Antifungal Activity of Decyl Gallate against Several Species of Pathogenic Fungi
de Paula e Silva, Ana Carolina Alves; Costa-Orlandi, Caroline Barcelos; Gullo, Fernanda Patrícia; Sangalli-Leite, Fernanda; de Oliveira, Haroldo Cesar; da Silva, Julhiany de Fátima; Rossi, Suélen Andrea; Benaducci, Tatiane; Wolf, Vanessa Gonçalves; Regasini, Luis Octávio; Petrônio, Maicon Segalla; Silva, Dulce Helena Siqueira; Bolzani, Vanderlan S.; Mendes-Giannini, Maria José Soares
2014-01-01
This work aims to demonstrate that the gallic acid structure modification to the decyl gallate (G14) compound contributed to increase the antifungal activity against several species of pathogenic fungi, mainly, Candida spp., Cryptococcus spp., Paracoccidioides spp., and Histoplasma capsulatum, according to standardized microdilution method described by Clinical Laboratory Standard Institute (CLSI) documents. Moreover this compound has a particularly good selectivity index value, which makes it an excellent candidate for broad-spectrum antifungal prototype and encourages the continuation of subsequent studies for the discovery of its mechanism of action. PMID:25505923
Antifungal activity of gold nanoparticles prepared by solvothermal method
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ahmad, Tokeer, E-mail: tahmad3@jmi.ac.in; Wani, Irshad A.; Lone, Irfan H.
2013-01-15
Graphical abstract: Gold nanoparticles (7 and 15 nm) of very high surface area (329 and 269 m{sup 2}/g) have been successfully synthesized through solvothermal method by using tin chloride and sodium borohydride as reducing agents. As-prepared gold nanoparticles shows very excellent antifungal activity against Candida isolates and activity increases with decrease in the particle size. Display Omitted Highlights: ► Effect of reducing agents on the morphology of gold nanoparticles. ► Highly uniform and monodisperse gold nanoparticles (7 nm). ► Highest surface area of gold nanoparticles (329 m{sup 2/}g). ► Excellent antifungal activity of gold nanoparticles against Candida strains. -- Abstract:more » Gold nanoparticles have been successfully synthesized by solvothermal method using SnCl{sub 2} and NaBH{sub 4} as reducing agents. X-ray diffraction studies show highly crystalline and monophasic nature of the gold nanoparticles with face centred cubic structure. The transmission electron microscopic studies show the formation of nearly spherical gold nanoparticles of average size of 15 nm using SnCl{sub 2}, however, NaBH{sub 4} produced highly uniform, monodispersed and spherical gold nanoparticles of average grain size of 7 nm. A high surface area of 329 m{sup 2}/g for 7 nm and 269 m{sup 2}/g for 15 nm gold nanoparticles was observed. UV–vis studies assert the excitations over the visible region due to transverse and longitudinal surface plasmon modes. The gold nanoparticles exhibit excellent size dependant antifungal activity and greater biocidal action against Candida isolates for 7 nm sized gold nanoparticles restricting the transmembrane H{sup +} efflux of the Candida species than 15 nm sized gold nanoparticles.« less
Luliconazole for the treatment of fungal infections: an evidence-based review
Khanna, Deepshikha; Bharti, Subhash
2014-01-01
Luliconazole is an imidazole antifungal agent with a unique structure, as the imidazole moiety is incorporated into the ketene dithioacetate structure. Luliconazole is the R-enantiomer, and has more potent antifungal activity than lanoconazole, which is a racemic mixture. In this review, we summarize the in vitro data, animal studies, and clinical trial data relating to the use of topical luliconazole. Preclinical studies have demonstrated excellent activity against dermatophytes. Further, in vitro/in vivo studies have also shown favorable activity against Candida albicans, Malassezia spp., and Aspergillus fumigatus. Luliconazole, although belonging to the azole group, has strong fungicidal activity against Trichophyton spp., similar to that of terbinafine. The strong clinical antifungal activity of luliconazole is possibly attributable to a combination of strong in vitro antifungal activity and favorable pharmacokinetic properties in the skin. Clinical trials have demonstrated its superiority over placebo in dermatophytosis, and its antifungal activity to be at par or even better than that of terbinafine. Application of luliconazole 1% cream once daily is effective even in short-term use (one week for tinea corporis/cruris and 2 weeks for tinea pedis). A Phase I/IIa study has shown excellent local tolerability and a lack of systemic side effects with use of topical luliconazole solution for onychomycosis. Further studies to evaluate its efficacy in onychomycosis are underway. Luliconazole 1% cream was approved in Japan in 2005 for the treatment of tinea infections. It has recently been approved by US Food and Drug Administration for the treatment of interdigital tinea pedis, tinea cruris, and tinea corporis. Topical luliconazole has a favorable safety profile, with only mild application site reactions reported occasionally. PMID:25285056
NASA Astrophysics Data System (ADS)
Sharma, M. G.; Rajani, D. P.; Patel, H. M.
2017-06-01
A novel green and efficient one-pot multicomponent reaction of dihydropyridine derivatives was reported as having good to excellent yield. In the presence of the catalyst ceric ammonium nitrate (CAN), different 1,3-diones and same starting materials as 5-bromothiophene-2-carboxaldehyde and ammonium acetate were used at room temperature under solvent-free condition for the Hantzsch pyridine synthesis within a short period of time. All compounds were evaluated for their in vitro antibacterial and antifungal activity and, interestingly, we found that 5(b-f) show excellent activity compared with Ampicillin, whereas only the 5e compound shows excellent antifungal activity against Candida albicans compared with griseofulvin. The cytotoxicity of all compounds has been assessed against breast tumour cell lines (BT-549), but no activity was found. The X-ray structure of one such compound, 5a, viewed as a colourless block crystal, corresponded accurately to a primitive monoclinic cell.
Antibacterial and antifungal activities of Euroschinus papuanus.
Khan, M R; Omoloso, A D; Kihara, M
2004-06-01
The crude methanolic extracts of the leaves, stem bark, stem heart wood, root bark and root heart wood of Euroschinus papuanus and the fractions obtained on partitioning with petrol, dichloromethane (D), ethyl acetate (E) and butanol (B), exhibited a broad spectrum antibacterial activity. Fractionation drastically enhanced the activity. Excellent activity was demonstrated by the E fractions of stem heart wood, D of root bark, and E of root heart wood. Antifungal activity was exhibited by the B fractions of leaves, stem heartwood and root bark. Copyright 2004 Elsevier B.V.
Novel fluconazole derivatives with promising antifungal activity.
Thamban Chandrika, Nishad; Shrestha, Sanjib K; Ngo, Huy X; Howard, Kaitlind C; Garneau-Tsodikova, Sylvie
2018-02-01
The fungistatic nature and toxicity concern associated with the azole drugs currently on the market have resulted in an increased demand for new azole antifungal agents for which these problematic characteristics do not exist. The extensive use of azoles has resulted in fungal strains capable of resisting the action of these drugs. Herein, we report the synthesis and antifungal activity of novel fluconazole (FLC) analogues with alkyl-, aryl-, cycloalkyl-, and dialkyl-amino substituents. We evaluated their antifungal activity by MIC determination and time-kill assay as well as their safety profile by hemolytic activity against murine erythrocytes as well as cytotoxicity against mammalian cells. The best compounds from our study exhibited broad-spectrum activity against most of the fungal strains tested, with excellent MIC values against a number of clinical isolates. The most promising compounds were found to be less hemolytic than the least hemolytic FDA-approved azole antifungal agent voriconazole (VOR). Finally, we demonstrated that the synthetic alkyl-amino FLC analogues displayed chain-dependent fungal membrane disruption as well as inhibition of ergosterol biosynthesis as possible mechanisms of action. Copyright © 2017 Elsevier Ltd. All rights reserved.
Antibacterial, antifungal, antispasmodic and Ca++ antagonist effects of Caesalpinia bonducella.
Khan, Hidayat-Ullah; Ali, Irshad; Khan, Arif-Ullah; Naz, Rubina; Gilani, Anwarul Hassan
2011-02-01
Caesalpinia bonducella F. (Leguminosae) has been used as a folk medicine for a variety of ailments. The crude extract of C. bonducella and its fractions were studied for antibacterial, antifungal, antispasmodic and Ca++ antagonistic properties. The strongest antibacterial effect was displayed by the n-butanol (72%) and ethyl acetate (80%) fractions, followed by the crude extract (46% and 42%), against Escherichia coli and Bacillus subtilis, respectively. The plant extract and its fractions showed mild to excellent activity in antifungal bioassays, with maximum antifungal activity against Candida glaberata (80%) and Aspergillus flavus (70%) by the n-butanol and chloroform fractions, followed by the crude extract (70% and 65%). Caesalpinia bonducella extract caused concentration-dependent inhibition of spontaneous and high K+ (80 mM)-induced contractions of isolated rabbit jejunum preparations, similar to that caused by Verapamil. These results indicate that C. bonducella exhibits antibacterial, antifungal, spasmolytic and Ca++ channel blocking actions.
Takei-Masuda, Naomi; Kubota, Natsuki; Takahata, Sho; Ohyama, Makoto; Kaneda, Kaori; Iida, Maiko; Maebashi, Kazunori
2015-01-01
Fungal nail infection (onychomycosis) is a prevalent disease in many areas of the world, with a high incidence approaching 23%. Available antifungals to treat the disease suffer from a number of disadvantages, necessitating the discovery of new efficacious and safe antifungals. Here, we evaluate the in vitro antifungal activity and nail penetration ability of ME1111, a novel antifungal agent, along with comparator drugs, including ciclopirox, amorolfine, terbinafine, and itraconazole. ME1111 showed potent antifungal activity against Trichophyton rubrum and Trichophyton mentagrophytes (the major etiologic agents of onychomycosis) strains isolated in Japan and reference fungal strains with an MIC range of 0.12 to 0.5 mg/liter and an MIC50 and MIC90 of 0.5 mg/liter for both. Importantly, none of the tested isolates showed an elevated ME1111 MIC. Moreover, the antifungal activity of ME1111 was minimally affected by 5% wool keratin powder in comparison to the other antifungals tested. The ME1111 solution was able to penetrate human nails and inhibit fungal growth in a dose-dependent manner according to the TurChub assay. In contrast, 8% ciclopirox and 5% amorolfine nail lacquers showed no activity under the same conditions. ME1111 demonstrated approximately 60-fold-greater selectivity in inhibition of Trichophyton spp. than of human cell lines. Our findings demonstrate that ME1111 possesses potent antidermatophyte activity, maintains this activity in the presence of keratin, and possesses excellent human nail permeability. These results suggest that ME1111 is a promising topical medication for the treatment of onychomycosis and therefore warrants further clinical evaluation. PMID:26643333
De-la-Torre, Janire; Ortiz-Samperio, María Esther; Marcos-Arias, Cristina; Marichalar-Mendia, Xabier; Eraso, Elena; Echebarria-Goicouria, María Ángeles; Aguirre-Urizar, José Manuel; Quindós, Guillermo
2017-06-01
Caries and chronic periodontitis are common oral diseases where a higher Candida colonization is reported. Antifungal agents could be adjuvant drugs for the therapy of both clinical conditions. The aim of the current study has been to evaluate the in vitro activities of conventional and new antifungal drugs against oral Candida isolates from patients suffering from caries and/or chronic periodontitis. In vitro activities of amphotericin B, fluconazole, itraconazole, miconazole, nystatin, posaconazole and voriconazole against 126 oral Candida isolates (75 Candida albicans, 18 Candida parapsilosis, 11 Candida dubliniensis, six Candida guilliermondii, five Candida lipolytica, five Candida glabrata, four Candida tropicalis and two Candida krusei) from 61 patients were tested by the CLSI M27-A3 method. Most antifungal drugs were highly active, and resistance was observed in less than 5% of tested isolates. Miconazole was the most active antifungal drug, being more than 98% of isolates susceptible. Fluconazole, itraconazole, and the new triazoles, posaconazole and voriconazole, were also very active. Miconazole, fluconazole and voriconazole have excellent in vitro activities against all Candida isolates and could represent suitable treatment for a hypothetically adjunctive therapy of caries and chronic periodontitis.
Khidre, Rizk E; Abu-Hashem, Ameen A; El-Shazly, Mohamed
2011-10-01
A new series of 1- substituted amino-4,6-dimethyl-2-oxo-pyridine-3-carbonitrile such as hydrazide hydrazones 3a-h; ethane-1,2-diaminopyridine 6; phthalimidopyridines 8a,b; hydrazides 10a,b; urea 11a and thiourea 11b were synthesized in a good to excellent yield in step efficient process, using 1-amino-4,6-dimethyl-2-oxo-1,2-dihydropyridine-3-carbonitrile (1) as a key intermediate. The antibacterial and antifungal activities of the synthesized compounds were evaluated. The obtained data indicated that the majority of the tested compounds exhibited both antibacterial and antifungal activities, particularly compounds 8a and 8b showed a comparable effect to a well known antibacterial and antifungal agents. Published by Elsevier Masson SAS.
Hou, Zhe; Zhu, Li-Fei; Yu, Xin-chi; Sun, Ma-Qiang; Miao, Fang; Zhou, Le
2016-04-13
Twenty-two 2-aryl-9-methyl-3,4-dihydro-β-carbolin-2-ium bromides along with four 9-demethylated derivatives were synthesized and characterized by spectroscopic analysis. By using the mycelium growth rate method, the compounds were evaluated for antifungal activities in vitro against six plant pathogenic fungi, and structure-activity relationships (SAR) were derived. Almost all of the compounds showed obvious inhibition activity on each of the fungi at 150 μM. For all of the fungi, 10 of the compounds showed average inhibition rates of >80% at 150 μM, and most of their EC50 values were in the range of 2.0-30.0 μM. SAR analysis showed that the substitution pattern of the N-aryl ring significantly influences the activity; N9-alkylation improves the activity, whereas aromatization of ring-C reduces the activity. It was concluded that the present research provided a series of new 2-aryl-9-alkyl-3,4-dihydro-β-carbolin-2-iums with excellent antifungal potency and structure optimization design for the development of new carboline antifungal agents.
Jiang, Cheng; Song, Jinzhu; Zhang, Junzheng; Yang, Qian
2017-06-01
Fusarium sporotrichioides, is a common soil-borne plant pathogen causing dry rot of potato in Northeast China. The objective of this study was to identify the main antifungal substances from Chaetomium globosum W7 against F. sporotrichioides. Strain W7 can significantly inhibit F. sporotrichioides without direct contact, suggesting that its antifungal substance was extracellular, and the solubility of this antifungal substance in ethyl acetate was superior to that in water. Acetone was selected as the optimum solvent for the extraction of the metabolites of C. globosum. Metabolites were then separated with thin-layer chromatography. Following antifungal tests on bands, a dark brown band with Rf value of 0.20 was determined as the antifungal substance, and identified as chaetoglobosin A. The antifungal activity test showed that the minimum inhibitory concentration of chaetoglobosin A to F. sporotrichioides was 9.45-10.50 μg/mL, IC50 being 4.344 μg/mL. Chaetoglobosin A also proved to have an excellent preventive effect on potato dry rot caused by F. sporotrichioides. To summarize, chaetoglobosin A was identified as the main active substance of C. globosum to inhibit F. sporotrichioides for the first time, and demonstrated a potential application value in agriculture.
Bartroli, J; Turmo, E; Algueró, M; Boncompte, E; Vericat, M L; Conte, L; Ramis, J; Merlos, M; García-Rafanell, J; Forn, J
1998-05-21
A series of 92 azole antifungals containing an amido alcohol unit was synthesized. The nature and substitution of the amide portion was systematically modified in search of improved antifungal activity, especially against filamentous fungi. The compounds were tested in vitro against a variety of clinically important pathogens and in vivo (po) in a murine candidosis model. Thiazole and thiophene carboxamides carrying both a substituted phenyl ring and a small alkyl group were best suited for activity against filamentous fungi. In a subset of these compounds, the amide portion was conformationally locked by means of a pyrimidone ring and it was proven that only an orthogonal orientation of the phenyl ring yields bioactive products. A tendency to display long plasma elimination half-lives was observed in both series. Two compounds, 74 and 107, representative of the open and cyclic amides, respectively, were chosen for further studies, based on their excellent activity in in vivo murine models of candidosis and aspergillosis. This work describes the SARs found within this series. The next paper displays the results obtained in a related series of compounds, the quinazolinones.
Enzymatic hydrolysis of esters containing a tetrazole ring.
Łukowska-Chojnacka, Edyta; Mierzejewska, Jolanta
2014-12-01
The lipase-catalyzed enantioselective hydrolysis of acetates containing tetrazole moiety was studied. Among all tested lipases, Novozyme SP 435 allowed to obtain optically active 4-(5-aryl-2H-tetrazol-2yl)butan-2-ol and 1-(5-aryl-2H-tetrazol-2yl)-propan-2-ol and their acetates with the highest optical purities (ee = 95%-99%) and excellent enantioselectivity (E>100). Some of the synthesized tetrazole derivatives were screened for their antifungal activity. Racemic mixtures of 4-[5-(4-chlorophenyl)-2H-tetrazol-2-yl)butan-2-ol as well as pure enantiomers of this compound showed promising antifungal activity against F. sambucinum, F. oxysporum, C. coccodes, and A. niger. © 2014 Wiley Periodicals, Inc.
Elizondo-Zertuche, Mariana; de J Treviño-Rangel, Rogelio; Robledo-Leal, Efrén; Luna-Rodríguez, Carolina E; Martínez-Fierro, Margarita L; Rodríguez-Sánchez, Iram P; González, Gloria M
2017-01-01
The genus Scedosporium is a complex of ubiquitous moulds associated with a wide spectrum of clinical entities, with high mortality principally in immunocompromised hosts. Ecology of these microorganisms has been studied performing isolations from environmental sources, showing a preference for human-impacted environments. This study aimed to evaluate the presence and antifungal susceptibility of Scedosporium complex species in soil samples collected in high-human-activity sites of Mexico. A total of 97 soil samples from 25 Mexican states were collected. Identifications were performed by microscopic morphology and confirmed by sequencing of the rDNA (internal transcribed spacer [ITS], D1/D2) and β-tubulin partial loci. Antifungal susceptibility testing was performed according to the Clinical and Laboratory Standards Institute (CLSI) protocols. Soil samples of urban gardens and industrial parks constituted the best sources for isolation of Scedosporium complex species. S. apiospermum sensu stricto was the most prevalent species (69%), followed by S. boydii (16%). Voriconazole (minimal inhibitory concentration [MIC] geometric mean ≤2.08 µg/mL), followed by posaconazole (MIC geometric mean ≤2.64 µg/mL), exhibited excellent in vitro activity for most species. Amphotericin B and fluconazole demonstrated limited antifungal activity, and all of the strains were resistant to echinocandins. This is the first report in Mexico of environmental distribution and antifungal in vitro susceptibility of these emergent pathogens.
Holbrook, Selina Y L; Garzan, Atefeh; Dennis, Emily K; Shrestha, Sanjib K; Garneau-Tsodikova, Sylvie
2017-10-20
As the number of hospitalized and immunocompromised patients continues to rise, invasive fungal infections, such as invasive candidiasis and aspergillosis, threaten the life of millions of patients every year. The azole antifungals are currently the most prescribed drugs clinically that display broad-spectrum antifungal activity and excellent oral bioavailability. Yet, the azole antifungals have their own limitations and are unable to meet the challenges associated with increasing fungal infections and the accompanied development of resistance against azoles. Exploring combination therapy that involves the current azoles and another drug has been shown to be a promising strategy. Haloperidol and its derivative, bromperidol, were originally discovered as antipsychotics. Herein, we synthesize and report a series of bromperidol derivatives and their synergistic antifungal interactions in combination with a variety of current azole antifungals against a wide panel of fungal pathogens. We further select two representative combinations and confirm the antifungal synergy by performing time-kill assays. Furthermore, we evaluate the ability of selected combinations to destroy fungal biofilm. Finally, we perform mammalian cytotoxicity assays with the representative combinations against three mammalian cell lines. Copyright © 2017 Elsevier Masson SAS. All rights reserved.
Du, Shijie; Tian, Zaimin; Yang, Dongyan; Li, Xiuyun; Li, Hong; Jia, Changqing; Che, Chuanliang; Wang, Mian; Qin, Zhaohai
2015-05-08
A series of novel 3-(difluoromethyl)-1-methyl-1H-pyrazole-4-carboxylic acid amides were synthesized and their activities were tested against seven phytopathogenic fungi by an in vitro mycelia growth inhibition assay. Most of them displayed moderate to excellent activities. Among them N-(2-(5-bromo-1H-indazol-1-yl)phenyl)-3-(difluoro-methyl)-1-methyl-1H-pyrazole-4-carboxamide (9m) exhibited higher antifungal activity against the seven phytopathogenic fungi than boscalid. Topomer CoMFA was employed to develop a three-dimensional quantitative structure-activity relationship model for the compounds. In molecular docking, the carbonyl oxygen atom of 9m could form hydrogen bonds towards the hydroxyl of TYR58 and TRP173 on SDH.
Marrero, Edrei Javier; Silva, Freddy Alejandro; Rosario, Inmaculada; Déniz, Soraya; Real, Fernando; Padilla, Daniel; Díaz, Esther Licia; Acosta-Hernández, Begoña
2017-10-01
Otitis caused by Malassezia pachydermatis is generally a common and recurrent disease in canine clinical pathology. The increased incidence of fungal resistant to antifungal in both humans and pets is a cause for concern and is associated with the indiscriminate use of antifungals. Finding the most effective disinfectants and antifungals has become essential. To evaluate the in vitro inhibitory activity of hydrogen peroxide on the growth of M. pachydermatis and compare its efficacy with commercial ear cleaners. The test for sensitivity to antimicrobials was carried out following the indications of the CLSI document M44-A2. The comparative results demonstrated that hydrogen peroxide 1.5% showed excellent results for growth inhibition of M. pachydermatis, followed by Epiotic ® and MalAcetic ® , the lowest result was for Otoclean ® . © 2017 Blackwell Verlag GmbH.
Del Poeta, Maurizio; Schell, Wiley A.; Dykstra, Christine C.; Jones, Susan K.; Tidwell, Richard R.; Kumar, Arvind; Boykin, David W.; Perfect, John R.
1998-01-01
Aromatic dicationic compounds possess antimicrobial activity against a wide range of eucaryotic pathogens, and in the present study an examination of the structures-functions of a series of compounds against fungi was performed. Sixty-seven dicationic molecules were screened for their inhibitory and fungicidal activities against Candida albicans and Cryptococcus neoformans. The MICs of a large number of compounds were comparable to those of the standard antifungal drugs amphotericin B and fluconazole. Unlike fluconazole, potent inhibitory compounds in this series were found to have excellent fungicidal activities. The MIC of one of the most potent compounds against C. albicans was 0.39 μg/ml, and it was the most potent compound against C. neoformans (MIC, ≤0.09 μg/ml). Selected compounds were also found to be active against Aspergillus fumigatus, Fusarium solani, Candida species other than C. albicans, and fluconazole-resistant strains of C. albicans and C. neoformans. Since some of these compounds have been safely given to animals, these classes of molecules have the potential to be developed as antifungal agents. PMID:9756748
Sui, Guoqing; Zhang, Wen; Zhou, Kun; Li, Yulin; Zhang, Bingyu; Xu, Dan; Zou, Yong; Zhou, Wenming
2017-01-01
As a part of our continuing research on amine derivative antifungal agents, 19 novel target compounds containing 1,2,4-triazole and tertiary amine moieties were designed and synthesized, and their in vitro antifungal activities against six phytopathogenic fungi (Magnaporthe grisea, Alternaria solani, Fusarium solani, Curvularia lunata, A. alternata, F. graminearum) were assayed. All target compounds were elucidated by means of 1 H-NMR, 13 C-NMR, high resolution (HR)-MS, and IR analysis. The results showed that most of the derivatives exhibited obvious activity against each of the fungi at 50 µg/mL. Among them, compounds 7f, l, and o displayed excellent activity against A. solani with median effective concentration values (EC 50 ) of 2.88, 8.20, and 1.92 µg/mL. 7o in particular was superior to tebuconazole (EC 50 =2.03 µg/mL), a commercial fungicide. Furthermore, compounds 7j, k, and m also showed good activity against F. graminearum with EC 50 values of 11.60, 5.14, and 16.24 µg/mL, and the value of 7k was extremely close to that of tebuconazole (EC 50 =3.13 µg/mL). The preliminary analysis of the structure-activity relationship (SAR) demonstrated that combination of the active structure of 1,2,4-triazole with the tertiary amine group containing benzene rings effectively increased the antifungal activities. Generally, introducing halogen atoms obviously improved activities against most of the test fungi to varying degrees, while the presence of OMe decreased the activities. Thus, the results strongly indicate that the newly synthesized derivatives should be lead compounds for the development of novel antifungal agents for the effective control of phytopathogenic fungi.
Fu, Nina; Wang, Suiliang; Zhang, Yuqian; Zhang, Caixia; Yang, Dongliang; Weng, Lixing; Zhao, Baomin; Wang, Lianhui
2017-08-18
Candida is an important opportunistic human fungal pathogen. The cis-2-dodecenoic acid (BDSF) showing in vitro activity of against C. albicans growth, germ-tube germination and biofilm formation has been a potential inhibitor for Candida and other fungi. In this study, facile synthetic strategies toward a novel family of BDSF analogue, 1-alkyl-1H-1,2,3-triazole-4-carboxylic acids (ATCs) was developed. The straightforward synthetic method including converting the commercial available alkyl bromide to alkyl azide, consequently with a typical click chemistry method, copper(II) sulfate and sodium ascorbate as catalyst in water to furnish ATCs with mild to good yields. According to antifungal assay, 1-decyl-4,5-dihydro-1H-1,2,3-triazole-4-carboxylic acid (5d) showed antifungal capability slightly better than BDSF. The 1,2,3-triazole unit played a crucial role for the bioactivity of ATCs was also confirmed when compared with two alkyl-aromatic carboxylic acids. Given its simplicity, high antifungal activity, and wide availability of compounds with halide atoms on the end part of the alkyl chains, the method can be extended to develop more excellent ATC drugs for accomplishing the challenges in future antifungal applications. Copyright © 2017 Elsevier Masson SAS. All rights reserved.
NASA Astrophysics Data System (ADS)
Eraković, S.; Janković, A.; Ristoscu, C.; Duta, L.; Serban, N.; Visan, A.; Mihailescu, I. N.; Stan, G. E.; Socol, M.; Iordache, O.; Dumitrescu, I.; Luculescu, C. R.; Janaćković, Dj.; Miškovic-Stanković, V.
2014-02-01
Hydroxyapatite (HA) is a widely used biomaterial for implant thin films, largely recognized for its excellent capability to chemically bond to hard tissue inducing the osteogenesis without immune response from human tissues. Nowadays, intense research efforts are focused on development of antimicrobial HA doped thin films. In particular, HA doped with Ag (Ag:HA) is expected to inhibit the attachment of microbes and contamination of metallic implant surface. We herewith report on nano-sized HA and Ag:HA thin films synthesized by pulsed laser deposition on pure Ti and Ti modified with 100 nm diameter TiO2 nanotubes (fabricated by anodization of Ti plates) substrates. The HA-based thin films were characterized by SEM, AFM, EDS, FTIR, and XRD. The cytotoxic activity was tested with HEp2 cells against controls. The antifungal efficiency of the deposited layers was tested against the Candida albicans and Aspergillus niger strains. The Ti substrates modified with TiO2 nanotubes covered with Ag:HA thin films showed the highest antifungal activity.
Masmoudi, Fatma; Ben Khedher, Saoussen; Kamoun, Amel; Zouari, Nabil; Tounsi, Slim; Trigui, Mohamed
2017-04-01
This work is directed towards Bacillus amyloliquefaciens strain BLB371 metabolite production for biocontrol of fungal phytopathogens. In order to maximise antifungal metabolite production by this strain, two approaches were combined: random mutagenesis and medium component optimization. After three rounds of mutagenesis, a hyper active mutant, named M3-7, was obtained. It produces 7 fold more antifungal metabolites (1800AU/mL) than the wild strain in MC medium. A hybrid design was applied to optimise a new medium to enhance antifungal metabolite production by M3-7. The new optimized medium (35g/L of peptone, 32.5g/L of sucrose, 10.5g/L of yeast extract, 2.4g/L of KH 2 PO 4 , 1.3g/L of MgSO 4 and 23mg/L of MnSO 4 ) achieved 1.62 fold enhancement in antifungal compound production (3000AU/mL) by this mutant, compared to that achieved in MC medium. Therefore, combinatory effect of these two approaches (mutagenesis and medium component optimization) allowed 12 fold improvement in antifungal activity (from 250UA/mL to 3000UA/mL). This improvement was confirmed against several phytopathogenic fungi with an increase of MIC and MFC over than 50%. More interestingly, a total eradication of gray mold was obtained on tomato fruits infected by Botrytis cinerea and treated by M3-7, compared to those treated by BLB371. From the practical point of view, combining random mutagenesis and medium optimization could be considered as an excellent tool for obtaining promising biological products useful against phytopathogenic fungi. Copyright © 2017 Elsevier GmbH. All rights reserved.
Ashok, Mithun; Holla, Bantwal Shivarama; Kumari, Nalilu Suchetha
2007-03-01
A series of new 2-(arylidene/5-arylfurfurylidene)-5-(4-methylthiophenyl)-6-carbethoxy-7-methyl-5H-thiazolo[2,3-b]pyrimidin-3(1H)-ones 2 and 3 have been synthesized by a three component (MCR) reaction involving 4-(4-methylthiophenyl)-5-carbethoxy-6-methyl-3,4-dihydropyrimidin-2(1H)-thione 1, monochloroacetic acid and arylaldehydes/arylfurfuraldehydes, respectively. The newly synthesized compounds were well characterized by elemental analysis, IR, (1)H NMR and mass spectral studies. The newly synthesized compounds were screened for their antibacterial and antifungal activities and have exhibited moderate to excellent growth inhibition of bacteria and fungi. The results of such studies have been discussed in this paper.
Purification and characterization of an antifungal protein, C-FKBP, from Chinese cabbage.
Park, Seong-Cheol; Lee, Jung Ro; Shin, Sun-Oh; Jung, Ji Hyun; Lee, Young Mee; Son, Hyosuk; Park, Yoonkyung; Lee, Sang Yeol; Hahm, Kyung-Soo
2007-06-27
An antifungal protein was isolated from Chinese cabbage (Brassica campestris L. ssp. pekinensis) by buffer-soluble extraction and two chromatographic procedures. The results of matrix-assisted laser desorption/ionization time-of-flight (MALDI-TOF) mass spectrometry revealed that the isolated Chinese cabbage protein was identical to human FK506-binding protein (FKBP). A cDNA encoding FKBP was isolated from a Chinese cabbage leaf cDNA library and named C-FKBP. The open reading frame of the gene encoded a 154-amino acid polypeptide. The amino acid sequence of C-FKBP exhibits striking degrees of identity with the corresponding mouse (61%), human (60%), and yeast (56%) proteins. Genomic Southern blot analyses using the full-length C-FKBP cDNA probe revealed a multigene family in the Chinese cabbage genome. The C-FKBP mRNA was highly expressed in vegetative tissues. We also analyzed the antifungal and peptidyl-prolyl cis-trans isomerase activity of recombinant C-FKBP protein expressed in Escherichia coli. This protein inhibited pathogenic fungal strains, including Candida albicans, Botrytis cinerea, Rhizoctonia solani, and Trichoderma viride, whereas it exhibited no activity against E. coli and Staphylococcus aureus. These results suggest that recombinant C-FKBP is an excellent candidate as a lead compound for the development of antifungal agents.
Sen, Suparna; Borah, Siddhartha Narayan; Bora, Arijit; Deka, Suresh
2017-05-30
Sophorolipids are one of the most promising glycolipid biosurfactants and have been successfully employed in bioremediation and various other industrial sectors. They have also been described to exhibit antimicrobial activity against different bacterial species. Nevertheless, previous literature pertaining to the antifungal activity of sophorolipids are limited indicating the need for further research to explore novel strains with wide antimicrobial activity. A novel yeast strain, Rhodotorula babjevae YS3, was recently isolated from an agricultural field in Assam, Northeast India. This study was primarily emphasized at the characterization and subsequent evaluation of antifungal activity of the sophorolipid biosurfactant produced by R. babjevae YS3. The growth kinetics and biosurfactant production by R. babjevae YS3 was evaluated by cultivation in Bushnell-Haas medium containing glucose (10% w/v) as the sole carbon source. A reduction in the surface tension of the culture medium from 70 to 32.6 mN/m was observed after 24 h. The yield of crude biosurfactant was recorded to be 19.0 g/l which might further increase after optimization of the growth parameters. The biosurfactant was characterized to be a heterogeneous sophorolipid (SL) with both lactonic and acidic forms after TLC, FTIR and LC-MS analyses. The SL exhibited excellent oil spreading and emulsifying activity against crude oil at 38.46 mm 2 and 100% respectively. The CMC was observed to be 130 mg/l. The stability of the SL was evaluated over a wide range of pH (2-10), salinity (2-10% NaCl) and temperature (at 120 °C for time intervals of 30 up to 120 min). The SL was found to retain surface-active properties under the extreme conditions. Additionally, the SL exhibited promising antifungal activity against a considerably broad group of pathogenic fungi viz. Colletotrichum gloeosporioides, Fusarium verticilliodes, Fusarium oxysporum f. sp. pisi, Corynespora cassiicola, and Trichophyton rubrum. The study reports, for the first time, the biosurfactant producing ability of R. babjevae, a relatively lesser studied yeast. The persistent surface active properties of the sophorolipid in extreme conditions advocates its applicability in diverse environmental and industrial sectors. Further, antifungal activities against plant and human pathogens opens up possibilities for development of efficient and eco-friendly antifungal agents with agricultural and biomedical applications.
Ahmad, Aijaz; Wani, Mohmmad Younus; Khan, Amber; Manzoor, Nikhat; Molepo, Julitha
2015-01-01
We previously reported the antifungal properties of a monoterpene phenol "Eugenol" against different Candida strains and have observed that the addition of methyl group to eugenol drastically increased its antimicrobial potency. Based on the results and the importance of medicinal synthetic chemistry, we synthesized eugenol-tosylate and its congeners (E1-E6) and tested their antifungal activity against different clinical fluconazole (FLC)- susceptible and FLC- resistant C. albicans isolates alone and in combination with FLC by determining fractional inhibitory concentration indices (FICIs) and isobolograms calculated from microdilution assays. Minimum inhibitory concentration (MIC) results confirmed that all the tested C. albicans strains were variably susceptible to the semi-synthetic derivatives E1-E6, with MIC values ranging from 1-62 μg/ml. The test compounds in combination with FLC exhibited either synergy (36%), additive (41%) or indifferent (23%) interactions, however, no antagonistic interactions were observed. The MICs of FLC decreased 2-9 fold when used in combination with the test compounds. Like their precursor eugenol, all the derivatives showed significant impairment of ergosterol biosynthesis in all C. albicans strains coupled with down regulation of the important ergosterol biosynthesis pathway gene-ERG11. The results were further validated by docking studies, which revealed that the inhibitors snugly fitting the active site of the target enzyme, mimicking fluconazole, may well explain their excellent inhibitory activity. Our results suggest that these compounds have a great potential as antifungals, which can be used as chemosensitizing agents with the known antifungal drugs.
Luliconazole, an alternative antifungal agent against Aspergillus terreus.
Zargaran, M; Taghipour, S; Kiasat, N; Aboualigalehdari, E; Rezaei-Matehkolaei, A; Zarei Mahmoudabadi, A; Shamsizadeh, F
2017-09-01
Aspergillus terreus is the fourth leading cause of invasive and non-invasive aspergillosis and one of the causative agents of morbidity and mortality among immunocompromised and high-risk patients. A. terreus appears to have increased as a cause of opportunistic fungal infections from superficial to serious invasive infections. Although, invasive aspergillosis is often treated empirically with amphotericin B, most A. terreus isolates are resistant both in vivo and in vitro to some antifungal drugs. In this study, we aimed to evaluate antifungals susceptibility profiles of the different strains of A. terreus against amphotericin B, caspofungin, fluconazole, voriconazole, posaconazole and luliconazole. Forty A. terreus strains originating from environmental sources (air and soil) were identified using by macroscopic and microscopic features. Six antifungals including, amphotericin B, caspofungin, fluconazole, voriconazole, posaconazole and luliconazole were applied for susceptibility tests. Our results show that tested isolates had different susceptibility to antifungals. The lowest MIC GM related to luliconazole (0.00236μg/ml), followed by posaconazole (0.18621μg/ml), voriconazole (0.22925μg/ml), caspofungin (0.86μg/ml), fluconazole (8μg/ml) and amphotericin B (11.12μg/ml). This study demonstrated that luliconazole had an excellent in vitro activity against all tested isolates of A. terreus, with MIC GM 0.00236μg/mL than other tested antifungals. As a result, luliconazole could be a possible alternative antifungal for the treatment of aspergillosis due to A. terreus. Copyright © 2017 Elsevier Masson SAS. All rights reserved.
Zhao, Pengchao; Quan, Chunshan; Jin, Liming; Wang, Lina; Wang, Jianhua; Fan, Shengdi
2013-03-01
In this study, influence of three critical parameters nitrogen sources, initial pH and metal ions was discussed in the production of antifungal lipopeptides from Bacillus amyloliquefaciens Q-426. The results revealed that lipopeptide biosynthesis might have relations with the population density of strain Q-426 and some special amino acids. Also, the alkali-resistant strain Q-426 could grow well in the presence of Fe(2+) ions below 0.8 M l(-1) and still maintain the competitive advantage below 0.2 M l(-1). Moreover, lipopeptides exhibited significant inhibitory activities against Curvularia lunata (Walk) Boed even at the extreme conditions of temperature, pH and salinity. Finally, biosurfactant properties of lipopeptides mixture were evaluated by use with totally six different methods including bacterial adhesion to hydrocarbons assay, lipase activity, hemolytic activity, emulsification activity, oil displacement test and surface tension measurement. The research suggested that B. amyloliquefaciens Q-426 may have great potential in agricultural and environmental fields.
Guo, Jinshan; Wang, Wei; Hu, Jianqing; Xie, Denghui; Gerhard, Ethan; Nisic, Merisa; Shan, Dingying; Qian, Guoying; Zheng, Siyang; Yang, Jian
2016-01-01
Bacterial and fungal infections in the use of surgical devices and medical implants remain a major concern. Traditional bioadhesives fail to incorporate anti-microbial properties, necessitating additional anti-microbial drug injection. Herein, by the introduction of the clinically used and inexpensive anti-fungal agent, 10-undecylenic acid (UA), into our recently developed injectable citrate-based mussel-inspired bioadhesives (iCMBAs), a new family of anti-bacterial and anti-fungal iCMBAs (AbAf iCs) was developed. AbAf iCs not only showed strong wet tissue adhesion strength, but also exhibited excellent in vitro cyto-compatibility, fast degradation, and strong initial and considerable long-term anti-bacterial and anti-fungal ability. For the first time, the biocompatibility and anti-microbial ability of sodium metaperiodate (PI), an oxidant used as a cross-linking initiator in the AbAf iCs system, was also thoroughly investigated. Our results suggest that the PI-based bioadhesives showed better anti-microbial properties compared to the unstable silver-based bioadhesive materials. In conclusion, AbAf iCs family can serve as excellent anti-bacterial and anti-fungal bioadhesive candidates for tissue/wound closure, wound dressing, and bone regeneration, especially when bacterial or fungal infections are a major concern. PMID:26874283
Guo, Jinshan; Wang, Wei; Hu, Jianqing; Xie, Denghui; Gerhard, Ethan; Nisic, Merisa; Shan, Dingying; Qian, Guoying; Zheng, Siyang; Yang, Jian
2016-04-01
Bacterial and fungal infections in the use of surgical devices and medical implants remain a major concern. Traditional bioadhesives fail to incorporate anti-microbial properties, necessitating additional anti-microbial drug injection. Herein, by the introduction of the clinically used and inexpensive anti-fungal agent, 10-undecylenic acid (UA), into our recently developed injectable citrate-based mussel-inspired bioadhesives (iCMBAs), a new family of anti-bacterial and anti-fungal iCMBAs (AbAf iCs) was developed. AbAf iCs not only showed strong wet tissue adhesion strength, but also exhibited excellent in vitro cyto-compatibility, fast degradation, and strong initial and considerable long-term anti-bacterial and anti-fungal ability. For the first time, the biocompatibility and anti-microbial ability of sodium metaperiodate (PI), an oxidant used as a cross-linking initiator in the AbAf iCs system, was also thoroughly investigated. Our results suggest that the PI-based bioadhesives showed better anti-microbial properties compared to the unstable silver-based bioadhesive materials. In conclusion, AbAf iCs family can serve as excellent anti-bacterial and anti-fungal bioadhesive candidates for tissue/wound closure, wound dressing, and bone regeneration, especially when bacterial or fungal infections are a major concern. Copyright © 2016 Elsevier Ltd. All rights reserved.
Sumathy, V; Zakaria, Z; Chen, Y; Latha, L Y; Jothy, S L; Vijayarathna, S; Sasidharan, S
2013-06-01
Cassia (C.) surattensis Burm. f. (Leguminosae), a medicinal herb native to tropical equatorial Asia, was commonly used in folk medicine to treat various diseases. The aim of the present study is to investigate the effects of methanolic flower extract of C. surattensis against Aspergillus (A.) niger. Antifungal activity of C. surattensis flower extract was studied by using agar disc diffusion method, broth dilution method, percentage of hyphal growth inhibition and scanning electron microscopy (SEM) observation. The extract exhibited good antifungal activity with zone of inhibition 15 mm and minimum inhibitory concentration (MIC) 6.25 mg/ml. The flower extract exhibited considerable antifungal activity against A. niger with a IC50 of 2.49 mg/ml on the hyphal growth. In scanning electron microscopy (SEM) squashed, collapsed, empty and deformation of hyphae were the major changes observed. Shrunken conidiophores were the obvious alteration on the spores. Morphological alterations observed on A. niger caused by the flower extract could be the contribution of chemical compounds present in the Cassia flower. Phytochemical screening reveals the presence of carbohydrate, tannins, saponins and phenols in the extract. The amount of tannin, total phenolics and flavonoids were estimated to be 55.14 ± 3.11 mg/g, 349.87 ± 5.41 mg/g gallic acid equivalent and 89.64 ± 3.21 mg/g catechin equivalent respectively. C. surattensis flower extract potently inhibited the growth of A. niger and are, therefore, excellent candidates for use as the lead compounds for the development of novel antifungal agents.
Synthesis and QSAR study of novel α-methylene-γ-butyrolactone derivatives as antifungal agents.
Wu, Yong-Ling; Wang, De-Long; Guo, En-Hui; Song, Shuang; Feng, Jun-Tao; Zhang, Xing
2017-03-01
Thirty-six new α-benzylidene-γ-lactone compounds based α-methylene-γ-butyrolactone substructure were prepared and characterized by spectroscopic analysis. All compounds were evaluated for antifungal activities in vitro against six plant pathogenic fungi and the half maximal inhibitory concentration (IC 50 ) against Botrytis cinerea and Colletotrichum lagenarium were investigated. Compounds 5c-3 and 5c-5 with the halogen atom exhibited excellent fungicidal activity against B. cinerea (IC 50 =22.91, 18.89μM). The structure-activity relationships (SARs) analysis indicated that the derivatives with electron-withdrawing substituents at the meta- or para-positions improves the activity. Via the heuristic method, the generated quantitative structure-activity relationship (QSAR) model (R 2 =0.961) revealed a strong correlation of antifungal activity against B. cinerea with molecular structures of these compounds. Meanwhile, the cytotoxicity of 20 representative derivatives was tested in the human tumor cells line (HepG2) and the hepatic L02 cells line, the result indicated that the synthesized compounds showed significant inhibitory activity and limited selectivity. Compound 5c-5 has the highest fungicidal activity with IC 50 =18.89μM (against B. cinerea.) but low cytotoxicity with IC 50 =35.4μM (against HepG2 cell line) and IC 50 =68.8μM (against Hepatic L02 cell line). These encouraging results can be providing an alternative, promising use of α-benzylidene-γ-lactone through the design and exploration of eco-friendly fungicides with low toxicity and high efficiency. Copyright © 2017 Elsevier Ltd. All rights reserved.
Thangamani, Shankar; Eldesouky, Hassan E; Mohammad, Haroon; Pascuzzi, Pete E; Avramova, Larisa; Hazbun, Tony R; Seleem, Mohamed N
2017-01-01
Ebselen, an organoselenium compound and a clinically safe molecule has been reported to possess potent antifungal activity, but its antifungal mechanism of action and in vivo antifungal activity remain unclear. The antifungal effect of ebselen was tested against Candida albicans, C. glabrata, C. tropicalis, C. parapsilosis, Cryptococcus neoformans, and C. gattii clinical isolates. Chemogenomic profiling and biochemical assays were employed to identify the antifungal target of ebselen. Ebselen's antifungal activity in vivo was investigated in a Caenorhabditis elegans animal model. Ebselen exhibits potent antifungal activity against both Candida spp. and Cryptococcus spp., at concentrations ranging from 0.5 to 2μg/ml. Ebselen rapidly eradicates a high fungal inoculum within 2h of treatment. Investigation of the drug's antifungal mechanism of action indicates that ebselen depletes intracellular glutathione (GSH) levels, leading to increased production of reactive oxygen species (ROS), and thereby disturbs the redox homeostasis in fungal cells. Examination of ebselen's in vivo antifungal activity in two Caenorhabditis elegans models of infection demonstrate that ebselen is superior to conventional antifungal drugs (fluconazole, flucytosine and amphotericin) in reducing Candida and Cryptococcus fungal load. Ebselen possesses potent antifungal activity against clinically relevant isolates of both Candida and Cryptococcus by regulating GSH and ROS production. The potent in vivo antifungal activity of ebselen supports further investigation for repurposing it for use as an antifungal agent. The present study shows that ebselen targets glutathione and also support that glutathione as a potential target for antifungal drug development. Copyright © 2016 Elsevier B.V. All rights reserved.
Sun, Guangzheng; Wang, Han; Shi, Beibei; Shangguan, Nini; Wang, Yang; Ma, Qing
2017-11-01
The antifungal properties and the induction of resistance by ε-poly-l-lysine (ε-PL) were examined to reveal its potential in protecting tomato plants against Botrytis cinerea. As presented herein, ε-PL at 1200mg/L was found to have optimal in vitro antifungal activities, achieving an inhibition rate of 94.96%. In first-year field tests, ε-PL (1200mg/L) had a control effect of up to 79.07% against tomato grey mould. Similar results were obtained in the second year. In greenhouse experiments, ε-PL was observed to effectively reduce leaf infection, with an observed control rate at 89.22%. To define the molecular-genetic mechanisms, we compared the gene expression under four different conditions: sterile water sprayed plants (Control), Botrytis-infected plants (Inf), ε-PL-treated plants (ε-PL) and ε-PL-treated+infected plants (ε-PL+Inf). Quantitative PCR analysis at 36h after inoculation revealed that ε-PL+Inf plants exhibited significant expression and priming of several key Botrytis-induced genes in tomato. The results indicate that ε-PL promoted plant capacity of tomato to activate defense mechanisms upon pathogen attack. In total, these findings revealed that ε-PL should be an excellent biocontrol agent candidate that combined direct antifungal activity against B. cinerea and plant resistance capacity. Copyright © 2017. Published by Elsevier Inc.
Savi, Geovana D; Cardoso, William A; Furtado, Bianca G; Bortolotto, Tiago; Zanoni, Elton T; Scussel, Rahisa; Rezende, Lucas F; Machado-de-Ávila, Ricardo A; Montedo, Oscar R K; Angioletto, Elidio
2018-03-04
Zeolites are often used as adsorbents materials and their loaded cations can be exchanged with metal ions in order to add antimicrobial properties. The aim of this study was to use the 4A zeolite and its derived ion-exchanged forms with Zn 2+ , Li + , Cu 2+ and Co 2+ in order to evaluate their antifungal properties against Fusarium graminearum, including their capacity in terms of metal ions release, conidia germination and the deoxynivalenol (DON) adsorption. The zeolites ion-exchanged with Li + , Cu 2+ , and Co 2+ showed an excellent antifungal activity against F. graminearum, using an agar diffusion method, with a zone of inhibition observed around the samples of 45.3 ± 0.6 mm, 25.7 ± 1.5 mm, and 24.7 ± 0.6 mm, respectively. Similar results using agar dilution method were found showing significant growth inhibition of F. graminearum for ion-exchanged zeolites with Zn 2+ , Li + , Cu 2+ , and Co 2+ . The fungi growth inhibition decreased as zeolite-Cu 2+ >zeolite-Li + >zeolite-Co 2+ >zeolite-Zn 2+ . In addition, the conidia germination was strongly affected by ion-exchanged zeolites. With regard to adsorption capacity, results indicate that only zeolite-Li + were capable of DON adsorption significantly (P < 0.001) with 37% at 2 mg mL -1 concentration. The antifungal effects of the ion-exchanged zeolites can be ascribed to the interactions of the metal ions released from the zeolite structure, especially for zeolite-Li + , which showed to be a promising agent against F. graminearum and its toxin.
21 CFR 333.210 - Antifungal active ingredients.
Code of Federal Regulations, 2014 CFR
2014-04-01
... 21 Food and Drugs 5 2014-04-01 2014-04-01 false Antifungal active ingredients. 333.210 Section 333.210 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED... Antifungal Drug Products § 333.210 Antifungal active ingredients. The active ingredient of the product...
21 CFR 333.210 - Antifungal active ingredients.
Code of Federal Regulations, 2010 CFR
2010-04-01
... 21 Food and Drugs 5 2010-04-01 2010-04-01 false Antifungal active ingredients. 333.210 Section 333.210 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED... Antifungal Drug Products § 333.210 Antifungal active ingredients. The active ingredient of the product...
21 CFR 333.210 - Antifungal active ingredients.
Code of Federal Regulations, 2013 CFR
2013-04-01
... 21 Food and Drugs 5 2013-04-01 2013-04-01 false Antifungal active ingredients. 333.210 Section 333.210 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED... Antifungal Drug Products § 333.210 Antifungal active ingredients. The active ingredient of the product...
21 CFR 333.210 - Antifungal active ingredients.
Code of Federal Regulations, 2012 CFR
2012-04-01
... 21 Food and Drugs 5 2012-04-01 2012-04-01 false Antifungal active ingredients. 333.210 Section 333.210 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED... Antifungal Drug Products § 333.210 Antifungal active ingredients. The active ingredient of the product...
21 CFR 333.210 - Antifungal active ingredients.
Code of Federal Regulations, 2011 CFR
2011-04-01
... 21 Food and Drugs 5 2011-04-01 2011-04-01 false Antifungal active ingredients. 333.210 Section 333.210 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED... Antifungal Drug Products § 333.210 Antifungal active ingredients. The active ingredient of the product...
Phytochemicals as Inhibitors of Candida Biofilm.
Raut, Jayant Shankar; Karuppayil, Sankunny Mohan
2016-01-01
Candida biofilm and associated infections is a serious threat to the large population of immunocompromised patients. Biofilm growth on prosthetic devices or host tissue shows reduced sensitivity to antifungal agents and persists as a reservoir of infective cells. Options for successful treatment of biofilm associated Candida infections are restricted because most of the available antifungal drugs fail to eradicate biofilms. Various plant actives are known to possess interesting antifungal properties. To explore and review the potential of phytochemicals as a novel strategy against Candida biofilms is the intent of present article. Thorough literature search is performed to identify Candida biofilm inhibitors of plant origin. An account of efficacy of selected phytochemicals is presented taking into consideration their biofilm inhibitory concentrations. This review discusses biofilm formation by Candida species, their involvement in human infections, and associated drug resistance. It gives insight into the biofilm inhibitory potential of various phytochemicals. Based on the available reports including the work done in our laboratory, several plant extracts, essential oils and phytomolecules have been identified as excellent inhibitors of biofilms of C. albicans and non-albicans Candida species (NACS). Selected phytochemicals which exhibit activities at low concentrations without displaying toxicity to host are potential therapeutic agents against biofilm associated Candida infections. In vivo testing in animal models and clinical trials in humans are required to be taken up seriously to propose few of the phytochemicals as candidate drug molecules.
Efstratiou, Efstratios; Hussain, Abdullah I; Nigam, Poonam S; Moore, John E; Ayub, Muhammad A; Rao, Juluri R
2012-08-01
The aim of the present study was to assess the antimicrobial activity of methanol and ethanol extracts of pot marigold (Calendula officinalis) petals against clinical pathogens. The antimicrobial potential of C. officinalis extracts was evaluated against a panel of microorganisms isolated from patients at the Belfast City Hospital (BCH), including bacteria and fungi, using disc diffusion assay. Methanol extract of C. officinalis exhibited better antibacterial activity against most of the bacteria tested, than ethanol extract. Both methanol and ethanol extracts showed excellent antifungal activity against tested strains of fungi, while comparing with Fluconazole. Copyright © 2012 Elsevier Ltd. All rights reserved.
Antifungal effect and action mechanism of antimicrobial peptide polybia-CP.
Wang, Kairong; Jia, Fengjing; Dang, Wen; Zhao, Yanyan; Zhu, Ranran; Sun, Mengyang; Qiu, Shuai; An, Xiaoping; Ma, Zelin; Zhu, Yuanyuan; Yan, Jiexi; Kong, Ziqing; Yan, Wenjin; Wang, Rui
2016-01-01
The incidence of life-threatening invasive fungal infections increased significantly in recent years. However, the antifungal therapeutic options are very limited. Antimicrobial peptides are a class of potential lead chemical for the development of novel antifungal agents. Antimicrobial peptide polybia-CP was purified from the venom of the social wasp Polybia paulista. In this study, we synthesized polybia-CP and determined its antifungal effects against a series of Candidian species. Our results showed that polybia-CP has potent antifungal activity and fungicidal activity against the tested fungal cells with a proposed membrane-active action mode. In addition, polybia-CP could induce the increase of cellular reactive oxygen species production, which would attribute to its antifungal activity. In conclusion, the present study suggests that polybia-CP has potential as an antifungal agent or may offer a new strategy for antifungal therapeutic option. Copyright © 2015 European Peptide Society and John Wiley & Sons, Ltd.
Terpenoids inhibit Candida albicans growth by affecting membrane integrity and arrest of cell cycle.
Zore, Gajanan B; Thakre, Archana D; Jadhav, Sitaram; Karuppayil, S Mohan
2011-10-15
Anti-Candida potential of six terpenoids were evaluated in this study against various isolates of Candida albicans (n=39) and non-C. albicans (n=9) that are differentially susceptible to fluconazole. All the six terpenoids tested, showed excellent activity and were equally effective against isolates of Candida sps., tested in this study. Linalool and citral were the most effective ones, inhibiting all the isolates at ≤0.064% (v/v). Five among the six terpenoids tested were fungicidal. Time dependent kill curve assay showed that MFCs of linalool and eugenol were highly toxic to C. albicans, killing 99.9% inoculum within seven min of exposure, while that of citronellal, linalyl acetate and citral required 15min, 1h and 2h, respectively. FIC index values (Linalool - 0.140, benzyl benzoate - 0.156, eugenol - 0.265, citral - 0.281 and 0.312 for linalyl acetate and citronellal) and isobologram obtained by checker board assay showed that all the six terpenoids tested exhibit excellent synergistic activity with fluconazole against a fluconazole resistant strain of C. albicans. Terpenoids tested arrested C. albicans cells at different phases of the cell cycle i.e. linalool and LA at G1, citral and citronellal at S phase and benzyl benzoate at G2-M phase and induced apoptosis. Linalool, citral, citronellal and benzyl benzoate caused more than 50% inhibition of germ tube induction at 0.008%, while eugenol and LA required 0.032 and 0.016% (v/v) concentrations, respectively. MICs of all the terpenoids for the C. albicans growth were non toxic to HeLa cells. Terpenoids tested exhibited excellent activity against C. albicans yeast and hyphal form growth at the concentrations that are non toxic to HeLa cells. Terpenoids tested in this study may find use in antifungal chemotherapy, not only as antifungal agents but also as synergistic agents along with conventional drugs like fluconazole. Copyright © 2011 Elsevier GmbH. All rights reserved.
Dawson, Charlotte S.; McKenna, James A.; Quimbar, Pedro; Hayes, Brigitte M. E.; van der Weerden, Nicole L.
2017-01-01
ABSTRACT Defensins are a large family of small, cationic, cysteine-rich proteins that are part of the defense arsenal that plants use for protection against potentially damaging fungal infections. The plant defensin NaD1 from Nicotiana alata is a potent antifungal protein that inhibits growth and kills a variety of fungal pathogens that affect both plant and animal (human) hosts. Some serine protease inhibitors have also been reported to be antifungal molecules, while others have no inhibitory activity against fungi. Here we describe the synergistic activity of the plant defensin NaD1 with a selection of serine protease inhibitors against the plant pathogens Fusarium graminearum and Colletotrichum graminicola and the animal pathogen Candida albicans. The synergistic activity was not related to the protease inhibitory activity of these molecules but may arise from activation of fungal stress response pathways. The bovine pancreatic trypsin inhibitor (BPTI) displayed the most synergy with NaD1. BPTI also acted synergistically with several other antifungal molecules. The observation that NaD1 acts synergistically with protease inhibitors provides the foundation for the design of transgenic plants with improved resistance to fungal disease. It also supports the possibility of naturally occurring accessory factors that function to enhance the activity of innate immunity peptides in biological systems. IMPORTANCE This work describes the increased activity of a natural antifungal peptide in the presence of another antifungal peptide from a different family. This is termed antifungal synergy. Synergy is important for decreasing the amount of antifungal molecule needed to control the disease. Traditionally, naturally occurring antifungal molecules are assayed in isolation. Identification of synergistic interactions between antifungal peptides means that their activities in a complex biological system are likely to be different from what we observe when examining them individually. This study identified synergy between an antifungal peptide and a group of peptides that do not affect fungal growth in vitro. This provides the foundation for generation of transgenic plants with increased resistance to fungal disease and identification of antifungal accessory factors that enhance the activity of innate immune molecules but do not have an antifungal effect on their own. PMID:29062897
Wang, Feng-Juan; Zhang, Dai; Liu, Zhao-Hui; Wu, Wen-Xiang; Bai, Hui-Hui; Dong, Han-Yu
2016-01-01
Background: Vulvovaginal candidiasis (VVC) was a common infection associated with lifelong harassment of woman's social and sexual life. The purpose of this study was to describe the species distribution and in vitro antifungal susceptibility of Candida species (Candida spp.) isolated from patients with VVC over 8 years. Methods: Species which isolated from patients with VVC in Peking University First Hospital were identified using chromogenic culture media. Susceptibility to common antifungal agents was determined using agar diffusion method based on CLSI M44-A2 document. SPSS software (version 14.0, Inc., Chicago, IL, USA) was used for statistical analysis, involving statistical description and Chi-square test. Results: The most common strains were Candida (C.) albicans, 80.5% (n = 1775) followed by C. glabrata, 18.1% (n = 400). Nystatin exhibited excellent activity against all species (<4% resistant [R]). Resistance to azole drugs varied among different species. C. albicans: clotrimazole (3.1% R) < fluconazole (16.6% R) < itraconazole (51.5% R) < miconazole (54.0% R); C. glabrata: miconazole (25.6% R) < clotrimazole (50.5% R) < itraconazole (61.9% R) < fluconazole (73.3% R); Candida krusei: clotrimazole (0 R) < fluconazole (57.7% R) < miconazole (73.1% R) < itraconazole (83.3% R). The susceptibility of fluconazole was noticeably decreasing among all species in the study period. Conclusions: Nystatin was the optimal choice for the treatment of VVC at present. The species distribution and in vitro antifungal susceptibility of Candida spp. isolated from patients with VVC had changed over time. PMID:27174323
Ghahari, Somayeh; Alinezhad, Heshmatollah; Nematzadeh, Ghorban Ali; Ghahari, Sajjad
2015-01-01
Methanolic extract of Golden rain leaves was fractionated by column chromatography on silica gel and 18 fractions were obtained. Antimicrobial activities of fractions were investigated against Bacillus subtilis, Staphylococcus aureus, Escherichia coli and Pseudomonas aeruginosa as quality control bacteria and fungus Pyricularia grisea which causes Blast disease in rice. Fractions showed more antibacterial activity at 0.04 g/mL concentration only on B. subtilis and S. aureus as gram positive bacteria. Also, three fractions indicated excellent antifungal effect on fungus P. grisea. Moreover, in the present study, fractions that showed very good effect on microorganisms were used for gas chromatography-mass spectrometry analysis to identify different phytochemicals.
Sun, Guangzheng; Yang, Qichao; Zhang, Ancheng; Guo, Jia; Liu, Xinjie; Wang, Yang; Ma, Qing
2018-07-02
The antifungal properties and the induction of resistance by ε-poly-l-lysine (ε-PL) and chitooligosaccharide (COS) were examined to find an alternative to synthetic fungicides currently used in the control of the devastating fungal pathogen Botrytis cinerea, the causal agent of grey mould disease of tomatoes. As presented herein, this combined treatment (200 mg/L ε-PL + 400 mg/L COS) was found to have optimal in vitro antifungal activities, achieving an inhibition rate of 90.22%. In vivo assays with these combined bio-fungicides, under greenhouse conditions using susceptible tomato plants, demonstrated good protection against severe grey mould. In field tests, the combined bio-fungicides had a control effect of up to 66.67% against tomato grey mould. To elucidate the mechanisms of the combined bio-fungicide-induced resistance in the tomato, plants were subjected to three treatments: 1) inoculation with B. cinerea after spraying with 200 mg/L ε-PL alone, 2) inoculation with the combined bio-fungicides, and 3) inoculation with 400 mg/L COS alone. Compared to the control (sterile water), increases in salicylic acid (SA) and jasmonic acid (JA) levels and increased phenylalanine ammonia lyase (PAL), peroxidase (POD), and superoxide dismutase (SOD) activities were observed. Catalase (CAT) activity and abscisic acid (ABA) and gibberellin (GA) levels decreased, particularly in the combined bio-fungicide-treated plants. Altogether, these findings reveal that the combined bio-fungicides (200 mg/L ε-PL + 400 mg/L COS) should be an excellent biocontrol agent candidate that combines direct antifungal activity against B. cinerea with plant resistance. Copyright © 2018. Published by Elsevier B.V.
Wan, Chunpeng; Han, Jianxin; Chen, Chuying; Yao, Liangliang; Chen, Jinyin; Yuan, Tao
2016-07-20
Ficus hirta, a widely consumed food by Hakka people, has been reported to show potent antifungal activity against phytopathogen Penicillium italicum. However, there is no report of chemical constituents responsible for the antifungal activity. In the current study, nine monosubstituted benzene derivatives, including three new derivatives (1-3), were isolated from the fruits of F. hirta. The structures of these isolates were elucidated on the basis of the analysis of spectroscopic data (mass spectrometry and nuclear magnetic resonance). All of the isolates were evaluated for antifungal activities against P. italicum. At an equivalent concentration, compound 1 exhibited stronger antifungal activity than that of the ethanol extract of F. hirta fruits.
Vijayakumar, Mayakrishnan; Ilavenil, Soundharrajan; Kim, Da Hye; Arasu, Mariadhas Valan; Priya, Kannappan; Choi, Ki Choon
2015-04-01
The aim of the present study was to determine the probiotic potential of the lactic acid bacteria Lactobacillus plantarum KCC-24 (L. plantarum KCC-24), that was isolated and characterized from Italian ryegrass (Lolium multiflorum) forage. The following experiments were performed to assess the probiotic characteristics such as antifungal activity, antibiotic susceptibility, resistance to low pH, stimulated gastric juice and bile salts, proteolytic activity, auto-aggregation, cell surface hydrophobicity, and in vitro antioxidant property. The isolated L. plantarum KCC-24 exhibited significant antifungal activity against the various fungal strains of Aspergillus fumigatus (73.43%), Penicillium chrysogenum (59.04%), Penicillium roqueforti (56.67%), Botrytis elliptica (40.23%), Fusarium oxysporum (52.47%) and it was susceptible to numerous antibiotics, survived in low pH, was resistant to stimulated gastric juices and bile salts (0.3% w/v). Moreover, L. plantarum KCC-24 exhibited good proteolytic activity. In addition L. plantarum KCC-24 showed potent antioxidant and hydrogen peroxide resistant property. In conclusion, the isolated L. plantarum KCC-24 exhibited several characteristics to prove it's excellent as a potential probiotic candidate for developing quality food for ruminant animals and human. Copyright © 2015 Elsevier Ltd. All rights reserved.
Antifungal activity of medicinal plant extracts; preliminary screening studies.
Webster, Duncan; Taschereau, Pierre; Belland, René J; Sand, Crystal; Rennie, Robert P
2008-01-04
In the setting of HIV and organ transplantation, opportunistic fungal infections have become a common cause of morbidity and mortality. Thus antifungal therapy is playing a greater role in health care. Traditional plants are a valuable source of novel antifungals. To assess in vitro antifungal activity of aqueous plant extracts. The minimum inhibitory concentrations were determined for each extract in the setting of human pathogenic fungal isolates. Plants were harvested and identification verified. Aqueous extracts were obtained and antifungal susceptibilities determined using serial dilutional extracts with a standardized microdilution broth methodology. Twenty-three fungal isolates were cultured and exposed to the plant extracts. Five known antifungals were used as positive controls. Results were read at 48 and 72 h. Of the 14 plants analyzed, Fragaria virginiana Duchesne, Epilobium angustifolium L. and Potentilla simplex Michx. demonstrated strong antifungal potential overall. Fragaria virginiana had some degree of activity against all of the fungal pathogens. Alnus viridis DC., Betula alleghaniensis Britt. and Solidago gigantea Ait. also demonstrated a significant degree of activity against many of the yeast isolates. Fragaria virginiana, Epilobium angustifolium and Potentilla simplex demonstrate promising antifungal potential.
USDA-ARS?s Scientific Manuscript database
Several benzoic acid analogs showed antifungal activity against strains of Aspergillus flavus, A. fumigatus and A. terreus, causative agents of human aspergillosis. Structure-activity analysis revealed that antifungal activities of benzoic and gallic acids increased by addition of a methyl, methoxyl...
Wang, X Q; Liu, A X; Guerrero, A; Liu, J; Yu, X Q; Deng, P; Ma, L; Baird, S M; Smith, L; Li, X D; Lu, S E
2016-03-01
To identify the taxonomy of tobacco rhizosphere-isolated strain Lyc2 and investigate the mechanisms of the antifungal activities, focusing on antimicrobials gene clusters identification and function analysis. Multilocus sequence typing and 16S rRNA analyses indicated that strain Lyc2 belongs to Burkholderia pyrrocinia. Bioassay results indicated strain Lyc2 showed significant antifungal activities against a broad range of plant and animal fungal pathogens and control efficacy on seedling damping off disease of cotton. A 55·2-kb gene cluster which was homologous to ocf gene clusters in Burkholderia contaminans MS14 was confirmed to be responsible for antifungal activities by random mutagenesis; HPLC was used to verify the production of antifungal compounds. Multiple antibiotic and secondary metabolized biosynthesis gene clusters predicated by antiSMASH revealed the broad spectrum of antimicrobials activities of the strain. Our results revealed the mechanisms of antifungal activities of strain Lyc2 and expand our knowledge about production of occidiofungin in the bacteria Burkholderia. Understanding the mechanisms of antifungal activities of strain Lyc2 has contributed to discovery of new antibiotics and expand our knowledge of production of occidiofungin in the bacteria Burkholderia. © 2015 The Society for Applied Microbiology.
Reino, José L; Saiz-Urra, Liane; Hernandez-Galan, Rosario; Aran, Vicente J; Hitchcock, Peter B; Hanson, James R; Gonzalez, Maykel Perez; Collado, Isidro G
2007-06-27
Fourteen benzohydrazides have been synthesized and evaluated for their in vitro antifungal activity against the phytopathogenic fungus Botrytis cinerea. The best antifungal activity was observed for the N',N'-dibenzylbenzohydrazides 3b-d and for the N-aminoisoindoline-derived benzohydrazide 5. A quantitative structure-activity relationship (QSAR) study has been developed using a topological substructural molecular design (TOPS-MODE) approach to interpret the antifungal activity of these synthetic compounds. The model described 98.3% of the experimental variance, with a standard deviation of 4.02. The influence of an ortho substituent on the conformation of the benzohydrazides was investigated by X-ray crystallography and supported by QSAR study. Several aspects of the structure-activity relationships are discussed in terms of the contribution of different bonds to the antifungal activity, thereby making the relationships between structure and biological activity more transparent.
Antifungal compounds from turmeric and nutmeg with activity against plant pathogens
USDA-ARS?s Scientific Manuscript database
The antifungal activity of twenty-two common spices was evaluated against plant pathogens using direct-bioautography coupled Colletotrichum bioassays. Turmeric, nutmeg, ginger, clove, oregano, cinnamon, anise, fennel, basil, black cumin, and black pepper showed antifungal activity against the plant ...
Zeng, Hong; Chen, Xinping; Liang, Jingnan
2015-01-01
Fennel seed essential oil (FSEO) is a plant-derived natural therapeutic against dermatophytes. In this study, the antifungal effects of FSEO were investigated from varied aspects, such as MIC and minimum fungicidal concentration, mycelia growth, spore germination and biomass. The results indicated that FSEO had potent antifungal activities on Trichophyton rubrum ATCC 40051, Trichophyton tonsurans 10-0400, Microsporum gypseum 44693-1 and Trichophyton mentagrophytes 10-0060, which is better than the commonly used antifungal agents fluconazole and amphotericin B. Flow cytometry and transmission electron microscopy experiments suggested that the antifungal mechanism of FSEO was to damage the plasma membrane and intracellular organelles. Further study revealed that it could also inhibit the mitochondrial enzyme activities, such as succinate dehydrogenase, malate dehydrogenase and ATPase. With better antifungal activity than the commonly used antifungal agents and less possibility of inducing drug resistance, FSEO could be used as a potential antidermatophytic agent. © 2015 The Authors.
Cuticular antifungals in spiders: density- and condition dependence.
González-Tokman, Daniel; Ruch, Jasmin; Pulpitel, Tamara; Ponton, Fleur
2014-01-01
Animals living in groups face a high risk of disease contagion. In many arthropod species, cuticular antimicrobials constitute the first protective barrier that prevents infections. Here we report that group-living spiders produce cuticular chemicals which inhibit fungal growth. Given that cuticular antifungals may be costly to produce, we explored whether they can be modulated according to the risk of contagion (i.e. under high densities). For this purpose, we quantified cuticular antifungal activity in the subsocial crab spider Diaea ergandros in both natural nests and experimentally manipulated nests of varying density. We quantified the body-condition of spiders to test whether antifungal activity is condition dependent, as well as the effect of spider density on body-condition. We predicted cuticular antifungal activity to increase and body-condition to decrease with high spider densities, and that antifungal activity would be inversely related to body-condition. Contrary to our predictions, antifungal activity was neither density- nor condition-dependent. However, body-condition decreased with density in natural nests, but increased in experimental nests. We suggest that pathogen pressure is so important in nature that it maintains high levels of cuticular antifungal activity in spiders, impacting negatively on individual energetic condition. Future studies should identify the chemical structure of the isolated antifungal compounds in order to understand the physiological basis of a trade-off between disease prevention and energetic condition caused by group living, and its consequences in the evolution of sociality in spiders.
Cuticular Antifungals in Spiders: Density- and Condition Dependence
González-Tokman, Daniel; Ruch, Jasmin; Pulpitel, Tamara; Ponton, Fleur
2014-01-01
Animals living in groups face a high risk of disease contagion. In many arthropod species, cuticular antimicrobials constitute the first protective barrier that prevents infections. Here we report that group-living spiders produce cuticular chemicals which inhibit fungal growth. Given that cuticular antifungals may be costly to produce, we explored whether they can be modulated according to the risk of contagion (i.e. under high densities). For this purpose, we quantified cuticular antifungal activity in the subsocial crab spider Diaea ergandros in both natural nests and experimentally manipulated nests of varying density. We quantified the body-condition of spiders to test whether antifungal activity is condition dependent, as well as the effect of spider density on body-condition. We predicted cuticular antifungal activity to increase and body-condition to decrease with high spider densities, and that antifungal activity would be inversely related to body-condition. Contrary to our predictions, antifungal activity was neither density- nor condition-dependent. However, body-condition decreased with density in natural nests, but increased in experimental nests. We suggest that pathogen pressure is so important in nature that it maintains high levels of cuticular antifungal activity in spiders, impacting negatively on individual energetic condition. Future studies should identify the chemical structure of the isolated antifungal compounds in order to understand the physiological basis of a trade-off between disease prevention and energetic condition caused by group living, and its consequences in the evolution of sociality in spiders. PMID:24637563
Burger-Kentischer, Anke; Finkelmeier, Doris; Keller, Petra; Bauer, Jörg; Eickhoff, Holger; Kleymann, Gerald; Abu Rayyan, Walid; Singh, Anurag; Schröppel, Klaus; Lemuth, Karin; Wiesmüller, Karl-Heinz; Rupp, Steffen
2011-01-01
Fungal infections are a serious health problem in clinics, especially in the immune-compromised patient. Disease ranges from widespread superficial infections like vulvovaginal infections to life-threatening systemic candidiasis. Especially for systemic mycoses, only a limited arsenal of antifungals is available. The most commonly used classes of antifungal compounds used include azoles, polyenes, and echinocandins. Due to emerging resistance to standard therapy, significant side effects, and high costs for several antifungals, there is a medical need for new antifungals in the clinic and general practice. In order to expand the arsenal of compounds with antifungal activities, we screened a compound library including more than 35,000 individual compounds derived from organic synthesis as well as combinatorial compound collections representing mixtures of compounds for antimycotic activity. In total, more than 100,000 compounds were screened using a new type of activity-selectivity assay, analyzing both the antifungal activity and the compatibility with human cells at the same time. One promising hit, an (S)-2-aminoalkyl benzimidazole derivative, was developed among a series of lead compounds showing potent antifungal activity. (S)-2-(1-Aminoisobutyl)-1-(3-chlorobenzyl) benzimidazole showed the highest antifungal activity and the best compatibility with human cells in several cell culture models and against a number of clinical isolates of several species of pathogenic Candida yeasts. Transcriptional profiling indicates that the newly discovered compound is a potential inhibitor of the ergosterol pathway, in contrast to other benzimidazole derivatives, which target microtubules. PMID:21746957
Potential of agricultural fungicides for antifungal drug discovery.
Jampilek, Josef
2016-01-01
While it is true that only a small fraction of fungal species are responsible for human mycoses, the increasing prevalence of fungal diseases has highlighted an urgent need to develop new antifungal drugs, especially for systemic administration. This contribution focuses on the similarities between agricultural fungicides and drugs. Inorganic, organometallic and organic compounds can be found amongst agricultural fungicides. Furthermore, fungicides are designed and developed in a similar fashion to drugs based on similar rules and guidelines, with fungicides also having to meet similar criteria of lead-likeness and/or drug-likeness. Modern approved specific-target fungicides are well-characterized entities with a proposed structure-activity relationships hypothesis and a defined mode of action. Extensive toxicological evaluation, including mammalian toxicology assays, is performed during the whole discovery and development process. Thus modern agrochemical research (design of modern agrochemicals) comes close to drug design, discovery and development. Therefore, modern specific-target fungicides represent excellent lead-like structures/models for novel drug design and development.
Tan, Wenqiang; Zhang, Jingjing; Luan, Fang; Wei, Lijie; Chen, Yuan; Dong, Fang; Li, Qing; Guo, Zhanyong
2017-09-01
Two novel chitosan derivatives modified with quaternary phosphonium salts were successfully synthesized, including tricyclohexylphosphonium acetyl chitosan chloride (TCPACSC) and triphenylphosphonium acetyl chitosan chloride (TPPACSC), and characterized by FTIR, 1 H NMR, and 13 C NMR spectra. The degree of substitution was also calculated by elemental analysis results. Their antifungal activities against Colletotrichum lagenarium, Watermelon fusarium, and Fusarium oxysporum were investigated in vitro using the radial growth assay, minimal inhibitory concentration, and minimum bactericidal concentration assay. The fungicidal assessment revealed that the synthesized chitosan derivatives had superior antifungal activity compared with chitosan. Especially, TPPACSC exhibited the best antifungal property with inhibitory indices of over 75% at 1.0mg/mL. The results obviously showed that quaternary phosphonium groups could effectively enhance antifungal activity of the synthesized chitosan derivatives. Meanwhile, it was also found that their antifungal activity was influenced by electron-withdrawing ability of the quaternary phosphonium salts. The synthetic strategy described here could be utilized for the development of chitosan as antifungal biomaterials. Copyright © 2017 Elsevier B.V. All rights reserved.
Antibacterial and Antifungal Compounds from Marine Fungi
Xu, Lijian; Meng, Wei; Cao, Cong; Wang, Jian; Shan, Wenjun; Wang, Qinggui
2015-01-01
This paper reviews 116 new compounds with antifungal or antibacterial activities as well as 169 other known antimicrobial compounds, with a specific focus on January 2010 through March 2015. Furthermore, the phylogeny of the fungi producing these antibacterial or antifungal compounds was analyzed. The new methods used to isolate marine fungi that possess antibacterial or antifungal activities as well as the relationship between structure and activity are shown in this review. PMID:26042616
Synthesis of inulin derivatives with quaternary phosphonium salts and their antifungal activity.
Chen, Yuan; Tan, Wenqiang; Li, Qing; Dong, Fang; Gu, Guodong; Guo, Zhanyong
2018-07-01
Inulin is a kind of renewable and biodegradable carbohydrate with good water solubility and numerous physiological functions. For further utilization of inulin, chemical modification can be applied to improve its bioactivities. In this paper, five novel inulin derivatives were synthesized via chemical modification with quaternary phosphonium salt. Their antifungal activity against three kinds of plant pathogens including Colletotrichum lagenarium, Phomopsis asparagi, and Fusarium oxysporum was assessed with radial growth assay in vitro. Results revealed that all the inulin derivatives exhibited improved antifungal activity compared with inulin. Particularly, inulin modified with triphenylphosphine (TPhPAIL) exhibited the best antifungal activity with inhibitory indices of 80.0%, 78.8%, and 87.4% against Colletotrichum lagenarium, Phomopsis asparagi, and Fusarium oxysporum at 1.0mg/mL respectively. The results clearly showed that chemical modification of inulin with quaternary phosphonium salt could efficiently improve derivatives' antifungal activity. Further analysis of results indicated that the antifungal activity was influenced by alkyl chain length or electron-withdrawing ability of the grafted quaternary phosphonium salts. Longer alkyl chain lengths or the stronger electron-withdrawing groups would lead to enhanced antifungal efficacy. Copyright © 2018 Elsevier B.V. All rights reserved.
A novel 96-well gel-based assay for determining antifungal activity against filamentous fungi.
Troskie, Anscha Mari; Vlok, Nicolas Maré; Rautenbach, Marina
2012-12-01
In recent years the global rise in antibiotic resistance and environmental consciousness lead to a renewed fervour to find and develop novel antibiotics, including antifungals. However, the influence of the environment on antifungal activity is often disregarded and many in vitro assays may cause the activity of certain antifungals to be overestimated or underestimated. The general antifungal test assays that are economically accessible to the majority of scientists primarily rely on visual examination or on spectrophotometric analysis. The effect of certain morphogenic antifungals, which may lead to hyperbranching of filamentous fungi, unfortunately renders these methods unreliable. To minimise the difficulties experienced as a result of hyperbranching, we developed a straightforward, economical 96-well gel-based method, independent of spectrophotometric analysis, for highly repeatable determination of antifungal activity. For the calculation of inhibition parameters, this method relies on the visualisation of assay results by digitisation. The antifungal activity results from our novel micro-gel dilution assay are comparable to that of the micro-broth dilution assay used as standard reference test of The Clinical and Laboratory Standard Institute. Furthermore, our economical assay is multifunctional as it permits microscopic analysis of the preserved assay results, as well as rendering highly reliable data. Copyright © 2012 Elsevier B.V. All rights reserved.
Lactic acid bacteria with potential to eliminate fungal spoilage in foods.
Rouse, S; Harnett, D; Vaughan, A; van Sinderen, D
2008-03-01
To investigate antifungal activity produced by lactic acid bacteria (LAB) isolated from malted cereals and to determine if such LAB have the capacity to prevent fungal growth in a particular food model system. The effect of pH, temperature and carbon source on production of antifungal activity by four LAB was determined. Pediococcus pentosaceus was used to conduct a trial to determine if it is feasible to eliminate Penicillium expansum, the mould responsible for apple rot, using an apple model. Penicillium expansum was incapable of growth during the trial on apple-based agar plates inoculated with the antifungal-producing culture, whereas the mould did grow on apple plates inoculated with an LAB possessing no antifungal activity. Partial characterization of the antifungal compounds indicates that their activity is likely to be because of production of antifungal peptides. The trial conducted showed that the antifungal culture has the ability to prevent growth of the mould involved in apple spoilage, using apples as a model. The ability of an LAB to prevent growth of Pen. expansum using the apple model suggests that these antifungal LAB have potential applications in the food industry to prevent fungal spoilage of food.
Fungal diseases: could nanostructured drug delivery systems be a novel paradigm for therapy?
Voltan, Aline Raquel; Quindós, Guillermo; Alarcón, Kaila P Medina; Fusco-Almeida, Ana Marisa; Mendes-Giannini, Maria José Soares; Chorilli, Marlus
2016-01-01
Invasive mycoses are a major problem for immunocompromised individuals and patients in intensive care units. Morbidity and mortality rates of these infections are high because of late diagnosis and delayed treatment. Moreover, the number of available antifungal agents is low, and there are problems with toxicity and resistance. Alternatives for treating invasive fungal infections are necessary. Nanostructured systems could be excellent carriers for antifungal drugs, reducing toxicity and targeting their action. The use of nanostructured systems for antifungal therapy began in the 1990s, with the appearance of lipid formulations of amphotericin B. This review encompasses different antifungal drug delivery systems, such as liposomes, carriers based on solid lipids and nanostructure lipids, polymeric nanoparticles, dendrimers, and others. All these delivery systems have advantages and disadvantages. Main advantages are the improvement in the antifungal properties, such as bioavailability, reduction in toxicity, and target tissue, which facilitates innovative therapeutic techniques. Conversely, a major disadvantage is the high cost of production. In the near future, the use of nanosystems for drug delivery strategies can be used for delivering peptides, including mucoadhesive systems for the treatment of oral and vaginal candidiasis. PMID:27540288
Genovese, Giuseppa; Leitner, Sandra; Minicante, Simona A; Lass-Flörl, Cornelia
2013-09-01
The red algae Asparagopsis taxiformis collected from the Straits of Messina (Italy) were screened for antifungal activity against Aspergillus species. EUCAST methodology was applied and extracts showed antifungal activity against A. fumigatus, A. terreus and A. flavus. The lowest minimum inhibitory concentrations observed were <0.15 mg ml(-1) and the highest were >5 mg ml(-1) for Aspergillus spp. tested. Agar diffusion assays confirmed antifungal activity of A. taxiformis extracts in Aspergillus species. © 2013 Blackwell Verlag GmbH.
Antifungal activity of Zuccagnia punctata Cav.: evidence for the mechanism of action.
Svetaz, Laura; Agüero, María Belén; Alvarez, Sandra; Luna, Lorena; Feresin, Gabriela; Derita, Marcos; Tapia, Alejandro; Zacchino, Susana
2007-08-01
Petroleum ether and dichloromethane extracts of fruits, aerial parts and exudate of Zuccagnia punctata Cav. (Fabaceae) showed moderate antifungal activities against the yeasts C. albicans, S. cerevisiae and C. neoformans (MICs: 62.5 - 250 microg/mL) and very strong antifungal activities against the dermatophytes M. gypseum, T. rubrum and T. mentagrophytes (MICs: 8 - 16 microg/mL) thus supporting the ethnopharmacological use of this plant. Antifungal activity-directed fractionation of active extracts by using bioautography led to the isolation of 2',4'-dihydroxy-3'-methoxychalcone (1) and 2',4'-dihydroxychalcone (2) as the compounds responsible for the antifungal activity. Second-order studies included MIC (80), MIC (50) and MFC of both chalcones in an extended panel of clinical isolates of the most sensitive fungi, and also comprised a series of targeted assays. They showed that the most active chalcone 2 is fungicidal rather than fungistatic, does not disrupt the fungal membranes up to 4 x MFC and does not act by inhibiting the fungal cell wall. So, 2',4'-dihydroxychalcone would act by a different mechanism of action than the antifungal drugs in current clinical use, such as amphotericin B, azoles or echinocandins, and thus appears to be very promising as a novel antifungal agent.
Enhancement of the antifungal activity of antimicrobial drugs by Eugenia uniflora L.
Santos, Karla K A; Matias, Edinardo F F; Tintino, Saulo R; Souza, Celestina E S; Braga, Maria F B M; Guedes, Gláucia M M; Costa, José G M; Menezes, Irwin R A; Coutinho, Henrique Douglas Melo
2013-07-01
Candidiasis is the most frequent infection by opportunistic fungi such as Candida albicans, Candida tropicalis, and Candida krusei. Ethanol extract from Eugenia uniflora was assayed, for its antifungal activity, either alone or combined with four selected chemotherapeutic antimicrobial agents, including anphotericin B, mebendazole, nistatin, and metronidazole against these strains. The obtained results indicated that the association of the extract of E. uniflora to metronidazole showed a potential antifungal activity against C. tropicalis. However, no synergistic activity against the other strains was observed, as observed when the extract was associated with the other, not enhancing their antifungal activity.
Cryptic antifungal compounds active by synergism with polyene antibiotics.
Kinoshita, Hiroshi; Yoshioka, Mariko; Ihara, Fumio; Nihira, Takuya
2016-04-01
The majority of antifungal compounds reported so far target the cell wall or cell membrane of fungi, suggesting that other types of antibiotics cannot exert their activity because they cannot penetrate into the cells. Therefore, if the permeability of the cell membrane could be enhanced, many antibiotics might be found to have antifungal activity. We here used the polyene antibiotic nystatin, which binds to ergosterol and forms pores at the cell membrane, to enhance the cellular permeability. In the presence of nystatin, many culture extracts from entomopathogenic fungi displayed antifungal activity. Among all the active extracts, two active components were purified and identified as helvolic acid and terramide A. Because the minimum inhibitory concentration of either compound was reduced four-fold in the presence of nystatin, it can be concluded that this screening method is useful for detecting novel antifungal activity. Copyright © 2015 The Society for Biotechnology, Japan. Published by Elsevier B.V. All rights reserved.
de Araújo, Rodrigo S. A.; Guerra, Felipe Q. S.; de O. Lima, Edeltrudes; de Simone, Carlos A.; Tavares, Josean F.; Scotti, Luciana; Scotti, Marcus T.; de Aquino, Thiago M.; de Moura, Ricardo O.; Mendonça, Francisco J. B.; Barbosa-Filho, José M.
2013-01-01
The increased incidence of opportunistic fungal infections, associated with greater resistance to the antifungal drugs currently in use has highlighted the need for new solutions. In this study twenty four coumarin derivatives were screened in vitro for antifungal activity against strains of Aspergillus. Some of the compounds exhibited significant antifungal activity with MICs values ranging between 16 and 32 μg/mL. The structure-activity relationships (SAR) study demonstrated that O-substitutions are essential for antifungal activity. It also showed that the presence of a short aliphatic chain and/or electron withdrawing groups (NO2 and/or acetate) favor activity. These findings were confirmed using density functional theory (DFT), when calculating the LUMO density. In Principal Component Analysis (PCA), two significant principal components (PCs) explained more than 60% of the total variance. The best Partial Least Squares Regression (PLS) model showed an r2 of 0.86 and q2cv of 0.64 corroborating the SAR observations as well as demonstrating a greater probe N1 interaction for active compounds. Descriptors generated by TIP correlogram demonstrated the importance of the molecular shape for antifungal activity. PMID:23306152
NASA Astrophysics Data System (ADS)
Mesbah, Mounira; Douadi, Tahar; Sahli, Farida; Issaadi, Saifi; Boukazoula, Soraya; Chafaa, Salah
2018-01-01
Three new Schiff-bases compounds (I-III) were synthesized by a condensation reaction in 1:2 M ratios of 4,4‧-diaminodiphenyl sulfide and pyrrol/thiophene/furan-2-carboxaldehyde in ethanol. The structural determinations of the Schiff-bases were identified with the help of elemental analysis then confirmed by UV-Vis, FT-IR and 1H NMR. The products were obtained in excellent yields. On the other hand, the in vitro antibacterial and antifungal activities of the synthesized compounds were investigated using disc diffusion method. Schiff bases synthesized individually exhibited varying degrees of inhibitory effects on the growth of the tested microbial species.
NASA Astrophysics Data System (ADS)
Baghbani, Fatemeh; Moztarzadeh, Fathollah; Mozafari, Masoud; Raz, Majid; Rezvani, Hamideh
2016-08-01
Bioactive glasses in the system SiO2-CaO-Na2O-P2O5-MgO with different amounts of zinc (Zn) and silver (Ag) were synthesized by the sol-gel technique and characterized. The bioactivity was studied during in vitro assays: the ability of hydroxycarbonate apatite (HCA) layer to form on the glass surface was examined after contact with simulated body fluid (SBF). The x-ray diffraction, Fourier transform infrared spectroscopy, scanning electron microscopy, and inductively coupled plasma atomic emission spectrometry (ICP) studies were performed after immersion in vitro assays. Also, the antibacterial and antifungal activities of glass samples against Pseudomonas aeruginosa (ATCC 27853), E. coli (ATCC 25922), and Candida albicans were measured by the halo zone test. Introduction of zinc and silver as the trace elements induces several modifications on the observed phenomena at the glass surface and in SBF solution after immersion of the samples. The chemical durability of the glasses, the formation of the silica-rich layer, and the crystallization of the HCA layer were affected. Samples with the higher content of zinc and silver exhibited an excellent antibacterial/antifungal activity.
Abdelillah, Amrouche; Houcine, Benmehdi; Halima, Dalile; Meriem, Chabane sari; Imane, Zaaboub; Eddine, Smahi Djamal; Abdallah, Moussaoui; Daoudi, Chabane sari
2013-01-01
Objective The aim of this study was to evaluate the antifungal activity of the major fraction of fatty acids methyl esters (FAMEs) isolated from Linum usitatissimum L. seeds oil collected from Bechar department (Algeria). Methods The assessment of antifungal activity was carried out in terms of percentage of radial growth on solid medium (potatoes dextrose agar PDA) and biomass growth inhibition on liquid medium (potatoes dextrose broth PDB) against two fungi. Results The FAMEs was found to be effective in inhibiting the radial mycelial growth of Aspergillus flavus more than Aspergillus ochraceus on all tested concentrations. The highest antifungal index was found to be (54.19%) compared to Aspergillus ochraceus (40.48%). The results of the antifungal activity of the FAMEs inhibition of biomass on liquid medium gave no discounted results, but this does not exclude the antifungal activity. Conclusions We can assume that the observed antifungal potency may be due to the abundance of linoleic and α-linolenic acids in linseed oil which appears to be promising to treat fungal infections, storage fungi and food spoilage in food industry field. PMID:23730556
Effects of neolignans from the stem bark of Magnolia obovata on plant pathogenic fungi.
Choi, N H; Choi, G J; Min, B-S; Jang, K S; Choi, Y H; Kang, M S; Park, M S; Choi, J E; Bae, B K; Kim, J-C
2009-06-01
To characterize antifungal principles from the methanol extract of Magnolia obovata and to evaluate their antifungal activities against various plant pathogenic fungi. Four neolignans were isolated from stem bark of M. obovata as antifungal principles and identified as magnolol, honokiol, 4-methoxyhonokiol and obovatol. In mycelial growth inhibition assay, both magnolol and honokiol displayed more potent antifungal activity than 4-methoxyhonokiol and obovatol. Both magnolol and honokiol showed similar in vivo antifungal spectrum against seven plant diseases tested; both compounds effectively suppressed the development of rice blast, tomato late blight, wheat leaf rust and red pepper anthracnose. 4-Methoxyhonokiol and obovatol were highly active to only rice blast and wheat leaf rust respectively. The extract of M. obovata and four neolignans had potent in vivo antifungal activities against plant pathogenic fungi. Neolignans from Magnolia spp. can be used and suggested as a novel antifungal lead compound for the development of new fungicide and directly as a natural fungicide for the control of plant diseases such as rice blast and wheat leaf rust.
Functional Iron Oxide-Silver Hetero-Nanocomposites: Controlled Synthesis and Antibacterial Activity
NASA Astrophysics Data System (ADS)
Trang, Vu Thi; Tam, Le Thi; Van Quy, Nguyen; Huy, Tran Quang; Thuy, Nguyen Thanh; Tri, Doan Quang; Cuong, Nguyen Duy; Tuan, Pham Anh; Van Tuan, Hoang; Le, Anh-Tuan; Phan, Vu Ngoc
2017-06-01
Iron oxide-silver nanocomposites are of great interest for their antibacterial and antifungal activities. We report a two-step synthesis of functional magnetic hetero-nanocomposites of iron oxide nanoparticles and silver nanoparticles (Fe3O4-Ag). Iron oxide nanoparticles were prepared first by a co-precipitation method followed by the deposition of silver nanoparticles via a hydrothermal route. The prepared Fe3O4-Ag hetero-nanocomposites were characterized by x-ray diffraction, transmission electron microscopy, high resolution transmission electron microscopy and vibrating sample magnetometry. Their antibacterial activities were investigated by using paper-disc diffusion and direct-drop diffusion methods. The results indicate that the Fe3O4-Ag hetero-nanocomposites exhibit excellent antibacterial activities against two Gram-negative bacterial strains ( Salmonella enteritidis and Klebsiella pneumoniae).
Kumari, Suman; Jain, Preeti; Sharma, Bhawana; Kadyan, Preeti; Dabur, Rajesh
2015-04-01
Barleria grandiflora Dalz. (Acanthaceae) is being used in India to treat different types of disorders including skin infections. Therefore, there are good possibilities to find antifungal compounds in its extracts with novel mechanism of action. The main objectives of the present study were to evaluate the antifungal activity of plant extracts and to study its effects on metabolic pathways of A. fumigatus. The microbroth dilution assay was used to explore antifungal activity and MIC of various extracts. Metabolic profiles of control and treated cultures were collected from Q-TOF-MS interfaced with HPLC. Affected metabolic pathways of A. fumigatus after the treatment were analyzed by discrimination analysis of mass data. Antifungal activities were observed in hot and cold water extracts of the plant. Hot water extract of B. grandiflora showed significant activity against tested fungi in the range 0.625-1.25 mg/mL. Partial least discrimination analysis revealed that the hot water plant extract downregulated amino acid, glyoxylate pathway, and methylcitrate pathways at the same time due to the synergistic effects of secondary metabolites. Hot water extract also downregulated several other metabolic pathways unique to fungi indicating its specific activity toward fungi. B. grandiflora showed promising antifungal activity which can further be exploited by identification of active compounds, to inhibit the specific fungal pathways and development of novel therapeutic antifungal drugs.
Gazim, Zilda Cristiane; Rezende, Claudia Moraes; Fraga, Sandra Regina; Svidzinski, Terezinha Inez Estivaleti; Cortez, Diógenes Aparicio Garcia
2008-01-01
This study tested in vitro activity of the essential oil from flowers of Calendula officinalis using disk-diffusion techniques. The antifungal assay results showed for the first time that the essential oil has good potential antifungal activity: it was effective against all 23 clinical fungi strains tested.
Gazim, Zilda Cristiane; Rezende, Claudia Moraes; Fraga, Sandra Regina; Svidzinski, Terezinha Inez Estivaleti; Cortez, Diógenes Aparicio Garcia
2008-01-01
This study tested in vitro activity of the essential oil from flowers of Calendula officinalis using disk-diffusion techniques. The antifungal assay results showed for the first time that the essential oil has good potential antifungal activity: it was effective against all 23 clinical fungi strains tested. PMID:24031180
Antifungal activity of Piper diospyrifolium Kunth (Piperaceae) essential oil
Vieira, Silvia Cristina Heredia; de Paulo, Luis Fernando; Svidzinski, Terezinha Inez Estivaleti; Dias Filho, Benedito Prado; Nakamura, Celso Vataru; de Souza, Amanda; Young, Maria Cláudia Marx; Cortez, Diógenes Aparício Garcia
2011-01-01
In vitro activity of the essential oil from Piper diospyrifolium leaves was tested using disk diffusion techniques. The antifungal assay showed significant potencial antifungal activity: the oil was effective against several clinical fungal strains. The majority compounds in the essential oil were identified as sesquiterpenoids by GC-MS and GC-FID techniques. PMID:24031717
Shigetomi, Kengo; Omoto, Shoko; Kato, Yasuo; Ubukata, Makoto
2011-01-01
The structure-activity relationship was investigated to evaluate the antifungal activities of tuliposides and tulipalins against tulip pathogenic fungi. 6-Tuliposide B was effectively synthesized via the asymmetric Baylis-Hillman reaction. Tuliposides and tulipalins showed antifungal activities against most of the strains tested at high concentrations (2.5 mM), while Botrytis tulipae was resistant to tuliposides. Tulipalin formation was involved in the antifungal activity, tulipalin A showed higher inhibitory activity than 6-tuliposide B and tulipalin B. Both the tuliposides and tulipalins showed pigment-inducing activity against Gibberella zeae and inhibitory activity against Fusarium oxysporum f. sp tulipae. These activities were induced at a much lower concentration (0.05 mM) than the antifungal MIC values.
Gamarra, Soledad; Morano, Susana; Dudiuk, Catiana; Mancilla, Estefanía; Nardin, María Elena; de Los Angeles Méndez, Emilce; Garcia-Effron, Guillermo
2014-10-01
Vulvovaginal candidiasis is one of the most common mycosis. However, the information about antifungal susceptibilities of the yeasts causing this infection is scant. We studied 121 yeasts isolated from 118 patients with vulvovaginal candidiasis. The isolates were identified by phenotypic and molecular methods, including four phenotypic methods described to differentiate Candida albicans from C. dubliniensis. Antifungal susceptibility testing was performed according to CLSI documents M27A3 and M27S4 using the drugs available as treatment option in the hospital. Diabetes, any antibacterial and amoxicillin treatment were statistically linked with vulvovaginal candidiasis, while oral contraceptives were not considered a risk factor. Previous azole-based over-the-counter antifungal treatment was statistically associated with non-C.albicans yeasts infections. The most common isolated yeast species was C. albicans (85.2 %) followed by C. glabrata (5 %), Saccharomyces cerevisiae (3.3 %), and C. dubliniensis (2.5 %). Fluconazole- and itraconazole-reduced susceptibility was observed in ten and in only one C. albicans strains, respectively. All the C. glabrata isolates showed low fluconazole MICs. Clotrimazole showed excellent potency against all but seven isolates (three C. glabrata, two S. cerevisiae, one C. albicans and one Picchia anomala). Any of the strains showed nystatin reduced susceptibility. On the other hand, terbinafine was the less potent drug. Antifungal resistance is still a rare phenomenon supporting the use of azole antifungals as empirical treatment of vulvovaginal candidiasis.
Enhancement of the Antifungal Activity of Antimicrobial Drugs by Eugenia uniflora L.
Santos, Karla K.A.; Matias, Edinardo F.F.; Tintino, Saulo R.; Souza, Celestina E.S.; Braga, Maria F.B.M.; Guedes, Gláucia M.M.; Costa, José G.M.; Menezes, Irwin R.A.
2013-01-01
Abstract Candidiasis is the most frequent infection by opportunistic fungi such as Candida albicans, Candida tropicalis, and Candida krusei. Ethanol extract from Eugenia uniflora was assayed, for its antifungal activity, either alone or combined with four selected chemotherapeutic antimicrobial agents, including anphotericin B, mebendazole, nistatin, and metronidazole against these strains. The obtained results indicated that the association of the extract of E. uniflora to metronidazole showed a potential antifungal activity against C. tropicalis. However, no synergistic activity against the other strains was observed, as observed when the extract was associated with the other, not enhancing their antifungal activity. PMID:23819641
Chassot, Francieli; Pozzebon Venturini, Tarcieli; Baldissera Piasentin, Fernanda; Morais Santurio, Janio; Estivalet Svidzinski, Terezinha Inez; Hartz Alves, Sydney
2016-10-01
We evaluated the in vitro antifungal activity of diphenyl diselenide and ebselen against echinocandin-susceptible and -resistant strains of Candida parapsilosis using the broth microdilution method. Diphenyl diselenide (MIC range =1-8 µg/mL) and ebselen (MIC range =0.25-4 µg/mL) showed in vitro activity against echinocandin-susceptible isolates. However, ebselen also showed the highest antifungal activity against echinocandin-resistant strains (MIC range =0.06-4 µg/mL). This study demonstrated that the antifungal potential of diphenyl diselenide and ebselen deserves further investigation using in vivo experimental protocols.
Aunsbjerg, S D; Honoré, A H; Marcussen, J; Ebrahimi, P; Vogensen, F K; Benfeldt, C; Skov, T; Knøchel, S
2015-02-02
Lactic acid bacteria with antifungal properties can be used to control spoilage of food and feed. Previously, most of the identified metabolites have been isolated from cell-free fermentate of lactic acid bacteria with methods suboptimal for detecting possible contribution from volatiles to the antifungal activity. The role of volatile compounds in the antifungal activity of Lactobacillus paracasei DGCC 2132 in a chemically defined interaction medium (CDIM) and yogurt was therefore investigated with a sampling technique minimizing volatile loss. Diacetyl was identified as the major volatile produced by L. paracasei DGCC 2132 in CDIM. When the strain was added to a yogurt medium diacetyl as well as other volatiles also increased but the metabolome was more complex. Removal of L. paracasei DGCC 2132 cells from CDIM fermentate resulted in loss of both volatiles, including diacetyl, and the antifungal activity towards two strains of Penicillium spp. When adding diacetyl to CDIM or yogurt without L. paracasei DGCC 2132, marked inhibition was observed. Besides diacetyl, the antifungal properties of acetoin were examined, but no antifungal activity was observed. Overall, the results demonstrate the contribution of diacetyl in the antifungal effect of L. paracasei DGCC 2132 and indicate that the importance of volatiles may have been previously underestimated. Copyright © 2014 Elsevier B.V. All rights reserved.
Golkhatmi, Faezeh Mahdinejad; Bahramian, Bahram; Mamarabadi, Mojtaba
2017-09-01
Newly, magnetic nanoparticles have extensively been used as alternative catalyst supports, in the view of their high surface area which results in high catalyst loading capacity, high dispersion, low toxicity, environmental preservation, distinguished stability, and suitable catalyst reusing. In the present study, the magnetite nanoparticles, NiFe 2 O 4 @Ag and NiFe 2 O 4 @Mo, were synthesized and characterized. The antimicrobial activities and catalytic properties of synthesized nanoparticles were tested afterwards. For synthetizing the nanoparticle NiFe 2 O 4 @Ag, silver ions were loaded onto the surface of the modified NiFe 2 O 4 and reduced to silver crystal by adding NaBH 4 . The antibacterial effects of NiFe 2 O 4 @Ag were examined against two species of soil and plant related bacteria named Bacillus subtilis (gram positive) and Pseudomonas syringae (gram negative), respectively. The antifungal activity of this nanoparticle was evaluated against two species of plant pathogenic fungi called Alternaria solani and Fusarium oxysporum. Biological results indicated that the synthesized material has shown an excellent antibacterial and antifungal activity against all examined bacteria and fungi so that, their growth were completely inhibited 24h after treatment with NiFe 2 O 4 @Ag. For the synthesis of a heterogeneous catalyst NiFe 2 O 4 @Mo, complex Mo(CO) 6 was loaded onto the surface of the modified NiFe 2 O 4 nanoparticle. This catalyst was found as an efficient catalyst for epoxidation of cis-cyclooctene and a wide variety of alkenes, including aromatic and aliphatic terminal ones using tert-butyl hydroperoxide as oxidant. This new heterogenized catalyst could easily be recovered by using a magnetic separator and reused four consecutive and loss only 13% of its catalytic activity. Copyright © 2017 Elsevier B.V. All rights reserved.
Ryu, Eun Hye; Yang, Eun Ju; Woo, Eun Rhan; Chang, Hae Choon
2014-08-01
Strain HD1 with antifungal activity was isolated from kimchi and identified as Lactobacillus plantarum. Antifungal compounds from Lb. plantarum HD1 were active against food- and feed-borne filamentous fungi and yeasts in a spot-on-the-lawn assay. Antifungal activity of Lb. plantarum HD1 was stronger against filamentous fungi than yeast. Antifungal compounds were purified using solid phase extraction (SPE) and recycling preparative-HPLC. Structures of the antifungal compounds were elucidated by electrospray ionization-mass spectrometry and nuclear magnetic resonance. Active compounds from Lb. plantarum HD1 were identified as 5-oxododecanoic acid (MW 214), 3-hydroxy decanoic acid (MW 188), and 3-hydroxy-5-dodecenoic acid (MW 214). To investigate the potential application of these antifungal compounds for reduction of fungal spoilage in foods, Korean draft rice wine was used as a food model. White film-forming yeasts were observed in control draft rice wine after 11 days of incubation. However, film-forming yeasts were not observed in draft rice wine treated with SPE-prepared culture supernatant of Lb. plantarum HD1 (equivalent to 2.5% addition of culture supernatant) until 27 days of incubation. The addition of antifungal compounds to Korean draft rice wine extended shelf-life up to 27 days at 10 °C without any sterilization process. Therefore, the antifungal activity of Lb. plantarum HD1 may lead to the development of powerful biopreservative systems capable of preventing food- and feed-borne fungal spoilage. Copyright © 2014 Elsevier Ltd. All rights reserved.
Le Lay, Céline; Coton, Emmanuel; Le Blay, Gwenaëlle; Chobert, Jean-Marc; Haertlé, Thomas; Choiset, Yvan; Van Long, Nicolas Nguyen; Meslet-Cladière, Laurence; Mounier, Jérôme
2016-12-19
Fungal growth in bakery products represents the most frequent cause of spoilage and leads to economic losses for industrials and consumers. Bacteria, such as lactic acid bacteria and propionibacteria, are commonly known to play an active role in preservation of fermented food, producing a large range of antifungal metabolites. In a previous study (Le Lay et al., 2016), an extensive screening performed both in vitro and in situ allowed for the selection of bacteria exhibiting an antifungal activity. In the present study, active supernatants against Penicillium corylophilum and Aspergillus niger were analyzed to identify and quantify the antifungal compounds associated with the observed activity. Supernatant treatments (pH neutralization, heating and addition of proteinase K) suggested that organic acids played the most important role in the antifungal activity of each tested supernatant. Different methods (HPLC, mass spectrometry, colorimetric and enzymatic assays) were then applied to analyze the supernatants and it was shown that the main antifungal compounds corresponded to lactic, acetic and propionic acids, ethanol and hydrogen peroxide, as well as other compounds present at low levels such as phenyllactic, hydroxyphenyllactic, azelaic and caproic acids. Based on these results, various combinations of the identified compounds were used to evaluate their effect on conidial germination and fungal growth of P. corylophilum and Eurotium repens. Some combinations presented the same activity than the bacterial culture supernatant thus confirming the involvement of the identified molecules in the antifungal activity. The obtained results suggested that acetic acid was mainly responsible for the antifungal activity against P. corylophilum and played an important role in E. repens inhibition. Copyright © 2016 Elsevier B.V. All rights reserved.
Brito, Samara A.; Rodrigues, Fabíola F. G.; Campos, Adriana R.; da Costa, José G. M.
2012-01-01
Background: The use and investigation of natural products with antimicrobial activity from vegeral source have been reported by several researchers. Cajanus cajan (Fabaceae) is a multiple use specie mainly as human food. In popular medicine, diverse parts of the plant are used as sedative and to treat cough, hepatitis, and diabetes. Materials and Methods: This study shows the characterization of secondary metabolites present in ehtanolic extracts from leaves and roots of Cajanus cajan by phytochemical prospection. The evaluation of the antifungal activity was performed by the microdilution method, and from the subinhibitory concentrations (MIC 1/8) the modulatory activity of antifungical (fluconazole and ketoconazole) was analyzed by the direct contact assay against C. albicans ATCC40006, Candida krusei ATCC 6538 and Candida tropicalis ATCC 40042. Results: The results showed the presence of tannins, flavonoids, and alkaloids in both extracts as the clinically relevant antifungal activity. The modulatory potential is presented by the antifungal tested against yeasts. Conclusion: The extracts studied here have demonstrated to be a new therapeutic source to treat these microorganism-associated diseases. PMID:22701281
Brito, Samara A; Rodrigues, Fabíola F G; Campos, Adriana R; da Costa, José G M
2012-04-01
The use and investigation of natural products with antimicrobial activity from vegeral source have been reported by several researchers. Cajanus cajan (Fabaceae) is a multiple use specie mainly as human food. In popular medicine, diverse parts of the plant are used as sedative and to treat cough, hepatitis, and diabetes. This study shows the characterization of secondary metabolites present in ehtanolic extracts from leaves and roots of Cajanus cajan by phytochemical prospection. The evaluation of the antifungal activity was performed by the microdilution method, and from the subinhibitory concentrations (MIC 1/8) the modulatory activity of antifungical (fluconazole and ketoconazole) was analyzed by the direct contact assay against C. albicans ATCC40006, Candida krusei ATCC 6538 and Candida tropicalis ATCC 40042. The results showed the presence of tannins, flavonoids, and alkaloids in both extracts as the clinically relevant antifungal activity. The modulatory potential is presented by the antifungal tested against yeasts. The extracts studied here have demonstrated to be a new therapeutic source to treat these microorganism-associated diseases.
[In vitro activity of voriconazole and three other antifungal agents against dermatophytes].
Serrano-Martino, María del Carmen; Chávez-Caballero, Mónica; Valverde-Conde, Anastasio; Claro, Rosa María; Pemán, Javier; Martín-Mazuelos, Estrella
2003-11-01
The increase in infections due to dermatophytes in recent years led us to study the effectiveness of new antifungal formulations against these microorganisms. The in vitro activity of a new antifungal agent, voriconazole, was compared with three other antifungal agents, itraconazole, fluconazole and terbinafine, against 120 dermatophytes belonging to four species (61 Trichophyton mentagrophytes, 34 Microsporum canis, 13 M. gypseum and 12 T. rubrum). A broth microdilution method was used following the recommendations of the NCCLS document M38-P with some modifications. Terbinafine was the most active agent against the dermatophytes studied (MIC90 < or = 0.03 mg/ml), followed by voriconazole (MIC90, 0.25 micro g/ml) and itraconazole (MIC90, 0.5 micro g/ml). Fluconazole was the least active antifungal agent. The most susceptible species was M. canis. Voriconazole was found to have effective activity against dermatophytes.
Antimicrobial and antifungal activities of Cordia dichotoma (Forster F.) bark extracts
Nariya, Pankaj B.; Bhalodia, Nayan R.; Shukla, V. J.; Acharya, R. N.
2011-01-01
Cordia dichotoma Forst.f. bark, identified as botanical source of Shlesmataka in Ayurvedic pharmacopoeias. Present study was carried out with an objective to investigate the antibacterial and antifungal potentials of Cordia dichotoma bark. Antibacterial activity of methanol and butanol extracts of the bark was carried out against two gram negative bacteria (Escherichia coli, and Pseudomonas aeruginosa) and two Gram positive bacteria (St. pyogenes and Staphylococcus aureus). The antifungal activity of the extracts was carried out against three common pathogenic fungi (Aspergillus niger, A.clavatus, and Candida albicans). Zone of inhibition of extracts was compared with that of different standards like Amplicilline, Ciprofloxacin, Norfloxacin and Chloramphenicol for antibacterial activity and Nystain and Greseofulvin for antifungal activity. The extracts showed remarkable inhibition of zone of bacterial growth and fungal growth and the results obtained were comparable with that of standards drugs against the organisms tested. The activity of extracts increased linearly with increase in concentration of extract (mg/ml). The results showed the antibacterial and antifungal activity against the organisms tested. PMID:22661859
Antimicrobial and antifungal activities of Cordia dichotoma (Forster F.) bark extracts.
Nariya, Pankaj B; Bhalodia, Nayan R; Shukla, V J; Acharya, R N
2011-10-01
Cordia dichotoma Forst.f. bark, identified as botanical source of Shlesmataka in Ayurvedic pharmacopoeias. Present study was carried out with an objective to investigate the antibacterial and antifungal potentials of Cordia dichotoma bark. Antibacterial activity of methanol and butanol extracts of the bark was carried out against two gram negative bacteria (Escherichia coli, and Pseudomonas aeruginosa) and two Gram positive bacteria (St. pyogenes and Staphylococcus aureus). The antifungal activity of the extracts was carried out against three common pathogenic fungi (Aspergillus niger, A.clavatus, and Candida albicans). Zone of inhibition of extracts was compared with that of different standards like Amplicilline, Ciprofloxacin, Norfloxacin and Chloramphenicol for antibacterial activity and Nystain and Greseofulvin for antifungal activity. The extracts showed remarkable inhibition of zone of bacterial growth and fungal growth and the results obtained were comparable with that of standards drugs against the organisms tested. The activity of extracts increased linearly with increase in concentration of extract (mg/ml). The results showed the antibacterial and antifungal activity against the organisms tested.
An antifungal protein from the pea Pisum sativum var. arvense Poir.
Wang, H X; Ng, T B
2006-07-01
An antifungal protein with a molecular mass of 11 kDa and a lysine-rich N-terminal sequence was isolated from the seeds of the pea Pisum sativum var. arvense Poir. The antifungal protein was unadsorbed on DEAE-cellulose but adsorbed on Affi-gel blue gel and CM-cellulose. It exerted antifungal activity against Physalospora piricola with an IC50 of 0.62 microM, and also antifungal activity against Fusarium oxysporum and Mycosphaerella arachidicola. It inhibited human immunodeficiency virus type 1 reverse transcriptase with an IC50 of 4.7 microM.
2006-01-01
Soil cyanobacteria isolated from the rice paddy fields of 10 different locations across Korea were evaluated by agar plate diffusion test for antifungal activity. Aqueous, petroleum ether, and methanol extracts from one hundred and forty two cyanobacterial strains belonging to the 14 genera were examined for antifungal properties against seven phytopathogenic fungi causing diseases in hot pepper (Capsicum annuum L). Of total cyanobacteria, nine cyanobacteria (6.34%) exhibited antifungal effects. The nine cyanobacteria selected with positive antifungal activities were two species of Oscillatoria, two of Anabaena, three of Nostoc, one of Nodularia, and one of Calothrix. Alternaria alternata and Botrytis cinerea were inhibited by nine and eight species of cyanobacteria, respectively. Rhizopus stolonifer was suppressed by only methanol extract of Nostoc commune FK-103. In particular, Nostoc commune FK-103 and Oscillatoria tenuis FK-109 showed strong antifungal activities against Phytophthora capsici. Their antifungal activity at the late exponential growth phase is related to the growth temperature and not associated with the growth parameters such as cell biomass and chlorophyll-α concentration. The high inhibition levels of antibiotics were 22.5 and 31.8 mm for N. commune FK-103 and O. tenuis FK-109, respectively. The optimal temperature for antibiotic productivity was 35℃. PMID:24039487
Hayashi, Kengo; Yamaguchi, Yoshihiro; Ogita, Akira; Tanaka, Toshio; Kubo, Isao; Fujita, Ken-Ichi
2018-05-14
Nagilactones are norditerpene dilactones isolated from the root bark of Podocarpus nagi. Although nagilactone E has been reported to show antifungal activities, its activity is weaker than that of antifungals on the market. Nagilactone E enhances the antifungal activity of phenylpropanoids such as anethole and isosafrole against nonpathogenic Saccharomyces cerevisiae and pathogenic Candida albicans. However, the detailed mechanisms underlying the antifungal activity of nagilactone E itself have not yet been elucidated. Therefore, we investigated the antifungal mechanisms of nagilactone E using S. cerevisiae. Although nagilactone E induced lethality in vegetatively growing cells, it did not affect cell viability in non-growing cells. Nagilactone E-induced morphological changes in the cells, such as inhomogeneous thickness of the glucan layer and leakage of cytoplasm. Furthermore, a dose-dependent decrease in the amount of newly synthesized (1, 3)-β-glucan was detected in the membrane fractions of the yeast incubated with nagilactone E. These results suggest that nagilactone E exhibits an antifungal activity against S. cerevisiae by depending on cell wall fragility via the inhibition of (1, 3)-β-glucan biosynthesis. Additionally, we confirmed nagilactone E-induced morphological changes of a human pathogenic fungus Aspergillus fumigatus. Therefore, nagilactone E is a potential antifungal drug candidate with fewer adverse effects. Copyright © 2018 Elsevier B.V. All rights reserved.
Phytochemical Analysis and Biological Activities of Cola nitida Bark
Dah-Nouvlessounon, Durand; Adoukonou-Sagbadja, Hubert; Diarrassouba, Nafan; Sina, Haziz; Adjanohoun, Adolphe; Inoussa, Mariam; Akakpo, Donald; Gbenou, Joachim D.; Kotchoni, Simeon O.; Dicko, Mamoudou H.; Baba-Moussa, Lamine
2015-01-01
Kola nut is chewed in many West African cultures and is used ceremonially. The aim of this study is to investigate some biological effects of Cola nitida's bark after phytochemical screening. The bark was collected, dried, and then powdered for the phytochemical screening and extractions. Ethanol and ethyl acetate extracts of C. nitida were used in this study. The antibacterial activity was tested on ten reference strains and 28 meat isolated Staphylococcus strains by disc diffusion method. The antifungal activity of three fungal strains was determined on the Potato-Dextrose Agar medium mixed with the appropriate extract. The antioxidant activity was determined by DPPH and ABTS methods. Our data revealed the presence of various potent phytochemicals. For the reference and meat isolated strains, the inhibitory diameter zone was from 17.5 ± 0.7 mm (C. albicans) to 9.5 ± 0.7 mm (P. vulgaris). The MIC ranged from 0.312 mg/mL to 5.000 mg/mL and the MBC from 0.625 mg/mL to >20 mg/mL. The highest antifungal activity was observed with F. verticillioides and the lowest one with P. citrinum. The two extracts have an excellent reducing free radical activity. The killing effect of A. salina larvae was perceptible at 1.04 mg/mL. The purified extracts of Cola nitida's bark can be used to hold meat products and also like phytomedicine. PMID:25767723
NASA Astrophysics Data System (ADS)
Lv, Haitao; Duan, Ke; Shan, Hu
2018-04-01
Polysaccharide extracted from Enteromorpha prolifera possessed excellent biological activities, but its molecular weight was greatly high which influenced the activity. Organic Se had higher biological activities and was safer than inorganic Se species. In the present study, Enteromorpha polysaccharide was degraded to low molecular weight by free-radical degradation method of H2O2 and ascorbic acid. By single factor and orthogonal experiments, the optimal degradation conditions were reaction time of 2 h, reaction temperature of 50°C, H2O2/ascorbic acid (n/n=1:1) concentration of 15 mmol L-1, and solid-liquid ratio of 1:50 (g mL-1). Then, the degraded polysaccharide was chemically modified to obtain its selenide derivatives by nitric acid-sodium selenite method. The selenium content was 1137.29 μg g-1, while the content of sulfate radical had no change. IR spectra indicated that the selenite ester group was formed. Degraded polysaccharide selenide was characterized and evaluated for antioxidant, antifungal and antibacterial activities. The results showed that degraded polysaccharide selenide had strong capacity of scavenging DPPH and ·OH free radical. It had significant antibacterial properties for Escherichia coli, Bacillus subtilis and Salmonella spp., and it also had significant antifungal properties for Apple anthrax. The result ascertained degradation and selenylation modification did not change the main structure of polysaccharides. It was possible that free-radical degradation was an effective way for enhancing antioxidant activity to decrease molecular weight of polysaccharides.
Light- and singlet oxygen-mediated antifungal activity of phenylphenalenone phytoalexins.
Lazzaro, Alejandra; Corominas, Montserrat; Martí, Cristina; Flors, Cristina; Izquierdo, Laura R; Grillo, Teresa A; Luis, Javier G; Nonell, Santi
2004-07-01
The light-induced singlet oxygen production and antifungal activity of phenylphenalenone phytoalexins isolated from infected banana plants (Musa acuminata) are reported. Upon absorption of light energy all studied phenylphenalenones sensitise the production of singlet oxygen in polar and non-polar media. Antifungal activity of these compounds towards Fusarium oxysporum is enhanced in the presence of light. These results, together with the correlation of IC50 values under illumination with the quantum yield of singlet oxygen production and the enhancing effect of D2O on the antifungal activity, suggest the intermediacy of singlet oxygen produced by electronic excitation of the phenylphenalenone phytoalexins.
Scorzoni, Liliana; Sangalli-Leite, Fernanda; de Lacorte Singulani, Junya; de Paula E Silva, Ana Carolina Alves; Costa-Orlandi, Caroline Barcelos; Fusco-Almeida, Ana Marisa; Mendes-Giannini, Maria José Soares
2016-04-01
In the last decades, the increased number of immunocompromised patients has led to the emergence of many forms of fungal infections. Furthermore, there are a restricted arsenal of antifungals available and an increase in the development of resistance to antifungal drugs. Because of these disadvantages, the search for new antifungal agents in natural sources has increased. The development of these new antifungal drugs involves various steps and methodologies. The evaluation of the in vitro antifungal activity and cytotoxicity are the first steps in the screening. There is also the possibility of antifungal combinations to improve the therapy and reduce toxicity. Despite that, the application of the new antifungal candidate could be used in association with photodynamic therapy or using nanotechnology as an ally. In vivo tests can be performed to evaluate the efficacy and toxicity using conventional and alternative animal models. In this work, we review the methods available for the evaluation of the antifungal activity and safety of natural products, as well as the recent advances of new technology in the application of natural products for antifungal therapy. Copyright © 2016 Elsevier B.V. All rights reserved.
Antifungal activities of Hedychium essential oils and plant extracts against mycotoxigenic fungi
USDA-ARS?s Scientific Manuscript database
Plant-derived antifungal compounds are preferred to chemicals to reduce the risk of toxic effects on humans, livestock and the environment. Essential oil extracted from rhizomes and plant extracts of ornamental ginger lily (Hedychium spp.) were evaluated for their antifungal activity against two fu...
In Vitro and In Vivo Activity of a Novel Antifungal Small Molecule against Candida Infections
Yuen, Kwok Yong; Wang, Yu; Yang, Dan; Samaranayake, Lakshman Perera
2014-01-01
Candida is the most common fungal pathogen of humans worldwide and has become a major clinical problem because of the growing number of immunocompromised patients, who are susceptible to infection. Moreover, the number of available antifungals is limited, and antifungal-resistant Candida strains are emerging. New and effective antifungals are therefore urgently needed. Here, we discovered a small molecule with activity against Candida spp. both in vitro and in vivo. We screened a library of 50,240 small molecules for inhibitors of yeast-to-hypha transition, a major virulence attribute of Candida albicans. This screening identified 20 active compounds. Further examination of the in vitro antifungal and anti-biofilm properties of these compounds, using a range of Candida spp., led to the discovery of SM21, a highly potent antifungal molecule (minimum inhibitory concentration (MIC) 0.2 – 1.6 µg/ml). In vitro, SM21 was toxic to fungi but not to various human cell lines or bacterial species and was active against Candida isolates that are resistant to existing antifungal agents. Moreover, SM21 was relatively more effective against biofilms of Candida spp. than the current antifungal agents. In vivo, SM21 prevented the death of mice in a systemic candidiasis model and was also more effective than the common antifungal nystatin at reducing the extent of tongue lesions in a mouse model of oral candidiasis. Propidium iodide uptake assay showed that SM21 affected the integrity of the cell membrane. Taken together, our results indicate that SM21 has the potential to be developed as a novel antifungal agent for clinical use. PMID:24465737
Saravana Kumar, P; Yuvaraj, P; Gabrial Paulraj, M; Ignacimuthu, S; Abdullah Al-Dhabi, N
2018-06-05
The present study was aimed to isolate bioactive actinomycetes with antifungal properties. Twenty-seven distinct soil derived actinomycetes were investigated for their antifungal activities. Among these, one isolate exhibited significant antifungal activity. Phenotypic and 16s rRNA gene sequence analysis strongly suggested that the active isolate BG4 belonged to the genus Streptomyces. Further, the chemical investigation of the active extract resulted in the isolation of a major compound and it was structurally elucidated as phenyl acetic acid (PAA). PAA exhibited promising antifungal activity with 100% inhibition, ranging from 31.25 to 25μg/mL. It is to be noted that PAA is naturally occurring and biologically active auxin. In addition, it has also been hypothesized that phytohormone endorsing the source of soil-symbionts has similar pathways for synthesizing compounds and its congeners of host due to horizontal gene transfer. These findings demonstrate that microbially derived phytohormone can be used to treat fungal infections. Copyright © 2018 Elsevier Masson SAS. All rights reserved.
Shingalapur, Ramya V; Hosamani, Kallappa M; Keri, Rangappa S
2009-10-01
A new series of novel 5-(nitro/bromo)-styryl-2-benzimidazoles (1-12) has been synthesized by simple, mild and efficient synthetic protocol by attempted condensation of 5-(nitro/bromo)-o-phenylenediamine with trans-cinnamic acids in ethylene glycol. Screening for in vitro anti-tubercular activity against Mycobacterium tuberculosis H(37) Rv, anti-bacterial activity against Staphylococcus aureus, Escherichia coli, Enterococcus faecalis, Klebsiella pneumoniae bacterial strains and anti-fungal activity against Candida albicans and Asperigillus fumigatus fungal strains were carried out. Compounds 5, 7, 8, 9, 11 showed higher anti-tubercular activity and compounds 7, 8, 10, 11, 12 have proved to be effective with MIC (microg/ml) and emerged as lead molecules showing excellent activities against a panel of microorganisms. All synthesized compounds were characterized using IR, (1)H, (13)C NMR, GC-MS and elemental analysis.
Antifungal activity of acetone extracts from Punica granatum L., Quercus suber L. and Vicia faba L.
Akroum, S
2017-03-01
Human and animal mycoses become more frequent and more resistant to traditional treatments. In this work, we tested the in vitro antifungal activity of acetonic extracts of Punica granatum L., Quercus suber L. and Vicia faba L. against seven pathogen fungi and the in vivo antifungal activity against Candida albicans and Trichophyton mentagrophytes. The phytochemical screening was also carried out and showed that the extracts contained mainly proanthocyanidins. Other polyphenols were also present but in low quantity. The acetone extract of V. faba L. gave a good in vitro inhibition of yeasts and was the most active for treating candidiasis in mice. It decreased the percentage of mortality with only 20μg. But the in vivo antifungal activity of this extract on T. mentagrophytes was low. It only showed a small diminution of crusting and erythema after the administration of 100μg. On the contrary, the acetone extracts of P. granatum L. had a poor activity against yeasts and a better one against moulds. It gave the best in vivo antifungal activity against T. mentagrophytes by healing animals with 40μg. The extract of P. granatum L. gave also an interesting in vivo antifungal activity against T. mentagrophytes with an active dose of 80μg. Copyright © 2016 Elsevier Masson SAS. All rights reserved.
Miranda, Isabel M.; Silva-Dias, Ana; Silva, Ana P.; Rodrigues, Acácio G.; Pina-Vaz, Cidália
2015-01-01
Candida albicans is the most prevalent cause of fungemia worldwide. Its ability to develop resistance in patients receiving azole antifungal therapy is well documented. In a murine model of systemic infection, we show that ibuprofen potentiates fluconazole antifungal activity against a fluconazole-resistant strain, drastically reducing the fungal burden and morbidity. The therapeutic combination of fluconazole with ibuprofen may constitute a new approach for the management of antifungal therapeutics to reverse the resistance conferred by efflux pump overexpression. PMID:25845879
Antifungal activity of low molecular weight chitosan against clinical isolates of Candida spp.
Alburquenque, Claudio; Bucarey, Sergio A; Neira-Carrillo, Andrónico; Urzúa, Blanca; Hermosilla, Germán; Tapia, Cecilia V
2010-12-01
Chitosan is a natural polymer derived from chitin, a structural component of fungi, insects and shrimp, which exerts antimicrobial effects against bacteria and fungi. The aim of this study was to investigate the in vitro antifungal activity of low molecular weight chitosan (LMWC), and the potential synergy between chitosan and a currently used antifungal drug, fluconazole. The in vitro minimal inhibitory concentrations (MICs) of chitosan and fluconazole against 105 clinical Candida isolates were measured by the broth microdilution method. LMWC exhibited a significant antifungal activity, inhibiting over 89.9% of the clinical isolates examined (68.6% of which was completely inhibited). The species included several fluconazole-resistant strains and less susceptible species such as C. glabrata, which was inhibited at a concentration of 4.8 mg/l LMWC. Although some strains were susceptible at pH 7.0, a greater antifungal activity of LMWC was observed at pH 4.0. There was no evidence of a synergistic effect of the combination of LMWC and fluconazole at pH 7.0. This is the first report in which the antifungal activity of LMWC was investigated with clinical Candida strains. The use of LMWC as an antifungal compound opens new therapeutic perspectives, as the low toxicity of LMWC in humans supports its use in new applications in an environment of pH 4.0-4.5, such as a topical agent for vulvovaginal candidiasis.
In vitro antifungal activity of topical and systemic antifungal drugs against Malassezia species.
Carrillo-Muñoz, Alfonso Javier; Rojas, Florencia; Tur-Tur, Cristina; de Los Ángeles Sosa, María; Diez, Gustavo Ortiz; Espada, Carmen Martín; Payá, María Jesús; Giusiano, Gustavo
2013-09-01
The strict nutritional requirements of Malassezia species make it difficult to test the antifungal susceptibility. Treatments of the chronic and recurrent infections associated with Malassezia spp. are usually ineffective. The objective of this study was to obtain in vitro susceptibility profile of 76 clinical isolates of Malassezia species against 16 antifungal drugs used for topical or systemic treatment. Isolates were identified by restriction fragment length polymorphism. Minimal inhibitory concentrations (MIC) were obtained by a modified microdilution method based on the Clinical Laboratory Standards Institute reference document M27-A3. The modifications allowed a good growth of all tested species. High in vitro antifungal activity of most tested drugs was observed, especially triazole derivatives, except for fluconazole which presented the highest MICs and widest range of concentrations. Ketoconazole and itraconazole demonstrated a great activity. Higher MICs values were obtained with Malassezia furfur indicating a low susceptibility to most of the antifungal agents tested. Malassezia sympodialis and Malassezia pachydermatis were found to be more-susceptible species than M. furfur, Malassezia globosa, Malassezia slooffiae and Malassezia restricta. Topical substances were also active but provide higher MICs than the compounds for systemic use. The differences observed in the antifungals activity and interspecies variability demonstrated the importance to studying the susceptibility profile of each species to obtain reliable information for defining an effective treatment regimen. © 2013 Blackwell Verlag GmbH.
Experimental and Conformational Analyses of Interactions between Butenafine and Lipids
Mingeot-Leclercq, Marie-Paule; Gallet, Xavier; Flore, Christel; Van Bambeke, Françoise; Peuvot, Jacques; Brasseur, Robert
2001-01-01
Butenafine (N-4-tert-butylbenzyl-N-methyl-1-naphtalenemethylamine hydrochloride) is an antifungal agent of the benzylamine class that has excellent therapeutic efficacy and a remarkably long duration of action when applied topically to treat various mycoses. Given the lipophilic nature of the molecule, efficacy may be related to an interaction with cell membrane phospholipids and permeabilization of the fungal cell wall. Similarly, high lipophilicity could account for the long duration of action, since fixation to lipids in cutaneous tissues might allow them to act as local depots for slow release of the drug. We have therefore used computer-assisted conformational analysis to investigate the interaction of butenafine with lipids and extended these observations with experimental studies in vitro using liposomes. Conformational analysis of mixed monolayers of phospholipids with the neutral and protonated forms of butenafine highlighted a possible interaction with both the hydrophilic and hydrophobic domains of membrane phospholipids. Studies using liposomes demonstrated that butenafine increases membrane fluidity [assessed by fluorescence polarization of 1-(4-trimethylammonium-phenyl)-6-phenyl-1,3,5-hexatriene and 1,6-diphenylhexatriene] and membrane permeability (studied by release of calcein from liposomes). The results show, therefore, that butenafine readily interacts with lipids and is incorporated into membrane phospholipids. These findings may help explain the excellent antifungal efficacy and long duration of action of this drug when it is used as a topical antifungal agent in humans. PMID:11709307
Antifungal Activity of Propolis Against Yeasts Isolated From Blood Culture: In Vitro Evaluation.
Mutlu Sariguzel, Fatma; Berk, Elife; Koc, Ayes Nedret; Sav, Hafize; Demir, Gonca
2016-09-01
Due to the failure of available antifungal agents in the treatment of candidemia and the toxic activities of these drugs, a lot of researches are being conducted to develop new nontoxic and effective antifungal agents for optimal control of fungal pathogens. The aim of this study is to evaluate the in vitro antifungal activity of propolis against yeasts isolated from the blood cultures of intensive care unit patients. Seventy-six strains were included in this study. The in vitro antifungal activity of propolis, fluconazole (FLU), and itraconazole (ITR) was investigated by the microdilution broth methods (CLSI guidelines M27-A3 for yeast). The propolis sample was collected from Kayseri, Turkey. Of the 76 isolates, 33 were identified as Candida albicans while 37 were C. parapsilosis, three were C. tropicalis, and three were identified as C. glabrata. The geometric mean range for MIC (μg/ml) with regard to all isolates was 0.077 to 3 μg/ml for FLU and ITR, and 0.375 to 0.70 μg/ml for propolis. It was shown that propolis had significant antifungal activity against all Candida strains and the MIC range of propolis was determined as 0185 to 3 μg/ml. This study demonstrated that propolis had significant antifungal activity against yeasts isolated from blood culture compared with FLU and ITR. The propolis MIC in azole-resistant strains such as C. glabrata was found lower than the FLU MIC. © 2015 Wiley Periodicals, Inc.
Prasongsuk, Sehanat; Ployngam, Saowaluck; Wacharasindhu, Sumrit; Lotrakul, Pongtharin; Punnapayak, Hunsa
2013-09-01
Cultured cell extracts from ten tropical strains of Aureobasidium pullulans were screened for antifungal activity against four pathogenic Aspergillus species (Aspergillus flavus, Aspergillus niger, Aspergillus fumigatus, and Aspergillus terreus) using the well diffusion and conidial germination inhibition assays. The crude cell extract from A. pullulans NRRL 58536 resulted in the greatest fungicidal activity against all four Aspergillus species and so was selected for further investigation into enhancing the production of antifungal activity through optimization of the culture medium, carbon source (sucrose and glucose) and amino acid (phenylalanine, proline, and leucine) supplementation. Sucrose did not support the production of any detectable antifungal activity, while glucose did with the greatest antifungal activity against all four Aspergillus species being produced in cells grown in medium containing 2.5 % (w/v) glucose. With respect to the amino acid supplements, variable trends between the different Aspergillus species and amino acid combinations were observed, with the greatest antifungal activities being obtained when grown with phenylalanine plus leucine supplementation for activity against A. flavus, proline plus leucine for A. terreus, and phenylalanine plus proline and leucine for A. niger and A. fumigatus. Thin layer chromatography, spectrophotometry, high-performance liquid chromatography, (1)H-nuclear magnetic resonance, and MALDI-TOF mass spectrometry analyses were all consistent with the main component of the A. pullulans NRRL 58536 extracts being aureobasidins.
Jeon, B J; Kim, J D; Han, J W; Kim, B S
2016-05-01
The objective of this study was to explore antifungal metabolites targeting fungal cell envelope and to evaluate the control efficacy against anthracnose development in pepper plants. A natural product library comprising 3000 microbial culture extracts was screened via an adenylate kinase (AK)-based cell lysis assay to detect antifungal metabolites targeting the cell envelope of plant-pathogenic fungi. The culture extract of Streptomyces mauvecolor strain BU16 displayed potent AK-releasing activity. Rimocidin and a new rimocidin derivative, BU16, were identified from the extract as active constituents. BU16 is a tetraene macrolide containing a six-membered hemiketal ring with an ethyl group side chain instead of the propyl group in rimocidin. Rimocidin and BU16 showed broad-spectrum antifungal activity against various plant-pathogenic fungi and demonstrated potent control efficacy against anthracnose development in pepper plants. Antifungal metabolites produced by S. mauvecolor strain BU16 were identified to be rimocidin and BU16. The compounds displayed potent control efficacy against pepper anthracnose. Rimocidin and BU16 would be active ingredients of disease control agents disrupting cell envelope of plant-pathogenic fungi. The structure and antifungal activity of rimocidin derivative BU16 is first described in this study. © 2016 The Society for Applied Microbiology.
Antifungal activities of ethanolic extract from Jatropha curcas seed cake.
Saetae, Dolaporn; Suntornsuk, Worapot
2010-02-01
Phorbol ester extraction was carried out from Jatropha curcas seed cake, a by-product from the bio-diesel fuel industry. Four repeated extractions from 5 g J. curcas seed cake using 15 ml of 90% (v/v) ethanol and a shaking speed of 150 rev/min gave the highest yield of phosbol esters. The ethanolic extract of J. curcas seed cake showed antifungal activities against important phytofungal pathogens: Fusarium oxysporum, Pythium aphanidermatum, Lasiodiplodia theobromae, Curvularia lunata, Fusarium semitectum, Colletotrichum capsici and Colletotrichum gloeosporiodes. The extract contained phorbol esters mainly responsible for antifungal activities. The extract could therefore be used as an antifungal agent for agricultural applications.
Antifungal activity of fabrics knitted by metalized Silver/Polyester composite yarn
NASA Astrophysics Data System (ADS)
Özkan, İ.; Duru Baykal, P.
2017-10-01
In this study, antifungal properties of fabric knitted from metalized silver/polyester composite yarn were investigated. Intermingling is an alternative technique for yarn blending process. Yarns having different features can be combined by feeding the same intermingling jet. This process is defined as commingling. In the study, intermingling process was used to produce metalized silver/polyester composite yarn. Commingled yarns were knitted to single jersey fabrics by IPM brand sample type circular knitting machine. Antifungal activity test was applied to samples against Aspergillus Niger according to AATCC 30 test procedure. It has been identified that the application provides antifungal activity to fabric.
Barani, K; Manipal, Sunayana; Prabu, D; Ahmed, Adil; Adusumilli, Preethi; Jeevika, C
2014-01-01
The aim of this study was to investigate the anti-fungal activity of Morinda citrifolia fruit extract on Candida albicans. Juice extract from M. citrifolia fruit was lyophilized and used in anti-fungal testing. Anti-fungal activity of M. citrifolia fruit extract against C. albicans was tested in vitro at various concentrations. The inhibitory effect of M. citrifolia extract on C. albicans was determined by agar culture and applied broth dilution test. M. citrifolia extract at 1000 μg/ml concentration effectively inhibited the growth of C. albicans (16.6 ± 0.3) compared with the positive control - amphotericin B (20.6 ± 0.6). It was found to be a dose-dependent reaction. M. citrifolia fruit extract had an anti-fungal effect on C. albicans and the inhibitory effect varied with concentration.
Wang, HaiKuan; Yan, YanHua; Wang, JiaMing; Zhang, HePing; Qi, Wei
2012-01-01
Lactobacillus plantarum IMAU10014 was isolated from koumiss that produces a broad spectrum of antifungal compounds, all of which were active against plant pathogenic fungi in an agar plate assay. Two major antifungal compounds were extracted from the cell-free supernatant broth of L. plantarum IMAU10014. 3-phenyllactic acid and Benzeneacetic acid, 2-propenyl ester were carried out by HPLC, LC-MS, GC-MS, NMR analysis. It is the first report that lactic acid bacteria produce antifungal Benzeneacetic acid, 2-propenyl ester. Of these, the antifungal products also have a broad spectrum of antifungal activity, namely against Botrytis cinerea, Glomerella cingulate, Phytophthora drechsleri Tucker, Penicillium citrinum, Penicillium digitatum and Fusarium oxysporum, which was identified by the overlay and well-diffusion assay. F. oxysporum, P. citrinum and P. drechsleri Tucker were the most sensitive among molds. PMID:22276116
In Vitro Activities of Four Novel Triazoles against Scedosporium spp.
Carrillo, A. J.; Guarro, J.
2001-01-01
In order to develop new approaches to the treatment of the severe and usually fatal infections caused by Scedosporium spp., the in vitro antifungal activities of four novel triazoles (posaconazole, ravuconazole, voriconazole, and UR-9825) and some current antifungals (amphotericin B, ketoconazole, itraconazole, and nystatin) were determined. The latter group was clearly ineffective against the two species tested. The four new antifungals showed activity against Scedosporium apiospermum, and UR-9825 and voriconazole were active against S. prolificans. PMID:11408242
Fungistatic activity of heat-treated flaxseed determined by response surface methodology.
Xu, Y; Hall, C; Wolf-Hall, C
2008-08-01
The objective of this study was to evaluate the effect of heat treatment on the fungistatic activity of flaxseed (Linum usitatissimum) in potato dextrose agar (PDA) medium and a fresh noodle system. The radial growth of Penicilliumn chrysogenum, Aspergillus flavus, and a Penicillium sp. isolated from moldy noodles, as well as the mold count of fresh noodle enriched with heat treated flaxseed, were used to assess antifungal activity. A central composite design in the response surface methodology was used to predict the effect of heating temperature and time on antifungal activity of flaxseed flour (FF). Statistical analysis determined that the linear terms of both variables (that is, heating temperature and time) and the quadratic terms of the heating temperature had significant (P<0.05) effects on the radial growth of all 3 test fungi and the mold count log-cycle reduction of fresh noodle. The interactions between the temperature and time were significant for all dependent variables (P<0.05). Significant reductions in antifungal activities were found when FF was subjected to high temperatures, regardless of heating time. In contrast, prolonging the heating time did not substantially affect the antifungal activities of FF at low temperature. However, 60% of the antifungal activity was retained after FF was heated at 100 degrees C for 15 min, which suggests a potential use of FF as an antifungal additive in food products subjected to low to mild heat treatments.
Mendes, Graziele; Gonçalves, Vívian N; Souza-Fagundes, Elaine M; Kohlhoff, Markus; Rosa, Carlos A; Zani, Carlos L; Cota, Betania B; Rosa, Luiz H; Johann, Susana
2016-01-01
Fungi of the genus Paracoccidioides are responsible for paracoccidioidomycosis. The occurrence of drug toxicity and relapse in this disease justify the development of new antifungal agents. Compounds extracted from fungal extract have showing antifungal activity. Extracts of 78 fungi isolated from rocks of the Atacama Desert were tested in a microdilution assay against Paracoccidioides brasiliensis Pb18. Approximately 18% (5) of the extracts showed minimum inhibitory concentration (MIC) values≤ 125.0 µg/mL. Among these, extract from the fungus UFMGCB 8030 demonstrated the best results, with an MIC of 15.6 µg/mL. This isolate was identified as Aspergillus felis (by macro and micromorphologies, and internal transcribed spacer, β-tubulin, and ribosomal polymerase II gene analyses) and was grown in five different culture media and extracted with various solvents to optimise its antifungal activity. Potato dextrose agar culture and dichloromethane extraction resulted in an MIC of 1.9 µg/mL against P. brasiliensis and did not show cytotoxicity at the concentrations tested in normal mammalian cell (Vero). This extract was subjected to bioassay-guided fractionation using analytical C18RP-high-performance liquid chromatography (HPLC) and an antifungal assay using P. brasiliensis. Analysis of the active fractions by HPLC-high resolution mass spectrometry allowed us to identify the antifungal agents present in the A. felis extracts cytochalasins. These results reveal the potential of A. felis as a producer of bioactive compounds with antifungal activity. PMID:27008375
Pinheiro, Ana M.; Carreira, Alexandra; Prescott, Thomas A. K.; Ferreira, Ricardo B.; Monteiro, Sara A.
2017-01-01
The lack of antifungal drugs with novel modes of action reaching the clinic is a serious concern. Recently a novel antifungal protein referred to as Blad-containing oligomer (BCO) has received regulatory approval as an agricultural antifungal agent. Interestingly its spectrum of antifungal activity includes human pathogens such as Candida albicans, however, its mode of action has yet to be elucidated. Here we demonstrate that BCO exerts its antifungal activity through inhibition of metal ion homeostasis which results in apoptotic cell death in C. albicans. HIP HOP profiling in Saccharomyces cerevisiae using a panel of signature strains that are characteristic for common modes of action identified hypersensitivity in yeast lacking the iron-dependent transcription factor Aft1 suggesting restricted iron uptake as a mode of action. Furthermore, global transcriptome profiling in C. albicans also identified disruption of metal ion homeostasis as a potential mode of action. Experiments were carried out to assess the effect of divalent metal ions on the antifungal activity of BCO revealing that BCO activity is antagonized by metal ions such as Mn2+, Zn2+, and Fe2+. The transcriptome profile also implicated sterol synthesis as a possible secondary mode of action which was subsequently confirmed in sterol synthesis assays in C. albicans. Animal models for toxicity showed that BCO is generally well tolerated and presents a promising safety profile as a topical applied agent. Given its potent broad spectrum antifungal activity and novel multitarget mode of action, we propose BCO as a promising new antifungal agent for the topical treatment of fungal infections. PMID:28702011
Pinheiro, Ana M; Carreira, Alexandra; Prescott, Thomas A K; Ferreira, Ricardo B; Monteiro, Sara A
2017-01-01
The lack of antifungal drugs with novel modes of action reaching the clinic is a serious concern. Recently a novel antifungal protein referred to as Blad-containing oligomer (BCO) has received regulatory approval as an agricultural antifungal agent. Interestingly its spectrum of antifungal activity includes human pathogens such as Candida albicans , however, its mode of action has yet to be elucidated. Here we demonstrate that BCO exerts its antifungal activity through inhibition of metal ion homeostasis which results in apoptotic cell death in C. albicans . HIP HOP profiling in Saccharomyces cerevisiae using a panel of signature strains that are characteristic for common modes of action identified hypersensitivity in yeast lacking the iron-dependent transcription factor Aft1 suggesting restricted iron uptake as a mode of action. Furthermore, global transcriptome profiling in C. albicans also identified disruption of metal ion homeostasis as a potential mode of action. Experiments were carried out to assess the effect of divalent metal ions on the antifungal activity of BCO revealing that BCO activity is antagonized by metal ions such as Mn 2+ , Zn 2+ , and Fe 2+ . The transcriptome profile also implicated sterol synthesis as a possible secondary mode of action which was subsequently confirmed in sterol synthesis assays in C. albicans . Animal models for toxicity showed that BCO is generally well tolerated and presents a promising safety profile as a topical applied agent. Given its potent broad spectrum antifungal activity and novel multitarget mode of action, we propose BCO as a promising new antifungal agent for the topical treatment of fungal infections.
Schmourlo, Gracilene; Mendonça-Filho, Ricardo R; Alviano, Celuta Sales; Costa, Sônia S
2005-01-15
In the search for bioactive compounds, bioautography and ethanol precipitation of macromolecules (proteins, polysaccharides, etc.) of plant aqueous extracts were associated in an antifungal screening. Thus, the supernatants, precipitates (obtained by ethanol precipitation) and aqueous extracts were investigated of medicinal and fruit bearing plants used against skin diseases by the Brazilian population. The agar diffusion and broth dilution methods were used to assess the activity against three fungi: Candida albicans, Trichophyton rubrum and Cryptococcus neoformans. The results, evaluated by the diameter of the inhibition zone of fungal growth, indicate that six plant species, among the 16 investigated, showed significant antifungal activity. The minimal inhibitory concentration (MIC) was determined on plant extracts that showed high efficacy against the tested microorganisms. The most susceptible yeast was Trichophyton rubrum and the best antifungal activity was shown by Xanthosoma sagittifolium supernatant. The bioautography was performed only for the aqueous extracts and supernatants of those plants that showed antifungal activity against Candida albicans and Cryptococcus neoformans, using n-butanol/acetic acid/water (BAW) 8:1:1 to develop silica gel TLC plates. Clear inhibition zones were observed for aqueous extracts of Schinus molle (R(f) 0.89) and Schinus terebinthifolius (R(f) 0.80) against Candida albicans, as for supernatant of Anacardium occidentale (R(f) 0.31) against Cryptococcus neoformans. The separation of macromolecules from metabolites, as in the case of Anacardium occidentale, Solanum sp. and Xanthosoma sagittifolium, enhances antifungal activity. In other cases, the antifungal activity is destroyed, as observed for Momordica charantia, Schinus molle and Schinus terebinthifolius.
Cuenca-Estrella, Manuel; Alastruey-Izquierdo, Ana; Alcazar-Fuoli, Laura; Bernal-Martinez, Leticia; Gomez-Lopez, Alicia; Buitrago, Maria J.; Mellado, Emilia; Rodriguez-Tudela, Juan L.
2008-01-01
Activities of 35 combinations of antifungal agents against Scedosporium spp. were analyzed by a checkerboard microdilution design and the summation of fractional concentration index. An average indifferent effect was detected apart from combinations of azole agents and echinocandins against Scedosporium apiospermum. Antagonism was absent for all antifungal combinations against both species. PMID:18195067
Anti-Candida albicans natural products, sources of new antifungal drugs: A review.
Zida, A; Bamba, S; Yacouba, A; Ouedraogo-Traore, R; Guiguemdé, R T
2017-03-01
Candida albicans is the most prevalent fungal pathogen in humans. Due to the development of drug resistance, there is today a need for new antifungal agents for the efficient management of C. albicans infections. Therefore, we reviewed antifungal activity, mechanisms of action, possible synergism with antifungal drugs of all natural substances experimented to be efficient against C. albicans for future. An extensive and systematic review of the literature was undertaken and all relevant abstracts and full-text articles analyzed and included in the review. A total of 111 documents were published and highlighted 142 anti-C. albicans natural products. These products are mostly are reported in Asia (44.37%) and America (28.17%). According to in vitro model criteria, from the 142 natural substances, antifungal activity can be considered as important for 40 (28.20%) and moderate for 24 (16.90%). Sixteen products have their antifungal activity confirmed by in vivo gold standard experimentation. Microbial natural products, source of antifungals, have their antifungal mechanism well described in the literature: interaction with ergosterol (polyenes), inhibition 1,3-β-d-glucan synthase (Echinocandins), inhibition of the synthesis of cell wall components (chitin and mannoproteins), inhibition of sphingolipid synthesis (serine palmitoyltransferase, ceramide synthase, inositol phosphoceramide synthase) and inhibition of protein synthesis (sordarins). Natural products from plants mostly exert their antifungal effects by membrane-active mechanism. Some substances from arthropods are also explored to act on the fungal membrane. Interestingly, synergistic effects were found between different classes of natural products as well as between natural products and azoles. Search for anti-C. albicans new drugs is promising since the list of natural substances, which disclose activity against this yeast is today long. Investigations must be pursued not only to found more new anti-Candida compounds from plants and organisms but also to carried out details on molecules from already known anti-Candida compounds and to more elucidate mechanisms of action. Copyright © 2016 Elsevier Masson SAS. All rights reserved.
The antifungal action of dandruff shampoos.
Bulmer, A C; Bulmer, G S
1999-01-01
The disease commonly known as "dandruff" is caused by numerous host factors in conjunction with the normal flora yeast Malassezia furfur (Pityrosporum ovale). Indeed, clinical studies have shown that administration of antifungal agents correlates with an improved clinical condition. Almost all commercially available hair shampoos publicize that they contain some form of antifungal agent(s). However, few studies have been published in which antifungal activity of commercially available hair shampoos have been contrasted experimentally. In this study six commercially available shampoos (in the Philippines) were assessed for antifungal activity against a human (dandruff) isolate of M. furfur: (a) Head & Shoulders (Proctor & Gamble); (b) Gard Violet (Colgate-Palmolive); (c) Nizoral 1% (Janssen); (d) Nizoral 2% (Janssen); (e) Pantene Blue (Proctor & Gamble); and (f) Selsun Blue (Abbott). The results demonstrated that all six of the assayed hair shampoos have some antifungal effect on the test yeast. However, there was consider variation in potency of antifungal activity. Nizoral 1% and Nizoral 2% shampoo preparations were the most effective. The 1% Nizoral shampoo was consistently 10X better at killing yeast cells than the next closest rival shampoo. The 2% Nizoral shampoo was 10X better than the Nizoral 1% product and 100 times better than any of the other products assayed. The study demonstrated that shampoos containing a proven antifungal compound were the most effective in controlling the causative yeast.
Cavaleiro, C; Pinto, E; Gonçalves, M J; Salgueiro, L
2006-06-01
The increasing resistance to antifungal compounds and the reduced number of available drugs led us to search therapeutic alternatives among aromatic plants and their essential oils, empirically used by antifungal proprieties. In this work the authors report on the antifungal activity of Juniperus essential oils (Juniperus communis ssp. alpina, J. oxycedrus ssp. oxycedrus and J. turbinata). Antifungal activity was evaluated by determination of MIC and MLC values, using a macrodilution method (NCCLS protocols), on clinical and type strains of Candida, Aspergillus and dermatophytes. The composition of the oils was ascertained by GC and GC/MS analysis. All essential oils inhibited test dermatophyte strains. The oil from leaves of J. oxycedrus ssp. oxycedrus is the most active, with MIC and MLC values ranging from 0.08-0.16 microl ml(-1) to 0.08-0.32 microl ml(-1), respectively. This oil is mainly composed of alpha-pinene (65.5%) and delta-3-carene (5.7%). J. oxycedrus ssp. oxycedrus leaf oil proved to be an emergent alternative as antifungal agent against dermatophyte strains. delta-3-Carene, was shown to be a fundamental compound for this activity. Results support that essential oils or some of their constituents may be useful in the clinical management of fungal infections, justifying future clinical trials to validate their use as therapeutic alternatives for dermatophytosis.
Lakshminarayanan, Rajamani; Sridhar, Radhakrishnan; Loh, Xian Jun; Nandhakumar, Muruganantham; Barathi, Veluchamy Amutha; Kalaipriya, Madhaiyan; Kwan, Jia Lin; Liu, Shou Ping; Beuerman, Roger Wilmer; Ramakrishna, Seeram
2014-01-01
Topical application of antifungals does not have predictable or well-controlled release characteristics and requires reapplication to achieve therapeutic local concentration in a reasonable time period. In this article, the efficacy of five different US Food and Drug Administration-approved antifungal-loaded (amphotericin B, natamycin, terbinafine, fluconazole, and itraconazole) electrospun gelatin fiber mats were compared. Morphological studies show that incorporation of polyenes resulted in a two-fold increase in fiber diameter and the mats inhibit the growth of yeasts and filamentous fungal pathogens. Terbinafine-loaded mats were effective against three filamentous fungal species. Among the two azole antifungals compared, the itraconazole-loaded mat was potent against Aspergillus strains. However, activity loss was observed for fluconazole-loaded mats against all of the test organisms. The polyene-loaded mats displayed rapid candidacidal activities as well. Biophysical and rheological measurements indicate strong interactions between polyene antifungals and gelatin matrix. As a result, the polyenes stabilized the triple helical conformation of gelatin and the presence of gelatin decreased the hemolytic activity of polyenes. The polyene-loaded fiber mats were noncytotoxic to primary human corneal and sclera fibroblasts. The reduction of toxicity with complete retention of activity of the polyene antifungal-loaded gelatin fiber mats can provide new opportunities in the management of superficial skin infections. PMID:24920895
Sun, Xiaobo; Jin, Xiaozhe; Pan, Wei; Wang, Jinping
2014-11-26
In the present paper, La, Eu and Yb were selected to represent light, middle and heavy rare earths to form complexes with polysaccharides through chelating coordination of carboxyl groups, which were added into polysaccharide chains by means of carboxymethylation. Their antifungal activities against plant pathogenic fungi were evaluated using growth rate method. These rare earth complexes exhibited various antifungal activities against the tested fungi, depending on rare earth elements, polysaccharide types and fungal species. Among these three metal elements (i.e. La, Eu and Yb), Yb formed the complexes with the most effective antifungal properties. Furthermore, the results showed that ligands of carboxymethylated polysaccharides played a key role in promoting cytotoxicity of the rare earth complexes. Carboxymethylated Ganoderma applanatum polysaccharide (CGAP) was found to be the most effective ligand to form complexes with antifungal activities, followed by carboxymethylated lentinan (CLNT) and carboxymethylated Momordica charantia polysaccharide (CMCP). Copyright © 2014 Elsevier Ltd. All rights reserved.
In Vitro Activity of E1210, a Novel Antifungal, against Clinically Important Yeasts and Molds▿
Miyazaki, Mamiko; Horii, Takaaki; Hata, Katsura; Watanabe, Nao-aki; Nakamoto, Kazutaka; Tanaka, Keigo; Shirotori, Syuji; Murai, Norio; Inoue, Satoshi; Matsukura, Masayuki; Abe, Shinya; Yoshimatsu, Kentaro; Asada, Makoto
2011-01-01
E1210 is a new antifungal compound with a novel mechanism of action and broad spectrum of antifungal activity. We investigated the in vitro antifungal activities of E1210 compared to those of fluconazole, itraconazole, voriconazole, amphotericin B, and micafungin against clinical fungal isolates. E1210 showed potent activities against most Candida spp. (MIC90 of ≤0.008 to 0.06 μg/ml), except for Candida krusei (MICs of 2 to >32 μg/ml). E1210 showed equally potent activities against fluconazole-resistant and fluconazole-susceptible Candida strains. E1210 also had potent activities against various filamentous fungi, including Aspergillus fumigatus (MIC90 of 0.13 μg/ml). E1210 was also active against Fusarium solani and some black molds. Of note, E1210 showed the greatest activities against Pseudallescheria boydii (MICs of 0.03 to 0.13 μg/ml), Scedosporium prolificans (MIC of 0.03 μg/ml), and Paecilomyces lilacinus (MICs of 0.06 μg/ml) among the compounds tested. The antifungal action of E1210 was fungistatic, but E1210 showed no trailing growth of Candida albicans, which has often been observed with fluconazole. In a cytotoxicity assay using human HK-2 cells, E1210 showed toxicity as low as that of fluconazole. Based on these results, E1210 is likely to be a promising antifungal agent for the treatment of invasive fungal infections. PMID:21825291
In vitro and in vivo antifungal activities of selected Cameroonian dietary spices.
Dzoyem, Jean Paul; Tchuenguem, Roland T; Kuiate, Jules R; Teke, Gerald N; Kechia, Frederick A; Kuete, Victor
2014-02-17
Spices and herbs have been used in food since ancient times to give taste and flavor and also as food preservatives and disease remedies. In Cameroon, the use of spices and other aromatic plants as food flavoring is an integral part of dietary behavior, but relatively little is known about their antifungal potential.The present work was designed to assess the antifungal properties of extracts from spices used in Cameroonian dietary. The in vitro antifungal activities of twenty three extracts from twenty one spices were assessed by the broth micro-dilution method against eight fungi. Also, the in vivo activity of Olax subscorpioidea extract (the most active extract) was evaluated in rat model of disseminated candidiasis due to Candida albicans by estimating the fungal burden in blood and kidney. Seven extracts (30%) exhibited moderate to significant antifungal activities, inhibiting the growth of the microorganisms at concentrations ranging from 0.048 to 0.39 mg/mL. Olax subscorpioidea extract exhibited the highest antifungal activity particularly against Candida albicans and Candida tropicalis (MIC of 0.097 mg/mL and 0.048 mg/mL respectively). Sixteen extracts (70%) were weakly active (MICs > 6.25 mg/mL). Oral administration of O. subscorpioidea extract at the dose 2 g/kg of body weight (bw) to artificially infected rats revealed a drop in the number of colony forming units per milliliter (cfu/mL) of Candida albicans cells in the blood below the detection limit (100 cfu/mL) while a modest decrease was observed in the kidney. The present work shows that some of the spices studied possess interesting antifungal properties and could be used to treat candidiasis. Among the plant species tested, Olax subscorpioidea displayed the most promising result.
Antifungal resistance in mucorales.
Dannaoui, E
2017-11-01
The order Mucorales, which includes the agents of mucormycosis, comprises a large number of species. These fungi are characterised by high-level resistance to most currently available antifungal drugs. Standardised antifungal susceptibility testing methods are now available, allowing a better understanding of the in vitro activity of antifungal drugs against members of Mucorales. Such tests have made apparent that antifungal susceptibility within this group may be species-specific. Experimental animal models of mucormycosis have also been developed and are of great importance in bridging the gap between in vitro results and clinical trials. Amphotericin B, posaconazole and isavuconazole are currently the most active agents against Mucorales; however, their activity remains suboptimal and new therapeutic strategies are needed. Combination therapy could be a promising approach to overcome resistance, but further studies are required to confirm its benefits and safety for patients. Copyright © 2017 Elsevier B.V. and International Society of Chemotherapy. All rights reserved.
In vitro antifungal activity of coumarin extracted from Loeselia mexicana Brand.
Navarro-García, Victor M; Rojas, Gabriela; Avilés, Margarita; Fuentes, Macrina; Zepeda, Gerardo
2011-09-01
The bis-coumarin daphnoretin and its monomeric precursors scopoletin and umbelliferone were isolated for the first time from the aerial part of Loeselia mexicana Brand (a vegetal species used in Mexican traditional medicine) using chromatographic techniques. The structures of these compounds were determined by (1) H and (13) C NMR analyses. These coumarins were evaluated for in vitro antifungal activity. The three compounds tested showed significant antifungal activity. © 2011 Blackwell Verlag GmbH.
Maswada, Hanafey F; Abdallah, Sabry A
2013-12-01
Plant extracts appear to be one of the most effective alternative methods of plant diseases control which are less harmful to human beings and environment. In vitro antifungal activity of methanolic extracts of three promising wild geophytic plants against three post-harvest pathogenic fungi using radial growth technique was conducted. These extracts included the shoot system (S) and underground parts (R) of Asparagus stipularis, Cyperus capitatus and Stipagrostis lanata. The tested fungi were Alternaria solani, Aspergillus niger and Rhizopus stolonifer. The results exhibited that, all plant extracts had antifungal activity against the tested fungi. The antifungal activity greatly varied depending on plant parts and/or plant species. R. stolonifer was the most susceptible fungus to the tested plant extracts followed by A. niger and then A. solani. On the other hand, the most effective plant extracts against tested fungi were S. lanata (S) and A. stipularis (R). The most effective plant extracts against R. stolonifer were S. lanata (R) and C. capitatus (S). While, the extracts of A. stipularis (R) and S. lanata (S) were the most effective against A. niger. The extracts of C. capitatus (S) and S. lanata (S) exhibited the highest antifungal activity against A. solani. The results demonstrated that, the methanolic extracts of A. stipularis, C. capitatus and S. lanata had potential antifungal activity against A. solani, A. niger and R. stolonifer.
Lee, Dong Gun; Park, Yoonkyung; Kim, Hee Nam; Kim, Hyung Keun; Kim, Pyoung Il; Choi, Bo Hwa; Hahm, Kyung-Soo
2002-03-08
The antifungal activity and mechanism of HP (2-20), a peptide derived from the N-terminus sequence of Helicobacter pylori Ribosomal Protein L1 were investigated. HP (2--20) displayed a strong antifungal activity against various fungi, and the antifungal activity was inhibited by Ca(2+) and Mg(2+) ions. In order to investigate the antifungal mechanism(s) of HP (2-20), fluorescence activated flow cytometry was performed. As determined by propidium iodide staining, Candida albicans treated with HP (2-20) showed a higher fluorescence intensity than untreated cells and was similar to melittin-treated cells. The effect on fungal cell membranes was examined by investigating the change in membrane dynamics of C. albicans using 1,6-diphenyl-1,3,5-hexatriene as a membrane probe and by testing the membrane disrupting activity using liposome (PC/PS; 3:1, w/w) and by treating protoplasts of C. albicans with the peptide. The action of peptide against fungal cell membrane was further examined by the potassium-release test, and HP (2-20) was able to increase the amount of K(+) released from the cells. The result suggests that HP (2-20) may exert its antifungal activity by disrupting the structure of cell membrane via pore formation or directly interacts with the lipid bilayers in a salt-dependent manner.
Agüero, María Belén; Gonzalez, Mariela; Lima, Beatriz; Svetaz, Laura; Sánchez, Marianela; Zacchino, Susana; Feresin, Gabriela Egly; Schmeda-Hirschmann, Guillermo; Palermo, Jorge; Wunderlin, Daniel; Tapia, Alejandro
2010-01-13
This paper reports the in vitro antifungal activity of propolis extracts from the province of Tucuman (Argentina) as well as the identification of their main antifungal compounds and botanical origin. The antifungal activity was determined by the microdilution technique, using reference microorganisms and clinical isolates. All dermatophytes and yeasts tested were strongly inhibited by different propolis extracts (MICs between 16 and 125 microg mL(-1)). The most susceptible species were Microsporum gypseum, Trichophyton mentagrophytes, and Trichophyton rubrum. The main bioactive compounds were 2',4'-dihydroxy-3'-methoxychalcone 2 and 2',4'-dihydroxychalcone 3. Both displayed strong activity against clinical isolates of T. rubrum and T. mentagrophytes (MICs and MFCs between 1.9 and 2.9 microg mL(-1)). Additionally, galangin 5, pinocembrin 6, and 7-hydroxy-8-methoxyflavanone 9 were isolated from propolis samples and Zuccagnia punctata exudates, showing moderate antifungal activity. This is the first study matching the chemical profile of Z. punctata Cav. exudates with their corresponding propolis, giving strong evidence on the botanical origin of the studied propolis.
Ye, X Y; Ng, T B
2002-01-18
From the seeds of the pinto bean (Phaseolus vulgaris cv. pinto), a chitinase and a novel antifungal protein, both with the ability of markedly augmenting nitrite production by murine peritoneal macrophages, were isolated. The antifungal proteins, designated phasein A and phasein B, exhibited molecular weights of 28 and 32 kDa, respectively. Phaseins A and B were adsorbed on Affi-gel blue gel and CM-Sepharose and were eluted as adjacent peaks from CM-Sepharose. Phasein A demonstrated potent antifungal activity toward Fusarium oxysporum and Physalospora piricola. Phasein B was more potent than phasein A toward P. piricola but less potent than phasein A toward F. oxysporum and Rhizoctonia solani. Both antifungal proteins inhibited the activity of HIV-1 reverse transcriptase and translation in a rabbit reticulocyte lysate system, with phasein B being more potent. Nitrite production by mouse macrophages was greatly boosted in the presence of both phaseins A and B, although the effect of phasein A was more prominent. The bioactivities of phaseins were in general potent compared with those of other antifungal proteins.
Elansary, Hosam O; Yessoufou, Kowiyou
2016-06-01
The total phenolic, flavonoid and tannin contents in leaf extracts of Calibrachoa x hybrida (C.h.) (Solanaceae) international cultivars, as well as their overall antioxidant activities using DPPH and linoleic acid assays, were investigated. Furthermore, the antifungal and the antibacterial activities were examined against a wide spectrum of micro-organisms. DPPH and linoleic acid assays ranged from 62.1 to 80.1% and of 74.1-93.4%, respectively. C.h. Superbells® Trailing Rose (CHST), C.h. Superbells® Frost Fire, C.h. Superbells® Strawberry Punch, C.h. Superbells® Dreamsicle and C.h. Superbells® Plum (CHSP) varied in their antifungal and the antibacterial activities against a wide spectrum of micro-organisms. CHSP exhibited the highest antioxidant, antifungal and antibacterial activities followed by CHST. These activities might be attributed to the presence of phenolic, flavonoid and tannin compounds, indicating that these cultivars might be potential sources of therapeutic substances.
Shilabin, Abbas Gholipour; Kasanah, Noer; Wedge, David E; Hamann, Mark T
2007-09-06
Kahalalide F (1) shows remarkable antitumor activity against different carcinomas and has recently completed phase I clinical trials and is being evaluated in phase II clinical studies. The antifungal activity of this molecule has not been thoroughly investigated. In this report, we focused on acetylation and oxidation of the secondary alcohol of threonine, as well as reductive alkylation of the primary amine of ornithine, and each product was evaluated for improvements in antifungal activity. 1 and analogues do not exhibit antimalarial, antileishmania, or antibacterial activity; however, the antifungal activity against different strains of fungi was particularly significant. This series of compounds was highly active against Fusarium spp., which represents an opportunistic infection in humans and plants. The in vitro cytotoxicity for the new analogues of 1 was evaluated in the NCI 60 cell panel. Analogue 5 exhibited enhanced potency in several human cancer cell lines relative to 1.
Vinciguerra, Vittorio; Rojas, Florencia; Tedesco, Viviana; Giusiano, Gustavo; Angiolella, Letizia
2018-05-04
The composition of the essential oils (EOs) of O. vulgare L. EO and T. vulgaris EO, were analyzed by GC and GC-MS. Antifungal activities of the EOs and its main component, carvacrol, were evaluated against 27 clinical isolates of Malassezia furfur. Minimum inhibitory concentrations (MICs) were measured according to the broth microdilution protocols by Clinical and Laboratory Standards Institute (CLSI) modified for Malassezia spp. EOs and carvacrol showed low MIC values ranged 450-900 μg/ml against M. furfur. No differences in EOs antifungal activity were observed in sensitive to resistant fluconazole isolates. The antifungal activity obtained showed O. vulgare EO, T. vulgaris EO and carvacrol, their compound, as potential antimicrobial agents against M. furfur, yeast associated with human mycoses.
Lino, Cleudiomar Inácio; Gonçalves de Souza, Igor; Borelli, Beatriz Martins; Silvério Matos, Thelma Tirone; Santos Teixeira, Iasmin Natália; Ramos, Jonas Pereira; Maria de Souza Fagundes, Elaine; de Oliveira Fernandes, Philipe; Maltarollo, Vinícius Gonçalves; Johann, Susana; de Oliveira, Renata Barbosa
2018-05-10
In the search for new antifungal agents, a novel series of fifteen hydrazine-thiazole derivatives was synthesized and assayed in vitro against six clinically important Candida and Cryptococcus species and Paracoccidioides brasiliensis. Eight compounds showed promising antifungal activity with minimum inhibitory concentration (MIC) values ranging from 0.45 to 31.2 μM, some of them being equally or more active than the drug fluconazole and amphotericin B. Active compounds were additionally tested for toxicity against human embryonic kidney (HEK-293) cells and none of them exhibited significant cytotoxicity, indicating high selectivity. Molecular modeling studies results corroborated experimental SAR results, suggesting their use in the design of new antifungal agents. Copyright © 2018 Elsevier Masson SAS. All rights reserved.
Liu, Yu; Tortora, George; Ryan, Maria E.; Lee, Hsi-Ming; Golub, Lorne M.
2002-01-01
The broth macrodilution method (BMM) for antifungal susceptibility testing, approved by the National Committee for Clinical Laboratory Standards (NCCLS), was found to have deficiencies in testing of the antifungal activity of a new type of antifungal agent, a nonantibacterial chemically modified tetracycline (CMT-3). The high content of phosphate in the medium was found to greatly increase the MICs of CMT-3. To avoid the interference of phosphate in the test, a new method using potato dextrose agar (PDA) as a culture medium was developed. Eight strains of fungi, including five American Type Culture Collection strains and three clinical isolates, were used to determine the MICs of amphotericin B and itraconazole with both the BMM and the PDA methods. The MICs of the two antifungal agents determined with the PDA method showed 99% agreement with those determined with the BMM method within 1 log2 dilution. Similarly, the overall reproducibility of the MICs with the PDA method was above 97%. Three other antifungal agents, fluconazole, ketoconazole, and CMT-3, were also tested in parallel against yeasts and molds with both the BMM and the PDA methods. The MICs of fluconazole and ketoconazole determined with the PDA method showed 100% agreement within 1 log2 dilution of those obtained with the BMM method. However, the MICs of CMT-3 determined with the BMM method were as high as 128 times those determined with the PDA method. The effect of phosphate on the antifungal activity of CMT-3 was evaluated by adding Na2HPO4 to PDA in the new method. It was found that the MIC of CMT-3 against a Penicillium sp. increased from 0.5 μg/ml (control) to 2.0 μg/ml when the added phosphate was used at a concentration of 0.8 mg/ml, indicating a strong interference of Na2HPO4 with the antifungal activity of CMT-3. Except for fluconazole, all the other antifungal agents demonstrated clear end points among the yeasts and molds tested. Nevertheless, with its high reproducibility, good agreement with NCCLS proposed MIC ranges, and lack of interference of phosphate, the PDA method shows promise as a useful assay for antifungal susceptibility testing and screening for new antifungal agents, especially for drugs that may be affected by high (supraphysiologic) phosphate concentrations. PMID:11959582
Biological activity of cannabichromene, its homologs and isomers.
Turner, C E; Elsohly, M A
1981-01-01
Cannabichromene (CBC) is one of four major cannabinoids in Cannabis sativa L. and is the second most abundant cannabinoid in drug-type cannabis. Cannabichromene and some of its homologs, analogs, and isomers were evaluated for antiinflammatory, antibacterial, and antifungal activity. Antiinflammatory activity was evaluated by the carrageenan-induced rat paw edema and the erythrocyte membrane stabilization method. In both tests, CBC was superior to phenylbutazone. Antibacterial activity of CBC and its isomers and homologs was evaluated using gram-positive, gram-negative, and acid-fast bacteria. Antifungal activity was evaluated using yeast-like and filamentous fungi and a dermatophyte. Antibacterial activity was strong, and the antifungal activity was mild to moderate.
Campos, Magnólia de A; Silva, Marilia S; Magalhães, Cláudio P; Ribeiro, Simone G; Sarto, Rafael PD; Vieira, Eduardo A; Grossi de Sá, Maria F
2008-01-01
Background Heterologous protein expression in microorganisms may contribute to identify and demonstrate antifungal activity of novel proteins. The Solanum nigrum osmotin-like protein (SnOLP) gene encodes a member of pathogenesis-related (PR) proteins, from the PR-5 sub-group, the last comprising several proteins with different functions, including antifungal activity. Based on deduced amino acid sequence of SnOLP, computer modeling produced a tertiary structure which is indicative of antifungal activity. Results To validate the potential antifungal activity of SnOLP, a hexahistidine-tagged mature SnOLP form was overexpressed in Escherichia coli M15 strain carried out by a pQE30 vector construction. The urea solubilized His6-tagged mature SnOLP protein was affinity-purified by immobilized-metal (Ni2+) affinity column chromatography. As SnOLP requires the correct formation of eight disulfide bonds, not correctly formed in bacterial cells, we adapted an in vitro method to refold the E. coli expressed SnOLP by using reduced:oxidized gluthatione redox buffer. This method generated biologically active conformations of the recombinant mature SnOLP, which exerted antifungal action towards plant pathogenic fungi (Fusarium solani f. sp.glycines, Colletotrichum spp., Macrophomina phaseolina) and oomycete (Phytophthora nicotiana var. parasitica) under in vitro conditions. Conclusion Since SnOLP displays activity against economically important plant pathogenic fungi and oomycete, it represents a novel PR-5 protein with promising utility for biotechnological applications. PMID:18334031
Mesa-Arango, Ana Cecilia; Montiel-Ramos, Jehidys; Zapata, Bibiana; Durán, Camilo; Betancur-Galvis, Liliana; Stashenko, Elena
2009-09-01
Two essential oils of Lippia alba (Mill.) N.E. Brown (Verbenacea), the carvone and citral chemotypes and 15 of their compounds were evaluated to determine cytotoxicity and antifungal activity. Cytotoxicity assays for both the citral and carvone chemotypes were carried out with tetrazolium-dye, which showed a dose-dependent cytotoxic effect against HeLa cells. Interestingly, this effect on the evaluated cells (HeLa and the non-tumoural cell line, Vero) was lower than that of commercial citral alone. Commercial citral showed the highest cytotoxic activity on HeLa cells. The antifungal activity was evaluated against Candida parapsilosis, Candida krusei, Aspergillus flavus and Aspergillus fumigatus strains following the standard protocols, Antifungal Susceptibility Testing Subcommittee of the European Committee on Antibiotic Susceptibility Testing and CLSI M38-A. Results demonstrated that the most active essential oil was the citral chemotype, with geometric means-minimal inhibitory concentration (GM-MIC) values of 78.7 and 270.8 microg/mL for A. fumigatus and C. krusei, respectively. Commercial citral showed an antifungal activity similar to that of the citral chemotype (GM-MIC values of 62.5 microg/mL for A. fumigatus and 39.7 microg/mL for C. krusei). Although the citronellal and geraniol were found in lower concentrations in the citral chemotype, they had significant antifungal activity, with GM-MIC values of 49.6 microg/mL for C. krusei and 176.8 microg/mL for A. fumigatus.
Lima, Luciana Alves Rodrigues dos Santos; Johann, Susana; Cisalpino, Patrícia Silva; Pimenta, Lúcia Pinheiro Santos; Boaventura, Maria Amélia Diamantino
2011-01-01
Fatty acids are abundant in vegetable oils. They are known to have antibacterial and antifungal properties. Antifungal susceptibility was evaluated by broth microdilution assay following CLSI (formerly the NCCLS) guidelines against 16 fungal strains of clinical interest. In this work, fatty acid methyl esters (FAME) was able to inhibit 12 clinical strains of the pathogenic fungus Paracoccidioides brasiliensis and were also active in the bioautographic assay against Cladosporium sphaerospermum. FAME was a more potent antifungal than trimethoprim-sulfamethoxazole against P. brasiliensis under the experimental conditions tested.
Functionalised isocoumarins as antifungal compounds: Synthesis and biological studies.
Simic, Milena; Paunovic, Nikola; Boric, Ivan; Randjelovic, Jelena; Vojnovic, Sandra; Nikodinovic-Runic, Jasmina; Pekmezovic, Marina; Savic, Vladimir
2016-01-01
A series of novel 3-substituted isocoumarins was prepared via Pd-catalysed coupling processes and screened in vitro for antifungal activity against Candida species. The study revealed antifungal potential of isocoumarins possessing the azole substituents, which, in some cases, showed biological properties equal to those of clinically used voriconazole. Selected compounds were also screened against voriconazole resistant Candida krusei 6258 and a clinical isolate Candida parapsilosis CA-27. Although the activity against these targets needs to be improved further, the results emphasise additional potential of this new class of antifungal compounds. Copyright © 2015 Elsevier Ltd. All rights reserved.
Treatment Principles for the Management of Mold Infections
Kontoyiannis, Dimitrios P.; Lewis, Russell E.
2015-01-01
Survival rates among immunocompromised patients with invasive mold infections have markedly improved over the last decade with earlier diagnosis and new antifungal treatment options. Yet, increasing antifungal resistance, breakthrough infections with intrinsically resistant fungi, and potentially life-threatening adverse effects and drug interactions are becoming more problematic, especially with prolonged therapy. Evidence-based recommendations for treating invasive aspergillosis and mucormycosis provide excellent guidance on the initial workup and treatment of these molds, but they cannot address all of the key management issues. Herein, we discuss 10 general treatment principles in the management of invasive mold disease in immunocompromised patients and discuss how these principles can be integrated to develop an effective, individualized treatment plan. PMID:25377139
Anti-Candida and anti-Cryptococcus antifungal produced by marine microorganisms.
El Amraoui, B; El Amraoui, M; Cohen, N; Fassouane, A
2014-12-01
In order to search for antifungal from biological origin, we performed a screening of marine microorganisms isolated from seawater, seaweed, sediment and marine invertebrates collected from different coastal areas of the Moroccan Atlantic Ocean. The antifungal activities of these isolates were investigated against the pathogenic yeasts involved in medical mycology. Whole cultures of 34 marine microorganisms were screened for antifungal activities using the method of agar diffusion against four yeasts. The results showed that among the 34 isolates studied, 13 (38%) strains have antifungal activity against at least one out of four yeast species, 11 isolates have anti-Candida albicans CIP 48.72 activity, 12 isolates have anti-C. albicans CIP 884.65 activity, 13 isolates have anti-Cryptococcus neoformans activity and only 6 isolates are actives against Candida tropicalis R2 resistant to nystatin and amphotericin B. Nine isolates showed strong fungicidal activity. Fourteen microorganisms were identified and assigned to the genera Acinetobacter, Aeromonas, Alcaligenes, Bacillus, Chromobacterium, Enterococcus, Pantoea, and Pseudomonas. Due to a competitive role for space and nutrient, the marine microorganisms could produce more antimicrobials; therefore these marine microorganisms were expected to be potential resources of natural products such as those we research: anti-Candida and anti-Cryptococcus fungicides. Copyright © 2014 Elsevier Masson SAS. All rights reserved.
Imanirampa, Lawrence; Alele, Paul E
2016-07-08
Cleome gynandra L. (Capparaceae) is an edible weed used in Uganda topically for its presumed antifungal activity against Tinea capitis. The goal of this study was to determine if this plant possesses antifungal activity in vitro, since T. capitis is a pervasive infection among especially rural children. Antifungal activity assay was performed by Broth dilution method, and testing done on clinical isolates of three common Tinea capitis-causing fungal strains. Evaluation of in vitro antifungal activity of the ethanol and water extracts of C. gynandra was done to determine the minimum inhibitory concentrations (MICs) and the minimum fungicidal concentrations (MFCs) of the extracts. The MIC of C. gynandra ethanol extract ranged from 0.0313 to 0.0625 mg/ml for Trichophyton rubrum, and from 0.25 to 0.5 mg/ml for both Microsporum canis and Trichophyton mentagrophytes. The MICs of C. gynandra aqueous extract ranged between 0.125 to 0.25 mg/ml for T. rubrum, and 0.25 to 0.5 mg/ml for both M. canis and T. mentagrophytes. T. rubrum was more sensitive than M. canis (p < 0.002) and more sensitive than T. mentagrophytes (p < 0.035) to the antifungal activity of C. gynandra. T. rubrum was 6.9 times (95 % CL: 1.15 - 41.6) more likely to have a better outcome (more sensitive) than T. mentagrophytes. Cleome gynandra aqueous extract had MFC of ≥0.0313 mg/ml for M. canis, ≥0.0156 mg/ml for T. mentagropyhtes, and ≥0.0625 mg/ml for T. rubrum. Cleome gynandra ethanol extract showed MFCs of ≥0.5 mg/ml for M. canis and T. mentagrophytes, and ≥0.125 mg/ml for T. rubrum. Both plant extracts demonstrated antifungal activity, shown by the MIC and MFC for the different extracts, which varied with the type of organism of the clinical fungal isolates. The ethanol extract exhibited comparable antifungal activity to the aqueous extract indicated by the MIC values seen. Conversely, after subculturing the fungal isolates, MFCs were lower for the aqueous than for the ethanol extract.
Synthesis of natural acylphloroglucinol-based antifungal compounds against Cryptococcus species
USDA-ARS?s Scientific Manuscript database
Thirty-five analogs of naturally occurring acylphloroglucinols were designed and synthesized to identify antifungal compounds against Cryptococcus spp. that causes the life-threatening disseminated cryptococcosis. In vitro antifungal testing showed that 17 compounds were active against C. neoformans...
Antifungal cyclic peptides from the marine sponge Microscleroderma herdmani
USDA-ARS?s Scientific Manuscript database
Screening natural product extracts from National Cancer Institute Open Repository for antifungal discovery afforded hits for bioassay-guided fractionation. Upon LC-MS analysis of column fractions with antifungal activities to generate information on chemical structure, two new cyclic hexapeptides, m...
Mokhtari, Mona; Jackson, Michael D; Brown, Alistair S; Ackerley, David F; Ritson, Nigel J; Keyzers, Robert A; Munkacsi, Andrew B
2018-06-06
Pathogenic fungi continue to develop resistance against current antifungal drugs. To explore the potential of agricultural waste products as a source of novel antifungal compounds, we obtained an unbiased GC-MS profile of 151 compounds from 16 commercial and experimental cultivars of feijoa peels. Multivariate analysis correlated 93% of the compound profiles with antifungal bioactivities. Of the 18 compounds that significantly correlated with antifungal activity, 5 had not previously been described from feijoa. Two novel cultivars were the most bioactive, and the compound 4-cyclopentene-1,3-dione, detected in these cultivars, was potently antifungal (IC 50 = 1-2 μM) against human-pathogenic Candida species. Haploinsufficiency and fluorescence microscopy analyses determined that the synthesis of chitin, a fungal-cell-wall polysaccharide, was the target of 4-cyclopentene-1,3-dione. This fungal-specific mechanism was consistent with a 22-70-fold reduction in antibacterial activity. Overall, we identified the agricultural waste product of specific cultivars of feijoa peels as a source of potential high-value antifungal compounds.
Cetrulo, Curtis L; Leto Barone, Angelo A; Jordan, Kathleen; Chang, David S; Louie, Kevin; Buntic, Rudolf F; Brooks, Darrell
2012-02-01
Limb salvage in fungal osteomyelitis of the post-traumatic lower extremity represents a difficult clinical problem requiring aggressive management. We report lower extremity salvage by radical bony debridement, free tissue transfer, distraction osteogenesis with bone-docking, and a novel antifungal regimen in a clinical setting of infection with Scedosporium inflatum, historically requiring amputation in 100% of cases. We treated Scedosporium inflatum osteomyelitis of the tibia and calcaneus with radical debridement of infected bone, free partial medial rectus abdominis muscle flap coverage, transport distraction osteogenesis, and combination voriconazole/terbinafine chemotherapy, a novel antifungal regimen. We achieved successful control of the infection, limb salvage, and an excellent functional outcome through aggressive debridement of infected bone and soft tissue, elimination of dead space within the bony defect, the robust perfusion provided by the free flap, the hypervascular state induced by distraction osteogenesis, and the synergism of the novel antifungal regimen.
Bouterfas, K; Mehdadi, Z; Aouad, L; Elaoufi, M M; Khaled, M B; Latreche, A; Benchiha, W
2016-09-01
The study was undertaken to determine the effect of the sampling locality on the antifungal activity of the flavonoids extracted from the leaves of Marrubium vulgare L. against two fungal strains; Aspergillus niger ATCC 16404 and Candida albicans ATCC 10231. The leaves were collected from three different sampling localities belonging northwest Algeria: Tessala mount, M'sila forest and Ain Skhouna. The flavonoid extraction was carried out by using organic solvents with increasing polarity. A phytochemical screening was performed by staining test tubes. The inhibition diameters were measured by solid medium diffusion method. The minimum inhibitory concentrations were determined by dilution method on solid medium. The antifungal activity varied significantly (P<0.001) according to the sampling locality of the leaves, the flavonoid extract and its concentration, and the strain fungal type. The inhibition diameters varied between 8.16 and recorded 37.5mm even recording a total inhibition of fungal growth and often exceed those induced marketed antifungals (Amphotericin, Fluconazole, Terbinafine and econazole nitrate). The minimum inhibitory concentrations (MICs) obtained range between 6.25 and 100μg/mL; experiencing strong antifungal inhibition. The phytochemical screening revealed the existence of certain flavonoids classes such as flavans and flavanols which may be responsible of this remarkable antifungal power. The sampling locality of Marrubium vulgare leaves influenced on the antifungal activity of flavonoids. These have proven very good fungistatic and worth valuing in pharmacology. Copyright © 2016 Elsevier Masson SAS. All rights reserved.
Chemical composition, phytotoxic and antifungal properties of Ruta chalepensis L. essential oils.
Bouabidi, Wafa; Hanana, Mohsen; Gargouri, Samia; Amri, Ismail; Fezzani, Tarek; Ksontini, Mustapha; Jamoussi, Bassem; Hamrouni, Lamia
2015-01-01
The chemical composition, and phytotoxic and antifungal activities of the essential oils isolated by using hydrodistillation from the aerial parts of Tunisian rue were evaluated. Significant variations were observed among harvest periods. The analysis of the chemical composition by gas chromatography/mass spectrometry showed that 2-undecanone (33.4-49.8%), 2-heptanol acetate (13.5-15.4%) and α-pinene (9.8-11.9%) were the main components. The antifungal ability of rue essential oils was tested by using disc agar diffusion against ten plant pathogenic fungi. A high antifungal activity was observed for the essential oil isolated at flowering developmental phase. Furthermore, rue essential oils showed high level of herbicidal activity against several weeds.
Gautam, Ajay K; Avasthi, Shubhi; Sharma, Anu; Bhadauria, Rekha
2012-03-01
The present study describes the antifungal potential of fruit and powdered ingredients of triphala churna, i.e. Emblica officinalis (Garetn.) (Amla), Terminalia bellirica (Gaertn.) Roxb. (Baheda) and Terminalia chebula (Retz.) (Harada), collected from the market of Gwalior (M.P.), India. Water extracts of all the fruits and powdered samples were tested (in vitro) for their antifungal activities by poisoned food technique against different Aspergillus species (A. flavus, A. fumigatus, A. versicolor, A. terreus and A. niger) associated with them during storage. All extracts displayed varied levels i.e. very low to very high antifungal activities on four Aspergillus species. The aqueous extracts of fresh fruits (37.96 +/- 7.59%) was observed to be most effective than dry fruits (34.95 +/- 7.59%) and powder (25.07 +/- 6.05%). Terminalia chebula (fresh and dry) extracts were found most active against the four Aspergillus species with 49.15 and 40.8% inhibition, respectively. None of the extracts were found effective against the growth of A. niger. All fruits and powdered aqueous extracts were observed to be ineffective against the A. niger. The variability in antifungal activity of aqueous extracts in the present study may be useful to study the relationship between antifungal potential of herbal drugs and prevalence of fungal contaminant during their storage.
[Antifungal effects of three medicinal crops on Phytophthora nicotianae].
He, Da-Min; Chen, Yang; Yang, Shui-Ping; Zhang, Xue; Zhao, Jian; Mo, Jing-Jing; Zhang, Dong-Yan; Zhao, Xin-Mei; Chen, Da-Xia; Ding, Wei
2017-09-01
Tobacco black shank is one of the most harmful soil-borne diseases infected by Phytophthora parasitica. In order to probe the control method to this disease, in this study, the mycelial growth rate method was employed to investigate the antifungal effects of extracts from stem-leaf and root, root exudates, and their combination of Scrophularia ningpoensis, Chuanmingshen violaceum and Pinellia ternata The results showed that: ①Stem-leaf and root extracts of S. ningpoensis, C. violaceum and P. ternata exhibited different antifungal activities, and the inhibition increased with the increase of extract concentration. The antifungal effect of S. ningpoensis extracts at 0.5 g•mL⁻¹ was the strongest than other medicinal plants, the inhibition rate of steam-leaf and root extracts reached 74.88%, 69.27%, respectively. The inhibitory effect of C. violaceum and P. ternata was relatively lower, however, there is a significant gain effect after combination of steam-leaf and root extracts of C. violaceum. ②The root exudates of S. ningpoensis, C. violaceum and P. ternata showed fungistasis to Phytophthora nicotianae, and fungistasis was enhanced with the increase of root exudate concentration. The antifungal effect in the order of C. violaceum > S. ningpoensis > P. ternata. ③The antifungal activity of combination of extract and root exudate from S. ningpoensis was similar with the effect of C. violaceum, they were both stronger than P. ternata, and the antifungal activity for three combination were located between the antifungal activity of their extracts and root exudates. S. ningpoensis and C. violaceum can be potentially applied to prevent and control the tobacco black shank. Copyright© by the Chinese Pharmaceutical Association.
Antifungal adjuvants: Preserving and extending the antifungal arsenal
Butts, Arielle; Palmer, Glen E.; Rogers, P. David
2017-01-01
ABSTRACT As the rates of systemic fungal infections continue to rise and antifungal drug resistance becomes more prevalent, there is an urgent need for new therapeutic options. This issue is exacerbated by the limited number of systemic antifungal drug classes. However, the discovery, development, and approval of novel antifungals is an extensive process that often takes decades. For this reason, there is growing interest and research into the possibility of combining existing therapies with various adjuvants that either enhance activity or overcome existing mechanisms of resistance. Reports of antifungal adjuvants range from plant extracts to repurposed compounds, to synthetic peptides. This approach would potentially prolong the utility of currently approved antifungals and mitigate the ongoing development of resistance. PMID:27459018
Antifungal Activity of Lactobacillus sp. Bacteria in the Presence of Xylitol and Galactosyl-Xylitol
Lipińska, Lidia; Klewicki, Robert; Klewicka, Elżbieta; Kołodziejczyk, Krzysztof; Sójka, Michał; Nowak, Adriana
2016-01-01
Lactic acid fermentation is a natural method of antimicrobial food protection. Antagonistic activity of Lactobacillus sp. bacteria, taking part in this process, is directed mainly against the same or other microorganisms. In this work we determine the impact of the presence of xylitol and galactosyl-xylitol on the antagonistic activity of 60 Lactobacillus sp. strains against indicator molds (Alternaria alternata, Alternaria brassicicola, Aspergillus niger, Fusarium latenicum, Geotrichum candidum, and Mucor hiemalis) and yeasts (Candida vini). We used double-layer method to select antifungal strains of Lactobacillus bacteria and poisoned medium method to confirm their fungistatic properties. Additionally, we examined the inhibition of Alternaria brassicicola by Lactobacillus paracasei ŁOCK 0921 cultivated with xylitol or galactosyl-xylitol directly on wild cherries. The presence of xylitol and its galactosyl derivative led to increase of spectrum of antifungal activity in most of the studied plant-associated lactobacilli strains. However, no single strain exhibited activity against all the indicator microorganisms. The antifungal activity of Lactobacillus bacteria against molds varied considerably and depended on both the indicator strain and the composition of the medium. The presence of xylitol and galactosyl-xylitol in the growth medium is correlated with the antifungal activity of the studied Lactobacillus sp. bacteria against selected indicator molds. PMID:27294124
Antifungal Activity of Lactobacillus sp. Bacteria in the Presence of Xylitol and Galactosyl-Xylitol.
Lipińska, Lidia; Klewicki, Robert; Klewicka, Elżbieta; Kołodziejczyk, Krzysztof; Sójka, Michał; Nowak, Adriana
2016-01-01
Lactic acid fermentation is a natural method of antimicrobial food protection. Antagonistic activity of Lactobacillus sp. bacteria, taking part in this process, is directed mainly against the same or other microorganisms. In this work we determine the impact of the presence of xylitol and galactosyl-xylitol on the antagonistic activity of 60 Lactobacillus sp. strains against indicator molds (Alternaria alternata, Alternaria brassicicola, Aspergillus niger, Fusarium latenicum, Geotrichum candidum, and Mucor hiemalis) and yeasts (Candida vini). We used double-layer method to select antifungal strains of Lactobacillus bacteria and poisoned medium method to confirm their fungistatic properties. Additionally, we examined the inhibition of Alternaria brassicicola by Lactobacillus paracasei ŁOCK 0921 cultivated with xylitol or galactosyl-xylitol directly on wild cherries. The presence of xylitol and its galactosyl derivative led to increase of spectrum of antifungal activity in most of the studied plant-associated lactobacilli strains. However, no single strain exhibited activity against all the indicator microorganisms. The antifungal activity of Lactobacillus bacteria against molds varied considerably and depended on both the indicator strain and the composition of the medium. The presence of xylitol and galactosyl-xylitol in the growth medium is correlated with the antifungal activity of the studied Lactobacillus sp. bacteria against selected indicator molds.
Antifungal potential of marine natural products.
El-Hossary, Ebaa M; Cheng, Cheng; Hamed, Mostafa M; El-Sayed Hamed, Ashraf Nageeb; Ohlsen, Knut; Hentschel, Ute; Abdelmohsen, Usama Ramadan
2017-01-27
Fungal diseases represent an increasing threat to human health worldwide which in some cases might be associated with substantial morbidity and mortality. However, only few antifungal drugs are currently available for the treatment of life-threatening fungal infections. Furthermore, plant diseases caused by fungal pathogens represent a worldwide economic problem for the agriculture industry. The marine environment continues to provide structurally diverse and biologically active secondary metabolites, several of which have inspired the development of new classes of therapeutic agents. Among these secondary metabolites, several compounds with noteworthy antifungal activities have been isolated from marine microorganisms, invertebrates, and algae. During the last fifteen years, around 65% of marine natural products possessing antifungal activities have been isolated from sponges and bacteria. This review gives an overview of natural products from diverse marine organisms that have shown in vitro and/or in vivo potential as antifungal agents, with their mechanism of action whenever applicable. The natural products literature is covered from January 2000 until June 2015, and we are reporting the chemical structures together with their biological activities, as well as the isolation source. Copyright © 2016 Elsevier Masson SAS. All rights reserved.
Federal Register 2010, 2011, 2012, 2013, 2014
2012-09-05
.... Peptaibols are associated with a wide variety of biological activities and have antifungal, antibacterial... synthesize secondary metabolites with antifungal and antibacterial activities. The DSM 7\\T\\ type strain could... Microbial Commercial Activity Notice (MCAN) with EPA, unless the activity is eligible for one of the...
Antifungal Therapy: New Advances in the Understanding and Treatment of Mycosis
Scorzoni, Liliana; de Paula e Silva, Ana C. A.; Marcos, Caroline M.; Assato, Patrícia A.; de Melo, Wanessa C. M. A.; de Oliveira, Haroldo C.; Costa-Orlandi, Caroline B.; Mendes-Giannini, Maria J. S.; Fusco-Almeida, Ana M.
2017-01-01
The high rates of morbidity and mortality caused by fungal infections are associated with the current limited antifungal arsenal and the high toxicity of the compounds. Additionally, identifying novel drug targets is challenging because there are many similarities between fungal and human cells. The most common antifungal targets include fungal RNA synthesis and cell wall and membrane components, though new antifungal targets are being investigated. Nonetheless, fungi have developed resistance mechanisms, such as overexpression of efflux pump proteins and biofilm formation, emphasizing the importance of understanding these mechanisms. To address these problems, different approaches to preventing and treating fungal diseases are described in this review, with a focus on the resistance mechanisms of fungi, with the goal of developing efficient strategies to overcoming and preventing resistance as well as new advances in antifungal therapy. Due to the limited antifungal arsenal, researchers have sought to improve treatment via different approaches, and the synergistic effect obtained by the combination of antifungals contributes to reducing toxicity and could be an alternative for treatment. Another important issue is the development of new formulations for antifungal agents, and interest in nanoparticles as new types of carriers of antifungal drugs has increased. In addition, modifications to the chemical structures of traditional antifungals have improved their activity and pharmacokinetic parameters. Moreover, a different approach to preventing and treating fungal diseases is immunotherapy, which involves different mechanisms, such as vaccines, activation of the immune response and inducing the production of host antimicrobial molecules. Finally, the use of a mini-host has been encouraging for in vivo testing because these animal models demonstrate a good correlation with the mammalian model; they also increase the speediness of as well as facilitate the preliminary testing of new antifungal agents. In general, many years are required from discovery of a new antifungal to clinical use. However, the development of new antifungal strategies will reduce the therapeutic time and/or increase the quality of life of patients. PMID:28167935
Ye, X Y; Ng, T B
2003-02-01
An antifungal protein with a novel N-terminal sequence GVGAAYGCFG and a molecular mass of 31 kDa was isolated from the legumes of the sugar snap pea Pisum sativum var. macrocarpon. The protein, designated pisumin, exhibited antifungal activity against Coprinus comatus and Pleurotus ostreatus and much weaker activity against Fusarium oxysporum and Rhizoctonia solani. Pisumin inhibited cell-free translation in a rabbit reticulocyte lysate system with an IC(50) of 6 microM. Pisumin was similar to other leguminous antifungal proteins in that it was adsorbed on Affi-gel blue gel and CM-Sepharose.
Choi, Hyemin; Hwang, Jae-Sam; Lee, Dong Gun
2013-11-01
The centipede Scolopendra subspinipes mutilans has been a medically important arthropod species by using it as a traditional medicine for the treatment of various diseases. In this study, we derived a novel lactoferricin B like peptide (LBLP) from the whole bodies of adult centipedes, S. s. mutilans, and investigated the antifungal effect of LBLP. LBLP exerted an antifungal and fungicidal activity without hemolysis. To investigate the antifungal mechanism of LBLP, a membrane study with propidium iodide was first conducted against Candida albicans. The result showed that LBLP caused fungal membrane permeabilization. The assays of the three dimensional flow cytometric contour plot and membrane potential further showed cell shrinkage and membrane depolarization by the membrane damage. Finally, we confirmed the membrane-active mechanism of LBLP by synthesizing model membranes, calcein and FITC-dextran loaded large unilamellar vesicles. These results showed that the antifungal effect of LBLP on membrane was due to the formation of pores with radii between 0.74nm and 1.4nm. In conclusion, this study suggests that LBLP exerts a potent antifungal activity by pore formation in the membrane, eventually leading to fungal cell death. © 2013.
Mechanisms of Candida biofilm drug resistance
Taff, Heather T; Mitchell, Kaitlin F; Edward, Jessica A; Andes, David R
2013-01-01
Candida commonly adheres to implanted medical devices, growing as a resilient biofilm capable of withstanding extraordinarily high antifungal concentrations. As currently available antifungals have minimal activity against biofilms, new drugs to treat these recalcitrant infections are urgently needed. Recent investigations have begun to shed light on the mechanisms behind the profound resistance associated with the biofilm mode of growth. This resistance appears to be multifactorial, involving both mechanisms similar to conventional, planktonic antifungal resistance, such as increased efflux pump activity, as well as mechanisms specific to the biofilm lifestyle. A unique biofilm property is the production of an extracellular matrix. Two components of this material, β-glucan and extracellular DNA, promote biofilm resistance to multiple antifungals. Biofilm formation also engages several stress response pathways that impair the activity of azole drugs. Resistance within a biofilm is often heterogeneous, with the development of a subpopulation of resistant persister cells. In this article we review the molecular mechanisms underlying Candida biofilm antifungal resistance and their relative contributions during various growth phases. PMID:24059922
Antifungal activity of Morinda citrifolia fruit extract against Candida albicans.
Jainkittivong, Aree; Butsarakamruha, Tassanee; Langlais, Robert P
2009-09-01
The objective of the study was to investigate the antifungal activity of Morinda citrifolia fruit extract on Candida albicans. Juice extract from M. citrifolia fruit was lyophilized and used in antifungal testing. Antifungal activity of M. citrifolia fruit extract against C. albicans was tested in vitro at various concentrations and for different contact times. The inhibitory effect of M. citrifolia extract on C. albicans was determined by cultures and an applied broth dilution test. Using cultures, growth of C. albicans was not detected with 50 mg/mL of extract at 30-minute contact time or with 60 mg/mL of extract at 15-minute contact time. By the broth dilution test, the minimum fungicidal concentration of extract against C. albicans was 40 mg/mL at 90-minute contact time or with 50 mg/mL at 15-minute contact time. M. citrifolia fruit extract had an antifungal effect on C. albicans and the inhibitory effect varied with concentration and contact time.
Hu, Yichen; Zhang, Jinming; Kong, Weijun; Zhao, Gang; Yang, Meihua
2017-04-01
The antifungal activity and potential mechanisms in vitro as well as anti-aflatoxigenic efficiency in vivo of natural essential oil (EO) derived from turmeric (Curcuma longa L.) against Aspergillus flavus was intensively investigated. Based on the previous chemical characterization of turmeric EO by gas chromatography-mass spectrometry, the substantially antifungal activities of turmeric EO on the mycelial growth, spore germination and aflatoxin production were observed in a dose-dependent manner. Furthermore, these antifungal effects were related to the disruption of fungal cell endomembrane system including the plasma membrane and mitochondria, specifically i.e. the inhibition of ergosterol synthesis, mitochondrial ATPase, malate dehydrogenase, and succinate dehydrogenase activities. Moreover, the down-regulation profiles of turmeric EO on the relative expression of mycotoxin genes in aflatoxin biosynthetic pathway revealed its anti-aflatoxigenic mechanism. Finally, the suppression effect of fungal contamination in maize indicated that turmeric EO has potential as an eco-friendly antifungal agent. Copyright © 2016 Elsevier Ltd. All rights reserved.
Alvarez, Eduardo; Sanhueza, Camila
Scedosporium species are considered emerging agents causing illness in immunocompromised patients. In Chile, only Scedosporium apiospermum, Scedosporium boydii and Lomentospora prolificans haven been reported previously. The study aimed to characterize genetically Scedosporium dehoogii strains from Chilean soil samples, and assessed the antifungal susceptibility profile to classic and novel putative antifungal molecules. In 2014, several samples were obtained during a survey of soil fungi in urban areas from Chile. Morphological and phylogenetic analyses of the internal transcribed spacer region (ITS), tubulin (TUB), and calmodulin (CAL) sequences were performed. In addition, the susceptibility profiles to classic antifungal and new putative antifungal molecules were determined. Four strains of Scedosporium dehoogii were isolated from soil samples. The methodology confirmed the species (reported here as a new record for Chile). Antifungal susceptibility testing demonstrates the low activity of terpenes (α-pinene and geraniol) against this species. Voriconazole (VRC), posaconazole (PSC), and the hydroxyquinolines (clioquinol, and 5,7-dibromo-8-hydroxyquinoline) showed the best antifungal activity. Our results demonstrate that Scedosporium dehoogii is present in soil samples from Chile. This study shows also that hydroxyquinolines have potential as putative antifungal molecules. Copyright © 2016 Asociación Española de Micología. Publicado por Elsevier España, S.L.U. All rights reserved.
Moradi, Shoeib; Azerang, Parisa; Khalaj, Vahid; Sardari, Soroush
2013-01-01
Background The rise of opportunistic fungal infections highlights the need for development of new antimicrobial agents. Antimicrobial Peptides (AMPs) and Antifungal Peptides (AFPs) are among the agents with minimal resistance being developed against them, therefore they can be used as structural templates for design of new antimicrobial agents. Methods In the present study four antifungal peptidomimetic structures named C1 to C4 were designed based on plant defensin of Pisum sativum. Minimum inhibitory concentrations (MICs) for these structures were determined against Aspergillus niger N402, Candida albicans ATCC 10231, and Saccharomyces cerevisiae PTCC 5052. Results C1 and C2 showed more potent antifungal activity against these fungal strains compared to C3 and C4. The structure C2 demonstrated a potent antifungal activity among them and could be used as a template for future study on antifungal peptidomemetics design. Sequences alignments led to identifying antifungal decapeptide (KTCENLADTY) named KTC-Y, which its MIC was determined on fungal protoplast showing 25 (µg/ml) against Aspergillus fumigatus Af293. Conclusion The present approach to reach the antifungal molecules seems to be a powerful approach in design of bioactive agents based on AMP mimetic identification. PMID:23626876
In vivo efficacy of SM-8668 (Sch 39304), a new oral triazole antifungal agent.
Tanio, T; Ichise, K; Nakajima, T; Okuda, T
1990-06-01
SM-8668 (Sch 39304) is a new oral antifungal agent which we evaluated in comparison with fluconazole in various fungal infection models. The prophylactic effect of SM-8668 was excellent against systemic candidiasis, aspergillosis, and cryptococcosis in mice. The 50% effective dose for SM-8668 was assessed at 10 days after infection and was 0.18, 3.7, and 5.9 mg/kg (body weight), respectively, for the above-mentioned fungal diseases. Fluconazole was about four times less effective than SM-8668 against systemic candidiasis and was only slightly effective at doses of 80 and 25 mg/kg against systemic aspergilosis and cryptococcosis, respectively. SM-8668 was also about four to eight times more active than fluconazole against vaginal candidiasis in rats and against dermatophytic infection in guinea pigs. In addition, topical SM-8668 was as effective as topical miconazole or tioconazole against skin mycosis in guinea pigs. After oral administration, SM-8668 showed a maximum concentration in serum similar to that of fluconazole in both mice and rats, but the elimination half-life and area under the serum concentration-time curve for SM-8668 were twice those for fluconazole.
In vivo efficacy of SM-8668 (Sch 39304), a new oral triazole antifungal agent.
Tanio, T; Ichise, K; Nakajima, T; Okuda, T
1990-01-01
SM-8668 (Sch 39304) is a new oral antifungal agent which we evaluated in comparison with fluconazole in various fungal infection models. The prophylactic effect of SM-8668 was excellent against systemic candidiasis, aspergillosis, and cryptococcosis in mice. The 50% effective dose for SM-8668 was assessed at 10 days after infection and was 0.18, 3.7, and 5.9 mg/kg (body weight), respectively, for the above-mentioned fungal diseases. Fluconazole was about four times less effective than SM-8668 against systemic candidiasis and was only slightly effective at doses of 80 and 25 mg/kg against systemic aspergilosis and cryptococcosis, respectively. SM-8668 was also about four to eight times more active than fluconazole against vaginal candidiasis in rats and against dermatophytic infection in guinea pigs. In addition, topical SM-8668 was as effective as topical miconazole or tioconazole against skin mycosis in guinea pigs. After oral administration, SM-8668 showed a maximum concentration in serum similar to that of fluconazole in both mice and rats, but the elimination half-life and area under the serum concentration-time curve for SM-8668 were twice those for fluconazole. PMID:2203310
Activity of terbinafine in experimental fungal infections of laboratory animals.
Petranyi, G; Meingassner, J G; Mieth, H
1987-01-01
The allylamine derivative terbinafine is the first antifungal agent with primary fungicidal properties against dermatophytes which acts systemically after oral application as well as locally after topical application. Comparative oral studies carried out with griseofulvin and ketoconazole in model infections such as guinea pig trichophytosis and microsporosis revealed terbinafine to be superior to the reference compounds both clinically and mycologically. An excellent antimycotic activity of terbinafine was also demonstrable after topical treatment of guinea pig dermatophytoses caused by Trichophyton mentagrophytes or Microsporum canis. Results of comparative chemotherapeutic studies carried out with econazole and tolnaftate demonstrated superior efficacy of terbinafine in the treatment of both trichophytosis and microsporosis. Skin infections of guinea pigs caused by Candida albicans and vaginal candidiasis in rats proved to be responsive to a topical application of terbinafine also. However, the reference compounds, clotrimazole and miconazole, exhibited activity superior to that of terbinafine in both models. PMID:3435103
Novel oxidized derivatives of antifungal pyrrolnitrin from the bacterium Burkholderia cepacia K87.
Sultan, Zakir; Park, Kyungseok; Lee, Sang Yeob; Park, Jung Kon; Varughese, Titto; Moon, Surk-Sik
2008-07-01
The screening of antifungal active compounds from the fermentation extracts of soil-borne bacterium Burkholderia cepacia K87 afforded pyrrolnitrin (1) and two new pyrrolnitrin analogs, 3-chloro-4-(3-chloro-2-nitrophenyl)-5-methoxy-3-pyrrolin-2-one (2) and 4-chloro-3-(3-chloro-2-nitrophenyl)-5-methoxy-3-pyrrolin-2-one (3). Pyrrolnitrin showed strong antifungal activity against Rhizoctonia solani but the analogs (2 and 3) were found to be marginally active. The isolates, 2 and 3, are believed to be biodegraded derivatives of pyrrolnitrin.
USDA-ARS?s Scientific Manuscript database
Natural plant extracts often contain compounds that are useful in pest management applications. The essential oil of Eupatorium capillifolium (dog-fennel) was investigated for antifungal and insecticidal activities. Essential oil obtained by hydrodistillation of aerial parts was analyzed by gas chro...
Gómez-Ortíz, Nikte; De la Rosa-García, Susana; González-Gómez, William; Soria-Castro, Montserrat; Quintana, Patricia; Oskam, Gerko; Ortega-Morales, Benjamin
2013-03-13
The presence and deteriorating action of microbial biofilms on historic stone buildings have received considerable attention in the past few years. Among microorganisms, fungi are one of the most damaging groups. In the present work, antimicrobial surfaces were prepared using suspensions of Ca(OH)2 particles, mixed with ZnO or TiO2 nanoparticles. The antimicrobial surfaces were evaluated for their antifungal activity both in the dark and under simulated natural photoperiod cycles, using Penicillium oxalicum and Aspergillus niger as model organisms, and two limestone lithotypes commonly used in construction and as materials for the restoration of historic buildings. Both Ca(OH)2-ZnO and Ca(OH)2-TiO2 materials displayed antifungal activity: ZnO-based systems had the best antifungal properties, being effective both in the dark and under illumination. In contrast, TiO2-based coatings showed antifungal activity only under photoperiod conditions. Controls with coatings consisting of only Ca(OH)2 were readily colonized by both fungi. The antifungal activity was monitored by direct observation with microscope, X-ray diffraction (XRD), and scanning electron microscopy (SEM), and was found to be different for the two lithotypes, suggesting that the mineral grain distribution and porosity played a role in the activity. XRD was used to investigate the formation of biominerals as indicator of the fungal attack of the limestone materials, while SEM illustrated the influence of porosity of both the limestone material and the coatings on the fungal penetration into the limestone. The coated nanosystems based on Ca(OH)2-50%ZnO and pure zincite nanoparticulate films have promising performance on low porosity limestone, showing good antifungal properties against P. oxalicum and A. niger under simulated photoperiod conditions.
Park, Mi-Jin; Gwak, Ki-Seob; Yang, In; Choi, Won-Sil; Jo, Hyun-Jin; Chang, Je-Won; Jeung, Eui-Bae; Choi, In-Gyu
2007-10-01
This study was carried out in order to investigate the potential of using plant oils derived from Leptospermum petersonii Bailey and Syzygium aromaticum L. Merr. Et Perry as natural antifungal agents. The antifungal effects of essential oils at concentrations of 0.05, 0.1, 0.15, and 0.2 mg/ml on the dermatophytes Microsporum canis (KCTC 6591), Trichophyton mentagrophytes (KCTC 6077), Trichophyton rubrum (KCCM 60443), Epidermophyton floccosum (KCCM 11667), and Microsporum gypseum were evaluated using the agar diffusion method. The major constituents of the active fraction against the dermatophytes were identified by gas chromatography-mass spectrometry and high-performance liquid chromatography analysis. The antifungal activities of S. aromaticum oil (clove oil) against the dermatophytes tested were highest at a concentration of 0.2 mg/ml, with an effectiveness of more than 60%. Hyphal growth was completely inhibited in T. mentagrophytes, T. rubrum, and M. gypseum by treatment with clove oil at a concentration of 0.2 mg/ml. Eugenol was the most effective antifungal constituent of clove oil against the dermatophytes T. mentagrophytes and M. canis. Morphological changes in the hyphae of T. mentagrophytes, such as damage to the cell wall and cell membrane and the expansion of the endoplasmic reticulum, after treatment with 0.11 mg/ml eugenol were observed by transmission electron microscopy (TEM). At a concentration of 0.2 mg/ml, L. petersonii oil (LPO) was more than 90% effective against all of the dermatophytes tested, with the exception of T. rubrum. Geranial was determined to be the most active antifungal constituent of L. petersonii oil. Taken together, the results of this study demonstrate that clove and tea tree oils exhibited significant antifungal activities against the dermatophytes tested in this study.
Maki, Katsuyuki; Watabe, Etsuko; Iguchi, Yumi; Nakamura, Hideko; Tomishima, Masaki; Ohki, Hidenori; Yamada, Akira; Matsumoto, Satoru; Ikeda, Fumiaki; Tawara, Shuichi; Mutoh, Seitaro
2006-01-01
To establish an in vitro method of predicting in vivo efficacy of antifungal drugs against Candida albicans and Aspergillus fumigatus, the antifungal activities of fluconazole, itraconazole, and amphotericin B were determined in mouse serum. The minimum inhibitory concentration (MIC) of each drug was measured using mouse serum as a diluent. For C. albicans, the assay endpoint of azoles was defined as inhibition of mycelial extension (mMIC) and for A. fumigatus, as no growth (MIC). The MICs of amphotericin B for both pathogens were defined as the MIC at which no mycelial growth occurred. Serum MIC or mMIC determinations were then used to estimate the concentration of the drugs in serum of mice treated with antifungal drugs by multiplying the antifungal titer of the serum samples by the serum (m)MIC. The serum drug concentrations were also determined by HPLC. The serum concentrations estimated microbiologically showed good agreement with those determined by HPLC, except for itraconazole. Analysis of the serum samples from itraconazole-treated mice by a sensitive bioautography revealed the presence of additional spots, not seen in control samples of itraconazole. The bioautography assay demonstrated that the additional material detected in serum from mice treated with itraconazole was an active metabolite of itraconazole. The data showed that the apparent reduction in the itraconazole serum concentration as determined by HPLC was the result of the formation of an active metabolite, and that the use of a microbiological method to measure serum concentrations of drugs can provide a method for prediction of in vivo efficacy of antifungal drugs.
Delavenne, Emilie; Cliquet, Sophie; Trunet, Clément; Barbier, Georges; Mounier, Jérôme; Le Blay, Gwenaëlle
2015-02-01
Few antifungal protective cultures adapted to fermented dairy products are commercially available because of the numerous constraints linked to their market implementation. Consumer's demand for naturally preserved food products is growing and the utilization of lactic acid bacteria is a promising way to achieve this goal. In this study, using a 2(5-1) factorial fractional design, we first evaluated the effects of fermentation time, of initial sucrose concentration and of the initial contamination amount of a spoilage yeast, on antifungal activities of single and mixed cultures of Lactobacillus rhamnosus K.C8.3.1I and Lactobacillus harbinensis K.V9.3.1Np in yogurt. L. harbinensis K.V9.3.1Np, the most relevant strain with regard to antifungal activity was then studied to determine its minimal inhibitory inoculation rate, its antifungal stability during storage and its impact on yogurt organoleptic properties. We showed that L. harbinensis K.V9.3.1Np maintained a stable antifungal activity over time, which was not affected by initial sucrose, nor by a reduction of the fermentation time. This inhibitory activity was an all-or-nothing phenomenon. Once L. harbinensis K.V9.3.1Np reached a population of ∼ 2.5 × 10(6) cfu/g of yogurt at the time of contamination, total inhibition of the yeast was achieved. We also showed that an inoculation rate of 5 × 10(6) cfu/ml in milk had no detrimental effect on yogurt organoleptic properties. In conclusion, L. harbinensis K.V9.3.1Np is a promising antifungal bioprotective strain for yogurt preservation. Copyright © 2014 Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Dhinakaran, Devaraj Isaac; Lipton, Aaron Premnath
2015-02-01
In phylum Echinodermata, the family Holothuridae is distinguished by its capacity of bioactive compounds. Sea cucumber Holothuria atra is commonly known as the lollyfish. The antifungal activity was detected using agar well diffusion method against the various fungal strains such as Trichoderma viride, Aspergillus niger, Aspergillus flavis, Candida albicans and Penicillium chrysogenum. Relatively high antifungal activity was seen against Candida albicans at 100 μL-1 concentration of extracts. Zone of inhibition was measured at 18 mm of diameter. The anti-tumor activities were detected against the Vero and Hep2 cell lines using MTT assay. The cells were treated with H. atra extract at concentrations 0.078-10mg mL-1. The extract showed high proliferative activity against the Hep2 cells. The body wall extracts of sea cucumber ( H. atra) showed effective antifungal and antitumor activities. All these findings suggest that the extracts could be used for the development of drugs.
Souza, Beatriz C C; De Oliveira, Tiago B; Aquino, Thiago M; de Lima, Maria C A; Pitta, Ivan R; Galdino, Suely L; Lima, Edeltrudes O; Gonçalves-Silva, Teresinha; Militão, Gardênia C G; Scotti, Luciana; Scotti, Marcus T; Mendonça, Francisco J B
2012-06-01
A series of 2-[(arylidene)amino]-cycloalkyl[b]thiophene-3-carbonitriles (2a-x) was synthesized by incorporation of substituted aromatic aldehydes in Gewald adducts (1a-c). The title compounds were screened for their antifungal activity against Candida krusei and Criptococcus neoformans and for their antiproliferative activity against a panel of 3 human cancer cell lines (HT29, NCI H-292 and HEP). For antiproliferative activity, the partial least squares (PLS) methodology was applied. Some of the prepared compounds exhibited promising antifungal and proliferative properties. The most active compounds for antifungal activity were cyclohexyl[b]thiophene derivatives, and for antiproliferative activity cycloheptyl[b]thiophene derivatives, especially 2-[(1H-indol-2-yl-methylidene)amino]- 5,6,7,8-tetrahydro-4H-cyclohepta[b]thiophene-3-carbonitrile (2r), which inhibited more than 97 % growth of the three cell lines. The PLS discriminant analysis (PLS-DA) applied generated good exploratory and predictive results and showed that the descriptors having shape characteristics were strongly correlated with the biological data.
Some Antifungal Properties of Sorbic Acid Extracted from Berries of Rowan (Sorbus Aucuparia).
ERIC Educational Resources Information Center
Brunner, Ulrich
1985-01-01
The food preservative sorbic acid can be extracted from Eurasian mountain ash berries (commercially available) and used to show antifungal properties in microbiological investigations. Techniques for extraction, purification, ultraviolet analysis, and experiments displaying antifungal activity are described. A systematic search for similar…
In Vitro and In Vivo antifungal activities of selected Cameroonian dietary spices
2014-01-01
Background Spices and herbs have been used in food since ancient times to give taste and flavor and also as food preservatives and disease remedies. In Cameroon, the use of spices and other aromatic plants as food flavoring is an integral part of dietary behavior, but relatively little is known about their antifungal potential. The present work was designed to assess the antifungal properties of extracts from spices used in Cameroonian dietary. Methods The in vitro antifungal activities of twenty three extracts from twenty one spices were assessed by the broth micro-dilution method against eight fungi. Also, the in vivo activity of Olax subscorpioidea extract (the most active extract) was evaluated in rat model of disseminated candidiasis due to Candida albicans by estimating the fungal burden in blood and kidney. Results Seven extracts (30%) exhibited moderate to significant antifungal activities, inhibiting the growth of the microorganisms at concentrations ranging from 0.048 to 0.39 mg/mL. Olax subscorpioidea extract exhibited the highest antifungal activity particularly against Candida albicans and Candida tropicalis (MIC of 0.097 mg/mL and 0.048 mg/mL respectively). Sixteen extracts (70%) were weakly active (MICs > 6.25 mg/mL). Oral administration of O. subscorpioidea extract at the dose 2 g/kg of body weight (bw) to artificially infected rats revealed a drop in the number of colony forming units per milliliter (cfu/mL) of Candida albicans cells in the blood below the detection limit (100 cfu/mL) while a modest decrease was observed in the kidney. Conclusion The present work shows that some of the spices studied possess interesting antifungal properties and could be used to treat candidiasis. Among the plant species tested, Olax subscorpioidea displayed the most promising result. PMID:24533718
Maiolo, Elena Maryka; Furustrand Tafin, Ulrika; Borens, Olivier
2014-01-01
We investigated the activities of fluconazole, caspofungin, anidulafungin, and amphotericin B against Candida species in planktonic form and biofilms using a highly sensitive assay measuring growth-related heat production (microcalorimetry). C. albicans, C. glabrata, C. krusei, and C. parapsilosis were tested, and MICs were determined by the broth microdilution method. The antifungal activities were determined by isothermal microcalorimetry at 37°C in RPMI 1640. For planktonic Candida, heat flow was measured in the presence of antifungal dilutions for 24 h. Candida biofilm was formed on porous glass beads for 24 h and exposed to serial dilutions of antifungals for 24 h, and heat flow was measured for 48 h. The minimum heat inhibitory concentration (MHIC) was defined as the lowest antifungal concentration reducing the heat flow peak by ≥50% (≥90% for amphotericin B) at 24 h for planktonic Candida and at 48 h for Candida biofilms (measured also at 24 h). Fluconazole (planktonic MHICs, 0.25 to >512 μg/ml) and amphotericin B (planktonic MHICs, 0.25 to 1 μg/ml) showed higher MHICs than anidulafungin (planktonic MHICs, 0.015 to 0.5 μg/ml) and caspofungin (planktonic MHICs, 0.125 to 0.5 μg/ml). Against Candida species in biofilms, fluconazole's activity was reduced by >1,000-fold compared to its activity against the planktonic counterparts, whereas echinocandins and amphotericin B mainly preserved their activities. Fluconazole induced growth of planktonic C. krusei at sub-MICs. At high concentrations of caspofungin (>4 μg/ml), paradoxical growth of planktonic C. albicans and C. glabrata was observed. Microcalorimetry enabled real-time evaluation of antifungal activities against planktonic and biofilm Candida organisms. It can be used in the future to evaluate new antifungals and antifungal combinations and to study resistant strains. PMID:24566186
Liu, Xinning; Wang, Decai; Yu, Cuixiang; Li, Tao; Liu, Jianqiao; Sun, Shujuan
2016-01-01
Candida is an important opportunistic fungal pathogen, especially in biofilm associated infections. The formation of a Candida biofilm can decrease Candida sensitivity to antifungal drugs and cause drug resistance. Although many effective antifungal drugs are available, their applications are limited due to their high toxicity and cost. Seeking new antifungal agents that are effective against biofilm-associated infection is an urgent need. Many research efforts are underway, and some progress has been made in this field. It has been shown that the arachidonic acid cascade plays an important role in fungal morphogenesis and pathogenicity. Notably, prostaglandin E2 (PGE2) can promote the formation of a Candida biofilm. Recently, the inhibition of PGE2 has received much attention. Studies have shown that cyclooxygenase (COX) inhibitors, such as aspirin, ibuprofen, and indomethacin, combined with fluconazole can significantly reduce Candida adhesion and biofilm development and increase fluconazole susceptibility; the MIC of fluconazole can be decrease from 64 to 2 μg/ml when used in combination with ibuprofen. In addition, in vivo studies have also confirmed the antifungal activities of these inhibitors. In this article, we mainly review the relationship between PGE2 and Candida biofilm, summarize the antifungal activities of COX inhibitors and analyze the possible antifungal activity of microsomal prostaglandin E synthase-1 (MPGES-1) inhibitors; additionally, other factors that influence PGE2 production are also discussed. Hopefully this review can disclose potential antifungal targets based on the arachidonic acid cascade and provide a prevailing strategy to alleviate Candida albicans biofilm formation. PMID:27999568
Trypanocide, cytotoxic, and antifungal activities of Momordica charantia.
Santos, Karla K A; Matias, Edinardo F F; Sobral-Souza, Celestina E; Tintino, Saulo R; Morais-Braga, Maria F B; Guedes, Glaucia M M; Santos, Francisco A V; Sousa, Ana Carla A; Rolón, Miriam; Vega, Celeste; de Arias, Antonieta Rojas; Costa, José G M; Menezes, Irwin R A; Coutinho, Henrique D M
2012-02-01
Chagas disease, caused by Trypanosoma cruzi, is a public health problem. Currently, chemotherapy is the only available treatment for this disease, and the drugs used, nifurtimox and benzonidazol, present high toxicity levels. An alternative for replacing these drugs are natural extracts from Momordica charantia L. (Cucurbitaceae) used in traditional medicine because of their antimicrobial and biological activities. In this study, we evaluated the extract of M. charantia for its antiepimastigote, antifungal, and cytotoxic activities. An ethanol extract of leaves from M. charantia was prepared. To research in vitro antiepimastigote activity, T. cruzi CL-B5 clone was used. Epimastigotes were inoculated at a concentration of 1 × 10(5) cells/mL in 200 µl tryptose-liver infusion. For the cytotoxicity assay, J774 macrophages were used. The antifungal activity was evaluated by microdilution using strains of Candida albicans, Candida tropicalis, and Candida krusei. The effective concentration capable of killing 50% of parasites (IC(50)) was 46.06 µg/mL. The minimum inhibitory concentration (MIC) was ≤ 1024 µg/mL. Metronidazole showed a potentiation of its antifungal effect when combined with an extract of M. charantia. Our results indicate that M. charantia could be a source of plant-derived natural products with antiepimastigote and antifungal-modifying activity with moderate toxicity.
Implementation of bio-fungicides and seed treatment in organic rice cv. KDML 105 farming.
Thobunluepop, Pitipong
2009-08-15
This study was aimed to evaluate the several chemical compounds of relatively composite structure with antifungal activity from Thai local medical plants. The antifungal activity of Stemona curtisii HK. f., Stemona tuberose L., Acorus calamus L., Eugenia caryophyllus, Memmea siamensis Kost. and an eugenol active compound were studied in vitro. Four pathogenic seed borne fungi, Alternaria solani, Colletotrichum sp., Fusarium moniliforme and Rhizoctonia solani were used as target organisms. The agar overlay technique and spore inhibition techniques were applied for the determination of their essential oil and active compound antifungal activity at various concentration; 0.10, 0.25, 0.50 and 1.00% (v/v) and untreated as control (0% v/v). Eugenol active compound showed the strongest antifungal activity on all species of tested fungal species. On the other hand, the antifungal activity of those bio-fungicides was lined up into a series from strong to low, as follows: Eugenia caryophyllus > Acorus calamus Linn. > Stemona tuberosa L. > Stemona curtisii Hk.f, while Mammea siamensis Kost. could not control any fungal species. Moreover, after eugenol application, lysis of spore and inhibition of mycelium growth were detected. Microscopic analysis exhibited complete lysis of spores after 24 h at a concentration of 1.00% v/v. Moreover, at the same concentration and 96 h incubation the mycelia growth was completely inhibited.
Muhizi, Théoneste; Coma, Véronique; Grelier, Stéphane
2011-03-01
Structure-activity relationships are often reported in scientific studies. These may be employed in searching for new acceptable biocides to use against harmful microorganisms, because the biocides used hitherto encounter various problems, including lack of efficiency, high toxicity and persistence. Nowadays, scientists are trying to find new, environmentally acceptable biocides to replace these earlier biocides. Different compounds from renewable materials have been studied and have shown pronounced antifungal activity against wood fungi. These include aminopolysaccharide derivatives and different quaternary ammonium polymers. A biological study carried out with these products indicated a possible relationship between amino groups and differences in biological activity observed. In this study, an amino group was successively fixed to different carbon atoms of glucose, and glucosamine was also modified by both N-alkylation and quaternisation. The impact of the amino group position on antifungal activity against two wood decay fungi was investigated. The amino group at the anomeric position showed the highest antifungal activity against both Coriolus versicolor Quel. and Poria placenta (Fr.) Cooke. Furthermore, the positive impact of both N-alkylation and quaternisation on the growth of both strains was demonstrated. The anomeric position of the amino group and the N-alkylation and quaternisation of amino sugars considerably increase the antifungal activity of these compounds. Copyright © 2010 Society of Chemical Industry.
Saiz-Urra, Liane; Racero, Juan C; Macías-Sáchez, Antonio J; Hernández-Galán, Rosario; Hanson, James R; Perez-Gonzalez, Maykel; Collado, Isidro G
2009-03-25
Twenty-three clovane derivatives, nine described here for the first time, bearing substituents on carbon C-2, have been synthesized and evaluated for their in vitro antifungal activity against the phytopathogenic fungus Botrytis cinerea. The results showed that compounds 9, 14, 16, and 18 bearing nitrogen atoms in the chain attached at C-2 displayed potent antifungal activity, whereas mercapto derivatives 13, 19, and 22 displayed low activity. The antifungal activity showed a clear structure-activity relationship (SAR) trend, which confirmed the importance of the nature of the C-2 chain on the antifungal activity. On the basis of these observations, the metabolism of compounds 8 and 14 by the fungus B. cinerea, and the metabolism of other clovanes by this fungus, described previously, a pro-drug action mechanism for 2-alkoxyclovane compounds is proposed. Quantitative structure-activity relationship (QSAR) studies were performed to rationalize the results and to suggest further optimization, using a topological sub-structural molecular design (TOPS-MODE) approach. The model displayed good fit and predictive capability, describing 85.5% of the experimental variance, with a standard deviation of 9.502 and yielding high values of cross-validation determination coefficients (q2CV-LOO = 0.784 and q2boot = 0.673). The most significant variables were the spectral moments weighted by bond dipole moment (Dip), hydrophobicity (Hyd), and the combined dipolarity/polarizability Abraham molecular descriptor (Ab-pi2H).
Rai, Mahendra; Ingle, Avinash P; Gade, Aniket K; Duarte, Marta Cristina Teixeira; Duran, Nelson
2015-10-01
The authors report extracellular mycosynthesis of silver nanoparticles (AgNPs) by Phoma capsulatum, Phoma putaminum and Phoma citri. The AgNPs thus synthesised were characterised by UV-visible spectrophotometer, Fourier transform infrared spectroscopy, Nanosight LM20 and transmission electron microscopy, which confirmed the synthesis of mostly spherical and polydisperse nanoparticles capped with proteins. The size of AgNPs was found in the range of 10-80 , 5-80 and 5-90 nm with an average size of 31.85, 25.43 and 23.29 nm by P. capsulatum, P. putaminum and P. citri, respectively. Further, potential antimicrobial activity was reported against Aspergillus niger, Candida albicans, Salmonella choleraesuis, Pseudomonas aeruginosa, Staphylococcus aureus and Escherichia coli. The lowest minimal inhibitory concentration (MIC) (0.85 µg/ml) was reported for AgNPs synthesised from P. citri against S. choleraesuis. However, AgNPs synthesised from P. capsulatum showed the highest MIC (10.62 µg/ml) against S. choleraesuis, P. aeruginosa and E. coli (clinical isolate). The same MIC values (10.62 µg/ml) were also reported against P. aeruginosa and both clinical and standard isolates of E. coli for AgNPs synthesised from P. citri. It was also observed that all the silver nanoparticles showed remarkable antifungal and antibacterial activity against these tested pathogens as compared with the commercially available antifungal and antibacterial agents.
Fardin, K M; Young, M C M
2015-07-01
There is significant interest in research to develop plant extracts with fungicidal activities that are less harmful to the environment and human health than synthetic fungicides. This study aimed to evaluate the antifungal activity of the extracts of Avicennia schaueriana against Colletotrichum and Cladosporium species and to identify the compounds responsible for the activity. Leaves and stems of A. schaueriana were extracted with ethanol and partitioned with petroleum ether, chloroform and ethyl acetate. The antifungal activity of such extracts was tested by bioautography against Cladosporium sphaerospermum, Cladosporium cladosporioides and Colletotrichum lagenarium. Ethanolic extracts, petroleum ether and chloroform fractions of stems had the highest antifungal activity with several active bands (Rf = 0·72 and Rf = 0·55). In the agar dilution assay, ethanolic extract, petroleum ether and chloroform fractions of stems were the most efficacious, presenting 85, 62 and 63% growth inhibition of Colletotrichum gloeopsporioides and minimum inhibitory concentration values between 1 and 1·5 mg ml(-1) , respectively. Analysis carried out using gas chromatography coupled to a mass spectrometry of petroleum ether and chloroform fractions allowed the identification of fatty acids methyl esters, lupeol and naphthoquinones such as lapachol, α-lapachone, naphtho[2,3-b]furan-4,9-dione, 2-isopropyl- and avicenol-C. We may infer that the antifungal activity of A. schaueriana is due to the abundance of these compounds. This study shows that Avicennia schaueriana extracts have a high potential for the growth inhibition of Colletotrichum and Cladosporium ssp. and will provide a starting point for discovering new natural products with antifungal activity. Their development is of particular interest to organic production systems where synthetic fungicides cannot be used. © 2015 The Society for Applied Microbiology.
Antimicrobial and antifungal activities of the extracts and essential oils of Bidens tripartita.
Tomczykowa, Monika; Tomczyk, Michał; Jakoniuk, Piotr; Tryniszewska, Elzbieta
2008-01-01
The aim of this study was to determine the antibacterial and antifungal properties of the extracts, subextracts and essential oils of Bidens tripartita flowers and herbs. In the study, twelve extracts and two essential oils were investigated for activity against different Gram-positive Bacillus subtilis, Micrococcus luteus, Staphylococcus aureus, Gram-negative bacteria Escherichia coli, E. coli (beta-laktamase+), Klebsiella pneumoniae (ESBL+), Pseudomonas aeruginosa and some fungal organisms Candida albicans, C. parapsilosis, Aspergillus fumigatus, A. terreus using a broth microdilution and disc diffusion methods. The results obtained indicate antimicrobial activity of the tested extracts (except butanolic extracts), which however did not inhibit the growth of fungi used in this study. Bacteriostatic effect of both essential oils is insignificant, but they have strong antifungal activity. These results support the use of B. tripartita to treat a microbial infections and it is indicated as an antimicrobial and antifungal agent, which may act as pharmaceuticals and preservatives.
Larsen, Camilla Eggert; Larsen, Camilla Josephine; Franzyk, Henrik; Regenberg, Birgitte
2015-05-01
Due to increased occurrence of infections and food spoilage caused by yeast, there is an unmet need for new antifungal agents. The arginine-β-(2,5,7-tri-tert-butylindol-3-yl) alanine-arginine (R-Tbt-R) motif was previously proved useful in the design of an antifungal tripeptide. Here, an array of peptidomimetics based on this motif was investigated for antifungal and hemolytic activity. The five most promising modified tetrapeptide analogues ( 6: and 9-12: contain an additional C-terminal hydrophobic residue, and these were found to exhibit antifungal activity against Saccharomyces cerevisiae (MIC 6 and 12 μg mL(-1)) and Zygosaccharomyces bailii (MIC 6-25 μg mL(-1)). Four compounds ( 6: and 9-11: , had limited hemolytic activity (<10% hemolysis at 8 × MIC). Determination of their killing kinetics revealed that compound 9: displayed fungicidal effect. Testing against cells from an S. cerevisiae deletion mutant library indicated that interaction with yeast-specific fungal sphingolipids, most likely constitutes a crucial step in the mode of action. Interestingly, a lack of activity of peptidomimetics 6: and 9-11: towards Candida spp. was shown to be due to degradation or sequestering by the yeast. Due to their ultrashort nature, antifungal activity and low toxicity, the four compounds may have potential as leads for novel preservatives. © FEMS 2015. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.
Scherr, Nicole; Röltgen, Katharina; Witschel, Matthias; Pluschke, Gerd
2012-12-01
An alamarBlue-based growth inhibition assay has been adapted for the thermosensitive and slow-growing pathogen Mycobacterium ulcerans. The standardized test procedure enables medium-throughput screening of preselected compound libraries. Testing of a set of 48 azoles with known antifungal activity led to the identification of an imidazole antifungal displaying an inhibitory dose (ID) of 9 μM for M. ulcerans.
Röltgen, Katharina; Witschel, Matthias; Pluschke, Gerd
2012-01-01
An alamarBlue-based growth inhibition assay has been adapted for the thermosensitive and slow-growing pathogen Mycobacterium ulcerans. The standardized test procedure enables medium-throughput screening of preselected compound libraries. Testing of a set of 48 azoles with known antifungal activity led to the identification of an imidazole antifungal displaying an inhibitory dose (ID) of 9 μM for M. ulcerans. PMID:23006761
Noble metal-modified titania with visible-light activity for the decomposition of microorganisms
Endo, Maya; Wei, Zhishun; Wang, Kunlei; Karabiyik, Baris; Yoshiiri, Kenta; Rokicka, Paulina; Ohtani, Bunsho
2018-01-01
Commercial titania photocatalysts were modified with silver and gold by photodeposition, and characterized by diffuse reflectance spectroscopy (DRS), X-ray powder diffraction (XRD), X-ray photoelectron spectroscopy (XPS) and scanning transmission electron microscopy (STEM). It was found that silver co-existed in zero valent (core) and oxidized (shell) forms, whereas gold was mainly zero valent. The obtained noble metal-modified samples were examined with regard to antibacterial (Escherichia coli (E. coli)) and antifungal (Aspergillus niger (A. niger), Aspergillus melleus (A. melleus), Penicillium chrysogenum (P. chrysogenum), Candida albicans (C. albicans)) activity under visible-light irradiation and in the dark using disk diffusion, suspension, colony growth (“poisoned food”) and sporulation methods. It was found that silver-modified titania, besides remarkably high antibacterial activity (inhibition of bacterial proliferation), could also decompose bacterial cells under visible-light irradiation, possibly due to an enhanced generation of reactive oxygen species and the intrinsic properties of silver. Gold-modified samples were almost inactive against bacteria in the dark, whereas significant bactericidal effect under visible-light irradiation suggested that the mechanism of bacteria inactivation was initiated by plasmonic excitation of titania by localized surface plasmon resonance of gold. The antifungal activity tests showed efficient suppression of mycelium growth by bare titania, and suppression of mycotoxin generation and sporulation by gold-modified titania. Although, the growth of fungi was hardly inhibited through disc diffusion (inhibition zones around discs), it indicates that gold does not penetrate into the media, and thus, a good stability of plasmonic photocatalysts has been confirmed. In summary, it was found that silver-modified titania showed superior antibacterial activity, whereas gold-modified samples were very active against fungi, suggesting that bimetallic photocatalysts containing both gold and silver should exhibit excellent antimicrobial properties. PMID:29600144
Galvis-Marín, Juan Camilo; Rodríguez-Bocanegra, María Ximena; Pulido-Villamarín, Adriana Del Pilar; Castañeda-Salazar, Rubiela; Celis-Ramírez, Adriana Marcela; Linares-Linares, Melva Yomary
Malassezia furfur is a human skin commensal yeast that can cause skin and opportunistic systemic infections. Given its lipid dependant status, the reference methods established by the Clinical and Laboratory Standards Institute (CLSI) to evaluate antifungal susceptibility in yeasts are not applicable. To evaluate the in vitro susceptibility of M. furfur isolates from infections in humans to antifungals of clinical use. The susceptibility profile to amphotericin B, itraconazole, ketoconazole and voriconazole of 20 isolates of M. furfur, using the broth microdilution method (CLSI M27-A3) and Etest ® , was evaluated. Itraconazole and voriconazole had the highest antifungal activity against the isolates tested. The essential agreement between the two methods for azoles antifungal activity was in the region of 60-85% and the categorical agreement was around 70-80%, while the essential and categorical agreement for amphotericin B was 10%. The azoles were the compounds that showed the highest antifungal activity against M. furfur, as determined by the two techniques used; however more studies need to be performed to support that Etest ® is a reliable method before its implementation as a routine clinical laboratory test. Copyright © 2016 Asociación Española de Micología. Publicado por Elsevier España, S.L.U. All rights reserved.
Cossu, Andrea; Wang, Min S; Chaudhari, Amol; Nitin, Nitin
2015-09-30
Conventional antifungal treatments against Candida albicans in the oral cavity often result in increased cytotoxicity. The goal of this study was to determine the potential of starch Pickering emulsion as a delivery vehicle for an antifungal natural phenolic compound such as thymol in simulated saliva fluid (SSF) compared to amphotericin B. An oil-in-water (o/w) emulsion was stabilized using starch particles. Physical stability of the emulsion and disruption induced by α-amylase activity in SSF was evaluated. Encapsulated thymol in o/w emulsion was compared to encapsulated amphotericin B for antifungal activity against C. albicans in suspension using emulsions or zone inhibition assay on agar plates using emulsions dispersed in alginate films. Results showed that the emulsions were stable for at least three weeks. Digestion of the emulsion by α-amylase led to coalescence of emulsion droplets. The antifungal activity of thymol and amphotericin B in emulsion formulation was enhanced upon incubation with α-amylase. Results from the zone inhibition assay demonstrated efficacy of the emulsions dispersed in alginate films. Interestingly, addition of α-amylase to the alginate films resulted in a decreased inhibitory effect. Overall, this study showed that starch Pickering emulsions have a potential to deliver hydrophobic antifungal compounds to treat oral candidiasis. Copyright © 2015 Elsevier B.V. All rights reserved.
Park, Jong-Myong; Park, Sung-Jin; Ghim, Sa-Youl
2013-09-28
Crack remediation on the surface of cement mortar using microbiological calcium carbonate (CaCO3) precipitation (MICP) has been investigated as a microbial sealing agent on construction materials. However, MICP research has never acknowledged the antifungal properties of calcite-forming bacteria (CFB). Since fungal colonization on concrete surfaces can trigger biodeterioration processes, fungi on concrete buildings have to be prevented. Therefore, to develop a microbial sealing agent that has antifungal properties to remediate cement cracks without deteriorative fungal colonization, we introduced an antifungal CFB isolated from oceanic islands (Dokdo islands, territory of South Korea, located at the edge of the East Sea in Korea.). The isolation of CFB was done using B4 or urea-CaCl2 media. Furthermore, antifungal assays were done using the pairing culture and disk diffusion methods. Five isolated CFB showed CaCO3 precipitation and antifungal activities against deteriorative fungal strains. Subsequently, five candidate bacteria were identified using 16S rDNA sequence analysis. Crack remediation, fungi growth inhibition, and water permeability reduction of antifungal CFB-treated cement surfaces were tested. All antifungal CFB showed crack remediation abilities, but only three strains (KNUC2100, 2103, and 2106) reduced the water permeability. Furthermore, these three strains showed fungi growth inhibition. This paper is the first application research of CFB that have antifungal activity, for an eco-friendly improvement of construction materials.
Common drug-drug interactions in antifungal treatments for superficial fungal infections.
Gupta, Aditya K; Versteeg, Sarah G; Shear, Neil H
2018-04-01
Antifungal agents can be co-administered alongside several other medications for a variety of reasons such as the presence of comorbidities. Pharmacodynamic interactions such as synergistic and antagonistic interactions could be the result of co-administered medications. Pharmacokinetic interactions could also transpire through the inhibition of metabolizing enzymes and drug transport systems, altering the absorption, metabolism and excretion of co-administered medications. Both pharmacodynamic and pharmacokinetic interactions can result in hospitalization due to serious adverse effects associated with antifungal agents, lower therapeutic doses required to achieve desired antifungal activity, and prevent antifungal resistance. Areas covered: The objective of this review is to summarize pharmacodynamic and pharmacokinetic interactions associated with common antifungal agents used to treat superficial fungal infections. Pharmacodynamic and pharmacokinetic interactions that impact the therapeutic effects of antifungal agents and drugs that are influenced by the presence of antifungal agents was the context to which these antifungal agents were addressed. Expert opinion: The potential for drug-drug interactions is minimal for topical antifungals as opposed to oral antifungals as they have minimal exposure to other co-administered medications. Developing non-lipophilic antifungals that have unique metabolizing pathways and are topical applied are suggested properties that could help limit drug-drug interactions associated with future treatments.
Nair, Anroop B; Singh, Kishan; Shinu, Pottathil; Harsha, Sree; Al-Dhubiab, Bandar E
2013-05-01
Treatment of nail diseases by topical drug delivery continues to draw much attention in the recent days. This study aims to systematically investigate the effect of constant voltage iontophoresis in the transungual drug delivery, using ciclopirox as a model drug. Preliminary permeation studies were carried out by applying constant voltage (6 V for 24 h) using a gel formulation across the human nail plate in a Franz diffusion cell. Different protocols have been studied to authenticate the potential of the proposed technique. Antifungal studies were carried out to assess the pharmacodynamic effect of drug depot formed in the nail plate. Initial studies revealed that application of constant voltage iontophoresis enhanced the permeation by an order of magnitude (p = 0.019) and delivered significant amount of drug into the deeper nail layers. Noticeably higher permeation was observed during the active phase in on-off studies. Excellent correlation was observed in permeation (r(2) = 0.98) and drug load (r(2) = 0.97) with the increase in applied voltage (3-12 V), indicating that the current technique is predictable. The data observed suggest that any further increase in voltage could eventually lead to increase in the permeation and drug load, as the saturation level is very distant. Furthermore, the enhancement in permeation with the applied voltage (3-12 V) was found to be 6-20 folds, compared to the passive process. Results of step up and step down studies substantiated the viability of the current technique. Zone of inhibition measured during the antifungal studies demonstrated that the drug molecules loaded into the nail plate by low voltage iontophoresis is active and releases over an extended period of time (~32 days). Given the excellent results, the current technique could be used as an effective approach for the delivery of antimycotics, which would localize the drug at the infection site and potentially offer higher patient compliance.
Tatsadjieu, L N; Essia Ngang, J J; Ngassoum, M B; Etoa, F-X
2003-07-01
The essential oils of Xylopia aethiopica, Monodora myristica, Zanthoxylum xanthoxyloïdes and Z. leprieurii, four Cameroonian plants used as spices in local food, showed antibacterial and antifungal activity.
Treatment principles for the management of mold infections.
Kontoyiannis, Dimitrios P; Lewis, Russell E
2014-11-06
Survival rates among immunocompromised patients with invasive mold infections have markedly improved over the last decade with earlier diagnosis and new antifungal treatment options. Yet, increasing antifungal resistance, breakthrough infections with intrinsically resistant fungi, and potentially life-threatening adverse effects and drug interactions are becoming more problematic, especially with prolonged therapy. Evidence-based recommendations for treating invasive aspergillosis and mucormycosis provide excellent guidance on the initial workup and treatment of these molds, but they cannot address all of the key management issues. Herein, we discuss 10 general treatment principles in the management of invasive mold disease in immunocompromised patients and discuss how these principles can be integrated to develop an effective, individualized treatment plan. Copyright © 2015 Cold Spring Harbor Laboratory Press; all rights reserved.
Antifungal activity of some Himalayan medicinal plants and cultivated ornamental species.
Sharma, Radhey Shyam; Mishra, Vandana; Singh, Ram; Seth, Nidhi; Babu, C R
2008-12-01
Extracts of roots of Rumex nepalensis, Berberis aristata, Arnebia benthamii, bark of Taxus wallichiana, Juglans regia and petals of Jacquinia ruscifolia were tested for their antifungal activity against twelve different fungal pathogens. Ethanolic extracts of R. nepalensis and J. ruscifolia extracts showed a broad spectrum of activity.
Discovery of benzotriazole-azo-phenol/aniline derivatives as antifungal agents.
Lv, Min; Ma, Jingchun; Li, Qin; Xu, Hui
2018-01-15
A series of benzotriazole-azo-phenol/aniline derivatives were prepared and evaluated for their antifungal activities against six phytopathogenic fungi such as Fusarium graminearum, Fusarium solani, Alternaria alternate, Valsa mali, Botrytis cinerea, and Curvularia lunata. Among them, compounds IIf, IIn, and IIr showed a broad-spectrum of potent antifungal activities. Especially some compounds displayed 3.5-10.8 folds more potent activities than carbendazim against A. alternata and C. lunata. Notably, compounds IIc, IIm, and IIr exhibited good protective and therapeutic effects against B. cinerea at 200 μg/mL. Their structure-activity relationships were also discussed. Copyright © 2017 Elsevier Ltd. All rights reserved.
Kekuda, T.R Prashith; Kavya, R; Shrungashree, R.M; Suchitra, S.V
2010-01-01
The present study deals with antimicrobial activity of ayurvedic drugs containing single herb (Amalaki Choorna and Yastimadhu Choorna) and combination of herbs (DN-90 and Asanadi Kwatha Choorna). Disc diffusion method was used to assess antibacterial activity and antifungal activity was tested using Poison food technique. Absence of bacterial growth around the discs impregnated with the aqueous extracts of drugs and reduction of fungal growth in poisoned plates indicated antimicrobial activity. Further, the results of antibacterial activity of Amalaki choorna were comparable with standard drug Streptomycin. Asanadi Kwatha Choorna inhibited bacteria to more extent than Yastimadhu choorna and DN-90. Among fungi tested, more antifungal activity was observed against Mucor sp. The antimicrobial activity of drugs tested could be due to active principles present in them. PMID:22557355
Tabanca, Nurhayat; Demirci, Betul; Crockett, Sara L; Başer, Kemal Hüsnü Can; Wedge, David E
2007-10-17
Essential oils from three different Asteraceae obtained by hydrodistillation of aerial parts were analyzed by gas chromatography (GC) and gas chromatography-mass spectrometry (GC/MS). Main compounds obtained from each taxon were found as follows: Arnica longifolia carvacrol 37.3%, alpha-bisabolol 8.2%; Aster hesperius hexadecanoic acid 29.6%, carvacrol 15.2%; and Chrysothamnus nauseosus var. nauseosus beta-phellandrene 22.8% and beta-pinene 19.8%. Essential oils were also evaluated for their antimalarial and antimicrobial activity against human pathogens, and antifungal activities against plant pathogens. No antimalarial and antimicrobial activities against human pathogens were observed. Direct bioautography demonstrated antifungal activity of the essential oils obtained from three Asteraceae taxa and two pure compounds, carvacrol and beta-bisabolol, to the plant pathogens Colletotrichum acutatum, C. fragariae and C. gloeosporioides. Subsequent evaluation of antifungal compounds using a 96-well micro-dilution broth assay indicated that alpha-bisabolol showed weak growth inhibition of the plant pathogen Botrytis cinerea after 72 h.
NASA Astrophysics Data System (ADS)
Bakale, Raghavendra P.; Naik, Ganesh N.; Machakanur, Shrinath S.; Mangannavar, Chandrashekhar V.; Muchchandi, Iranna S.; Gudasi, Kalagouda B.
2018-02-01
A hydrazone ligand has been synthesized by the condensation of 2-nitrobenzaldehyde and hydralazine, and its Co(II), Ni(II), Cu(II) and Zn(II) complexes have been reported. Structural characterization of the ligand and its metal complexes has been performed by various spectroscopic [IR, NMR, UV-Vis, Mass], thermal and other physicochemical methods. The structure of the ligand and its Ni(II) complex has been characterized by single crystal X-ray diffraction studies. All the synthesized compounds have been screened for in vitro antimicrobial activity. The antibacterial activity is tested against Gram-positive strains Enterococcus faecalis, Streptococcus mutans and Staphylococcus aureus and Gram-negative strains Escherichia coli, Pseudomonas aeruginosa and Klebsiella pneumoniae using ciprofloxacin as the reference standard. Antifungal activity is tested against Candida albicans, Aspergillus fumigatus and Aspergillus niger using ketoconazole as the reference standard. The minimum inhibitory concentration (MIC) was determined for test compounds as well as for reference standard. Ligand, Cu(II) and Zn(II) complexes have shown excellent activity against Candida albicans.
Payne, Jennifer A. E.; Hayes, Brigitte M. E.; Durek, Thomas; Craik, David J.; Shafee, Thomas M. A.; Poon, Ivan K. H.; Hulett, Mark D.; van der Weerden, Nicole L.
2016-01-01
The plant defensin NaD1 is a potent antifungal molecule that also targets tumor cells with a high efficiency. We examined the features of NaD1 that contribute to these two activities by producing a series of chimeras with NaD2, a defensin that has relatively poor activity against fungi and no activity against tumor cells. All plant defensins have a common tertiary structure known as a cysteine-stabilized α-β motif which consists of an α helix and a triple-stranded β-sheet stabilized by four disulfide bonds. The chimeras were produced by replacing loops 1 to 7, the sequences between each of the conserved cysteine residues on NaD1, with the corresponding loops from NaD2. The loop 5 swap replaced the sequence motif (SKILRR) that mediates tight binding with phosphatidylinositol 4,5-bisphosphate [PI(4,5)P2] and is essential for the potent cytotoxic effect of NaD1 on tumor cells. Consistent with previous reports, there was a strong correlation between PI(4,5)P2 binding and the tumor cell killing activity of all of the chimeras. However, this correlation did not extend to antifungal activity. Some of the loop swap chimeras were efficient antifungal molecules, even though they bound poorly to PI(4,5)P2, suggesting that additional mechanisms operate against fungal cells. Unexpectedly, the loop 1B swap chimera was 10 times more active than NaD1 against filamentous fungi. This led to the conclusion that defensin loops have evolved as modular components that combine to make antifungal molecules with variable mechanisms of action and that artificial combinations of loops can increase antifungal activity compared to that of the natural variants. PMID:27503651
Cabral, C; Francisco, V; Cavaleiro, C; Gonçalves, M J; Cruz, M T; Sales, F; Batista, M T; Salgueiro, L
2012-09-01
Essential oils are known to possess antimicrobial activity against a wide spectrum of bacteria and fungi. In the present work the composition and the antifungal activity of the oils of Juniperus communis subsp. alpina (Suter) Čelak were evaluated. Moreover, the skin cytotoxicity, at concentrations showing significant antifungal activity, was also evaluated. The oils were isolated by hydrodistillation and analysed by gas chromatography and gas chromatography-mass spectrometry. Minimal inhibitory concentration (MIC) and minimal lethal concentration (MLC) were used to evaluate the antifungal activity of the oil against dermatophytes (Epidermophyton floccosum, Microsporum canis, M. gypseum, Trichophyton mentagrophytes, T. mentagrophytes var. interdigitale, T. rubrum, T. verrucosum), yeasts (Candida albicans, C. guillermondii, C. krusei, C. parapsilosis, C. tropicalis, Cryptococcus neoformans) and Aspergillus species (Aspergillus flavus, A. fumigatus, A. niger). Cytotoxicity was tested in HaCaT keratinocytes through the 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assay. Essential oil of J. communis subsp. alpina needles was predominantly composed of monoterpene hydrocarbons (78.4%), with the main compounds being sabinene (26.2%), α-pinene (12-9%) and limonene (10.4%). Results concerning the antifungal activity demonstrated the potential of needle oil against dermatophytes, particularly for Microsporum canis and Trichophyton rubrum with MIC and MLC of 0.32 μL/mL. Furthermore, evaluation of cell viability showed no significant cytotoxicity in HaCaT keratinocytes at concentrations between 0.32 and 0.64 μL/mL. These results show that it is possible to find appropriate doses of J. communis subsp. alpina oil with both antifungal activity and a very low detrimental effect on keratinocytes. Copyright © 2012 John Wiley & Sons, Ltd.
Oliveira, A H; de Oliveira, G G; Carnevale Neto, F; Portuondo, D F; Batista-Duharte, A; Carlos, I Z
2017-01-04
Vismia guianensis (Aubl.) Pers. is traditionally used in North and Northeast of Brazil for the treatment of dermatomycoses. Since the strategy associating immunomodulators with antifungal drugs seems to be promissory to improve the treatment efficacy in fungal infections, we aimed to investigate the antifungal activity of V. guianensis ethanolic extract of leaves (VGL) and bark (VGB) against Sporothrix schenckii ATCC 16345 and their antinflammatory activities. The extracts were analyzed by HPLC-DAD-IT MS/MS for in situ identification of major compounds. Antifungal activity was evaluated in vitro (microdilution test) and in vivo using a murine model of S. schenckii infection. The production of TNF-α, IFN-γ, IL-4, IL-10 and IL-12 by measured by ELISA, as well as measured the production and inhibition of the NO after treatment with the plant extracts or itraconazole (ITR). Two O-glucosyl-flavonoids and 16 prenylated benzophenone derivatives already described for Vismia were detected. Both VGL and VGB showed significant antifungal activity either in in vitro assay of microdilution (MIC=3.9µg/mL) and in vivo model of infection with reduction of S. schenckii load in spleen. It was also observed a predominance of reduction in the production of NO and the proinflammatory cytokines evaluated except TNFα, but with stimulation of IL-10, as evidence of a potential anti-inflammatory effect associated. The results showed that both VGL and VGB have a significant antifungal against S. schenckii and an anti-inflammatory activity. These results can support the use of these extracts for alternative treatment of sporotrichosis. Copyright © 2016 Elsevier B.V. All rights reserved.
Kumar, S.; Srivastava, D. P.
2010-01-01
An efficient electrochemical method for the preparation of 2-amino-5-substituted-1,3,4-oxadiazoles (4a-k) at platinum anode through the electrooxidation of semicarbazone (3a-k) at controlled potential electrolysis has been reported in the present study. The electrolysis was carried out in the acetic acid solvent and lithium perchlorate was used as supporting electrolyte. The products were characterized by IR,1H-NMR,13C-NMR, mass spectra and elemental analysis. The synthesized compounds were screened for their in vitro growth inhibiting activity against different strains of bacteria viz., Klebsilla penumoniae, Escherichia coli, Bassilus subtilis and Streptococcus aureus and antifungal activity against Aspergillus niger and Crysosporium pannical and results have been compared with the standard antibacterial streptomycin and antifungal griseofulvin. Compounds exhibits significant antibacterial activity and antifungal activity. Compounds 4a and g exhibited equal while 4c, d, i and j slightly less antibacterial activity than standard streptomycin. Compounds 4a and g exhibited equal while 4b, c, d, f and i displayed slightly less antifungal activity than standard griseofulvins. PMID:21218056
Marine-derived Penicillium in Korea: diversity, enzyme activity, and antifungal properties.
Park, Myung Soo; Fong, Jonathan J; Oh, Seung-Yoon; Kwon, Kae Kyoung; Sohn, Jae Hak; Lim, Young Woon
2014-08-01
The diversity of marine-derived Penicillium from Korea was investigated using morphological and multigene phylogenetic approaches, analyzing sequences of the internal transcribed spacer region, β-tubulin gene, and RNA polymerase subunit II gene. In addition, the biological activity of all isolated strains was evaluated. We tested for the extracellular enzyme activity of alginase, endoglucanase, and β-glucosidase, and antifungal activity against two plant pathogens (Colletotrichum acutatum and Fusarium oxysporum). A total of 184 strains of 36 Penicillium species were isolated, with 27 species being identified. The most common species were Penicillium polonicum (19.6 %), P. rubens (11.4 %), P. chrysogenum (11.4 %), and P. crustosum (10.9 %). The diversity of Penicillium strains isolated from soil (foreshore soil and sand) and marine macroorganisms was higher than the diversity of strains isolated from seawater. While many of the isolated strains showed alginase and β-glucosidase activity, no endoglucanase activity was found. More than half the strains (50.5 %) showed antifungal activity against at least one of the plant pathogens tested. Compared with other strains in this study, P. citrinum (strain SFC20140101-M662) showed high antifungal activity against both plant pathogens. The results reported here expand our knowledge of marine-derived Penicillium diversity. The relatively high proportion of strains that showed antifungal and enzyme activity demonstrates that marine-derived Penicillium have great potential to be used in the production of natural bioactive products for pharmaceutical and/or industrial use.
Antifungal activity improved by coproduction of cyclodextrins and anabaenolysins in Cyanobacteria
Shishido, Tania K.; Jokela, Jouni; Kolehmainen, Clara-Theresia; Fewer, David P.; Wahlsten, Matti; Wang, Hao; Rouhiainen, Leo; Rizzi, Ermanno; De Bellis, Gianluca; Permi, Perttu; Sivonen, Kaarina
2015-01-01
Cyclodextrins are cyclic oligosaccharides widely used in the pharmaceutical industry to improve drug delivery and to increase the solubility of hydrophobic compounds. Anabaenolysins are lipopeptides produced by cyanobacteria with potent lytic activity in cholesterol-containing membranes. Here, we identified the 23- to 24-kb gene clusters responsible for the production of the lipopeptide anabaenolysin. The hybrid nonribosomal peptide synthetase and polyketide synthase biosynthetic gene cluster is encoded in the genomes of three anabaenolysin-producing strains of Anabaena. We detected previously unidentified strains producing known anabaenolysins A and B and discovered the production of new variants of anabaenolysins C and D. Bioassays demonstrated that anabaenolysins have weak antifungal activity against Candida albicans. Surprisingly, addition of the hydrophilic fraction of the whole-cell extracts increased the antifungal activity of the hydrophobic anabaenolysins. The fraction contained compounds identified by NMR as α-, β-, and γ-cyclodextrins, which undergo acetylation. Cyclodextrins have been used for decades to improve the solubility and bioavailability of many drugs including antifungal compounds. This study shows a natural example of cyclodextrins improving the solubility and efficacy of an antifungal compound in an ancient lineage of photosynthetic bacteria. PMID:26474830
Comparison of antifungal activities of Vietnamese citrus essential oils.
Van Hung, Pham; Chi, Pham Thi Lan; Phi, Nguyen Thi Lan
2013-03-01
Citrus essential oils (EOs) are volatile compounds from citrus peels and widely used in perfumes, cosmetics, soaps and aromatherapy. In this study, inhibition of citrus EOs extracted from Vietnamese orange (Citrus sinensis), mandarin (Citrus reticulata Blanco), pomelo (Citrus grandis Osbeck) and lime (Citrus aurantifolia Swingle) on the growth of plant pathogenic fungi, Mucor hiemalis, Penicillium expansum and Fusarium proliferatum was investigated. The EOs of the citrus peels were obtained by cold-pressing method and the antifungal activity of EOs was evaluated using the agar dilution method. The results show that the EOs had significant antifungal activity. Lime EO was the best inhibitor of M. hiemalis and F. proliferatum while pomelo EO was the most effective against P. expansum. These results indicate that citrus EOs can be used as antifungal natural products in the food, pharmaceutical and cosmetic industries.
Tan, Wenqiang; Li, Qing; Dong, Fang; Chen, Qiuhong; Guo, Zhanyong
2017-08-31
Chitosan is an abundant and renewable polysaccharide, its derivatives exhibit attractive bioactivities and the wide applications in various biomedical fields. In this paper, two novel cationic chitosan derivatives modified with quaternary phosphonium salts were successfully synthesized via trimethylation, chloride acetylation, and quaternization with tricyclohexylphosphine and triphenylphosphine. The structures and properties of synthesized products in the reactions were characterized by FTIR spectroscopy, ¹H-NMR, 31 P-NMR, elemental and thermogravimetric analysis. The antifungal activities of chitosan derivatives against four kinds of phytopathogens, including Phomopsis asparagi , Watermelon fusarium , Colletotrichum lagenarium , and Fusarium oxysporum were tested using the radial growth assay in vitro. The results revealed that the synthesized cationic chitosan derivatives showed significantly improved antifungal efficiency compared to chitosan. It was reasonably suggested that quaternary phosphonium groups enabled the obviously stronger antifungal activity of the synthesized chitosans. Especially, the triphenylphosphonium-functionalized chitosan derivative inhibited the growth of Phomopsis asparagi most effectively, with inhibitory indices of about 80% at 0.5 mg/mL. Moreover, the data demonstrated that the substituted groups with stronger electron-withdrawing ability relatively possessed greater antifungal activity. The results suggest the possibility that cationic chitosan derivatives bearing quaternary phosphonium salts could be effectively employed as novel antifungal biomaterials for application in the field of agriculture.
Sánchez-Maldonado, A F; Schieber, A; Gänzle, M G
2016-04-01
To study the antifungal effects of the potato secondary metabolites α-solanine, α-chaconine, solanidine and caffeic acid, alone or combined. Resistance to glycoalkaloids varied among the fungal species tested, as derived from minimum inhibitory concentrations assays. Synergistic antifungal activity between glycoalkaloids and phenolic compounds was found. Changes in the fluidity of fungal membranes caused by potato secondary plant metabolites were determined by calculation of the generalized polarization values. The results partially explained the synergistic effect between caffeic acid and α-chaconine and supported findings on membrane disruption mechanisms from previous studies on artificial membranes. LC/MS analysis was used to determine variability and relative amounts of sterols in the different fungal species. Results suggested that the sterol pattern of fungi is related to their resistance to potato glycoalkaloids and to their taxonomy. Fungal resistance to α-chaconine and possibly other glycoalkaloids is species dependent. α-Chaconine and caffeic acid show synergistic antifungal activity. The taxonomic classification and the sterol pattern play a role in fungal resistance to glycoalkaloids. Results improve the understanding of the antifungal mode of action of potato secondary metabolites, which is essential for their potential utilization as antifungal agents in nonfood systems. © 2016 The Society for Applied Microbiology.
Mimica-Dukić, N; Kujundzić, S; Soković, M; Couladis, M
2003-04-01
The influence of different hydrodistillation conditions was evaluated from the standpoint of essential oil yield, chemical composition and antifungal activity from seeds of Foeniculum vulgare Mill. Three hydrodistillation conditions were considered. The main constituents of the oils were: (E)-anethole (72.27%-74.18%), fenchone (11.32%-16.35%) and methyl chavicol (3.78%-5.29%). The method of distillation significantly effected the essential oil yield and quantitative composition, although the antifungal activity of the oils against some fungi was only slightly altered. Copyright 2003 John Wiley & Sons, Ltd.
Chaieb, Kamel; Zmantar, Tarek; Ksouri, Riadh; Hajlaoui, Hafedh; Mahdouani, Kacem; Abdelly, Chedly; Bakhrouf, Amina
2007-09-01
Many essential oils are known to possess an antioxidant activity and antifungal properties and therefore they potentially act as antimycotic agents. Essential oil of clove (Eugenia caryophyllata) was isolated by hydrodistillation. The chemical composition of the essential oil was analysed by gas chromatography and gas chromatography/mass spectroscopy. The antioxidant effect of the tested oil was evaluated by measuring its 2,2-diphenyl-l-1-picrylhydrazil radical scavenging ability and the antiradical dose required to cause a 50% inhibition (IC50) was recorded. The antifungal activity of essential oils was evaluated against 53 human pathogenic yeasts using a disc paper diffusion method. Our results show that the major components present in the clove bund oil were eugenol (88.6%), eugenyl acetate (5.6%), beta-caryophyllene (1.4%) and 2-heptanone (0.9%). The tested essential oil exhibited a very strong radical scavenging activity (IC50 = 0.2 microg ml-1) when compared with the synthetic antioxidant (tert-butylated hydroxytoluene, IC50 = 11.5 microg ml-1). On the other hand, this species displayed an important antifungal effect against the tested strains. It is clear that clove oil shows powerful antifungal activity; and it can be used as an easily accessible source of natural antioxidants and in pharmaceutical applications.
Monteiro, Douglas R; Silva, Sónia; Negri, Melyssa; Gorup, Luiz F; de Camargo, Emerson R; Oliveira, Rosário; Barbosa, Debora B; Henriques, Mariana
2013-11-01
Although silver nanoparticles (SN) have been investigated as an alternative to conventional antifungal drugs in the control of Candida-associated denture stomatitis, the antifungal activity of SN in combination with antifungal drugs against Candida biofilms remains unknown. Therefore, the aim of this study was to evaluate the antifungal efficacy of SN in combination with nystatin (NYT) or chlorhexidine digluconate (CHG) against Candida albicans and Candida glabrata biofilms. The drugs alone or combined with SN were applied on mature Candida biofilms (48 h), and after 24 h of treatment their antibiofilm activities were assessed by total biomass quantification (by crystal violet staining) and colony forming units enumeration. The structure of Candida biofilms was analysed by scanning electron microscopy (SEM) images. The data indicated that SN combined with either NYT or CHG demonstrated synergistic antibiofilm activity, and this activity was dependent on the species and on the drug concentrations used. SEM images showed that some drug combinations were able to disrupt Candida biofilms. The results of this study suggest that the combination of SN with NYT or CHG may have clinical implications in the treatment of denture stomatitis. However, further studies are needed before recommending the use of these drugs safely in clinical situations. © 2013 Blackwell Verlag GmbH.
Antibacterial and antifungal activities of Dracontomelon dao.
Khan, M R; Omoloso, A D
2002-07-01
The crude methanolic extracts of the leaves, stem and root barks of Drancantomelon dao and their subsequent partitioning (petrol, dichloromethane, ethyl acetate, butanol) gave fractions which demonstrated a very good level of broad spectrum antibacterial activity. The dichloromethane and butanol fractions of the leaf were the most active. Only the leaf fractions had antifungal activity, particularly the dichloromethane and butanol.
Antifungal activities of Bacillus thuringiensis isolates on barley and cucumber powdery mildews.
Choi, Gyung Ja; Kim, Jin-Cheol; Jang, Kyoung Soo; Lee, Dong-Hyun
2007-12-01
Fourteen Bacillus thuringiensis isolates having both insecticidal activity and in vitro antifungal activity were selected and tested for in vivo antifungal activity against tomato late blight, wheat leaf rust, tomato gray mold, and barley powdery mildew in growth chambers. All the isolates represented more than 70% disease control efficacy against at least one of four plant diseases. Specifically, 12 isolates exhibited strong control activity against barley powdery mildew. Under glasshouse conditions, four (50-02, 52-08, 52-16, and 52- 18) of the isolates also displayed potent control efficacy against cucumber powdery mildew. To our knowledge, this is the first report of B. thuringiensis isolates that have disease control efficacy against powdery mildew of barley and cucumber as well as insecticidal activity.
USDA-ARS?s Scientific Manuscript database
Oxidative treatment is a strategy for preventing Penicillium contamination in foods or crops. Antifungal efficacy of oxidant [hydrogen peroxide (H2O2)], biotic effector [kojic acid (KA)] and abiotic stress (heat), alone or in combination, was investigated in Penicillium. The levels of antifungal int...
Antifungal activity of multifunctional Fe 3O 4-Ag nanocolloids
NASA Astrophysics Data System (ADS)
Chudasama, Bhupendra; Vala, Anjana K.; Andhariya, Nidhi; Upadhyay, R. V.; Mehta, R. V.
2011-05-01
In recent years, rapid increase has been observed in the population of microbes that are resistant to conventionally used antibiotics. Antifungal drug therapy is no exception and now resistance to many of the antifungal agents in use has emerged. Therefore, there is an inevitable and urgent medical need for antibiotics with novel antimicrobial mechanisms. Aspergillus glaucus is the potential cause of fatal brain infections and hypersensitivity pneumonitis in immunocompromised patients and leads to death despite aggressive multidrug antifungal therapy. In the present article, we describe the antifungal activity of multifunctional core-shell Fe 3O 4-Ag nanocolloids against A. glaucus isolates. Controlled experiments are also carried out with Ag nanocolloids in order to understand the role of core (Fe 3O 4) in the antifungal action. The minimum inhibitory concentration (MIC) of nanocolloids is determined by the micro-dilution method. MIC of A. glaucus is 2000 μg/mL. The result is quite promising and requires further investigations in order to develop a treatment methodology against this death causing fungus in immunocompromised patients.
Skóra, Magdalena; Macura, Anna B
2011-01-01
The genus Scopulariopsis is a common soil saprotroph and has been isolated from air, organic waste and also from plant, animal and human tissues. Scopulariopsis has mainly been associated in humans with superficial mycoses, but it has also been described as the cause of subcutaneous and invasive infections. The most common aetiological agent of infections in humans is Scopulariopsis brevicaulis. This species has been reported to be resistant in vitro to broad-spectrum antifungal agents available today. The aim of the study was to establish in vitro antifungal susceptibility of 35 S. brevicaulis strains against amphotericin B (AMB), flucytosine (FC), caspofungin (CAS), terbinafine (TER), ciclopirox (CIC), voriconazole (VOR), clotrimazole (CTR), miconazole (MCZ), econazole (ECO), ketoconazole (KET), itraconazole (ITR), and fluconazole (FLU). Antifungal susceptibility tests were evaluated by an agar diffusion method (Neo-Sensitabs, Rosco, Denmark). AMB, FC, CAS, ITR and FLU showed no antifungal activity against S. brevicaulis. TER, CIC, CTR, KET, VOR, ECO, and MCZ revealed inhibitory activity for S. brevicaulis, but it varied for each of the drugs. The best antifungal effect was observed for TER and CIC. All isolates had large inhibition zones for TER and CIC. CTR was also inhibitory for all tested S. brevicaulis isolates, but the diameters of inhibition zones were smaller than for TER and CIC. Nearly 89% isolates showed inhibition zones for KET and the mean diameter of the inhibition zone was comparable to CTR. The least antifungal activity exhibited VQR, ECO and MCZ. Because of the multiresistance of S. brevicaulis, infections due to this species may not respond to particular antifungal treatment and other therapeutic approaches should be considered, e.g., combined therapy and/or surgery.
Evaluation of the antifungal effect of EDTA, a metal chelator agent, on Candida albicans biofilm.
Casalinuovo, I A; Sorge, R; Bonelli, G; Di Francesco, P
2017-03-01
Candida albicans biofilm is frequently found on artificial surfaces and the infections related to biofilm are difficult to eliminate, as they require the removal of artificial devices and treatment with antifungal drugs. Nowadays, fungal growth in biofilms is difficult to eradicate with conventional antifungal drugs such as fluconazole. Among chelating agents, disodium salt-Ethylene Diamine Tetraacetic Acid (EDTA) is known to have antifungal activity. In this study, we examined the in vitro activity of the EDTA and the antifungal drug fluconazole against C. albicans mature biofilm. C. albicans ATCC 20191, fluconazole-susceptible strain, was grown at an inoculum starter of 1 x 106 cells/ml for 72 h in 24-well microtiter plates and was further treated for 24 h with EDTA and/or fluconazole. Antifungal activities in biofilms were expressed as reduction in optical density (OD) determined by a 2,3-bis (2-methoxy-4-nitro-5-sulfo-phenyl)-2H-tetrazolium-5-carboxanilide (XTT) colorimetric assay and compared to untreated biofilms. Colorimetric readings revealed that EDTA alone (at 25 and 2.5 mM) significantly reduced fungal metabolic activity in preformed biofilms. Also, EDTA combined with fluconazole significantly reduced the growth of biofilm when compared to biofilm treated with fluconazole alone (at 25 and 2.5 µg/ml). Our data suggest that the employment of EDTA or other chemicals destabilizers of the biofilm matrix, in combination with antifungal drugs, could lead to the development of new strategies for the management of infections associated to Candida biofilm. Another relevant result of our study suggests that the initial cell concentration, probably through mechanisms of quorum sensing, affects the cellular viability during the process of biofilm formation.
Kuipers, M. E.; de Vries, H. G.; Eikelboom, M. C.; Meijer, D. K. F.; Swart, P. J.
1999-01-01
Because of the rising incidence of failures in the treatment of oropharyngeal candidosis in the case of severely immunosuppressed patients (mostly human immunodeficiency virus [HIV]-infected patients), there is need for the development of new, more effective agents and/or compounds that support the activity of the common antifungal agents. Since lactoferrin is one of the nonspecific host defense factors present in saliva that exhibit antifungal activity, we studied the antifungal effects of human, bovine, and iron-depleted lactoferrin in combination with fluconazole, amphotericin B, and 5-fluorocytosine in vitro against clinical isolates of Candida species. Distinct antifungal activities of lactoferrin were observed against clinical isolates of Candida. The MICs generally were determined to be in the range of 0.5 to 100 mg · ml−1. Interestingly, in the combination experiments we observed pronounced cooperative activity against the growth of Candida by using lactoferrin and the three antifungals tested. Only in a limited concentration range was minor antagonism detected. The use of lactoferrin and fluconazole appeared to be the most successful combination. Significant reductions in the minimal effective concentrations of fluconazole were found when it was combined with a relatively low lactoferrin concentration (1 mg/ml). Such combinations still resulted in complete growth inhibition, while synergy of up to 50% against several Candida species was observed. It is concluded that the combined use of lactoferrin and antifungals against severe infections with Candida is an attractive therapeutic option. Since fluconazole-resistant Candida species have frequently been reported, especially in HIV-infected patients, the addition of lactoferrin to the existing fluconazole therapy could postpone the occurrence of species resistance against fluconazole. Clinical studies to further elucidate the potential utility of this combination therapy have been initiated. PMID:10543740
Kuipers, M E; de Vries, H G; Eikelboom, M C; Meijer, D K; Swart, P J
1999-11-01
Because of the rising incidence of failures in the treatment of oropharyngeal candidosis in the case of severely immunosuppressed patients (mostly human immunodeficiency virus [HIV]-infected patients), there is need for the development of new, more effective agents and/or compounds that support the activity of the common antifungal agents. Since lactoferrin is one of the nonspecific host defense factors present in saliva that exhibit antifungal activity, we studied the antifungal effects of human, bovine, and iron-depleted lactoferrin in combination with fluconazole, amphotericin B, and 5-fluorocytosine in vitro against clinical isolates of Candida species. Distinct antifungal activities of lactoferrin were observed against clinical isolates of Candida. The MICs generally were determined to be in the range of 0.5 to 100 mg. ml(-1). Interestingly, in the combination experiments we observed pronounced cooperative activity against the growth of Candida by using lactoferrin and the three antifungals tested. Only in a limited concentration range was minor antagonism detected. The use of lactoferrin and fluconazole appeared to be the most successful combination. Significant reductions in the minimal effective concentrations of fluconazole were found when it was combined with a relatively low lactoferrin concentration (1 mg/ml). Such combinations still resulted in complete growth inhibition, while synergy of up to 50% against several Candida species was observed. It is concluded that the combined use of lactoferrin and antifungals against severe infections with Candida is an attractive therapeutic option. Since fluconazole-resistant Candida species have frequently been reported, especially in HIV-infected patients, the addition of lactoferrin to the existing fluconazole therapy could postpone the occurrence of species resistance against fluconazole. Clinical studies to further elucidate the potential utility of this combination therapy have been initiated.
Schalchli, H; Hormazábal, E; Rubilar, O; Briceño, G; Mutis, A; Zocolo, G J; Diez, M C
2017-10-01
The aim of this study was to evaluate the synthesis of ligninolytic enzymes and some diffusible antifungal compounds by white-rot fungi (WRF) using peels or discarded potato as the sole nutrient source. The strain Trametes hirsuta Ru-513 highlighted for its laccase activity (595 ± 33 U l -1 ), which is able to decolourize 87% of an anthraquinone dye using potato peels as the sole nutritional support. A native polyacrylamide gel of laccase proteins showed the presence of two isoenzymes, corresponding to proteins of 56 and 67 kDa, which were detected by SDS-PAGE. The antifungal activity of ethyl acetate extracts was evaluated by the agar diffusion method, where Anthracophyllum discolor Sp4 and Inonotus sp. Sp2 showed the highest inhibition zones of Mucor miehei. The fungal extracts also inhibited Fusarium oxysporum and Botrytis cinerea growth, with inhibition zones of up to 18 mm. The extract with the highest antifungal activity, from A. discolor Sp4 grown in discarded potato medium, was analysed using a gas chromatograph coupled to a mass spectrometer. Among the identified compounds, chlorinated aromatic compounds and veratryl alcohol were the most abundant compounds. The results revealed the relevance of potato waste valorization for the sustainable production of ligninolytic enzymes and antifungal compounds. This study reports the synthesis of ligninolytic enzymes and diffusible antifungal compounds by WRF using potato wastes as the sole nutrient source and suggests a relationship between the enzymatic activity and the synthesis of antifungal compounds. These compounds and the synthesis of halogen compounds by WRF using agro-industrial wastes have been poorly studied before. © 2017 The Society for Applied Microbiology.
Park, Sang-Wook; Stevens, Noah M; Vivanco, Jorge M
2002-12-01
Ribosome-inactivating proteins (RIPs) are enzymes that cleave a specific adenine base from the highly conserved sarcin/ricin (S/R) loop of the large ribosomal RNA, thus arresting protein synthesis at the translocation step. In the present study, we employed three RIPs to dissect the antifungal activity of RIPs as plant defense proteins. We measured the catalytic activity of RAT (the catalytic A-chain of ricin from Ricinus communis L.), saporin-S6 (from Saponaria officinalis L.), and ME (RIP from Mirabilis expansa R&P) against intact ribosomal substrates isolated from various pathogenic fungi. We further determined the enzymatic specificity of these three RIPs against fungal ribosomes, from Rhizoctonia solani Kuhn, Alternaria solani Sorauer, Trichoderma reesei Simmons and Candida albicans Berkhout, and correlated the data with antifungal activity. RAT showed the strongest toxicity against all tested fungal ribosomes, except for the ribosomes isolated from C. albicans, which were most susceptible to saporin. RAT and saporin showed higher enzymatic activity than ME against ribosomes from all of the fungal species assayed, but did not show detectable antifungal activity. In contrast, ME showed substantial inhibitory activity against fungal growth. Using N-hydroxysuccinimide-fluorescein labeling of RIPs and fluorescence microscopy, we determined that ME was targeted to the surface of fungal cells and transferred into the cells. Thus, ME caused ribosome depurination and subsequent fungal mortality. In contrast, saporin did not interact with fungal cells, correlating with its lack of antifungal activity.
Klesiewicz, Karolina; Żelaszczyk, Dorota; Trojanowska, Danuta; Bogusz, Bożena; Małek, Marianna; Waszkielewicz, Anna; Szkaradek, Natalia; Karczewska, Elżbieta; Marona, Henryk; Budak, Alicja
2018-06-20
The aim of this study was to preliminary evaluate antifungal activity diverse group of chlorine-containing xanthone and phenoxyethyl amine derivatives - and to select most promising compounds for further studies. The antifungal efficacy of 16 compounds was tested with qualitative and quantitative methods against both reference and clinical strains of dermatophytes, moulds and yeasts. The disc-diffusion method has demonstrated that from 16 tested compounds, 7 possess good antifungal activity against dermatophytes and/or moulds while none of them has shown good efficacy against yeasts or bacterial strains. The most active compounds (2, 4, 10, 11, 12, 15, 16) were tested quantitatively by broth dilution method to obtain MIC values. The MIC values against dermatophytes ranged from 8 to 64 μg/mL. Compound 2 was the most active one against dermatophytes (MIC 50 and MIC 90 were 8 μg/mL). The MIC values for moulds ranged from 16 to 256 μg/mL. Compound 4 was the most active one against moulds, with MIC 50 and MIC 90 values amounting to 32 μg/mL. Among the tested compounds, compound 4 (derivative of xanthone) was the most active one and expressed good antifungal efficacy against clinical strains of dermatophytes and moulds. However, another xanthone derivative (compound 2) was the most active and selective against dermatophytes. This article is protected by copyright. All rights reserved. This article is protected by copyright. All rights reserved.
Russo, Pasquale; Arena, Mattia Pia; Fiocco, Daniela; Capozzi, Vittorio; Drider, Djamel; Spano, Giuseppe
2017-04-17
Cereal-based fermented products are worldwide diffused staple food resources and cereal-based beverages represent a promising innovative field in the food market. Contamination and development of spoilage filamentous fungi can result in loss of cereal-based food products and it is a critical safety concern due to their potential ability to produce mycotoxins. Lactic Acid Bacteria (LAB) have been proposed as green strategy for the control of the moulds in the food industry due to their ability to produce antifungal metabolites. In this work, eighty-eight Lactobacillus plantarum strains were screened for their antifungal activity against Aspergillus niger, Aspergillus flavus, Fusarium culmorum, Penicillium roqueforti, Penicillium expansum, Penicillium chrysogenum, and Cladosporium spp. The overlayed method was used for a preliminary discrimination of the strains as no, mild and strong inhibitors. L. plantarum isolates that displayed broad antifungal spectrum activity were further screened based on the antifungal properties of their cell-free supernatant (CFS). CFSs from L. plantarum UFG 108 and L. plantarum UFG 121, in reason of their antifungal potential, were characterized and analyzed by HPLC. Results indicated that lactic acid was produced at high concentration during the growth phase, suggesting that this metabolic aptitude, associated with the low pH, contributed to explain the highlighted antifungal phenotype. Production of phenyllactic acid was also observed. Finally, a new oat-based beverage was obtained by fermentation with the strongest antifungal strain L. plantarum UFG 121. This product was submitted or not to a thermal stabilization and artificially contaminated with F. culmorum. Samples containing L. plantarum UFG 121 showed the best biopreservative effects, since that no differences were observed in terms of some qualitative features between not or contaminated samples with F. culmorum. Here we demonstrate, for the first time, the suitability of LAB strains for the fermentation and antifungal biopreservation of oat-based products. Copyright © 2016 Elsevier B.V. All rights reserved.
Abbaszadeh, S; Tavakoli, R; Sharifzadeh, A; Shokri, H
2015-12-01
The aim of this study was to assess the potential of lactic acid bacteria (LAB) such as Lactobacillus acidophilus, L. rhamnosus, L. casei, L. paracasei and Bifidobacterium bifidum to inhibit the outgrowth of some common food-spoiling fungi including Aspergillus niger, A. flavus, A. parasiticus and Penicillium chrysogenum. Bacterial isolates were cultured on Mann Rogosa Sharpe (MRS) broth and liquid cultures and supernatants were prepared. The antifungal activity was tested using the agar well diffusion method. Both liquid culture and supernatant of L. casei isolate exhibited high antifungal activity, followed by L. acidophilus and L. paracasei isolates. The least activity was recorded for the isolates B. bifidum, while the isolate L. rhamnosus was moderately active against tested fungi. The antifungal activity of the supernatants obtained from all probiotic isolates against fungi was significantly less than that of liquid cultures (P<0.05). Antifungal activity evaluation showed that A. flavus was the most inhibited fungus by probiotic bacteria, followed by P. chrysogenum, A. niger and A. parasiticus. These results suggest that probiotic bacteria strains have the ability to prevent the growth of pathogenic and mycotoxigenic fungi as antifungal agents for various biomedical applications. Copyright © 2015 Elsevier Masson SAS. All rights reserved.
Noreikaitė, Aurelija; Ayupova, Rizvangul; Satbayeva, Elmira; Seitaliyeva, Aida; Amirkulova, Marzhan; Pichkhadze, Guram; Datkhayev, Ubaidilla; Stankeviandccaron;ius, Edgaras
2017-01-01
Background The aim of this study was to analyze the antifungal activity and the general toxicity of a new dental gel containing essential oil from the tree Abies sibirica L., which grows in the Republic of Kazakhstan. Material/Methods The essential oil from Abies sibirica L. was obtained by microwave heating method using the STARTE Microwave Extraction System. Adjutants used to prepare the oil were carbomer 974P, glycerin, polysorbate 80, xylitol, triethanolamine, and purified water, all allowed for medical usage. The antifungal activity of the essential oil was assessed by monitoring the optical density of Candida albicans in a microplate reader. The safety was determined by analyzing the acute and subacute toxicity. Results The essential oil obtained by the microwave heating method revealed a higher antifungal activity in comparison with the essential oil obtained by the steam distillation method. No obvious changes were detected in guinea pigs following cutaneous application of the gel. Enteral administration of the essential oil caused minimal functional and histological changes in mice after 4 weeks. The new harmless dental gel containing pine oil from Abies sibirica L. was provided for the purposes of this particular clinical research. Conclusions The high antifungal activity of the gel is the basis for more in-depth studies on its safety and pharmacological activity. PMID:28132065
Noreikaitė, Aurelija; Ayupova, Rizvangul; Satbayeva, Elmira; Seitaliyeva, Aida; Amirkulova, Marzhan; Pichkhadze, Guram; Datkhayev, Ubaidilla; Stankevičius, Edgaras
2017-01-29
BACKGROUND The aim of this study was to analyze the antifungal activity and the general toxicity of a new dental gel containing essential oil from the tree Abies sibirica L., which grows in the Republic of Kazakhstan. MATERIAL AND METHODS The essential oil from Abies sibirica L. was obtained by microwave heating method using the STARTE Microwave Extraction System. Adjutants used to prepare the oil were carbomer 974P, glycerin, polysorbate 80, xylitol, triethanolamine, and purified water, all allowed for medical usage. The antifungal activity of the essential oil was assessed by monitoring the optical density of Candida albicans in a microplate reader. The safety was determined by analyzing the acute and subacute toxicity. RESULTS The essential oil obtained by the microwave heating method revealed a higher antifungal activity in comparison with the essential oil obtained by the steam distillation method. No obvious changes were detected in guinea pigs following cutaneous application of the gel. Enteral administration of the essential oil caused minimal functional and histological changes in mice after 4 weeks. The new harmless dental gel containing pine oil from Abies sibirica L. was provided for the purposes of this particular clinical research. CONCLUSIONS The high antifungal activity of the gel is the basis for more in-depth studies on its safety and pharmacological activity.
USDA-ARS?s Scientific Manuscript database
Structure-activity analysis revealed that antifungal activities of benzoic and gallic acids were increased against strains of Aspergillus flavus, A. fumigatus and A. terreus, causative agents of human aspergillosis, by addition of a methyl, methoxyl or a chloro group at position 4 of the aromatic ri...
The recombinant expression and activity detection of MAF-1 fusion protein.
Fu, Ping; Wu, Jianwei; Gao, Song; Guo, Guo; Zhang, Yong; Liu, Jian
2015-10-01
This study establishes the recombinant expression system of MAF-1 (Musca domestica antifungal peptide-1) and demonstrates the antifungal activity of the expression product and shows the relationship between biological activity and structure. The gene segments on mature peptide part of MAF-1 were cloned, based on the primers designed according to the cDNA sequence of MAF-1. We constructed the recombinant prokaryotic expression plasmid using prokaryotic expression vector (pET-28a(+)) and converted it to the competent cell of BL21(DE3) to gain recombinant MAF-1 fusion protein with His tag sequence through purifying affinity chromatographic column of Ni-NTA. To conduct the Western Blotting test, recombinant MAF-1 fusion protein was used to produce the polyclonal antibody of rat. The antifungal activity of the expression product was detected using Candida albicans (ATCC10231) as the indicator. The MAF-1 recombinant fusion protein was purified to exhibit obvious antifungal activity, which lays the foundation for the further study of MAF-1 biological activity, the relationship between structure and function, as well as control of gene expression.
Ouédraogo, Maurice; Konaté, Kiessoun; Lepengué, Alexis Nicaise; Souza, Alain; M'Batchi, Bertrand; Sawadogo, Laya L
2012-12-26
Infectious diseases caused by fungi are still a major threat to public health, despite numerous efforts by researchers. Use of ethnopharmacological knowledge is one attractive way to reduce empiricism and enhance the probability of success in new drug-finding efforts. In this work, the total alkaloid compounds (AC) from Sida cordifolia L. (Malvaceae) have been investigated for their free radical scavenging capacity, antifungal and immunostimulatory properties. The antifungal activity was investigated against five candida strains using the microplate dilution method and the Fractional Inhibitory Concentration Index (FICI) of compounds was evaluated. The antioxidant activity of the samples was evaluate using three separate methods, at last, the immunostimulatory effect on immunosuppressed wistar rats was performed. As for the antifungal activity, result varied according to microorganism. The results obtained in this antifungal activity were interesting and indicated a synergistic effect between alkaloid compounds and the antifungal references such as Nystatin and Clotrimazole. Antioxidant capacity noticed that the reduction capacity of DPPH radicals obtained the best result comparatively to the others methods of free radical scavenging. Our results showed a low immunostimulatory effect and this result could be explained by the lack of biologically active antioxidants such as polyphenol compounds lowly contained in the alkaloid compounds. The results of this study showed that alkaloid compounds in combination with antifungal references (Nystatin and Clotrimazole) exhibited antimicrobial effects against candida strains tested. The results supported the utilization of these plants in infectious diseases particularly in treatment of candida infections.
2012-01-01
Background Infectious diseases caused by fungi are still a major threat to public health, despite numerous efforts by researchers. Use of ethnopharmacological knowledge is one attractive way to reduce empiricism and enhance the probability of success in new drug-finding efforts. In this work, the total alkaloid compounds (AC) from Sida cordifolia L. (Malvaceae) have been investigated for their free radical scavenging capacity, antifungal and immunostimulatory properties. Method The antifungal activity was investigated against five candida strains using the microplate dilution method and the Fractional Inhibitory Concentration Index (FICI) of compounds was evaluated. The antioxidant activity of the samples was evaluate using three separate methods, at last, the immunostimulatory effect on immunosuppressed wistar rats was performed. Results As for the antifungal activity, result varied according to microorganism. The results obtained in this antifungal activity were interesting and indicated a synergistic effect between alkaloid compounds and the antifungal references such as Nystatin and Clotrimazole. Antioxidant capacity noticed that the reduction capacity of DPPH radicals obtained the best result comparatively to the others methods of free radical scavenging. Our results showed a low immunostimulatory effect and this result could be explained by the lack of biologically active antioxidants such as polyphenol compounds lowly contained in the alkaloid compounds. Conclusion The results of this study showed that alkaloid compounds in combination with antifungal references (Nystatin and Clotrimazole) exhibited antimicrobial effects against candida strains tested. The results supported the utilization of these plants in infectious diseases particularly in treatment of candida infections. PMID:23268761
Antifungal Compounds against Candida Infections from Traditional Chinese Medicine
2017-01-01
Infections caused by Candida albicans, often refractory and with high morbidity and mortality, cause a heavy burden on the public health while the current antifungal drugs are limited and are associated with toxicity and resistance. Many plant-derived molecules including compounds isolated from traditional Chinese medicine (TCM) are reported to have antifungal activity through different targets such as cell membrane, cell wall, mitochondria, and virulence factors. Here, we review the recent progress in the anti-Candida compounds from TCM, as well as their antifungal mechanisms. Considering the diverse targets and structures, compounds from TCM might be a potential library for antifungal drug development. PMID:29445739
Emerging Drugs and Vaccines for Candidemia
Moriyama, Brad; Gordon, Lori A.; McCarthy, Matthew; Henning, Stacey A.; Walsh, Thomas J.; Penzak, Scott R.
2014-01-01
Summary Candidemia and other forms of invasive candidiasis are important causes of morbidity and mortality. The evolving challenge of antimicrobial resistance among fungal pathogens continues to highlight the need for potent, new antifungal agents. MEDLINE, EMBASE, Scopus, and Web of Science searches (up to January 2014) of the English-language literature were performed with the keywords “Candida” or “Candidemia” or “Candidiasis” and terms describing investigational drugs with activity against Candida spp. Conference abstracts and the bibliographies of pertinent articles were also reviewed for relevant reports. ClinicalTrials.gov was searched for relevant clinical trials. Currently available antifungal agents for the treatment of candidemia are summarized. Investigational antifungal agents with potential activity against Candida bloodstream infections and other forms of invasive candidiasis and vaccines for prevention of Candida infections are also reviewed as are selected antifungal agents no longer in development. Antifungal agents currently in clinical trials include isavuconazole, albaconazole, SCY-078, VT-1161, and T-2307. Further data are needed to determine the role of these compounds in the treatment of candidemia and other forms of invasive candidiasis. The progressive reduction in antimicrobial drug development may result in a decline in antifungal drug discovery. Still there remains a critical need for new antifungal agents to treat and prevent invasive candidiasis and other life-threatening mycoses. PMID:25294098
A prodrug approach to the use of coumarins as potential therapeutics for superficial mycoses.
Mercer, Derry K; Robertson, Jennifer; Wright, Kristine; Miller, Lorna; Smith, Shane; Stewart, Colin S; O Neil, Deborah A
2013-01-01
Superficial mycoses are fungal infections of the outer layers of the skin, hair and nails that affect 20-25% of the world's population, with increasing incidence. Treatment of superficial mycoses, predominantly caused by dermatophytes, is by topical and/or oral regimens. New therapeutic options with improved efficacy and/or safety profiles are desirable. There is renewed interest in natural product-based antimicrobials as alternatives to conventional treatments, including the treatment of superficial mycoses. We investigated the potential of coumarins as dermatophyte-specific antifungal agents and describe for the first time their potential utility as topical antifungals for superficial mycoses using a prodrug approach. Here we demonstrate that an inactive coumarin glycone, esculin, is hydrolysed to the antifungal coumarin aglycone, esculetin by dermatophytes. Esculin is hydrolysed to esculetin β-glucosidases. We demonstrate that β-glucosidases are produced by dermatophytes as well as members of the dermal microbiota, and that this activity is sufficient to hydrolyse esculin to esculetin with concomitant antifungal activity. A β-glucosidase inhibitor (conduritol B epoxide), inhibited antifungal activity by preventing esculin hydrolysis. Esculin demonstrates good aqueous solubility (<6 g/l) and could be readily formulated and delivered topically as an inactive prodrug in a water-based gel or cream. This work demonstrates proof-of-principle for a therapeutic application of glycosylated coumarins as inactive prodrugs that could be converted to an active antifungal in situ. It is anticipated that this approach will be applicable to other coumarin glycones.
A Prodrug Approach to the Use of Coumarins as Potential Therapeutics for Superficial Mycoses
Mercer, Derry K.; Robertson, Jennifer; Wright, Kristine; Miller, Lorna; Smith, Shane; Stewart, Colin S.; O′Neil, Deborah A.
2013-01-01
Superficial mycoses are fungal infections of the outer layers of the skin, hair and nails that affect 20–25% of the world's population, with increasing incidence. Treatment of superficial mycoses, predominantly caused by dermatophytes, is by topical and/or oral regimens. New therapeutic options with improved efficacy and/or safety profiles are desirable. There is renewed interest in natural product-based antimicrobials as alternatives to conventional treatments, including the treatment of superficial mycoses. We investigated the potential of coumarins as dermatophyte-specific antifungal agents and describe for the first time their potential utility as topical antifungals for superficial mycoses using a prodrug approach. Here we demonstrate that an inactive coumarin glycone, esculin, is hydrolysed to the antifungal coumarin aglycone, esculetin by dermatophytes. Esculin is hydrolysed to esculetin β-glucosidases. We demonstrate that β-glucosidases are produced by dermatophytes as well as members of the dermal microbiota, and that this activity is sufficient to hydrolyse esculin to esculetin with concomitant antifungal activity. A β-glucosidase inhibitor (conduritol B epoxide), inhibited antifungal activity by preventing esculin hydrolysis. Esculin demonstrates good aqueous solubility (<6 g/l) and could be readily formulated and delivered topically as an inactive prodrug in a water-based gel or cream. This work demonstrates proof-of-principle for a therapeutic application of glycosylated coumarins as inactive prodrugs that could be converted to an active antifungal in situ. It is anticipated that this approach will be applicable to other coumarin glycones. PMID:24260474
Mendes de Toledo, Cleyton Eduardo; Santos, Patrícia Regina; Palazzo de Mello, João Carlos; Dias Filho, Benedito Prado; Ueda-Nakamura, Tânia
2015-01-01
The ethnomedicinal plant Curatella americana L. (Dilleniaceae) is a common shrub in the Brazilian cerrado, in which crude extract showed antifungal activity in a preliminary study. In this work, the antifungal and cytotoxic properties of the crude extract, fractions, and isolated compounds from C. americana were evaluated against the standard yeast strains Candida albicans, C. tropicalis, and C. parapsilosis, clinical isolates, and fluconazole-resistant strains. The combinatory effects between subfractions and isolated compounds and effects on cell morphology, virulence factors, and exogenous ergosterol were also evaluated. The MIC obtained against the Candida species including fluconazole-resistant strain ranged from 15.3 to 31.3 µg/mL for crude extract, 3.9 to 15.6 µg/mL for ethyl acetate fraction, and 7.8 to 31.3 µg/mL for subfractions. The isolated compounds identified as 4′-O-methyl-catechin, epicatechin-3-O-gallate, and 4′-O-methyl-catechin-3-O-gallate showed lower antifungal activity than the crude extract and fractions (MIC ranging from 31.3 to 125.0 µg/mL). The addition of exogenous ergosterol to yeast culture did not interfere in the antifungal activity of the extract and its fractions. Synergistic antifungal activity was observed between subfractions and isolated compounds. The effects on virulence factors and the different mechanisms of action compared to fluconazole and nystatin suggest that this ethnomedicinal plant may be an effective alternative treatment for candidiasis. PMID:26347790
Amphotericin B-silver hybrid nanoparticles: synthesis, properties and antifungal activity.
Tutaj, Krzysztof; Szlazak, Radoslaw; Szalapata, Katarzyna; Starzyk, Joanna; Luchowski, Rafal; Grudzinski, Wojciech; Osinska-Jaroszuk, Monika; Jarosz-Wilkolazka, Anna; Szuster-Ciesielska, Agnieszka; Gruszecki, Wieslaw I
2016-05-01
High antifungal activity is reported, in comparison with commercially available products, of a novel hybrid system based on silver nanoparticles synthesized using a popular antifungal macrocyclic polyene amphotericin B (AmB) acting both as a reducing and stabilizing/capping agent. The synthesis reaction proceeds in an alkaline environment which prevents aggregation of AmB itself and promotes nanoparticle formation. The innovative approach produces monodisperse (PDI=0.05), AmB-coated silver nanoparticles (AmB-AgNPs) with the diameter ~7nm. The products were characterized using imaging (electron microscopy) and spectroscopic (UV-vis and infrared absorption, dynamic light scattering and Raman scattering) methods. The nanoparticles were tested against Candida albicans, Aspergillus niger and Fusarium culmorum species. For cytotoxicity studies CCD-841CoTr and THP-1 cell lines were used. Particularly high antifungal activity of AmB-AgNPs is interpreted as the result of synergy between the antifungal activity of amphotericin B and silver antimicrobial properties (Ag(+) ions release). Amphotericin B (AmB) is a common agent used for the treatment against severe fungal infections. In this article, the authors described a new approach in using a combination of AmB and silver nanoparticles, in which the silver nanoparticles were synthesized and stabilized by AmB. Experimental data confirmed synergistic antifungal effects between amphotericin B and silver. This novel synthesis process could potentially be important in future drug development and fabrication. Copyright © 2016 Elsevier Inc. All rights reserved.
Sardi, Janaína de Cássia Orlandi; Gullo, Fernanda Patrícia; Freires, Irlan Almeida; Pitangui, Nayla de Souza; Segalla, Maicon Petrônio; Fusco-Almeida, Ana Marisa; Rosalen, Pedro Luiz; Regasini, Luís Octávio; Mendes-Giannini, Maria José Soares
2016-12-01
We tested the antifungal potential of caffeic acid and 8 of its derivative esters against Candidaalbicans ATCC 90028 and 9 clinical isolatesand carried out a synergism assay with fluconazole and nystatin. Propyl caffeate (C3) showed the best antifungal activity against the tested strains. When in combination, C3 markedly reduced the MIC of fluconazole and nystatin with synergistic effect up to 64-fold. Finally, C3 showed a high IC 50 value and selective indexagainst oral keratinocytes, demonstrating low toxicity against this cell type and selectivity for yeast cells. Further research should confirm its antifungal potential for development of combined therapy to treat C. albicans infections. Copyright © 2016 Elsevier Inc. All rights reserved.
Antifungal activity of Leuconostoc citreum and Weissella confusa in rice cakes.
Baek, Eunjong; Kim, Hyojin; Choi, Hyejung; Yoon, Sun; Kim, Jeongho
2012-10-01
The antifungal activity of organic acids greatly improves the shelf life of bread and bakery products. However, little is known about the effect of lactic acid fermentation on fungal contamination in rice cakes. Here, we show that lactic acid fermentation in rice dough can greatly retard the growth of three fungal species when present in rice cakes, namely Cladosporium sp. YS1, Neurospora sp. YS3, and Penicillium crustosum YS2. The antifungal activity of the lactic acid bacteria against these fungi was much better than that of 0.3% calcium propionate. We found that organic acids including lactic and acetic acid, which are byproducts of lactic fermentation or can be artificially added, were the main antifungal substances. We also found that some Leuconostoc citreum and Weissella confusa strains could be good starter species for rice dough fermentation. These results imply that these lactic acid bacteria can be applicable to improve the preservation of rice cakes.
Antifungal activities of three supercritical fluid extracted cedar oils
Tianchuan Du; Todd F. Shupe; Chung Y. Hse
2009-01-01
The antifungal activities of three supercritical CO2 (SCC) extracted cedar oils, Port-Orford-cedar (POC) (Chamaecyparis lawsoniana), Alaska yellow cedar (AYC) (Chamaecyparis nootkatensis), and Eastern red cedar (ERC) (Juniperus virginiana L), were evaluated against two common wood decay fungi, brown-rot fungi (...
Moussa, Ahmed; Noureddine, Djebli; Saad, Aissat; Abdelmelek, Meslem; Abdelkader, Benhalima
2012-07-01
To evaluate the antifungal activity of four honeys of different types from Algeria against pathogenic yeast i.e. Candida albicans (C. albicans) and Rhodotorula sp. Four Algeria honeys of different botanical origin were analyzed to test antifungal effect against C. albicans, and Rhodotorula sp. Different concentrations (undiluted, 10%, 30%, 50% and 70% w/v) of honey were studied in vitro for their antifugal activity using C. albicans and Rhodotorula sp. as fungal strains. The range of the diameter of zone of inhibition of various concentrations of tested honeys was (7-23 mm) for Rhodotorula sp., while C. albicans showed clearly resistance towards all concentrations used. The MICs of tested honey concentrations against C. albicans and Rhodotorula sp. were (70.09-93.48)% and (4.90-99.70)% v/v, respectively. This study demonstrates that, in vitro, these natural products have clearly an antifungal activity against Rhodotorula sp. and C. albicans.
Moussa, Ahmed; Noureddine, Djebli; Saad, Aissat; Abdelmelek, Meslem; Abdelkader, Benhalima
2012-01-01
Objective To evaluate the antifungal activity of four honeys of different types from Algeria against pathogenic yeast i.e. Candida albicans (C. albicans) and Rhodotorula sp. Methods Four Algeria honeys of different botanical origin were analyzed to test antifungal effect against C. albicans, and Rhodotorula sp. Different concentrations (undiluted, 10%, 30%, 50% and 70% w/v) of honey were studied in vitro for their antifugal activity using C. albicans and Rhodotorula sp. as fungal strains. Results The range of the diameter of zone of inhibition of various concentrations of tested honeys was (7–23 mm) for Rhodotorula sp., while C. albicans showed clearly resistance towards all concentrations used. The MICs of tested honey concentrations against C. albicans and Rhodotorula sp. were (70.09–93.48)% and (4.90–99.70)% v/v, respectively. Conclusions This study demonstrates that, in vitro, these natural products have clearly an antifungal activity against Rhodotorula sp. and C. albicans. PMID:23569970
[Expression of N domain of chromogranin A in Bacillus subtilis and its antifungal activity].
Li, Rui-Fang; Lou, Jin-Xian; Zhang, Tian-Yuan
2004-03-01
Chromogranin A (CGA) is a soluble protein existed in most secreted cells and neurons. It was recently found that the bovine CGA N terminal region has vasoinhibitory, antibacterial and antifungal activities. Since the need for effective antifungal agents increases in parallel with the expanding number of immunocompromised patients at risk for fungal infections, it becomes imperative to find antifungal compounds with low toxicity toward mammalian cells. To study the antifungal activity of CGA N terminal region, the DNA fragment encoding for the N terminal 1-76 amino acid sequence (CGA1-76) of human CGA was amplified by PCR technique. After DNA sequence analysis, the amplified DNA fragment was cloned into the Bacillus subtilis inducible and expression vector pSBPTQ constructed in this study and the resultant plasmid pSVTQ was then transformed into triple-protease deficient Bacillus subtilis strain DB403 competent cells. The transformants was screened on LB plates containing 10 microg/mL kanamycin. The positive transformant DB403 (pSVTQ) was grown on kanmycin containing 2 x MSR medium and sucrose was added to 2% final concentration for induction after 2h cultivation. The culture supernatant was used to run SDS-PAGE. The result of SDS-PAGE showed that the CGA1-76 was expressed by sucrose induction and the expressed product secreted into the medium with a yield of 5 mg/L. The expressed product reacts specifically with mouse anti CGA47-68 monoclonal antibody. The antifungal activity of the expressed product was examined by adding the culture supernatant to the fungal spore or Candida albican suspensions at appropriate proportion and found that the recombinant human CGA1-76 produced in Bacillus subtilis inhibits the growth of Fusarium sp. Alternaria sp. and Candida albican at the concerntration of 4 micromol/L. These results demonstrate that human CGA1-76 has expressed in Bacillus subtilis and the expressed product is immunogenic and has the antifungal activity.
Antioxidant, phenolic and antifungal profiles of Acanthus mollis (Acanthaceae).
Jara, Carlos; Leyton, Miguel; Osorio, Mauricio; Silva, Viviana; Fleming, Francisco; Paz, Marilyn; Madrid, Alejandro; Mellado, Marco
2017-10-01
Acanthus mollis is used as ornamental and medicinal plant. The ethnopharmacology reports indicate that extracts have anti-inflammatory activity. Phytoconstituents profile was evaluated by estimating the content of anthraquinones, flavonoids and phenols. In addition, the antioxidant activity was evaluated using four methods: Hydrogen atoms transfer (TRAP, ORAC and DPPH assays), and single electron transfer (FRAP assay). Finally, antifungal activity was determined by the M27-A2 test. The results shown that ethanol extracts have the highest concentration of phenols, anthraquinones and flavonoids. Total antioxidant capacity, extracts of ethyl acetate and ethanol are those with the highest activity, which correlates strongly with the presence of phenols. The antifungal activity measured in various strains of Candida is concentrated in ethyl acetate extracts of flower and leaf ethanol, a phenomenon may be related to antioxidant activity.
Soberón, José R; Sgariglia, Melina A; Pastoriza, Ana C; Soruco, Estela M; Jäger, Sebastián N; Labadie, Guillermo R; Sampietro, Diego A; Vattuone, Marta A
2017-05-05
Anagallis arvensis L. (Primulaceae) is used in argentinean northwestern traditional medicine to treat fungal infections. We are reporting the isolation and identification of compounds with antifungal activity against human pathogenic yeast Candida albicans, and toxicity evaluation. to study the antifungal activity of extracts and purified compounds obtained form A. arvensis aerial parts, alone and in combinations with fluconazole (FLU), and to study the toxicity of the active compounds. Disk diffusion assays were used to perform an activity-guided isolation of antifungal compounds from the aerial parts of A. arvensis. Broth dilution checkerboard and viable cell count assays were employed to determine the effects of samples and combinations of FLU + samples against Candida albicans. The chemical structures of active compounds were elucidated by spectroscopic analysis. Genotoxic and haemolytic effects of the isolated compounds were determined. Four triterpenoid saponins (1-4) were identified. Anagallisin C (AnC), exerted the highest inhibitory activity among the assayed compounds against C. albicans reference strain (ATCC 10231), with MIC-0 =1µg/mL. The Fractional Inhibitory Concentration Index (FICI=0.129) indicated a synergistic effect between AnC (0.125µg/mL) and FLU (0.031µg/mL) against C. albicans ATCC 10231. AnC inhibited C. albicans 12-99 FLU resistant strain (MIC-0 =1µg/mL), and the FICI=0.188 indicated a synergistic effect between AnC (0.125µg/mL) and fluconazole (16µg/mL). The combination AnC+ FLU exerted fungicidal activity against both C. albicans strains. AnC exerted inhibitory activity against C. albicans ATCC 10231 sessile cells (MIC 5 0=0.5µg/mL and MIC 80 =1µg/mL) and against C. albicans 12-99 sessile cells (MIC 5 0=0.75µg/mL and MIC 80 =1.25µg/mL). AnC exerted haemolytic effect against human red blood cells at 15µg/mL and did not exerted genotoxic effect on Bacillus subtilis rec strains. The antifungal activity and lack of genotoxic effects of AnC give support to the traditional use of A. arvensis as antifungal and makes AnC a compound of interest to expand the available antifungal drugs. Copyright © 2017 Elsevier Ireland Ltd. All rights reserved.
Comparison of Quantitative Antifungal Testing Methods for Textile Fabrics.
Imoto, Yasuo; Seino, Satoshi; Nakagawa, Takashi; Yamamoto, Takao A
2017-01-01
Quantitative antifungal testing methods for textile fabrics under growth-supportive conditions were studied. Fungal growth activities on unfinished textile fabrics and textile fabrics modified with Ag nanoparticles were investigated using the colony counting method and the luminescence method. Morphological changes of the fungi during incubation were investigated by microscopic observation. Comparison of the results indicated that the fungal growth activity values obtained with the colony counting method depended on the morphological state of the fungi on textile fabrics, whereas those obtained with the luminescence method did not. Our findings indicated that unique characteristics of each testing method must be taken into account for the proper evaluation of antifungal activity.
USDA-ARS?s Scientific Manuscript database
The antifungal activities of eight essential oils (EOs) namely basil, cinnamon, eucalyptus, mandarin, oregano, peppermint, tea tree and thyme were evaluated for their ability to inhibit growth of Aspergillus niger, Aspergillus flavus, Aspergillus paraciticus and Penicillium chrysogenum. The antifung...
Zhang, Jinqing; Liu, Wei; Tan, Jingwen; Sun, Yi; Wan, Zhe; Li, Ruoyu
2013-04-01
A standardized broth microdilution method was used to test the antifungal activity of geldanamycin (GA), an inhibitor of heat shock protein 90 (Hsp90), alone or in combination with the antifungal agent fluconazole (FLC) against 32 clinical isolates of Candida spp. In addition, a disk diffusion test was also used to evaluate the antifungal effect of these two drugs against Candida spp. by measuring the inhibition zone diameters. We found that the range of minimal inhibitory concentrations (MICs) for GA alone against Candida spp. was 3.2-12.8 mg/L and the geometric mean of MICs was 6.54 mg/L. In addition, the combination of GA with FLC showed synergistic effects in vitro against 2 FLC-susceptible and 6 FLC-resistant isolates of C. albicans. As for the other isolates, indifference but no antagonism was observed. In the disk diffusion assay, the diameter of inhibition zones for FLC combined with GA against FLC-resistant C. albicans isolates was 30 mm, while no inhibition was observed with FLC alone. These results demonstrate that GA possesses antifungal activity against Candida spp., and the combination of GA with FLC shows in vitro synergistic activity against some C. albicans isolates, especially those resistant to FLC.
A Cationic Polymer That Shows High Antifungal Activity against Diverse Human Pathogens.
Rank, Leslie A; Walsh, Naomi M; Liu, Runhui; Lim, Fang Yun; Bok, Jin Woo; Huang, Mingwei; Keller, Nancy P; Gellman, Samuel H; Hull, Christina M
2017-10-01
Invasive fungal diseases are generally difficult to treat and often fatal. The therapeutic agents available to treat fungi are limited, and there is a critical need for new agents to combat these deadly infections. Antifungal compound development has been hindered by the challenge of creating agents that are highly active against fungal pathogens but not toxic to the host. Host defense peptides (HDPs) are produced by eukaryotes as a component of the innate immune response to pathogens and have served as inspiration for the development of many new antibacterial compounds. HDP mimics, however, have largely failed to exhibit potent and selective antifungal activity. Here, we present an HDP-like nylon-3 copolymer that is effective against diverse fungi while displaying only mild to moderate toxicity toward mammalian cells. This polymer is active on its own and in synergy with existing antifungal drugs against multiple species of Candida and Cryptococcus , reaching levels of efficacy comparable to those of the clinical agents amphotericin B and fluconazole in some cases. In addition, the polymer acts synergistically with azoles against different species of Aspergillus , including some azole-resistant strains. These findings indicate that nylon-3 polymers are a promising lead for development of new antifungal therapeutic strategies. Copyright © 2017 American Society for Microbiology.
Pan, Feng; Liu, Zheng-Qiong; Chen, Que; Xu, Ying-Wen; Hou, Kai; Wu, Wei
2016-01-01
The aim of this paper is to identify and investigate an endophytic fungus (strain 28) that was isolated from Houttuynia cordata Thunb, a famous and widely-used Traditional Chinese Medicine. Based on morphological methods and a phylogenetic analysis of ITS sequences, this strain was identified as Chaetomium globosum. An antifungal activity bioassay demonstrated that the crude ethyl acetate (EtOAc) extracts of strain 28 had a wide antifungal spectrum and strong antimicrobial activity, particularly against Exserohilum turcicum (Pass.) Leonard et Suggs, Botrytis cinerea persoon and Botrytis cinerea Pers. ex Fr. Furthermore, the fermentation conditions, extraction method and the heat stability of antifungal substances from strain 28 were also studied. The results showed that optimal antifungal activity can be obtained with the following parameters: using potato dextrose broth (PDB) as the base culture medium, fermentation for 4-8d (initial pH: 7.5), followed by extraction with EtOAc. The extract was stable at temperatures up to 80°C. This is the first report on the isolation of endophytic C. globosum from H. cordata to identify potential alternative biocontrol agents that could provide new opportunities for practical applications involving H. cordata. Copyright © 2016 Sociedade Brasileira de Microbiologia. Published by Elsevier Editora Ltda. All rights reserved.
Gregorí Valdes, Barbara S; Serro, Ana Paula; Gordo, Paulo M; Silva, Alexandra; Gonçalves, Lídia; Salgado, Ana; Marto, Joana; Baltazar, Diogo; Dos Santos, Rui Galhano; Bordado, João Moura; Ribeiro, Helena Margarida
2017-06-01
Onychomycosis is a fungal nail infection. The development of new topical antifungal agents for the treatment of onychomycosis has focused on formulation enhancements that optimize the pharmacological characteristics required for its effective treatment. Polyurethanes (PUs) have never been used in therapeutic nail lacquers. The aim of this work has been the development of new PU-based nail lacquers with antifungal activity containing 1.0% (wt/wt) of terbinafine hydrochloride. The biocompatibility, wettability, and the prediction of the free volume in the polymeric matrix were assessed using a human keratinocytes cell line, contact angle, and Positron Annihilation Lifetime Spectroscopy determinations, respectively. The morphology of the films obtained was confirmed by scanning electron microscopy, while the nail lacquers' bioadhesion to nails was determined by mechanical tests. Viscosity, in vitro release profiles, and antifungal activity were also assessed. This study demonstrated that PU-terbinafine-based nail lacquers have good keratinocyte compatibility, good wettability properties, and adequate free volume. They formed a homogenous film after application, with suitable adhesion to the nail plate. Furthermore, the antifungal test results demonstrated that the terbinafine released from the nail lacquer Formulation A PU 19 showed activity against dermatophytes, namely Trichophyton rubrum. Copyright © 2017 American Pharmacists Association®. Published by Elsevier Inc. All rights reserved.
Zhang, Fusheng; Chen, Qin; Chen, Cheng; Yu, Xiaorui; Liu, Qingya; Bao, Jinku
2018-01-01
Curcuma longa possesses powerful antifungal activity, as demonstrated in many studies. In this study, the antifungal spectrum of Curcuma longa alcohol extract was determined, and the resulting EC50 values (mg/mL) of its extract on eleven fungi, including Fusarium graminearum, Fusarium chlamydosporum, Alternaria alternate, Fusarium tricinctum, Sclerotinia sclerotiorum, Botrytis cinerea, Fusarium culmorum, Rhizopus oryzae, Cladosporium cladosporioides, Fusarium oxysporum and Colletotrichum higginsianum, were 0.1088, 0.1742, 0.1888, 0.2547, 0.3135, 0.3825, 0.4229, 1.2086, 4.5176, 3.8833 and 5.0183, respectively. Among them, F. graminearum was selected to determine the inhibitory effects of the compounds (including curdione, isocurcumenol, curcumenol, curzerene, β-elemene, curcumin, germacrone and curcumol) derived from Curcuma longa. In addition, the antifungal activities of curdione, curcumenol, curzerene, curcumol and isocurcumenol and the synergies of the complexes of curdione and seven other chemicals were investigated. Differential proteomics of F. graminearum was also compared, and at least 2021 reproducible protein spots were identified. Among these spots, 46 were classified as differentially expressed proteins, and these proteins are involved in energy metabolism, tRNA synthesis and glucose metabolism. Furthermore, several fungal physiological differences were also analysed. The antifungal effect included fungal cell membrane disruption and inhibition of ergosterol synthesis, respiration, succinate dehydrogenase (SDH) and NADH oxidase. PMID:29543859
Lee, Heung-Shick; Kim, Younhee
2016-03-01
Candidiasis has posed a serious health risk to immunocompromised patients owing to the increase in resistant yeasts, and Candida albicans is the prominent pathogen of fungal infections. Therefore, there is a critical need for the discovery and characterization of novel antifungals to treat infections caused by C. albicans. In the present study, we report on the antifungal activity of the ethanol extract from Salvia miltiorrhiza against C. albicans and the possible mode of action against C. albicans. The increase in the membrane permeability was evidenced by changes in diphenylhexatriene binding and release of both 260-nm-absorbing intracellular materials and protein. In addition, inhibition of cell wall synthesis was demonstrated by the enhanced minimal inhibitory concentration in the presence of sorbitol and reduced (1,3)-β-D-glucan synthase activity. The above evidence supports the notion that S. miltiorrhiza has antifungal activity against C. albicans by the synergistic activity of targeting the cell membrane and cell wall. These findings indicate that S. miltiorrhiza displays effective activity against C. albicans in vitro and merits further investigation to treat C. albicans-associated infections.
Hess, Jennifer; Fondell, Andrew; Fustino, Nicholas; Malik, Jeff; Rokes, Christopher
2017-03-01
Histoplasmosis is an endemic fungus in several regions of the United States. The diagnosis and treatment of this infection can be challenging in pediatric oncology patients. We present 5 patients diagnosed with histoplasmosis while receiving treatment at a midsize pediatric oncology center in Iowa. Two cases occurred in patients with acute lymphoblastic leukemia and 3 cases in patients with solid tumors. All patients were treated with antifungal therapy and demonstrated excellent clinical response. Histoplasmosis should be considered as a potential cause of nonspecific febrile illness, pulmonary masses, and bone marrow suppression in immunocompromised patients in endemic regions. Prompt and accurate diagnosis can facilitate timely antifungal therapy and avoidance of prolonged hospital stays, invasive testing, unnecessary antibiotics, and unwarranted anticancer therapies.
da Rosa, Hemerson Silva; de Camargo, Vanessa Brum; Camargo, Graziela; Garcia, Cássia V; Fuentefria, Alexandre M; Mendez, Andreas S L
2015-09-01
Sida tuberculata is found in a region of South America and has traditionally been consumed as an infusion or tea. The chemical composition and antifungal activity of aqueous infusions from leaves and roots were investigated. LC-ESI-MS mass spectra were successfully obtained and used to identify four ecdysteroids: 20-hydroxyecdysone-3-O-β-D-glycopyranoside, 20-hydroxyecdysone, 20-hydroxyecdysone-3-O-β-D-xylose and a hydroxyecdysterone derivative. The in vitro antifungal activity was studied, and the minimal inhibitory concentration (MIC) and minimal fungicidal concentration (MFC) were established against Candida krusei isolates. The antibiofilm activity was evaluated by the determination of the biofilm removal efficiency in contaminated central venous catheter (CVC) coupons. The preparations exhibited antifungal activity against the species tested, with MICs ranging from 3.90 to 62.50 μg/ml. The infusion removed the C. krusei biofilm after 90 min of exposure. The observed bioactivity and composition of ecdysteroids will contribute to the future development of antifungal substances for clinical use or as food additives. Copyright © 2015 Elsevier Ltd. All rights reserved.
Fatty acid synthase inhibitors from plants: isolation, structure elucidation, and SAR studies.
Li, Xing-Cong; Joshi, Alpana S; ElSohly, Hala N; Khan, Shabana I; Jacob, Melissa R; Zhang, Zhizheng; Khan, Ikhlas A; Ferreira, Daneel; Walker, Larry A; Broedel, Sheldon E; Raulli, Robert E; Cihlar, Ronald L
2002-12-01
Fatty acid synthase (FAS) has been identified as a potential antifungal target. FAS prepared from Saccharomyces cerevisiae was employed for bioactivity-guided fractionation of Chlorophora tinctoria,Paspalum conjugatum, Symphonia globulifera, Buchenavia parviflora, and Miconia pilgeriana. Thirteen compounds (1-13), including three new natural products (1, 4, 12), were isolated and their structures identified by spectroscopic interpretation. They represented five chemotypes, namely, isoflavones, flavones, biflavonoids, hydrolyzable tannin-related derivatives, and triterpenoids. 3'-Formylgenistein (1) and ellagic acid 4-O-alpha-l-rhamnopyranoside (9) were the most potent compounds against FAS, with IC(50) values of 2.3 and 7.5 microg/mL, respectively. Furthermore, 43 (14-56) analogues of the five chemotypes from our natural product repository and commercial sources were tested for their FAS inhibitory activity. Structure-activity relationships for some chemotypes were investigated. All these compounds were further evaluated for antifungal activity against Candida albicans and Cryptococcus neoformans. Although there were several antifungal compounds in the set, correlation between the FAS inhibitory activity and antifungal activity could not be defined.
Breda, Caroline Alves; Gasperini, Alessandra Marcon; Garcia, Vera Lucia; Monteiro, Karin Maia; Bataglion, Giovana Anceski; Eberlin, Marcos Nogueira; Duarte, Marta Cristina Teixeira
2016-08-01
The increasing demand for safe food without preservatives or pesticides residues has encouraged several studies on natural products with antifungal activity and low toxicity. In this study, ethanolic extracts from leaves and fruit residues (peel and seeds) of three Brazilian savanna species (Acrocomia aculeata, Campomanesia adamantium and Caryocar brasiliense) were evaluated against phytopathogenic fungi. Additionally, the most active extract was chemically characterized by ESI-MS and its oral acute toxicity was evaluated. Extracts from C. brasiliense (pequi) peel and leaves were active against Alternaria alternata, Alternaria solani and Venturia pirina with minimal inhibitory concentrations between 350 and 1000 µg/mL. When incorporated in solid media, these extracts extended the lag phase of A. alternata and A. solani and reduced the growth rate of A. solani. Pequi peel extract showed better antifungal activity and their ESI-MS analysis revealed the presence of substances widely reported as antifungal such as gallic acid, quinic acid, ellagic acid, glucogalin and corilagin. The oral acute toxicity was relatively low, being considered safe for use as a potential natural fungicide.
Anti-Fungal activity of essential oil from Baeckea frutescens L against Pleuratus ostreatus
NASA Astrophysics Data System (ADS)
Jemi, Renhart; Barus, Ade Irma; Nuwa, Sarinah, Luhan, Gimson
2017-11-01
Ujung Atap is an herb that have distinctive odor on its leaves. The plant's essential oil contains bioactive compounds but has not been investigated its anti-fungal activity against Pleurotus ostreatus. Essential oil from Ujung Atap leaves is one environmentally friendly natural preservative. This study consisted of distillation Ujung Atap leaves with boiled method, determining the number of acid, essential oil ester, and anti-fungal activity against Pleurotus ostreatus. Analysis of the data to calculate anti-fungal activity used probit analysis method to determine the IC50. Results for the distillation of leaves Ujung Atap produce essential oil yield of 0.071% and the average yield of the acid number and the ester of essential oils Ujung Atap leaves are 5.24 and 12.15. Anti-fungal activity Pleurotus ostreatus at a concentration of 1000 µg/mL, 100 µg/mL, 75 µg/mL, 50 µg/mL and 100 µg/mL BA defunct or fungi was declared dead, while at a concentration of 25 µg/mL, 10 µg/mL and 5 µg/mL still occur inhibitory processes. Results obtained probit analysis method IC50 of 35.48 mg/mL; means the essential oil of Ujung Atap leaf can inhibit fungal growth by 50 percent to 35.48 µg/mL concentration.
Lima, Beatriz; López, Sandra; Luna, Lorena; Agüero, María B; Aragón, Liliana; Tapia, Alejandro; Zacchino, Susana; López, María L; Zygadlo, Julio; Feresin, Gabriela E
2011-05-01
The antifungal, antibacterial, and insect-repellent activities of the essential oils (EOs) of Acantholippia seriphioides, Artemisia mendozana, Gymnophyton polycephalum, Satureja parvifolia, Tagetes mendocina, and Lippia integrifolia, collected in the Central Andes area, province of San Juan, Argentina, were investigated. The dermatophytes Microsporum gypseum, Trichophyton mentagrophytes, and T. rubrum were inhibited by the EOs of G. polycephalum, L. integrifolia, and S. parvifolia, with minimum inhibitory concentrations (MICs) between 31.2 and 1000 μg/ml. Moreover, all EOs presented moderate activity against the bacteria tested, and the L. integrifolia and G. polycephalum EOs showed excellent repellent properties against Triatoma infestans, the Chagas disease vector, with repellency values between 60 and 100%. The A. seriphioides, G. polycephalum, and L. integrifolia EOs, obtained by hydrodistillation, were characterized by GC-FID and GC/MS analyses. The highest number of components (40) was identified in L. integrifolia EO, which, along with that of A. seriphioides, contained important amounts of oxygenated monoterpenes (44.35 and 29.72%, resp.). Thymol (27.61%) and carvacrol (13.24%) were the main components of A. seriphioides EO, and borneol, lippifoli-1(6)-en-5-one, and terpinen-4-ol (>8.5%) were the principal compounds of L. integrifolia EO. These results support the idea that oxygenated monoterpenes are the bioactive fractions of the EOs. Finally, the study shows that these Andean species might be used to treat superficial fungal infections and to improve the local Chagas disease situation by vector-control. Copyright © 2011 Verlag Helvetica Chimica Acta AG, Zürich.
Biogenic Silver Nanoparticles by Gelidiella acerosa Extract and their Antifungal Effects
Vivek, Marimuthu; Kumar, Palanisamy Senthil; Steffi, Sesurajan; Sudha, Sellappa
2011-01-01
The synthesis, characterization and application of biologically synthesized nanomaterials are an important aspect in nanotechnology. The present study deals with the synthesis of silver nanoparticles (Ag-NPs) using the aqueous extract of red seaweed Gelidiella acerosa as the reducing agent to study the antifungal activity. The formation of Ag-NPs was confirmed by UV-Visible Spectroscopy, X-Ray Diffraction (XRD) pattern, Scanning Electron Microscopy (SEM) and Transmission Electron Microscopy (TEM). The synthesized Ag-NPs was predominately spherical in shape and polydispersed. Fourier Transform Infra-Red (FT-IR) spectroscopy analysis showed that the synthesized nano-Ag was capped with bimolecular compounds which are responsible for reduction of silver ions. The antifungal effects of these nanoparticles were studied against Humicola insolens (MTCC 4520), Fusarium dimerum (MTCC 6583), Mucor indicus (MTCC 3318) and Trichoderma reesei (MTCC 3929). The present study indicates that Ag-NPs have considerable antifungal activity in comparison with standard antifungal drug, and hence further investigation for clinical applications is necessary. PMID:23408653
First isolation of a novel thermostable antifungal peptide secreted by Aspergillus clavatus.
Skouri-Gargouri, Houda; Gargouri, Ali
2008-11-01
A novel antifungal peptide produced by an indigenous fungal strain (VR) of Aspergillus clavatus was purified. The antifungal peptide was enriched in the supernatant after heat treatment at 70 degrees C. The thermostable character was exploited in the first purification step, as purified peptide was obtained after ultrafiltration and reverse phase-HPLC on C18 column application. The purified peptide named "AcAFP" for A. clavatus antifungal peptide, has molecular mass of 5773Da determined by MALDI-ToF spectrometry. The N-terminal sequence showed a notable identity to the limited family of antifungal peptides produced by ascomycetes fungi. The AcAFP activity remains intact even after heat treatment at 100 degrees C for 1h confirming its thermostability. It exhibits a strong inhibitory activity against mycelial growth of several serious human and plant pathogenic fungi: Fusariuym oxysporum, Fusarium solani, Aspergillus niger, Botrytis cinerea, Alternaria solani, whereas AcAFP did not affect yeast and bacterial growth.
Synthesis and antifungal evaluation of (1,2,3-triazol-4-yl)methyl nicotinate chitosan.
Qin, Yukun; Liu, Song; Xing, Ronge; Li, Kecheng; Yu, Huahua; Li, Pengcheng
2013-10-01
With an aim to discover novel chitosan derivatives with significant activities against crop-threatening fungi, (1,2,3-triazol-4-yl)methyl nicotinate chitosan (TAMNCS) was prepared via azide-alkyne click reaction. Its structure was characterized by FT-IR, (1)H NMR, elemental analysis, DSC, and SEM. In vitro antifungal properties of TAMNCS against Rhizoctonia solani Kühn (R. solani), Stemphylium solani weber (S. solani), and Alternaria porri (A. porri) were studied at the concentrations ranged from 0.25 mg/mL to 1.0 mg/mL. Experiments conducted displayed the derivative had obviously enhanced antifungal activity after chemical modification compared with original chitosan. Moreover, it was shown that TAMNCS can 94.2% inhibit growth of A. porri at 1.0 mg/mL, while dose at which the fungicide triadimefon had lower inhibitory index (62.2%). The primary antifungal results described here indicate this derivative may be a promising candidate as an antifungal agent. Copyright © 2013 Elsevier B.V. All rights reserved.
Stergiopoulou, Theodouli; Meletiadis, Joseph; Sein, Tin; Papaioannidou, Paraskevi; Tsiouris, Ioannis; Roilides, Emmanuel; Walsh, Thomas J.
2008-01-01
Patients suffering from invasive mycoses often receive concomitant antifungal therapy and antibacterial agents. Assessment of pharmacodynamic interactions between antifungal and antibacterial agents is complicated by the absence of a common antifungal end point for both agents. Ciprofloxacin has no intrinsic antifungal activity but may interact with antifungal agents, since it inhibits DNA gyrase (topoisomerase II), which is abundant in fungi. We therefore employed isobolographic analysis adapted to incorporate a nonactive agent in order to analyze the potential in vitro interaction between the fluoroquinolone ciprofloxacin and several representative antifungal agents against Candida albicans and Aspergillus fumigatus strains by using a microdilution checkerboard technique. In agreement with earlier in vitro studies, conventional fractional inhibitory concentration index analysis was unable to detect interactions between ciprofloxacin and antifungal agents. However, isobolographic analysis revealed significant pharmacodynamic interactions between antifungal agents and ciprofloxacin against C. albicans and A. fumigatus strains. Amphotericin B demonstrated concentration-dependent interactions for both species, with synergy (interaction indices, 0.14 to 0.81) observed at ciprofloxacin concentrations of <10.64 μg/ml. Synergy (interaction indices, 0.10 to 0.86) was also found for voriconazole and caspofungin against A. fumigatus. Isobolographic analysis may help to elucidate the pharmacodynamic interactions between antifungal and non-antifungal agents and to develop better management strategies against invasive candidiasis and aspergillosis. PMID:18299413
Chemosensitization as a Means to Augment Commercial Antifungal Agents
Campbell, Bruce C.; Chan, Kathleen L.; Kim, Jong H.
2012-01-01
Antimycotic chemosensitization and its mode of action are of growing interest. Currently, use of antifungal agents in agriculture and medicine has a number of obstacles. Foremost of these is development of resistance or cross-resistance to one or more antifungal agents. The generally high expense and negative impact, or side effects, associated with antifungal agents are two further issues of concern. Collectively, these problems are exacerbated by efforts to control resistant strains, which can evolve into a treadmill of higher dosages for longer periods. This cycle in turn, inflates cost of treatment, dramatically. A further problem is stagnation in development of new and effective antifungal agents, especially for treatment of human mycoses. Efforts to overcome some of these issues have involved using combinations of available antimycotics (e.g., combination therapy for invasive mycoses). However, this approach has had inconsistent success and is often associated with a marked increase in negative side effects. Chemosensitization by natural compounds to increase effectiveness of commercial antimycotics is a somewhat new approach to dealing with the aforementioned problems. The potential for safe natural products to improve antifungal activity has been observed for over three decades. Chemosensitizing agents possess antifungal activity, but at insufficient levels to serve as antimycotics, alone. Their main function is to disrupt fungal stress response, destabilize the structural integrity of cellular and vacuolar membranes or stimulate production of reactive oxygen species, augmenting oxidative stress and apoptosis. Use of safe chemosensitizing agents has potential benefit to both agriculture and medicine. When co-applied with a commercial antifungal agent, an additive or synergistic interaction may occur, augmenting antifungal efficacy. This augmentation, in turn, lowers effective dosages, costs, negative side effects and, in some cases, countermands resistance. PMID:22393330
Rawat, Pragati; Agarwal, Swatantra; Tripathi, Siddhi
2017-09-01
Purpose: Tissue conditioners are used for healing of abused oral tissues. They may harbour microorganisms causing oral diseases such as candidiasis compromising the health of the patient. Also, addition of antifungal agents into tissue conditioner may alter its properties. This study compares the anti-fungal property and mechanical properties of tissue conditioner containing different antifungal agents. Methods: Three antifungal agents, one synthetic - fluconazole, and two natural - oregano oil and virgin coconut oil were added into the tissue conditioner (Viscogel) in different concentrations. The antifungal property, tensile bond strength and viscoelasticity of Viscogel containing these antifungal agents were assessed after 24 hours, three days and seven days. Results: While, the highest antifungal activity was shown by Viscogel containing fluconazole, the maximum tensile bond strength was found to be of Viscogel alone (control). Although Viscogel alone and in combination of fluconazole showed deterioration in viscoelasticity, Viscogel in combination of natural agents showed no significant changes over the period of seven days. Conclusion: Incorporation of the natural agents in the tissue conditioner can be used as an effective alternative to systemic or topical synthetic antifungal agents.
Antifungal-protein production in maize (Zea mays) suspension cultures.
Perri, Fabio; Della Penna, Serena; Rufini, Francesca; Patamia, Maria; Bonito, Mariantonietta; Angiolella, Letizia; Vitali, Alberto
2009-04-01
The growing emergency due to the phenomenon of drug resistance to micro-organisms has pushed forward the search for new potential drug alternatives to those already in use. Plants represent a suitable source of new antifungal molecules, as they produce a series of defensive proteins. Among them are the PRPs (pathogenesis-related proteins), shown to be effective in vitro against human pathogens. An optimized and established cell-suspension culture of maize (Zea mays) was shown to constitutively secrete in the medium a series of PRPs comprising the antifungal protein zeamatin (P33679) with a final yield of approx. 3 mg/litre. The in-vitro-produced zeamatin possessed antifungal activity towards a clinical strain of the human pathogenic yeast Candida albicans, an activity comparable with the one reported for the same protein extracted from maize seeds. Along with zeamatin, other PRPs were expressed: a 9 kDa lipid-transfer protein, a 26 kDa xylanase inhibitor and a new antifungal protein, PR-5. A fast, two-step chromatographic procedure was set up allowing the complete purification of the proteins considered, making this cell line a valuable system for the production of potential antifungal agents in a reliable and easy way.
Homa, Mónika; Galgóczy, László; Tóth, Eszter; Tóth, Liliána; Papp, Tamás; Chandrasekaran, Muthusamy; Kadaikunnan, Shine; Alharbi, Naiyf S; Vágvölgyi, Csaba
2015-11-01
In the present study, in vitro antifungal activities of five antipsychotic drugs (i.e., chlorpromazine hydrochloride, CPZ; trifluoperazine hydrochloride, TPZ; amantadine hydrochloride; R-(-)-deprenyl hydrochloride, and valproic acid sodium salt) and five conventional antifungal drugs (i.e., amphotericin B, AMB; caspofungin, CSP; itraconazole; terbinafine, TRB and voriconazole, VRC) were investigated in broth microdilution tests against four clinical and five environmental Scedosporium and Pseudallescheria isolates. When used alone, phenothiazines CPZ and TPZ exerted remarkable antifungal effects. Thus, their in vitro combinations with AMB, CSP, VRC, and TRB were also examined against the clinical isolates. In combination with antifungal agents, CPZ was able to act synergistically with AMB and TRB in cases of one and two isolates, respectively. In all other cases, indifferent interactions were revealed. Antagonism was not observed between the tested agents. These combinations may establish a more effective and less toxic therapy after further in vitro and in vivo studies for Scedosporium and Pseudallescheria infections. © The Author 2015. Published by Oxford University Press on behalf of The International Society for Human and Animal Mycology. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.
Antibacterial and Antifungal Activity of ZnO Containing Glasses.
Esteban-Tejeda, Leticia; Prado, Catuxa; Cabal, Belén; Sanz, Jesús; Torrecillas, Ramón; Moya, José Serafín
2015-01-01
A new family of non-toxic biocides based on low melting point (1250°C) transparent glasses with high content of ZnO (15-40wt%) belonging to the miscibility region of the B2O3-SiO2-Na2O-ZnO system has been developed. These glasses have shown an excellent biocide activity (logarithmic reduction >3) against Gram- (E. coli), Gram+ (S. aureus) and yeast (C. krusei); they are chemically stable in different media (distilled water, sea-like water, LB and DMEN media) as well as biocompatible. The cytotoxicity was evaluated by the Neutral Red Uptake using NIH-3T3 (mouse embryonic fibroblast cells) and the cell viability was >80%. These new glasses can be considered in several and important applications in the field of inorganic non-toxic biocide agents such as medical implants, surgical equipment, protective apparels in hospitals, water purifications systems, food packaging, food storages or textiles.
Antibacterial and Antifungal Activity of ZnO Containing Glasses
Esteban-Tejeda, Leticia; Prado, Catuxa; Cabal, Belén; Sanz, Jesús; Torrecillas, Ramón; Moya, José Serafín
2015-01-01
A new family of non-toxic biocides based on low melting point (1250°C) transparent glasses with high content of ZnO (15–40wt%) belonging to the miscibility region of the B2O3-SiO2-Na2O-ZnO system has been developed. These glasses have shown an excellent biocide activity (logarithmic reduction >3) against Gram- (E. coli), Gram+ (S. aureus) and yeast (C. krusei); they are chemically stable in different media (distilled water, sea-like water, LB and DMEN media) as well as biocompatible. The cytotoxicity was evaluated by the Neutral Red Uptake using NIH-3T3 (mouse embryonic fibroblast cells) and the cell viability was >80%. These new glasses can be considered in several and important applications in the field of inorganic non-toxic biocide agents such as medical implants, surgical equipment, protective apparels in hospitals, water purifications systems, food packaging, food storages or textiles. PMID:26230940
Defining Antimicrobial Textile Requirements for Military Applications - A Gap Analysis
2016-05-09
biocide that has broad spectrum antibacterial , antiviral, and antifungal activity . Copper behaves similarly to silver by binding and inactivating...urogenital health conditions in active duty Soldiers from 2002-2011...personnel in order to generate and update requirements and standards for incorporating anti-odor, antibacterial , and antifungal properties into CIE
Identification and characterization of biopesticides from Acorus Tatarinowii and A. Calamus
USDA-ARS?s Scientific Manuscript database
Acorus species are rich in secondary compounds and possess high contents of essential oils in their rhizomes. Here we report the isolation, characterization and antifungal activity of eleven compounds from A. tatarinowii Schott. and A. calamus Linn. Five of the compounds had weak antifungal activity...
8-Amido-Bearing pseudomycin B (PSB) analogue: novel antifungal agents.
Zhang, Y Z; Sun, X; Zeckner, D J; Sachs, R K; Current, W L; Chen, S H
2001-01-22
During the course of a structure-activity relationship (SAR) study on novel depsinonapeptide pseudomycin B, we synthesized a total of 12 8-amidopseudomycin analogues via standard two-step sequence from either ZPSB 2 or AllocPSB 3. A number of these amides exhibited good in vitro antifungal activities.
Alvarez, Celeste; Andes, David R.; Kang, Jeong Yeon; Krug, Carmen; Kwon, Glen S.
2017-01-01
Purpose Amphotericin B (AmB) and 5-fluorocytosine (5-FC) exhibit additive to synergistic activity against systemic mycoses. Incompatibility of prescribed formulations precludes concomitant IV administration, a route with distinct advantages. Previously, we used PEG-DSPE micelles to produce a reformulation of Fungizone (AmB-SD), AmB solubilized by sodium deoxycholate, called mAmB-90. Herein, we describe a second reformulation that facilitates co-delivery of mAmB-90 and 5-FC, and evaluate the effect of PEG-DSPE micelles on the combination’s activity against Candida albicans. Methods We assessed the effect of 5-FC addition on the stability, in vitro toxicity, and antifungal efficacy of mAmB-90. The aggregation state and particle size of mAmB-90 combined with 5-FC (FmAmB-90) was evaluated over 48 hours. Hemolytic activity was measured in vitro. Antifungal activity was determined in vitro against C. albicans. The efficacy of monotherapy and combination treatment was evaluated in a neutropenic mouse model of disseminated candidiasis. Results The aggregation state, particle size, and hemolytic activity of mAmB-90 were unaffected by 5-FC. While antifungal activity was similar in vitro, mAmB-90 alone and combined with 5-FC was more potent than AmB-SD in vivo. Conclusions Short-term stability and in vivo efficacy of our formulation suggest potential to simultaneously deliver AmB and 5-FC for potent antifungal efficacy. PMID:28205003
Alvarez, Celeste; Andes, David R; Kang, Jeong Yeon; Krug, Carmen; Kwon, Glen S
2017-05-01
Amphotericin B (AmB) and 5-fluorocytosine (5-FC) exhibit additive to synergistic activity against systemic mycoses. Incompatibility of prescribed formulations precludes concomitant IV administration, a route with distinct advantages. Previously, we used PEG-DSPE micelles to produce a reformulation of Fungizone (AmB-SD), AmB solubilized by sodium deoxycholate, called mAmB-90. Herein, we describe a second reformulation that facilitates co-delivery of mAmB-90 and 5-FC, and evaluate the effect of PEG-DSPE micelles on the combination's activity against Candida albicans. We assessed the effect of 5-FC addition on the stability, in vitro toxicity, and antifungal efficacy of mAmB-90. The aggregation state and particle size of mAmB-90 combined with 5-FC (FmAmB-90) was evaluated over 48 h. Hemolytic activity was measured in vitro. Antifungal activity was determined in vitro against C. albicans. The efficacy of monotherapy and combination treatment was evaluated in a neutropenic mouse model of disseminated candidiasis. The aggregation state, particle size, and hemolytic activity of mAmB-90 were unaffected by 5-FC. While antifungal activity was similar in vitro, mAmB-90 alone and combined with 5-FC was more potent than AmB-SD in vivo. Short-term stability and in vivo efficacy of our formulation suggest potential to simultaneously deliver AmB and 5-FC for potent antifungal efficacy.
Yabes, Joseph M.; White, Brian K.; Murray, Clinton K.; Sanchez, Carlos J.; Mende, Katrin; Beckius, Miriam L.; Zera, Wendy C.; Wenke, Joseph C.; Akers, Kevin S.
2016-01-01
Soft-tissue invasive fungal infections are increasingly recognized as significant entities directly contributing to morbidity and mortality. They complicate clinical care, requiring aggressive surgical debridement and systemic antifungal therapy. To evaluate new topical approaches to therapy, we examined the antifungal activity and cytotoxicity of Manuka Honey (MH) and polyhexamethylene biguanide (PHMB). The activities of multiple concentrations of MH (40%, 60%, 80%) and PHMB (0.01%, 0.04%, 0.1%) against 13 clinical mold isolates were evaluated using a time-kill assay between 5 min and 24 h. Concentrations were selected to represent current clinical use. Cell viability was examined in parallel for human epidermal keratinocytes, dermal fibroblasts and osteoblasts, allowing determination of the 50% viability (LD50) concentration. Antifungal activity of both agents correlated more closely with exposure time than concentration. Exophiala and Fusarium growth was completely suppressed at 5 min for all PHMB concentrations, and at 12 and 6 h, respectively, for all MH concentrations. Only Lichtheimia had persistent growth to both agents at 24 h. Viability assays displayed concentration-and time-dependent toxicity for PHMB. For MH, exposure time predicted cytotoxicity only when all cell types were analyzed in aggregate. This study demonstrates that MH and PHMB possess primarily time-dependent antifungal activity, but also exert in vitro toxicity on human cells which may limit clinical use. Further research is needed to determine ideal treatment strategies to optimize antifungal activity against molds while limiting cytotoxicity against host tissues in vivo. PMID:27601610
Chen, Jin; He, Zheng-Min; Wang, Feng-Ling; Zhang, Zheng-Sheng; Liu, Xiu-zhen; Zhai, Dan-Dan; Chen, Wei-Dong
2016-02-05
Invasive fungal infections (IFI) are important complications of cancer, and they have become a major cause of morbidity and mortality in cancer patients. Effective anti-infection therapy is necessary to inhibit significant deterioration from these infections. However, they are difficult to treat, and increasing antifungal drug resistance often leads to a relapse. Curcumin, a natural component that is isolated from the rhizome of Curcuma longa plants, has attracted great interest among many scientists studying solid cancers over the last half century. Interestingly, curcumin provides an ideal alternative to current therapies because of its relatively safe profile, even at high doses. To date, curcumin's potent antifungal activity against different strains of Candida, Cryptococcus, Aspergillus, Trichosporon and Paracoccidioides have been reported, indicating that curcumin anticancer drugs may also possess an antifungal role, helping cancer patients to resist IFI complications. The aim of this review is to discuss curcumin's dual pharmacological activities regarding its applications as a natural anticancer and antifungal agent. These dual pharmacological activities are expected to lead to clinical trials and to improve infection survival among cancer patients. Copyright © 2015 Elsevier B.V. All rights reserved.
Tan, Wenqiang; Zhang, Jingjing; Luan, Fang; Wei, Lijie; Li, Qing; Dong, Fang; Guo, Zhanyong
2017-08-01
1,2,3-Triazolium-functionalized starch derivative was obtained by straightforward quaternization of the synthesized starch derivative bearing 1,2,3-triazole with benzyl bromide by combining the robust attributes of cuprous-catalyzed azide-alkyne cycloaddition. These novel starch derivatives were characterized by FTIR, UV-vis, 1 H NMR, 13 C NMR, and elemental analysis. Their antifungal activities against Colletotrichum lagenarium, Watermelon fusarium, and Phomopsis asparagi were investigated by hypha measurement in vitro. The fungicidal assessment revealed that compared with starch and starch derivative bearing 1,2,3-triazole with inhibitory indices of below 15% at 1.0mg/mL, 1,2,3-triazolium-functionalized starch derivative had superior antifungal activity with inhibitory rates of over 60%. Especially, the best inhibitory index of 1,2,3-triazolium-functionalized starch derivative against Colletotrichum lagenarium attained 90% above at 1.0mg/mL. The results obviously showed that quaternization of 1,2,3-triazole with benzyl bromide could effectively enhance antifungal activity of the synthesized starch derivatives. The synthetic strategy described here could be utilized for the development of starch as novel antifungal biomaterial. Copyright © 2017 Elsevier B.V. All rights reserved.
Rana, Inder Singh; Rana, Aarti Singh; Rajak, Ram Charan
2011-01-01
Antifungal properties of some essential oils have been well documented. Clove oil is reported to have strong antifungal activity against many fungal species. In this study we have evaluated antifungal potential of essential oil of Syzygium aromaticum (L.) against some common fungal pathogens of plants and animals namely, Fusarium moniliforme NCIM 1100, Fusarium oxysporum MTCC 284, Aspergillus sp., Mucor sp., Trichophyton rubrum and Microsporum gypseum. All fungal species were found to be inhibited by the oil when tested through agar well diffusion method. Minimum inhibitory concentration (MIC) was determined for all the species. Column chromatography was performed to separate the eugenol rich fraction from clove oil. Out of seven fractions maximum activity was obtained in column fraction II. TLC and HPLC data confirmed presence of considerable Eugenol in fraction II and clove oil. Microscopic study on effect of clove oil and column fraction II on spores of Mucor sp. and M. gypseum showed distortion and shrinkage while it was absent in other column fractions. So it can be concluded that the antifungal action of clove oil is due to its high eugenol content. PMID:24031751
Rana, Inder Singh; Rana, Aarti Singh; Rajak, Ram Charan
2011-10-01
Antifungal properties of some essential oils have been well documented. Clove oil is reported to have strong antifungal activity against many fungal species. In this study we have evaluated antifungal potential of essential oil of Syzygium aromaticum (L.) against some common fungal pathogens of plants and animals namely, Fusarium moniliforme NCIM 1100, Fusarium oxysporum MTCC 284, Aspergillus sp., Mucor sp., Trichophyton rubrum and Microsporum gypseum. All fungal species were found to be inhibited by the oil when tested through agar well diffusion method. Minimum inhibitory concentration (MIC) was determined for all the species. Column chromatography was performed to separate the eugenol rich fraction from clove oil. Out of seven fractions maximum activity was obtained in column fraction II. TLC and HPLC data confirmed presence of considerable Eugenol in fraction II and clove oil. Microscopic study on effect of clove oil and column fraction II on spores of Mucor sp. and M. gypseum showed distortion and shrinkage while it was absent in other column fractions. So it can be concluded that the antifungal action of clove oil is due to its high eugenol content.
Anti-Candida activity of Mentha arvensis and Turnera ulmifolia.
Santos, Karla K A; Matias, Edinardo F F; Souza, Celestina E S; Tintino, Saulo R; Braga, Maria F B M; Guedes, Glaucia M M; Nogueira, Lavouisier F B; Morais, Edson C; Costa, José G M; Menezes, Irwin R A; Coutinho, Henrique D M
2012-03-01
Candidiasis is the most frequent infection by opportunistic fungi, frequently caused by Candida albicans, Candida tropicalis, Candida parapsilosis, Candida glabrata, and Candida krusei. Mentha arvensis L. is a herbaceous plant that occurs throughout South America and is used as a tea and in the folk medicine. Turnera ulmifolia L. is already known to be of medicinal value. Ethanol extracts from M. arvensis and T. ulmifolia were assayed for antifungal activity against strains of C. albicans, C. tropicalis, and C. krusei. No clinically relevant antifungal activity was demonstrated by the extracts; however, a potentiation effect was observed when the extracts were applied with metronidazole against C. tropicalis. M. arvensis and T. ulmifolia could represent a source of natural products with modifying antifungal activity.
Antifungal activity of 10 Guadeloupean plants.
Biabiany, Murielle; Roumy, Vincent; Hennebelle, Thierry; François, Nadine; Sendid, Boualem; Pottier, Muriel; Aliouat, El Moukhtar; Rouaud, Isabelle; Lohézic-Le Dévéhat, Françoise; Joseph, Henry; Bourgeois, Paul; Sahpaz, Sevser; Bailleul, François
2013-11-01
Screening of the antifungal activities of ten Guadeloupean plants was undertaken to find new extracts and formulations against superficial mycoses such as onychomycosis, athlete's foot, Pityriasis versicolor, as well as the deep fungal infection Pneumocystis pneumonia. For the first time, the CMI of these plant extracts [cyclohexane, ethanol and ethanol/water (1:1, v/v)] was determined against five dermatophytes, five Candida species, Scytalidium dimidiatum, a Malassezia sp. strain and Pneumocystis carinii. Cytotoxicity tests of the most active extracts were also performed on an HaCat keratinocyte cell line. Results suggest that the extracts of Bursera simaruba, Cedrela odorata, Enterolobium cyclocarpum and Pluchea carolinensis have interesting activities and could be good candidates for developing antifungal formulations. Copyright © 2012 John Wiley & Sons, Ltd.
Barakat, Hassan; Spielvogel, Anja; Hassan, Mahmoud; El-Desouky, Ahmed; El-Mansy, Hamdy; Rath, Frank; Meyer, Vera; Stahl, Ulf
2010-06-01
Secondary growth is a common post-harvest problem when pre-infected crops are attacked by filamentous fungi during storage or processing. Several antifungal approaches are thus pursued based on chemical, physical, or bio-control treatments; however, many of these methods are inefficient, affect product quality, or cause severe side effects on the environment. A protein that can potentially overcome these limitations is the antifungal protein AFP, an abundantly secreted peptide of the filamentous fungus Aspergillus giganteus. This protein specifically and at low concentrations disturbs the integrity of fungal cell walls and plasma membranes but does not interfere with the viability of other pro- and eukaryotic systems. We thus studied in this work the applicability of AFP to efficiently prevent secondary growth of filamentous fungi on food stuff and chose, as a case study, the malting process where naturally infested raw barley is often to be used as starting material. Malting was performed under lab scale conditions as well as in a pilot plant, and AFP was applied at different steps during the process. AFP appeared to be very efficient against the main fungal contaminants, mainly belonging to the genus Fusarium. Fungal growth was completely blocked after the addition of AFP, a result that was not observed for traditional disinfectants such as ozone, hydrogen peroxide, and chlorine dioxide. We furthermore detected reduced levels of the mycotoxin deoxynivalenol after AFP treatment, further supporting the fungicidal activity of the protein. As AFP treatments did not compromise any properties and qualities of the final products malt and wort, we consider the protein as an excellent biological alternative to combat secondary growth of filamentous fungi on food stuff.
Petit, Jean Yanique; Cavana, Paola; Thoumire, Sandra; Guillot, Jacques; Perrot, Sébastien
2016-06-01
The "hair strand test" was first developed as a model to evaluate the antifungal activity of antidandruff shampoos. To assess the residual activity of an antifungal shampoo on the hair shafts of dogs after a single application, followed by bathing with a physiological shampoo one month later. Six beagles (two males and four females) from a research colony. Dogs were bathed with a 2% climbazole shampoo. Hairs were collected before application of the shampoo and at scheduled intervals for 30 days after treatment. A physiological shampoo was then applied to all dogs and hairs were collected following the same schedule. The inhibition zone around the hair shafts was measured after incubation on Sabouraud's dextrose agar plates streaked with three Malassezia pachydermatis strains. Inhibition zones around hairs collected from dogs bathed with 2% climbazole shampoo were significantly larger than those around hairs collected before shampooing at all time points (P = 0.003). An increase in the width of the inhibition zones around climbazole treated hairs was observed following physiological shampoo on Day 30 (P = 0.005). No significant differences were observed between Malassezia pachydermatis isolates (P = 0.571). No inhibition zones were seen around the hairs of dogs bathed with physiological shampoo only. The modified hair strand test is useful for the assessment of residual antifungal activity on animal hairs. Use of a physiological shampoo following antifungal shampoo therapy may increase the efficacy of the antifungal product for the control of Malassezia overgrowth. © 2016 ESVD and ACVD.
Ku, Tsun Sheng N; Palanisamy, Suresh K A; Lee, Samuel A
2010-11-01
Despite growing data on antimicrobial lock therapy (ALT) in treating bacterial catheter-related bloodstream infections (CR-BSIs), ALT has not been established as a treatment option for CR-BSI caused by Candida albicans. Based on our finding that high-dose doxycycline exhibited antifungal activity against mature C. albicans biofilms, we evaluated additional antibacterial agents with Gram-positive activity [azithromycin, tigecycline (TIG) and vancomycin]. After screening these antibiotics, it was found that TIG had substantial antifungal activity against mature C. albicans biofilms. Therefore, TIG was assayed alone and in combination with fluconazole (FLC), amphotericin B (AmB) or caspofungin (CAS). TIG at 2048 μg/mL resulted in a >50% reduction in the growth of planktonic C. albicans cells. TIG inhibited the formation of biofilms from 128 μg/mL. Against mature biofilms, 2048 μg/mL TIG reduced metabolic activity by 84.2%. Furthermore, addition of 512 μg/mL TIG to FLC at all concentrations tested provided additional reduction in the metabolic activity of mature biofilms. However, this was not superior to 512 μg/mL TIG alone. TIG at 512 μg/mL increased the antifungal effect of lower concentrations of AmB (0.03125-0.25 μg/mL), but at 0.03125 μg/mL and 0.0625 μg/mL this effect was not superior to 512 μg/mL TIG alone. TIG inhibited the antifungal effect of higher concentrations of AmB (≥ 2 μg/mL). TIG at 512 μg/mL inhibited the antifungal activity of CAS at lower concentrations (0.25-8 μg/mL). These data indicate that high-dose TIG is highly active in vitro against planktonic cells, forming biofilms and mature biofilms of C. albicans. Published by Elsevier B.V.
Antifungal activity of Cymbopogon winterianus jowitt ex bor against Candida albicans
de Oliveira, Wylly Araújo; de Oliveira Pereira, Fillipe; de Luna, Giliara Carol Diniz Gomes; Lima, Igara Oliveira; Wanderley, Paulo Alves; de Lima, Rita Baltazar; de Oliveira Lima, Edeltrudes
2011-01-01
Candida albicans is an opportunistic yeast and a member of the normal human flora that commonly causes infections in patients with any type of deficiency of the immune system. The essential oils have been tested for antimycotic activity and pose much potential as antifungal agents. This work investigated the activity of the essential oil of Cymbopogon winterianus against C. albicans by MIC, MFC and time-kill methods. The essential oil (EO) was obtained by hydrodistillation using a Clevenger-type apparatus. It was tested fifteen strains of C. albicans. The MIC was determined by the microdilution method and the MFC was determined when an aliquot of the broth microdilution was cultivated in SDA medium. The phytochemical analysis of EO showed presence of citronellal (23,59%), geraniol (18,81%) and citronellol (11,74%). The EO showed antifungal activity, and the concentrations 625 µg/mL and 1250 µg/mL inhibited the growth of all strains tested and it was fungicidal, respectively. The antimicrobial activity of various concentrations of EO was analyzed over time, it was found concentration-dependent antifungal activity, whose behavior was similar to amphotericin B and nystatin. PMID:24031651
Antifungal and antioxidant activities of mature leaves of Myrcia splendens (Sw.) DC.
Pontes, F C; Abdalla, V C P; Imatomi, M; Fuentes, L F G; Gualtieri, S C J
2018-05-07
In recent years, natural products with antifungal and antioxidant activities are being increasingly researched for a more sustainable alternative to the chemicals currently used for the same purpose. The plant pathogenic fungus Alternaria alternata is a causative agent of diseases in citrus, leading to huge economic losses. Antioxidants are important for the production of medicines for various diseases that may be related to the presence of free radicals, such as cancer, and in the cosmetic industry as an anti-aging agent and the food industry as preservatives. This study evaluated the antifungal and antioxidant potential of extracts of mature leaves of Myrcia splendens, a tree species that occurs in the Brazilian Cerrado. The antioxidant potential was analyzed by an assay of 1,1-diphenyl-2-picrylhydrazyl radical-scavenging method, and the antifungal activity was assessed through the evaluation of mycelial growth. Majority of the extracts exhibited a strong antioxidant activity, especially the acetonic extract (4A). The antioxidant activity may be related to the presence of phenolic compounds. However, the extracts showed no inhibitory activity of mycelial growth of the fungus tested, with the exception of dichloromethanic extract (2B), which had an inhibitory effect (10.2%) at the end of testing.
Kim, Young Gwon; Kang, Hee Kyoung; Kwon, Kee-Deok; Seo, Chang Ho; Lee, Hyang Burm; Park, Yoonkyung
2015-12-09
Bacillus species have recently drawn attention due to their potential use in the biological control of fungal diseases. This paper reports on the antifungal activity of novel peptides isolated from Bacillus amyloliquefaciens PT14. Reverse-phase high-performance liquid chromatography revealed that B. amyloliquefaciens PT14 produces five peptides (PT14-1, -2, -3, -4a, and -4b) that exhibit antifungal activity but are inactive against bacterial strains. In particular, PT14-3 and PT14-4a showed broad-spectrum antifungal activity against Fusarium solani and Fusarium oxysporum. The PT14-4a N-terminal amino acid sequence was identified through Edman degradation, and a BLAST homology analysis showed it not to be identical to any other protein or peptide. PT14-4a displayed strong fungicidal activity with minimal inhibitory concentrations of 3.12 mg/L (F. solani) and 6.25 mg/L (F. oxysporum), inducing severe morphological deformation in the conidia and hyphae. On the other hand, PT14-4a had no detectable hemolytic activity. This suggests PT14-4a has the potential to serve as an antifungal agent in clinical therapeutic and crop-protection applications.
Huang, Wenhui; Ong, Gavin; Chong, Wei-Sheng
2015-04-01
Confluent and reticulate papillomatosis of Gougerot and Carteaud (CRP) is a rare dermatological condition, which has not been reported widely in Asian populations. To characterize the clinicopathological and diagnostic features of CRP in a South-East Asian population. The medical records of 29 patients accorded the diagnosis of CRP at the National Skin Centre, Singapore, from 1990 to 2011, were analyzed. The male to female ratio was 2.6:1. Eight patients were Indians. The mean age at the onset of skin eruptions was 29.1 years (range 16-55 years), while the mean duration was 19.9 months (range 0.5-120 months). CRP itself was the most common preliminary diagnosis. Fungal smears were negative in all 22 instances. All 29 patients had received a trial of antifungal therapy before being seen at our center. Antifungal therapy was repeated in three subjects, and the response was uniformly poor. Conversely, the treatment response with tetracyclines was excellent, yielding more than a 50% response in all 14 patients. Four patients suffered recurrence of CRP. According to the diagnostic criteria set forth by Davis et al., 25/29 patients (86.2%) and 19/29 patients (65.6%) fulfilled at least three and four criteria, respectively. A predilection for male gender and Indian ethnicity were noted in our study. The diagnosis of CRP was often made clinically, and investigations were mainly ancillary. The treatment response was poor with antifungal agents but excellent with tetracyclines. The diagnostic criteria proposed by Davis et al. were found to be useful in our cohort of patients.
Zha, Gao-Feng; Leng, Jing; Darshini, N; Shubhavathi, T; Vivek, H K; Asiri, Abdullah M; Marwani, Hadi M; Rakesh, K P; Mallesha, N; Qin, Hua-Li
2017-07-15
A series of new benzo[d]thiazole-hydrazones analogues were synthesized and screened for their in vitro antibacterial and antifungal activities. The results revealed that compounds 13, 14, 15, 19, 20, 28 and 30 exhibited superior antibacterial potency compared to the reference drug chloramphenicol and rifampicin. Compounds 5, 9, 10, 11, 12, 28 and 30 were found to be good antifungal activity compared to the standard drug ketoconazole. A preliminary study of the structure-activity relationship (SAR) revealed that the antimicrobial activity depended on the effect of different substituents on the phenyl ring. The electron donating (OH and OCH 3 ) groups presented in the analogues, increase the antibacterial activity (except compound 12), interestingly, while the electron withdrawing (Cl, NO 2 , F and Br) groups increase the antifungal activity (except compound 19 and 20). In addition, analogues containing thiophene (28) and indole (30) showed good antimicrobial activities. Whereas, aliphatic analogues (24-26) shown no activities in both bacterial and fungal stains even in high concentrations (100µg/mL). Molecular docking studies were performed for all the synthesized compounds of which compounds 11, 19 and 20 showed the highest glide G-score. Copyright © 2017 Elsevier Ltd. All rights reserved.
Disulphide-reduced psoriasin is a human apoptosis-inducing broad-spectrum fungicide
Hein, Kyaw Zaw; Takahashi, Hitoshi; Tsumori, Toshiko; Yasui, Yukihiko; Nanjoh, Yasuko; Toga, Tetsuo; Wu, Zhihong; Grötzinger, Joachim; Jung, Sascha; Wehkamp, Jan; Schroeder, Bjoern O.; Schroeder, Jens M.; Morita, Eishin
2015-01-01
The unexpected resistance of psoriasis lesions to fungal infections suggests local production of an antifungal factor. We purified Trichophyton rubrum-inhibiting activity from lesional psoriasis scale extracts and identified the Cys-reduced form of S100A7/psoriasin (redS100A7) as a principal antifungal factor. redS100A7 inhibits various filamentous fungi, including the mold Aspergillus fumigatus, but not Candida albicans. Antifungal activity was inhibited by Zn2+, suggesting that redS100A7 interferes with fungal zinc homeostasis. Because S100A7-mutants lacking a single cysteine are no longer antifungals, we hypothesized that redS100A7 is acting as a Zn2+-chelator. Immunogold electron microscopy studies revealed that it penetrates fungal cells, implicating possible intracellular actions. In support with our hypothesis, the cell-penetrating Zn2+-chelator TPEN was found to function as a broad-spectrum antifungal. Ultrastructural analyses of redS100A7-treated T. rubrum revealed marked signs of apoptosis, suggesting that its mode of action is induction of programmed cell death. TUNEL, SYTOX-green analyses, and caspase-inhibition studies supported this for both T. rubrum and A. fumigatus. Whereas redS100A7 can be generated from oxidized S100A7 by action of thioredoxin or glutathione, elevated redS100A7 levels in fungal skin infection indicate induction of both S100A7 and its reducing agent in vivo. To investigate whether redS100A7 and TPEN are antifungals in vivo, we used a guinea pig tinea pedes model for fungal skin infections and a lethal mouse Aspergillus infection model for lung infection and found antifungal activity in both in vivo animal systems. Thus, selective fungal cell-penetrating Zn2+-chelators could be useful as an urgently needed novel antifungal therapeutic, which induces programmed cell death in numerous fungi. PMID:26438863
Antileishmanial and antifungal activity of plants used in traditional medicine in Brazil.
Braga, Fernanda G; Bouzada, Maria Lúcia M; Fabri, Rodrigo L; de O Matos, Magnum; Moreira, Francis O; Scio, Elita; Coimbra, Elaine S
2007-05-04
The antileishmanial and antifungal activity of 24 methanol extracts from 20 plants, all of them used in the Brazilian traditional medicine for the treatment of several infectious and inflammatory disorders, were evaluated against promastigotes forms of two species of Leishmania (L. amazonensis and L. chagasi) and two yeasts (Candida albicans and Cryptococcus neoformans). Among the 20 tested methanolic extracts, those of Vernonia polyanthes was the most active against L. amazonensis (IC(50) of 4 microg/ml), those of Ocimum gratissimum exhibited the best activity against L. chagasi (IC(50) of 71 microg/ml). Concerning antifungical activity, Schinus terebintifolius, O. gratissimum, Cajanus cajan, and Piper aduncum extracts were the most active against C. albicans (MIC of 1.25 mg/ml) whereas Bixa orellana, O. gratissimum and Syzygium cumini exhibited the best activity against C. neoformans (MIC of 0.078 mg/ml).
Manns, David C.; Churey, John J.
2012-01-01
This study reports a novel class of antifungal protein derived from bacterial origin. Bacillus thuringiensis SF361, the strain also responsible for producing the novel bacteriocin thurincin H, exhibits broad antifungal activity against select members of several fungal genera, including Aspergillus, Byssochlamys, and Penicillium, as well as the pathogenic yeast Candida albicans. Optimal antifungal production and secretion were observed after-log phase growth when incubated at 37°C in a carbohydrate-free growth medium. High-performance liquid chromatography purification was performed after pH-selective ammonium sulfate precipitation and size-exclusion chromatography. Intact mass analysis and peptide mass fingerprinting identified the 13,484-Da protein to be a mass homolog to the YvgO protein construct sequenced from Bacillus cereus AH 1134. Further analysis via amino-terminal sequencing also revealed the existence of four distinct yet equally efficacious YvgO variants differing only within the first four N-terminal residues. YvgO was found to be remarkably stable, maintaining its antifungal activity under a wide pH and temperature range. When assayed against the toxigenic species Byssochlamys fulva H25, the selected primary filamentous fungal indicator, the MIC was estimated to be 1.5 ppm. Candida albicans 3153 was more resistant, exhibiting MICs between 25 and 800 ppm, depending on growth conditions. YvgO is unique among antifungals, showing no known sequential or functional homology to the typical classes of antifungal proteins, including common membrane-acting agents such as cellulases and glucanases. Due to its activity against an array of pathogenic and spoilage fungi, the potentials for clinical, agricultural, and food-processing applications are encouraging. PMID:22307285
Phytochemical and antimicrobial study of an antidiabetic plant: Scoparia dulcis L.
Latha, M; Ramkumar, K M; Pari, L; Damodaran, P N; Rajeshkannan, V; Suresh, T
2006-01-01
The antimicrobial and antifungal effects of different concentrations of chloroform/methanol fractions of Scoparia dulcis were investigated. The isolated fractions were tested against different bacteria like Salmonella typhii, Staphylococcus aureus, Escherichia coli, Bacillus subtilis, Pseudomonas aeruginosa, and Proteus vulgaris and fungal strains such as Alternaria macrospora, Candida albicans, Aspergillus niger, and Fusarium oxysporum. The isolated fractions exhibited significant antimicrobial and antifungal activity against all the tested organisms compared with respective reference drugs. The isolated fractions of S. dulcis showed properties like antimicrobial and antifungal activities that will enable researchers in turn to look for application-oriented principles.
“In vitro” antifungal activity of ozonized sunflower oil on yeasts from onychomycosis
Guerrer, L.V.; Cunha, K. C.; Nogueira, M. C. L.; Cardoso, C. C.; Soares, M. M. C. N.; Almeida, M. T. G.
2012-01-01
The “in vitro” antifungal activity of ozonized sunflower oil (Bioperoxoil®) was tested on 101 samples of yeasts originating from onychomycosis using the disk diffusion method. The oil was efficacious against several clinical fungal strains: Candida parapsilosis, Candida albicans, Trichosporon asahii, Candida tropicalis and Candida guilliermondii. PMID:24031958
Gozubuyuk, G S; Aktas, E; Yigit, N
2014-12-01
World is endowed with a rich wealth of medicinal plants. There is a widespread belief that green medicines are healthier and more harmless or safer than synthetic ones. Medicinal plants have been used to cure a number of diseases. The ancient plant Lawsonia inermis or henna is used as medicinal plant because of its attributed strong fungicidal, anti-inflammatory, analgesic, antibacterial, virucidal, antiparasitic, antiamoebiasis, astringent, antihemorrhagic, hypotensive, sedative, anticancer effect and possible anti-sweating properties. In this study, we investigated antifungal activity of L. inermis against clinical dermatophytes species. This study was carried out using 70 clinical isolates of dermatophytes representing six different species; 44 Trichophyton rubrum, 8 Trichophyton mentagrophytes, 6 Microsporum canis, 6 Trichophyton tonsurans, 4 Epidermophyton floccosum, and 2 Trichophyton violaceum. The antifungal activity of L. inermis (henna) was determined by agar diffusion method and henna was used as paste form. Henna paste showed the high antifungal activity against all dermatophytes species (20 to 50mm inhibition zone). Copyright © 2014 Elsevier Masson SAS. All rights reserved.
Yuce, E; Yildirim, N; Yildirim, N C; Paksoy, M Y; Bagci, E
2014-06-15
The essential oil composition and in vitro antioxidant and antifungal activity of the Salvia sclarea L. from Munzur Valley in Tunceli, Turkey were evaluated in this research. The in vitro antifungal activity of ethanol, hexane and aqueous extracts of S. sclarea against pathogen fungi Epicoccum nigrum and Colletotrichum coccodes were investigated. The essential oil of aerial parts of S. sclarea was obtained by hydrodistillation and was analysed by GC and GC—MS. Total antioxidant status was determined by using Rel assay diagnostics TAS assay kit (Lot.RL024) by Multiscan FC (Thermo). 33 compounds were identified representing the 85.0% of the total oil. The most abundant components (>5%) of the S. sclarea essential oils were caryophyllene oxide (24.1%), sclareol (11.5%), spathulenol (11.4%), 1H-naphtho (2,1,6) pyran (8.6%) and b—caryophyllene (5.1%). The best antifungal and antioxidant effect was seen in ethanolic S. sclarea extract. It can be said that Salvia sclerae could be used as natural antioxidant.
Huang, Yongfu; Zhao, Jianglin; Zhou, Ligang; Wang, Jihua; Gong, Youwen; Chen, Xujun; Guo, Zejian; Wang, Qi; Jiang, Weibo
2010-10-27
In order to identify natural products for plant disease control, the essential oil of star anise (Illicium verum Hook. f.) fruit was investigated for its antifungal activity on plant pathogenic fungi. The fruit essential oil obtained by hydro-distillation was analyzed for its chemical composition by gas chromatography (GC) and gas chromatography-mass spectrometry (GC-MS). trans-Anethole (89.5%), 2-(1-cyclopentenyl)-furan (0.9%) and cis-anethole (0.7%) were found to be the main components among 22 identified compounds, which accounted for 94.6% of the total oil. The antifungal activity of the oil and its main component trans-anethole against plant pathogenic fungi were determined. Both the essential oil and trans-anethole exhibited strong inhibitory effect against all test fungi indicating that most of the observed antifungal properties was due to the presence of trans-anethole in the oil, which could be developed as natural fungicides for plant disease control in fruit and vegetable preservation.
Zheng, Bi-Yuan; Ke, Mei-Rong; Lan, Wen-Liang; Hou, Lu; Guo, Jun; Wan, Dong-Hua; Cheong, Ling-Zhi; Huang, Jian-Dong
2016-05-23
A series of zinc(II) phthalocyanines (ZnPcs) mono-substituted and tetra-substituted with morpholinyl moieties and their quaternized derivatives have been synthesized and evaluated for their antifungal photodynamic activities toward Candida albicans. The α-substituted, quaternized, and mono-substituted ZnPcs are found to have higher antifungal photoactivity than β-substituted, neutral, and tetra-substituted counterparts. The cationic α-mono-substituted ZnPc (6a) exhibits the highest photocytotoxicity. Moreover, it is more potent than axially di-substituted analogue. The different photocytotoxicities of these compounds have also been rationalized by investigating their spectroscopic and photochemical properties, aggregation trend, partition coefficients, and cellular uptake. The IC90 value of 6a against C. albicans cells is as low as 3.3 μM with a light dose of 27 J cm(-2), meaning that 6a is a promising candidate as the antifungal photosensitizer for future investigations. Copyright © 2016 Elsevier Masson SAS. All rights reserved.
Detection of griseofulvin in a marine strain of Penicillium waksmanii by ion trap mass spectrometry.
Petit, K E; Mondeguer, F; Roquebert, M F; Biard, J F; Pouchus, Y F
2004-07-01
A marine strain of Penicillium waksmanii Zaleski was isolated from a sample of seawater from shellfish-farming area in the Loire estuary (France). The in vitro marine culture showed an important antifungal activity. Bioassay-guided fractionation was used to purify the crude extract. Dereplication by electrospray-ion trap/mass spectrometry (ESI-IT/MS) afforded the identification of the antifungal compound, after a semi-purification consisting of two stages. A comparison of the ionic composition between the active and the non-active fractions allowed the detection of a monocharged ion at m/z 353 containing a chlorine atom, which could be attributed to the antifungal griseofulvin [C17H17ClO6+H]+. Multi-stage fragmentation (MSn) confirmed the identity of the m/z 353 ion of the antifungal fraction as griseofulvin. It is the first description of griseofulvin production by a strain of P. waksmanii and the first chemical study of a strain of this species isolated from marine temperate cold water. Copyright 2004 Elsevier B.V.
NASA Astrophysics Data System (ADS)
Yusoff, Nik Yusliyana Nik; Mohamad, Suharni; Abdullah, Haswati@Nurhayati; Rahman, Nurhayu Ab
2016-12-01
Malaysian honey and propolis extracts were investigated for their antifungal properties against pathogens implicated in denture stomatitis. Each of the honey and aqueous extracts propolis at net preparation, 1:1 and 1:2 dilutions was evaluated by using agar well diffusion assay and further investigated by minimum inhibitory concentration (MIC) within the range of 500 mg/mL to 62.5 mg/mL against oral fungi. The findings indicated that there was no effect of propolis on Candida spp for both types of propolis based on no inhibition zones was recorded. Meanwhile, for antifungal activity of honey, only honey from Trigona spp has shown activity at net preparation against C. albicans (10.47 ± 0.23 mm), C. tropicalis (12.29 ± 0.23 mm) and C. glabrata (8.69 ± 0.53 mm). For minimum inhibitory concentration, the data indicates that both propolis have shown inhibitory effect at 500 mg/mL. As for honey, Trigona spp was the effective honey that give MIC value at 250 mg/mL against Candida spp. Apis dorsata honey has shown MIC value at 500 mg/mL while Apis mellifera honey had inhibited C.albicans and C.glabrata at 500 mg/mL except for C.tropicalis at 250 mg/mL. It can be concluded that both propolis has shown weaker antifungal activity against oral fungi while only honey produced from Trigona spp had strong antifungal activity compare to other honey against oral fungi implicated in denture stomatitis.
Wypij, Magdalena; Czarnecka, Joanna; Dahm, Hanna; Rai, Mahendra; Golinska, Patrycja
2017-09-01
In this study, we present the in vitro antifungal activity of silver nanoparticles (AgNPs) synthesized from acidophilic actinobacterium Pilimelia columellifera subsp. pallida SL19 strain, alone and in combination with antibiotics viz., amphotericin B, fluconazole, and ketoconazole against pathogenic fungi, namely Candida albicans, Malassezia furfur, and Trichophyton erinacei. The minimum inhibitory concentration (MIC) and minimum biocidal concentration (MBC) of AgNPs against test fungi were evaluated. The fractional inhibitory concentration (FIC) index was determined to estimate antifungal activity of AgNPs combined with antibiotics. Antifungal activity of AgNPs varied among the tested fungal strains. M. furfur was found to be most sensitive to biogenic silver nanoparticles, followed by C. albicans and T. erinacei. The lowest MIC of AgNPs was noticed against M. furfur (16 μg ml -1 ). Synergistic effect was observed on C. albicans when AgNP were combined with amphotericin B and ketoconazole and on M. furfur with fluconazole and ketoconazole (FIC index of 0.5). Cytotoxic effect of AgNPs on HeLa and 3T3 cell lines was evaluated. The IC 50 values were found to be 55 and 25 μg ml -1 , respectively. The present study indicates that silver nanoparticles from P. columellifera subsp. pallida SL19 strain have antifungal activity, both alone and in combination with antibiotics, and offer a valuable contribution to nanomedicine. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Murakami, Cynthia; Cordeiro, Inês; Young, Maria Cláudia M.
2017-01-01
Background: Hedyosmum brasiliense Mart. ex Miq. (Chloranthaceae) is a dioecious shrub popularly used in Brazil to treat foot fungi and rheumatism. This work investigated the chemical composition, antifungal, and antioxidant activities of flowers and leaves of H. brasiliense essential oils; Methods: H. brasiliense male and female flowers and leaves were collected at Ilha do Cardoso (São Paulo) and the essential oils were extracted by hydrodistillation and analyzed by GC/MS and their similarity compared by Principal Component Analysis. Antifungal activity was performed by bioautography and antioxidant potential by 2,2-diphenyl-2-picrylhydrazyl hydrate (DPPH) free radical scavenging and β-carotene/linoleic acid system; Results: The major compounds for all oils were sabinene, curzerene, and carotol, but some differences in their chemical composition were discriminated by Principal Component Analysis (PCA) analysis. Bioautography showed two antifungal bands at Rf’s 0.67 and 0.12 in all samples, the first one was identified as curzerene. The oils presented stronger antioxidant potential in β-carotene/linoleic acid bioassay, with IC50’s from 80 to 180 μg/mL, than in DPPH assay, with IC50’s from 2516.18 to 3783.49 μg/mL; Conclusions: These results suggested that curzerene might be responsible for the antifungal activity of H. brasiliense essential oils. Besides, these essential oils exhibited potential to prevent lipoperoxidation, but they have a weak radical scavenger activity. PMID:28930269
Touba, Eslaminejad Parizi; Zakaria, Maziah; Tahereh, Eslaminejad
2012-02-01
Crude extracts of seven spices, viz. cardamom, chilli, coriander, onion, garlic, ginger, and galangale were made using cold water and hot water extraction and they were tested for their anti-fungal effects against the three Roselle pathogens i.e. Phoma exigua, Fusarium nygamai and Rhizoctonia solani using the 'poisoned food technique'. All seven spices studied showed significant anti-fungal activity at three concentrations (10, 20 and 30% of the crude extract) in-vitro. The cold water extract of garlic exhibited good anti-fungal activity against all three tested fungi. In the case of the hot water extracts, garlic and ginger showed the best anti-fungal activity. Of the two extraction methods, cold water extraction was generally more effective than hot water extraction in controlling the pathogens. Against P. exigua, the 10% cold water extracts of galangale, ginger, coriander and cardamom achieved total (100%) inhibition of pathogen mycelial growth. Total inhibition of F. nygamai mycelial growth was similarly achieved with the 10% cold water extracts garlic. Against R. solani, the 10% cold water extract of galangale was effective in imposing 100% inhibition. Accordingly, the 10% galangale extract effectively controlled both P. exigua and R. solani in vitro. None of the hot water extracts of the spices succeeded in achieving 100% inhibition of the pathogen mycelial growth. Copyright © 2011 Elsevier Ltd. All rights reserved.
Antifungal Activity of Commercial Essential Oils and Biocides against Candida Albicans.
Serra, Elisa; Hidalgo-Bastida, Lilia Araida; Verran, Joanna; Williams, David; Malic, Sladjana
2018-01-25
Management of oral candidosis, most frequently caused by Candida albicans , is limited due to the relatively low number of antifungal drugs and the emergence of antifungal tolerance. In this study, the antifungal activity of a range of commercial essential oils, two terpenes, chlorhexidine and triclosan was evaluated against C. albicans in planktonic and biofilm form. In addition, cytotoxicity of the most promising compounds was assessed using murine fibroblasts and expressed as half maximal inhibitory concentrations (IC50). Antifungal activity was determined using a broth microdilution assay. The minimum inhibitory concentration (MIC) was established against planktonic cells cultured in a range of concentrations of the test agents. The minimal biofilm eradication concentration (MBEC) was determined by measuring re-growth of cells after pre-formed biofilm was treated for 24 h with the test agents. All tested commercial essential oils demonstrated anticandidal activity (MICs from 0.06% ( v / v ) to 0.4% ( v / v )) against planktonic cultures, with a noticeable increase in resistance exhibited by biofilms (MBECs > 1.5% ( v / v )). The IC50s of the commercial essential oils were lower than the MICs, while a one hour application of chlorhexidine was not cytotoxic at concentrations lower than the MIC. In conclusion, the tested commercial essential oils exhibit potential as therapeutic agents against C. albicans , although host cell cytotoxicity is a consideration when developing these new treatments.
Santos, Maximillan Leite; Magalhães, Chaiana Froés; da Rosa, Marcelo Barcellos; de Assis Santos, Daniel; Brasileiro, Beatriz Gonçalves; de Carvalho, Leandro Machado; da Silva, Marcelo Barreto; Zani, Carlos Leomar; de Siqueira, Ezequias Pessoa; Peres, Rodrigo Loreto; Andrade, Anderson Assunção
2013-12-01
The effects of different solvents and extraction techniques upon the phytochemical profile and anti-Trichophyton activity of extracts from Piper aduncum leaves were evaluated. Extract done by maceration method with ethanol has higher content of sesquiterpenes and antifungal activity. This extract may be useful as an alternative treatment for dermatophytosis.
Santos, Maximillan Leite; Magalhães, Chaiana Froés; da Rosa, Marcelo Barcellos; de Assis Santos, Daniel; Brasileiro, Beatriz Gonçalves; de Carvalho, Leandro Machado; da Silva, Marcelo Barreto; Zani, Carlos Leomar; de Siqueira, Ezequias Pessoa; Peres, Rodrigo Loreto; Andrade, Anderson Assunção
2013-01-01
The effects of different solvents and extraction techniques upon the phytochemical profile and anti-Trichophyton activity of extracts from Piper aduncum leaves were evaluated. Extract done by maceration method with ethanol has higher content of sesquiterpenes and antifungal activity. This extract may be useful as an alternative treatment for dermatophytosis. PMID:24688522
Delavenne, E; Mounier, J; Déniel, F; Barbier, G; Le Blay, G
2012-04-16
Antifungal lactic acid bacteria (ALAB) biodiversity was evaluated in raw milk from ewe, cow and goat over one year period. Lactic acid bacteria were enumerated using 8 semi-selective media, and systematically screened for their antifungal activity against 4 spoilage fungi commonly encountered in dairy products. Depending on the selective medium, between 0.05% (Elliker agar) and 5.5% (LAMVAB agar) screened colonies showed an antifungal activity. The great majority of these active colonies originated from cow (49%) and goat (43%) milks, whereas only 8% were isolated from ewe milk. Penicillium expansum was the most frequently inhibited fungus with 48.5% of colonies active against P. expansum among the 1235 isolated, followed by Mucor plumbeus with 30.6% of active colonies, Kluyveromyces lactis with only 12.1% of active colonies and Pichia anomala with 8.7% of active colonies. In the tested conditions, 94% of the sequenced active colonies belonged to Lactobacillus. Among them, targeted fungal species differed according to the Lactobacillus group, whose presence largely depended on year period and milk origin. The Lb. casei and Lb. reuteri groups, predominantly recovered in summer/fall, were overrepresented in the population targeting M. plumbeus, whereas isolates from the Lb. plantarum group, predominantly recovered in spring, were overrepresented in the population targeting K. lactis, the ones belonging to the Lb. buchneri group, predominantly recovered in spring, were overrepresented in the population targeting P. anomala. Raw milk, especially cow and goat milks from the summer/fall period appeared to be a productive reservoir for antifungal lactobacilli. Copyright © 2012 Elsevier B.V. All rights reserved.
Antibacterial, antifungal, and antiviral activities of the lipophylic extracts of Pistacia vera.
Ozçelik, Berrin; Aslan, Mustafa; Orhan, Ilkay; Karaoglu, Taner
2005-01-01
In the present study, antibacterial, antifungal, and antiviral properties of 15 lipohylic extracts obtained from different parts (leaf, branch, stem, kernel, shell skins, seeds) of Pistacia vera were screened against both standard and the isolated strains of Escherichia coli, Pseudomonas aeruginosa, Enterococcus faecalis, Staphylococcus aureus, Candida albicans and C. parapsilosis by microdilution method. Both Herpes simplex (DNA) and Parainfluenza viruses (RNA) were used for the determination of antiviral activity of the P. vera extracts by using Vero cell line. Ampicilline, ofloxocine, ketoconazole, fluconazole, acyclovir and oseltamivir were used as the control agents. The extracts showed little antibacterial activity between the range of 128-256 microg/ml concentrations whereas they had noticeable antifungal activity at the same concentrations. Kernel and seed extracts showed significant antiviral activity compared to the rest of the extracts as well as the controls.
Discovery of antifungal constituents from the Miao medicinal plant Isodon flavidus.
Li, Ji-Xin; Li, Qi-Ji; Guan, Yi-Fu; Song, Xun; Liu, Ya-Hua; Zhang, Jing-Jie; Li, Wan-Fei; Du, Jiang; Zhu, Min; Banas, Jeffrey A; Li, Xiao-Nian; Pan, Lu-Tai; Zhang, Hong-Jie
2016-09-15
Leigong Mountain is an area in the Southwest of China where there is a high incidence rate of athlete's foot, but the Miao people, a Chinese minority who reside in this mountainous area have suffered less from this disease due to their use of the herbal medicine Isodon flavidus (Hand.-Mazz.) H. Hara. The present study is to identify the active chemical constituents responsible for antifungal effects of the folk medicine plant. The natural compounds were separated from the methanol extract of the twigs and leaves of I. flavidus by phytochemical study using chromatographic methods, and their chemical structures were determined by analysis of the spectroscopic data including 1D and 2D NMR spectra. The absolute configuration of fladin A (1) was further confirmed by X-ray crystallographic analysis. The compounds were evaluated for their antifungal activity against the athlete's foot fungus Trichophyton rubrum. They were further evaluated for their antimicrobial and anti-biofilm activity against the dental pathogens Streptococcus mutans, Porphyromonas gingivalis and Candida albicans. Phytochemical and biological studies of I. flavidus led to the discovery of two antifungal compounds, fladin A (1) and lophanic acid (2). Fladin A (1) is a novel diterpene with an unprecedented cyclic ether group formed between C-4 and C-9. Lophanic acid (2) displayed inhibition activity against the athlete's foot fungus Trichophyton rubrum with an MIC value of 7.8μg/mL, and fladin A (1) also showed inhibition activity against the fungus with a MIC value of 62.5μg/mL. Our identification of two antifungal compounds provided strong evidence for the Miao people to use I. flavidus as a medicinal plant for treatment of athlete's foot disease. The very different chemical structures of the active compounds from those in the market presents them as potential antifungal lead compounds for follow-up study. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.
Ji, Xiaofei; Guo, Jincheng; Liu, Yuxiu; Lu, Aidang; Wang, Ziwen; Li, Yongqiang; Yang, Shaoxiang; Wang, Qingmin
2018-04-25
Nortopsentin alkaloids were found to have potent antiviral, anti-phytopathogenic-fungus, and insecticidal activities for the first time. Antiviral-activity tests revealed that these compounds were very sensitive to substituents, so a series of nortopsentin derivatives were designed, synthesized, and systematically evaluated for their antiviral activities against TMV, their fungicidal activities, and their insecticidal activities on the basis of a structural-diversity-derivation strategy. Compounds 2e (in vivo inactivation-, curative-, and protective-activity inhibitory rates of 50, 59, and 56%, respectively, at 500 μg/mL) and 2k (in vivo inactivation-, curative-, and protective-activity inhibitory rates of 60, 58, and 52%, respectively, at 500 μg/mL), with excellent antiviral activities and good physicochemical properties, emerged as new lead compounds for novel-antiviral-agent development. Further fungicidal-activity tests revealed that these alkaloids displayed broad-spectrum fungicidal activities. Compounds 2f, 2h, and 2j emerged as new lead compounds for antifungal-activity research. Additionally, all the compounds displayed good insecticidal activities against five kinds of insects, including Mythimna separate, Helicoverpa armigera, Ostrinia nubilalis, Plutella xylostella, and Culex pipiens pallens.
Antifungal activity of essential oils of Croton species from the Brazilian Caatinga biome.
Fontenelle, R O S; Morais, S M; Brito, E H S; Brilhante, R S N; Cordeiro, R A; Nascimento, N R F; Kerntopf, M R; Sidrim, J J C; Rocha, M F G
2008-05-01
To find new antifungal agents among essential oils from Brazilian Croton species. Plant leaves were steam distilled and the obtained essential oils were analyzed by gas chromatography/mass spectroscopy. The main constituents were estragole and anethole for Croton zehntneri, methyl-eugenol and bicyclogermacrene for Croton nepetaefolius and spathulenol and bicyclogermacrene for Croton argyrophylloides. The antifungal activity of essential oils was evaluated against Candida albicans, Candida tropicalis and Microsporum canis by the agar-well diffusion method and the minimum inhibitory concentration (MIC) by the broth microdilution method. Essential oils of Croton species demonstrated better activity against M. canis. Among the three plants C. argyrophylloides showed the best results, with MIC ranging from 9 to 19 microg ml(-1). The acute administration of the essential oil up to 3 g kg(-1) by the oral route to mice was devoid of overt toxicity. The studied essential oils are active in vitro against the dermatophyte M. canis and present relative lack of acute toxicity in vivo. Because of its antifungal activity and low toxicity, the essential oils of studied Croton species are promising sources for new phytotherapeutic agents to treat dermatophytosis.
Chaturvedi, Ashok K.; Rozental, Sonia
2015-01-01
The generation of a new antifungal against Candida albicans biofilms has become a major priority, since biofilm formation by this opportunistic pathogenic fungus is usually associated with an increased resistance to azole antifungal drugs and treatment failures. Miltefosine is an alkyl phospholipid with promising antifungal activity. Here, we report that, when tested under planktonic conditions, miltefosine displays potent in vitro activity against multiple fluconazole-susceptible and -resistant C. albicans clinical isolates, including isolates overexpressing efflux pumps and/or with well-characterized Erg11 mutations. Moreover, miltefosine inhibits C. albicans biofilm formation and displays activity against preformed biofilms. Serial passage experiments confirmed that miltefosine has a reduced potential to elicit resistance, and screening of a library of C. albicans transcription factor mutants provided additional insight into the activity of miltefosine against C. albicans growing under planktonic and biofilm conditions. Finally, we demonstrate the in vivo efficacy of topical treatment with miltefosine in the murine model of oropharyngeal candidiasis. Overall, our results confirm the potential of miltefosine as a promising antifungal drug candidate, in particular for the treatment of azole-resistant and biofilm-associated superficial candidiasis. PMID:26416861
Zuzarte, Monica; Gonçalves, Maria J; Cavaleiro, Carlos; Dinis, Augusto M; Canhoto, Jorge M; Salgueiro, Lígia R
2009-08-01
The chemical composition and antifungal activity of the essential oils of Lavandula pedunculata (Miller) Cav., harvested in North and Central Portugal, were investigated. The essential oils were isolated by hydrodistillation and analyzed by GC and GC/MS. The minimal-inhibitory concentration (MIC) and the minimal-lethal concentration (MLC) of the essential oils and of their major constituents were used to evaluate the antifungal activity against different strains of fungi involved in candidosis, dematophytosis, and aspergillosis. The oils were characterized by a high percentage of oxygenated monoterpenes, the main compounds being 1,8-cineole (2.4-55.5%), fenchone (1.3-59.7%), and camphor (3.6-48.0%). Statistical analysis differentiated the essential oils into two main types, one characterized by the predominance of fenchone and the other one by the predominance of 1,8-cineole. Within the 1,8-cineole chemotype, two subgroups were well-defined taking into account the percentages of camphor. A significant antifungal activity of the oils was found against dermatophyte strains. The essential oil with the highest content of camphor was the most active with MIC and MLC values ranging from 0.32-0.64 microl/ml.
Zhang, Bao; Dong, Chunjuan; Shang, Qingmao; Han, Yuzhu; Li, Pinglan
2013-09-01
Bacillomycin L, a natural iturinic lipopeptide produced by Bacillus amyloliquefaciens, is characterized by strong antifungal activities against a variety of agronomically important filamentous fungi including Rhizoctonia solani Kühn. Prior to this study, the role of membrane permeabilization in the antimicrobial activity of bacillomycin L against plant pathogenic fungi had not been investigated. To shed light on the mechanism of this antifungal activity, the permeabilization of R. solani hyphae by bacillomycin L was investigated and compared with that by amphotericin B, a polyene antibiotic which is thought to act primarily through membrane disruption. Our results derived from electron microscopy, various fluorescent techniques and gel retardation experiments revealed that the antifungal activity of bacillomycin L may be not solely a consequence of fungal membrane permeabilization, but related to the interaction of it with intracellular targets. Our findings provide more insights into the mode of action of bacillomycin L and other iturins, which could in turn help to develop new or improved antifungal formulations or result in novel strategies to prevent fungal spoilage. Crown Copyright © 2013. Published by Elsevier B.V. All rights reserved.
Ahluwalia, Vivek; Kumar, Jitendra; Rana, Virendra S; Sati, Om P; Walia, S
2015-01-01
This investigation was undertaken to identify the major secondary metabolite, produced by two Trichoderma harzianum strains (T-4 and T-5) with their antifungal activity against phytopathogenic fungi using poison food technique. The ethyl acetate extract was subjected to column chromatography using n-hexane, ethyl acetate and methanol gradually. Chromatographic separation of ethyl acetate extract of T. harzianum (T-4) resulted in the isolation and identification of palmitic acid (1), 1,8-dihydroxy-3-methylanthraquinone (2), 6-pentyl-2H-pyran-2-one (3), 2(5H)-furanone (4), stigmasterol (5) and β-sitosterol (6), while T. harzianum (T-5) gave palmitic acid (1), 1-hydroxy-3-methylanthraquinone (7), δ-decanolactone (8), 6-pentyl-2H-pyran-2-one (3), ergosterol (9), harzianopyridone (10) and 6-methyl-1,3,8-trihydroxyanthraquinone (11) as major metabolites. Among compounds screened for antifungal activity, compound 10 was found to be most active (EC50 35.9-50.2 μg mL(-1)). In conclusion, the present investigation provided significant information about antifungal activity and compounds isolated from two different strains of T. harzianum obtained from two different Himalayan locations.
A long-term survivor of disseminated Aspergillus and mucorales infection: an instructive case.
Davoudi, Setareh; Anderlini, Paolo; Fuller, Gregory N; Kontoyiannis, Dimitrios P
2014-12-01
Invasive fungal infections remain major causes of infection-related mortality in hematopoietic stem cell transplantation (HSCT) patients. Mixed infections and multiple organ involvement have been reported in these patients. Here, we report a case of mixed Aspergillus and Mucorales infection involving the lungs, brain, spleen and bone in a HSCT patient with relapsed acute myeloid leukemia, who finally improved with triple antifungal therapy and neurosurgical evacuation of brain abscesses. She was put on lifelong secondary prophylaxis with posaconazole with excellent compliance and no sign of toxicity despite over 10 years of drug administration. Serial galactomannan measurements and positron emission tomography/computed tomography were used and were helpful for disease activity monitoring. This is an instructive case of long-term survival after a severe combined mould infection.
Antifungal activity of clove essential oil and its volatile vapour against dermatophytic fungi.
Chee, Hee Youn; Lee, Min Hee
2007-12-01
Antifungal activities of clove essential oil and its volatile vapour against dermatophytic fungi including Candida albicans, Epidermophyton floccosum. Microsporum audouinii, Trichophyton mentagrophytes, and Trichophyton rubrum were investigated. Both clove essential oil and its volatile vapour strongly inhibit spore germination and mycelial growth of the dermatophytic fungi tested. The volatile vapour of clove essential oil showed fungistatic activity whereas direct application of clove essential oil showed fungicidal activity.
Synthesis and evaluation of α-Ag2WO4 as novel antifungal agent
NASA Astrophysics Data System (ADS)
Foggi, Camila C.; Fabbro, Maria T.; Santos, Luís P. S.; de Santana, Yuri V. B.; Vergani, Carlos E.; Machado, Ana L.; Cordoncillo, Eloisa; Andrés, Juan; Longo, Elson
2017-04-01
Because of the need for new antifungal materials with greater potency, microcrystals of α-Ag2WO4, a complex metal oxide, have been synthetized by a simple co-precipitation method, and their antifungal activity against Candida albicans has been investigated. A theoretical model based on clusters that are building blocks of α-Ag2WO4 has been proposed to explain the experimental results.
de Oliveira, Jean Carlos Almeida
2017-01-01
Candida glabrata is a facultative intracellular opportunistic fungal pathogen in human infections. Several virulence-associated attributes are involved in its pathogenesis, host-pathogen interactions, modulation of host immune defenses, and regulation of antifungal drug resistance. This study evaluated the in vitro antifungal susceptibility profile to five antifungal agents, the production of seven hydrolytic enzymes related to virulence, and the relationship between these phenotypes in 91 clinical strains of C. glabrata. All C. glabrata strains were susceptible to flucytosine. However, some of these strains showed resistance to amphotericin B (9.9%), fluconazole (15.4%), itraconazole (5.5%), or micafungin (15.4%). Overall, C. glabrata strains were good producers of catalase, aspartic protease, esterase, phytase, and hemolysin. However, caseinase and phospholipase in vitro activities were not detected. Statistically significant correlations were identified between micafungin minimum inhibitory concentration (MIC) and esterase production, between fluconazole and micafungin MIC and hemolytic activity, and between amphotericin B MIC and phytase production. These results contribute to clarify some of the C. glabrata mechanisms of pathogenicity. Moreover, the association between some virulence attributes and the regulation of antifungal resistance encourage the development of new therapeutic strategies involving virulence mechanisms as potential targets for effective antifungal drug development for the treatment of C. glabrata infections. PMID:28814823
Kordali, Saban; Cakir, Ahmet; Ozer, Hakan; Cakmakci, Ramazan; Kesdek, Memis; Mete, Ebru
2008-12-01
The chemical composition of essential oil isolated by hydrodistillation from the aerial parts of Origanum acutidens was analyzed by GC-MS. Carvacrol (87.0%), p-cymene (2.0%), linalool acetate (1.7%), borneol (1.6%) and beta-caryophyllene (1.3%) were found to be as main constituents. Antifungal, phytotoxic and insecticidal activities of the oil and its aromatic monoterpene constituents, carvacrol, p-cymene and thymol were also determined. The antifungal assays showed that O. acutidens oil, carvacrol and thymol completely inhibited mycelial growth of 17 phytopathogenic fungi and their antifungal effects were higher than commercial fungicide, benomyl. However, p-cymene possessed lower antifungal activity. The oil, carvacrol and thymol completely inhibited the seed germination and seedling growth of Amaranthus retroflexus, Chenopodium album and Rumex crispus and also showed a potent phytotoxic effect against these plants. However, p-cymene did not show any phytotoxic effect. Furthermore, O. acutidens oil showed 68.3% and 36.7% mortality against Sitophilus granarius and Tribolium confusum adults, respectively. The findings of the present study suggest that antifungal and herbicidal properties of the oil can be attributed to its major component, carvacrol, and these agents have a potential to be used as fungicide, herbicide as well as insecticide.
Rao, Qi; Guo, Wenbin; Chen, Xinhua
2015-05-01
A fungal strain, R9, was isolated from the South Atlantic sediment sample and identified as Aspergillus fumigatus. An antifungal protein, AfAFPR9, was purified from the culture supernatant of Aspergillus fumigatus R9. AfAFPR9 was identified to be restrictocin, which is a member of the ribosome-inactivating proteins (RIPs), by MALDI-TOF-TOF-MS. AfAFPR9 displayed antifungal activity against plant pathogenic Fusarium oxysporum, Alternaria longipes, Colletotrichum gloeosporioides, Paecilomyces variotii, and Trichoderma viride at minimum inhibitory concentrations of 0.6, 0.6, 1.2, 1.2, and 2.4 μg/disc, respectively. Moreover, AfAFPR9 exhibited a certain extent of thermostability, and metal ion and denaturant tolerance. The iodoacetamide assay showed that the disulfide bridge in AfAFPR9 was indispensable for its antifungal action. The cDNA encoding for AfAFPR9 was cloned from A. fumigatus R9 by RTPCR and heterologously expressed in E. coli. The recombinant AfAFPR9 protein exhibited obvious antifungal activity against C. gloeosporioides, T. viride, and A. longipes. These results reveal the antifungal properties of a RIP member (AfAFPR9) from marine-derived Aspergillus fumigatus and indicated its potential application in controlling plant pathogenic fungi.
Tatsumi, Yoshiyuki; Yokoo, Mamoru; Arika, Tadashi; Yamaguchi, Hideyo
2001-01-01
The in vitro activity of KP-103, a novel triazole derivative, against pathogenic fungi that cause dermatomycoses and its therapeutic efficacy against plantar tinea pedis and cutaneous candidiasis in guinea pigs were investigated. MICs were determined by a broth microdilution method with morpholinepropanesulfonic acid-buffered RPMI 1640 medium for Candida species and with Sabouraud dextrose broth for dermatophytes and by an agar dilution method with medium C for Malassezia furfur. KP-103 was the most active of all the drugs tested against Candida albicans (geometric mean [GM] MIC, 0.002 μg/ml), other Candida species including Candida parapsilosis and Candida glabrata (GM MICs, 0.0039 to 0.0442 μg/ml), and M. furfur (GM MIC, 0.025 μg/ml). KP-103 (1% solution) was highly effective as a treatment for guinea pigs with cutaneous candidiasis and achieved mycological eradication in 8 of the 10 infected animals, whereas none of the imidazoles tested (1% solutions) was effective in even reducing the levels of the infecting fungi. KP-103 was as active as clotrimazole and neticonazole but was less active than lanoconazole and butenafine against Trichophyton rubrum (MIC at which 80% of isolates are inhibited [MIC80], 0.125 μg/ml) and Trichophyton mentagrophytes (MIC80, 0.25 μg/ml). However, KP-103 (1% solution) exerted therapeutic efficacy superior to that of neticonazole and comparable to those of lanoconazole and butenafine, yielding negative cultures for all samples from guinea pigs with plantar tinea pedis tested. This suggests that KP-103 has better pharmacokinetic properties in skin tissue than the reference drugs. Because the in vitro activity of KP-103, unlike those of the reference drugs, against T. mentagrophytes was not affected by hair as a keratinic substance, its excellent therapeutic efficacy seems to be attributable to good retention of its antifungal activity in skin tissue, in addition to its potency. PMID:11302816
He, X; Ma, Y; Yi, G; Wu, J; Zhou, L; Guo, H
2017-05-01
In recent years, the incidence of clinical yeast infections has increased dramatically. Due to the extensive use of broad-spectrum antifungal agents, there has been a notable increase in drug resistance among infections yeast species. As one of the most popular natural antimicrobial agents, essential oils (EOs) have attracted a lot of attention from the scientific community. The aim of this study was to analyse the chemical composition and examine the antifungal activity of the EO extracted from the seeds of Carica papaya Linn. The papaya seed EO was analysed by gas chromatography-mass spectrometry. The major constituent is benzyl isothiocyanate (99·36%). The filter paper disc diffusion method and broth dilution method were employed. The EO showed inhibitory effect against all the tested Candida strains including C. albicans, C. glabrata, C. krusei, C. parapsilosis and C. tropical with inhibition zone diameters in the range of 14·2-33·2 mm, the minimal inhibitory concentrations (MICs) in the range of 4·0-16·0 μg ml -1 and the minimum fungicidal concentrations (MFCs) in the range of 16·0-64·0 μg ml -1 . Here, we found that the papaya seed EO has promising anticandida activity and identify C. papaya L. as a potential natural source of antifungal agents. The chemical composition and antifungal activity of essential oil of Carica papaya seeds were studied. The oil of papaya seeds could inhibit the growth of Candida spp. for the first report. Carica Papaya may be recognized as a possible new source of natural antifungal agents. © 2017 The Society for Applied Microbiology.
Fan, Haiyan; Ru, Jinjiang; Zhang, Yuanyuan; Wang, Qi; Li, Yan
2017-06-01
Apple ring rot, caused by Botryosphaeria dothidea, is a serious apple disease in China. Bacillus subtilis 9407 was isolated from healthy apples and showed strong antifungal activity against B. dothidea. To identify the primary antifungal compound of B. subtilis 9407 and determine its role in controlling apple ring rot, a transposon mutant library was constructed using TnYLB-1, and a mutant completely defective in antifungal activity was obtained. The gene inactivated in the antifungal activity mutant had 98.5% similarity to ppsB in B. subtilis subsp. subtilis str. 168, which encodes one of the five synthetases responsible for synthesizing fengycin. A markerless ppsB deletion mutant was constructed. Compared with the wild-type strain, lipopeptide crude extracts from ΔppsB showed almost no inhibition of B. dothidea mycelial growth. Furthermore, fengycin-like lipopeptides (retention factor 0.1-0.2) that exhibited antifungal activity against B. dothidea were observed in the wild-type strain by thin-layer chromatography (TLC)-bioautography analysis, but not in ΔppsB. Semipreparative reverse-phase high performance liquid chromatography (RP-HPLC) detection revealed that ΔppsB lost the ability to synthesize fengycin. These results suggest that ppsB is responsible for synthesizing fengycin and that fengycin is the major antifungal compound produced by B. subtilis 9407 against B. dothidea. Moreover, a biocontrol assay showed that the control efficacy of ΔppsB was reduced by half compared with the wild-type strain, indicating that fengycin plays a major role in controlling apple ring rot disease. This is the first report on the use of a B. subtilis strain as a potential biological control agent to control apple ring rot disease by the production of fengycin. Copyright © 2017 Elsevier GmbH. All rights reserved.
de Sa, Nivea Pereira; Possa, Ana Paula; Perez, Pilar; Ferreira, Jaqueline Maria Siqueira; Fonseca, Nayara Cristina; Lino, Cleudiomar Inacio; Cruz, Lana Barreto; de Oliveira, Renata Barbosa; Rosa, Carlos Augusto; Borelli, Beatriz Martins; Mylonakis, Eleftherios; Fuchs, Beth Burgwyn; Johann, Susana
2018-05-30
Background The increasing incidence of invasive forms of candidiasis and resistance to antifungal therapy leads us to seek new and more effective antifungal compounds. Objectives Investigate the antifungal activity and toxicity as well as to evaluate the potential targets of 2-cyclohexylidenhydrazo-4-phenyl-thiazole (CPT) in Candida albicans. Methods The antifungal activity of CPT against the survival of C. albicans was investigated in Caenorhabditis elegans. Additionally, we determined the effect of CPT on the inhibition of C. albicans adhesion capacity to buccal epithelial cells (BECs), the toxicity of CPT in mammalian cells, and the potential targets of CPT in C. albicans. Results CPT exhibited a minimum inhibitory concentration (MIC) value of 0.4-1.9 µg/mL. Furthermore, CPT at high concentrations (>60 x MIC) showed no or low toxicity in HepG2 cells and <1% haemolysis in human erythrocytes. In addition, CPT decreased the adhesion capacity of yeasts to the BECs and prolonged the survival of C. elegans infected with C. albicans. Analysis of CPT-treated the cells showed that their cell wall was thinner than that of untreated cells, especially the glucan layer. We found that there was a significantly lower quantity of 1,3-β-D-glucan present in CPT-treated cells than that in untreated cells. Assays performed on several mutant strains showed that the MIC value of CPT was high for its antifungal activity on yeasts with defective 1,3-β-glucan synthase. Conclusions In conclusion, CPT appears to target the cell wall of C. albicans, exhibits low toxicity in mammalian cells, and prolongs the survival of C. elegans infected with C. albicans. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.
Plant latex: a promising antifungal agent for post harvest disease control.
Sibi, G; Wadhavan, Rashmi; Singh, Sneha; Shukla, Abhilasha; Dhananjaya, K; Ravikumar, K R; Mallesha, H
2013-12-01
Bioactive compounds from plant latex are potential source of antifungic against post harvest pathogens. Latex from a total of seven plant species was investigated for its phytochemical and antifungal properties. Six fungi namely Aspergillus fumigatus, A. niger, A. terreus, F. solani, P. digitatum and R. arrhizus were isolated from infected fruits and vegetables and tested against various solvent extracts of latex. Analysis of latex extracts with phytochemical tests showed the presence of alkaloids, flavonoids, glycosides, phenols, saponins, steroids, tannins and terpenoids. Antifungal assay revealed the potential inhibitory activity of petroleum ether extracts against the postharvest fungal isolates. Various degree of sensitivity was observed irrespective of plant species studied with A. terreus and P. digitatum as the most susceptible ones. F. solani and A. fumigatus were moderately sensitive to the latex extracts tested. Among the plants, latex of Thevetia peruviana (75.2%) and Artocarpus heterophyllus (64.8%) were having potential antifungal activity against the isolates followed by Manilkara zapota (51.1%). In conclusion, use of plant latex makes interest to control postharvest fungal diseases and is fitting well with the concept of safety for human health and environment.
Enhanced UV protection of ketoconazole using Hyptis suaveolens micro emulsion.
Khonkarn, Ruttiros; Kittipongpatana, Ornanong S; Boasouna, Vilai; Okonogi, Siriporn
2018-05-01
Ketoconazole is photolabile antifungal drug. Photochemical reactions may decrease its therapeutic effect or induce toxic compounds. The aim of this study was to prepare ketoconazole loaded microemulsion containing H. suaveolens oil with antifungal and antioxidant powers in order to obtain effective antifungal formulation. The release study, antifungal activity and photostability test, were then evaluated. The results showed that optimized Hyptis suaveolens microemulsion for ketoconazole loading was selected through construction of pseudo-ternary phase diagrams. It consisted of 12.5% H. suaveolens oil, 12.5% capryol, 25% tween 80, 25% ethanol and 25% water. Mean globule size was 153 nm, as analyzed by photon correlation spectroscopy. Ketoconazole-loaded Hyptis suaveolens microemulsion and Hyptis suaveolens microemulsion had antifungal activity against Candida albican, Microsporum gypseum and Trichophyton mentagrophyte, showing inhibition zone ranged from 28-37 mm and 23-32 mm, respectively. Ketoconazole was released from Hyptis suaveolens microemulsion more than 90% within 5 days. In the results of photostability test, ketoconazole-loaded Hyptis suaveolens microemulsion gave significantly higher remaining ketoconazole than ketoconazole solution. This study demonstrated that Hyptis suaveolens microemulsion could be used to improve the photoprotection of photolabile drug.
Singh, Vineeta; Praveen, Vandana; Tripathi, Divya; Haque, Shafiul; Somvanshi, Pallavi; Katti, S. B.; Tripathi, C. K. M.
2015-01-01
During the search for a potent antifungal drug, a cell-permeable metabolite was isolated from a soil isolate taxonomically identified as Penicillium radicum. The strain was found to be a potent antifungal agent. Production conditions of the active compound were optimized and the active compound was isolated, purified, characterized and identified as a phosphoinositide 3-kinase (PI3K) inhibitor, commonly known as wortmannin (Wtmn). This is very first time we are reporting the production of Wtmn from P. radicum. In addition to its previously discovered anticancer properties, the broad spectrum antifungal property of Wtmn was re-confirmed using various fungal strains. Virtual screening was performed through molecular docking studies against potential antifungal targets, and it was found that Wtmn was predicted to impede the actions of these targets more efficiently than known antifungal compounds such as voriconazole and nikkomycin i.e. 1) mevalonate-5-diphosphate decarboxylase (1FI4), responsible for sterol/isoprenoid biosynthesis; 2) exocyst complex component SEC3 (3A58) where Rho- and phosphoinositide-dependent localization is present and 3) Kre2p/Mnt1p a Golgi alpha1,2-mannosyltransferase (1S4N) involved in the biosynthesis of yeast cell wall glycoproteins). We conclude that Wtmn produced from P. radicum is a promising lead compound which could be potentially used as an efficient antifungal drug in the near future after appropriate structural modifications to reduce toxicity and improve stability. PMID:26159770
Dartevelle, Pauline; Ehlinger, Claire; Zaet, Abdurraouf; Boehler, Christian; Rabineau, Morgane; Westermann, Benoit; Strub, Jean-Marc; Cianferani, Sarah; Haïkel, Youssef; Metz-Boutigue, Marie-Hélène; Marban, Céline
2018-06-18
The excessive use of antifungal agents, compounded by the shortage of new drugs being introduced into the market, is causing the accumulation of multi-resistance phenotypes in many fungal strains. Consequently, new alternative molecules to conventional antifungal agents are urgently needed to prevent the emergence of fungal resistance. In this context, Cateslytin (Ctl), a natural peptide derived from the processing of Chromogranin A, has already been described as an effective antimicrobial agent against several pathogens including Candida albicans. In the present study, we compared the antimicrobial activity of two conformations of Ctl, L-Ctl and D-Ctl against Candida albicans. Our results show that both D-Ctl and L-Ctl were potent and safe antifungal agents. However, in contrast to L-Ctl, D-Ctl was not degraded by proteases secreted by Candida albicans and was also stable in saliva. Using video microscopy, we also demonstrated that D-Ctl can rapidly enter C. albicans, but is unable to spread within a yeast colony unless from a mother cell to a daughter cell during cellular division. Besides, we revealed that the antifungal activity of D-Ctl could be synergized by voriconazole, an antifungal of reference in the treatment of Candida albicans related infections. In conclusion, D-Ctl can be considered as an effective, safe and stable antifungal and could be used alone or in a combination therapy with voriconazole to treat Candida albicans related diseases including oral candidosis.
Chitosan-based nanosystems and their exploited antimicrobial activity.
Perinelli, Diego Romano; Fagioli, Laura; Campana, Raffaella; Lam, Jenny K W; Baffone, Wally; Palmieri, Giovanni Filippo; Casettari, Luca; Bonacucina, Giulia
2018-05-30
Chitosan is a biodegradable and biocompatible natural polysaccharide that has a wide range of applications in the field of pharmaceutics, biomedical, chemical, cosmetics, textile and food industry. One of the most interesting characteristics of chitosan is its antibacterial and antifungal activity, and together with its excellent safety profile in human, it has attracted considerable attention in various research disciplines. The antimicrobial activity of chitosan is dependent on a number of factors, including its molecular weight, degree of deacetylation, degree of substitution, physical form, as well as structural properties of the cell wall of the target microorganisms. While the sole use of chitosan may not be sufficient to produce an adequate antimicrobial effect to fulfil different purposes, the incorporation of this biopolymer with other active substances such as drugs, metals and natural compounds in nanosystems is a commonly employed strategy to enhance its antimicrobial potential. In this review, we aim to provide an overview on the different approaches that exploit the antimicrobial activity of chitosan-based nanosystems and their applications, and highlight the latest advances in this field. Copyright © 2018 Elsevier B.V. All rights reserved.
The In Vitro Efficacy of Essential Oils and Antifungal Drugs Against Prototheca zopfii.
Grzesiak, Barbara; Głowacka, Anna; Krukowski, Henryk; Lisowski, Andrzej; Lassa, Henryka; Sienkiewicz, Monika
2016-08-01
The algae of the genus Prototheca are environmental pathogens whose main reservoir is the habitat of cows. They can cause protothecosis in domestic and wild animals, as well as human beings, with the main etiological agents being Prototheca zopfii in animals and Prototheca wickerhamii in humans. The aim of the study was to evaluate the in vitro activity of selected essential oils and antifungal antibiotics against P. zopfii isolates. The material consisted of nine P. zopfii strains isolated from the milk of cows suffering from mastitis. Eight essential oils produced by POLLENA-AROMA, Poland, and nine antifungal agents were tested. The effects of essential oils on P. zopfii were evaluated by microdilution with liquid Sabouraud dextrose broth, and susceptibility to antifungal agents was tested using the disk-diffusion method. All used essential oils inhibited the activity of P. zopfii isolates, with MIC values ranging from 0.2 to 10.5 μl/ml. Cinnamon, clove, and thyme demonstrated the highest activity against the tested P. zopfii strains at concentrations ranging from 0.6 to 1.0 μl/ml. Of the antifungal agents, the tested strains were the most sensitive to nystatin (100 %). The tested essential oils can be used to complement protothecosis therapy in animals and human beings.
Mousa, Walaa Kamel; Schwan, Adrian L; Raizada, Manish N
2016-09-03
Finger millet is an ancient African-Indian crop that is resistant to many pathogens including the fungus, Fusarium graminearum. We previously reported the first isolation of putative fungal endophytes from finger millet and showed that the crude extracts of four strains had anti-Fusarium activity. However, active compounds were isolated from only one strain. The objectives of this study were to confirm the endophytic lifestyle of the three remaining anti-Fusarium isolates, to identify the major underlying antifungal compounds, and to initially characterize the mode(s) of action of each compound. Results of confocal microscopy and a plant disease assay were consistent with the three fungal strains behaving as endophytes. Using bio-assay guided fractionation and spectroscopic structural elucidation, three anti-Fusarium secondary metabolites were purified and characterized. These molecules were not previously reported to derive from fungi nor have antifungal activity. The purified antifungal compounds were: 5-hydroxy 2(3H)-benzofuranone, dehydrocostus lactone (guaianolide sesquiterpene lactone), and harpagoside (an iridoide glycoside). Light microscopy and vitality staining were used to visualize the in vitro interactions between each compound and Fusarium; the results suggested a mixed fungicidal/fungistatic mode of action. We conclude that finger millet possesses fungal endophytes that can synthesize anti-fungal compounds not previously reported as bio-fungicides against F. graminearum.
Moreno, Ana Beatriz; Martínez Del Pozo, Alvaro; San Segundo, Blanca
2006-10-01
The mold Aspergillus giganteus produces a basic, low molecular weight protein showing antifungal properties against economically important plant pathogens, the AFP (Antifungal Protein). In this study, we investigated the mechanisms by which AFP exerts its antifungal activity against Magnaporthe grisea. M. grisea is the causal agent of rice blast, one of the most devastating diseases of cultivated rice worldwide. AFP was purified from the extracellular medium of A. giganteus cultures. The AFP protein was found to induce membrane permeabilization in M. grisea cells. Electron microscopy studies revealed severe cellular degradation and damage of plasma membranes in AFP-treated fungal cells. AFP however failed to induce membrane permeabilization on rice or human HeLa cells. Furthermore, AFP enters the fungal cell and targets to the nucleus, as revealed by co-localization experiments of Alexa-labeled AFP with the SYTOX Green dye. Finally, AFP binds to nucleic acids, including M. grisea DNA. Our results suggest that the combination of fungal cell permeabilization, cell-penetrating ability and nucleic acid-binding activity of AFP determines its potent antifungal activity against M. grisea. These results are discussed in relation to the potential of the AFP protein to enhance crop protection against fungal diseases.
NLLSS: Predicting Synergistic Drug Combinations Based on Semi-supervised Learning
Chen, Ming; Wang, Quanxin; Zhang, Lixin; Yan, Guiying
2016-01-01
Fungal infection has become one of the leading causes of hospital-acquired infections with high mortality rates. Furthermore, drug resistance is common for fungus-causing diseases. Synergistic drug combinations could provide an effective strategy to overcome drug resistance. Meanwhile, synergistic drug combinations can increase treatment efficacy and decrease drug dosage to avoid toxicity. Therefore, computational prediction of synergistic drug combinations for fungus-causing diseases becomes attractive. In this study, we proposed similar nature of drug combinations: principal drugs which obtain synergistic effect with similar adjuvant drugs are often similar and vice versa. Furthermore, we developed a novel algorithm termed Network-based Laplacian regularized Least Square Synergistic drug combination prediction (NLLSS) to predict potential synergistic drug combinations by integrating different kinds of information such as known synergistic drug combinations, drug-target interactions, and drug chemical structures. We applied NLLSS to predict antifungal synergistic drug combinations and showed that it achieved excellent performance both in terms of cross validation and independent prediction. Finally, we performed biological experiments for fungal pathogen Candida albicans to confirm 7 out of 13 predicted antifungal synergistic drug combinations. NLLSS provides an efficient strategy to identify potential synergistic antifungal combinations. PMID:27415801
Wani, Mohmmad Younus; Ahmad, Aijaz; Kumar, Santosh; Sobral, Abilio J F N
2017-04-01
Invasive fungal infection is a problem that continues to challenge the healthcare sector. New antifungals and new therapeutic strategies are needed to address this challenge. We previously reported that the combination of a synthetic compound with a drug with known mechanism of action is a good strategy to treat aggressive and resistant fungi. Here we revisited our approach and synthesized structural analogues of flucytosine, which is a synthetic antifungal and is being studied for its use in combination therapy with other antifungal drugs. Pyrimidin-one and -thione (often known as DHPM's) as flucytosine analogues were obtained through a Biginelli reaction of corresponding aldehydes, ethylacetoacetate and urea/thiourea. Structure was confirmed by FTIR, 1 HNMR, 13 CNMR, COSY and MS (ESI + ) analysis. All the newly synthesized derivatives were evaluated for the antifungal activity alone and in combination of two most commonly used antifungal drugs, amphotericin B and fluconazole against different clinically isolated Candida albicans strains. Minimum inhibitory concentration results confirmed that BG4 possess high antifungal activity against all the tested strains (MIC = 1-32 μg/ml). For all the combinations with amphotericin B and fluconazole, 37% were synergistic followed by 30% additive and 24% indifferent interactions. Interestingly, 9% antagonistic interaction was observed when BG1 and BG3 were combined with fluconazole, however, no antagonistic interaction was observed with amphotericin B. In-depth studies of all the synergies were done by constructing isobolograms with nine different ratio combinations. These results warrant the use of DHPM derivatives as chemosensitising agents which could lower down the dosages of the antifungal drugs to treat invasive fungal diseases. Copyright © 2017 Elsevier Ltd. All rights reserved.
Morcia, C; Malnati, M; Terzi, V
2012-01-01
The aim of this study was to examine the effect of five naturally occurring compounds from essential oils on 10 different species of mycotoxigenic fungi involved in several plant diseases. The antifungal activities of terpinen-4-ol, eugenol, carvone, 1,8-cineole (eucalyptol) and thymol were observed in vitro on Fusarium subglutinans, Fusarium cerealis, Fusarium verticillioides, Fusarium proliferatum, Fusarium oxysporum, Fusarium sporotrichioides, Aspergillus tubingensis, Aspergillus carbonarius, Alternaria alternata and Penicillium sp. The naturally occurring compounds tested showed toxic effects on in vitro mycelium growth of all fungal species but with different level of potency. The results are encouraging for further investigations of in planta antifungal activities of these essential oils components.
Sun, Jialong; Zhou, Yuanming
2015-03-09
A series of pyrazole carboxamide and isoxazolol pyrazole carboxylate derivatives were designed and synthesized in this study. The structures of the compounds were elucidated based on spectral data (infrared, proton nuclear magnetic resonance and mass spectroscopy). Then, all of the compounds were bioassayed in vitro against four types of phytopathogenic fungi (Alternaria porri, Marssonina coronaria, Cercospora petroselini and Rhizoctonia solani) using the mycelium growth inhibition method. The results showed that some of the synthesized pyrazole carboxamides displayed notable antifungal activity. The isoxazole pyrazole carboxylate 7ai exhibited significant antifungal activity against R. solani, with an EC50 value of 0.37 μg/mL. Nonetheless, this value was lower than that of the commercial fungicide, carbendazol.
Odhiambo, Benard Omondi; Xu, Gaoge; Qian, Guoliang; Liu, Fengquan
2017-04-01
Lysobacter enzymogenes OH11 produces heat-stable antifungal factor (HSAF) and lytic enzymes possessing antifungal activity. This study bio-prospected for other potential antifungal factors besides those above. The cells and extracellular metabolites of L. enzymogenes OH11 and the mutants ΔchiA, ΔchiB, ΔchiC, Δclp, Δpks, and ΔpilA were examined for antifungal activity against Fusarium graminearum PH1, the causal agent of Fusarium head blight (FHB). Results evidenced that OH11 produces an unidentified extracellular heat-stable degrading metabolite (HSDM) that exhibit degrading activity on F. graminearum PH1 chitinous hyphae. Interestingly, both heat-treated and non-heat-treated extracellular metabolites of OH11 mutants exhibited hyphae-degrading activity against F. graminearum PH1. Enzyme activity detection of heat-treated metabolites ruled out the possibility of enzyme degradation activity. Remarkably, the PKS-NRPS-deficient mutant Δpks cannot produce HSAF or analogues, yet its metabolites exhibited hyphae-degrading activity. HPLC analysis confirmed no HSAF production by Δpks. Δclp lacks hyphae-degrading ability. Therefore, clp regulates HSDM and extracellular lytic enzymes production in L. enzymogenes OH11. ΔpilA had impaired surface cell motility and significantly reduced antagonistic properties. ΔchiA, ΔchiB, and ΔchiC retained hyphae-degrading ability, despite having reduced abilities to produce chitinase enzymes. Ultimately, L. enzymogenes OH11 can produce other unidentified HSDM independent of the PKS-NRPS genes. This suggests HSAF and lytic enzymes production are a fraction of the antifungal mechanisms in OH11. Characterization of HSDM, determination of its biosynthetic gene cluster and understanding its mode of action will provide new leads in the search for effective drugs for FHB management.
Nomeir, Amin A; Pramanik, Birendra N; Heimark, Larry; Bennett, Frank; Veals, John; Bartner, Peter; Hilbert, Maryjane; Saksena, Anil; McNamara, Paul; Girijavallabhan, Viyyoor; Ganguly, Ashit K; Lovey, Raymond; Pike, Russell; Wang, Haiyan; Liu, Yi-Tsung; Kumari, Pramila; Korfmacher, Walter; Lin, Chin-Chung; Cacciapuoti, Anthony; Loebenberg, David; Hare, Roberta; Miller, George; Pickett, Cecil
2008-04-01
Posaconazole (SCH 56592) is a novel triazole antifungal drug that is marketed in Europe and the United States under the trade name 'Noxafil' for prophylaxis against invasive fungal infections. SCH 56592 was discovered as a possible active metabolite of SCH 51048, an earlier lead. Initial studies have shown that serum concentrations determined by a microbiological assay were higher than those determined by HPLC from animals dosed with SCH 51048. Subsequently, several animals species were dosed with (3)H-SCH 51048 and the serum was analyzed for total radioactivity, SCH 51048 concentration and antifungal activity. The antifungal activity was higher than that expected based on SCH 51048 serum concentrations, confirming the presence of active metabolite(s). Metabolite profiling of serum samples at selected time intervals pinpointed the peak that was suspected to be the active metabolite. Consequently, (3)H-SCH 51048 was administered to a large group of mice, the serum was harvested and the metabolite was isolated by extraction and semipreparative HPLC. LC-MS/MS analysis suggested that the active metabolite is a secondary alcohol with the hydroxyl group in the aliphatic side chain of SCH 51048. All corresponding monohydroxylated diastereomeric mixtures were synthesized and characterized. The HPLC retention time and LC-MS/MS spectra of the diastereomeric secondary alcohols of SCH 51048 were similar to those of the isolated active metabolite. Finally, all corresponding individual monohydroxylated diasteriomers were synthesized and evaluated for in vitro and in vivo antifungal potencies, as well as pharmacokinetics. SCH 56592 emerged as the candidate with the best overall profile.
Kinoshita, H; Wongsuntornpoj, S; Ihara, F; Nihira, T
2017-02-01
Rhodotorula species are opportunistic pathogens, which cause not only systemic fungaemia but also other localized infections. Despite serious side effects such as nephrotoxicity and hypokalemia, amphotericin B (a polyene antifungal) has been commonly prescribed for Rhodotorula infection because Rhodotorula species are resistant against a candin family of antifungal agents. In this study, novel active compounds against Rhodotorula species were screened from the extracts of entomopathogenic fungi based on the synergistic effect of polyene nystatin (NYS), which causes efficient targeting of compounds due to increased permeability through the fungal cell membrane. Around 37% of culture extracts from 31 entomopathogenic fungal strains showed anti-Rhodotorula activity in the synergistic bioassay system, suggesting that the coexistence assay with NYS enhanced the discovery of anti-Rhodotorula compounds. Judging from various physicochemical data, the active component from strain HF763 was identified as an immunosuppressant drug, mycophenolic acid (MPA). The minimum inhibitory concentration of MPA against three pathogenic Rhodotorula strains was determined, focusing on the synergistic effect with NYS. The results revealed that the values decreased by at least 87% in the presence of NYS, indicating that MPA showed a synergistic effect with NYS. This study aimed to screen active compounds against Rhodotorula species that are resistant to a candin family of antifungal agents, from entomopathogenic fungi. Assuming that most of the latent antifungal compounds do not exert their activity due to their inability to penetrate the membrane, we took advantage of polyene nystatin in the screening to increase permeability through the fungal cell membrane. The result of the screening revealed hidden antifungal activity of mycophenolic acid, demonstrating that the method applied in this study unlocks the potentials of bioresources, and proposes a new remedy for mycosis. © 2016 The Society for Applied Microbiology.
Naglot, A; Goswami, S; Rahman, I; Shrimali, D D; Yadav, Kamlesh K; Gupta, Vikas K; Rabha, Aprana Jyoti; Gogoi, H K; Veer, Vijay
2015-09-01
Indigenous strains of Trichoderma species isolated from rhizosphere soils of Tea gardens of Assam, north eastern state of India were assessed for in vitro antagonism against two important tea fungal pathogens namely Pestalotia theae and Fusarium solani. A potent antagonist against both tea pathogenic fungi, designated as SDRLIN1, was selected and identified as Trichoderma viride. The strain also showed substantial antifungal activity against five standard phytopathogenic fungi. Culture filtrate collected from stationary growth phase of the antagonist demonstrated a significantly higher degree of inhibitory activity against all the test fungi, demonstrating the presence of an optimal blend of extracellular antifungal metabolites. Moreover, quantitative enzyme assay of exponential and stationary culture filtrates revealed that the activity of cellulase, β-1,3-glucanase, pectinase, and amylase was highest in the exponential phase, whereas the activity of proteases and chitinase was noted highest in the stationary phase. Morphological changes such as hyphal swelling and distortion were also observed in the fungal pathogen grown on potato dextrose agar containing stationary phase culture filtrate. Moreover, the antifungal activity of the filtrate was significantly reduced but not entirely after heat or proteinase K treatment, demonstrating substantial role of certain unknown thermostable antifungal compound(s) in the inhibitory activity.
Tian, Jun; Wang, Yanzhen; Zeng, Hong; Li, Zongyun; Zhang, Peng; Tessema, Akalate; Peng, Xue
2015-06-02
A variety of plant products have been recognized for their antifungal activity and recently have attracted food industry attention for their efficacy in controlling postharvest fungal decay of fruits. The antifungal activity of perillaldehyde (PAE) was evaluated against Aspergillus niger, a known cause of grape spoilage, and possible mechanisms were explored. PAE showed notable antifungal activity against A. niger, with a minimum inhibitory concentration (MIC) and a minimum fungicidal concentration (MFC) of 0.25 and 1 μl/ml, respectively. The accumulation of mycelial biomass was also inhibited by PAE in a dose-dependent manner, completely inhibiting mycelial growth at 1 μl/ml. In vivo data confirmed that the vapour treatment of grapes with various concentrations of PAE markedly improved control of A. niger and suppressed natural decay. Concentrations of PAE of 0.075 μl/ml air showed the greatest inhibition of fungal growth compared to the controls. Further experiments indicated that PAE activated a membrane-active mechanism that inhibits ergosterol synthesis, increases membrane permeability (as evidenced by extracellular pH and conductivity measurements), and disrupts membrane integrity, leading to cell death. Our findings suggest that this membrane-active mechanism makes PAE a promising potential antifungal agent for postharvest control of grape spoilage. Copyright © 2015 Elsevier B.V. All rights reserved.
Duraipandiyan, V; Ignacimuthu, S
2009-06-25
The leaves and root of Toddalia asiatica (L.) Lam. (Rutaceae) are widely used as a folk medicine in India. Hexane, chloroform, ethyl acetate, methanol and water extracts of Toddalia asiatica leaves and isolated compound Flindersine were tested against bacteria and fungi. Antibacterial and antifungal activities were tested against bacteria and fungi using disc-diffusion method and minimum inhibitory concentrations (MICs). The compound was confirmed using X-ray crystallography technique. Antibacterial and antifungal activities were observed in ethyl acetate extract. One active principle Flindersine (2,6-dihydro-2,2-dimethyl-5H-pyrano [3,2-c] quinoline-5-one-9cl) was isolated from the ethyl acetate extract. The MIC values of the compound against bacteria Bacillus subtilis (31.25 microg/ml), Staphylococcus aureus (62.5 microg/ml), Staphylococcus epidermidis (62.5 microg/ml), Enterococcus faecalis (31.25 microg/ml), Pseudomonas aeruginosa (250 microg/ml), Acinetobacter baumannii (125 microg/ml) and fungi Trichophyton rubrum 57 (62.5 microg/ml), Trichophyton mentagrophytes (62.5 microg/ml), Trichophyton simii (62.5 microg/ml), Epidermophyton floccosum (62.5 microg/ml), Magnaporthe grisea (250 microg/ml) and Candida albicans (250 microg/ml) were determined. Ethyl acetate extract showed promising antibacterial and antifungal activity and isolated compound Flindersine showed moderate activity against bacteria and fungi.
Park, Jin Young; Kim, Su Hyeon; Kim, Na Hee; Lee, Sang Woo; Jeun, Yong-Chull; Hong, Jeum Kyu
2017-12-01
The objective of this study was to determine inhibitory activities of four volatile plant essential oils (cinnamon oil, fennel oil, origanum oil and thyme oil) on in vitro growth of Fusarium oxysporum f. sp. fragariae causing Fusarium wilt of strawberry plants. Results showed that these essential oils inhibited in vitro conidial germination and mycelial growth of F. oxysporum f. sp. fragariae in a dose-dependent manner. Cinnamon oil was found to be most effective one in suppressing conidial germination while fennel oil, origanum oil and thyme oil showed moderate inhibition of conidial germination at similar levels. Cinnamon oil, origanum oil and thyme oil showed moderate antifungal activities against mycelial growth at similar levels while fennel oil had relatively lower antifungal activity against mycelial growth. Antifungal effects of these four plant essential oils in different combinations on in vitro fungal growth were also evaluated. These essential oils demonstrated synergistic antifungal activities against conidial germination and mycelial growth of F. oxysporum f. sp. fragariae in vitro. Simultaneous application of origanum oil and thyme oil enhanced their antimicrobial activities against conidial germination and fungal mycelial growth. These results underpin that volatile plant essential oils could be used in eco-friendly integrated disease management of Fusarium wilt in strawberry fields.
Naglot, A.; Goswami, S.; Rahman, I.; Shrimali, D. D.; Yadav, Kamlesh K.; Gupta, Vikas K.; Rabha, Aprana Jyoti; Gogoi, H. K.; Veer, Vijay
2015-01-01
Indigenous strains of Trichoderma species isolated from rhizosphere soils of Tea gardens of Assam, north eastern state of India were assessed for in vitro antagonism against two important tea fungal pathogens namely Pestalotia theae and Fusarium solani. A potent antagonist against both tea pathogenic fungi, designated as SDRLIN1, was selected and identified as Trichoderma viride. The strain also showed substantial antifungal activity against five standard phytopathogenic fungi. Culture filtrate collected from stationary growth phase of the antagonist demonstrated a significantly higher degree of inhibitory activity against all the test fungi, demonstrating the presence of an optimal blend of extracellular antifungal metabolites. Moreover, quantitative enzyme assay of exponential and stationary culture filtrates revealed that the activity of cellulase, β-1,3-glucanase, pectinase, and amylase was highest in the exponential phase, whereas the activity of proteases and chitinase was noted highest in the stationary phase. Morphological changes such as hyphal swelling and distortion were also observed in the fungal pathogen grown on potato dextrose agar containing stationary phase culture filtrate. Moreover, the antifungal activity of the filtrate was significantly reduced but not entirely after heat or proteinase K treatment, demonstrating substantial role of certain unknown thermostable antifungal compound(s) in the inhibitory activity. PMID:26361476
Qin, Yukun; Liu, Song; Xing, Ronge; Yu, Huahua; Li, Kecheng; Meng, Xiangtao; Li, Rongfeng; Li, Pengcheng
2012-06-20
In this study, ammonium dithiocarbamate chitosan (ADTCCS) and triethylene diamine dithiocarbamate chitosan (TEDADTCCS) derivatives were obtained respectively by mixing chitosan with carbon disulfide and ammonia (triethylenediamine). Their structures were confirmed by FT-IR, 1H NMR, XRD, DSC, SEM, and elemental analysis. Antifungal properties of them against the plant pathogenic fungi Fusarium oxysporum and Alternaria porri were investigated at concentrations ranged from 31.25 to 500 mg/L. The dithiocarbamate chitosan derivatives had enhanced antifungal activity compared with chitosan. Particularly, they showed obvious inhibitory effect on Fusarium oxysporum. At 500 mg/L, TEDADTCCS inhibited growth of F. oxysporum at 60.4%, stronger than polyoxin and triadimefon whose antifungal indexes were found to be 25.3% and 37.7%. The chitosan derivatives described here deserve further study for use in crop protection. Crown Copyright © 2012. Published by Elsevier Ltd. All rights reserved.
Viridepyronone, a new antifungal 6-substituted 2H-pyran-2-one produced by Trichoderma viride.
Evidente, Antonio; Cabras, Annalisa; Maddau, Lucia; Serra, Salvatorica; Andolfi, Anna; Motta, Andrea
2003-11-19
A new antifungal 6-substituted 2H-pyran-2-one, named viridepyronone, has been isolated from a cultural filtrate of a strain of Trichoderma viride showing antagonistic activity in vitro toward Sclerotium rolfsii, which is the causal agent of crown and stem rot of artichoke. Viridepyronone was characterized as 6-(4-oxopentyl)-2H-pyran-2-one 2 with spectroscopic methods. Bioassays showed that viridepyronone had a good antifungal activity against S. rolfsii, and its minimum inhibitory concentration (over 90% inhibition) was found to be 196 microg/mL. This is the first report of viridepyronone produced by any species of fungi.
Ozkan, Semiha; Kaynak, Fatma; Kalkanci, Ayse; Abbasoglu, Ufuk; Kustimur, Semra
2005-05-01
Slime and proteinase activity of 54 strains consisting of 19 Candida parapsilosis and 35 C. albicans strains isolated from blood samples were investigated in this study. Ketoconazole, amphothericin B, and fluconazole susceptibility of Candida species were compared with slime production and proteinase activity of these species. For both Candida species, no correlation was detected between the slime activity and minimum inhibitory concentration (MIC) values of the three antifungal agents. For both Candida species no correlation was detected between the proteinase activity and the MIC values of amphothericin B, and fluconazole however, statistically significant difference, was determined between the proteinase activity and MIC values of ketoconazole (p = 0.007). Slime production was determined by using modified Christensen macrotube method and proteinase activity was measured by the method of Staib. Antifungal susceptibility was determined through the guidelines of National Committee for Laboratory Standards (NCCLS M27-A).
Distinct antimicrobial activities in aphid galls on Pistacia atlantica
Yoram, Gerchman; Inbar, Moseh
2011-01-01
Gall-formers are parasitic organisms that manipulate plant traits for their own benefit. Galls have been shown to protect their inhabitants from natural enemies such as predators and parasitoids by various chemical and mechanical means. Much less attention, however, has been given to the possibility of defense against microbial pathogens in the humid and nutrient-rich gall environment. We found that the large, cauliflower-shaped, galls induced by the aphid Slavum wertheimae on buds of Pistacia atlantica trees express antibacterial and antifungal activities distinct from those found in leaves. Antibacterial activity was especially profound against Bacillus spp (a genus of many known insect pathogen) and against Pseudomonas aeruginosa (a known plant pathogen). Antifungal activity was also demonstrated against multiple filamentous fungi. Our results provide evidence for the protective antimicrobial role of galls. This remarkable antibacterial and antifungal activity in the galls of S. wertheimae may be of agricultural and pharmaceutical value. PMID:22105034
Synthesis and antifungal activities of 3-alkyl substituted thieno[2,3-d]pyrimidinones
NASA Astrophysics Data System (ADS)
Wang, H. M.; Deng, S. H.; Zheng, A. H.; Zhang, Q. Y.; Chen, X. B.; Zeng, X. H.; Hu, Y. G.
2016-08-01
The 3-aryl substituted thieno[2,3-d]pyrimidinones 3 by sequential reaction of iminophosphorane 1, aromatic isocyanates and various nucleophiles (HY), found some compounds showed good antitumor and antibacterial activities. Meanwhile, aliphatic isocyanates were applied in the reaction to prepare 3-alkyl substituted thieno[2,3- d]pyrimidinones, but there are no reports of their antifungal activities. As a continuation of our research for new biologically active heterocycles, we herein wish to report a facile synthesis and antifungal activities of 3-alkyl substituted thieno[2,3-d]pyrimidinones 6 via easily accessible iminophosphorane 1. The growth inhibitory effect of one concentration (50mg/L) of compounds 6 against five fungus(Fusarium oxysporium, Rhizoctonia solani, Colletotrichum gossypii, Gibberella zeae and Dothiorella gregaria) in vitro was tested by the method of toxic medium. Compound 6d showed the best inhibition rate against Gibberella zeae with 85.68%.
Mandras, Narcisa; Nostro, Antonia; Roana, Janira; Scalas, Daniela; Banche, Giuliana; Ghisetti, Valeria; Del Re, Simonetta; Fucale, Giacomo; Cuffini, Anna Maria; Tullio, Vivian
2016-08-30
The management of Candida infections faces many problems, such as a limited number of antifungal drugs, toxicity, resistance of Candida to commonly antifungal drugs, relapse of Candida infections, and the high cost of antifungal drugs. Though azole antifungal agents and derivatives continue to dominate as drugs of choice against Candida infections, there are many available data referring to the anticandidal activity of essential oils. Since we have previous observed a good antimicrobial activity of some essential oils against filamentous fungi, the aim of this study was to extend the research to evaluate the activity of the same oils on Candida albicans, C.glabrata and C.tropicalis clinical strains, as well as the effects of related components. Essential oils selection was based both on ethnomedicinal use and on proved antibacterial and/or antifungal activity of some of these oils. Fluconazole and voriconazole were used as reference drugs. The minimum inhibitory concentration (MIC) and the minimal fungicidal concentration (MFC) of essential oils (thyme red, fennel, clove, pine, sage, lemon balm, and lavender) and their major components were investigated by the broth microdilution method (BM) and the vapour contact assay (VC). Using BM, pine oil showed the best activity against all strains tested, though C.albicans was more susceptible than C.glabrata and C.tropicalis (MIC50-MIC90 = 0.06 %, v/v). On the contrary, sage oil displayed a weak activity (MIC50-MIC90 = 1 %, v/v). Thyme red oil (MIC50-MIC90 ≤ 0.0038 %, v/v for C.albicans and C.tropicalis, and 0.0078- < 0.015 %, v/v for C.glabrata), followed by lemon balm, lavender and sage were the most effective by VC. Carvacrol and thymol showed the highest activity, whereas linalyl acetate showed the lowest activity both by two methods. α-pinene displayed a better activity by BM than VC. Results show a good activity of essential oils, mainly thymus red and pine oils, and their components carvacrol, thymol and α-pinene against Candida spp., including fluconazole/voriconazole resistant strains. These data encourage adequately controlled and randomized clinical investigations. The use in vapour phase could have additional advantages without requiring direct contact, resulting in easy of environmental application such as in hospital, and/or in school.
Wang, Hui; Jiang, Mingyue; Li, Shujun; Hse, Chung-Yun; Jin, Chunde; Sun, Fangli; Li, Zhuo
2017-09-01
Cinnamaldehyde amino acid Schiff base (CAAS) is a new class of safe, bioactive compounds which could be developed as potential antifungal agents for fungal infections. To design new cinnamaldehyde amino acid Schiff base compounds with high bioactivity, the quantitative structure-activity relationships (QSARs) for CAAS compounds against Aspergillus niger ( A. niger ) and Penicillium citrinum (P. citrinum) were analysed. The QSAR models ( R 2 = 0.9346 for A. niger , R 2 = 0.9590 for P. citrinum, ) were constructed and validated. The models indicated that the molecular polarity and the Max atomic orbital electronic population had a significant effect on antifungal activity. Based on the best QSAR models, two new compounds were designed and synthesized. Antifungal activity tests proved that both of them have great bioactivity against the selected fungi.
Singh, Rajendra; Ahluwalia, Vivek; Singh, Pratap; Kumar, Naresh; Prakash Sati, Om; Sati, Nitin
2016-08-01
This work was aimed to evaluate the essential oil from root of medicinally important plant Senecio amplexicaulis for chemical composition, antifungal and phytotoxic activity. The chemical composition analysed by GC/GC-MS showed the presence of monoterpene hydrocarbons in high percentage with marker compounds as α-phellandrene (48.57%), o-cymene (16.80%) and β-ocimene (7.61%). The essential oil exhibited significant antifungal activity against five phytopathogenic fungi, Sclerotium rolfsii, Macrophomina phaseolina, Rhizoctonia solani, Pythium debaryanum and Fusarium oxysporum. The oil demonstrated remarkable phytotoxic activity in tested concentration and significant reduction in seed germination percentage of Phalaris minor and Triticum aestivum at higher concentrations. The roots essential oil showed high yield for one of its marker compound (α-phellandrene) which makes it important natural source of this compound.
Luo, Ze-Ping; Lin, Hai-Yan; Ding, Wen-Bing; He, Hua-Liang
2015-01-01
Sixty-one endophytic fungus strains with different colony morphologies were isolated from the leaves, stems and roots of Tephrosia purpurea with colonization rates of 66.95%, 37.50%, and 26.92%, respectively. Based on internal transcribed spacer sequence analysis, 61 isolates were classified into 16 genera belonging to 3 classes under the phylum Ascomycota. Of the 61 isolates, 6 (9.84%) exhibited antifungal activity against one or more indicator plant pathogenic fungi according to the dual culture test. Isolate TPL25 had the broadest antifungal spectrum of activity, and isolate TPL35 was active against 5 plant pathogenic fungi. Furthermore, culture filtrates of TPL25 and TPL35 exhibited greater than 80% growth inhibition against Sclerotinia sclerotiorum. We conclude that the endophytic fungal strains TPL25 and TPL35 are promising sources of bioactive compounds. PMID:26839503
Wang, Hui; Jiang, Mingyue; Hse, Chung-Yun; Jin, Chunde; Sun, Fangli; Li, Zhuo
2017-01-01
Cinnamaldehyde amino acid Schiff base (CAAS) is a new class of safe, bioactive compounds which could be developed as potential antifungal agents for fungal infections. To design new cinnamaldehyde amino acid Schiff base compounds with high bioactivity, the quantitative structure–activity relationships (QSARs) for CAAS compounds against Aspergillus niger (A. niger) and Penicillium citrinum (P. citrinum) were analysed. The QSAR models (R2 = 0.9346 for A. niger, R2 = 0.9590 for P. citrinum,) were constructed and validated. The models indicated that the molecular polarity and the Max atomic orbital electronic population had a significant effect on antifungal activity. Based on the best QSAR models, two new compounds were designed and synthesized. Antifungal activity tests proved that both of them have great bioactivity against the selected fungi. PMID:28989758
Saccharomyces cerevisiae biofilm tolerance towards systemic antifungals depends on growth phase.
Bojsen, Rasmus; Regenberg, Birgitte; Folkesson, Anders
2014-12-04
Biofilm-forming Candida species cause infections that can be difficult to eradicate, possibly because of antifungal drug tolerance mechanisms specific to biofilms. In spite of decades of research, the connection between biofilm and drug tolerance is not fully understood. We used Saccharomyces cerevisiae as a model for drug susceptibility of yeast biofilms. Confocal laser scanning microscopy showed that S. cerevisiae and C. glabrata form similarly structured biofilms and that the viable cell numbers were significantly reduced by treatment of mature biofilms with amphotericin B but not voriconazole, flucytosine, or caspofungin. We showed that metabolic activity in yeast biofilm cells decreased with time, as visualized by FUN-1 staining, and mature, 48-hour biofilms contained cells with slow metabolism and limited growth. Time-kill studies showed that in exponentially growing planktonic cells, voriconazole had limited antifungal activity, flucytosine was fungistatic, caspofungin and amphotericin B were fungicidal. In growth-arrested cells, only amphotericin B had antifungal activity. Confocal microscopy and colony count viability assays revealed that the response of growing biofilms to antifungal drugs was similar to the response of exponentially growing planktonic cells. The response in mature biofilm was similar to that of non-growing planktonic cells. These results confirmed the importance of growth phase on drug efficacy. We showed that in vitro susceptibility to antifungal drugs was independent of biofilm or planktonic growth mode. Instead, drug tolerance was a consequence of growth arrest achievable by both planktonic and biofilm populations. Our results suggest that efficient strategies for treatment of yeast biofilm might be developed by targeting of non-dividing cells.
Khan, Fouzia; Baqai, Rakhshanda
2010-01-01
Vaginal candidiasis is the most common infection of females. A large variety of antifungal drugs are used for treatment. The objective of this study was isolation and identification of Candida from high vaginal swabs and in vitro antifungal activity of Clotrimazole, Fluconazole and Nystatin against Candida. Two hundred and fifty high vaginal swabs were collected from females reporting at different hospitals of Karachi. Wet mount was performed to observe the budding cells of Candida. Vaginal swabs were cultured on Sabouraud's dextrose agar with added antibiotics. Plates were incubated at room temperature for seven days. Chlamydospores of Candida albicans were identified on corn meal agar. Species of Candida were identified on Biggy agar. In vitro antifungal activity of Clotrimazole, Fluconazole and Nystatin was performed by MIC (Minimum inhibitory concentration), well diffusion method and disc diffusion method. Out of 250 high vaginal swabs, Candida species were isolated in 100 (40%) of cases. Out of 100, C. albican 30 (30%), C. tropicalis 21 (21%), C. parapsillosis 10 (10%), C. parakrusi 8 (8%), C. glabrata 8 (8%), C. krusei 3 (3%) were isolated. In vitro antifungal activity indicated Clotrimazole (MIC 16 and 8 microg/ml) effective against 68 (70%) of Candida SPP, Fluconazole (MIC 64 and 32 microg/ml) effective against 29 (36.2%) and Nystatin disc (100 units) was 51 (63.5%) effective. C. albicans was mainly isolated. Clotrimazole was more effective as compared to Fluconazole and Nystatin. Antifungal susceptibility testing should be determined before therapy to avoid treatment failures.
Size- and shape-dependent clinical and mycological efficacy of silver nanoparticles on dandruff.
Anwar, Mohammad F; Yadav, Deepak; Jain, Swati; Kapoor, Sumeet; Rastogi, Shweta; Arora, Indu; Samim, Mohammed
2016-01-01
Dandruff is a prominent scalp problem caused by the growth of fungus Malassezia furfur, potentially cascading into dermal inflammation, itching, and tissue damage. The present work outlines a detailed analysis of the treatment of scalp infection using silver nanomaterials (Ag NMs), and focuses on biocidal activity owing to manipulation of size, shape, and structure. Monodisperse silver spherical nanoparticles (NPs) and nanorods (NRs) were synthesized by chemical routes that were characterized using analytical and spectroscopic techniques. Ag NMs demonstrated enhanced biocidal tendencies compared to market available drugs, itracanozole and ketoconazole, showing greater zones of inhibition. The obtained 20 nm and 50 nm spherical-shaped NPs and 50 nm NRs showed concentration-, size-, and shape-dependent antifungal activity, with 20 nm spherical-shaped NPs exhibiting excellent potency. Minimum inhibitory concentration for 20 nm was lowest at 0.2 mg/mL in comparison to 0.3 mg/mL for NRs. Primary irritation index was 0.33 and 0.16 for 20 nm and 50 nm spherical-shaped NPs, respectively, while 50 nm rod-shaped NMs exhibited negligible redness. An in vivo model for M. furfur infection was generated by passing fungi subcutaneously in rats' skin. Again, 20 nm particles showed best normalization of skin after 10 days on regular dosing, in comparison with bigger and rod-shaped particles. The statistical clinical score was highest for Ag nanorods, followed by 50 nm Ag NPs-treated animals. It was observed that 20 nm spherical particles exhibited the lowest score (0) compared with others as well as with antifungal drugs. Biochemical analysis performed by checking antioxidant enzymatic activities indicated tissue repair and normalization of enzymes and protein concentration by Ag NPs.
Size- and shape-dependent clinical and mycological efficacy of silver nanoparticles on dandruff
Anwar, Mohammad F; Yadav, Deepak; Jain, Swati; Kapoor, Sumeet; Rastogi, Shweta; Arora, Indu; Samim, Mohammed
2016-01-01
Dandruff is a prominent scalp problem caused by the growth of fungus Malassezia furfur, potentially cascading into dermal inflammation, itching, and tissue damage. The present work outlines a detailed analysis of the treatment of scalp infection using silver nanomaterials (Ag NMs), and focuses on biocidal activity owing to manipulation of size, shape, and structure. Monodisperse silver spherical nanoparticles (NPs) and nanorods (NRs) were synthesized by chemical routes that were characterized using analytical and spectroscopic techniques. Ag NMs demonstrated enhanced biocidal tendencies compared to market available drugs, itracanozole and ketoconazole, showing greater zones of inhibition. The obtained 20 nm and 50 nm spherical-shaped NPs and 50 nm NRs showed concentration-, size-, and shape-dependent antifungal activity, with 20 nm spherical-shaped NPs exhibiting excellent potency. Minimum inhibitory concentration for 20 nm was lowest at 0.2 mg/mL in comparison to 0.3 mg/mL for NRs. Primary irritation index was 0.33 and 0.16 for 20 nm and 50 nm spherical-shaped NPs, respectively, while 50 nm rod-shaped NMs exhibited negligible redness. An in vivo model for M. furfur infection was generated by passing fungi subcutaneously in rats’ skin. Again, 20 nm particles showed best normalization of skin after 10 days on regular dosing, in comparison with bigger and rod-shaped particles. The statistical clinical score was highest for Ag nanorods, followed by 50 nm Ag NPs-treated animals. It was observed that 20 nm spherical particles exhibited the lowest score (0) compared with others as well as with antifungal drugs. Biochemical analysis performed by checking antioxidant enzymatic activities indicated tissue repair and normalization of enzymes and protein concentration by Ag NPs. PMID:26792991
Song, Young-Gyun; Lee, Sung-Hoon
2017-04-01
Candida albicans biofilm is associated with denture-related stomatitis and oral candidiasis of elderly. Probiotics are beneficial bacteria and have antibacterial activity against pathogenic bacteria. The purpose of this study was to investigate the antifungal activity of various probiotics against C. albicans and the inhibitory effects of probiotics on Candida biofilm on the denture surface. The spent culture media of various probiotics were investigated the antifungal efficacy against C. albicans. Candida biofilm was formed on a denture base resin and was then treated with Lactobacillus rhamnosus and Lactobacillus casei. Also, the biofilms of L. rhamnosus and L. casei were formed and were sequentially treated with C. albicans. Colony-forming units of C. albicans on the denture surface were counted after spreading on agar plate. The denture base resin was treated with the spent culture media for 30days, after which the denture surface roughness was analyzed with an atomic force microscope. L. rhamnosus and L. casei exhibited stronger antifungal activity than other probiotics. The spent culture medium of L. rhamnosus and L. casei exhibited the antifungal activity against blastoconidia and biofilm of C. albicans. L. rhamnosus and L. casei showed the antifungal activity against Candida biofilm, and the biofilm of L. rhamnosus and L. casei inhibited formation of Candida biofilm on denture surface. Neither of the probiotics affected the surface roughness of the denture base resin. L. rhamnosus and L. casei may be the ideal probiotics for the prevention and treatment of denture-related stomatitis. Copyright © 2017 Elsevier Ltd. All rights reserved.
Calcium dependence of eugenol tolerance and toxicity in Saccharomyces cerevisiae.
Roberts, Stephen K; McAinsh, Martin; Cantopher, Hanna; Sandison, Sean
2014-01-01
Eugenol is a plant-derived phenolic compound which has recognised therapeutical potential as an antifungal agent. However little is known of either its fungicidal activity or the mechanisms employed by fungi to tolerate eugenol toxicity. A better exploitation of eugenol as a therapeutic agent will therefore depend on addressing this knowledge gap. Eugenol initiates increases in cytosolic Ca2+ in Saccharomyces cerevisiae which is partly dependent on the plasma membrane calcium channel, Cch1p. However, it is unclear whether a toxic cytosolic Ca2+elevation mediates the fungicidal activity of eugenol. In the present study, no significant difference in yeast survival was observed following transient eugenol treatment in the presence or absence of extracellular Ca2+. Furthermore, using yeast expressing apoaequorin to report cytosolic Ca2+ and a range of eugenol derivatives, antifungal activity did not appear to be coupled to Ca2+ influx or cytosolic Ca2+ elevation. Taken together, these results suggest that eugenol toxicity is not dependent on a toxic influx of Ca2+. In contrast, careful control of extracellular Ca2+ (using EGTA or BAPTA) revealed that tolerance of yeast to eugenol depended on Ca2+ influx via Cch1p. These findings expose significant differences between the antifungal activity of eugenol and that of azoles, amiodarone and carvacrol. This study highlights the potential to use eugenol in combination with other antifungal agents that exhibit differing modes of action as antifungal agents to combat drug resistant infections.
Type III interferon is a critical regulator of innate antifungal immunity.
Espinosa, Vanessa; Dutta, Orchi; McElrath, Constance; Du, Peicheng; Chang, Yun-Juan; Cicciarelli, Bryan; Pitler, Amy; Whitehead, Ian; Obar, Joshua J; Durbin, Joan E; Kotenko, Sergei V; Rivera, Amariliz
2017-10-06
Type III interferons (IFN-λs) are the most recently found members of the IFN cytokine family and engage IFNLR1 and IL10R2 receptor subunits to activate innate responses against viruses. We have identified IFN-λs as critical instructors of antifungal neutrophil responses. Using Aspergillus fumigatus ( Af ) as a model to study antifungal immune responses, we found that depletion of CCR2 + monocytes compromised the ability of neutrophils to control invasive fungal growth. Using an unbiased approach, we identified type I and III IFNs as critical regulators of the interplay between monocytes and neutrophils responding to Af We found that CCR2 + monocytes are an important early source of type I IFNs that prime optimal expression of IFN-λ. Type III IFNs act directly on neutrophils to activate their antifungal response, and mice with neutrophil-specific deletion of IFNLR1 succumb to invasive aspergillosis. Dysfunctional neutrophil responses in CCR2-depleted mice were rescued by adoptive transfer of pulmonary CCR2 + monocytes or by exogenous administration of IFN-α and IFN-λ. Thus, CCR2 + monocytes promote optimal activation of antifungal neutrophils by initiating a coordinated IFN response. We have identified type III IFNs as critical regulators of neutrophil activation and type I IFNs as early stimulators of IFN-λ expression. Copyright © 2017 The Authors, some rights reserved; exclusive licensee American Association for the Advancement of Science. No claim to original U.S. Government Works.
Sigurgeirsson, B; Ghannoum, M A; Osman-Ponchet, H; Kerrouche, N; Sidou, F
2016-05-01
As onychomycosis is unsightly, this study clinically evaluated whether the antifungal efficacy of amorolfine 5% nail lacquer (NL) was affected by a masking, natural-coloured, cosmetic nail varnish applied 24 h later; in vitro investigations were also performed. Subjects with mild-to-moderate distal subungual toenail onychomycosis were randomised to receive amorolfine 5% NL once weekly with or without cosmetic nail varnish applied 24 h later. After 12-week treatment, antifungal activity of affected toenail clippings was assessed by measurement of zones of inhibition (ZOIs) on Trichophyton mentagrophytes seeded agar plates. Mean diameters were 53.5 mm for the amorolfine 5% NL-alone group (n = 23) and 53.6 mm for amorolfine 5% NL plus cosmetic nail varnish group (n = 25). Also, mycological cultures of subungual debris at week 12 were negative for all subjects in both groups. Most subjects (88%) reported that cosmetic nail varnish masked their infected toenails. Additionally, cadaver human nails coated in vitro with or without cosmetic nail varnish 10 min or 24 h post amorolfine NL application all gave ZOIs on Trichophyton rubrum agar plates representing potent antifungal activity. In conclusion, cosmetic nail varnish applied post amorolfine had no effect on the subungual antifungal activity of amorolfine 5% NL or its penetration through toenails. © 2016 The Authors Mycoses published by Blackwell Verlag GmbH.
Wasalexins A and B, new phytoalexins from wasabi: isolation, synthesis, and antifungal activity.
Pedras, M S; Sorensen, J L; Okanga, F I; Zaharia, I L
1999-10-18
The chemical structure determination of two phytoalexins from wasabi (Wasabia japonica, syn. Eutrema wasabi), a plant resistant to virulent isolates of the blackleg fungus [Leptosphaeria maculans (Desm.) Ces. et de Not., asexual stage Phoma lingam (Tode ex Fr.) Desm.], as well as their synthesis and antifungal activity towards isolates of P. lingam and P. wasabiae is reported.
Abdou, Randa; Scherlach, Kirstin; Dahse, Hans-Martin; Sattler, Isabel; Hertweck, Christian
2010-01-01
An endophytic fungus (Botryosphaeria rhodina) was isolated from the stems of the medicinal plant Bidens pilosa (Asteraceae) that is known for its anti-inflammatory, antiseptic and antifungal effects. The ethyl acetate extract of the fungal isolate exhibits significant antifungal activity as well as potent cytotoxic and antiproliferative effects against several cancer cell lines. Activity-guided fractionation resulted in the isolation of a complex of four depsidones, botryorhodines A-D and the auxin indole carboxylic acid. Botryorhodine A and B show moderate to weak cytotoxic activities against HeLa cell lines with a CC(50) of 96.97 microM and 36.41 microM, respectively. In addition, they also show antifungal activity against a range of pathogenic fungi such as Aspergillus terreus (MIC 26.03 microM for botryorhodine A and 49.70 microM for B) and the plant pathogen Fusarium oxysporum (MIC 191.60 microM for botryorhodine A and 238.80 microM for B). A potential role of the endophyte in modulating fungal populations living within or attacking the host plant is discussed. 2009 Elsevier Ltd. All rights reserved.
El Ouadi, Y; Manssouri, M; Bouyanzer, A; Majidi, L; Bendaif, H; Elmsellem, H; Shariati, M A; Melhaoui, A; Hammouti, B
2017-06-01
To investigate biological control methods against post-harvest phytopathogenic fungi in apples, tests on the antifungal activity of essential oil of Melissa officinalis were carried out. The essential oil, obtained by hydrodistillation, was analyzed by gas chromatography coupled with mass spectrometry (GC-MS). Analysis of the essential oil was able to detect 88.7% of the components. The main components are P-mentha-1,2,3-triol (13.1%), P-menth-3-en-8-ol (8.8%), pulegone (8.8%), piperitynone oxide (8.4%) and 2-piperitone oxide (7.3%). The determination of the antifungal activity of the essential oil of M. officinalisis carried out in vitro using the technique of poison food (PF) and the volatile activity test (VA). To carry out these two tests, three phytopathogens that cause the deterioration of apples have been selected: Botrytis cinerea, Penicillium expansum and Rhizopus stolonifer. The overall results of this study suggest that M. officinalis essential oil has potential as a bio-antifungal preservative for the control of post-harvest diseases of apple. Copyright © 2017 Elsevier Ltd. All rights reserved.
Structural and functional studies on urease from pigeon pea (Cajanus cajan).
Balasubramanian, Anuradha; Durairajpandian, Vishnuprabu; Elumalai, Sagadevan; Mathivanan, Narayanasamy; Munirajan, Arasambattu Kannan; Ponnuraj, Karthe
2013-07-01
Urease is an enzyme that catalyzes the hydrolysis of urea, forming ammonia and carbon dioxide, and is found in plants, microorganisms and invertebrates. Although plant and bacterial ureases are closely related at amino acid and at the structural level, the insecticidal activity is seen only in the plant ureases. In contrast, both plant and bacterial ureases exhibit antifungal activity. These two biological properties are independent of its ureolytic activity. However, till date the mechanism(s) behind the insecticidal and fungicidal activity of ureases are not clearly understood. Here we report the crystal structure of pigeon pea urease (PPU, Cajanus cajan) which is the second structure from the plant source. We have deduced the amino acid sequence of PPU and also report here studies on its stability, insecticidal and antifungal activity. PPU exhibits cellulase activity. Based on the structural analysis of PPU and docking studies with cellopentoase we propose a possible mechanism of antifungal activity of urease. Copyright © 2013 Elsevier B.V. All rights reserved.
Abubacker, Maghdu Nainamohamed; Devi, Palaniyappan Kamala
2014-09-01
To identify bioactive compound oleic acid, 3-(octadecyloxy) propyl ester from Lepidagathis cristata Willd. (L. cristata) and to assess antifungal potentials of the isolated compound. Aqueous extracts of L. cristata inflorescence were used for this study. The major bioactive compound isolated was tested for antifungal activities. The major bioactive compound oleic acid, 3-(octadecyloxy) propyl ester was isolated from the inflorescence of L. cristata. The bioactive compound was tested for antifungal potentials and found to be highly effective to plant pathogenic fungi Colletotrichum fulcatum NCBT 146, Fusarium oxysporum NCBT 156 and Rhizoctonia solani NCBT 196 as well as for the human pathogenic fungi Curvularia lunata MTCC 2030 and Microsporum canis MTCC 2820. The results justify the antifungal potentials of both plant and human pathogenic fungi. The plant bioactive compound will be helpful in herbal antifungal formulations. Copyright © 2014 Hainan Medical College. Published by Elsevier B.V. All rights reserved.
Broth Microdilution In Vitro Screening: An Easy and Fast Method to Detect New Antifungal Compounds.
de-Souza-Silva, Calliandra Maria; Guilhelmelli, Fernanda; Zamith-Miranda, Daniel; de Oliveira, Marco Antônio; Nosanchuk, Joshua Daniel; Silva-Pereira, Ildinete; Albuquerque, Patrícia
2018-02-14
Fungal infections have become an important medical condition in the last decades, but the number of available antifungal drugs is limited. In this scenario, the search for new antifungal drugs is necessary. The protocol reported here details a method to screen peptides for their antifungal properties. It is based on the broth microdilution susceptibility test from the Clinical and Laboratory Standards Institute (CLSI) M27-A3 guidelines with modifications to suit the research of antimicrobial peptides as potential new antifungals. This protocol describes a functional assay to evaluate the activity of antifungal compounds and may be easily modified to suit any particular class of molecules under investigation. Since the assays are performed in 96-well plates using small volumes, a large-scale screening can be completed in a short amount of time, especially if carried out in an automation setting. This procedure illustrates how a standardized and adjustable clinical protocol can help the bench-work pursuit of new molecules to improve the therapy of fungal diseases.
Kachuei, R; Khodavaisy, S; Rezaie, S; Sharifynia, S
2016-03-01
Among filamentous fungal pathogens, Aspergillus spp. and zygomycetes account for highest rates of morbidity and mortality among immunocompromised patients. Recently developed antifungal drugs offer the potential to improve management and therapeutic outcomes of fungal infections. The aim of this study was to analyse the in vitro activities of voriconazole, itraconazole, amphotericin B and caspofungin against clinical isolates of Aspergillus spp. and Rhizopus oryzae. The in vitro antifungal susceptibility of 54 isolates belonging to different clinical isolates of Aspergillus spp. and R. oryzae was tested for four antifungal agents using a microdilution reference method (CLSI, M38-A2). All isolates were identified by typical colony and microscopic characteristics, and also characterized by molecular methods. Caspofungin (MEC range: 0.008-0.25 and MEC50: 0.0023μg/mL) was the most active drug in vitro against Aspergillus spp., followed by voriconazole (MIC range: 0.031-8 and MIC50: 0.5μg/mL), itraconazole (MIC range: 0.031-16 and MIC50: 0.25μg/mL), and amphotericin B (MIC range: 0.125-4 and MIC50: 0.5μg/mL), in order of decreasing activity. The caspofungin, voriconazole, and itraconazole demonstrated poor in vitro activity against R. oryzae isolates evaluated, followed by amphotericin B. This study demonstrates that caspofungin had good antifungal activity and azole agents had better activity than amphotericin B against Aspergillus species. Although, azole drugs are considered ineffective against R. oryzae. This result is just from a small scale in vitro susceptibility study and we did not take other factors into consideration. Copyright © 2016 Elsevier Masson SAS. All rights reserved.
Bulgasem, Bulgasem Y.; Lani, Mohd Nizam; Wan Yusoff, Wan Mohtar; Fnaish, Sumaya G.
2016-01-01
The role of lactic acid bacteria (LAB) in honey as antifungal activity has received little attention and their mechanism of inhibitory of fungi is not fully understood. In this study, LAB were isolated from honey samples from Malaysia, Libya, Saudi Arabia, and Yemen. Twenty-five isolates were confirmed LAB by catalase test and Gram staining, and were screened for antifungal activity. Four LAB showed inhibitory activity against Candida spp. using the dual agar overlay method. And they were identified as Lactobacillus plantarum HS isolated from Al-Seder honey, Lactobacillus curvatus HH isolated from Al-Hanon honey, Pediococcus acidilactici HC isolated from Tualang honey and Pediococcus pentosaceus HM isolated from Al-Maray honey by the 16S rDNA sequence. The growth of Candida glabrata ATCC 2001 was strongly inhibited (>15.0 mm) and (10~15 mm) by the isolates of L. curvatus HH and P. pentosaceus HM, respectively. The antifungal activity of the crude supernatant (cell free supernatant, CFS) was evaluated using well diffusion method. The CFS showed high antifungal activity against Candida spp. especially The CFS of L. curvatus HH was significantly (p < 0.05) inhibited growth of C. glabrata ATCC 2001, C. parapsilosis ATCC 2201, and C. tropicalis ATCC 750 with inhibitory zone 22.0, 15.6, and 14.7 mm, respectively. While CFS of P. pentosaceus HM was significantly (p < 0.05) effective against C. krusei, C. glabrata, and C. albicans with inhibition zone 17.2, 16.0, and 13.3 mm, respectively. The results indicated that LAB isolated from honey produced compounds which can be used to inhibit the growth of the pathogenic Candida species. PMID:28154488
Investigating the antifungal activity and mechanism(s) of geraniol against Candida albicans strains.
Leite, Maria Clerya Alvino; de Brito Bezerra, André Parente; de Sousa, Janiere Pereira; de Oliveira Lima, Edeltrudes
2015-04-01
Candida albicans can be a yeast that is a commensal on the human body but can cause opportunistic or pathogenic infections. Candida infections may create serious health problems and as a result has initiated a search for new drugs with an antifungal action. Geraniol is an acyclic monoterpene alcohol with known pharmacological properties, including antimicrobial activity. The aim of this work was to evaluate the antifungal activity and mechanism(s) of geraniol against C. albicans strains. The minimum inhibitory concentration (MIC) was determined through broth microdilution techniques. We investigated possible geraniol activity on the fungal cell wall (sorbitol protect effect), cell membrane (geraniol to ergosterol binding), the time-kill curve, and its biological activity on the yeast's morphology. Amphotericin B was used as control, and all tests were performed in duplicate. The MIC of geraniol was 16 μg/ml (for 90% of isolates) but its probable mechanism of action did not involve the cell wall and ergosterol binding. In the morphological interference assay, we observed that the product inhibited pseudohyphae and chlamydoconidia formation. Time-dependent kill curve assay demonstrated that the fungicidal activity for MIC × 2 started at 2 h for the ATCC 76485 strain, and at 4 h for the LM-70 strain. Geraniol showed in vitro antifungal potential against strains of C. albicans but did not involve action on the cell wall or ergosterol. This study contributes to the development of new antifungal drugs, especially against Candida spp. © The Author 2014. Published by Oxford University Press on behalf of The International Society for Human and Animal Mycology. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.
Bulgasem, Bulgasem Y; Lani, Mohd Nizam; Hassan, Zaiton; Wan Yusoff, Wan Mohtar; Fnaish, Sumaya G
2016-12-01
The role of lactic acid bacteria (LAB) in honey as antifungal activity has received little attention and their mechanism of inhibitory of fungi is not fully understood. In this study, LAB were isolated from honey samples from Malaysia, Libya, Saudi Arabia, and Yemen. Twenty-five isolates were confirmed LAB by catalase test and Gram staining, and were screened for antifungal activity. Four LAB showed inhibitory activity against Candida spp. using the dual agar overlay method. And they were identified as Lactobacillus plantarum HS isolated from Al-Seder honey, Lactobacillus curvatus HH isolated from Al-Hanon honey, Pediococcus acidilactici HC isolated from Tualang honey and Pediococcus pentosaceus HM isolated from Al-Maray honey by the 16S rDNA sequence. The growth of Candida glabrata ATCC 2001 was strongly inhibited (>15.0 mm) and (10~15 mm) by the isolates of L. curvatus HH and P. pentosaceus HM, respectively. The antifungal activity of the crude supernatant (cell free supernatant, CFS) was evaluated using well diffusion method. The CFS showed high antifungal activity against Candida spp. especially The CFS of L. curvatus HH was significantly ( p < 0.05) inhibited growth of C. glabrata ATCC 2001, C. parapsilosis ATCC 2201, and C. tropicalis ATCC 750 with inhibitory zone 22.0, 15.6, and 14.7 mm, respectively. While CFS of P. pentosaceus HM was significantly ( p < 0.05) effective against C. krusei , C. glabrata , and C. albicans with inhibition zone 17.2, 16.0, and 13.3 mm, respectively. The results indicated that LAB isolated from honey produced compounds which can be used to inhibit the growth of the pathogenic Candida species.
Edris, Amr E; Farrag, Eman S
2003-04-01
The vapors of peppermint oil and two of its major constituents (menthol and menthone), and sweet basil oil and two of its major constituents (linalool and eugenol), were tested against Sclerotinia sclerotiorum (Lib.), Rhizopus stolonifer (Ehrenb. exFr.) Vuill and Mucor sp. (Fisher) in a closed system. These fungi cause deterioration and heavy decay of peach fruit during marketing, shipping and storage. The essential oils, their major individual aroma constituents and blends of the major individual constituents at different ratios inhibited the growth of the fungi in a dose-dependent manner. Menthol was found to be the individual aroma constituent responsible for the antifungal properties of peppermint essential oil, while menthone alone did not show any effect at all doses. In the case of basil oil, linalool alone showed a moderate antifungal activity while eugenol showed no activity at all. Mixing the two components in a ratio similar to their concentrations in the original oil was found to enhance the antifungal properties of basil oil indicating a synergistic effect.
Salah, K Bel Hadj; Mahjoub, M A; Chaumont, J P; Michel, L; Millet-Clerc, J; Chraeif, I; Ammar, S; Mighri, Z; Aouni, M
2006-10-01
The chemical composition and the in vitro antifungal and antioxidant activity of the essential oil and the methanolic leaf extracts of Teucrium sauvagei Le Houerou, an endemic medicinal plant growing in Tunisia, have been studied. More than 35 constituents having an abundance >or=0.2% were identified in the oil. beta-Eudesmol, T-cadinol, alpha-thujene, gamma-cadinene, and sabinene were the prevalent constituents. Results of the antifungal activity tests indicated that the methanolic extract inhibited the in vitro growth of seven dermatophytes, whereas the essential oil showed average inhibition against only three dermatophytes. In vitro antioxidant properties of the essential oil and the methanolic extract were determined by DPPH (2,2-diphenyl-1-picrylhydrazyl) and ABTS (2,2'-azinobis(3-ethylbenzothiazoline-6-sulphonic acid)) assays and compared to those of the synthetic antioxidant Trolox. Due to their antifungal and antioxidant properties, the essential oil and the methanolic extract of T. sauvagei may be of use as natural preservative ingredients in food and/or pharmaceutical industries.
Anti-Candida Properties of Urauchimycins from Actinobacteria Associated with Trachymyrmex Ants
Mendes, Thais D.; Borges, Warley S.; Solomon, Scott E.; Vieira, Paulo C.; Duarte, Marta C. T.; Pagnocca, Fernando C.
2013-01-01
After decades of intensive searching for antimicrobial compounds derived from actinobacteria, the frequency of isolation of new molecules has decreased. To cope with this concern, studies have focused on the exploitation of actinobacteria from unexplored environments and actinobacteria symbionts of plants and animals. In this study, twenty-four actinobacteria strains isolated from workers of Trachymyrmex ants were evaluated for antifungal activity towards a variety of Candida species. Results revealed that seven strains inhibited the tested Candida species. Streptomyces sp. TD025 presented potent and broad spectrum of inhibition of Candida and was selected for the isolation of bioactive molecules. From liquid shake culture of this bacterium, we isolated the rare antimycin urauchimycins A and B. For the first time, these molecules were evaluated for antifungal activity against medically important Candida species. Both antimycins showed antifungal activity, especially urauchimycin B. This compound inhibited the growth of all Candida species tested, with minimum inhibitory concentration values equivalent to the antifungal nystatin. Our results concur with the predictions that the attine ant-microbe symbiosis may be a source of bioactive metabolites for biotechnology and medical applications. PMID:23586060
Analysis by UPLC-MS-QTOF and antifungal activity of guava (Psidium guajava L.).
Bezerra, Camila Fonseca; Rocha, Janaína Esmeraldo; Nascimento Silva, Maria Karollyna do; de Freitas, Thiago Sampaio; de Sousa, Amanda Karine; Dos Santos, Antônia Thassya Lucas; da Cruz, Rafael Pereira; Ferreira, Maciel Horácio; da Silva, Josefa Carolaine Pereira; Machado, Antonio Judson Targino; Carneiro, Joara Nályda Pereira; Sales, Débora Lima; Coutinho, Henrique Douglas Melo; Ribeiro, Paulo Riceli Vasconcelos; de Brito, Edy Sousa; Morais-Braga, Maria Flaviana Bezerra
2018-05-08
Psidium guajava L. is a plant widely used for food and in folk medicine all over the world. Studies have shown that guava leaves have antifungal properties. In this study, Flavonoid and Tannic fractions were tested to investigate their chemical composition and antifungal potential in vitro.21 compounds in the two fractions, presenting a higher content of phenolic compounds. The antifungal assays were performed against Candida albicans, Candida tropicalis and Candida krusei by microdilution to determine the IC 50 and the cell viability curve. Minimal Fungicidal Concentration(MFC) and the inhibitory effects of the association of the fractions with Fluconazole, as well as the assays used to verify any morphological changes were performed in microculture chambers based on the concentrations from the microdilution. The IC 50 of the isolated fractions and the fractions associated with each other were calculated, varying from 69.29 to 3444.62 μg/mL and the fractions associated with fluconazole varied from 925.56 to 1.57 μg/mL, it was clear that the association of the natural product with the antifungal presented a synergism. The fractions affected pleomorphism capacity and have a potential antifungal activity as they caused fungal inhibition in isolated use, potentiated the action of Fluconazole, reducing its concentration and impeding morphological transition, one of the virulence factors of the genus. Copyright © 2018 Elsevier Ltd. All rights reserved.
Phytochemical Composition, Antifungal and Antioxidant Activity of Duguetia furfuracea A. St.-Hill
Pinho, Francisca Valéria Soares de Araújo; da Cruz, Litiele Cezar; Rodrigues, Nathane Rosa; Waczuk, Emily Pansera; Souza, Celestina Elba Sobral; da Costa, José Galberto Martins; Athayde, Margareth Linde; de Menezes, Irwin Rose Alencar
2016-01-01
Background. Duguetia furfuracea is popular plant used in popular medicine. Hypothesis/Purpose. This claim evaluated the phytochemical composition of the hydroethanolic extract (HEDF), fractions of Duguetia furfuracea, and antioxidant and antifungal activity. Methods. The chemical profile was carried out by HPLC-DAD. The total phenolic contents and flavonoid components were determined by Folin-Ciocalteu and aluminium chloride reaction. The antioxidant activity was measured by scavenging of 2,2-diphenyl-1-picrylhydrazyl (DPPH) free radical and ferric reducing ability of plasma (FRAP) methods. The antifungal activity was determined by microdilution assay. Results. HPLC analysis revealed caffeic acid and rutin as major compounds (HEDF), caffeic acid and quercitrin (Mt-OH fraction), and quercitrin and isoquercitrin (Ac-OEt fraction). The highest levels of phenols and total flavonoids were found for Ac-OEt fraction, and the crude extract showed higher in vitro antioxidant potential. The antifungal activity showed synergic effect with fluconazole and EHDF against C. krusei, fluconazole and Mt-OH against C. krusei and C. tropicalis, and Ac-OE and fluconazole against C. albicans. Conclusion. The highest levels of phenols and total flavonoids were marked with antioxidant effect. This is the first report of bioactivity of the synergic effect of HEDF and fractions. More studies would be required to better clarify its mechanism of synergic action. PMID:27127550
Antifungal Activity of Maytenin and Pristimerin
Gullo, Fernanda P.; Sardi, Janaina C. O.; Santos, Vânia A. F. F. M.; Sangalli-Leite, Fernanda; Pitangui, Nayla S.; Rossi, Suélen A.; de Paula e Silva, Ana C. A.; Soares, Luciana A.; Silva, Julhiany F.; Oliveira, Haroldo C.; Furlan, Maysa; Silva, Dulce H. S.; Bolzani, Vanderlan S.; Mendes-Giannini, Maria José S.; Fusco-Almeida, Ana Marisa
2012-01-01
Fungal infections in humans have increased alarmingly in recent years, particularly in immunocompromised individuals. Among the infections systemic candidiasis, aspergillosis, cryptococcosis, paracoccidioidomycosis, and histoplasmosis mortality are more prevalent and more severe in humans. The current high incidence of dermatophytosis is in humans, especially as the main etiologic agents Trichophyton rubrum and Trichophyton mentagrophytes. Molecules pristimerin and maytenin obtained from the plant Maytenus ilicifolia (Celastraceae) are known to show various pharmacological activities. This study aimed to evaluate the spectrum of antifungal activity of maytenin and pristimerin and their cytotoxicity in human keratinocytes (NOK cells of the oral mucosa). It was concluded that the best spectrum of antifungal activity has been shown to maytenin with MIC varying from 0.12 to 125 mg/L, although it is also active with pristimerin MIC ranging between 0.12 and 250 mg/L. Regarding the toxicity, both showed to have high IC50. The SI showed high pristimerin against some species of fungi, but SI maytenin was above 1.0 for all fungi tested, showing a selective action of fungi. However, when comparing the two substances, maytenin also showed better results. The two molecules can be a possible prototype with a broad spectrum of action for the development of new antifungal agents. PMID:22675379
NASA Astrophysics Data System (ADS)
Chandra, Sulekh; Vandana; Kumar, Suresh
2015-01-01
Schiff's base ligand(L) hydrazine carboxamide, 2-[3-methyl-2-thienyl methylene] and its metal complexes have been synthesized and characterized by elemental analysis, molar conductance, various spectroscopic techniques such as electronic, IR, 1H NMR, mass, EPR. Molar conductance of complexes in DMF solution corresponds to non-electrolyte. Complexes have general composition [M(L)2X2], where M = Ni(II) and Cu(II), X = Cl-, NO3-, CH3COO- and ½SO42-. On the basis of above spectral studies, an octahedral geometry has been assigned for Ni(II) complexes and tetragonal geometry for Cu(II) complexes except [Cu(L)2SO4] which possesses five coordinated trigonal bipyramidal geometry. These metal complexes were also tested for their anticancer, antibacterial and antifungal activities to assess their inhibition potential. Anticancer activity of ligand and its metal complexes were evaluated using SRB fluorometric assay and Adriamycin (ADR) was applied as positive control. Schiff's base ligand and its metal complexes were screened for their antibacterial and antifungal activity against Escherichia coli, Bacillus cereus and Aspergillus niger, Aspergillus flavus, respectively. Kirby-Bauer single disk susceptibility test was used for antibacterial activity and well diffusion method for antifungal activity of the compounds on the used fungi.
Rossignol, Tristan; Kocsis, Béla; Bouquet, Orsolya; Kustos, Ildikó; Kilár, Ferenc; Nyul, Adrien; Jakus, Péter B; Rajbhandari, Kshitij; Prókai, László; d'Enfert, Christophe; Lóránd, Tamás
2013-01-01
We investigated the antifungal activity of fused Mannich ketone (FMK) congeners and two of their aminoalcohol derivatives. In particular, FMKs with five-membered saturated rings were shown to have minimum inhibitory concentration (MIC90s) ranging from 0.8 to 6 µg/mL toward C. albicans and the closely related C. parapsilosis and C. krusei while having reduced efficacy toward C. glabrata and almost no efficacy against Aspergillus sp. Transcript profiling of C. albicans cells exposed for 30 or 60 min to 2-(morpholinomethyl)-1-indanone, a representative FMK with a five-membered saturated ring, revealed a transcriptional response typical of oxidative stress and similar to that of a C. albicans Cap1 transcriptional activator. Consistently, C. albicans lacking the CAP1 gene was hypersensitive to this FMK, while C. albicans strains overexpressing CAP1 had decreased sensitivity to 2-(morpholinomethyl)-1-indanone. Quantitative structure-activity relationship studies revealed a correlation of antifungal potency and the energy of the lowest unoccupied molecular orbital of FMKs and unsaturated Mannich ketones thereby implicating redox cycling-mediated oxidative stress as a mechanism of action. This conclusion was further supported by the loss of antifungal activity upon conversion of representative FMKs to aminoalcohols that were unable to participate in redox cycles.
Antifungal Activity of Eupolauridine and Its Action on DNA Topoisomerases
Khan, Shabana I.; Nimrod, Alison C.; Mehrpooya, Mohammed; Nitiss, John L.; Walker, Larry A.; Clark, Alice M.
2002-01-01
The azafluoranthene alkaloid eupolauridine has previously been shown to have in vitro antifungal activity and selective inhibition of fungal topoisomerase I. The present study was undertaken to examine further its selectivity and mode of action. Eupolauridine completely inhibits the DNA relaxation activity of purified fungal topoisomerase I at 50 μg/ml, but it does not stabilize the cleavage complex of either human or fungal topoisomerase I. Cleavage complex stabilization is the mode of action of topoisomerase I targeting drugs of the camptothecin family. Also, unlike camptothecin, eupolauridine does not cause significant cytotoxicity in mammalian cells. To determine if the inhibition of topoisomerase I is the principal mode of antifungal action of eupolauridine, Saccharomyces cerevisiae strains with alterations in topoisomerase genes were used in clonogenic assays. The antifungal activity of eupolauridine was not diminished in the absence of topoisomerase I; rather, the cells lacking the enzyme were more sensitive to the drug. Cell-killing activity of eupolauridine was also more pronounced in cells that overexpressed topoisomerase II. In vitro assays with the purified yeast enzyme confirmed that eupolauridine stabilized topoisomerase II covalent complexes. These results indicate that a major target for fungal cell killing by eupolauridine is DNA topoisomerase II rather than topoisomerase I, but does not exclude the possibility that the drug also acts against other targets. PMID:12019091
Antifungal activity of eupolauridine and its action on DNA topoisomerases.
Khan, Shabana I; Nimrod, Alison C; Mehrpooya, Mohammed; Nitiss, John L; Walker, Larry A; Clark, Alice M
2002-06-01
The azafluoranthene alkaloid eupolauridine has previously been shown to have in vitro antifungal activity and selective inhibition of fungal topoisomerase I. The present study was undertaken to examine further its selectivity and mode of action. Eupolauridine completely inhibits the DNA relaxation activity of purified fungal topoisomerase I at 50 microg/ml, but it does not stabilize the cleavage complex of either human or fungal topoisomerase I. Cleavage complex stabilization is the mode of action of topoisomerase I targeting drugs of the camptothecin family. Also, unlike camptothecin, eupolauridine does not cause significant cytotoxicity in mammalian cells. To determine if the inhibition of topoisomerase I is the principal mode of antifungal action of eupolauridine, Saccharomyces cerevisiae strains with alterations in topoisomerase genes were used in clonogenic assays. The antifungal activity of eupolauridine was not diminished in the absence of topoisomerase I; rather, the cells lacking the enzyme were more sensitive to the drug. Cell-killing activity of eupolauridine was also more pronounced in cells that overexpressed topoisomerase II. In vitro assays with the purified yeast enzyme confirmed that eupolauridine stabilized topoisomerase II covalent complexes. These results indicate that a major target for fungal cell killing by eupolauridine is DNA topoisomerase II rather than topoisomerase I, but does not exclude the possibility that the drug also acts against other targets.
Mesoionic compounds with antifungal activity against Fusarium verticillioides.
Paiva, Rojane de Oliveira; Kneipp, Lucimar Ferreira; dos Reis, Camilla Moretto; Echevarria, Aurea
2015-02-04
Fungi contaminate the food of humans and animals, are a risk to health, and can cause financial losses. In this work, the antifungal activities of 16 mesoionic compounds (MI 1-16) were evaluated against mycotoxigenic fungi, including Aspergillus spp., Fusarium verticillioides and Penicillium citrinum. Furthermore, the decreased ergosterol in the total lipid content of Fusarium verticillioides was investigated. F. verticillioides was the most sensitive fungus to the mesoionic compounds. Among the evaluated compounds, MI-11 and MI-16 presented higher antifungal effects against F. verticillioides, with MIC values of 7.8 μg/ml, and MI-2 and MI-3 followed, with MICs of 15.6 μg/ml. The most active compounds were those with heterocyclic ring phenyl groups substituted by electron donor moieties (MI-11 and MI-16). Among some compounds with higher activity (MI-2, MI-11 and MI-16), decreased ergosterol content in the total lipid fraction of F. verticillioides was demonstrated. MI-2 reduced the ergosterol content approximately 40% and 80% at concentrations of 7.8 μg/ml and 15.6 μg/ml, respectively, and MI-11 and MI-16 decreased the content by 30% and 50%, respectively, when at a concentration of 7.8 μg/ml. These findings indicate that mesoionic compounds have significant antifungal activity against F. verticillioides.
Synthesis and antifungal activities of miltefosine analogs
USDA-ARS?s Scientific Manuscript database
Nine alkylphosphocholine derivatives (3a-3i) were prepared by modifying the choline structural moiety and the alkyl chain length of miltefosine (hexadecylphosphocholine), a broad-spectrum antifungal compound that has shown modest therapeutic efficacy in a mouse model of cryptococcosis. The synthetic...
Anti-Aspergillus activity of green coffee 5-O-caffeoyl quinic acid and its alkyl esters.
Suárez-Quiroz, M L; Alonso Campos, A; Valerio Alfaro, G; González-Ríos, O; Villeneuve, P; Figueroa-Espinoza, M C
2013-01-01
The antifungal activities of 5-O-caffeoyl quinic acid (5-CQA) and of methyl, butyl, octyl, and dodecyl esters or 5-CQA, were tested on five toxigenic moulds from the Aspergillus genus (Aspergillus flavus, Aspergillus nomius, Aspergillus ochraceus, Aspergillus parasiticus, Aspergillus westerdijkiae). These mycotoxin producers' moulds may contaminate many types of food crops throughout the food chain posing serious health hazard to animals and humans. The use of chemical methods to decrease mycotoxin producer moulds contamination on food crops in the field, during storage, and/or during processing, has been proved to be efficient. In this work, the antifungal effect of 5-CQA and a homologous series of 5-CQA esters (methyl, butyl, octyl, dodecyl), was investigated using the microdilution method and the minimum inhibitory concentrations (MIC50 and MIC80). All molecules presented antifungal activity, and two esters showed a MIC for all fungi: octyl (MIC50 ≤ 0.5-0.75 mg/mL, MIC80 = 1.0-1.5 mg/mL) and dodecyl (MIC50 = 0.75-1.25 mg/mL) chlorogenates. Dodecyl chlorogenate showed a MIC80 (1.5 mg/mL) only for A. parasiticus. The maximum percent of growth inhibition on aspergillii was observed with octyl (78.4-92.7%) and dodecyl (54.5-83.7%) chlorogenates, being octyl chlorogenate the most potent antifungal agent. It was thus concluded that lipophilization improved the antifungal properties of 5-CQA, which increased with the ester alkyl chain length, exhibiting a cut-off effect at 8 carbons. As far as we know, it is the first report demonstrating that lipophilization may improve the antifungal activity of 5-CQA on five toxigenic moulds from the Aspergillus genus. Lipophilization would be a novel way to synthesize a new kind of antifungal agents with a good therapeutic value or a potential use as preservative in food or cosmetics. Copyright © 2013 Elsevier Ltd. All rights reserved.
Antifungal effects of citronella oil against Aspergillus niger ATCC 16404.
Li, Wen-Ru; Shi, Qing-Shan; Ouyang, You-Sheng; Chen, Yi-Ben; Duan, Shun-Shan
2013-08-01
Essential oils are aromatic oily liquids obtained from some aromatic plant materials. Certain essential oils such as citronella oil contain antifungal activity, but the antifungal effect is still unknown. In this study, we explored the antifungal effect of citronella oil with Aspergillus niger ATCC 16404. The antifungal activity of citronella oil on conidia of A. niger was determined by poisoned food technique, broth dilution method, and disc volatility method. Experimental results indicated that the citronella oil has strong antifungal activity: 0.125 (v/v) and 0.25 % (v/v) citronella oil inhibited the growth of 5 × 10⁵ spore/ml conidia separately for 7 and 28 days while 0.5 % (v/v) citronella oil could completely kill the conidia of 5 × 10⁵ spore/ml. Moreover, the fungicidal kinetic curves revealed that more than 90 % conidia (initial concentration is 5 × 10⁵ spore/ml) were killed in all the treatments with 0.125 to 2 % citronella oil after 24 h. Furthermore, with increase of citronella oil concentration and treatment time, the antifungal activity was increased correspondingly. The 0.5 % (v/v) concentration of citronella oil was a threshold to kill the conidia thoroughly. The surviving conidia treated with 0.5 to 2 % citronella oil decreased by an order of magnitude every day, and no fungus survived after 10 days. With light microscope, scanning electron microscope, and transmission electron microscope, we found that citronella oil could lead to irreversible alteration of the hyphae and conidia. Based on our observation, we hypothesized that the citronella oil destroyed the cell wall of the A. niger hyphae, passed through the cell membrane, penetrated into the cytoplasm, and acted on the main organelles. Subsequently, the hyphae was collapsed and squashed due to large cytoplasm loss, and the organelles were severely destroyed. Similarly, citronella oil could lead to the rupture of hard cell wall and then act on the sporoplasm to kill the conidia. Nevertheless, the citronella oil provides a potential of being a safe and environmentally friendly fungicide in the future.
Antifungal susceptibilities of Candida species isolated from the patients with vaginal candidiasis.
Nagashima, Masahito; Yamagishi, Yuka; Mikamo, Hiroshige
2016-02-01
There have been the current Japanese data on susceptibility testing for Candida isolates from vaginal candidiasis. The in vitro activities of therapeutic antifungal drugs for vulvovaginal candidiasis (VVC); miconazole (MCZ), itraconazole (ITCZ), fluconazole (FLCZ), clotrimazole (CTZ), oxiconazole (OCZ), isoconazole (ICZ) and bifonazole (BFZ) against vaginal isolates. Fifty-four strains Candida albicans and 19 strains of Candida glabrata were evaluated using a broth microdilution method specified by Clinical Laboratories Standard Institute (CLSI) document M27-A3. The MIC90 of each drug, MCZ, ITCZ, FLCZ, CTZ, OCZ, ICZ and BFZ, against C. albicans and C. glabrata isolates were 0.25, 0.12, 1, 0.06, 0.12, 0.12 and 1 μg/ml and 1, 1, 8, 0.5, 0.25, 0.5 and 1 μg/ml respectively. The activities of these drugs, except for BFZ, against C. glabrata were lower than that of C. albicans. There was one azole-resistant isolate in C. glabrata of which MIC of FLCZ is > 64 μg/ml and this isolate had cross resistance to other antifungal drugs tested. These results suggest that antifungal drugs for treatment of VVC continues to have potent antifungal activities against C. albicans and C. glabrata isolates from vaginitis. CTZ, OCZ and ICZ susceptibility of FLCZ low susceptibility C. glabrata are relatively higher than MCZ, ITCZ and FLCZ. Copyright © 2015. Published by Elsevier Ltd.
Martins, Margarida; Henriques, Mariana; Lopez-Ribot, José L.; Oliveira, Rosário
2011-01-01
SUMMARY Background Cells within Candida albicans biofilms display decreased susceptibility to most clinically used antifungal agents. We recently demonstrated that extracellular DNA (eDNA) plays an important role in biofilm integrity, as a component of the biofilm matrix. Objective To gain insight into the contributions of eDNA to C. albicans biofilms antifungal susceptibility by the investigation of the impact of the combined use of deoxyribonuclease I (DNase) and antifungals to treat biofilms. Methods C. albicans biofilms were formed using a simple and reproducible 96-well plate-based method. The activity of the combined use of 0.13 mg l−1 DNase and antifungals was estimated by the 2,3-bis(2-methoxy-4-nitro-5-sulfophenyl)-5-[(phenylamino)carbonyl]-2H-tetrazolium hydroxide (XTT) reduction assay, and total viable counts. Results and Conclusions Here we report the improved efficacy of amphotericin B when in combination with DNase against C. albicans biofilms, as assessed by XTT readings and viable counts. Furthermore, although DNase increased the efficacy of caspofungin in the reduction of mitochondrial activity, no changes were observed in terms of culturable cells. DNase did not affect biofilm cells susceptibility to fluconazole. This work suggests that agents that target processes affecting the biofilm structural integrity may have potential use as adjuvants of a catheter–lock therapy. PMID:21668524
Steinbuch, Kfir B; Benhamou, Raphael I; Levin, Lotan; Stein, Reuven; Fridman, Micha
2018-05-11
Antimicrobial cationic amphiphiles derived from aminoglycosides act through cell membrane permeabilization but have limited selectivity for microbial cell membranes. Herein, we report that an increased degree of unsaturation in the fatty acid segment of antifungal cationic amphiphiles derived from the aminoglycoside tobramycin significantly reduced toxicity to mammalian cells. A collection of tobramycin-derived cationic amphiphiles substituted with C 18 lipid chains varying in degree of unsaturation and double bond configuration were synthesized. All had potent activity against a panel of important fungal pathogens including strains with resistance to a variety of antifungal drugs. The tobramycin-derived cationic amphiphile substituted with linolenic acid with three cis double bonds (compound 6) was up to an order of magnitude less toxic to mammalian cells than cationic amphiphiles composed of lipids with a lower degree of unsaturation and than the fungal membrane disrupting drug amphotericin B. Compound 6 was 12-fold more selective (red blood cell hemolysis relative to antifungal activity) than compound 1, the derivative with a fully saturated lipid chain. Notably, compound 6 disrupted the membranes of fungal cells without affecting the viability of cocultured mammalian cells. This study demonstrates that the degree of unsaturation and the configuration of the double bond in lipids of cationic amphiphiles are important parameters that, if optimized, result in compounds with broad spectrum and potent antifungal activity as well as reduced toxicity toward mammalian cells.
Whey permeate fermented with kefir grains shows antifungal effect against Fusarium graminearum.
Gamba, Raúl Ricardo; De Antoni, Graciela; Peláez, Angela León
2016-05-01
The objective of the work reported here was to study the antifungal capability of cell-free supernatants obtained from whey permeates after fermentation by the kefir grains CIDCA AGK1 against Fusarium graminearum growth and zearalenone (ZEA) production. The assays were performed in order to study the conidial germination inhibition -in liquid media- and the effect on fungal growth rate and the Latency phase -in solid media. We observed that fermented supernatants of pH 3·5 produced the highest percentages of inhibition of conidial germination. The dilution and, particularly, alkalinisation of them led to the gradual loss of antifungal activity. In the fungal inhibition assays on plates we found that only the highest proportion of supernatant within solid medium had significant antifungal activity, which was determined as fungicidal. There was no ZEA biosynthesis in the medium with the highest proportion of supernatant, whereas at lower concentrations, the mycotoxin production was strain-dependent. From the results obtained we concluded that kefir supernatants had antifungal activity on the F. graminearum strains investigated and inhibited mycotoxin production as well, but in a strain-dependent fashion. The present work constitutes the first report of the effect of the products obtained from the kefir-grain fermentation of whey permeates - a readily available by-product of the dairy industry - on F. graminearum germination, growth, and toxin production.
Evaluation of antifungal volatile compounds on the basis of the elongation rate of a single hypha.
Matsuoka, H; Ii, Y; Takekawa, Y; Teraoka, T
1990-01-01
A novel method is proposed for the evaluation of the activity of an antifungal agent administered as a gas. This system is composed of a batch-flow type reaction vessel, a gas flow system, and a microscopic observation system. The agar plate was prepared on the ceiling of the reaction vessel, and the mycelium of a fungus (Aspergillus niger or Rhizoctonia solani) was inoculated onto it. After preincubation at 25 degrees C for 24 h, the reaction vessel was connected to the gas flow system. An appropriate hypha was selected, and its elongation rate was measured. Then a sample holder containing an antifungal compound was inserted into the reaction vessel from the side hole to saturate the atmosphere inside with its vapor. The retardation or inhibition of the hypha elongation was observed on a television monitor and recorded on a video tape recorder. The antifungal compound was then removed, and the reaction vessel was flushed with air. If the hypha lived, it began to elongate again. By this method, antifungal activity of seven odor compounds could be evaluated quantitatively within several hours. Images PMID:2082824
Alastruey-Izquierdo, Ana; Castelli, Maria Victoria; Cuesta, Isabel; Monzon, Araceli; Cuenca-Estrella, Manuel; Rodriguez-Tudela, Juan Luis
2009-01-01
The antifungal susceptibility profiles of 77 clinical strains of Mucorales species, identified by internal transcribed spacer sequencing, were analyzed. MICs obtained at 24 and 48 h were compared. Amphotericin B was the most active agent against all isolates, except for Cunninghamella and Apophysomyces isolates. Posaconazole also showed good activity for all species but Cunninghamella bertholletiae. Voriconazole had no activity against any of the fungi tested. Terbinafine showed good activity, except for Rhizopus oryzae, Mucor circinelloides, and Rhizomucor variabilis isolates. PMID:19171801
Alastruey-Izquierdo, Ana; Castelli, Maria Victoria; Cuesta, Isabel; Monzon, Araceli; Cuenca-Estrella, Manuel; Rodriguez-Tudela, Juan Luis
2009-04-01
The antifungal susceptibility profiles of 77 clinical strains of Mucorales species, identified by internal transcribed spacer sequencing, were analyzed. MICs obtained at 24 and 48 h were compared. Amphotericin B was the most active agent against all isolates, except for Cunninghamella and Apophysomyces isolates. Posaconazole also showed good activity for all species but Cunninghamella bertholletiae. Voriconazole had no activity against any of the fungi tested. Terbinafine showed good activity, except for Rhizopus oryzae, Mucor circinelloides, and Rhizomucor variabilis isolates.
Caneschi, César A.; Senra, Mônica P.; Carvalho, Gustavo S. G.; da Silva, Adilson D.
2017-01-01
Nitrogenated heterocyclic compounds are present in both natural and synthetic drugs, and hexahydropyrimidine derivatives may prove to be efficient in treating dermatomycosis causing fungi. This study evaluated the antifungal activity of four hexahydropyrimidine derivatives against the dermatomycosis causing fungi. These derivatives were synthesized, characterized, and assessed in terms of their activity against Trichophyton mentagrophytes, Microsporum canis, Microsporum gypseum, Trichophyton rubrum, Fusarium oxysporum, and Epidermophyton floccosum between concentrations 7.8 and 1,000 μg mL−1. Scanning electron micrographs were assessed for the active derivatives and reference drugs, and these micrographs revealed that new agents cause morphological changes in fungi. The derivatives HHP1, HHP3, and HHP4 revealed poor activity against the four fungal strains (MICs range 500–1000 μg mL−1). Compound HHP3 was found to be the best potential antifungal agent among those tested and was the most effective among all the active derivatives that caused morphological changes in the susceptible strains. PMID:29226215
Lazar-Baker, E E; Hetherington, S D; Ku, V V; Newman, S M
2011-03-01
To assess the effect of several commercial essential oils samples Australian lemon myrtle (Backhousia citriodora), cinnamon bark (Cinnamomum zeylanicum), oregano (Origanum vulgare), thyme oil (Thymus vulgaris), clove bud (Eugenia caryophyllata), valerian (Valeriana officinalis) and Australian tea tree oil (Melaleuca alternifolia) on mycelium growth and spore germination of Monilinia fructicola. The effectiveness of lemon myrtle essential oil as a fumigant for the control of brown rot in nectarines was evaluated. Monilinia fructicola exhibited a different level of sensitivity to each tested essential oil with results suggesting that the essential oils provide excellent control of the pathogen with respect to mycelium growth and spore germination at very low concentrations, whereas for others higher concentrations are needed to reduce significant fungal growth. In vivo application of lemon myrtle essential oil effectively reduced the incidence of M. fructicola on noninoculated fruit. Fumigation of nectarines following inoculation did not reduce the incidence of brown rot in comparison with the inoculated control treatment. No evidence of phytotoxicity on the fruit was recorded. Lemon myrtle essential oil exhibited the strongest antifungal activity against M. fructicola, in vitro and to a lesser extent, under in vivo conditions. The results demonstrate that lemon myrtle essential oil, in particular, has potential as an antifungal agent to control M. fructicola. © 2011 NSW Industry & Investment, Australia. Letters in Applied Microbiology © 2011 The Society for Applied Microbiology.
Rondonin an antifungal peptide from spider (Acanthoscurria rondoniae) haemolymph
Riciluca, K.C.T.; Sayegh, R.S.R.; Melo, R.L.; Silva, P.I.
2012-01-01
Antimicrobial activities were detected in the haemolymph of the spider Acanthoscurrria rondoniae. A novel antifungal peptide, rondonin, was purified by reverse phase high performance liquid chromatography (RP-HPLC). Rondonin has an amino acid sequence of IIIQYEGHKH and a molecular mass of 1236.776 Da. This peptide has identity to a C-terminal fragment of the “d” subunit of haemocyanin from the spiders Eurypelma californicum and Acanthoscurria gomesiana. A synthetic peptide mimicking rondonin had identical characteristics to those of the isolated material, confirming its sequence. The synthetic peptide was active only against fungus. These data led us to conclude that the antifungal activity detected in the plasma of these spiders is the result of enzymatic processing of a protein that delivers oxygen in the haemolymph of many chelicerate. Several studies have suggested that haemocyanins are involved in the arthropod immune system, and the activity of this haemocyanin fragment reinforces this idea. PMID:24371568
Mechanisms of Dendritic Cell Lysosomal Killing of Cryptococcus
NASA Astrophysics Data System (ADS)
Hole, Camaron R.; Bui, Hoang; Wormley, Floyd L.; Wozniak, Karen L.
2012-10-01
Cryptococcus neoformans is an opportunistic pulmonary fungal pathogen that disseminates to the CNS causing fatal meningitis in immunocompromised patients. Dendritic cells (DCs) phagocytose C. neoformans following inhalation. Following uptake, cryptococci translocate to the DC lysosomal compartment and are killed by oxidative and non-oxidative mechanisms. DC lysosomal extracts kill cryptococci in vitro; however, the means of antifungal activity remain unknown. Our studies determined non-oxidative antifungal activity by DC lysosomal extract. We examined DC lysosomal killing of cryptococcal strains, anti-fungal activity of purified lysosomal enzymes, and mechanisms of killing against C. neoformans. Results confirmed DC lysosome fungicidal activity against all cryptococcal serotypes. Purified lysosomal enzymes, specifically cathepsin B, inhibited cryptococcal growth. Interestingly, cathepsin B combined with its enzymatic inhibitors led to enhanced cryptococcal killing. Electron microscopy revealed structural changes and ruptured cryptococcal cell walls following treatment. Finally, additional studies demonstrated that osmotic lysis was responsible for cryptococcal death.
Candidiasis and the impact of flow cytometry on antifungal drug discovery.
Ku, Tsun Sheng N; Bernardo, Stella; Walraven, Carla J; Lee, Samuel A
2017-11-01
Invasive candidiasis continues to be associated with significant morbidity and mortality as well as substantial health care costs nationally and globally. One of the contributing factors is the development of resistance to antifungal agents that are already in clinical use. Moreover, there are known treatment limitations with all of the available antifungal agents. Since traditional techniques in novel drug discovery are time consuming, high-throughput screening using flow cytometry presents as a potential tool to identify new antifungal agents that would be useful in the management of these patients. Areas covered: In this review, the authors discuss the use of automated high-throughput screening assays based upon flow cytometry to identify potential antifungals from a library comprised of a large number of bioactive compounds. They also review studies that employed the use of this research methodology that has identified compounds with antifungal activity. Expert opinion: High-throughput screening using flow cytometry has substantially decreased the processing time necessary for screening thousands of compounds, and has helped enhance our understanding of fungal pathogenesis. Indeed, the authors see this technology as a powerful tool to help scientists identify new antifungal agents that can be added to the clinician's arsenal in their fight against invasive candidiasis.
Synthesis and antifungal activity of natural product-based 6-alkyl-2 3 4 5-tetrahydropyridines
USDA-ARS?s Scientific Manuscript database
Seven 6-alkyl-2,3,4,5-tetrahydropyridines (5a–5g) that mimic the natural products piperideines that were recently identified in the fire ant venom have been synthesized. Compounds 5c–5g with the C-6 alkyl chain lengths from C14 to C18 showed varying degrees of antifungal activities, with 5e (6-hexa...
Two new flavonoids from Artemisa sacrorum Ledeb and their antifungal activity
NASA Astrophysics Data System (ADS)
Wang, Qing-Hu; Wu, Jie-si; Wu, Rong-jun; Han, Na-ren-chao-ke-tu; Dai, Na-yin-tai
2015-05-01
Two new flavonoids, named as sacriflavone A (1) and sacriflavone B (2), were isolated from the CHCl3 extract of Artemisa sacrorum Ledeb (A. sacrorum). The structures of the isolated compounds have been elucidated unambiguously by UV, MS, and a series of 1D and 2D NMR analyses. The isolated compounds exhibited antifungal activity against different Fusarium oxysporum f. sp. dianthi pathotypes.
Geng, Tao; Lv, Ding-Ding; Huang, Yu-Xia; Hou, Cheng-Xiang; Qin, Guang-Xing; Guo, Xi-Jie
2016-12-20
Innate immunity was critical in insects defensive system and able to be induced by Janus kinase/signal transducer and activator of transcription cascade transduction (JAK/STAT) signaling pathway. Currently, it had been identified many JAK/STAT signaling pathway-related genes in silkworm, but little function was known on insect innate immunity. To explore the roles of JAK/STAT pathway in antifungal immune response in silkworm (Bombyx mori) against Beauveria bassiana infection, the expression patterns of B. mori C-type lectin 5 (BmCTL5) and genes encoding 6 components of JAK/STAT signaling pathway in silkworm challenged by B. bassiana were analyzed using quantitative real time PCR. Meanwhile the activation of JAK/STAT signaling pathway by various pathogenic micro-organisms and the affect of JAK/STAT signaling pathway inhibitors on antifungal activity in silkworm hemolymph was also detected. Moreover, RNAi assay of BmCTL5 and the affect on expression levels of signaling factors were also analyzed. We found that JAK/STAT pathway could be obviously activated in silkworm challenged with B. bassiana and had no response to bacteria and B. mori cytoplasmic polyhedrosis virus (BmCPV). However, the temporal expression patterns of JAK/STAT signaling pathway related genes were significantly different. B. mori downstream receptor kinase (BmDRK) might be a positive regulator of JAK/STAT signaling pathway in silkworm against B. bassiana infection. Moreover, antifungal activity assay showed that the suppression of JAK/STAT signaling pathway by inhibitors could significantly inhibit the antifungal activity in hemolymph and resulted in increased sensitivity of silkworm to B. bassiana infection, indicating that JAK/STAT signaling pathway might be involved in the synthesis and secretion of antifungal substances. The results of RNAi assays suggested that BmCTL5 might be one pattern recognition receptors for JAK/STAT signaling pathway in silkworm. These findings yield insights for better understand the molecular mechanisms of JAK/STAT signaling pathway in antifungal immune response in silkworm. Copyright © 2016 Elsevier B.V. All rights reserved.
Cavaleiro, Carlos; Salgueiro, Lígia; Gonçalves, Maria-José; Hrimpeng, Karnjana; Pinto, Jéssica; Pinto, Eugénia
2015-04-01
The composition and antifungal activity of the essential oil (EO) of Angelica major and its main components α-pinene and cis-β-ocimene against clinically relevant yeasts and moulds were evaluated. EO from the plant's aerial parts was obtained by hydrodistillation and analysed by gas chromatography (GC) and gas chromatography/mass spectrometry (GC/MS). The oil showed high contents of α-pinene (21.8 %) and cis-β-ocimene (30.4 %). Minimum inhibitory concentrations (MICs) were measured according to the broth macrodilution protocols by the Clinical and Laboratory Standards Institute (CLSI). The EO, α-pinene and cis-β-ocimene displayed low MICs and minimum fungicidal concentrations (MFCs) against dermatophytes and Cryptococcus neoformans, with α-pinene being the most active. Regarding Candida species, the EO susceptibility profiles seem to be diverse and not correlated with fluconazole susceptibility patterns. Moreover, an inhibition of yeast-mycelium transition was demonstrated at sub-inhibitory concentrations of the EO, α-pinene and cis-β-ocimene in C. albicans. In addition, their haemolytic activity was low. The activity displayed by A. major EO and its main components associated with low cytotoxic activity confirms their potential as an antifungal agent against fungal species frequently implicated in human mycoses, particularly cryptococcosis and dermatophytosis. The association with commercial antifungal compounds could bring benefits, by the effect on germ tube formation, and be used in mucocutaneous candidiasis treatment.
[Antifungals cellular targets and mechanisms of resistance].
Accoceberry, Isabelle; Noël, Thierry
2006-01-01
Antifungals of systemic use for the treatment of invasive fungal infections belong to four main chemical families which have globally three cellular targets in fungal cells: fluorinated pyrimidines act on deoxyribonucleic acid (DNA) replication and protein synthesis; polyenes and azoles are toxic for ergosterol and its biosynthetic pathway; lipopeptides inhibit the synthesis of cell wall beta glucans. The resistance mechanisms that are developed by some fungi begin to be well understood particularly in Candida yeasts. The underlying bases of these mechanisms are either mutations that modify the antifungal target, or that block access to the target, and, on the other hand, the overexpression of genes encoding the target, or some membrane proteins involved in the active efflux of antifungal drugs.
Antifungal activity of plant extracts against Aspergillus niger and Rhizopus stolonifer.
Surapuram, Venkatasaichaitanya; Setzer, William N; McFeeters, Robert L; McFeeters, Hana
2014-11-01
Despite recent advances in antifungal development, fungi remain a devastating threat to human health and compromise viability of the food supply. Plant based antimicrobials represent a vast untapped source with tremendous potential. Herein we present the antifungal properties of more than 50 plant extracts against two important human and agricultural pathogens, Aspergillus niger and Rhizopus stolonifer. Multiple extracts exhibit promising MIC values of less than 100 μg/mL and are reported for both fungal species.
H Gopalkrishna, Aparna; M, Seshagiri; Muddaiah, Sunil; R, Shashidara
2016-01-01
Background. Opportunistic fungal infections like candidiasis are common in the oral cavity. In recent years Candida species have shown resistance against a number of synthetic drugs. This study assessed the antifungal activity of Centratherum anthelminticum and Ocimum sanctum seed oils against six common pathogenic Candida strains. Synergistic activity of the major oil components was also studied. Methods. Antifungal activity of Centratherum anthelminticum and Ocimum sanctum seed oils were tested against six oral fungal pathogens, Candida albicans ATCC 90028, Candida krusei 6258, Candida tropicalis 13803, Candida parapsilosis22019, Candida glabrata 90030 and Candida dubliniensis MYA 646, by disc diffusion and broth microdilution methods to determine the diameter of inhibition zone (DIZ) and minimum inhibitory concentration (MIC), respectively. The oil was extracted using Soxhlet apparatus from seeds subjected to columnchromatography (CC) and thin layer chromatography (TLC) and major components were separated and quantified. Results. All the six Candida strains showed growth inhibition to a variable degree when tested with both seed oils. Both seed oils showed antifungal activity. For Centratherum anthelminticum seed oil maximum DIZ at 7 μL was recorded at 75.7 mm for Candida albicans ATCC 90028, and the least DIZ was 45.7 mm for Candida dubliniensis MYA 646. For Ocimum sanctum seed oil maximum DIZ at 7 μL was 61.0 mm for Candida krusei ATCC 6258 and the least DIZ was 46.7 mm for Candida tropicalis ATCC 13803. The mixtures of phospholipids and unsaponifiable matter exhibitedMIC values at 1.25 μL for both oils, whereas neutral lipids fraction and unsaponifiable matter exhibited similar MIC at 2.5 μL against Candida albicans and Candida krusei. Conclusion.Centratherum anthelminticum and Ocimum sanctumseed oils exhibited strong antifungal activity against six different species of Candida and this may be attributed to various active components in the oil and their synergistic activity. PMID:27429725
Altintas, Ayhan; Tabanca, Nurhayat; Tyihák, Erno; Ott, Peter G; Móricz, Agnes M; Mincsovics, Emil; Wedge, David E
2013-01-01
Essential oils obtained by hydrodistillation (HD) and microwave-assisted HD (MWHD) of Origanum onites aerial parts were analyzed by GC and GCIMS. Thirty-one constituents representing 98.6% of the water-distilled oil and 52 constituents representing 99.6% of the microwave-distilled oil were identified. Carvacrol (76.8% HD and 79.2% MWHD) and thymol (4.7% HD and 4.4% MWHD) were characterized as major constituents in both essential oils. Separation of carvacrol and thymol was achieved by overpressured layer chromatography. HPTLC and TLC separations were also compared. Essential oils were evaluated for antifungal activity against the strawberry anthracnose-causing fungal plant pathogens Colletotrichum acutatum, C. fragariae, and C. gloeosporioides using a direct overlay bioautography assay. Furthermore, main oil components carvacrol and thymol were then evaluated for antifungal activity; only carvacrol demonstrated nonselective antifungal activity against the three Colletotrichum species. Thymol and carvacrol were subsequently evaluated in a 96-well microdilution broth assay against Phomopsis obscurans, Fusarium oxysporum, three Colletotrichum species, and Botrytis cinerea. No activity was observed against any of the three Colletotrichum species at or below 30 pM. However, thymol demonstrated antifungal activity and produced 31.7% growth inhibition of P. obscurans at 120 h and 0.3 pM, whereas carvacrol appeared inactive. Thymol and carvacrol at 30 pM showed 51.5 and 36.9% growth inhibition of B. cinerea at 72 h. The mechanism of antibacterial activity was studied in a bioautography-based BioArena system. Thymol and carvacrol showed similar inhibition/killing effect against Bacillus subtilis soil bacteria; the action could be enhanced by the formaldehyde generator and transporter copper (II) ions and could be decreased in the presence of L-arginine, a formaldehyde capturer. Results indicated that Origanum essential oils and its major components thymol and carvacrol appear to generate antimicrobial activity through a mechanism of action where formaldehyde and its reaction products are produced.
Mahlo, Salome Mamokone; Chauke, Hasani Richard; McGaw, Lyndy; Eloff, Jacobus
2016-01-01
Background: Medicinal plants are used by many ethnic groups as a source of medicine for the treatment of various ailments in both humans and domestic animals. These plants produce secondary metabolites that have antimicrobial properties, thus screening of medicinal plants provide another alternative for producing chemical fungicides that are relatively non-toxic and cost-effective. Materials and methods: Leaf extracts of selected South African plant species (Bucida buceras, Breonadia salicina, Harpephyllum caffrum, Olinia ventosa, Vangueria infausta and Xylotheca kraussiana) were investigated for activity against selected phytopathogenic fungi (Aspergillus niger, Aspergillus parasiticus, Colletotricum gloeosporioides, Penicillium janthinellum, P. expansum, Trichoderma harzianum and Fusarium oxysporum). These plant fungal pathogens causes major economic losses in fruit industry such as blue rot on nectaries and postharvest disease in citrus. Plant species were selected from 600 evaluated inter alia, against two animal fungal pathogens (Candida albicans and Cryptococcus neoformans). Antioxidant activity of the selected plant extracts were investigated using a qualitative assay (2, 2-diphenyl-1-picrylhydrazyl (DPPH)). Bioautography assay was used to determine the number of antifungal compounds in plant extracts. Results: All plant extracts were active against the selected plant phytopathogenic fungi. Moreover, Bucida buceras had the best antifungal activity against four of the fungi, with minimum inhibitory concentration (MIC) values as low as 0.02 mg/ml and 0.08 mg/ml against P. expansum, P. janthinellum, T. harzianum and F. oxysporum. The plant extracts of five plant species did not possess strong antioxidant activity. However, methanol extract of X. kraussiana was the most active radical scavenger in the DPPH assay amongst the six medicinal plants screened. No antifungal compounds were observed in some of the plant extracts with good antifungal activity as shown in the microdilution assay, indicating possible synergism between the separated metabolites. Conclusion: The results showed that acetone was the best extractant. Furthermore, our findings also confirm the traditional use of Breonadia salicina and demonstrate the potential value of developing biopesticides from plants. PMID:28852739
Mahlo, Salome Mamokone; Chauke, Hasani Richard; McGaw, Lyndy; Eloff, Jacobus
2016-01-01
Medicinal plants are used by many ethnic groups as a source of medicine for the treatment of various ailments in both humans and domestic animals. These plants produce secondary metabolites that have antimicrobial properties, thus screening of medicinal plants provide another alternative for producing chemical fungicides that are relatively non-toxic and cost-effective. Leaf extracts of selected South African plant species ( Bucida buceras, Breonadia salicina, Harpephyllum caffrum, Olinia ventosa, Vangueria infausta and Xylotheca kraussiana ) were investigated for activity against selected phytopathogenic fungi ( Aspergillus niger, Aspergillus parasiticus, Colletotricum gloeosporioides, Penicillium janthinellum, P. expansum, Trichoderma harzianum and Fusarium oxysporum ). These plant fungal pathogens causes major economic losses in fruit industry such as blue rot on nectaries and postharvest disease in citrus. Plant species were selected from 600 evaluated inter alia, against two animal fungal pathogens ( Candida albicans and Cryptococcus neoformans ). Antioxidant activity of the selected plant extracts were investigated using a qualitative assay (2, 2-diphenyl-1-picrylhydrazyl (DPPH)). Bioautography assay was used to determine the number of antifungal compounds in plant extracts. All plant extracts were active against the selected plant phytopathogenic fungi. Moreover, Bucida buceras had the best antifungal activity against four of the fungi, with minimum inhibitory concentration (MIC) values as low as 0.02 mg/ml and 0.08 mg/ml against P. expansum, P. janthinellum, T. harzianum and F. oxysporum . The plant extracts of five plant species did not possess strong antioxidant activity. However, methanol extract of X. kraussiana was the most active radical scavenger in the DPPH assay amongst the six medicinal plants screened. No antifungal compounds were observed in some of the plant extracts with good antifungal activity as shown in the microdilution assay, indicating possible synergism between the separated metabolites. The results showed that acetone was the best extractant. Furthermore, our findings also confirm the traditional use of Breonadia salicina and demonstrate the potential value of developing biopesticides from plants.
Lü, Dingding; Geng, Tao; Hou, Chengxiang; Qin, Guangxing; Gao, Kun; Guo, Xijie
2017-02-05
Gloverin2 is a cationic and glycine-rich antimicrobial peptide whose expression can be induced in fat body of silkworm (Bombyx mori) larvae exposed to bacteria. The purpose of this study is to identify the roles of Bombyx mori gloverin2 (Bmgloverin2) during entomopathogenic fungus Beauveria bassiana infection. Fluorescent quantitative real-time PCR analysis indicated that the relative expression level of Bmgloverin2 gene was up-regulated in the silkworm larvae infected by B. bassiana. The cDNA of Bmgloverin2 was cloned from the silkworm by RT-PCR and the DNA segment of the Bmgloverin2 peptide (without signal peptide sequence) was inserted into pCzn1 expression plasmid and expressed in E. coli ArcticExpress (DE3). SDS-PAGE results revealed that soluble recombinant Bmgloverin2 was successfully expressed and purified. Polyclonal antibody against the Bmgloverin2 was successfully produced with the expressed recombinant protein. Western blot analysis indicated that Bmgloverin2 could be detected in the fat body of silkworm larvae infected with B. bassiana, suggesting that the expression of Bmgloverin2 could be induced by B. bassiana infection in silkworm. Antifungal assays indicated that the Bmgloverin2 had a synergistic antifungal activity with B. mori cecropin A (BmCecA) to entomopathogenic fungus B. bassiana both in vitro and in vivo in the silkworm larvae. This is the first report that Bmgloverin2 exhibits synergistic effect with BmCecA in antifungal activity against B. bassiana. The study demonstrates that Bmgloverin2 is an antifungal protein which plays an important role in synergistic antifungal activity with other antimicrobial peptide in silkworm. Copyright © 2016 Elsevier B.V. All rights reserved.
Pfaller, Michael A; Messer, Shawn A; Jones, Ronald N; Castanheira, Mariana
2015-09-01
The SENTRY Antifungal Surveillance Program monitors global susceptibility rates of newer and established antifungal agents. We report the in vitro activity of seven antifungal agents against 496 contemporary clinical isolates of yeasts and molds. The isolates were obtained from 20 laboratories in the Asia-Western Pacific (APAC) region during 2010 through 2012. Anidulafungin, caspofungin, micafungin, fluconazole, itraconazole, posaconazole and voriconazole were susceptibility tested using CLSI methods and species-specific interpretive criteria. Sequencing of fks hot spots was performed for echinocandin-resistant strains. Isolates included 13 species of Candida (n=460), 5 species of non-Candida yeasts (21), 5 species of Aspergillus (11) and 4 other molds. Echinocandin resistance was uncommon among eight species of Candida and was only detected in three isolates of Candida glabrata, two from Australia harboring mutations in fks1 (F625S) and fks2 (S663P). Resistance to the azoles was much more common and was observed among all species with the exception of Candida dubliniensis. Fluconazole resistance rates observed with C. glabrata (6.8%) was comparable to that seen with Candida parapsilosis (5.7%) and Candida tropicalis (3.6%). Cross resistance among the triazoles was seen with each of these three species. The mold-active azoles and the echinocandins were all active against isolates of Aspergillus fumigatus. Azole resistance was not detected among the isolates of Cryptococcus neoformans. Antifungal resistance is uncommon among isolates of fungi causing invasive fungal infections in the APAC region. As in other regions of the world, emerging resistance to the echinocandins among invasive isolates of C. glabrata bears close monitoring.
Sule, Abubakar; Ahmed, Qamar Uddin; Latip, Jalifah; Samah, Othman Abd; Omar, Muhammad Nor; Umar, Abdulrashid; Dogarai, Bashar Bello S
2012-07-01
Andrographis paniculata Nees. (Acanthaceae) is an annual herbaceous plant widely cultivated in southern Asia, China, and Europe. It is used in the treatment of skin infections in India, China, and Malaysia by folk medicine practitioners. Antifungal activity of the whole plant extracts and isolation of active principles from A. paniculata were investigated. Dichloromethane (DCM) and methanol (MEOH) extracts of A. paniculata whole plant were screened for their antifungal potential using broth microdilution method in vitro against seven pathogenic fungal species responsible for skin infections. Active principles were detected through bioguided assays and isolated using chromatography techniques. Structures of compounds were elucidated through spectroscopy techniques and comparisons were made with previously reported data for similar compounds. DCM extract revealed lowest minimum inhibitory concentration (MIC) value (100 μg/mL) against Microsporum canis, Candida albicans, and Candida tropicalis, whereas MEOH extract revealed lowest MIC (150 µg/mL) against C. tropicalis and Aspergillus niger. DCM extract showed lowest minimum fungicidal concentration (MFC) value (250 µg/mL) against M. canis, C. albicans, C. tropicalis and A. niger, whereas MEOH extract showed lowest MFC (250 µg/mL) against Trichophyton mentagrophytes, Trichophyton rubrum, M. canis, C. albicans, C. tropicalis and A. niger. Bioassay guided isolation from DCM and MEOH extract afforded 3-O-β-d-glucosyl-14-deoxyandrographiside, 14-deoxyandrographolide, and 14-deoxy-11,12-didehydroandrographolide as antifungal compounds. The lowest MIC (50 µg/mL) and MFC (50 µg/mL) was exerted by 14-deoxyandrographolide on M. canis. This is first report on the isolation of antifungal substances through bioassay-guided assay from A. paniculata. Our finding justifies the use of A. paniculata in folk medicines for the treatment of fungal skin infections.
de Morais, C B; Scopel, M; Pedrazza, G P R; da Silva, F K; Dalla Lana, D F; Tonello, M L; Miotto, S T S; Machado, M M; De Oliveira, L F S; Fuentefria, A M; Zuanazzi, J A S
2017-12-01
Intensive prophylactic use of antifungals leads to the increase of drug resistance and the need for new and more effective treatments are real. Plants from Leguminosae family are rich in flavonoids, for which numerous biological activities have been described, including antifungal effects. To screen methanolic extracts from Leguminosae species looking for alternative sources for antifungal agents (anti-dermatophyte and anti-Candida) and their innocuity. Antifungal activity was evaluated using the strains Candida albicans, C. krusei, C. glabrata, C. tropicalis, C. parapsilosis, Epidermophyton floccosum, Trichophyton mentagrophytes, T. rubrum and, Microsporum gypseum in the broth microdilution method. Later, the minimum inhibitory concentration (MIC) for Mimosa pigra, Eriosema heterophyllum, and Chamaecrista nictitans was determined. The most promising extract was fractionated and cytotoxicity and genotoxicity of the most active fraction were also assayed. Fungicide and/or fungistatic activity against dermatophyte strains were presented by 60% of the methanolic extracts assayed. M. pigra, E. heterophyllum, and C. nictitans methanolic extracts could inhibit dermatophyte strains at concentrations ranging from 1.9 to 1000μg/mL. M. pigra showed the lowest MIC values for a dichloromethane fraction (1.9μg/mL) without DNA damage at 10 and 50μg/mL and 100% of cell viability of human leukocytes. Our results indicate that methanolic extracts from Leguminosae plants are potential sources of antifungal compounds, mainly the extract and fractions from M. pigra. The dichloromethane fraction from M. pigra did not showed in vitro toxicity according to the applied assays. Copyright © 2017 Elsevier Masson SAS. All rights reserved.
Essential oil of Psidium cattleianum leaves: antioxidant and antifungal activity.
Castro, Micheli R; Victoria, Francine N; Oliveira, Daniela H; Jacob, Raquel G; Savegnago, Lucielli; Alves, Diego
2015-02-01
Psidium cattleianum Sabine (Myrtacea) is rich in vitamin C and phenolic compounds, including epicatechin and gallic acid as the main components. To evaluate the antifungal and antioxidant capacity in vitro of the essential oil of araçá (EOA). The acute toxicity of the EOA also was evaluated in mice. The leaves of the P. cattleianum were extracted by steam distillation. The antioxidant capacity was evaluated by in vitro tests [1,1-diphenyl-2-picryl-hydrazyl (DPPH), 2,2-azinobis(3-ethylbenzothiazoline-6-sulfonate) (ABTS), ferric ion reducing antioxidant power (FRAP), linoleic acid oxidation, thiobarbituric acid reactive species (TBARS)], and ex vivo analysis [TBARS, δ-aminulevunilate dehydratase (δ-Ala-D) and catalase activity, non-protein thiols (NPSH), and ascorbic acid levels]. The toxicity was studied in mice by a single oral administration of EOA; and the antifungal activity was performed with five strains of fungi. The EOA exhibited antioxidant activity in the FRAP assay and reduced lipid peroxidation in the cortex (Imax = 32.90 ± 2.62%), hippocampus (IC50 = 48.00 ± 3.00 µg/ml and Imax = 32.90 ± 2.62%), and cerebellum (Imax = 45.40 ± 14.04%) of mice. Acute administration of the EOA by the oral route did not cause toxicological effects in mice (LD50 > 500 µg/ml). The EOA also showed antifungal activity through of the determination minimum inhibitory concentration (MIC) values ranging from 41.67 ± 18.04 to 166.70 ± 72.17 µg/ml for tested strains. The results of present study indicate that EOA possess antioxidant properties, antifungal and not cause toxicity at tested doses.
Han, Xinya; Zhu, Xiuyun; Hong, Zongqin; Wei, Lin; Ren, Yanliang; Wan, Fen; Zhu, Shuaihua; Peng, Hao; Guo, Li; Rao, Li; Feng, Lingling; Wan, Jian
2017-06-26
Class II fructose-1,6-bisphosphate aldolases (FBA-II) are attractive new targets for the discovery of drugs to combat invasive fungal infection, because they are absent in animals and higher plants. Although several FBA-II inhibitors have been reported, none of these inhibitors exhibit antifungal effect so far. In this study, several novel inhibitors of FBA-II from C. albicans (Ca-FBA-II) with potent antifungal effects were rationally designed by jointly using a specific protocols of molecular docking-based virtual screening, accurate binding-conformation evaluation strategy, synthesis and enzymatic assays. The enzymatic assays reveal that the compounds 3c, 3e-g, 3j and 3k exhibit high inhibitory activity against Ca-FBA-II (IC 50 < 10 μM), and the most potential inhibitor is 3g, with IC 50 value of 2.7 μM. Importantly, the compounds 3f, 3g, and 3l possess not only high inhibitions against Ca-FBA-II, but also moderate antifungal activities against C. glabrata (MIC 80 = 4-64 μg/mL). The compounds 3g, 3l, and 3k in combination with fluconazole (8 μg/mL) displayed significantly synergistic antifungal activities (MIC 80 < 0.0625 μg/mL) against resistant Candida strains, which are resistant to azoles drugs. The probable binding modes between 3g and the active site of Ca-FBA-II have been proposed by using the DOX (docking, ONIOM, and XO) strategy. To our knowledge, no FBA-II inhibitors with antifungal activities against wild type and resistant strains from Candida were reported previously. The positive results suggest that the strategy adopted in this study are a promising method for the discovery of novel drugs against azole-resistant fungal pathogens in the future.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Xiong, Pingping; Li, Jie; Bu, Huaiyu, E-mail: 7213792@qq.com
2014-07-01
Reaction of Cu(II) with an asymmetric semi-rigid organic ligand 4-(1H-1, 2, 4-trizol-1-ylmethyl) benzoic acid (HL), yielded five compounds, [Cu{sub 0.5}L]{sub n} (1), [Cu(HL){sub 2}Cl{sub 2}]{sub n} (2), [Cu(HL){sub 2}Cl{sub 2}(H{sub 2}O)] (3), [Cu(L){sub 2}(H{sub 2}O)]{sub n} (4) and [Cu(L)(phen)(HCO{sub 2})]{sub n} (5), which have been fully characterized by infrared spectroscopy, elemental analysis, and single-crystal X-ray diffraction. As for compounds 1, 2 and 5, Cu(II) is bridged through HL, Cl{sup -}, and formic acid, respectively, featuring 1D chain-structure. In compound 3, Cu(II) with hexahedral coordination sphere is assembled through hydrogen-bonding into 3D supramolecular framework. In compound 4, 1D chain units –Cu–O–Cu–O–more » are ligand-bridged into a 3D network. All compounds were tested on fungi (Fusarium graminearum, Altemaria solani, Macrophoma kawatsukai, Alternaria alternata and Colletotrichum gloeosporioides). Compound 1 exhibits a better antifungal effect compared to other compounds. An effect of structure on the antifungal activity has also been correlated. - Graphical abstract: Copper(II) compounds with 4-(1H-1, 2, 4-trizol-1-ylmethyl) benzoic acid, were prepared, structurally characterized and investigated for antifungal activity. - Highlights: • The title compounds formed by thermodynamics and thermokinetics. • The five compounds show higher inhibition percentage than reactants. • The structure effect on the antifungal activity.« less
de Abreu, Letícia Coli Louvisse; Todaro, Valerio; Sathler, Plinio Cunha; da Silva, Luiz Cláudio Rodrigues Pereira; do Carmo, Flávia Almada; Costa, Cleonice Marques; Toma, Helena Keiko; Castro, Helena Carla; Rodrigues, Carlos Rangel; de Sousa, Valeria Pereira; Cabral, Lucio Mendes
2016-12-01
The aim of this work was the development and characterization of nisin-loaded nanoparticles and the evaluation of its potential antifungal activity. Candidiasis is a fungal infection caused by Candida sp. considered as one of the major public health problem currently. The discovery of antifungal agents that present a reduced or null resistance of Candida sp. and the development of more efficient drug release mechanisms are necessary for the improvement of candidiasis treatment. Nisin, a bacteriocin commercially available for more than 50 years, exhibits antibacterial action in food products with potential antifungal activity. Among several alternatives used to modulate antifungal activity of bacteriocins, polymeric nanoparticles have received great attention due to an effective drug release control and reduction of therapeutic dose, besides the minimization of adverse effects by the preferential accumulation in specific tissues. The nisin nanoparticles were prepared by double emulsification and solvent evaporation methods. Nanoparticles were characterized by dynamic light scattering, zeta potential, Fourier transform infrared, X-ray diffraction, differential scanning calorimetry, and scanning electron microscopy. Antifungal activity was accessed by pour plate method and cell counting using Candida albicans strains. The in vitro release profile and in vitro permeation studies were performed using dialysis bag method and pig vaginal mucosa in Franz diffusion cell, respectively. The results revealed nisin nanoparticles (300 nm) with spherical shape and high loading efficiency (93.88 ± 3.26%). In vitro test results suggest a promising application of these nanosystems as a prophylactic agent in recurrent vulvovaginal candidiasis and other gynecological diseases.
Antifungal effects of phytocompounds on Candida species alone and in combination with fluconazole.
Lu, Mengjiao; Li, Tao; Wan, Jianjian; Li, Xiuyun; Yuan, Lei; Sun, Shujuan
2017-02-01
Invasive fungal infections caused by Candida spp. remain the most predominant nosocomial fungal infections. Owing to the increased use of antifungal agents, resistance of Candida spp. to antimycotics has emerged frequently, especially to fluconazole (FLC). To cope with this issue, new efforts have been dedicated to discovering novel antimycotics or new agents that can enhance the susceptibility of Candida spp. to existing antimycotics. The secondary metabolites of plants represent a large library of compounds that are important sources for new drugs or compounds suitable for further modification. Research on the anti-Candida activities of phytocompounds has been carried out in recent years and the results showed that a series of phytocompounds have anti-Candida properties, such as phenylpropanoids, flavonoids, terpenoids and alkaloids. Among these phytocompounds, some displayed potent antifungal activity, with minimum inhibitory concentrations (MICs) of ≤8 µg/mL, and several compounds were even more effective against drug-resistant Candida spp. than FLC or itraconazole (e.g. honokiol, magnolol and shikonin). Interestingly, quite a few phytocompounds not only displayed anti-Candida activity alone but also synergised with FLC against Candida spp., even leading to a reversal of FLC resistance. This review focuses on summarising the anti-Candida activities of phytocompounds as well as the interactions of phytocompounds with FLC. In addition, we briefly overview the synergistic mechanisms and present the structure of the antimycotic phytocompounds. Hopefully, this analysis will provide insight into antifungal agent discovery and new approaches against antifungal drug resistance. Copyright © 2016 Elsevier B.V. and International Society of Chemotherapy. All rights reserved.
Chemical Composition and Antifungal Activity of Ocimum basilicum L. Essential Oil
El-Soud, Neveen Helmy Abou; Deabes, Mohamed; El-Kassem, Lamia Abou; Khalil, Mona
2015-01-01
BACKGROUND: The leaves of Ocimum basilicum L. (basil) are used in traditional cuisine as spices; its essential oil has found a wide application in perfumery, dental products as well as antifungal agents. AIM: To assess the chemical composition as well as the in vitro antifungal activity of O. basilicum L. essential oil against Aspergillus flavus fungal growth and aflatoxin B1 production. MATERIAL AND METHODS: The essential oil of O. basilicum was obtained by hydrodistillation and analysed using gas chromatography (GC) and GC coupled with mass spectrometry (GC/MS). The essential oil was tested for its effects on Aspergillus flavus (A. flavus) mycelial growth and aflatoxin B1 production in Yeast Extract Sucrose (YES) growth media. Aflatoxin B1 production was determined by high performance liquid chromatography (HPLC). RESULTS: Nineteen compounds, representing 96.7% of the total oil were identified. The main components were as follows: linalool (48.4%), 1,8-cineol (12.2%), eugenol (6.6%), methyl cinnamate (6.2%), α-cubebene (5.7%), caryophyllene (2.5%), β-ocimene (2.1%) and α-farnesene (2.0%). The tested oil showed significant antifungal activity that was dependent on the used oil concentration. The complete inhibition of A. flavus growth was observed at 1000 ppm oil concentration, while marked inhibition of aflatoxin B1 production was observed at all oil concentrations tested (500, 750 and 1000 ppm). CONCLUSION: These results confirm the antifungal activities of O. basilicum L. oil and its potential use to cure mycotic infections and act as pharmaceutical preservative against A. flavus growth and aflatoxin B1 production. PMID:27275253
Burtscher, Laura; Hajdu, Dorottya; Muñoz, Alberto; Gáspári, Zoltán; Read, Nick D.; Batta, Gyula; Marx, Florentine
2017-01-01
The cysteine-rich, cationic, antifungal protein PAF is abundantly secreted into the culture supernatant of the filamentous Ascomycete Penicillium chrysogenum. The five β-strands of PAF form a compact β-barrel that is stabilized by three disulphide bonds. The folding of PAF allows the formation of four surface-exposed loops and distinct charged motifs on the protein surface that might regulate the interaction of PAF with the sensitive target fungus. The growth inhibitory activity of this highly stable protein against opportunistic fungal pathogens provides great potential in antifungal drug research. To understand its mode of action, we started to investigate the surface-exposed loops of PAF and replaced one aspartic acid at position 19 in loop 2 that is potentially involved in PAF active or binding site, with a serine (Asp19 to Ser19). We analysed the overall effects, such as unfolding, electrostatic changes, sporadic conformers and antifungal activity when substituting this specific amino acid to the fairly indifferent amino acid serine. Structural analyses revealed that the overall 3D solution structure is virtually identical with that of PAF. However, PAFD19S showed slightly increased dynamics and significant differences in the surface charge distribution. Thermal unfolding identified PAFD19S to be rather a two-state folder in contrast to the three-state folder PAF. Functional comparison of PAFD19S and PAF revealed that the exchange at residue 19 caused a dramatic loss of antifungal activity: the binding and internalization of PAFD19S by target cells was reduced and the protein failed to trigger an intracellular Ca2+ response, all of which are closely linked to the antifungal toxicity of PAF. We conclude that the negatively charged residue Asp19 in loop 2 is essential for full function of the cationic protein PAF. PMID:28072824
Pathak, K V; Keharia, H
2013-05-01
To characterize fungal antagonistic bacilli isolated from aerial roots of banyan tree and identify the metabolites responsible for their antifungal activity. Seven gram positive, endospore-forming, rod-shaped endophytic bacterial strains exhibiting a broad-spectrum antifungal activity were isolated from the surface-sterilized aerial roots of banyan tree. The isolates designated as K1, A2, A4 and A12 were identified as Bacillus subtilis, whereas isolates A11 and A13 were identified as Bacillus amyloliquefaciens using Biolog Microbial Identification System. The antifungal lipopeptides, surfactins, iturins and fengycins with masses varying in the range from m/z 900 to m/z 1550 could be detected using intact-cell MALDI-TOF mass spectrometry (ICMS). On the basis of mass spectral and carbon source utilization profile, all seven endophytes could be distinguished from each other. Furthermore, ICMS analysis revealed higher extent of heterogeneity among iturins and fengycins produced by B. subtilis K1, correlating well with its higher antifungal activity in comparison with other isolates. Seven fungal antagonistic bacilli were isolated from aerial roots of banyan tree, exhibiting broad spectrum of antifungal activity, among which B. subtilis K1 isolate was found to be most potent. The ICMS analysis revealed that all these isolates produced cyclic lipopeptides belonging to surfactin, iturin and fengycin families and exhibited varying degree of heterogeneity. The endophytes are considered as a potential source of novel bioactive metabolites, and this study describes the potent fungal antagonistic bacilli from aerial roots of banyan tree. The isolates described in this study have a prospective application as biocontrol agents. Also ICMS analysis described in this study for characterization of antifungal metabolites produced by banyan endophytic bacilli may be used as a high throughput tool for screening of microbes producing novel cyclic lipopeptides. © 2013 The Society for Applied Microbiology.
Ahmad, Aftab; Wei, Yun; Syed, Fatima; Tahir, Kamran; Taj, Raheela; Khan, Arif Ullah; Hameed, Muhammad Usman; Yuan, Qipeng
2016-10-01
New strategies are required to improve the efficacy of drugs and to treat the emerging microbial resistance. An effective strategy is to combine drugs with metal nanoparticles for the control of microbial infections and resistance. Keeping in view this fact, we developed a facile and eco-friendly protocol for the synthesis of amphotericin B-conjugated silver nanoparticles and their assessment as an antifungal agent. Phytochemicals from the aqueous extract of Maytenus royleanus and amphotericin B were used as capping agents to prepare two types of silver nanoparticles i.e. (i) biogenic silver nanoparticles (b-AgNPs) and (ii) amphotericin B-conjugated biogenic silver nanoparticles (Amp-bAgNPs). UV-Vis spectroscopy was used to detect the characteristic surface Plasmon resonance peaks (SPR) for the prepared nanoparticles (424-433 nm). High-resolution transmission electron microscopy (HRTEM) study revealed the formation of well dispersed and spherical silver nanoparticles and Amp-bAgNPs with an average particles size of 10 and 15 nm. EDX and FTIR studies confirmed the elemental composition and surface adhered biomolecules in the prepared nanoparticles respectively. Biogenic silver nanoparticles revealed low to moderate antifungal activity (4-8 mm ± 0.2), however, the amphotericin B conjugated silver nanoparticles exhibited significant activity against Candida albicans (16 mm ± 1.4) and Candida tropicalis (18 mm ± 1.5). In conclusion, the enhanced antifungal activity of the Amp-AgNPs conjugate system is due to the synergy between the antifungal activity of amphotericin B and the antimicrobial property of silver. The findings of this study suggest that the conjugated nanoparticles could be used as efficient antifungal agents and drug delivery vehicles. Furthermore, this is the first report describing the synthesis of silver nanoparticles using the aqueous extract of Maytenus royleanus and the conjugation of amphotericin B, an antifungal drug, to the phytosynthesized silver nanoparticles. Copyright © 2016 Elsevier Ltd. All rights reserved.
Enhancement of commercial antifungal agents by kojic acid
USDA-ARS?s Scientific Manuscript database
Kojic acid (KA), a natural by-product of fungal fermentation, is a commonly used food and cosmetic additive. We show that KA increases activity of amphotericin B and strobilurin, medical and agricultural antifungal agents, respectively, possibly targeting the fungal antioxidative system. KA shows pr...
Antimicrobial activity of eugenol and essential oils containing eugenol: A mechanistic viewpoint.
Marchese, Anna; Barbieri, Ramona; Coppo, Erika; Orhan, Ilkay Erdogan; Daglia, Maria; Nabavi, Seyed Fazel; Izadi, Morteza; Abdollahi, Mohammad; Nabavi, Seyed Mohammad; Ajami, Marjan
2017-11-01
Eugenol is a hydroxyphenyl propene, naturally occurring in the essential oils of several plants belonging to the Lamiaceae, Lauraceae, Myrtaceae, and Myristicaceae families. It is one of the major constituents of clove (Syzygium aromaticum (L.) Merr. & L.M. Perry, Myrtaceae) oil and is largely used in both foods and cosmetics as a flavoring agent. A large body of recent scientific evidence supports claims from traditional medicine that eugenol exerts beneficial effects on human health. These effects are mainly associated with antioxidant and anti-inflammatory activities. Eugenol has also shown excellent antimicrobial activity in studies, being active against fungi and a wide range of gram-negative and gram-positive bacteria. The aim of this review is to analyze scientific data from the main published studies describing the antibacterial and antifungal activities of eugenol targeting different kind of microorganisms, such as those responsible for human infectious diseases, diseases of the oral cavity, and food-borne pathogens. This article also reports the effects of eugenol on multi-drug resistant microorganisms. On the basis of this collected data, eugenol represents a very interesting bioactive compound with broad spectrum antimicrobial activity against both planktonic and sessile cells belonging to food-decaying microorganisms and human pathogens.
Guetat, Arbi; Boulila, Abdennacer; Boussaid, Mohamed
2018-04-16
The present study describes the chemical composition of the essential oil of different plant parts of Devrra tortuosa; in vivo and in vitro biological activities of plant extract and essential oils. Apiol was found to be the major component of the oil (between 65.73% and 74.41%). The best antioxidant activities were observed for the oil of flowers (IC50 = 175 μg/ml). The samples of stems and roots exhibit lower antioxidant activity (IC50 = 201 μg/ml and 182 μg/ml, respectively). The values of IC50 showed that the extracts of methanol exhibit the highest antioxidants activities (IC50 = 64.8 102 μg/ml). EOs showed excellent antifungal activity against yeasts with low azole susceptibilities (i.e. Malassezia spp. and Candida krusei). The MIC values of oils varied between 2.85 mg/mL and 27 mg/mL. The obtained results also showed that the plant extracts inhibited the germination and the shoot and root growth of Triticum æstivum seedlings.
Antifungal Monoterpene Derivatives from the Plant Endophytic Fungus Pestalotiopsis foedan.
Xu, Dan; Zhang, Bing-Yang; Yang, Xiao-Long
2016-10-01
A new monoterpene lactone, (1R,4R,5R,8S)-8-hydroxy-4,8-dimethyl-2-oxabicyclo[3.3.1]nonan-3-one (1), along with one related known compound, (2R)-2-[(1R)-4-methylcyclohex-3-en-1-yl]propanoic acid (2), were isolated from the liquid culture of the plant endophytic fungus Pestalotiopsis foedan obtained from the branch of Bruguiera sexangula. The structure and absolute configuration of 1 were determined on the basis of extensive analysis of NMR spectra combined with computational methods via calculation of the optical rotation (OR) and 13 C-NMR. Both compounds exhibited strong antifungal activities against Botrytis cinerea and Phytophthora nicotianae with MIC values of 3.1 and 6.3 μg/ml, respectively, which are comparable to those of the known antifungal drug ketoconazole. Compound 2 also showed modest antifungal activity against Candida albicans with a MIC value of 50 μg/ml. © 2016 Wiley-VHCA AG, Zürich.
Maistrou, Sevasti; Paris, Véronique; Jensen, Annette B; Rolff, Jens; Meyling, Nicolai V; Zanchi, Caroline
2018-09-01
Antimicrobial peptides have been well studied in the context of bacterial infections. Antifungal peptides have received comparatively less attention. Fungal pathogens of insects and their hosts represent a unique opportunity to study host-pathogen interactions due to the million of years of co-evolution they share. In this study, we investigated role of a constitutively expressed thaumatin-like peptide with antifungal activity expressed by the mealworm beetle Tenebrio molitor, named Tenecin 3, during a natural infection with the entomopathogenic fungus Beauveria bassiana. We monitored the effect of the expression of Tenecin 3 on the survival of infected hosts as well as on the progression of the fungal infection inside the host. Finally, we tested the activity of Tenecin 3 against B. bassiana. These findings could help improving biocontrol strategies and help understanding the evolution of antifungal peptides as a defense mechanism. Copyright © 2018 Elsevier Ltd. All rights reserved.
Prescott, Thomas A K; Panaretou, Barry
2017-05-10
Garlic contains the organosulfur compound allicin which exhibits potent antifungal activity. Here we demonstrate the use of a highly simplified yeast chemical genetic screen to characterize its mode of action. By screening 24 validated yeast gene deletion "signature" strains for which hypersensitivity is characteristic for common antifungal modes of action, yeast lacking the high affinity Cu 2+ transporter Ctr1 was found to be hypersensitive to allicin. Focusing on transition metal related genes identified two more hypersensitive strains lacking the Cu 2+ and Zn 2+ transcription factors Mac1 and Zap1. Hypersensitivity in these strains was reversed by the addition of Cu 2+ and Zn 2+ ions, respectively. The results suggest the antifungal activity of allicin is mediated through restricted Cu 2+ and Zn 2+ uptake or inhibition of Cu 2+ and Zn 2+ metalloproteins. As certain antimicrobial modes of action are much more common than others, the approach taken here provides a useful way to identify them early on.
A polycationic antimicrobial and biocompatible hydrogel with microbe membrane suctioning ability.
Li, Peng; Poon, Yin Fun; Li, Weifeng; Zhu, Hong-Yuan; Yeap, Siew Hooi; Cao, Ye; Qi, Xiaobao; Zhou, Chuncai; Lamrani, Mouad; Beuerman, Roger W; Kang, En-Tang; Mu, Yuguang; Li, Chang Ming; Chang, Matthew W; Leong, Susanna Su Jan; Chan-Park, Mary B
2011-02-01
Despite advanced sterilization and aseptic techniques, infections associated with medical implants have not been eradicated. Most present coatings cannot simultaneously fulfil the requirements of antibacterial and antifungal activity as well as biocompatibility and reusability. Here, we report an antimicrobial hydrogel based on dimethyldecylammonium chitosan (with high quaternization)-graft-poly(ethylene glycol) methacrylate (DMDC-Q-g-EM) and poly(ethylene glycol) diacrylate, which has excellent antimicrobial efficacy against Pseudomonas aeruginosa, Escherichia coli, Staphylococcus aureus and Fusarium solani. The proposed mechanism of the antimicrobial activity of the polycationic hydrogel is by attraction of sections of anionic microbial membrane into the internal nanopores of the hydrogel, like an 'anion sponge', leading to microbial membrane disruption and then microbe death. We have also demonstrated a thin uniform adherent coating of the hydrogel by simple ultraviolet immobilization. An animal study shows that DMDC-Q-g-EM hydrogel coating is biocompatible with rabbit conjunctiva and has no toxicity to the epithelial cells or the underlying stroma.
A polycationic antimicrobial and biocompatible hydrogel with microbe membrane suctioning ability
NASA Astrophysics Data System (ADS)
Li, Peng; Poon, Yin Fun; Li, Weifeng; Zhu, Hong-Yuan; Yeap, Siew Hooi; Cao, Ye; Qi, Xiaobao; Zhou, Chuncai; Lamrani, Mouad; Beuerman, Roger W.; Kang, En-Tang; Mu, Yuguang; Li, Chang Ming; Chang, Matthew W.; Jan Leong, Susanna Su; Chan-Park, Mary B.
2011-02-01
Despite advanced sterilization and aseptic techniques, infections associated with medical implants have not been eradicated. Most present coatings cannot simultaneously fulfil the requirements of antibacterial and antifungal activity as well as biocompatibility and reusability. Here, we report an antimicrobial hydrogel based on dimethyldecylammonium chitosan (with high quaternization)-graft-poly(ethylene glycol) methacrylate (DMDC-Q-g-EM) and poly(ethylene glycol) diacrylate, which has excellent antimicrobial efficacy against Pseudomonas aeruginosa, Escherichia coli, Staphylococcus aureus and Fusarium solani. The proposed mechanism of the antimicrobial activity of the polycationic hydrogel is by attraction of sections of anionic microbial membrane into the internal nanopores of the hydrogel, like an ‘anion sponge’, leading to microbial membrane disruption and then microbe death. We have also demonstrated a thin uniform adherent coating of the hydrogel by simple ultraviolet immobilization. An animal study shows that DMDC-Q-g-EM hydrogel coating is biocompatible with rabbit conjunctiva and has no toxicity to the epithelial cells or the underlying stroma.
Identification of a New Class of Antifungals Targeting the Synthesis of Fungal Sphingolipids.
Mor, Visesato; Rella, Antonella; Farnoud, Amir M; Singh, Ashutosh; Munshi, Mansa; Bryan, Arielle; Naseem, Shamoon; Konopka, James B; Ojima, Iwao; Bullesbach, Erika; Ashbaugh, Alan; Linke, Michael J; Cushion, Melanie; Collins, Margaret; Ananthula, Hari Krishna; Sallans, Larry; Desai, Pankaj B; Wiederhold, Nathan P; Fothergill, Annette W; Kirkpatrick, William R; Patterson, Thomas; Wong, Lai Hong; Sinha, Sunita; Giaever, Guri; Nislow, Corey; Flaherty, Patrick; Pan, Xuewen; Cesar, Gabriele Vargas; de Melo Tavares, Patricia; Frases, Susana; Miranda, Kildare; Rodrigues, Marcio L; Luberto, Chiara; Nimrichter, Leonardo; Del Poeta, Maurizio
2015-06-23
Recent estimates suggest that >300 million people are afflicted by serious fungal infections worldwide. Current antifungal drugs are static and toxic and/or have a narrow spectrum of activity. Thus, there is an urgent need for the development of new antifungal drugs. The fungal sphingolipid glucosylceramide (GlcCer) is critical in promoting virulence of a variety of human-pathogenic fungi. In this study, we screened a synthetic drug library for compounds that target the synthesis of fungal, but not mammalian, GlcCer and found two compounds [N'-(3-bromo-4-hydroxybenzylidene)-2-methylbenzohydrazide (BHBM) and its derivative, 3-bromo-N'-(3-bromo-4-hydroxybenzylidene) benzohydrazide (D0)] that were highly effective in vitro and in vivo against several pathogenic fungi. BHBM and D0 were well tolerated in animals and are highly synergistic or additive to current antifungals. BHBM and D0 significantly affected fungal cell morphology and resulted in the accumulation of intracellular vesicles. Deep-sequencing analysis of drug-resistant mutants revealed that four protein products, encoded by genes APL5, COS111, MKK1, and STE2, which are involved in vesicular transport and cell cycle progression, are targeted by BHBM. Fungal infections are a significant cause of morbidity and mortality worldwide. Current antifungal drugs suffer from various drawbacks, including toxicity, drug resistance, and narrow spectrum of activity. In this study, we have demonstrated that pharmaceutical inhibition of fungal glucosylceramide presents a new opportunity to treat cryptococcosis and various other fungal infections. In addition to being effective against pathogenic fungi, the compounds discovered in this study were well tolerated by animals and additive to current antifungals. These findings suggest that these drugs might pave the way for the development of a new class of antifungals. Copyright © 2015 Mor et al.
Bohnert, Markus; Nützmann, Hans-Wilhelm; Schroeckh, Volker; Horn, Fabian; Dahse, Hans-Martin; Brakhage, Axel A; Hoffmeister, Dirk
2014-09-01
The fungal genus Armillaria is unique in that it is the only natural source of melleolide antibiotics, i.e., protoilludene alcohols esterified with orsellinic acid or its derivatives. This class of natural products is known to exert antimicrobial and cytotoxic effects. Here, we present a refined relationship between the structure and the antimicrobial activity of the melleolides. Using both agar diffusion and broth dilution assays, we identified the Δ(2,4)-double bond of the protoilludene moiety as a key structural feature for antifungal activity against Aspergillus nidulans, Aspergillus flavus, and Penicillium notatum. These findings contrast former reports on cytotoxic activities and may indicate a different mode of action towards susceptible fungi. We also report the isolation and structure elucidation of five melleolides (6'-dechloroarnamial, 6'-chloromelleolide F, 10-hydroxy-5'-methoxy-6'-chloroarmillane, and 13-deoxyarmellides A and B), along with the finding that treatment with an antifungal melleolide impacts transcription of A. nidulans natural product genes. Copyright © 2014 Elsevier Ltd. All rights reserved.
Yutani, Masahiro; Hashimoto, Yukie; Ogita, Akira; Kubo, Isao; Tanaka, Toshio; Fujita, Ken-ichi
2011-11-01
trans-Anethole (anethole), a major component of anise oil, has a broad antimicrobial spectrum with antimicrobial activity relatively weaker than those of well-known antibiotics, and significantly enhances the antifungal activity of polygodial and dodecanol against the baker's yeast Saccharomyces cerevisiae and human pathogenic yeast Candida albicans. However, the antifungal mechanism of anethole is unresolved. Anethole demonstrated antifungal activity against the filamentous fungus, Mucor mucedo IFO 7684, accompanied by hyphal morphological changes such as swollen hyphae at the tips. Its minimum growth inhibitory concentration was 0.625 mM. A hyperosmotic condition (1.2 M sorbitol) restricted the induction of morphological changes, while hypoosmotic treatment (distilled water) induced bursting of hyphal tips and leakage of cytoplasmic constituents. Furthermore, anethole dose-dependently inhibited chitin synthase (CHS) activity in permeabilized hyphae in an uncompetitive manner. These results suggest that the morphological changes of M. mucedo could be explained by the fragility of cell walls caused by CHS inhibition. Copyright © 2011 John Wiley & Sons, Ltd.
Madrid, Alejandro; Espinoza, Luis; González, Cesar; Mellado, Marco; Villena, Joan; Santander, Rocío; Silva, Viviana; Montenegro, Iván
2012-12-18
Psoralea glandulosa L. (Fabaceae) is a medicinal resinous shrub used in Chilean folk medicine as antiseptic in treatment of infections and skin diseases caused by bacteria and fungus. To evaluate the in vitro antifungal activity of the resin and the active components from P. glandulosa against clinical yeast isolates. Active compounds were obtained of the resinous exudate from aerial parts of P. glandulosa. Eight species of yeast were exposed to the resin and two major compounds. Minimum inhibitory concentration (MIC(80)) was determined according to the standard broth microdilution method. Bakuchiol and 3-hydroxy-bakuchiol demonstrated potent activity with the MIC(80) ranging from 4 to >16 and 0.125 to 16 μg/mL, respectively. The resin had some degree of antifungal activity. The overall results provided important information for the potential application of the 3-hydroxy-bakuchiol from P. glandulosa in the therapy of serious infection and skin diseases caused by clinical yeast. Copyright © 2012 Elsevier Ireland Ltd. All rights reserved.
NK Cells and Their Role in Invasive Mold Infection.
Schmidt, Stanislaw; Condorelli, Annalisa; Koltze, Antonia; Lehrnbecher, Thomas
2017-05-19
There is growing evidence that Natural Killer (NK) cells exhibit in vitro activity against both Aspergillus and non- Aspergillus molds. Cytotoxic molecules such as NK cell-derived perforin seem to play an important role in the antifungal activity. In addition, NK cells release a number of cytokines upon stimulation by fungi, which modulate both innate and adaptive host immune responses. Whereas the in vitro data of the antifungal activity of NK cells are supported by animal studies, clinical data are scarce to date.
New sources and antifungal activity of sesquiterpene lactones.
Barrero, A F; Oltra, J E; Alvarez, M; Raslan, D S; Saúde, D A; Akssira, M
2000-02-01
In the search for new sources of sesquiterpene lactones, six Centaurea species have been analyzed. The activity against the fungus Cunninghamella echinulata of (+)-cnicin (1) and (+)-salonitenolide (2), isolated from the Centaurea plants, as well as that of (+)-costunolide (3), (-)-dehydrocostuslactone (4), (-)-lychnopholide (5) and (-)-eremantholide C (6), has been evaluated. Compounds 3 and 4 showed noticeable EC50 values, whilst more polar lactones were inactive. These results suggest that a relatively low polarity is one of the molecular requirements for the antifungal activity of sesquiterpene lactones.
USDA-ARS?s Scientific Manuscript database
This study was conducted to determine the antifungal activity of the metabolites from Streptomyces sp. 3–10, and to purify and identify the metabolites. Meanwhile, the taxonomic status of strain 3–10 was re-evaluated. The cultural filtrates of strain 3–10 in potato dextrose broth were extract...
Synthesis and anti-fungal activity of acetylated glycosides of 1,4-naphthoquinone
DOE Office of Scientific and Technical Information (OSTI.GOV)
Polonik, S.G.; Tolkach, A.M.; Uvarova, N.I.
1986-12-01
The authors synthesize a series of glycoside derivatives of 1,4-naphthoquinones (VIII-XXII) and study their anti-fungal activity in a search for more effective preparations for the medical and food industries. The structures of the newly prepared glycosides were verified by IR and /sup 1/H and /sup 13/C NMR spectroscopy. The properties of acetylated 1,4-naphthoquinone glycosides are presented.
Saldanha, Camila Arruda; Garcia, Mônica Pereira; Iocca, Diego Cesar; Rebelo, Luciana Guilherme; Souza, Ana Camila Oliveira; Bocca, Anamélia Lorenzetti; Almeida Santos, Maria de Fátima Menezes; Morais, Paulo Cesar; Azevedo, Ricardo Bentes
2016-01-01
This study reports on in vitro and in vivo tests that sought to assess the antifungal activity of a newly developed magnetic carrier system comprising amphotericin B loaded onto the surface of pre-coated (with a double-layer of lauric acid) magnetite nanoparticles. The in vitro tests compared two drugs; i.e., this newly developed form and free amphotericin B. We found that this nanocomplex exhibited antifungal activity without cytotoxicity to human urinary cells and with low cytotoxicity to peritoneal macrophages. We also evaluated the efficacy of the nanocomplex in experimental paracoccidioidomycosis. BALB/c mice were intratracheally infected with Paracoccidioides brasiliensis and treated with the compound for 30 or 60 days beginning the day after infection. The newly developed amphotericin B coupled with magnetic nanoparticles was effective against experimental paracoccidioidomycosis, and it did not induce clinical, biochemical or histopathological alterations. The nanocomplex also did not induce genotoxic effects in bone marrow cells. Therefore, it is reasonable to believe that amphotericin B coupled to magnetic nanoparticles and stabilized with bilayer lauric acid is a promising nanotool for the treatment of the experimental paracoccidioidomycosis because it exhibited antifungal activity that was similar to that of free amphotericin B, did not induce adverse effects in therapeutic doses and allowed for a reduction in the number of applications. PMID:27303789
Elshafie, Hazem S.; Camele, Ippolito; Racioppi, Rocco; Scrano, Laura; Iacobellis, Nicola S.; Bufo, Sabino A.
2012-01-01
The trend to search novel microbial natural biocides has recently been increasing in order to avoid the environmental pollution from use of synthetic pesticides. Among these novel natural biocides are the bioactive secondary metabolites of Burkholderia gladioli pv. agaricicola (Bga). The aim of this study is to determine antifungal activity of Bga strains against some phytopathogenic fungi. The fungicidal tests were carried out using cultures and cell-free culture filtrates against Botrytis cinerea, Aspergillus flavus, Aspergillus niger, Penicillium digitatum, Penicillium expansum, Sclerotinia sclerotiorum and Phytophthora cactorum. Results demonstrated that all tested strains exert antifungal activity against all studied fungi by producing diffusible metabolites which are correlated with their ability to produce extracellular hydrolytic enzymes. All strains significantly reduced the growth of studied fungi and the bacterial cells were more bioactive than bacterial filtrates. All tested Bulkholderia strains produced volatile organic compounds (VOCs), which inhibited the fungal growth and reduced the growth rate of Fusarium oxysporum and Rhizoctonia solani. GC/MS analysis of VOCs emitted by strain Bga 11096 indicated the presence of a compound that was identified as 1-methyl-4-(1-methylethenyl)-cyclohexene, a liquid hydrocarbon classified as cyclic terpene. This compound could be responsible for the antifungal activity, which is also in agreement with the work of other authors. PMID:23208371
Keratitis-associated fungi form biofilms with reduced antifungal drug susceptibility.
Zhang, Xiaoyan; Sun, Xuguang; Wang, Zhiqun; Zhang, Yang; Hou, Wenbo
2012-11-21
To investigate the biofilm-forming capacity of Fusarium solani, Cladosporium sphaerospermum, and Acremonium implicatum, and the activities of antifungal agents against the three keratitis-associated fungi. The architecture of biofilms was analyzed using scanning electron microscopy and confocal scanning laser microscopy (CSLM). Susceptibility against six antifungal drugs was measured using the CLSI M38-A method and XTT reduction assay. Time course analyses of CSLM revealed that biofilm formation occurred in an organized fashion through four distinct developmental phases: adhesion, germling formation, microcolony formation, and biofilm maturation. Scanning electron microscopy revealed that mature biofilms displayed a complex three-dimensional structure, consisting of coordinated network of hyphal structures glued by the extracellular matrix (ECM). The antifungal susceptibility testing demonstrated a time-dependent decrease in efficacy for all six antifungal agents as the complexity of fungal hyphal structures developed. Natamycin (NAT), amphotericin B (AMB), and NAT were the most effective against F. solani, C. sphaerospermum, and A. implicatum biofilm, respectively. Corneal isolates of F. solani, C. sphaerospermum, and A. implicatum could produce biofilms that were resistant to antifungal agents in vitro.
Potential Use of Alginate-Based Carriers As Antifungal Delivery System
Spadari, Cristina de Castro; Lopes, Luciana B.; Ishida, Kelly
2017-01-01
Fungal infections have become a major public health problem, growing in number and severity in recent decades due to an increase of immunocompromised patients. The use of therapeutic agents available to treat these fungal infections is limited by their toxicity, low bioavailability, antifungal resistance, and high cost of treatment. Thus, it becomes extremely important to search for new therapeutic options. The use of polymeric systems as drug carriers has emerged as a promising alternative to conventional formulations for antifungals. Alginate is a natural polymer that has been explored in the last decade for development of drug delivery systems due to its non-toxicity, biodegradability, biocompatibility, low cost, mucoadhesive, and non-immunogenic properties. Several antifungal agents have been incorporated in alginate-based delivery systems, including micro and nanoparticles, with great success, displaying promising in vitro and in vivo results for antifungal activities, reduction in the toxicity and the total drug dose used in the treatment, and improved bioavailability. This review aims at discussing the potential use and benefits of alginate-based nanocarriers and other delivery systems containing antifungal agents in the therapy of fungal infections. PMID:28194145
de Castro, Ricardo Dias; de Souza, Trícia Murielly Pereira Andrade; Bezerra, Louise Morais Dornelas; Ferreira, Gabriela Lacet Silva; Costa, Edja Maria Melo de Brito; Cavalcanti, Alessandro Leite
2015-11-24
Limitations of antifungal agents used in the treatment of oral candidiasis, as the development of resistant strains, are known by the scientific community. In this context, the aim of this study was to evaluate the antifungal activity of thymol against Candida albicans, Candida tropicalis and Candida krusei strains and to determine its mode of action and synergistic effect when combined with the synthetic antifungal nystatin. The minimum inhibitory concentration (MIC) was determined using a microdilution technique, and the minimum fungicidal concentration (MFC) was determined via subculture sowing. The mode of action of thymol was established by verifying fungal growth in the presence of sorbitol or ergosterol. The fractional inhibitory concentration index (FIC) was determined using the checkerboard method. Thymol presented an antifungal effect, with MICs of 39 μg/mL for C. albicans and C. krusei and 78 μg/mL for C. tropicalis. The results of the antifungal test remained unchanged in the presence of sorbitol; however, the MIC value of thymol against C. albicans increased eight times (from 39.0 to 312.5 μg/mL) in presence of exogenous ergosterol. The combination of thymol and nystatin reduced the MIC values of both products by 87.4%, generating an FIC index of 0.25. Thymol was found to have a fungicidal effect on Candida species and a synergistic effect when combined with nystatin.
Jahanshiri, Z; Manifar, S; Moosa, H; Asghari-Paskiabi, F; Mahmoodzadeh, H; Shams-Ghahfarokhi, M; Razzaghi-Abyaneh, M
2018-06-01
Oropharyngeal candidiasis (OPC) is the most frequent opportunistic fungal infection in head and neck cancer patients. This study was done to identify the Candida species, which cause OPC, and to evaluate their antifungal susceptibility pattern and pathogenic characteristics in Iranian head and neck cancer patients treated by radiotherapy. The oral clinical samples were determined by culturing on CHROMagar, carbohydrate assimilation and ITS sequencing methods. Biofilm formation, phospholipase and proteinase activity and antifungal susceptibility were examined too. Among 54 patients with confirmed OPC, 39 (72.22%) patients were male and 15 (27.77%) were female. The most frequently Candida species from a total of 60 isolates was C. albicans (53.3%), followed by C. tropicalis (21.66%), C. glabrata (15%), C. kefyr (5%) and C. dubliniensis (1.66%). All the isolates were high-producers of biofilm. All of Candida isolates were proteinase positive and 47 isolates (81.04%) represented phospholipase activity. The maximum and minimum rates of antifungal resistance belonged to ketoconazole (93.75% of C. albicans and 89.28% of Candida non-albicans) and fluconazole (62.50% and 42.85% of C. albicans and Candida non-albicans), respectively. The most effective antifungal against all candida isolates was fluconazole. Our data can estimate abundance of OPC in male and female head and neck cancer patients and is helpful to use effective strategies for antifungal treatment, prophylaxis, and preventive therapies in these patients. Copyright © 2018. Published by Elsevier Masson SAS.
Murafuji, Toshihiro; Fujiwara, Yudai; Yoshimatsu, Daisuke; Miyakawa, Isamu; Migita, Kouto; Mikata, Yuji
2011-02-01
A series of heterocyclic organobismuth(III) compounds 2 [ClBi(5-R-C6H(3)-2-SO2C6H(4)-1'-): R=Me, Ph, MeO, Cl, H, t-Bu, CF3, F, Me2N] was synthesized in order to study the relative importance of structure and specific substitutions in relation to their lipophilicity and antifungal activity against the yeast Saccharomyces cerevisiae. A clear structure-activity relationship between the size of the inhibition zone and the value of ClogP was found for 2. These results suggest that the higher the lipophilicity, the lower the antifungal activity. Thus, 2e (R=H) and 2h (R=F), which had ClogP values of 1.18 and 1.45, respectively, were most active. In contrast, 2b (R=Ph) and 2f (R=t-Bu) had ClogP values of 3.06 and 3.00, respectively, and exhibited no antifungal activity. Compound 6b ClBi[5-(OH)C6H(3)-2-SO(2)-5'-(OH)C6H(3)-1'-] had an estimated ClogP value of 0.81 but exhibited only low activity in spite of its low ClogP value, suggesting that such a considerable decrease in lipophilicity lowers inhibition activity. Bismuth carboxylate 7b derived from p-nitrobenzoic acid and 2e exhibited inhibition activity comparable to those of 2e and 2h despite its higher lipophilicity (ClogP=2.68). Copyright © 2010 Elsevier Masson SAS. All rights reserved.
Antimicrobial agents from Licaria puchuri-major and their synergistic effect with polygodial.
Himejima, M; Kubo, I
1992-05-01
The resistance of the seeds of Licaria puchuri-major (Lauraceae) to decomposition in nature seems to be due largely to chemical defense, since its n-hexane extract contains antimicrobial principles in quantity, with a broad antimicrobial spectrum. In order to identify the active principles, the n-hexane extract was steam-distilled to yield a distillate and a residue. Subsequent bioassay indicated that the distillate retained the original broad antimicrobial activity, while the residue exhibited almost no activity. Gc-ms analysis showed that the distillate contained four phenolic compounds, seven monoterpenes, and one sesquiterpene. In contrast, the residue contained, almost exclusively, lauric acid. In the detailed antimicrobial assay with the pure compounds identified, most of them showed broad, but moderate, antimicrobial activity. Some of the components identified in the distillate were combined with polygodial [1] in order to enhance their antifungal activity. Unexpectedly, while polygodial did not synergize the antifungal activity of any of the compounds tested, the antifungal activity of polygodial was significantly increased when combined with aromatic substances such as anethole, safrole, or methyleugenol.
Belguesmia, Y; Choiset, Y; Rabesona, H; Baudy-Floc'h, M; Le Blay, G; Haertlé, T; Chobert, J-M
2013-04-01
The aim of this work was to study the antifungal properties of durancins isolated from Enterococcus durans A5-11 and of their chemically synthesized fragments. Enterococcus durans A5-11 is a lactic acid bacteria strain isolated from traditional Mongolian airag cheese. This strain inhibits the growth of several fungi including Fusarium culmorum, Penicillium roqueforti and Debaryomyces hansenii. It produces two bacteriocins: durancin A5-11a and durancin A5-11b, which have similar antimicrobial properties. The whole durancins A5-11a and A5-11b, as well as their N- and C-terminal fragments were synthesized, and their antifungal properties were studied. C-terminal fragments of both durancins showed stronger antifungal activities than other tested peptides. Treatment of D. hansenii LMSA2.11.003 strain with 2 mmol l(-1) of the synthetic peptides led to the loss of the membrane integrity and to several changes in the ultra-structure of the yeast cells. Chemically synthesized durancins and their synthetic fragments showed different antimicrobial properties from each other. N-terminal peptides show activities against both bacterial and fungal strains tested. C-terminal peptides have specific activities against tested fungal strain and do not show antibacterial activity. However, the C-terminal fragment enhances the activity of the N-terminal fragment in the whole bacteriocins against bacteria. © 2012 The Society for Applied Microbiology.
Synthesis, Antifungal Evaluation and In Silico Study of N-(4-Halobenzyl)amides.
Montes, Ricardo Carneiro; Perez, Ana Luiza A L; Medeiros, Cássio Ilan S; Araújo, Marianna Oliveira de; Lima, Edeltrudes de Oliveira; Scotti, Marcus Tullius; Sousa, Damião Pergentino de
2016-12-13
A collection of 32 structurally related N -(4-halobenzyl)amides were synthesized from cinnamic and benzoic acids through coupling reactions with 4-halobenzylamines, using (benzotriazol-1-yloxy)tris(dimethylamino)phosphonium hexafluorophosphate (BOP) as a coupling agent. The compounds were identified by spectroscopic methods such as infrared, ¹H- and 13 C- Nuclear Magnetic Resonance (NMR) and high-resolution mass spectrometry. The compounds were then submitted to antimicrobial tests by the minimum inhibitory concentration method (MIC) and nystatin was used as a control in the antifungal assays. The purpose of the tests was to evaluate the influence of structural changes in the cinnamic and benzoic acid substructures on the inhibitory activity against strains of Candida albicans , Candida tropicalis , and Candida krusei . A quantitative structure-activity relationship (QSAR) study with KNIME v. 3.1.0 and Volsurf v. 1.0.7 softwares were realized, showing that descriptors DRDRDR, DRDRAC, L4LgS, IW4 and DD2 influence the antifungal activity of the haloamides. In general, 10 benzamides revealed fungal sensitivity, especially a vanillic amide which enjoyed the lowest MIC. The results demonstrate that a hydroxyl group in the para position, and a methoxyl at the meta position enhance antifungal activity for the amide skeletal structure. In addition, the double bond as a spacer group appears to be important for the activity of amide structures.
Antifungal activity of diketopiperazines and stilbenes against plant pathogenic fungi in vitro.
Kumar, S Nishanth; Nambisan, Bala
2014-01-01
The present study aimed to investigate antifungal activity of a stilbene and diketopiperazine compounds against plant pathogenic fungi, including Phytophthora capsici, P. colocasiae, Botrytis cinerea and Colletotrichum gloeosporioides. Minimal inhibition concentrations (MIC) and minimal fungicidal concentrations (MFC) of stilbenes and diketopiperazines for each fungus were determined using microplate method. Best activity was recorded by stilbenes against P. capsici and P. colocasiae. All four test compounds were effective in inhibiting different stages of the life cycle of test fungi. Stilbenes were more effective than diketopiperazines in inhibiting mycelial growth and inhibiting different stages of the life cycle of P. capsici and P. colocasiae. Rupture of released zoospores induced by stilbenes was reduced by addition of 100 mM glucose. The effects of stilbenes on mycelial growth and zoospore release, but not zoospore rupture, were reduced largely when pH value was above 7. In addition, stilbenes were investigated for its antifungal stability against Phytophthora sp. The results showed that stilbenes maintained strong fungistatic activity over a wide pH range (pH 4–9) and temperature range (70–120 °C). The compound stilbenes exhibited strong and stable broad-spectrum antifungal activity, and had a significant fungicidal effect on fungal cells. Results from prebiocontrol evaluations performed to date are probably useful in the search for alternative approaches to controlling serious plant pathogens.
Pinto, Eugénia; Vale-Silva, Luís; Cavaleiro, Carlos; Salgueiro, Lígia
2009-11-01
The composition and antifungal activity of clove essential oil (EO), obtained from Syzygium aromaticum, were studied. Clove oil was obtained commercially and analysed by GC and GC-MS. The EO analysed showed a high content of eugenol (85.3 %). MICs, determined according to Clinical and Laboratory Standards Institute protocols, and minimum fungicidal concentration were used to evaluate the antifungal activity of the clove oil and its main component, eugenol, against Candida, Aspergillus and dermatophyte clinical and American Type Culture Collection strains. The EO and eugenol showed inhibitory activity against all the tested strains. To clarify its mechanism of action on yeasts and filamentous fungi, flow cytometric and inhibition of ergosterol synthesis studies were performed. Propidium iodide rapidly penetrated the majority of the yeast cells when the cells were treated with concentrations just over the MICs, meaning that the fungicidal effect resulted from an extensive lesion of the cell membrane. Clove oil and eugenol also caused a considerable reduction in the quantity of ergosterol, a specific fungal cell membrane component. Germ tube formation by Candida albicans was completely or almost completely inhibited by oil and eugenol concentrations below the MIC values. The present study indicates that clove oil and eugenol have considerable antifungal activity against clinically relevant fungi, including fluconazole-resistant strains, deserving further investigation for clinical application in the treatment of fungal infections.
Yoon, Mi-Young; Choi, Nam Hee; Min, Byung Sun; Choi, Gyung Ja; Choi, Yong Ho; Jang, Kyoung Soo; Han, Seong-Sook; Cha, Byeongjin; Kim, Jin-Cheol
2011-11-23
Two new pregnane glycosides, kidjoranine 3-O-β-D-glucopyranosyl-(1 → 4)-β-D-glucopyranosyl-(1 → 4)-α-L-cymaropyranosyl-(1 → 4)-β-D-cymaropyranosyl-(1→4)-α-L-diginopyranosyl-(1 → 4)-β-D-cymaropyranoside (5) and caudatin 3-O-β-D-glucopyranosyl-(1 → 4)-β-D-glucopyranosyl-(1 → 4)-α-L-cymaropyranosyl-(1 → 4)-β-D-cymaropyranosyl-(1 → 4)-α-L-diginopyranosyl-(1 → 4)-β-D-cymaropyranoside (6), were isolated from the roots of Cynanchum wilfordii along with four known compounds (1-4). The antifungal activities of the six compounds against barley powdery mildew caused by Blumeria graminis f. sp. hordei were compared to the antifungal activity of polyoxin B. The caudatin glycosides (1, 4, and 6) showed stronger antifungal activities than polyoxin B, whereas kidjoranine glycosides (2, 3, and 5) had weaker activities than polyoxin B. A wettable powder-type formulation (C. wilfordii-WP20) of the ethyl acetate extract from C. wilfordii roots prohibited the development of barley powdery mildew much more effectively than the commercial fungicide polyoxin B-WP10. In addition, C. wilfordii-WP20 effectively controlled strawberry powdery mildew caused by Sphaerotheca humuli under greenhouse conditions. Thus, the crude extract containing the pregnane glycosides can be used as a botanical fungicide for the environmentally benign control of powdery mildews.
Synthesis and antifungal evaluation of PCA amide analogues.
Qin, Chuan; Yu, Di-Ya; Zhou, Xu-Dong; Zhang, Min; Wu, Qing-Lai; Li, Jun-Kai
2018-04-18
To improve the physical and chemical properties of phenazine-1-carboxylic acid (PCA) and find higher antifungal compounds, a series of PCA amide analogues were designed and synthesized and their structures were confirmed by 1 H NMR, HRMS, and X-ray. Most compounds showed some antifungal activities in vitro. Particularly, compound 3d exhibited inhibition effect against Pyriculariaoryzac Cavgra with EC 50 value of 28.7 μM and compound 3q exhibited effect against Rhizoctonia solani with EC 50 value of 24.5 μM, more potently active than that of the positive control PCA with its EC 50 values of 37.3 μM (Pyriculariaoryzac Cavgra) and 33.2 μM (Rhizoctonia solani), respectively.
Antifungal Amide Alkaloids from the Aerial Parts of Piper flaviflorum and Piper sarmentosum.
Shi, Yan-Ni; Liu, Fang-Fang; Jacob, Melissa R; Li, Xing-Cong; Zhu, Hong-Tao; Wang, Dong; Cheng, Rong-Rong; Yang, Chong-Ren; Xu, Min; Zhang, Ying-Jun
2017-01-01
Sixty-three amide alkaloids, including three new, piperflaviflorine A ( 1 ), piperflaviflorine B ( 2 ), and sarmentamide D ( 4 ), and two previously synthesized ones, (1 E ,3 S )-1-cinnamoyl-3- hydroxypyrrolidine ( 3 ) and N -[7'-(4'-methoxyphenyl)ethyl]-2-methoxybenzamide ( 5 ), were isolated from the aerial parts of Piper flaviflorum and Piper sarmentosum. Their structures were elucidated by detailed spectroscopic analysis and, in case of 3 , by single-crystal X-ray diffraction. Most of the isolates were tested for their antifungal and antibacterial activities. Ten amides ( 6 - 15 ) showed antifungal activity against Cryptococcus neoformans ATCC 90 113 with IC 50 values in the range between 4.7 and 20.0 µg/mL. Georg Thieme Verlag KG Stuttgart · New York.
Evaluation of Antifungal Activity and Mechanism of Action of Citral against Candida albicans.
Leite, Maria Clerya Alvino; Bezerra, André Parente de Brito; de Sousa, Janiere Pereira; Guerra, Felipe Queiroga Sarmento; Lima, Edeltrudes de Oliveira
2014-01-01
Candida albicans is a yeast that commensally inhabits the human body and can cause opportunistic or pathogenic infections. Objective. To investigate the antifungal activity of citral against C. albicans. Methodology. The minimum inhibitory concentration (MIC) and the minimum fungicidal concentration (MFC) were determined by the broth microdilution techniques. We also investigated possible citral action on cell walls (0.8 M sorbitol), cell membranes (citral to ergosterol binding), the time-kill curve, and biological activity on the yeast's morphology. Results. The MIC and MFC of citral were, respectively, 64 µg/mL and 256 µg/mL. Involvement with the cell wall and ergosterol binding were excluded as possible mechanisms of action. In the morphological interference assay, it was observed that the product inhibited pseudohyphae and chlamydoconidia formation. The MIC and the MFC of citral required only 4 hours of exposure to effectively kill 99.9% of the inoculum. Conclusion. Citral showed in vitro antifungal potential against strains of C. albicans. Citral's mechanism of action does not involve the cell wall or ergosterol, and further study is needed to completely describe its effects before being used in the future as a component of new antifungals.
Antifungal starter culture for packed bread: influence of two storage conditions.
Gerez, Carla L; Fornaguera, María J; Obregozo, Mariano D; Font de Valdez, Graciela; Torino, María I
2015-01-01
In this study, we analyzed the conservation of a semi-liquid bio-preserver (SL778) developed with Lactobacillus plantarum CRL 778, a lactic acid bacterium (LAB) having antifungal activity. The characteristics of the SL778 starter remained stable during a 14-day storage at 4°C. At -20°C, cell viability and organic acid concentration showed a significant (p<0.05) decrease after 7 days. These differences observed between the storage temperatures tested were reflected in the acidification activity of SL778 during dough fermentation. However, SL778 maintained its antifungal efficacy up to a 14-day storage at both temperatures. Sensory attributes (acidic and spicy tastes and acidic smell) of breads manufactured with starter SL778 (stored at 4 or -20°C) were evaluated. No undesirable difference was detected with respect to bread control without SL778 and bread manufactured with SL778 (stored at 4 or -20°C). In conclusion, the SL778 semi-liquid bio-preserver can be stored at 4 or -20°C without modifying its antifungal activity during 14 days. Copyright © 2014 Asociación Argentina de Microbiología. Publicado por Elsevier España, S.L.U. All rights reserved.
Tian, Jun; Ban, Xiaoquan; Zeng, Hong; He, Jingsheng; Chen, Yuxin; Wang, Youwei
2012-01-01
The essential oil extracted from the seeds of dill (Anethum graveolens L.) was demonstrated in this study as a potential source of an eco-friendly antifungal agent. To elucidate the mechanism of the antifungal action further, the effect of the essential oil on the plasma membrane and mitochondria of Aspergillus flavus was investigated. The lesion in the plasma membrane was detected through flow cytometry and further verified through the inhibition of ergosterol synthesis. The essential oil caused morphological changes in the cells of A. flavus and a reduction in the ergosterol quantity. Moreover, mitochondrial membrane potential (MMP), acidification of external medium, and mitochondrial ATPase and dehydrogenase activities were detected. The reactive oxygen species (ROS) accumulation was also examined through fluorometric assay. Exposure to dill oil resulted in an elevation of MMP, and in the suppression of the glucose-induced decrease in external pH at 4 µl/ml. Decreased ATPase and dehydrogenase activities in A. flavus cells were also observed in a dose-dependent manner. The above dysfunctions of the mitochondria caused ROS accumulation in A. flavus. A reduction in cell viability was prevented through the addition of L-cysteine, which indicates that ROS is an important mediator of the antifungal action of dill oil. In summary, the antifungal activity of dill oil results from its ability to disrupt the permeability barrier of the plasma membrane and from the mitochondrial dysfunction-induced ROS accumulation in A. flavus.
Indolo[3,2-c]cinnolines with antiproliferative, antifungal, and antibacterial activity.
Barraja, P; Diana, P; Lauria, A; Passannanti, A; Almerico, A M; Minnei, C; Longu, S; Congiu, D; Musiu, C; La Colla, P
1999-08-01
A series of indolo[3,2-c]cinnoline derivatives was prepared and tested to evaluate their biological activity. Most of them inhibited the proliferation of leukemia, lymphoma and solid tumor-derived cell lines at micromolar concentrations, whereas none of the compounds were active against HIV-1. With the exception of 7g, all title compounds showed antibacterial activity against gram-positive bacteria, being up to 200 times more potent than the reference drug streptomycin. Some of the indolo[3,2-c]cinnolines were also endowed with good antifungal activity, particularly against Criptococcus neoformans.
Differential Antifungal Activity of Human and Cryptococcal Melanins with Structural Discrepancies
Correa, Néstor; Covarrubias, Cristian; Rodas, Paula I.; Hermosilla, Germán; Olate, Verónica R.; Valdés, Cristián; Meyer, Wieland; Magne, Fabien; Tapia, Cecilia V.
2017-01-01
Melanin is a pigment found in all biological kingdoms, and plays a key role in protection against ultraviolet radiation, oxidizing agents, and ionizing radiation damage. Melanin exerts an antimicrobial activity against bacteria, fungi, and parasites. We demonstrated an antifungal activity of synthetic and human melanin against Candida sp. The members of the Cryptococcus neoformans and C. gattii species complexes are capsulated yeasts, which cause cryptococcosis. For both species melanin is an important virulence factor. To evaluate if cryptococcal and human melanins have antifungal activity against Cryptococcus species they both were assayed for their antifungal properties and physico-chemical characters. Melanin extracts from human hair and different strains of C. neoformans (n = 4) and C. gattii (n = 4) were investigated. The following minimum inhibitory concentrations were found for different melanins against C. neoformans and C. gattii were (average/range): 13.7/(7.8–15.6) and 19.5/(15.6–31.2) μg/mL, respectively, for human melanin; 273.4/(125–>500) and 367.2/(125.5–>500) μg/mL for C. neoformans melanin and 125/(62.5–250) and 156.2/(62–250) μg/mL for C. gattii melanin. Using Scanning Electron Microscopy we observed that human melanin showed a compact conformation and cryptococcal melanins exposed an amorphous conformation. Infrared spectroscopy (FTIR) showed some differences in the signals related to C-C bonds of the aromatic ring of the melanin monomers. High Performance Liquid Chromatography established differences in the chromatograms of fungal melanins extracts in comparison with human and synthetic melanin, particularly in the retention time of the main compound of fungal melanin extracts and also in the presence of minor unknown compounds. On the other hand, MALDI-TOF-MS analysis showed slight differences in the spectra, specifically the presence of a minor intensity ion in synthetic and human melanin, as well as in some fungal melanin extracts. We conclude that human melanin is more active than the two fungal melanins against Cryptococcus. Although some physico-chemical differences were found, they do not explain the differences in the antifungal activity against Cryptococcus of human and cryptococcal melanins. More detailed studies on the structure should be considered to associate structure and antifungal activity. PMID:28744276
Differential Antifungal Activity of Human and Cryptococcal Melanins with Structural Discrepancies.
Correa, Néstor; Covarrubias, Cristian; Rodas, Paula I; Hermosilla, Germán; Olate, Verónica R; Valdés, Cristián; Meyer, Wieland; Magne, Fabien; Tapia, Cecilia V
2017-01-01
Melanin is a pigment found in all biological kingdoms, and plays a key role in protection against ultraviolet radiation, oxidizing agents, and ionizing radiation damage. Melanin exerts an antimicrobial activity against bacteria, fungi, and parasites. We demonstrated an antifungal activity of synthetic and human melanin against Candida sp. The members of the Cryptococcus neoformans and C. gattii species complexes are capsulated yeasts, which cause cryptococcosis. For both species melanin is an important virulence factor. To evaluate if cryptococcal and human melanins have antifungal activity against Cryptococcus species they both were assayed for their antifungal properties and physico-chemical characters. Melanin extracts from human hair and different strains of C. neoformans ( n = 4) and C. gattii ( n = 4) were investigated. The following minimum inhibitory concentrations were found for different melanins against C. neoformans and C. gattii were (average/range): 13.7/(7.8-15.6) and 19.5/(15.6-31.2) μg/mL, respectively, for human melanin; 273.4/(125->500) and 367.2/(125.5->500) μg/mL for C. neoformans melanin and 125/(62.5-250) and 156.2/(62-250) μg/mL for C. gattii melanin. Using Scanning Electron Microscopy we observed that human melanin showed a compact conformation and cryptococcal melanins exposed an amorphous conformation. Infrared spectroscopy (FTIR) showed some differences in the signals related to C-C bonds of the aromatic ring of the melanin monomers. High Performance Liquid Chromatography established differences in the chromatograms of fungal melanins extracts in comparison with human and synthetic melanin, particularly in the retention time of the main compound of fungal melanin extracts and also in the presence of minor unknown compounds. On the other hand, MALDI-TOF-MS analysis showed slight differences in the spectra, specifically the presence of a minor intensity ion in synthetic and human melanin, as well as in some fungal melanin extracts. We conclude that human melanin is more active than the two fungal melanins against Cryptococcus. Although some physico-chemical differences were found, they do not explain the differences in the antifungal activity against Cryptococcus of human and cryptococcal melanins. More detailed studies on the structure should be considered to associate structure and antifungal activity.
Liu, Shuyuan; Hou, Yinglong; Chen, Xu; Gao, Yuan; Li, Hui; Sun, Shujuan
2014-05-01
The past decades have witnessed a dramatic increase in invasive fungal infections, especially candidiasis. Despite the development of more effective new antifungal agents, fluconazole (FLC) is still widely used in the clinic because of its efficacy and low toxicity. However, as the number of patients treated with FLC has increased, FLC-resistant Candida albicans isolates emerge more frequently. In addition, biofilm-associated infections are commonly encountered and their resistance poses a great challenge to antifungal treatment. Various approaches have been proposed to increase the susceptibility of C. albicans to FLC in order to cope with treatment failures, among which is the combination of FLC with different classes of non-antifungal agents such as antibacterials, calcineurin inhibitors, heat shock protein 90 inhibitors, calcium homeostasis regulators and traditional Chinese medicine drugs. Interestingly, many of these combinations showed synergistic effects against C. albicans, especially resistant strains. The main mechanisms of these synergistic effects appear to be increasing the permeability of the membrane, reducing the efflux of antifungal drugs, interfering with intracellular ion homeostasis, inhibiting the activity of proteins and enzymes required for fungal survival, and inhibiting biofilm formation. These modes of action and the antifungal mechanisms of various compounds referenced in this paper highlight the idea that the reversal of fungal resistance can be achieved through various mechanisms. Studies examining drug interactions will hopefully provide new approaches against antifungal drug resistance as well as insight into antifungal agent discovery. Copyright © 2014 Elsevier B.V. and the International Society of Chemotherapy. All rights reserved.
Synergy and antagonism between iron chelators and antifungal drugs in Cryptococcus.
Lai, Yu-Wen; Campbell, Leona T; Wilkins, Marc R; Pang, Chi Nam Ignatius; Chen, Sharon; Carter, Dee A
2016-10-01
Fungal infections remain very difficult to treat, and developing new antifungal drugs is difficult and expensive. Recent approaches therefore seek to augment existing antifungals with synergistic agents that can lower the therapeutic dose, increase efficacy and prevent resistance from developing. Iron limitation can inhibit microbial growth, and iron chelators have been employed to treat fungal infections. In this study, chequerboard testing was used to explore combinations of iron chelators with antifungal agents against pathogenic Cryptococcus spp. with the aim of determining how disruption to iron homeostasis affects antifungal susceptibility. The iron chelators ethylenediaminetetraacetic acid (EDTA), deferoxamine (DFO), deferiprone (DFP), deferasirox (DSX), ciclopirox olamine and lactoferrin (LF) were paired with the antifungal agents amphotericin B (AmB), fluconazole, itraconazole, voriconazole and caspofungin. All chelators except for DFO increased the efficacy of AmB, and significant synergy was seen between AmB and LF for all Cryptococcus strains. Addition of exogenous iron rescued cells from the antifungal effect of LF alone but could not prevent inhibition by AmB + LF, indicating that synergy was not due primarily to iron chelation but to other properties of LF that were potentiated in the presence of AmB. Significant synergy was not seen consistently for other antifungal-chelator combinations, and EDTA, DSX and DFP antagonised the activity of azole drugs in strains of Cryptococcus neoformans var. grubii. This study highlights the range of interactions that can be induced by chelators and indicates that most antifungal drugs are not enhanced by iron limitation in Cryptococcus. Copyright © 2016 Elsevier B.V. and International Society of Chemotherapy. All rights reserved.
Aktuganov, G; Melentjev, A; Galimzianova, N; Khalikova, E; Korpela, T; Susi, P
2008-07-01
Previously, we isolated a strain of Bacillus that had antifungal activity and produced lytic enzymes with fungicidal potential. In the present study, we identified the bacterium as Paenibacillus ehimensis and further explored its antifungal properties. In liquid co-cultivation assays, P. ehimensis IB-X-b decreased biomass production of several pathogenic fungi by 45%-75%. The inhibition was accompanied by degradation of fungal cell walls and alterations in hyphal morphology. Residual medium from cultures of P. ehimensis IB-X-b inhibited fungal growth, indicating the inhibitors were secreted into the medium. Of the 2 major lytic enzymes, chitinases were only induced by chitin-containing substrates, whereas beta-1,3-glucanase showed steady levels in all carbon sources. Both purified chitinase and beta-1,3-glucanase degraded cell walls of macerated fungal mycelia, whereas only the latter also degraded cell walls of intact mycelia. The results indicate synergism between the antifungal action mechanisms of these enzymes in which beta-1,3-glucanase is the initiator of the cell wall hydrolysis, whereas the degradation process is reinforced by chitinases. Paenibacillus ehimensis IB-X-b has pronounced antifungal activity with a wide range of fungi and has potential as a biological control agent against plant pathogenic fungi.
Activation of Melanin Synthesis in Alternaria infectoria by Antifungal Drugs
Fernandes, Chantal; Prados-Rosales, Rafael; Silva, Branca M. A.; Nakouzi-Naranjo, Antonio; Zuzarte, Mónica; Chatterjee, Subhasish; Stark, Ruth E.; Casadevall, Arturo
2015-01-01
The importance of Alternaria species fungi to human health ranges from their role as etiological agents of serious infections with poor prognoses in immunosuppressed individuals to their association with respiratory allergic diseases. The present work focuses on Alternaria infectoria, which was used as a model organism of the genus, and was designed to unravel melanin production in response to antifungals. After we characterized the pigment produced by A. infectoria, we studied the dynamics of 1,8-dihydroxynaphthalene (DHN)-melanin production during growth, the degree of melanization in response to antifungals, and how melanization affected susceptibility to several classes of therapeutic drugs. We demonstrate that A. infectoria increased melanin deposition in cell walls in response to nikkomycin Z, caspofungin, and itraconazole but not in response to fluconazole or amphotericin B. These results indicate that A. infectoria activates DHN-melanin synthesis in response to certain antifungal drugs, possibly as a protective mechanism against these drugs. Inhibition of DHN-melanin synthesis by pyroquilon resulted in a lower minimum effective concentration (MEC) of caspofungin and enhanced morphological changes (increased hyphal balloon size), characterized by thinner and less organized A. infectoria cell walls. In summary, A. infectoria synthesizes melanin in response to certain antifungal drugs, and its susceptibility is influenced by melanization, suggesting the therapeutic potential of drug combinations that affect melanin synthesis. PMID:26711773
Ji, Dan; Lu, JunRui; Lu, BoWei; Xin, ChunWei; Mu, JiangBei; Li, JianFa; Peng, ChunYong; Bao, XiuRong
2013-04-01
A series of 3-S-β-d-glucosides-4-arylideneamino-5-aryl-1,2,4-triazoles were rationally designed and synthesized according to the principle of superposition of bioactive substructures by the combination of 1,2,4-triazole, Schiff base and glucosides. The structures of the target compounds have been characterized by (1)H NMR, (13)C NMR, IR, MS and HRMS. All the newly synthesized compounds have been evaluated for their antimicrobial activities in vitro against Staphylococcus aureus (ATCC 6538), Escherichia coli (ATCC 8099) as well as Monilia albican (ATCC 10231). The bioactive assay showed that most of the tested compounds displayed variable inhibitory effects on the growth of the Gram-positive bacterial strain (Staphylococcus aureus), Gram-negative bacterial strains (Escherichia coli) and fungal strains (Monilia albican). All the target compounds exhibited better antifungal activity than antibacterial activity. Especially, compounds 6b, 6c, 6f, 6j, 6k and 6l showed excellent activity against fungus Monilia albican with MIC values of 16 μg/mL. Copyright © 2013 Elsevier Ltd. All rights reserved.
USDA-ARS?s Scientific Manuscript database
Candidiasis and cryptococcosis are diseases of widening global incidence as a result of increasing immunosuppressive disorders, such as AIDS. An enduring problem for treatment of these mycoses is recurrent development of resistance to introduced antifungal drugs. We examined the potential for enhan...
Federal Register 2010, 2011, 2012, 2013, 2014
2013-06-12
... antibacterial activity for infections with multiple-drug-resistant Enterobacteriaceae. This means that...). GAIN is intended to encourage development of new antibacterial and antifungal drugs for the treatment... encourage development of new antibacterial and antifungal drugs for the treatment of serious or life...
USDA-ARS?s Scientific Manuscript database
In this investigation we examined the essential oils of three aromatic plants; Zanthoxylum armatum, Juniperus communis, and, Dysphania ambrosioides, which are used by the local population of the western Himalayan region for medicinal purposes. These plants were studied for their antifungal, larvicid...
Fungicidal mechanisms of cathelicidins LL-37 and CATH-2 revealed by live-cell imaging.
Ordonez, Soledad R; Amarullah, Ilham H; Wubbolts, Richard W; Veldhuizen, Edwin J A; Haagsman, Henk P
2014-01-01
Antifungal mechanisms of action of two cathelicidins, chicken CATH-2 and human LL-37, were studied and compared with the mode of action of the salivary peptide histatin 5 (Hst5). Candida albicans was used as a model organism for fungal pathogens. Analysis by live-cell imaging showed that the peptides kill C. albicans rapidly. CATH-2 is the most active peptide and kills C. albicans within 5 min. Both cathelicidins induce cell membrane permeabilization and simultaneous vacuolar expansion. Minimal fungicidal concentrations (MFC) are in the same order of magnitude for all three peptides, but the mechanisms of antifungal activity are very different. The activity of cathelicidins is independent of the energy status of the fungal cell, unlike Hst5 activity. Live-cell imaging using fluorescently labeled peptides showed that both CATH-2 and LL-37 quickly localize to the C. albicans cell membrane, while Hst5 was mainly directed to the fungal vacuole. Small amounts of cathelicidins internalize at sub-MFCs, suggesting that intracellular activities of the peptide could contribute to the antifungal activity. Analysis by flow cytometry indicated that CATH-2 significantly decreases C. albicans cell size. Finally, electron microscopy showed that CATH-2 affects the integrity of the cell membrane and nuclear envelope. It is concluded that the general mechanisms of action of both cathelicidins are partially similar (but very different from that of Hst5). CATH-2 has unique features and possesses antifungal potential superior to that of LL-37.
Sharifzadeh, Aghil; Soltani, Minoo; Shokri, Hojjatollah
2015-08-01
The purposes of this study were to investigate the enzymatic activity of different Candida species and their antifungal susceptibility patterns. The study involved a total of 83 isolates of Candida from the genital tract of the female Camelus dromedarius. After species identification, the isolates were analysed for the production/activity of phospholipase, proteinase and haemolysin. In addition, the agar disc diffusion method was performed on the basis of CLSI guidelines M44-A2 protocol for antifungal susceptibility testing. All the isolates were able to produce phospholipase, proteinase and haemolysin. A total of 35.48%, 87.09% and 64.51% of C. albicans isolates exhibited very high phospholipase, proteinase and haemolytic activities, respectively, whereas very high phospholipase, proteinase and haemolytic activities were determined in 5.76%, 23.07% and 45.16% of non-C. albicans isolates respectively. Overall, 61 (73.5%) of Candida isolates were susceptible to fluconazole, 70 (84.3%) susceptible to clotrimazole, 82 (98.8%) susceptible to voriconazole, 76 (91.6%) susceptible to itraconazole, 75 (90.4%) susceptible to ketoconazole, 83 (100%) susceptible to amphotericin B, 81 (97.6%) susceptible to nystatin and 36 (43.4%) susceptible to flucytosine. Candida isolates showed higher haemolytic activity than that of other secreted hydrolases among vaginal Candida species. In addition, amphotericin B was the most in vitro effective antifungal drug and flucytosine had the poorest activity under such conditions. © 2015 Blackwell Verlag GmbH.
Johann, Susana; Rosa, Luiz H; Rosa, Carlos A; Perez, Pilar; Cisalpino, Patrícia S; Zani, Carlos L; Cota, Betania B
2012-01-01
Altenusin is a biphenyl derivative isolated from different species of fungi, which presents several biological activities. We report the antifungal activity of the altenusin isolated from the endophytic fungus Alternaria sp., against clinical isolates of Paracoccidioides brasiliensis, and its action on cell walls of P. brasiliensis and the nonpathogenic yeast Schizosaccharomyces pombe. In vitro antifungal activity of altenusin was evaluated using the broth microdilution method against 11 strains of P. brasiliensis and one strain of S. pombe. The effects of the altenusin on the cell wall were estimated using the sorbitol protection assay. The altenusin presented strong activity against P. brasiliensis with MIC values ranging between 1.9 and 31.2 μg/ml, and 62.5 μg/ml for S. pombe. Our results demonstrated that the MIC values for altenusin were increased for P. brasiliensis Pb18 and for S. pombe when the medium was supplemented with sorbitol. Additionally, S. pombe cells treated with altenusin were more rounded in shape than untreated cells. Altenusin showed activity against clinical strains of P. brasiliensis at the concentration tested, and this compound probably affects fungal cell walls. These findings suggest that altenusin could act through the inhibition of cell wall synthesis or assembly in P. brasiliensis and S. pombe, and could be considered as a lead compound for the design of new antifungals. Copyright © 2011 Revista Iberoamericana de Micología. Published by Elsevier Espana. All rights reserved.
In vitro production and antifungal activity of peptide ABP-dHC-cecropin A.
Zhang, Jiaxin; Movahedi, Ali; Xu, Junjie; Wang, Mengyang; Wu, Xiaolong; Xu, Chen; Yin, Tongming; Zhuge, Qiang
2015-04-10
The antimicrobial peptide ABP-dHC-cecropin A is a small cationic peptide with potent activity against a wide range of bacterial species. Evidence of antifungal activity has also been suggested; however, testing of this peptide has been limited due to the low expression of cecropin proteins in Escherichia coli. To improve expression of this peptide in E. coli, ABP-dHC-cecropin A was cloned into a pSUMO vector and transformed into E. coli, resulting in the production of a pSUMO-ABP-dHC-cecropin A fusion protein. The soluble form of this protein was then purified by Ni-IDA chromatography, yielding a total of 496-mg protein per liter of fermentation culture. The SUMO-ABP-dHC-cecropin A fusion protein was then cleaved using a SUMO protease and re-purified by Ni-IDA chromatography, yielding a total of 158-mg recombinant ABP-dHC-cecropin A per liter of fermentation culture at a purity of ≥94%, the highest yield reported to date. Antifungal activity assays performed using this purified recombinant peptide revealed strong antifungal activity against both Candida albicans and Neurospora crassa, as well as Rhizopus, Fusarium, Alternaria, and Mucor species. Combined with previous analyses demonstrating strong antibacterial activity against a number of important bacterial pathogens, these results confirm the use of ABP-dHC-cecropin A as a broad-spectrum antimicrobial peptide, with significant therapeutic potential. Copyright © 2015 Elsevier B.V. All rights reserved.
Chomcheon, Porntep; Wiyakrutta, Suthep; Aree, Thammarat; Sriubolmas, Nongluksna; Ngamrojanavanich, Nattaya; Mahidol, Chulabhorn; Ruchirawat, Somsak; Kittakoop, Prasat
2010-09-24
Five new hybrid peptide-polyketides, curvularides A-E (1-5), were isolated from the endophytic fungus Curvularia geniculata, which was obtained from the limbs of Catunaregam tomentosa. Structure elucidation for curvularides A-E (1-5) was accomplished by analysis of spectroscopic data, as well as by single-crystal X-ray crystallography. Curvularide B (2) exhibited antifungal activity against Candida albicans, and it also showed synergistic activity with a fluconazole drug.
Genome Sequence of an Endophytic Fungus, Fusarium solani JS-169, Which Has Antifungal Activity.
Kim, Jung A; Jeon, Jongbum; Park, Sook-Young; Kim, Ki-Tae; Choi, Gobong; Lee, Hyun-Jung; Kim, Yangsun; Yang, Hee-Sun; Yeo, Joo-Hong; Lee, Yong-Hwan; Kim, Soonok
2017-10-19
An endophytic fungus, Fusarium solani strain JS-169, isolated from a mulberry twig, showed considerable antifungal activity. Here, we report the draft genome sequence of this strain. The assembly comprises 17 scaffolds, with an N 50 value of 4.93 Mb. The assembled genome was 45,813,297 bp in length, with a G+C content of 49.91%. Copyright © 2017 Kim et al.
Antibacterial and Antifungal Activities of Spices
Liu, Qing; Meng, Xiao; Li, Ya; Zhao, Cai-Ning; Tang, Guo-Yi; Li, Hua-Bin
2017-01-01
Infectious diseases caused by pathogens and food poisoning caused by spoilage microorganisms are threatening human health all over the world. The efficacies of some antimicrobial agents, which are currently used to extend shelf-life and increase the safety of food products in food industry and to inhibit disease-causing microorganisms in medicine, have been weakened by microbial resistance. Therefore, new antimicrobial agents that could overcome this resistance need to be discovered. Many spices—such as clove, oregano, thyme, cinnamon, and cumin—possessed significant antibacterial and antifungal activities against food spoilage bacteria like Bacillus subtilis and Pseudomonas fluorescens, pathogens like Staphylococcus aureus and Vibrio parahaemolyticus, harmful fungi like Aspergillus flavus, even antibiotic resistant microorganisms such as methicillin resistant Staphylococcus aureus. Therefore, spices have a great potential to be developed as new and safe antimicrobial agents. This review summarizes scientific studies on the antibacterial and antifungal activities of several spices and their derivatives. PMID:28621716
Youssef, Diaa T A; Shaala, Lamiaa A; Mohamed, Gamal A; Badr, Jihan M; Bamanie, Faida H; Ibrahim, Sabrin R M
2014-04-01
In our search for bioactive metabolites from marine organisms, we have investigated the polar fraction of the organic extract of the Red Sea sponge Theonella swinhoei. Successive chromatographic separations and final HPLC purification of the potent antifungal fraction afforded a new bicyclic glycopeptide, theonellamide G. The structure of the peptide was determined using extensive 1D and 2D NMR and high-resolution mass spectral determinations. The absolute configuration of theonellamide G was determined by chemical degradation and 2D NMR spectroscopy. Theonellamide G showed potent antifungal activity towards wild and amphotericin B-resistant strains of Candida albicans with IC₅₀ of 4.49 and 2.0 μM, respectively. Additionally, it displayed cytotoxic activity against the human colon adenocarcinoma cell line (HCT-16) with IC₅₀ of 6.0 μM. These findings provide further insight into the chemical diversity and biological activities of this class of compounds.
Antibacterial and Antifungal Activities of Spices.
Liu, Qing; Meng, Xiao; Li, Ya; Zhao, Cai-Ning; Tang, Guo-Yi; Li, Hua-Bin
2017-06-16
Infectious diseases caused by pathogens and food poisoning caused by spoilage microorganisms are threatening human health all over the world. The efficacies of some antimicrobial agents, which are currently used to extend shelf-life and increase the safety of food products in food industry and to inhibit disease-causing microorganisms in medicine, have been weakened by microbial resistance. Therefore, new antimicrobial agents that could overcome this resistance need to be discovered. Many spices-such as clove, oregano, thyme, cinnamon, and cumin-possessed significant antibacterial and antifungal activities against food spoilage bacteria like Bacillus subtilis and Pseudomonas fluorescens , pathogens like Staphylococcus aureus and Vibrio parahaemolyticus, harmful fungi like Aspergillus flavus, even antibiotic resistant microorganisms such as methicillin resistant Staphylococcus aureus. Therefore, spices have a great potential to be developed as new and safe antimicrobial agents. This review summarizes scientific studies on the antibacterial and antifungal activities of several spices and their derivatives.
Cai, Kexin; Wang, Jiawen; Wang, Min; Zhang, Hui; Wang, Siming; Zhao, Yu
2016-07-01
To establish an efficient expression system for a fusion protein GST-pgLTP (Lipid Transfer Protein) and to test its antifungal activity. The nucleotide sequence of LTP gene was obtained from Panax ginseng using RT-PCR. The ORF of the cDNA is 363 bp, codING for a protein OF 120 amino acids with a calculated MW of 12.09 kDa. The pgLTP gene with a His6-tag at the C-terminus was cloned into the pGEX-6p1 vector to generate a GST-fusion pgLTP protein construct that was expressed in Escherichia coli Rosetta. Following purification by Ni-NTA, the fusion protein exhibited antifungal activity against five fungi found in ginseng. The fusion protein GST-pgLTP has activity against a broad spectrum of phytopathogenic fungi, and can potentially be adapted for production to combat fungal diseases that affect P. ginseng.
Larkin, Emily; Hager, Christopher; Chandra, Jyotsna; Mukherjee, Pranab K; Retuerto, Mauricio; Salem, Iman; Long, Lisa; Isham, Nancy; Kovanda, Laura; Borroto-Esoda, Katyna; Wring, Steve; Angulo, David; Ghannoum, Mahmoud
2017-05-01
Candida auris , a new multidrug-resistant Candida spp. which is associated with invasive infection and high rates of mortality, has recently emerged. Here, we determined the virulence factors (germination, adherence, biofilm formation, phospholipase and proteinase production) of 16 C. auris isolates and their susceptibilities to 11 drugs belonging to different antifungal classes, including a novel orally bioavailable 1,3-β-d-glucan synthesis inhibitor (SCY-078). We also examined the effect of SCY-078 on the growth, ultrastructure, and biofilm-forming abilities of C. auris Our data showed that while the tested strains did not germinate, they did produce phospholipase and proteinase in a strain-dependent manner and had a significantly reduced ability to adhere and form biofilms compared to that of Candida albicans ( P = 0.01). C. auris isolates demonstrated reduced susceptibility to fluconazole and amphotericin B, while, in general, they were susceptible to the remaining drugs tested. SCY-078 had an MIC 90 of 1 mg/liter against C. auris and caused complete inhibition of the growth of C. auris and C. albicans Scanning electron microscopy analysis showed that SCY-078 interrupted C. auris cell division, with the organism forming abnormal fused fungal cells. Additionally, SCY-078 possessed potent antibiofilm activity, wherein treated biofilms demonstrated significantly reduced metabolic activity and a significantly reduced thickness compared to the untreated control ( P < 0.05 for both comparisons). Our study shows that C. auris expresses several virulence determinants (albeit to a lesser extent than C. albicans ) and is resistant to fluconazole and amphotericin B. SCY-078, the new orally bioavailable antifungal, had potent antifungal/antibiofilm activity against C. auris , indicating that further evaluation of this antifungal is warranted. Copyright © 2017 Larkin et al.
Luiz, Raul Leal Faria; Vila, Taissa Vieira Machado; de Mello, João Carlos Palazzo; Nakamura, Celso Vataru; Rozental, Sonia; Ishida, Kelly
2015-03-19
Biofilm formation is important in Candida albicans pathogenesis and constitutes a mechanism of antifungal resistance. Thus, we evaluated the effect of proanthocyanidins polymer-rich fractions from Stryphnodendron adstringens (fraction F2 and subfraction F2.4) against C. albicans biofilms. Firstly, the antifungal activity of F2 and F2.4 against planktonic cells of Candida albicans (ATCC 10231) was determined using broth microdilution method. Anti-biofilm effect of F2 and F2.4 was evaluated during biofilm formation or on mature biofilm of C. albicans and compared with standard antifungals amphotericin B and fluconazole. Metabolic activity of sessile and dispersion cells from biofilms after antifungal treatments were measured using a tetrazolium reduction assay and the biofilm total biomass was quantified by crystal violet-based assay. Morphological alterations after treatments were observed using scanning electron microscopy. The anti-biofilm effect of F2 and F2.4 were comparable to standard antifungals (amphotericin B and fluconazole). F2 and F2.4 treatments reduced biofilm metabolic activity (in sessile and in dispersion cells) during biofilm formation, and in mature biofilms, unlike fluconazole, which only prevents the biofilm formation. Treatments with F2, F2.4 or fluconazole reduced biofilm biomass during biofilm formation, but not in mature biofilm. Amphotericin B presented higher inhibitory effect on biofilm formation and on mature biofilm of C. albicans. F2 and F2.4 treatments led to the appearance of dumbbell-shaped blastoconidia and of blastoconidia clusters in biofilms. Proanthocyanidins polymer-rich fractions from S. adstringens successfully inhibited C. albicans planktonic growth and biofilm development, and they represent a potential new agent for the treatment of biofilm-associated candidiasis.
Synergy of the antibiotic colistin with echinocandin antifungals in Candida species.
Zeidler, Ute; Bougnoux, Marie-Elisabeth; Lupan, Alexandru; Helynck, Olivier; Doyen, Antonia; Garcia, Zacarias; Sertour, Natacha; Clavaud, Cécile; Munier-Lehmann, Hélène; Saveanu, Cosmin; d'Enfert, Christophe
2013-06-01
Candida albicans is the most prevalent fungal pathogen of humans, causing a wide range of infections from harmless superficial to severe systemic infections. Improvement of the antifungal arsenal is needed since existing antifungals can be associated with limited efficacy, toxicity and antifungal resistance. Here we aimed to identify compounds that act synergistically with echinocandin antifungals and that could contribute to a faster reduction of the fungal burden. A total of 38 758 compounds were tested for their ability to act synergistically with aminocandin, a β-1,3-glucan synthase inhibitor of the echinocandin family of antifungals. The synergy between echinocandins and an identified hit was studied with chemogenomic screens and testing of individual Saccharomyces cerevisiae and C. albicans mutant strains. We found that colistin, an antibiotic that targets membranes in Gram-negative bacteria, is synergistic with drugs of the echinocandin family against all Candida species tested. The combination of colistin and aminocandin led to faster and increased permeabilization of C. albicans cells than either colistin or aminocandin alone. Echinocandin susceptibility was a prerequisite to be able to observe the synergy. A large-scale screen for genes involved in natural resistance of yeast cells to low doses of the drugs, alone or in combination, identified efficient sphingolipid and chitin biosynthesis as necessary to protect S. cerevisiae and C. albicans cells against the antifungal combination. These results suggest that echinocandin-mediated weakening of the cell wall facilitates colistin targeting of fungal membranes, which in turn reinforces the antifungal activity of echinocandins.
Antifungal sourdough lactic acid bacteria as biopreservation tool in quinoa and rice bread.
Axel, Claudia; Brosnan, Brid; Zannini, Emanuele; Furey, Ambrose; Coffey, Aidan; Arendt, Elke K
2016-12-19
The use of sourdough fermented with specific strains of antifungal lactic acid bacteria can reduce chemical preservatives in bakery products. The main objective of this study was to investigate the production of antifungal carboxylic acids after sourdough fermentation of quinoa and rice flour using the antifungal strains Lactobacillus reuteri R29 and Lactobacillus brevis R2Δ as bioprotective cultures and the non-antifungal L. brevis L1105 as a negative control strain. The impact of the fermentation substrate was evaluated in terms of metabolic activity, acidification pattern and quantity of antifungal carboxylic acids. These in situ produced compounds (n=20) were extracted from the sourdough using a QuEChERS method and detected by a new UHPLC-MS/MS chromatography. Furthermore, the sourdough was applied in situ using durability tests against environmental moulds to investigate the biopreservative potential to prolong the shelf life of bread. Organic acid production and TTA values were lowest in rice sourdough. The sourdough fermentation of the different flour substrates generated a complex and significantly different profile of carboxylic acids. Extracted quinoa sourdough detected the greatest number of carboxylic acids (n=11) at a much higher concentration than what was detected from rice sourdough (n=9). Comparing the lactic acid bacteria strains, L. reuteri R29 fermented sourdoughs contained generally higher concentrations of acetic and lactic acid but also the carboxylic acids. Among them, 3-phenyllactic acid and 2-hydroxyisocaproic acid were present at a significant concentration. This was correlated with the superior protein content of quinoa flour and its high protease activity. With the addition of L. reuteri R29 inoculated sourdough, the shelf life was extended by 2 days for quinoa (+100%) and rice bread (+67%) when compared to the non-acidified controls. The L. brevis R2Δ fermented sourdough bread reached a shelf life of 4 days for quinoa (+100%) and rice (+33%). However, the shelf life was similar to the chemically acidified control indicating that the preservation effect of the carboxylic acids seems to have a minor contribution effect on the antifungal activity in gluten-free breads. Copyright © 2016 Elsevier B.V. All rights reserved.
Zhang, Bo; Wang, Jingnan; Ning, Shuqing; Yuan, Quan; Chen, Xiangning; Zhang, Yanyan; Fan, Junfeng
2018-01-15
This study confirmed the anti-fungal effect of trypsin-treated Bacillus subtilis culture (BC) (tryptic hydrolysate, TH) on mold growth on Kyoho grapes. We examined the anti-fungal activity of TH by identifying TH peptides and performing a computational docking analysis. TH was more potent than untreated BC in suppressing fungal growth on grapes. Specifically, TH maintained grape freshness by inhibiting respiration and rachis browning, maintaining firmness, and preventing weight loss. Thirty-six inhibitory peptides against β-1,3-glucan synthase (GS) were screened from 126 TH peptides identified through proteomic analysis. Among them, 13 peptides bound tightly to GS active pockets with lower binding energies than that of GppNHp. The most potent peptides, LFEIDEELNEK and FATSDLNDLYR, were synthesized, and further experiments showed that these peptides had a highly suppressive effect on GS activity and Aspergillus niger and Penicillium chrysogenum growth. Our results confirm that tryptic treatment is effective for improving the anti-fungal activity of BC. Copyright © 2017 Elsevier Ltd. All rights reserved.
Mahmoud, D.A.; Hassanein, N.M.; Youssef, K.A.; Abou Zeid, M.A.
2011-01-01
This study was conducted to evaluate the effect of aqueous, ethanolic and ethyl acetate extracts from neem leaves on growth of some human pathogens (Aspergillus flavus, Aspergillus fumigatus, Aspergillus niger, Aspergillus terreus, Candida albicans and Microsporum gypseum) in vitro. Different concentrations (5, 10, 15 and 20%) prepared from these extracts inhibited the growth of the test pathogens and the effect gradually increased with concentration. The 20% ethyl acetate extract gave the strongest inhibition compared with the activity obtained by the same concentration of the other extracts. High Performance Liquid Chromatography (HPLC) analysis of ethyl acetate extract showed the presence of a main component (nimonol) which was purified and chemically confirmed by Nuclear Magnetic Resonance (NMR) spectroscopic analysis. The 20% ethyl acetate extract lost a part of its antifungal effect after pooling out the nimonol and this loss in activity was variable on test pathogens. The purified nimonol as a separate compound did not show any antifungal activity when assayed against all the six fungal pathogens. PMID:24031718
NASA Astrophysics Data System (ADS)
Vankar, Padma S.; Shukla, Dhara
2012-06-01
Preparation of silver nanoparticles have been carried out using aqueous extract of lemon leaves ( Citrus limon) which acts as reducing agent and encapsulating cage for the silver nanoparticles. These silver nanoparticles have been used for durable textile finish on cotton and silk fabrics. Remarkable antifungal activity has been observed in the treated fabrics. The antimicrobial activity of silver nanoparticles derived from lemon leaves showed enhancement in activity due to synergistic effect of silver and essential oil components of lemon leaves. The present investigation shows the extracellular synthesis of highly stable silver nanoparticles by biotransformation using the extract of lemon leaves by controlled reduction of the Ag+ ion to Ag0. Further the silver nanoparticles were used for antifungal treatment of fabrics which was tested by antifungal activity assessment of textile material by Agar diffusion method against Fusarium oxysporum and Alternaria brassicicola. Formation of the metallic nanoparticles was established by FT-IR, UV-Visible spectroscopy, transmission electron microscopy, scanning electron microscopy, atomic force microscopy.
Rahman, Md Hafizur; Shovan, Latifur Rahman; Hjeljord, Linda Gordon; Aam, Berit Bjugan; Eijsink, Vincent G H; Sørlie, Morten; Tronsmo, Arne
2014-01-01
Chitosan is a linear heteropolymer consisting of β 1,4-linked N-acetyl-D-glucosamine (GlcNAc) and D-glucosamine (GlcN). We have compared the antifungal activity of chitosan with DPn (average degree of polymerization) 206 and FA (fraction of acetylation) 0.15 and of enzymatically produced chito-oligosaccharides (CHOS) of different DPn alone and in combination with commercially available synthetic fungicides, against Botrytis cinerea, the causative agent of gray mold in numerous fruit and vegetable crops. CHOS with DPn in the range of 15-40 had the greatest anti-fungal activity. The combination of CHOS and low dosages of synthetic fungicides showed synergistic effects on antifungal activity in both in vitro and in vivo assays. Our study shows that CHOS enhance the activity of commercially available fungicides. Thus, addition of CHOS, available as a nontoxic byproduct of the shellfish industry, may reduce the amounts of fungicides that are needed to control plant diseases.
Rahman, Md. Hafizur; Shovan, Latifur Rahman; Hjeljord, Linda Gordon; Aam, Berit Bjugan; Eijsink, Vincent G. H.; Sørlie, Morten; Tronsmo, Arne
2014-01-01
Chitosan is a linear heteropolymer consisting of β 1,4-linked N-acetyl-D-glucosamine (GlcNAc) and D-glucosamine (GlcN). We have compared the antifungal activity of chitosan with DPn (average degree of polymerization) 206 and F A (fraction of acetylation) 0.15 and of enzymatically produced chito-oligosaccharides (CHOS) of different DPn alone and in combination with commercially available synthetic fungicides, against Botrytis cinerea, the causative agent of gray mold in numerous fruit and vegetable crops. CHOS with DPn in the range of 15–40 had the greatest anti-fungal activity. The combination of CHOS and low dosages of synthetic fungicides showed synergistic effects on antifungal activity in both in vitro and in vivo assays. Our study shows that CHOS enhance the activity of commercially available fungicides. Thus, addition of CHOS, available as a nontoxic byproduct of the shellfish industry, may reduce the amounts of fungicides that are needed to control plant diseases. PMID:24770723
Marengo, Arianna; Piras, Alessandra; Falconieri, Danilo; Porcedda, Silvia; Caboni, Pierluigi; Cortis, Pierluigi; Foddis, Caterina; Loi, Claudia; Gonçalves, Maria José; Salgueiro, Lígia; Maxia, Andrea
2017-09-20
This work reports the results and the comparison concerning the chemical and biomolecular analyses and the antifungal activity of three wild Pistacia species (Anacardiaceae) from Sardinia. Volatile oils from leaves and twigs of Pistacia x saportae, Pistacia lentiscus and Pistacia terebinthus were characterised using GC-FID and GC-MS techniques and tested against some fungal strains. Two DNA nuclear regions (ITS and 5S-rRNA-NTS) were amplified through PCR technique and sequenced. The three **Pistacia have similar chemical profile, although there are some important quantitative differences. The analysis of ITS and 5S-rRNA-NTS regions, reveals a species-specific nucleotide variation among the three **taxa. This method could emerge as a powerful tool for the species identification, especially because the discrimination of these three **taxa appears difficult for non-expert botanists. Concerning the antifungal activity, P. lentiscus and P. x saportae show the highest activity against Cryptococcus neoformans, with a MIC value of 0.32 μL/mL.
NASA Astrophysics Data System (ADS)
Abuo-Melha, Hanaa; Fadda, A. A.
2012-04-01
A series of arylpicolino and/or isonicotinohydrazonyl cyanide 2a-d and 4a-f were prepared by coupling the approprite aryl diazonium salt with 2-cyanomethyl and/or 4-cyanomethyl-pyridine, respectively. These compounds were characterized by analytical and spectral analyses and screened for their antibacterial activity against Gram-positive bacteria, Gram-negative bacteria and antifungal activity. Among the synthesized compounds, N'-(4-phenyldiazenyl)phenylisonicotinohydrazonyl cyanide 4f showed a significant activity toward both Gram-positive, Gram-negative bacteria and exhibit the most potent in vitro antifungal with MIC's (625 μg/mL) against Aspergillus nieger.
Kumar, C Ganesh; Poornachandra, Y
2015-01-01
The recent strategy to improve the efficacy of drugs is to combine them with metal nanoparticles for the control of microbial infections. Considering this fact, we developed a low cost and eco-friendly method for silver nanoparticles synthesis using the cell free supernatant of Delftia sp. strain KCM-006 and their application as antifungal agents and as a drug carrier. Transmission electron microscopy (TEM) and dynamic light scattering (DLS) analysis revealed the formation of spherical and monodispersed silver nanoparticles with an average size of 9.8 nm. The synthesized nanoparticles were found to be photoluminescent, highly stable and crystalline in nature having a zeta potential of -31 mV. The silver nanoparticles exhibited very good antifungal activity against various pathogenic Candida strains. Furthermore, the efficacy of nanoparticles was increased by conjugating the antifungal drug Miconazole to silver nanoparticles which exhibited significant fungicidal activity, inhibition of ergosterol biosynthesis and biofilm inhibition by increasing ROS levels. In addition, the cell viability and immunocytochemistry analysis against different normal cell lines including Chinese hamster ovary cells (CHO), human lung cell line (MRC5) and human vascular endothelial cells (HUVEC) demonstrated that these nanoparticles were non-toxic up to a concentration of 20 μM. In conclusion, these results suggest that the synthesized nanoparticles find application as both antifungal agents and drug delivery vehicles. This is a first report on the preparation of silver nanoparticles using culture supernatant from Delftia sp. and also on the conjugation of Miconazole, an antifungal drug, to the bacterial silver nanoparticles. Copyright © 2014 Elsevier B.V. All rights reserved.
Valan Arasu, M; Jung, M-W; Ilavenil, S; Jane, M; Kim, D-H; Lee, K-D; Park, H-S; Hur, T-Y; Choi, G-J; Lim, Y-C; Al-Dhabi, N A; Choi, K-C
2013-11-01
The purpose of this study was to isolate, identify and characterize an antifungal compound from Lactobacillus plantarum KCC-10 from forage silage with potential beneficial properties. The 16S rRNA gene-based phylogenetic affiliation was determined using bioinformatic tools and identified as Lactobacillus sp. KCC-10 with 100% sequence similarity to L. plantarum. The antifungal substances were extracted with ethyl acetate from spent medium in which Lactobacillus sp. KCC-10 was cultivated. Antifungal activity was assessed using the broth microdilution technique. The compounds were obtained by eluting the crude extract with various concentrations of solvents followed by chromatographic purification. Based on the infrared, (13) C nuclear magnetic resonance (NMR) and (1) H NMR spectral data, the compound was identified as a phenolic-related antibiotic. The minimum inhibitory concentration of the compound against Aspergillus clavatus, A. oryzae, Botrytis elliptica and Scytalidium vaccinii was 2.5 mg ml(-1) and that against A. fumigatus, A. niger and S. fusca was 5.0 mg ml(-1) , respectively. In addition, Lactobacillus sp. KCC-10 was highly sensitive towards oxgall (0.3%) but grew well in the presence of sodium taurocholate (0.3%). An antimicrobial susceptibility pattern was an intrinsic feature of this strain; thus, consumption does not represent a health risk to humans or animals. Novel L. plantarum KCC-10 with antifungal and potential probiotic properties was characterized for use in animal food. This study revealed that L. plantarum KCC-10 exhibited good antifungal activity similar to that of probiotic Lactobacillus strains. © 2013 The Society for Applied Microbiology.
Nose, H; Seki, A; Yaguchi, T; Hosoya, A; Sasaki, T; Hoshiko, S; Shomura, T
2000-01-01
Two novel antifungal antibiotics, PF1163A and B, were isolated from the fermentation broth of Penicillium sp. They were purified from the solid cultures of rice media using ethyl acetate extraction, silica gel and Sephadex LH-20 column chromatographies. PF1163A and B showed potent growth inhibitory activity against pathogenic fungal strain Candida albicans but did not show cytotoxic activity against mammalian cells. These compounds inhibited the ergosterol biosynthesis in Candida albicans.