in startle response from a neutral to threat condition based on (1) raw potentiation, (2) standardized potentiation, or (3) percent‐change potentiation. These three quantification approaches may yield qualitatively different conclusions about effects of independent variables (IVs) on affect when within‐ or between‐group differences exist for startle response in the neutral condition. Accordingly, we directly compared these quantification approaches in a shock‐threat task using four IVs known to influence startle response in the no‐threat condition: probe intensity, time (i.e., habituation), alcohol administration, and individual differences in general startle reactivity measured at baseline. We confirmed the expected effects of time, alcohol, and general startle reactivity on affect using self‐reported fear/anxiety as a criterion. The percent‐change approach displayed apparent artifact across all four IVs, which raises substantial concerns about its validity. Both raw and standardized potentiation approaches were stable across probe intensity and time, which supports their validity. However, only raw potentiation displayed effects that were consistent with a priori specifications and/or the self‐report criterion for the effects of alcohol and general startle reactivity. Supplemental analyses of reliability and validity for each approach provided additional evidence in support of raw potentiation. PMID:26372120

  19. When seeing outweighs feeling: a role for prefrontal cortex in passive control of negative affect in blindsight.

    PubMed

    Anders, Silke; Eippert, Falk; Wiens, Stefan; Birbaumer, Niels; Lotze, Martin; Wildgruber, Dirk

    2009-11-01

    Affective neuroscience has been strongly influenced by the view that a 'feeling' is the perception of somatic changes and has consequently often neglected the neural mechanisms that underlie the integration of somatic and other information in affective experience. Here, we investigate affective processing by means of functional magnetic resonance imaging in nine cortically blind patients. In these patients, unilateral postgeniculate lesions prevent primary cortical visual processing in part of the visual field which, as a result, becomes subjectively blind. Residual subcortical processing of visual information, however, is assumed to occur in the entire visual field. As we have reported earlier, these patients show significant startle reflex potentiation when a threat-related visual stimulus is shown in their blind visual field. Critically, this was associated with an increase of brain activity in somatosensory-related areas, and an increase in experienced negative affect. Here, we investigated the patients' response when the visual stimulus was shown in the sighted visual field, that is, when it was visible and cortically processed. Despite the fact that startle reflex potentiation was similar in the blind and sighted visual field, patients reported significantly less negative affect during stimulation of the sighted visual field. In other words, when the visual stimulus was visible and received full cortical processing, the patients' phenomenal experience of affect did not closely reflect somatic changes. This decoupling of phenomenal affective experience and somatic changes was associated with an increase of activity in the left ventrolateral prefrontal cortex and a decrease of affect-related somatosensory activity. Moreover, patients who showed stronger left ventrolateral prefrontal cortex activity tended to show a stronger decrease of affect-related somatosensory activity. Our findings show that similar affective somatic changes can be associated with different phenomenal experiences of affect, depending on the depth of cortical processing. They are in line with a model in which the left ventrolateral prefrontal cortex is a relay station that integrates information about subcortically triggered somatic responses and information resulting from in-depth cortical stimulus processing. Tentatively, we suggest that the observed decoupling of somatic responses and experienced affect, and the reduction of negative phenomenal experience, can be explained by a left ventrolateral prefrontal cortex-mediated inhibition of affect-related somatosensory activity.

  20. When seeing outweighs feeling: a role for prefrontal cortex in passive control of negative affect in blindsight

    PubMed Central

    Eippert, Falk; Wiens, Stefan; Birbaumer, Niels; Lotze, Martin; Wildgruber, Dirk

    2009-01-01

    Affective neuroscience has been strongly influenced by the view that a ‘feeling’ is the perception of somatic changes and has consequently often neglected the neural mechanisms that underlie the integration of somatic and other information in affective experience. Here, we investigate affective processing by means of functional magnetic resonance imaging in nine cortically blind patients. In these patients, unilateral postgeniculate lesions prevent primary cortical visual processing in part of the visual field which, as a result, becomes subjectively blind. Residual subcortical processing of visual information, however, is assumed to occur in the entire visual field. As we have reported earlier, these patients show significant startle reflex potentiation when a threat-related visual stimulus is shown in their blind visual field. Critically, this was associated with an increase of brain activity in somatosensory-related areas, and an increase in experienced negative affect. Here, we investigated the patients’ response when the visual stimulus was shown in the sighted visual field, that is, when it was visible and cortically processed. Despite the fact that startle reflex potentiation was similar in the blind and sighted visual field, patients reported significantly less negative affect during stimulation of the sighted visual field. In other words, when the visual stimulus was visible and received full cortical processing, the patients’ phenomenal experience of affect did not closely reflect somatic changes. This decoupling of phenomenal affective experience and somatic changes was associated with an increase of activity in the left ventrolateral prefrontal cortex and a decrease of affect-related somatosensory activity. Moreover, patients who showed stronger left ventrolateral prefrontal cortex activity tended to show a stronger decrease of affect-related somatosensory activity. Our findings show that similar affective somatic changes can be associated with different phenomenal experiences of affect, depending on the depth of cortical processing. They are in line with a model in which the left ventrolateral prefrontal cortex is a relay station that integrates information about subcortically triggered somatic responses and information resulting from in-depth cortical stimulus processing. Tentatively, we suggest that the observed decoupling of somatic responses and experienced affect, and the reduction of negative phenomenal experience, can be explained by a left ventrolateral prefrontal cortex-mediated inhibition of affect-related somatosensory activity. PMID:19767414

  1. Parvalbumin and GAD65 Interneuron Inhibition in the Ventral Hippocampus Induces Distinct Behavioral Deficits Relevant to Schizophrenia

    PubMed Central

    Nguyen, Robin; Morrissey, Mark D.; Mahadevan, Vivek; Cajanding, Janine D.; Woodin, Melanie A.; Yeomans, John S.; Takehara-Nishiuchi, Kaori

    2014-01-01

    Hyperactivity within the ventral hippocampus (vHPC) has been linked to both psychosis in humans and behavioral deficits in animal models of schizophrenia. A local decrease in GABA-mediated inhibition, particularly involving parvalbumin (PV)-expressing GABA neurons, has been proposed as a key mechanism underlying this hyperactive state. However, direct evidence is lacking for a causal role of vHPC GABA neurons in behaviors associated with schizophrenia. Here, we probed the behavioral function of two different but overlapping populations of vHPC GABA neurons that express either PV or GAD65 by selectively inhibiting these neurons with the pharmacogenetic neuromodulator hM4D. We show that acute inhibition of vHPC GABA neurons in adult mice results in behavioral changes relevant to schizophrenia. Inhibiting either PV or GAD65 neurons produced distinct behavioral deficits. Inhibition of PV neurons, affecting ∼80% of the PV neuron population, robustly impaired prepulse inhibition of the acoustic startle reflex (PPI), startle reactivity, and spontaneous alternation, but did not affect locomotor activity. In contrast, inhibiting a heterogeneous population of GAD65 neurons, affecting ∼40% of PV neurons and 65% of cholecystokinin neurons, increased spontaneous and amphetamine-induced locomotor activity and reduced spontaneous alternation, but did not alter PPI. Inhibition of PV or GAD65 neurons also produced distinct changes in network oscillatory activity in the vHPC in vivo. Together, these findings establish a causal role for vHPC GABA neurons in controlling behaviors relevant to schizophrenia and suggest a functional dissociation between the GABAergic mechanisms involved in hippocampal modulation of sensorimotor processes. PMID:25378161

  2. The effects of sertraline administration from adolescence to adulthood on physiological and emotional development in prenatally stressed rats of both sexes

    PubMed Central

    Pereira-Figueiredo, Inês; Sancho, Consuelo; Carro, Juan; Castellano, Orlando; López, Dolores E.

    2014-01-01

    Sertraline (SERT) is a clinically effective Selective Serotonin Reuptake Inhibitor (SSRI) known to increase and stabilize serotonin levels. This neurotransmitter plays an important role in adolescent brain development in both rodents and humans, and its dysregulation has been correlated with deficits in behavior and emotional regulation. Since prenatal stress may disturb serotoninergic homeostasis, the aim of this study was to examine the long-lasting effects of exposure to SERT throughout adolescence on behavioral and physiological developmental parameters in prenatally stressed Wistar rats. SERT was administered (5 mg/kg/day p.o.) from the age of 1–3 months to half of the progeny, of both sexes, of gestating dams stressed by use of a restraint (PS) or not stressed. Our data reveal that long-term SERT treatment slightly reduced weight gain in both sexes, but reversed the developmental disturbed “catch-up” growth found in PS females. Neither prenatal stress nor SERT treatment induced remarkable alterations in behavior and had no effects on mean startle reflex values. However, a sex-dependent effects of PS was found: in males the PS paradigm slightly increased anxiety-like behavior in the open field, while in females, it impaired startle habituation. In both cases, SERT treatment reversed the phenomena. Additionally, the PS animals exhibited a disturbed leukocyte profile in both sexes, which was reversed by SERT. The present findings are evidence that continuous SERT administration from adolescence through adulthood is safe in rodents and lessens the impact of prenatal stress in rats. PMID:25147514

  3. Neurotoxic lesions of the dorsal and ventral hippocampus impair acquisition and expression of trace-conditioned fear-potentiated startle in rats.

    PubMed

    Trivedi, Mehul A; Coover, Gary D

    2006-04-03

    Pavlovian delay conditioning, in which a conditioned stimulus (CS) and unconditioned stimulus (US) co-terminate, is thought to reflect non-declarative memory. In contrast, trace conditioning, in which the CS and US are temporally separate, is thought to reflect declarative memory. Hippocampal lesions impair acquisition and expression of trace conditioning measured by the conditioned freezing and eyeblink responses, while having little effect on the acquisition of delay conditioning. Recent evidence suggests that lesions of the ventral hippocampus (VH) impair conditioned fear under conditions in which dorsal hippocampal (DH) lesions have little effect. In the present study, we examined the time-course of fear expression after delay and trace conditioning using the fear-potentiated startle (FPS) reflex, and the effects of pre- and post-training lesions to the VH and DH on trace-conditioned FPS. We found that both delay- and trace-conditioned rats displayed significant FPS near the end of the CS relative to the unpaired control group. In contrast, trace-conditioned rats displayed significant FPS throughout the duration of the trace interval, whereas FPS decayed rapidly to baseline after CS offset in delay-conditioned rats. In experiment 2, both DH and VH lesions were found to significantly reduce the overall magnitude of FPS compared to the control group, however, no differences were found between the DH and VH groups. These findings support a role for both the DH and VH in trace fear conditioning, and suggest that the greater effect of VH lesions on conditioned fear might be specific to certain measures of fear.

  4. Modeling startle eyeblink electromyogram to assess fear learning.

    PubMed

    Khemka, Saurabh; Tzovara, Athina; Gerster, Samuel; Quednow, Boris B; Bach, Dominik R

    2017-02-01

    Pavlovian fear conditioning is widely used as a laboratory model of associative learning in human and nonhuman species. In this model, an organism is trained to predict an aversive unconditioned stimulus from initially neutral events (conditioned stimuli, CS). In humans, fear memory is typically measured via conditioned autonomic responses or fear-potentiated startle. For the latter, various analysis approaches have been developed, but a systematic comparison of competing methodologies is lacking. Here, we investigate the suitability of a model-based approach to startle eyeblink analysis for assessment of fear memory, and compare this to extant analysis strategies. First, we build a psychophysiological model (PsPM) on a generic startle response. Then, we optimize and validate this PsPM on three independent fear-conditioning data sets. We demonstrate that our model can robustly distinguish aversive (CS+) from nonaversive stimuli (CS-, i.e., has high predictive validity). Importantly, our model-based approach captures fear-potentiated startle during fear retention as well as fear acquisition. Our results establish a PsPM-based approach to assessment of fear-potentiated startle, and qualify previous peak-scoring methods. Our proposed model represents a generic startle response and can potentially be used beyond fear conditioning, for example, to quantify affective startle modulation or prepulse inhibition of the acoustic startle response. © 2016 The Authors. Psychophysiology published by Wiley Periodicals, Inc. on behalf of Society for Psychophysiological Research.

  5. Startle reveals an absence of advance motor programming in a Go/No-go task.

    PubMed

    Carlsen, Anthony N; Chua, Romeo; Dakin, Chris J; Sanderson, David J; Inglis, J Timothy; Franks, Ian M

    2008-03-21

    Presenting a startling stimulus in a simple reaction time (RT) task, can involuntarily trigger the pre-programmed response. However, this effect is not seen when the response is programmed following the imperative stimulus (IS) providing evidence that a startle can only trigger pre-programmed responses. In a "Go/No-go" (GNG) RT task the response may be programmed in advance of the IS because there exists only a single predetermined response. The purpose of the current investigation was to examine if startle could elicit a response in a GNG task. Participants completed a wrist extension task in response to a visual stimulus. A startling acoustic stimulus (124dB) was presented in both Go and No-go trials with Go probability manipulated between groups. The inclusion of a startle did not significantly speed RT and led to more response errors. This result is similar to that observed in a startled choice RT task, indicating that in a GNG task participants waited until the IS complete motor programming.

  6. Increased fear-potentiated startle in major depressive disorder patients with lifetime history of suicide attempt.

    PubMed

    Ballard, Elizabeth D; Ionescu, Dawn F; Vande Voort, Jennifer L; Slonena, Elizabeth E; Franco-Chaves, Jose A; Zarate, Carlos A; Grillon, Christian

    2014-06-01

    Suicide is a common reason for psychiatric emergency and morbidity, with few effective treatments. Anxiety symptoms have emerged as potential modifiable risk factors in the time before a suicide attempt, but few studies have been conducted using laboratory measures of fear and anxiety. We operationally defined fear and anxiety as increased startle reactivity during anticipation of predictable (fear-potentiated startle) and unpredictable (anxiety-potentiated startle) shock. We hypothesized that a lifetime history of suicide attempt (as compared to history of no suicide attempt) would be associated with increased fear-potentiated startle. A post-hoc analysis of fear- and anxiety-potentiated startle was conducted in 28 medication-free patients with Major Depressive Disorder (MDD) divided according to suicide attempt history. The magnitude of fear-potentiated startle was increased in depressed patients with lifetime suicide attempts compared to those without a lifetime history of suicide attempt (F(1,26)=5.629, p=.025). There was no difference in anxiety-potentiated startle by suicide attempt history. This is a post-hoc analysis of previously analyzed patient data from a study of depressed inpatients. Further replication of the finding with a larger patient sample is indicated. Increased fear-potentiated startle in suicide attempters suggests the role of amygdala in depressed patients with a suicide attempt history. Findings highlight the importance of anxiety symptoms in the treatment of patients at increased suicide risk. Published by Elsevier B.V.

  7. Investigation of the effects of head irradiation with gamma rays and protons on startle and pre-pulse inhibition behavior in mice.

    PubMed

    Haerich, Paul; Eggers, Cara; Pecaut, Michael J

    2012-05-01

    With the increased international emphasis on manned space exploration, there is a growing need to understand the impact of the spaceflight environment on health and behavior. One particularly important aspect of this environment is low-dose radiation. In the present studies, we first characterized the γ- and proton-irradiation dose effect on acoustic startle and pre-pulse inhibition behaviors in mice exposed to 0-5 Gy brain-localized irradiation, and assessed these effects 2 days later. Subsequently, we used 2 Gy to assess the time course of γ- and proton-radiation effects on startle reactivity 0-8 days after exposure. Exposures targeted the brain to minimize the impact of peripheral inflammation-induced sickness behavior. The effects of radiation on startle were subtle and acute. Radiation reduced the startle response at 2 and 5 Gy. Following a 2-Gy exposure, the response reached a minimum at the 2-day point. Proton and γ-ray exposures did not differ in their impact on startle. We found there were no effects of radiation on pre-pulse inhibition of the startle response.

  8. Nucleus accumbens carbachol disrupts olfactory and contextual fear-potentiated startle and attenuates baseline startle reactivity.

    PubMed

    Cousens, Graham A; Skrobacz, Cheryl G; Blumenthal, Anna

    2011-01-20

    Although the nucleus accumbens (NAc) typically is not considered a primary component of the circuitry underlying either the acquisition or retrieval of conditioned fear, evidence suggests that this region may play some role in modulating fear-related behaviors. The goal of the present study was to explore a potential role for NAc cholinergic receptors in the expression of fear-potentiated startle (FPS) and baseline startle reactivity. Intra-NAc infusion of the broad-acting cholinergic receptor agonist, carbachol, suppressed FPS elicited by re-exposure to both a discrete odor previously paired with footshock and the conditioning context. Although carbachol elevated spontaneous motor activity, activity bouts did not account for startle suppression in carbachol-treated Ss. In addition, intra-NAc carbachol suppressed baseline startle over a range of acoustic pulse intensities in the absence of explicit fear conditioning. Collectively, these findings suggest that NAc cholinergic receptors play a role in the modulation of baseline startle reactivity, rather than in the retrieval of learned fear, and that this role is independent of overt motor activity. Copyright © 2010 Elsevier B.V. All rights reserved.

  9. In the face of fear: Anxiety sensitizes defensive responses to fearful faces

    PubMed Central

    Grillon, Christian; Charney, Danielle R.

    2011-01-01

    Fearful faces readily activate the amygdala. Yet, whether fearful faces evoke fear is unclear. Startle studies show no potentiation of startle by fearful faces, suggesting that such stimuli do not activate defense mechanisms. However, the response to biologically relevant stimuli may be sensitized by anxiety. The present study tested the hypothesis that startle would not be potentiated by fearful faces in a safe context, but that startle would be larger during fearful faces compared to neutral faces in a threat-of-shock context. Subjects viewed fearful and neutral faces in alternating periods of safety and threat of shock. Acoustic startle stimuli were presented in the presence and absence of the faces. Startle was transiently potentiated by fearful faces compared to neutral faces in the threat periods. This suggests that although fearful faces do not prompt behavioral mobilization in an innocuous context, they can do so in an anxiogenic one. PMID:21824155

  10. Startle reduces recall of a recently learned internal model.

    PubMed

    Wright, Zachary; Patton, James L; Ravichandran, Venn

    2011-01-01

    Recent work has shown that preplanned motor programs are released early from subcortical areas by the using a startling acoustic stimulus (SAS). Our question is whether this response might also contain a recently learned internal model, which draws on experience to predict and compensate for expected perturbations in a feedforward manner. Studies of adaptation to robotic forces have shown some evidence of this, but were potentially confounded by cocontraction caused by startle. We performed a new adaptation experiment using a visually distorted field that could not be confounded by cocontraction. We found that in all subjects that exhibited startle, the startle stimulus (1) reduced performance of the recently learned task (2) reduced after-effect magnitudes. Because startle reduced but did not eliminate the recall of learned control, we suggest that multiple neural centers (cortical and subcortical) are involved in such learning and adaptation, which can impact training areas such as piloting, teleoperation, sports, and rehabilitation. © 2011 IEEE

  11. Neuropeptide y gates a stress-induced, long-lasting plasticity in the sympathetic nervous system.

    PubMed

    Wang, Qian; Wang, Manqi; Whim, Matthew D

    2013-07-31

    Acute stress evokes the fight-or-flight reflex, which via release of the catecholamine hormones affects the function of every major organ. Although the reflex is transient, it has lasting consequences that produce an exaggerated response when stress is reexperienced. How this change is encoded is not known. We investigated whether the reflex affects the adrenal component of the sympathetic nervous system, a major branch of the stress response. Mice were briefly exposed to the cold-water forced swim test (FST) which evoked an increase in circulating catecholamines. Although this hormonal response was transient, the FST led to a long-lasting increase in the catecholamine secretory capacity measured amperometrically from chromaffin cells and in the expression of tyrosine hydroxylase. A variety of approaches indicate that these changes are regulated postsynaptically by neuropeptide Y (NPY), an adrenal cotransmitter. Using immunohistochemistry, RT-PCR, and NPY(GFP) BAC mice, we find that NPY is synthesized by all chromaffin cells. Stress failed to increase secretory capacity in NPY knock-out mice. Genetic or pharmacological interference with NPY and Y1 (but not Y2 or Y5) receptor signaling attenuated the stress-induced change in tyrosine hydroxylase expression. These results indicate that, under basal conditions, adrenal signaling is tonically inhibited by NPY, but stress overrides this autocrine negative feedback loop. Because acute stress leads to a lasting increase in secretory capacity in vivo but does not alter sympathetic tone, these postsynaptic changes appear to be an adaptive response. We conclude that the sympathetic limb of the stress response exhibits an activity-dependent form of long-lasting plasticity.

  12. Startle modulation and explicit valence evaluations dissociate during backward fear conditioning.

    PubMed

    Luck, Camilla C; Lipp, Ottmar V

    2017-05-01

    Blink startle magnitude is linearly modulated by affect such that, relative to neutral stimuli, startle magnitude is inhibited during pleasant stimuli and potentiated during unpleasant stimuli. Andreatta, Mühlberger, Yarali, Gerber, and Pauli (2010), however, report a dissociation between startle modulation and explicit valence evaluations during backward conditioning, a procedure in which the unconditional stimulus precedes the conditional stimulus (CS). Relative to controls, startles elicited during the CS were inhibited, suggesting that the CS had acquired positive valence, but participants still evaluated the CS as unpleasant after the experiment. In Experiment 1, we aimed to replicate this dissociation using a trial-by-trial measure of CS valence to measure startle modulation and CS valence simultaneously during forward and backward differential fear conditioning. In Experiment 2, we examined whether early and late portions of the CS could acquire differential valence by presenting startle probes at early and late probe positions during the CS. In both experiments, the dissociation between startle modulation and explicit valence evaluations in backward conditioning replicated, with CS+ evaluated as less pleasant than CS-, but startles elicited during CS+ inhibited relative to CS-. In Experiment 2, we provide preliminary evidence that this inhibition was present early, but not late, during the CS+. The results replicate the dissociation between implicit and explicit CS valence reported by Andreatta et al. (2010) using a trial-by-trial measure of valence. We also provide preliminary evidence that this dissociation may occur because the implicit and explicit measures are recorded at different times during the CS presentation. © 2017 Society for Psychophysiological Research.

  13. Rate of initial recovery and subsequent radar monitoring performance following a simulated emergency involving startle.

    DOT National Transportation Integrated Search

    1983-09-01

    The present study employed auditory startle to simulate the principal components (unexpectedness, fear, and physiological arousal) that are common to many types of sudden emergencies and compared performance recovery following startle with recovery f...

  14. Dexamethasone facilitates fear extinction and safety discrimination in PTSD: A placebo-controlled, double-blind study.

    PubMed

    Michopoulos, Vasiliki; Norrholm, Seth D; Stevens, Jennifer S; Glover, Ebony M; Rothbaum, Barbara O; Gillespie, Charles F; Schwartz, Ann C; Ressler, Kerry J; Jovanovic, Tanja

    2017-09-01

    Psychophysiological hallmarks of posttraumatic stress disorder (PTSD) include exaggerated fear responses, impaired inhibition and extinction of conditioned fear, and decreased discrimination between safety and fear cues. This increased fear load associated with PTSD can be a barrier to effective therapy thus indicating the need for new treatments to reduce fear expression in people with PTSD. One potential biological target for reducing fear expression in PTSD is the hypothalamic-pituitary-adrenal (HPA) axis, which is dysregulated in PTSD. Recent translational rodent studies and cross-sectional clinical studies have shown that dexamethasone administration and the resulting suppression of cortisol in individuals with PTSD leads to a decrease in the fear responses characteristic of PTSD. These data, taken together, suggest that dexamethasone may serve as a novel pharmacologic intervention for heightened fear responses in PTSD. We conducted a double-blind, placebo-controlled trial to test our hypothesis that dexamethasone administration and the concomitant suppression of HPA axis hyperactivity would attenuate fear expression and enhance fear extinction in individuals with PTSD. Study participants (n=62) were recruited from Grady Memorial Hospital in Atlanta, GA. Participants were randomized to receive dexamethasone or placebo prior to fear conditioning and extinction, in a counterbalanced design (treatments separated by a week). Both PTSD- (n=37) and PTSD+ (n=25) participants showed significant startle increases in the presence of the danger signal during placebo and dexamethasone treatments (all p<0.05). However, only PTSD- control participants showed decreases in fear-potentiated startle across extinction blocks during both conditions (p's≤0.001), with PTSD+ participants showing deficits in fear extinction and safety discrimination in the placebo condition. Notably, extinction and discrimination deficits in PTSD+ subjects were markedly reversed with dexamethasone (p<0.001). These data suggest that dexamethasone may serve as a pharmacological agent with which to facilitate fear extinction and discrimination in individuals with PTSD. Copyright © 2017 Elsevier Ltd. All rights reserved.

  15. Intrathecal fentanyl abolishes the exaggerated blood pressure response to cycling in hypertensive men

    PubMed Central

    Barbosa, Thales C.; Vianna, Lauro C.; Fernandes, Igor A.; Prodel, Eliza; Rocha, Helena N. M.; Garcia, Vinicius P.; Rocha, Natalia G.; Secher, Niels H.

    2016-01-01

    Key points The increase in blood pressure observed during physical activities is exaggerated in patients with hypertension, exposing them to a higher cardiovascular risk.Neural signals from the skeletal muscles appear to be overactive, resulting in this abnormal response in hypertensive patients.In the present study, we tested whether the attenuation of these neural signals in hypertensive patients could normalize their abnormal increase in blood pressure during physical activity.Attenuation of the neural signals from the leg muscles with intrathecal fentanyl injection reduced the blood pressure of hypertensive men during cycling exercise to a level comparable to that of normotensive men.Skeletal muscle afferent overactivity causes the abnormal cardiovascular response to exercise and was reverted in this experimental model, appearing as potential target for treatment. Abstract Hypertensive patients present an exaggerated increase in blood pressure and an elevated cardiovascular risk during exercise. Although controversial, human studies suggest that group III and IV skeletal muscle afferents might contribute to this abnormal response. In the present study, we investigated whether attenuation of the group III and IV muscle afferent signal of hypertensive men eliminates the exaggerated increase in blood pressure occurring during exercise. Eight hypertensive men performed two sessions of 5 min of cycling exercise at 40 W. Between sessions, the subjects were provided with a lumbar intrathecal injection of fentanyl, a μ‐opioid receptor agonist, aiming to attenuate the central projection of opioid‐sensitive group III and IV muscle afferent nerves. The cardiovascular response to exercise of these subjects was compared with that of six normotensive men. During cycling, the hypertensive group demonstrated an exaggerated increase in blood pressure compared to the normotensive group (mean ± SEM: +17 ± 3 vs. +8 ± 1 mmHg, respectively; P < 0.05), whereas the increase in heart rate, stroke volume, cardiac output and vascular conductance was similar (P > 0.05). Fentanyl inhibited the blood pressure response to exercise in the hypertensive group (+11 ± 2 mmHg) to a level comparable to that of the normotensive group (P > 0.05). Moreover, fentanyl increased the responses of vascular conductance and stroke volume to exercise (P < 0.05), whereas the heart rate response was attenuated (P < 0.05) and the cardiac output response was maintained (P > 0.05). The results of the present study show that attenuation of the exercise pressor reflex normalizes the blood pressure response to cycling exercise in hypertensive individuals. PMID:26659384

  16. Linking Dimensional Models of Internalizing Psychopathology to Neurobiological Systems: Affect-Modulated Startle as an Indicator of Fear and Distress Disorders and Affiliated Traits

    PubMed Central

    Vaidyanathan, Uma; Patrick, Christopher J.; Cuthbert, Bruce N.

    2009-01-01

    Integrative hierarchical models have sought to account for the extensive comorbidity between various internalizing disorders in terms of broad individual difference factors these disorders share. However, such models have been developed largely on the basis of self-report and diagnostic symptom data. Toward the goal of linking such models to neurobiological systems, we review studies that have employed variants of the affect-modulated startle paradigm to investigate emotional processing in internalizing disorders as well as personality constructs known to be associated with these disorders. Specifically, we focus on four parameters of startle reactivity: fear-potentiated startle, inhibition of startle in the context of pleasant stimuli, context-potentiated startle, and general startle reactivity. On the basis of available data, we argue that these varying effects index differing neurobiological processes related to mood and anxiety disorders that are interpretable from the standpoint of dimensional models of the internalizing spectrum. Further, we contend that these empirical findings can feed back into and help reshape conceptualizations of internalizing disorders in ways that make them more amenable to neurobiological analysis. PMID:19883142

  17. Startling sweet temptations: hedonic chocolate deprivation modulates experience, eating behavior, and eyeblink startle.

    PubMed

    Blechert, Jens; Naumann, Eva; Schmitz, Julian; Herbert, Beate M; Tuschen-Caffier, Brunna

    2014-01-01

    Many individuals restrict their food intake to prevent weight gain. This restriction has both homeostatic and hedonic effects but their relative contribution is currently unclear. To isolate hedonic effects of food restriction, we exposed regular chocolate eaters to one week of chocolate deprivation but otherwise regular eating. Before and after this hedonic deprivation, participants viewed images of chocolate and images of high-calorie but non-chocolate containing foods, while experiential, behavioral and eyeblink startle responses were measured. Compared to satiety, hedonic deprivation triggered increased chocolate wanting, liking, and chocolate consumption but also feelings of frustration and startle potentiation during the intertrial intervals. Deprivation was further characterized by startle inhibition during both chocolate and food images relative to the intertrial intervals. Individuals who responded with frustration to the manipulation and those who scored high on a questionnaire of impulsivity showed more relative startle inhibition. The results reveal the profound effects of hedonic deprivation on experiential, behavioral and attentional/appetitive response systems and underscore the role of individual differences and state variables for startle modulation. Implications for dieting research and practice as well as for eating and weight disorders are discussed.

  18. Startling Sweet Temptations: Hedonic Chocolate Deprivation Modulates Experience, Eating Behavior, and Eyeblink Startle

    PubMed Central

    Blechert, Jens; Naumann, Eva; Schmitz, Julian; Herbert, Beate M.; Tuschen-Caffier, Brunna

    2014-01-01

    Many individuals restrict their food intake to prevent weight gain. This restriction has both homeostatic and hedonic effects but their relative contribution is currently unclear. To isolate hedonic effects of food restriction, we exposed regular chocolate eaters to one week of chocolate deprivation but otherwise regular eating. Before and after this hedonic deprivation, participants viewed images of chocolate and images of high-calorie but non-chocolate containing foods, while experiential, behavioral and eyeblink startle responses were measured. Compared to satiety, hedonic deprivation triggered increased chocolate wanting, liking, and chocolate consumption but also feelings of frustration and startle potentiation during the intertrial intervals. Deprivation was further characterized by startle inhibition during both chocolate and food images relative to the intertrial intervals. Individuals who responded with frustration to the manipulation and those who scored high on a questionnaire of impulsivity showed more relative startle inhibition. The results reveal the profound effects of hedonic deprivation on experiential, behavioral and attentional/appetitive response systems and underscore the role of individual differences and state variables for startle modulation. Implications for dieting research and practice as well as for eating and weight disorders are discussed. PMID:24416437

  19. Between Site Reliability of Startle Prepulse Inhibition Across Two Early Psychosis Consortia

    PubMed Central

    Addington, Jean; Cannon, Tyrone D.; Cornblatt, Barbara A.; de la Fuente-Sandoval, Camilo; Mathalon, Dan H.; Perkins, Diana O.; Seidman, Larry J.; Tsuang, Ming; Walker, Elaine F.; Woods, Scott W.; Bachman, Peter; Belger, Ayse; Carrión, Ricardo E.; Donkers, Franc C.L.; Duncan, Erica; Johannesen, Jason; León-Ortiz, Pablo; Light, Gregory; Mondragón, Alejandra; Niznikiewicz, Margaret; Nunag, Jason; Roach, Brian J.; Solís-Vivanco, Rodolfo

    2014-01-01

    Prepulse inhibition (PPI) and reactivity of the acoustic startle response are widely used biobehavioral markers in psychopathology research. Previous studies have demonstrated that PPI and startle reactivity exhibit substantial within-site stability; between-site stability, however, has not been established. In two separate consortia investigating biomarkers of early psychosis, traveling subjects studies were performed as part of quality assurance procedures in order to assess the fidelity of data across sites. In the North American Prodromal Longitudinal Studies (NAPLS) Consortium, 8 normal subjects traveled to each of the 8 NAPLS sites and were tested twice at each site on the startle PPI paradigm. In preparation for a binational study, 10 healthy subjects were assessed twice in both San Diego and Mexico City. Intraclass correlations between and within sites were significant for PPI and startle response parameters, confirming the reliability of startle measures across sites in both consortia. There were between site differences in startle magnitude in the NAPLS study that did not appear to be related to methods or equipment. In planning multi-site studies, it is essential to institute quality assurance procedures early and establish between site reliability to assure comparable data across sites. PMID:23799460

  20. Effects of Olanzapine, Risperidone and Haloperidol on Prepulse Inhibition in Schizophrenia Patients: A Double-Blind, Randomized Controlled Trial

    PubMed Central

    Wynn, Jonathan K.; Green, Michael F.; Sprock, Joyce; Light, Gregory A.; Widmark, Clifford; Reist, Christopher; Erhart, Stephen; Marder, Stephen R.; Mintz, Jim; Braff, David L.

    2009-01-01

    Prepulse inhibition (PPI), whereby the startle eyeblink response is inhibited by a relatively weak non-startling stimulus preceding the powerful startle eliciting stimulus, is a measure of sensorimotor gating and has been shown to be deficient in schizophrenia patients. There is considerable interest in whether conventional and/or atypical antipsychotic medications can “normalize” PPI deficits in schizophrenia patients. 51 schizophrenia patients participated in a randomized, double-blind controlled trial on the effects of three commonly-prescribed antipsychotic medications (risperidone, olanzapine, or haloperidol) on PPI, startle habituation, and startle reactivity. Patients were tested at baseline, Week 4 and Week 8. Mixed model regression analyses revealed that olanzapine significantly improved PPI from Week 4 to Week 8, and that at Week 8 patients receiving olanzapine produced significantly greater PPI than those receiving risperidone, but not haloperidol. There were no effects of medication on startle habituation or startle reactivity. These results support the conclusion that olanzapine effectively increased PPI in schizophrenia patients, but that risperidone and haloperidol had no such effects. The results are discussed in terms of animal models, neural substrates, and treatment implications. PMID:17662577

  1. Oxytocin and Social Support as Synergistic Inhibitors of Aversive Fear Conditioning and Fear-Potentiated Startle in Male Rats

    DTIC Science & Technology

    2009-09-01

    startle amplitude. They then received Pavlovian fear conditioning of five pairings of a 3 s light co-terminating with a 500 ms, 0.6mA footshock. Four...Synergistic Inhibitors of Aversive Fear Conditioning and Fear-Potentiated Startle in Male Rats PRINCIPAL INVESTIGATOR: Jeffrey B. Rosen, Ph.D...NUMBER Oxytocin and Social Support as Synergistic Inhibitors of Aversive Fear Conditioning and Fear-Potentiated Startle in Male Rats 5b. GRANT

  2. Cerebral Developmental Abnormalities in a Mouse with Systemic Pyruvate Dehydrogenase Deficiency

    PubMed Central

    Pliss, Lioudmila; Hausknecht, Kathryn A.; Stachowiak, Michal K.; Dlugos, Cynthia A.; Richards, Jerry B.; Patel, Mulchand S.

    2013-01-01

    Pyruvate dehydrogenase (PDH) complex (PDC) deficiency is an inborn error of pyruvate metabolism causing a variety of neurologic manifestations. Systematic analyses of development of affected brain structures and the cellular processes responsible for their impairment have not been performed due to the lack of an animal model for PDC deficiency. METHODS: In the present study we investigated a murine model of systemic PDC deficiency by interrupting the X-linked Pdha1 gene encoding the α subunit of PDH to study its role on brain development and behavioral studies. RESULTS: Male embryos died prenatally but heterozygous females were born. PDC activity was reduced in the brain and other tissues in female progeny compared to age-matched control females. Immunohistochemical analysis of several brain regions showed that approximately 40% of cells were PDH−. The oxidation of glucose to CO2 and incorporation of glucose-carbon into fatty acids were reduced in brain slices from 15 day-old PDC-deficient females. Histological analyses showed alterations in several structures in white and gray matters in 35 day-old PDC-deficient females. Reduction in total cell number and reduced dendritic arbors in Purkinje neurons were observed in PDC-deficient females. Furthermore, cell proliferation, migration and differentiation into neurons by newly generated cells were reduced in the affected females during pre- and postnatal periods. PDC-deficient mice had normal locomotor activity in a novel environment but displayed decreased startle responses to loud noises and there was evidence of abnormal pre-pulse inhibition of the startle reflex. CONCLUSIONS: The results show that a reduction in glucose metabolism resulting in deficit in energy production and fatty acid biosynthesis impairs cellular differentiation and brain development in PDC-deficient mice. PMID:23840713

  3. Inhalation toxicology of diesel fuel obscurant aerosol in Sprague-Dawley rats. Final report, Phase 3, subchronic exposures

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lock, S.; Dalbey, W.; Schmoyer, R.

    1984-12-01

    Inhalation exposures were performed twice per week, for 13 weeks, to determine whether there was any potential toxicity to rats of comparatively low concentrations of a condensation aerosol from diesel fuel. Changes in breathing frequency and the response of animals to a loud sharp sound (startle response) were measured in selected animals prior to the start of the exposures, at various time points during the thirteen week exposure period, and at monthly intervals during the recovery period. Assays were performed on selected animals at the end of the exposure period, and again after the two month recovery period. Endpoints includedmore » pulmonary function tests, numbers of alveolar free cells, clinical chemistry, hematology, organ weights and histopathology. No mortalities were recorded during the exposure or recovery periods. Slight toxicity occurred at these low aerosol concentrations with the loss in body weight of all treated animals during the exposure period. During the exposure period there were also some slight changes in startle reflex, however, these were apparently acute effects, and there appeared to be no permanent CNS involvement as measured by this endpoint. Immediately post-exposure, the numbers of lavaged alveolar macrophages were slightly elevated in all aerosol exposed animals. Pulmonary function tests, pulmonary gas exchange and dynamic lung tests were all apparently unaffected by these low diesel fuel aerosol exposures. Changes in tissue weights in aerosol exposed animals were minor and the few histopathological lesions were randomly scattered amongst all groups included in this study and were more attributable to the age of the animals than any specific treatment group. No significant cumulative toxicity may be attributed to these diesel fuel aerosol exposures. 14 references, 1 figure, 42 tables.« less

  4. The Association of Schizophrenia Risk -Amino Acid Oxidase Polymorphisms With Sensorimotor Gating, Working Memory and Personality in Healthy Males

    PubMed Central

    Roussos, Panos; Giakoumaki, Stella G; Adamaki, Eva; Anastasios, Georgakopoulos; Nikos, Robakis K; Bitsios, Panos

    2011-01-01

    There is evidence supporting a role for the -amino acid oxidase (DAO) locus in schizophrenia. This study aimed to determine the relationship of five single-nucleotide polymorphisms (SNPs) within the DAO gene identified as promising schizophrenia risk genes (rs4623951, rs2111902, rs3918346, rs3741775, and rs3825251) to acoustic startle, prepulse inhibition (PPI), working memory, and personality dimensions. A highly homogeneous study entry cohort (n=530) of healthy, young male army conscripts (n=703) originating from the Greek LOGOS project (Learning On Genetics Of Schizophrenia Spectrum) underwent PPI of the acoustic startle reflex, working memory, and personality assessment. The QTPHASE from the UNPHASED package was used for the association analysis of each SNP or haplotype data, with p-values corrected for multiple testing by running 10 000 permutations of the data. The rs4623951_T-rs3741775_G and rs4623951_T-rs2111902_T diplotypes were associated with reduced PPI and worse performance in working memory tasks and a personality pattern characterized by attenuated anxiety. Median stratification analysis of the risk diplotype group (ie, those individuals homozygous for the T and G alleles (TG+)) showed reduced PPI and working memory performance only in TG+ individuals with high trait anxiety. The rs4623951_T allele, which is the DAO polymorphism most strongly associated with schizophrenia, might tag a haplotype that affects PPI, cognition, and personality traits in general population. Our findings suggest an influence of the gene in the neural substrate mediating sensorimotor gating and working memory, especially when combined with high anxiety and further validate DAO as a candidate gene for schizophrenia and spectrum disorders. PMID:21471957

  5. Role of dopamine receptors in the ventral tegmental area in conditioned fear.

    PubMed

    de Oliveira, Amanda Ribeiro; Reimer, Adriano Edgar; Brandão, Marcus Lira

    2009-05-16

    The increased startle reflex in the presence of a stimulus that has been previously paired with footshock has been termed fear-potentiated startle (FPS) and is considered a reliable index of anxiety. Some studies have suggested an association between stressful situations and alterations in dopaminergic (DA) transmission. Many studies converge on the hypothesis that the mesocorticolimbic pathway, originating from DA neurons in the ventral tegmental area (VTA), is particularly sensitive to fear-arousing stimuli. The present study explored the involvement of VTA DA receptors in the acquisition and expression of conditioned fear to a light conditioned stimulus (CS). We evaluated the effects of intra-VTA administration of SKF 38393 (D(1) agonist), SCH 23390 (D(1) antagonist), quinpirole (D(2) agonist), and sulpiride (D(2) antagonist) on FPS. All drugs were administered bilaterally into the VTA (1.0 microg/0.2 microl/site). Locomotor activity/exploration and motor coordination were evaluated in the open-field and rotarod tests. None of the drugs produced significant effects on FPS when injected before conditioning, indicating that VTA DA receptors are not involved in the acquisition of conditioned fear to a light-CS. In contrast, when injected before the test session, quinpirole significantly reduced FPS, whereas the other drugs had no effect. Quinpirole's ability to decrease FPS may be the result of an action on VTA D(2) presynaptic autoreceptors that decrease dopamine levels in terminal fields of the mesocorticolimbic pathway. Altogether, the present results suggest the importance of VTA DA neurons in the fear-activating effects of Pavlovian conditioning. In addition to demonstrating the importance of dopaminergic mechanisms in the motivational consequences of footshock, the present findings also indicate that these neural circuits are mainly involved in the expression, rather than acquisition, of conditioned fear.

  6. Pontine hyperperfusion in sporadic hyperekplexia

    PubMed Central

    Vetrugno, Roberto; Mascalchi, Mario; Vella, Alessandra; Nave, Riccardo Della; Guerrini, Laura; Vattimo, Angelo; del Giudice, Emanuele Miraglia; Plazzi, Giuseppe; D'Angelo, Roberto; Greco, Giovanni; Montagna, Pasquale

    2007-01-01

    Objective To explore with neuroimaging techniques the anatomical and functional correlates of sporadic hyperekplexia. Methods Two elderly women with sporadic hyperekplexia underwent neurophysiological assessment, MRI of the brain and proton magnetic resonance spectroscopy (1H‐MRS) of the brainstem and frontal lobes. Regional cerebral blood flow was investigated with single photon emission tomography (SPECT) during evoked startles and at rest. Results Both patients showed excessively large and non‐habituating startle responses. In both patients, MRI showed impingement of the brainstem by the vertebrobasilar artery, lack of frontal or brainstem abnormalities on 1H‐MRS and hyperperfusion in the dorsal pons and cingulate cortex, and superior frontal gyrus at SPECT during evoked startles. Conclusions In our patients with hyperekplexia, the vertebrobasilar arteries were found to impinge on the brainstem. Neurophysiological findings and neurofunctional imaging of evoked startles indicated a pontine origin of the movement disorder modulated by activation in cortical, especially frontal, areas. The neurofunctional correlates of evoked startles in human sporadic hyperekplexia are similar to those observed for the startle circuit in animals. PMID:17702784

  7. Pontine hyperperfusion in sporadic hyperekplexia.

    PubMed

    Vetrugno, Roberto; Mascalchi, Mario; Vella, Alessandra; Della Nave, Riccardo; Guerrini, Laura; Vattimo, Angelo; del Giudice, Emanuele Miraglia; Plazzi, Giuseppe; D'Angelo, Roberto; Greco, Giovanni; Montagna, Pasquale

    2007-09-01

    To explore with neuroimaging techniques the anatomical and functional correlates of sporadic hyperekplexia. Two elderly women with sporadic hyperekplexia underwent neurophysiological assessment, MRI of the brain and proton magnetic resonance spectroscopy (1H-MRS) of the brainstem and frontal lobes. Regional cerebral blood flow was investigated with single photon emission tomography (SPECT) during evoked startles and at rest. Both patients showed excessively large and non-habituating startle responses. In both patients, MRI showed impingement of the brainstem by the vertebrobasilar artery, lack of frontal or brainstem abnormalities on 1H-MRS and hyperperfusion in the dorsal pons and cingulate cortex, and superior frontal gyrus at SPECT during evoked startles. In our patients with hyperekplexia, the vertebrobasilar arteries were found to impinge on the brainstem. Neurophysiological findings and neurofunctional imaging of evoked startles indicated a pontine origin of the movement disorder modulated by activation in cortical, especially frontal, areas. The neurofunctional correlates of evoked startles in human sporadic hyperekplexia are similar to those observed for the startle circuit in animals.

  8. Does anxiety sensitivity correlate with startle habituation? An examination in two independent samples.

    PubMed

    Campbell, Miranda L; Gorka, Stephanie M; McGowan, Sarah K; Nelson, Brady D; Sarapas, Casey; Katz, Andrea C; Robison-Andrew, E Jenna; Shankman, Stewart A

    2014-01-01

    Individuals with anxiety disorders have previously demonstrated abnormal habituation to aversiveness over time. As anxiety sensitivity (AS), or an individuals' propensity to fear of anxiety-related sensations, has been shown to be a risk factor for anxiety disorders (particularly panic disorder), the present study examined whether AS was also associated with abnormal habituation. This association was examined in two independent samples of undergraduates (Ntotal=178). Habituation was operationalised as the reduction in startle response to multiple startle probes presented over 2.5 minutes and three definitions of this reduction were employed. Results indicated that individuals with higher levels of AS evidenced deficits in startle habituation, but the strength of this relationship was somewhat dependent on the definition of startle habituation, with the most robust definition being an analysis of participants' individual slopes across all nine blinks. The present findings suggest that startle habituation is a key mechanism underlying AS, and may help elucidate the role this risk factor plays in the pathogenesis of anxiety disorders.

  9. Whiplash evokes descending muscle recruitment and sympathetic responses characteristic of startle

    PubMed Central

    Mang, Daniel WH; Siegmund, Gunter P; Blouin, Jean-Sébastien

    2014-01-01

    Whiplash injuries are the most common injuries following rear-end collisions. During a rear-end collision, the human muscle response consists of both a postural and a startle response that may exacerbate injury. However, most previous studies only assessed the presence of startle using data collected from the neck muscles and head/neck kinematics. The startle response also evokes a descending pattern of muscle recruitment and changes in autonomic activity. Here we examined the recruitment of axial and appendicular muscles along with autonomic responses to confirm whether these other features of a startle response were present during the first exposure to a whiplash perturbation. Ten subjects experienced a single whiplash perturbation while recording electromyography, electrocardiogram, and electrodermal responses. All subjects exhibited a descending pattern of muscle recruitment, and increasing heart rate and electrodermal responses following the collision. Our results provide further support that the startle response is a component of the response to whiplash collisions. PMID:24932015

  10. Degraded expression of learned feedforward control in movements released by startle.

    PubMed

    Wright, Zachary A; Carlsen, Anthony N; MacKinnon, Colum D; Patton, James L

    2015-08-01

    Recent work has shown that preplanned motor programs can be rapidly released via fast conducting pathways using a startling acoustic stimulus. Our question was whether the startle-elicited response might also release a recently learned internal model, which draws on experience to predict and compensate for expected perturbations in a feedforward manner. Our initial investigation using adaptation to robotically produced forces showed some evidence of this, but the results were potentially confounded by co-contraction caused by startle. In this study, we eliminated this confound by asking subjects to make reaching movements in the presence of a visual distortion. Results show that a startle stimulus (1) decreased performance of the recently learned task and (2) reduced after-effect magnitude. Since the recall of learned control was reduced, but not eliminated during startle trials, we suggest that multiple neural centers (cortical and subcortical) are involved in such learning and adaptation. These findings have implications for motor training in areas such as piloting, teleoperation, sports, and rehabilitation.

  11. Assessing fear and anxiety in humans using the threat of predictable and unpredictable aversive events (the NPU-threat test)

    PubMed Central

    Schmitz, Anja; Grillon, Christian

    2012-01-01

    The threat of predictable and unpredictable aversive events was developed to assess short-duration (fear) and long-duration (anxiety) aversive states in humans. A typical experiment consists of three conditions: a safe condition (neutral (N)), during which participants are safe from aversive stimuli, and two threat conditions—one in which aversive events are administered predictably (P) (i.e., signaled by a threat cue), and one in which aversive stimuli are administered unpredictably (U). During the so-called NPU -threat test, ongoing change in aversive states is measured with the startle reflex. The NPU -threat test has been validated in pharmacological and clinical studies and can be implemented in children and adults. Similar procedures have been applied in animal models, making the NPU -threat test an ideal tool for translational research. The procedure is relatively short (35 min), simple to implement and generates consistent results with large effect sizes. PMID:22362158

  12. Psychophysiological Response Patterns to Affective Film Stimuli

    PubMed Central

    Bos, Marieke G. N.; Jentgens, Pia; Beckers, Tom; Kindt, Merel

    2013-01-01

    Psychophysiological research on emotion utilizes various physiological response measures to index activation of the defense system. Here we tested 1) whether acoustic startle reflex (ASR), skin conductance response (SCR) and heart rate (HR) elicited by highly arousing stimuli specifically reflect a defensive state and 2) the relation between resting heart rate variability (HRV) and affective responding. In a within-subject design, participants viewed film clips with a positive, negative and neutral content. In contrast to SCR and HR, we show that ASR differentiated between negative, neutral and positive states and can therefore be considered as a reliable index of activation of the defense system. Furthermore, resting HRV was associated with affect-modulated characteristics of ASR, but not with SCR or HR. Interestingly, individuals with low-HRV showed less differentiation in ASR between affective states. We discuss the important value of ASR in psychophysiological research on emotion and speculate on HRV as a potential biological marker for demarcating adaptive from maladaptive responding. PMID:23646134

  13. Anthropogenic noise compromises the anti-predator behaviour of the European seabass, Dicentrarchus labrax (L.).

    PubMed

    Spiga, Ilaria; Aldred, Nicholas; Caldwell, Gary S

    2017-09-15

    Anthropogenic noise is a significant pollutant of the world's oceans, affecting behavioural and physiological traits in a range of species, including anti-predator behaviours. Using the open field test, we investigated the effects of recordings of piling and drilling noise on the anti-predator behaviour of captive juvenile European seabass in response to a visual stimulus (a predatory mimic). The impulsive nature of piling noise triggered a reflexive startle response, which contrasted the behaviour elicited by the continuous drilling noise. When presented with the predatory mimic, fish exposed to both piling and drilling noise explored the experimental arena more extensively than control fish exposed to ambient noise. Fish under drilling and piling conditions also exhibited reduced predator inspection behaviour. Piling and drilling noise induced stress as measured by ventilation rate. This study provides further evidence that the behaviour and physiology of European seabass is significantly affected by exposure to elevated noise levels. Copyright © 2017. Published by Elsevier Ltd.

  14. Psychometric properties of startle and corrugator response in NPU, Affective Picture Viewing, and Resting State tasks

    PubMed Central

    Kaye, Jesse T.; Bradford, Daniel E.; Curtin, John J.

    2016-01-01

    The current study provides a comprehensive evaluation of critical psychometric properties of commonly used psychophysiology laboratory tasks/measures within the NIMH RDoC. Participants (N = 128) completed the No Shock, Predictable Shock, Unpredictable Shock (NPU) task, Affective Picture Viewing task, and Resting State task at two study visits separated by one week. We examined potentiation/modulation scores in NPU (predictable or unpredictable shock vs. no shock) and Affective Picture Viewing tasks (pleasant or unpleasant vs. neutral pictures) for startle and corrugator responses with two commonly used quantification methods. We quantified startle potentiation/modulation scores with raw and standardized responses. We quantified corrugator potentiation/modulation in the time and frequency domains. We quantified general startle reactivity in the Resting State Task as the mean raw startle response during the task. For these three tasks, two measures, and two quantification methods we evaluated effect size robustness and stability, internal consistency (i.e., split-half reliability), and one-week temporal stability. The psychometric properties of startle potentiation in the NPU task were good but concerns were noted for corrugator potentiation in this task. Some concerns also were noted for the psychometric properties of both startle and corrugator modulation in the Affective Picture Viewing task, in particular for pleasant picture modulation. Psychometric properties of general startle reactivity in the Resting State task were good. Some salient differences in the psychometric properties of the NPU and Affective Picture Viewing tasks were observed within and across quantification methods. PMID:27167717

  15. [Case of interval form of carbon monoxide poisoning without increased carboxyhemoglobin level diagnosed by characteristic MR spectroscopy findings].

    PubMed

    Kamisawa, Tomoko; Ikawa, Masamichi; Hamano, Tadanori; Nagata, Miwako; Kimura, Hirohiko; Yoneda, Makoto

    2014-01-01

    A 67-year-old man living alone was admitted for acute disturbance of consciousness during winter. He presented with semicoma, a decorticate posture, and exaggerated tendon reflexes of the limbs, but brainstem reflexes were intact. The carboxyhemoglobin (COHb) level was normal in arterial blood gas on admission, and protein in cerebrospinal fluid was increased without pleocytosis. Brain MRI showed diffuse T2 high intensities in the deep white matter bilaterally without a contrast effect and abnormal T1 intensity in the pallidum. (1)H-MR spectroscopy (MRS) of the white matter lesion demonstrated findings suggesting demyelination as an increased choline peak, enhanced anaerobic metabolism as increased lactate and lipids peaks, and reduced neurons as a decreased N-acetylaspartate peak, which corresponded to delayed encephalopathy due to the interval form of carbon monoxide (CO) poisoning. The possibility of CO exposure due to coal briquette use 2 weeks before the symptomatic onset was indicated by his family, so he was diagnosed with CO poisoning. His consciousness slightly improved with corticosteroid therapy and repetitive hyperbaric oxygen therapy, but brain MRI and MRS findings did not improve. Characteristic MRS findings of leukoencephalopathy are helpful for diagnosing the interval form of CO poisoning in the case of a normal COHb level.

  16. Genetics of reflex seizures and epilepsies in humans and animals.

    PubMed

    Italiano, Domenico; Striano, Pasquale; Russo, Emilio; Leo, Antonio; Spina, Edoardo; Zara, Federico; Striano, Salvatore; Gambardella, Antonio; Labate, Angelo; Gasparini, Sara; Lamberti, Marco; De Sarro, Giovambattista; Aguglia, Umberto; Ferlazzo, Edoardo

    2016-03-01

    Reflex seizures are epileptic events triggered by specific motor, sensory or cognitive stimulation. This comprehensive narrative review focuses on the role of genetic determinants in humans and animal models of reflex seizures and epilepsies. References were mainly identified through MEDLINE searches until August 2015 and backtracking of references in pertinent studies. Autosomal dominant inheritance with reduced penetrance was proven in several families with photosensitivity. Molecular genetic studies on EEG photoparoxysmal response identified putative loci on chromosomes 6, 7, 13 and 16 that seem to correlate with peculiar seizure phenotype. No specific mutation has been found in Papio papio baboon, although a genetic etiology is likely. Mutation in synaptic vesicle glycoprotein 2A was found in another animal model of photosensitivity (Fayoumi chickens). Autosomal dominant inheritance with incomplete penetrance overlapping with a genetic background for IGE was proposed for some families with primary reading epilepsy. Musicogenic seizures usually occur in patients with focal symptomatic or cryptogenic epilepsies, but they have been reported in rare genetic epilepsies such as Dravet syndrome. A single LGI1 mutation has been described in a girl with seizures evoked by auditory stimuli. Interestingly, heterozygous knockout (Lgi1(+/-)) mice show susceptibility to sound-triggered seizures. Moreover, in Frings and Black Swiss mice, the spontaneous mutations of MASS1 and JAMS1 genes, respectively, have been linked to audiogenic seizures. Eating seizures usually occur in symptomatic epilepsies but evidences for a genetic susceptibility were mainly provided by family report from Sri Lanka. Eating seizures were also reported in rare patients with MECP2 duplication or mutation. Hot water seizures are genetically heterogeneous but two loci at chromosomes 4 and 10 were identified in families with likely autosomal dominant inheritance. Startle-induced seizures usually occur in patients with symptomatic epilepsies but have also been reported in the setting chromosomal disorders or genetically inherited lysosomal storage diseases. The genetic background of reflex seizures and epilepsies is heterogeneous and mostly unknown with no major gene identified in humans. The benefits offered by next-generation sequencing technologies should be merged with increasing information on animal models that represent an useful tool to study the mechanism underlying epileptogenesis. Finally, we expect that genetic studies will lead to a better understanding of the multiple factors involved in the pathophysiology of reflex seizures, and eventually to develop preventive strategies focused on seizure control and therapy optimization. Copyright © 2016 Elsevier B.V. All rights reserved.

  17. Performance recovery following startle : a laboratory approach to the study of behavioral response to sudden aircraft emergencies.

    DOT National Transportation Integrated Search

    1988-08-01

    This paper deals with the use of response/recovery rate to auditory startle as a laboratory technique for simulating some of the principal aspects of the initial shock phase of sudden emergency situations. It is submitted that auditory startle, with ...

  18. Depressed mood enhances anxiety to unpredictable threat

    PubMed Central

    Robinson, OJ; Overstreet, C; Letkiewicz, A; Grillon, C

    2011-01-01

    Background Depression and anxiety disorders (AD) are highly comorbid, but the reason for this comorbidity is unclear. One possibility is that they predispose one another. An informative way to examine interactions between disorders without the confounds present in patient populations is to manipulate the psychological processes thought to underlie the pathological states in healthy individuals. In this paper we therefore asked whether a model of the sad mood in depression can enhance psychophysiological responses (startle) to a model of the anxiety in AD. We predicted that sad mood would increase anxious anxiety-potentiated startle responses. Methods In a between-subjects design, participants (N=36) completed either a sad mood induction procedure (N=18) or neutral mood induction procedure (N=18). Startle responses were assessed during short duration predictable electric shock conditions (fear-potentiated startle) or long-duration unpredictable threat of shock conditions (anxiety-potentiated startle). Results Induced sadness enhanced anxiety-, but not fear- potentiated startle. Conclusions This study provides support for the hypothesis that sadness can increase anxious responding measured by the affective startle response. This, taken together with prior evidence that AD can contribute to depression, provides initial experimental support for the proposition that AD and depression are frequently comorbid because they may be mutually reinforcing. PMID:22088577

  19. Voluntary emotion regulation in anorexia nervosa: A preliminary emotion-modulated startle investigation.

    PubMed

    Racine, Sarah E; Forbush, Kelsie T; Wildes, Jennifer E; Hagan, Kelsey E; Pollack, Lauren O; May, Casey

    2016-06-01

    Emotion regulation difficulties are implicated in the development and maintenance of anorexia nervosa (AN). However, research has been limited by an almost exclusive reliance on self-report. This study is the first to use the emotion-modulated startle paradigm (EMSP) to investigate emotional reactivity and voluntary emotion regulation in individuals with AN. Twenty women with AN viewed negative, positive, neutral, and food images and were asked to enhance, suppress, or maintain their emotional responses mid-way through picture presentation. Startle eyeblink magnitudes in response to startle probes administered prior, and subsequent, to regulation instructions indexed emotional reactivity and regulation, respectively. On emotional reactivity trials, startle magnitudes were greater for negative, positive, and food images, compared to neutral images. Participants had difficulty suppressing startle responses to negative and food images, as indicated by non-significant suppress-maintain comparisons. In contrast, startle responses to enhance and suppress cues during presentation of pleasant images were comparable and significantly lower than maintain cues. Findings converge with self-report data to suggest that patients with AN have difficulties with voluntary emotion regulation. The EMSP may be a promising trans-diagnostic method for examining emotion regulation difficulties that underlie risk for eating disorders and other psychiatric conditions. Copyright © 2016 Elsevier Ltd. All rights reserved.

  20. Sex-Specific Brain Deficits in Auditory Processing in an Animal Model of Cocaine-Related Schizophrenic Disorders

    PubMed Central

    Broderick, Patricia A.; Rosenbaum, Taylor

    2013-01-01

    Cocaine is a psychostimulant in the pharmacological class of drugs called Local Anesthetics. Interestingly, cocaine is the only drug in this class that has a chemical formula comprised of a tropane ring and is, moreover, addictive. The correlation between tropane and addiction is well-studied. Another well-studied correlation is that between psychosis induced by cocaine and that psychosis endogenously present in the schizophrenic patient. Indeed, both of these psychoses exhibit much the same behavioral as well as neurochemical properties across species. Therefore, in order to study the link between schizophrenia and cocaine addiction, we used a behavioral paradigm called Acoustic Startle. We used this acoustic startle paradigm in female versus male Sprague-Dawley animals to discriminate possible sex differences in responses to startle. The startle method operates through auditory pathways in brain via a network of sensorimotor gating processes within auditory cortex, cochlear nuclei, inferior and superior colliculi, pontine reticular nuclei, in addition to mesocorticolimbic brain reward and nigrostriatal motor circuitries. This paper is the first to report sex differences to acoustic stimuli in Sprague-Dawley animals (Rattus norvegicus) although such gender responses to acoustic startle have been reported in humans (Swerdlow et al. 1997 [1]). The startle method monitors pre-pulse inhibition (PPI) as a measure of the loss of sensorimotor gating in the brain's neuronal auditory network; auditory deficiencies can lead to sensory overload and subsequently cognitive dysfunction. Cocaine addicts and schizophrenic patients as well as cocaine treated animals are reported to exhibit symptoms of defective PPI (Geyer et al., 2001 [2]). Key findings are: (a) Cocaine significantly reduced PPI in both sexes. (b) Females were significantly more sensitive than males; reduced PPI was greater in females than in males. (c) Physiological saline had no effect on startle in either sex. Thus, the data elucidate gender-specificity to the startle response in animals. Finally, preliminary studies show the effect of cocaine on acoustic startle in tandem with effects on estrous cycle. The data further suggest that hormones may play a role in these sex differences to acoustic startle reported herein. PMID:24961412

  1. Fear-potentiated startle processing in humans: Parallel fMRI and orbicularis EMG assessment during cue conditioning and extinction.

    PubMed

    Lindner, Katja; Neubert, Jörg; Pfannmöller, Jörg; Lotze, Martin; Hamm, Alfons O; Wendt, Julia

    2015-12-01

    Studying neural networks and behavioral indices such as potentiated startle responses during fear conditioning has a long tradition in both animal and human research. However, most of the studies in humans do not link startle potentiation and neural activity during fear acquisition and extinction. Therefore, we examined startle blink responses measured with electromyography (EMG) and brain activity measured with functional MRI simultaneously during differential conditioning. Furthermore, we combined these behavioral fear indices with brain network activity by analyzing the brain activity evoked by the startle probe stimulus presented during conditioned visual threat and safety cues as well as in the absence of visual stimulation. In line with previous research, we found a fear-induced potentiation of the startle blink responses when elicited during a conditioned threat stimulus and a rapid decline of amygdala activity after an initial differentiation of threat and safety cues in early acquisition trials. Increased activation during processing of threat cues was also found in the anterior insula, the anterior cingulate cortex (ACC), and the periaqueductal gray (PAG). More importantly, our results depict an increase of brain activity to probes presented during threatening in comparison to safety cues indicating an involvement of the anterior insula, the ACC, the thalamus, and the PAG in fear-potentiated startle processing during early extinction trials. Our study underlines that parallel assessment of fear-potentiated startle in fMRI paradigms can provide a helpful method to investigate common and distinct processing pathways in humans and animals and, thus, contributes to translational research. Copyright © 2015 Elsevier B.V. All rights reserved.

  2. Asians demonstrate reduced sensitivity to unpredictable threat: a preliminary startle investigation using genetic ancestry in a multiethnic sample.

    PubMed

    Nelson, Brady D; Bishop, Jeffrey R; Sarapas, Casey; Kittles, Rick A; Shankman, Stewart A

    2014-06-01

    Research has indicated that individuals of Asian descent, relative to other racial groups, demonstrate reduced emotional responding and lower prevalence rates of several anxiety disorders. It is unclear though whether these group differences extend to biomarkers of anxiety disorders and whether genetic differences play a role. This study compared self-identified Caucasian, Latino, and Asian persons (total N = 174) on startle response during a baseline period and while anticipating unpredictable threat-a putative biomarker for certain anxiety disorders--as well as predictable threat. In addition, the association between genetic ancestry and startle response was examined within each racial group to determine potential genetic influences on responding. For the baseline period, Asian participants exhibited a smaller startle response relative to Caucasian and Latino participants, who did not differ. Within each racial group, genetic ancestry was associated with baseline startle. Furthermore, genetic ancestry mediated racial group differences in baseline startle. For the threat conditions, a Race × Condition interaction indicated that Asian participants exhibited reduced startle potentiation to unpredictable, but not predicable, threat relative to Caucasian and Latino participants, who did not differ. However, genetic ancestry was not associated with threat-potentiated startle in any racial group. This study adds to the growing literature on racial differences in emotional responding and provides preliminary evidence suggesting that genetic ancestry may play an important role. Moreover, reduced sensitivity to unpredictable threat may reflect a mechanism for why individuals of Asian descent are at less risk for particular anxiety disorders relative to other racial groups.

  3. Asians Demonstrate Reduced Sensitivity to Unpredictable Threat: A Preliminary Startle Investigation using Genetic Ancestry in a Multi-Ethnic Sample

    PubMed Central

    Nelson, Brady D.; Bishop, Jeffrey R.; Sarapas, Casey; Kittles, Rick A.; Shankman, Stewart A.

    2014-01-01

    Research has indicated that individuals of Asian descent, relative to other racial groups, demonstrate reduced emotional responding and lower prevalence rates of several anxiety disorders. It is unclear though whether these group differences extend to biomarkers of anxiety disorders and whether genetic differences play a role. The present study compared self-identified Caucasians, Latinos, and Asians (total N = 174) on startle response during a baseline period and while anticipating unpredictable threat–a putative biomarker for certain anxiety disorders–as well as predictable threat. In addition, the association between genetic ancestry and startle response was examined within each racial group to determine potential genetic influences on responding. For the baseline period, Asian participants exhibited a smaller startle response relative to Caucasian and Latino participants, who did not differ. Within each racial group, genetic ancestry was associated with baseline startle. Furthermore, genetic ancestry mediated racial group differences in baseline startle. For the threat conditions, a Race × Condition interaction indicated that Asian participants exhibited reduced startle potentiation to unpredictable, but not predicable, threat relative to Caucasian and Latino participants, who did not differ. However, genetic ancestry was not associated with threat-potentiated startle in any racial group. The present study adds to the growing literature on racial differences in emotional responding and provides preliminary evidence suggesting that genetic ancestry may play an important role. Moreover, reduced sensitivity to unpredictable threat may reflect a mechanism for why individuals of Asian descent are at less risk for particular anxiety disorders relative to other racial groups. PMID:24708496

  4. Emotional effects of startling background music during reading news reports: The moderating influence of dispositional BIS and BAS sensitivities.

    PubMed

    Ravaja, Niklas; Kallinen, Kari

    2004-07-01

    We examined the moderating influence of dispositional behavioral inhibition system (BIS) and behavioral activation system (BAS) sensitivities on the relationship of startling background music with emotion-related subjective and physiological responses elicited during reading news reports, and with memory performance among 26 adult men and women. Physiological parameters measured were respiratory sinus arrhythmia (RSA), electrodermal activity (EDA), and facial electromyography (EMG). The results showed that, among high BAS individuals, news stories with startling background music were rated as more interesting and elicited higher zygomatic EMG activity and RSA than news stories with non-startling music. Among low BAS individuals, news stories with startling background music were rated as less pleasant and more arousing and prompted higher EDA. No BIS-related effects or effects on memory were found. Startling background music may have adverse (e.g., negative arousal) or beneficial effects (e.g., a positive emotional state and stronger positive engagement) depending on dispositional BAS sensitivity of an individual. Actual or potential applications of this research include the personalization of media presentations when using modern media and communications technologies.

  5. Thermal Imaging of the Periorbital Regions during the Presentation of an Auditory Startle Stimulus

    PubMed Central

    Gane, Luke; Power, Sarah; Kushki, Azadeh; Chau, Tom

    2011-01-01

    Infrared thermal imaging of the inner canthi of the periorbital regions of the face can potentially serve as an input signal modality for an alternative access system for individuals with conditions that preclude speech or voluntary movement, such as total locked-in syndrome. However, it is unknown if the temperature of these regions is affected by the human startle response, as changes in the facial temperature of the periorbital regions manifested during the startle response could generate false positives in a thermography-based access system. This study presents an examination of the temperature characteristics of the periorbital regions of 11 able-bodied adult participants before and after a 102 dB auditory startle stimulus. The results indicate that the startle response has no substantial effect on the mean temperature of the periorbital regions. This indicates that thermography-based access solutions would be insensitive to startle reactions in their user, an important advantage over other modalities being considered in the context of access solutions for individuals with a severe motor disability. PMID:22073302

  6. Does intolerance of uncertainty predict anticipatory startle responses to uncertain threat?

    PubMed

    Nelson, Brady D; Shankman, Stewart A

    2011-08-01

    Intolerance of uncertainty (IU) has been proposed to be an important maintaining factor in several anxiety disorders, including generalized anxiety disorder, obsessive-compulsive disorder, and social phobia. While IU has been shown to predict subjective ratings and decision-making during uncertain/ambiguous situations, few studies have examined whether IU also predicts emotional responding to uncertain threat. The present study examined whether IU predicted aversive responding (startle and subjective ratings) during the anticipation of temporally uncertain shocks. Sixty-nine participants completed three experimental conditions during which they received: no shocks, temporally certain/predictable shocks, and temporally uncertain shocks. Results indicated that IU was negatively associated with startle during the uncertain threat condition in that those with higher IU had a smaller startle response. IU was also only related to startle during the uncertain (and not the certain/predictable) threat condition, suggesting that it was not predictive of general aversive responding, but specific to responses to uncertain aversiveness. Perceived control over anxiety-related events mediated the relation between IU and startle to uncertain threat, such that high IU led to lowered perceived control, which in turn led to a smaller startle response. We discuss several potential explanations for these findings, including the inhibitory qualities of IU. Overall, our results suggest that IU is associated with attenuated aversive responding to uncertain threat. Copyright © 2011 Elsevier B.V. All rights reserved.

  7. Differential pathologies resulting from sound exposure: Tinnitus vs hearing loss

    NASA Astrophysics Data System (ADS)

    Longenecker, Ryan James

    The first step in identifying the mechanism(s) responsible for tinnitus development would be to discover a neural correlate that is differentially expressed in tinnitus-positive compared to tinnitus negative animals. Previous research has identified several neural correlates of tinnitus in animals that have tested positive for tinnitus. However it is unknown whether all or some of these correlates are linked to tinnitus or if they are a byproduct of hearing loss, a common outcome of tinnitus induction. Abnormally high spontaneous activity has frequently been linked to tinnitus. However, while some studies demonstrate that hyperactivity positively correlates with behavioral evidence of tinnitus, others show that when all animals develop hyperactivity to sound exposure, not all exposed animals show evidence of tinnitus. My working hypothesis is that certain aspects of hyperactivity are linked to tinnitus while other aspects are linked to hearing loss. The first specific aim utilized the gap induced prepulse inhibition of the acoustic startle reflex (GIPAS) to monitor the development of tinnitus in CBA/CaJ mice during one year following sound exposure. Immediately after sound exposure, GIPAS testing revealed widespread gap detection deficits across all frequencies, which was likely due to temporary threshold shifts. However, three months after sound exposure these deficits were limited to a narrow frequency band and were consistently detected up to one year after exposure. This suggests the development of chronic tinnitus is a long lasting and highly dynamic process. The second specific aim assessed hearing loss in sound exposed mice using several techniques. Acoustic brainstem responses recorded initially after sound exposure reveal large magnitude deficits in all exposed mice. However, at the three month period, thresholds return to control levels in all mice suggesting that ABRs are not a reliable tool for assessing permanent hearing loss. Input/output functions of the acoustic startle reflex show that after sound exposure the magnitude of startle responses decrease in most mice, to varying degrees. Lastly, PPI audiometry was able to detect specific behavioral threshold deficits for each mouse after sound exposure. These deficits persist past initial threshold shifts and are able to detect frequency specific permanent threshold shifts. The third specific aim examined hyperactivity and increased bursting activity in the inferior colliculus after sound exposure in relation to tinnitus and hearing loss. Spontaneous firing rates were increased in all mice after sound exposure regardless of behavioral evidence of tinnitus. However, abnormal increased bursting activity was not found in the animals identified with tinnitus but was exhibited in a mouse with broad-band severe threshold deficits. CBA/CaJ mice are a good model for both tinnitus development and noise-induced hearing loss studies. Hyperactivity which was evident in all exposed animals does not seem to be well correlated with behavioral evidence of tinnitus but more likely to be a general result of acoustic over exposure. Data from one animal strongly suggest that wide-spread severe threshold deficits are linked to an elevation of bursting activity predominantly ipsilateral to the side of sound exposure. This result is intriguing and should be followed up in further studies. Data obtained in this study provide new insights into underlying neural pathologies following sound exposure and have possible clinical applications for development of effective treatments and diagnostic tools for tinnitus and hearing loss.

  8. Acute Hydrocortisone Treatment Increases Anxiety but Not Fear in Healthy Volunteers: A Fear-Potentiated Startle Study

    PubMed Central

    Grillon, Christian; Heller, Randi; Hirschhorn, Elizabeth; Kling, Mitchel A.; Pine, Daniel S.; Schulkin, Jay; Vythilingam, Meena

    2011-01-01

    Background The debilitating effects of chronic glucocorticoids excess are well-known, but comparatively little is understood about the role of acute cortisol. Indirect evidence in rodents suggests that acute cortisone could selectively increase some forms of long-duration aversive states, such as “anxiety,” but not relatively similar, briefer aversive states, such as “fear.” However, no prior experimental studies in humans consider the unique effects of cortisol on anxiety and fear, using well-validated methods for eliciting these two similar but dissociable aversive states. The current study examines these effects, as instantiated with short- and long-duration threats. Methods Healthy volunteers (n = 18) received placebo or a low (20 mg) or a high (60 mg) dose of hydrocortisone in a double-blind crossover design. Subjects were exposed repeatedly to three 150-sec duration conditions: no shock; predictable shocks, in which shocks were signaled by a short-duration threat cue; and unpredictable shocks. Aversive states were indexed by acoustic startle. Fear was operationally defined as the increase in startle reactivity during the threat cue in the predictable condition (fear-potentiated startle). Anxiety was operationally defined as the increase in baseline startle from the no shock to the two threat conditions (anxiety-potentiated startle). Results Hydrocortisone affected neither baseline nor short-duration, fear-potentiated startle but increased long-duration anxiety-potentiated startle. Conclusions These results suggest that hydrocortisone administration in humans selectively increases anxiety but not fear. Possible mechanisms implicated are discussed in light of prior data in rodents. Specifically, hydrocortisone might increase anxiety via sensitization of corticotrophin-releasing hormones in the bed nucleus of the stria terminalis. PMID:21277566

  9. Corticotropin-releasing factor (CRF) and α 2 adrenergic receptors mediate heroin withdrawal-potentiated startle in rats.

    PubMed

    Park, Paula E; Vendruscolo, Leandro F; Schlosburg, Joel E; Edwards, Scott; Schulteis, Gery; Koob, George F

    2013-09-01

    Anxiety is one of the early symptoms of opioid withdrawal and contributes to continued drug use and relapse. The acoustic startle response (ASR) is a component of anxiety that has been shown to increase during opioid withdrawal in both humans and animals. We investigated the role of corticotropin-releasing factor (CRF) and norepinephrine (NE), two key mediators of the brain stress system, on acute heroin withdrawal-potentiated ASR. Rats injected with heroin (2 mg/kg s.c.) displayed an increased ASR when tested 4 h after heroin treatment. A similar increase in ASR was found in rats 10-20 h into withdrawal from extended access (12 h) to i.v. heroin self-administration, a model that captures several aspects of heroin addiction in humans. Both the α 2 adrenergic receptor agonist clonidine (10 μg/kg s.c.) and CRF1 receptor antagonist N,N-bis(2-methoxyethyl)-3-(4-methoxy-2-methylphenyl)-2,5-dimethyl-pyrazolo[1,5-a] pyrimidin-7-amine (MPZP; 20 mg/kg s.c.) blocked heroin withdrawal-potentiated startle. To investigate the relationship between CRF1 and α 2 adrenergic receptors in the potentiation of the ASR, we tested the effect of MPZP on yohimbine (1.25 mg/kg s.c.)-potentiated startle and clonidine on CRF (2 μg i.c.v.)-potentiated startle. Clonidine blocked CRF-potentiated startle, whereas MPZP partially attenuated but did not reverse yohimbine-potentiated startle, suggesting that CRF may drive NE release to potentiate startle. These results suggest that CRF1 and α 2 receptors play an important role in the heightened anxiety-like behaviour observed during acute withdrawal from heroin, possibly via CRF inducing the release of NE in stress-related brain regions.

  10. Increased levels of conditioned fear and avoidance behavior coincide with changes in phosphorylation of the protein kinase B (AKT) within the amygdala in a mouse model of extremes in trait anxiety.

    PubMed

    Yen, Yi-Chun; Mauch, Christoph P; Dahlhoff, Maik; Micale, Vincenzo; Bunck, Mirjam; Sartori, Simone B; Singewald, Nicolas; Landgraf, Rainer; Wotjak, Carsten T

    2012-07-01

    Patients diagnosed for anxiety disorders often display faster acquisition and slower extinction of learned fear. To gain further insights into the mechanisms underlying these phenomenona, we studied conditioned fear in mice originating form a bi-directional selective breeding approach, which is based on elevated plus-maze behavior and results in CD1-derived high (HAB), normal (NAB), and low (LAB) anxiety-related behavior mice. HAB mice displayed pronounced cued-conditioned fear compared to NAB/CD1 and LAB mice that coincided with increased phosphorylation of the protein kinase B (AKT) in the basolateral amygdala 45 min after conditioning. No similar changes were observed after non-associative immediate shock presentations. Fear extinction of recent but not older fear memories was preserved. However, HAB mice were more prone to relapse of conditioned fear with the passage of time. HAB mice also displayed higher levels of contextual fear compared to NAB and LAB mice and exaggerated avoidance following step-down avoidance training. Interestingly, HAB mice showed lower and LAB mice higher levels of acoustic startle responses compared to NAB controls. The increase in arousal observed in LAB mice coincided with the general absence of conditioned freezing. Taken together, our results suggest that the genetic predisposition to high anxiety-related behavior may increase the risk of forming traumatic memories, phobic-like fear and avoidance behavior following aversive encounters, with a clear bias towards passive coping styles. In contrast, genetic predisposition to low anxiety-related and high risk-taking behavior seems to be associated with an increase in active coping styles. Our data imply changes in AKT phosphorylation as a therapeutic target for the prevention of exaggerated fear memories. Copyright © 2012 Elsevier Inc. All rights reserved.

  11. Startling Differences: Using the Acoustic Startle Response to Study Sex Differences and Neurosteroids in Affective Disorders.

    PubMed

    Hantsoo, Liisa; Golden, Carla E M; Kornfield, Sara; Grillon, Christian; Epperson, C Neill

    2018-05-18

    Neuroactive steroid hormones, such as estradiol and progesterone, likely play a role in the pathophysiology of female-specific psychiatric disorders such as premenstrual dysphoric disorder (PMDD) and postpartum depression and may contribute to the marked sex differences observed in the incidence and presentation of affective disorders. However, few tools are available to study the precise contributions of these neuroactive steroids (NSs). In this review, we propose that the acoustic startle response (ASR), an objective measure of an organism's response to an emotional context or stressor, is sensitive to NSs. As such, the ASR represents a unique translational tool that may help to elucidate the contribution of NSs to sex differences in psychiatric disorders. Findings suggest that anxiety-potentiated startle (APS) and prepulse inhibition of startle (PPI) are the most robust ASR paradigms for assessing contribution of NSs to affective disorders, while affective startle response modulation (ASRM) appears less diagnostic of sex or menstrual cycle (MC) effects. However, few studies have appropriately used ASR to test a priori hypotheses about sex or MC differences. We recommend that ASR studies account for sex as a biological variable (SABV) and hormonal status to further knowledge of NS contribution to affective disorders.

  12. Changes in the magnitude of the eyeblink startle response during habituation of sexual arousal.

    PubMed

    Koukounas, E; Over, R

    2000-06-01

    Modulation of the startle response was used to examine emotional processing of sexual stimulation across trials within a session. Eyeblink startle was elicited by a probe (burst of intense white noise) presented intermittently while men were viewing an erotic film segment. Repeated display of the film segment resulted in a progressive decrease in sexual arousal. Habituation of sexual arousal was accompanied by a reduction over trials in the extent the men felt absorbed when viewing the erotic stimulus and by an increase over trials in the magnitude of the eyeblink startle response. Replacing the familiar stimulus by a novel erotic stimulus increased in sexual arousal and absorption and reduced startle (novelty effect), while dishabituation was evident for all three response measures when the familiar stimulus was reintroduced. This pattern of results indicates that with repeated presentation an erotic stimulus is experienced not only as less sexually arousing but also as less appetitive and absorbing. The question of whether habituation of sexual arousal is mediated by changes in attentional and affective processing over trials is discussed, as are clinical contexts in which eyeblink startle can be used in studying aspects of sexual functioning.

  13. RDoC, DSM, and the reflex physiology of fear: A bio-dimensional analysis of the anxiety disorders spectrum

    PubMed Central

    Lang, Peter J.; McTeague, Lisa M.; Bradley, Margaret M.

    2015-01-01

    Evidence is presented supporting a dimension of defensive reactivity that varies across the anxiety disorder spectrum and is defined by physiological responses during threat-imagery challenges that covary with objective measures of psychopathology. Previous imagery studies of anxiety disorders are reviewed, highlighting that, regardless of contemporary diagnostic convention, reliable psychophysiological patterns emerge for patients diagnosed with circumscribed fear compared to those diagnosed with pervasive anxious-misery disorders. Based on the heuristic outlined by the Research Domain Criteria (RDoC) initiative, an exploratory transdiagnostic analysis is presented, based on a sample of 425 treatment-seeking patients from across the spectrum of DSM-IV anxiety diagnoses. Using a composite index of startle reflex and heart rate reactivity during idiographic-fear imagery for each patient, a defensive dimension was defined by ranking patients from most defensively reactive to least reactive and then creating five groups of equivalent size (quintile; N = 85). Subsequent analyses showed significant, parallel trends of diminishing reactivity in both electrodermal and facial EMG reactions across this defensive dimension. Negative affectivity, defined by questionnaire, and extent of functional interference, however, showed consistent, inverse trends with defensive reactivity -- as reports of distress increased, defensive reactivity was increasingly attenuated. Notably, representatives of each principal diagnosis appeared in each quintile, underscoring the reality of pronounced within-diagnosis heterogeneity in defensive reactivity. In concluding, we describe our new RDoC research project, focusing on the assessment of brain circuit function as it determines hypo/hyper reactivity to challenge—somatic and autonomic—and may relate to patients’ stress history and genetic inheritance. PMID:26877123

  14. The relation between symptoms of bulimia nervosa and obsessive-compulsive disorder: a startle investigation.

    PubMed

    Altman, Sarah E; Campbell, Miranda L; Nelson, Brady D; Faust, Julianne P; Shankman, Stewart A

    2013-11-01

    Bulimia nervosa (BN) and obsessive-compulsive disorder (OCD) co-occur at greater rates than chance and may have shared mechanisms of dysfunction. One of these proposed mechanisms is a hyper-responsive aversive system as indicated by heightened startle response to aversive stimuli. The present study examined this hypothesis using 2 types of aversive stimuli: disorder specific (e.g., high-caloric food pictures for BN, contamination pictures for OCD) and nondisorder specific (e.g., knife). Temporal parameters of aversive responding were also examined by assessing startle response in anticipation of and following picture presentation. The sample consisted of 114 undergraduate women selected to have a broad range of BN and/or OCD symptomatology. OCD symptoms were associated with increased startle potentiation during the anticipation and presentation of contamination pictures, and BN symptoms were associated with increased startle potentiation during disorder-related contamination pictures (e.g., sink, toilet). BN symptoms were also associated with increased startle potentiation during and following the presentation of food pictures (though the former effect was only a trend). Additionally, the interaction of BN and OCD symptoms was associated with elevated startle responding during the presentation of contamination and threat stimuli. Overall, the present study provides evidence that BN and OCD symptoms are associated with heightened aversive responding to disorder-specific stimuli, and comorbid BN and OCD symptoms are associated with heightened aversive responding across disorder-specific and nonspecific aversive stimuli. Clinical and theoretical implications are discussed. PsycINFO Database Record (c) 2013 APA, all rights reserved.

  15. Does trait anxiety influence effects of oxytocin on eye-blink startle reactivity? A randomized, double-blind, placebo-controlled crossover study.

    PubMed

    Schumacher, Sonja; Oe, Misari; Wilhelm, Frank H; Rufer, Michael; Heinrichs, Markus; Weidt, Steffi; Moergeli, Hanspeter; Martin-Soelch, Chantal

    2018-01-01

    Previous research has demonstrated that the neuropeptide oxytocin modulates social behaviors and reduces anxiety. However, effects of oxytocin on startle reactivity, a well-validated measure of defense system activation related to fear and anxiety, have been inconsistent. Here we investigated the influence of oxytocin on startle reactivity with particular focus on the role of trait anxiety. Forty-four healthy male participants attended two experimental sessions. They received intranasal oxytocin (24 IU) in one session and placebo in the other. Startle probes were presented in combination with pictures of social and non-social content. Eye-blink startle magnitude was measured by electromyography over the musculus orbicularis oculi in response to 95 dB noise bursts. Participants were assigned to groups of high vs. low trait anxiety based on their scores on the trait form of the Spielberger State-Trait Anxiety Inventory (STAI). A significant interaction effect of oxytocin with STAI confirmed that trait anxiety moderated the effect of oxytocin on startle reactivity. Post-hoc tests indicated that for participants with elevated trait anxiety, oxytocin increased startle magnitude, particularly when watching non-social pictures, while this was not the case for participants with low trait anxiety. Results indicate that effects of oxytocin on defense system activation depend on individual differences in trait anxiety. Trait anxiety may be an important moderator variable that should be considered in human studies on oxytocin effects.

  16. Glycine inhibits startle-mediating neurons in the caudal pontine reticular formation but is not involved in synaptic depression underlying short-term habituation of startle.

    PubMed

    Geis, Hans-Ruediger; Schmid, Susanne

    2011-10-01

    The mammalian startle response is controlled by glycine inhibition in the spinal cord. Evidence for additional glycine inhibition on the level of the brainstem, namely in the caudal pontine reticular nucleus (PnC), is controversial. Startle mediating PnC neurons receive fast input from sensory pathways and project to cranial and spinal motoneurons. Synaptic depression in the sensory synapses in the PnC has been indicated as underlying mechanism of short-term habituation of startle. We here performed patch-clamp recordings of PnC giant neurons in rat brain slices to test the hypothesis that the activation of glycine receptors inhibits PnC neurons and that this inhibition is involved in synaptic depression in the PnC. Glycine strongly inhibited PnC neuron activity and synaptic signalling, indicating that functional glycine receptors mediate a powerful inhibition of PnC neurons over a wide range of glycine concentrations. Strychnine reversed all glycine effects, but had no effect on PnC neurons itself. Thus, we found no evidence for a tonic glycine inhibition or for glycine activation within the primary startle pathway indicating that baseline startle reactions are unlikely to be controlled by glycine in the PnC. Most importantly, synaptic depression underlying short-term habituation was not affected by glycine or strychnine. Copyright © 2011 Elsevier Ireland Ltd and the Japan Neuroscience Society. All rights reserved.

  17. Effect of Suppression, Reappraisal, and Acceptance of Emotional Pictures on Acoustic Eye-Blink Startle Magnitude

    PubMed Central

    Asnaani, Anu; Sawyer, Alice T.; Aderka, Idan M.; Hofmann, Stefan G.

    2012-01-01

    To examine the effects of different emotion regulation strategies on acoustic eye-blink startle, 65 participants viewed positive, neutral, and negative pictures and were instructed to suppress, reappraise, or accept their emotional responses to these pictures using a within-group experimental design with separate blocks of pictures for each strategy. Instructions to suppress the emotional response led to an attenuation of the eye-blink startle magnitude, in comparison with instructions to reappraise or accept. Reappraisal and acceptance instructions did not differ from one another in their effect on startle. These results are discussed within the context of the existing empirical literature on emotion regulation. PMID:24551448

  18. Baclofen or nNOS inhibitor affect molecular and behavioral alterations evoked by traumatic spinal cord injury in rat spinal cord.

    PubMed

    Kisucká, Alexandra; Hricová, Ľudmila; Pavel, Jaroslav; Strosznajder, Joanna B; Chalimoniuk, Malgorzata; Langfort, Jozef; Gálik, Ján; Maršala, Martin; Radoňak, Jozef; Lukáčová, Nadežda

    2015-06-01

    The loss of descending control after spinal cord injury (SCI) and incessant stimulation of Ia monosynaptic pathway, carrying proprioceptive impulses from the muscles and tendons into the spinal cord, evoke exaggerated α-motoneuron activity leading to increased reflex response. Previous results from our laboratory have shown that Ia monosynaptic pathway is nitrergic. The aim of this study was to find out whether nitric oxide produced by neuronal nitric oxide synthase (nNOS) plays a role in setting the excitability of α-motoneurons after thoracic spinal cord transection. We tested the hypothesis that the inhibition of nNOS in α-motoneurons after SCI could have a neuroprotective effect on reflex response. Rats underwent spinal cord transection at Th10 level followed by 7, 10, and 14 days of survival. The animals were treated with Baclofen (a gamma aminobutyric acid B receptor agonist, 3 μg/two times per day/intrathecally) applied for 3 days from the seventh day after transection; N-nitro-l-arginine (NNLA) (nNOS blocator) applied for the first 3 days after injury (20 mg/kg per day, intramuscularly); NNLA and Baclofen; or NNLA (60 mg/kg/day, single dose) applied on the 10th day after transection. We detected the changes in the level of nNOS protein, nNOS messenger RNA, and nNOS immunoreactivity. To investigate the reflex response to heat-induced stimulus, tail-flick test was monitored in treated animals up to 16 days after SCI. Our data indicate that Baclofen therapy is more effective than the combined treatment with NNLA and Baclofen therapy. The single dose of NNLA (60 mg/kg) applied on the 10th day after SCI or Baclofen therapy reduced nNOS expression in α-motoneurons and suppressed symptoms of increased reflex activity. The results clearly show that increased nNOS expression in α-motoneurons after SCI may be pharmacologically modifiable with Baclofen or bolus dose of nNOS blocker. Copyright © 2015. Published by Elsevier Inc.

  19. Mourning dove ( Zenaida macroura) wing-whistles may contain threat-related information for con- and hetero-specifics

    NASA Astrophysics Data System (ADS)

    Coleman, Seth W.

    2008-10-01

    Distinct acoustic whistles are associated with the wing-beats of many doves, and are especially noticeable when doves ascend from the ground when startled. I thus hypothesized that these sounds may be used by flock-mates as cues of potential danger. To test this hypothesis, I compared the responses of mourning doves ( Zenaida macroura), northern cardinals ( Cardinalis cardinalis), and house sparrows ( Passer domesticus) to audio playbacks of dove ‘startle wing-whistles’, cardinal alarm calls, dove ‘nonstartle wing-whistles’, and sparrow ‘social chatter’. Following playbacks of startle wing-whistles and alarm calls, conspecifics and heterospecifics startled and increased vigilance more than after playbacks of other sounds. Also, the latency to return to feeding was greater following playbacks of startle wing-whistles and alarm calls than following playbacks of other sounds. These results suggest that both conspecifics and heterospecifics may attend to dove wing-whistles in decisions related to antipredator behaviors. Whether the sounds of dove wing-whistles are intentionally produced signals warrants further testing.

  20. Baroreflex failure in a patient with central nervous system lesions involving the nucleus tractus solitarii

    NASA Technical Reports Server (NTRS)

    Biaggioni, I.; Whetsell, W. O.; Jobe, J.; Nadeau, J. H.

    1994-01-01

    Animal studies have shown the importance of the nucleus tractus solitarii, a collection of neurons in the brain stem, in the acute regulation of blood pressure. Impulses arising from the carotid and aortic baroreceptors converge in this center, where the first synapse of the baroreflex is located. Stimulation of the nucleus tractus solitarii provides an inhibitory signal to other brain stem structures, particularly the rostral ventrolateral medulla, resulting in a reduction in sympathetic outflow and a decrease in blood pressure. Conversely, experimental lesions of the nucleus tractus solitarii lead to loss of baroreflex control of blood pressure, sympathetic activation, and severe hypertension in animals. In humans, baroreflex failure due to deafferentation of baroreceptors has been previously reported and is characterized by episodes of severe hypertension and tachycardia. We present a patient with an undetermined process of the central nervous system characterized pathologically by ubiquitous infarctions that were particularly prominent in the nucleus tractus solitarii bilaterally but spared the rostral ventrolateral medulla. Absence of a functioning baroreflex was evidenced by the lack of reflex tachycardia to the hypotensive effects of sodium nitroprusside, exaggerated pressor responses to handgrip and cold pressor test, and exaggerated depressor responses to meals and centrally acting alpha 2-agonists. This clinicopathological correlate suggests that the patient's baroreflex failure can be explained by the unique combination of the destruction of sympathetic inhibitory centers (ie, the nucleus tractus solitarii) and preservation of centers that exert a positive modulation on sympathetic tone (ie, the rostral ventrolateral medulla).

  1. Is boldness a resource-holding potential trait? Fighting prowess and changes in startle response in the sea anemone, Actinia equina.

    PubMed

    Rudin, Fabian S; Briffa, Mark

    2012-05-22

    Contest theory predicts the evolution of a stable mixture of different strategies for fighting. Here, we investigate the possibility that stable between-individual differences in startle-response durations influence fighting ability or 'resource-holding potential' (RHP) in the beadlet sea anemone, Actinia equina. Both winners and losers showed significant repeatability of pre-fight startle-response durations but mean pre-fight startle-response durations were greater for eventual losers than for eventual winners, indicating that RHP varies with boldness. In particular, individuals with short startle responses inflicted more attacks on their opponent. Both repeatability and mean-level responses were changed by the experience of fighting, and these changes varied with outcome. In losers, repeatability was disrupted to a greater extent and the mean startle-response durations were subject to a greater increase than in winners. Thus, following a fight, this behavioural correlate of RHP behaves in a way similar to post-fight changes in physiological status, which can also vary between winners and losers. Understanding the links between aggression and boldness therefore has the potential to enhance our understanding of both the evolution of animal personality and the 'winner and loser effects' of post-fight changes in RHP.

  2. The Functional Networks of Prepulse Inhibition: Neuronal Connectivity Analysis Based on FDG-PET in Awake and Unrestrained Rats.

    PubMed

    Rohleder, Cathrin; Wiedermann, Dirk; Neumaier, Bernd; Drzezga, Alexander; Timmermann, Lars; Graf, Rudolf; Leweke, F Markus; Endepols, Heike

    2016-01-01

    Prepulse inhibition (PPI) is a neuropsychological process during which a weak sensory stimulus ("prepulse") attenuates the motor response ("startle reaction") to a subsequent strong startling stimulus. It is measured as a surrogate marker of sensorimotor gating in patients suffering from neuropsychological diseases such as schizophrenia, as well as in corresponding animal models. A variety of studies has shown that PPI of the acoustical startle reaction comprises three brain circuitries for: (i) startle mediation, (ii) PPI mediation, and (iii) modulation of PPI mediation. While anatomical connections and information flow in the startle and PPI mediation pathways are well known, spatial and temporal interactions of the numerous regions involved in PPI modulation are incompletely understood. We therefore combined [(18)F]fluoro-2-deoxyglucose positron-emission-tomography (FDG-PET) with PPI and resting state control paradigms in awake rats. A battery of subtractive, correlative as well as seed-based functional connectivity analyses revealed a default mode-like network (DMN) active during resting state only. Furthermore, two functional networks were observed during PPI: Metabolic activity in the lateral circuitry was positively correlated with PPI effectiveness and involved the auditory system and emotional regions. The medial network was negatively correlated with PPI effectiveness, i.e., associated with startle, and recruited a spatial/cognitive network. Our study provides evidence for two distinct neuronal networks, whose continuous interplay determines PPI effectiveness in rats, probably by either protecting the prepulse or facilitating startle processing. Discovering similar networks affected in neuropsychological disorders may help to better understand mechanisms of sensorimotor gating deficits and provide new perspectives for therapeutic strategies.

  3. Reactivity to unpredictable threat as a treatment target for fear-based anxiety disorders.

    PubMed

    Gorka, S M; Lieberman, L; Klumpp, H; Kinney, K L; Kennedy, A E; Ajilore, O; Francis, J; Duffecy, J; Craske, M G; Nathan, J; Langenecker, S; Shankman, S A; Phan, K L

    2017-10-01

    Heightened reactivity to unpredictable threat (U-threat) is a core individual difference factor underlying fear-based psychopathology. Little is known, however, about whether reactivity to U-threat is a stable marker of fear-based psychopathology or if it is malleable to treatment. The aim of the current study was to address this question by examining differences in reactivity to U-threat within patients before and after 12-weeks of selective serotonin reuptake inhibitors (SSRIs) or cognitive-behavioral therapy (CBT). Participants included patients with principal fear (n = 22) and distress/misery disorders (n = 29), and a group of healthy controls (n = 21) assessed 12-weeks apart. A well-validated threat-of-shock task was used to probe reactivity to predictable (P-) and U-threat and startle eyeblink magnitude was recorded as an index of defensive responding. Across both assessments, individuals with fear-based disorders displayed greater startle magnitude to U-threat relative to healthy controls and distress/misery patients (who did not differ). From pre- to post-treatment, startle magnitude during U-threat decreased only within the fear patients who received CBT. Moreover, within fear patients, the magnitude of decline in startle to U-threat correlated with the magnitude of decline in fear symptoms. For the healthy controls, startle to U-threat across the two time points was highly reliable and stable. Together, these results indicate that startle to U-threat characterizes fear disorder patients and is malleable to treatment with CBT but not SSRIs within fear patients. Startle to U-threat may therefore reflect an objective, psychophysiological indicator of fear disorder status and CBT treatment response.

  4. Forebrain-specific CRF overproduction during development is sufficient to induce enduring anxiety and startle abnormalities in adult mice.

    PubMed

    Toth, Mate; Gresack, Jodi E; Bangasser, Debra A; Plona, Zach; Valentino, Rita J; Flandreau, Elizabeth I; Mansuy, Isabelle M; Merlo-Pich, Emilio; Geyer, Mark A; Risbrough, Victoria B

    2014-05-01

    Corticotropin releasing factor (CRF) regulates physiological and behavioral responses to stress. Trauma in early life or adulthood is associated with increased CRF in the cerebrospinal fluid and heightened anxiety. Genetic variance in CRF receptors is linked to altered risk for stress disorders. Thus, both heritable differences and environmentally induced changes in CRF neurotransmission across the lifespan may modulate anxiety traits. To test the hypothesis that CRF hypersignaling is sufficient to modify anxiety-related phenotypes (avoidance, startle, and conditioned fear), we induced transient forebrain-specific overexpression of CRF (CRFOE) in mice (1) during development to model early-life stress, (2) in adulthood to model adult-onset stress, or (3) across the entire postnatal lifespan to model heritable increases in CRF signaling. The consequences of these manipulations on CRF peptide levels and behavioral responses were examined in adulthood. We found that transient CRFOE during development decreased startle habituation and prepulse inhibition, and increased avoidance (particularly in females) recapitulating the behavioral effects of lifetime CRFOE despite lower CRF peptide levels at testing. In contrast, CRFOE limited to adulthood reduced contextual fear learning in females and increased startle reactivity in males but did not change avoidance or startle plasticity. These findings suggest that forebrain CRFOE limited to development is sufficient to induce enduring alterations in startle plasticity and anxiety, while forebrain CRFOE during adulthood results in a different phenotype profile. These findings suggest that startle circuits are particularly sensitive to forebrain CRFOE, and that the impact of CRFOE may be dependent on the time of exposure.

  5. Making a difference: ethical consumption and the everyday.

    PubMed

    Adams, Matthew; Raisborough, Jayne

    2010-06-01

    Our everyday shopping practices are increasingly marketed as opportunities to 'make a difference' via our ethical consumption choices. In response to a growing body of work detailing the ways in which specific alignments of 'ethics' and 'consumption' are mediated, we explore how 'ethical' opportunities such as the consumption of Fairtrade products are recognized, experienced and taken-up in the everyday. The 'everyday' is approached here via a specially commissioned Mass Observation directive, a volunteer panel of correspondents in the UK. Our on-going thematic analysis of their autobiographical accounts aims to explore a complex unevenness in the ways 'ordinary' people experience and negotiate calls to enact their ethical agency through consumption. Situating ethical consumption, moral obligation and choice in the everyday is, we argue, important if we are to avoid both over-exaggerating the reflexive and self-conscious sensibilities involved in ethical consumption, and, adhering to a reductive understanding of ethical self-expression.

  6. EFFECTS OF PRENATAL EXPOSURE TO SODIUM ARSENITE ON MOTOR AND FOOD-MOTIVATED BEHAVIORS FROM BIRTH TO ADULTHOOD IN C57BL6/J MICE

    PubMed Central

    Markowski, Vincent P.; Reeve, Elizabeth A.; Onos, Kristen; Assadollahzadeh, Mina; McKay, Naomi

    2012-01-01

    Consumption of arsenic-contaminated drinking water is associated with numerous cancers and dermal and vascular diseases. Arsenic is also a potent nervous system toxicant and epidemiological studies indicate that intellectual functions in children are compromised following early developmental exposure. This study was designed to examine the effects of arsenic on a broad range of age-specific behaviors including basic sensory-motor responses in neonates, locomotor activity and grip strength in juveniles, and operant measures of learning and attention in adults. Pregnant C57BL6/J mice consumed drinking water containing 0, 8, 25, or 80 ppm sodium arsenite from the fourth day of gestation until birth. Arsenic produced a range of behavioral impairments in male and female offspring at each of the test ages. The most striking effects of arsenic were on the development of gait and other motor responses including acoustic startle, righting reflexes, and forelimb grip. These results suggest that developmental arsenic exposure can produce other behavioral impairments in children in addition to cognitive impairment. PMID:22266078

  7. Paradox lost. The latah problem revisited.

    PubMed

    Kenny, M G

    1983-03-01

    This paper examines the validity of Dr. R. C. Simons' resolution (Simons, R. C. The resolution of the latah paradox. J. Nerv. Ment. Dis., 168: 195-206, 1980) of the so-called latah paradox. Latah, a Malay condition precipitated by sudden fright and involving compulsive obscenity and mimesis, was found to be closely related to local cultural values; yet a paradox seems to arise from the fact that analogous conditions are reported from unrelated cultures. Simons accounts for this by proposing that latah and its kindred states are based on the universal human startle reflex and that latah is merely a culture-specific exploitation of a neurophysiological potential shared by humans and other animals. It is here argued that the evidence does not support such a view and that latah-like conditions are best considered in terms of their local meaning within their societies of origin; ethnographic material from Siberia is examined as a case in point. It is concluded that the "latah paradox" is illusory and that biomedical approaches to the question have seriously misread the nature of the phenomenon and potentially distort clinical practice in relation to it.

  8. Automated Operant Conditioning in the Mouse Home Cage.

    PubMed

    Francis, Nikolas A; Kanold, Patrick O

    2017-01-01

    Recent advances in neuroimaging and genetics have made mice an advantageous animal model for studying the neurophysiology of sensation, cognition, and locomotion. A key benefit of mice is that they provide a large population of test subjects for behavioral screening. Reflex-based assays of hearing in mice, such as the widely used acoustic startle response, are less accurate than operant conditioning in measuring auditory processing. To date, however, there are few cost-effective options for scalable operant conditioning systems. Here, we describe a new system for automated operant conditioning, the Psibox. It is assembled from low cost parts, designed to fit within typical commercial wire-top cages, and allows large numbers of mice to train independently in their home cages on positive reinforcement tasks. We found that groups of mice trained together learned to accurately detect sounds within 2 weeks of training. In addition, individual mice isolated from groups also showed good task performance. The Psibox facilitates high-throughput testing of sensory, motor, and cognitive skills in mice, and provides a readily available animal population for studies ranging from experience-dependent neural plasticity to rodent models of mental disorders.

  9. Role of Corticotropin Releasing Factor in Anxiety Disorders: A Translational Research Perspective

    PubMed Central

    Risbrough, Victoria B.; Stein, Murray B.

    2007-01-01

    Anxiety disorders are a group of mental disorders that include generalized anxiety disorder (GAD), panic disorder, phobic disorders (e.g., specific phobias, agoraphobia, social phobia) and posttraumatic stress disorder (PTSD). Anxiety disorders are among the most common of all mental disorders and, when coupled with an awareness of the disability and reduced quality of life they convey, they must be recognized as a serious public health problem. Over 20 years of preclinical studies point to a role for the CRF system in anxiety and stress responses. Clinical studies have supported a model of CRF dysfunction in depression and more recently a potential contribution to specific anxiety disorders (i.e., panic disorder and PTSD). Much work remains in both the clinical and preclinical fields to inform models of CRF function and its contribution to anxiety. First, we will review the current findings of CRF and HPA axis abnormalities in anxiety disorders. Second, we will discuss startle reflex measures as a tool for translational research to determine the role of the CRF system in development and maintenance of clinical anxiety. PMID:16870185

  10. Effects of VX on Acoustic Startle Response and Acquisition of Operant Behavior in Rats

    DTIC Science & Technology

    2008-02-01

    spontaneous motor activity , fore- and hind-limb grip strength, thermal sensitivity (paw-lick latency), rectal temperature, acoustic startle response, and...whereas spontaneous motor activity and avoidance responding were affected at doses at or above 123 µg/kg, and acoustic startle response was affected...The 60- and 70-dB stimuli were stimulus control conditions presented to ensure that there was not significant activity within the recording chamber

  11. Effects of Nicotine and Nicotinic Antagonists on the Acoustic Startle Response and on Pre-Pulse Inhibition in Rats

    DTIC Science & Technology

    1996-06-07

    the auditory nerve, the ventral cochlear nucleus , nuclei of the lateral lemniscus, nucleus reticularis pontis caudalis, spinal neuron, and lower... nucleus , nuclei of the lateral lemniscus, nucleus reticularis pontis caudalis, hippocampus, and striatum (Davis, et al., 1982; Swerdlow, et aI, 1992...Davis, M. (1985) Cocaine effects on acoustic startle and startle elicited electrically from cochlear nucleus . P§ychQpharmacology, 87, 396-399 James

  12. A network analysis of DSM-5 posttraumatic stress disorder and functional impairment in UK treatment-seeking veterans.

    PubMed

    Ross, Jana; Murphy, Dominic; Armour, Cherie

    2018-05-28

    Network analysis is a relatively new methodology for studying psychological disorders. It focuses on the associations between individual symptoms which are hypothesized to mutually interact with each other. The current study represents the first network analysis conducted with treatment-seeking military veterans in UK. The study aimed to examine the network structure of posttraumatic stress disorder (PTSD) symptoms and four domains of functional impairment by identifying the most central (i.e., important) symptoms of PTSD and by identifying those symptoms of PTSD that are related to functional impairment. Participants were 331 military veterans with probable PTSD. In the first step, a network of PTSD symptoms based on the PTSD Checklist for DSM-5 was estimated. In the second step, functional impairment items were added to the network. The most central symptoms of PTSD were recurrent thoughts, nightmares, negative emotional state, detachment and exaggerated startle response. Functional impairment was related to a number of different PTSD symptoms. Impairments in close relationships were associated primarily with the negative alterations in cognitions and mood symptoms and impairments in home management were associated primarily with the reexperiencing symptoms. The results are discussed in relation to previous PTSD network studies and include implications for clinical practice. Copyright © 2018 Elsevier Ltd. All rights reserved.

  13. The emotional brain and sleep: an intimate relationship.

    PubMed

    Vandekerckhove, Marie; Cluydts, Raymond

    2010-08-01

    Research findings confirm our own experiences in life where daytime events and especially emotionally stressful events have an impact on sleep quality and well-being. Obviously, daytime emotional stress may have a differentiated effect on sleep by influencing sleep physiology and dream patterns, dream content and the emotion within a dream, although its exact role is still unclear. Other effects that have been found are the exaggerated startle response, decreased dream recall and elevated awakening thresholds from rapid eye movement (REM)-sleep, increased or decreased latency to REM-sleep, increased REM-density, REM-sleep duration and the occurrence of arousals in sleep as a marker of sleep disruption. However, not only do daytime events affect sleep, also the quality and amount of sleep influences the way we react to these events and may be an important determinant in general well-being. Sleep seems restorative in daily functioning, whereas deprivation of sleep makes us more sensitive to emotional and stressful stimuli and events in particular. The way sleep impacts next day mood/emotion is thought to be affected particularly via REM-sleep, where we observe a hyperlimbic and hypoactive dorsolateral prefrontal functioning in combination with a normal functioning of the medial prefrontal cortex, probably adaptive in coping with the continuous stream of emotional events we experience. (c) 2010 Elsevier Ltd. All rights reserved.

  14. Gangliosidoses.

    PubMed

    Patterson, Marc C

    2013-01-01

    The gangliosidoses comprise a family of lysosomal storage diseases characterized by the accumulation of complex glycosphingolipids in the nervous system and other tissues, secondary to the deficient activity of lysosomal hydrolases or their associated activator proteins. GM1 and GM2 gangliosidosis are associated with deficiency of β-galactosidase and β-hexosaminidase respectively. All gangliosidoses are characterized by progressive neurodegeneration, the severity of which is proportional to the residual enzyme activity. The GM1 gangliosidoses are characterized by dysostosis, organomegaly and coarsening in their most severe forms, whereas children with classic infantile GM2 gangliosidosis (Tay-Sachs disease) are usually spared systemic involvement, except in the case of the Sandhoff variant, in which organomegaly may occur. Cherry-red macular spots occur in the early onset forms of the gangliosidoses, but are less frequently seen in the less severe, later onset phenotypes. Macrocephaly, an exaggerated startle response, cognitive decline, seizures, ataxia, and progressive muscular atrophy may occur in different forms of gangliosidosis. The diagnosis is made by assay of enzyme activity, and can be confirmed by mutation analysis. Carrier screening for Tay-Sachs disease has been remarkably successful in reducing the incidence of this disease in the at-risk Ashkenazi population. There are no proven disease-modifying therapies for the gangliosidoses. Copyright © 2013 Elsevier B.V. All rights reserved.

  15. Validating a human model for anxiety using startle potentiated by cue and context: the effects of alprazolam, pregabalin, and diphenhydramine

    PubMed Central

    Mol, N.; Kenemans, J. L.; Prinssen, E. P.; Niklson, I.; Xia-Chen, C.; Broeyer, F.; van Gerven, J.

    2009-01-01

    Background Fear-potentiated startle has been suggested as a translational model for evaluating efficacy of anxiolytic compounds in humans. Several known anxiolytic compounds have been tested as well as several putative anxiolytics. Because results of these studies have been equivocal, the aim of the present study was to examine another pharmacological permutation of the human potentiated startle model by comparing two anxiolytic agents to a non-anxiolytic sedative and placebo. Methods Twenty healthy volunteers participated in a double-blind, placebo-controlled, cross-over study with four sessions in which they received single doses of the anxiolytics alprazolam (1 mg) and pregabalin (200 mg), as well as diphenhydramine (50 mg) as a non-anxiolytic sedative control and placebo. The design included a cued shock condition that presumably evokes fear and an unpredictable shock context condition presumably evoking anxiety. Results None of the treatments reliably reduced either fear- or anxiety-potentiated startle. Alprazolam and diphenhydramine reduced overall baseline startle. Alprazolam was found to only affect contextual anxiety in a statistical significant way after two subjects who failed to show a contextual anxiety effect in the placebo condition were excluded from the analysis. Pregabalin did not significantly affect any of the physiological measures. Discussion The negative findings from this study are discussed in terms of methodological differences between designs and in variability of startle both between and within study participants. Conclusion Even though fear-potentiated startle may be used to translate preclinical evidence to human populations, methodological issues still hamper the application of this model to early screening of putative anxiolytic drugs. PMID:19415242

  16. Stuttering in adults: the acoustic startle response, temperamental traits, and biological factors.

    PubMed

    Alm, Per A; Risberg, Jarl

    2007-01-01

    The purpose of this study was to investigate the relation between stuttering and a range of variables of possible relevance, with the main focus on neuromuscular reactivity, and anxiety. The explorative analysis also included temperament, biochemical variables, heredity, preonset lesions, and altered auditory feedback (AAF). An increased level of neuromuscular reactivity in stuttering adults has previously been reported by [Guitar, B. (2003). Acoustic startle responses and temperament in individuals who stutter. Journal of Speech Language and Hearing Research, 46, 233-240], also indicating a link to anxiety and temperament. The present study included a large number of variables in order to enable analysis of subgroups and relations between variables. Totally 32 stuttering adults were compared with nonstuttering controls. The acoustic startle eyeblink response was used as a measure of neuromuscular reactivity. No significant group difference was found regarding startle, and startle was not significantly correlated with trait anxiety, stuttering severity, or AAF. Startle was mainly related to calcium and prolactin. The stuttering group had significantly higher scores for anxiety and childhood ADHD. Two subgroups of stuttering were found, with high versus low traits of childhood ADHD, characterized by indications of preonset lesions versus heredity for stuttering. The study does not support the view that excessive reactivity is a typical characteristic of stuttering. The increased anxiety is suggested to mainly be an effect of experiences of stuttering. As a result of reading this article, the reader will be able to: (a) critically discuss the literature regarding stuttering in relation to acoustic startle, anxiety, and temperament; (b) describe the effect of calcium on neuromuscular reactivity; (c) discuss findings supporting the importance of early neurological incidents in some cases of stuttering, and the relation between such incidents and traits of ADHD or ADD; and (d) discuss the role of genetics in stuttering.

  17. Deficient prepulse inhibition of acoustic startle in Hooded-Wistar rats compared with Sprague-Dawley rats.

    PubMed

    van den Buuse, Maarten

    2003-04-01

    1. Prepulse inhibition of acoustic startle has been suggested as a model of sensorimotor gating and central sensory information processing. Prepulse inhibition is impaired in patients with schizophrenia and responses can be restored by antipsychotic drug treatment. In the present study, startle and prepulse inhibition of startle were compared in different rat strains. 2. Sprague-Dawley rats showed robust inhibition of startle responses by increasing intensities of prepulse delivered just before the startle stimulus. In contrast, at both 4 and 10 weeks of age, rats of the Hooded-Wistar line had markedly reduced prepulse inhibition, although startle responses were not different. 3. Treatment with the dopamine receptor agonist apomorphine (0.1 mg/kg) or the N-methyl-d-aspartate (NMDA) receptor antagonist MK-801 (0.1 mg/kg) caused disruption of prepulse inhibition in Sprague-Dawley rats. In Hooded-Wistar rats, apomorphine further reduced the already low level of prepulse inhibition, but MK-801 treatment had no significant effect. This suggests that the impaired prepulse inhibition in Hooded-Wistar rats could be caused by changes in glutamatergic activity and/or NMDA receptors in these rats. 4. In photocell cages, spontaneous exploratory activity and inner zone activity were significantly lower in Hooded-Wistar rats than in Sprague-Dawley rats. Similarly, on the elevated plus-maze, Hooded-Wistar rats showed a lower propensity to visit the open arms. In contrast, amphetamine (0.5 mg/kg)-induced locomotor hyperactivity, an animal model of psychosis, was enhanced in Hooded-Wistar rats. 5. These data suggest that the Hooded-Wistar line could be a useful genetic animal model to study the interaction of glutamatergic and dopaminergic mechanisms in anxiety and schizophrenia.

  18. Oxytocin and Social Support as Synergistic Inhibitors of Aversive Fear Conditioning and Fear-Potentiated Startle in Male Rats

    DTIC Science & Technology

    2011-05-01

    uring fear extinction in PTSD : an fMRI Study . CNS Neurosci Ther, print copy in press (originally published online 16 April 2010, at http://www3...alleviate one or more physiopathologies of PTSD . The effect of oxytocin on background anxiety in our fear- potentiated startle studies in rats is also...benefits for patients with PTSD . fear; anxiety; PTSD ; startle; social isolation 60 jrosen@udel.edu Table of Contents

  19. Alternative forms of axial startle behaviors in fishes.

    PubMed

    Liu, Yen-Chyi; Hale, Melina E

    2014-02-01

    For most aquatic vertebrates, axial movements play key roles in the performance of startle responses. In fishes, these axis-based startle behaviors fall into three distinct categories - the C-start, withdrawal, and S-start - defined by patterns of body bending and underlying motor control. Startle behaviors have been widely studied due to their importance for predator evasion. In addition, the neural circuits that control startles are relatively accessible, compared to other vertebrate circuits, and have provided opportunities to understand basic nervous system function. The C-start neural circuit has long been a model in systems neuroscience and considerable work on neural control of withdrawal response has been conducted in the larval lamprey. The S-start response has only recently been explored from a physiological perspective and we focus here on reviewing S-start motor control and movement in the context of the other two responses. Axial elongation has previously been associated with startle behavior in comparisons of C-starts and withdrawal, with extremely elongate animals performing withdrawals. We suggest that the S-start tends to occur with moderate body elongation, complementing the C-start in animals with this body form. As many larval fishes are moderately elongate, we suggest that the S-start may be common in larvae but may be secondarily lost with body shape change through development. Copyright © 2013 Elsevier GmbH. All rights reserved.

  20. Meditation and the Startle Response: A Case Study

    PubMed Central

    Levenson, Robert W.; Ekman, Paul; Ricard, Matthieu

    2013-01-01

    The effects of two kinds of meditation (open presence and focused) on the facial and physiological aspects of the defensive response to an aversive startle stimulus were studied in a Buddhist monk with approximately 40 years of meditation experience. The participant was exposed to a 115 db, 100 ms acoustic startle stimulus under the two meditation conditions, a distraction condition (to control for cognitive and attentional load) and an unanticipated condition (startle presented without warning or instruction). A completely counterbalanced 24-trial single-subject design was used, with each condition repeated six times. Most aspects of the participant’s responses in the unanticipated condition did not differ from those of a comparison group of 12 age-matched male controls. Both kinds of meditation produced physiological and facial responses to the startle that were smaller than in the distraction condition. Within meditation conditions, open presence meditation produced smaller physiological and facial responses than focused meditation. These results from a single highly expert meditator indicate that these two kinds of meditation can differentially alter the magnitude of a primitive defensive response. PMID:22506498

  1. Anxiogenic-like effect of chronic corticosterone in the light-dark emergence task in mice.

    PubMed

    Ardayfio, Paul; Kim, Kwang-Soo

    2006-04-01

    Chronic hypercortisolemia is a hallmark of neuroendocrine and psychiatric disorders, such as Cushing's disease and depression. Whether cortisol directly contributes to the altered mood and anxiety symptoms seen in these diseases remains unclear. To address this, the authors have modeled hypercortisolemia by administering corticosterone in the drinking water of female Swiss Webster mice for 17 or 18 days (13 mg/kg). Light-dark emergence, startle habituation, and startle reactivity were measured. Chronic but not acute treatment with corticosterone increased the latency to emerge into the light compartment, an anxiogenic-like effect. Chronic corticosterone treatment did not affect startle habituation, but did reduce startle reactivity. This study suggests that chronic hypercortisolemia may contribute to anxiety-related behavior in patients with Cushing's disease and depression. ((c) 2006 APA, all rights reserved).

  2. Glycine Receptors Containing α2 or α3 Subunits Regulate Specific Ethanol-Mediated Behaviors

    PubMed Central

    Blednov, Yuri A.; Benavidez, Jillian M.; Black, Mendy; Leiter, Courtney R.; Osterndorff-Kahanek, Elizabeth

    2015-01-01

    Glycine receptors (GlyRs) are broadly expressed in the central nervous system. Ethanol enhances the function of brain GlyRs, and the GlyRα1 subunit is associated with some of the behavioral actions of ethanol, such as loss of righting reflex. The in vivo role of GlyRα2 and α3 subunits in alcohol responses has not been characterized despite high expression levels in the nucleus accumbens and amygdala, areas that are important for the rewarding properties of drugs of abuse. We used an extensive panel of behavioral tests to examine ethanol actions in mice lacking Glra2 (the gene encoding the glycine receptor alpha 2 subunit) or Glra3 (the gene encoding the glycine receptor alpha 3 subunit). Deletion of Glra2 or Glra3 alters specific ethanol-induced behaviors. Glra2 knockout mice demonstrate reduced ethanol intake and preference in the 24-hour two-bottle choice test and increased initial aversive responses to ethanol and lithium chloride. In contrast, Glra3 knockout mice show increased ethanol intake and preference in the 24-hour intermittent access test and increased development of conditioned taste aversion to ethanol. Mutants and wild-type mice consumed similar amounts of ethanol in the limited access drinking in the dark test. Other ethanol effects, such as anxiolysis, motor incoordination, loss of righting reflex, and acoustic startle response, were not altered in the mutants. The behavioral changes in mice lacking GlyRα2 or α3 subunits were distinct from effects previously observed in mice with knock-in mutations in the α1 subunit. We provide evidence that GlyRα2 and α3 subunits may regulate ethanol consumption and the aversive response to ethanol. PMID:25678534

  3. Recording Field Potentials From Zebrafish Larvae During Escape Responses

    PubMed Central

    Monesson-Olson, Bryan D.; Troconis, Eileen L.; Trapani, Josef G.

    2014-01-01

    Among vertebrates, startle responses are a ubiquitous method for alerting, and avoiding or escaping from alarming or dangerous stimuli. In zebrafish larvae, fast escape behavior is easily evoked through either acoustic or tactile stimuli. For example, a light touch to the head will excite trigeminal neurons that in turn excite a large reticulospinal neuron in the hindbrain called the Mauthner cell (M-cell). The M-cell action potential then travels down the contralateral trunk of the larva exciting motoneurons, which subsequently excite the entire axial musculature, producing a large amplitude body bend away from the source of the stimulus. This body conformation is known as the “C-bend” due to the shape of the larva during the behavior. As a result of the semi-synchronized activation of the M-cell, the population of motor neurons, and the axial trunk muscles, a large field potential is generated and can be recorded from free-swimming or fixed-position larvae. Undergraduate laboratories that record field potentials during escape responses in larval zebrafish are relatively simple to setup and allow students to observe and study the escape reflex circuit. Furthermore, by testing hypotheses, analyzing data and writing journal-style laboratory reports, students have multiple opportunities to learn about many neuroscience topics including vertebrate reflexes; sensory transduction; synaptic-, neuro-, and muscle-physiology; the M-cell mediated escape response; and the zebrafish as a model organism. Here, we detail the equipment, software, and recording setup necessary to observe field potentials in an undergraduate teaching lab. Additionally, we discuss potential advanced laboratory exercises and pedagogical outcomes. Finally, we note possible low-cost alternatives for recording field potentials. PMID:25565920

  4. Prospective relations between intrusive parenting and child behavior problems: Differential moderation by parasympathetic nervous system regulation and child sex.

    PubMed

    Rudd, Kristen L; Alkon, Abbey; Yates, Tuppett M

    2017-10-15

    This study examined children's parasympathetic nervous system (PNS) regulation, which was indexed by respiratory sinus arrhythmia (RSA) during rest, reactivity, and recovery episodes, and sex as moderators of predicted relations between observed intrusive parenting and later observer-rated child behavior problems. Child-caregiver dyads (N=250; 50% girls; 46% Latino/a) completed a series of laboratory assessments yielding independent measures of intrusive parenting at age 4, PNS regulation at age 6, and child behavior problems at age 8. Results indicated that intrusive parenting was related to more internalizing problems among boys who showed low RSA reactivity (i.e., PNS withdrawal from pre-startle to startle challenge), but RSA reactivity did not moderate this relation among girls. Interestingly, RSA recovery (i.e., PNS activation from startle challenge to post-startle) moderated these relations differently for boys and girls. For girls with relatively low RSA post-startle (i.e., less recovery), intrusive parenting was positively related to both internalizing and externalizing problems. However, the reverse was true for boys, such that there was a significant positive relation between intrusive parenting and later externalizing problems among boys who evidenced relatively high RSA post-startle (i.e., more recovery). Findings provide evidence for the moderation of intrusive caregiving effects by children's PNS regulation while highlighting the differential patterning of these relations across distinct phases of the regulatory response and as a function of child sex. Copyright © 2017 Elsevier Inc. All rights reserved.

  5. Effects of the NMDA receptor antagonist memantine on the expression and development of acute opiate dependence as assessed by withdrawal-potentiated startle and hyperalgesia.

    PubMed

    Harris, Andrew C; Rothwell, Patrick E; Gewirtz, Jonathan C

    2008-03-01

    While the N-methyl-D: -aspartate (NMDA) glutamate receptor has been strongly implicated in chronic opiate dependence, relatively few studies have examined the effects of NMDA receptor antagonists on withdrawal from acute opiate exposure. The current study examined the effects of memantine, a well-tolerated NMDA receptor antagonist, on acute opiate dependence as assessed by elevations in rodent startle responding (i.e., "withdrawal-potentiated startle") and increased pain sensitivity (i.e., hyperalgesia). Administration of memantine either attenuated (5 mg/kg) or blocked (10 mg/kg) the expression of withdrawal-potentiated startle during naloxone (2.5 mg/kg)-precipitated withdrawal from a single dose of morphine sulfate (10 mg/kg). Pre-treatment with the NMDA receptor antagonist also inhibited the exacerbation of withdrawal-potentiated startle across repeated acute opiate exposures. Memantine blocked the expression of acute dependence, but was less effective in inhibiting its escalation, when hyperalgesia was used as a measure of withdrawal. These doses of memantine did not affect startle responding or nociception in otherwise drug-free animals. Data from additional control groups indicated that the effects of memantine on the expression of withdrawal were not influenced by nonspecific interactions between the NMDA antagonist and either morphine or naloxone. These findings suggest that the NMDA receptor may play a key role in the earliest stages of opiate dependence and provide further evidence that memantine may be useful for the treatment of opiate withdrawal.

  6. Dealing With Unexpected Events on the Flight Deck: A Conceptual Model of Startle and Surprise.

    PubMed

    Landman, Annemarie; Groen, Eric L; van Paassen, M M René; Bronkhorst, Adelbert W; Mulder, Max

    2017-12-01

    A conceptual model is proposed in order to explain pilot performance in surprising and startling situations. Today's debate around loss of control following in-flight events and the implementation of upset prevention and recovery training has highlighted the importance of pilots' ability to deal with unexpected events. Unexpected events, such as technical malfunctions or automation surprises, potentially induce a "startle factor" that may significantly impair performance. Literature on surprise, startle, resilience, and decision making is reviewed, and findings are combined into a conceptual model. A number of recent flight incident and accident cases are then used to illustrate elements of the model. Pilot perception and actions are conceptualized as being guided by "frames," or mental knowledge structures that were previously learned. Performance issues in unexpected situations can often be traced back to insufficient adaptation of one's frame to the situation. It is argued that such sensemaking or reframing processes are especially vulnerable to issues caused by startle or acute stress. Interventions should focus on (a) increasing the supply and quality of pilot frames (e.g., though practicing a variety of situations), (b) increasing pilot reframing skills (e.g., through the use of unpredictability in training scenarios), and (c) improving pilot metacognitive skills, so that inappropriate automatic responses to startle and surprise can be avoided. The model can be used to explain pilot behavior in accident cases, to design experiments and training simulations, to teach pilots metacognitive skills, and to identify intervention methods.

  7. Startling similarity: Effects of facial self-resemblance and familiarity on the processing of emotional faces

    PubMed Central

    Larra, Mauro F.; Merz, Martina U.; Schächinger, Hartmut

    2017-01-01

    Facial self-resemblance has been associated with positive emotional evaluations, but this effect may be biased by self-face familiarity. Here we report two experiments utilizing startle modulation to investigate how the processing of facial expressions of emotion is affected by subtle resemblance to the self as well as to familiar faces. Participants of the first experiment (I) (N = 39) were presented with morphed faces showing happy, neutral, and fearful expressions which were manipulated to resemble either their own or unknown faces. At SOAs of either 300 ms or 3500–4500 ms after picture onset, startle responses were elicited by binaural bursts of white noise (50 ms, 105 dB), and recorded at the orbicularis oculi via EMG. Manual reaction time was measured in a simple emotion discrimination paradigm. Pictures preceding noise bursts by short SOA inhibited startle (prepulse inhibition, PPI). Both affective modulation and PPI of startle in response to emotional faces was altered by physical similarity to the self. As indexed both by relative facilitation of startle and faster manual responses, self-resemblance apparently induced deeper processing of facial affect, particularly in happy faces. Experiment II (N = 54) produced similar findings using morphs of famous faces, yet showed no impact of mere familiarity on PPI effects (or response time, either). The results are discussed with respect to differential (presumably pre-attentive) effects of self-specific vs. familiar information in face processing. PMID:29216226

  8. Proteinase-Activated Receptor-2 Sensitivity of Amplified TRPA1 Activity in Skeletal Muscle Afferent Nerves and Exercise Pressor Reflex in Rats with Femoral Artery Occlusion

    PubMed Central

    Xing, Jihong; Li, Jianhua

    2017-01-01

    Background/Aims Limb ischemia occurs in peripheral artery disease (PAD). Sympathetic nerve activity (SNA) that regulates blood flow directed to the ischemic limb is exaggerated during exercise in this disease, and transient receptor potential channel A1 (TRPA1) in thin-fiber muscle afferents contributes to the amplified sympathetic response. The purpose of the present study was to determine the role of proteinase-activated receptor-2 (PAR2) in regulating abnormal TRPA1 function and the TRPA1-mediated sympathetic component of the exercise pressor reflex. Methods A rat model of femoral artery ligation was employed to study PAD. Dorsal root ganglion (DRG) tissues were obtained to examine the protein levels of PAR2 using western blot analysis. Current responses induced by activation of TRPA1 in skeletal muscle DRG neurons were characterized using whole-cell patch clamp methods. The blood pressure response to static exercise (i.e., muscle contraction) and stimulation of TRPA1 was also examined after a blockade of PAR2. Results The expression of PAR2 was amplified in DRG neurons of the occluded limb, and PAR2 activation with SL-NH2 (a PAR2 agonist) increased the amplitude of TRPA1 currents to a greater degree in DRG neurons of the occluded limb. Moreover, FSLLRY-NH2 (a PAR antagonist) injected into the arterial blood supply of the hindlimb muscles significantly attenuated the pressor response to muscle contraction and TRPA1 stimulation in rats with occluded limbs. Conclusions The PAR2 signal in muscle sensory nerves contributes to the amplified exercise pressor reflex via TRPA1 mechanisms in rats with femoral artery ligation. These findings provide a pathophysiological basis for autonomic responses during exercise activity in PAD, which may potentially aid in the development of therapeutic approaches for improvement of blood flow in this disease. PMID:29131007

  9. Contextual startle responses moderate the relation between behavioral inhibition and anxiety in middle childhood.

    PubMed

    Barker, Tyson V; Reeb-Sutherland, Bethany; Degnan, Kathryn A; Walker, Olga L; Chronis-Tuscano, Andrea; Henderson, Heather A; Pine, Daniel S; Fox, Nathan A

    2015-11-01

    Behavioral inhibition (BI), a temperament characterized in early childhood by wariness and avoidance of novelty, is a risk factor for anxiety disorders. An enhanced startle response has been observed in adolescents characterized with BI in childhood, particularly when they also manifest concurrent symptoms of anxiety. However, no prior study has examined relations among BI, startle responsivity, and anxiety in a prospective manner. Data for the present study were from a longitudinal study of infant temperament. Maternal reports and observations of BI were assessed at ages 2 and 3. At age 7, participants completed a startle procedure, while electromyography was collected, where participants viewed different colors on a screen that were associated with either the delivery of an aversive stimulus (i.e., puff of air to the larynx; threat cue) or the absence of the aversive stimulus (i.e., safety cue). Parental reports of child anxiety were collected when children were 7 and 9 years of age. Results revealed that startle responses at age 7 moderated the relation between early BI and 9-year anxiety. These findings provide insight into one potential mechanism that may place behaviorally inhibited children at risk for anxiety. © 2015 Society for Psychophysiological Research.

  10. Bladder sensory physiology: neuroactive compounds and receptors, sensory transducers, and target-derived growth factors as targets to improve function

    PubMed Central

    Gonzalez, Eric J.; Merrill, Liana

    2014-01-01

    Urinary bladder dysfunction presents a major problem in the clinical management of patients suffering from pathological conditions and neurological injuries or disorders. Currently, the etiology underlying altered visceral sensations from the urinary bladder that accompany the chronic pain syndrome, bladder pain syndrome (BPS)/interstitial cystitis (IC), is not known. Bladder irritation and inflammation are histopathological features that may underlie BPS/IC that can change the properties of lower urinary tract sensory pathways (e.g., peripheral and central sensitization, neurochemical plasticity) and contribute to exaggerated responses of peripheral bladder sensory pathways. Among the potential mediators of peripheral nociceptor sensitization and urinary bladder dysfunction are neuroactive compounds (e.g., purinergic and neuropeptide and receptor pathways), sensory transducers (e.g., transient receptor potential channels) and target-derived growth factors (e.g., nerve growth factor). We review studies related to the organization of the afferent limb of the micturition reflex and discuss neuroplasticity in an animal model of urinary bladder inflammation to increase the understanding of functional bladder disorders and to identify potential novel targets for development of therapeutic interventions. Given the heterogeneity of BPS/IC and the lack of consistent treatment benefits, it is unlikely that a single treatment directed at a single target in micturition reflex pathways will have a mass benefit. Thus, the identification of multiple targets is a prudent approach, and use of cocktail treatments directed at multiple targets should be considered. PMID:24760999

  11. In Your Face: Startle to Emotional Facial Expressions Depends on Face Direction.

    PubMed

    Åsli, Ole; Michalsen, Henriette; Øvervoll, Morten

    2017-01-01

    Although faces are often included in the broad category of emotional visual stimuli, the affective impact of different facial expressions is not well documented. The present experiment investigated startle electromyographic responses to pictures of neutral, happy, angry, and fearful facial expressions, with a frontal face direction (directed) and at a 45° angle to the left (averted). Results showed that emotional facial expressions interact with face direction to produce startle potentiation: Greater responses were found for angry expressions, compared with fear and neutrality, with directed faces. When faces were averted, fear and neutrality produced larger responses compared with anger and happiness. These results are in line with the notion that startle is potentiated to stimuli signaling threat. That is, a forward directed angry face may signal a threat toward the observer, and a fearful face directed to the side may signal a possible threat in the environment.

  12. The time course of face processing: startle eyeblink response modulation by face gender and expression.

    PubMed

    Duval, Elizabeth R; Lovelace, Christopher T; Aarant, Justin; Filion, Diane L

    2013-12-01

    The purpose of this study was to investigate the effects of both facial expression and face gender on startle eyeblink response patterns at varying lead intervals (300, 800, and 3500ms) indicative of attentional and emotional processes. We aimed to determine whether responses to affective faces map onto the Defense Cascade Model (Lang et al., 1997) to better understand the stages of processing during affective face viewing. At 300ms, there was an interaction between face expression and face gender with female happy and neutral faces and male angry faces producing inhibited startle. At 3500ms, there was a trend for facilitated startle during angry compared to neutral faces. These findings suggest that affective expressions are perceived differently in male and female faces, especially at short lead intervals. Future studies investigating face processing should take both face gender and expression into account. © 2013.

  13. Dealing With Unexpected Events on the Flight Deck: A Conceptual Model of Startle and Surprise

    PubMed Central

    Landman, Annemarie; Groen, Eric L.; van Paassen, M. M. (René); Bronkhorst, Adelbert W.; Mulder, Max

    2017-01-01

    Objective: A conceptual model is proposed in order to explain pilot performance in surprising and startling situations. Background: Today’s debate around loss of control following in-flight events and the implementation of upset prevention and recovery training has highlighted the importance of pilots’ ability to deal with unexpected events. Unexpected events, such as technical malfunctions or automation surprises, potentially induce a “startle factor” that may significantly impair performance. Method: Literature on surprise, startle, resilience, and decision making is reviewed, and findings are combined into a conceptual model. A number of recent flight incident and accident cases are then used to illustrate elements of the model. Results: Pilot perception and actions are conceptualized as being guided by “frames,” or mental knowledge structures that were previously learned. Performance issues in unexpected situations can often be traced back to insufficient adaptation of one’s frame to the situation. It is argued that such sensemaking or reframing processes are especially vulnerable to issues caused by startle or acute stress. Conclusion: Interventions should focus on (a) increasing the supply and quality of pilot frames (e.g., though practicing a variety of situations), (b) increasing pilot reframing skills (e.g., through the use of unpredictability in training scenarios), and (c) improving pilot metacognitive skills, so that inappropriate automatic responses to startle and surprise can be avoided. Application: The model can be used to explain pilot behavior in accident cases, to design experiments and training simulations, to teach pilots metacognitive skills, and to identify intervention methods. PMID:28777917

  14. Repeated low-dose exposures to sarin, soman, or VX affect acoustic startle in guinea pigs.

    PubMed

    Smith, C D; Lee, R B; Moran, A V; Sipos, M L

    2016-01-01

    Chemical warfare nerve agents (CWNAs) are known to cause behavioral abnormalities in cases of human exposures and in animal models. The behavioral consequences of single exposures to CWNAs that cause observable toxic signs are particularly well characterized in animals; however, less is known regarding repeated smaller exposures that may or may not cause observable toxic signs. In the current study, guinea pigs were exposed to fractions (0.1, 0.2, or 0.4) of a medial lethal dose (LD50) of sarin, soman, or VX for two weeks. On each exposure day, and for a post-exposure period, acoustic startle response (ASR) was measured in each animal. Although relatively few studies use guinea pigs to measure behavior, this species is ideal for CWNA-related experiments because their levels of carboxylesterases closely mimic those of humans, unlike rats or mice. Results showed that the 0.4 LD50 doses of soman and VX transiently increased peak startle amplitude by the second week of injections, with amplitude returning to baseline by the second week post-exposure. Sarin also increased peak startle amplitude independent of week. Latencies to peak startle and PPI were affected by agent exposure but not consistently among the three agents. Most of the changes in startle responses returned to baseline following the cessation of exposures. These data suggest that doses of CWNAs not known to produce observable toxic signs in guinea pigs can affect behavior in the ASR paradigm. Further, these deficits are transient and usually return to baseline shortly after the end of a two-week exposure period. Published by Elsevier Inc.

  15. Acute Tryptophan Depletion Increases Translational Indices of Anxiety but not Fear: Serotonergic Modulation of the Bed Nucleus of the Stria Terminalis?

    PubMed Central

    Robinson, Oliver J; Overstreet, Cassie; Allen, Phillip S; Pine, Daniel S; Grillon, Christian

    2012-01-01

    Serotonin is strongly implicated in the mammalian stress response, but surprisingly little is known about its mode of action. Recent data suggest that serotonin can inhibit aversive responding in humans, but this remains underspecified. In particular, data in rodents suggest that global serotonin depletion may specifically increase long-duration bed nucleus of the stria terminalis (BNST)-mediated aversive responses (ie, anxiety), but not short-duration BNST-independent responses (ie, fear). Here, we extend these findings to humans. In a balanced, placebo-controlled crossover design, healthy volunteers (n=20) received a controlled diet with and without the serotonin precursor tryptophan (acute tryptophan depletion; ATD). Aversive states were indexed by translational acoustic startle measures. Fear and anxiety were operationally defined as the increase in startle reactivity during short- and long-duration threat periods evoked by predictable shock (fear-potentiated startle) and by the context in which the shocks were administered (anxiety-potentiated startle), respectively. ATD significantly increased long-duration anxiety-potentiated startle but had no effect on short-duration fear-potentiated startle. These results suggest that serotonin depletion in humans selectively increases anxiety but not fear. Current translational frameworks support the proposition that ATD thus disinhibits dorsal raphé-originating serotonergic control of corticotropin-releasing hormone-mediated excitation of the BNST. This generates a candidate neuropharmacological mechanism by which depleted serotonin may increase response to sustained threats, alongside clear implications for our understanding of the manifestation and treatment of mood and anxiety disorders. PMID:22491355

  16. Effect of facial self-resemblance on the startle response and subjective ratings of erotic stimuli in heterosexual men.

    PubMed

    Lass-Hennemann, Johanna; Deuter, Christian E; Kuehl, Linn K; Schulz, Andre; Blumenthal, Terry D; Schachinger, Hartmut

    2011-10-01

    Cues of kinship are predicted to increase prosocial behavior due to the benefits of inclusive fitness, but to decrease approach motivation due to the potential costs of inbreeding. Previous studies have shown that facial resemblance, a putative cue of kinship, increases prosocial behavior. However, the effects of facial resemblance on mating preferences are equivocal, with some studies finding that facial resemblance decreases sexual attractiveness ratings, while other studies show that individuals choose mates partly on the basis of similarity. To further investigate this issue, a psychophysiological measure of affective processing, the startle response, was used in this study, assuming that differences in approach motivation to erotic pictures will modulate startle. Male volunteers (n = 30) viewed 30 pictures of erotic female nudes while startle eyeblink responses were elicited by acoustic noise probes. The female nude pictures were digitally altered so that the face either resembled the male participant or another participant, or were not altered. Non-nude neutral pictures were also included. Importantly, the digital alteration was undetected by the participants. Erotic pictures were rated as being pleasant and clearly reduced startle eyeblink magnitude as compared to neutral pictures. Participants showed greater startle inhibition to self-resembling than to other-resembling or non-manipulated female nude pictures, but subjective pleasure and arousal ratings did not differ among the three erotic picture categories. Our data suggest that visual facial resemblance of opposite-sex nudes increases approach motivation in men, and that this effect was not due to their conscious evaluation of the erotic stimuli.

  17. Affective reactivity during smoking cessation of never-quitters as compared with that of abstainers, relapsers, and continuing smokers.

    PubMed

    Lam, Cho Y; Robinson, Jason D; Versace, Francesco; Minnix, Jennifer A; Cui, Yong; Carter, Brian L; Wetter, David W; Cinciripini, Paul M

    2012-04-01

    Much effort has been devoted to examining the differences in postcessation affective experience between smoking abstainers and relapsers. However, little attention has been given to the affective changes of smokers who, despite their motivation to quit, fail to achieve even a brief period of abstinence. Using affect-modulated startle response and self-report questionnaires, we measured the postcessation affective changes of 115 smokers (60 men, 55 women) who participated in a laboratory investigation of affective reactivity during smoking cessation. Among our participants, 34 were abstainers (16 men, 18 women), 16 were never-quitters (8 men, 8 women), 19 were relapsers (8 men, 11 women), and 46 were controls (28 men, 18 women). We found a significant Stimulus Valence × Session × Group interaction effect on startle responses, which suggested that while abstainers, relapsers, and control exhibited the prototypical affect-modulated startle response across postcessation sessions, never-quitters displayed an atypical response pattern in which emotional pictures no longer modulated the startle response. Never-quitters also reported increasingly higher negative and lower positive affect across postcessation sessions. Using affect-modulated startle response and self-report questionnaires, this study found a significant difference in the affective reactivity between smokers who could and smokers who could not establish an initial abstinence of 24 hours.

  18. Emotion-modulated startle in psychopathy: Clarifying familiar effects

    PubMed Central

    Baskin-Sommers, Arielle R.; Curtin, John J.; Newman, Joseph P.

    2012-01-01

    The behavior of psychopathic individuals is thought to reflect a core fear deficit that prevents these individuals from appreciating the consequences of their choices and actions. However, growing evidence suggests that psychopathy-related emotion deficits are moderated by attention and, thus, may not reflect a reduced capacity for emotion responding. The present study attempts to reconcile this attention perspective with one of the most cited findings in psychopathy, which reports emotion-modulated startle deficits among psychopathic individuals during picture viewing. In this study, we evaluate the potential effects of a putative attention bottleneck on the emotion processing of psychopathic offenders during picture viewing by manipulating picture familiarity and examining emotion-modulated startle and late positive potential (LPP). As predicted, psychopathic individuals displayed the classic deficit in emotion-modulated startle during novel pictures, but they showed no deficit in emotion-modulated startle during familiar pictures. Conversely, results for LPP responses revealed psychopathy-related differences during familiar pictures and no psychopathy-related differences during novel pictures. Important differences related to the two Factors of psychopathy are also discussed. Overall, the results of this study not only highlight the differential importance of perceptual load on emotion processing in psychopathy, but also raise interesting questions about the varied effects of attention on psychopathy-related emotion deficits. PMID:23356218

  19. Axonal Guillain-Barré syndrome: concepts and controversies.

    PubMed

    Kuwabara, Satoshi; Yuki, Nobuhiro

    2013-12-01

    Acute motor axonal neuropathy (AMAN) is a pure motor axonal subtype of Guillain-Barré syndrome (GBS) that was identified in the late 1990s. In Asia and Central and South America, it is the major subtype of GBS, seen in 30-65% of patients. AMAN progresses more rapidly and has an earlier peak than demyelinating GBS; tendon reflexes are relatively preserved or even exaggerated, and autonomic dysfunction is rare. One of the main causes is molecular mimicry of human gangliosides by Campylobacter jejuni lipo-oligosaccharides. In addition to axonal degeneration, electrophysiology shows rapidly reversible nerve conduction blockade or slowing, presumably due to pathological changes at the nodes or paranodes. Autoantibodies that bind to GM1 or GD1a gangliosides at the nodes of Ranvier activate complement and disrupt sodium-channel clusters and axoglial junctions, which leads to nerve conduction failure and muscle weakness. Improved understanding of the disease mechanism and pathophysiology might lead to new treatment options and improve the outlook for patients with AMAN. Copyright © 2013 Elsevier Ltd. All rights reserved.

  20. Toward a Neural Chronometry for the Aesthetic Experience of Music

    PubMed Central

    Brattico, Elvira; Bogert, Brigitte; Jacobsen, Thomas

    2013-01-01

    Music is often studied as a cognitive domain alongside language. The emotional aspects of music have also been shown to be important, but views on their nature diverge. For instance, the specific emotions that music induces and how they relate to emotional expression are still under debate. Here we propose a mental and neural chronometry of the aesthetic experience of music initiated and mediated by external and internal contexts such as intentionality, background mood, attention, and expertise. The initial stages necessary for an aesthetic experience of music are feature analysis, integration across modalities, and cognitive processing on the basis of long-term knowledge. These stages are common to individuals belonging to the same musical culture. The initial emotional reactions to music include the startle reflex, core “liking,” and arousal. Subsequently, discrete emotions are perceived and induced. Presumably somatomotor processes synchronizing the body with the music also come into play here. The subsequent stages, in which cognitive, affective, and decisional processes intermingle, require controlled cross-modal neural processes to result in aesthetic emotions, aesthetic judgments, and conscious liking. These latter aesthetic stages often require attention, intentionality, and expertise for their full actualization. PMID:23641223

  1. High Trait Anxiety: A Challenge for Disrupting Fear Memory Reconsolidation

    PubMed Central

    Soeter, Marieke; Kindt, Merel

    2013-01-01

    Disrupting reconsolidation may be promising in the treatment of anxiety disorders but the fear-reducing effects are thus far solely demonstrated in the average organism. A relevant question is whether disrupting fear memory reconsolidation is less effective in individuals who are vulnerable to develop an anxiety disorder. By collapsing data from six previous human fear conditioning studies we tested whether trait anxiety was related to the fear-reducing effects of a pharmacological agent targeting the process of memory reconsolidation - n = 107. Testing included different phases across three consecutive days each separated by 24 h. Fear responding was measured by the eye-blink startle reflex. Disrupting the process of fear memory reconsolidation was manipulated by administering the β-adrenergic receptor antagonist propranolol HCl either before or after memory retrieval. Trait anxiety uniquely predicted the fear-reducing effects of disrupting memory reconsolidation: the higher the trait anxiety, the less fear reduction. Vulnerable individuals with the propensity to develop anxiety disorders may need higher dosages of propranolol HCl or more retrieval trials for targeting and changing fear memory. Our finding clearly demonstrates that we cannot simply translate observations from fundamental research on fear reduction in the average organism to clinical practice. PMID:24260096

  2. High trait anxiety: a challenge for disrupting fear memory reconsolidation.

    PubMed

    Soeter, Marieke; Kindt, Merel

    2013-01-01

    Disrupting reconsolidation may be promising in the treatment of anxiety disorders but the fear-reducing effects are thus far solely demonstrated in the average organism. A relevant question is whether disrupting fear memory reconsolidation is less effective in individuals who are vulnerable to develop an anxiety disorder. By collapsing data from six previous human fear conditioning studies we tested whether trait anxiety was related to the fear-reducing effects of a pharmacological agent targeting the process of memory reconsolidation--n = 107. Testing included different phases across three consecutive days each separated by 24 h. Fear responding was measured by the eye-blink startle reflex. Disrupting the process of fear memory reconsolidation was manipulated by administering the β-adrenergic receptor antagonist propranolol HCl either before or after memory retrieval. Trait anxiety uniquely predicted the fear-reducing effects of disrupting memory reconsolidation: the higher the trait anxiety, the less fear reduction. Vulnerable individuals with the propensity to develop anxiety disorders may need higher dosages of propranolol HCl or more retrieval trials for targeting and changing fear memory. Our finding clearly demonstrates that we cannot simply translate observations from fundamental research on fear reduction in the average organism to clinical practice.

  3. One-trial overshadowing: Evidence for fast specific fear learning in humans.

    PubMed

    Haesen, Kim; Beckers, Tom; Baeyens, Frank; Vervliet, Bram

    2017-03-01

    Adaptive defensive actions necessitate a fear learning system that is both fast and specific. Fast learning serves to minimize the number of threat confrontations, while specific learning ensures that the acquired fears are tied to threat-relevant cues only. In Pavlovian fear conditioning, fear acquisition is typically studied via repetitive pairings of a single cue with an aversive experience, which is not optimal for the examination of fast specific fear learning. In this study, we adopted the one-trial overshadowing procedure from basic learning research, in which a combination of two visual cues is presented once and paired with an aversive electrical stimulation. Using on-line shock expectancy ratings, skin conductance reactivity and startle reflex modulation as indices of fear learning, we found evidence of strong fear after a single conditioning trial (fast learning) as well as attenuated fear responding when only half of the trained stimulus combination was presented (specific learning). Moreover, specificity of fear responding tended to correlate with levels of state and trait anxiety. These results suggest that one-trial overshadowing can be used as a model to study fast specific fear learning in humans and individual differences therein. Copyright © 2016 Elsevier Ltd. All rights reserved.

  4. Modification of caffeine effects on the affect-modulated startle by neuropeptide S receptor gene variation.

    PubMed

    Domschke, Katharina; Klauke, Benedikt; Winter, Bernward; Gajewska, Agnes; Herrmann, Martin J; Warrings, Bodo; Mühlberger, Andreas; Wosnitza, Katherina; Dlugos, Andrea; Naunin, Swantje; Nienhaus, Kathrin; Fobker, Manfred; Jacob, Christian; Arolt, Volker; Pauli, Paul; Reif, Andreas; Zwanzger, Peter; Deckert, Jürgen

    2012-08-01

    Both the neuropeptide S (NPS) system and antagonism at the adenosine A2A receptor (e.g., by caffeine) were found to play a crucial role in the mediation of arousal and anxiety/panic in animal and human studies. Furthermore, a complex interaction of the neuropeptide S and the adenosinergic system has been suggested with administration of the adenosine A2A receptor antagonist caffeine downregulating NPS levels (Lage et al., 2006) and attenuating the stimulatory effects of NPS in rodents (Boeck et al., 2010). Thus, in the present study, the impact of the functional neuropeptide S receptor (NPSR) A/T (Asn(107)Ile; rs324981) variant on affect-modulated (neutral, unpleasant, and pleasant IAPS pictures) startle response depending on the administration of 300 mg caffeine citrate was investigated in a sample of 124 (m = 58, f = 66) healthy probands using a double-blind, placebo-controlled design. ANOVA revealed a significant interaction between NPSR genotype, challenge condition, and picture valence. Comparing startle magnitudes upon stimulation with neutral or emotional pictures between the placebo and caffeine condition, in AA/AT non-risk genotype carriers no significant difference was discerned, while TT risk genotype carriers showed a significantly increased startle magnitude in response to neutral stimuli (p = .02) and a significantly decreased startle magnitude in response to unpleasant stimuli (p = .02) in the caffeine condition as compared to the placebo condition. In summary, the present findings - extending previous evidence from rodent studies - for the first time provide support for a complex, non-linear interaction of the neuropeptide S and adenosinergic systems affecting the affect-modulated startle response as an intermediate phenotype of anxiety in humans.

  5. Evolution of behavior and neural control of the fast-start escape response.

    PubMed

    Hale, Melina E; Long, John H; McHenry, Matthew J; Westneat, Mark W

    2002-05-01

    The fast-start startle behavior is the primary mechanism of rapid escape in fishes and is a model system for examining neural circuit design and musculoskeletal function. To develop a dataset for evolutionary analysis of the startle response, the kinematics and muscle activity patterns of the fast-start were analyzed for four fish species at key branches in the phylogeny of vertebrates. Three of these species (Polypterus palmas, Lepisosteus osseus, and Amia calva) represent the base of the actinopterygian radiation. A fourth species (Oncorhynchus mykiss) provided data for a species in the central region of the teleost phylogeny. Using these data, we explored the evolution of this behavior within the phylogeny of vertebrates. To test the hypothesis that startle features are evolutionarily conservative, the variability of motor patterns and kinematics in fast-starts was described. Results show that the evolution of the startle behavior in fishes, and more broadly among vertebrates, is not conservative. The fast-start has undergone substantial change in suites of kinematics and electromyogram features, including the presence of either a one- or a two-stage kinematic response and change in the extent of bilateral muscle activity. Comparative methods were used to test the evolutionary hypothesis that changes in motor control are correlated with key differences in the kinematics and behavior of the fast-start. Significant evolutionary correlations were found between several motor pattern and behavioral characters. These results suggest that the startle neural circuit itself is not conservative. By tracing the evolution of motor pattern and kinematics on a phylogeny, it is shown that major changes in the neural circuit of the startle behavior occur at several levels in the phylogeny of vertebrates.

  6. Auditory sensitivity of larval zebrafish (Danio rerio) measured using a behavioral prepulse inhibition assay

    PubMed Central

    Bhandiwad, Ashwin A.; Zeddies, David G.; Raible, David W.; Rubel, Edwin W.; Sisneros, Joseph A.

    2013-01-01

    SUMMARY Zebrafish (Danio rerio) have become a valuable model for investigating the molecular genetics and development of the inner ear in vertebrates. In this study, we employed a prepulse inhibition (PPI) paradigm to assess hearing in larval wild-type (AB) zebrafish during early development at 5–6 days post-fertilization (d.p.f.). We measured the PPI of the acoustic startle response in zebrafish using a 1-dimensional shaker that simulated the particle motion component of sound along the fish's dorsoventral axis. The thresholds to startle-inducing stimuli were determined in 5–6 d.p.f. zebrafish, and their hearing sensitivity was then characterized using the thresholds of prepulse tone stimuli (90–1200 Hz) that inhibited the acoustic startle response to a reliable startle stimulus (820 Hz at 20 dB re. 1 m s−2). Hearing thresholds were defined as the minimum prepulse tone level required to significantly reduce the startle response probability compared with the baseline (no-prepulse) condition. Larval zebrafish showed greatest auditory sensitivity from 90 to 310 Hz with corresponding mean thresholds of −19 to −10 dB re. 1 m s−2, respectively. Hearing thresholds of prepulse tones were considerably lower than previously predicted by startle response assays. The PPI assay was also used to investigate the relative contribution of the lateral line to the detection of acoustic stimuli. After aminoglycoside-induced neuromast hair-cell ablation, we found no difference in PPI thresholds between treated and control fish. We propose that this PPI assay can be used to screen for novel zebrafish hearing mutants and to investigate the ontogeny of hearing in zebrafish and other fishes. PMID:23966590

  7. Increased sensorimotor gating in recreational and dependent cocaine users is modulated by craving and attention-deficit/hyperactivity disorder symptoms.

    PubMed

    Preller, Katrin H; Ingold, Nina; Hulka, Lea M; Vonmoos, Matthias; Jenni, Daniela; Baumgartner, Markus R; Vollenweider, Franz X; Quednow, Boris B

    2013-02-01

    Cocaine dependence has been associated with blunted dopamine and norepinephrine signaling, but it is unknown if recreational cocaine use is also associated with alterations of catecholamine systems. Prepulse inhibition (PPI) of the acoustic startle response-a measure of sensorimotor gating-is highly sensitive for manipulations of the catecholamine system. Therefore, we investigated whether relatively pure recreational users (RCU) and dependent cocaine users (DCU) display alterations of PPI, startle reactivity, and habituation. Moreover, the influences of methylenedioxymethamphetamine and cannabis co-use, craving, and attention-deficit/hyperactivity disorder (ADHD) symptoms on startle measures were examined. In 64 RCU, 29 DCU, and 66 stimulant-naïve control subjects, PPI of acoustic startle response, startle reactivity, habituation, ADHD symptoms, and cocaine craving were assessed. Drug use of all participants was controlled by hair and urine toxicologies. Both RCU and DCU showed increased PPI in comparison with control participants (Cohen's d=.38 and d=.67, respectively), while RCU and DCU did not differ in PPI measures (d=.12). No significant group differences were found in startle reactivity or habituation measures. In cocaine users, PPI was positively correlated with cumulative cocaine dose used, craving for cocaine, and ADHD symptoms. Users with a diagnosis of ADHD and strong craving symptoms displayed the highest PPI levels compared with control subjects (d=.78). The augmented PPI in RCU and DCU suggests that recreational use of cocaine is associated with altered catecholamine signaling, in particular if ADHD or craving symptoms are present. Finally, ADHD might be a critical risk factor for cocaine-induced changes of the catecholamine system. Copyright © 2013 Society of Biological Psychiatry. Published by Elsevier Inc. All rights reserved.

  8. Negative, but not positive emotional images modulate the startle response independent of conscious awareness.

    PubMed

    Reagh, Zachariah M; Knight, David C

    2013-08-01

    The emotional response to a threat is influenced by the valence of other stimuli in the environment. This emotional modulation of the threat-elicited response occurs even when negative valence stimuli are not consciously perceived. Relatively little prior research has investigated whether nonconsciously perceived positive valence stimuli modify the response to a threat, and the work that has been completed is in need of additional rigorous testing of stimulus and valence perception. The current study presented images of negative, neutral, and positive valence (1,000 ms and 17 ms durations), followed by a mask. A startle probe (100 dB whitenoise) was presented during 33% of each trial type while eyeblink electromyography (EMG) and skin conductance response (SCR) were measured. During the study, participants rated the emotional content of each image to assess valence perception. Participants accurately classified the valence of 1,000 ms images, but not 17 ms images. Further, participants performed at chance levels on an independent postexperimental forced-choice perception task using 17 ms masked images, indicating they were unable to perceive the valence and content of these images. Greater EMG and SCR were elicited by the startle probe during perceived and unperceived negative images compared to perceived and unperceived positive and neutral images. In addition, perceived, but not unperceived positive images diminished startle responses. The current findings suggest that images of negative valence potentiate the startle response in the absence of conscious stimulus perception. However, the attenuation of the startle response by positive images appears to require perception of the emotional valence of an image. PsycINFO Database Record (c) 2013 APA, all rights reserved.

  9. Fast and singular muscle responses initiate the startle response of Pantodon buchholzi (Osteoglossomorpha).

    PubMed

    Starosciak, A K; Kalola, R P; Perkins, K P; Riley, J A; Saidel, W M

    2008-01-01

    The startle response of Pantodon buchholzi, the African butterfly fish, is a complete or incomplete ballistic jump resulting from abduction of the pectoral fins. This study analyzed the neuromuscular basis for such a jump by recording in vivo electromyograms (emgs) from the muscles of abduction, the muscularis abductor superficialis (MAS) and the muscularis abductor profundus (MAP). The motor neurons innervating the MAS muscle were localized by retrograde transport of biocytin. The latency between stimulus and the evoked emg in the MAS was less than 5 ms; the latency of the MAP was about 6.5 ms. A single emg was recorded per jump. High speed video demonstrated that onset of a startle movement began within 10 ms of the onset of fin abduction. The emg associated with this movement is short (<2 ms) and followed by a variably-shaped, slower and smaller potential of 10-30 ms duration. The brief period between stimulus and startle response of Pantodon suggests a Mauthner neuron-related response, only with the behavior occurring in the vertical plane. The MAS may act only in a startle response, whereas the MAP might have a role in other behaviors. Elicited jumping habituates after a single trial. Electrophysiological evidence is presented indicating that the innervating motor neurons are suppressed for seconds following a stimulus. The neurons innervating the MAS are located at the medullary-spinal cord junction and possess an average radius of approximately 17.9 mum. These fish have been historically described as 'fresh water' flying fish. As a single emg occurs per startle response, repetitive pectoral activity generating flying cannot be supported. Pantodon 'flight' is ballistic. Copyright 2007 S. Karger AG, Basel.

  10. Symptoms of posttraumatic stress disorder in a clinical sample of refugees: a network analysis

    PubMed Central

    Spiller, Tobias R.; Schick, Matthis; Schnyder, Ulrich; Bryant, Richard A.; Nickerson, Angela; Morina, Naser

    2017-01-01

    ABSTRACT Background: Network analysis is an emerging methodology for investigating psychopathological symptoms. Given the unprecedented number of refugees and the increased prevalence of mental disorders such as posttraumatic stress disorder (PTSD) in this population, new methodologies that help us better to understand psychopathology in refugees are crucial. Objective: The objective of this study was to explore the network structure and centrality indices of DSM-5 PTSD symptoms in a cross-sectional clinical sample of 151 severely traumatized refugees with and without a formal PTSD diagnosis. Method: The R-packages qgraph and bootnet were used to estimate the structure of a PTSD symptom network and its centrality indices. In addition, robustness and significance analyses for the edges weights and the order of centrality were performed. Results: Three pairs of symptoms showed significantly stronger connections than at least half of the other connections: hypervigilance and exaggerated startle response, intrusion and difficulties falling asleep, and irritability or outbursts of anger and self-destructive or reckless behaviour. Emotional cue reactivity had the highest centrality and trauma-related amnesia the lowest. Conclusion: Although only 51.0% of participants fulfilled criteria for a probable PTSD diagnosis, emotional cue reactivity showed the highest centrality, emphasizing the importance of emotional trauma reminders in severely traumatized refugees attending an outpatient clinic. However, due to the small sample size, the results should be interpreted with care. PMID:29038688

  11. Do infants find snakes aversive? Infants' physiological responses to "fear-relevant" stimuli.

    PubMed

    Thrasher, Cat; LoBue, Vanessa

    2016-02-01

    In the current research, we sought to measure infants' physiological responses to snakes-one of the world's most widely feared stimuli-to examine whether they find snakes aversive or merely attention grabbing. Using a similar method to DeLoache and LoBue (Developmental Science, 2009, Vol. 12, pp. 201-207), 6- to 9-month-olds watched a series of multimodal (both auditory and visual) stimuli: a video of a snake (fear-relevant) or an elephant (non-fear-relevant) paired with either a fearful or happy auditory track. We measured physiological responses to the pairs of stimuli, including startle magnitude, latency to startle, and heart rate. Results suggest that snakes capture infants' attention; infants showed the fastest startle responses and lowest average heart rate to the snakes, especially when paired with a fearful voice. Unexpectedly, they also showed significantly reduced startle magnitude during this same snake video plus fearful voice combination. The results are discussed with respect to theoretical perspectives on fear acquisition. Copyright © 2015 Elsevier Inc. All rights reserved.

  12. A Cyfip2-Dependent Excitatory Interneuron Pathway Establishes the Innate Startle Threshold.

    PubMed

    Marsden, Kurt C; Jain, Roshan A; Wolman, Marc A; Echeverry, Fabio A; Nelson, Jessica C; Hayer, Katharina E; Miltenberg, Ben; Pereda, Alberto E; Granato, Michael

    2018-04-17

    Sensory experiences dynamically modify whether animals respond to a given stimulus, but it is unclear how innate behavioral thresholds are established. Here, we identify molecular and circuit-level mechanisms underlying the innate threshold of the zebrafish startle response. From a forward genetic screen, we isolated five mutant lines with reduced innate startle thresholds. Using whole-genome sequencing, we identify the causative mutation for one line to be in the fragile X mental retardation protein (FMRP)-interacting protein cyfip2. We show that cyfip2 acts independently of FMRP and that reactivation of cyfip2 restores the baseline threshold after phenotype onset. Finally, we show that cyfip2 regulates the innate startle threshold by reducing neural activity in a small group of excitatory hindbrain interneurons. Thus, we identify a selective set of genes critical to establishing an innate behavioral threshold and uncover a circuit-level role for cyfip2 in this process. Copyright © 2018 The Author(s). Published by Elsevier Inc. All rights reserved.

  13. TRIMETHYLTIN DISRUPTS ACOUSTIC STARTLE RESPONDING IN ADULT RATS

    EPA Science Inventory

    Trimethyltin (TMT) is a limbic-system toxicant which also produces sensory dysfunction in adult animals. In the present experiment, the authors examined the effects of TMT on the acoustic startle response. Adult male, Long-Evans rats (N=12/dose) received a single i.p. injection o...

  14. ACUTE EFFECTS OF AMITRAZ ON THE ACOUSTIC STARTLE RESPONSE AND MOTOR ACTIVITY

    EPA Science Inventory

    To characterize further the behavioral toxicity of amitraz, comparisons were made between the effects of amitraz on motor activity, the acoustic startle response, body temperature, and body weight in male Long-Evans rats. cute dosage-effect and time-course determinations of motor...

  15. The Influence of Stuttering Severity on Acoustic Startle Responses

    ERIC Educational Resources Information Center

    Ellis, John B.; Finan, Donald S.; Ramig, Peter R.

    2008-01-01

    Purpose: This study examined the potential impact of stuttering severity, as measured by the Perceptions of Stuttering Inventory (Woolf, 1967) on acoustic startle responses. Method: Three groups, consisting of 10 nonstuttering adults, 9 mild stutterering adults, and 11 moderate/severe stutterering adults, were presented with identical 95-dB…

  16. EFFECTS OF TWO PYRETHROID INSECTICIDES ON MOTOR ACTIVITY AND THE ACOUSTIC STARTLE RESPONSE IN THE RAT

    EPA Science Inventory

    To better characterize the behavioral toxicity of pyrethroid insecticides, comparisons were made of the effects of cismethrin and deltamethrin exposure on motor activity and the acoustic startle response in male Long-Evans rats. Acute dose-effect, acute time course, and 30-day re...

  17. ONTOGENY OF THE ACOUSTIC STARTLE RESPONSE AND SENSITIZATION TO BACKGROUND NOISE IN THE RAT (JOURNAL VERSION)

    EPA Science Inventory

    The purpose of the study was to characterize the ontogeny of the acoustic startle response (ASR), and response sensitization to background noise, in preweanling rats. With constant low-level (45 dB) background noise, response latency decreased steadily with age, whereas, both res...

  18. Assessing the Comprehensive Soldier Fitness Program: Measuring Startle Response and Prepulse Inhibition

    DTIC Science & Technology

    2011-04-01

    increase PPI, but dopamine agonists can have the opposite effect by reducing PPI. Fortunately, caffeine appears to have no significant effect on PPI...violent behavior, and sexual risk behavior. Landis, C., & Hunt, W.A. (1939). The Startle Pattern. New York: Farrar. An example of early research on

  19. POSSIBLE ROLE OF THE BRAINSTEM IN THE MEDIATION OF PREPULSE INHIBITION IN THE RAT (JOURNAL VERSION)

    EPA Science Inventory

    Bilateral stimulation of electrodes aimed at the cuneiform nucleus produced significant inhibition of the startle response produced by presentation of an 8 KHz, 110 dB tone. Stimulation of electrodes aimed at the deep mesencephalic nucleus also reduced the magnitude of the startl...

  20. The benefits of expanding studies of trait exaggeration to hemimetabolous insects and beyond morphology.

    PubMed

    Toubiana, William; Khila, Abderrahman

    2016-08-01

    Trait exaggeration, well known to naturalists and evolutionary biologists, has recently become a prominent research subject in the modern field of Evolutionary Developmental Biology. A large number of traits that can be considered as cases of exaggeration exist in nature. Yet, the field has almost exclusively focused on the study of growth-related exaggerated traits in a selection of holometabolous insects. The absence of the hemimetabola from studies of exaggeration leaves a significant gap in our understanding of the development and evolution of such traits. Here we argue that efforts to understand the mechanisms of trait exaggeration would benefit from expanding the study subjects to include other kinds of exaggeration and other model species. Copyright © 2016 The Author(s). Published by Elsevier Ltd.. All rights reserved.

  1. The association between exaggeration in health related science news and academic press releases: retrospective observational study

    PubMed Central

    Vivian-Griffiths, Solveiga; Boivin, Jacky; Williams, Andy; Venetis, Christos A; Davies, Aimée; Ogden, Jack; Whelan, Leanne; Hughes, Bethan; Dalton, Bethan; Boy, Fred

    2014-01-01

    Objective To identify the source (press releases or news) of distortions, exaggerations, or changes to the main conclusions drawn from research that could potentially influence a reader’s health related behaviour. Design Retrospective quantitative content analysis. Setting Journal articles, press releases, and related news, with accompanying simulations. Sample Press releases (n=462) on biomedical and health related science issued by 20 leading UK universities in 2011, alongside their associated peer reviewed research papers and news stories (n=668). Main outcome measures Advice to readers to change behaviour, causal statements drawn from correlational research, and inference to humans from animal research that went beyond those in the associated peer reviewed papers. Results 40% (95% confidence interval 33% to 46%) of the press releases contained exaggerated advice, 33% (26% to 40%) contained exaggerated causal claims, and 36% (28% to 46%) contained exaggerated inference to humans from animal research. When press releases contained such exaggeration, 58% (95% confidence interval 48% to 68%), 81% (70% to 93%), and 86% (77% to 95%) of news stories, respectively, contained similar exaggeration, compared with exaggeration rates of 17% (10% to 24%), 18% (9% to 27%), and 10% (0% to 19%) in news when the press releases were not exaggerated. Odds ratios for each category of analysis were 6.5 (95% confidence interval 3.5 to 12), 20 (7.6 to 51), and 56 (15 to 211). At the same time, there was little evidence that exaggeration in press releases increased the uptake of news. Conclusions Exaggeration in news is strongly associated with exaggeration in press releases. Improving the accuracy of academic press releases could represent a key opportunity for reducing misleading health related news. PMID:25498121

  2. The association between exaggeration in health related science news and academic press releases: retrospective observational study.

    PubMed

    Sumner, Petroc; Vivian-Griffiths, Solveiga; Boivin, Jacky; Williams, Andy; Venetis, Christos A; Davies, Aimée; Ogden, Jack; Whelan, Leanne; Hughes, Bethan; Dalton, Bethan; Boy, Fred; Chambers, Christopher D

    2014-12-09

    To identify the source (press releases or news) of distortions, exaggerations, or changes to the main conclusions drawn from research that could potentially influence a reader's health related behaviour. Retrospective quantitative content analysis. Journal articles, press releases, and related news, with accompanying simulations. Press releases (n = 462) on biomedical and health related science issued by 20 leading UK universities in 2011, alongside their associated peer reviewed research papers and news stories (n = 668). Advice to readers to change behaviour, causal statements drawn from correlational research, and inference to humans from animal research that went beyond those in the associated peer reviewed papers. 40% (95% confidence interval 33% to 46%) of the press releases contained exaggerated advice, 33% (26% to 40%) contained exaggerated causal claims, and 36% (28% to 46%) contained exaggerated inference to humans from animal research. When press releases contained such exaggeration, 58% (95% confidence interval 48% to 68%), 81% (70% to 93%), and 86% (77% to 95%) of news stories, respectively, contained similar exaggeration, compared with exaggeration rates of 17% (10% to 24%), 18% (9% to 27%), and 10% (0% to 19%) in news when the press releases were not exaggerated. Odds ratios for each category of analysis were 6.5 (95% confidence interval 3.5 to 12), 20 (7.6 to 51), and 56 (15 to 211). At the same time, there was little evidence that exaggeration in press releases increased the uptake of news. Exaggeration in news is strongly associated with exaggeration in press releases. Improving the accuracy of academic press releases could represent a key opportunity for reducing misleading health related news. © Sumner et al 2014.

  3. Baseline and Modulated Acoustic Startle Responses in Adolescent Girls with Posttraumatic Stress Disorder

    ERIC Educational Resources Information Center

    Lipschitz, Deborah S.; Mayes, Linda M.; Rasmusson, Ann M.; Anyan, Walter; Billingslea, Eileen; Gueorguieva, Ralitza; Southwick, Steven M.

    2005-01-01

    Objective: To assess baseline and modulated acoustic startle responses in adolescent girls with posttraumatic stress disorder (PTSD). Method: Twenty-eight adolescent girls with PTSD and 23 healthy control girls were recruited for participation in the study. Acoustic stimuli were bursts of white noise of 104 dB presented biaurally through…

  4. Startle response memory and hippocampal changes in adult zebrafish pharmacologically-induced to exhibit anxiety/depression-like behaviors.

    PubMed

    Pittman, Julian T; Lott, Chad S

    2014-01-17

    Zebrafish (Danio rerio) are rapidly becoming a popular animal model for neurobehavioral and psychopharmacological research. While startle testing is a well-established assay to investigate anxiety-like behaviors in different species, screening of the startle response and its habituation in zebrafish is a new direction of translational biomedical research. This study focuses on a novel behavioral protocol to assess a tapping-induced startle response and its habituation in adult zebrafish that have been pharmacologically-induced to exhibit anxiety/depression-like behaviors. We demonstrated that zebrafish exhibit robust learning performance in a task adapted from the mammalian literature, a modified plus maze, and showed that ethanol and fluoxetine impair memory performance in this maze when administered after training at a dose that does not impair motor function, however, leads to significant upregulation of hippocampal serotoninergic neurons. These results suggest that the maze associative learning paradigm has face and construct validity and that zebrafish may become a translationally relevant study species for the analysis of the mechanisms of learning and memory changes associated with psychopharmacological treatment of anxiety/depression. © 2013.

  5. Becoming the center of attention in social anxiety disorder: Startle reactivity to a virtual audience during speech anticipation

    PubMed Central

    Cornwell, Brian R.; Heller, Randi; Biggs, Arter; Pine, Daniel S.; Grillon, Christian

    2012-01-01

    Objective A detailed understanding of how individuals diagnosed with social anxiety disorder (SAD) respond physiologically under social-evaluative threat is lacking. We aimed to isolate the specific components of public speaking that trigger fear in vulnerable individuals and best discriminate among SAD and healthy individuals. Method Sixteen individuals diagnosed with SAD and 16 healthy individuals were asked to prepare and deliver a short speech in a virtual reality (VR) environment. The VR environment simulated standing center stage before a live audience and allowed us to gradually introduce social cues during speech anticipation. Startle eye-blink responses were elicited periodically by white noise bursts presented during anticipation, speech delivery, and recovery in VR, as well as outside VR during an initial habituation phase. Results SAD individuals reported greater distress and state anxiety than healthy individuals across the entire procedure (ps < .005). Analyses of startle reactivity revealed a robust group difference during speech anticipation in VR, specifically as audience members directed their eye gaze and turned their attention toward participants (p < .05, Bonferroni corrected). Conclusions The VR environment is sufficiently realistic to provoke fear and anxiety in individuals highly vulnerable to socially threatening situations. SAD individuals showed potentiated startle, indicative of a strong phasic fear response, specifically when they perceived themselves as occupying the focus of others' attention as speech time approached. Potentiated startle under social-evaluative threat indexes SAD-related fear of negative evaluation. PMID:21034683

  6. Ultrasonic vocalizations, predictability and sensorimotor gating in the rat

    PubMed Central

    Webber, Emily S.; Mankin, David E.; McGraw, Justin J.; Beckwith, Travis J.; Cromwell, Howard C.

    2013-01-01

    Prepulse inhibition (PPI) is a measure of sensorimotor gating in diverse groups of animals including humans. Emotional states can influence PPI in humans both in typical subjects and in individuals with mental illness. Little is known about emotional regulation during PPI in rodents. We used ultrasonic vocalization recording to monitor emotional states in rats during PPI testing. We altered the predictability of the PPI trials to examine any alterations in gating and emotional regulation. We also examined PPI in animals selectively bred for high or low levels of 50 kHz USV emission. Rats emitted high levels of 22 kHz calls consistently throughout the PPI session. USVs were sensitive to prepulses during the PPI session similar to startle. USV rate was sensitive to predictability among the different levels tested and across repeated experiences. Startle and inhibition of startle were not affected by predictability in a similar manner. No significant differences for PPI or startle were found related the different levels of predictability; however, there was a reduction in USV signals and an enhancement of PPI after repeated exposure. Animals selectively bred to emit high levels of USVs emitted significantly higher levels of USVs during the PPI session and a reduced ASR compared to the low and random selective lines. Overall, the results support the idea that PPI tests in rodents induce high levels of negative affect and that manipulating emotional styles of the animals alters the negative impact of the gating session as well as the intensity of the startle response. PMID:23850353

  7. Inhibition of amygdaloid dopamine D2 receptors impairs emotional learning measured with fear-potentiated startle.

    PubMed

    Greba, Q; Gifkins, A; Kokkinidis, L

    2001-04-27

    Considerable advances have been made in understanding the neurocircuitry underlying the acquisition and expression of Pavlovian conditioned fear responses. Within the complex cellular and molecular processes mediating fearfulness, amygdaloid dopamine (DA), originating from cells in the ventral tegmental area (VTA) of the midbrain, is thought to contribute to fear-motivated responding. Considering that blockade of DA D(2) receptors is a common mechanism of action for antipsychotic agents, we hypothesized that inhibition of D(2) receptors in the amygdala may be involved in the antiparanoid effects of these drugs. To assess the role of amygdaloid DA D(2) receptors in aversive emotionality, the D(2) receptor antagonist raclopride was infused into the amygdala prior to Pavlovian fear conditioning. Potentiated startle was used as a behavioral indicator of fear and anxiety. Classical fear conditioning and acoustic startle testing were conducted in a single session allowing for the concomitant assessment of shock reactivity with startle enhancement. Depending on dose, the results found conditioned fear acquisition and retention to be impaired following administration of raclopride into the amygdala. Additionally, the learning deficit was dissociated from shock detection and from fear expression assessed with the shock sensitization of acoustic startle. These findings further refine the known neural mechanisms of amygdala-based emotional learning and memory and were interpreted to suggest that, along with D(1) receptors, D(2) receptors in the amygdala may mediate the formation and the retention of newly-acquired fear associations.

  8. Becoming the center of attention in social anxiety disorder: startle reactivity to a virtual audience during speech anticipation.

    PubMed

    Cornwell, Brian R; Heller, Randi; Biggs, Arter; Pine, Daniel S; Grillon, Christian

    2011-07-01

    A detailed understanding of how individuals diagnosed with social anxiety disorder (SAD) respond physiologically under social-evaluative threat is lacking. Our aim was to isolate the specific components of public speaking that trigger fear in vulnerable individuals and best discriminate between SAD and healthy individuals. Sixteen individuals diagnosed with SAD (DSM-IV-TR criteria) and 16 healthy individuals were enrolled in the study from December 2005 to March 2008. Subjects were asked to prepare and deliver a short speech in a virtual reality (VR) environment. The VR environment simulated standing center stage before a live audience and allowed us to gradually introduce social cues during speech anticipation. Startle eye-blink responses were elicited periodically by white noise bursts presented during anticipation, speech delivery, and recovery in VR, as well as outside VR during an initial habituation phase, and startle reactivity was measured by electromyography. Subjects rated their distress at 4 timepoints in VR using a 0-10 scale, with anchors being "not distressed" to "highly distressed." State anxiety was measured before and after VR with the Spielberger State-Trait Anxiety Inventory. Individuals with SAD reported greater distress and state anxiety than healthy individuals across the entire procedure (P values < .005). Analyses of startle reactivity revealed a robust group difference during speech anticipation in VR, specifically as audience members directed their eye gaze and turned their attention toward participants (P < .05, Bonferroni-corrected). The VR environment is sufficiently realistic to provoke fear and anxiety in individuals highly vulnerable to socially threatening situations. Individuals with SAD showed potentiated startle, indicative of a strong phasic fear response, specifically when they perceived themselves as occupying the focus of others' attention as speech time approached. Potentiated startle under social-evaluative threat indexes SAD-related fear of negative evaluation. © Copyright 2011 Physicians Postgraduate Press, Inc.

  9. Gap prepulse inhibition and auditory brainstem-evoked potentials as objective measures for tinnitus in guinea pigs

    PubMed Central

    Dehmel, Susanne; Eisinger, Daniel; Shore, Susan E.

    2012-01-01

    Tinnitus or ringing of the ears is a subjective phantom sensation necessitating behavioral models that objectively demonstrate the existence and quality of the tinnitus sensation. The gap detection test uses the acoustic startle response elicited by loud noise pulses and its gating or suppression by preceding sub-startling prepulses. Gaps in noise bands serve as prepulses, assuming that ongoing tinnitus masks the gap and results in impaired gap detection. This test has shown its reliability in rats, mice, and gerbils. No data exists for the guinea pig so far, although gap detection is similar across mammals and the acoustic startle response is a well-established tool in guinea pig studies of psychiatric disorders and in pharmacological studies. Here we investigated the startle behavior and prepulse inhibition (PPI) of the guinea pig and showed that guinea pigs have a reliable startle response that can be suppressed by 15 ms gaps embedded in narrow noise bands preceding the startle noise pulse. After recovery of auditory brainstem response (ABR) thresholds from a unilateral noise over-exposure centered at 7 kHz, guinea pigs showed diminished gap-induced reduction of the startle response in frequency bands between 8 and 18 kHz. This suggests the development of tinnitus in frequency regions that showed a temporary threshold shift (TTS) after noise over-exposure. Changes in discharge rate and synchrony, two neuronal correlates of tinnitus, should be reflected in altered ABR waveforms, which would be useful to objectively detect tinnitus and its localization to auditory brainstem structures. Therefore, we analyzed latencies and amplitudes of the first five ABR waves at suprathreshold sound intensities and correlated ABR abnormalities with the results of the behavioral tinnitus testing. Early ABR wave amplitudes up to N3 were increased for animals with tinnitus possibly stemming from hyperactivity and hypersynchrony underlying the tinnitus percept. Animals that did not develop tinnitus after noise exposure showed the opposite effect, a decrease in wave amplitudes for the later waves P4–P5. Changes in latencies were only observed in tinnitus animals, which showed increased latencies. Thus, tinnitus-induced changes in the discharge activity of the auditory nerve and central auditory nuclei are represented in the ABR. PMID:22666193

  10. Measuring high pressure baroreceptor sensitivity in the rat.

    PubMed

    Shiry, L J; Hamlin, R L

    2011-01-01

    The high pressure baroreceptor reflex rapidly buffers changes in systemic arterial pressure in response to postural changes, altered gravitational conditions, diseases, and pharmacological agents. Drug-induced exaggeration of changes in heart rate and in systemic arterial pressure is a leading cause of adverse events and of patients terminating use of drugs, particularly in the aging population. This paper presents a facile method for monitoring the high pressure baroreceptor reflex in rats, and presents an alternative to quantifying the magnitude of this reflex using 2 dependent variables, heart rate and systemic arterial pressure, rather than merely change in heart rate. Twenty-four rats were allocated to 3 groups: group I anesthetized with 100mg/kg thiopental, group II anesthetized with 2% isoflurane given by inhalation, group III anesthetized with thiopental but pretreated for 2weeks with 2μg/kg aldosterone given SQ bid. After induction to anesthesia, hair was clipped from the ventral aspect of the neck, and petrolatum was applied to the skin to permit an air-tight seal with a glass funnel attached to a source of variable and controllable negative pressure. Systemic arterial pressure, ECG, heart rate, and a force of suction applied to the neck were all recorded continuously. After baseline recordings, a force of -20mmHg was applied for 20s over the carotid artery. In rats receiving thiopental, the average changes in heart rate and systemic arterial pressure following the application of -20mmHg neck suction were 30±11bpm and 45±14mmHg, respectively. The ratios of change in heart and change in systemic arterial pressure to application of negative force over the carotid sinus are 1.5±0.6bpm/mmHg and 0.7±04mmHg/mmHg, respectively. Mean values for heart rate and for mean systemic arterial pressure during baseline and after application of neck suction for 20s showed little to no decrease (i.e., blunting) in rats anesthetized with isoflurane or pretreated with aldosterone. Thus this methodology was able to detect, in rats, blunting of baroreceptor function for at least 2 perturbations of this important homeostatic control system. Copyright © 2011. Published by Elsevier Inc.

  11. Exaggerating Accessible Differences: When Gender Stereotypes Overestimate Actual Group Differences.

    PubMed

    Eyal, Tal; Epley, Nicholas

    2017-09-01

    Stereotypes are often presumed to exaggerate group differences, but empirical evidence is mixed. We suggest exaggeration is moderated by the accessibility of specific stereotype content. In particular, because the most accessible stereotype contents are attributes perceived to differ between groups, those attributes are most likely to exaggerate actual group differences due to regression to the mean. We tested this hypothesis using a highly accessible gender stereotype: that women are more socially sensitive than men. We confirmed that the most accessible stereotype content involves attributes perceived to differ between groups (pretest), and that these stereotypes contain some accuracy but significantly exaggerate actual gender differences (Experiment 1). We observe less exaggeration when judging less accessible stereotype content (Experiment 2), or when judging individual men and women (Experiment 3). Considering the accessibility of specific stereotype content may explain when stereotypes exaggerate actual group differences and when they do not.

  12. PYRETHROID INSECTICIDES AND THE GAMMA-AMINOBUTYRIC ACID (ALPHA) RECEPTOR COMPLEX: MOTOR ACTIVITY AND THE ACOUSTIC STARTLE RESPONSE IN THE RAT (JOURNAL VERSION)

    EPA Science Inventory

    Two behavioral tests, locomotor activity and the acoustic startle response (ASR), were utilized to test for dose-addition of cismethrin, a Type I, or deltamethrin, a Type II pyrethroid, with compounds active to the gamma-aminobutryic acid (GABA) receptor complex (picrotoxin, musc...

  13. Behavioral, autonomic, and subjective reactions to low- and moderate-level simulated sonic booms : a report of two experiments and a general evaluation of sonic boom startle effects.

    DOT National Transportation Integrated Search

    1974-09-01

    Two separate studies are reported. The first attempted to determine a sonic boom exposure level below which startle reactions would not occur. Subjects were exposed indoors to six simulated sonic booms having various outside overpressures. In the sec...

  14. Relationship between Physiological and Parent-Observed Auditory Over-Responsiveness in Children with Typical Development and Those with Autism Spectrum Disorders

    ERIC Educational Resources Information Center

    Takahashi, Hidetoshi; Nakahachi, Takayuki; Stickley, Andrew; Ishitobi, Makoto; Kamio, Yoko

    2018-01-01

    The objective of this study was to investigate relationships between caregiver-reported sensory processing abnormalities, and the physiological index of auditory over-responsiveness evaluated using acoustic startle response measures, in children with autism spectrum disorders and typical development. Mean acoustic startle response magnitudes in…

  15. Sexual orientation-related differences in prepulse inhibition of the human startle response.

    PubMed

    Rahman, Qazi; Kumari, Veena; Wilson, Glenn D

    2003-10-01

    Prepulse inhibition (PPI) refers to a reduction in the startle response to a strong sensory stimulus when this stimulus is preceded by a weaker stimulus--the prepulse. PPI reflects a nonlearned sensorimotor gating mechanism and also shows a robust gender difference, with women exhibiting lower PPI than men. The present study examined the eyeblink startle responses to acoustic stimuli of 59 healthy heterosexual and homosexual men and women. Homosexual women showed significantly masculinized PPI compared with heterosexual women, whereas no difference was observed in PPI between homosexual and heterosexual men. These data provide the first evidence for within-gender differences in basic sensorimotor gating mechanisms and implicate the known neural substrates of PPI in human sexual orientation. (c) 2003 APA, all rights reserved

  16. Ultrasonic vocalizations, predictability and sensorimotor gating in the rat.

    PubMed

    Webber, Emily S; Mankin, David E; McGraw, Justin J; Beckwith, Travis J; Cromwell, Howard C

    2013-09-15

    Prepulse inhibition (PPI) is a measure of sensorimotor gating in diverse groups of animals including humans. Emotional states can influence PPI in humans both in typical subjects and in individuals with mental illness. Little is known about emotional regulation during PPI in rodents. We used ultrasonic vocalization recording to monitor emotional states in rats during PPI testing. We altered the predictability of the PPI trials to examine any alterations in gating and emotional regulation. We also examined PPI in animals selectively bred for high or low levels of 50kHz USV emission. Rats emitted high levels of 22kHz calls consistently throughout the PPI session. USVs were sensitive to prepulses during the PPI session similar to startle. USV rate was sensitive to predictability among the different levels tested and across repeated experiences. Startle and inhibition of startle were not affected by predictability in a similar manner. No significant differences for PPI or startle were found related to the different levels of predictability; however, there was a reduction in USV signals and an enhancement of PPI after repeated exposure. Animals selectively bred to emit high levels of USVs emitted significantly higher levels of USVs during the PPI session and a reduced ASR compared to the low and random selective lines. Overall, the results support the idea that PPI tests in rodents induce high levels of negative affect and that manipulating emotional styles of the animals alters the negative impact of the gating session as well as the intensity of the startle response. Copyright © 2013 Elsevier B.V. All rights reserved.

  17. Probing for Neuroadaptations to Unpredictable Stressors in Addiction: Translational Methods and Emerging Evidence

    PubMed Central

    Kaye, Jesse T.; Bradford, Daniel E.; Magruder, Katherine P.; Curtin, John J.

    2017-01-01

    Stressors clearly contribute to addiction etiology and relapse in humans, but our understanding of specific mechanisms remains limited. Rodent models of addiction offer the power, flexibility, and precision necessary to delineate the causal role and specific mechanisms through which stressors influence alcohol and other drug use. This review describes a program of research using startle potentiation to unpredictable stressors that is well positioned to translate between animal models and clinical research with humans on stress neuroadaptations in addiction. This research rests on a solid foundation provided by three separate pillars of evidence from (a) rodent behavioral neuroscience on stress neuroadaptations in addiction, (b) rodent affective neuroscience on startle potentiation, and (c) human addiction and affective science with startle potentiation. Rodent stress neuroadaptation models implicate adaptations in corticotropin-releasing factor and norepinephrine circuits within the central extended amygdala following chronic alcohol and other drug use that mediate anxious behaviors and stress-induced reinstatement among drug-dependent rodents. Basic affective neuroscience indicates that these same neural mechanisms are involved in startle potentiation to unpredictable stressors in particular (vs. predictable stressors). We believe that synthesis of these evidence bases should focus us on the role of unpredictable stressors in addiction etiology and relapse. Startle potentiation in unpredictable stressor tasks is proposed to provide an attractive and flexible test bed to encourage tight translation and reverse translation between animal models and human clinical research on stress neuroadaptations. Experimental therapeutics approaches focused on unpredictable stressors hold high promise to identify, repurpose, or refine pharmacological and psychosocial interventions for addiction. PMID:28499100

  18. Modulation of the N170 with Classical Conditioning: The Use of Emotional Imagery and Acoustic Startle in Healthy and Depressed Participants

    PubMed Central

    Camfield, David A.; Mills, Jessica; Kornfeld, Emma J.; Croft, Rodney J.

    2016-01-01

    Recent studies have suggested that classical conditioning may be capable of modulating early sensory processing in the human brain, and that there may be differences in the magnitude of the conditioned changes for individuals with major depressive disorder. The effect of conditioning on the N170 event-related potential was investigated using neutral faces as conditioned stimuli (CS+) and emotional imagery and acoustic startle as unconditioned stimuli (UCS). In the first experiment, electroencephalogram was recorded from 24 undergraduate students (M = 21.07 years, SD = 3.38 years) under the following conditions: (i) CS+/aversive imagery, (ii) CS+/aversive imagery and acoustic startle, (iii) CS+/acoustic startle, and (iv) CS+/pleasant imagery. The amplitude of the N170 was enhanced following conditioning with aversive imagery as well as acoustic startle. In the second experiment, 26 healthy control participants were tested (17 females and 9 males, age M = 25.97 years, SD = 9.42) together with 18 depressed participants (13 females and 5 males, age M = 23.26 years, SD = 4.01) and three conditions were used: CS+/aversive imagery, CS+/pleasant imagery, and CS-. N170 amplitude at P7 was increased for the CS+/aversive condition in comparison to CS- in the conditioning blocks versus baseline. No differences between depressed and healthy participants were found. Across both experiments, evaluative conditioning was absent. It was concluded that aversive UCS are capable of modulating early sensory processing of faces, although further research is also warranted in regards to positive UCS. PMID:27445773

  19. Startle habituation, sensory, and sensorimotor gating in trauma-affected refugees with posttraumatic stress disorder.

    PubMed

    Meteran, Hanieh; Vindbjerg, Erik; Uldall, Sigurd Wiingaard; Glenthøj, Birte; Carlsson, Jessica; Oranje, Bob

    2018-05-17

    Impairments in mechanisms underlying early information processing have been reported in posttraumatic stress disorder (PTSD); however, findings in the existing literature are inconsistent. This current study capitalizes on technological advancements of research on electroencephalographic event-related potential and applies it to a novel PTSD population consisting of trauma-affected refugees. A total of 25 trauma-affected refugees with PTSD and 20 healthy refugee controls matched on age, gender, and country of origin completed the study. In two distinct auditory paradigms sensory gating, indexed as P50 suppression, and sensorimotor gating, indexed as prepulse inhibition (PPI), startle reactivity, and habituation of the eye-blink startle response were examined. Within the P50 paradigm, N100 and P200 amplitudes were also assessed. In addition, correlations between psychophysiological and clinical measures were investigated. PTSD patients demonstrated significantly elevated stimuli responses across the two paradigms, reflected in both increased amplitude of the eye-blink startle response, and increased N100 and P200 amplitudes relative to healthy refugee controls. We found a trend toward reduced habituation in the patients, while the groups did not differ in PPI and P50 suppression. Among correlations, we found that eye-blink startle responses were associated with higher overall illness severity and lower levels of functioning. Fundamental gating mechanisms appeared intact, while the pattern of deficits in trauma-affected refugees with PTSD point toward a different form of sensory overload, an overall neural hypersensitivity and disrupted the ability to down-regulate stimuli responses. This study represents an initial step toward elucidating sensory processing deficits in a PTSD subgroup.

  20. Probing for Neuroadaptations to Unpredictable Stressors in Addiction: Translational Methods and Emerging Evidence.

    PubMed

    Kaye, Jesse T; Bradford, Daniel E; Magruder, Katherine P; Curtin, John J

    2017-05-01

    Stressors clearly contribute to addiction etiology and relapse in humans, but our understanding of specific mechanisms remains limited. Rodent models of addiction offer the power, flexibility, and precision necessary to delineate the causal role and specific mechanisms through which stressors influence alcohol and other drug use. This review describes a program of research using startle potentiation to unpredictable stressors that is well positioned to translate between animal models and clinical research with humans on stress neuroadaptations in addiction. This research rests on a solid foundation provided by three separate pillars of evidence from (a) rodent behavioral neuroscience on stress neuroadaptations in addiction, (b) rodent affective neuroscience on startle potentiation, and (c) human addiction and affective science with startle potentiation. Rodent stress neuroadaptation models implicate adaptations in corticotropin-releasing factor and norepinephrine circuits within the central extended amygdala following chronic alcohol and other drug use that mediate anxious behaviors and stress-induced reinstatement among drug-dependent rodents. Basic affective neuroscience indicates that these same neural mechanisms are involved in startle potentiation to unpredictable stressors in particular (vs. predictable stressors). We believe that synthesis of these evidence bases should focus us on the role of unpredictable stressors in addiction etiology and relapse. Startle potentiation in unpredictable stressor tasks is proposed to provide an attractive and flexible test bed to encourage tight translation and reverse translation between animal models and human clinical research on stress neuroadaptations. Experimental therapeutics approaches focused on unpredictable stressors hold high promise to identify, repurpose, or refine pharmacological and psychosocial interventions for addiction.

  1. Meta-analytic review of the effects of a single dose of intranasal oxytocin on threat processing in humans.

    PubMed

    Leppanen, Jenni; Ng, Kah Wee; Kim, Youl-Ri; Tchanturia, Kate; Treasure, Janet

    2018-01-01

    Heightened threat sensitivity is a transdiagnostic feature in several psychiatric disorders. The neuropeptide oxytocin has been shown to reduce fear related behaviours and facilitated fear extinction in animals. These findings have led to increasing interest to explore the effects of intranasal oxytocin on threat processing in humans. The review included 26 studies (N = 1173), nine of which included clinical populations (N = 234). The clinical groups included were people with borderline personality disorder (BPD), anorexia nervosa, bulimia nervosa, depression, anxiety, and alcohol dependence disorder. We examined the effects of a single dose of intranasal oxytocin on startle response, attentional responses, and behavioural responses to threat. A single dose of intranasal oxytocin significantly increased the physiological startle response to threat in healthy people with a small effect size. However, oxytocin did not have significant effects on attentional bias towards social or disorder-specific threat, fixation towards threatening stimuli among healthy or clinical populations, or on threat related behavioural approach or avoidance responses. No studies investigated the effects of oxytocin on the startle response to threat among clinical populations. Additionally, only one of the reviewed studies had sufficient power to detect at least a moderate effect of oxytocin according to our criterion. The synthesis of literature suggest that oxytocin may influence the salience of threatening stimuli among healthy individuals, increasing the startle response to threat. It would be of interest to investigate the effects of oxytocin on the startle response to threat among clinical populations. Copyright © 2017 Elsevier B.V. All rights reserved.

  2. Contextual-Specificity of Short-Delay Extinction in Humans: Renewal of Fear-Potentiated Startle in a Virtual Environment

    ERIC Educational Resources Information Center

    Alvarez, Ruben P.; Johnson, Linda; Grillon, Christian

    2007-01-01

    A recent fear-potentiated startle study in rodents suggested that extinction was not context dependent when extinction was conducted after a short delay following acquisition, suggesting that extinction can lead to erasure of fear learning in some circumstances. The main objective of this study was to attempt to replicate these findings in humans…

  3. Gender Differences in Posttraumatic Stress Symptoms after a Terrorist Attack: A Network Approach.

    PubMed

    Birkeland, Marianne S; Blix, Ines; Solberg, Øivind; Heir, Trond

    2017-01-01

    Background: Posttraumatic stress symptoms are more prevalent in women than in men. To improve our understanding of gender differences in PTSD, detailed knowledge about the underlying symptom networks and gender specific symptom profiles is needed. Objective: We aimed to describe the gender differences in levels of individual posttraumatic stress symptoms after a terrorist attack, as well as identify possible gender differences in associations between posttraumatic stress symptoms. Method: This study used survey data from ministerial employees directly ( n = 190) and indirectly ( n = 1,615) exposed to the 2011 Oslo bombing. Data was collected approximately 10 months after the event. In order to investigate gender differences in levels of symptoms, we used bootstrapped means and standard deviations. Network analyses were conducted to identify gender differences in the associations between posttraumatic stress symptoms. Results: Women reported higher levels of all symptoms, and the strongest effect sizes were found for symptoms of re-experiencing, and anxious and dysphoric arousal. Among individuals with considerable levels of posttraumatic stress symptoms, women reported higher levels of physiological cue activity and exaggerated startle response. No significant gender differences in the networks of posttraumatic stress were found. Conclusions: The present results find no indication that the gender difference in prevalence of PTSD can be explained by differences in associations between symptoms. In order to determine if this finding can be applied to other participants and circumstances, future studies should seek to replicate this study in both community and clinical samples.

  4. Gender Differences in Posttraumatic Stress Symptoms after a Terrorist Attack: A Network Approach

    PubMed Central

    Birkeland, Marianne S.; Blix, Ines; Solberg, Øivind; Heir, Trond

    2017-01-01

    Background: Posttraumatic stress symptoms are more prevalent in women than in men. To improve our understanding of gender differences in PTSD, detailed knowledge about the underlying symptom networks and gender specific symptom profiles is needed. Objective: We aimed to describe the gender differences in levels of individual posttraumatic stress symptoms after a terrorist attack, as well as identify possible gender differences in associations between posttraumatic stress symptoms. Method: This study used survey data from ministerial employees directly (n = 190) and indirectly (n = 1,615) exposed to the 2011 Oslo bombing. Data was collected approximately 10 months after the event. In order to investigate gender differences in levels of symptoms, we used bootstrapped means and standard deviations. Network analyses were conducted to identify gender differences in the associations between posttraumatic stress symptoms. Results: Women reported higher levels of all symptoms, and the strongest effect sizes were found for symptoms of re-experiencing, and anxious and dysphoric arousal. Among individuals with considerable levels of posttraumatic stress symptoms, women reported higher levels of physiological cue activity and exaggerated startle response. No significant gender differences in the networks of posttraumatic stress were found. Conclusions: The present results find no indication that the gender difference in prevalence of PTSD can be explained by differences in associations between symptoms. In order to determine if this finding can be applied to other participants and circumstances, future studies should seek to replicate this study in both community and clinical samples. PMID:29250014

  5. Pathological anxiety and function/dysfunction in the brain's fear/defense circuitry.

    PubMed

    Lang, Peter J; McTeague, Lisa M; Bradley, Margaret M

    2014-01-01

    Research from the University of Florida Center for the Study of Emotion and Attention aims to develop neurobiological measures that objectively discriminate among symptom patterns in patients with anxiety disorders. From this perspective, anxiety and mood pathologies are considered to be brain disorders, resulting from dysfunction and maladaptive plasticity in the neural circuits that determine fearful/defensive and appetitive/reward behavior (Insel et al., 2010). We review recent studies indicating that an enhanced probe startle reflex during the processing of fear memory cues (mediated by cortico-limbic circuitry and thus indicative of plastic brain changes), varies systematically in strength over a spectrum-wide dimension of anxiety pathology-across and within diagnoses-extending from strong focal fear reactions to a consistently blunted reaction in patients with more generalized anxiety and comorbid mood disorders. Preliminary studies with functional magnetic resonance imaging (fMRI) encourage the hypothesis that fear/defense circuit dysfunction covaries with this same dimension of psychopathology. Plans are described for an extended study of the brain's motivation circuitry in anxiety spectrum patients, with the aim of defining the specifics of circuit dysfunction in severe disorders. A sub-project explores the use of real-time fMRI feedback in circuit analysis and as a modality to up-regulate circuit function in the context of blunted affect.

  6. Blast-Induced Tinnitus and Elevated Central Auditory and Limbic Activity in Rats: A Manganese-Enhanced MRI and Behavioral Study.

    PubMed

    Ouyang, Jessica; Pace, Edward; Lepczyk, Laura; Kaufman, Michael; Zhang, Jessica; Perrine, Shane A; Zhang, Jinsheng

    2017-07-07

    Blast-induced tinitus is the number one service-connected disability that currently affects military personnel and veterans. To elucidate its underlying mechanisms, we subjected 13 Sprague Dawley adult rats to unilateral 14 psi blast exposure to induce tinnitus and measured auditory and limbic brain activity using manganese-enhanced MRI (MEMRI). Tinnitus was evaluated with a gap detection acoustic startle reflex paradigm, while hearing status was assessed with prepulse inhibition (PPI) and auditory brainstem responses (ABRs). Both anxiety and cognitive functioning were assessed using elevated plus maze and Morris water maze, respectively. Five weeks after blast exposure, 8 of the 13 blasted rats exhibited chronic tinnitus. While acoustic PPI remained intact and ABR thresholds recovered, the ABR wave P1-N1 amplitude reduction persisted in all blast-exposed rats. No differences in spatial cognition were observed, but blasted rats as a whole exhibited increased anxiety. MEMRI data revealed a bilateral increase in activity along the auditory pathway and in certain limbic regions of rats with tinnitus compared to age-matched controls. Taken together, our data suggest that while blast-induced tinnitus may play a role in auditory and limbic hyperactivity, the non-auditory effects of blast and potential traumatic brain injury may also exert an effect.

  7. Involvement of posterior cingulate cortex in ketamine-induced psychosis relevant behaviors in rats.

    PubMed

    Ma, Jingyi; Leung, L Stan

    2018-02-15

    The involvement of posterior cingulate cortex (PCC) on ketamine-induced psychosis relevant behaviors was investigated in rats. Bilateral infusion of muscimol, a GABA A receptor agonist, into the PCC significantly antagonized ketamine-induced deficit in prepulse inhibition of a startle reflex (PPI), deficit in gating of hippocampal auditory evoked potentials, and behavioral hyperlocomotion in a dose dependent manner. Local infusion of ketamine directly into the PCC also induced a PPI deficit. Systemic injection of ketamine (3mg/kg,s.c.) induced an increase in power of electrographic activity in the gamma band (30-100Hz) in both the PCC and the hippocampus; peak theta (4-10Hz) power was not significantly altered, but peak theta frequency was increased by ketamine. In order to exclude volume conduction from the hippocampus to PCC, inactivation of the hippocampus was made by local infusion of muscimol into the hippocampus prior to ketamine administration. Muscimol in the hippocampus effectively blocked ketamine-induced increase of gamma power in the hippocampus but not in the PCC, suggesting independent generation of gamma waves in PCC and hippocampus. It is suggested that the PCC is part of the brain network mediating ketamine-induced psychosis related behaviors. Copyright © 2017 Elsevier B.V. All rights reserved.

  8. Phasic vs Sustained Fear in Rats and Humans: Role of the Extended Amygdala in Fear vs Anxiety

    PubMed Central

    Davis, Michael; Walker, David L; Miles, Leigh; Grillon, Christian

    2010-01-01

    Data will be reviewed using the acoustic startle reflex in rats and humans based on our attempts to operationally define fear vs anxiety. Although the symptoms of fear and anxiety are very similar, they also differ. Fear is a generally adaptive state of apprehension that begins rapidly and dissipates quickly once the threat is removed (phasic fear). Anxiety is elicited by less specific and less predictable threats, or by those that are physically or psychologically more distant. Thus, anxiety is a more long-lasting state of apprehension (sustained fear). Rodent studies suggest that phasic fear is mediated by the amygdala, which sends outputs to the hypothalamus and brainstem to produce symptoms of fear. Sustained fear is also mediated by the amygdala, which releases corticotropin-releasing factor, a stress hormone that acts on receptors in the bed nucleus of the stria terminalis (BNST), a part of the so-called ‘extended amygdala.' The amygdala and BNST send outputs to the same hypothalamic and brainstem targets to produce phasic and sustained fear, respectively. In rats, sustained fear is more sensitive to anxiolytic drugs. In humans, symptoms of clinical anxiety are better detected in sustained rather than phasic fear paradigms. PMID:19693004

  9. Effects of the beta-blocker propranolol on cued and contextual fear conditioning in humans.

    PubMed

    Grillon, Christian; Cordova, Jeremy; Morgan, Charles Andrew; Charney, Dennis S; Davis, Michael

    2004-09-01

    Beta-adrenergic receptors are involved in the consolidation of emotional memories. Yet, a number of studies using Pavlovian cued fear conditioning have been unable to demonstrate an effect of beta-adrenergic blockade on acquisition or retention of fear conditioning. Evidence for the involvement of beta-adrenergic receptors in emotional memories comes mostly from studies using fear inhibitory avoidance in rodents. It is possible that fear inhibitory avoidance is more akin to contextual conditioning than to cued fear conditioning, suggesting that context conditioning may be disrupted by beta-adrenergic blockade. This study investigated the effects of the beta-adrenergic blocker propranolol on cued and contextual fear conditioning in humans. Subjects were given either placebo (n=15) or 40 mg propranolol (n=15) prior to differential cued conditioning. A week later, they were tested for retention of context and cued fear conditioning using physiological (startle reflex and electrodermal activity) and subjective measures of emotional arousal. The results were consistent with the hypothesis. The skin conductance level (SCL) and the subjective measure of arousal suggested reduced emotional arousal upon returning to the conditioning context in the propranolol group, compared to the placebo group. The acquisition and retention of cued fear conditioning were not affected by propranolol. These results suggest that beta-adrenergic receptors are involved in contextual fear conditioning.

  10. Behavioural effects of prenatal exposure to carbon disulphide and to aromatol in rats.

    PubMed

    Lehotzky, K; Szeberényi, J M; Ungváry, G; Kiss, A

    1985-01-01

    The neurotoxic effects of prenatal organosolvent inhalation were studied in rats, because of the expectation that a developing organism may be more sensitive than the adult to the induction of functional deficits. The aim was to determine whether prenatal exposure to the new organosolvent mixture, Aromatol, and the well known neurotoxic carbon disulphide, would impair reflex ontogeny or produce neurobehavioural dysfunctions in the offspring. Development of gait, motor coordination, and activity, avoidance learning and swimming were tested in the offspring of CFY rat mothers, exposed to CS2 inhalation (0, less than 10, 700 and 2000 mg/m3) and to Aromatol (0, 600, 1000 and 2000 mg/m3) on days 7-15 gestation. Prenatal CS2 inhalation induced dose related perinatal mortality of pups. Eye opening and the auditory startle were retarded. There were immature gait, motor incoordination, diminished open field activity and altered behavioural patterns on day 21 and 36 but they were nearly age-appropriate on day 90. As signs of disturbed learning ability, there were diminished performance and lengthened latency of the conditioned avoidance response, related to the concentrations administered. Contrary to expectations, prenatal Aromatol inhalation had no effect on maturation of gait, behaviour patterns, or learning ability.

  11. Pharmacologic Treatment with GABAB Receptor Agonist of Methamphetamine-Induced Cognitive Impairment in Mice

    PubMed Central

    Mizoguchi, Hiroyuki; Yamada, Kiyofumi

    2011-01-01

    Methamphetamine (METH) is a highly addictive drug, and addiction to METH has increased to epidemic proportions worldwide. Chronic use of METH causes psychiatric symptoms, such as hallucinations and delusions, and long-term cognitive deficits, which are indistinguishable from paranoid schizophrenia. The GABA receptor system is known to play a significant role in modulating the dopaminergic neuronal system, which is related to behavioral changes induced by drug abuse. However, few studies have investigated the effects of GABA receptor agonists on cognitive deficits induced by METH. In the present review, we show that baclofen, a GABA receptor agonist, is effective in treating METH-induced impairment of object recognition memory and prepulse inhibition (PPI) of the startle reflex, a measure of sensorimotor gating in mice. Acute and repeated treatment with METH induced a significant impairment of PPI. Furthermore, repeated but not acute treatment of METH resulted in a long-lasting deficit of object recognition memory. Baclofen, a GABAB receptor agonist, dose-dependently ameliorated the METH-induced PPI deficits and object recognition memory impairment in mice. On the other hand, THIP, a GABAA receptor agonist, had no effect on METH-induced cognitive deficits. These results suggest that GABAB receptors may constitute a putative new target in treating cognitive deficits in chronic METH users. PMID:21886573

  12. Modality of fear cues affects acoustic startle potentiation but not heart-rate response in patients with dental phobia

    PubMed Central

    Wannemüller, André; Sartory, Gudrun; Elsesser, Karin; Lohrmann, Thomas; Jöhren, Hans P.

    2015-01-01

    The acoustic startle response (SR) has consistently been shown to be enhanced by fear-arousing cross-modal background stimuli in phobics. Intra-modal fear-potentiation of acoustic SR was rarely investigated and generated inconsistent results. The present study compared the acoustic SR to phobia-related sounds with that to phobia-related pictures in 104 dental phobic patients and 22 controls. Acoustic background stimuli were dental treatment noises and birdsong and visual stimuli were dental treatment and neutral control pictures. Background stimuli were presented for 4 s, randomly followed by the administration of the startle stimulus. In addition to SR, heart-rate (HR) was recorded throughout the trials. Irrespective of their content, background pictures elicited greater SR than noises in both groups with a trend for phobic participants to show startle potentiation to phobia-related pictures but not noises. Unlike controls, phobics showed HR acceleration to both dental pictures and noises. HR acceleration of the phobia group was significantly positively correlated with SR in the noise condition only. The acoustic SR to phobia-related noises is likely to be inhibited by prolonged sensorimotor gating. PMID:25774142

  13. The Influence of Agreeableness and Ego Depletion on Emotional Responding.

    PubMed

    Finley, Anna J; Crowell, Adrienne L; Harmon-Jones, Eddie; Schmeichel, Brandon J

    2017-10-01

    Agreeable individuals report more intense withdrawal-oriented negative emotions across aversive situations. Two studies tested the hypothesis that self-regulatory depletion (i.e., ego depletion) moderates the relationship between trait Agreeableness and negative emotional responding. Ego depletion was manipulated using a writing task. Emotional responding was measured with startle eye-blink responses (Study 1, N = 71) and self-reported valence, arousal, and empathic concern (Study 2, N = 256) during emotional picture viewing. Trait Agreeableness was measured using a questionnaire. In Study 1, Agreeableness predicted especially large startle responses during aversive images and especially small startles during appetitive images. After exercising self-control, the relationship between startle magnitudes and Agreeableness decreased. In Study 2, Agreeableness predicted more empathic concern for aversive images, which in turn predicted heightened self-reported negative emotions. After exercising self-control, the relationship between Agreeableness and empathic concern decreased. Agreeable individuals exhibit heightened negative emotional responding. Ego depletion reduced the link between Agreeableness and negative emotional responding in Study 1 and moderated the indirect effect of Agreeableness on negative emotional responding via empathic concern in Study 2. Empathic concern appears to be a resource-intensive process underlying heightened responding to aversive stimuli among agreeable persons. © 2016 Wiley Periodicals, Inc.

  14. Startle Auditory Stimuli Enhance the Performance of Fast Dynamic Contractions

    PubMed Central

    Fernandez-Del-Olmo, Miguel; Río-Rodríguez, Dan; Iglesias-Soler, Eliseo; Acero, Rafael M.

    2014-01-01

    Fast reaction times and the ability to develop a high rate of force development (RFD) are crucial for sports performance. However, little is known regarding the relationship between these parameters. The aim of this study was to investigate the effects of auditory stimuli of different intensities on the performance of a concentric bench-press exercise. Concentric bench-presses were performed by thirteen trained subjects in response to three different conditions: a visual stimulus (VS); a visual stimulus accompanied by a non-startle auditory stimulus (AS); and a visual stimulus accompanied by a startle auditory stimulus (SS). Peak RFD, peak velocity, onset movement, movement duration and electromyography from pectoralis and tricep muscles were recorded. The SS condition induced an increase in the RFD and peak velocity and a reduction in the movement onset and duration, in comparison with the VS and AS condition. The onset activation of the pectoralis and tricep muscles was shorter for the SS than for the VS and AS conditions. These findings point out to specific enhancement effects of loud auditory stimulation on the rate of force development. This is of relevance since startle stimuli could be used to explore neural adaptations to resistance training. PMID:24489967

  15. Development of a New Technique to Assess Susceptibility to Predation Resulting from Sublethal Stresses (Indirect Mortality)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cada, G.F.

    2003-08-25

    Fish that pass through a hydroelectric turbine may not be killed directly, but may nonetheless experience sublethal stresses that will increase their susceptibility to predators (indirect mortality). There is a need to develop reliable tests for indirect mortality so that the full consequences of passage through turbines (and other routes around a hydroelectric dam) can be assessed. We evaluated a new technique for assessing indirect mortality, based on a behavioral response to a startling stimulus (akin to perceiving an approaching predator). We compare this technique to the standard predator preference test. The behavioral response is a rapid movement commonly referredmore » to as a startle response, escape response, or C-shape, based on the characteristic body position assumed by the fish. When viewed from above, a startled fish bends into a C-shape, then springs back and swims away in a direction different from its original orientation. This predator avoidance (escape) behavior can be compromised by sublethal stresses that temporarily stun or disorient the fish. We subjected striped shiners and fathead minnows to varying intensities of either turbulence (10-, 20- or 30-min) or 2-min exposures to a fish anesthetic (100 or 200 mg/L of tricaine methanesulfonate), and evaluated their subsequent behavior. Individual fish were given a startle stimulus and filmed with a high-speed video camera. Each fish was startled and filmed twice before being stressed, and then at 1-, 5-, 15-, and 30-min post-exposure. The resulting image files were analyzed for a variety of behavioral measures including: presence of a response, time to first reaction, duration of reaction, time to formation of maximum C-shape, time to completion of C-shape, and completeness of C-shape. The most immediate measure of potential changes in fish behavior was whether stressed fish exhibited a startle response. For striped shiners, the number of fish not responding to the stimulus was significantly different from controls at 1-min post-exposure and for fathead minnows at 1- and 5-min post-exposure. The greatest effects occurred with exposure to the fish anesthetic; in fathead minnows all of the recorded measures were significantly different from controls at 1-min and 5-min post-exposure at the 100 mg/L dose. For striped shiners all recorded behavioral measures were significantly different from controls at 1-min at the 200 and 100 mg/L doses and for selected behavioral measures at 5-min. Turbulence also had significant effects on striped shiner startle responses following 20- and 30-min exposures for all behavioral measures at 1-min. The patterns suggest that any effects on startle response due to turbulence or low doses of anesthetic are short-lived, but can be evaluated using the escape behavior technique. The most useful indication of changes in escape behavior in these tests was the simple reaction/no reaction to the startle stimulus. The startle response occurred reliably among unstressed fish, and was frequently reduced or eliminated in fish exposed to turbulence or anesthesia. The other behavioral parameters observed were often altered by the sublethal stresses as well. A standard predator preference test was also conducted with largemouth bass as the predators and fathead minnows as prey. In this test design, groups of 10 unstressed fish (controls) and 10 stressed fish were put in a tank with a predator. The stressed fathead minnows were exposed to turbulence or fish anesthetic. The predator was allowed to eat half of the prey, and the data were evaluated to determine whether predators consumed greater proportions of stressed minnows than control minnows. The predation test indicated that exposure to MS-222 resulted in significant predation in fathead minnows, but exposure to turbulence did not. This pattern was the same as seen in fathead minnows using the startle response (escape behavior) test. For the sublethal stresses we applied, evaluation of changes in fish escape behavior yielded results comparable to traditional predator preference tests. Because this fish behavior test is simpler and quicker to conduct than predator preference tests, it shows promise as a useful technique for assessing indirect mortality resulting from sublethal stresses.« less

  16. Psychopathy, startle blink modulation, and electrodermal reactivity in twin men

    PubMed Central

    BENNING, STEPHEN D.; PATRICK, CHRISTOPHER J.; IACONO, WILLIAM G.

    2008-01-01

    Psychopathy is a personality disorder with interpersonal–emotional and antisocial deviance facets. This study investigated these facets of psychopathy prospectively using normal-range personality traits in a community sample of young adult men who completed a picture-viewing task that included startle blink and skin conductance measures, like tasks used to study psychopathy in incarcerated men. Consistent with prior research, scores on the interpersonal–emotional facet of psychopathy (“fearless dominance”) were associated with deficient fear-potentiated startle. Conversely, scores on the social deviance facet of psychopathy (“impulsive antisociality”) were associated with smaller overall skin conductance magnitudes. Participants high in fearless dominance also exhibited deficient skin conductance magnitudes specifically to aversive pictures. Findings encourage further investigation of psychopathy and its etiology in community samples. PMID:16364071

  17. The ovine fetal endocrine reflex responses to haemorrhage are not mediated by cardiac nerves

    PubMed Central

    Wood, Charles E

    2002-01-01

    This study was designed to test the hypothesis that cardiac receptors tonically inhibit the secretion of renin, arginine vasopressin (AVP) and adrenocorticotropic hormone (ACTH) in late-gestation fetal sheep. Eight chronically catheterised fetal sheep between 122 and 134 days gestation were subjected to injection or infusion of saline or 4 % procaine into the pericardial space. Fetal blood pressure and heart rate were monitored and fetal blood samples were drawn to measure the response to these injections. Injection of procaine into the pericardial space effectively blocked cardiac nerves, as evidenced by a reduction in the variability of fetal heart rate and by the blockade of reflex reductions in fetal heart rate after intravenous injection of phenylephrine (an α-adrenergic agonist which raises blood pressure). Injection of saline had no discernable effects on any of the measured variables. A single injection of procaine, followed by a slow infusion, produced a transient blockade of cardiac nerves. Multiple injections of procaine produced a sustained blockade of cardiac nerves and a sustained rise in fetal plasma renin activity and ACTH. In none of the experiments did procaine significantly alter fetal plasma AVP concentrations. In 11 fetuses between 121 and 134 days gestation, we combined the cardiac nerve blockade with slow haemorrhage to test the cardiac nerves as mediators of the endocrine response to haemorrhage in utero. Cardiac nerve blockade exaggerated the fetal blood gas response to haemorrhage somewhat but did not significantly alter the magnitude of the ACTH, AVP, or plasma renin activity response to haemorrhage. We conclude that cardiac nerves in the late-gestation fetal sheep have minor influences on plasma renin activity and ACTH in normovolaemic fetuses, but that changes in cardiac nerve activity do not mediate the endocrine responsiveness to haemorrhage. PMID:12042365

  18. High dietary phosphate intake induces hypertension and augments exercise pressor reflex function in rats.

    PubMed

    Mizuno, Masaki; Mitchell, Jere H; Crawford, Scott; Huang, Chou-Long; Maalouf, Naim; Hu, Ming-Chang; Moe, Orson W; Smith, Scott A; Vongpatanasin, Wanpen

    2016-07-01

    An increasing number of studies have linked high dietary phosphate (Pi) intake to hypertension. It is well established that the rise in sympathetic nerve activity (SNA) and blood pressure (BP) during physical exertion is exaggerated in many forms of hypertension, which are primarily mediated by an overactive skeletal muscle exercise pressor reflex (EPR). However, it remains unknown whether high dietary Pi intake potentiates the EPR-mediated SNA and BP response to exercise. Accordingly, we measured renal SNA (RSNA) and mean BP (MBP) in normotensive Sprague-Dawley rats fed a normal Pi diet (0.6%, n = 13) or high Pi diet (1.2%, n = 13) for 3 mo. As previously reported, we found that resting BP was significantly increased by 1.2% Pi diet in both conscious and anesthetized animals. Activation of the EPR by electrically induced hindlimb contraction triggered greater increases in ΔRSNA and ΔMBP in the 1.2% compared with 0.6% Pi group (126 ± 25 vs. 42 ± 9%; 44 ± 5 vs. 14 ± 2 mmHg, respectively, P < 0.01). Activation of the muscle mechanoreflex, a component of the EPR, by passively stretching hindlimb muscle also evoked greater increases in ΔRSNA and ΔMBP in the 1.2% compared with 0.6% Pi group (109 ± 27 vs. 24 ± 7%, 38 ± 7 vs. 8 ± 2 mmHg, respectively, P < 0.01). A similar response was produced by hindlimb intra-arterial capsaicin administration to stimulate the metaboreflex arm of the EPR. Thus, our data demonstrate a novel action of dietary Pi loading in augmenting EPR function through overactivation of both the muscle mechanoreflex and metaboreflex. Copyright © 2016 the American Physiological Society.

  19. Ethylene Is Not Responsible for Phytochrome-Mediated Apical Hook Exaggeration in Tomato

    PubMed Central

    Takahashi-Asami, Miki; Shichijo, Chizuko; Tsurumi, Seiji; Hashimoto, Tohru

    2016-01-01

    The apical hook of tomato seedlings is exaggerated by phytochrome actions, while in other species such as bean, pea and Arabidopsis, the hook is exaggerated by ethylene and opens by phytochrome actions. The present study was aimed to clarify mainly whether ethylene is responsible for the phytochrome-mediated hook exaggeration of tomato seedlings. Dark-grown 5-day-old seedlings were subjected to various ways of ethylene application in the dark as well as under the actions of red (R) or far-red light (FR). The ethylene emitted by seedlings was also quantified relative to hook exaggeration. The results show: Ambient ethylene, up-to about 1.0 μL L-1, suppressed (opened) the hooks formed in the dark as well as the ones exaggerated by R or FR, while at 3.0–10 μL L-1 it enhanced (closed) the hook only slightly as compared with the most-suppressed level at about 1.0 μL L-1. Treatment with 1-aminocyclopropane-1-carboxylic acid (ACC), the immediate precursor of ethylene biosynthesis, did not enhance the hook, only mimicking the suppressive effects of ambient ethylene. The biosynthesis inhibitor, CoCl2 or aminoethoxyvinylglycine, enhanced hook curvature, and the enhancement was canceled by supplement of ethylene below 1.0 μL L-1. Auxin transport inhibitor, N-1-naphthylphthalamic acid, by contrast, suppressed curvature markedly without altering ethylene emission. The effects of the above-stated treatments did not differentiate qualitatively among the R-, FR-irradiated seedlings and dark control so as to explain phytochrome-mediated hook exaggeration. In addition, ethylene emission by seedlings was affected neither by R nor FR at such fluences as to cause hook exaggeration. In conclusion, (1) ethylene suppresses not only the light-exaggerated hook, but also the dark-formed one; (2) ethylene emission is not affected by R or FR, and also not correlated with the hook exaggerations; thus ethylene is not responsible for the hook exaggeration in tomato; and (3) auxin is essential for the maintenance and development of the hook in tomato as is the case in other species lacking phytochrome-mediated hook exaggeration. A possible mechanism of phytochrome action for hook exaggeration is discussed. PMID:27933077

  20. A study evaluating if targeted training for startle effect can improve pilot reactions in handling unexpected situations in a flight simulator

    NASA Astrophysics Data System (ADS)

    Gillen, Michael William

    Recent airline accidents point to a crew's failure to make correct and timely decisions following a sudden and unusual event that startled the crew. This study sought to determine if targeted training could augment decision making during a startle event. Following a startle event cognitive function is impaired for a short duration of time (30-90 seconds). In aviation, critical decisions are often required to be made during this brief, but critical, time frame. A total of 40 volunteer crews (80 individual pilots) were solicited from a global U.S. passenger airline. Crews were briefed that they would fly a profile in the simulator but were not made aware of what the profile would entail. The study participants were asked to complete a survey on their background and flying preferences. Every other crew received training on how to handle a startle event. The training consisted of a briefing and simulator practice. Crew members (subjects) were either presented a low altitude or high altitude scenario to fly in a full-flight simulator. The maneuver scenarios were analyzed using a series of one-way ANOVAs, t-tests and regression for the main effect of training on crew performance. The data indicated that the trained crews flew the maneuver profiles significantly better than the untrained crews and significantly better than the Federal Aviation Administration (FAA) Airline Transport Pilot (ATP) standards. Each scenario's sub factors were analyzed using regression to examine for specific predictors of performance. The results indicate that in the case of the high altitude profile, problem diagnosis was a significant factor, in the low altitude profile, time management was also a significant factor. These predicators can be useful in further targeting training. The study's findings suggest that targeted training can help crews manage a startle event, leading to a potential reduction of inflight loss of control accidents. The training was broad and intended to cover an overall aircraft handling approach rather than being aircraft specific. Inclusion of this type of training by airlines has the potential to better aid crews in handling sudden and unusual events.

  1. Exaggerated perception of facial expressions is increased in individuals with schizotypal traits

    PubMed Central

    Uono, Shota; Sato, Wataru; Toichi, Motomi

    2015-01-01

    Emotional facial expressions are indispensable communicative tools, and social interactions involving facial expressions are impaired in some psychiatric disorders. Recent studies revealed that the perception of dynamic facial expressions was exaggerated in normal participants, and this exaggerated perception is weakened in autism spectrum disorder (ASD). Based on the notion that ASD and schizophrenia spectrum disorder are at two extremes of the continuum with respect to social impairment, we hypothesized that schizophrenic characteristics would strengthen the exaggerated perception of dynamic facial expressions. To test this hypothesis, we investigated the relationship between the perception of facial expressions and schizotypal traits in a normal population. We presented dynamic and static facial expressions, and asked participants to change an emotional face display to match the perceived final image. The presence of schizotypal traits was positively correlated with the degree of exaggeration for dynamic, as well as static, facial expressions. Among its subscales, the paranoia trait was positively correlated with the exaggerated perception of facial expressions. These results suggest that schizotypal traits, specifically the tendency to over-attribute mental states to others, exaggerate the perception of emotional facial expressions. PMID:26135081

  2. Exaggerated perception of facial expressions is increased in individuals with schizotypal traits.

    PubMed

    Uono, Shota; Sato, Wataru; Toichi, Motomi

    2015-07-02

    Emotional facial expressions are indispensable communicative tools, and social interactions involving facial expressions are impaired in some psychiatric disorders. Recent studies revealed that the perception of dynamic facial expressions was exaggerated in normal participants, and this exaggerated perception is weakened in autism spectrum disorder (ASD). Based on the notion that ASD and schizophrenia spectrum disorder are at two extremes of the continuum with respect to social impairment, we hypothesized that schizophrenic characteristics would strengthen the exaggerated perception of dynamic facial expressions. To test this hypothesis, we investigated the relationship between the perception of facial expressions and schizotypal traits in a normal population. We presented dynamic and static facial expressions, and asked participants to change an emotional face display to match the perceived final image. The presence of schizotypal traits was positively correlated with the degree of exaggeration for dynamic, as well as static, facial expressions. Among its subscales, the paranoia trait was positively correlated with the exaggerated perception of facial expressions. These results suggest that schizotypal traits, specifically the tendency to over-attribute mental states to others, exaggerate the perception of emotional facial expressions.

  3. Probabilistic information transmission in a network of coupled oscillators reveals speed-accuracy trade-off in responding to threats

    PubMed Central

    Chicoli, Amanda; Paley, Derek A.

    2016-01-01

    Individuals in a group may obtain information from other group members about the environment, including the location of a food source or the presence of a predator. Here, we model how information spreads in a group using a susceptible-infected-removed epidemic model. We apply this model to a simulated shoal of fish using the motion dynamics of a coupled oscillator model, in order to test the biological hypothesis that polarized or aligned shoaling leads to faster and more accurate escape responses. The contributions of this study are the (i) application of a probabilistic model of epidemics to the study of collective animal behavior; (ii) testing the biological hypothesis that group cohesion improves predator escape; (iii) quantification of the effect of social cues on startle propagation; and (iv) investigation of the variation in response based on network connectivity. We find that when perfectly aligned individuals in a group are startled, there is a rapid escape by individuals that directly detect the threat, as well as by individuals responding to their neighbors. However, individuals that are not startled do not head away from the threat. In startled groups that are randomly oriented, there is a rapid, accurate response by individuals that directly detect the threat, followed by less accurate responses by individuals responding to neighbor cues. Over the simulation duration, however, even unstartled individuals head away from the threat. This study illustrates a potential speed-accuracy trade-off in the startle response of animal groups, in agreement with several previous experimental studies. Additionally, the model can be applied to a variety of group decision-making processes, including those involving higher-dimensional motion. PMID:27907996

  4. Probabilistic information transmission in a network of coupled oscillators reveals speed-accuracy trade-off in responding to threats

    NASA Astrophysics Data System (ADS)

    Chicoli, Amanda; Paley, Derek A.

    2016-11-01

    Individuals in a group may obtain information from other group members about the environment, including the location of a food source or the presence of a predator. Here, we model how information spreads in a group using a susceptible-infected-removed epidemic model. We apply this model to a simulated shoal of fish using the motion dynamics of a coupled oscillator model, in order to test the biological hypothesis that polarized or aligned shoaling leads to faster and more accurate escape responses. The contributions of this study are the (i) application of a probabilistic model of epidemics to the study of collective animal behavior; (ii) testing the biological hypothesis that group cohesion improves predator escape; (iii) quantification of the effect of social cues on startle propagation; and (iv) investigation of the variation in response based on network connectivity. We find that when perfectly aligned individuals in a group are startled, there is a rapid escape by individuals that directly detect the threat, as well as by individuals responding to their neighbors. However, individuals that are not startled do not head away from the threat. In startled groups that are randomly oriented, there is a rapid, accurate response by individuals that directly detect the threat, followed by less accurate responses by individuals responding to neighbor cues. Over the simulation duration, however, even unstartled individuals head away from the threat. This study illustrates a potential speed-accuracy trade-off in the startle response of animal groups, in agreement with several previous experimental studies. Additionally, the model can be applied to a variety of group decision-making processes, including those involving higher-dimensional motion.

  5. Probabilistic information transmission in a network of coupled oscillators reveals speed-accuracy trade-off in responding to threats.

    PubMed

    Chicoli, Amanda; Paley, Derek A

    2016-11-01

    Individuals in a group may obtain information from other group members about the environment, including the location of a food source or the presence of a predator. Here, we model how information spreads in a group using a susceptible-infected-removed epidemic model. We apply this model to a simulated shoal of fish using the motion dynamics of a coupled oscillator model, in order to test the biological hypothesis that polarized or aligned shoaling leads to faster and more accurate escape responses. The contributions of this study are the (i) application of a probabilistic model of epidemics to the study of collective animal behavior; (ii) testing the biological hypothesis that group cohesion improves predator escape; (iii) quantification of the effect of social cues on startle propagation; and (iv) investigation of the variation in response based on network connectivity. We find that when perfectly aligned individuals in a group are startled, there is a rapid escape by individuals that directly detect the threat, as well as by individuals responding to their neighbors. However, individuals that are not startled do not head away from the threat. In startled groups that are randomly oriented, there is a rapid, accurate response by individuals that directly detect the threat, followed by less accurate responses by individuals responding to neighbor cues. Over the simulation duration, however, even unstartled individuals head away from the threat. This study illustrates a potential speed-accuracy trade-off in the startle response of animal groups, in agreement with several previous experimental studies. Additionally, the model can be applied to a variety of group decision-making processes, including those involving higher-dimensional motion.

  6. Effect of D-amphetamine on emotion-potentiated startle in healthy humans: implications for psychopathy and antisocial behaviour.

    PubMed

    Corr, Philip J; Kumari, Veena

    2013-01-01

    An emerging literature associates increased dopaminergic neurotransmission with altered brain response to aversive stimuli in humans. The direction of the effect of dopamine on aversive motivation, however, remains unclear, with some studies reporting increased and others decreased amygdala activation to aversive stimuli following the administration of dopamine agonists. Potentiation of the startle response by aversive foreground stimuli provides an objective and directional measure of emotional reactivity and is considered useful as an index of the emotional effects of different drugs. We investigated the effects of two doses of D-amphetamine (5 and 10 mg), compared to placebo, for the first time to our knowledge, using the affect-startle paradigm. The study employed a between-subjects, double-blind design, with three conditions: 0 mg (placebo), and 5 and 10 mg D-amphetamine (initially n = 20/group; final sample: n = 18, placebo; n = 18, 5 mg; n = 16, 10 mg). After drug/placebo administration, startle responses (eyeblinks) to intermittent noise probes were measured during viewing of pleasant, neutral and unpleasant images. Participants' general and specific impulsivity and fear-related personality traits were also assessed. The three groups were comparable on personality traits. Only the placebo group showed significant startle potentiation by unpleasant, relative to neutral, images; this effect was absent in both 5- and 10-mg D-amphetamine groups (i.e. the same effect of D-amphetamine observed at different doses in different people). Our findings demonstrate a reduced aversive emotional response under D-amphetamine and may help to account for the known link between the use of psychostimulant drugs and antisocial behaviour.

  7. Does trans‐spinal and local DC polarization affect presynaptic inhibition and post‐activation depression?

    PubMed Central

    Kaczmarek, D.; Ristikankare, J.

    2017-01-01

    Key points Trans‐spinal polarization was recently introduced as a means to improve deficient spinal functions. However, only a few attempts have been made to examine the mechanisms underlying DC actions. We have now examined the effects of DC on two spinal modulatory systems, presynaptic inhibition and post‐activation depression, considering whether they might weaken exaggerated spinal reflexes and enhance excessively weakened ones.Direct current effects were evoked by using local intraspinal DC application (0.3–0.4 μA) in deeply anaesthetized rats and were compared with the effects of trans‐spinal polarization (0.8–1.0 mA).Effects of local intraspinal DC were found to be polarity dependent, as locally applied cathodal polarization enhanced presynaptic inhibition and post‐activation depression, whereas anodal polarization weakened them. In contrast, both cathodal and anodal trans‐spinal polarization facilitated them.The results suggest some common DC‐sensitive mechanisms of presynaptic inhibition and post‐activation depression, because both were facilitated or depressed by DC in parallel. Abstract Direct current (DC) polarization has been demonstrated to alleviate the effects of various deficits in the operation of the central nervous system. However, the effects of trans‐spinal DC stimulation (tsDCS) have been investigated less extensively than the effects of transcranial DC stimulation, and their cellular mechanisms have not been elucidated. The main objectives of this study were, therefore, to extend our previous analysis of DC effects on the excitability of primary afferents and synaptic transmission by examining the effects of DC on two spinal modulatory feedback systems, presynaptic inhibition and post‐activation depression, in an anaesthetized rat preparation. Other objectives were to compare the effects of locally and trans‐spinally applied DC (locDC and tsDCS). Local polarization at the sites of terminal branching of afferent fibres was found to induce polarity‐dependent actions on presynaptic inhibition and post‐activation depression, as cathodal locDC enhanced them and anodal locDC depressed them. In contrast, tsDCS modulated presynaptic inhibition and post‐activation depression in a polarity‐independent fashion because both cathodal and anodal tsDCS facilitated them. The results show that the local presynaptic actions of DC might counteract both excessively strong and excessively weak monosynaptic actions of group Ia and cutaneous afferents. However, they indicate that trans‐spinally applied DC might counteract the exaggerated spinal reflexes but have an adverse effect on pathologically weakened spinal activity by additional presynaptic weakening. The results are also relevant for the analysis of the basic properties of presynaptic inhibition and post‐activation depression because they indicate that some common DC‐sensitive mechanisms contribute to them. PMID:27891626

  8. CGRP Antagonist Infused into the Bed Nucleus of the Stria Terminalis Impairs the Acquisition and Expression of Context but Not Discretely Cued Fear

    ERIC Educational Resources Information Center

    Sink, Kelly S.; Davis, Michael; Walker, David L.

    2013-01-01

    Calcitonin gene-related peptide (CGRP) infusions into the bed nucleus of the stria terminalis (BNST) evoke increases in startle amplitude and increases in anxiety-like behavior in the plus maze. Conversely, intra-BNST infusions of the CGRP antagonist CGRP[subscript 8-37] block unconditioned startle increases produced by fox odor. Here we evaluate…

  9. Psychophysiological assessment of emotional processing in patients with borderline personality disorder with and without comorbid substance use.

    PubMed

    Baschnagel, Joseph S; Coffey, Scott F; Hawk, Larry W; Schumacher, Julie A; Holloman, Garland

    2013-07-01

    This study assessed physiological measures for the study of emotional dysregulation associated with borderline personality disorder (BPD). Two patient groups, the first comprised of individuals with BPD only (n = 16) and the second, individuals with BPD and co-occurring substance-use disorder (SUD; n = 35), and a group of healthy controls (n = 45) were shown standardized pictures of varying valance and arousal levels. Affective modification of startle eye-blink responses, heart rate, facial electromyography (EMG, including corrugator and zygomatic activity), and skin-conductance responses were collected during picture presentation and during a brief recovery period. Startle data during picture presentation indicated a trend toward the expected increase in startle response magnitude to negative stimuli, to be moderated by group status, with patients with BPD-SUD showing a lack of affective modification and the BPD-only group showing similar affective modification to that of controls. Heart-rate data suggested lower reactivity to negative pictures for both patient groups. Differences in facial EMG responses did not provide a clear pattern, and skin-conductance responses were not significantly different between groups. The data did not suggest differences between groups in recovery from exposure to the emotional stimuli. The startle and heart-rate data suggest a possible hyporeactivity to emotional stimuli in BPD.

  10. Effects of stress on human mating preferences: stressed individuals prefer dissimilar mates

    PubMed Central

    Lass-Hennemann, Johanna; Deuter, Christian E.; Kuehl, Linn K.; Schulz, André; Blumenthal, Terry D.; Schachinger, Hartmut

    2010-01-01

    Although humans usually prefer mates that resemble themselves, mating preferences can vary with context. Stress has been shown to alter mating preferences in animals, but the effects of stress on human mating preferences are unknown. Here, we investigated whether stress alters men's preference for self-resembling mates. Participants first underwent a cold-pressor test (stress induction) or a control procedure. Then, participants viewed either neutral pictures or pictures of erotic female nudes whose facial characteristics were computer-modified to resemble either the participant or another participant, or were not modified, while startle eyeblink responses were elicited by noise probes. Erotic pictures were rated as being pleasant, and reduced startle magnitude compared with neutral pictures. In the control group, startle magnitude was smaller during foreground presentation of photographs of self-resembling female nudes compared with other-resembling female nudes and non-manipulated female nudes, indicating a higher approach motivation to self-resembling mates. In the stress group, startle magnitude was larger during foreground presentation of self-resembling female nudes compared with other-resembling female nudes and non-manipulated female nudes, indicating a higher approach motivation to dissimilar mates. Our findings show that stress affects human mating preferences: unstressed individuals showed the expected preference for similar mates, but stressed individuals seem to prefer dissimilar mates. PMID:20219732

  11. Audiological Evaluation for Exaggerated Hearing Level.

    ERIC Educational Resources Information Center

    Engelberg, Marvin W.

    Described are clinical techniques and procedures useful in evaluations for exaggerated hearing levels. Discussed are considerations of the audiologist, his equipment, and erroneous findings; patient cooperation, anticipated hearing handicaps, detection of exaggeration, and order of test presentation; voluntary aid conduction audiometry,…

  12. The handicap process favors exaggerated, rather than reduced, sexual ornaments.

    PubMed

    Tazzyman, Samuel J; Iwasa, Yoh; Pomiankowski, Andrew

    2014-09-01

    Why are traits that function as secondary sexual ornaments generally exaggerated in size compared to the naturally selected optimum, and not reduced? Because they deviate from the naturally selected optimum, traits that are reduced in size will handicap their bearer, and could thus provide an honest signal of quality to a potential mate. Thus if secondary sexual ornaments evolve via the handicap process, current theory suggests that reduced ornamentation should be as frequent as exaggerated ornamentation, but this is not the case. To try to explain this discrepancy, we analyze a simple model of the handicap process. Our analysis shows that asymmetries in costs of preference or ornament with regard to exaggeration and reduction cannot fully explain the imbalance. Rather, the bias toward exaggeration can be best explained if either the signaling efficacy or the condition dependence of a trait increases with size. Under these circumstances, evolution always leads to more extreme exaggeration than reduction: although the two should occur just as frequently, exaggerated secondary sexual ornaments are likely to be further removed from the naturally selected optimum than reduced ornaments. © 2014 The Authors. Evolution published by Wiley Periodicals, Inc. on behalf of The Society for the Study of Evolution.

  13. Magnetic Resonance and Spectroscopy of the Human Brain in Gulf War Illness

    DTIC Science & Technology

    2005-08-01

    relationship between GWI and stress . Acoustic startle is a hallmark feature of PTSD . Past studies have shown that PTSD subjects have an increased startle...brain, neuro- psychological testing, audio vestibular testing, PTSD 16. SECURITY CLASSIFICATION OF: 17. LIMITATION 18. NUMBER 19a. NAME OF...such as PTSD , depression, or alcohol abuse. 2) Reduced NAA in the basal ganglia and pons correlates with central nervous system signs and symptoms of

  14. Axonal conduction block as a novel mechanism of prepulse inhibition

    PubMed Central

    Lee, A. H.; Megalou, E. V.; Wang, J.; Frost, W.N.

    2012-01-01

    In prepulse inhibition (PPI), the startle response to a strong, unexpected stimulus is diminished if shortly preceded by the onset of a different stimulus. Because deficits in this inhibitory gating process are a hallmark feature of schizophrenia and certain other psychiatric disorders, the mechanisms underlying PPI are of significant interest. We previously used the invertebrate model system Tritonia diomedea to identify the first cellular mechanism for PPI–presynaptic inhibition of transmitter release from the afferent neurons (S-cells) mediating the startle response. Here we report the involvement of a second, more powerful PPI mechanism in Tritonia: prepulse-elicited conduction block of action potentials traveling in the startle pathway caused by identified inhibitory interneurons activated by the prepulse. This example of axo-axonic conduction block–neurons in one pathway inhibiting the propagation of action potentials in another–represents a novel and potent mechanism of sensory gating in prepulse inhibition. PMID:23115164

  15. Dependence of the Startle Response on Temporal and Spectral Characteristics of Acoustic Modulatory Influences in Rats and Gerbils

    PubMed Central

    Steube, Natalie; Nowotny, Manuela; Pilz, Peter K. D.; Gaese, Bernhard H.

    2016-01-01

    The acoustic startle response (ASR) and its modulation by non-startling prepulses, presented shortly before the startle-eliciting stimulus, is a broadly applied test paradigm to determine changes in neural processing related to auditory or psychiatric disorders. Modulation by a gap in background noise as a prepulse is especially used for tinnitus assessment. However, the timing and frequency-related aspects of prepulses are not fully understood. The present study aims to investigate temporal and spectral characteristics of acoustic stimuli that modulate the ASR in rats and gerbils. For noise-burst prepulses, inhibition was frequency-independent in gerbils in the test range between 4 and 18 kHz. Prepulse inhibition (PPI) by noise-bursts in rats was constant in a comparable range (8–22 kHz), but lower outside this range. Purely temporal aspects of prepulse–startle-interactions were investigated for gap-prepulses focusing mainly on gap duration. While very short gaps had no (rats) or slightly facilitatory (gerbils) influence on the ASR, longer gaps always had a strong inhibitory effect. Inhibition increased with durations up to 75 ms and remained at a high level of inhibition for durations up to 1000 ms for both, rats and gerbils. Determining spectral influences on gap-prepulse inhibition (gap-PPI) revealed that gerbils were unaffected in the limited frequency range tested (4–18 kHz). The more detailed analysis in rats revealed a variety of frequency-dependent effects. Gaps in pure-tone background elicited constant and high inhibition (around 75%) over a broad frequency range (4–32 kHz). For gaps in noise-bands, on the other hand, a clear frequency-dependency was found: inhibition was around 50% at lower frequencies (6–14 kHz) and around 70% at high frequencies (16–20 kHz). This pattern of frequency-dependency in rats was specifically resulting from the inhibitory effect by the gaps, as revealed by detailed analysis of the underlying startle amplitudes. An interaction of temporal and spectral influences, finally, resulted in higher inhibition for 500 ms gaps than for 75 ms gaps at all frequencies tested. Improved prepulse paradigms based on these results are well suited to quantify the consequences of central processing disorders. PMID:27445728

  16. Exaggerated Claims for Interactive Stories

    NASA Astrophysics Data System (ADS)

    Thue, David; Bulitko, Vadim; Spetch, Marcia; Webb, Michael

    As advertising becomes more crucial to video games' success, developers risk promoting their products beyond the features that they can actually include. For features of interactive storytelling, the effects of making such exaggerations are not well known, as reports from industry have been anecdotal at best. In this paper, we explore the effects of making exaggerated claims for interactive stories, in the context of the theory of advertising. Results from a human user study show that female players find linear and branching stories to be significantly less enjoyable when they are advertised with exaggerated claims.

  17. Major Depression Is Not Associated with Blunting of Aversive Responses; Evidence for Enhanced Anxious Anticipation

    PubMed Central

    Grillon, Christian; Franco-Chaves, Jose A.; Mateus, Camilo F.; Ionescu, Dawn F.; Zarate, Carlos A.

    2013-01-01

    According to the emotion-context insensitivity (ECI) hypothesis, major depressive disorder (MDD) is associated with a diminished ability to react emotionally to positive stimuli and with blunting of defensive responses to threat. That defensive responses are blunted in MDD seems inconsistent with the conceptualization and diagnostic nosology of MDD. The present study tested the ECI hypothesis in MDD using a threat of shock paradigm. Twenty-eight patients with MDD (35.5±10.4 years) were compared with 28 controls (35.1±7.4 years). Participants were exposed to three conditions: no shock, predictable shock, and unpredictable shock. Startle magnitude was used to assess defensive responses. Inconsistent with the ECI hypothesis, startle potentiation to predictable and unpredictable shock was not reduced in the MDD group. Rather, MDD patients showed elevated startle throughout testing as well as increased contextual anxiety during the placement of the shock electrodes and in the predictable condition. A regression analysis indicated that illness duration and Beck depression inventory scores explained 37% (p<.005) of the variance in patients’ startle reactivity. MDD is not associated with emotional blunting but rather enhanced defensive reactivity during anticipation of harm. These results do not support a strong version of the ECI hypothesis. Understanding the nature of stimuli or situations that lead to blunted or enhanced defensive reactivity will provide better insight into dysfunctional emotional experience in MDD. PMID:23951057

  18. Viewing loved faces inhibits defense reactions: a health-promotion mechanism?

    PubMed

    Guerra, Pedro; Sánchez-Adam, Alicia; Anllo-Vento, Lourdes; Ramírez, Isabel; Vila, Jaime

    2012-01-01

    We have known for decades that social support is associated with positive health outcomes. And yet, the neurophysiological mechanisms underlying this association remain poorly understood. The link between social support and positive health outcomes is likely to depend on the neurophysiological regulatory mechanisms underlying reward and defensive reactions. The present study examines the hypothesis that emotional social support (love) provides safety cues that activate the appetitive reward system and simultaneously inhibit defense reactions. Using the startle probe paradigm, 54 undergraduate students (24 men) viewed black and white photographs of loved (romantic partner, father, mother, and best friend), neutral (unknown), and unpleasant (mutilated) faces. Eye-blink startle, zygomatic major activity, heart rate, and skin conductance responses to the faces, together with subjective ratings of valence, arousal, and dominance, were obtained. Viewing loved faces induced a marked inhibition of the eye-blink startle response accompanied by a pattern of zygomatic, heart rate, skin conductance, and subjective changes indicative of an intense positive emotional response. Effects were similar for men and women, but the startle inhibition and the zygomatic response were larger in female participants. A comparison between the faces of the romantic partner and the parent who shares the partner's gender further suggests that this effect is not attributable to familiarity or arousal. We conclude that this inhibitory capacity may contribute to the health benefits associated with social support.

  19. Contextual-specificity of short-delay extinction in humans: Renewal of fear-potentiated startle in a virtual environment

    PubMed Central

    Alvarez, Ruben P.; Johnson, Linda; Grillon, Christian

    2007-01-01

    A recent fear-potentiated startle study in rodents suggested that extinction was not context dependent when extinction was conducted after a short delay following acquisition, suggesting that extinction can lead to erasure of fear learning in some circumstances. The main objective of this study was to attempt to replicate these findings in humans by examining the context specificity of short-delay extinction in an ABA renewal procedure using virtual reality environments. A second objective was to examine whether renewal, if any, would be influenced by context conditioning. Subjects underwent differential aversive conditioning in virtual context A, which was immediately followed by extinction in virtual context B. Extinction was followed by tests of renewal in context A and B, with the order counterbalanced across subjects. Results showed that extinction was context dependent. Evidence for renewal was established using fear-potentiated startle as well as skin conductance and fear ratings. In addition, although contextual anxiety was greater in the acquisition context than in the extinction context during renewal, as assessed with startle, context conditioning did not influence the renewal effect. These data do not support the view that extinction conducted shortly after acquisition is context independent. Hence, they do not provide evidence that extinction can lead to erasure of a fear memory established via Pavlovian conditioning. PMID:17412963

  20. Blood flow restriction training and the exercise pressor reflex: a call for concern.

    PubMed

    Spranger, Marty D; Krishnan, Abhinav C; Levy, Phillip D; O'Leary, Donal S; Smith, Scott A

    2015-11-01

    Blood flow restriction (BFR) training (also known as Kaatsu training) is an increasingly common practice employed during resistance exercise by athletes attempting to enhance skeletal muscle mass and strength. During BFR training, blood flow to the exercising muscle is mechanically restricted by placing flexible pressurizing cuffs around the active limb proximal to the working muscle. This maneuver results in the accumulation of metabolites (e.g., protons and lactic acid) in the muscle interstitium that increase muscle force and promote muscle growth. Therefore, the premise of BFR training is to simulate and receive the benefits of high-intensity resistance exercise while merely performing low-intensity resistance exercise. This technique has also been purported to provide health benefits to the elderly, individuals recovering from joint injuries, and patients undergoing cardiac rehabilitation. Since the seminal work of Alam and Smirk in the 1930s, it has been well established that reductions in blood flow to exercising muscle engage the exercise pressor reflex (EPR), a reflex that significantly contributes to the autonomic cardiovascular response to exercise. However, the EPR and its likely contribution to the BFR-mediated cardiovascular response to exercise is glaringly missing from the scientific literature. Inasmuch as the EPR has been shown to generate exaggerated increases in sympathetic nerve activity in disease states such as hypertension (HTN), heart failure (HF), and peripheral artery disease (PAD), concerns are raised that BFR training can be used safely for the rehabilitation of patients with cardiovascular disease, as has been suggested. Abnormal BFR-induced and EPR-mediated cardiovascular complications generated during exercise could precipitate adverse cardiovascular or cerebrovascular events (e.g., cardiac arrhythmia, myocardial infarction, stroke and sudden cardiac death). Moreover, although altered EPR function in HTN, HF, and PAD underlies our concern for the widespread implementation of BFR, use of this training mechanism may also have negative consequences in the absence of disease. That is, even normal, healthy individuals performing resistance training exercise with BFR are potentially at increased risk for deleterious cardiovascular events. This review provides a brief yet detailed overview of the mechanisms underlying the autonomic cardiovascular response to exercise with BFR. A more complete understanding of the consequences of BFR training is needed before this technique is passively explored by the layman athlete or prescribed by a health care professional. Copyright © 2015 the American Physiological Society.

  1. A scoring system predicting the clinical course of CLPB defect based on the foetal and neonatal presentation of 31 patients.

    PubMed

    Pronicka, Ewa; Ropacka-Lesiak, Mariola; Trubicka, Joanna; Pajdowska, Magdalena; Linke, Markus; Ostergaard, Elsebet; Saunders, Carol; Horsch, Sandra; van Karnebeek, Clara; Yaplito-Lee, Joy; Distelmaier, Felix; Õunap, Katrin; Rahman, Shamima; Castelle, Martin; Kelleher, John; Baris, Safa; Iwanicka-Pronicka, Katarzyna; Steward, Colin G; Ciara, Elżbieta; Wortmann, Saskia B

    2017-11-01

    Recently, CLPB deficiency has been shown to cause a genetic syndrome with cataracts, neutropenia, and 3-methylglutaconic aciduria. Surprisingly, the neurological presentation ranges from completely unaffected to patients with virtual absence of development. Muscular hypo- and hypertonia, movement disorder and progressive brain atrophy are frequently reported. We present the foetal, peri- and neonatal features of 31 patients, of which five are previously unreported, using a newly developed clinical severity scoring system rating the clinical, metabolic, imaging and other findings weighted by the age of onset. Our data are illustrated by foetal and neonatal videos. The patients were classified as having a mild (n = 4), moderate (n = 13) or severe (n = 14) disease phenotype. The most striking feature of the severe subtype was the neonatal absence of voluntary movements in combination with ventilator dependency and hyperexcitability. The foetal and neonatal presentation mirrored the course of disease with respect to survival (current median age 17.5 years in the mild group, median age of death 35 days in the severe group), severity and age of onset of all findings evaluated. CLPB deficiency should be considered in neonates with absence of voluntary movements, respiratory insufficiency and swallowing problems, especially if associated with 3-methylglutaconic aciduria, neutropenia and cataracts. Being an important differential diagnosis of hyperekplexia (exaggerated startle responses), we advise performing urinary organic acid analysis, blood cell counts and ophthalmological examination in these patients. The neonatal presentation of CLPB deficiency predicts the course of disease in later life, which is extremely important for counselling.

  2. Aggressiveness, violence, homicidality, homicide, and Lyme disease

    PubMed Central

    Bransfield, Robert C

    2018-01-01

    Background No study has previously analyzed aggressiveness, homicide, and Lyme disease (LD). Materials and methods Retrospective LD chart reviews analyzed aggressiveness, compared 50 homicidal with 50 non-homicidal patients, and analyzed homicides. Results Most aggression with LD was impulsive, sometimes provoked by intrusive symptoms, sensory stimulation or frustration and was invariably bizarre and senseless. About 9.6% of LD patients were homicidal with the average diagnosis delay of 9 years. Postinfection findings associated with homicidality that separated from the non-homicidal group within the 95% confidence interval included suicidality, sudden abrupt mood swings, explosive anger, paranoia, anhedonia, hypervigilance, exaggerated startle, disinhibition, nightmares, depersonalization, intrusive aggressive images, dissociative episodes, derealization, intrusive sexual images, marital/family problems, legal problems, substance abuse, depression, panic disorder, memory impairments, neuropathy, cranial nerve symptoms, and decreased libido. Seven LD homicides included predatory aggression, poor impulse control, and psychosis. Some patients have selective hyperacusis to mouth sounds, which I propose may be the result of brain dysfunction causing a disinhibition of a primitive fear of oral predation. Conclusion LD and the immune, biochemical, neurotransmitter, and the neural circuit reactions to it can cause impairments associated with violence. Many LD patients have no aggressiveness tendencies or only mild degrees of low frustration tolerance and irritability and pose no danger; however, a lesser number experience explosive anger, a lesser number experience homicidal thoughts and impulses, and much lesser number commit homicides. Since such large numbers are affected by LD, this small percent can be highly significant. Much of the violence associated with LD can be avoided with better prevention, diagnosis, and treatment of LD. PMID:29576731

  3. Ontogeny of sensorimotor gating and short-term memory processing throughout the adolescent period in rats.

    PubMed

    Goepfrich, Anja A; Friemel, Chris M; Pauen, Sabina; Schneider, Miriam

    2017-06-01

    Adolescence and puberty are highly susceptible developmental periods during which the neuronal organization and maturation of the brain is completed. The endocannabinoid (eCB) system, which is well known to modulate cognitive processing, undergoes profound and transient developmental changes during adolescence. With the present study we were aiming to examine the ontogeny of cognitive skills throughout adolescence in male rats and clarify the potential modulatory role of CB1 receptor signalling. Cognitive skills were assessed repeatedly every 10th day in rats throughout adolescence. All animals were tested for object recognition memory and prepulse inhibition of the acoustic startle reflex. Although cognitive performance in short-term memory as well as sensorimotor gating abilities were decreased during puberty compared to adulthood, both tasks were found to show different developmental trajectories throughout adolescence. A low dose of the CB1 receptor antagonist/inverse agonist SR141716 was found to improve recognition memory specifically in pubertal animals while not affecting behavioral performance at other ages tested. The present findings demonstrate that the developmental trajectory of cognitive abilities does not occur linearly for all cognitive processes and is strongly influenced by pubertal maturation. Developmental alterations within the eCB system at puberty onset may be involved in these changes in cognitive processing. Copyright © 2016 The Authors. Published by Elsevier Ltd.. All rights reserved.

  4. Methadone patients exhibit increased startle and cortisol response after intravenous yohimbine.

    PubMed

    Stine, S M; Grillon, C G; Morgan, C A; Kosten, T R; Charney, D S; Krystal, J H

    2001-03-01

    Brain noradrenergic systems have been shown to be altered in opioid dependence and to mediate aspects of opioid withdrawal. Pre-clinical and clinical studies by others have shown that yohimbine, which increases noradrenergic activity, also increases both baseline and fear enhancement of the magnitude of the acoustic startle response (ASR). In a separate report from this experiment, it was shown that yohimbine produced opioid withdrawal-like symptoms, including anxiety, in clinically stable methadone-maintained patients and also produced elevations in the norepinepherine (NE) metabolite, 3-methoxy-4 hydroxyphenethyleneglycol (MHPG), and cortisol serum levels. The current study reports the effects of intravenous yohimbine hydrochloride, 0.4 mg/kg versus saline (double-blind), on ASR magnitude, plasma MHPG, and cortisol levels in eight methadone-maintained patients and 13 healthy subjects in a double-blind fashion. Yohimbine increased startle magnitude in both groups. There was no basal (placebo day) difference between the startle response of the two groups, but methadone patients had a larger startle magnitude increase in response to yohimbine than healthy controls. Methadone-maintained patients had lower baseline plasma levels of MHPG and similar baseline plasma cortisol levels compared with normal subjects. Yohimbine caused significant elevation in cortisol and MHPG in both groups. Methadone-maintained subjects had higher elevations in cortisol levels and MHPG (methadone main effect) levels in response to yohimbine. However, when MHPG levels were corrected for baseline differences by analysis of covariance (ANCOVA), the yohimbine effect, but not the methadone effect remained statistically significant. These results are consistent with the previous report and support the hypothesis that abnormalities of the hypothalamic-pituitary-adrenal (HPA) axis and of noradrenergic mechanisms of stress response persist in opioid-agonist maintenance. The ASR effect extends the previous report and provides an additional objective measure for perturbation of noradrenergic and stress responses in these patients.

  5. Contrasting effect of prepulse signals on performance of Toxoplasma-infected and Toxoplasma-free subjects in an acoustic reaction times test.

    PubMed

    Příplatová, Lenka; Sebánková, Blanka; Flegr, Jaroslav

    2014-01-01

    About 30% of people on Earth have latent toxoplasmosis. Infected subjects do not express any clinical symptoms, however, they carry dormant stages of parasite Toxoplasma for the rest of their life. This form of toxoplasmosis is mostly considered harmless, however, recent studies showed its specific effects on physiology, behaviour and its associations with various diseases, including psychiatric disorders such as schizophrenia. Individuals who suffer from schizophrenia have about 2.7 times higher prevalence of Toxoplasma-seropositivity than controls, which suggests that some traits characteristic of schizophrenic patients, including the sex difference in schizophrenia onset, decrease of grey matter density in specific brain areas and modification of prepulse inhibition of startle reaction could in fact be caused by toxoplasmosis for those patients who are Toxoplasma-seropositive. We measured the effect of prepulse inhibition/facilitation of the startle reaction on reaction times. The students, 170 women and 66 men, were asked to react as quickly as possible to a startling acoustic signal by pressing a computer mouse button. Some of the startling signals were without the prepulse, some were 20 msec. preceded by a short (20 msec.) prepulse signal of lower intensity. Toxoplasma-seropositive subjects had longer reaction times than the controls. Acoustic prepulse shorted the reaction times in all subjects. This effect of prepulse on reaction times was stronger in male subjects and increased with the duration of infection, suggesting that it represented a cumulative effect of latent toxoplasmosis, rather than a fading out after effect of past acute toxoplasmosis. Different sensitivity of Toxoplasma-seropositive and Toxoplasma-seronegative subjects on effect of prepulses on reaction times (the toxoplasmosis-prepulse interaction) suggested, but of course did not prove, that the alternations of prepulse inhibition of startle reaction observed in schizophrenia patients probably joined the list of schizophrenia symptoms that are in fact caused by latent toxoplasmosis.

  6. Double dissociation in the neural substrates of acute opiate dependence as measured by withdrawal-potentiated startle.

    PubMed

    Harris, A C; Atkinson, D M; Aase, D M; Gewirtz, J C

    2006-01-01

    The basolateral amygdala and portions of the "extended" amygdala (i.e. central nucleus of the amygdala, bed nucleus of the stria terminalis and shell of the nucleus accumbens) have been implicated in the aversive aspects of withdrawal from chronic opiate administration. Given that similar withdrawal signs are observed following a single opiate exposure, these structures may also play a role in "acute opiate dependence." In the current study, drug-naïve rats underwent naloxone-precipitated withdrawal from acute morphine (10 mg/kg) exposure on two successive days. On either the first or second day of testing, the basolateral amygdala, central nucleus of the amygdala, bed nucleus of the stria terminalis, or nucleus accumbens was temporarily inactivated immediately prior to naloxone injection by microinfusion of the glutamatergic alpha-amino-3-hydroxy-5-methyl-4-isoxazole proprionic acid receptor antagonist 1,2,3,4-tetrahydro-6-nitro-2,3-dioxo-benzo(f)quinoxaline-7-sulfonamide (3 microg/0.5 microl). On the first day, inactivation of the basolateral amygdala, central nucleus of the amygdala, or bed nucleus of the stria terminalis, but not the nucleus accumbens blocked withdrawal-potentiated startle, a behavioral measure of the anxiogenic effects of withdrawal. On the second day, inactivation of the nucleus accumbens, but not the basolateral amygdala, central nucleus of the amygdala, or bed nucleus of the stria terminalis disrupted the withdrawal effect. Effects of structural inactivations on withdrawal-potentiated startle were not influenced by differences in withdrawal severity on the two days of testing. A fear-potentiated startle procedure provided functional confirmation of correct cannulae placement in basolateral amygdale- and central nucleus of the amygdala-implanted animals. Our findings indicate a double dissociation in the neural substrates of withdrawal-potentiated startle following a first versus second morphine exposure, and may reflect a reorganization of the neural circuitry underlying the expression of withdrawal-induced negative affect during the earliest stages of opiate dependence.

  7. Neural Coding of Formant-Exaggerated Speech in the Infant Brain

    ERIC Educational Resources Information Center

    Zhang, Yang; Koerner, Tess; Miller, Sharon; Grice-Patil, Zach; Svec, Adam; Akbari, David; Tusler, Liz; Carney, Edward

    2011-01-01

    Speech scientists have long proposed that formant exaggeration in infant-directed speech plays an important role in language acquisition. This event-related potential (ERP) study investigated neural coding of formant-exaggerated speech in 6-12-month-old infants. Two synthetic /i/ vowels were presented in alternating blocks to test the effects of…

  8. Exaggerations and Caveats in Press Releases and Health-Related Science News.

    PubMed

    Sumner, Petroc; Vivian-Griffiths, Solveiga; Boivin, Jacky; Williams, Andrew; Bott, Lewis; Adams, Rachel; Venetis, Christos A; Whelan, Leanne; Hughes, Bethan; Chambers, Christopher D

    2016-01-01

    Exaggerated or simplistic news is often blamed for adversely influencing public health. However, recent findings suggested many exaggerations were already present in university press releases, which scientists approve. Surprisingly, these exaggerations were not associated with more news coverage. Here we test whether these two controversial results also arise in press releases from prominent science and medical journals. We then investigate the influence of mitigating caveats in press releases, to test assumptions that caveats harm news interest or are ignored. Using quantitative content analysis, we analyzed press releases (N = 534) on biomedical and health-related science issued by leading peer-reviewed journals. We similarly analysed the associated peer-reviewed papers (N = 534) and news stories (N = 582). Main outcome measures were advice to readers and causal statements drawn from correlational research. Exaggerations in press releases predicted exaggerations in news (odds ratios 2.4 and 10.9, 95% CIs 1.3 to 4.5 and 3.9 to 30.1) but were not associated with increased news coverage, consistent with previous findings. Combining datasets from universities and journals (996 press releases, 1250 news), we found that when caveats appeared in press releases there was no reduction in journalistic uptake, but there was a clear increase in caveats in news (odds ratios 9.6 and 9.5 for caveats for advice and causal claims, CIs 4.1 to 24.3 and 6.0 to 15.2). The main study limitation is its retrospective correlational nature. For health and science news directly inspired by press releases, the main source of both exaggerations and caveats appears to be the press release itself. However we find no evidence that exaggerations increase, or caveats decrease, the likelihood of news coverage. These findings should be encouraging for press officers and scientists who wish to minimise exaggeration and include caveats in their press releases.

  9. Exaggerations and Caveats in Press Releases and Health-Related Science News

    PubMed Central

    Sumner, Petroc; Boivin, Jacky; Bott, Lewis; Adams, Rachel; Whelan, Leanne; Hughes, Bethan; Chambers, Christopher D.

    2016-01-01

    Background Exaggerated or simplistic news is often blamed for adversely influencing public health. However, recent findings suggested many exaggerations were already present in university press releases, which scientists approve. Surprisingly, these exaggerations were not associated with more news coverage. Here we test whether these two controversial results also arise in press releases from prominent science and medical journals. We then investigate the influence of mitigating caveats in press releases, to test assumptions that caveats harm news interest or are ignored. Methods and Findings Using quantitative content analysis, we analyzed press releases (N = 534) on biomedical and health-related science issued by leading peer-reviewed journals. We similarly analysed the associated peer-reviewed papers (N = 534) and news stories (N = 582). Main outcome measures were advice to readers and causal statements drawn from correlational research. Exaggerations in press releases predicted exaggerations in news (odds ratios 2.4 and 10.9, 95% CIs 1.3 to 4.5 and 3.9 to 30.1) but were not associated with increased news coverage, consistent with previous findings. Combining datasets from universities and journals (996 press releases, 1250 news), we found that when caveats appeared in press releases there was no reduction in journalistic uptake, but there was a clear increase in caveats in news (odds ratios 9.6 and 9.5 for caveats for advice and causal claims, CIs 4.1 to 24.3 and 6.0 to 15.2). The main study limitation is its retrospective correlational nature. Conclusions For health and science news directly inspired by press releases, the main source of both exaggerations and caveats appears to be the press release itself. However we find no evidence that exaggerations increase, or caveats decrease, the likelihood of news coverage. These findings should be encouraging for press officers and scientists who wish to minimise exaggeration and include caveats in their press releases. PMID:27978540

  10. Oxytocin and Social Support as Synergistic Inhibitors of Aversive Fear Conditioning and Fear-Potentiated Startle in Male Rats

    DTIC Science & Technology

    2010-09-01

    physiopathologies of PTSD . The effect of oxytocin on background anxiety in our fear- potentiated startle studies in rats is also reminiscent of the findings... fMRI Study . CNS Neurosci Ther, print copy in press (originally published online 16 April 2010, at http://www3. interscience.wiley.com/journal...specific fear, but are sustained beyond the immediate threat. Oxytocin might be promising as a drug with novel benefits for patients with PTSD . 15

  11. Fear-Potential Startle as a Model System for Analyzing Learning and Memory

    DTIC Science & Technology

    1988-09-21

    connection between the central nucleus of the amygdala and the nucleus reticularis pontis caudalis, an obligatory part of the startle pathway. Because we...Miserendino, M and Davis, M. A direct pathway from the central nucleus of the amygdala to the region of the nucleus reticularis pontis caudalis critical for...blocked by drugs that decrease anxiety in humans as well as by lesions of the central nucleus of the amygdala, an area of the brain known to be critical for

  12. Detecting symptom exaggeration in combat veterans using the MMPI-2 symptom validity scales: a mixed group validation.

    PubMed

    Tolin, David F; Steenkamp, Maria M; Marx, Brian P; Litz, Brett T

    2010-12-01

    Although validity scales of the Minnesota Multiphasic Personality Inventory-2 (MMPI-2; J. N. Butcher, W. G. Dahlstrom, J. R. Graham, A. Tellegen, & B. Kaemmer, 1989) have proven useful in the detection of symptom exaggeration in criterion-group validation (CGV) studies, usually comparing instructed feigners with known patient groups, the application of these scales has been problematic when assessing combat veterans undergoing posttraumatic stress disorder (PTSD) examinations. Mixed group validation (MGV) was employed to determine the efficacy of MMPI-2 exaggeration scales in compensation-seeking (CS) and noncompensation-seeking (NCS) veterans. Unlike CGV, MGV allows for a mix of exaggerating and nonexaggerating individuals in each group, does not require that the exaggeration versus nonexaggerating status of any individual be known, and can be adjusted for different base-rate estimates. MMPI-2 responses of 377 male veterans were examined according to CS versus NCS status. MGV was calculated using 4 sets of base-rate estimates drawn from the literature. The validity scales generally performed well (adequate sensitivity, specificity, and efficiency) under most base-rate estimations, and most produced cutoff scores that showed adequate detection of symptom exaggeration, regardless of base-rate assumptions. These results support the use of MMPI-2 validity scales for PTSD evaluations in veteran populations, even under varying base rates of symptom exaggeration.

  13. Modification of medullary respiratory-related discharge patterns by behaviors and states of arousal.

    PubMed

    Chang, F C

    1992-02-07

    The modulatory influences of behaviors and states of arousal on bulbar respiratory-related unit (RRU) discharge patterns were studied in an unanesthetized, freely behaving guinea pig respiratory model system. When fully instrumented, this model system permits concurrent monitoring and recording of (i) single units from either Bötzinger complex or nucleus para-ambiguus; (ii) electrocorticogram; and, (iii) diaphragmatic EMG. In addition to being used in surveys of RRU discharge patterns in freely behaving states, the model system also offered a unique opportunity in investigating the effects of pentobarbital on RRU discharge patterns before, throughout the course of, and during recovery from anesthesia. In anesthetized preparations, a particular RRU discharge pattern (such as tonic, incrementing or decrementing) typically displayed little, if any notable variation. The most striking development following pentobarbital was a state of progressive bradypnea attributable to a significantly augmented RRU cycle duration, burst duration and an increase in the RRU spike frequencies during anesthesia. In freely behaving states, medullary RRU activities rarely adhered to a fixed, immutable discharge pattern. More specifically, the temporal organization (such as burst duration, cycle duration, and the extent of modulation of within-burst spike frequencies) of RRU discharge patterns regularly showed complex and striking variations, not only with states of arousal (sleep/wakefulness, anesthesia) but also with discrete alterations in electrocorticogram (ECoG) activities and a multitude of on-going behavioral repertoires such as volitional movement, postural modification, phonation, mastication, deglutition, sniffing/exploratory behavior, alerting/startle reflexes. Only during sleep, and on occasions when the animal assumed a motionless, resting posture, could burst patterns of relatively invariable periodicity and uniform temporal attributes be observed. RRU activities during sniffing reflex is worthy of further note in that, based on power spectrum analyses of concurrently recorded ECoG activities, this particular discharge pattern was clearly associated with the activation of a 6-10 Hz theta rhythm. These findings indicated that bulbar RRU activity patterns are subject to change by not only behaviors and sleep/wakefulness cycles, but also a variety of modulatory influences and feedback/feedforward biases from other central and peripheral physiological control mechanisms.

  14. A Pragmatic Study of Exaggeration in British and American Novels

    ERIC Educational Resources Information Center

    Abbas, Qassim; Al-Tufaili, Dhayef

    2016-01-01

    The main concern of this study is to tackle exaggeration in British and American situations taken from "Mrs. Dalloway" and "The Great Gatsby" novels. From a pragmatic point of view, exaggeration in the field of literature has not been given enough attention. Accordingly, this study is an attempt to develop a model for the…

  15. Exaggerated blood pressure response to exercise in athletes: dysmetabolism or altered autonomic nervous system modulation?

    PubMed

    Turmel, Julie; Bougault, Valérie; Boulet, Louis-Philippe; Poirier, Paul

    2012-10-01

    The importance of exercise-induced exaggerated blood pressure (BP) response in endurance athletes is not known. To assess the hemodynamic parameters and metabolic profile in athletes with an exaggerated BP response to exercise. Forty-four endurance athletes underwent a maximal exercise test, a 24-h ambulatory blood pressure monitoring, a 24-h Holter assessment, and sampling of blood on two occasions: (a) during intense training and (b) following 3 weeks without training. During the training period, 11 athletes showed an exaggerated BP response to exercise, whereas seven of these 11 athletes also showed an exaggerated BP response during the resting period. Elevation in systolic BP was greater in athletes with an exaggerated BP response than athletes with a normal BP response to exercise (resting: 84 ± 22 vs. 60 ± 18 mmHg, P = 0.02; training: 100 ± 21 vs. 70 ± 18 mmHg, P = 0.004). During the training period, athletes with an exaggerated BP response to exercise showed higher systolic BP values on 24-h ambulatory blood pressure monitoring (136 ± 15 vs. 118 ± 8 mmHg, P = 0.02). During the resting period, athletes with an exaggerated BP response to exercise had lower apolipoprotein-A1 (1.3 ± 0.1 vs. 1.5 ± 0.2 g/l, P = 0.009), and higher SDNN (259 ± 47 vs. 209 ± 52 ms, P = 0.03) and pNN50 (0.4 ± 0.1 vs. 0.3 ± 0.1%, P = 0.05). These observations may represent the first sign of a slight metabolic disturbance associated with vascular wall abnormalities, although the parameters remain within normal values.

  16. Fear inhibition in high trait anxiety.

    PubMed

    Kindt, Merel; Soeter, Marieke

    2014-01-01

    Trait anxiety is recognized as an individual risk factor for the development of anxiety disorders but the neurobiological mechanisms remain unknown. Here we test whether trait anxiety is associated with impaired fear inhibition utilizing the AX+/BX- conditional discrimination procedure that allows for the independent evaluation of startle fear potentiation and inhibition of fear. Sixty undergraduate students participated in the study--High Trait Anxious: n = 28 and Low Trait Anxious: n = 32. We replicated earlier findings that a transfer of conditioned inhibition for startle responses requires contingency awareness. However, contrary to the fear inhibition hypothesis, our data suggest that high trait anxious individuals show a normal fear inhibition of conditioned startle responding. Only at the cognitive level the high trait anxious individuals showed evidence for impaired inhibitory learning of the threat cue. Together with other findings where impaired fear inhibition was only observed in those PTSD patients who were either high on hyperarousal symptoms or with current anxiety symptoms, we question whether impaired fear inhibition is a biomarker for the development of anxiety disorders.

  17. Gender specific gene-environment interactions on laboratory-assessed aggression.

    PubMed

    Verona, Edelyn; Joiner, Thomas E; Johnson, Frank; Bender, Theodore W

    2006-01-01

    We examined gene-environment interactive effects on aggressive behavior among men and women genotyped (short versus long alleles) for the serotonin transporter gene. Aggressive behavior was indexed via a laboratory paradigm that measured the intensity and duration of shocks delivered to a putative "employee". Half of the participants were exposed to a physical stressor during the procedure (stress) and half were not (no-stress). Participants' physiological responses were gauged via acoustic startle eyeblink reactions (startle reactivity). Results were that men with the homozygous short (s/s) genotype showed increased aggression only under stress, whereas women and men carrying the long allele did not show differences in aggression in stress versus no-stress. However, although stress exposure produced increases in startle reactivity, there were no genotype or gender differences in physiology. These results replicate longitudinal research findings confirming the interactive effects of genes and environment on behavioral reactivity and on the development of externalizing psychopathological syndromes, at least in men.

  18. Physiological correlates of emotional reactivity and regulation in early adolescents.

    PubMed

    Latham, Melissa D; Cook, Nina; Simmons, Julian G; Byrne, Michelle L; Kettle, Jonathan W L; Schwartz, Orli; Vijayakumar, Nandita; Whittle, Sarah; Allen, Nicholas B

    2017-07-01

    Few studies have examined physiological correlates of emotional reactivity and regulation in adolescents, despite the occurrence in this group of significant developmental changes in emotional functioning. The current study employed multiple physiological measures (i.e., startle-elicited eyeblink and ERP, skin conductance, facial EMG) to assess the emotional reactivity and regulation of 113 early adolescents in response to valenced images. Reactivity was measured while participants viewed images, and regulation was measured when they were asked to discontinue or maintain their emotional reactions to the images. Adolescent participants did not exhibit fear-potentiated startle blink. However, they did display affect-consistent zygomatic and corrugator activity during reactivity, as well as inhibition of some of these facial patterns during regulation. Skin conductance demonstrated arousal dependent activity during reactivity, and overall decreases during regulation. These findings suggest that early adolescents display reactivity to valenced pictures, but not to startle probes. Psychophysiological patterns during emotion regulation indicate additional effort and/or attention during the regulation process. Copyright © 2017 Elsevier B.V. All rights reserved.

  19. Increased startle potentiation to unpredictable stressors in alcohol dependence: Possible stress neuroadaptation in humans

    PubMed Central

    Moberg, Christine A.; Bradford, Daniel E.; Kaye, Jesse T.; Curtin, John J.

    2017-01-01

    Stress plays a key role in addiction etiology and relapse. Rodent models posit that following repeated periods of alcohol and other drug intoxication, compensatory allostatic changes occur in the central nervous system (CNS) circuits involved in behavioral and emotional response to stressors. We examine a predicted manifestation of this neuroadaptation in recently abstinent alcohol dependent humans. Participants completed a translational laboratory task that uses startle potentiation to unpredictable (vs. predictable) stressors implicated in the putative CNS mechanisms that mediate this neuroadaptation. Alcohol dependent participants displayed significantly greater startle potentiation to unpredictable than predictable stressors relative to non-alcoholic controls. The size of this effect covaried with alcohol-related problems and degree of withdrawal syndrome. This supports the rodent model thesis of a sensitized stress response in abstinent alcoholics. However, this effect could also represent pre-morbid risk or mark more severe and/or comorbid psychopathology. Regardless, pharmacotherapy and psychological interventions may target unpredictable stressor response to reduce stress-induced relapse. PMID:28394145

  20. Exercise is associated with reduction in the anxiogenic effect of mCPP on acoustic startle.

    PubMed

    Fox, James H; Hammack, Sayamwong E; Falls, William A

    2008-08-01

    Voluntary exercise has been associated with reduced anxiety across several animal models. Manipulation of central 5-HT can alter anxiety-like behaviors and administration of the 5-HT agonist metachlorophenylpiperazine (mCPP) increases anxiety in rodents and humans. To examine whether the anxiolytic effect of exercise is associated with an alteration in 5-HT systems, we examined the anxiogenic effect of mCPP in exercising and nonexercising mice. C57BL/6J mice were given 2 weeks of free access to either a functioning or nonfunctioning running wheel. Mice were then tested for acoustic startle following systemic injection of either 0, 0.1, 0.3, or 1 mg/kg of mCPP. Consistent with its anxiogenic properties, mCPP produced a dose-dependent increase in acoustic startle in nonexercising mice. However, this anxiogenic effect was blunted in exercising mice. These findings suggest that exercise may help to reduce anxiety by altering 5-HT systems, perhaps by down-regulating postsynaptic 5HT 2B/2C receptors.

  1. The effect of choice on the physiology of emotion: An affective startle modulation study

    PubMed Central

    Genevsky, Alexander; Gard, David E.

    2014-01-01

    The affective startle modulation task has been an important measure in understanding physiological aspects of emotion and motivational responses. Research utilizing this method has relied primarily on a ‘passive’ viewing paradigm, which stands in contrast to everyday life where much of emotion and motivation involves some active choice or agency. The present study investigated the role of choice on the physiology of emotion. Eighty-four participants were randomized into ‘choice’ (n=44) or ‘no-choice’ (n=40) groups distinguished by the ability to choose between stimuli. EMG eye blink responses were recorded in both anticipation and stimulus viewing. Results indicated a significant attenuation of the startle magnitude in choice condition trials (relative to no-choice) across all picture categories and probe times. We interpret these findings as an indication that the act of choice may decrease one’s defensive response, or conversely, lacking choice may heighten the defensive response. Implications for future research are discussed. PMID:22285891

  2. The effect of choice on the physiology of emotion: an affective startle modulation study.

    PubMed

    Genevsky, Alexander; Gard, David E

    2012-04-01

    The affective startle modulation task has been an important measure in understanding physiological aspects of emotion and motivational responses. Research utilizing this method has relied primarily on a 'passive' viewing paradigm, which stands in contrast to everyday life where much of emotion and motivation involves some active choice or agency. The present study investigated the role of choice on the physiology of emotion. Eighty-four participants were randomized into 'choice' (n=44) or 'no-choice' (n=40) groups distinguished by the ability to choose between stimuli. EMG eye blink responses were recorded in both anticipation and stimulus viewing. Results indicated a significant attenuation of the startle magnitude in choice condition trials (relative to no-choice) across all picture categories and probe times. We interpret these findings as an indication that the act of choice may decrease one's defensive response, or conversely, lacking choice may heighten the defensive response. Implications for future research are discussed. Copyright © 2012 Elsevier B.V. All rights reserved.

  3. Emotion regulation during threat: Parsing the time course and consequences of safety signal processing

    PubMed Central

    HEFNER, KATHRYN R.; VERONA, EDELYN; CURTIN, JOHN. J.

    2017-01-01

    Improved understanding of fear inhibition processes can inform the etiology and treatment of anxiety disorders. Safety signals can reduce fear to threat, but precise mechanisms remain unclear. Safety signals may acquire attentional salience and affective properties (e.g., relief) independent of the threat; alternatively, safety signals may only hold affective value in the presence of simultaneous threat. To clarify such mechanisms, an experimental paradigm assessed independent processing of threat and safety cues. Participants viewed a series of red and green words from two semantic categories. Shocks were administered following red words (cue+). No shocks followed green words (cue−). Words from one category were defined as safety signals (SS); no shocks were administered on cue+ trials. Words from the other (control) category did not provide information regarding shock administration. Threat (cue+ vs. cue−) and safety (SS+ vs. SS−) were fully crossed. Startle response and ERPs were recorded. Startle response was increased during cue+ versus cue−. Safety signals reduced startle response during cue+, but had no effect on startle response during cue−. ERP analyses (PD130 and P3) suggested that participants parsed threat and safety signal information in parallel. Motivated attention was not associated with safety signals in the absence of threat. Overall, these results confirm that fear can be reduced by safety signals. Furthermore, safety signals do not appear to hold inherent hedonic salience independent of their effect during threat. Instead, safety signals appear to enable participants to engage in effective top-down emotion regulatory processes. PMID:27088643

  4. Differential startle magnitude in mice selected for high and low swim analgesia is not related to difference in nociception.

    PubMed

    Blaszczyk, Janusz W; Lapo, Iwona B; Werka, Tomasz; Sadowski, Bogdan

    2010-01-01

    The acoustic startle response (ASR) elicited by 110 dB 10-ms pulses was studied in relation to pain sensitivity in mouse lines selectively bred for high (HA) and for low (LA) swim analgesia. The magnitudes of ASR, similarly as hot-plate latencies, differed between the lines in the rank order HA is greater than unselected controls (C) greater than LA. The animals' nociception did not change after the ASR session consisting of a sequence of 20 acoustic stimuli. Morphine hydrochloride (5 and 10 mg per kg i.p.) increased hot-plate latencies in the order of HA greater than C greater than LA, and was not effective on ASR magnitude in HA as well as in C mice. In the LA line, 10 mg per kg of morphine slightly attenuated ASR, but caused only a little analgesia. We conclude that (1) the difference in ASR between the selected lines is inversely correlated with the difference in pain sensitivity; (2) the magnitude of ASR is not altered by morphine analgesia; (3) the procedure of ASR using brief acoustic pulses is not stressful enough to elicit a form of stress analgesia. The lack of a direct relationship between the readiness to startle and pain sensation may be beneficial for an animal's survival in dangerous situations. It is beneficial when the startle to a warning signal precedes defensive behaviors and it often must be effectuated in a state of decreased nociception.

  5. Sexual imprinting can induce sexual preferences for exaggerated parental traits.

    PubMed

    ten Cate, Carel; Verzijden, Machteld N; Etman, Eric

    2006-06-06

    Sexual preferences in animals are often skewed toward mates with exaggerated traits. In many vertebrates, parents provide, through the learning process of "sexual imprinting," the model for the later sexual preference. How imprinting can result in sexual preferences for mates having exaggerated traits rather than resembling the parental appearance is not clear. We test the hypothesis that a by-product of the learning process, "peak shift", may induce skewed sexual preferences for exaggerated parental phenotypes. To this end, zebra finch (Taeniopygia guttata) males were raised by white parents, with beak color as the most prominent sexual dimorphism. We manipulated this feature with nail varnish. At adult age, each male was given a preference test in which he could choose among eight females with beak colors ranging from more extreme on the paternal to more extreme on the maternal side. The males preferred females with a beak of a more extreme color than that of their mothers, i.e., they showed a peak shift. Sexual imprinting can thus generate skewed sexual preferences for exaggerated maternal phenotypes, phenotypes that have not been present at the time of the learning. We suggest that such preferences can drive the evolution of sexual dimorphism and exaggerated sexual traits.

  6. Infant reflexes

    MedlinePlus

    ... infants; Tonic neck reflex; Galant reflex; Truncal incurvation; Rooting reflex; Parachute reflex; Grasp reflex ... up if both hands are grasping your fingers. ROOTING REFLEX This reflex occurs when the baby's cheek ...

  7. New definitions of 6 clinical signs of perceptual disorder in children with cerebral palsy: an observational study through reliability measures.

    PubMed

    Ferrari, A; Sghedoni, A; Alboresi, S; Pedroni, E; Lombardi, F

    2014-12-01

    Recently authors have begun to emphasize the non-motor aspects of Cerebral Palsy and their influence on motor control and recovery prognosis. Much has been written about single clinical signs (i.e., startle reaction) but so far no definitions of the six perceptual signs presented in this study have appeared in literature. This study defines 6 signs (startle reaction, upper limbs in startle position, frequent eye blinking, posture freezing, averted eye gaze, grimacing) suggestive of perceptual disorders in children with cerebral palsy and measures agreement on sign recognition among independent observers and consistency of opinions over time. Observational study with both cross-sectional and prospective components. Fifty-six videos presented to observers in random order. Videos were taken from 19 children with a bilateral form of cerebral palsy referred to the Children Rehabilitation Unit in Reggio Emilia. Thirty-five rehabilitation professionals from all over Italy: 9 doctors and 26 physiotherapists. Measure of agreement among 35 independent observers was compiled from a sample of 56 videos. Interobserver reliability was determined using the K index of Fleiss and reliability intra-observer was calculated by the Spearman correlation index between ranks (rho - ρ). Percentage of agreement between observers and Gold Standard was used as criterion validity. Interobserver reliability was moderate for startle reaction, upper limb in startle position, adverted eye gaze and eye-blinking and fair for posture freezing and grimacing. Intraobserver reliability remained consistent over time. Criterion validity revealed very high agreement between independent observer evaluation and gold standard. Semiotics of perceptual disorders can be used as a specific and sensitive instrument in order to identify a new class of patients within existing heterogeneous clinical types of bilateral cerebral palsy forms and could help clinicians in identifying functional prognosis. To provide clinicians with a definition of 6 clinical signs found in children with cerebral palsy in routine rehabilitation settings. Future research should explore the link between these signs and motor prognosis (i.e., time to independent walking).

  8. Histamine-dependent behavioral response to methamphetamine in 12-month-old male mice

    PubMed Central

    Acevedo, Summer F.; Raber, Jacob

    2011-01-01

    Methamphetamine (MA) use is a growing problem across the United States. Effects of MA include hyperactivity and increased anxiety. Using a mouse model system, we examined behavioral performance in the open field and elevated zero maze and shock-startle response of 12-month-old wild-type mice injected with MA once (1mg/kg) 30 min prior to behavioral testing. MA treatment resulted in behavioral sensitization in the open field, consistent with studies in younger mice. There was an increased activity in the elevated zero maze and an increased shock-startle response 30 and 60 min post-injection. Since histamine mediates some effects of MA in the brain, we assessed whether 12-month-old mice lacking histidine decarboxylase (Hdc−/−), the enzyme required to synthesize histamine, respond differently to MA than wild-type (Hdc+/+) mice. Compared to saline treatment, acute and repeated MA administration increased activity in the open field and measures of anxiety, though more so in Hdc−/− than Hdc+/+ mice. In the elevated zero maze, opposite effects of MA on activity and measures of anxiety were seen in Hdc+/+ mice. In contrast, MA similarly increased the shock-startle response in Hdc−/− and Hdc+/+ mice, compared to saline-treated genotype-matched mice. These results are similar to those in younger mice suggesting that the effects are not age-dependent. Overall, single or repeated MA treatment causes histamine-dependent changes in 12-month-old mice in the open field and elevated zero-maze, but not in the shock-startle response. PMID:21466792

  9. Lack of predictive power of trait fear and anxiety for conditioned pain modulation (CPM).

    PubMed

    Horn-Hofmann, Claudia; Priebe, Janosch A; Schaller, Jörg; Görlitz, Rüdiger; Lautenbacher, Stefan

    2016-12-01

    In recent years the association of conditioned pain modulation (CPM) with trait fear and anxiety has become a hot topic in pain research due to the assumption that such variables may explain the low CPM efficiency in some individuals. However, empirical evidence concerning this association is still equivocal. Our study is the first to investigate the predictive power of fear and anxiety for CPM by using a well-established psycho-physiological measure of trait fear, i.e. startle potentiation, in addition to two self-report measures of pain-related trait anxiety. Forty healthy, pain-free participants (female: N = 20; age: M = 23.62 years) underwent two experimental blocks in counter-balanced order: (1) a startle paradigm with affective picture presentation and (2) a CPM procedure with hot water as conditioning stimulus (CS) and contact heat as test stimulus (TS). At the end of the experimental session, pain catastrophizing (PCS) and pain anxiety (PASS) were assessed. PCS score, PASS score and startle potentiation to threatening pictures were entered as predictors in a linear regression model with CPM magnitude as criterion. We were able to show an inhibitory CPM effect in our sample: pain ratings of the heat stimuli were significantly reduced during hot water immersion. However, CPM was neither predicted by self-report of pain-related anxiety nor by startle potentiation as psycho-physiological measure of trait fear. These results corroborate previous negative findings concerning the association between trait fear/anxiety and CPM efficiency and suggest that shifting the focus from trait to state measures might be promising.

  10. Neurobehavioral Impairments Caused by Developmental Imidacloprid Exposure in Zebrafish

    PubMed Central

    Crosby, Emily B.; Bailey, Jordan M.; Oliveri, Anthony N.; Levin, Edward D.

    2015-01-01

    BACKGROUND Neonicotinoid insecticides are becoming more widely applied as organophosphate (OP) insecticides are decreasing in use. Because of their relative specificity to insect nicotinic receptors, they are thought to have reduced risk of neurotoxicity in vertebrates. However, there is scant published literature concerning the neurobehavioral effects of developmental exposure of vertebrates to neonicotinoids. METHODS Using zebrafish, we investigated the neurobehavioral effects of developmental exposure to imidacloprid, a prototypic neonicotinoid pesticide. Nicotine was also administered for comparison. Zebrafish were exposed via immersion in aqueous solutions containing 45 μM or 60 μM of imidacloprid or nicotine (or vehicle control) from 4 h to 5 d post fertilization. The functional effects of developmental exposure to both imidacloprid and nicotine were assessed in larvae using an activity assay and during adolescence and adulthood using a battery of neurobehavioral assays, including assessment of sensorimotor response and habituation in a tactile startle test, novel tank swimming, and shoaling behavior. RESULTS In larvae, developmental imidacloprid exposure at both doses significantly decreased swimming activity. The 5D strain of zebrafish were more sensitive to both nicotine and imidacloprid than the AB* strain. In adolescent and adult fish, developmental exposure to imidacloprid significantly decreased novel tank exploration and increased sensorimotor response to startle stimuli. While nicotine did not affect novel tank swimming, it increased sensorimotor response to startle stimuli at the low dose. No effects of either compound were found on shoaling behavior or habituation to a startling stimulus. DISCUSSION Early developmental exposure to imidacloprid has both early-life and persisting effects on neurobehavioral function in zebrafish. Its developmental neurotoxicity should be further investigated. PMID:25944383

  11. Anticipation of interoceptive threat in highly anxiety sensitive persons.

    PubMed

    Melzig, Christiane A; Michalowski, Jaroslaw M; Holtz, Katharina; Hamm, Alfons O

    2008-10-01

    Anticipatory anxiety plays a major role in the etiology of panic disorder. Although anticipatory anxiety elicited by expectation of interoceptive cues is specifically relevant for panic patients, it has rarely been studied. Using a population analogue in high fear of such interoceptive arousal sensations (highly anxiety sensitive persons) we evaluated a new experimental paradigm to assess anticipatory anxiety during anticipation of interoceptive (somatic sensations evoked by hyperventilation) and exteroceptive (electric shock) threat. Symptom reports, autonomic arousal, and defensive response mobilization (startle eyeblink response) were monitored during threat and matched safe conditions in 26 highly anxiety sensitive persons and 22 controls. The anticipation of exteroceptive threat led to a defensive and autonomic mobilization as indexed by a potentiation of the startle response and an increase in skin conductance level in both experimental groups. During interoceptive threat, however, only highly anxiety sensitive persons but not the controls exhibited a startle response potentiation as well as autonomic activation. The anticipation of a hyperventilation procedure thus seems a valid paradigm to investigate anticipatory anxiety elicited by interoceptive cues in the clinical context.

  12. Aversive Startle Potentiation and Fear Pathology: Mediating Role of Threat Sensitivity and Moderating Impact of Depression

    PubMed Central

    Yancey, James R.; Vaidyanathan, Uma; Patrick, Christopher J.

    2015-01-01

    Enhanced startle during exposure to unpleasant cues (aversive startle potentiation; ASP) appears in the RDoC matrix as a physiological index of acute threat response. Increased ASP has been linked to focal fear disorders and to scale measures of dispositional fearfulness (i.e., threat sensitivity; THT+). However, some studies have reported reduced ASP for fear pathology accompanied by major depressive disorder (MDD) or pervasive distress. The current study evaluated whether (a) THT+ as indexed by reported dispositional fearfulness mediates the relationship between fear disorders (when unaccompanied by depression) and ASP, and (b) depression moderates relations of THT+ and fear disorders with ASP. Fear disorder participants without MDD showed enhanced ASP whereas those with MDD (or other distress conditions) showed evidence of reduced ASP. Continuous THT+ scores also predicted ASP, and this association: (a) was likewise moderated by depression/distress, and (b) accounted for the relationship between ASP and fear pathology without MDD. These findings point to a role for the RDoC construct of acute threat, operationalized dispositionally, in enhanced ASP shown by individuals with fear pathology unaccompanied by distress pathology. PMID:25448265

  13. A network analysis of DSM-5 posttraumatic stress disorder symptoms and correlates in U.S. military veterans.

    PubMed

    Armour, Cherie; Fried, Eiko I; Deserno, Marie K; Tsai, Jack; Pietrzak, Robert H

    2017-01-01

    Recent developments in psychometrics enable the application of network models to analyze psychological disorders, such as PTSD. Instead of understanding symptoms as indicators of an underlying common cause, this approach suggests symptoms co-occur in syndromes due to causal interactions. The current study has two goals: (1) examine the network structure among the 20 DSM-5 PTSD symptoms, and (2) incorporate clinically relevant variables to the network to investigate whether PTSD symptoms exhibit differential relationships with suicidal ideation, depression, anxiety, physical functioning/quality of life (QoL), mental functioning/QoL, age, and sex. We utilized a nationally representative U.S. military veteran's sample; and analyzed the data from a subsample of 221 veterans who reported clinically significant DSM-5 PTSD symptoms. Networks were estimated using state-of-the-art regularized partial correlation models. Data and code are published along with the paper. The 20-item DSM-5 PTSD network revealed that symptoms were positively connected within the network. Especially strong connections emerged between nightmares and flashbacks; blame of self or others and negative trauma-related emotions, detachment and restricted affect; and hypervigilance and exaggerated startle response. The most central symptoms were negative trauma-related emotions, flashbacks, detachment, and physiological cue reactivity. Incorporation of clinically relevant covariates into the network revealed paths between self-destructive behavior and suicidal ideation; concentration difficulties and anxiety, depression, and mental QoL; and depression and restricted affect. These results demonstrate the utility of a network approach in modeling the structure of DSM-5 PTSD symptoms, and suggest differential associations between specific DSM-5 PTSD symptoms and clinical outcomes in trauma survivors. Implications of these results for informing the assessment and treatment of this disorder, are discussed. Copyright © 2016 Elsevier Ltd. All rights reserved.

  14. Differential neuroendocrine responses to chronic variable stress in adult Long Evans rats exposed to handling-maternal separation as neonates.

    PubMed

    Ladd, Charlotte O; Thrivikraman, K V; Huot, Rebecca L; Plotsky, Paul M

    2005-07-01

    Burgeoning evidence supports a preeminent role for early- and late-life stressors in the development of physio- and psychopathology. Handling-maternal separation (HMS) in neonatal Long Evans hooded rats leads to stable phenotypes ranging from resilient to vulnerable to later stressor exposure. Handling with 180 min of maternal separation yields a phenotype of stress hyper-responsiveness associated with facilitation of regional CRF neurocircuits and glucocorticoid resistance. This study assessed whether or not prolonged HMS (180 min/day, HMS180) on post-natal days 2-14 sensitizes the adult limbic hypothalamo-pituitary-adrenal (LHPA) axis to chronic variable stress (CS) compared to brief HMS (15 min/day, HMS15). We examined regional mRNA densities of corticotropin-releasing factor (CRF), its receptor CRF1, glucocorticoid receptor (GR), and mineralocorticoid receptor (MR); regional CRF1 and CRF2alpha binding, and pituitary-adrenal responses to an acute air-puff startle (APS) stressor in four groups: HMS15, nonstressed; HMS15, stressed; HMS180, nonstressed; HMS180, stressed. As expected we observed exaggerated pituitary-adrenal responses to APS, increased regional CRF mRNA density, decreased regional CRF1 binding, and decreased cortical GR mRNA density in nonstressed HMS180 vs. HMS15 animals. However, in contrast to our hypothesis, CS decreased pituitary-adrenal reactivity and central amygdala CRF mRNA density in HMS180 rats, while increasing cortical GR mRNA density and CRF1 binding. CS had no effect on the pituitary-adrenal response to APS in HMS15 rats, despite tripling hypothalamic paraventricular CRF mRNA density. The data suggest that many effects of prolonged HMS are reversible in adulthood by CS, while the neuroendocrine adaptations imbued by brief HMS are sufficiently stable to restrain pituitary-adrenal stress responses even following CS.

  15. IgLON5 antibody: Neurological accompaniments and outcomes in 20 patients.

    PubMed

    Honorat, Josephe A; Komorowski, Lars; Josephs, Keith A; Fechner, Kai; St Louis, Erik K; Hinson, Shannon R; Lederer, Sabine; Kumar, Neeraj; Gadoth, Avi; Lennon, Vanda A; Pittock, Sean J; McKeon, Andrew

    2017-09-01

    To describe the phenotypes, treatment response, and outcome of IgLON5 autoimmunity. Archived serum and CSF specimens from 367 patients known to harbor unclassified antibodies which stained neural synapses diffusely (mimicking amphiphysin-IgG) were reevaluated by indirect immunofluorescence assay (IFA) using a composite of mouse tissues and recombinant IgLON5-transfected cell-based assay (CBA, Euroimmun). Available specimens (serum, 25; CSF, 9) from 26/367 patients (7%) had identical IFA appearance and robust IgLON5 CBA positivity. Clinical information was available for 20/26 patients; 13 were women. Median disease-onset age was 62 years (range, 46-75 years). Most patients had insidious onset and progression of neurological symptoms affecting movement and sleep predominantly. Sleep disorders were sleep-disordered breathing (11) and parasomnias (3). Brainstem disorders were gait instability (14), dysphagia (10), abnormal eye movements (7), respiratory dysfunction (6), ataxia (5), craniocervical dystonia (3), and dysarthria (3). Findings compatible with hyperexcitability included myoclonus (3), cramps (3), fasciculations (2), and exaggerated startle (2). Neuropsychiatric disorders included cognitive dysfunction (6), psychiatric symptoms (5), and seizures (1). Dysautonomia, in 9, affected bladder function (7), gastrointestinal motility (3), thermoregulation (3), and orthostatic tolerance (1). Just 2 patients had coexisting autoimmune disease. Brain MRI findings were nonspecific and CSF was noninflammatory in all tested. Seven of 9 immunotherapy-treated patients improved: 6 of those 7 were stable at last follow-up. Three untreated patients died. Each IgLON5-IgG subclass (1-4) was readily detectable in ≥80% of specimens using CBA. IgLON5-IgG is diagnostic of a potentially treatable neurological disorder, where autoimmune clues are otherwise lacking.

  16. Glycine receptor modulating antibody predicting treatable stiff-person spectrum disorders.

    PubMed

    Hinson, Shannon R; Lopez-Chiriboga, A Sebastian; Bower, James H; Matsumoto, Joseph Y; Hassan, Anhar; Basal, Eati; Lennon, Vanda A; Pittock, Sean J; McKeon, Andrew

    2018-03-01

    Glycine receptor alpha-1 subunit (GlyRα1)-immunoglobulin G (IgG) is diagnostic of stiff-person syndrome (SPS) spectrum but has been reported detectable in other neurologic diseases for which significance is less certain. To assess GlyRα1-IgGs as biomarkers of SPS spectrum among patients and controls, specimens were tested using cell-based assays (binding [4°C] and modulating [antigen endocytosing, 37°C]). Medical records of seropositive patients were reviewed. GlyRα1-IgG (binding antibody) was detected in 21 of 247 patients with suspected SPS spectrum (8.5%) and in 8 of 190 healthy subject sera (4%) but not CSF. Among 21 seropositive patients, 20 had confirmed SPS spectrum clinically, but 1 was later determined to have a functional neurologic disorder. Sera from 9 patients with SPS spectrum , but not 7 controls, nor the functional patient, caused GlyRα1 modulation (100% specificity). SPS spectrum phenotypes included progressive encephalomyelitis with rigidity and myoclonus (PERM) (8), classic SPS (5), stiff limb (5), stiff trunk (1), and isolated exaggerated startle (hyperekplexia, 1). Neuropsychiatric symptoms present in 12 patients (60%) were anxiety (11), depression (6), and delirium (3). Anxiety was particularly severe in 3 patients with PERM. Objective improvements in SPS neurologic symptoms were recorded in 16 of 18 patients who received first-line immunotherapy (89%, 9/10 treated with corticosteroids, 8/10 treated with IVIg, 3/4 treated with plasma exchange, and 1 treated with rituximab). Treatment-sparing maintenance strategies were successful in 4 of 7 patients (rituximab [2/3], azathioprine [1/1], and mycophenolate [1/3]). GlyRα1-modulating antibody improves diagnostic specificity for immunologically treatable SPS spectrum disorders. This study provides Class IV evidence that GlyRα1-modulating antibody accurately identifies patients with treatable SPS spectrum disorders.

  17. Rasd2 Modulates Prefronto-Striatal Phenotypes in Humans and ‘Schizophrenia-Like Behaviors' in Mice

    PubMed Central

    Vitucci, Daniela; Di Giorgio, Annabella; Napolitano, Francesco; Pelosi, Barbara; Blasi, Giuseppe; Errico, Francesco; Attrotto, Maria Teresa; Gelao, Barbara; Fazio, Leonardo; Taurisano, Paolo; Di Maio, Anna; Marsili, Valentina; Pasqualetti, Massimo; Bertolino, Alessandro; Usiello, Alessandro

    2016-01-01

    Rasd2 is a thyroid hormone target gene, which encodes for a GTP-binding protein enriched in the striatum where, among other functions, it modulates dopaminergic neurotransmission. Here we report that human RASD2 mRNA is abundant in putamen, but it also occurs in the cerebral cortex, with a distinctive expression pattern that differs from that present in rodents. Consistent with its localization, we found that a genetic variation in RASD2 (rs6518956) affects postmortem prefrontal mRNA expression in healthy humans and is associated with phenotypes of relevance to schizophrenia, including prefrontal and striatal grey matter volume and physiology during working memory, as measured with magnetic resonance imaging. Interestingly, quantitative real-time PCR analysis indicated that RASD2 mRNA is slightly reduced in postmortem prefrontal cortex of patients with schizophrenia. In the attempt to uncover the neurobiological substrates associated with Rasd2 activity, we used knockout mice to analyze the in vivo influence of this G-protein on the prepulse inhibition of the startle response and psychotomimetic drug-related behavioral response. Data showed that Rasd2 mutants display deficits in basal prepulse inhibition that, in turn, exacerbate gating disruption under psychotomimetic drug challenge. Furthermore, we documented that lack of Rasd2 strikingly enhances the behavioral sensitivity to motor stimulation elicited by amphetamine and phencyclidine. Based on animal model data, along with the finding that RASD2 influences prefronto-striatal phenotypes in healthy humans, we suggest that genetic mutation or reduced levels of this G-protein might have a role in cerebral circuitry dysfunction underpinning exaggerated psychotomimetic drugs responses and development of specific biological phenotypes linked to schizophrenia. PMID:26228524

  18. Rasd2 Modulates Prefronto-Striatal Phenotypes in Humans and 'Schizophrenia-Like Behaviors' in Mice.

    PubMed

    Vitucci, Daniela; Di Giorgio, Annabella; Napolitano, Francesco; Pelosi, Barbara; Blasi, Giuseppe; Errico, Francesco; Attrotto, Maria Teresa; Gelao, Barbara; Fazio, Leonardo; Taurisano, Paolo; Di Maio, Anna; Marsili, Valentina; Pasqualetti, Massimo; Bertolino, Alessandro; Usiello, Alessandro

    2016-02-01

    Rasd2 is a thyroid hormone target gene, which encodes for a GTP-binding protein enriched in the striatum where, among other functions, it modulates dopaminergic neurotransmission. Here we report that human RASD2 mRNA is abundant in putamen, but it also occurs in the cerebral cortex, with a distinctive expression pattern that differs from that present in rodents. Consistent with its localization, we found that a genetic variation in RASD2 (rs6518956) affects postmortem prefrontal mRNA expression in healthy humans and is associated with phenotypes of relevance to schizophrenia, including prefrontal and striatal grey matter volume and physiology during working memory, as measured with magnetic resonance imaging. Interestingly, quantitative real-time PCR analysis indicated that RASD2 mRNA is slightly reduced in postmortem prefrontal cortex of patients with schizophrenia. In the attempt to uncover the neurobiological substrates associated with Rasd2 activity, we used knockout mice to analyze the in vivo influence of this G-protein on the prepulse inhibition of the startle response and psychotomimetic drug-related behavioral response. Data showed that Rasd2 mutants display deficits in basal prepulse inhibition that, in turn, exacerbate gating disruption under psychotomimetic drug challenge. Furthermore, we documented that lack of Rasd2 strikingly enhances the behavioral sensitivity to motor stimulation elicited by amphetamine and phencyclidine. Based on animal model data, along with the finding that RASD2 influences prefronto-striatal phenotypes in healthy humans, we suggest that genetic mutation or reduced levels of this G-protein might have a role in cerebral circuitry dysfunction underpinning exaggerated psychotomimetic drugs responses and development of specific biological phenotypes linked to schizophrenia.

  19. Movement disorders with neuronal antibodies: syndromic approach, genetic parallels and pathophysiology

    PubMed Central

    Balint, Bettina; Vincent, Angela; Meinck, Hans-Michael; Irani, Sarosh R; Bhatia, Kailash P

    2018-01-01

    Abstract Movement disorders are a prominent and common feature in many autoantibody-associated neurological diseases, a group of potentially treatable conditions that can mimic infectious, metabolic or neurodegenerative disease. Certain movement disorders are likely to associate with certain autoantibodies; for example, the characteristic dyskinesias, chorea and dystonia associated with NMDAR antibodies, stiff person spectrum disorders with GAD, glycine receptor, amphiphysin or DPPX antibodies, specific paroxysmal dystonias with LGI1 antibodies, and cerebellar ataxia with various anti-neuronal antibodies. There are also less-recognized movement disorder presentations of antibody-related disease, and a considerable overlap between the clinical phenotypes and the associated antibody spectra. In this review, we first describe the antibodies associated with each syndrome, highlight distinctive clinical or radiological ‘red flags’, and suggest a syndromic approach based on the predominant movement disorder presentation, age, and associated features. We then examine the underlying immunopathophysiology, which may guide treatment decisions in these neuroimmunological disorders, and highlight the exceptional interface between neuronal antibodies and neurodegeneration, such as the tauopathy associated with IgLON5 antibodies. Moreover, we elaborate the emerging pathophysiological parallels between genetic movement disorders and immunological conditions, with proteins being either affected by mutations or targeted by autoantibodies. Hereditary hyperekplexia, for example, is caused by mutations of the alpha subunit of the glycine receptor leading to an infantile-onset disorder with exaggerated startle and stiffness, whereas antibodies targeting glycine receptors can induce acquired hyperekplexia. The spectrum of such immunological and genetic analogies also includes cerebellar ataxias and some encephalopathies. Lastly, we discuss how these pathophysiological considerations could reflect on possible future directions regarding antigen-specific immunotherapies or targeting the pathophysiological cascades downstream of the antibody effects. PMID:29053777

  20. PURA syndrome: clinical delineation and genotype-phenotype study in 32 individuals with review of published literature

    PubMed Central

    Reijnders, Margot R F; Janowski, Robert; Alvi, Mohsan; Self, Jay E; van Essen, Ton J; Vreeburg, Maaike; Rouhl, Rob P W; Stevens, Servi J C; Stegmann, Alexander P A; Schieving, Jolanda; Pfundt, Rolph; van Dijk, Katinke; Smeets, Eric; Stumpel, Connie T R M; Bok, Levinus A; Cobben, Jan Maarten; Engelen, Marc; Mansour, Sahar; Whiteford, Margo; Chandler, Kate E; Douzgou, Sofia; Cooper, Nicola S; Tan, Ene-Choo; Foo, Roger; Lai, Angeline H M; Rankin, Julia; Green, Andrew; Lönnqvist, Tuula; Isohanni, Pirjo; Williams, Shelley; Ruhoy, Ilene; Carvalho, Karen S; Dowling, James J; Lev, Dorit L; Sterbova, Katalin; Lassuthova, Petra; Neupauerová, Jana; Waugh, Jeff L; Keros, Sotirios; Clayton-Smith, Jill; Smithson, Sarah F; Brunner, Han G; van Hoeckel, Ceciel; Anderson, Mel; Clowes, Virginia E; Siu, Victoria Mok; DDD study, The; Selber, Paulo; Leventer, Richard J; Nellaker, Christoffer; Niessing, Dierk; Hunt, David; Baralle, Diana

    2018-01-01

    Background De novo mutations in PURA have recently been described to cause PURA syndrome, a neurodevelopmental disorder characterised by severe intellectual disability (ID), epilepsy, feeding difficulties and neonatal hypotonia. Objectives To delineate the clinical spectrum of PURA syndrome and study genotype-phenotype correlations. Methods Diagnostic or research-based exome or Sanger sequencing was performed in individuals with ID. We systematically collected clinical and mutation data on newly ascertained PURA syndrome individuals, evaluated data of previously reported individuals and performed a computational analysis of photographs. We classified mutations based on predicted effect using 3D in silico models of crystal structures of Drosophila-derived Pur-alpha homologues. Finally, we explored genotype-phenotype correlations by analysis of both recurrent mutations as well as mutation classes. Results We report mutations in PURA (purine-rich element binding protein A) in 32 individuals, the largest cohort described so far. Evaluation of clinical data, including 22 previously published cases, revealed that all have moderate to severe ID and neonatal-onset symptoms, including hypotonia (96%), respiratory problems (57%), feeding difficulties (77%), exaggerated startle response (44%), hypersomnolence (66%) and hypothermia (35%). Epilepsy (54%) and gastrointestinal (69%), ophthalmological (51%) and endocrine problems (42%) were observed frequently. Computational analysis of facial photographs showed subtle facial dysmorphism. No strong genotype-phenotype correlation was identified by subgrouping mutations into functional classes. Conclusion We delineate the clinical spectrum of PURA syndrome with the identification of 32 additional individuals. The identification of one individual through targeted Sanger sequencing points towards the clinical recognisability of the syndrome. Genotype-phenotype analysis showed no significant correlation between mutation classes and disease severity. PMID:29097605

  1. Behavioral phenotyping of mice in pharmacological and toxicological research.

    PubMed

    Karl, Tim; Pabst, Reinhard; von Hörsten, Stephan

    2003-07-01

    The evaluation of behavioral effects is an important component for the in vivo screening of drugs or potentially toxic compounds in mice. Ideally, such screening should be composed of monitoring general health, sensory functions, and motor abilities, right before specific behavioral domains are tested. A rational strategy in the design and procedure of testing as well as an effective composition of different well-established and reproducible behavioral tests can minimize the risk of false positive and false negative results in drug screening. In the present review we describe such basic considerations in planning experiments, selecting strains of mice, and propose groups of behavioral tasks suitable for a reliable detection of differences in specific behavioral domains in mice. Screening of general health and neurophysiologic functions (reflexes, sensory abilities) and motor function (pole test, wire hang test, beam walking, rotarod, accelerod, and footprint) as well as specific hypothesis-guided testing in the behavioral domains of learning and memory (water maze, radial maze, conditioned fear, and avoidance tasks), emotionality (open field, hole board, elevated plus maze, and object exploration), nociception (tail flick, hot plate), psychiatric-like conditions (porsolt swim test, acoustic startle response, and prepulse inhibition), and aggression (isolation-induced aggression, spontaneous aggression, and territorial aggression) are described in further detail. This review is designed to describe a general approach, which increases reliability of behavioral screening. Furthermore, it provides an overview on a selection of specific procedures suitable for but not limited to behavioral screening in pharmacology and toxicology.

  2. Removal of GABAA Receptor γ2 Subunits from Parvalbumin Neurons Causes Wide-Ranging Behavioral Alterations

    PubMed Central

    Leppä, Elli; Linden, Anni-Maija; Vekovischeva, Olga Y.; Swinny, Jerome D.; Rantanen, Ville; Toppila, Esko; Höger, Harald; Sieghart, Werner; Wulff, Peer; Wisden, William; Korpi, Esa R.

    2011-01-01

    We investigated the behavioral significance of fast synaptic inhibition by αβγ2-type GABAA receptors on parvalbumin (Pv) cells. The GABAA receptor γ2 subunit gene was selectively inactivated in Pv-positive neurons by Cre/loxP recombination. The resulting Pv-Δγ2 mice were relatively healthy in the first postnatal weeks; but then as Cre started to be expressed, the mice progressively developed wide-ranging phenotypic alterations including low body weight, motor deficits and tremor, decreased anxiety levels, decreased pain sensitivity and deficient prepulse inhibition of the acoustic startle reflex and impaired spatial learning. Nevertheless, the deletion was not lethal, and mice did not show increased mortality even after one year. Autoradiography with t-butylbicyclophosphoro[35S]thionate suggested an increased amount of GABAA receptors with only α and β subunits in central nervous system regions that contained high levels of parvalbumin neurons. Using BAC-transgenesis, we reduced some of the Pv-Δγ2 phenotype by selectively re-expressing the wild-type γ2 subunit back into some Pv cells (reticular thalamic neurons and cerebellar Pv-positive neurons). This produced less severe impairments of motor skills and spatial learning compared with Pv-Δγ2 mice, but all other deficits remained. Our results reveal the widespread significance of fast GABAergic inhibition onto Pv-positive neurons for diverse behavioral modalities, such as motor coordination, sensorimotor integration, emotional behavior and nociception. PMID:21912668

  3. Impact of aerobic exercise intensity on craving and reactivity to smoking cues.

    PubMed

    Janse Van Rensburg, Kate; Elibero, Andrea; Kilpatrick, Marcus; Drobes, David J

    2013-06-01

    Aerobic exercise can acutely reduce cigarette cravings during periods of nicotine deprivation. The primary aim of this study was to assess the differential effects of light and vigorous intensity aerobic exercise on cigarette cravings, subjective and physiological reactivity to smoking cues, and affect after overnight nicotine deprivation. A secondary aim was to examine cortisol change as a mediator of the effects of exercise on smoking motivation. 162 (55 female, 107 male) overnight nicotine-deprived smokers were randomized to one of three exercise conditions: light intensity, vigorous intensity, or a passive control condition. After each condition, participants engaged in a standardized cue reactivity assessment. Self-reported urges to smoke, affect, and salivary cortisol were assessed at baseline (i.e., before each condition), immediately after each condition, and after the cue reactivity assessment. Light and vigorous exercise significantly decreased urges to smoke and increased positive affect, relative to the control condition. In addition, those in the vigorous exercise condition demonstrated suppressed appetitive reactivity to smoking cues, as indexed by the startle eyeblink reflex. Although exercise intensity was associated with expected changes in cortisol concentration, these effects were not related to changes in craving or cue reactivity. Both light and vigorous exercise can reduce general cravings to smoke, whereas vigorous exercise appears especially well-suited for reducing appetitive reactions to cues that may precede smoking. Results did not support exercise-induced cortisol release as a mechanism for these effects. PsycINFO Database Record (c) 2013 APA, all rights reserved.

  4. Stressor-specific effects of sex on HPA axis hormones and activation of stress-related neurocircuitry.

    PubMed

    Babb, Jessica A; Masini, Cher V; Day, Heidi E W; Campeau, Serge

    2013-11-01

    Experiencing stress can be physically and psychologically debilitating to an organism. Women have a higher prevalence of some stress-related mental illnesses, the reasons for which are unknown. These experiments explore differential HPA axis hormone release in male and female rats following acute stress. Female rats had a similar threshold of HPA axis hormone release following low intensity noise stress as male rats. Sex did not affect the acute release, or the return of HPA axis hormones to baseline following moderate intensity noise stress. Sensitive indices of auditory functioning obtained by modulation of the acoustic startle reflex by weak pre-pulses did not reveal any sexual dimorphism. Furthermore, male and female rats exhibited similar c-fos mRNA expression in the brain following noise stress, including several sex-influenced stress-related regions. The HPA axis response to noise stress was not affected by stage of estrous cycle, and ovariectomy significantly increased hormone release. Direct comparison of HPA axis hormone release to two different stressors in the same animals revealed that although female rats exhibit robustly higher HPA axis hormone release after restraint stress, the same effect was not observed following moderate and high intensity loud noise stress. Finally, the differential effect of sex on HPA axis responses to noise and restraint stress cannot readily be explained by differential social cues or general pain processing. These studies suggest the effect of sex on acute stress-induced HPA axis hormone activity is highly dependent on the type of stressor.

  5. Exaggerated Cap-Dependent Translation as a Mechanism for Corticostriatal Dysfunction in Fragile X Syndrome Model Mice

    DTIC Science & Technology

    2017-11-01

    AWARD NUMBER: W81XWH-15-1-0361 TITLE: “Exaggerated Cap- Dependent Translation as a Mechanism for Corticostriatal Dysfunction in Fragile X...Annual 3. DATES COVERED 19Oct2016 - 18Oct2017 4. TITLE AND SUBTITLE 5a. CONTRACT NUMBER “Exaggerated Cap- Dependent Translation as a Mechanism for...altered cortico-striatal synaptic plasticity and repetitive/perseverative behaviors displayed by FXS model mice are reversed by novel cap- dependent

  6. Towards exaggerated emphysema stereotypes

    NASA Astrophysics Data System (ADS)

    Chen, C.; Sørensen, L.; Lauze, F.; Igel, C.; Loog, M.; Feragen, A.; de Bruijne, M.; Nielsen, M.

    2012-03-01

    Classification is widely used in the context of medical image analysis and in order to illustrate the mechanism of a classifier, we introduce the notion of an exaggerated image stereotype based on training data and trained classifier. The stereotype of some image class of interest should emphasize/exaggerate the characteristic patterns in an image class and visualize the information the employed classifier relies on. This is useful for gaining insight into the classification and serves for comparison with the biological models of disease. In this work, we build exaggerated image stereotypes by optimizing an objective function which consists of a discriminative term based on the classification accuracy, and a generative term based on the class distributions. A gradient descent method based on iterated conditional modes (ICM) is employed for optimization. We use this idea with Fisher's linear discriminant rule and assume a multivariate normal distribution for samples within a class. The proposed framework is applied to computed tomography (CT) images of lung tissue with emphysema. The synthesized stereotypes illustrate the exaggerated patterns of lung tissue with emphysema, which is underpinned by three different quantitative evaluation methods.

  7. Assessment of Spasticity by a Pendulum Test in SCI Patients Who Exercise FES Cycling or Receive Only Conventional Therapy.

    PubMed

    Popovic-Maneski, Lana; Aleksic, Antonina; Metani, Amine; Bergeron, Vance; Cobeljic, Radoje; Popovic, Dejan B

    2018-01-01

    Increased muscle tone and exaggerated tendon reflexes characterize most of the individuals after a spinal cord injury (SCI). We estimated seven parameters from the pendulum test and used them to compare with the Ashworth modified scale of spasticity grades in three populations (retrospective study) to assess their spasticity. Three ASIA B SCI patients who exercised on a stationary FES bicycle formed group F, six ASIA B SCI patients who received only conventional therapy were in the group C, and six healthy individuals constituted the group H. The parameters from the pendulum test were used to form a single measure, termed the PT score, for each subject. The pendulum test parameters show differences between the F and C groups, but not between the F and H groups, however, statistical significance was limited due to the small study size. Results show a small deviation from the mean for all parameters in the F group and substantial deviations from the mean for the parameters in the C group. PT scores show significant differences between the F and C groups and the C and H groups and no differences between the F and C groups. The correlation between the PT score and Ashworth score was 0.88.

  8. Hoffmann's syndrome with unusually long duration: Report on clinical, laboratory and muscle imaging findings in two cases

    PubMed Central

    Nalini, Atchayaram; Govindaraju, C.; Kalra, Pramila; Kadukar, Prashanth

    2014-01-01

    Two adult men presented with the rare Hoffmann's syndrome (HS). Case 1: A 35-year-old male patient had progressive stiffness of lower limbs of 13 years and generalized muscle hypertrophy and myalgia of 3 years duration. Had periorbital edema, dry skin, generalized muscle hypertrophy and spastic dysarthria with hoarseness. Muscle power was normal. Jaw jerk and deep tendon reflexes were exaggerated. Case 2: A 24-year-old male patient presented with muscle hypertrophy from childhood, slowness in motor activities and hearing impairment. For 6 months, he had severe muscle pains, cramps and further increase in hypertrophy. He had yellow tinged, dry skin, hoarseness of voice, gross muscle hypertrophy and minimal weakness. Both had markedly elevated serum creatine kinase (CK) levels and high thyroid stimulating hormone, low free triiodothyronine and free thyroxine levels. Levothyroxine treatment demonstrated remarkable reduction in muscle bulk at 2 months in both and no symptoms at 6 months. Magnetic resonance imaging of lower limbs in both cases revealed almost identical features with involvement of the muscles of posterior and adductor compartment of thighs and posterior and lateral compartments of the legs. Differential diagnosis of long duration muscle pseudohypertrophy and elevated CK levels should include HS. PMID:25024579

  9. Physiological markers of anxiety are increased in children of abused mothers.

    PubMed

    Jovanovic, Tanja; Smith, Ami; Kamkwalala, Asante; Poole, James; Samples, Tara; Norrholm, Seth D; Ressler, Kerry J; Bradley, Bekh

    2011-08-01

    A growing number of studies indicate that low income, African American men and women living in urban environments are at high risk for trauma exposure, which may have intergenerational effects. The current study employed psychophysiological methods to describe biomarkers of anxiety in children of traumatized mothers. Study participants were recruited from a highly traumatized urban population, comprising mother-child pairs (n=36) that included school-age children. Mothers were assessed for childhood abuse with the Childhood Trauma Questionnaire, as well as symptoms of depression and posttraumatic stress disorder (PTSD). The children were measured for dark-enhanced startle responses and heart-rate variability. Dark-enhanced startle was found to be higher in children whose mothers had high levels of childhood physical abuse, as compared to children whose mothers had low levels of physical abuse. During the habituation phase of the startle experiment, children whose mothers had high levels of childhood emotional abuse had higher sympathetic system activation compared to children of mothers with low emotional abuse. These effects remained significant after accounting for maternal symptoms of PTSD and depression, as well as for the child's trauma exposure. These results demonstrate that children of mothers who have history of childhood physical and emotional abuse have higher dark-enhanced startle as well as greater sympathetic nervous system activation than children of mothers who do not report a history of childhood physical and emotional abuse, and emphasize the utility of physiological measures as pervasive biomarkers of psychopathology that can easily be measured in children. © 2011 The Authors. Journal of Child Psychology and Psychiatry © 2011 Association for Child and Adolescent Mental Health.

  10. MitoPark mice, an animal model of Parkinson's disease, show enhanced prepulse inhibition of acoustic startle and no loss of gating in response to the adenosine A(2A) antagonist SCH 412348.

    PubMed

    Grauer, Steven M; Hodgson, Robert; Hyde, Lynn A

    2014-04-01

    Psychoses are debilitating side effects associated with current dopaminergic treatments for Parkinson's disease (PD). Prepulse inhibition (PPI), in which a non-startling stimulus reduces startle response to a subsequent startle-eliciting stimulus, is important in filtering out extraneous sensory stimuli. PPI deficits induced by dopamine agonists can model symptoms of psychosis. Adenosine A(2A) receptor antagonists, being developed as novel PD treatments, indirectly modulate dopamine signaling in the basal ganglia and may have an improved psychosis profile which could be detected using the PPI model. The aims of this study is to characterize PPI in MitoPark mice, which exhibit progressive loss of dopamine signaling and develop a Parkinson-like motor phenotype, and assess standard and novel PD treatment effects on PPI in MitoPark mice, which more closely mimic the basal ganglia dopamine status of PD patients. MitoPark mice displayed enhanced PPI as dopamine tone decreased with age, consistent with studies in intact mice that show enhanced PPI in response to dopamine antagonists. Paradoxically, older MitoParks were more sensitive to PPI disruption when challenged with dopamine agonists such as apomorphine or pramipexole. Alternatively, SCH 412348, an adenosine A(2A) antagonist, did not disrupt PPI in MitoPark mice at doses that normalized hypoactivity. Use of MitoPark mice in the PPI assay to assess the potential for PD treatment to produce psychoses likely represents a more disease-relevant model. SCH 412348 does not differentially disrupt PPI as do dopamine agonists, perhaps indicative of an improved psychosis profile of adenosine A(2A) antagonists, even in PD patients with decreased dopamine tone in the basal ganglia.

  11. Impact of Hypoxia on Startle Response (C-start) of Fish in a Tropical Urban Estuary

    NASA Astrophysics Data System (ADS)

    Sánchez-García, M.; Zottoli, S. J.; Roberson, L.

    2016-02-01

    Hypoxic zones have become more prevalent in marine ecosystems as a result of physical changes to the coastal zone, pollution and eutrophication, and are expected to increase in prevalence with climate change. While some studies have examined the behavioral effects of hypoxia on coastal fishes in temperate and sub-tropical zones, none have focused on tropical coastal zones. Behavioral changes may affect fish survival, predator-prey interactions and ultimately ecosystem structure. Through behavioral endpoints we evaluated the effects of non-lethal levels of hypoxia on estuarine fish collected from the tropical Condado Lagoon, San Juan P.R, in a laboratory setting. Two groups of 10 fishes were placed individually in a sound test chamber and oxygen concentrations were modulated from a pre-treatment at 100% oxygen to increasing levels of hypoxia (80, 70, & 60%), followed by a reversal treatment (100%) to test for recovery of pretreatment behavior. An abrupt sound stimulus was used to elicit a startle response, a quantifiable biological endpoint, while recording with a high speed camera. This approach can lend valuable insight into changes in the central nervous system and effects of anthropogenic inputs on tropical ecosystems at the individual- and population-level. We found that hypoxic conditions significantly decrease fish responsiveness; fish startled only half the time at 80% O2 and dropped as much as 61% at 60% O2. Additionally, responsiveness in reversal tests were significantly lower than under pre-treatment conditions. These results indicate that hypoxia may have long-term or possibly permanent effects, even under relatively mild hypoxia conditions common to tropical estuaries. Future work will aim to understand if the startle response can be regained after a hypoxic event.

  12. Neurobehavioral impairments caused by developmental imidacloprid exposure in zebrafish.

    PubMed

    Crosby, Emily B; Bailey, Jordan M; Oliveri, Anthony N; Levin, Edward D

    2015-01-01

    Neonicotinoid insecticides are becoming more widely applied as organophosphate (OP) insecticides are decreasing in use. Because of their relative specificity to insect nicotinic receptors, they are thought to have reduced risk of neurotoxicity in vertebrates. However, there is scant published literature concerning the neurobehavioral effects of developmental exposure of vertebrates to neonicotinoids. Using zebrafish, we investigated the neurobehavioral effects of developmental exposure to imidacloprid, a prototypic neonicotinoid pesticide. Nicotine was also administered for comparison. Zebrafish were exposed via immersion in aqueous solutions containing 45 μM or 60 μM of imidacloprid or nicotine (or vehicle control) from 4h to 5d post fertilization. The functional effects of developmental exposure to both imidacloprid and nicotine were assessed in larvae using an activity assay and during adolescence and adulthood using a battery of neurobehavioral assays, including assessment of sensorimotor response and habituation in a tactile startle test, novel tank swimming, and shoaling behavior. In larvae, developmental imidacloprid exposure at both doses significantly decreased swimming activity. The 5D strains of zebrafish were more sensitive to both nicotine and imidacloprid than the AB* strain. In adolescent and adult fish, developmental exposure to imidacloprid significantly decreased novel tank exploration and increased sensorimotor response to startle stimuli. While nicotine did not affect novel tank swimming, it increased sensorimotor response to startle stimuli at the low dose. No effects of either compound were found on shoaling behavior or habituation to a startling stimulus. Early developmental exposure to imidacloprid has both early-life and persisting effects on neurobehavioral function in zebrafish. Its developmental neurotoxicity should be further investigated. Copyright © 2015 Elsevier Inc. All rights reserved.

  13. Oxytocin receptor neurotransmission in the dorsolateral bed nucleus of the stria terminalis facilitates the acquisition of cued fear in the fear-potentiated startle paradigm in rats.

    PubMed

    Moaddab, Mahsa; Dabrowska, Joanna

    2017-07-15

    Oxytocin (OT) is a hypothalamic neuropeptide that modulates fear and anxiety-like behaviors. Dorsolateral bed nucleus of the stria terminalis (BNST dl ) plays a critical role in the regulation of fear and anxiety, and expresses high levels of OT receptor (OTR). However, the role of OTR neurotransmission within the BNST dl in mediating these behaviors is unknown. Here, we used adult male Sprague-Dawley rats to investigate the role of OTR neurotransmission in the BNST dl in the modulation of the acoustic startle response, as well as in the acquisition and consolidation of conditioned fear using fear potentiated startle (FPS) paradigm. Bilateral intra-BNST dl administration of OT (100 ng) did not affect the acquisition of conditioned fear response. However, intra-BNST dl administration of specific OTR antagonist (OTA), (d(CH 2 ) 5 1 , Tyr(Me) 2 , Thr 4 , Orn 8 , des-Gly-NH 2 9 )-vasotocin, (200 ng), prior to the fear conditioning session, impaired the acquisition of cued fear, without affecting a non-cued fear component of FPS. Neither OTA, nor OT affected baseline startle or shock reactivity during fear conditioning. Therefore, the observed impairment of cued fear after OTA infusion resulted from the specific effect on the formation of cued fear. In contrast to the acquisition, neither OTA nor OT affected the consolidation of FPS, when administered after the completion of fear conditioning session. Taken together, these results reveal the important role of OTR neurotransmission in the BNST dl in the formation of conditioned fear to a discrete cue. This study also highlights the role of the BNST dl in learning to discriminate between threatening and safe stimuli. Copyright © 2017 Elsevier Ltd. All rights reserved.

  14. Deimatic display in the European swallowtail butterfly as a secondary defence against attacks from great tits.

    PubMed

    Olofsson, Martin; Eriksson, Stephan; Jakobsson, Sven; Wiklund, Christer

    2012-01-01

    Many animals reduce the risk of being attacked by a predator through crypsis, masquerade or, alternatively, by advertising unprofitability by means of aposematic signalling. Behavioural attributes in prey employed after discovery, however, signify the importance of also having an effective secondary defence if a predator uncovers, or is immune to, the prey's primary defence. In butterflies, as in most animals, secondary defence generally consists of escape flights. However, some butterfly species have evolved other means of secondary defence such as deimatic displays/startle displays. The European swallowtail, Papilio machaon, employs what appears to be a startle display by exposing its brightly coloured dorsal wing surface upon disturbance and, if the disturbance continues, by intermittently protracting and relaxing its wing muscles generating a jerky motion of the wings. This display appears directed towards predators but whether it is effective in intimidating predators so that they refrain from attacks has never been tested experimentally. In this study we staged encounters between a passerine predator, the great tit, Parus major, and live and dead swallowtail butterflies in a two-choice experiment. Results showed that the dead butterfly was virtually always attacked before the live butterfly, and that it took four times longer before a bird attacked the live butterfly. When the live butterfly was approached by a bird this generally elicited the butterfly's startle display, which usually caused the approaching bird to flee. We also performed a palatability test of the butterflies and results show that the great tits seemed to find them palatable. We conclude that the swallowtail's startle display of conspicuous coloration and jerky movements is an efficient secondary defence against small passerines. We also discuss under what conditions predator-prey systems are likely to aid the evolution of deimatic behaviours in harmless and palatable prey.

  15. Predicting impaired extinction of traumatic memory and elevated startle.

    PubMed

    Nalloor, Rebecca; Bunting, Kristopher; Vazdarjanova, Almira

    2011-01-01

    Emotionally traumatic experiences can lead to debilitating anxiety disorders, such as phobias and Post-Traumatic Stress Disorder (PTSD). Exposure to such experiences, however, is not sufficient to induce pathology, as only up to one quarter of people exposed to such events develop PTSD. These statistics, combined with findings that smaller hippocampal size prior to the trauma is associated with higher risk of developing PTSD, suggest that there are pre-disposing factors for such pathology. Because prospective studies in humans are limited and costly, investigating such pre-dispositions, and thus advancing understanding of the genesis of such pathologies, requires the use of animal models where predispositions are identified before the emotional trauma. Most existing animal models are retrospective: they classify subjects as those with or without a PTSD-like phenotype long after experiencing a traumatic event. Attempts to create prospective animal models have been largely unsuccessful. Here we report that individual predispositions to a PTSD-like phenotype, consisting of impaired rate and magnitude of extinction of an emotionally traumatic event coupled with long-lasting elevation of acoustic startle responses, can be revealed following exposure to a mild stressor, but before experiencing emotional trauma. We compare, in rats, the utility of several classification criteria and report that a combination of criteria based on acoustic startle responses and behavior in an anxiogenic environment is a reliable predictor of a PTSD-like phenotype. There are individual predispositions to developing impaired extinction and elevated acoustic startle that can be identified after exposure to a mildly stressful event, which by itself does not induce such a behavioral phenotype. The model presented here is a valuable tool for studying the etiology and pathophysiology of anxiety disorders and provides a platform for testing behavioral and pharmacological interventions that can reduce the probability of developing pathologic behaviors associated with such disorders.

  16. Pain increases during sympathetic arousal in patients with complex regional pain syndrome.

    PubMed

    Drummond, P D; Finch, P M; Skipworth, S; Blockey, P

    2001-10-09

    To investigate the effect of sympathetic arousal on pain and vasomotor responses in healthy control subjects and patients with complex regional pain syndrome (CRPS), and to determine whether pain increases in patients with particular symptoms. In experiments 1 and 2, capsaicin was applied to the forearm of 24 healthy subjects to induce thermal hyperalgesia. Vascular responses were monitored and subjects rated thermal hyperalgesia before and after being startled (experiment 1), and before, during, and after mental arithmetic, breath holding, forehead cooling, the Valsalva maneuver, and a cold pressor test in experiment 2. In a third experiment, sensitivity to heat, cold, and mechanical stimulation was investigated in 61 patients with CRPS. Pain ratings and vascular and electrodermal responses were recorded after patients were startled and during forehead cooling. In experiment 1, thermal hyperalgesia decreased in healthy control subjects after they were startled, and digital blood vessels constricted symmetrically. In experiment 2, thermal hyperalgesia decreased during and after other forms of sympathetic arousal. However, in experiment 3, ratings of clinical pain increased during forehead cooling or after being startled in over 70% of patients with CRPS. Pain increased most consistently during forehead cooling in patients with cold allodynia or punctate allodynia. Digital blood vessels constricted more intensely on the symptomatic than the nonsymptomatic side in patients with CRPS during sympathetic arousal. Normal inhibitory influences on pain during sympathetic arousal are compromised in the majority of patients with CRPS. The augmented vasoconstrictor response in the symptomatic limb during sympathetic arousal is consistent with adrenergic supersensitivity. An adrenergic sensitivity in nociceptive afferents might contribute to pain and hyperalgesia during sympathetic arousal in certain patients with CRPS.

  17. Impaired baroreflex sensitivity, carotid stiffness, and exaggerated exercise blood pressure: a community-based analysis from the Paris Prospective Study III.

    PubMed

    Sharman, James E; Boutouyrie, Pierre; Perier, Marie-Cécile; Thomas, Frédérique; Guibout, Catherine; Khettab, Hakim; Pannier, Bruno; Laurent, Stéphane; Jouven, Xavier; Empana, Jean-Philippe

    2018-02-14

    People with exaggerated exercise blood pressure (BP) have adverse cardiovascular outcomes. Mechanisms are unknown but could be explained through impaired neural baroreflex sensitivity (BRS) and/or large artery stiffness. This study aimed to determine the associations of carotid BRS and carotid stiffness with exaggerated exercise BP. Blood pressure was recorded at rest and following an exercise step-test among 8976 adults aged 50 to 75 years from the Paris Prospective Study III. Resting carotid BRS (low frequency gain, from carotid distension rate, and heart rate) and stiffness were measured by high-precision echotracking. A systolic BP threshold of ≥ 150 mmHg defined exaggerated exercise BP and ≥140/90 mmHg defined resting hypertension (±antihypertensive treatment). Participants with exaggerated exercise BP had significantly lower BRS [median (Q1; Q3) 0.10 (0.06; 0.16) vs. 0.12 (0.08; 0.19) (ms2/mm) 2×108; P < 0.001] but higher stiffness [mean ± standard deviation (SD); 7.34 ± 1.37 vs. 6.76 ± 1.25 m/s; P < 0.001) compared to those with non-exaggerated exercise BP. However, only lower BRS (per 1SD decrement) was associated with exaggerated exercise BP among people without hypertension at rest {specifically among those with optimal BP; odds ratio (OR) 1.16 [95% confidence intervals (95% CI) 1.01; 1.33], P = 0.04 and high-normal BP; OR, 1.19 (95% CI 1.07; 1.32), P = 0.001} after adjustment for age, sex, body mass index, smoking, alcohol, total cholesterol, high-density lipoprotein cholesterol, resting heart rate, and antihypertensive medications. Impaired BRS, but not carotid stiffness, is independently associated with exaggerated exercise BP even among those with well controlled resting BP. This indicates a potential pathway from depressed neural baroreflex function to abnormal exercise BP and clinical outcomes. Published on behalf of the European Society of Cardiology. All rights reserved. © The Author 2017. For permissions, please email: journals.permissions@oup.com.

  18. The peacock train does not handicap cursorial locomotor performance

    PubMed Central

    Thavarajah, Nathan K.; Tickle, Peter G.; Nudds, Robert L.; Codd, Jonathan R.

    2016-01-01

    Exaggerated traits, like the peacock train, are recognized as classic examples of sexual selection. The evolution of sexual traits is often considered paradoxical as, although they enhance reproductive success, they are widely presumed to hinder movement and survival. Many exaggerated traits represent an additional mechanical load that must be carried by the animal and therefore may influence the metabolic cost of locomotion and constrain locomotor performance. Here we conducted respirometry experiments on peacocks and demonstrate that the exaggerated sexually selected train does not compromise locomotor performance in terms of the metabolic cost of locomotion and its kinematics. Indeed, peacocks with trains had a lower absolute and mass specific metabolic cost of locomotion. Our findings suggest that adaptations that mitigate any costs associated with exaggerated morphology are central in the evolution of sexually selected traits. PMID:27805067

  19. Evaluating the clinical utility of the Validity-10 for detecting amplified symptom reporting for patients with mild traumatic brain injury and comorbid psychological health conditions.

    PubMed

    Dretsch, Michael N; Williams, Kathy; Staver, Tara; Grammer, Geoffrey; Bleiberg, Joseph; DeGraba, Thomas; Lange, Rael T

    2017-01-01

    The objective of this study was to compare the Validity-10 scale with the PAI Negative Impression Management Scale (PAI-NIM) for detecting exaggerated symptom reporting in active-duty military service members (SMs) admitted with unremitting mild TBI symptoms and comorbid psychological health conditions (mTBI/PH). Data were analyzed from 254 SMs who completed the Neurobehavioral Symptom Inventory (NSI) and Personality Assessment Inventory (PAI) as a part of a larger battery of self-report symptom scales upon admission to the intensive-outpatient TBI treatment program at a military medical center. Symptom exaggeration was operationalized using the PAI Negative Impression Management Scale (PAI-NIM). A PAI-NIM score of ≥73 was categorized as positive for symptom exaggeration (SVTpos), while a lower score was categorized as negative for symptom exaggeration (SVTneg). SMs in the SVTpos group (n = 34) had significantly higher scores (p ≤ .004) on the PAI clinical scales as well as on the NSI total score (range: d = 0.59-1.91) compared to those who were SVTneg (n = 220). The optimal cut-score for the NSI Val-10 scale to identify possible symptom exaggeration was ≥26 (sensitivity = .29, specificity = .95, PPP = .74, NPP = .71). In patients suffering from mTBI/PH, the Validity-10 requires a higher cut-score than previously reported to be useful as a metric of exaggerated symptom reporting.

  20. Context conditioning and behavioral avoidance in a virtual reality environment: effect of predictability.

    PubMed

    Grillon, Christian; Baas, Johanna M P; Cornwell, Brian; Johnson, Linda

    2006-10-01

    Sustained anxiety can be modeled using context conditioning, which can be studied in a virtual reality environment. Unpredictable stressors increase context conditioning in animals. This study examined context conditioning to predictable and unpredictable shocks in humans using behavioral avoidance, potentiated startle, and subjective reports of anxiety. Subjects were guided through three virtual rooms (no-shock, predictable, unpredictable contexts). Eight-sec duration colored lights served as conditioned stimuli (CS). During acquisition, no shock was administered in the no-shock context. Shocks were paired with the CS in the predictable context and were administered randomly in the unpredictable context. No shock was administered during extinction. Startle stimuli were delivered during CS and between CS to assess cued and context conditioning, respectively. To assess avoidance, subjects freely navigated into two of the three contexts to retrieve money. Startle between CS was potentiated in the unpredictable context compared to the two other contexts. Following acquisition, subjects showed a strong preference for the no-shock context and avoidance of the unpredictable context. Consistent with animal data, context conditioning is increased by unpredictability. These data support virtual reality as a tool to extend research on physiological and behavioral signs of fear and anxiety in humans.

  1. Three cases of Creutzfeldt-Jakob disease with prion protein gene codon180 mutation presenting with pathological laughing and crying.

    PubMed

    Iwasaki, Yasushi

    2012-08-15

    Although there are no reports of pathological laughing and crying being observed in patients with Creutzfeldt-Jakob disease (CJD), the author experienced three patients with CJD with prion protein gene codon180 mutation (V180I CJD) who showed this characteristic clinical finding. This finding was observed from the early disease stage in all 3 patients and continued for several months. Startle reaction was also remarkable in all patients, although myoclonus was generally mild. The dissociation between the startle reaction and myoclonus was suspected to be another feature of V180I CJD. The pathological laughing and crying co-occured with the startle reaction and stopped right before the onset of akinetic mutism, and the degree of both symptoms was almost parallel during this period. On the basis of MRI and autopsy findings, pathological laughing and crying was suspected of being induced by the widespread cerebral cortical involvement that is characteristic of V180I CJD. From the present observations, the author speculated that pathological laughing and crying may be a comparatively frequent observation in V180I CJD patients. Copyright © 2012 Elsevier B.V. All rights reserved.

  2. Startle stimuli reduce the internal model control in discrete movements.

    PubMed

    Wright, Zachary A; Rogers, Mark W; MacKinnon, Colum D; Patton, James L

    2009-01-01

    A well known and major component of movement control is the feedforward component, also known as the internal model. This model predicts and compensates for expected forces seen during a movement, based on recent experience, so that a well-learned task such as reaching to a target can be executed in a smooth straight manner. It has recently been shown that the state of preparation of planned movements can be tested using a startling acoustic stimulus (SAS). SAS, presented 500, 250 or 0 ms before the expected "go" cue resulted in the early release of the movement trajectory associated with the after-effects of the force field training (i.e. the internal model). In a typical motor adaptation experiment with a robot-applied force field, we tested if a SAS stimulus influences the size of after-effects that are typically seen. We found that in all subjects the after-effect magnitudes were significantly reduced when movements were released by SAS, although this effect was not further modulated by the timing of SAS. Reduced after-effects reveal at least partial existence of learned preparatory control, and identify startle effects that could influence performance in tasks such as piloting, teleoperation, and sports.

  3. Spatial hearing ability of the pigmented Guinea pig (Cavia porcellus): Minimum audible angle and spatial release from masking in azimuth.

    PubMed

    Greene, Nathaniel T; Anbuhl, Kelsey L; Ferber, Alexander T; DeGuzman, Marisa; Allen, Paul D; Tollin, Daniel J

    2018-08-01

    Despite the common use of guinea pigs in investigations of the neural mechanisms of binaural and spatial hearing, their behavioral capabilities in spatial hearing tasks have surprisingly not been thoroughly investigated. To begin to fill this void, we tested the spatial hearing of adult male guinea pigs in several experiments using a paradigm based on the prepulse inhibition (PPI) of the acoustic startle response. In the first experiment, we presented continuous broadband noise from one speaker location and switched to a second speaker location (the "prepulse") along the azimuth prior to presenting a brief, ∼110 dB SPL startle-eliciting stimulus. We found that the startle response amplitude was systematically reduced for larger changes in speaker swap angle (i.e., greater PPI), indicating that using the speaker "swap" paradigm is sufficient to assess stimulus detection of spatially separated sounds. In a second set of experiments, we swapped low- and high-pass noise across the midline to estimate their ability to utilize interaural time- and level-difference cues, respectively. The results reveal that guinea pigs can utilize both binaural cues to discriminate azimuthal sound sources. A third set of experiments examined spatial release from masking using a continuous broadband noise masker and a broadband chirp signal, both presented concurrently at various speaker locations. In general, animals displayed an increase in startle amplitude (i.e., lower PPI) when the masker was presented at speaker locations near that of the chirp signal, and reduced startle amplitudes (increased PPI) indicating lower detection thresholds when the noise was presented from more distant speaker locations. In summary, these results indicate that guinea pigs can: 1) discriminate changes in source location within a hemifield as well as across the midline, 2) discriminate sources of low- and high-pass sounds, demonstrating that they can effectively utilize both low-frequency interaural time and high-frequency level difference sound localization cues, and 3) utilize spatial release from masking to discriminate sound sources. This report confirms the guinea pig as a suitable spatial hearing model and reinforces prior estimates of guinea pig hearing ability from acoustical and physiological measurements. Copyright © 2018 Elsevier B.V. All rights reserved.

  4. Sex-typicality and attractiveness: are supermale and superfemale faces super-attractive?

    PubMed

    Rhodes, G; Hickford, C; Jeffery, L

    2000-02-01

    Many animals find extreme versions of secondary sexual characteristics attractive, and such preferences can enhance reproductive success (Andersson, 1994). We hypothesized, therefore, that extreme versions of sex-typical traits may be attractive in human faces. We created supermale and superfemale faces by exaggerating all spatial differences between an average male and an average female face. In Expt 1 the male average was preferred to a supermale (50% exaggeration of differences from the female average). There was no clear preference for the female average or the superfemale (50% exaggeration). In Expt 2, participants chose the most attractive face from sets of images containing feminized as well as masculinized images for each sex, and spanning a wider range of exaggeration levels than in Expt 1. Chinese sets were also shown, to see whether similar preferences would occur for a less familiar race (participants were Caucasian). The most attractive female image was significantly feminized for faces of both races. However, the most attractive male image for both races was also significantly feminized. These results indicate that feminization, rather than sex exaggeration per se, is attractive in human faces, and they corroborate similar findings by Perrett et al. (1998).

  5. Being reflexive in qualitative grounded theory: discussion and application of a model of reflexivity.

    PubMed

    Engward, Hilary; Davis, Geraldine

    2015-07-01

    A discussion of the meaning of reflexivity in research with the presentation of examples of how a model of reflexivity was used in a grounded theory research project. Reflexivity requires the researcher to make transparent the decisions they make in the research process and is therefore important in developing quality in nursing research. The importance of being reflexive is highlighted in the literature in relation to nursing research, however, practical guidance as to how to go about doing research reflexively is not always clearly articulated. This is a discussion paper. The concept of reflexivity in research is explored using the Alvesson and Skoldberg model of reflexivity and practical examples of how a researcher developed reflexivity in a grounded theory project are presented. Nurse researchers are encouraged to explore and apply the concept of reflexivity in their research practices to develop transparency in the research process and to increase robustness in their research. The Alvesson and Skoldberg model is of value in applying reflexivity in qualitative nursing research, particularly in grounded theory research. Being reflexive requires the researcher to be completely open about decisions that are made in the research process. The Alvesson and Skolberg model of reflexivity is a useful model that can enhance reflexivity in the research process. It can be a useful practical tool to develop reflexivity in grounded theory research. © 2015 John Wiley & Sons Ltd.

  6. Variability in Hoffmann and tendon reflexes in healthy male subjects

    NASA Technical Reports Server (NTRS)

    Good, E.; Do, S.; Jaweed, M.

    1992-01-01

    There is a time dependent decrease in amplitude of H- and T-reflexes during Zero-G exposure and subsequently an increase in the amplitude of the H-reflex 2-4 hours after return to a 1-G environment. These alterations have been attributed to the adaptation of the human neurosensory system to gravity. The Hoffman reflex (H-reflex) is an acknowledged method to determine the integrity of the monosynaptic reflex arc. However deep tendon reflexes (DTR's or T-reflexes), elicited by striking the tendon also utilize the entire reflex arc. The objective of this study was to compare the variability in latency and amplitude of the two reflexes in healthy subjects. Methods: Nine healthy male subjects, 27-43 years in age, 161-175 cm in height plus 60-86 Kg in weight, underwent weekly testing for four weeks with a Dan-Tec EMG counterpoint EMG system. Subjects were studied prone and surface EMG electrodes were placed on the right and left soleus muscles. The H-reflex was obtained by stimulating the tibial nerve in the politeal fossa with a 0.2 msec square wave pulse delivered at 2 Hz until the maximum H-reflex was obtained. The T-reflex was invoked by tapping the achilles tendon with a self triggering reflex hammer connected to the EMG system. The latencies and amplitudes for the H- and T-reflexes were measured. Results: These data indicate that the amplitudes of these reflexes varied considerably. However, latencies to invoked responses were consistent. The latency of the T-reflex was approximately 3-5 msec longer than the H-reflex. Conclusion: The T-reflex is easily obtained, requires less time, and is more comfortable to perform. Qualitative data can be obtained by deploying self triggering, force plated reflex hammers both in the 1-G and Zero-G environment.

  7. Homocysteine, visceral adiposity-related novel cardiometabolic risk factors, and exaggerated blood pressure response to the exercise treadmill test.

    PubMed

    Türker Duyuler, Pinar; Duyuler, Serkan; Demir, Mevlüt; Uçar Elalmiş, Özgül; Güray, Ümit; İleri, Mehmet

    2017-12-01

    Exaggerated blood pressure response to exercise is a risk factor for the development of future hypertension. In this study, we aimed to investigate the association between homocysteine, epicardial fat thickness, nonalcoholic hepatic steatosis, and exaggerated blood pressure response to exercise. We included 44 normotensive and 40 patients with exaggerated blood pressure response to exercise who have normal resting blood pressure and without a previous diagnosis of hypertension. All patients underwent treadmill exercise test and clinical, ultrasonographic, and echocardiographic evaluation. Exaggerated blood pressure response to exercise is defined as peak exercise systolic blood pressure of at least 210 mmHg in men and at least 190 mmHg in women. Homocysteine and other biochemical parameters were determined with standardized automated laboratory tests. Mean age of all participants is 47.9±8.5 years, and 36 of 84 participants were female. The frequency of diabetes mellitus in both groups was similar (P=0.250). Homeostasis model assessment index-insulin resistance had a statistically insignificant trend to be higher in a patient with exercise hypertension (P=0.058). The nonalcoholic fatty liver was more frequent in patients with exercise hypertension (13.6 vs. 47.5%, P=0.002). Epicardial fat thickness was increased in patients with exercise hypertension (5.5±1.5 vs. 7.3±1.1 mm; P=0.001). However, homocysteine levels did not significantly differ between normotensive and exercise hypertensive patients [12.3 μmol/l (5.7-16.9 μmol/l) vs. 13 μmol/l (5.9-28.3 μmol/l); P=0.883]. In our study, homocysteine levels were not associated with exaggerated blood pressure response to exercise; however, fatty liver and epicardial fat thickness as visceral adiposity-related cardiometabolic risk factors were significantly related with exaggerated blood pressure response to exercise in patients without a previous diagnosis of hypertension.

  8. Reflex Modification Audiometry Reveals Dual Roles for Olivocochlear Neurotransmission

    PubMed Central

    Allen, Paul D.; Luebke, Anne E.

    2017-01-01

    Approximately 15% of American adults report some degree of difficulty hearing in a noisy environment or have auditory filtering difficulties. There are objective clinical tests of auditory filtering, yet few tests exist for mouse models that do not rely on extensive training. We have used reflex modification audiometry (RMA) and developed exclusion criteria for the mouse model. This RMA based test makes use of the acoustic startle response (ASR) and the ability of prepulses to inhibit the ASR [i.e., prepulse inhibition (PPI)] to assess the mouse's ability to detect prepulse signals presented in quiet or embedded in masking noise. We have studied PPI behavior across four inbred mouse strains with normal cochlear function and developed pre-testing exclusion criteria and test/retest reliability measures. Moreover, because both the medial (MOC) and the lateral (LOC) olivocochlear efferent feedback systems have been proposed to improve auditory behavior performance, especially in noisy backgrounds, we have examined PPI abilities in mice (with their littermate controls) either lacking the MOC receptor subunit α9 nicotinic acetylcholine receptor [α9 nAChR (–/–)] or expressing an overactive receptor [Ld'T mutation in α9 nAChR KI], or lacking an LOC efferent neuropeptide, alpha calcitonin gene-related peptide [αCGRP (–/–)] only in the CNS. Because CGRP receptor formation has been shown to mature from juvenile to adult ages, we also studied if this maturation would be reflected in PPI behavioral responses in juvenile and adult (+/+) controls and in adult αCGRP (–/–) animals. We show that 50% PPI response thresholds (sound level with 50% correct responses) in quiet are decreased in the (–/–) α9 nAChR animals, and 50% PPI responses are increased for mice with an overactive receptor (α9 nAChR KI) and are increased in adult mice lacking αCGRP (–/–). However, in background noise, only mice lacking αCGRP exhibited increased 50% PPI response thresholds, as there were no significant differences between α9 nAChR adult mouse lines and their littermate controls. These findings suggest that MOC and LOC olivocochlear neurotransmission work in tandem to improve behavioral responses to sound. These experiments further pave the way for rapid behavioral hearing assessments in other mouse models. PMID:29213229

  9. Light exaggerates apical hook curvature through phytochrome actions in tomato seedlings.

    PubMed

    Shichijo, Chizuko; Ohuchi, Hisako; Iwata, Naoko; Nagatoshi, Yukari; Takahashi, Miki; Nakatani, Eri; Inoue, Kentaroh; Tsurumi, Seiji; Tanaka, Osamu; Hashimoto, Tohru

    2010-02-01

    Contrary to the established notion that the apical hook of dark-grown dicotyledonous seedlings opens in response to light, we found in tomato (Solanum lycopersicum L.) that the apical hook curvature is exaggerated by light. Experiments with several tomato cultivars and phytochrome mutants, irradiated with red and far-red light either as a brief pulse (Rp, FRp) or continuously (Rc, FRc), revealed: the hook-exaggeration response is maximal at the emergence of the hypocotyl from the seed; the effect of Rp is FRp-reversible; fluence-response curves to a single Rp or FRp show an involvement of low and very low fluence responses (LFR, VLFR); the effect of Rc is fluence-rate dependent, but that of FRc is not; the phyA mutant (phyA hp-1) failed to respond to an Rp of less than 10(-2) micromol m(-2) and to an FRp of all fluences tested as well as to FRc, thus indicating that the hook-exaggeration response involves phyA-mediated VLFR. The Rp fluence-response curve with the same mutant also confirmed the presence of an LFR mediated by phytochrome(s) other than phyA, although the phyB1 mutant (phyB1 hp-1) still showed full response probably due to other redundant phytochrome species (e.g., phyB2). Simulation experiments led to the possible significance of hook exaggeration in the field that the photoresponse may facilitate the release of seed coat when seeds germinate at some range of depth in soil. It was also observed that seed coat and/or endosperm are essential to the hook exaggeration.

  10. Exaggerated trait growth in insects

    USDA-ARS?s Scientific Manuscript database

    Animal structures occasionally attain extreme proportions, eclipsing in size other, surrounding body parts. We review insect examples of exaggerated traits, such as the mandibles of stag beetles, the claspers of praying mantises, the elongated hindlimbs of grasshoppers, and the giant heads of soldie...

  11. Exaggerated Cap-Dependent Translation as a Mechanism for Corticostriatal Dysfunction in Fragile X Syndrome Model Mice

    DTIC Science & Technology

    2016-10-01

    AWARD NUMBER: W81XWH-15-1-0361 TITLE: Exaggerated Cap- Dependent Translation as a Mechanism for Corticostriatal Dysfunction in Fragile X Syndrome...DATES  COVERED 09/30/2015-09/29/2016 4. TITLE  AND  SUBTITLE 5a.  CONTRACT  NUMBER   Exaggerated Cap- Dependent Translation as a Mechanism for...cap-­ dependent  translation  inhibitors.  Our  specific  tasks   are  centered  on  a  proteomic  study  of  FXS  striatal  synapses  by  using  a

  12. Phenotypic plasticity in the developmental integration of morphological trade-offs and secondary sexual trait compensation.

    PubMed

    Tomkins, Joseph L; Kotiaho, Janne S; Lebas, Natasha R

    2005-03-07

    Trait exaggeration through sexual selection will tale place alongside other changes in phenotype. Exaggerated morphology might be compensated by parallel changes in traits that support, enhance or facilitate exaggeration: 'secondary sexual trait compensation' (SSTC). Alternatively, exaggeration might be realized at the expense of other traits through morphological trade-offs. For the most part, SSTC has only been examined interspecifically. For these phenomena to be important intraspecifically, the sexual trait must be developmentally integrated with the compensatory or competing trait. We studied developmental integration in two species with different development: the holometabolous beetle Onthophagus taurus and the hemimetabolous earwig Forficula auricularia. Male-dimorphic variation in trait exaggeration was exploited to expose both trade-offs and SSTC. We found evidence for morphological trade-offs in O. taurus, but no F. auricularia, supporting the notion that trade-offs are more likely in closed developmetal systems. However, we found these trade-offs were not limited solely to traits growing close together. Developmental integration of structures involved in SSTC were detected in both species. The developmental integration of SSTC was phenotypically plastic, such that the compensation for relatively larger sexual traits was greater in the exasperated male morphs. Evidence of intraspecific SSTC demands studies of the selective, genetic and developmental architecture of phenotypic integration.

  13. National Rugby League athletes and tendon tap reflex assessment: a matched cohort clinical study.

    PubMed

    Maurini, James; Ohmsen, Paul; Condon, Greg; Pope, Rodney; Hing, Wayne

    2016-11-04

    Limited research suggests elite athletes may differ from non-athletes in clinical tendon tap reflex responses. In this matched cohort study, 25 elite rugby league athletes were compared with 29 non-athletes to examine differences in tendon reflex responses. Relationships between reflex responses and lengths of players' careers were also examined. Biceps, triceps, patellar and Achilles tendon reflexes were clinically assessed. Right and left reflexes were well correlated for each tendon (r S  = 0.7-0.9). The elite rugby league athletes exhibited significantly weaker reflex responses than non-athletes in all four tendons (p < 0.005). Biceps reflexes demonstrated the largest difference and Achilles reflexes the smallest difference. Moderate negative correlations (r S  = -0.3-0.6) were observed between reflex responses and lengths of players' careers. Future research is required to further elucidate mechanisms resulting in the observed differences in tendon reflexes and to ensure clinical tendon tap examinations and findings can be interpreted appropriately in this athletic population.

  14. Evaluation of cranial tibial and extensor carpi radialis reflexes before and after anesthetic block in cats.

    PubMed

    Tudury, Eduardo Alberto; de Figueiredo, Marcella Luiz; Fernandes, Thaiza Helena Tavares; Araújo, Bruno Martins; Bonelli, Marília de Albuquerque; Diogo, Camila Cardoso; Silva, Amanda Camilo; Santos, Cássia Regina Oliveira; Rocha, Nadyne Lorrayne Farias Cardoso

    2017-02-01

    Objectives This study aimed to test the extensor carpi radialis and cranial tibial reflexes in cats before and after anesthetic block of the brachial and lumbosacral plexus, respectively, to determine whether they depend on a myotatic reflex arc. Methods Fifty-five cats with a normal neurologic examination that were referred for elective gonadectomy were divided into group 1 (29 cats) for testing the extensor carpi radialis reflex, and group 2 (26 cats) for testing the cranial tibial reflex. In group 1, the extensor carpi radialis reflex was tested after anesthetic induction and 15 mins after brachial plexus block with lidocaine. In group 2, the cranial tibial, withdrawal and patellar reflexes were elicited in 52 hindlimbs and retested 15 mins after epidural anesthesia. Results In group 1, before the anesthetic block, 55.17% of the cats had a decreased and 44.83% had a normal extensor carpi radialis reflex. After the block, 68.96% showed a decreased and 27.59% a normal reflex. No cat had an increased or absent reflex before anesthetic block. In group 2, prior to the anesthetic block, 15.38% of the cats had a decreased cranial tibial reflex and 84.62% had a normal response, whereas after the block it was decreased in 26.92% and normal in 73.08% of the cats. None of the cats had an increased or absent reflex. Regarding the presence of both reflexes before and after anesthetic block, there was no significant difference at 1% ( P = 0.013). Conclusions and relevance The extensor carpi radialis and cranial tibial reflexes in cats are not strictly myotatic reflexes, as they are independent of the reflex arc, and may be idiomuscular responses. Therefore, they are not reliable for neurologic examination in this species.

  15. [H reflex in patients with spastic quadriplegia].

    PubMed

    Miyama, Sahoko; Arimoto, Kiyoshi; Kimiya, Satoshi

    2009-01-01

    Hoffmann reflex (H reflex) is an electrically elicited spinal monosynaptic reflex. H reflex was examined in 18 patients with spastic quadriplegia who had perinatal or postnatal problems. H reflex was elicitable in 11 patients for the abductor pollicis brevis (61.1%), 10 for the abductor digiti minimi (55.6%) and 16 for the abductor hallucis (88.9%). Because the abductor pollicis brevis and the abductor digiti minimi do not exhibit H reflex in normal subjects, it was suggested that the excitability of alpha motor neurons innervating these muscles was increased. H reflex was not detected for the extensor digitorum brevis in any patients, indicating the difference in the excitability among alpha motor neurons. In some patients, H reflex did not disappear under supramaximal stimuli. We conclude that the mechanism of evolution of H reflex in patients with spastic quadriplegia is different from that in normal subjects.

  16. [The links between neuropsychology and neurophysiology].

    PubMed

    Stolarska-Weryńska, Urszula; Biedroń, Agnieszka; Kaciński, Marek

    2016-01-01

    The aim of the study was to establish current scope of knowledge regarding associations between neurophysiological functioning, neuropsychology and psychoterapy. A systematic review was performed including 93 publications from Science Server, which contains the collections of Elsevier, Springer Journals, SCI-Ex/ICM, MEDLINE/PubMed, and SCOPUS. The works have been selected basing on following key words: 'neuropsychology, neurocognitive correlates, electrodermal response, event related potential, EEG, pupillography, electromiography' out of papers published between 2004-2015. Present reports on the use of neurophysiological methods in psychology can be divided into two areas: experimental research and research of the practical use of conditioning techniques and biofeedback in the treatment of somatic disease. Among the experimental research the following have been distinguished: research based on the startle reflex, physiological reaction to novelty, stress, type/amount of cognitive load and physiological correlates of emotion; research on the neurophysiological correlates of mental disorders, mostly mood and anxiety disorders, and neurocognitive correlates: of memory, attention, learning and intelligence. Among papers regarding the use of neurophysiological methods in psychology two types are the most frequent: on the mechanisms of biofeedback, related mainly to neuro- feedback, which is a quickly expanding method of various attention and mental disorders'treatment, and also research of the use of conditioning techniques in the treatment of mental disorders, especially depression and anxiety. A special place among all the above is taken by the research on electrophysiological correlates of psychotherapy, aiming to differentiate between the efficacy of various psychotherapeutic schools (the largest amount of publications regard the efficacy of cognitive-behavioral psychotherapy) in patients of different age groups and different diagnosis.

  17. Emotional modulation of pain and spinal nociception in fibromyalgia

    PubMed Central

    Rhudy, Jamie L.; DelVentura, Jennifer L.; Terry, Ellen L.; Bartley, Emily J.; Olech, Ewa; Palit, Shreela; Kerr, Kara L.

    2013-01-01

    Fibromyalgia (FM) is characterized by widespread pain, as well as affective disturbance (e.g., depression). Given that emotional processes are known to modulate pain, a disruption of emotion and emotional modulation of pain and nociception may contribute to FM. The present study used a well-validated affective picture-viewing paradigm to study emotional processing and emotional modulation of pain and spinal nociception. Participants were 18 individuals with FM, 18 individuals with rheumatoid arthritis (RA), and 19 healthy pain-free controls (HC). Mutilation, neutral, and erotic pictures were presented in four blocks; two blocks assessed only physiological-emotional reactions (i.e., pleasure/arousal ratings, corrugator EMG, startle modulation, skin conductance) in the absence of pain and two blocks assessed emotional reactivity and emotional modulation of pain and the nociceptive flexion reflex (NFR, a physiological measure of spinal nociception) evoked by suprathreshold electric stimulations over the sural nerve. In general, mutilation pictures elicited displeasure, corrugator activity, subjective arousal, and sympathetic activation, whereas erotic pictures elicited pleasure, subjective arousal, and sympathetic activation. However, FM was associated with deficits in appetitive activation (e.g., reduced pleasure/arousal to erotica). Moreover, emotional modulation of pain was observed in HC and RA, but not FM, even though all three groups evidenced modulation of NFR. Additionally, NFR thresholds were not lower in the FM group, indicating a lack of spinal sensitization. Together, these results suggest that FM is associated with a disruption of supraspinal processes associated with positive affect and emotional modulation of pain, but not brain-to-spinal cord circuitry that modulates spinal nociceptive processes. PMID:23622762

  18. Sex differences in affective responses to homoerotic stimuli: evidence for an unconscious bias among heterosexual men, but not heterosexual women.

    PubMed

    Mahaffey, Amanda L; Bryan, Angela; Hutchison, Kent E

    2005-10-01

    Antigay bias is a well-documented social problem among heterosexual men, though heterosexual women display a lesser tendency toward this bias. Startle eye blink has been established as a valid measure of the affective component of antigay bias in heterosexual men. In the current study, a sample of 91 heterosexual women and 87 heterosexual men were exposed to a variety of sexual photographic stimuli accompanied by startle probes. Heterosexual men who expressed more bias against gay men using a social distance measure (i.e., discomfort with being in close quarters with a gay man) displayed a startle response consistent with greater negative affect (e.g., fear and disgust) toward gay male stimuli, while those with less self-reported antigay bias did not display a physiological bias against gay men, and none of these men showed a relationship between bias against lesbians and physiological responses while viewing lesbian images. There were no such physiological manifestations of antigay bias in heterosexual women while viewing lesbian or gay male images, even among those who self-reported such bias. It appears that heterosexual women do not tend to have the same affective response toward homosexuals that some heterosexual men experience.

  19. Two-tone suppression in the cricket, Eunemobius carolinus (Gryllidae, Nemobiinae)

    NASA Astrophysics Data System (ADS)

    Farris, Hamilton E.; Hoy, Ronald R.

    2002-03-01

    Sounds with frequencies >15 kHz elicit an acoustic startle response (ASR) in flying crickets (Eunemobius carolinus). Although frequencies <15 kHz do not elicit the ASR when presented alone, when presented with ultrasound (40 kHz), low-frequency stimuli suppress the ultrasound-induced startle. Thus, using methods similar to those in masking experiments, we used two-tone suppression to assay sensitivity to frequencies in the audio band. Startle suppression was tuned to frequencies near 5 kHz, the frequency range of male calling songs. Similar to equal loudness contours measured in humans, however, equal suppression contours were not parallel, as the equivalent rectangular bandwidth of suppression tuning changed with increases in ultrasound intensity. Temporal integration of suppressor stimuli was measured using nonsimultaneous presentations of 5-ms pulses of 6 and 40 kHz. We found that no suppression occurs when the suppressing tone is >2 ms after and >5 ms before the ultrasound stimulus, suggesting that stimulus overlap is a requirement for suppression. When considered together with our finding that the intensity of low-frequency stimuli required for suppression is greater than that produced by singing males, the overlap requirement suggests that two-tone suppression functions to limit the ASR to sounds containing only ultrasound and not to broadband sounds that span the audio and ultrasound range.

  20. Acoustic startle response in rats predicts inter-individual variation in fear extinction.

    PubMed

    Russo, Amanda S; Parsons, Ryan G

    2017-03-01

    Although a large portion of the population is exposed to a traumatic event at some point, only a small percentage of the population develops post-traumatic stress disorder (PTSD), suggesting the presence of predisposing factors. Abnormal acoustic startle response (ASR) has been shown to be associated with PTSD, implicating it as a potential predictor of the development of PTSD-like behavior. Since poor extinction and retention of extinction learning are characteristic of PTSD patients, it is of interest to determine if abnormal ASR is predictive of development of such deficits. To determine whether baseline ASR has utility in predicting the development of PTSD-like behavior, the relationship between baseline ASR and freezing behavior following Pavlovian fear conditioning was examined in a group of adult, male Sprague-Dawley rats. Baseline acoustic startle response (ASR) was assessed preceding exposure to a Pavlovian fear conditioning paradigm where freezing behavior was measured during fear conditioning, extinction training, and extinction testing. Although there was no relationship between baseline ASR and fear memory following conditioning, rats with low baseline ASR had significantly lower magnitude of retention of the extinction memory than rats with high baseline ASR. The results suggest that baseline ASR has value as a predictive index of the development of a PTSD-like phenotype. Copyright © 2017 Elsevier Inc. All rights reserved.

  1. Maternal buffering of fear-potentiated startle in children and adolescents with trauma exposure.

    PubMed

    van Rooij, Sanne J H; Cross, Dorthie; Stevens, Jennifer S; Vance, L Alexander; Kim, Ye Ji; Bradley, Bekh; Tottenham, Nim; Jovanovic, Tanja

    2017-02-01

    Parental availability influences fear expression and learning across species, but the effect of maternal buffering on fear learning in humans is unknown. Here we investigated the effect of maternal availability during fear conditioning in a group of children (ages 8-10) and adolescents (ages 11-13) from a low-income population with a range of trauma exposure. Acoustic startle response data were collected to measure fear-potentiated startle (FPS) in 104 participants. A total of 62 participants were tested with the mother available and 42 when the mother was not in the testing room. We observed that maternal availability during fear conditioning interacted with age to affect FPS discrimination between CS+ and CS-. In line with previous findings suggesting an absence of maternal buffering in adolescents, fear discrimination was affected by maternal availability only in children. Second, we observed that the effect of maternal buffering on FPS discrimination in children was not influenced by maternally reported warmth. In conclusion, we demonstrated that maternal availability improved discrimination in children, regardless of the quality of the relationship. Adolescents discriminated irrespective of maternal status, suggesting that childhood may be a sensitive period for environmental influences on key processes such as learning of danger and safety signals.

  2. A cardiorespiratory classifier of voluntary and involuntary electrodermal activity

    PubMed Central

    2010-01-01

    Background Electrodermal reactions (EDRs) can be attributed to many origins, including spontaneous fluctuations of electrodermal activity (EDA) and stimuli such as deep inspirations, voluntary mental activity and startling events. In fields that use EDA as a measure of psychophysiological state, the fact that EDRs may be elicited from many different stimuli is often ignored. This study attempts to classify observed EDRs as voluntary (i.e., generated from intentional respiratory or mental activity) or involuntary (i.e., generated from startling events or spontaneous electrodermal fluctuations). Methods Eight able-bodied participants were subjected to conditions that would cause a change in EDA: music imagery, startling noises, and deep inspirations. A user-centered cardiorespiratory classifier consisting of 1) an EDR detector, 2) a respiratory filter and 3) a cardiorespiratory filter was developed to automatically detect a participant's EDRs and to classify the origin of their stimulation as voluntary or involuntary. Results Detected EDRs were classified with a positive predictive value of 78%, a negative predictive value of 81% and an overall accuracy of 78%. Without the classifier, EDRs could only be correctly attributed as voluntary or involuntary with an accuracy of 50%. Conclusions The proposed classifier may enable investigators to form more accurate interpretations of electrodermal activity as a measure of an individual's psychophysiological state. PMID:20184746

  3. Operant conditioning of the soleus H-reflex does not induce long-term changes in the gastrocnemius H-reflexes and does not disturb normal locomotion in humans.

    PubMed

    Makihara, Yukiko; Segal, Richard L; Wolpaw, Jonathan R; Thompson, Aiko K

    2014-09-15

    In normal animals, operant conditioning of the spinal stretch reflex or the H-reflex has lesser effects on synergist muscle reflexes. In rats and people with incomplete spinal cord injury (SCI), soleus H-reflex operant conditioning can improve locomotion. We studied in normal humans the impact of soleus H-reflex down-conditioning on medial (MG) and lateral gastrocnemius (LG) H-reflexes and on locomotion. Subjects completed 6 baseline and 30 conditioning sessions. During conditioning trials, the subject was encouraged to decrease soleus H-reflex size with the aid of visual feedback. Every sixth session, MG and LG H-reflexes were measured. Locomotion was assessed before and after conditioning. In successfully conditioned subjects, the soleus H-reflex decreased 27.2%. This was the sum of within-session (task dependent) adaptation (13.2%) and across-session (long term) change (14%). The MG H-reflex decreased 14.5%, due mainly to task-dependent adaptation (13.4%). The LG H-reflex showed no task-dependent adaptation or long-term change. No consistent changes were detected across subjects in locomotor H-reflexes, EMG activity, joint angles, or step symmetry. Thus, in normal humans, soleus H-reflex down-conditioning does not induce long-term changes in MG/LG H-reflexes and does not change locomotion. In these subjects, task-dependent adaptation of the soleus H-reflex is greater than it is in people with SCI, whereas long-term change is less. This difference from results in people with SCI is consistent with the fact that long-term change is beneficial in people with SCI, since it improves locomotion. In contrast, in normal subjects, long-term change is not beneficial and may necessitate compensatory plasticity to preserve satisfactory locomotion. Copyright © 2014 the American Physiological Society.

  4. Proper Accounting for Surface Area to Solution Volume Ratios in Exaggerated Extractions.

    PubMed

    Jenke, Dennis R; Rabinow, Barrett E

    2017-01-01

    When drug products contact plastic manufacturing components, packaging systems, and/or delivery devices, leachables from the plastics can accumulate in the drug product, potentially affecting its key quality attributes. Given practical issues associated with screening drug products for leachables, potential leachables are frequently surfaced as extractables revealed in extraction studies. To facilitate extractables discovery and identification and to shorten extraction times, extraction studies can be exaggerated and/or accelerated. One means of exaggerating an extraction is to increase the test article's extracted surface area to extraction solution volume ratio (SA/V), as it is generally accepted that an extractable's concentration in an extract is proportional to SA/V in a 1 to 1 manner. However, as the relationship between an extractable's concentration and SA/V depends on the extractable's plastic/solvent partition coefficient (k p/l ), the effect of SA/V on the extractable's concentrations can be either under- or over-estimated if a 1 to 1 proportion is used. This article presents the theoretical relationship between SA/V, concentration, and k p/l ; illustrates theory with a case study; and suggests proper exaggeration strategies. LAY ABSTRACT: When drug products are manufactured, stored, or delivered in systems that contain plastics, substances can be leached from the plastics and remain in the drug product, where they might affect the product's key quality attributes. To discover and identify these leached substances, the plastics are extracted under laboratory conditions and the extracts are appropriately tested. To facilitate this process, extracts may be generated under laboratory conditions that exaggerate or accelerate the drug product's clinical conditions of manufacturing or use. The proper use of the ratio of the extracted item's surface area to the volume of the extracting solution as an exaggeration parameter is discussed in this paper. © PDA, Inc. 2017.

  5. Vestibular activation of sympathetic nerve activity

    NASA Technical Reports Server (NTRS)

    Ray, C. A.; Carter, J. R.

    2003-01-01

    AIM: The vestibulosympathetic reflex refers to sympathetic nerve activation by the vestibular system. Animal studies indicate that the vestibular system assists in blood pressure regulation during orthostasis. Although human studies clearly demonstrate activation of muscle sympathetic nerve activity (MSNA) during engagement of the otolith organs, the role of the vestibulosympathetic reflex in maintaining blood pressure during orthostasis is not well-established. Examination of the vestibulosympathetic reflex with other cardiovascular reflexes indicates that it is a powerful and independent reflex. Ageing, which is associated with an increased risk for orthostatic hypotension, attenuates the vestibulosympathetic reflex. The attenuated reflex is associated with a reduction in arterial pressure. CONCLUSION: These findings suggest that the vestibulosympathetic reflex assists in blood pressure regulation in humans, but future studies examining this reflex in other orthostatically intolerant populations are necessary to address this hypothesis.

  6. The cold pressor test in interictal migraine patients - different parasympathetic pupillary response indicates dysbalance of the cranial autonomic nervous system.

    PubMed

    Eren, Ozan E; Ruscheweyh, Ruth; Schankin, Christoph; Schöberl, Florian; Straube, Andreas

    2018-04-16

    Data on autonomic nervous system (ANS) activations in migraine patients are quite controversial, with previous studies reporting over- and underactivation of the sympathetic as well as parasympathetic nervous system. In the present study, we explicitly aimed to assess the cranial ANS in migraine patients compared to healthy controls by applying the cold pressor test to a cohort of migraine patients in the interictal phase and measuring the pupillary response. In this prospective observational study, a strong sympathetic stimulus was applied to 20 patients with episodic migraine in the interictal phase and 20 matched controls without migraine, whereby each participant dipped the left hand into ice-cold (4 °C) water for a maximum of 5 min (cold pressor test). At baseline, 2, and 5 min during the cold pressor test, infrared monocular pupillometry was applied to quantify pupil diameter and light reflex parameters. Simultaneously, heart rate and blood pressure were measured by the external brachial RR-method at distinct time intervals to look for at least clinically relevant changes of the cardiovascular ANS. There were no significant differences between the migraine patients and controls at baseline and after 2 min of sympathetic stimulation in all the measured pupillary and cardio-vascular parameters. However, at 5 min, pupillary light reflex (PLR) constriction velocity was significantly higher in migraineurs than in controls (5.59 ± 0.73 mm/s vs. 5.16 ± 0.53 mm/s; unpaired t-test p < 0.05), while both cardiovascular parameters and PLR dilatation velocity were similar in both groups at this time point. Our findings of an increased PLR constriction velocity after sustained sympathetic stimulation in interictal migraine patients suggest an exaggerated parasympathetic response of the cranial ANS. This indicates that brainstem parasympathetic dysregulation might play a significant role in migraine pathophysiology. More dedicated examination of the ANS in migraine patients might be of value for a deeper understanding of its pathophysiology.

  7. Investigation of a central nucleus of the amygdala/dorsal raphe nucleus serotonergic circuit implicated in fear-potentiated startle

    PubMed Central

    Spannuth, Benjamin M.; Hale, Matthew W.; Evans, Andrew K.; Lukkes, Jodi L.; Campeau, Serge; Lowry, Christopher A.

    2011-01-01

    Serotonergic systems are thought to play an important role in control of motor activity and emotional states. We used a fear-potentiated startle paradigm to investigate the effects of a motor-eliciting stimulus in the presence or absence of induction of an acute fear state on serotonergic neurons in the dorsal raphe nucleus (DR) and cells in subdivisions of the central amygdaloid nucleus (CE), a structure that plays an important role in fear responses, using induction of the protein product of the immediate-early gene, c-fos. In Experiment 1 we investigated the effects of fear conditioning training, by training rats to associate a light cue (conditioned stimulus, CS; 1000 lx, 2 sec) with foot shock (0.5 s, 0.5 mA) in a single session. In Experiment 2 rats were given two training sessions identical to Experiment 1 on days 1 and 2, then tested in one of four conditions on day 3: 1) placement in the training context without exposure to either the CS or acoustic startle (AS), 2) exposure to 10 trials of the 2 s CS, 3) exposure to 40 110 dB AS trials, or 4) exposure to 40 110 dB AS trials with 10 of the trials preceded by and co-terminating with the CS. All treatments were conducted during a 20 min session. Fear conditioning training, by itself, increased c-Fos expression in multiple subdivisions of the CE and throughout the DR. In contrast, fear-potentiated startle selectively increased c-Fos expression in the medial subdivision of the CE and in serotonergic neurons in the dorsal part of the dorsal raphe nucleus (DRD). These data are consistent with previous studies demonstrating that fear-related stimuli selectively activate DRD serotonergic neurons. Further studies of this mesolimbocortical serotonergic system could have important implications for understanding mechanisms underlying vulnerability to stress-related psychiatric disorders, including anxiety and affective disorders. PMID:21277950

  8. Hypnotizability and Placebo Analgesia in Waking and Hypnosis as Modulators of Auditory Startle Responses in Healthy Women: An ERP Study.

    PubMed

    De Pascalis, Vilfredo; Scacchia, Paolo

    2016-01-01

    We evaluated the influence of hypnotizability, pain expectation, placebo analgesia in waking and hypnosis on tonic pain relief. We also investigated how placebo analgesia affects somatic responses (eye blink) and N100 and P200 waves of event-related potentials (ERPs) elicited by auditory startle probes. Although expectation plays an important role in placebo and hypnotic analgesia, the neural mechanisms underlying these treatments are still poorly understood. We used the cold cup test (CCT) to induce tonic pain in 53 healthy women. Placebo analgesia was initially produced by manipulation, in which the intensity of pain induced by the CCT was surreptitiously reduced after the administration of a sham analgesic cream. Participants were then tested in waking and hypnosis under three treatments: (1) resting (Baseline); (2) CCT-alone (Pain); and (3) CCT plus placebo cream for pain relief (Placebo). For each painful treatment, we assessed pain and distress ratings, eye blink responses, N100 and P200 amplitudes. We used LORETA analysis of N100 and P200 waves, as elicited by auditory startle, to identify cortical regions sensitive to pain reduction through placebo and hypnotic analgesia. Higher pain expectation was associated with higher pain reductions. In highly hypnotizable participants placebo treatment produced significant reductions of pain and distress perception in both waking and hypnosis condition. P200 wave, during placebo analgesia, was larger in the frontal left hemisphere while placebo analgesia, during hypnosis, involved the activity of the left hemisphere including the occipital region. These findings demonstrate that hypnosis and placebo analgesia are different processes of top-down regulation. Pain reduction was associated with larger EMG startle amplitudes, N100 and P200 responses, and enhanced activity within the frontal, parietal, and anterior and posterior cingulate gyres. LORETA results showed that placebo analgesia modulated pain-responsive areas known to reflect the ongoing pain experience.

  9. Deimatic Display in the European Swallowtail Butterfly as a Secondary Defence against Attacks from Great Tits

    PubMed Central

    Olofsson, Martin; Eriksson, Stephan; Jakobsson, Sven; Wiklund, Christer

    2012-01-01

    Background Many animals reduce the risk of being attacked by a predator through crypsis, masquerade or, alternatively, by advertising unprofitability by means of aposematic signalling. Behavioural attributes in prey employed after discovery, however, signify the importance of also having an effective secondary defence if a predator uncovers, or is immune to, the prey’s primary defence. In butterflies, as in most animals, secondary defence generally consists of escape flights. However, some butterfly species have evolved other means of secondary defence such as deimatic displays/startle displays. The European swallowtail, Papilio machaon, employs what appears to be a startle display by exposing its brightly coloured dorsal wing surface upon disturbance and, if the disturbance continues, by intermittently protracting and relaxing its wing muscles generating a jerky motion of the wings. This display appears directed towards predators but whether it is effective in intimidating predators so that they refrain from attacks has never been tested experimentally. Methodology/Principal Findings In this study we staged encounters between a passerine predator, the great tit, Parus major, and live and dead swallowtail butterflies in a two-choice experiment. Results showed that the dead butterfly was virtually always attacked before the live butterfly, and that it took four times longer before a bird attacked the live butterfly. When the live butterfly was approached by a bird this generally elicited the butterfly’s startle display, which usually caused the approaching bird to flee. We also performed a palatability test of the butterflies and results show that the great tits seemed to find them palatable. Conclusions/Significance We conclude that the swallowtail’s startle display of conspicuous coloration and jerky movements is an efficient secondary defence against small passerines. We also discuss under what conditions predator-prey systems are likely to aid the evolution of deimatic behaviours in harmless and palatable prey. PMID:23056590

  10. Child maltreatment, callous-unemotional traits, and defensive responding in high-risk children: An investigation of emotion-modulated startle response.

    PubMed

    Dackis, Melissa N; Rogosch, Fred A; Cicchetti, Dante

    2015-11-01

    Child maltreatment is associated with disruptions in physiological arousal, emotion regulation, and defensive responses to cues of threat and distress, as well as increased risk for callous unemotional (CU) traits and externalizing behavior. Developmental models of CU traits have focused on biological and genetic risk factors that contribute to hypoarousal and antisocial behavior, but have focused less on environmental influences (Blair, 2004; Daversa, 2010; Hare, Frazell, & Cox, 1978; Krueger, 2000; Shirtcliff et al., 2009; Viding, Fontaine, & McCrory, 2012). The aim of the present investigation was to measure the independent and combined effects of child maltreatment and high CU traits on emotion-modulated startle response in children. Participants consisted of 132 low-income maltreated (n = 60) and nonmaltreated (n = 72) children between 8 and 12 years old who attended a summer camp program. Acoustic startle response (ASR) was elicited in response to a 110-dB 50-ms probe while children viewed a slideshow of pleasant, neutral, and unpleasant IAPS images. Maltreatment status was assessed through examination of Department of Human Services records. CU traits were measured using counselor reports from the Inventory of Callous and Unemotional Traits (Frick, 2004), and conduct problems were measured using counselor and child self-report. We found no significant differences in emotion-modulated startle in the overall sample. However, significant differences in ASR by maltreatment status, maltreatment subtype, and level of CU traits were apparent. Results indicated differential physiological responses for maltreated and nonmaltreated children based on CU traits, including a pathway of hypoarousal for nonmaltreated/high CU children that differed markedly from a more normative physiological trajectory for maltreated/high CU children. Further, we found heightened ASR for emotionally and physically neglected children with high CU and elevated antisocial behavior in these children. Results provide further support for differential trajectories by which experience and biology may influence the development of antisocial behavior in youth and highlight potential avenues for intervention.

  11. Hypnotizability and Placebo Analgesia in Waking and Hypnosis as Modulators of Auditory Startle Responses in Healthy Women: An ERP Study

    PubMed Central

    De Pascalis, Vilfredo; Scacchia, Paolo

    2016-01-01

    We evaluated the influence of hypnotizability, pain expectation, placebo analgesia in waking and hypnosis on tonic pain relief. We also investigated how placebo analgesia affects somatic responses (eye blink) and N100 and P200 waves of event-related potentials (ERPs) elicited by auditory startle probes. Although expectation plays an important role in placebo and hypnotic analgesia, the neural mechanisms underlying these treatments are still poorly understood. We used the cold cup test (CCT) to induce tonic pain in 53 healthy women. Placebo analgesia was initially produced by manipulation, in which the intensity of pain induced by the CCT was surreptitiously reduced after the administration of a sham analgesic cream. Participants were then tested in waking and hypnosis under three treatments: (1) resting (Baseline); (2) CCT-alone (Pain); and (3) CCT plus placebo cream for pain relief (Placebo). For each painful treatment, we assessed pain and distress ratings, eye blink responses, N100 and P200 amplitudes. We used LORETA analysis of N100 and P200 waves, as elicited by auditory startle, to identify cortical regions sensitive to pain reduction through placebo and hypnotic analgesia. Higher pain expectation was associated with higher pain reductions. In highly hypnotizable participants placebo treatment produced significant reductions of pain and distress perception in both waking and hypnosis condition. P200 wave, during placebo analgesia, was larger in the frontal left hemisphere while placebo analgesia, during hypnosis, involved the activity of the left hemisphere including the occipital region. These findings demonstrate that hypnosis and placebo analgesia are different processes of top-down regulation. Pain reduction was associated with larger EMG startle amplitudes, N100 and P200 responses, and enhanced activity within the frontal, parietal, and anterior and posterior cingulate gyres. LORETA results showed that placebo analgesia modulated pain-responsive areas known to reflect the ongoing pain experience. PMID:27486748

  12. Child Maltreatment, Callous-Unemotional Traits, and Defensive Responding In High-Risk Children: An Investigation of Emotion-Modulated Startle Response

    PubMed Central

    Dackis, Melissa N.; Rogosch, Fred A.; Cicchetti, Dante

    2015-01-01

    Child maltreatment is associated with disruptions in physiological arousal, emotion regulation, and defensive responses to cues of threat and distress, as well as increased risk for callous unemotional (CU) traits and externalizing behavior. Developmental models of callous unemotional (CU) traits have focused on biological and genetic risk factors that contribute to hypoarousal and antisocial behavior, but have focused less on environmental influences (Blair, 2004; Daversa, 2010; Hare, Frazell, & Cox, 1978; Krueger, 2000; Shirtcliff et al., 2009; Viding, Fontaine, & McCrory, 2012). The aim of the present investigation was to measure the independent and combined effects of child maltreatment and high CU trait on emotion-modulated startle (EMS) response in children. Participants consisted of 132 low-income maltreated (n = 60) and nonmaltreated (n = 72) children between 8–12 years old who attended a summer camp program. Acoustic startle response (ASR) was elicited in response to a 110-dB 50-ms probe while children viewed a slideshow of pleasant, neutral, and unpleasant IAPS images. Maltreatment status was assessed through examination of Department of Human Services records. CU traits were measured using counselor reports from the Inventory of Callous and Unemotional Traits (ICU; Frick, 2004), and conduct problems were measured using counselor and child self-report. We found no significant differences in emotion-modulated startle in the overall sample. However, significant differences in ASR by maltreatment status, maltreatment subtype, and level of CU traits were apparent. Results indicated differential physiological responses for maltreated and nonmaltreated children based on CU traits, including a pathway of hypoarousal for nonmaltreated/high CU children that differed markedly from a more normative physiological trajectory for maltreated/high CU children. Further, we found heightened ASR for emotionally and physically neglected children with high CU and elevated antisocial behavior in these children. Results provide further support for differential trajectories by which experience and biology may influence the development of antisocial behavior in youth and highlight potential avenues for intervention. PMID:26535942

  13. On the Second Language Acquisition of Spanish Reflexive Passives and Reflexive Impersonals by French- and English-Speaking Adults

    ERIC Educational Resources Information Center

    Tremblay, Annie

    2006-01-01

    This study, a partial replication of Bruhn de Garavito (1999a; 1999b), investigates the second language (L2) acquisition of Spanish reflexive passives and reflexive impersonals by French- and English-speaking adults at an advanced level of proficiency. The L2 acquisition of Spanish reflexive passives and reflexive impersonals by native French and…

  14. Multiple exaggerated weapon morphs: a novel form of male polymorphism in harvestmen.

    PubMed

    Painting, Christina J; Probert, Anna F; Townsend, Daniel J; Holwell, Gregory I

    2015-11-06

    Alternative reproductive tactics in animals are commonly associated with distinct male phenotypes resulting in polymorphism of sexually selected weapons such as horns and spines. Typically, morphs are divided between small (unarmed) and large (armed) males according to one or more developmental thresholds in association with body size. Here, we describe remarkable weapon trimorphism within a single species, where two exaggerated weapon morphs and a third morph with reduced weaponry are present. Male Pantopsalis cheliferoides harvestmen display exaggerated chelicerae (jaws) which are highly variable in length among individuals. Across the same body size spectrum, however, some males belong to a distinct second exaggerated morph which possesses short, broad chelicerae. Multiple weapon morphs in a single species is a previously unknown phenomenon and our findings have significant implications for understanding weapon diversity and maintenance of polymorphism. Specifically, this species will be a valuable model for testing how weapons diverge by being able to test directly for the circumstances under which a certain weapon type is favoured and how weapon shape relates to performance.

  15. Exercise Blood Pressure Guidelines: Time to Re-evaluate What is Normal and Exaggerated?

    PubMed

    Currie, Katharine D; Floras, John S; La Gerche, Andre; Goodman, Jack M

    2018-03-24

    Blood pressure responses to graded exercise testing can provide important diagnostic and prognostic information. While published guidelines outline what constitutes a "normal" and "abnormal" (i.e., exaggerated) blood pressure response to exercise testing, the widespread use of exaggerated blood pressure responses as a clinical tool is limited due to sparse and inconsistent data. A review of the original sources from these guidelines reveals an overall lack of empirical evidence to support both the normal blood pressure responses and their upper limits. In this current opinion, we critically evaluate the current exercise blood pressure guidelines including (1) the normal blood pressure responses to graded exercise testing; (2) the upper limits of this normal response; (3) the blood pressure criteria for test termination; and (4) the thresholds for exaggerated blood pressure responses. We provide evidence that exercise blood pressure responses vary according to subject characteristics, and subsequently a re-evaluation of what constitutes normal and abnormal responses is necessary to strengthen the clinical utility of this assessment.

  16. Unilateral block of NMDA receptors in the amygdala prevents predator stress-induced lasting increases in anxiety-like behavior and unconditioned startle--effective hemisphere depends on the behavior.

    PubMed

    Adamec, R E; Burton, P; Shallow, T; Budgell, J

    Lasting increases in anxiety-like behavior (ALB) in the elevated plus-maze are produced by a single 5-min exposure of a rat to a cat. Rats become more anxious in the plus-maze for up to 3 weeks after the exposure. The first study in this series demonstrated that blockade of NMDA receptors in rats with MK-801, AP7, or CPP, given systemically 30 min prior to exposure to a cat prevents the increase in ALB assessed 1 week later in the elevated plus-maze. To localize the site of action of systemic MK-801, MK-801 was injected in the amygdala 30 min prior to predator stress. Injections were given either unilaterally in either hemisphere, or bilaterally in both hemispheres. The target of the injection was the basolateral amygdala. The effects of injection depended on both the type of behavior and the hemisphere of injection. Injections of MK-801 in a variety of sites in the basolateral amygdala had no effect on the suppression of open-arm exploration produced by predator stress. Other amygdala nuclei or other limbic sites likely mediate the effects of systemically administered MK-801 on this behavior. In contrast, NMDA receptors in the left lateral amygdala mediate lasting suppression of risk assessment. MK-801, in a variety of sites in the left but not right lateral amygdala, blocked the effects of predator stress on risk assessment. This is clear evidence of separability of neural mechanisms controlling open-arm exploration and risk assessment. Different NMDA-dependent amygdala circuitry mediated effects of predator stress on unconditioned acoustic startle 1 week after cat exposure. The data indicate that integrity of the left lateral amygdala is necessary for potentiation of startle amplitude by predator stress, though NMDA receptors are not involved in this function. Nevertheless, NMDA receptors in the right, but not the left lateral amygdala, mediate initiation of changes in startle. The data also suggest that the right amygdala action is "downstream" from the left amygdala contribution. These findings are consistent with the view that NMDA receptors are involved in initiation, but not maintenance, of neural changes mediating lasting increases in anxiety following severe stress. Finally, the findings of the importance of the right amygdala in stress-induced enhancement of the startle response provides neurobiological face validity to predator stress as a model of aspects of posttraumatic stress disorder.

  17. Implementation of a smartphone as a wireless gyroscope application for the quantification of reflex response.

    PubMed

    LeMoyne, Robert; Mastroianni, Timothy

    2014-01-01

    The patellar tendon reflex constitutes a fundamental aspect of the conventional neurological evaluation. Dysfunctional characteristics of the reflex response can augment the diagnostic acuity of a clinician for subsequent referral to more advanced medical resources. The capacity to quantify the reflex response while alleviating the growing strain on specialized medical resources is a topic of interest. The quantification of the tendon reflex response has been successfully demonstrated with considerable accuracy and consistency through using a potential energy impact pendulum attached to a reflex hammer for evoking the tendon reflex with a smartphone, such as an iPhone, application representing a wireless accelerometer platform to quantify reflex response. Another sensor integrated into the smartphone, such as an iPhone, is the gyroscope, which measures rate of angular rotation. A smartphone application enables wireless transmission through Internet connectivity of the gyroscope signal recording of the reflex response as an email attachment. The smartphone wireless gyroscope application demonstrates considerable accuracy and consistency for the quantification of the tendon reflex response.

  18. H-reflex modulation in the human medial and lateral gastrocnemii during standing and walking

    PubMed Central

    Makihara, Yukiko; Segal, Richard L.; Wolpaw, Jonathan R.; Thompson, Aiko K.

    2011-01-01

    Introduction The soleus H-reflex is dynamically modulated during walking. However, modulation of the gastrocnemii H-reflexes has not been studied systematically. Methods The medial and lateral gastrocnemii (MG and LG) and soleus H-reflexes were measured during standing and walking in humans. Results Maximum H-reflex amplitude was significantly smaller in MG (mean 1.1 mV) or LG (1.1 mV) than in soleus (3.3 mV). Despite these size differences, the reflex amplitudes of the three muscles were positively correlated. The MG and LG H-reflexes were phase- and task-dependently modulated in ways similar to the soleus H-reflex. Discussion Although there are anatomical and physiological differences between the soleus and gastrocnemii muscles, the reflexes of the three muscles are similarly modulated during walking and between standing and walking. The findings support the hypothesis that these reflexes are synergistically modulated during walking to facilitate ongoing movement. PMID:22190317

  19. Implementation of an iPhone wireless accelerometer application for the quantification of reflex response.

    PubMed

    LeMoyne, Robert; Mastroianni, Timothy; Grundfest, Warren; Nishikawa, Kiisa

    2013-01-01

    The patellar tendon reflex represents an inherent aspect of the standard neurological evaluation. The features of the reflex response provide initial perspective regarding the status of the nervous system. An iPhone wireless accelerometer application integrated with a potential energy impact pendulum attached to a reflex hammer has been successfully developed, tested, and evaluated for quantifying the patellar tendon reflex. The iPhone functions as a wireless accelerometer platform. The wide coverage range of the iPhone enables the quantification of reflex response samples in rural and remote settings. The iPhone has the capacity to transmit the reflex response acceleration waveform by wireless transmission through email. Automated post-processing of the acceleration waveform provides feature extraction of the maximum acceleration of the reflex response ascertained after evoking the patellar tendon reflex. The iPhone wireless accelerometer application demonstrated the utility of the smartphone as a biomedical device, while providing accurate and consistent quantification of the reflex response.

  20. Soleus H-reflex gain in humans walking and running under simulated reduced gravity

    NASA Technical Reports Server (NTRS)

    Ferris, D. P.; Aagaard, P.; Simonsen, E. B.; Farley, C. T.; Dyhre-Poulsen, P.

    2001-01-01

    The Hoffmann (H-) reflex is an electrical analogue of the monosynaptic stretch reflex, elicited by bypassing the muscle spindle and directly stimulating the afferent nerve. Studying H-reflex modulation provides insight into how the nervous system centrally modulates stretch reflex responses.A common measure of H-reflex gain is the slope of the relationship between H-reflex amplitude and EMG amplitude. To examine soleus H-reflex gain across a range of EMG levels during human locomotion, we used simulated reduced gravity to reduce muscle activity. We hypothesised that H-reflex gain would be independent of gravity level.We recorded EMG from eight subjects walking (1.25 m s-1) and running (3.0 m s-1) at four gravity levels (1.0, 0.75, 0.5 and 0.25 G (Earth gravity)). We normalised the stimulus M-wave and resulting H-reflex to the maximal M-wave amplitude (Mmax) elicited throughout the stride to correct for movement of stimulus and recording electrodes relative to nerve and muscle fibres. Peak soleus EMG amplitude decreased by 30% for walking and for running over the fourfold change in gravity. As hypothesised, slopes of linear regressions fitted to H-reflex versus EMG data were independent of gravity for walking and running (ANOVA, P > 0.8). The slopes were also independent of gait (P > 0.6), contrary to previous studies. Walking had a greater y-intercept (19.9% Mmax) than running (-2.5% Mmax; P < 0.001). At all levels of EMG, walking H-reflex amplitudes were higher than running H-reflex amplitudes by a constant amount. We conclude that the nervous system adjusts H-reflex threshold but not H-reflex gain between walking and running. These findings provide insight into potential neural mechanisms responsible for spinal modulation of the stretch reflex during human locomotion.

  1. Soleus H-reflex gain in humans walking and running under simulated reduced gravity

    PubMed Central

    Ferris, Daniel P; Aagaard, Per; Simonsen, Erik B; Farley, Claire T; Dyhre-Poulsen, Poul

    2001-01-01

    The Hoffmann (H-) reflex is an electrical analogue of the monosynaptic stretch reflex, elicited by bypassing the muscle spindle and directly stimulating the afferent nerve. Studying H-reflex modulation provides insight into how the nervous system centrally modulates stretch reflex responses. A common measure of H-reflex gain is the slope of the relationship between H-reflex amplitude and EMG amplitude. To examine soleus H-reflex gain across a range of EMG levels during human locomotion, we used simulated reduced gravity to reduce muscle activity. We hypothesised that H-reflex gain would be independent of gravity level. We recorded EMG from eight subjects walking (1.25 m s−1) and running (3.0 m s−1) at four gravity levels (1.0, 0.75, 0.5 and 0.25 G (Earth gravity)). We normalised the stimulus M-wave and resulting H-reflex to the maximal M-wave amplitude (Mmax) elicited throughout the stride to correct for movement of stimulus and recording electrodes relative to nerve and muscle fibres. Peak soleus EMG amplitude decreased by ≈30% for walking and for running over the fourfold change in gravity. As hypothesised, slopes of linear regressions fitted to H-reflex versus EMG data were independent of gravity for walking and running (ANOVA, P > 0.8). The slopes were also independent of gait (P > 0.6), contrary to previous studies. Walking had a greater y-intercept (19.9%Mmax) than running (-2.5%Mmax; P < 0.001). At all levels of EMG, walking H-reflex amplitudes were higher than running H-reflex amplitudes by a constant amount. We conclude that the nervous system adjusts H-reflex threshold but not H-reflex gain between walking and running. These findings provide insight into potential neural mechanisms responsible for spinal modulation of the stretch reflex during human locomotion. PMID:11136869

  2. Neurodevelopmental Reflex Testing in Neonatal Rat Pups.

    PubMed

    Nguyen, Antoinette T; Armstrong, Edward A; Yager, Jerome Y

    2017-04-24

    Neurodevelopmental reflex testing is commonly used in clinical practice to assess the maturation of the nervous system. Neurodevelopmental reflexes are also referred to as primitive reflexes. They are sensitive and consistent with later outcomes. Abnormal reflexes are described as an absence, persistence, reappearance, or latency of reflexes, which are predictive indices of infants that are at high risk for neurodevelopmental disorders. Animal models of neurodevelopmental disabilities, such as cerebral palsy, often display aberrant developmental reflexes, as would be observed in human infants. The techniques described assess a variety of neurodevelopmental reflexes in neonatal rats. Neurodevelopmental reflex testing offers the investigator a testing method that is not otherwise available in such young animals. The methodology presented here aims to assist investigators in examining developmental milestones in neonatal rats as a method of detecting early-onset brain injury and/or determining the effectiveness of therapeutic interventions. The methodology presented here aims to provide a general guideline for investigators.

  3. Negative Self-Focused Cognitions Mediate the Effect of Trait Social Anxiety on State Anxiety

    PubMed Central

    Schulz, Stefan M.; Alpers, Georg W.; Hofmann, Stefan G.

    2008-01-01

    The cognitive model of social anxiety predicts that negative self-focused cognitions increase anxiety when anticipating social threat. To test this prediction, 36 individuals were asked to anticipate and perform a public speaking task. During anticipation, negative self-focused cognitions or relaxation were experimentally induced while self-reported anxiety, autonomic arousal (heart rate, heart rate variability, skin conductance level), and acoustic eye-blink startle response were assessed. As predicted, negative self-focused cognitions mediated the effects of trait social anxiety on self-reported anxiety and heart rate variability during negative anticipation. Furthermore, trait social anxiety predicted increased startle amplitudes. These findings support a central assumption of the cognitive model of social anxiety. PMID:18321469

  4. STS-70 Discovery launch startling the birds

    NASA Technical Reports Server (NTRS)

    1995-01-01

    Startled birds scatter as the stillness of a summer morning is broken by a giant's roar. The Space Shuttle Discovery thundered into space from launch Pad 39-B at 9:41:55:078 a.m. EDT. STS-70 is the 70th Shuttle flight overall, the 21st for Discovery (OV- 103), and the fourth Shuttle flight in 1995. On board for the nearly eight-day mission are a crew of five: Commander Terence 'Tom' Hendricks; Pilot Kevin R. Kregel; and Mission Specialists Nancy Jane Currie, Donald A. Thomas and Mary Ellen Weber. The crew's primary objective is to deploy the Tracking and Data Relay Satellite-G (TDRS-G), which will join a constellation of other TDRS spacecraft already on orbit.

  5. STS-70 Discovery launch startled birds at ignition

    NASA Technical Reports Server (NTRS)

    1995-01-01

    Startled birds scatter as the stillness of a summer morning is broken by a giant's roar. The Space Shuttle Discovery thundered into space from launch Pad 39-B at 9:41:55:078 a.m. EDT. STS-70 is the 70th Shuttle flight overall, the 21st for Discovery (OV- 103), and the fourth Shuttle flight in 1995. On board for the nearly eight-day mission are a crew of five: Commander Terence 'Tom' Hendricks; Pilot Kevin R. Kregel; and Mission Specialists Nancy Jane Currie, Donald A. Thomas and Mary Ellen Weber. The crew's primary objective is to deploy the Tracking and Data Relay Satellite-G (TDRS-G), which will join a constellation of other TDRS spacecraft already on orbit.

  6. Your Average Nigga

    ERIC Educational Resources Information Center

    Young, Vershawn Ashanti

    2004-01-01

    "Your Average Nigga" contends that just as exaggerating the differences between black and white language leaves some black speakers, especially those from the ghetto, at an impasse, so exaggerating and reifying the differences between the races leaves blacks in the impossible position of either having to try to be white or forever struggling to…

  7. Chronic stress exposure may affect the brain's response to high calorie food cues and predispose to obesogenic eating habits

    USDA-ARS?s Scientific Manuscript database

    Exaggerated reactivity to food cues involving calorically-dense foods may significantly contribute to food consumption beyond caloric need Exaggerated reactivity to food cues involving calorically-dense foods may significantly contribute to food consumption beyond caloric need. Chronic stress, whi...

  8. Reliability of the Achilles tendon tap reflex evoked during stance using a pendulum hammer.

    PubMed

    Mildren, Robyn L; Zaback, Martin; Adkin, Allan L; Frank, James S; Bent, Leah R

    2016-01-01

    The tendon tap reflex (T-reflex) is often evoked in relaxed muscles to assess spinal reflex circuitry. Factors contributing to reflex excitability are modulated to accommodate specific postural demands. Thus, there is a need to be able to assess this reflex in a state where spinal reflex circuitry is engaged in maintaining posture. The aim of this study was to determine whether a pendulum hammer could provide controlled stimuli to the Achilles tendon and evoke reliable muscle responses during normal stance. A second aim was to establish appropriate stimulus parameters for experimental use. Fifteen healthy young adults stood on a forceplate while taps were applied to the Achilles tendon under conditions in which postural sway was constrained (by providing centre of pressure feedback) or unconstrained (no feedback) from an invariant release angle (50°). Twelve participants repeated this testing approximately six months later. Within one experimental session, tap force and T-reflex amplitude were found to be reliable regardless of whether postural sway was constrained (tap force ICC=0.982; T-reflex ICC=0.979) or unconstrained (tap force ICC=0.968; T-reflex ICC=0.964). T-reflex amplitude was also reliable between experimental sessions (constrained ICC=0.894; unconstrained ICC=0.890). When a T-reflex recruitment curve was constructed, optimal mid-range responses were observed using a 50° release angle. These results demonstrate that reliable Achilles T-reflexes can be evoked in standing participants without the need to constrain posture. The pendulum hammer provides a simple method to allow researchers and clinicians to gather information about reflex circuitry in a state where it is involved in postural control. Copyright © 2015 Elsevier B.V. All rights reserved.

  9. Factors Affecting the Occurrence of Spinal Reflexes in Brain Dead Cases.

    PubMed

    Hosseini, Mahsa Sadat; Ghorbani, Fariba; Ghobadi, Omid; Najafizadeh, Katayoun

    2015-08-01

    Brain death is defined as the permanent absence of all cortical and brain stem reflexes. A wide range of spontaneous or reflex movements that are considered medullary reflexes are observed in heart beating cases that appear brain dead, which may create uncertainty about the diagnosis of brain death and cause delays in deceased-donor organ donation process. We determined the frequency and type of medullary reflexes and factors affecting their occurrence in brain dead cases. During 1 year, 122 cases who fulfilled the criteria for brain death were admitted to the special intensive care unit for organ procurement of Masih Daneshvari Hospital. Presence of spinal reflexes was evaluated by trained coordinators and was recorded in a form in addition to other information including demographic characteristics, cause of brain death, time from detection of brain death, history of craniotomy, vital signs, serum electrolyte levels, and parameters of arterial blood gas determination. Most cases (63%) included in this study were male, and mean age was 33 ± 15 y. There was > 1 spinal reflex observed in 40 cases (33%). The most frequent reflex was plantar response (17%) following by myoclonus (10%), triple flexion reflex (9%), pronator extension reflex (8%), and undulating toe reflex (7%). Mean systolic blood pressure was significantly higher in cases who exhibited medullary reflexes than other cases (126 ± 19 mm Hg vs 116 ± 17 mm Hg; P = .007). Spinal reflexes occur frequently in brain dead cases, especially when they become hemodynamically stable after treatment in the organ procurement unit. Observing these movements by caregivers and family members has a negative effect on obtaining family consent and organ donation. Increasing awareness about spinal reflexes is necessary to avoid suspicion about the brain death diagnosis and delays in organ donation.

  10. The differential role of motor cortex in the stretch reflex modulation induced by changes in environmental mechanics and verbal instruction

    PubMed Central

    Shemmell, Jonathan; An, Je Hi; Perreault, Eric J.

    2009-01-01

    The motor cortex assumes an increasingly important role in higher mammals relative to that in lower mammals. This is true to such an extent that the human motor cortex is deeply involved in reflex regulation and it is common to speak of “transcortical reflex loops”. Such loops appear to add flexibility to the human stretch reflex, once considered to be immutable, allowing it to adapt across a range of functional tasks. However, the purpose of this adaptation remains unclear. A common proposal is that stretch reflexes contribute to the regulation of limb stability; increased reflex sensitivity during tasks performed in unstable environments supports this hypothesis. Alternatively, prior to movement onset, stretch reflexes can assist an imposed stretch, opposite to what would be expected from a stabilizing response. Here we show that stretch reflex modulation in tasks that require changes in limb stability is mediated by motor cortical pathways, and that these differ from pathways contributing to reflex modulation that depends on how the subject is instructed to react to an imposed perturbation. By timing muscle stretches such that the modulated portion of the reflex occurred within a cortical silent period induced by transcranial magnetic stimulation, we abolished the increase in reflex sensitivity observed when individuals stabilized arm posture within a compliant environment. Conversely, reflex modulation caused by altered task instruction was unaffected by cortical silence. These results demonstrate that task-dependent changes in reflex function can be mediated through multiple neural pathways and that these pathways have task specific roles. PMID:19846713

  11. The differential role of motor cortex in stretch reflex modulation induced by changes in environmental mechanics and verbal instruction.

    PubMed

    Shemmell, Jonathan; An, Je Hi; Perreault, Eric J

    2009-10-21

    The motor cortex assumes an increasingly important role in higher mammals relative to that in lower mammals. This is true to such an extent that the human motor cortex is deeply involved in reflex regulation and it is common to speak of "transcortical reflex loops." Such loops appear to add flexibility to the human stretch reflex, once considered to be immutable, allowing it to adapt across a range of functional tasks. However, the purpose of this adaptation remains unclear. A common proposal is that stretch reflexes contribute to the regulation of limb stability; increased reflex sensitivity during tasks performed in unstable environments supports this hypothesis. Alternatively, before movement onset, stretch reflexes can assist an imposed stretch, opposite to what would be expected from a stabilizing response. Here we show that stretch reflex modulation in tasks that require changes in limb stability is mediated by motor cortical pathways, and that these differ from pathways contributing to reflex modulation that depend on how the subject is instructed to react to an imposed perturbation. By timing muscle stretches such that the modulated portion of the reflex occurred within a cortical silent period induced by transcranial magnetic stimulation, we abolished the increase in reflex sensitivity observed when individuals stabilized arm posture within a compliant environment. Conversely, reflex modulation caused by altered task instruction was unaffected by cortical silence. These results demonstrate that task-dependent changes in reflex function can be mediated through multiple neural pathways and that these pathways have task-specific roles.

  12. Persistence of deep-tendon reflexes during partial cataplexy.

    PubMed

    Barateau, Lucie; Pizza, Fabio; Lopez, Régis; Antelmi, Elena; Plazzi, Giuseppe; Dauvilliers, Yves

    2018-05-01

    Deep-tendon reflexes are abolished during generalized cataplexy, but whether this is the case in partial cataplexy currently remains unknown. Partial cataplexy may mimic other neurologic/psychiatric phenomena, and knowledge of the reflexes status may provide information for differential diagnosis. We assessed whether deep-tendon reflexes are persistent during partial cataplexy. Five drug-free patients with typical diagnoses of narcolepsy and clear-cut partial cataplexy were diagnosed in Reference Narcolepsy Centers in France and Italy. Biceps and patellar reflexes were elicited by physicians in charge and video-documented during cataplexy. Reflexes were assessed several times for each patient in different conditions and for various localizations of cataplexy. The absence of tendon reflexes and complete loss of muscle tone during generalized cataplexy was confirmed, but the persistence of those reflexes during several partial cataplectic attacks at different ages, gender, localization of cataplexy (upper limbs, face) and reflexes (biceps, patellar) in drug-naive or withdrawal conditions was documented. The persistence of tendon reflexes during several partial cataplexy episodes contrasts with their absence during generalized cataplexy. This discovery has clinical implications: the persistence of tendon reflexes does not rule out cataplexy diagnosis for partial attacks, whereas their transient abolishment or persistence during generalized attacks indicates cataplexy or pseudocataplexy, respectively. Copyright © 2018. Published by Elsevier B.V.

  13. Primitive Reflexes and Attention-Deficit/Hyperactivity Disorder: Developmental Origins of Classroom Dysfunction

    ERIC Educational Resources Information Center

    Taylor, Myra; Houghton, Stephen; Chapman, Elaine

    2004-01-01

    The present research studied the symptomatologic overlap of AD/HD behaviours and retention of four primitive reflexes (Moro, Tonic Labyrinthine Reflex [TLR], Asymmetrical Tonic Neck Reflex [ATNR], Symmetrical Tonic Neck Reflex [STNR]) in 109 boys aged 7-10 years. Of these, 54 were diagnosed with AD/HD, 34 manifested sub-syndromal coordination,…

  14. Development of the Stretch Reflex in the Newborn: Reciprocal Excitation and Reflex Irradiation.

    ERIC Educational Resources Information Center

    Myklebust, Barbara M.; Gottlieb, Gerald L.

    1993-01-01

    When tendon jerk reflexes were tested in seven newborns from one- to three-days old, stretch reflex responses in all major muscle groups of the lower limb were elicited. This "irradiation of reflexes" is a normal phenomenon in newborns, with the pathway becoming suppressed during normal maturation. In individuals with cerebral palsy,…

  15. Effects of context preexposure and delay until anxiety retrieval on generalization of contextual anxiety

    PubMed Central

    Neueder, Dorothea; Glotzbach-Schoon, Evelyn; Mühlberger, Andreas

    2017-01-01

    Animal studies suggest that time delay between acquisition and retrieval of contextual anxiety increases generalization. Moreover, such generalization is prevented by preexposure to the context (CTX), presumably due to an improved representation of such context. We investigated whether preexposure and time-passing modulate generalization of contextual anxiety, in humans. On Day 1, 42 participants (preexposure group) explored two virtual offices, while 41 participants (no-preexposure group) explored a virtual stadium. On Day 2 (24 h later), all participants learned to associate one office (CTX+) with unpredictable unconditioned stimuli (USs), and another office (CTX−) with safety. On Day 3, either 24 h (recent test) or 2 wk (remote test) later, participants revisited CTX− and CTX+ without USs, as well as a generalization context (G-CTX). Results revealed successfully conditioned anxiety and anxiety generalization for ratings (G-CTX was as aversive as CTX+ was), while safety generalization was found for startle responses (G-CTX elicited startle attenuation as CTX− did). Time between learning and testing enhanced generalization as reflected by comparable startle responses to all three offices in the remote test. Contextual preexposure facilitated extinction of explicit conditioned anxiety assessed with ratings. These results suggest that memory trace of a context degrades with passage of time in humans like in animals and, consequently, anxiety generalization enhances. After context preexposure, high cognitive processes seem to be crucially involved in facilitating extinction (or safety) learning. PMID:27980075

  16. Homeostatic response to sleep/rest deprivation by constant water flow in larval zebrafish in both dark and light conditions.

    PubMed

    Aho, Vilma; Vainikka, Maija; Puttonen, Henri A J; Ikonen, Heidi M K; Salminen, Tiia; Panula, Pertti; Porkka-Heiskanen, Tarja; Wigren, Henna-Kaisa

    2017-06-01

    Sleep-or sleep-like states-have been reported in adult and larval zebrafish using behavioural criteria. These reversible quiescent periods, displaying circadian rhythmicity, have been used in pharmacological, genetic and neuroanatomical studies of sleep-wake regulation. However, one of the important criteria for sleep, namely sleep homeostasis, has not been demonstrated unequivocally. To study rest homeostasis in zebrafish larvae, we rest-deprived 1-week-old larvae with a novel, ecologically relevant method: flow of water. Stereotyped startle responses to sensory stimuli were recorded after the rest deprivation to study arousal threshold using a high-speed camera, providing an appropriate time resolution to detect species-specific behavioural responses occurring in a millisecond time-scale. Rest-deprived larvae exhibited fewer startle responses than control larvae during the remaining dark phase and the beginning of the light phase, which can be interpreted as a sign of rest homeostasis-often used as equivalent of sleep homeostasis. To address sleep homeostasis further, we probed the adenosinergic system, which in mammals regulates sleep homeostasis. The adenosine A1 receptor agonist, cyclohexyladenosine, administered during the light period, decreased startle responses and increased immobility bouts, while the adenosine antagonist, caffeine, administered during the dark period, decreased immobility bouts. These results suggest that the regulation of sleep homeostasis in zebrafish larvae consists of the same elements as that of other species. © 2017 European Sleep Research Society.

  17. Multiple exaggerated weapon morphs: a novel form of male polymorphism in harvestmen

    PubMed Central

    Painting, Christina J.; Probert, Anna F.; Townsend, Daniel J.; Holwell, Gregory I.

    2015-01-01

    Alternative reproductive tactics in animals are commonly associated with distinct male phenotypes resulting in polymorphism of sexually selected weapons such as horns and spines. Typically, morphs are divided between small (unarmed) and large (armed) males according to one or more developmental thresholds in association with body size. Here, we describe remarkable weapon trimorphism within a single species, where two exaggerated weapon morphs and a third morph with reduced weaponry are present. Male Pantopsalis cheliferoides harvestmen display exaggerated chelicerae (jaws) which are highly variable in length among individuals. Across the same body size spectrum, however, some males belong to a distinct second exaggerated morph which possesses short, broad chelicerae. Multiple weapon morphs in a single species is a previously unknown phenomenon and our findings have significant implications for understanding weapon diversity and maintenance of polymorphism. Specifically, this species will be a valuable model for testing how weapons diverge by being able to test directly for the circumstances under which a certain weapon type is favoured and how weapon shape relates to performance. PMID:26542456

  18. Supraspinal control of spinal reflex responses to body bending during different behaviours in lampreys

    PubMed Central

    Hsu, Li‐Ju; Zelenin, Pavel V.; Orlovsky, Grigori N.

    2016-01-01

    Key points Spinal reflexes are substantial components of the motor control system in all vertebrates and centrally driven reflex modifications are essential to many behaviours, but little is known about the neuronal mechanisms underlying these modifications.To study this issue, we took advantage of an in vitro brainstem–spinal cord preparation of the lamprey (a lower vertebrate), in which spinal reflex responses to spinal cord bending (caused by signals from spinal stretch receptor neurons) can be evoked during different types of fictive behaviour.Our results demonstrate that reflexes observed during fast forward swimming are reversed during escape behaviours, with the reflex reversal presumably caused by supraspinal commands transmitted by a population of reticulospinal neurons.NMDA receptors are involved in the formation of these commands, which are addressed primarily to the ipsilateral spinal networks.In the present study the neuronal mechanisms underlying reflex reversal have been characterized for the first time. Abstract Spinal reflexes can be modified during different motor behaviours. However, our knowledge about the neuronal mechanisms underlying these modifications in vertebrates is scarce. In the lamprey, a lower vertebrate, body bending causes activation of intraspinal stretch receptor neurons (SRNs) resulting in spinal reflexes: activation of motoneurons (MNs) with bending towards either the contralateral or ipsilateral side (a convex or concave response, respectively). The present study had two main aims: (i) to investigate how these spinal reflexes are modified during different motor behaviours, and (ii) to reveal reticulospinal neurons (RSNs) transmitting commands for the reflex modification. For this purpose in in vitro brainstem–spinal cord preparation, RSNs and reflex responses to bending were recorded during different fictive behaviours evoked by supraspinal commands. We found that during fast forward swimming MNs exhibited convex responses. By contrast, during escape behaviours, MNs exhibited concave responses. We found RSNs that were activated during both stimulation causing reflex reversal without initiation of any specific behaviour, and stimulation causing reflex reversal during escape behaviour. We suggest that these RSNs transmit commands for the reflex modification. Application of the NMDA antagonist (AP‐5) to the brainstem significantly decreased the reversed reflex, suggesting involvement of NMDA receptors in the formation of these commands. Longitudinal split of the spinal cord did not abolish the reflex reversal caused by supraspinal commands, suggesting an important role for ipsilateral networks in determining this type of motor response. This is the first study to reveal the neuronal mechanisms underlying supraspinal control of reflex reversal. PMID:27589479

  19. Myoclonus

    MedlinePlus

    ... injury, stroke, brain tumors, kidney or liver failure, lipid storage disease, chemical or drug poisoning, or other ... example, is in the brain stem close to structures that are responsible for the startle response, an ...

  20. Protective role of aerodigestive reflexes against aspiration: study on subjects with impaired and preserved reflexes.

    PubMed

    Dua, Kulwinder; Surapaneni, Sri Naveen; Kuribayashi, Shiko; Hafeezullah, Mohammed; Shaker, Reza

    2011-06-01

    Direct evidence to support the airway protective function of aerodigestive reflexes triggered by pharyngeal stimulation was previously demonstrated by abolishing these reflexes by topical pharyngeal anesthesia in normal subjects. Studies have also shown that these reflexes deteriorate in cigarette smokers. Aim of this study was to determine the influence of defective pharyngeal aerodigestive reflexes on airway protection in cigarette smokers. Pharyngoglottal Closure reflex; PGCR, Pharyngo-UES Contractile reflex; PUCR, and Reflexive Pharyngeal Swallow; RPS were studied in 15 healthy non-smokers (24.2±3.3 SD y, 7 males) and 15 healthy chronic smokers (27.3±8.1, 7 males). To elicit these reflexes and to evaluate aspiration, colored water was perfused into the hypopharynx at the rate of 1 mL/min. Maximum volume of water that can safely dwell in the hypopharynx before spilling into the larynx (Hypopharyngeal Safe Volume; HPSV) and the threshold volume to elicit PGCR, PUCR, and RPS were determined in smokers and results compared with non-smokers. At baseline, RPS was elicited in all non-smokers (100%) and in only 3 of 15 smokers (20%; P<.001). None of the non-smokers showed evidence of laryngeal spillage of water, whereas 12 of 15 smokers with absent RPS had laryngeal spillage. Pharyngeal anesthesia abolished RPS reflex in all non-smokers resulting in laryngeal spillage. The HPSV was 0.61±0.06 mL and 0.76±0.06 mL in non-smokers and smokers respectively (P=.1). Deteriorated reflexive pharyngeal swallow in chronic cigarette smokers predispose them to risks of aspiration and similarly, abolishing this reflex in non-smokers also results in laryngeal spillage. These observations directly demonstrate the airway protective function of RPS. Copyright © 2011 AGA Institute. Published by Elsevier Inc. All rights reserved.

Top