Amir, Fatima Z.; Pham, V. H.; Mullinax, D. W.; ...
2016-06-07
Ruthenium oxide (RuO 2) nanomaterials exist as excellent materials for electrochemical capacitors. However, they tend to suffer from low mechanical flexibility when cast into films, which makes them unsuitable for flexible device applications. Herein, we report an environmentally friendly and solution-processable approach to fabricate RuO 2-based composite electrodes for flexible solid state supercapacitors. The composites were produced by anchoring RuO 2 nanoparticles onto holey reduced graphene oxide (HRGO) via a sol-gel method, followed by the electrophoretic deposition (EPD) of the material into thin films. The uniform anchoring of ultra-small RuO 2 nanoparticles on the two-dimensional HRGO sheets resulted in HRGO-RuOmore » 2 hybrid sheets with excellent mechanical flexibility of HRGO. EPD induced a layer-by-layer assembly mechanism for the HRGO-RuO 2 hybrid sheets, which resulted in a binder-free, flexible electrode. The obtained HRGO-RuO 2 flexible supercapacitors exhibited excellent electrochemical capacitive performance in a PVA-H 2SO 4 gel electrolyte with a specific capacitance of 418 F g -1 and superior cycling stability of 88.5% capacitance retention after 10,000 cycles. Additionally, these supercapacitors exhibited high rate performance with capacitance retention of 85% by increasing the current density from 1.0 to 20.0 Ag -1, and excellent mechanical flexibility with only 4.9% decay in the performance when bent 180°.« less
Liu, Dong; Du, Pengcheng; Wei, Wenli; Wang, Hongxing; Wang, Qi; Liu, Peng
2018-03-01
Polyaniline coated reduced graphene oxide/carbon nanotube composite fibers ((RGO/CNTs)@PANI, RCP) with skeleton/skin structure are designed as fiber-shaped electrodes for high performance all-solid-state symmetric supercapacitor. The one-dimensional reduced graphene oxide/carbon nanotube composite fibers (RGO/CNTs, RC) are prepared via a simple in-situ reduction of graphene oxide in presence of carbon nanotubes in quartz glass pipes, which exhibit excellent mechanical performance of >193.4 MPa of tensile strength. Then polyaniline is coated onto the RC fibers by electrodepositing technique. The electrochemical properties of the RCP fiber-shaped electrodes are optimized by adjusting the feeding ratio of carbon nanotubes. The optimized one exhibits good electrochemical characteristic such as highest volumetric specific capacitance of 193.1 F cm -3 at 1 A cm -3 , as well as excellent cyclic retention of 92.60% after 2000 cyclic voltammetry cycles. Furthermore, the all-solid-state symmetric supercapacitor, fabricated by using the final composite fiber as both positive and negative electrodes pre-coated with the poly(vinyl alcohol)/H 2 SO 4 gel polyelectrolyte, possesses volumetric capacitance of 36.7 F cm -3 at 0.2 A cm -3 and could light up a red light-emitting diode easily. The excellent mechanical and electrochemical performances make the designed supercapacitor as promising high performance wearable energy storage device. Copyright © 2017 Elsevier Inc. All rights reserved.
NASA Astrophysics Data System (ADS)
Kuang, Jun; Dai, Zhaohe; Liu, Luqi; Yang, Zhou; Jin, Ming; Zhang, Zhong
2015-05-01
Nanostructured carbon material based three-dimensional porous architectures have been increasingly developed for various applications, e.g. sensors, elastomer conductors, and energy storage devices. Maintaining architectures with good mechanical performance, including elasticity, load-bearing capacity, fatigue resistance and mechanical stability, is prerequisite for realizing these functions. Though graphene and CNT offer opportunities as nanoscale building blocks, it still remains a great challenge to achieve good mechanical performance in their microarchitectures because of the need to precisely control the structure at different scales. Herein, we fabricate a hierarchical honeycomb-like structured hybrid foam based on both graphene and CNT. The resulting materials possess excellent properties of combined high specific strength, elasticity and mechanical stability, which cannot be achieved in neat CNT and graphene foams. The improved mechanical properties are attributed to the synergistic-effect-induced highly organized, multi-scaled hierarchical architectures. Moreover, with their excellent electrical conductivity, we demonstrated that the hybrid foams could be used as pressure sensors in the fields related to artificial skin.Nanostructured carbon material based three-dimensional porous architectures have been increasingly developed for various applications, e.g. sensors, elastomer conductors, and energy storage devices. Maintaining architectures with good mechanical performance, including elasticity, load-bearing capacity, fatigue resistance and mechanical stability, is prerequisite for realizing these functions. Though graphene and CNT offer opportunities as nanoscale building blocks, it still remains a great challenge to achieve good mechanical performance in their microarchitectures because of the need to precisely control the structure at different scales. Herein, we fabricate a hierarchical honeycomb-like structured hybrid foam based on both graphene and CNT. The resulting materials possess excellent properties of combined high specific strength, elasticity and mechanical stability, which cannot be achieved in neat CNT and graphene foams. The improved mechanical properties are attributed to the synergistic-effect-induced highly organized, multi-scaled hierarchical architectures. Moreover, with their excellent electrical conductivity, we demonstrated that the hybrid foams could be used as pressure sensors in the fields related to artificial skin. Electronic supplementary information (ESI) available. See DOI: 10.1039/c5nr00841g
Development of biodegradable materials; balancing degradability and performance
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mayer, J.M.; Allen, A.L.; Dell, P.A.
1993-12-31
The development of biodegradable materials suitable for packaging must take into consideration various performance criteria such as mechanical and barrier properties, as well as rate of biodegradability in given environments. Individual or blended biopolymer films were obtained commercially or blown into film in the laboratory and tested for tensile strength, ultimate elongation and oxygen barrier. These films were then subjected to accelerated marine biodegradation tests as well as simulated marine respirometry. Starch/ethylene vinyl alcohol films exhibited good mechanical and excellent oxygen barrier properties, but were very slow to biodegrade in the simulated and excellent oxygen barrier properties, but were verymore » slow to biodegrade in the simulated marine environment. Polyhydroxyalkanoates had good mechanical properties, average oxygen barrier and good biodegradability. Data indicate that performance and biodegradability of packaging can be tailored to needs by combining individual biopolymers in different proportions in blends and laminates.« less
Novel matrix resins for composites for aircraft primary structures, phase 1
NASA Technical Reports Server (NTRS)
Woo, Edmund P.; Puckett, P. M.; Maynard, S.; Bishop, M. T.; Bruza, K. J.; Godschalx, J. P.; Mullins, M. J.
1992-01-01
The objective of the contract is the development of matrix resins with improved processability and properties for composites for primarily aircraft structures. To this end, several resins/systems were identified for subsonic and supersonic applications. For subsonic aircraft, a series of epoxy resins suitable for RTM and powder prepreg was shown to give composites with about 40 ksi compressive strength after impact (CAI) and 200 F/wet mechanical performance. For supersonic applications, a thermoplastic toughened cyanate prepreg system has demonstrated excellent resistance to heat aging at 360 F for 4000 hours, 40 ksi CAI and useful mechanical properties at greater than or equal to 310 F. An AB-BCB-maleimide resin was identified as a leading candidate for the HSCT. Composite panels fabricated by RTM show CAI of approximately 50 ksi, 350 F/wet performance and excellent retention of mechanical properties after aging at 400 F for 4000 hours.
Kuang, Jun; Dai, Zhaohe; Liu, Luqi; Yang, Zhou; Jin, Ming; Zhang, Zhong
2015-01-01
Nanostructured carbon material based three-dimensional porous architectures have been increasingly developed for various applications, e.g. sensors, elastomer conductors, and energy storage devices. Maintaining architectures with good mechanical performance, including elasticity, load-bearing capacity, fatigue resistance and mechanical stability, is prerequisite for realizing these functions. Though graphene and CNT offer opportunities as nanoscale building blocks, it still remains a great challenge to achieve good mechanical performance in their microarchitectures because of the need to precisely control the structure at different scales. Herein, we fabricate a hierarchical honeycomb-like structured hybrid foam based on both graphene and CNT. The resulting materials possess excellent properties of combined high specific strength, elasticity and mechanical stability, which cannot be achieved in neat CNT and graphene foams. The improved mechanical properties are attributed to the synergistic-effect-induced highly organized, multi-scaled hierarchical architectures. Moreover, with their excellent electrical conductivity, we demonstrated that the hybrid foams could be used as pressure sensors in the fields related to artificial skin.
Advances in rubber/halloysite nanotubes nanocomposites.
Jia, Zhixin; Guo, Baochun; Jia, Demin
2014-02-01
The research advances in rubber/halloysite nanotubes (rubber/HNTs) nanocomposites are reviewed. HNTs are environmentally-friendly natural nanomaterials, which could be used to prepare the rubber-based nanocomposites with high performance and low cost. Unmodified HNTs could be adopted to prepare the rubber/HNTs composites with improved mechanical properties, however, the rubber/HNTs nanocomposites with fine morphology and excellent properties were chiefly prepared with various modifiers by in situ mixing method. A series of rubber/HNTs nanocomposites containing several rubbers (SBR, NR, xSBR, NBR, PU) and different modifiers (ENR, RH, Si69, SA, MAA, ILs) have been investigated. The results showed that all the rubber/HNTs nanocomposites achieved strong interfacial interaction via interfacial covalent bonds, hydrogen bonds or multiple interactions, realized significantly improved dispersion of HNTs at nanoscale and exhibited excellent mechanical performances and other properties.
Discouraged by Peer Excellence: Exposure to Exemplary Peer Performance Causes Quitting.
Rogers, Todd; Feller, Avi
2016-03-01
People are exposed to exemplary peer performances often (and sometimes by design in interventions). In two studies, we showed that exposure to exemplary peer performances can undermine motivation and success by causing people to perceive that they cannot attain their peers' high levels of performance. It also causes de-identification with the relevant domain. We examined such discouragement by peer excellence by exploiting the incidental exposure to peers' abilities that occurs when students are asked to assess each other's work. Study 1 was a natural experiment in a massive open online course that employed peer assessment (N = 5,740). Exposure to exemplary peer performances caused a large proportion of students to quit the course. Study 2 explored underlying psychological mechanisms in an online replication (N = 361). Discouragement by peer excellence has theoretical implications for work on social judgment, social comparison, and reference bias and has practical implications for interventions that induce social comparisons. © The Author(s) 2016.
NASA Astrophysics Data System (ADS)
Qu, Baihua; Chen, Yuejiao; Zhang, Ming; Hu, Lingling; Lei, Danni; Lu, Bingan; Li, Qiuhong; Wang, Yanguo; Chen, Libao; Wang, Taihong
2012-11-01
Electrochemical supercapacitors have drawn much attention because of their high power and reasonably high energy densities. However, their performances still do not reach the demand of energy storage. In this paper β-cobalt sulfide nanoparticles were homogeneously distributed on a highly conductive graphene (CS-G) nanocomposite, which was confirmed by transmission electron microscopy analysis, and exhibit excellent electrochemical performances including extremely high values of specific capacitance (~1535 F g-1) at a current density of 2 A g-1, high-power density (11.98 kW kg-1) at a discharge current density of 40 A g-1 and excellent cyclic stability. The excellent electrochemical performances could be attributed to the graphene nanosheets (GNSs) which could maintain the mechanical integrity. Also the CS-G nanocomposite electrodes have high electrical conductivity. These results indicate that high electronic conductivity of graphene nanocomposite materials is crucial to achieving high power and energy density for supercapacitors.
Qu, Baihua; Chen, Yuejiao; Zhang, Ming; Hu, Lingling; Lei, Danni; Lu, Bingan; Li, Qiuhong; Wang, Yanguo; Chen, Libao; Wang, Taihong
2012-12-21
Electrochemical supercapacitors have drawn much attention because of their high power and reasonably high energy densities. However, their performances still do not reach the demand of energy storage. In this paper β-cobalt sulfide nanoparticles were homogeneously distributed on a highly conductive graphene (CS-G) nanocomposite, which was confirmed by transmission electron microscopy analysis, and exhibit excellent electrochemical performances including extremely high values of specific capacitance (~1535 F g(-1)) at a current density of 2 A g(-1), high-power density (11.98 kW kg(-1)) at a discharge current density of 40 A g(-1) and excellent cyclic stability. The excellent electrochemical performances could be attributed to the graphene nanosheets (GNSs) which could maintain the mechanical integrity. Also the CS-G nanocomposite electrodes have high electrical conductivity. These results indicate that high electronic conductivity of graphene nanocomposite materials is crucial to achieving high power and energy density for supercapacitors.
Tough high performance composite matrix
NASA Technical Reports Server (NTRS)
Pater, Ruth H. (Inventor); Johnston, Norman J. (Inventor)
1994-01-01
This invention is a semi-interpentrating polymer network which includes a high performance thermosetting polyimide having a nadic end group acting as a crosslinking site and a high performance linear thermoplastic polyimide. Provided is an improved high temperature matrix resin which is capable of performing in the 200 to 300 C range. This resin has significantly improved toughness and microcracking resistance, excellent processability, mechanical performance, and moisture and solvent resistances.
Guo, Xiaoyang; Liu, Xingyuan; Lin, Fengyuan; Li, Hailing; Fan, Yi; Zhang, Nan
2015-05-27
Transparent electrodes are essential components for optoelectronic devices, such as touch panels, organic light-emitting diodes, and solar cells. Indium tin oxide (ITO) is widely used as transparent electrode in optoelectronic devices. ITO has high transparency and low resistance but contains expensive rare elements, and ITO-based devices have poor mechanical flexibility. Therefore, alternative transparent electrodes with excellent opto-electrical performance and mechanical flexibility will be greatly demanded. Here, organics are introduced into dielectric-metal-dielectric structures to construct the transparent electrodes on rigid and flexible substrates. We show that organic-metal-organic (OMO) electrodes have excellent opto-electrical properties (sheet resistance of below 10 Ω sq(-1) at 85% transmission), mechanical flexibility, thermal and environmental stabilities. The OMO-based polymer photovoltaic cells show performance comparable to that of devices based on ITO electrodes. This OMO multilayer structure can therefore be used to produce transparent electrodes suitable for use in a wide range of optoelectronic devices.
High-Speed 3D Printing of High-Performance Thermosetting Polymers via Two-Stage Curing.
Kuang, Xiao; Zhao, Zeang; Chen, Kaijuan; Fang, Daining; Kang, Guozheng; Qi, Hang Jerry
2018-04-01
Design and direct fabrication of high-performance thermosets and composites via 3D printing are highly desirable in engineering applications. Most 3D printed thermosetting polymers to date suffer from poor mechanical properties and low printing speed. Here, a novel ink for high-speed 3D printing of high-performance epoxy thermosets via a two-stage curing approach is presented. The ink containing photocurable resin and thermally curable epoxy resin is used for the digital light processing (DLP) 3D printing. After printing, the part is thermally cured at elevated temperature to yield an interpenetrating polymer network epoxy composite, whose mechanical properties are comparable to engineering epoxy. The printing speed is accelerated by the continuous liquid interface production assisted DLP 3D printing method, achieving a printing speed as high as 216 mm h -1 . It is also demonstrated that 3D printing structural electronics can be achieved by combining the 3D printed epoxy composites with infilled silver ink in the hollow channels. The new 3D printing method via two-stage curing combines the attributes of outstanding printing speed, high resolution, low volume shrinkage, and excellent mechanical properties, and provides a new avenue to fabricate 3D thermosetting composites with excellent mechanical properties and high efficiency toward high-performance and functional applications. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
A tough high performance composite matrix
NASA Technical Reports Server (NTRS)
Pater, Ruth H. (Inventor); Johnston, Norman J. (Inventor)
1992-01-01
This invention is a semi-interpenetrating polymer network which includes a high performance thermosetting polyimide having a nadic end group acting as a crosslinking site and a high performance linear thermoplastic polyimide. An improved high temperature matrix resin is provided which is capable of performing in the 200 to 300 C range. This resin has significantly improved toughness and microcracking resistance, excellent processability, mechanical performance and moisture and solvent resistances.
Mechanical performance of porous concrete pavement containing nano black rice husk ash
NASA Astrophysics Data System (ADS)
Ibrahim, M. Y. Mohd; Ramadhansyah, P. J.; Rosli, H. Mohd; Ibrahim, M. H. Wan
2018-01-01
This paper presents an experimental research on the performance of nano black rice husk ash on the porous concrete pavement properties. The performance of the porous concrete pavement mixtures was investigated based on their compressive strength, flexural strength, and splitting tensile strength. The results indicated that using nano material from black rice husk ash improved the mechanical properties of porous concrete pavement. In addition, the result of compressive, flexural, and splitting tensile strength was increased with increasing in curing age. Finally, porous concrete pavement with 10% replacement levels exhibited an excellent performance with good strength compared to others.
Mass production of bulk artificial nacre with excellent mechanical properties.
Gao, Huai-Ling; Chen, Si-Ming; Mao, Li-Bo; Song, Zhao-Qiang; Yao, Hong-Bin; Cölfen, Helmut; Luo, Xi-Sheng; Zhang, Fu; Pan, Zhao; Meng, Yu-Feng; Ni, Yong; Yu, Shu-Hong
2017-08-18
Various methods have been exploited to replicate nacre features into artificial structural materials with impressive structural and mechanical similarity. However, it is still very challenging to produce nacre-mimetics in three-dimensional bulk form, especially for further scale-up. Herein, we demonstrate that large-sized, three-dimensional bulk artificial nacre with comprehensive mimicry of the hierarchical structures and the toughening mechanisms of natural nacre can be facilely fabricated via a bottom-up assembly process based on laminating pre-fabricated two-dimensional nacre-mimetic films. By optimizing the hierarchical architecture from molecular level to macroscopic level, the mechanical performance of the artificial nacre is superior to that of natural nacre and many engineering materials. This bottom-up strategy has no size restriction or fundamental barrier for further scale-up, and can be easily extended to other material systems, opening an avenue for mass production of high-performance bulk nacre-mimetic structural materials in an efficient and cost-effective way for practical applications.Artificial materials that replicate the mechanical properties of nacre represent important structural materials, but are difficult to produce in bulk. Here, the authors exploit the bottom-up assembly of 2D nacre-mimetic films to fabricate 3D bulk artificial nacre with an optimized architecture and excellent mechanical properties.
Kang, Yu Jin; Chun, Sang-Jin; Lee, Sung-Suk; Kim, Bo-Yeong; Kim, Jung Hyeun; Chung, Haegeun; Lee, Sun-Young; Kim, Woong
2012-07-24
We demonstrate all-solid-state flexible supercapacitors with high physical flexibility, desirable electrochemical properties, and excellent mechanical integrity, which were realized by rationally exploiting unique properties of bacterial nanocellulose, carbon nanotubes, and ionic liquid based polymer gel electrolytes. This deliberate choice and design of main components led to excellent supercapacitor performance such as high tolerance against bending cycles and high capacitance retention over charge/discharge cycles. More specifically, the performance of our supercapacitors was highly retained through 200 bending cycles to a radius of 3 mm. In addition, the supercapacitors showed excellent cyclability with C(sp) (~20 mF/cm(2)) reduction of only <0.5% over 5000 charge/discharge cycles at the current density of 10 A/g. Our demonstration could be an important basis for material design and development of flexible supercapacitors.
Polymer/boron nitride nanocomposite materials for superior thermal transport performance.
Song, Wei-Li; Wang, Ping; Cao, Li; Anderson, Ankoma; Meziani, Mohammed J; Farr, Andrew J; Sun, Ya-Ping
2012-06-25
Boron nitride nanosheets were dispersed in polymers to give composite films with excellent thermal transport performances approaching the record values found in polymer/graphene nanocomposites. Similarly high performance at lower BN loadings was achieved by aligning the nanosheets in poly(vinyl alcohol) matrix by simple mechanical stretching (see picture). Copyright © 2012 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Functionalized graphene hydrogel-based high-performance supercapacitors.
Xu, Yuxi; Lin, Zhaoyang; Huang, Xiaoqing; Wang, Yang; Huang, Yu; Duan, Xiangfeng
2013-10-25
Functionalized graphene hydrogels are prepared by a one-step low-temperature reduction process and exhibit ultrahigh specific capacitances and excellent cycling stability in the aqueous electrolyte. Flexible solid-state supercapacitors based on functionalized graphene hydrogels are demonstrated with superior capacitive performances and extraordinary mechanical flexibility. © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Wang, Ya-Wen; Liu, Yan-Ling; Xu, Jia-Quan; Qin, Yu; Huang, Wei-Hua
2018-05-15
Stretchable electrochemical (EC) sensors have broad prospects in real-time monitoring of living cells and tissues owing to their excellent elasticity and deformability. However, the redox reaction products and cell secretions are easily adsorbed on the electrode, resulting in sensor fouling and passivation. Herein, we developed a stretchable and photocatalytically renewable EC sensor based on Au nanotubes (NTs) and TiO 2 nanowires (NWs) sandwich nanonetworks. The external Au NTs are used for EC sensing, and internal TiO 2 NWs provide photocatalytic performance to degrade contaminants, which endows the sensor with excellent EC performance, high photocatalytic activity, and favorable mechanical tensile property. This allows highly sensitive recycling monitoring of NO released from endothelial cells and 5-HT released from mast cells under their stretching states in real time, therefore providing a promising tool to unravel elastic and mechanically sensitive cells, tissues, and organs.
Tough photoluminescent hydrogels doped with lanthanide.
Wang, Mei Xiang; Yang, Can Hui; Liu, Zhen Qi; Zhou, Jinxiong; Xu, Feng; Suo, Zhigang; Yang, Jian Hai; Chen, Yong Mei
2015-03-01
Photoluminescent hydrogels have emerged as novel soft materials with potential applications in many fields. Although many photoluminescent hydrogels have been fabricated, their scope of usage has been severely limited by their poor mechanical performance. Here, a facile strategy is reported for preparing lanthanide (Ln)-alginate/polyacrylamide (PAAm) hydrogels with both high toughness and photoluminescence, which has been achieved by doping Ln(3+) ions (Ln = Eu, Tb, Eu/Tb) into alginate/PAAm hydrogel networks, where Ln(3+) ions serve as both photoluminescent emitters and physical cross-linkers. The resulting hydrogels exhibit versatile advantages including excellent mechanical properties (∼ MPa strength, ≈ 20 tensile strains, ≈ 10(4) kJ m(-3) energy dissipation), good photoluminescent performance, tunable emission color, excellent processability, and cytocompatibility. The developed tough photoluminescent hydrogels hold great promises for expanding the usage scope of hydrogels. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
In vitro performance of ceramic coatings obtained by high velocity oxy-fuel spray.
Melero, H; Garcia-Giralt, N; Fernández, J; Díez-Pérez, A; Guilemany, J M
2014-01-01
Hydroxyapatite coatings obtained by plasma-spraying have been used for many years to improve biological performance of bone implants, but several studies have drawn attention to the problems arising from high temperatures and the lack of mechanical properties. In this study, plasma-spraying is substituted by high velocity oxy-fuel (HVOF) spray, with lower temperatures reached, and TiO2 is added in low amounts to hydroxyapatite in order to improve the mechanical properties. Four conditions have been tested to evaluate which are those with better biological properties. Viability and proliferation tests, as well as differentiation assays and morphology observation, are performed with human osteoblast cultures onto the studied coatings. The hydroxyapatite-TiO2 coatings maintain good cell viability and proliferation, especially the cases with higher amorphous phase amount and specific surface, and promote excellent differentiation, with a higher ALP amount for these cases than for polystyrene controls. Observation by SEM corroborates this excellent behaviour. In conclusion, these coatings are a good alternative to those used industrially, and an interesting issue would be improving biological behaviour of the worst cases, which in turn show the better mechanical properties.
Thermally Stable Cellulose Nanocrystals toward High-Performance 2D and 3D Nanostructures.
Jia, Chao; Bian, Huiyang; Gao, Tingting; Jiang, Feng; Kierzewski, Iain Michael; Wang, Yilin; Yao, Yonggang; Chen, Liheng; Shao, Ziqiang; Zhu, J Y; Hu, Liangbing
2017-08-30
Cellulose nanomaterials have attracted much attention in a broad range of fields such as flexible electronics, tissue engineering, and 3D printing for their excellent mechanical strength and intriguing optical properties. Economic, sustainable, and eco-friendly production of cellulose nanomaterials with high thermal stability, however, remains a tremendous challenge. Here versatile cellulose nanocrystals (DM-OA-CNCs) are prepared through fully recyclable oxalic acid (OA) hydrolysis along with disk-milling (DM) pretreatment of bleached kraft eucalyptus pulp. Compared with the commonly used cellulose nanocrystals from sulfuric acid hydrolysis, DM-OA-CNCs show several advantages including large aspect ratio, carboxylated surface, and excellent thermal stability along with high yield. We also successfully demonstrate the fabrication of high-performance films and 3D-printed patterns using DM-OA-CNCs. The high-performance films with high transparency, ultralow haze, and excellent thermal stability have the great potential for applications in flexible electronic devices. The 3D-printed patterns with porous structures can be potentially applied in the field of tissue engineering as scaffolds.
NASA Astrophysics Data System (ADS)
Yao, Lu; Zhou, Chao; Hu, Nantao; Hu, Jing; Hong, Min; Zhang, Liying; Zhang, Yafei
2018-03-01
Mechanically robust graphene papers with both high gravimetric and volumetric capacitances are desired for high-performance energy storages. However, it's still a challenge to tailor the structure of graphene papers in order to meet this requirement. In this work, a kind of chemical-reduction-tailored mechanically-robust reduced graphene oxide/carbon nanotube hybrid paper has been reported for high-performance electrochemical capacitive energy storages. Gallic acid (GA), as an excellent reducing agent, was used to reduce graphene oxide. Through vacuum filtration of gallic acid reduced graphene oxide (GA-rGO) and carboxylic multiwalled carbon nanotubes (MWCNTs) aqueous suspensions, mechanically robust GA-rGO/MWCNTs hybrid papers were obtained. The resultant hybrid papers showed high gravimetric capacitance of 337.6 F g-1 (0.5 A g-1) and volumetric capacitance of 151.2 F cm-3 (0.25 A cm-3). In addition, the assembled symmetric device based on the hybrid papers exhibited high gravimetric capacitance of 291.6 F g-1 (0.5 A g-1) and volumetric capacitance of 136.6 F cm-3 (0.25 A cm-3). Meanwhile, it exhibited excellent rate capability and cycling stability. Above all, this chemical reduction tailoring technique and the resultant high-performance GA-rGO/MWCNTs hybrid papers give an insight for designing high-performance electrodes and hold a great potential in the field of energy storages.
DOT National Transportation Integrated Search
2013-01-01
Concrete pavements represent a large portion of the transportation : infrastructure. While the vast majority of concrete pavements : provide excellent long-term performance, a portion of these : pavements have recently shown premature joint deteriora...
New classification methods on singularity of mechanism
NASA Astrophysics Data System (ADS)
Luo, Jianguo; Han, Jianyou
2010-07-01
Based on the analysis of base and methods of singularity of mechanism, four methods obtained according to the factors of moving states of mechanism and cause of singularity and property of linear complex of singularity and methods in studying singularity, these bases and methods can't reflect the direct property and systematic property and controllable property of the structure of mechanism in macro, thus can't play an excellent role in guiding to evade the configuration before the appearance of singularity. In view of the shortcomings of forementioned four bases and methods, six new methods combined with the structure and exterior phenomena and motion control of mechanism directly and closely, classfication carried out based on the factors of moving base and joint component and executor and branch and acutating source and input parameters, these factors display the systemic property in macro, excellent guiding performance can be expected in singularity evasion and machine design and machine control based on these new bases and methods.
NASA Technical Reports Server (NTRS)
Hergenrother, Paul M. (Inventor); Bryant, Robert G. (Inventor); Jensen, Brian J. (Inventor); Havens, Stephen J. (Inventor)
1997-01-01
Four phenylethynyl amine compounds--3 and 4-aminophenoxy-4'-phenylethynylbenzophenone, and 3 and 4-amino-4'-phenylethynylbenzophenone--were readily prepared and were used to endcap imide oligomers. Phenylethynyl-terminated amide acid oligomers and phenylethynyl-terminated imide oligomers with various molecular weights and compositions were prepared and characterized. These oligomers were cured at 300.degree. C. to 400.degree. C. to provide crosslinked polyimides with excellent solvent resistance, high strength and modulus and good high temperature properties. Adhesive panels, composites, films and moldings from these phenylethynyl terminated imide oligomers gave excellent mechanical performance.
Phenylethynyl terminated imide oligomers
NASA Technical Reports Server (NTRS)
Hergenrother, Paul M. (Inventor); Bryant, Robert G. (Inventor); Jensen, Brian J. (Inventor); Havens, Stephen J. (Inventor)
1994-01-01
Four phenylethynyl amine compounds - 3 and 4-aminophenoxy-4'-phenylethynylbenzophenone, and 3 and 4-amino-4'-phenylethynylbenzophenone - were readily prepared and were used to endcap imide oligomers. Phenylethynyl-terminated amide acid oligomers and phenylethynyl-terminated imide oligomers with various molecular weights and compositions were prepared and characterized. These oligomers were cured at 300 to 400 C to provide crosslinked polyimides with excellent solvent resistance, high strength and modulus, and good high temperature properties. Adhesive panels, composites, films, and moldings from these phenylethynyl terminated imide oligomers gave excellent mechanical performance.
Phenylethynyl terminated imide oligomers
NASA Technical Reports Server (NTRS)
Hergenrother, Paul M. (Inventor); Bryant, Robert G. (Inventor); Jensen, Brian J. (Inventor); Havens, Stephen J. (Inventor)
1995-01-01
Four phenylethynyl amine compounds - 3 and 4-aminophenoxy-4'-phenylethynylbenzophenone, and 3 and 4-amino-4'-phenylethynylbenzophenone - were readily prepared and were used to endcap imide oligomers. Phenylethynyl-terminated amide acid oligomers and phenylethynyl-terminated imide oligomers with various molecular weights and compositions were prepared and characterized. These oligomers were cured at 300 to 400 C to provide crosslinked polyimides with excellent solvent resistance, high strength and modulus, and good high temperature properties. Adhesive panels, composites, films, and moldings from these phenylethynyl terminated imide oligomers gave excellent mechanical performance.
Compact discs as versatile cost-effective substrates for releasable nanopatterned aluminium films
NASA Astrophysics Data System (ADS)
Barrios, Carlos Angulo; Canalejas-Tejero, Víctor
2015-02-01
We demonstrate that standard polycarbonate compact disk surfaces can provide unique adhesion to Al films that is both strong enough to permit Al film nanopatterning and weak enough to allow easy nanopatterned Al film detachment using Scotch tape. Transferred Al nanohole arrays on Scotch tape exhibit excellent optical and plasmonic performance.We demonstrate that standard polycarbonate compact disk surfaces can provide unique adhesion to Al films that is both strong enough to permit Al film nanopatterning and weak enough to allow easy nanopatterned Al film detachment using Scotch tape. Transferred Al nanohole arrays on Scotch tape exhibit excellent optical and plasmonic performance. Electronic supplementary information (ESI) available: 1. Optical simulations (Fig. SI.1); 2. Optical coupling via an Al NHA on the Scotch tape (Fig. SI.2); 3. Electrostatics-based opto-mechanical cantilever (Fig. SI.3). Video 1. Transfer of the Al film nanostructured with a nanohole array from a polycarbonate CD surface onto a Scotch tape; Video 2. Opto-mechanical electrostatics-based sensor: electrical attraction. Video 3. Opto-mechanical electrostatics-based sensor: electrical repulsion. See DOI: 10.1039/c4nr06271j
Sheng, Ouwei; Jin, Chengbin; Luo, Jianmin; Yuan, Huadong; Huang, Hui; Gan, Yongping; Zhang, Jun; Xia, Yang; Liang, Chu; Zhang, Wenkui; Tao, Xinyong
2018-05-09
High ionic conductivity, satisfactory mechanical properties, and wide electrochemical windows are crucial factors for composite electrolytes employed in solid-state lithium-ion batteries (SSLIBs). Based on these considerations, we fabricate Mg 2 B 2 O 5 nanowire enabled poly(ethylene oxide) (PEO)-based solid-state electrolytes (SSEs). Notably, these SSEs have enhanced ionic conductivity and a large electrochemical window. The elevated ionic conductivity is attributed to the improved motion of PEO chains and the increased Li migrating pathway on the interface between Mg 2 B 2 O 5 and PEO-LiTFSI. Moreover, the interaction between Mg 2 B 2 O 5 and -SO 2 - in TFSI - anions could also benefit the improvement of conductivity. In addition, the SSEs containing Mg 2 B 2 O 5 nanowires exhibit improved the mechanical properties and flame-retardant performance, which are all superior to the pristine PEO-LiTFSI electrolyte. When these multifunctional SSEs are paired with LiFePO 4 cathodes and lithium metal anodes, the SSLIBs show better rate performance and higher cyclic capacity of 150, 106, and 50 mAh g -1 under 0.2 C at 50, 40, and 30 °C. This strategy of employing Mg 2 B 2 O 5 nanowires provides the design guidelines of assembling multifunctional SSLIBs with high ionic conductivity, excellent mechanical properties, and flame-retardant performance at the same time.
Flexible Photodetectors Based on 1D Inorganic Nanostructures
Lou, Zheng
2015-01-01
Flexible photodetectors with excellent flexibility, high mechanical stability and good detectivity, have attracted great research interest in recent years. 1D inorganic nanostructures provide a number of opportunities and capabilities for use in flexible photodetectors as they have unique geometry, good transparency, outstanding mechanical flexibility, and excellent electronic/optoelectronic properties. This article offers a comprehensive review of several types of flexible photodetectors based on 1D nanostructures from the past ten years, including flexible ultraviolet, visible, and infrared photodetectors. High‐performance organic‐inorganic hybrid photodetectors, as well as devices with 1D nanowire (NW) arrays, are also reviewed. Finally, new concepts of flexible photodetectors including piezophototronic, stretchable and self‐powered photodetectors are examined to showcase the future research in this exciting field. PMID:27774404
The Mechanical Design Optimization of a High Field HTS Solenoid
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lalitha, SL; Gupta, RC
2015-06-01
This paper describes the conceptual design optimization of a large aperture, high field (24 T at 4 K) solenoid for a 1.7 MJ superconducting magnetic energy storage device. The magnet is designed to be built entirely of second generation (2G) high temperature superconductor tape with excellent electrical and mechanical properties at the cryogenic temperatures. The critical parameters that govern the magnet performance are examined in detail through a multiphysics approach using ANSYS software. The analysis results formed the basis for the performance specification as well as the construction of the magnet.
NASA Technical Reports Server (NTRS)
Pater, Ruth H. (Inventor)
1992-01-01
This invention is a semi-interpenetrating polymer network which includes a high performance thermosetting polyimide having a nadic end group acting as a crosslinking site and a high performance linear thermoplastic polyimide. An improved high temperature matrix resin is provided which is capable of performing at 316 C in air for several hundreds of hours. This resin has significantly improved toughness and microcracking resistance, excellent processability and mechanical performance, and cost effectiveness.
Song, Xinbo; Chen, Yuanfu; Li, Pingjian; Liu, Jingbo; Qi, Fei; Zheng, Binjie; Zhou, Jinhao; Hao, Xin; Zhang, Wanli
2016-07-29
The reported flexible and transparent triboelectric generator (FTTG) can only output ultralow power density (∼2 μW cm(-2)), which has seriously hindered its further development and application. The low power density of FTTG is mainly limited by the transparent material and the electrode structure. Herein, for the first time, a FTTG with a superior power density of 60.7 μW cm(-2) has been fabricated by designing asymmetric electrodes where graphene and indium tin oxide (ITO) act as top and bottom electrodes respectively. Moreover, the performance of FTTG with graphene/ITO (G/I) asymmetric electrodes (GI-FTTG) almost remains unchanged even after 700 cycles, indicating excellent mechanical stability. The excellent performance of GI-FTTG can be attributed to the suitable materials and unique asymmetric electrode structure: the extraordinary flexibility of the graphene top electrode ensures the GI-FTTG excellent mechanical robustness and stability even after longer cycles, and the bottom electrode with very low sheet resistance guarantees lower internal resistance and higher production rate of induction charges to obtain higher output power density. It shows that light-emitting diodes (LED) can be easily powered by GI-FTTG, which demonstrates that the GI-FTTG is very promising for harvesting electrical energy from human activities by using flexible and transparent devices.
Microstructural analysis of W-SiCf/SiC composite
NASA Astrophysics Data System (ADS)
Yoon, Hanki; Oh, Jeongseok; Kim, Gonho; Kim, Hyunsu; Takahashi, Heishichiro; Kohyama, Akira
2015-03-01
Continuous silicon carbide fiber-reinforced silicon carbide (SiCf/SiC) composites are promising structure candidates for future fusion power systems such as gas coolant fast channels, extreme high temperature reactor and fusion reactors, because of their intrinsic properties such as excellent mechanical properties, high thermal conductivity, good thermal-shock resistance as well as excellent physical and chemical stability in various environments under elevated temperature conditions. In this study, bonding of tungsten and SiCf/SiC was produced by hot-press method. Microstructure analyses were performed using SEM and TEM.
Effects of Kaolin Clay on the Mechanical Properties of Asphaltic Concrete AC14
NASA Astrophysics Data System (ADS)
Abdullah, M. E.; Ramadhansyah, P. J.; Rafsanjani, M. H.; Norhidayah, A. H.; Yaacob, H.; Hainin, M. R.; Warid, M. N. Mohd; Satar, M. K. I. Mohd; Aziz, Md Maniruzzaman A.; Mashros, N.
2018-04-01
This study investigated the effect of kaolin clay on the mechanical properties of asphaltic concrete AC14 through Marshall Stability, resilient modulus, and dynamic creep tests. Four replacement levels of kaolin clay (2%, 4%, 6%, and 8% by weight of the binder) were considered. Kaolin clay functioned as an effective filler replacement material to increase the mechanical properties of asphalt mixtures. Asphaltic concrete with 2% to 4% kaolin clay replacement level exhibited excellent performance with good stability, resilient modulus, and creep stiffness.
[Creation of a colostomy using a circular mechanical stapler].
Ruscalla, L; Delemont, M; Ligresti, C; Farinella, M; Rossi, R
1991-09-15
The paper describes the method used to create a preternatural anus in terminal stomas using a mechanical circular stapler (Model EEA-31). Two methods are put forward: Chung's and Burke's methods (the latter of which was used by our department). A mechanical circular stapler has been used several times (13) to perform this type of stoma, with excellent esthetic and functional results, both immediate and long-term. It was only necessary to reoperate in one case in order to suspend the affected colic loop.
Zhang, Xin-Wei; Qiu, Quan-Fa; Jiang, Hong; Zhang, Fu-Li; Liu, Yan-Lin; Amatore, Christian; Huang, Wei-Hua
2017-10-09
Nanoelectrodes allow precise and quantitative measurements of important biological processes at the single living-cell level in real time. Cylindrical nanowire electrodes (NWEs) required for intracellular measurements create a great challenge for achieving excellent electrochemical and mechanical performances. Herein, we present a facile and robust solution to this problem based on a unique SiC-core-shell design to produce cylindrical NWEs with superior mechanical toughness provided by the SiC nano-core and an excellent electrochemical performance provided by the ultrathin carbon shell that can be used as such or platinized. The use of such NWEs for biological applications is illustrated by the first quantitative measurements of ROS/RNS in individual phagolysosomes of living macrophages. As the shell material can be varied to meet any specific detection purpose, this work opens up new opportunities to monitor quantitatively biological functions occurring inside cells and their organelles. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.
Ultra-stretchable and skin-mountable strain sensors using carbon nanotubes-Ecoflex nanocomposites.
Amjadi, Morteza; Yoon, Yong Jin; Park, Inkyu
2015-09-18
Super-stretchable, skin-mountable, and ultra-soft strain sensors are presented by using carbon nanotube percolation network-silicone rubber nanocomposite thin films. The applicability of the strain sensors as epidermal electronic systems, in which mechanical compliance like human skin and high stretchability (ϵ > 100%) are required, has been explored. The sensitivity of the strain sensors can be tuned by the number density of the carbon nanotube percolation network. The strain sensors show excellent hysteresis performance at different strain levels and rates with high linearity and small drift. We found that the carbon nanotube-silicone rubber based strain sensors possess super-stretchability and high reliability for strains as large as 500%. The nanocomposite thin films exhibit high robustness and excellent resistance-strain dependency for over ~1380% mechanical strain. Finally, we performed skin motion detection by mounting the strain sensors on different parts of the body. The maximum induced strain by the bending of the finger, wrist, and elbow was measured to be ~ 42%, 45% and 63%, respectively.
A water-responsive shape memory ionomer with permanent shape reconfiguration ability
NASA Astrophysics Data System (ADS)
Bai, Yongkang; Zhang, Jiwen; Tian, Ran; Chen, Xin
2018-04-01
In this work, a water-responsive shape memory ionomer with high toughness was fabricated by cross-linking hyaluronic acid sodium (HAS) and polyvinyl alcohol (PVA) through coordination interactions. The strong Fe3+-carboxyl (from HAS) coordination interactions served as main physical cross-linking points for the performance of water-responsive shape memory, which associated with the flexibility of PVA chain producing excellent mechanical properties of this ionomer. The optimized ionomer was not only able to recover to its original shape within just 22 s by exposing to water, but exhibited high tensile strength up to 35.4 MPa and 4 times higher tractility than the ionomer without PVA. Moreover, the ionomers can be repeatedly programed to various new permanent shapes on demand due to the reversible physical interactions, which still performed complete and fast geometric recovery under stimuli even after 4 cycles of reprograming with 3 different shapes. The excellent shape memory and strong mechanical behaviors make our ionomers significant and promising smart materials for variety of applications.
High-throughput state-machine replication using software transactional memory.
Zhao, Wenbing; Yang, William; Zhang, Honglei; Yang, Jack; Luo, Xiong; Zhu, Yueqin; Yang, Mary; Luo, Chaomin
2016-11-01
State-machine replication is a common way of constructing general purpose fault tolerance systems. To ensure replica consistency, requests must be executed sequentially according to some total order at all non-faulty replicas. Unfortunately, this could severely limit the system throughput. This issue has been partially addressed by identifying non-conflicting requests based on application semantics and executing these requests concurrently. However, identifying and tracking non-conflicting requests require intimate knowledge of application design and implementation, and a custom fault tolerance solution developed for one application cannot be easily adopted by other applications. Software transactional memory offers a new way of constructing concurrent programs. In this article, we present the mechanisms needed to retrofit existing concurrency control algorithms designed for software transactional memory for state-machine replication. The main benefit for using software transactional memory in state-machine replication is that general purpose concurrency control mechanisms can be designed without deep knowledge of application semantics. As such, new fault tolerance systems based on state-machine replications with excellent throughput can be easily designed and maintained. In this article, we introduce three different concurrency control mechanisms for state-machine replication using software transactional memory, namely, ordered strong strict two-phase locking, conventional timestamp-based multiversion concurrency control, and speculative timestamp-based multiversion concurrency control. Our experiments show that speculative timestamp-based multiversion concurrency control mechanism has the best performance in all types of workload, the conventional timestamp-based multiversion concurrency control offers the worst performance due to high abort rate in the presence of even moderate contention between transactions. The ordered strong strict two-phase locking mechanism offers the simplest solution with excellent performance in low contention workload, and fairly good performance in high contention workload.
High-throughput state-machine replication using software transactional memory
Yang, William; Zhang, Honglei; Yang, Jack; Luo, Xiong; Zhu, Yueqin; Yang, Mary; Luo, Chaomin
2017-01-01
State-machine replication is a common way of constructing general purpose fault tolerance systems. To ensure replica consistency, requests must be executed sequentially according to some total order at all non-faulty replicas. Unfortunately, this could severely limit the system throughput. This issue has been partially addressed by identifying non-conflicting requests based on application semantics and executing these requests concurrently. However, identifying and tracking non-conflicting requests require intimate knowledge of application design and implementation, and a custom fault tolerance solution developed for one application cannot be easily adopted by other applications. Software transactional memory offers a new way of constructing concurrent programs. In this article, we present the mechanisms needed to retrofit existing concurrency control algorithms designed for software transactional memory for state-machine replication. The main benefit for using software transactional memory in state-machine replication is that general purpose concurrency control mechanisms can be designed without deep knowledge of application semantics. As such, new fault tolerance systems based on state-machine replications with excellent throughput can be easily designed and maintained. In this article, we introduce three different concurrency control mechanisms for state-machine replication using software transactional memory, namely, ordered strong strict two-phase locking, conventional timestamp-based multiversion concurrency control, and speculative timestamp-based multiversion concurrency control. Our experiments show that speculative timestamp-based multiversion concurrency control mechanism has the best performance in all types of workload, the conventional timestamp-based multiversion concurrency control offers the worst performance due to high abort rate in the presence of even moderate contention between transactions. The ordered strong strict two-phase locking mechanism offers the simplest solution with excellent performance in low contention workload, and fairly good performance in high contention workload. PMID:29075049
Innovative architectures for dense multi-microprocessor computers
NASA Technical Reports Server (NTRS)
Donaldson, Thomas; Doty, Karl; Engle, Steven W.; Larson, Robert E.; O'Reilly, John G.
1988-01-01
The results of a Phase I Small Business Innovative Research (SBIR) project performed for the NASA Langley Computational Structural Mechanics Group are described. The project resulted in the identification of a family of chordal-ring interconnection architectures with excellent potential to serve as the basis for new multimicroprocessor (MMP) computers. The paper presents examples of how computational algorithms from structural mechanics can be efficiently implemented on the chordal-ring architecture.
Phonon-tunnelling dissipation in mechanical resonators
Cole, Garrett D.; Wilson-Rae, Ignacio; Werbach, Katharina; Vanner, Michael R.; Aspelmeyer, Markus
2011-01-01
Microscale and nanoscale mechanical resonators have recently emerged as ubiquitous devices for use in advanced technological applications, for example, in mobile communications and inertial sensors, and as novel tools for fundamental scientific endeavours. Their performance is in many cases limited by the deleterious effects of mechanical damping. In this study, we report a significant advancement towards understanding and controlling support-induced losses in generic mechanical resonators. We begin by introducing an efficient numerical solver, based on the 'phonon-tunnelling' approach, capable of predicting the design-limited damping of high-quality mechanical resonators. Further, through careful device engineering, we isolate support-induced losses and perform a rigorous experimental test of the strong geometric dependence of this loss mechanism. Our results are in excellent agreement with the theory, demonstrating the predictive power of our approach. In combination with recent progress on complementary dissipation mechanisms, our phonon-tunnelling solver represents a major step towards accurate prediction of the mechanical quality factor. PMID:21407197
The excellent mechanical properties and outstanding water corrosion resistance of Y -Si-Al-O- N glasses indicate that they are attractive candidate...materials for forming into high performance glass fibers. Fibers of glasses containing, respectively,3.2 and 6.6 wt% N were drawn freehand in air, and
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wei, Li; Jiang, Wenchao; Yuan, Yang
We report the synthesis of a free-standing two dimensional carbon nanotube (CNT)-reduced graphene oxide (rGO) hybrid by directly growing CNTs on air-sprayed GO paper. As a result of the good integration between CNTs and thermally reduced GO film during chemical vapor deposition, excellent electrical conductivity (2.6×10{sup 4} S/m), mechanical flexibility (electrical resistance only increases 1.1% after bent to 90° for 500 times) and a relatively large surface area (335.3 m{sup 2}/g) are achieved. Two-electrode supercapacitor assembled using the CNT–rGO hybrids in ionic liquid electrolyte (1-ethyl-3-methylimidazolium tetrafluoroborate) shows excellent stability upon 500 bending cycles with the gravimetric energy density measuring 23.7more » Wh/kg and a power density of 2.0 kW/kg. Furthermore, it shows an impedance phase angle of −64.4° at a frequency of 120 Hz, suggesting good potentials for 120 Hz alternating current line filtering applications. - Graphical abstract: Flexible and highly conductive carbon nanotube-reduced graphene oxide nanohybrid. - Highlights: • Direct growth of carbon nanotubes by chemical vapor deposition on air-sprayed graphene oxide paper. • Two-dimensional carbon nanohybrid with excellent conductivity and mechanical flexibility. • Supercapacitor with excellent performance stability upon mechanical deformation for flexible electronics applications. • Supercapacitor with high impedance phase angle for 120 Hz alternating current line filtering applications.« less
When Do Individuals with Autism Spectrum Disorder Show Superiority in Visual Search?
ERIC Educational Resources Information Center
Shirama, Aya; Kato, Nobumasa; Kashino, Makio
2017-01-01
Although superior visual search skills have been repeatedly reported for individuals with autism spectrum disorder, the underlying mechanisms remain controversial. To specify the locus where individuals with autism spectrum disorder excel in visual search, we compared the performance of autism spectrum disorder adults and healthy controls in…
1989-09-01
Maintenance Evaluation Team ( MEMET ), stated, in his booklet To Aspire For Excellence, the need for emphasis on product- oriented performance (3:17). Existing...JOAGE - Job Order/Facility Age JOSF - Job Order/Facility Square Feet LSD - Least Significant Difference MEMET - Mechanical Equipment Maintenance
High performance mixed bisimide resins and composites based thereon
NASA Technical Reports Server (NTRS)
Parker, J. A.; ations.
1986-01-01
Mixtures of bismaleimide/biscitraconirnide resins produces materials which have better handling, processing or mechanical and thermal properties, particularly in graphite composites, than materials made with the individual resins. The mechanical strength of cured graphite composites prepared from a 1:1 copolymer of such bisimide resins is excellent at both ambient and elevated temperatures. The copolymer mixture provides improved composites which are lighter than metals and replace metals in many aerospace applications.
A new helium gas bearing turboexpander
NASA Astrophysics Data System (ADS)
Xiong, L. Y.; Chen, C. Z.; Liu, L. Q.; Hou, Y.; Wang, J.; Lin, M. F.
2002-05-01
A new helium gas bearing turboexpander of a helium refrigeration system used for space environment simulation experiments is described in this paper. The main design parameters and construction type of some key parts are presented. An improved calculation of thermodynamic efficiency and instability speed of this turboexpander has been obtained by a multiple objects optimization program. Experiments of examining mechanical and thermodynamic performance have been repeatedly conducted in the laboratory by using air at ambient and liquid nitrogen temperature, respectively. In order to predict the helium turboexpander performance, a similarity principles study has been developed. According to the laboratory and on-the-spot experiments, the mechanical and thermodynamic performances of this helium turboexpander are excellent.
Flexible solid-state supercapacitors based on three-dimensional graphene hydrogel films.
Xu, Yuxi; Lin, Zhaoyang; Huang, Xiaoqing; Liu, Yuan; Huang, Yu; Duan, Xiangfeng
2013-05-28
Flexible solid-state supercapacitors are of considerable interest as mobile power supply for future flexible electronics. Graphene or carbon nanotubes based thin films have been used to fabricate flexible solid-state supercapacitors with high gravimetric specific capacitances (80-200 F/g), but usually with a rather low overall or areal specific capacitance (3-50 mF/cm(2)) due to the ultrasmall electrode thickness (typically a few micrometers) and ultralow mass loading, which is not desirable for practical applications. Here we report the exploration of a three-dimensional (3D) graphene hydrogel for the fabrication of high-performance solid-state flexible supercapacitors. With a highly interconnected 3D network structure, graphene hydrogel exhibits exceptional electrical conductivity and mechanical robustness to make it an excellent material for flexible energy storage devices. Our studies demonstrate that flexible supercapacitors with a 120 μm thick graphene hydrogel thin film can exhibit excellent capacitive characteristics, including a high gravimetric specific capacitance of 186 F/g (up to 196 F/g for a 42 μm thick electrode), an unprecedented areal specific capacitance of 372 mF/cm(2) (up to 402 mF/cm(2) for a 185 μm thick electrode), low leakage current (10.6 μA), excellent cycling stability, and extraordinary mechanical flexibility. This study demonstrates the exciting potential of 3D graphene macrostructures for high-performance flexible energy storage devices.
Yang, Chao; Liu, Zhuang; Chen, Chen; Shi, Kun; Zhang, Lei; Ju, Xiao-Jie; Wang, Wei; Xie, Rui; Chu, Liang-Yin
2017-05-10
A novel reduced graphene oxide/poly(2-acrylamido-2-methylpropanesulfonic acid-co-acrylamide) (rGO/poly(AMPS-co-AAm)) nanocomposite hydrogel that possesses excellent electro-response and mechanical properties has been successfully developed. The rGO nanosheets that homogeneously dispersed in the hydrogels could provide prominent conductive platforms for promoting the ion transport inside the hydrogels to generate significant osmotic pressure between the outside and inside of such nanocomposite hydrogels. Thus, the electro-responsive rate and degree of the hydrogel for both deswelling and bending performances become rapid and remarkable. Moreover, the enhanced mechanical properties including both the tensile strength and compressive strength of rGO/poly(AMPS-co-AAm) hydrogels are improved by the hydrogen-bond interactions between the rGO nanosheets and polymer chains, which could dissipate the strain energy in the polymeric networks of the hydrogels. The proposed rGO/poly(AMPS-co-AAm) nanocomposite hydrogels with improved mechanical properties exhibit rapid, significant, and reversible electro-response, which show great potential for developing remotely controlled electro-responsive hydrogel systems, such as smart actuators and soft manipulators.
Chodankar, Nilesh R; Dubal, Deepak P; Lokhande, Abhishek C; Lokhande, Chandrakant D
2015-12-15
The synthesis of polymer gel electrolyte having high ionic conductivity, excellent compatibility with active electrode material, mechanical tractability and long life is crucial to obtain majestic electrochemical performance for flexible solid state supercapacitors (FSS-SCs). Our present work describes effect of different polymers gel electrolytes on electrochemical properties of MnO2 based FSS-SCs device. It is revealed that, MnO2-FSS-SCs with polyvinyl alcohol (PVA)-Lithium perchlorate (LiClO4) gel electrolyte demonstrate excellent electrochemical features such as maximum operating potential window (1.2V), specific capacitance of 112Fg(-1) and energy density of 15Whkg(-1) with extended cycling stability up to 2500CV cycles. Moreover, the calendar life suggests negligible decrease in the electrochemical performance of MnO2-FSS-SCs after 20days. Copyright © 2015 Elsevier Inc. All rights reserved.
Hu, Yang; Dan, Weihua; Xiong, Shanbai; Kang, Yang; Dhinakar, Arvind; Wu, Jun; Gu, Zhipeng
2017-01-01
To improve the mechanical properties and biocompatibility of collagen I matrix, a novel and facile strategy was developed to modify porcine acellular dermal matrix (PADM) via dopamine self-polymerization followed by collagen immobilization to enhance the biological, mechanical and physicochemical properties of PADM. Mechanism study indicated that the polymerization of dopamine onto PADM surface could be regulated by controlling the amount of hydrogen bonds forming between phenol hydroxyl (COH) and nitrogen atom (NCO) within collagen fibers of PADM. The investigations of surface interactions between PDA and PADM illustrated that PDA-PADM system yielded better mechanical properties, thermal stability, surface hydrophilicity and the structural integrity of PADM was maintained after dopamine coating. Furthermore, collagen (COL) was immobilized onto the fresh PDA-PADM to fabricate the collagen-PDA-PADM (COL-PDA-PADM) complexed scaffold. The MTT assay and CLSM observation showed that COL-PDA-PADM had better biocompatibility and higher cellular attachment than pure PADM and COL-PADM without dopamine coating, thus demonstrating the efficacy of PDA as the intermediate layer. Meanwhile, the expression of basic fibroblast growth factor (bFGF) and vascular endothelial growth factor (VEGF) of COL-PDA-PADM were investigated by an in vivo study. The results revealed that COL-PDA-PADM could effectively promote bFGF and VEGF expression, possibly leading to enhancing the dura repairing process. Overall, this work contributed a new insight into the development of a semi-natural tissue engineering scaffold with high biocompatibility and good mechanical properties. Obtaining scaffolds with high biocompatibility and good mechanical properties is still one of the most challenging issues in tissue engineering. To have excellent in vitro and in vivo performance, scaffolds are desired to have similar mechanical and biological properties as the natural extracellular matrix, such as collagen based matrix. Utilizing the surface self-crosslinking and coating strategy, we successfully obtained a novel semi-natural platform with excellent biological and mechanical properties from porcine acellular dermal matrix (PADM), polydopamine and collagen. The results confirmed that this scaffold platform has very excellent cellular performance and very little toxicity/side effects in vivo. Therefore, this semi-natural scaffold may be an appropriate platform for tissue engineering and this strategy would further help to develop more robust scaffolds. Copyright © 2016 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.
Thermally stable cellulose nanocrystals toward high-performance 2D and 3D nanostructures
Chao Jia; Huiyang Bian; Tingting Gao; Feng Jiang; Iain Michael Kierzewski; Yilin Wang; Yonggang Yao; Liheng Chen; Ziqiang Shao; J. Y. Zhu; Liangbing Hu
2017-01-01
Cellulose nanomaterials have attracted much attention in a broad range of fields such as flexible electronics, tissue engineering, and 3D printing for their excellent mechanical strength and intriguing optical properties. Economic, sustainable, and eco-friendly production of cellulose nanomaterials with high thermal stability, however, remains a tremendous challenge....
Mesoporous CLEAs-silica composite microparticles with high activity and enhanced stability
Cui, Jiandong; Jia, Shiru; Liang, Longhao; Zhao, Yamin; Feng, Yuxiao
2015-01-01
A novel enzyme immobilization approach was used to generate mesoporous enzymes-silica composite microparticles by co-entrapping gelatinized starch and cross-linked phenylalanine ammonia lyase (PAL) aggregates (CLEAs) containing gelatinized starch into biomemitic silica and subsequently removing the starch by α-amylase treatment. During the preparation process, the gelatinzed starch served as a pore-forming agent to create pores in CLEAs and biomimetic silica. The resulting mesoporous CLEAs-silica composite microparticles exhibited higher activity and stability than native PAL, conventional CLEAs, and PAL encapsulated in biomimetic silica. Furthermore, the mesoporous CLEAs-silica composite microparticles displayed good reusability due to its suitable size and mechanical properties, and had excellent stability for storage. The superior catalytic performances were attributed to the combinational unique structure from the intra-cross-linking among enzyme aggregates and hard mesoporous silica shell, which not only decreased the enzyme-support negative interaction and mass-transfer limitations, but also improved the mechanical properties and monodispersity. This approach will be highly beneficial for preparing various bioactive mesoporous composites with excellent catalytic performance. PMID:26374188
Flexible Superhydrophobic and Superoleophilic MoS2 Sponge for Highly Efficient Oil-Water Separation.
Gao, Xiaojia; Wang, Xiufeng; Ouyang, Xiaoping; Wen, Cuie
2016-06-02
Removal of oils and organic solvents from water is an important global challenge for energy conservation and environmental protection. Advanced sorbent materials with excellent sorption capacity need to be developed. Here we report on a superhydrophobic and superoleophilic MoS2 nanosheet sponge (SMS) for highly efficient separation and absorption of oils or organic solvents from water. This novel sponge exhibits excellent absorption performance through a combination of superhydrophobicity, high porosity, robust stability in harsh conditions (including flame retardance and inertness to corrosive and different temperature environments) and excellent mechanical properties. The dip-coating strategy proposed for the fabrication of the SMS, which does not require a complicated process or sophisticated equipment, is very straightforward and easy to scale up. This finding shows promise for water remediation and oil recovery.
Alphabus Mechanical Validation Plan and Test Campaign
NASA Astrophysics Data System (ADS)
Calvisi, G.; Bonnet, D.; Belliol, P.; Lodereau, P.; Redoundo, R.
2012-07-01
A joint team of the two leading European satellite companies (Astrium and Thales Alenia Space) worked with the support of ESA and CNES to define a product line able to efficiently address the upper segment of communications satellites : Alphabus Starting in 2009 and up to 2011 the mechanical validation of the Alphabus platform has been obtained thanks to static tests performed on dedicated static model and to environmental test performed on the first satellite based on Alphabus: Alphasat I-XL. The mechanical validation of the Alphabus platform presented an excellent opportunity to improve the validation and qualification process, with respect to static, sine vibrations, acoustic and L/V shock environment, minimizing recurrent cost of manufacturing, integration and testing. A main driver on mechanical testing is that mechanical acceptance testing at satellite level will be performed with empty tanks due to technical constraints (limitation of existing vibration devices) and programmatic advantages (test risk reduction, test schedule minimization). In this paper the impacts that such testing logic have on validation plan are briefly recalled and its actual application for Alphasat PFM mechanical test campaign is detailed.
Zhou, Nan; Chen, Honggang; Xi, Junting; Yao, Denghui; Zhou, Zhi; Tian, Yun; Lu, Xiangyang
2017-05-01
Fresh and dehydrated banana peels were used as biomass feedstock to produce highly effective sorbent biochars through a facile one-step hydrothermal carbonization approach with 20%vol phosphoric acid as the reaction medium. The elemental ratio of oxygen content of the two as-prepared biochars were about 20%, and the FT-IR analysis confirmed the existence of abundant surface functional groups such as hydroxyl and carboxyl which greatly enhanced the adsorption performance. The sorbents showed excellent lead clarification capability of 359mg·g -1 and 193mg·g -1 for dehydrated and fresh banana peels based biochars, respectively. The change of the CO/OCO and the appearance of PbO/PbOC on the surface after adsorption confirmed that the ion exchange might be the dominant mechanism. The dehydration and pulverization pre-treatment and the addition of phosphoric acid can benefit the formation of those functional groups and hydrothermal carbonization can be a promising method to transfer biomass like fruit peels into biochars with excellent adsorption performance. Copyright © 2017 Elsevier Ltd. All rights reserved.
Solar radiation control using nematic curvilinear aligned phase (NCAP) liquid crystal technology
NASA Astrophysics Data System (ADS)
vanKonynenburg, Peter; Marsland, Stephen; McCoy, James
1987-11-01
A new, advanced liquid crystal technology has made economical, large area, electrically-controlled windows a commercial reality. The new technology, Nematic Curvilinear Aligned Phase (NCAP), is based on a polymeric material containing small droplets of nematic liquid crystal which is coated and laminated between transparent electrodes and fabricated into large area field effect devices. NCAP windows feature variable solar transmission and reflection through a voltage-controlled scattering mechanism. Laminated window constructions provide the excellent transmission and visibility of glass in the powered condition. In the unpowered condition, the windows are highly translucent, and provide 1) blocked vision for privacy, security, and obscuration of information, and 2) glare control and solar shading. The stability is excellent during accelerated aging tests. Degradation mechanisms which can limit performance and lifetime are discussed. Maximum long term stability is achieved by product designs that incorporate the appropriate window materials to provide environmental protection.
Mechanism design and optimization of a bionic kangaroo jumping robot
NASA Astrophysics Data System (ADS)
Zhang, Y. H.; Zheng, L.; Ge, W. J.; Zou, Z. H.
2018-03-01
Hopping robots have broad application prospects in the fields of military reconnaissance, field search or life rescue. However, current hopping robots still face the problems of weak jumping ability and load bearing. Inspired by the jumping of kangaroo, we design a Kangaroo hopping robot “Zbot”, which has two degrees of freedom and three joints. The geared five-bar mechanism is used to decouple the knee and ankle joints of the robot. In order to get a bionic performance, the coupling mechanism parameters are optimized. The simulation and experiments show that the robot has an excellent jumping ability and load capacity.
Pu, Wanfen; Jiang, Feng; Chen, Pei; Wei, Bing
2017-08-30
A molecularly dispersed nano-material called POSS-NH 2 -AA was synthesized to construct a hybrid hydrogel with a rapid self-healing ability (stress 8 kPa) and excellent mechanical performance (a strain of 4683% and a stress of 37.8 kPa). The hydrogel also exhibits good cohesiveness to materials, such as plastics, glass and iron. The backbone of the POSS makes the hydrogel much stronger than the hydrogel without POSS, which accounts for the improvement in its properties. This process is facile and useful to construct mechanically strong and self-healable materials.
Hybrid system of unbonded post-tensioned CLT panels and light-frame wood shear walls
T. Ho; T. Dao; S. Aaleti; J. van de Lindt; Douglas Rammer
2016-01-01
Cross-laminated timber (CLT) is a relatively new type of massive timber system that has shown to possess excellent mechanical properties and structural behavior in building construction. When post-tensioned with high-strength tendons, CLT panels perform well under cyclic loadings because of two key characteristics: their rocking behavior and self-centering capacity....
Scribner, Kenneth J.
1985-01-01
Improved, multiphase, high performance, high energy, extrusion cast explosive compositions, comprising, a crystalline explosive material; an energetic liquid plasticizer; a urethane prepolymer, comprising a blend of polyvinyl formal, and polycaprolactone; a polyfunctional isocyanate; and a catalyst are disclosed. These new explosive compositions exhibit higher explosive content, a smooth detonation front, excellent stability over long periods of storage, and lower sensitivity to mechanical stimulants.
Freestanding polyaniline nanorods grown on graphene for highly capacitive energy storage
NASA Astrophysics Data System (ADS)
Li, Zijiong; Qin, Zhen; Yang, Baocheng; Guo, Jian; Wang, Haiyan; Zhang, Weiyang; Lv, Xiaowei; Stack, Alison
2015-02-01
Freestanding polyaniline (PANI) nanorods grown in situ on microwave-expanded graphene oxide (MEGO) sheets were prepared through a facile solution method. The morphological characterization indicates that large quantity of free-standing PANI nanorods with average diameter of 50 nm were uniformly deposited onto the double sides of the MEGO nanosheets to form a sandwich structure. The hybrid of PANI/MEGO (GPANI) exhibit high specific surface area and high electrical conductivity, compared with pristine PANI nanorods. When evaluated as electrodes for supercapacitors, the GPANI demonstrate high specific capacitance of 628 F g-1 at a current density of 1.1 A g-1, high-rate performance, and excellent cycle stability compared to individual component. Such excellent electrochemical performance should be attributed to the combined double-layer capacitance and pseudo -capacitance mechanisms from the MEGO sheets and PANI nanorods.
Magnetoresistive sensors based on the elasticity of domain walls.
Zhang, Xueying; Vernier, Nicolas; Cao, Zhiqiang; Leng, Qunwen; Cao, Anni; Ravelosona, Dafine; Zhao, Weisheng
2018-06-19
Magnetic sensors based on the magnetoresistance effects have a promising application prospect due to their excellent sensitivity and advantages in terms of the integration. However, competition between higher sensitivity and larger measuring range remains a problem. Here, we propose a novel mechanism for the design of magnetoresistive sensors: probing the perpendicular field by detecting the expansion of the elastic magnetic Domain Wall (DW) in the free layer of a spin valve or a magnetic tunnel junction. Performances of devices based on this mechanism, such as the sensitivity and the measuring range can be tuned by manipulating the geometry of the device, without changing the intrinsic properties of the material, thus promising a higher integration level and a better performance. The mechanism is theoretically explained based on the experimental results. Two examples are proposed and their functionality and performances are verified via micromagnetic simulation. © 2018 IOP Publishing Ltd.
Room temperature solvent-free reduction of SiCl4 to nano-Si for high-performance Li-ion batteries.
Liu, Zhiliang; Chang, Xinghua; Sun, Bingxue; Yang, Sungjin; Zheng, Jie; Li, Xingguo
2017-06-06
SiCl 4 can be directly reduced to nano-Si with commercial Na metal under solvent-free conditions by mechanical milling. Crystalline nano-Si with an average size of 25 nm and quite uniform size distribution can be obtained, which shows excellent lithium storage performance, for a high reversible capacity of 1600 mA h g -1 after 500 cycles at 2.1 A g -1 .
Ren, Xiuyan; Huang, Chang; Duan, Lijie; Liu, Baijun; Bu, Lvjun; Guan, Shuang; Hou, Jiliang; Zhang, Huixuan; Gao, Guanghui
2017-05-14
Toughness, strechability and compressibility for hydrogels were ordinarily balanced for their use as mechanically responsive materials. For example, macromolecular microsphere composite hydrogels with chemical crosslinking exhibited excellent compression strength and strechability, but poor tensile stress. Here, a novel strategy for the preparation of a super-tough, ultra-stretchable and strongly compressive hydrogel was proposed by introducing core-shell latex particles (LPs) as crosslinking centers for inducing efficient aggregation of hydrophobic chains. The core-shell LPs always maintained a spherical shape due to the presence of a hard core even by an external force and the soft shell could interact with hydrophobic chains due to hydrophobic interactions. As a result, the hydrogels reinforced by core-shell LPs exhibited not only a high tensile strength of 1.8 MPa and dramatic elongation of over 20 times, but also an excellent compressive performance of 13.5 MPa at a strain of 90%. The Mullins effect was verified for the validity of core-shell LP-reinforced hydrogels by inducing aggregation of hydrophobic chains. The novel strategy strives to provide a better avenue for designing and developing a new generation of hydrophobic association tough hydrogels with excellent mechanical properties.
NASA Astrophysics Data System (ADS)
Zhang, Xiaoxing; Li, Yi; Xiao, Song; Tian, Shuangshuang; Deng, Zaitao; Tang, Ju
2017-08-01
C3F7CN has been the focus of the alternative gas research field over the past two years because of its excellent insulation properties and environmental characteristics. Experimental studies on its insulation performance have made many achievements. However, few studies on the formation mechanism of the decomposition components exist. A discussion of the decomposition characteristics of insulating media will provide guidance for scientific experimental research and the work that must be completed before further engineering application. In this study, the decomposition mechanism of C3F7CN in the presence of trace H2O under discharge was calculated based on the density functional theory and transition state theory. The reaction heat, Gibbs free energy, and activation energy of different decomposition pathways were investigated. The ionization parameters and toxicity of C3F7CN and various decomposition products were analyzed from the molecular structure perspective. The formation mechanism of the C3F7CN discharge decomposition components and the influence of trace water were evaluated. This paper confirms that C3F7CN has excellent decomposition characteristics, which provide theoretical support for later experiments and related engineering applications. However, the existence of trace water has a negative impact on C3F7CN’s insulation performance. Thus, strict trace water content standards should be developed to ensure dielectric insulation and the safety of maintenance personnel.
Improving of Mechanical and Shape-Memory Properties in Hyperbranched Epoxy Shape-Memory Polymers
NASA Astrophysics Data System (ADS)
Santiago, David; Fabregat-Sanjuan, Albert; Ferrando, Francesc; De la Flor, Silvia
2016-09-01
A series of shape-memory epoxy polymers were synthesized using an aliphatic amine and two different commercial hyperbranched poly(ethyleneimine)s with different molecular weights as crosslinking agents. Thermal, mechanical, and shape-memory properties in materials modified with different hyperbranched polymers were analyzed and compared in order to establish the effect of the structure and the molecular weight of the hyperbranched polymers used. The presence of hyperbranched polymers led to more heterogeneous networks, and the crosslinking densities of which increase as the hyperbranched polymer content increases. The transition temperatures can be tailored from 56 to 117 °C depending on the molecular weight and content of the hyperbranched polymer. The mechanical properties showed excellent values in all formulations at room temperature and, specially, at T_{{g}}^{{E^' with stress at break as high as 15 MPa and strain at break as high as 60 %. The shape-memory performances revealed recovery ratios around 95 %, fixity ratios around 97 %, and shape-recovery velocities as high as 22 %/min. The results obtained in this study reveal that hyperbranched polymers with different molecular weights can be used to enhance the thermal and mechanical properties of epoxy-based SMPs while keeping excellent shape-memory properties.
NASA Astrophysics Data System (ADS)
Hang, Gui-yun; Yu, Wen-li; Wang, Tao; Wang, Jin-tao; Li, Zhen
2017-08-01
The CL-20/RDX cocrystal models with different molar ratios were established by substitution method and molecular dynamics (MD) simulation method was applied to investigate the influences of molar ratios on mechanical properties, stabilities and detonation performance of cocrystal explosives. The crystal parameters, structures, binding energies, mechanical properties and some detonation parameters of different cocrystal explosives were got and compared. The results illustrate that the molar ratio has a direct influence on properties of cocrystal explosive and each of the cocrystal model holds different mechanical properties, binding energies and detonation parameters. The mechanical properties of CL-20/RDX cocrystal explosive can be effectively improved and the cocrystal model with molar ratio in 1:1 has the best mechanical properties. Besides, it has the highest binding energy, so the stability and compatibility is the best. The detonation parameters show that the cocrystal explosive has better detonation performance than RDX. In a word, the cocrystal explosive with molar ratio in 1:1 has the best mechanical properties, highest binding energy and excellent energy density and detonation performance, it is quite promising and can satisfy the requirements of high energy density compounds (HEDC). This paper could offer some theoretical instructions and novel insights for the CL-20 cocrystal explosive designing.
Holland, Kristin M; Vivolo-Kantor, Alana M; Dela Cruz, Jason; Massetti, Greta M; Mahendra, Reshma
2015-12-01
The Centers for Disease Control and Prevention's Division of Violence Prevention (DVP) funded eight National Academic Centers of Excellence (ACEs) in Youth Violence Prevention from 2005 to 2010 and two Urban Partnership Academic Centers of Excellence (UPACEs) in Youth Violence Prevention from 2006 to 2011. The ACEs and UPACEs constitute DVP's 2005-2011 ACE Program. ACE Program goals include partnering with communities to promote youth violence (YV) prevention and fostering connections between research and community practice. This article describes a qualitative evaluation of the 2005-2011 ACE Program using an innovative approach for collecting and analyzing data from multiple large research centers via a web-based Information System (ACE-IS). The ACE-IS was established as an efficient mechanism to collect and document ACE research and programmatic activities. Performance indicators for the ACE Program were established in an ACE Program logic model. Data on performance indicators were collected through the ACE-IS biannually. Data assessed Centers' ability to develop, implement, and evaluate YV prevention activities. Performance indicator data demonstrate substantial progress on Centers' research in YV risk and protective factors, community partnerships, and other accomplishments. Findings provide important lessons learned, illustrate progress made by the Centers, and point to new directions for YV prevention research and programmatic efforts. Published by Elsevier Ltd.
NASA Astrophysics Data System (ADS)
Askari, Davood
The theoretical objectives and accomplishment of this work are the analytical and numerical investigation of material properties and mechanical behavior of carbon nanotubes (CNTs) and nanotube nanocomposites when they are subjected to various loading conditions. First, the finite element method is employed to investigate numerically the effective Young's modulus and Poisson's ratio of a single-walled CNT. Next, the effects of chirality on the effective Young's modulus and Poisson's ratio are investigated and then variations of their effective coefficient of thermal expansions and effective thermal conductivities are studied for CNTs with different structural configurations. To study the influence of small vacancy defects on mechanical properties of CNTs, finite element analyses are performed and the behavior of CNTs with various structural configurations having different types of vacancy defects is studied. It is frequently reported that nano-materials are excellent candidates as reinforcements in nanocomposites to change or enhance material properties of polymers and their nanocomposites. Second, the inclusion of nano-materials can considerably improve electrical, thermal, and mechanical properties of the bonding agent, i.e., resin. Note that, materials atomic and molecular level do not usually show isotropic behaviour, rather they have orthotropic properties. Therefore, two-phase and three-phase cylindrically orthotropic composite models consisting of different constituents with orthotropic properties are developed and introduced in this work to analytically predict the effective mechanical properties and mechanical behavior of such structures when they are subjected to various external loading conditions. To verify the analytically obtained exact solutions, finite element analyses of identical cylindrical structures are also performed and then results are compared with those obtained analytically, and excellent agreement is achieved. The third part of this dissertation investigates the growth of vertically aligned, long, and high density arrays of CNTs and novel 3-D carbon nanotube nano-forests. A Chemical vapor deposition technique is used to grow radially aligned CNTs on various types of fibrous materials such as silicon carbide, carbon, Kevlar, and glass fibers and clothes that can be used for the fabrication of multifunctional high performing laminated nanocomposite structures. Using the CNTs nano-forest clothes, nanocomposite samples are prepared and tested giving promising results for the improvement of mechanical properties and performance of composites structures.
Graphene-based smart materials
NASA Astrophysics Data System (ADS)
Yu, Xiaowen; Cheng, Huhu; Zhang, Miao; Zhao, Yang; Qu, Liangti; Shi, Gaoquan
2017-09-01
The high specific surface area and the excellent mechanical, electrical, optical and thermal properties of graphene make it an attractive component for high-performance stimuli-responsive or 'smart' materials. Complementary to these inherent properties, functionalization or hybridization can substantially improve the performance of these materials. Typical graphene-based smart materials include mechanically exfoliated perfect graphene, chemical vapour deposited high-quality graphene, chemically modified graphene (for example, graphene oxide and reduced graphene oxide) and their macroscopic assemblies or composites. These materials are sensitive to a range of stimuli, including gas molecules or biomolecules, pH value, mechanical strain, electrical field, and thermal or optical excitation. In this Review, we outline different graphene-based smart materials and their potential applications in actuators, chemical or strain sensors, self-healing materials, photothermal therapy and controlled drug delivery. We also introduce the working mechanisms of graphene-based smart materials and discuss the challenges facing the realization of their practical applications.
Mu, Keguang; Zhang, Dalun; Shao, Ziqiang; Qin, Dujian; Wang, Yalong; Wang, Shuo
2017-10-15
l-Dopa functionalized halloysite nanotubes (HNTs) were prepared by the self-polymerization of l-dopa in the weak alkaline condition. Then different contents of l-dopa coated HNTs (LPDHNTs) were blended into cellulose acetate to prepare enhanced performance ultrafiltration membranes via the phase inversion method. The HNTs and LPDHNTs were characterized by FTIR, XPS, and TEM anysis. And the membranes morphologies, separation performance, antifouling performance, mechanical properties and hydrophilicity were also investigated. It was found that the composite membranes exhibited excellent antifouling performance. The pure water flux of 3.0wt% LPDHNTs/CA membrane increased from 11.4Lm -2 h -1 to 92.9Lm -2 h -1 , while the EA rejection ratio of the membrane was about 91.2%. In addition, the mechanical properties of the resultant membranes were strengthened compared with the CA ultrafiltration membrane. Copyright © 2017 Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Jing, Mengfan; Che, Junjin; Xu, Shuman; Liu, Zhenwei; Fu, Qiang
2018-03-01
In this work, a comparison study was carried out to investigate the efficacy of glass fiber (GF) in reinforcing poly(lactic acid) (PLA) by using traditional silane coupling agents (GF-S) and novel graphene oxide (GF-GO) as surface modifiers. The crystallization behavior of the PLA matrix was investigated by differential scanning calorimetry. The mechanical performances and the thermomechanical properties of the composites were evaluated by uniaxial tensile testing and dynamic mechanical analysis, respectively. For neat GF without any treatment, the poor interfacial adhesion and the sharp shortening of the GF length result in the relatively poor mechanical performances of PLA/GF composites. However, the incorporation of GF-S significantly improves the mechanical strength and keeps relatively good toughness of the composites, while GF-GO exhibits excellent nucleation ability for PLA and could moderately increase the modulus of the composites. The thermomechanical properties of the composites are improved markedly resulting from the crystallinity increase. The different surface modification of glass fiber influences the crystallinity of matrix, the interfacial interaction and the length of fiber, which altogether affect the mechanical performances of the prepared PLA/GF composites.
Jeong, Goojin; Kim, Hansu; Sug Lee, Hyo; Han, Young-Kyu; Hwan Park, Jong; Hwan Jeon, Jae; Song, Juhye; Lee, Keonjoon; Yim, Taeeun; Jae Kim, Ki; Lee, Hyukjae; Kim, Young-Jun; Sohn, Hun-Joon
2015-01-01
Sodium rechargeable batteries can be excellent alternatives to replace lithium rechargeable ones because of the high abundance and low cost of sodium; however, there is a need to further improve the battery performance, cost-effectiveness, and safety for practical use. Here we demonstrate a new type of room-temperature and high-energy density sodium rechargeable battery using an SO2-based inorganic molten complex catholyte, which showed a discharge capacity of 153 mAh g−1 based on the mass of catholyte and carbon electrode with an operating voltage of 3 V, good rate capability and excellent cycle performance over 300 cycles. In particular, non-flammability and intrinsic self-regeneration mechanism of the inorganic liquid electrolyte presented here can accelerate the realization of commercialized Na rechargeable battery system with outstanding reliability. Given that high performance and unique properties of Na–SO2 rechargeable battery, it can be another promising candidate for next generation energy storage system. PMID:26243052
Choi, Hyung-Jin; Choi, Jin-Seok; Park, Byeong-Ju; Eom, Ji-Ho; Heo, So-Young; Jung, Min-Wook; An, Ki-Seok; Yoon, Soon-Gil
2014-01-01
Homogeneously distributed zinc nanoparticles (NPs) on the glass substrate were investigated for the transmittance, mechanical durability, and antibacterial effect. The buffered Ti NPs between Zn NPs and glass substrate were studied for an enhancement of the transmittance and mechanical endurance. The Ti NPs buffered Zn NPs showed a high transmittance of approximately 91.5% (at a wavelength of 550 nm) and a strong antibacterial activity for Staphylococcus aureus and Escherichia coli bacteria. The buffered Ti NPs are attractive for an excellent mechanical endurance of the Zn NPs. The Zn NPs did not require the protection layer to prevent the degradation of the performance for both the antibacterial effect and the transmittance. PMID:25183360
Sun, Guangyao; Zhou, Huaijuan; Cao, Xun; Li, Rong; Tazawa, Masato; Okada, Masahisa; Jin, Ping
2016-03-23
Composite films of VO2-TiO2 were deposited on sapphire (11-20) substrate by cosputtering method. Self-assembled well-ordered multilayer structure with alternating Ti- and V-rich epitaxial thin layer was obtained by thermal annealing via a spinodal decomposition mechanism. The structured thermochromic films demonstrate superior optical modulation upon phase transition, with significantly reduced transition temperature. The results provide a facile and novel approach to fabricate smart structures with excellent performance.
NASA Technical Reports Server (NTRS)
Snyder, G. Jeffrey (Inventor); Pei, Yanzhong (Inventor)
2015-01-01
The present invention teaches an effective mechanism for enhancing thermoelectric performance through additional conductive bands. Using heavily doped p-PbTe materials as an example, a quantitative explanation is disclosed, as to why and how these additional bands affect the figure of merit. A high zT of approaching 2 at high temperatures makes these simple, likely more stable (than nanostructured materials) and Tl-free materials excellent for thermoelectric applications.
Silicon microengineering for accelerometers
NASA Astrophysics Data System (ADS)
Satchell, D. W.
Silicon microengineering enables the excellent mechanical properties of silicon to be combined with electronic ones to produce accelerometers of good performance, small size and low cost. The design and fabrication of two types of analogue accelerometer, using this technique, are described. One employs implanted strain gauges to give a dc output, while the other has a strain-sensitive resonant structure which gives a varying frequency signal.
Scribner, K.J.
1985-01-29
Improved, multiphase, high performance, high energy, extrusion cast explosive compositions, comprising, a crystalline explosive material; an energetic liquid plasticizer; a urethane prepolymer, comprising a blend of polyvinyl formal, and polycaprolactone; a polyfunctional isocyanate; and a catalyst are disclosed. These new explosive compositions exhibit higher explosive content, a smooth detonation front, excellent stability over long periods of storage, and lower sensitivity to mechanical stimulants. 1 fig.
Hypersonic Technology Developments with EU Co-Funded Projects
2010-09-01
metal or even high performance alloys . The hollow sphere technology allows high degrees of porosities, reproducible properties and fair process control...sandwich structure configuration will be investigated. Titanium alloys and Ti-aluminides exhibit excellent mechanical properties for applications where...cooling techniques, new alloys , improved thermodynamic cycles by increased pressure ratios and TIT, etc… As the Olympus 593 engine was based on the
Scribner, K.J.
1985-11-26
Disclosed is an improved, multiphase, high performance, high energy, extrusion cast explosive compositions, comprising, a crystalline explosive material; an energetic liquid plasticizer; a urethane prepolymer, comprising a blend of polyvinyl formal, and polycaprolactone; a polyfunctional isocyanate; and a catalyst. These new explosive compositions exhibit higher explosive content, a smooth detonation front, excellent stability over long periods of storage, and lower sensitivity to mechanical stimulants. 1 fig.
NASA Astrophysics Data System (ADS)
Hu, Meishao; Ni, Jiangpeng; Zhang, Boping; Neelakandan, Sivasubramaniyan; Wang, Lei
2018-06-01
Crosslinking is an effective method to improve the properties of high temperature proton exchange membranes based on polybenzimidazole. However, the compact structure of crosslinked polybenzimidazole hinders the phosphoric acid absorption of the membranes, resulting in a relatively poor fuel cell performance. Recently, we find that branched polymers can absorb more phosphoric acid with a larger free volume, but suffer from deteriorated mechanical strength. In this work, a new method is proposed to obtain excellent over-all properties of high temperature proton exchange membranes. A series of crosslinked polybenzimidazoles containing branching structure as membrane materials are successfully prepared for the first time. Compared with conventional crosslinked membranes, these crosslinked polybenzimidazole membranes containing branching structure exhibit a higher phosphoric acid doping level and proton conductivity, improved durability, lower swelling rate and comparable mechanical strength. In particular, the fuel cell base on the crosslinked and branched membrane with a 10% ratio of crosslinker in non-humidified hydrogen/air at 160 °C achieves a power density of 404 mW cm-2. The results indicate that the combination of crosslinking and branching is an effective approach to improve the properties of polybenzimidazole membrane materials.
Yu, Chenfei; Ma, Peipei; Zhou, Xi; Wang, Anqi; Qian, Tao; Wu, Shishan; Chen, Qiang
2014-10-22
Highly dispersed polypyrrole nanowires are decorated on reduced graphene oxide sheets using a facile in situ synthesis route. The prepared composites exhibit high dispersibility, large effective surface area, and high electric conductivity. All-solid-state flexible supercapacitors are assembled based on the prepared composites, which show excellent electrochemical performances with a specific capacitance of 434.7 F g(-1) at a current density of 1 A g(-1). The as-fabricated supercapacitor also exhibits excellent cycling stability (88.1% capacitance retention after 5000 cycles) and exceptional mechanical flexibility. In addition, outstanding power and energy densities were obtained, demonstrating the significant potential of prepared material for flexible and portable energy storage devices.
NASA Astrophysics Data System (ADS)
An, Yongling; Fei, Huifang; Zeng, Guifang; Ci, Lijie; Xi, Baojuan; Xiong, Shenglin; Feng, Jinkui
2018-02-01
Design and synthesis of capable anode materials that can store the large size K+ is the key of development for potassium-ion batteries. The low-cost and commercial expanded graphite with large particles is a graphite-derived material with good conductivity and enlarged interlayer spaces to boost the potassium ion diffusion coefficient during charge/discharge process. Thus, we achieve excellent anode performance for potassium-ion batteries based on an expanded graphite. It can deliver a capacity of 263 mAh g-1 at the rate of 10 mA g-1 and the reversible capacity remains almost unchanged after 500 cycles at a high rate of 200 mA g-1 with a coulombic efficiency of around 100%. The potassium storage mechanism is investigated by the ex situ XRD technique. This excellent potassium storage performance will make the expanded graphite promising anode candidate for potassium ion batteries.
Organic microchemical performance of solvent resistant polycarbosilane based microreactor.
Yoon, Tae-Ho; Jung, Sang-Hee; Kim, Dong-Pyo
2011-05-01
We report the successful fabrication of preceramic polymer allylhydridopolycarbosilane (AHPCS) derived microchannels with excellent organic solvent resistance and optical transparency via economic imprinting process, followed by UV and post thermal curing process at 160 degrees C for 3 h. The microchemical performance of the fabricated microreactors was evaluated by choosing two model micro chemical reactions under organic solvent conditions; syntheses of 2-aminothiazole in DMF and dimethylpyrazole in THF, and compared with glass-based microreactor having identical dimensions and batch system with analogy. It is clear that AHPCS derived microreactor showed excellent solvent resistance and chemical stability compare with glass derived microreactor made by high cost of photolithography and thermal bonding process. The novel preceramic polymer derived microreactors showed reliable mechanical and chemical stability and conversion yields compare with that of glass derived microreactors, which is very promising for developing an integrated microfluidics by adopting available microstructuring techniques of the polymers.
NASA Astrophysics Data System (ADS)
Guzzomi, Andrew L.; Male, Sally A.; Miller, Karol
2017-05-01
Engineering educators should motivate and support students in developing not only technical competence but also professional competence including commitment to excellence. We developed an authentic assessment to improve students' understanding of the importance of 'perfection' in engineering - whereby 50% good enough will not be acceptable in industry. Subsequently we aimed to motivate them to practise performing at their best when they practice engineering. Students in a third-year mechanical and mechatronic engineering unit completed a team design project designed with authentic assessment features to replicate industry expectations and a novel marking scheme to encourage the pursuit of excellence. We report mixed responses from students. Students' ratings of their levels of effort on this assessment indicate that many perceived a positive influence on their effort. However, students' comments included several that were consistent with students experiencing the assessment as alienating.
NASA Astrophysics Data System (ADS)
Long, Yuting; Xie, Junliang; Li, Hong; Liu, Zirui; Xie, Yahong
2017-12-01
Jellylike cylinder graphene-Mn3O4 composite with highly coupled effect was successfully synthesized by a simple solvothermal process. Without using toxic reducing agent and expensive equipment, this method is environmental compatible and suitable for low cost mass production. High capacitance Mn3O4 nanoparticles are homogeneously anchored on excellent conductivity graphene framework and a growth mechanism is hypothesized. Excellent electron conductivity and unique structure of Mn3O4-graphene composite give rise to various applications such as microwave absorber and electrode material. As a microwave absorber, the composite exhibits lowest reflection loss of -14.2 dB in the frequency range of 2-18 GHz. Good microwave absorption performance is due to the structure of the composite where conductive channels form between nano sized Mn3O4 and high conductivity graphene with defects and dangling bonds. As for electrochemical property, Mn3O4-graphene composite with coupled effect shows excellent performance with highest specific capacitance of 246.7 F g-1 in saturated K2SO4 at a scan rate of 5 mV s-1. Good electrochemical property is also attributed to the structure with high utilization of Mn3O4, fast charge carrier transmission, and excellent electronic conductivity. This composite shows a promising application in absorbing materials and electrodes.
Trajectory control of robot manipulators with closed-kinematic chain mechanism
NASA Technical Reports Server (NTRS)
Nguyen, Charles C.; Pooran, Farhad J.; Premack, Timothy
1987-01-01
The problem of Cartesian trajectory control of a closed-kinematic chain mechanism robot manipulator, recently built at CAIR to study the assembly of NASA hardware for the future Space Station, is considered. The study is performed by both computer simulation and experimentation for tracking of three different paths: a straight line, a sinusoid, and a circle. Linearization and pole placement methods are employed to design controller gains. Results show that the controllers are robust and there are good agreements between simulation and experimentation. The results also show excellent tracking quality and small overshoots.
Unconventional Synthesis of γ-Fe2O3: Excellent Low-Concentration Ethanol Sensing Performance
NASA Astrophysics Data System (ADS)
Naskar, Atanu; Narjinary, Mousumi; Kundu, Susmita
2017-01-01
This study reports on a simple unconventional procedure for synthesis of γ-Fe2O3 nanopowder and its fabrication as a resistive ethanol sensor. γ-Fe2O3 powder having an average particle size of ˜15 nm was prepared by thermal decomposition of iron(III) acetylacetonate. Platinum incorporation (0.5-1.5 wt.%) was also carried out for enhancing sensing performance. The powders were characterized using an x-ray diffractometer, x-ray photoelectron spectroscopy, Brunauer-Emmett-Teller surface area, field area scanning electron microscopy, transmission electron microscopy along with energy dispersion x-ray analyses. Sensor fabricated from pure γ-Fe2O3 exhibited excellent ethanol sensing performance at concentrations down to 1 ppm, having a great demand in medical diagnosis and food-processing industries. The response observed for pure γ-Fe2O3 (˜75% for 1 ppm ethanol) was enhanced ˜10% after 1 wt.% Pt impregnation. Sensors were quite stable and selective towards ethanol vapour detection. A possible mechanism for high sensing performance has been discussed.
Superstretchable, Self-Healing Polymeric Elastomers with Tunable Properties
DOE Office of Scientific and Technical Information (OSTI.GOV)
Cao, Peng-Fei; Li, Bingrui; Hong, Tao
Utilization of self-healing chemistry to develop synthetic polymer materials that can heal themselves with restored mechanical performance and functionality is of great interest. Self-healable polymer elastomers with tunable mechanical properties are especially attractive for a variety of applications. In this paper, a series of urea functionalized poly(dimethyl siloxane)-based elastomers (U-PDMS-Es) are reported with extremely high stretchability, self-healing mechanical properties, and recoverable gas-separation performance. Tailoring the molecular weights of poly(dimethyl siloxane) or weight ratio of elastic cross-linker offers tunable mechanical properties of the obtained U-PDMS-Es, such as ultimate elongation (from 984% to 5600%), Young's modulus, ultimate tensile strength, toughness, and elasticmore » recovery. The U-PDMS-Es can serve as excellent acoustic and vibration damping materials over a broad range of temperature (over 100 °C). The strain-dependent elastic recovery behavior of U-PDMS-Es is also studied. After mechanical damage, the U-PDMS-Es can be healed in 120 min at ambient temperature or in 20 min at 40 °C with completely restored mechanical performance. Lastly, the U-PDMS-Es are also demonstrated to exhibit recoverable gas-separation functionality with retained permeability/selectivity after being damaged.« less
Superstretchable, Self-Healing Polymeric Elastomers with Tunable Properties
Cao, Peng-Fei; Li, Bingrui; Hong, Tao; ...
2018-04-16
Utilization of self-healing chemistry to develop synthetic polymer materials that can heal themselves with restored mechanical performance and functionality is of great interest. Self-healable polymer elastomers with tunable mechanical properties are especially attractive for a variety of applications. In this paper, a series of urea functionalized poly(dimethyl siloxane)-based elastomers (U-PDMS-Es) are reported with extremely high stretchability, self-healing mechanical properties, and recoverable gas-separation performance. Tailoring the molecular weights of poly(dimethyl siloxane) or weight ratio of elastic cross-linker offers tunable mechanical properties of the obtained U-PDMS-Es, such as ultimate elongation (from 984% to 5600%), Young's modulus, ultimate tensile strength, toughness, and elasticmore » recovery. The U-PDMS-Es can serve as excellent acoustic and vibration damping materials over a broad range of temperature (over 100 °C). The strain-dependent elastic recovery behavior of U-PDMS-Es is also studied. After mechanical damage, the U-PDMS-Es can be healed in 120 min at ambient temperature or in 20 min at 40 °C with completely restored mechanical performance. Lastly, the U-PDMS-Es are also demonstrated to exhibit recoverable gas-separation functionality with retained permeability/selectivity after being damaged.« less
Frey, Marion; Widner, Daniel; Segmehl, Jana S; Casdorff, Kirstin; Keplinger, Tobias; Burgert, Ingo
2018-02-07
Today's materials research aims at excellent mechanical performance in combination with advanced functionality. In this regard, great progress has been made in tailoring the materials by assembly processes in bottom-up approaches. In the field of wood-derived materials, nanocellulose research has gained increasing attention, and materials with advanced properties were developed. However, there are still unresolved issues concerning upscaling for large-scale applications. Alternatively, the sophisticated hierarchical scaffold of wood can be utilized in a top-down approach to upscale functionalization, and one can profit at the same time from its renewable nature, CO 2 storing capacity, light weight, and good mechanical performance. Nevertheless, for bulk wood materials, a wider multipurpose industrial use is so far impeded by concerns regarding durability, natural heterogeneity as well as limitations in terms of functionalization, processing, and shaping. Here, we present a novel cellulose bulk material concept based on delignification and densification of wood resulting in a high-performance material. A delignification process using hydrogen peroxide and acetic acid was optimized to delignify the entire bulk wooden blocks and to retain the highly beneficial structural directionality of wood. In a subsequent step, these cellulosic blocks were densified in a process combining compression and lateral shear to gain a very compact cellulosic material with entangled fibers while retaining unidirectional fiber orientation. The cellulose bulk materials obtained by different densification protocols were structurally, chemically, and mechanically characterized revealing superior tensile properties compared to native wood. Furthermore, after delignification, the cellulose bulk material can be easily formed into different shapes, and the delignification facilitates functionalization of the bioscaffold.
NASA Technical Reports Server (NTRS)
Patterson, W. J.
1979-01-01
A trowellable closeout/repair material designated as MTA-2 was developed and evaluated for use on the Solid Rocket Booster. This material is composed of an epoxy-polysulfide binder and is highly filled with phenolic microballoons for density control and ablative performance. Mechanical property testing and thermal testing were performed in a wind tunnel to simulate the combined Solid Rocket Booster trajectory aeroshear and heating environments. The material is characterized by excellent thermal performance and was used extensively on the Space Shuttle STS-1 and STS-2 flight hardware.
Polymer Electrolyte Through Enzyme Catalysis for High Performance Lithium-Ion Batteries
1998-10-16
by block number) FIELD GROUP SUB-GROUP Polymer Electrolyte, Solid State, Enzyme Catalysis, Lithium - Ion Battery , Sol Gel, High Conductivity 19...excellent candidates for lithium - ion battery development. Furthermore, the processes used to achieve the final product yield very good mechanical properties...Objectives This research was initiated to investigate synthesis of improved polymer electrolytes for lithium - ion battery applications. The overall
NASA Astrophysics Data System (ADS)
Panigrahi, Asisa Kumar; Ghosh, Tamal; Kumar, C. Hemanth; Singh, Shiv Govind; Vanjari, Siva Rama Krishna
2018-05-01
Diffusion of atoms across the boundary between two bonding layers is the key for achieving excellent thermocompression Wafer on Wafer bonding. In this paper, we demonstrate a novel mechanism to increase the diffusion across the bonding interface and also shows the CMOS in-line process flow compatible Sub 100 °C Cu-Cu bonding which is devoid of Cu surface treatment prior to bonding. The stress in sputtered Cu thin films was engineered by adjusting the Argon in-let pressure in such a way that one film had a compressive stress while the other film had tensile stress. Due to this stress gradient, a nominal pressure (2 kN) and temperature (75 °C) was enough to achieve a good quality thermocompression bonding having a bond strength of 149 MPa and very low specific contact resistance of 1.5 × 10-8 Ω-cm2. These excellent mechanical and electrical properties are resultant of a high quality Cu-Cu bonding having grain growth between the Cu films across the boundary and extended throughout the bonded region as revealed by Cross-sectional Transmission Electron Microscopy. In addition, reliability assessment of Cu-Cu bonding with stress engineering was demonstrated using multiple current stressing and temperature cycling test, suggests excellent reliable bonding without electrical performance degradation.
NASA Astrophysics Data System (ADS)
Dong, Lina; Zhou, Wenying; Sui, Xuezhen; Wang, Zijun; Cai, Huiwu; Wu, Peng; Zuo, Jing; Liu, Xiangrong
2016-07-01
The modification of epoxy (EP) resin with carboxyl-terminated polybutadiene (CTPB) liquid rubber was carried out in this work. The chemical reaction between the oxirane ring of EP and the carboxyl group of CTPB and kinetic parameters were investigated by Fourier transform infrared and differential scanning calorimetry. The resulting pre-polymers were cured with methyl hexahydrophthalic anhydride. Scanning electron microscopic observations indicate that the micro-sized CTPB particles dispersed uniformly in the EP matrix formed a two-phase morphology, mainly contributing to the improved toughness of the modified network. The best overall mechanical performance was achieved with 20 phr CTPB; above it, a fall in the strength and modulus was observed. The storage modulus and loss declined with the CTPB concentration due to its lower modulus and plasticizing effect from dynamic mechanical analysis measurements. Moreover, due to the weak polarity and excellent electrical insulation of CTPB, the CTPB-modified EP presented higher electrical resistivities and breakdown strength, and low dielectric permittivity and loss compared with neat EP.
Cheng, Shih-Hao; Weng, Tong-Min; Lu, Meng-Lin; Tan, Wei-Chun; Chen, Ju-Ying; Chen, Yang-Fang
2013-01-01
Photodetectors with ultrahigh sensitivity based on the composite made with all carbon-based materials consisting of graphite quantum dots (QDs), and two dimensional graphene crystal have been demonstrated. Under light illumination, remarkably, a photocurrent responsivity up to 4 × 107 AW−1 can be obtained. The underlying mechanism is attributed to the spatial separation of photogenerated electrons and holes due to the charge transfer caused by the appropriate band alignment across the interface between graphite QDs and graphene. Besides, the large absorptivity of graphite QDs and the excellent conductivity of the graphene sheet also play significant roles. Our result therefore demonstrates an outstanding illustration for the integration of the distinct properties of nanostructured carbon materials with different dimensionalities to achieve highly efficient devices. Together with the associated mechanism, it paves a valuable step for the further development of all carbon-based, cheap, and non-toxic optoelectronics devices with excellent performance. PMID:24045846
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zhao, Fei; Li, Hongxuan; Ji, Li
2016-05-15
This paper examined the evolution of microstructure and its effect on the mechanical and tribological properties of ultralow friction Ti-doped diamondlike carbon (DLC) films, by adjusting the CH{sub 4}/Ar ratio under constant radio frequency discharge power and bias. The Raman, high resolution transmission electron microscopy, atomic force microscope and nanoindentation measurements consistently reveal or indicate the formation of curved graphene sheets or fullerenelike nanostructures with increasing CH{sub 4}/Ar ratio. The superior frictional performance (0.008–0.01) of Ti-DLC films can be attributed to the special microstructure related to the development of embedded fullerenelike nanostructures as a result of incorporation of TiO{sub 2}more » clusters. The contributing factors include high hardness and cohesion, excellent toughness, high load-bearing capacity, as well as the ultralow shear resistance transform layer and the excellent antioxidation stability brought by the doped Ti.« less
Jung, Ji Hyung; Kim, Sunghwan; Kim, Hyeonjung; Park, Jongnam; Oh, Joon Hak
2015-10-07
Nano-floating gate memory (NFGM) devices are transistor-type memory devices that use nanostructured materials as charge trap sites. They have recently attracted a great deal of attention due to their excellent performance, capability for multilevel programming, and suitability as platforms for integrated circuits. Herein, novel NFGM devices have been fabricated using semiconducting cobalt ferrite (CoFe2O4) nanoparticles (NPs) as charge trap sites and pentacene as a p-type semiconductor. Monodisperse CoFe2O4 NPs with different diameters have been synthesized by thermal decomposition and embedded in NFGM devices. The particle size effects on the memory performance have been investigated in terms of energy levels and particle-particle interactions. CoFe2O4 NP-based memory devices exhibit a large memory window (≈73.84 V), a high read current on/off ratio (read I(on)/I(off)) of ≈2.98 × 10(3), and excellent data retention. Fast switching behaviors are observed due to the exceptional charge trapping/release capability of CoFe2O4 NPs surrounded by the oleate layer, which acts as an alternative tunneling dielectric layer and simplifies the device fabrication process. Furthermore, the NFGM devices show excellent thermal stability, and flexible memory devices fabricated on plastic substrates exhibit remarkable mechanical and electrical stability. This study demonstrates a viable means of fabricating highly flexible, high-performance organic memory devices. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Nam, Ki Min; Choi, Young Cheol; Jung, Sung Chul; Kim, Yong-Il; Jo, Mi Ru; Park, Se Ho; Kang, Yong-Mook; Han, Young-Kyu; Park, Joon T
2012-01-21
Thermal decomposition of Co(acac)(3) and Cu(acac)(2) in benzylamine leads to the formation of [100] directed Cu-doped h-CoO nanorods, which are very stable in an aqueous solution. The formation mechanism of the [100] directed Cu-doped h-CoO nanorods is fully elucidated by using first-principles calculations, demonstrating that Cu-doping not only changes the growth direction but also enhances the stability of the nanorods significantly. Evaluation of the electrochemical performance of Cu-doped h-CoO nanorods shows high initial Coulombic efficiency and ultrahigh capacity with excellent cycling performance, indicating their suitability as an anode material for next generation lithium-ion batteries.
Park, Juyoung; Hyun, Byung Gwan; An, Byeong Wan; Im, Hyeon-Gyun; Park, Young-Geun; Jang, Junho; Park, Jang-Ung; Bae, Byeong-Soo
2017-06-21
We report an Ag nanofiber-embedded glass-fabric reinforced hybrimer (AgNF-GFRHybrimer) composite film as a reliable and high-performance flexible transparent conducting film. The continuous AgNF network provides superior optoelectronic properties of the composite film by minimizing transmission loss and junction resistance. In addition, the excellent thermal/chemical stability and mechanical durability of the GFRHybrimer matrix provides enhanced mechanical durability and reliability of the final AgNF-GFRHybrimer composite film. To demonstrate the availability of our AgNF-GFRHybrimer composite as a transparent conducting film, we fabricated a flexible organic light-emitting diode (OLED) device on the AgNF-GFRHybrimer film; the OLED showed stable operation during a flexing.
Features of residual stresses in duplex stainless steel butt welds
NASA Astrophysics Data System (ADS)
Um, Tae-Hwan; Lee, Chin-Hyung; Chang, Kyong-Ho; Nguyen Van Do, Vuong
2018-04-01
Duplex stainless steel finds increasing use as an alternative to austenitic stainless steel, particularly where chloride or sulphide stress corrosion cracking is of primary concern, due to the excellent combination of strength and corrosion resistance. During welding, duplex stainless steel does not create the same magnitude or distribution of weld-induced residual stresses as those in welded austenitic stainless steel due to the different physical and mechanical properties between them. In this work, an experimental study on the residual stresses in butt-welded duplex stainless steel is performed utilizing the layering technique to investigate the characteristics of residual stresses in the weldment. Three-dimensional thermos-mechanical-metallurgical finite element analysis is also performed to confirm the residual stress measurements.
Preparation and characterization of novel super-artificial hair fiber based on biomass materials.
Yang, Lijun; Guo, Jing; Zhang, Sen; Gong, Yumei
2017-06-01
A novel super-artificial hair fiber basing on sodium alginate (SA) and Antarctic Krill protein (AKP) was prepared by wet spinning successfully. Such SA/AKP fiber did not only have similar crystalline structure with human hair, but also had super flame resistance and mechanical performance. It should be noted that the whole preparation process was green without any incorporation of non-toxic solution. Moreover, comparing with human hair, the SA/AKP fiber had a lot of unique groove upon the fiber surface, which contributed a lot to excellent hygroscopicity. Meanwhile, the dyeing performance could be improved notably due to incorporation of protein into the matrix. Herein, the SA/AKP fiber with superior mechanical and functional performance had practical value for application in the field of synthetic wig. Copyright © 2017 Elsevier B.V. All rights reserved.
Holland, Kristin M.; Vivolo-Kantor, Alana M.; Cruz, Jason Dela; Massetti, Greta M.; Mahendra, Reshma
2018-01-01
The Centers for Disease Control and Prevention’s Division of Violence Prevention (DVP) funded eight National Academic Centers of Excellence (ACEs) in Youth Violence Prevention from 2005 to 2010 and two Urban Partnership Academic Centers of Excellence (UPACEs) in Youth Violence Prevention from 2006 to 2011. The ACEs and UPACEs constitute DVP’s 2005–2011 ACE Program. ACE Program goals include partnering with communities to promote youth violence (YV) prevention and fostering connections between research and community practice. This article describes a qualitative evaluation of the 2005–2011 ACE Program using an innovative approach for collecting and analyzing data from multiple large research centers via a web-based Information System (ACE-IS). The ACE-IS was established as an efficient mechanism to collect and document ACE research and programmatic activities. Performance indicators for the ACE Program were established in an ACE Program logic model. Data on performance indicators were collected through the ACE-IS biannually. Data assessed Centers’ ability to develop, implement, and evaluate YV prevention activities. Performance indicator data demonstrate substantial progress on Centers’ research in YV risk and protective factors, community partnerships, and other accomplishments. Findings provide important lessons learned, illustrate progress made by the Centers, and point to new directions for YV prevention research and programmatic efforts. PMID:26319174
Sun, Zemin; Lin, Liu; Yuan, Mengwei; Li, Huifeng; Sun, Genban; Ma, Shulan; Yang, Xiaojing
2018-05-25
A simple, highly efficient, and eco-friendly method is prepared to divide bulk boron nitride (BN) into boron nitride nanosheets (BNNSs). Due to the anisotropy of the hexagonal BN expansion coefficient, bulk BN is exfoliated utilizing the rapid and tremendous change in temperature, the extreme gasification of water, and ice thermal expansion pressure under freeze drying. The thickness of most of the BNNSs was less than ∼3 nm with a yield of 12-16 wt%. The as-obtained BNNS/polyacrylamide (PAAm) composite hydrogels exhibited outstanding mechanical properties. The tensile strength is fives times the bulk of the BN/PAAm composite hydrogels and the elongations are more than nine-fold the bulk of the BN/PAAm composite hydrogels. The BNNS/PAAm nanocomposite hydrogels also exhibited excellent elastic recovery, and the hysteresis of the BNNS nanocomposite hydrogels was negligible even after 30 cycles with a maximum tensile strain (ε max ) of 700%. This work provides new insight into the fabrication of BN/polymer nanocomposites utilizing the excellent mechanical properties and transparency of BN. The results confirm that a few layers of BNNSs can also efficiently and directly improve the mechanical properties of composite polymer due to its stronger surface free energy and better wettability.
Layered nanocomposites inspired by the structure and mechanical properties of nacre.
Wang, Jianfeng; Cheng, Qunfeng; Tang, Zhiyong
2012-02-07
Nacre (mother-of-pearl), made of inorganic and organic constituents (95 vol% aragonite calcium carbonate (CaCO(3)) platelets and 5 vol% elastic biopolymers), possesses a unique combination of remarkable strength and toughness, which is compatible for conventional high performance materials. The excellent mechanical properties are related to its hierarchical structure and precisely designed organic-inorganic interface. The rational design of aragonite platelet strength, aspect ratio of aragonite platelets, and interface strength ensures that the strength of nacre is maximized under platelet pull-out failure mode. At the same time, the synergy of strain hardening mechanisms acting over multiple scales results in platelets sliding on one another, and thus maximizes the energy dissipation of viscoplastic biopolymers. The excellent integrated mechanical properties with hierarchical structure have inspired chemists and materials scientists to develop biomimetic strategies for artificial nacre materials. This critical review presents a broad overview of the state-of-the-art work on the preparation of layered organic-inorganic nanocomposites inspired by nacre, in particular, the advantages and disadvantages of various biomimetic strategies. Discussion is focused on the effect of the layered structure, interface, and component loading on strength and toughness of nacre-mimic layered nanocomposites (148 references). This journal is © The Royal Society of Chemistry 2012
NASA Astrophysics Data System (ADS)
Sun, Zemin; Lin, Liu; Yuan, Mengwei; Li, Huifeng; Sun, Genban; Ma, Shulan; Yang, Xiaojing
2018-05-01
A simple, highly efficient, and eco-friendly method is prepared to divide bulk boron nitride (BN) into boron nitride nanosheets (BNNSs). Due to the anisotropy of the hexagonal BN expansion coefficient, bulk BN is exfoliated utilizing the rapid and tremendous change in temperature, the extreme gasification of water, and ice thermal expansion pressure under freeze drying. The thickness of most of the BNNSs was less than ∼3 nm with a yield of 12–16 wt%. The as-obtained BNNS/polyacrylamide (PAAm) composite hydrogels exhibited outstanding mechanical properties. The tensile strength is fives times the bulk of the BN/PAAm composite hydrogels and the elongations are more than nine-fold the bulk of the BN/PAAm composite hydrogels. The BNNS/PAAm nanocomposite hydrogels also exhibited excellent elastic recovery, and the hysteresis of the BNNS nanocomposite hydrogels was negligible even after 30 cycles with a maximum tensile strain (ε max) of 700%. This work provides new insight into the fabrication of BN/polymer nanocomposites utilizing the excellent mechanical properties and transparency of BN. The results confirm that a few layers of BNNSs can also efficiently and directly improve the mechanical properties of composite polymer due to its stronger surface free energy and better wettability.
Liu, Jun; Zhang, Liqun; Cao, Dapeng; Wang, Wenchuan
2009-12-28
Polymer nanocomposites (PNCs) often exhibit excellent mechanical, thermal, electrical and optical properties, because they combine the performances of both polymers and inorganic or organic nanoparticles. Recently, computer modeling and simulation are playing an important role in exploring the reinforcement mechanism of the PNCs and even the design of functional PNCs. This report provides an overview of the progress made in past decades in the investigation of the static, rheological and mechanical properties of polymer nanocomposites studied by computer modeling and simulation. Emphases are placed on exploring the mechanisms at the molecular level for the dispersion of nanoparticles in nanocomposites, the effects of nanoparticles on chain conformation and glass transition temperature (T(g)), as well as viscoelastic and mechanical properties. Finally, some future challenges and opportunities in computer modeling and simulation of PNCs are addressed.
Low-Earth-Orbit (LEO) Life Cycle Evaluation of Nickel-Zinc Batteries
NASA Technical Reports Server (NTRS)
Coates, D.; Ferreira, E.; Nyce, M.; Charkey, A.
1997-01-01
The conclusion of the Low-Earth-Orbit (LEO) life cycle evaluation of nickel-zinc batteries are: that composite nickel electrode provide excellent performance at a reduced weight and lower cost; calcium / zinc electrode minimizes shape change; unioptimized cell designs yield 60 Wh/kg; nickel-zinc delivers 600 cycles at 80% DOD; long cycle life obtainable at low DOD; high rate capability power density; long-term failure mechanism is stack dry; and anomalous overcharge (1120%) greatly affected cell performance but did not induce failure and was recoverable.
Yu, Jianfei; Long, Jiao; Yang, Yuhong; Wu, Weilong; Xue, Peng; Chung, Lung Wa; Dong, Xiu-Qin; Zhang, Xumu
2017-02-03
A series of tridentate ferrocene-based amino-phosphine acid (f-Ampha) ligands have been successfully developed. The f-Ampha ligands are extremely air stable and exhibited excellent performance in the Ir-catalyzed asymmetric hydrogenation of ketones (full conversions, up to >99% ee, and 500 000 TON). DFT calculations were performed to elucidate the reaction mechanism and the importance of the -COOH group. Control experiments also revealed that the -COOH group played a key role in this reaction.
Development of an ultra-thin film comprised of a graphene membrane and carbon nanotube vein support.
Lin, Xiaoyang; Liu, Peng; Wei, Yang; Li, Qunqing; Wang, Jiaping; Wu, Yang; Feng, Chen; Zhang, Lina; Fan, Shoushan; Jiang, Kaili
2013-01-01
Graphene, exhibiting superior mechanical, thermal, optical and electronic properties, has attracted great interest. Considering it being one-atom-thick, and the reduced mechanical strength at grain boundaries, the fabrication of large-area suspended chemical vapour deposition graphene remains a challenge. Here we report the fabrication of an ultra-thin free-standing carbon nanotube/graphene hybrid film, inspired by the vein-membrane structure found in nature. Such a square-centimetre-sized hybrid film can realize the overlaying of large-area single-layer chemical vapour deposition graphene on to a porous vein-like carbon nanotube network. The vein-membrane-like hybrid film, with graphene suspended on the carbon nanotube meshes, possesses excellent mechanical performance, optical transparency and good electrical conductivity. The ultra-thin hybrid film features an electron transparency close to 90%, which makes it an ideal gate electrode in vacuum electronics and a high-performance sample support in transmission electron microscopy.
Biphasic Synergistic Gel Materials with Switchable Mechanics and Self-Healing Capacity.
Zhao, Ziguang; Liu, Yuxia; Zhang, Kangjun; Zhuo, Shuyun; Fang, Ruochen; Zhang, Jianqi; Jiang, Lei; Liu, Mingjie
2017-10-16
A fabrication strategy for biphasic gels is reported, which incorporates high-internal-phase emulsions. Closely packed micro-inclusions within the elastic hydrogel matrix greatly improve the mechanical properties of the materials. The materials exhibit excellent switchable mechanics and shape-memory performance because of the switchable micro- inclusions that are incorporated into the hydrogel matrix. The produced materials demonstrated a self-healing capacity that originates from the noncovalent effect of the biphasic heteronetwork. The aforementioned characteristics suggest that the biphasic gels may serve as ideal composite gel materials with validity in a variety of applications, such as soft actuators, flexible devices, and biological materials. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.
Nanomechanical Behavior of High Gas Barrier Multilayer Thin Films.
Humood, Mohammad; Chowdhury, Shahla; Song, Yixuan; Tzeng, Ping; Grunlan, Jaime C; Polycarpou, Andreas A
2016-05-04
Nanoindentation and nanoscratch experiments were performed on thin multilayer films manufactured using the layer-by-layer (LbL) assembly technique. These films are known to exhibit high gas barrier, but little is known about their durability, which is an important feature for various packaging applications (e.g., food and electronics). Films were prepared from bilayer and quadlayer sequences, with varying thickness and composition. In an effort to evaluate multilayer thin film surface and mechanical properties, and their resistance to failure and wear, a comprehensive range of experiments were conducted: low and high load indentation, low and high load scratch. Some of the thin films were found to have exceptional mechanical behavior and exhibit excellent scratch resistance. Specifically, nanobrick wall structures, comprising montmorillonite (MMT) clay and polyethylenimine (PEI) bilayers, are the most durable coatings. PEI/MMT films exhibit high hardness, large elastic modulus, high elastic recovery, low friction, low scratch depth, and a smooth surface. When combined with the low oxygen permeability and high optical transmission of these thin films, these excellent mechanical properties make them good candidates for hard coating surface-sensitive substrates, where polymers are required to sustain long-term surface aesthetics and quality.
NASA Astrophysics Data System (ADS)
Mohapatra, Sambit Kumar; Maity, Kalipada; Bhuyan, Subrat Kumar; Prasad Satpathy, Mantra
2018-03-01
Thermo mechanical treatments have the ameliorated impacts on the mechanical and tribological properties of powder metallurgy components. In this investigation an aluminium matrix composite (AMC) {Al (92) + Mg (5) + Gr (1) + Ti (2)} has been prepared by following powder metallurgy technique, with double axial compaction and ulterior sintering. Secondary thermo-mechanical treatment i.e. hot extrusion through mathematical contoured cosine profiled die was considered. The die causes minimum velocity relative differences across the extrusion exit cross-section, which provides smooth material flow. Comparative result analysis for the mechanical and tribological characteristics of the specimen before and after extrusion was concentrated. Extrusion engenders significant amount of improvements of the properties those are attributed to excellent bond strength and uniform density distribution due to high compressive stress. Oxidative and delaminated wear mechanisms were found predominating type. To furnish the suitable explanation scanning electron microscopies have been performed for the wear surfaces.
Photochromic Inorganic/Organic Thermoplastic Elastomers.
Zhang, Jiuyang; Li, Jing; Huo, Mengmeng; Li, Naixu; Zhou, Jiancheng; Li, Tuoqi; Jiang, Jing
2017-08-01
Photochromic materials are an important class of "smart materials" and are broadly utilized in technological devices. However, most photochromic materials reported so far are composed of inorganic compounds that are challenging to process and suffer from poor mechanical performance, severely limiting their applications in various markets. In this paper, inorganic photochromic tungsten trioxide (WO 3 ) nanocrystals are conveniently grafted with polymers to hurdle the deficiency in processability and mechanical properties. This new type of photochromic material can be thermally processed into desired geometries like disks and dog-bone specimens. Fully reversible photochromic response under UV light is also achieved for WO 3 -graft polymers, exhibiting tunable response rate, outperforming the pristine WO 3 nanocrystals. Notably, the resulted graft polymers show extraordinary mechanical performance with excellent ductility (≈800% breaking strain) and relatively high breaking strength (≈2 MPa). These discoveries elucidate an effective pathway to design smart inorganic/organic hybrid thermoplastic elastomers endowed with outstanding photochromic and mechanical properties as well as exceptional processability. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Influence of Bi addition on the property of Ag-Bi nano-composite coatings
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wang, Yuxin; Tay, See Leng; Zhou, Xiaowei
Silver (Ag) coatings have been widely used in many industry areas due to their excellent conductivity. However, wider applications of Ag coatings have been hindered by their poor mechanical properties. In this research, to improve the mechanical performance, Ag-Bi nano-composite coatings were prepared by a novel ionic co-discharge method. A systematic study of the microstructure, mechanical properties, electrical conductivity and antibacterial behavior of the resulting coating was performed. The results indicated that after adding an appropriate amount of Bi containing solution into the Ag plating solution, Ag-Bi nanoparticles were in-situ formed and distributed uniformly throughout the coating matrix, resulting inmore » a significant improvement in the mechanical properties. The hardness of Ag-Bi coating was increased by 60% compared to that of the pure Ag coating. The corrosion resistance of Ag-Bi coatings was also enhanced. The Ag-Bi coatings prepared in the current study will find a broader application in electronics, jewelry, aerospace and other industries.« less
Influence of Bi addition on the property of Ag-Bi nano-composite coatings
Wang, Yuxin; Tay, See Leng; Zhou, Xiaowei; ...
2018-03-26
Silver (Ag) coatings have been widely used in many industry areas due to their excellent conductivity. However, wider applications of Ag coatings have been hindered by their poor mechanical properties. In this research, to improve the mechanical performance, Ag-Bi nano-composite coatings were prepared by a novel ionic co-discharge method. A systematic study of the microstructure, mechanical properties, electrical conductivity and antibacterial behavior of the resulting coating was performed. The results indicated that after adding an appropriate amount of Bi containing solution into the Ag plating solution, Ag-Bi nanoparticles were in-situ formed and distributed uniformly throughout the coating matrix, resulting inmore » a significant improvement in the mechanical properties. The hardness of Ag-Bi coating was increased by 60% compared to that of the pure Ag coating. The corrosion resistance of Ag-Bi coatings was also enhanced. The Ag-Bi coatings prepared in the current study will find a broader application in electronics, jewelry, aerospace and other industries.« less
Embroidered electrochemical sensors on gauze for rapid quantification of wound biomarkers.
Liu, Xiyuan; Lillehoj, Peter B
2017-12-15
Electrochemical sensors are an attractive platform for analytical measurements due to their high sensitivity, portability and fast response time. These attributes also make electrochemical sensors well suited for wearable applications which require excellent flexibility and durability. Towards this end, we have developed a robust electrochemical sensor on gauze via a unique embroidery fabrication process for quantitative measurements of wound biomarkers. For proof of principle, this biosensor was used to detect uric acid, a biomarker for wound severity and healing, in simulated wound fluid which exhibits high specificity, good linearly from 0 to 800µM, and excellent reproducibility. Continuous sensing of uric acid was also performed using this biosensor which reveals that it can generate consistent and accurate measurements for up to 7h. Experiments to evaluate the robustness of the embroidered gauze sensor demonstrate that it offers excellent resilience against mechanical stress and deformation, making it a promising wearable platform for assessing and monitoring wound status in situ. Copyright © 2017 Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Xiao, Fei; Yang, Shengxiong; Zhang, Zheye; Liu, Hongfang; Xiao, Junwu; Wan, Lian; Luo, Jun; Wang, Shuai; Liu, Yunqi
2015-03-01
We reported a scalable and modular method to prepare a new type of sandwich-structured graphene-based nanohybrid paper and explore its practical application as high-performance electrode in flexible supercapacitor. The freestanding and flexible graphene paper was firstly fabricated by highly reproducible printing technique and bubbling delamination method, by which the area and thickness of the graphene paper can be freely adjusted in a wide range. The as-prepared graphene paper possesses a collection of unique properties of highly electrical conductivity (340 S cm-1), light weight (1 mg cm-2) and excellent mechanical properties. In order to improve its supercapacitive properties, we have prepared a unique sandwich-structured graphene/polyaniline/graphene paper by in situ electropolymerization of porous polyaniline nanomaterials on graphene paper, followed by wrapping an ultrathin graphene layer on its surface. This unique design strategy not only circumvents the low energy storage capacity resulting from the double-layer capacitor of graphene paper, but also enhances the rate performance and cycling stability of porous polyaniline. The as-obtained all-solid-state symmetric supercapacitor exhibits high energy density, high power density, excellent cycling stability and exceptional mechanical flexibility, demonstrative of its extensive potential applications for flexible energy-related devices and wearable electronics.
Xiao, Fei; Yang, Shengxiong; Zhang, Zheye; Liu, Hongfang; Xiao, Junwu; Wan, Lian; Luo, Jun; Wang, Shuai; Liu, Yunqi
2015-01-01
We reported a scalable and modular method to prepare a new type of sandwich-structured graphene-based nanohybrid paper and explore its practical application as high-performance electrode in flexible supercapacitor. The freestanding and flexible graphene paper was firstly fabricated by highly reproducible printing technique and bubbling delamination method, by which the area and thickness of the graphene paper can be freely adjusted in a wide range. The as-prepared graphene paper possesses a collection of unique properties of highly electrical conductivity (340 S cm−1), light weight (1 mg cm−2) and excellent mechanical properties. In order to improve its supercapacitive properties, we have prepared a unique sandwich-structured graphene/polyaniline/graphene paper by in situ electropolymerization of porous polyaniline nanomaterials on graphene paper, followed by wrapping an ultrathin graphene layer on its surface. This unique design strategy not only circumvents the low energy storage capacity resulting from the double-layer capacitor of graphene paper, but also enhances the rate performance and cycling stability of porous polyaniline. The as-obtained all-solid-state symmetric supercapacitor exhibits high energy density, high power density, excellent cycling stability and exceptional mechanical flexibility, demonstrative of its extensive potential applications for flexible energy-related devices and wearable electronics. PMID:25797022
Xiao, Fei; Yang, Shengxiong; Zhang, Zheye; Liu, Hongfang; Xiao, Junwu; Wan, Lian; Luo, Jun; Wang, Shuai; Liu, Yunqi
2015-03-23
We reported a scalable and modular method to prepare a new type of sandwich-structured graphene-based nanohybrid paper and explore its practical application as high-performance electrode in flexible supercapacitor. The freestanding and flexible graphene paper was firstly fabricated by highly reproducible printing technique and bubbling delamination method, by which the area and thickness of the graphene paper can be freely adjusted in a wide range. The as-prepared graphene paper possesses a collection of unique properties of highly electrical conductivity (340 S cm(-1)), light weight (1 mg cm(-2)) and excellent mechanical properties. In order to improve its supercapacitive properties, we have prepared a unique sandwich-structured graphene/polyaniline/graphene paper by in situ electropolymerization of porous polyaniline nanomaterials on graphene paper, followed by wrapping an ultrathin graphene layer on its surface. This unique design strategy not only circumvents the low energy storage capacity resulting from the double-layer capacitor of graphene paper, but also enhances the rate performance and cycling stability of porous polyaniline. The as-obtained all-solid-state symmetric supercapacitor exhibits high energy density, high power density, excellent cycling stability and exceptional mechanical flexibility, demonstrative of its extensive potential applications for flexible energy-related devices and wearable electronics.
Detectors for Tomorrow's Instruments
NASA Technical Reports Server (NTRS)
Moseley, Harvey
2009-01-01
Cryogenically cooled superconducting detectors have become essential tools for a wide range of measurement applications, ranging from quantum limited heterodyne detection in the millimeter range to direct searches for dark matter with superconducting phonon detectors operating at 20 mK. Superconducting detectors have several fundamental and practical advantages which have resulted in their rapid adoption by experimenters. Their excellent performance arises in part from reductions in noise resulting from their low operating temperatures, but unique superconducting properties provide a wide range of mechanisms for detection. For example, the steep dependence of resistance with temperature on the superconductor/normal transition provides a sensitive thermometer for calorimetric and bolometric applications. Parametric changes in the properties of superconducting resonators provides a mechanism for high sensitivity detection of submillimeter photons. From a practical point of view, the use of superconducting detectors has grown rapidly because many of these devices couple well to SQUID amplifiers, which are easily integrated with the detectors. These SQUID-based amplifiers and multiplexers have matured with the detectors; they are convenient to use, and have excellent noise performance. The first generation of fully integrated large scale superconducting detection systems are now being deployed. I will discuss the prospects for a new generation of instruments designed to take full advantage of the revolution in detector technology.
A hybrid ferroelectric-flash memory cells
NASA Astrophysics Data System (ADS)
Park, Jae Hyo; Byun, Chang Woo; Seok, Ki Hwan; Kim, Hyung Yoon; Chae, Hee Jae; Lee, Sol Kyu; Son, Se Wan; Ahn, Donghwan; Joo, Seung Ki
2014-09-01
A ferroelectric-flash (F-flash) memory cells having a metal-ferroelectric-nitride-oxynitride-silicon structure are demonstrated, and the ferroelectric materials were perovskite-dominated Pb(Zr,Ti)O3 (PZT) crystallized by Pt gate electrode. The PZT thin-film as a blocking layer improves electrical and memorial performance where programming and erasing mechanism are different from the metal-ferroelectric-insulator-semiconductor device or the conventional silicon-oxide-nitride-oxide-silicon device. F-flash cells exhibit not only the excellent electrical transistor performance, having 442.7 cm2 V-1 s-1 of field-effect mobility, 190 mV dec-1 of substhreshold slope, and 8 × 105 on/off drain current ratio, but also a high reliable memory characteristics, having a large memory window (6.5 V), low-operating voltage (0 to -5 V), faster P/E switching speed (50/500 μs), long retention time (>10 years), and excellent fatigue P/E cycle (>105) due to the boosting effect, amplification effect, and energy band distortion of nitride from the large polarization. All these characteristics correspond to the best performances among conventional flash cells reported so far.
A Dynamic Network Model to Explain the Development of Excellent Human Performance
Den Hartigh, Ruud J. R.; Van Dijk, Marijn W. G.; Steenbeek, Henderien W.; Van Geert, Paul L. C.
2016-01-01
Across different domains, from sports to science, some individuals accomplish excellent levels of performance. For over 150 years, researchers have debated the roles of specific nature and nurture components to develop excellence. In this article, we argue that the key to excellence does not reside in specific underlying components, but rather in the ongoing interactions among the components. We propose that excellence emerges out of dynamic networks consisting of idiosyncratic mixtures of interacting components such as genetic endowment, motivation, practice, and coaching. Using computer simulations we demonstrate that the dynamic network model accurately predicts typical properties of excellence reported in the literature, such as the idiosyncratic developmental trajectories leading to excellence and the highly skewed distributions of productivity present in virtually any achievement domain. Based on this novel theoretical perspective on excellent human performance, this article concludes by suggesting policy implications and directions for future research. PMID:27148140
Chen, Tao; Peng, Huisheng; Durstock, Michael; Dai, Liming
2014-01-01
By using highly aligned carbon nanotube (CNT) sheets of excellent optical transmittance and mechanical stretchability as both the current collector and active electrode, high-performance transparent and stretchable all-solid supercapacitors with a good stability were developed. A transmittance up to 75% at the wavelength of 550 nm was achieved for a supercapacitor made from a cross-over assembly of two single-layer CNT sheets. The transparent supercapacitor has a specific capacitance of 7.3 F g−1 and can be biaxially stretched up to 30% strain without any obvious change in electrochemical performance even over hundreds stretching cycles. PMID:24402400
A magnetic fluid seal for rotary blood pumps: Long-term performance in liquid
NASA Astrophysics Data System (ADS)
Mitamura, Yoshinori; Takahashi, Sayaka; Amari, Shuichi; Okamoto, Eiji; Murabayashi, Shun; Nishimura, Ikuya
A magnetic fluid (MF) seal enables mechanical contact-free rotation of the shaft and hence has excellent durability. The performance of a MF seal, however, has been reported to decrease in liquids. We have developed a MF seal that has a 'shield' mechanism and a new MF with a higher magnetization of 47.9 kA/m. The sealing performance of the MF seal installed in a rotary blood pump was studied. The seal was perfect against a pressure of 150 mmHg in a continuous flow of 4.0 L/min for 275 days and against a pressure of 175 mmHg in a continuous flow of 3.9 L/min for 217 days. We have developed a MF seal that works in liquid against pressure mostly used clinically. The magnetic fluid seal is promising as a shaft seal for rotary blood pumps.
Sealing performance of a magnetic fluid seal for rotary blood pumps.
Mitamura, Yoshinori; Takahashi, Sayaka; Kano, Kentaro; Okamoto, Eiji; Murabayashi, Shun; Nishimura, Ikuya; Higuchi, Taka-Aki
2009-09-01
A magnetic fluid (MF) for a rotary blood pump seal enables mechanical contact-free rotation of the shaft and, hence, has excellent durability. The performance of a MF seal, however, has been reported to decrease in liquids. We have developed a MF seal that has a "shield" mechanism and a new MF with a higher magnetization of 47.9 kA/m. The sealing performance of the MF seal installed in a rotary blood pump was studied. Under the condition of continuous flow, the MF seal remained in perfect condition against a pressure of 298 mm Hg (pump flow rate: 3.96 L/min). The seal was also perfect against a pressure of 170 mm Hg in a continuous flow of 3.9 L/min for 275 days. We have developed a MF seal that works in liquid against clinically used pressures. The MF seal is promising as a shaft seal for rotary blood pumps.
Highly ductile UV-shielding polymer composites with boron nitride nanospheres as fillers.
Fu, Yuqiao; Huang, Yan; Meng, Wenjun; Wang, Zifeng; Bando, Yoshio; Golberg, Dmitri; Tang, Chengchun; Zhi, Chunyi
2015-03-20
Polymer composites with enhanced mechanical, thermal or optical performance usually suffer from poor ductility induced by confined mobility of polymer chains. Herein, highly ductile UV-shielding polymer composites are successfully fabricated. Boron nitride (BN) materials, with a wide band gap of around ∼6.0 eV, are used as fillers to achieve the remarkably improved UV-shielding performance of a polymer matrix. In addition, it is found that spherical morphology BN as a filler can keep the excellent ductility of the composites. For a comparison, it is demonstrated that traditional fillers, including conventional BN powders can achieve the similar UV-shielding performance but dramatically decrease the composite ductility. The mechanism behind this phenomenon is believed to be lubricant effects of BN nanospheres for sliding of polymer chains, which is in consistent with the thermal analyses. This study provides a new design to fabricate UV-shielding composite films with well-preserved ductility.
Mobility performance analysis of an innovation lunar rover with diameter-variable wheel
NASA Astrophysics Data System (ADS)
Sun, Gang; Gao, Feng; Sun, Peng; Xu, Guoyan
2007-11-01
To achieve excellent mobility performance, a four-wheel, all-wheel drive lunar rover with diameter-variable wheel was presented, the wheel can be contracted and extended by the motor equipped in the wheel hub, accompanied with wheel diameter varying from 200mm to 390mm. The wheel sinkage and drawbar pull force were predicated with terramechanics formulae and lunar regolith mechanic parameters employed, furthermore, the slope traversability was investigated through quasi-static modeling mechanic analysis, also the obstacle resistance and the maximum negotiable obstacle height for different wheel radius were derived from the equations of static equilibrium of the rover. Analysis results show that for the innovation lunar rover presented, it will bring much better slope traveling stability and obstacle climbing capability than rovers with normal wheels, these will improve the rover mobility performance and stabilize the rover's frame, smooth the motion of sensors.
Afroze, J D; Abden, M J; Islam, M A
2018-05-01
Hydroxyapatite-functionalized multi-walled carbon nanotube (HA-fMWCNT) magnetic nanocomposite was successfully prepared using a novel slurry-compounding method. The prepared HA-fMWCNT nanocomposite with the addition of small amount (0.5 wt%) of fMWCNT exhibited much greater improvement in mechanical properties due to strong interfacial adhesion between acid-treated MWCNTs fillers and HA matrix, thus efficient stress transfer to nanotubes from the matrix. The nanocomposite exhibited excellent haemocompatibility. Fractographic analysis was performed in order to understand the fracture behavior and toughening mechanisms. The fracture mechanisms and micro-deformation were examined by studying the microstructure of arrested crack tips using field emission scanning electron microscopy (FESEM). The origination and formation of micro-cracks are the dominant fracture mechanisms and micro-deformation in the HA-fMWCNTs nanocomposite. The developed new method enables to the fabrication of magnetic HA-fMWCNTs nanocomposite with superior mechanical performance may be potential for application as high load-bearing bone implants in the biomedical field. Copyright © 2018 Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Zhu, Yucan; Ye, Xingke; Tang, Zhonghua; Wan, Zhongquan; Jia, Chunyang
2017-11-01
Recently, graphene films have always attracted attention due to their excellent characteristics in energy storage. In this work, a novel graphene oxide (GO) film with excellent mechanical properties, whose thickness was regulated simply via changing the concentration of the surfactant, was successfully prepared by foam film method. After chemical reduction, the reduced GO (rGO) films have excellent electrical conductivity of ∼172 S cm-1. Moreover, the supercapacitors based on the rGO films exhibit satisfied capacitive performance of ∼56 mF cm-2 at 0.2 mA cm-2 in 6 M KOH aqueous solution. Meanwhile, the flexible all solid state supercapacitors (FSSCs) based on the rGO films also show great volumetric capacitance of ∼2810 mF cm-3 at 12 mA cm-3 (∼1607 mF cm-3 at 613 mA cm-3) with polyvinyl alcohol-KOH gel electrolyte. Besides, after 10000 cycles and continuously bent to 180° for 300 times, the volumetric capacitance of the FSSC remains at 81.4% and 90.4% of its initial capacitance value, respectively. Therefore, the free-standing rGO films prepared via foam film method could be considered as promising electrode materials for high performance flexible supercapacitors.
Development of fully dense and high performance powder metallurgy HSLA steel using HIP method
NASA Astrophysics Data System (ADS)
Liu, Wensheng; Pang, Xinkuan; Ma, Yunzhu; Cai, Qingshan; Zhu, Wentan; Liang, Chaoping
2018-05-01
In order to solve the problem that the mechanical properties of powder metallurgy (P/M) steels are much lower than those of traditional cast steels with the same composition due to their porosity, a high–strength–low–alloy (HSLA) steel with fully dense and excellent mechanical properties was fabricated through hot isostatic pressing (HIP) using gas–atomized powders. The granular structure in the P/M HIPed steel composed of bainitic ferrite and martensite–austenite (M–A) islands is obtained without the need of any rapid cooling. The P/M HIPed steel exhibit a combination of tensile strength and ductility that surpasses that of conventional cast steel and P/M sintered steel, confirming the feasibility of fabricating high performance P/M steel through appropriate microstructural control and manufacture process.
Webcam autofocus mechanism used as a delay line for the characterization of femtosecond pulses.
Castro-Marín, Pablo; Kapellmann-Zafra, Gabriel; Garduño-Mejía, Jesús; Rosete-Aguilar, Martha; Román-Moreno, Carlos J
2015-08-01
In this work, we present an electromagnetic focusing mechanism (EFM), from a commercial webcam, implemented as a delay line of a femtosecond laser pulse characterization system. The characterization system consists on a second order autocorrelator based on a two-photon-absorption detection. The results presented here were performed for two different home-made femtosecond oscillators: Ti:sapph @ 820 nm and highly chirped pulses generated with an Erbium Doped Fiber @ 1550 nm. The EFM applied as a delay line represents an excellent alternative due its performance in terms of stability, resolution, and long scan range up to 3 ps. Due its low power consumption, the device can be connected through the Universal Serial Bus (USB) port. Details of components, schematics of electronic controls, and detection systems are presented.
Webcam autofocus mechanism used as a delay line for the characterization of femtosecond pulses
NASA Astrophysics Data System (ADS)
Castro-Marín, Pablo; Kapellmann-Zafra, Gabriel; Garduño-Mejía, Jesús; Rosete-Aguilar, Martha; Román-Moreno, Carlos J.
2015-08-01
In this work, we present an electromagnetic focusing mechanism (EFM), from a commercial webcam, implemented as a delay line of a femtosecond laser pulse characterization system. The characterization system consists on a second order autocorrelator based on a two-photon-absorption detection. The results presented here were performed for two different home-made femtosecond oscillators: Ti:sapph @ 820 nm and highly chirped pulses generated with an Erbium Doped Fiber @ 1550 nm. The EFM applied as a delay line represents an excellent alternative due its performance in terms of stability, resolution, and long scan range up to 3 ps. Due its low power consumption, the device can be connected through the Universal Serial Bus (USB) port. Details of components, schematics of electronic controls, and detection systems are presented.
Wang, Chao; Xiong, Ye; Fan, Bitao; Yao, Qiufang; Wang, Hanwei; Jin, Chunde; Sun, Qingfeng
2016-01-01
The lignin aerogels that are both high porosity and compressibility would have promising implications for bioengineering field to sound-adsorption and damping materials; however, creating this aerogel had a challenge to adhesive lignin. Here we reported cellulose as green adhesion agent to synthesize the aerogels with strong mechanical performance. Our approach—straightforwardly dissolved in ionic liquids and simply regenerated in the deionized water—causes assembly of micro-and nanoscale and even molecule level of cellulose and lignin. The resulting lignin aerogels exhibit Young’s modulus up to 25.1 MPa, high-efficiency sound-adsorption and excellent thermal insulativity. The successful synthesis of this aerogels developed a path for lignin to an advanced utilization. PMID:27562532
NASA Astrophysics Data System (ADS)
Sharma, Poonam; Zachariah, Michael; Ehrman, Sheryl; Shrivastava, Rohit; Dass, Sahab; Satsangi, Vibha; Michael Zachariah, Sheryl Ehrman Collaboration; Rohit Shrivastava, Sahab Dass Collaboration; Vibha R Satsangi, Poonam Sharma Team
2013-03-01
Graphene has an excellent electronic conductivity, a high theoretical surface area of 2630 m2/g and excellent mechanical properties and, thus, is a promising component for high-performance electrode materials. Following this, GO has been used to modify the PEC response of photoactive material hematite thin films in PEC cell. A reduced graphene oxide/iron oxide (R-GO/Fe2O3) thin film structure has been successfully prepared on ITO by directly growing iron oxide particles on the thermally reduced graphene oxide sheets prepared from suspension of exfoliated graphene oxide. R-GO/Fe2O3 thin films were tested in PEC cell and offered ten times higher photocurrent density than pristine Fe2O3 thin film sample. XRD, SEM, EDS, UV-Vis, Mott-Schottky and Raman studies were carried out to study spectro-electrochemical properties. Enhanced PEC performance of these photoelectrodes was attributed to its porous morphology, improved conductivity upon favorable carrier transfer across the oxides interface.
Advances in SAW gas sensors based on the condensate-adsorption effect.
Liu, Jiuling; Wang, Wen; Li, Shunzhou; Liu, Minghua; He, Shitang
2011-01-01
A surface-acoustic-wave (SAW) gas sensor with a low detection limit and fast response for volatile organic compounds (VOCs) based on the condensate-adsorption effect detection is developed. In this sensor a gas chromatography (GC) column acts as the separator element and a dual-resonator oscillator acts as the detector element. Regarding the surface effective permittivity method, the response mechanism analysis, which relates the condensate-adsorption effect, is performed, leading to the sensor performance prediction prior to fabrication. New designs of SAW resonators, which act as feedback of the oscillator, are devised in order to decrease the insertion loss and to achieve single-mode control, resulting in superior frequency stability of the oscillator. Based on the new phase modulation approach, excellent short-term frequency stability (±3 Hz/s) is achieved with the SAW oscillator by using the 500 MHz dual-port resonator as feedback element. In a sensor experiment investigating formaldehyde detection, the implemented SAW gas sensor exhibits an excellent threshold detection limit as low as 0.38 pg.
Mohamadzadeh Nojehdehi, Maryam; Ashgholi Farahani, Mansoureh; Rafii, Forough; Bahrani, Nasser
2015-05-01
Human resource is the most important factor of performance, success and better revelation of excellence goals of each organization. By performing excellence plan, healthcare organizations improve their organizational climate and play a valuable role in retaining nurses and improving the quality of their services to patients. The aim of this study was to compare hospital organizational climate and intention to leave among working nurses in hospitals performing the excellence plan and other hospitals of Tehran University of Medical Sciences. This was a cross-sectional descriptive comparison study. Its population included 248 nurses of the hospitals performing the excellence plan and other hospitals of Tehran University of Medical Sciences in Iran selected by random sampling. The used instrument had three parts: the first part was related to personal characteristics, the second part was the Munn's organizational climate questionnaire and the third part was Hinshaw's questionnaire of "anticipated turnover scale". Data was analyzed using SPSS software, version 17 and indices of descriptive statistics and inferential statistics. The results of the mean and standard deviation for organizational climate and intention to leave in both performing and non-performing hospitals of the organizational excellence plan were respectively (65.28 ± 19.31 and 56.42 ± 21.36) and (33.64 ± 5.58 and 35.59 ± 4.94). Independent T test revealed a significant difference between the mean scores for organizational climate in both performing and non-performing hospitals, and also a significant difference between the mean scores for intention to leave in both performing and non-performing hospitals (P = 0.004). Moreover, Pearson Correlation test showed a reverse significant correlation between organizational climate and intention to leave in performing hospitals of the organizational excellence plan (r = -0.337) and non-performing hospitals (r = -0.282) (P = 0.001). Performing quality improvement pattern such as organization's excellence plan improves organizational climate of healthcare sectors, it can reduce nurses' intentions to leave and retain human resources.
Shimada, Ryo; Konishi, Hayato; Ozawa, Hideki; Katsumata, Takahiro; Tanaka, Ryou; Nakazawa, Yasumoto; Nemoto, Shintaro
2018-05-01
The surgical sheets that are currently used for congenital cardiovascular surgery have several drawbacks, including material deterioration, calcification, and pseudo-intimal proliferation resulting in hemodynamic disturbance. The aim of this study was to evaluate a newly developed sheet made from a combination of silk fibroin (SF) and a synthetic polymer, thermoplastic polyurethane (TPU), for surgical use. The hybrid SF/TPU sheet was a non-woven fabric with nanofibers that was made using the electrospinning method. The mechanical properties of the SF/TPU sheet were characterized. To determine its biocompatibility, part of the wall of the canine descending aorta was replaced with a SF/TPU sheet as a patch. The patches were removed after 3 months and a histological examination was performed. The flexibility, water permeability, and suture retention strength of the SF/TPU sheet were excellent and equivalent to those of existing sheets. The SF/TPU sheet had excellent handling properties and fit well into the vascular wall without needle hole bleeding. The histological examination revealed that the intimal tissue was restored well over the intraluminal surface of the explanted SF/TPU sheet, the absence of calcium deposition, and minimal inflammatory reaction, without signs of degradation. The SF/TPU sheet had excellent mechanical properties and tissue biocompatibility. These favorable features and possible biodegradability of the SF portion warrant a long-term follow-up study.
Zhang, Suoying; Liu, Hong; Liu, Pengfei; Yang, Zhuhong; Feng, Xin; Huo, Fengwei; Lu, Xiaohua
2015-06-07
Uniform CuO hollow microspheres were successfully achieved from a non-uniform metal organic framework by using a template-free method. The process mechanism has been revealed to be spherical aggregation and Ostwald ripening. When tested in CO oxidation and heat treatment, these assembled microspheres exhibited an excellent catalytic performance and show a much better stability than the inherited hollow structure from MOFs.
Smart wearable Kevlar-based safeguarding electronic textile with excellent sensing performance.
Wang, Sheng; Xuan, Shouhu; Liu, Mei; Bai, Linfeng; Zhang, Shuaishuai; Sang, Min; Jiang, Wanquan; Gong, Xinglong
2017-03-29
A novel S-ST/MWCNT/Kevlar-based wearable electronic textile (WET) with enhanced safeguarding performance and force sensing ability was fabricated. Stab resistance performance tests under quasi-static and dynamic conditions show that the maximum resistance force and penetration impact energy for the WET are 18 N and 11.76 J, which represent a 90% and 50% increment with respect to the neat Kevlar, respectively. Dynamic impact resistance tests show that the WET absorbs all the impact energy. The maximum resistance force of the WET is 1052 N, which represents an improvement of about 190% with respect to neat Kevlar. With the incorporation of multi-walled carbon nanotubes (MWCNTs), the WET can achieve a stable electrical conductivity of ∼10 -2 S m -1 , and the conductivity is highly sensitive to external mechanic forces. Notably, the sensing fabric also exhibits an outstanding ability to detect and analyze external forces. In addition, it can be fixed at any position of the human body and exhibits an ideal monitoring performance. Because of its flexibility, high sensitivity to various types of deformations and excellent safeguarding performance, the WET has a strong potential for wearable monitoring devices that simultaneously provide body protection and monitor the movements of the human body under various conditions.
NASA Astrophysics Data System (ADS)
Parro, Rocco J.; Scardelletti, Maximilian C.; Varaljay, Nicholas C.; Zimmerman, Sloan; Zorman, Christian A.
2008-10-01
This paper reports an effort to develop amorphous silicon carbide (a-SiC) films for use in shunt capacitor RF MEMS microbridge-based switches. The films were deposited using methane and silane as the precursor gases. Switches were fabricated using 500 nm and 300 nm-thick a-SiC films to form the microbridges. Switches made from metallized 500 nm-thick SiC films exhibited favorable mechanical performance but poor RF performance. In contrast, switches made from metallized 300 nm-thick SiC films exhibited excellent RF performance but poor mechanical performance. Load-deflection testing of unmetallized and metallized bulk micromachined SiC membranes indicates that the metal layers have a small effect on the Young's modulus of the 500 nm and 300 nm-thick SiC MEMS. As for residual stress, the metal layers have a modest effect on the 500 nm-thick structures, but a significant affect on the residual stress in the 300 nm-thick structures.
Morphological Control of Au Dendrite Electrocatalysts for CO2 Reduction
NASA Astrophysics Data System (ADS)
Nesbitt, Nathan T.; Ma, Ming; Carter, Brittany E.; D'Imperio, Luke A.; Naughton, Jeffrey R.; Courtney, Dave T.; Shepard, Steve; Burns, Michael J.; Smith, Wilson A.; Naughton, Michael J.
Au has demonstrated the highest catalytic selectivity, activity, and stability for CO2 reduction to CO of any metal, but the mechanism for this performance remains unclear. Studies of nanoparticle films have shown that higher index facets have improved performance, but the preeminent nanoparticle films, from oxide-derived Au, lack well-defined facets and morphological stability to illuminate their enabling mechanism. More recent work has shown Au needles with a sub 5 nm radius of curvature have excellent performance and stability, independent of crystal facet. The same studies, however, still show calculations expecting a facet dependance. Here we demonstrate a facile and novel dendrite fabrication process with tunable morphology. The dendrites show high catalytic selectivity, activity, and stability for CO2 reduction to CO, along with morphological stability after 18 hours of operation, allowing correlation between morphology and performance. The influence of exposed facets will be discussed. This material is based upon work supported by the National Science Foundation Graduate Research Fellowship under Grant No. (DGE-1258923).
Challenge toward the prediction of typhoon behaviour and down pour
NASA Astrophysics Data System (ADS)
Takahashi, K.; Onishi, R.; Baba, Y.; Kida, S.; Matsuda, K.; Goto, K.; Fuchigami, H.
2013-08-01
Mechanisms of interactions among different scale phenomena play important roles for forecasting of weather and climate. Multi-scale Simulator for the Geoenvironment (MSSG), which deals with multi-scale multi-physics phenomena, is a coupled non-hydrostatic atmosphere-ocean model designed to be run efficiently on the Earth Simulator. We present simulation results with the world-highest 1.9km horizontal resolution for the entire globe and regional heavy rain with 1km horizontal resolution and 5m horizontal/vertical resolution for urban area simulation. To gain high performance by exploiting the system capabilities, we propose novel performance evaluation metrics introduced in previous studies that incorporate the effects of the data caching mechanism between CPU and memory. With a useful code optimization guideline based on such metrics, we demonstrate that MSSG can achieve an excellent peak performance ratio of 32.2% on the Earth Simulator with the single-core performance found to be a key to a reduced time-to-solution.
A Bamboo-Inspired Nanostructure Design for Flexible, Foldable, and Twistable Energy Storage Devices.
Sun, Yongming; Sills, Ryan B; Hu, Xianluo; Seh, Zhi Wei; Xiao, Xu; Xu, Henghui; Luo, Wei; Jin, Huanyu; Xin, Ying; Li, Tianqi; Zhang, Zhaoliang; Zhou, Jun; Cai, Wei; Huang, Yunhui; Cui, Yi
2015-06-10
Flexible energy storage devices are critical components for emerging flexible electronics. Electrode design is key in the development of all-solid-state supercapacitors with superior electrochemical performances and mechanical durability. Herein, we propose a bamboo-like graphitic carbon nanofiber with a well-balanced macro-, meso-, and microporosity, enabling excellent mechanical flexibility, foldability, and electrochemical performances. Our design is inspired by the structure of bamboos, where a periodic distribution of interior holes along the length and graded pore structure at the cross section not only enhance their stability under different mechanical deformation conditions but also provide a high surface area accessible to the electrolyte and low ion-transport resistance. The prepared nanofiber network electrode recovers its initial state easily after 3-folded manipulation. The mechanically robust membrane is explored as a free-standing electrode for a flexible all-solid-state supercapacitor. Without the need for extra support, the volumetric energy and power densities based on the whole device are greatly improved compared to the state-of-the-art devices. Even under continuous dynamic operations of forceful bending (90°) and twisting (180°), the as-designed device still exhibits stable electrochemical performances with 100% capacitance retention. Such a unique supercapacitor holds great promise for high-performance flexible electronics.
A bamboo-inspired nanostructure design for flexible foldable and twistable energy storage devices
Sun, Yongming; Sills, Ryan B; Hu, Xianluo; ...
2015-05-26
Flexible energy storage devices are critical components for emerging flexible electronics. Electrode design is key in the development of all-solid-state supercapacitors with superior electrochemical performances and mechanical durability. We propose a bamboo-like graphitic carbon nanofiber with a well-balanced macro-, meso-, and microporosity, enabling excellent mechanical flexibility, foldability, and electrochemical performances. Our design is inspired by the structure of bamboos, where a periodic distribution of interior holes along the length and graded pore structure at the cross section not only enhance their stability under different mechanical deformation conditions but also provide a high surface area accessible to the electrolyte and lowmore » ion-transport resistance. The prepared nanofiber network electrode recovers its initial state easily after 3-folded manipulation. The mechanically robust membrane is explored as a free-standing electrode for a flexible all-solid-state supercapacitor. Without the need for extra support, the volumetric energy and power densities based on the whole device are greatly improved compared to the state-of-the-art devices. Furthermore, even under continuous dynamic operations of forceful bending (90°) and twisting (180°), the as-designed device still exhibits stable electrochemical performances with 100% capacitance retention. As a result, such a unique supercapacitor holds great promise for high-performance flexible electronics.« less
Cable testing for Fermilab's high field magnets using small racetrack coils
DOE Office of Scientific and Technical Information (OSTI.GOV)
Feher, S.; Ambrosio, G.; Andreev, N.
As part of the High Field Magnet program at Fermilab simple magnets have been designed utilizing small racetrack coils based on a sound mechanical structure and bladder technique developed by LBNL. Two of these magnets have been built in order to test Nb{sub 3}Sn cables used in cos-theta dipole models. The powder-in-tube strand based cable exhibited excellent performance. It reached its critical current limit within 14 quenches. Modified jelly roll strand based cable performance was limited by magnetic instabilities at low fields as previously tested dipole models which used similar cable.
Wafer-size free-standing single-crystalline graphene device arrays
NASA Astrophysics Data System (ADS)
Li, Peng; Jing, Gaoshan; Zhang, Bo; Sando, Shota; Cui, Tianhong
2014-08-01
We report an approach of wafer-scale addressable single-crystalline graphene (SCG) arrays growth by using pre-patterned seeds to control the nucleation. The growth mechanism and superb properties of SCG were studied. Large array of free-standing SCG devices were realized. Characterization of SCG as nano switches shows excellent performance with life time (>22 000 times) two orders longer than that of other graphene nano switches reported so far. This work not only shows the possibility of producing wafer-scale high quality SCG device arrays but also explores the superb performance of SCG as nano devices.
X-38 V-132 Free Flight 2 (This is a video tape)
NASA Technical Reports Server (NTRS)
Bordano, Aldo J.
2000-01-01
Mr. Aldo Bordano will be presenting details of some of the JSC flight mechanics involvement in the X-38 testing program. Focus shall be on the parafoil system with regards its testing, performance analysis, and GN&C. An excellent example of a recent flight test at Dryden Flight Research Center shall be shown which portrays the system characteristics, sequencing, performance, and testing techniques. The intent is to inform the scientific and engineering communities about the developments in the X-38 parafoil program, as well as invite feedback on potential improvements in testing or systems.
NASA Astrophysics Data System (ADS)
Zhang, Jian; Li, Xuanhua; Peng, Meiling; Tang, Yuanyuan; Ke, Anqi; Gan, Wei; Fu, Xucheng; Hao, Hequn
2018-06-01
In this study, Ag-doped TiO2 hollow microspheres were synthesized by a template-free route, and their photocatalytic performance and catalytic mechanism were investigated. The hollow microspheres were characterized by x-ray diffraction, scanning electron microscopy, transmission electron microscopy, x-ray photoelectron spectroscopy and UV–vis spectroscopy. Ag-doped hollow TiO2 microspheres exhibited excellent photocatalytic performance for tetracycline hydrochloride (TC) in water. TC degradation follows pseudo first-order kinetics, and hydroxyl radical (OH·) and holes (h+) were active substances in the photocatalytic reaction.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ohnsorg, R.W.; Hollar, W.E. Jr.; Lau, S.K.
1995-04-01
As reinforcements for composites, VLS SiC fibrils have attractive mechanical properties including high-strength, high modulus, and excellent creep resistance. To make use of their excellent mechanical properties in a composite, a significant volume fraction (>10%) of aligned, long fibrils (>2 mm) needs to be consolidated in the ceramic matrix. The fibrils must be processed into an assembly that will allow for composite fabrication while maintaining fibril alignment and length. With Advanced Product Development (APD) as the yam fabrication subcontractor, Carborundum investigated several approaches to achieve this goaL including traditional yam-forming processes such as carding and air-vortex spinning and nontraditional processesmore » such as tape forming and wet casting. Carborundum additionally performed an economic analysis for producing 500 and 10,000 pounds of SiC fibrils annually using both conservative and more aggressive processing parameters. With the aggressive approach, the projected costs for SiC fibril production for 500 and 10,000 pounds per year are $1,340/pound and $340/pound, respectively.« less
Yin, Feng; Ye, Dong; Zhu, Chen; Qiu, Lei; Huang, YongAn
2017-01-01
Harmonious developments of electrical and mechanical performances are crucial for stretchable sensors in structural health monitoring (SHM) of flexible aircraft such as aerostats and morphing aircrafts. In this study, we prepared a highly durable ternary conductive nanocomposite made of polydimethylsiloxane (PDMS), carbon black (CB) and multi-walled carbon nanotubes (MWCNTs) to fabricate stretchable strain sensors. The nanocomposite has excellent electrical and mechanical properties by intensively optimizing the weight percentage of conducting fillers as well as the ratio of PDMS pre-polymer and curing agent. It was found that the nanocomposite with homogeneous hybrid filler of 1.75 wt % CB and 3 wt % MWCNTs exhibits a highly strain sensitive characteristics of good linearity, high gauge factor (GF ~ 12.25) and excellent durability over 105 stretching-releasing cycles under a tensile strain up to 25% when the PDMS was prepared at the ratio of 12.5:1. A strain measurement of crack detection for the aerostats surface was also employed, demonstrating a great potential of such ternary nanocomposite used as stretchable strain sensor in SHM. PMID:29156620
NASA Astrophysics Data System (ADS)
Bao, Junjie; Shi, Gaojian; Tao, Can; Wang, Chao; Zhu, Chen; Cheng, Liang; Qian, Gang; Chen, Chunhua
2018-06-01
Four kinds of polycarbonate-based polyurethane with 8-14 wt% hard segments content are synthesized via reactions of polycarbonatediol, hexamethylene diisocyanate and diethylene glycol. The mechanical strength of the polyurethanes increase with the increase of hard segments content. Solid polymer electrolytes composed of the polycarbonate-based polyurethanes and LiTFSI exhibits fascinating characteristics for all-solid-state lithium batteries with a high ionic conductivity of 1.12 × 10-4 S cm-1 at 80 °C, an electrochemical stability window up to 4.5 V (vs. Li+/Li), excellent mechanical strength and superior interfacial stability against lithium metal. The all-solid-state batteries using LiFePO4 cathode can deliver high discharge capacities (161, 158, 134 and 93 mAh g-1 at varied rates of 0.2, 0.5, 1 and 2 C) at 80 °C and excellent cycling performance (with 91% capacity retention after 600 cycles at 1 C). All the results indicate that such a polyurethane-based solid polymer electrolyte can be a promising candidate for all-solid-state lithium batteries.
Li, Jie; Chen, Changlun; Zhang, Rui; Wang, Xiangke
2015-06-01
Nanoscale zero-valent iron particles supported on reduced graphene oxides (NZVI/rGOs) from spent graphene oxide (GO)-bound iron ions were developed by using a hydrogen/argon plasma reduction method to improve the reactivity and stability of NZVI. The NZVI/rGOs exhibited excellent water treatment performance with excellent removal capacities of 187.16 and 396.37 mg g(-1) for chromium and lead, respectively. Moreover, the NZVI/rGOs could be regenerated by plasma treatment and maintained high removal ability after four cycles. X-ray photoelectron spectroscopy analysis results implied that the removal mechanisms could be attributed to adsorption/precipitation, reduction, or both. Such multiple removal mechanisms by the NZVI/rGOs were attributed to the reduction ability of the NZVI particles and the role of dispersing and stabilizing abilities of the rGOs. The results indicated that the NZVI/rGOs prepared by a hydrogen/argon plasma reduction method might be an effective composite for heavy-metal-ion removal. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Yao, Qichao; Li, Haidong; Xian, Liman; Xu, Feng; Xia, Jing; Fan, Jiangli; Du, Jianjun; Wang, Jingyun; Peng, Xiaojun
2018-09-01
Although excellent florescent probes have been developed for DNA, good probes for RNA remain lacking. The shortage of reported and commercial RNA probes is attributable to their severe interference from DNA. As DNA and RNA have similar structures but different functions, it has been an imperative challenge to develop RNA probes that differentiate from DNA. In this study, an NIR fluorescent probe, NBE, is described, which contains a bulky julolidine group that can fit in a spacious RNA pocket and emit intense fluorescence. However, NBE has no response to DNA, as it cannot intercalate into the double strands or even in the DNA minor groove. The sensing mechanism is similar to the effect of a door-bolt. NBE shows excellent performance in RNA sensing (outstanding photostability, high selectivity and fast response), whether in aqueous buffers, fixed cells or living cells. These findings might provide not only a potential imaging tool but also a new design strategy for the recognition of RNA while avoiding interference from DNA. Copyright © 2018 Elsevier Ltd. All rights reserved.
Ma, Hao; Zheng, Xiaoyang; Luo, Xuan; Yang, Fan
2018-01-01
Silica aerogels are highly porous 3D nanostructures and have exhibited excellent physio-chemical properties. Although silica aerogels have broad potential in many fields, the poor mechanical properties greatly limit further applications. In this study, we have applied the finite volume method (FVM) method to calculate the mechanical properties of silica aerogels with different geometric properties such as particle size, pore size, ligament diameter, etc. The FVM simulation results show that a power law correlation existing between relative density and mechanical properties (elastic modulus and yield stress) of silica aerogels, which are consistent with experimental and literature studies. In addition, depending on the relative densities, different strategies are proposed in order to synthesize silica aerogels with better mechanical performance by adjusting the distribution of pore size and ligament diameter of aerogels. Finally, the results suggest that it is possible to synthesize silica aerogels with ultra-low density as well as high strength and stiffness as long as the textural features are well controlled. It is believed that the FVM simulation methodology could be a valuable tool to study mechanical performance of silica aerogel based materials in the future. PMID:29385745
Ma, Hao; Zheng, Xiaoyang; Luo, Xuan; Yi, Yong; Yang, Fan
2018-01-30
Silica aerogels are highly porous 3D nanostructures and have exhibited excellent physio-chemical properties. Although silica aerogels have broad potential in many fields, the poor mechanical properties greatly limit further applications. In this study, we have applied the finite volume method (FVM) method to calculate the mechanical properties of silica aerogels with different geometric properties such as particle size, pore size, ligament diameter, etc. The FVM simulation results show that a power law correlation existing between relative density and mechanical properties (elastic modulus and yield stress) of silica aerogels, which are consistent with experimental and literature studies. In addition, depending on the relative densities, different strategies are proposed in order to synthesize silica aerogels with better mechanical performance by adjusting the distribution of pore size and ligament diameter of aerogels. Finally, the results suggest that it is possible to synthesize silica aerogels with ultra-low density as well as high strength and stiffness as long as the textural features are well controlled. It is believed that the FVM simulation methodology could be a valuable tool to study mechanical performance of silica aerogel based materials in the future.
NASA Astrophysics Data System (ADS)
Xie, Jining; Mukhopadyay, K.; Yadev, J.; Varadan, V. K.
2003-10-01
Coiled carbon nanotubes exhibit excellent mechanical and electrical properties because of the combination of coil morphology and properties of nanotubes. They could have potential novel applications in nanocomposites and nano-electronic devices as well as nano-electromechanical systems. In this work, synthesis of regularly coiled carbon nanotubes is presented. It involves pyrolysis of hydrocarbon gas over metal/support catalyst by both thermal filament and microwave catalytic chemical vapor deposition methods. Scanning electron microscopy and transmission electron microscopy were performed to observe the coil morphology and nanostructure of coiled nanotubes. The growth mechanism and structural and electrical properties of coiled carbon nanotubes are also discussed.
New Soft Tissue Implants Using Organic Elastomers
NASA Astrophysics Data System (ADS)
Ku, David N.
Typical biomaterials are stiff, difficult to manufacture, and not initially developed for medical implants. A new biomaterial is proposed that is similar to human soft tissue. The biomaterial provides mechanical properties similar to soft tissue in its mechanical and physical properties. Characterization is performed for modulus of elasticity, ultimate strength and wear resistance. The material further exhibits excellent biocompatibility with little toxicity and low inflammation. The material can be molded into a variety of anatomic shapes for use as a cartilage replacement, heart valve, and reconstructive implant for trauma victims. The biomaterial may be suitable for several biodevices of the future aimed at soft-tissue replacements.
Han, Jae Hee; Lee, Jang Yong; Suh, Dong Hack; Hong, Young Taik; Kim, Tae-Ho
2017-10-04
We present cross-linkable precursor-type gel polymer electrolytes (GPEs) that have large ionic liquid uptake capability, can easily penetrate electrodes, have high ion conductivity, and are mechanically strong as high-performance, flexible all-solid-state supercapacitors (SC). Our polymer precursors feature a hydrophilic-hydrophobic poly(ethylene oxide)-poly(propylene oxide)-poly(ethylene oxide) (PEO-PPO-PEO) triblock main-chain structure and trifunctional silane end groups that can be multi-cross-linked with each other through a sol-gel process. The cross-linked solid-state electrolyte film with moderate IL content (200 wt %) shows a well-balanced combination of excellent ionic conductivity (5.0 × 10 -3 S cm -1 ) and good mechanical stability (maximum strain = 194%). Moreover, our polymer electrolytes have various advantages including high thermal stability (decomposition temperature > 330 °C) and the capability to impregnate electrodes to form an excellent electrode-electrolyte interface due to the very low viscosity of the precursors. By assembling our GPE-impregnated electrodes and solid-state GPE film, we demonstrate an all-solid-state SC that can operate at 3 V and provides an improved specific capacitance (112.3 F g -1 at 0.1 A g -1 ), better rate capability (64% capacity retention until 20 A g -1 ), and excellent cycle stability (95% capacitance decay over 10 000 charge/discharge cycles) compared with those of a reference SC using a conventional PEO electrolyte. Finally, flexible SCs with a high energy density (22.6 W h kg -1 at 1 A g -1 ) and an excellent flexibility (>93% capacitance retention after 5000 bending cycles) can successfully be obtained.
The nature of excellent clinicians at an academic health science center: a qualitative study.
Mahant, Sanjay; Jovcevska, Vesna; Wadhwa, Anupma
2012-12-01
To understand the nature of excellent clinicians at an academic health science center by exploring how and why excellent clinicians achieve high performance. From 2008 to 2010, the authors conducted a qualitative study using a grounded theory approach. Members of the Clinical Advisory Committee in the Department of Pediatrics at the University of Toronto nominated peers whom they saw as excellent clinicians. The authors then conducted in-depth interviews with the most frequently nominated clinicians. They audio-recorded and transcribed the interviews and coded the transcripts to identify emergent themes. From interviews with 13 peer-nominated, excellent clinicians, a model emerged. Dominant themes fell into three categories: (1) core philosophy, (2) deliberate activities, and (3) everyday practice. Excellent clinicians are driven by a core philosophy defined by high intrinsic motivation and passion for patient care and humility. They refine their clinical skills through two deliberate activities-reflective clinical practice and scholarship. Their high performance in everyday practice is characterized by clinical skills and cognitive ability, people skills, engagement, and adaptability. A rich theory emerged explaining how excellent clinicians, driven by a core philosophy and engaged in deliberate activities, achieve high performance in everyday practice. This theory of the nature of excellent clinicians provides a holistic perspective of individual performance, informs medical education, supports faculty career development, and promotes clinical excellence in the culture of academic medicine.
Mohamadzadeh Nojehdehi, Maryam; Ashgholi Farahani, Mansoureh; Rafii, Forough; Bahrani, Nasser
2015-01-01
Background: Human resource is the most important factor of performance, success and better revelation of excellence goals of each organization. By performing excellence plan, healthcare organizations improve their organizational climate and play a valuable role in retaining nurses and improving the quality of their services to patients. Objectives: The aim of this study was to compare hospital organizational climate and intention to leave among working nurses in hospitals performing the excellence plan and other hospitals of Tehran University of Medical Sciences. Patients and Methods: This was a cross-sectional descriptive comparison study. Its population included 248 nurses of the hospitals performing the excellence plan and other hospitals of Tehran University of Medical Sciences in Iran selected by random sampling. The used instrument had three parts: the first part was related to personal characteristics, the second part was the Munn’s organizational climate questionnaire and the third part was Hinshaw’s questionnaire of “anticipated turnover scale”. Data was analyzed using SPSS software, version 17 and indices of descriptive statistics and inferential statistics. Results: The results of the mean and standard deviation for organizational climate and intention to leave in both performing and non-performing hospitals of the organizational excellence plan were respectively (65.28 ± 19.31 and 56.42 ± 21.36) and (33.64 ± 5.58 and 35.59 ± 4.94). Independent T test revealed a significant difference between the mean scores for organizational climate in both performing and non-performing hospitals, and also a significant difference between the mean scores for intention to leave in both performing and non-performing hospitals (P = 0.004). Moreover, Pearson Correlation test showed a reverse significant correlation between organizational climate and intention to leave in performing hospitals of the organizational excellence plan (r = -0.337) and non-performing hospitals (r = -0.282) (P = 0.001). Conclusions: Performing quality improvement pattern such as organization’s excellence plan improves organizational climate of healthcare sectors, it can reduce nurses’ intentions to leave and retain human resources. PMID:26082850
Joint-space adaptive control of a 6 DOF end-effector with closed-kinematic chain mechanism
NASA Technical Reports Server (NTRS)
Nguyen, Charles C.; Zhou, Zhen-Lei
1989-01-01
The development is presented for a joint-space adaptive scheme that controls the joint position of a six-degree-of-freedom (DOF) robot end-effector performing fine and precise motion within a very limited workspace. The end-effector was built to study autonomous assembly of NASA hardware in space. The design of the adaptive controller is based on the concept of model reference adaptive control (MRAC) and Lyapunov direct method. In the development, it is assumed that the end-effector performs slowly varying motion. Computer simulation is performed to investigate the performance of the developed control scheme on position control of the end-effector. Simulation results manifest that the adaptive control scheme provides excellent tracking of several test paths.
Webcam autofocus mechanism used as a delay line for the characterization of femtosecond pulses
DOE Office of Scientific and Technical Information (OSTI.GOV)
Castro-Marín, Pablo; Kapellmann-Zafra, Gabriel; Garduño-Mejía, Jesús, E-mail: jesus.garduno@ccadet.unam.mx
2015-08-15
In this work, we present an electromagnetic focusing mechanism (EFM), from a commercial webcam, implemented as a delay line of a femtosecond laser pulse characterization system. The characterization system consists on a second order autocorrelator based on a two-photon-absorption detection. The results presented here were performed for two different home-made femtosecond oscillators: Ti:sapph @ 820 nm and highly chirped pulses generated with an Erbium Doped Fiber @ 1550 nm. The EFM applied as a delay line represents an excellent alternative due its performance in terms of stability, resolution, and long scan range up to 3 ps. Due its low powermore » consumption, the device can be connected through the Universal Serial Bus (USB) port. Details of components, schematics of electronic controls, and detection systems are presented.« less
NASA Astrophysics Data System (ADS)
Yu, Man; Wang, Yi; Wang, Hao-Yi; Han, Jun; Qin, Yujun; Zhang, Jian-Ping; Ai, Xi-Cheng
2016-10-01
The photovoltaic performance of planar perovskite solar cell is significantly influenced by the morphology of perovskite film. In this work, five kinds of devices with different perovskite film morphologies were prepared by varying the concentration of CH3NH3Cl in precursor solutions. We found that best morphology of perovskite film results in the excellent photovoltaic performance with an average efficiency of 15.52% and a champion efficiency of 16.38%. Transient photovoltage and photocurrent measurements are performed to elucidate the mechanism of photoelectric conversion processes, which shows that the charge recombination is effectively suppressed and the charge transport is obviously promoted by optimized morphology.
Roper, Kimberley A; Berry, Malcolm B; Ley, Steven V
2013-01-01
The application of a monolithic form of triphenylphosphine to the Ramirez gem-dibromoolefination reaction using flow chemistry techniques is reported. A variety of gem-dibromides were synthesised in high purity and excellent yield following only removal of solvent and no further off-line purification. It is also possible to perform the Appel reaction using the same monolith and the relationship between the mechanisms of the two reactions is discussed.
Roper, Kimberley A; Berry, Malcolm B
2013-01-01
Summary The application of a monolithic form of triphenylphosphine to the Ramirez gem-dibromoolefination reaction using flow chemistry techniques is reported. A variety of gem-dibromides were synthesised in high purity and excellent yield following only removal of solvent and no further off-line purification. It is also possible to perform the Appel reaction using the same monolith and the relationship between the mechanisms of the two reactions is discussed. PMID:24062843
Enhanced photocatalytic activity of BiOCl by C70 modification and mechanism insight
NASA Astrophysics Data System (ADS)
Ma, Dongmei; Zhong, Junbo; Li, Jianzhang; Wang, Li; Peng, Rufang
2018-06-01
As an excellent photocatalyst which can compete with TiO2, BiOCl has triggered increasing attention. However, the practical application of BiOCl has been significantly limited by the fast recombination of the photoinduced electron-hole charge pairs. In this study, to further enhance the separation efficiency of photoinduced electron-hole charge pairs of BiOCl, a series of efficient BiOCl photocatalysts were prepared by C70 surface modification. The trapping experiments reveal that the main active species were determined to be superoxide radicals (O2rad -) and holes (h+) under simulated sunlight irradiation. The surface photovoltage spectroscopy (SPS) demonstrates that separation of the photoinduced electron-hole pairs has been significantly promoted, forming more radOH, proven by terephthalic acid photoluminescence probing technique. The photocatalytic evaluation results display that the C70/BiOCl photocatalysts exhibit much higher photocatalytic activity in decolorization of rhodamine B (RhB) than that of the bare BiOCl under the simulated sunlight irradiation. The excellent electron acceptability of C70 is conducive to the separation of the photogenerated carriers and results in efficient formation of O2rad -, proven by the results of SPS and electron spin-resonance (ESR), therefore the photocatalytic performance of C70/BiOCl has been greatly improved. Based on all these observations, an enhancement mechanism in photocatalytic performance of C70/BiOCl was proposed.
High-performance graphdiyne-based electrochemical actuators.
Lu, Chao; Yang, Ying; Wang, Jian; Fu, Ruoping; Zhao, Xinxin; Zhao, Lei; Ming, Yue; Hu, Ying; Lin, Hongzhen; Tao, Xiaoming; Li, Yuliang; Chen, Wei
2018-02-21
Electrochemical actuators directly converting electrical energy to mechanical energy are critically important for artificial intelligence. However, their energy transduction efficiency is always lower than 1.0% because electrode materials lack active units in microstructure, and their assembly systems can hardly express the intrinsic properties. Here, we report a molecular-scale active graphdiyne-based electrochemical actuator with a high electro-mechanical transduction efficiency of up to 6.03%, exceeding that of the best-known piezoelectric ceramic, shape memory alloy and electroactive polymer reported before, and its energy density (11.5 kJ m -3 ) is comparable to that of mammalian skeletal muscle (~8 kJ m -3 ). Meanwhile, the actuator remains responsive at frequencies from 0.1 to 30 Hz with excellent cycling stability over 100,000 cycles. Furthermore, we verify the alkene-alkyne complex transition effect responsible for the high performance through in situ sum frequency generation spectroscopy. This discovery sheds light on our understanding of actuation mechanisms and will accelerate development of smart actuators.
Yang, Yajie; Li, Shibin; Zhang, Luning; Xu, Jianhua; Yang, Wenyao; Jiang, Yadong
2013-05-22
In this paper, we report chemical vapor phase polymerization (VPP) deposition of novel poly(3,4-ethylenedioxythiophene) (PEDOT)/graphene nanocomposites as solid tantalum electrolyte capacitor cathode films. The PEDOT/graphene films were successfully prepared on porous tantalum pentoxide surface as cathode films through the VPP procedure. The results indicated that the high conductivity nature of PEDOT/graphene leads to the decrease of cathode films resistance and contact resistance between PEDOT/graphene and carbon paste. This nanocomposite cathode film based capacitor showed ultralow equivalent series resistance (ESR) ca. 12 mΩ and exhibited better capacitance-frequency performance than the PEDOT based capacitor. The leakage current investigation revealed that the device encapsulation process does not influence capacitor leakage current, indicating the excellent mechanical strength of PEDOT-graphene films. The graphene showed a distinct protection effect on the dielectric layer from possible mechanical damage. This high conductivity and mechanical strength graphene based conducting polymer nanocomposites indicated a promising application future for organic electrode materials.
Wearable Large-Scale Perovskite Solar-Power Source via Nanocellular Scaffold.
Hu, Xiaotian; Huang, Zengqi; Zhou, Xue; Li, Pengwei; Wang, Yang; Huang, Zhandong; Su, Meng; Ren, Wanjie; Li, Fengyu; Li, Mingzhu; Chen, Yiwang; Song, Yanlin
2017-11-01
Dramatic advances in perovskite solar cells (PSCs) and the blossoming of wearable electronics have triggered tremendous demands for flexible solar-power sources. However, the fracturing of functional crystalline films and transmittance wastage from flexible substrates are critical challenges to approaching the high-performance PSCs with flexural endurance. In this work, a nanocellular scaffold is introduced to architect a mechanics buffer layer and optics resonant cavity. The nanocellular scaffold releases mechanical stresses during flexural experiences and significantly improves the crystalline quality of the perovskite films. The nanocellular optics resonant cavity optimizes light harvesting and charge transportation of devices. More importantly, these flexible PSCs, which demonstrate excellent performance and mechanical stability, are practically fabricated in modules as a wearable solar-power source. A power conversion efficiency of 12.32% for a flexible large-scale device (polyethylene terephthalate substrate, indium tin oxide-free, 1.01 cm 2 ) is achieved. This ingenious flexible structure will enable a new approach for development of wearable electronics. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
NASA Astrophysics Data System (ADS)
Liang, Tian; Yan, Chunjie; Zhou, Sen; Zhang, Yonghan; Yang, Bipeng
2017-10-01
Carbon black (CB) is an excellent filler to reinforce polymers because of its unique thermal and mechanical properties. Thus, a type of modified carbon black (MCB) was developed, which led to reduced filler aggregation in methyl methacrylate (MMA) monomers and resulted in homogeneous dispersion in the polymethyl methacrylate (PMMA) substrate. The PMMA-MCB composite particles that were prepared in this work possessed remarkable and stable properties. Therefore, they can be used as an ultra-lightweight proppant (ULWP). Fourier transform infrared spectroscopy showed that CB was successfully modified and the MCB was well dispersed in the PMMA matrix. Results of crushing rate and differential scanning calorimetry demonstrated that MCB could significantly enhance the thermal and mechanical performance of the ULWP. Heat treatment of the ULWP under a nitrogen atmosphere could also clearly enhance its performance in various aspects. The process of modifying CB, the approach of synthesizing PMMA-MCB composite particles, and their mechanism were systematically investigated in this work.
Mechanical properties of calcium phosphate scaffolds fabricated by robocasting.
Miranda, Pedro; Pajares, Antonia; Saiz, Eduardo; Tomsia, Antoni P; Guiberteau, Fernando
2008-04-01
The mechanical behavior under compressive stresses of beta-tricalcium phosphate (beta-TCP) and hydroxyapatite (HA) scaffolds fabricated by direct-write assembly (robocasting) technique is analyzed. Concentrated colloidal inks prepared from beta-TCP and HA commercial powders were used to fabricate porous structures consisting of a 3-D tetragonal mesh of interpenetrating ceramic rods. The compressive strength and elastic modulus of these model scaffolds were determined by uniaxial testing to compare the relative performance of the selected materials. The effect of a 3-week immersion in simulated body fluid (SBF) on the strength of the scaffolds was also analyzed. The results are compared with those reported in the literature for calcium phosphate scaffolds and human bone. The robocast calcium phosphate scaffolds were found to exhibit excellent mechanical performances in terms of strength, especially the HA structures after SBF immersion, indicating a great potential of this type of scaffolds for use in load-bearing bone tissue engineering applications. Copyright 2007 Wiley Periodicals, Inc.
NASA Astrophysics Data System (ADS)
Ding, Ning; Wang, Huan; Liu, Long; Guo, Weimin; Chen, Xiangfeng; Wu, Chi-Man Lawrence
2018-02-01
As a two-dimensional material with a low-buckling structure, germanene has attracted considerable interest because of its excellent physical properties, such as massless Dirac fermions and quantum spin Hall effect. The mechanical characteristics of germanene are of the utmost importance when one is assessing its viability for nanodevices, especially for ones with defects. In this work, the stabilities, mechanical properties, and changes in electronic properties under mechanical strain for both pristine and defective germanene sheets were studied and analyzed with use of density functional theory. The mechanical properties of defect-free germanene exhibited obvious anisotropy along different directions. The mechanical properties of germanene sheets exhibited high sensitivity to the defect parameters, such as the linear density of vacancies, the width of the cracks, and the inflection angles caused by the grain boundaries. In addition, the applied mechanical strain changed the electronic properties of germanene to a large extent. The information obtained will be useful for the understanding and potential application of germanene.
Maleki, Hajar; Montes, Susan; Hayati-Roodbari, Nastaran; Putz, Florian; Huesing, Nicola
2018-06-04
Thanks to the exceptional materials properties of silica aerogels, this fascinating highly porous material has found high performance and real-life applications in various modern industries. However, a requirement for a broadening of these applications is based on the further improvement of their properties especially with regard to mechanical strength and post-synthesis processability with minimum compromise to the other physical properties. Here, we report an entirely novel, simple and aqueous based synthesis approach to prepare mechanically robust aerogel hybrids by co-gelation of silk fibroin (SF) biopolymer, extracted from silkworm cocoons. The synthesis is based on a one-step sequential processes of acid catalysis (physical) crosslinking of the SF biopolymer and simultaneous polycondensation of tetramethyl orthosilicate (TMOS), in the presence of 5-(trimethoxysilyl)pentanoic acid (TMSPA) as a coupling agent and subsequent solvent exchange and supercritical drying. Extensive characterizations by solid-state 1H-NMR, 29Si-NMR, and 2D 1H-29Si heteronuclear correlation (HETCOR) MAS NMR spectroscopy as well as various microscopic techniques (SEM, TEM) and mechanical assessment, confirmed the molecular-level homogeneity of the hybrid nanostructure. The developed silica-SF aerogel hybrids contained an improved set of material properties, such as low density (ρb, average = 0.11 - 0.2 g cm-3), high porosity (~90%), high specific surface area (~ 400-800 m2 g-1), excellent flexibility in compression (up to 80% of strain) with three-order of magnitude improvement in the Young's modulus over that of pristine silica aerogels. In addition, the silica-SF hybrid aerogels are fire retardant and demonstrated excellent thermal insulation performance with thermal conductivities (λ) of (0.033-0.039 Wm-1 K-1). As a further advantage, the formulated hybrid silica-SF aerogel showed an excellent printability in the wet state using a micro-extrusion based 3D printing approach. The printed structures had comparable properties to their monolith counterparts, improving post-synthesis processing or shaping of the silica aerogels significantly. Finally, the hybrid silica-SF aerogels reported in here represents significant progress for mechanically customized and robust aerogel for multi-purpose applications namely as customized thermal insulation material or as dual porous open-cell biomaterial used in regenerative medicine.
Design of flexible polyphenylene proton-conducting membrane for next-generation fuel cells.
Miyake, Junpei; Taki, Ryunosuke; Mochizuki, Takashi; Shimizu, Ryo; Akiyama, Ryo; Uchida, Makoto; Miyatake, Kenji
2017-10-01
Proton exchange membrane fuel cells (PEMFCs) are promising devices for clean power generation in automotive, stationary, and portable applications. Perfluorosulfonic acid (PFSA) ionomers (for example, Nafion) have been the benchmark PEMs; however, several problems, including high gas permeability, low thermal stability, high production cost, and environmental incompatibility, limit the widespread dissemination of PEMFCs. It is believed that fluorine-free PEMs can potentially address all of these issues; however, none of these membranes have simultaneously met the criteria for both high performance (for example, proton conductivity) and durability (for example, mechanical and chemical stability). We present a polyphenylene-based PEM (SPP-QP) that fulfills the required properties for fuel cell applications. The newly designed PEM exhibits very high proton conductivity, excellent membrane flexibility, low gas permeability, and extremely high stability, with negligible degradation even under accelerated degradation conditions, which has never been achieved with existing fluorine-free PEMs. The polyphenylene PEM also exhibits reasonably high fuel cell performance, with excellent durability under practical conditions. This new PEM extends the limits of existing fluorine-free proton-conductive materials and will help to realize the next generation of PEMFCs via cost reduction as well as the performance improvement compared to the present PFSA-based PEMFC systems.
NASA Astrophysics Data System (ADS)
Xiao, Jiajia; Li, Po; Wen, Xiaogang
2018-04-01
Novel jujube-like hierarchical TiO2 microspheres (HTMs) were synthesized by an alkali-corrosion process of titanium phosphate (Ti2O3(H2PO4)2 · 2H2O) microspheres. The hierarchical titanium phosphate microsphere (HTPM) intermediates consisting of nanoflakes with a thickness of 20 nm were firstly prepared by a facile hydrothermal method. After reacting with diluted NaOH at low temperature and atmospheric pressure, followed by subsequent acid washing and a calcination process, the HTPM intermediates were transformed to TiO2 with the microsphere morphology well retained, while the nanoflakes became porous, and some new nanowires were formed between the nanoflakes. Finally, HTMs consisting of porous nanoflakes and nanowires were obtained. The possible growth mechanisms of HTPMs and HTMs are discussed. The HTMs demonstrate high specific surface area and excellent light-scattering ability. The performance of the dye sensitized solar cells (DSSCs) of the HTMs synthesized under different conditions is studied, and a total conversion efficiency of up to 8.93% was obtained. The improved DSSC performance was attributed to the enhanced dye loading, light-scattering, and charge transporting ability of the HTMs with a unique hierarchical nanostructure.
Xiao, Jiajia; Li, Po; Wen, Xiaogang
2018-04-27
Novel jujube-like hierarchical TiO 2 microspheres (HTMs) were synthesized by an alkali-corrosion process of titanium phosphate (Ti 2 O 3 (H 2 PO 4 ) 2 · 2H 2 O) microspheres. The hierarchical titanium phosphate microsphere (HTPM) intermediates consisting of nanoflakes with a thickness of 20 nm were firstly prepared by a facile hydrothermal method. After reacting with diluted NaOH at low temperature and atmospheric pressure, followed by subsequent acid washing and a calcination process, the HTPM intermediates were transformed to TiO 2 with the microsphere morphology well retained, while the nanoflakes became porous, and some new nanowires were formed between the nanoflakes. Finally, HTMs consisting of porous nanoflakes and nanowires were obtained. The possible growth mechanisms of HTPMs and HTMs are discussed. The HTMs demonstrate high specific surface area and excellent light-scattering ability. The performance of the dye sensitized solar cells (DSSCs) of the HTMs synthesized under different conditions is studied, and a total conversion efficiency of up to 8.93% was obtained. The improved DSSC performance was attributed to the enhanced dye loading, light-scattering, and charge transporting ability of the HTMs with a unique hierarchical nanostructure.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gong, Jiangfeng; Tian, Yazhou; Yang, Ziyuan
The developments of electrode active materials provide the opportunities for next-generation energy storage devices. The arrangement of electrode materials on the substrate has recently emerged as a promising strategy for preparing high-performance supercapacitors. In this paper, we demonstrate a novel vertically aligned CuSe@Co(OH) 2 nanosheet arrays electrode for supercapacitor application. The materials are thoroughly characterized by structural and spectroscopic techniques. Electrochemical performance of CuSe@Co(OH) 2 nanosheet arrays are investigated in detail, which exhibit a specific capacitance as much as 1180 F g -1 at a current density of 1 A g -1. A flexible asymmetric all-solid-state supercapacitor is fabricated usingmore » CuSe@Co(OH) 2 nanosheet arrays as the positive electrode and activated carbon as the negative electrode. The device delivers a volumetric capacitance of 441.4 mF cm -3 with maximum energy density and maximum power density is 0.17 and 62.1 mW cm -3, as well as robust cycling stability (~80.4% capacitance retention after 10 000 cycles), excellent flexibility, and mechanical stability. Finally, the excellent electrochemical performance can be attributed to its unique vertically aligned configuration.« less
Gong, Jiangfeng; Tian, Yazhou; Yang, Ziyuan; ...
2018-01-04
The developments of electrode active materials provide the opportunities for next-generation energy storage devices. The arrangement of electrode materials on the substrate has recently emerged as a promising strategy for preparing high-performance supercapacitors. In this paper, we demonstrate a novel vertically aligned CuSe@Co(OH) 2 nanosheet arrays electrode for supercapacitor application. The materials are thoroughly characterized by structural and spectroscopic techniques. Electrochemical performance of CuSe@Co(OH) 2 nanosheet arrays are investigated in detail, which exhibit a specific capacitance as much as 1180 F g -1 at a current density of 1 A g -1. A flexible asymmetric all-solid-state supercapacitor is fabricated usingmore » CuSe@Co(OH) 2 nanosheet arrays as the positive electrode and activated carbon as the negative electrode. The device delivers a volumetric capacitance of 441.4 mF cm -3 with maximum energy density and maximum power density is 0.17 and 62.1 mW cm -3, as well as robust cycling stability (~80.4% capacitance retention after 10 000 cycles), excellent flexibility, and mechanical stability. Finally, the excellent electrochemical performance can be attributed to its unique vertically aligned configuration.« less
Qi, Yu; Wang, Hui; Wei, Kai; Yang, Ya; Zheng, Ru-Yue; Kim, Ick Soo; Zhang, Ke-Qin
2017-03-03
The biological performance of artificial biomaterials is closely related to their structure characteristics. Cell adhesion, migration, proliferation, and differentiation are all strongly affected by the different scale structures of biomaterials. Silk fibroin (SF), extracted mainly from silkworms, has become a popular biomaterial due to its excellent biocompatibility, exceptional mechanical properties, tunable degradation, ease of processing, and sufficient supply. As a material with excellent processability, SF can be processed into various forms with different structures, including particulate, fiber, film, and three-dimensional (3D) porous scaffolds. This review discusses and summarizes the various constructions of SF-based materials, from single structures to multi-level structures, and their applications. In combination with single structures, new techniques for creating special multi-level structures of SF-based materials, such as micropatterning and 3D-printing, are also briefly addressed.
NASA Astrophysics Data System (ADS)
Deng, Chao; Liu, Wanjun; Zhang, Yinjiang; Huang, Chen; Zhao, Yi; Jin, Xiangyu
2018-04-01
Developing wet-laid papers with a good wet strength remains a longstanding challenge in the papermaking industry. In this study, hydroentanglement, a mechanical bonding technique is developed to consolidate the wet-laid fibre web. The results indicate that wet tensile strength, ductile stretching property, softness, air permeability and water absorbency of the wet-laid fibre web are significantly improved by hydroentanglement. In addition, the abrasion test shows that the dusting off rate of wet-laid fibre web can be effectively reduced through hydroentanglement. Moreover, the disintegration experiment proves that wet-laid hydroentangled nonwovens could be easily dispersed when compared with conventional carded hydroentangled nonwovens. Therefore, the new wet-laid hydroentangled nonwovens can maintain excellent performance in a wet state, showing a great potential for personal hygiene applications.
Deng, Chao; Liu, Wanjun; Zhang, Yinjiang; Huang, Chen; Zhao, Yi; Jin, Xiangyu
2018-04-01
Developing wet-laid papers with a good wet strength remains a longstanding challenge in the papermaking industry. In this study, hydroentanglement, a mechanical bonding technique is developed to consolidate the wet-laid fibre web. The results indicate that wet tensile strength, ductile stretching property, softness, air permeability and water absorbency of the wet-laid fibre web are significantly improved by hydroentanglement. In addition, the abrasion test shows that the dusting off rate of wet-laid fibre web can be effectively reduced through hydroentanglement. Moreover, the disintegration experiment proves that wet-laid hydroentangled nonwovens could be easily dispersed when compared with conventional carded hydroentangled nonwovens. Therefore, the new wet-laid hydroentangled nonwovens can maintain excellent performance in a wet state, showing a great potential for personal hygiene applications.
V-378A: A modified bismaleimide for advanced composites
NASA Technical Reports Server (NTRS)
Street, S. W.
1985-01-01
Addition polyimides cure with no evolution of gaseous by-products at relatively low temperatures and may be cured at low pressures to yield composites with excellent hot-wet strength retention. These properaties have made them excellent candidates as matrix resins for advanced composites. However, commercially available bismaleimides are solids and difficult to handle in preimpregnated form. V-378A is an addition polyimide composed of a mixture of bismaleimides and other reactive ingredients formulated to provide good prepreg properties and handling, facile cure and excellent composite mechanical properties. Several curing mechanisms are utilized to provide the characteristics exhibited by V-378A. Part of the mechanism is free radial and takes place at ambient temperature and above. Other mechanisms are principally Diels-Alder in nature. V-378A prepregs are tacky at ambient temperature, but do not have long tacky outlife similar to some epoxies. V-378A yields composites which exhibit hot-wet strength retention which is superior to that provided by epoxy resin systems.
Zhang, Chunhua; Xia, Liangjun; Lyu, Pei; Wang, Yun; Li, Chen; Xiao, Xingfang; Dai, Fangyin; Xu, Weilin; Liu, Xin; Deng, Bo
2018-05-09
Unmodified ZrO 2 nanoparticles (ZDNPs) are used for the enhancement of polyurethane (PU) films. Optimized strain and toughness of PU/ZDNP nanocomposite at 9.09 wt % ZDNPs are up to 2714.6%, and 280.8 MJ m -3 , respectively. The unique bimodal ZDNP aggregate size distribution which exploits both interfacial positively and negatively toughening mechanisms accounts mainly for the excellent mechanical property of PU/ZDNP nanocomposite. The dependence of different toughening mechanisms on three sizes of ZDNP aggregates is summarized. These findings provide a new avenue for the industrial production of nanocomposites at low cost without surface modification of inorganic nanoparticles.
Oxide Heteroepitaxy for Flexible Optoelectronics.
Bitla, Yugandhar; Chen, Ching; Lee, Hsien-Chang; Do, Thi Hien; Ma, Chun-Hao; Qui, Le Van; Huang, Chun-Wei; Wu, Wen-Wei; Chang, Li; Chiu, Po-Wen; Chu, Ying-Hao
2016-11-30
The emerging technological demands for flexible and transparent electronic devices have compelled researchers to look beyond the current silicon-based electronics. However, fabrication of devices on conventional flexible substrates with superior performance are constrained by the trade-off between processing temperature and device performance. Here, we propose an alternative strategy to circumvent this issue via the heteroepitaxial growth of transparent conducting oxides (TCO) on the flexible mica substrate with performance comparable to that of their rigid counterparts. With the examples of ITO and AZO as a case study, a strong emphasis is laid upon the growth of flexible yet epitaxial TCO relying muscovite's superior properties compared to those of conventional flexible substrates and its compatibility with the present fabrication methods. Besides excellent optoelectro-mechanical properties, an additional functionality of high-temperature stability, normally lacking in the current state-of-the-art transparent flexitronics, is provided by these heterostructures. These epitaxial TCO electrodes with good chemical and thermal stabilities as well as mechanical durability can significantly contribute to the field of flexible, light-weight, and portable smart electronics.
High-efficiency robust perovskite solar cells on ultrathin flexible substrates
Li, Yaowen; Meng, Lei; Yang, Yang (Michael); Xu, Guiying; Hong, Ziruo; Chen, Qi; You, Jingbi; Li, Gang; Yang, Yang; Li, Yongfang
2016-01-01
Wide applications of personal consumer electronics have triggered tremendous need for portable power sources featuring light-weight and mechanical flexibility. Perovskite solar cells offer a compelling combination of low-cost and high device performance. Here we demonstrate high-performance planar heterojunction perovskite solar cells constructed on highly flexible and ultrathin silver-mesh/conducting polymer substrates. The device performance is comparable to that of their counterparts on rigid glass/indium tin oxide substrates, reaching a power conversion efficiency of 14.0%, while the specific power (the ratio of power to device weight) reaches 1.96 kW kg−1, given the fact that the device is constructed on a 57-μm-thick polyethylene terephthalate based substrate. The flexible device also demonstrates excellent robustness against mechanical deformation, retaining >95% of its original efficiency after 5,000 times fully bending. Our results confirmed that perovskite thin films are fully compatible with our flexible substrates, and are thus promising for future applications in flexible and bendable solar cells. PMID:26750664
NASA Technical Reports Server (NTRS)
Pater, R. H.; Soucek, M. D.; Chang, A. C.; Partos, R. D.
1991-01-01
Recently, the concept and demonstration of a new versatile synthetic reaction for making a large number of high-performance addition-type thermoplastics (ATTs) were reported. The synthesis shows promise for providing polymers having an attractive combination of easy processability, good toughness, respectable high temperature mechanical performance, and excellent thermo-oxidative stability. The new chemistry involves the reaction of an acetylene-terminated material with a bismaleimide or benzoquinone. In order to clarify the reaction mechanism, model compound studies were undertaken in solutions as well as in the solid state. The reaction products were purified by flash chromatography and characterized by conventional analytical techniques including NMR, FT-IR, UV-visible, mass spectroscopy, and high pressure liquid chromatography. The results are presented of the model compound studies which strongly support the formation of a Diels-Alder adduct in the reaction of an acetylene-terminated compound and a bismaleimide or benzoquinone.
Anatomy of a Nanoscale Conduction Channel Reveals the Mechanism of a High-Performance Memristor
NASA Astrophysics Data System (ADS)
Miao, Feng; Strachan, John Paul; Yang, J. Joshua; Yi, Wei; Goldfarb, Ilan; Zhang, M.-X.; Torrezan, Antonio C.; Eschbach, Peter; Kelley, Ronald D.; Medeiros-Ribeiro, Gilberto; Williams, R. Stanley
2012-02-01
Two major challenges for resistance memory devices (memristors) based on conductivity changes in oxide materials are better performance and understanding of the microscopic picture of the switching. After researchers' relentless pursuit for years, tantalum oxide-based memristors have rapidly risen to be the top candidate, showing fast speed, high endurance and excellent scalability. While the microscopic picture of these devices remains obscure, by employing a precise method for locating and directly visualizing the conduction channel, here we observed a nanoscale channel consisting of an amorphous Ta(O) solid solution surrounded by crystalline Ta2O5. Structural and chemical analyses of the channel combined with temperature dependent transport measurements revealed a unique resistance switching mechanism: the modulation of the channel elemental composition, and thus the conductivity, by the cooperative influence of drift, diffusion and thermophoresis, which seem to enable the high switching performance observed. (Miao*, Strachan*, Yang* et al., Advanced Materials. DOI: 10.1002/adma201103379 (2011))
Development of Nanostructured Austempered Ductile Cast Iron
NASA Astrophysics Data System (ADS)
Panneerselvam, Saranya
Austempered Ductile Cast Iron is emerging as an important engineering materials in recent years because of its excellent combination of mechanical properties such as high strength with good ductility, good fatigue strength and fracture toughness together with excellent wear resistance. These combinations of properties are achieved by the microstructure consisting of acicular ferrite and high carbon austenite. Refining of the ausferritic microstructure will further enhance the mechanical properties of ADI and the presence of proeutectoid ferrite in the microstructure will considerably improve the ductility of the material. Thus, the focus of this investigation was to develop nanostructured austempered ductile cast iron (ADI) consisting of proeutectoid ferrite, bainitic ferrite and high carbon austenite and to determine its microstructure-property relationships. Compact tension and cylindrical tensile test samples were prepared as per ASTM standards, subjected to various heat treatments and the mechanical tests including the tensile tests, plane strain fracture toughness tests, hardness tests were performed as per ASTM standards. Microstructures were characterized by optical metallography, X-ray diffraction, SEM and TEM. Nanostructured ADI was achieved by a unique heat treatment consisting of austenitization at a high temperature and subsequent plastic deformation at the same austenitizing temperature followed by austempering. The investigation also examined the effect of cryogenic treatment, effect of intercritical austenitizing followed by single and two step austempering, effect of high temperature plastic deformation on the microstructure and mechanical properties of the low alloyed ductile cast iron. The mechanical and thermal stability of the austenite was also investigated. An analytical model has been developed to understand the crack growth process associated with the stress induced transformation of retained austenite to martensite.
Yu, Minghao; Zhang, Yangfan; Zeng, Yinxiang; Balogun, Muhammad-Sadeeq; Mai, Kancheng; Zhang, Zishou; Lu, Xihong; Tong, Yexiang
2014-07-16
A kind of multiwalled carbon-nanotube (MWCNT)/polydimethylsiloxane (PDMS) film with excellent conductivity and mechanical properties is developed using a facile and large-scale water surface assisted synthesis method. The film can act as a conductive support for electrochemically active PANI nano fibers. A device based on these PANI/MWCNT/PDMS electrodes shows good and stable capacitive behavior, even under static and dynamic stretching conditions. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Sahoo, P. K.; Aepuru, Radhamanohar; Panda, Himanshu Sekhar; Bahadur, D.
2015-01-01
In-situ homogeneous dispersion of noble metals in three-dimensional graphene sheets is a key tactic for producing macroscopic architecture, which is desirable for practical applications, such as electromagnetic interference shielding and catalyst. We report a one-step greener approach for developing porous architecture of 3D-graphene/noble metal (Pt and Ag) nanocomposite monoliths. The resulting graphene/noble metal nanocomposites exhibit a combination of ultralow density, excellent elasticity, and good electrical conductivity. Moreover, in order to illuminate the advantages of the 3D-graphene/noble metal nanocomposites, their electromagnetic interference (EMI) shielding and electrocatalytic performance are further investigated. The as-synthesized 3D-graphene/noble metal nanocomposites exhibit excellent EMI shielding effectiveness when compared to bare graphene; the effectiveness has an average of 28 dB in the 8.2–12.4 GHz X-band range. In the electro-oxidation of methanol, the 3D-graphene/Pt nanocomposite also exhibits significantly enhanced electrocatalytic performance and stability than compared to reduced graphene oxide/Pt and commercial Pt/C. PMID:26638827
NASA Astrophysics Data System (ADS)
Zhao, Zhiren; Li, Kebin; Muhmood, Tahir; Xia, Mingzhu; Wang, Fengyun
2018-03-01
Exfoliation of porous g-C3N4 has been proved a very effective way to prepare g-C3N4 nanosheets (2D layered materials). Here, we present an environment-friendly, high-efficiency and easy scale-up preparation method of curly leaf-like g-C3N4 nanosheets (CL-CN) by liquid-phase exfoliation of honeycomb-like porous g-C3N4 (HP-CN). Two-dimensional curly nanosheets have induced excellent physicochemical properties, i.e. large surface area, high fluorescence quantum efficiency, wide band gap and good water-dispersibility. The photocatalytic performance of CL-CN in degradation of RhB under visible light is much better than that of honeycomb-like porous g-C3N4 and bulk g-C3N4. The improved photocatalytic performance of CL-CN is well explained by the improved physicochemical properties and photocatalytic mechanism. In addition, CL-CN being a 2D layered material with excellent photoluminescence characteristic and non-toxic behavior can be widely applied in bio-medicine, bio-imaging and biosensors field.
Electrochemical investigation of MoTe2/rGO composite materials for sodium-ion battery application
NASA Astrophysics Data System (ADS)
Panda, Manas Ranjan; Anish Raj, K.; Sarkar, Ananta; Bao, Qiaoliang; Mitra, Sagar
2018-05-01
2D layered materials are found to be promising anode materials for renewable energy storage devices like sodium and Li-ion batteries and have become attractive options due to their high specific capacity, abundance and low cost. In this work, we synthesized 2D MoTe2 layers embedded in reduced graphene oxide (rGO) anode material for sodium-ion battery applications. 2D MoTe2 was prepared by a solid-state reaction in vacuum at a temperature of 800 °C. The prepared composite material MoTe2/rGO showed excellent electrochemical performance against the sodium metal. The discharge capacity of MoTe2/rGO was observed to be 280 mAh g-1 at a current rate of 1.0 A g-1 for 100 cycles. rGO plays an important role in embedding the MoTe2 structure, thus improving the electrical and mechanical properties, leading to a superior cycling stability and excellent electrochemical performances of MoTe2 for sodium-ion battery applications.
Wang, Junjie; Tian, Pei; Li, Kexun; Ge, Baochao; Liu, Di; Liu, Yi; Yang, Tingting; Ren, Rong
2016-12-01
This study investigated the performance of nano spinel nest-like oxygen-deficient Cu 1.5 Mn 1.5 O 4 doping activated carbon (AC) as air cathode in microbial fuel cell (MFC). The Cu 1.5 Mn 1.5 O 4 was synthesized via hydrothermal method and subsequent annealed. The maximum power density (MPD) of MFC with oxygen-deficient Cu 1.5 Mn 1.5 O 4 modified cathode was 1928±18mWm -2 , which was 1.53 times higher than the bare cathode. The electrochemical studies showed that Cu 1.5 Mn 1.5 O 4 doping AC exhibited higher kinetic activity and lower resistance. The mechanism of oxygen reduction for the catalyst was a four electron pathway. The oxygen deficient of Cu 1.5 Mn 1.5 O 4 played an important role in catalytic activity. So Cu 1.5 Mn 1.5 O 4 would be an excellent promising catalyst for ORR in MFC. Copyright © 2016 Elsevier Ltd. All rights reserved.
Meso-Decorated Switching-Knot Gels
NASA Astrophysics Data System (ADS)
Gong, Jin; Sawamura, Kensuke; Makino, Masato; Kabir, M. H.; Furukawa, Hidemitsu
Gels are a new material having three-dimensional network structures of macromolecules. They possess excellent properties as swellability, high permeability and biocompatibility, and have been applied in various fields of daily life, food, medicine, architecture, and chemistry .In this study, we tried to prepare new multi-functional and high-strength gels by using Meso-Decoration (Meso-Deco), one new method of structure design at intermediate mesoscale. High-performance rigid-rod aromatic polymorphic crystals. The strengthening of gels can be realized by meso-decorating the gels' structure using high-performance polymorphic crystals. New gels with good mechanical properties, novel optical properties and thermal properties are expected to be developed.
NASA Astrophysics Data System (ADS)
Geantă, V.; Cherecheș, T.; Lixandru, P.; Voiculescu, I.; Ștefănoiu, R.; Dragnea, D.; Zecheru, T.; Matache, L.
2017-06-01
Due to excellent mechanical properties, high entropy alloys from the system AlxCrFeCoNi can be used successfully to create composite structures containing both metallic and ceramic plates, which resists at dynamic load during high speeds impact (like projectiles, explosion). The paper presents four different composite structures made from a combination of metallic materials and ceramics plates: duralumin-ceramics, duralumin-ceramics-HEA, HEA-ceramics-HEA, HEA-ceramics-duralumin. Numerical simulation of impact behavior of the composite structures was performed by virtual methods, taking into account the mechanical properties of both materials. The best results were obtained using composite structures HEA-ceramics-HEA, HEA-ceramics-duralumin.
Zhou, Yongquan; Xie, Jian; Li, Liangliang; Ma, Mingzhi
2014-01-01
Bat algorithm (BA) is a novel stochastic global optimization algorithm. Cloud model is an effective tool in transforming between qualitative concepts and their quantitative representation. Based on the bat echolocation mechanism and excellent characteristics of cloud model on uncertainty knowledge representation, a new cloud model bat algorithm (CBA) is proposed. This paper focuses on remodeling echolocation model based on living and preying characteristics of bats, utilizing the transformation theory of cloud model to depict the qualitative concept: “bats approach their prey.” Furthermore, Lévy flight mode and population information communication mechanism of bats are introduced to balance the advantage between exploration and exploitation. The simulation results show that the cloud model bat algorithm has good performance on functions optimization. PMID:24967425
Engineered elastomeric proteins with dual elasticity can be controlled by a molecular regulator.
Cao, Yi; Li, Hongbin
2008-08-01
Elastomeric proteins are molecular springs that confer excellent mechanical properties to many biological tissues and biomaterials. Depending on the role performed by the tissue or biomaterial, elastomeric proteins can behave as molecular springs or shock absorbers. Here we combine single-molecule atomic force microscopy and protein engineering techniques to create elastomeric proteins that can switch between two distinct types of mechanical behaviour in response to the binding of a molecular regulator. The proteins are mechanically labile by design and behave as entropic springs with an elasticity that is governed by their configurational entropy. However, when a molecular regulator binds to the protein, it switches into a mechanically stable state and can act as a shock absorber. These engineered proteins effectively mimic and combine the two extreme forms of elastic behaviour found in natural elastomeric proteins, and thus represent a new type of smart nanomaterial that will find potential applications in nanomechanics and material sciences.
Bioinspired Bouligand cellulose nanocrystal composites: a review of mechanical properties
NASA Astrophysics Data System (ADS)
Natarajan, Bharath; Gilman, Jeffrey W.
2017-12-01
The twisted plywood, or Bouligand, structure is the most commonly observed microstructural motif in natural materials that possess high mechanical strength and toughness, such as that found in bone and the mantis shrimp dactyl club. These materials are isotropically toughened by a low volume fraction of soft, energy-dissipating polymer and by the Bouligand structure itself, through shear wave filtering and crack twisting, deflection and arrest. Cellulose nanocrystals (CNCs) are excellent candidates for the bottom-up fabrication of these structures, as they naturally self-assemble into `chiral nematic' films when cast from solutions and possess outstanding mechanical properties. In this article, we present a review of the fabrication techniques and the corresponding mechanical properties of Bouligand biomimetic CNC nanocomposites, while drawing comparison to the performance standards set by tough natural composite materials. This article is part of a discussion meeting issue `New horizons for cellulose nanotechnology'.
NASA Astrophysics Data System (ADS)
Ding, Jie; Tian, Tongfei; Meng, Qing; Guo, Zaiping; Li, Weihua; Zhang, Peng; Ciacchi, Fabio T.; Huang, Jewel; Yang, Wenrong
2013-08-01
Lithium ion batteries are attractive power sources for the consumer electronics market and are being aggressively developed for road transportation. Nevertheless, issues with safety and reliability need to be solved prior to the large-scale uptake of these batteries. There have recently been significant development and assessment of materials with resistance to mechanical abuse, with the aims of reinforcing the battery and preventing puncturing during a crash. Most of the work on battery mechanical safety has concentrated on the external packaging of batteries, with little attention being paid to the enclosed electrolyte. We report on smart multifunctional fluids that act as both highly conductive electrolytes and intrinsic mechanical protectors for lithium ion batteries. These fluids exhibit a shear thickening effect under pressure or impact and thus demonstrate excellent resistance to crushing. Also, the fluids show higher ionic conductivities and comparable redox stability windows to the commercial liquid electrolytes.
Liu, Yan-Jun; Cao, Wen-Tao; Ma, Ming-Guo; Wan, Pengbo
2017-08-02
Robust, stretchable, and strain-sensitive hydrogels have recently attracted immense research interest because of their potential application in wearable strain sensors. The integration of the synergistic characteristics of decent mechanical properties, reliable self-healing capability, and high sensing sensitivity for fabricating conductive, elastic, self-healing, and strain-sensitive hydrogels is still a great challenge. Inspired by the mechanically excellent and self-healing biological soft tissues with hierarchical network structures, herein, functional network hydrogels are fabricated by the interconnection between a "soft" homogeneous polymer network and a "hard" dynamic ferric (Fe 3+ ) cross-linked cellulose nanocrystals (CNCs-Fe 3+ ) network. Under stress, the dynamic CNCs-Fe 3+ coordination bonds act as sacrificial bonds to efficiently dissipate energy, while the homogeneous polymer network leads to a smooth stress-transfer, which enables the hydrogels to achieve unusual mechanical properties, such as excellent mechanical strength, robust toughness, and stretchability, as well as good self-recovery property. The hydrogels demonstrate autonomously self-healing capability in only 5 min without the need of any stimuli or healing agents, ascribing to the reorganization of CNCs and Fe 3+ via ionic coordination. Furthermore, the resulted hydrogels display tunable electromechanical behavior with sensitive, stable, and repeatable variations in resistance upon mechanical deformations. Based on the tunable electromechanical behavior, the hydrogels can act as a wearable strain sensor to monitor finger joint motions, breathing, and even the slight blood pulse. This strategy of building synergistic "soft and hard" structures is successful to integrate the decent mechanical properties, reliable self-healing capability, and high sensing sensitivity together for assembling a high-performance, flexible, and wearable strain sensor.
Friction Stir Welding of ODS and RAFM Steels
Yu, Zhenzhen; Feng, Zhili; Hoelzer, David; ...
2015-09-14
Advanced structural materials such as oxide dispersion strengthened steels and reduced-activation ferritic/martensitic steels are desired in fusion reactors as primary candidate materials for first wall and blanket structures, due to their excellent radiation and high-temperature creep resistance. However, their poor fusion weldability has been the major technical challenge limiting practical applications. For this reason, solid-state friction stir welding (FSW) has been considered for such applications. In this paper, the effect of FSW parameters on joining similar and dissimilar advanced structural steels was investigated. Scanning electron microscopy and electron backscatter diffraction methods were used to reveal the effects of FSW onmore » grain size, micro-texture distribution, and phase stability. Hardness mapping was performed to evaluate mechanical properties. Finally, post weld heat treatment was also performed to tailor the microstructure in the welds in order to match the weld zone mechanical properties to the base material.« less
Sun, Li; Kong, Weibang; Wu, Hengcai; Wu, Yang; Wang, Datao; Zhao, Fei; Jiang, Kaili; Li, Qunqing; Wang, Jiaping; Fan, Shoushan
2016-01-07
Mesoporous lithium titanate (LTO) nanoclusters are in situ synthesized in a network of super aligned carbon nanotubes (SACNTs) via a solution-based method followed by heat treatment in air. In the LTO-CNT composite, SACNTs not only serve as the skeleton to support a binder-free electrode, but also render the composite with high conductivity, flexibility, and mechanical strength. The homogeneously dispersed LTO nanoclusters among the SACNTs allow each LTO grain to effectively access the electrolyte and the conductive network, benefiting both ion and electron transport. By the incorporation of LTO into the CNT network, mechanical reinforcement is also achieved. When serving as a negative electrode for lithium ion batteries, such a robust composite-network architecture provides the electrodes with effective charge transport and structural integrity, leading to high-performance flexible electrodes with high capacity, high rate capability, and excellent cycling stability.
Superelastic SMA U-shaped dampers with self-centering functions
NASA Astrophysics Data System (ADS)
Wang, Bin; Zhu, Songye
2018-05-01
As high-performance metallic materials, shape memory alloys (SMAs) have been investigated increasingly by the earthquake engineering community in recent years, because of their remarkable self-centering (SC) and energy-dissipating capabilities. This paper systematically presents an experimental study on a novel superelastic SMA U-shaped damper (SMA-UD) with SC function under cyclic loading. The mechanical properties, including strength, SC ability, and energy-dissipating capability with varying loading amplitudes and strain rates are evaluated. Test results show that excellent and stable flag-shaped hysteresis loops are exhibited in multiple loading cycles. Strain rate has a negligible effect on the cyclic behavior of the SMA-UD within the dynamic frequency range of typical interest in earthquake engineering. Furthermore, a numerical investigation is performed to understand the mechanical behavior of the SMA-UD. The numerical model is calibrated against the experimental results with reasonable accuracy. Then, the stress–strain states with different phase transformations are also discussed.
Cellulose nanofibers/reduced graphene oxide flexible transparent conductive paper.
Gao, Kezheng; Shao, Ziqiang; Wu, Xue; Wang, Xi; Li, Jia; Zhang, Yunhua; Wang, Wenjun; Wang, Feijun
2013-08-14
The cellulose nanofibers (CNFs) paper exhibit high visible light transmittance, high mechanical strength, and excellent flexibility. Therefore, CNFs paper may be an excellent substrate material for flexible transparent electronic devices. In this paper, we endeavor to prepare CNFs-based flexible transparent conductive paper by layer-by-layer (LbL) assembly using divalent copper ions (Cu(2+)) as the crosslinking agent. The thickness of the reduced graphene oxide (RGO) active layer in the CNFs paper can be controlled by the cycle times of the LbL assembly. CNFs/[RGO]20 paper has the sheet resistances of ∼2.5 kΩ/□, and the transmittance of about 76% at a wavelength of 550 nm. Furthermore, CNFs/[RGO]20 paper inherits the excellent mechanical properties of CNFs paper, and the ultimate strength is about 136 MPa. CNFs-based flexible transparent conductive paper also exhibits excellent electrical stability and flexibility. Copyright © 2013. Published by Elsevier Ltd.
Robust and Elastic Polymer Membranes with Tunable Properties for Gas Separation
Cao, Peng -Fei; Li, Bingrui; Hong, Tao; ...
2017-07-17
Here, polymer membranes with the capability to process a massive volume of gas are especially attractive for practical applications of gas separation. Although much effort has been devoted to develop novel polymer membranes with increased selectivity, the overall gas-separation performance and lifetime of membrane are still negatively affected by the weak mechanical performance, low plasticization resistance and poor physical aging tolerance. Recently, elastic polymer membranes with tunable mechanical properties have been attracting significant attentions due to their tremendous potential applications. Herein, we report a series of urethanerich PDMS-based polymer networks (U-PDMS-NW) with improved mechanical performance for gas separation. The cross-linkmore » density of U-PDMS-NWs is tailored by varying the molecular weight ( M n) of PDMS. The U-PDMS-NWs show up to 400% elongation and tunable Young’s modulus (1.3–122.2 MPa), ultimate tensile strength (1.1–14.3 MPa), and toughness (0.7–24.9 MJ/m 3). All of the U-PDMS-NWs exhibit salient gas-separation performance with excellent thermal resistance and aging tolerance, high gas permeability (>100 Barrer), and tunable gas selectivity (up to α[ P CO2/ P N2] ≈ 41 and α[ P CO2/ P CH4] ≈ 16). With well-controlled mechanical properties and gas-separation performance, these U-PDMS-NW can be used as a polymermembrane platform not only for gas separation but also for other applications such as microfluidic channels and stretchable electronic devices.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Cao, Peng -Fei; Li, Bingrui; Hong, Tao
Here, polymer membranes with the capability to process a massive volume of gas are especially attractive for practical applications of gas separation. Although much effort has been devoted to develop novel polymer membranes with increased selectivity, the overall gas-separation performance and lifetime of membrane are still negatively affected by the weak mechanical performance, low plasticization resistance and poor physical aging tolerance. Recently, elastic polymer membranes with tunable mechanical properties have been attracting significant attentions due to their tremendous potential applications. Herein, we report a series of urethanerich PDMS-based polymer networks (U-PDMS-NW) with improved mechanical performance for gas separation. The cross-linkmore » density of U-PDMS-NWs is tailored by varying the molecular weight ( M n) of PDMS. The U-PDMS-NWs show up to 400% elongation and tunable Young’s modulus (1.3–122.2 MPa), ultimate tensile strength (1.1–14.3 MPa), and toughness (0.7–24.9 MJ/m 3). All of the U-PDMS-NWs exhibit salient gas-separation performance with excellent thermal resistance and aging tolerance, high gas permeability (>100 Barrer), and tunable gas selectivity (up to α[ P CO2/ P N2] ≈ 41 and α[ P CO2/ P CH4] ≈ 16). With well-controlled mechanical properties and gas-separation performance, these U-PDMS-NW can be used as a polymermembrane platform not only for gas separation but also for other applications such as microfluidic channels and stretchable electronic devices.« less
Király, László; Tamás, Csaba
2015-06-21
Outcome of arterial switch operation for transposition of the great arteries with/without ventricular septal defect is a service key-performance-indicator. The aim of the authors was to assess patient characteristics and parameters in the perioperative course. In the setting of a newly-established, comprehensive tertiary-care center, primary complete repair was performed including associated anomalies, e.g. transverse arch repairs. Patients with d-transposition were grouped according to coexistence of ventricular septal defect. 118 arterial switch operations were performed between 2007 and 2014 with 96.62% survival (114/118). Ventricular septal defect and repair of associated anomalies did not yield worse outcome. Left ventricular re-training with late presentation necessitated mechanical circulatory support for 4.5±1.5 days. D-transposition is suitable for standardization of clinical algorithm and surgical technique. Quality standards contribute to excellent outcomes, minimize complications, and serve as blueprint for other neonatal open-heart procedures. Availability of mechanical circulatory support is key for single-stage left ventricular re-training beyond the neonatal period.
Performance and reliability enhancement of linear coolers
NASA Astrophysics Data System (ADS)
Mai, M.; Rühlich, I.; Schreiter, A.; Zehner, S.
2010-04-01
Highest efficiency states a crucial requirement for modern tactical IR cryocooling systems. For enhancement of overall efficiency, AIM cryocooler designs where reassessed considering all relevant loss mechanisms and associated components. Performed investigation was based on state-of-the-art simulation software featuring magnet circuitry analysis as well as computational fluid dynamics (CFD) to realistically replicate thermodynamic interactions. As a result, an improved design for AIM linear coolers could be derived. This paper gives an overview on performance enhancement activities and major results. An additional key-requirement for cryocoolers is reliability. In recent time, AIM has introduced linear coolers with full Flexure Bearing suspension on both ends of the driving mechanism incorporating Moving Magnet piston drive. In conjunction with a Pulse-Tube coldfinger these coolers are capable of meeting MTTF's (Mean Time To Failure) in excess of 50,000 hours offering superior reliability for space applications. Ongoing development also focuses on reliability enhancement, deriving space technology into tactical solutions combining both, excelling specific performance with space like reliability. Concerned publication will summarize the progress of this reliability program and give further prospect.
He, Shuijian; Chen, Wei
2015-04-28
Because of the excellent intrinsic properties, especially the strong mechanical strength, extraordinarily high surface area and extremely high conductivity, graphene is deemed as a versatile building block for fabricating functional materials for energy production and storage applications. In this article, the recent progress in the assembly of binder-free and self-standing graphene-based materials, as well as their application in supercapacitors are reviewed, including electrical double layer capacitors, pseudocapacitors, and asymmetric supercapacitors. Various fabrication strategies and the influence of structures on the capacitance performance of 3D graphene-based materials are discussed. We finally give concluding remarks and an outlook on the scientific design of binder-free and self-standing graphene materials for achieving better capacitance performance.
NASA Astrophysics Data System (ADS)
He, Shuijian; Chen, Wei
2015-04-01
Because of the excellent intrinsic properties, especially the strong mechanical strength, extraordinarily high surface area and extremely high conductivity, graphene is deemed as a versatile building block for fabricating functional materials for energy production and storage applications. In this article, the recent progress in the assembly of binder-free and self-standing graphene-based materials, as well as their application in supercapacitors are reviewed, including electrical double layer capacitors, pseudocapacitors, and asymmetric supercapacitors. Various fabrication strategies and the influence of structures on the capacitance performance of 3D graphene-based materials are discussed. We finally give concluding remarks and an outlook on the scientific design of binder-free and self-standing graphene materials for achieving better capacitance performance.
NASA Astrophysics Data System (ADS)
Wang, XiaoFei; Zhu, Yong; Zhu, Sheng; Fan, JinChen; Xu, QunJie; Min, YuLin
2018-03-01
In this work, we have successfully synthesized the S/N dual-doped carbon nanosheets which are strongly coupled with Co x O y nanoparticles (SNCC) by calcinating cobalt/dithizone complex precursor following KOH activation. The SNCC as anode shows the wonderful charge capacity of 1200 mAh g-1 after 400th cycles at 1000 mA g-1 for Li-ion storage. The superior electrochemical properties illustrate that the SNCC can be a candidate for high-performance anode material of lithium-ion batteries (LIBs) because of the facile preparation method and excellent performance. Significantly, we also discuss the mechanism for the SNCC from the strong synergistic effect perspective.
Intrinsically stretchable and healable semiconducting polymer for organic transistors
Oh, Jin Young; Rondeau-Gagné, Simon; Chiu, Yu-Cheng; ...
2016-11-16
Developing a molecular design paradigm for conjugated polymers applicable to intrinsically stretchable semiconductors is crucial toward the next generation of wearable electronics. Current molecular design rules for high charge carrier mobility semiconducting polymers are unable to render the fabricated devices simultaneously stretchable and mechanically robust. Here in this paper, we present a new design concept to address the above challenge, while maintaining excellent electronic performance. This concept involves introducing chemical moieties to promote dynamic non-covalent crosslinking of the conjugated polymers. These non-covalent covalent crosslinking moieties are able to undergo an energy dissipation mechanism through breakage of bonds when strain ismore » applied, while retaining its high charge transport ability. As a result, our polymer is able to recover its high mobility performance (>1 cm 2/Vs) even after 100 cycles at 100% applied strain. Furthermore, we observed that the polymer can be efficiently repaired and/or healed with a simple heat and solvent treatment. These improved mechanical properties of our fabricated stretchable semiconductor enabled us to fabricate highly stretchable and high performance wearable organic transistors. This material design concept should illuminate and advance the pathways for future development of fully stretchable and healable skin-inspired wearable electronics.« less
Intrinsically stretchable and healable semiconducting polymer for organic transistors
DOE Office of Scientific and Technical Information (OSTI.GOV)
Oh, Jin Young; Rondeau-Gagné, Simon; Chiu, Yu-Cheng
Developing a molecular design paradigm for conjugated polymers applicable to intrinsically stretchable semiconductors is crucial toward the next generation of wearable electronics. Current molecular design rules for high charge carrier mobility semiconducting polymers are unable to render the fabricated devices simultaneously stretchable and mechanically robust. Here in this paper, we present a new design concept to address the above challenge, while maintaining excellent electronic performance. This concept involves introducing chemical moieties to promote dynamic non-covalent crosslinking of the conjugated polymers. These non-covalent covalent crosslinking moieties are able to undergo an energy dissipation mechanism through breakage of bonds when strain ismore » applied, while retaining its high charge transport ability. As a result, our polymer is able to recover its high mobility performance (>1 cm 2/Vs) even after 100 cycles at 100% applied strain. Furthermore, we observed that the polymer can be efficiently repaired and/or healed with a simple heat and solvent treatment. These improved mechanical properties of our fabricated stretchable semiconductor enabled us to fabricate highly stretchable and high performance wearable organic transistors. This material design concept should illuminate and advance the pathways for future development of fully stretchable and healable skin-inspired wearable electronics.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Guo, Yuan, E-mail: guoyuan@nwu.edu.cn; Institut de Chimie Organique et Analytique, Université d’Orléans, 45067 Orléans Cedex 2; An, Jing
2015-03-15
Graphical abstract: Visual fluorescence emission of probe 3a. - Highlights: • Five novel coumarin-based fluorescent probes were developed. • A reasonable reaction mechanism was proposed and verified. • All the probes showed excellent optical properties. - Abstract: In this work, five novel coumarin-based fluorescent probes for mercury ions were developed. The recognition of mercury ions was performed via the mercury(II)-promoted desulfurization of the probes and a reasonable reaction mechanism was proposed and verified by thin layer chromatography (TLC), {sup 1}H nuclear magnetic resonance ({sup 1}H NMR) and fluorescence intensity measurements. All the probes showed excellent optical properties and exclusively distinguishmore » mercury ions from various metal ions in aqueous solutions at pH 7.4. The linear response of the fluorescence emission intensity for all the probes to the concentration of mercury ions was obtained over a wide range of 0.06–1.5 μM (0.06–0.9 μM for probe 3e). In addition, the biological toxicity and the confocal fluorescence images of probe 3a were also tested on MCF-7 cells.« less
A novel process for preparing fireproofing materials from various industrial wastes.
Su, Yi; Wang, Lei; Zhang, Fu-Shen
2018-05-09
In the current study, the possibility of incorporating various industrial wastes into fireproofing materials was investigated. It was found that the newly developed materials showed excellent air sealing and fireproofing performance, with air permeability coefficients 3 to 4 orders of magnitude smaller than traditional fire prevention materials. The influence of different parameters on the air permeability was investigated, and the air sealing mechanisms were clarified through microstructure analysis. In addition, the workability and mechanical properties of the fireproofing materials for practical application in coal mine were studied. The new materials derived from industrial wastes had a compact and monolithic structure, and the excellent air tightness could be attributed to the pozzolanic activity of the industrial wastes and the film-forming property of organic polymers. Among the industrial wastes examined, a special coal fly ash with high pozzolanic activity and little free calcium oxide derived the best product with air permeability coefficient, tensile strength and breaking elongation of 4.17 × 10 -8 m 2 /s, 2.14 MPa and 48.90%, respectively. This study provides an economical, environmentally friendly and promising approach for industrial wastes recycling. Copyright © 2018 Elsevier Ltd. All rights reserved.
Managing Excellence in Sports Performance.
ERIC Educational Resources Information Center
Lyle, John W. B.
1997-01-01
Conceptualizes excellence in sports performance and suggests that there is a failure to distinguish between community recreation and performance sports as well as lack of knowledge about talent identification. Proposes a structure for management and investment in education and training in the field. (SK)
Design of a new static micromixer having simple structure and excellent mixing performance.
Kamio, Eiji; Ono, Tsutomu; Yoshizawa, Hidekazu
2009-06-21
A novel micromixer with simple construction and excellent mixing performance is developed. The micromixer is composed of two stainless steel tubes with different diameters: one is an outer tube and another is an inner tube which fits in the outer tube. In this micromixer, one reactant fluid flows in the mixing zone from the inner tube and the other flows from the outer tube. The excellent mixing performance is confirmed by comparing the results of a Villermaux/Dushman reaction with those for the other micromixers. The developed micromixer has a mixing cascade with multiple means and an asymmetric structure to achieve effective mixing. The excellent mixing performance of the developed micromixer suggests that serial addition of multiple phenomena for mixing will give us an efficient micromixing.
Qi, Yu; Wang, Hui; Wei, Kai; Yang, Ya; Zheng, Ru-Yue; Kim, Ick Soo; Zhang, Ke-Qin
2017-01-01
The biological performance of artificial biomaterials is closely related to their structure characteristics. Cell adhesion, migration, proliferation, and differentiation are all strongly affected by the different scale structures of biomaterials. Silk fibroin (SF), extracted mainly from silkworms, has become a popular biomaterial due to its excellent biocompatibility, exceptional mechanical properties, tunable degradation, ease of processing, and sufficient supply. As a material with excellent processability, SF can be processed into various forms with different structures, including particulate, fiber, film, and three-dimensional (3D) porous scaffolds. This review discusses and summarizes the various constructions of SF-based materials, from single structures to multi-level structures, and their applications. In combination with single structures, new techniques for creating special multi-level structures of SF-based materials, such as micropatterning and 3D-printing, are also briefly addressed. PMID:28273799
High-Sensitivity and Low-Power Flexible Schottky Hydrogen Sensor Based on Silicon Nanomembrane.
Cho, Minkyu; Yun, Jeonghoon; Kwon, Donguk; Kim, Kyuyoung; Park, Inkyu
2018-04-18
High-performance and low-power flexible Schottky diode-based hydrogen sensor was developed. The sensor was fabricated by releasing Si nanomembrane (SiNM) and transferring onto a plastic substrate. After the transfer, palladium (Pd) and aluminum (Al) were selectively deposited as a sensing material and an electrode, respectively. The top-down fabrication process of flexible Pd/SiNM diode H 2 sensor is facile compared to other existing bottom-up fabricated flexible gas sensors while showing excellent H 2 sensitivity (Δ I/ I 0 > 700-0.5% H 2 concentrations) and fast response time (τ 10-90 = 22 s) at room temperature. In addition, selectivity, humidity, and mechanical tests verify that the sensor has excellent reliability and robustness under various environments. The operating power consumption of the sensor is only in the nanowatt range, which indicates its potential applications in low-power portable and wearable electronics.
NASA Technical Reports Server (NTRS)
Dezern, James F. (Technical Monitor); Chang, Alice C.
1999-01-01
As part of a program to develop structural adhesives for high performance aerospace applications, research continued on the development of modified phenylethynyl containing imides, LaRC(trademark)MPEIs. In previous reports, the polymer properties were controlled by varying the molecular weight, the amount of branching, and the phenylethynyl content and by blending with low molecular weight materials. This research involves changing the flexibility in the copolyimide backbone of the branched, phenylethynyl terminated adhesives. These adhesives exhibit excellent processability at pressures as low as 15 psi and temperatures as low as 288 C. The Ti/Ti lap shear specimens are processable in an autoclave or a temperature programmable oven under a vacuum bag at 288-300 C without external pressure. The cured polymers exhibit high mechanical properties and excellent solvent resistance. The chemistry and properties of these adhesives are presented.
Allergoids for allergy treatment.
Carnes, Jeronimo; Gallego, Maria T; Moya, Raquel; Iraola, Victor
2018-02-21
Background Chemically modified allergen extracts, known as allergoids, are commonly used for treating allergic patients. In general terms, the concept of allergoids implies allergen extracts with a reduction of their allergenicity maintaining their immunogenicity. Different methods to obtain allergoids have been developed in the past years, opening attractive lines of research. Objective To review the different approaches to allergoid development as well as their characterization, mechanism of action and efficacy and safety issues. Methods A revision and analysis of the different types of allergoids has been performed, with special attention to patents submitted and granted in the last years. Additionally, updated information about the mechanism of action and clinical evidence and safety of allergoids has been discussed. Results Principally, allergoids are obtained by the polymerization of native allergen extracts with aldehydes, including formaldehyde or glutaraldehyde. However, recent patents and publications about different chemical modifications have been presented, as well as about the use of new adjuvants with allergoids. Regarding the characterization, allergoids require more sophisticated analytical methods than native extracts, as a consequence of their properties and characteristics. Conclusion In the last years, the partial understanding of the mechanism of action and the generation of clinical evidence of different types of allergoids, linked to their excellent safety profile and their convenience for a quick build up phase, have made of allergoids an excellent product for allergy treatment. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.
NASA Technical Reports Server (NTRS)
Mcgrath, J. E.; Hedrick, J. L.; Webster, D. C.; Johnson, B. C.; Mohanty, D. K.; Yilgor, I.
1983-01-01
Poly(arylene ether sulfones) comprise a class of materials known as engineering thermoplastics which have a variety of important applications. These polymers are tough, rigid materials with good mechanical properties over a wide temperature range, and they are processed by conventional methods into products typically having excellent hydrolytic, thermal, oxidative and dimensional stability. Wholly aromatic random copolymers of hydroquinone and biphenol with 4.4 prime dichlorodiphenyl sulfone were synthesized via mechanical nucleophilic displacement. Their structures were characterized and mechanical behavior studied. These tough, ductile copolymers show excellent radiation resistance to electron beam treatment and retain much of the mechanical properties up to at least 700 Mrads under argon.
Properties of radiation stable insulation composites for fusion magnet
NASA Astrophysics Data System (ADS)
Wu, Zhixiong; Huang, Rongjin; Huang, Chuanjun; Li, Laifeng
2017-09-01
High field superconducting magnets made of Nb3Al will be a suitable candidate for future fusion device which can provide magnetic field over 15T without critical current degradation caused by strain. The higher magnetic field and the larger current will produce a huge electromagnetic force. Therefore, it is necessary to develop high strength cryogenic structural materials and electrical insulation materials with excellent performance. On the other hand, superconducting magnets in fusion devices will experience significant nuclear radiation exposure during service. While typical structural materials like stainless steel and titanium have proven their ability to withstand these conditions, electrical insulation materials used in these coils have not fared as well. In fact, recent investigations have shown that electrical insulation breakdown is a limiting factor in the performance of high field magnets. The insulation materials used in the high field fusion magnets should be characterized by excellent mechanical properties, high radiation resistivity and good thermal conductivity. To meet these objectives, we designed various insulation materials based on epoxy resins and cyanate ester resins and investigated their processing characteristic and mechanical properties before and after irradiation at low temperature. In this paper, the recent progress of the radiation stable insulation composites for high field fusion magnet is presented. The materials have been irradiated by 60Co γ-ray irradiation in air at ambient temperature with a dose rate of 300 Gy/min. The total doses of 1 MGy, 5 MGy and 10 MGy were selected to the test specimens.
Flexible thin-film battery based on graphene-oxide embedded in solid polymer electrolyte
NASA Astrophysics Data System (ADS)
Kammoun, M.; Berg, S.; Ardebili, H.
2015-10-01
Enhanced safety of flexible batteries is an imperative objective due to the intimate interaction of such devices with human organs such as flexible batteries that are integrated with touch-screens or embedded in clothing or space suits. In this study, the fabrication and testing of a high performance thin-film Li-ion battery (LIB) is reported that is both flexible and relatively safer compared to the conventional electrolyte based batteries. The concept is facilitated by the use of solid polymer nanocomposite electrolyte, specifically, composed of polyethylene oxide (PEO) matrix and 1 wt% graphene oxide (GO) nanosheets. The flexible LIB exhibits a high maximum operating voltage of 4.9 V, high capacity of 0.13 mA h cm-2 and an energy density of 4.8 mW h cm-3. The battery is encapsulated using a simple lamination method that is economical and scalable. The laminated battery shows robust mechanical flexibility over 6000 bending cycles and excellent electrochemical performance in both flat and bent configurations. Finite element analysis (FEA) of the LIB provides critical insights into the evolution of mechanical stresses during lamination and bending.Enhanced safety of flexible batteries is an imperative objective due to the intimate interaction of such devices with human organs such as flexible batteries that are integrated with touch-screens or embedded in clothing or space suits. In this study, the fabrication and testing of a high performance thin-film Li-ion battery (LIB) is reported that is both flexible and relatively safer compared to the conventional electrolyte based batteries. The concept is facilitated by the use of solid polymer nanocomposite electrolyte, specifically, composed of polyethylene oxide (PEO) matrix and 1 wt% graphene oxide (GO) nanosheets. The flexible LIB exhibits a high maximum operating voltage of 4.9 V, high capacity of 0.13 mA h cm-2 and an energy density of 4.8 mW h cm-3. The battery is encapsulated using a simple lamination method that is economical and scalable. The laminated battery shows robust mechanical flexibility over 6000 bending cycles and excellent electrochemical performance in both flat and bent configurations. Finite element analysis (FEA) of the LIB provides critical insights into the evolution of mechanical stresses during lamination and bending. Electronic supplementary information (ESI) available. See DOI: 10.1039/c5nr04339e
NASA Astrophysics Data System (ADS)
Lin, Jing; Luo, Yuanfang; Zhong, Bangchao; Hu, Dechao; Jia, Zhixin; Jia, Demin
2018-05-01
A novel antioxidant (HS-s-RT) to improve the mechanical properties and anti-aging performance of styrene-butadiene (SBR) composites was prepared by antioxidant intermediate p-aminodiphenylamine (RT) grafting on the surface of halloysite nanotubes/silica hybrid (HS) via the linkage of silane coupling agent. The analysis of SEM and rubber processing analyzer (RPA) demonstrated HS-s-RT was uniformly dispersed in SBR, and stronger interfacial interaction between HS-s-RT and SBR was formed. Consequently, SBR/HS-s-RT composites have improving mechanical properties. Furthermore, the test of the retention of mechanical properties, Fourier transform infrared spectroscopy with attenuated total reflectance (FTIR-ATR), and oxidation induction time (OIT) showed HS-s-RT can effectively improve the anti-aging effect of SBR composites than corresponding low molecular-weight antioxidant N-isopropyl-N‧-phenyl-4-phenylenediamin (4010NA). Then, the mechanism of thermo-oxidative aging of SBR/HS composites was also investigated, and the superior antioxidative efficiency is attributed to the uniform dispersion and excellent migration resistance of HS-s-RT. Hence, this novel antioxidant might open up new opportunities for the fabrication of high-performance rubber composites due to its superior anti-aging effect and reinforcement.
NASA Astrophysics Data System (ADS)
Cai, Weihua; Lai, Ting; Dai, Wanlin; Ye, Jianshan
2014-06-01
A critical challenge for the construction of flexible electrochemical capacitors is the preparation of flexible electrodes with large specific capacitance and robust mechanical strength. Here, we demonstrate a facile approach to make high performance and flexible electrodes by dropping MnFe2O4/graphene hybrid inks onto flexible graphite sheets (as current collectors and substrates) and drying under an infrared lamp. MnFe2O4/graphene hybrid inks are synthesized by immobilizing the MnFe2O4 microspheres on the graphene nanosheets via a simple solvothermal route. Electrochemical studies show that MnFe2O4/graphene exhibits a high capacitance of 300 F g-1 at a current density of 0.3 A g-1. In addition, the excellent electrochemical performance of a supercapacitor consisting of a sandwich structure of two pieces of MnFe2O4/graphene hybrids modified electrodes separated by polyvinyl alcohol (PVA)-H2SO4 gel electrolyte is further explored. Our studies reveal that the flexible supercapacitor device with 227 μm thickness can achieve a maximum specific capacitance of 120 F g-1 at a current density of 0.1 A g-1 and excellent cycle performance retaining 105% capacitance after 5000 cycles. This research may offer a method for the fabrication of lightweight, stable, flexible and high performance energy storage devices.
Flow condensation on copper-based nanotextured superhydrophobic surfaces.
Torresin, Daniele; Tiwari, Manish K; Del Col, Davide; Poulikakos, Dimos
2013-01-15
Superhydrophobic surfaces have shown excellent ability to promote dropwise condensation with high droplet mobility, leading to enhanced surface thermal transport. To date, however, it is unclear how superhydrophobic surfaces would perform under the stringent flow condensation conditions of saturated vapor at high temperature, which can affect superhydrophobicity. Here, we investigate this issue employing "all-copper" superhydrophobic surfaces with controlled nanostructuring for minimal thermal resistance. Flow condensation tests performed with saturated vapor at a high temperature (110 °C) showed the condensing drops penetrate the surface texture (i.e., attain the Wenzel state with lower droplet mobility). At the same time, the vapor shear helped ameliorate the mobility and enhanced the thermal transport. At the high end of the examined vapor velocity range, a heat flux of ~600 kW m(-2) was measured at 10 K subcooling and 18 m s(-1) vapor velocity. This clearly highlights the excellent potential of a nanostructured superhydrophobic surface in flow condensation applications. The surfaces sustained dropwise condensation and vapor shear for five days, following which mechanical degradation caused a transition to filmwise condensation. Overall, our results underscore the need to investigate superhydrophobic surfaces under stringent and realistic flow condensation conditions before drawing conclusions regarding their performance in practically relevant condensation applications.
Design of flexible polyphenylene proton-conducting membrane for next-generation fuel cells
Miyake, Junpei; Taki, Ryunosuke; Mochizuki, Takashi; Shimizu, Ryo; Akiyama, Ryo; Uchida, Makoto; Miyatake, Kenji
2017-01-01
Proton exchange membrane fuel cells (PEMFCs) are promising devices for clean power generation in automotive, stationary, and portable applications. Perfluorosulfonic acid (PFSA) ionomers (for example, Nafion) have been the benchmark PEMs; however, several problems, including high gas permeability, low thermal stability, high production cost, and environmental incompatibility, limit the widespread dissemination of PEMFCs. It is believed that fluorine-free PEMs can potentially address all of these issues; however, none of these membranes have simultaneously met the criteria for both high performance (for example, proton conductivity) and durability (for example, mechanical and chemical stability). We present a polyphenylene-based PEM (SPP-QP) that fulfills the required properties for fuel cell applications. The newly designed PEM exhibits very high proton conductivity, excellent membrane flexibility, low gas permeability, and extremely high stability, with negligible degradation even under accelerated degradation conditions, which has never been achieved with existing fluorine-free PEMs. The polyphenylene PEM also exhibits reasonably high fuel cell performance, with excellent durability under practical conditions. This new PEM extends the limits of existing fluorine-free proton-conductive materials and will help to realize the next generation of PEMFCs via cost reduction as well as the performance improvement compared to the present PFSA-based PEMFC systems. PMID:29075671
Lv, Huan; Wang, Xueqin; Fu, Qiuxia; Si, Yang; Yin, Xia; Li, Xiaoran; Sun, Gang; Yu, Jianyong; Ding, Bin
2017-11-15
Construction ion-exchange membranes with superb biomolecules adsorption and purification performance plays a greatly important role in the fields of biotechnological and biopharmaceutical industry, yet still remains an extremely challenging. Herein, we in situ synthesized the cis-butenedioic anhydride grafted poly(vinyl alcohol) hydrogel nanofibrous membranes (CBA-g-PVA HNFM) by combining electrospinning technique with the grafting-copolymerization crosslinking. Taking advantages of the large specific surface area which could provide numerous sites available for functional groups and biomolecules binding, highly tortuous and interconnected porous channel for biomolecules transfer, and enhanced mechanical strength, the resultant CBA-g-PVA HNFM exhibited relatively high binding amount of 170mgg -1 , rapid equilibrium time of 8h towards the biomolecule template of lysozyme, and the performance could be tailored by regulating the buffer properties and protein concentrations. Additionally, the resultant functional HNFM also possessed superior acid resistance property, excellent reversibility and regeneration performance. More importantly, the obtained CBA-g-PVA HNFM could directly extract lysozyme from fresh chicken eggs with capacity of 125mgg -1 , exhibiting excellent practical application properties. The fabrication of proposed CBA-g-PVA HNFM offers a feasible alternative for construction of ion-exchange chromatograph column for bio-separation and purification engineering. Copyright © 2017 Elsevier Inc. All rights reserved.
Fang, Yang; Liu, Wei; Teat, Simon J.; ...
2016-12-07
We have designed and synthesized a family of high-performance inorganic-organic hybrid phosphor materials composed of extended and robust networks of one-, two- and three-dimensions. Following a bottom-up solution-based synthetic approach, these structures are constructed by connecting highly emissive Cu 4I 4 cubic clusters via carefully selected ligands that form strong Cu-N bonds. They emit intensive yellow-orange light with high luminescence quantum efficiency, coupled with large Stokes shift which greatly reduces self-absorption. They also demonstrate exceptionally high framework- and photo-stability, comparable to those of commercial phosphors. The high stabilities are the result of significantly enhanced Cu-N bonds, as confirmed by themore » DFT binding energy and electron density calculations. Possible emission mechanisms are analyzed based on the results of theoretical calculations and optical experiments. Two-component white phosphors obtained by blending blue and yellow emitters reach an internal quantum yield (IQY) as high as 82% and correlated color temperature (CCT) as low as 2534 K. The performance level of this sub-family exceeds all other types of Cu-I based hybrid systems. The combined advantages make them excellent candidates as alternative rare-earth element (REE) free phosphors for possible use in energy-efficient lighting devices.« less
Nguyen, H Q; Yu, H W; Luc, Q H; Tang, Y Z; Phan, V T H; Hsu, C H; Chang, E Y; Tseng, Y C
2014-12-05
Using a step-graded (SG) buffer structure via metal-organic chemical vapor deposition, we demonstrate a high suitability of In0.5Ga0.5As epitaxial layers on a GaAs substrate for electronic device application. Taking advantage of the technique's precise control, we were able to increase the number of SG layers to achieve a fairly low dislocation density (∼10(6) cm(-2)), while keeping each individual SG layer slightly exceeding the critical thickness (∼80 nm) for strain relaxation. This met the demanded but contradictory requirements, and even offered excellent scalability by lowering the whole buffer structure down to 2.3 μm. This scalability overwhelmingly excels the forefront studies. The effects of the SG misfit strain on the crystal quality and surface morphology of In0.5Ga0.5As epitaxial layers were carefully investigated, and were correlated to threading dislocation (TD) blocking mechanisms. From microstructural analyses, TDs can be blocked effectively through self-annihilation reactions, or hindered randomly by misfit dislocation mechanisms. Growth conditions for avoiding phase separation were also explored and identified. The buffer-improved, high-quality In0.5Ga0.5As epitaxial layers enabled a high-performance, metal-oxide-semiconductor capacitor on a GaAs substrate. The devices displayed remarkable capacitance-voltage responses with small frequency dispersion. A promising interface trap density of 3 × 10(12) eV(-1) cm(-2) in a conductance test was also obtained. These electrical performances are competitive to those using lattice-coherent but pricey InGaAs/InP systems.
Superconducting Detectors Come of Age, or Ready to Leave the Lab
NASA Technical Reports Server (NTRS)
Moseley, Samuel H.
2008-01-01
Cryogenically cooled superconducting detectors have become essential tools for a wide range of measurement applications, ranging from quantum limited heterodyne detection in the millimeter range to direct searches for dark matter with superconducting phonon detectors operating at 20 mK. Superconducting detectors have several fundamental and practical advantages which have resulted in their rapid adoption by experimenters. Their excellent performance arises in part from reductions in noise resulting from their low operating temperatures, but unique superconducting properties provide a wide range of mechanisms for detection. For example, the steep dependence of resistance with temperature on the superconductor normal transition provides a sensitive thermometer for calorimetric and bolometric applications. Parametric changes in the properties of superconducting resonators provide a mechanism for high sensitivity detection of submillil.neter photons. From a practical point of view, the use of superconducting detectors has grown rapidly because many of these devices couple well to SQUID amplifiers, which are easily integrated with the detectors. These SQUID-based amplifiers and multiplexers have matured with the detectors; they are convenient to use, and have excellent noise performance. The first generation of fully integrated large-scale superconducting detection systems is now being deployed. Improved understanding of the operation of these detectors, combined with rapidly improving fabrication techniques, is quickly expanding the capability of these detectors. I will review the development and application of superconductor-based detectors, the ultimate limits to their performance, and consider prospects for their future applications. Continued advances promise to enable important new measurements in physics, and with appropriate advances in cryogenic infrastncturem, ay result in the use of these detectors in everyday monitoring applications.
NASA Astrophysics Data System (ADS)
Li, Yuqi; Zhang, Hui; Fan, Mizi; Zheng, Peitao; Zhuang, Jiandong; Chen, Lihui
2017-04-01
Marine pollution caused by frequent oil spill accidents has brought about tremendous damages to marine ecological environment. Therefore, the facile large-scale preparation of three-dimensional (3D) porous functional materials with special wettability is in urgent demand. In this study, we report a low-cost and salt-tolerant superoleophobic aerogel for efficient oil/seawater separation. The aerogel is prepared through incorporating graphene oxide (GO) into alginate (ALG) matrix by using a facile combined freeze-drying and ionic cross-linking method. The 3D structure interconnected by ALG and GO ensures the high mechanical strength and good flexibility of the developed aerogel. The rough microstructure combined with the hydrophilicity of the aerogel ensures its excellent underwater superoleophobic and antifouling properties. High-content polysaccharides contained in the aerogel guarantees its excellent salt-tolerant property. More impressively, the developed aerogel can retain its underwater superoleophobicity even after 30 days of immersion in seawater, indicating its good stability in marine environments. Furthermore, the aerogel could separate various oil/water mixtures with high separation efficiency (>99%) and good reusability (at least 40 cycles). The facile fabrication process combined with the excellent separation performance makes it promising for practical applications in marine environments.
Operative fixation of chest wall fractures: an underused procedure?
Richardson, J David; Franklin, Glen A; Heffley, Susan; Seligson, David
2007-06-01
Chest wall fractures, including injuries to the ribs and sternum, usually heal spontaneously without specific treatment. However, a small subset of patients have fractures that produce overlying bone fragments that may produce severe pain, respiratory compromise, and, if untreated mechanically, result in nonunion. We performed open reduction and internal fixation on seven patients with multiple rib fractures-five in the initial hospitalization and two delayed--as well as 35 sternal fractures (19 immediate fixation and 16 delayed). Operative fixation was accomplished using titanium plates and screws in both groups of patients. All patients with rib fractures did well; there were no major complications or infections, and no plates required removal. Clinical results were excellent. There was one death in the sternal fracture group in a patient who was ventilator-dependent preoperatively and extubated himself in the early postoperative period. Otherwise, the results were excellent, with no complications occurring in this group. Three patients had their plates removed after boney union was achieved. No evidence of infection or nonunion occurred. The excellent results achieved in the subset of patients with severe chest wall deformities treated initially at our institution and those referred from outside suggest that operative fixation is a useful modality that is likely underused.
NASA Astrophysics Data System (ADS)
Jiang, Yao; Li, Tie-Min; Wang, Li-Ping
2015-09-01
This paper investigates the stiffness modeling of compliant parallel mechanism (CPM) based on the matrix method. First, the general compliance matrix of a serial flexure chain is derived. The stiffness modeling of CPMs is next discussed in detail, considering the relative positions of the applied load and the selected displacement output point. The derived stiffness models have simple and explicit forms, and the input, output, and coupling stiffness matrices of the CPM can easily be obtained. The proposed analytical model is applied to the stiffness modeling and performance analysis of an XY parallel compliant stage with input and output decoupling characteristics. Then, the key geometrical parameters of the stage are optimized to obtain the minimum input decoupling degree. Finally, a prototype of the compliant stage is developed and its input axial stiffness, coupling characteristics, positioning resolution, and circular contouring performance are tested. The results demonstrate the excellent performance of the compliant stage and verify the effectiveness of the proposed theoretical model. The general stiffness models provided in this paper will be helpful for performance analysis, especially in determining coupling characteristics, and the structure optimization of the CPM.
NASA Technical Reports Server (NTRS)
Montano, J. W.
1973-01-01
The mechanical properties are presented of alloy steels, 4130, 4140, 4340, 6150, and 8740. Test specimens were manufactured from approximately 1.00 inch (2.54 cm) diameter bar stock which had been heat treated to two different hardness levels. The following mechanical tests were performed at temperatures of 80 F (+26.7 C), 0 F (-17.8 C), -100 F (-73 C), and -200 F (-129 C): (1) tensile test (Ultimate, yield, modulus, elongation, and reduction of area), (2) notched tensile test, (3) charpy V-notched impact test (impact energy), and (4) double shear strength test (ultimate and yield). The test data indicate excellent tensile strength, notched/unnotched tensile ratios, ductility, impact, and shear properties at all test temperatures, except at -200 F (-129 C) where the impact strength of the higher strength group of alloy steels, 4130 (Rc-37) and 4140 (Rc-44) decreased to approximately 9 ft. lbs. (12 joules) and 6 ft. lbs. (8 joules), respectively. Chemical, metallographic, and fractographic analyses were also performed to evaluate microstructure, microhardness and the effect of decrease in temperature on the ductile to brittle failure transition.
Nonlinear viscoelastic characterization of polymer materials using a dynamic-mechanical methodology
NASA Technical Reports Server (NTRS)
Strganac, Thomas W.; Payne, Debbie Flowers; Biskup, Bruce A.; Letton, Alan
1995-01-01
Polymer materials retrieved from LDEF exhibit nonlinear constitutive behavior; thus the authors present a method to characterize nonlinear viscoelastic behavior using measurements from dynamic (oscillatory) mechanical tests. Frequency-derived measurements are transformed into time-domain properties providing the capability to predict long term material performance without a lengthy experimentation program. Results are presented for thin-film high-performance polymer materials used in the fabrication of high-altitude scientific balloons. Predictions based upon a linear test and analysis approach are shown to deteriorate for moderate to high stress levels expected for extended applications. Tests verify that nonlinear viscoelastic response is induced by large stresses. Hence, an approach is developed in which the stress-dependent behavior is examined in a manner analogous to modeling temperature-dependent behavior with time-temperature correspondence and superposition principles. The development leads to time-stress correspondence and superposition of measurements obtained through dynamic mechanical tests. Predictions of material behavior using measurements based upon linear and nonlinear approaches are compared with experimental results obtained from traditional creep tests. Excellent agreement is shown for the nonlinear model.
Solution processed aluminum paper for flexible electronics.
Lee, Hye Moon; Lee, Ha Beom; Jung, Dae Soo; Yun, Jung-Yeul; Ko, Seung Hwan; Park, Seung Bin
2012-09-11
As an alternative to vacuum deposition, preparation of highly conductive papers with aluminum (Al) features is successfully achieved by the solution process consisting of Al precursor ink (AlH(3){O(C(4)H(9))(2)}) and low temperature stamping process performed at 110 °C without any serious hydroxylation and oxidation problems. Al features formed on several kinds of paper substrates (calendar, magazine, and inkjet printing paper substrates) are less than ~60 nm thick, and their electrical conductivities were found to be as good as thermally evaporated Al film or even better (≤2 Ω/□). Strong adhesion of Al features to paper substrates and their excellent flexibility are also experimentally confirmed by TEM observation and mechanical tests, such as tape and bending tests. The solution processed Al features on paper substrates show different electrical and mechanical performance depending on the paper type, and inkjet printing paper is found to be the best substrate with high and stable electrical and mechanical properties. The Al conductive papers produced by the solution process may be applicable in disposal paper electronics.
A one-piece 3D printed flexure translation stage for open-source microscopy
NASA Astrophysics Data System (ADS)
Sharkey, James P.; Foo, Darryl C. W.; Kabla, Alexandre; Baumberg, Jeremy J.; Bowman, Richard W.
2016-02-01
Open source hardware has the potential to revolutionise the way we build scientific instruments; with the advent of readily available 3D printers, mechanical designs can now be shared, improved, and replicated faster and more easily than ever before. However, printed parts are typically plastic and often perform poorly compared to traditionally machined mechanisms. We have overcome many of the limitations of 3D printed mechanisms by exploiting the compliance of the plastic to produce a monolithic 3D printed flexure translation stage, capable of sub-micron-scale motion over a range of 8 × 8 × 4 mm. This requires minimal post-print clean-up and can be automated with readily available stepper motors. The resulting plastic composite structure is very stiff and exhibits remarkably low drift, moving less than 20 μm over the course of a week, without temperature stabilisation. This enables us to construct a miniature microscope with excellent mechanical stability, perfect for time-lapse measurements in situ in an incubator or fume hood. The ease of manufacture lends itself to use in containment facilities where disposability is advantageous and to experiments requiring many microscopes in parallel. High performance mechanisms based on printed flexures need not be limited to microscopy, and we anticipate their use in other devices both within the laboratory and beyond.
Design and implementation of online automatic judging system
NASA Astrophysics Data System (ADS)
Liang, Haohui; Chen, Chaojie; Zhong, Xiuyu; Chen, Yuefeng
2017-06-01
For lower efficiency and poorer reliability in programming training and competition by currently artificial judgment, design an Online Automatic Judging (referred to as OAJ) System. The OAJ system including the sandbox judging side and Web side, realizes functions of automatically compiling and running the tested codes, and generating evaluation scores and corresponding reports. To prevent malicious codes from damaging system, the OAJ system utilizes sandbox, ensuring the safety of the system. The OAJ system uses thread pools to achieve parallel test, and adopt database optimization mechanism, such as horizontal split table, to improve the system performance and resources utilization rate. The test results show that the system has high performance, high reliability, high stability and excellent extensibility.
The development of nano-modified Ti(C,N) cermets.
Rong, Chunlan; Chen, Wenling; Zhang, Xiaobo; Liu, Ning
2007-01-01
The unique combination of mechanical properties such as excellent wear resistance and good chemical stability at elevated temperature helps titanium carbonitride based (Ti (C, N)-based) cermets to play an important roles in metal cutting operations. Nowadays, cermets cutting tools are widely used for semi-finishing and finishing works on steel and cast iron. However, their brittleness is still an unavoidable limitation for their utilization. With the development of nano-technology, nano-modified cermets have received more attention due to the high toughening enhancements. In this review, the development of nano-modified Ti(C,N) cermets is discussed including the fabrication, microstructure, mechanical properties, cutting performance and the practical applications in different fields. Many patents having important effect on the development of cermets were noticed, too.
Kobayashi, Masanori; Hyu, Hyon Suong
2010-01-01
Due to its excellent biocompatibility and mechanical properties, various different applications of polyvinyl alcohol-hydrogels (PVA-H) has been attempted in many fields. In the field of orthopedic surgery, we have been engaged for long time in research on the clinical applications of PVA-H as a artificial cartilage, and have performed many basic experiments on the mechanical properties, synthesis of PVA-H, and developed orthopedic implants using PVA-H. From these studies, many applications of artificial articular cartilage, intervertbral disc and artificial meniscus etc. have been developed. This review will present the overview of the applications and recent advances of PVA-H cartilages, and discuss clinical potential of PVA-H for orthopedics implant.
Thin SOI lateral IGBT with band-to-band tunneling mechanism
NASA Astrophysics Data System (ADS)
Fu, Qiang; Tang, Zhaohuan; Tan, Kaizhou; Wang, Zhikuan; Mei, Yong
2017-06-01
In this paper, a novel 200V lateral IGBT on thin SOI layer with a band-to-band tunneling junction near the anode is proposed. The structure and the operating mechanism of the proposed IGBT are described and discussed. Its main feature is that the novel IGBT structure has a unique abrupt doped p++/n++ tunneling junction in the side of the anode. By utilizing the reverse bias characteristics of the tunneling junction, the proposed IGBT can achieve excellent reverse conducting performance. Numerical simulations suggest that a low reverse conduction voltage drop VR=-1.6V at a current density of 100A/cm2 and a soft factor S=0.63 of the build-in diode are achieved.
Diamond based adsorbents and their application in chromatography.
Peristyy, Anton A; Fedyanina, Olga N; Paull, Brett; Nesterenko, Pavel N
2014-08-29
The idea of using diamond and diamond containing materials in separation sciences has attracted a strong interest in the past decade. The combination of a unique range of properties, such as chemical inertness, mechanical, thermal and hydrolytic stability, excellent thermal conductivity with minimal thermal expansion and intriguing adsorption properties makes diamond a promising material for use in various modes of chromatography. This review summarises the recent research on the preparation of diamond and diamond based stationary phases, their properties and chromatographic performance. Special attention is devoted to the dominant retention mechanisms evident for particular diamond containing phases, and their subsequent applicability to various modes of chromatography, including chromatography carried out under conditions of high temperature and pressure. Copyright © 2014 Elsevier B.V. All rights reserved.
Constitutive equation on basis of electo-thermal uniaxial tension for titanium profile
NASA Astrophysics Data System (ADS)
Baosheng, Liu; Fenggong, Lv; Yuansong, Zeng; Wei, Wu; Yongjun, Wang; Fengchao, Cao
2017-10-01
Titanium alloy profiles are widely applied as airframe parts due to its excellent mechanical properties and high compatibility of electrical potential with resin composite material. The electrical assisted forming is recognized as the effective approach to improve plasticity of titanium alloy profile. In this work, the electo-thermal uniaxial tension was performed to investigate the mechanical properties. The experiment results show that, the stress-strain curves increases sharply to the peak and declines quickly, exhibiting no stable deformation occurring. On basis of the obtained curves, a constitutive equation was established with consideration of the characteristic of self resistance heating, and the microstructure evolution was predicted. A comparison of the calculated stress-strain curves with the experimental ones was conducted, showing a reasonable agreement.
Hennecke, Kathleen; Redeker, Joern; Kuhbier, Joern W.; Strauss, Sarah; Allmeling, Christina; Kasper, Cornelia; Reimers, Kerstin; Vogt, Peter M.
2013-01-01
Repair success for injuries to the flexor tendon in the hand is often limited by the in vivo behaviour of the suture used for repair. Common problems associated with the choice of suture material include increased risk of infection, foreign body reactions, and inappropriate mechanical responses, particularly decreases in mechanical properties over time. Improved suture materials are therefore needed. As high-performance materials with excellent tensile strength, spider silk fibres are an extremely promising candidate for use in surgical sutures. However, the mechanical behaviour of sutures comprised of individual silk fibres braided together has not been thoroughly investigated. In the present study, we characterise the maximum tensile strength, stress, strain, elastic modulus, and fatigue response of silk sutures produced using different braiding methods to investigate the influence of braiding on the tensile properties of the sutures. The mechanical properties of conventional surgical sutures are also characterised to assess whether silk offers any advantages over conventional suture materials. The results demonstrate that braiding single spider silk fibres together produces strong sutures with excellent fatigue behaviour; the braided silk sutures exhibited tensile strengths comparable to those of conventional sutures and no loss of strength over 1000 fatigue cycles. In addition, the braiding technique had a significant influence on the tensile properties of the braided silk sutures. These results suggest that braided spider silk could be suitable for use as sutures in flexor tendon repair, providing similar tensile behaviour and improved fatigue properties compared with conventional suture materials. PMID:23613793
Zhang, Genqiang; (David) Lou, Xiong Wen
2013-01-01
Two one-dimensional hierarchical hybrid nanostructures composed of NiCo2O4 nanorods and ultrathin nanosheets on carbon nanofibers (CNFs) are controllably synthesized through facile solution methods combined with a simple thermal treatment. The structure of NiCo2O4 can be easily controlled to be nanorods or nanosheets by using different additives in the synthesis. These two different nanostructures are evaluated as electrodes for high performance supercapacitors, in view of their apparent advantages, such as high electroactive surface area, ultrathin and porous features, robust mechanical strength, shorter ion and electron transport path. Their electrochemical performance is systematically studied, and both of these two hierarchical hybrid nanostructures exhibit high capacitance and excellent cycling stability. The remarkable electrochemical performance will undoubtedly make these hybrid structures attractive for high-performance supercapacitors with high power and energy densities. PMID:23503561
Reliability Testing of NASA Piezocomposite Actuators
NASA Technical Reports Server (NTRS)
Wilkie, W.; High, J.; Bockman, J.
2002-01-01
NASA Langley Research Center has developed a low-cost piezocomposite actuator which has application for controlling vibrations in large inflatable smart space structures, space telescopes, and high performance aircraft. Tests show the NASA piezocomposite device is capable of producing large, directional, in-plane strains on the order of 2000 parts-per-million peak-to-peak, with no reduction in free-strain performance to 100 million electrical cycles. This paper describes methods, measurements, and preliminary results from our reliability evaluation of the device under externally applied mechanical loads and at various operational temperatures. Tests performed to date show no net reductions in actuation amplitude while the device was moderately loaded through 10 million electrical cycles. Tests were performed at both room temperature and at the maximum operational temperature of the epoxy resin system used in manufacture of the device. Initial indications are that actuator reliability is excellent, with no actuator failures or large net reduction in actuator performance.
Witten, Michael R; Jacobsen, Eric N
2015-06-05
A new primary amine catalyst for the asymmetric α-hydroxylation and α-fluorination of α-branched aldehydes is described. The products of the title transformations are generated in excellent yields with high enantioselectivities. Both processes can be performed within short reaction times and on gram scale. The similarity in results obtained in both reactions, combined with computational evidence, implies a common basis for stereoinduction and the possibility of a general catalytic mechanism for α-functionalizations. Promising initial results in α-amination and α-chlorination reactions support this hypothesis.
A novel approach for fabricating NiO hollow spheres for gas sensors
NASA Astrophysics Data System (ADS)
Kuang, Chengwei; Zeng, Wen; Ye, Hong; Li, Yanqiong
2018-03-01
Hollow spheres are usually fabricated by hard template methods or soft template methods with soft surfactants, which is quiet tedious and time-consuming. In this paper, NiO hollow spheres with fluffy surface were successfully synthesized by a facile hydrothermal method and subsequent calcination, where bubbles acted as the template. NiO hollow spheres exhibited excellent gas sensing performances, which results from its hollow structure and high specific surface area. In addition, a possible evolution mechanism of NiO hollow spheres was proposed based on experimental results.
Powering the future - a new generation of high-performance solar arrays
NASA Astrophysics Data System (ADS)
Geyer, Freddy; Caswell, Doug; Signorini, Carla
2007-08-01
Funded by ESA's Advanced Research in Telecommunication (ARTES) programme, Thales Alenia Space has developed a new generation of high-power ultra-lightweight solar arrays for telecommunications satellites. Thanks to close cooperation with its industrial partners in Europe, the company has generically qualified a solar array io meet market needs. Indeed, three flight projects were already using the new design as qualification was completed. In addition, the excellent mechanical and thermal behaviour of the new panel structure are contributing to other missions such as Pleïades and LISA Pathfinder.
Metal-Phenolic Carbon Nanocomposites for Robust and Flexible Energy-Storage Devices.
Oh, Jun Young; Jung, Yeonsu; Cho, Young Shik; Choi, Jaeyoo; Youk, Ji Ho; Fechler, Nina; Yang, Seung Jae; Park, Chong Rae
2017-04-22
Future electronics applications such as wearable electronics depend on the successful construction of energy-storage devices with superior flexibility and high electrochemical performance. However, these prerequisites are challenging to combine: External forces often cause performance degradation, whereas the trade-off between the required nanostructures for strength and electrochemical performance only results in diminished energy storage. Herein, a flexible supercapacitor based on tannic acid (TA) and carbon nanotubes (CNTs) with a unique nanostructure is presented. TA was self-assembled on the surface of the CNTs by metal-phenolic coordination bonds, which provides the hybrid film with both high strength and high pseudocapacitance. Besides 17-fold increased mechanical strength of the final composite, the hybrid film simultaneously exhibits excellent flexibility and volumetric capacitance. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.
Zeng, Xiaoliang; Ye, Lei; Yu, Shuhui; Li, Hao; Sun, Rong; Xu, Jianbin; Wong, Ching-Ping
2015-04-21
Inspired by the nano/microscale hierarchical structure and the precise inorganic/organic interface of natural nacre, we fabricated artificial nacre-like papers based on noncovalent functionalized boron nitride nanosheets (NF-BNNSs) and poly(vinyl alcohol) (PVA) via a vacuum-assisted self-assembly technique. The artificial nacre-like papers exhibit excellent tensile strength (125.2 MPa), on a par with that of the natural nacre, and moreover display a 30% higher toughness (2.37 MJ m(-3)) than that of the natural nacre. These excellent mechanical properties result from an ordered 'brick-and-mortar' arrangement of NF-BNNSs and PVA, in which the long-chain PVA molecules act as the bridge to link NF-BNNSs via hydrogen bonds. The resulting papers also render high thermal conductivity (6.9 W m(-1) K(-1)), and reveal their superiority as flexible substrates to support light-emitting-diode chips. The combined mechanical and thermal properties make the materials highly desirable as flexible substrates for next-generation commercial portable electronics.
Liu, Xiaolong; Xia, Yiran; Liu, Lulu; Zhang, Dongmei; Hou, Zhaosheng
2018-05-01
The purpose of this study is to offer a novel kind of polyurethane with improved surface blood compatibility for long-term implant biomaterials. In this work, the aliphatic poly(ester-urethane) (PEU) with uniform-size hard segments was prepared and the PEU surface was grafted with hydrophilic poly(ethylene glycol) (PEG). The PEU was obtained by chain-extension of poly(ɛ-caprolactone) (PCL) with isocyanate-terminated urethane triblock. Free amino groups were introduced onto the surface of PEU film via aminolysis with hexamethylenediamine, and then the NH 2 -grafted PEU surfaces (PEU-NH 2 ) were reacted with isocyanate-terminated monomethoxyl PEG (MPEG-NCO) to obtain the PEG-grafted PEU surfaces (PEU-PEG). Analysis by nuclear magnetic resonance spectroscopy, Fourier transform infrared spectroscopy, and gel permeation chromatography were performed to confirm the chemical structures of the chain extender, PCL, PEU, and PEU-PEG. Additionally, the influence of aminolysis on the physical-mechanical properties of PEU films was investigated. Two glass transition temperatures and a broad endothermic peak were observed in the differential scanning calorimetry curves of PEU, which demonstrated a microphase-separated and semicrystalline structure, respectively. The PEU-PEG film exhibited excellent mechanical properties with an ultimate stress of ∼39 MPa and an elongation at break of ∼1190%, which was slightly lower than that of PEU, indicating that the aminolysis has little influence on the tensile properties. Evaluation of the blood compatibility of the films by bovine serum albumin adsorption and the platelet adhesion test revealed that the PEG-grafted surface had improved resistance to protein adsorption and excellent resistance to platelet adhesion. In vitro degradation tests showed that the PEU-PEG film could maintain its mechanical properties for more than six months and only lost ∼25% weight after 18 months. Due to the excellent mechanical properties, good blood compatibility and slow degradability, this novel kind of polyurethane hold significant promise for long-term implant biomaterials, especially soft tissue augmentation and regeneration.
Development of a multistage compliant mechanism with new boundary constraint
NASA Astrophysics Data System (ADS)
Ling, Mingxiang; Cao, Junyi; Jiang, Zhou; Li, Qisheng
2018-01-01
This paper presents a piezo-actuated compliant mechanism with a new boundary constraint to provide concurrent large workspace and high dynamic frequency for precision positioning or other flexible manipulation applications. A two-stage rhombus-type displacement amplifier with the "sliding-sliding" boundary constraint is presented to maximize the dynamic frequency while retaining a large output displacement. The vibration mode is also improved by the designed boundary constraint. A theoretical kinematic model of the compliant mechanism is established to optimize the geometric parameters, and a prototype is fabricated with a compact dimension of 60 mm × 60 mm × 12 mm. The experimental testing shows that the maximum stroke is approximately 0.6 mm and the output stiffness is 1.1 N/μm with the fundamental frequency of larger than 2.2 kHz. Lastly, the excellent performance of the presented compliant mechanism is compared with several mechanisms in the previous literature. As a conclusion, the presented boundary constraint strategy provides a new way to balance the trade-off between the frequency response and the stroke range widely existed in compliant mechanisms.
Hamann, Thorsten
2015-04-01
Some of the most important functions of plant cell walls are protection against biotic/abiotic stress and structural support during growth and development. A prerequisite for plant cell walls to perform these functions is the ability to perceive different types of stimuli in both qualitative and quantitative manners and initiate appropriate responses. The responses in turn involve adaptive changes in cellular and cell wall metabolism leading to modifications in the structures originally required for perception. While our knowledge about the underlying plant mechanisms is limited, results from Saccharomyces cerevisiae suggest the cell wall integrity maintenance mechanism represents an excellent example to illustrate how the molecular mechanisms responsible for stimulus perception, signal transduction and integration can function. Here I will review the available knowledge about the yeast cell wall integrity maintenance system for illustration purposes, summarize the limited knowledge available about the corresponding plant mechanism and discuss the relevance of the plant cell wall integrity maintenance mechanism in biotic stress responses. Copyright © 2014 Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Tronganh, Nguyen; Gao, Yang; Jiang, Wei; Tao, Haihua; Wang, Shanshan; Zhao, Bing; Jiang, Yong; Chen, Zhiwen; Jiao, Zheng
2018-05-01
Constructing heterostructure can endow composites with many novel physical and electrochemical properties due to the built-in specific charge transfer dynamics. However, controllable fabrication route to heterostructures is still a great challenge up to now. In this work, a SiO2-assisted hydrothermal method is developed to fabricate heterostructured nickel sulfides/reduced graphene oxide (NiSx/rGO) composite. The SiO2 particles hydrolyzed from tetraethyl orthosilicate could assist the surface controllable co-growth of 3D nanoflowers and 0D nanoparticles of Ni3S2/NiS decorated on reduced graphene oxide, and the possible co-growth mechanism is discussed in detail. In this composite, the heterostructured nanocomposite with different morphologies, chemical compositions and crystal structures, along with varied electronic states and band structure, can promote the interface charge transfer kinetics and lead to excellent lithium storage performances. Electrochemical measurements reveal that the NiSx/rGO composite presents 1187.0 mA h g-1 at 100 mA g-1 and achieves a highly stable capacity of 561.2 mA h g-1 even when the current density is up to 5 A g-1.
Yu, Shuyan; Liu, Jincheng; Zhu, Wenyu; Hu, Zhong-Ting; Lim, Teik-Thye; Yan, Xiaoli
2015-01-01
Carboxylic acid functionalized graphene oxide-copper (II) sulfide nanoparticle composite (GO-COOH-CuS) was prepared from carboxylated graphene oxide and copper precursor in dimethyl sulfoxide (DMSO) by a facile synthesis process at room temperature. The high-effective combination, the interaction between GO-COOH sheets and CuS nanoparticles, and the enhanced visible light absorption were confirmed by transmission electron microscopy (TEM), field emission scanning electron microscopy (FESEM), X-ray powder diffraction (XRD), Fourier transform infrared spectroscopy (FTIR), thermo gravimetric analysis (TGA), X-ray photoelectron spectroscopy (XPS), UV-vis diffuse reflectance spectra (DRS) and Photoluminescence (PL) spectra. The as-synthesized GO-COOH-CuS nanocomposite exhibited excellent photocatalytic degradation performance of phenol and rhodamine B, high antibacterial activity toward E. coli and B. subtilis, and good recovery and reusability. The influence of CuS content, the synergistic reaction between CuS and GO-COOH, and the charge-transfer mechanism were systematically investigated. The facile and low-energy synthesis process combined with the excellent degradation and antibacterial performance signify that the GO-COOH-CuS has a great potential for water treatment application. PMID:26553709
Cui, Limei; Wang, Yaoguang; Gao, Liang; Hu, Lihua; Wei, Qin; Du, Bin
2015-10-15
Resin loaded magnetic β-cyclodextrin bead and graphene oxide sheet (MCD-GO-R) was synthesized successfully and found to be an excellent adsorbent for Hg(II) removal. The as-prepared adsorbent was characterized by SEM, FTIR, BET, magnetization curve and zeta potential analysis respectively. Good magnetic performance made MCD-GO-R simply recover from aqueous solution at low magnetic field within 30s. And also, the rich functional groups and outstanding dispersity play an important role in the adsorption process. The maximum adsorption capacity was 88.43 mg g(-1) at 323 K and pH 7.1. The as-prepared adsorbent could perform well in a wide pH range from 4.0 to 10.0. Static adsorption experimental data showed good correlation with pseudo-second-order model and Freundlich isotherm models. It was found that the contaminant adsorption was accomplished mainly via chelation or ion exchange and come to equilibrium in only 30 min. All experimental results, especially the excellent reproducibility and resistance to ion interference, suggest that MCD-GO-R has promising applications in water treatment. Copyright © 2015 Elsevier Inc. All rights reserved.
NASA Astrophysics Data System (ADS)
Varzi, Alberto; Raccichini, Rinaldo; Marinaro, Mario; Wohlfahrt-Mehrens, Margret; Passerini, Stefano
2016-09-01
Casein from bovine milk is evaluated in this work as binding agent for electrochemical double layer capacitors (EDLCs) electrodes. It is demonstrated that casein provides excellent adhesion strength to the current collector (1187 kPa compared to 51 kPa achieved with PVdF), thus leading to mechanically stable electrodes. At the same time, it offers high thermal stability (above 200 °C) and electrochemical stability in organic electrolytes. Apparently though, the casein-based electrodes offer lower electronic conductivity than those based on other state-of-the-art binders, which can limit the rate performance of the resulting EDLC. In the attempt of improving the electrochemical performance, it is found that the application of a pressing step can solve this issue, leading to excellent rate capability (up to 84% capacitance retention at 50 mA cm-2) and cycling stability (96.8% after 10,000 cycles at 10 mA cm-2) in both PC- and ACN-based electrolytes. Although the adhesive power casein is known since ancient times, this report presents the first proof of concept of its employment in electrochemical power sources.
ERIC Educational Resources Information Center
Lamore, Brian
2016-01-01
For years the fan cart has provided physics students with an excellent resource for exploring fundamental mechanics concepts such as acceleration, Newton's laws, impulse, momentum, work-energy, and energy conversions. "The Physics Teacher" has even seen some excellent do-it-yourself (DIY) fan carts and activities. If you are interested…
Improvement of silicone rubber properties by addition of nano-SiO2 particles.
Wu, Lianfeng; Wang, Xianming; Ning, Liang; Han, Jianjun; Wan, Zhong; Lu, Min
2016-07-04
To improve the comprehensive performances of a one-part room temperature vulcanized silicone rubber(RTV-1 SiR), Nano-SiO2 particles are employed as the reinforcing agent. The SiO2/RTV-1 SiR composite is prepared using PDMS, ND42, D-60 and HMDS-modified SiO2 particles by mixing method. And then, the mechanical and electrical properties, including shear strength, tensile strength, hardness Shore A and volume resistivity, are investigated using experimental method. The addition of nano-SiO2 particles can improve the properties of the SiO2/RTV-1 SiR composite in different degrees. And, the incorporation of 25~30 phr nano-SiO2 particles is found to be reasonable for silicone rubber composite with the best comprehensive performances. The significant improvement of mechanical properties and electrical insulation of SiO2 may be contributed to the addition of modified nano-SiO2 particles. Additionally, the excellent comprehensive performances of SiO2/RTV-1 SiR composite guarantee a potential applications as electrical-insulating adhesives.
Bao, Yan; Wang, Tong; Kang, Qiaoling; Shi, Chunhua; Ma, Jianzhong
2017-01-01
Hollow silica spheres (HSS) with special interior spaces, high specific surface area and excellent adsorption and permeability performance were synthesized via micelle-template method using cetyl trimethyl ammonium bromide (CTAB) micelles as soft template and tetraethoxysilane (TEOS) as silica precursor. SEM, TEM, FT-IR, XRD, DLS and BET-BJH were carried out to characterize the morphology and structure of as-obtained samples. The results demonstrated that the samples were amorphous with a hollow structure and huge specific surface area. The growth of HSS was an inward-growth mechanism along template. Notably, we have provided a new and interesting fundamental principle for HSS materials by precisely controlling the ethanol-to-water volume ratio. In addition, the as-obtained HSS were mixed with waterborne polyurethane (WPU) to prepare WPU/HSS composite membrane. Various characterizations (SEM, TEM, FT-IR and TGA) revealed the morphology, polydispersity and adherence between HSS and WPU. Performance tests showed that the introduction of HSS can improve the water vapor permeability of composite membrane, promoting its water resistance and mechanical performance at the same time. PMID:28429740
NASA Astrophysics Data System (ADS)
Bao, Yan; Wang, Tong; Kang, Qiaoling; Shi, Chunhua; Ma, Jianzhong
2017-04-01
Hollow silica spheres (HSS) with special interior spaces, high specific surface area and excellent adsorption and permeability performance were synthesized via micelle-template method using cetyl trimethyl ammonium bromide (CTAB) micelles as soft template and tetraethoxysilane (TEOS) as silica precursor. SEM, TEM, FT-IR, XRD, DLS and BET-BJH were carried out to characterize the morphology and structure of as-obtained samples. The results demonstrated that the samples were amorphous with a hollow structure and huge specific surface area. The growth of HSS was an inward-growth mechanism along template. Notably, we have provided a new and interesting fundamental principle for HSS materials by precisely controlling the ethanol-to-water volume ratio. In addition, the as-obtained HSS were mixed with waterborne polyurethane (WPU) to prepare WPU/HSS composite membrane. Various characterizations (SEM, TEM, FT-IR and TGA) revealed the morphology, polydispersity and adherence between HSS and WPU. Performance tests showed that the introduction of HSS can improve the water vapor permeability of composite membrane, promoting its water resistance and mechanical performance at the same time.
Bao, Yan; Wang, Tong; Kang, Qiaoling; Shi, Chunhua; Ma, Jianzhong
2017-04-21
Hollow silica spheres (HSS) with special interior spaces, high specific surface area and excellent adsorption and permeability performance were synthesized via micelle-template method using cetyl trimethyl ammonium bromide (CTAB) micelles as soft template and tetraethoxysilane (TEOS) as silica precursor. SEM, TEM, FT-IR, XRD, DLS and BET-BJH were carried out to characterize the morphology and structure of as-obtained samples. The results demonstrated that the samples were amorphous with a hollow structure and huge specific surface area. The growth of HSS was an inward-growth mechanism along template. Notably, we have provided a new and interesting fundamental principle for HSS materials by precisely controlling the ethanol-to-water volume ratio. In addition, the as-obtained HSS were mixed with waterborne polyurethane (WPU) to prepare WPU/HSS composite membrane. Various characterizations (SEM, TEM, FT-IR and TGA) revealed the morphology, polydispersity and adherence between HSS and WPU. Performance tests showed that the introduction of HSS can improve the water vapor permeability of composite membrane, promoting its water resistance and mechanical performance at the same time.
NASA Astrophysics Data System (ADS)
Zhang, Xiaozhen; Jiang, Yuhua; Hu, Xuebing; Sun, Liangliang; Ling, Yihan
2018-03-01
Proton-conducting solid oxide fuel cell (H-SOFC) based on layered perovskite type GdBaCuCoO5+x (GBCC) cathode was fabricated with in situ drop-coating BaZr0.1Ce0.7Y0.2O3-δ (BZCY) electrolyte membrane. The influences of Cu doping into Co sites of GdBaCo2O5+ x on the electrical conductivity and conduction mechanism, thermal expansion property and electrochemical performance of cathode materials and corresponding single cell were investigated. Results show that the electrical conductivity decreased and the conduction mechanism would gradually transform to the semiconductor-like behavior. A high maximum power density of 480 mW cm-2 was obtained for the anode supported NiO-BZCY/NiO-BZCY/BZCY/GBCC single cells with wet H2 fuel at 700 °C. The corresponding polarization resistance was as low as 0.17 Ω cm2. The excellent electrochemical performance of as-prepared single cell indicates that GBCC is a good candidate of cathode materials for H-SOFCs.
Development of durable self-cleaning coatings using organic-inorganic hybrid sol-gel method
NASA Astrophysics Data System (ADS)
Kumar, Divya; Wu, Xinghua; Fu, Qitao; Ho, Jeffrey Weng Chye; Kanhere, Pushkar D.; Li, Lin; Chen, Zhong
2015-07-01
Self-cleaning coatings with excellent water-repellence and good mechanical properties are in high demand. However, producing such coatings with resistance to mechanical abrasion and environmental weathering remains a key challenge. Mechanically robust coatings based on tetraethylorthosilicate (TEOS) and glycidoxypropyltriethoxysilane (Glymo) have been prepared using a sol-gel method. Emphasis is given to the addition of Glymo, an epoxy silane which creates an organic matrix that blends with the inorganic Sisbnd Osbnd Si matrix formed from the TEOS. The combination of the blended matrix produced coatings with good adhesion to substrates and improved mechanical properties. Fluoroalkylsilane (FAS) and silica fillers were introduced to increase the hydrophobicity of the coating. It was found that the water contact angle (CA) of these coatings increases from 115° to 164° upon decreasing filler size from 1-5 μm to 10-20 nm. The sliding angle (SA) for coatings with 15 wt.% loading of 10-20 nm silica is around 2°. UV weathering does not show significant effect on the properties of the coatings. Mechanical properties and performances including hardness, Young's modulus, coating adhesion and abrasion resistance were systematically analyzed. In the current work, a simple self-cleaning test, which measures the extent of dirt accumulation and subsequent removal by water spray, was performed. The coatings with 15 wt.% loading of 10-20 nm silica particles show the best self-cleaning performance both before and after mechanical abrasion. The developed coating process is simple and can be easily scaled-up for large surfaces that require self-cleaning function.
Collective behaviours: from biochemical kinetics to electronic circuits.
Agliari, Elena; Barra, Adriano; Burioni, Raffaella; Di Biasio, Aldo; Uguzzoni, Guido
2013-12-10
In this work we aim to highlight a close analogy between cooperative behaviors in chemical kinetics and cybernetics; this is realized by using a common language for their description, that is mean-field statistical mechanics. First, we perform a one-to-one mapping between paradigmatic behaviors in chemical kinetics (i.e., non-cooperative, cooperative, ultra-sensitive, anti-cooperative) and in mean-field statistical mechanics (i.e., paramagnetic, high and low temperature ferromagnetic, anti-ferromagnetic). Interestingly, the statistical mechanics approach allows a unified, broad theory for all scenarios and, in particular, Michaelis-Menten, Hill and Adair equations are consistently recovered. This framework is then tested against experimental biological data with an overall excellent agreement. One step forward, we consistently read the whole mapping from a cybernetic perspective, highlighting deep structural analogies between the above-mentioned kinetics and fundamental bricks in electronics (i.e. operational amplifiers, flashes, flip-flops), so to build a clear bridge linking biochemical kinetics and cybernetics.
Collective behaviours: from biochemical kinetics to electronic circuits
NASA Astrophysics Data System (ADS)
Agliari, Elena; Barra, Adriano; Burioni, Raffaella; di Biasio, Aldo; Uguzzoni, Guido
2013-12-01
In this work we aim to highlight a close analogy between cooperative behaviors in chemical kinetics and cybernetics; this is realized by using a common language for their description, that is mean-field statistical mechanics. First, we perform a one-to-one mapping between paradigmatic behaviors in chemical kinetics (i.e., non-cooperative, cooperative, ultra-sensitive, anti-cooperative) and in mean-field statistical mechanics (i.e., paramagnetic, high and low temperature ferromagnetic, anti-ferromagnetic). Interestingly, the statistical mechanics approach allows a unified, broad theory for all scenarios and, in particular, Michaelis-Menten, Hill and Adair equations are consistently recovered. This framework is then tested against experimental biological data with an overall excellent agreement. One step forward, we consistently read the whole mapping from a cybernetic perspective, highlighting deep structural analogies between the above-mentioned kinetics and fundamental bricks in electronics (i.e. operational amplifiers, flashes, flip-flops), so to build a clear bridge linking biochemical kinetics and cybernetics.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kim, Jeoung Han; Byun, Thak Sang; Shin, Eunjoo
2015-08-17
Three oxide dispersion-strengthened (ODS) steels are produced in order to investigate the effect of the mechanical alloying (MA) temperature on the microstructural evolution and high temperature mechanical properties. The microstructural evolution with different MA conditions is examined using small angle neutron scattering. As the MA temperature decreases, the density of the nanoclusters below 10 nm increases and their mean diameter decreases. A low temperature during MA leads to a high strength in the compression tests performed at 500 *C; however, this effect disappears in testing at 900 *C. The milling process at *70 *C exhibits excellent high fracture toughness, whichmore » is better than the benchmark material 14YWT-SM10. However, the *150 *C milling process results in significantly worse fracture toughness properties. The reasons for this strong temperature dependency are discussed.« less
Performance of Nanotube-Based Ceramic Composites: Modeling and Experiment
NASA Technical Reports Server (NTRS)
Curtin, W. A.; Sheldon, B. W.; Xu, J.
2004-01-01
The excellent mechanical properties of carbon-nanotubes are driving research into the creation of new strong, tough nanocomposite systems. In this program, our initial work presented the first evidence of toughening mechanisms operating in carbon-nanotube- reinforced ceramic composites using a highly-ordered array of parallel multiwall carbon-nanotubes (CNTs) in an alumina matrix. Nanoindentation introduced controlled cracks and the damage was examined by SEM. These nanocomposites exhibit the three hallmarks of toughening in micron-scale fiber composites: crack deflection at the CNT/matrix interface; crack bridging by CNTs; and CNT pullout on the fracture surfaces. Furthermore, for certain geometries a new mechanism of nanotube collapse in shear bands was found, suggesting that these materials can have multiaxial damage tolerance. The quantitative indentation data and computational models were used to determine the multiwall CNT axial Young's modulus as 200-570 GPa, depending on the nanotube geometry and quality.
Feng, Li; Liu, Shuang; Zheng, Huaili; Liang, Jianjun; Sun, Yongjun; Zhang, Shixin; Chen, Xin
2018-06-01
In this study, the ultrasonic (US)-initiated template copolymerization was employed to synthesize a novel cationic polyacrylamide (CPAM) characterized by a microblock structure using dimethyldiallylammonium chloride (DMDAAC) and acrylamide (AM) as monomers, and sodium polyacrylate (NaPAA) as template. The polymers structure property was analyzed by Fourier transform infrared spectroscopy (FT-IR), 1 H nuclear magnetic resonance spectroscopy ( 1 H NMR) and thermogravimetric analysis (TGA). The results showed that a novel cationic microblock structure was successfully synthesized in the template copolymer of DMDAAC and AM (TPADM). Meanwhile, the analysis result of association constant (M K ) provided powerful support for a I Zip-up (ZIP) template polymerization mechanism and the formation of the microblock structure. The factors affecting the polymerization were investigated, including ultrasonic power, ultrasonic time, monomer concentration, initiator concentration, m AM :m DMDAAC and n NaPAA :n DMDAAC . The sludge dewatering performance of the polymers was evaluated in terms of specific resistance to filtration (SRF), filter cake moisture content (FCMC), floc size (d 50 ) and fractal dimension (D f ). Flocculation mechanism was also analyzed and discussed. The sludge dewatering results revealed that the polymer with the novel microblock structure showed a more excellent flocculation performance than those with randomly distributed cationic units. A desirable flocculation performance with a SRF of 4.5 × 10 12 m kg -1 , FCMC of 73.1%, d 50 of 439.156 µm and D f of 1.490 were obtained at pH of 7.0, dosage of 40 mg L -1 and the molecular weight of 5.0 × 10 6 Da. The cationic microblock extremely enhanced the polymer charge neutralization and bridging ability, thus obtaining the excellent sludge dewatering performance. Copyright © 2018 Elsevier B.V. All rights reserved.
Zhang, Rufan; Zhang, Yingying; Wei, Fei
2017-02-21
Carbon nanotubes (CNTs) have drawn intensive research interest in the past 25 years due to their excellent properties and wide applications. Ultralong CNTs refers to the horizontally aligned CNT arrays which are usually grown on flat substrates, parallel with each other with large intertube distances. They usually have perfect structures, excellent properties, and lengths up to centimeters, even decimeters. Ultralong CNTs are promising candidates as building blocks for transparent displays, nanoelectronics, superstrong tethers, aeronautics and aerospace materials, etc. The controlled synthesis of ultralong CNTs with perfect structures is the key to fully exploit the extraordinary properties of CNTs. CNTs are typical one-dimensional single-crystal nanomaterials. It has always been a great challenge how to grow macroscale single-crystals with no defects. Thus, the synthesis of ultralong CNTs with no defect is of significant importance from both fundamental and industrial aspects. In this Account, we focus on our progress on the controlled synthesis of ultralong CNTs with perfect structures and excellent properties. A deep understanding of the CNT growth mechanism is the first step for the controlled synthesis of ultralong CNTs with high quality. We first introduce the growth mechanism for ultralong CNTs and the main factor affecting their structures. We then discuss the strategies to control the defects in the as-grown ultralong CNTs. With these approaches, ultralong high-quality CNTs with different structures can be obtained. By completely eliminating the factors which may induce defects in the CNT walls, ultralong CNTs with perfect structures can be obtained. Their chiral indices keep unchanged for several centimeters long along the axial direction of the CNTs. The defect-free structures render the ultralong CNTs with excellent electrical, mechanical and thermal properties. The as-grown ultralong CNTs exhibit superhigh mechanical strength (>100 GPa) and their breaking strain (>17.5%) reach the theoretical limits. They also show excellent electrical and thermal properties. In addition, centimeters long CNTs showed macroscale interwall superlubricious properties due to their defect-free structures. Ultralong, defect-free CNTs with controlled structures are highly desirable for many high-end applications. We hope that this Account will shed light on the controlled synthesis of ultralong CNTs with perfect structures and excellent properties. Moreover, the growth mechanism and controlled synthesis of ultralong CNTs with perfect structures also offers a good model for other one-dimensional nanomaterials.
Federal Register 2010, 2011, 2012, 2013, 2014
2012-10-30
... available a revised Word version, an Excel version, and a version on HUD's Energy and Performance... recipient may elect to submit to HUD either the Word, Excel, or EPIC versions; however, the Excel and EPIC versions are preferred because of their automated capabilities and reduced burden. The Word, Excel, and...
Carrión, Francisco; Montalbán, Laura; Real, Julia I.
2014-01-01
Currently, reuse of solid waste from disused infrastructures is an important environmental issue to study. In this research, polymer concrete was developed by mixing orthophthalic unsaturated polyester resin, artificial microfillers (calcium carbonate), and waste aggregates (basalt and limestone) coming from the recycling process of concrete sleepers. The variation of the mechanical and physical properties of the polymer concrete (compressive strength, flexural strength, modulus of elasticity, density, and water absorption) was analyzed based on the modification of different variables: nature of the recycled aggregates, resin contents (11 wt%, 12 wt%, and 13 wt%), and particle-size distributions of microfillers used. The results show the influence of these variables on mechanical performance of polymer concrete. Compressive and flexural strength of recycled polymer concrete were improved by increasing amount of polyester resin and by optimizing the particle-size distribution of the microfillers. Besides, the results show the feasibility of developing a polymer concrete with excellent mechanical behavior. PMID:25243213
Carrión, Francisco; Montalbán, Laura; Real, Julia I; Real, Teresa
2014-01-01
Currently, reuse of solid waste from disused infrastructures is an important environmental issue to study. In this research, polymer concrete was developed by mixing orthophthalic unsaturated polyester resin, artificial microfillers (calcium carbonate), and waste aggregates (basalt and limestone) coming from the recycling process of concrete sleepers. The variation of the mechanical and physical properties of the polymer concrete (compressive strength, flexural strength, modulus of elasticity, density, and water absorption) was analyzed based on the modification of different variables: nature of the recycled aggregates, resin contents (11 wt%, 12 wt%, and 13 wt%), and particle-size distributions of microfillers used. The results show the influence of these variables on mechanical performance of polymer concrete. Compressive and flexural strength of recycled polymer concrete were improved by increasing amount of polyester resin and by optimizing the particle-size distribution of the microfillers. Besides, the results show the feasibility of developing a polymer concrete with excellent mechanical behavior.
Investigation of polyvinylchloride and cellulose acetate blend membranes for desalination
NASA Astrophysics Data System (ADS)
El-Gendi, Ayman; Abdallah, Heba; Amin, Ashraf; Amin, Shereen Kamel
2017-10-01
The pollution of water resources, severe climate changes, rapid population growth, increasing agricultural demands, and rapid industrialization insist the development of innovative technologies for generating potable water. Polyvinylchloride/cellulose acetate (PVC/CA) membranes were prepared using phase inversion technique for seawater reverse osmosis (SWRO). The membrane performance was investigated using Red Sea water (El-Ein El-Sokhna-Egypt). The membrane performance indicated that the prepared membranes were endowed to work under high pressure; increasing in feeding operating pressure led to increase permeate flux and rejection. Increasing feed operating pressure from zero to 40 bar led to increase in the salt rejection percent. Salt rejection percent reached to 99.99% at low feed concentration 5120 ppm and 99.95% for Red Sea water (38,528 ppm). The prepared membranes were characterized using scanning electron microscopy (SEM), Fourier transform infrared (FTIR) spectrophotometry, and mechanical properties. SEM, FTIR and mechanical results were used to distinguish the best membrane for desalination. According to characterization results, one prepared membrane was selected to run performance test in desalination testing unit. The membrane (M3) showed excellent performance and stability under different operating conditions and during the durability test for 36 days.
Wang, Jinrong; Qiao, Jinliang; Wang, Jianfeng; Zhu, Ying; Jiang, Lei
2015-05-06
Due to hierarchical organization of micro- and nanostructures, natural nacre exhibits extraordinary strength and toughness, and thus provides a superior model for the design and fabrication of high-performance artificial composite materials. Although great progress has been made in constructing layered composites by alternately stacking hard inorganic platelets and soft polymers, the real issue is that the excellent strength of these composites was obtained at the sacrifice of toughness. In this work, inspired by the layered aragonite microplatelets/chitin nanofibers-protein structure of natural nacre, alumina microplatelets-graphene oxide nanosheets-poly(vinyl alcohol) (Al2O3/GO-PVA) artificial nacre is successfully constructed through layer-by-layer bottom-up assembly, in which Al2O3 and GO-PVA act as "bricks" and "mortar", respectively. The artificial nacre has hierarchical "brick-and-mortar" structure and exhibits excellent strength (143 ± 13 MPa) and toughness (9.2 ± 2.7 MJ/m(3)), which are superior to those of natural nacre (80-135 MPa, 1.8 MJ/m(3)). It was demonstrated that the multiscale hierarchical structure of ultrathin GO nanosheets and submicrometer-thick Al2O3 platelets can deal with the conflict between strength and toughness, thus leading to the excellent mechanical properties that cannot be obtained using only one size of platelet. We strongly believe that the work presented here provides a creative strategy for designing and developing new composites with excellent strength and toughness.
A three-dimensional reticulate CNT-aerogel for a high mechanical flexibility fiber supercapacitor.
Li, Yong; Kang, Zhuo; Yan, Xiaoqin; Cao, Shiyao; Li, Minghua; Guo, Yan; Huan, Yahuan; Wen, Xiaosong; Zhang, Yue
2018-05-17
In recent years, the rapid development of portable and wearable electronic products has promoted the prosperity of fiber supercapacitors (FSCs), which serve as flexible and lightweight energy supply devices. However, research on FSCs is still in its infancy and the energy density of FSCs is far below the level of lithium-ion batteries. Here, we report a facile method to prepare a novel fibrous CNT-aerogel by electrochemical activation and freeze-drying. The fibrous CNT-aerogel electrode possesses a large specific surface area, high mechanical strength, excellent electrical conductivity, as well as a high specific capacitance of 160.8 F g-1 at 0.5 mA and long cycling stability. Then we assembled a non-faradaic FSC based on a fibrous CNT-aerogel as the electrode and a P(VDF-HFP)/EMIMBF4 ionogel as the electrolyte. The introduction of the ionogel electrolyte increases the operating voltage of the FSC to 3 V, and makes the device combine the intrinsic high power density (27.3 kW kg-1) of non-faradaic SCs with an ultrahigh energy density of 29.6 W h kg-1. More importantly, the assembled FSCs show excellent flexibility and bending-stability, and can still operate normally within a wide working temperature window (0-80 °C). The outstanding electrochemical performance and the mechanical/thermal stability indicate that the assembled FSC device is a promising power source for flexible electronics.
Boron Nitride Coated Carbon Nanotube Arrays with Enhanced Compressive Mechanical Property
NASA Astrophysics Data System (ADS)
Jing, Lin; Tay, Roland Yingjie; Li, Hongling; Tsang, Siu Hon; Tan, Dunlin; Zhang, Bowei; Tok, Alfred Iing Yoong; Teo, Edwin Hang Tong
Vertically aligned carbon nanotube (CNT) array is one of the most promising energy dissipating materials due to its excellent temperature invariant mechanical property. However, the CNT arrays with desirable recoverability after compression is still a challenge. Here, we report on the mechanical enhancement of the CNT arrays reinforced by coating with boron nitride (BN) layers. These BN coated CNT (BN/CNT) arrays exhibit excellent compressive strength and recoverability as compared to those of the as-prepared CNT arrays which totally collapsed after compression. In addition, the BN coating also provides better resistance to oxidation due to its intrinsic thermal stability. This work presented here opens a new pathway towards tuning mechanical behavior of any arbitrary CNT arrays for promising potential such as damper, vibration isolator and shock absorber applications.
Li, Dan; Chen, Long; Wang, Tianshi; Fan, Li-Zhen
2018-02-28
Replacement of flammable organic liquid electrolytes with solid Li + conductors is a promising approach to realize excellent performance of Li metal batteries. However, ceramic electrolytes are either easily reduced by Li metal or penetrated by Li dendrites through their grain boundaries, and polymer electrolytes are also faced with instability on the electrode/electrolyte interface and weak mechanical property. Here, we report a three-dimensional fiber-network-reinforced bicontinuous solid composite electrolyte with flexible Li + -conductive network (lithium aluminum titanium phosphate (LATP)/polyacrylonitrile), which helps to enhance electrochemical stability on the electrode/electrolyte interface by isolating Li and LATP and suppress Li dendrites growth by mechanical reinforcement of fiber network for the composite solid electrolyte. The composite electrolyte shows an excellent electrochemical stability after 15 days of contact with Li metal and has an enlarged tensile strength (10.72 MPa) compared to the pure poly(ethylene oxide)-bistrifluoromethanesulfonimide lithium salt electrolyte, leading to a long-term stability and safety of the Li symmetric battery with a current density of 0.3 mA cm -2 for 400 h. In addition, the composite electrolyte also shows good electrochemical and thermal stability. These results provide such fiber-reinforced membranes that present stable electrode/electrolyte interface and suppress lithium dendrite growth for high-safety all-solid-state Li metal batteries.
NASA Astrophysics Data System (ADS)
Zhao, Hemin; Dong, Fujun; Liu, Xiaolin; Xiong, Xiong
This essay introduces the developed high-heat input welding quenched and tempered pressure vessel steel 12MnNiVR for oil storage tank by Xinyu Steel, which passed the review by the Boiler and Pressure Vessel Standards Technical Committee in 2009. The review comments that compared to the domestic and foreign similar steel standard, the key technical index of enterprise standard were in advanced level. After the heat input of 100kJ/cm electro-gas welding, welded points were still with excellent low temperature toughness at -20°C. The steel plate may be constructed for oil storage tank, which has been permitted by thickness range from 10 to 40mm, and design temperature among -20°C-100°C. It studied microstructure genetic effects mechanical properties of the steel. Many production practices indicated that the mechanical properties of products and the steel by stress relief heat treatment of steel were excellent, with pretreatment of hot metal, converter refining, external refining, protective casting, TMCP and heat treatment process measurements. The stability of performance and matured technology of Xinyu Steel support the products could completely service the demand of steel constructed for 10-15 million cubic meters large oil storage tank.
Loo, Siew-Leng; Fane, Anthony G; Lim, Teik-Thye; Krantz, William B; Liang, Yen-Nan; Liu, Xin; Hu, Xiao
2013-08-20
This paper reports the preparation of poly(sodium acrylate) (PSA) cryogels decorated with silver nanoparticles (AgNPs) for point-of-use (POU) water disinfection. The PSA/Ag cryogels combine the high porosity, excellent mechanical and water absorption properties of cryogels, and uniform dispersion of fine AgNPs on the cryogel pore surface for rapid disinfection with minimal Ag release (<100 μg L(-1)). They were used in a process that employed their ability to absorb water, which subsequently could be released via application of mild pressure. Their antibacterial performance was evaluated based on the disinfection efficacies of E. coli and B. subtilis . The PSA/Ag cryogels had excellent disinfection efficacies showing close to a 3 log reduction of viable bacteria after a brief 15 s contact time. They were highly reusable as there was no significant difference in the disinfection efficacies over five cycles of operation. The biocidal action of the PSA/Ag cryogels is believed to be dominated by surface-controlled mechanisms that are dependent on direct contact of the interface of PSA/Ag cryogels with the bacterial cells. The PSA/Ag cryogels are thought to offer a simpler approach for drinking water disinfection in disaster relief applications.
Peng, Bei; Locascio, Mark; Zapol, Peter; Li, Shuyou; Mielke, Steven L; Schatz, George C; Espinosa, Horacio D
2008-10-01
The excellent mechanical properties of carbon nanotubes are being exploited in a growing number of applications from ballistic armour to nanoelectronics. However, measurements of these properties have not achieved the values predicted by theory due to a combination of artifacts introduced during sample preparation and inadequate measurements. Here we report multiwalled carbon nanotubes with a mean fracture strength >100 GPa, which exceeds earlier observations by a factor of approximately three. These results are in excellent agreement with quantum-mechanical estimates for nanotubes containing only an occasional vacancy defect, and are approximately 80% of the values expected for defect-free tubes. This performance is made possible by omitting chemical treatments from the sample preparation process, thus avoiding the formation of defects. High-resolution imaging was used to directly determine the number of fractured shells and the chirality of the outer shell. Electron irradiation at 200 keV for 10, 100 and 1,800 s led to improvements in the maximum sustainable loads by factors of 2.4, 7.9 and 11.6 compared with non-irradiated samples of similar diameter. This effect is attributed to crosslinking between the shells. Computer simulations also illustrate the effects of various irradiation-induced crosslinking defects on load sharing between the shells.
Channar, Pervaiz Ali; Saeed, Aamer; Albericio, Fernando; Larik, Fayaz Ali; Abbas, Qamar; Hassan, Mubashir; Raza, Hussain; Seo, Sung-Yum
2017-08-16
Sulfonamide derivatives serve as an important building blocks in the drug design discovery and development (4D) process. Ciprofloxacin-, sulfadiazine- and amantadine-based sulfonamides were synthesized as potent inhibitors of jack bean urease and free radical scavengers. Molecular diversity was explored and electronic factors were also examined. All 24 synthesized compounds exhibited excellent potential against urease enzyme. Compound 3e (IC 50 = 0.081 ± 0.003 µM), 6a (IC 50 = 0.0022 ± 0.0002 µM), 9e (IC 50 = 0.0250 ± 0.0007 µM) and 12d (IC 50 = 0.0266 ± 0.0021 µM) were found to be the lead compounds compared to standard (thiourea, IC 50 = 17.814 ± 0.096 µM). Molecular docking studies were performed to delineate the binding affinity of the molecules and a kinetic mechanism of enzyme inhibition was propounded. Compounds 3e , 6a and 12d exhibited a mixed type of inhibition, while derivative 9e revealed a non-competitive mode of inhibition. Compounds 12a , 12b , 12d , 12e and 12f showed excellent radical scavenging potency in comparison to the reference drug vitamin C.
Experimental Investigations on the Pull-Out Behavior of Tire Strips Reinforced Sands.
Li, Li-Hua; Chen, Yan-Jun; Ferreira, Pedro Miguel Vaz; Liu, Yong; Xiao, Heng-Lin
2017-06-27
Waste tires have excellent mechanical performance and have been used as reinforcing material in geotechnical engineering; however, their interface properties are poorly understood. To further our knowledge, this paper examines the pull-out characteristics of waste tire strips in a compacted sand, together with uniaxial and biaxial geogrids also tested under the same conditions. The analysis of the results shows that the interlocking effect and pull-out resistance between the tire strip and the sand is very strong and significantly higher than that of the geogrids. In the early stages of the pull-out test, the resistance is mainly provided by the front portion of the embedded tire strips, as the pull-out test continues, more and more of the areas towards the end of the tire strips are mobilized, showing a progressive failure mechanism. The deformations are proportional to the frictional resistance between the tire-sand interface, and increase as the normal stresses increase. Tire strips of different wear intensities were tested and presented different pull-out resistances; however, the pull-out resistance mobilization patterns were generally similar. The pull-out resistance values obtained show that rubber reinforcement can provide much higher pull-out forces than the geogrid reinforcements tested here, showing that waste tires are an excellent alternative as a reinforcing system, regardless of the environmental advantages.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Peng, B.; Locascio, M.; Zapol, P.
2008-01-01
The excellent mechanical properties of carbon nanotubes are being exploited in a growing number of applications from ballistic armour to nanoelectronics. However, measurements of these properties have not achieved the values predicted by theory due to a combination of artifacts introduced during sample preparation and inadequate measurements. Here we report multiwalled carbon nanotubes with a mean fracture strength >100 GPa, which exceeds earlier observations by a factor of approximately three. These results are in excellent agreement with quantum-mechanical estimates for nanotubes containing only an occasional vacancy defect, and are {approx}80% of the values expected for defect-free tubes. This performance ismore » made possible by omitting chemical treatments from the sample preparation process, thus avoiding the formation of defects. High-resolution imaging was used to directly determine the number of fractured shells and the chirality of the outer shell. Electron irradiation at 200 keV for 10, 100 and 1,800 s led to improvements in the maximum sustainable loads by factors of 2.4, 7.9 and 11.6 compared with non-irradiated samples of similar diameter. This effect is attributed to crosslinking between the shells. Computer simulations also illustrate the effects of various irradiation-induced crosslinking defects on load sharing between the shells.« less
Ji, Liwen; Zhou, Weidong; Chabot, Victor; Yu, Aiping; Xiao, Xingcheng
2015-11-11
Reduced graphene oxides loaded with tin-antimony alloy (RGO-SnSb) nanocomposites were synthesized through a hydrothermal reaction and the subsequent thermal reduction treatments. Transmission electron microscope images confirm that SnSb nanoparticles with an average size of about 20-30 nm are uniformly dispersed on the RGO surfaces. When they were used as anodes for rechargeable sodium (Na)-ion batteries, these as-synthesized RGO-SnSb nanocomposite anodes delivered a high initial reversible capacity of 407 mAh g(-1), stable cyclic retention for more than 80 cycles and excellent cycle stability at ultra high charge/discharge rates up to 30C. The significantly improved performance of the synthesized RGO-SnSb nanocomposites as Na-ion battery anodes can be attributed to the synergetic effects of RGO-based flexible framework and the nanoscale dimension of the SnSb alloy particles (<30 nm). Nanosized intermetallic SnSb compounds can exhibit improved structural stability and conductivity during charge and discharge reactions compared to the corresponding individuals (Sn and Sb particles). In the meantime, RGO sheets can tightly anchor SnSb alloy particles on the surfaces, which can not only effectively suppress the agglomeration of SnSb particles but also maintain excellent electronic conduction. Furthermore, the mechanical flexibility of the RGO phase can accommodate the volume expansion and contraction of SnSb particles during the prolonged cycling, therefore, improve the electrode integrity mechanically and electronically. All of these contribute to the electrochemical performance improvements of the RGO-SnSb nanocomposite-based electrodes in rechargeable Na-ion batteries.
Hossain, Mozakkar; Kumar, Gundam Sandeep; Barimar Prabhava, S N; Sheerin, Emmet D; McCloskey, David; Acharya, Somobrata; Rao, K D M; Boland, John J
2018-05-22
Optically transparent photodetectors are crucial in next-generation optoelectronic applications including smart windows and transparent image sensors. Designing photodetectors with high transparency, photoresponsivity, and robust mechanical flexibility remains a significant challenge, as is managing the inevitable trade-off between high transparency and strong photoresponse. Here we report a scalable method to produce flexible crystalline Si nanostructured wire (NW) networks fabricated from silicon-on-insulator (SOI) with seamless junctions and highly responsive porous Si segments that combine to deliver exceptional performance. These networks show high transparency (∼92% at 550 nm), broadband photodetection (350 to 950 nm) with excellent responsivity (25 A/W), optical response time (0.58 ms), and mechanical flexibility (1000 cycles). Temperature-dependent photocurrent measurements indicate the presence of localized electronic states in the porous Si segments, which play a crucial role in light harvesting and photocarrier generation. The scalable low-cost approach based on SOI has the potential to deliver new classes of flexible optoelectronic devices, including next-generation photodetectors and solar cells.
Bioinspired leaves-on-branchlet hybrid carbon nanostructure for supercapacitors.
Xiong, Guoping; He, Pingge; Lyu, Zhipeng; Chen, Tengfei; Huang, Boyun; Chen, Lei; Fisher, Timothy S
2018-02-23
Designing electrodes in a highly ordered structure simultaneously with appropriate orientation, outstanding mechanical robustness, and high electrical conductivity to achieve excellent electrochemical performance remains a daunting challenge. Inspired by the phenomenon in nature that leaves significantly increase exposed tree surface area to absorb carbon dioxide (like ions) from the environments (like electrolyte) for photosynthesis, we report a design of micro-conduits in a bioinspired leaves-on-branchlet structure consisting of carbon nanotube arrays serving as branchlets and graphene petals as leaves for such electrodes. The hierarchical all-carbon micro-conduit electrodes with hollow channels exhibit high areal capacitance of 2.35 F cm -2 (~500 F g -1 based on active material mass), high rate capability and outstanding cyclic stability (capacitance retention of ~95% over 10,000 cycles). Furthermore, Nernst-Planck-Poisson calculations elucidate the underlying mechanism of charge transfer and storage governed by sharp graphene petal edges, and thus provides insights into their outstanding electrochemical performance.
Cheng, Yingwen; Lu, Songtao; Zhang, Hongbo; Varanasi, Chakrapani V; Liu, Jie
2012-08-08
Flexible and lightweight energy storage systems have received tremendous interest recently due to their potential applications in wearable electronics, roll-up displays, and other devices. To manufacture such systems, flexible electrodes with desired mechanical and electrochemical properties are critical. Herein we present a novel method to fabricate conductive, highly flexible, and robust film supercapacitor electrodes based on graphene/MnO(2)/CNTs nanocomposites. The synergistic effects from graphene, CNTs, and MnO(2) deliver outstanding mechanical properties (tensile strength of 48 MPa) and superior electrochemical activity that were not achieved by any of these components alone. These flexible electrodes allow highly active material loading (71 wt % MnO(2)), areal density (8.80 mg/cm(2)), and high specific capacitance (372 F/g) with excellent rate capability for supercapacitors without the need of current collectors and binders. The film can also be wound around 0.5 mm diameter rods for fabricating full cells with high performance, showing significant potential in flexible energy storage devices.
Kim, Kang Lib; Lee, Wonho; Hwang, Sun Kak; Joo, Se Hun; Cho, Suk Man; Song, Giyoung; Cho, Sung Hwan; Jeong, Beomjin; Hwang, Ihn; Ahn, Jong-Hyun; Yu, Young-Jun; Shin, Tae Joo; Kwak, Sang Kyu; Kang, Seok Ju; Park, Cheolmin
2016-01-13
Enhancing the device performance of organic memory devices while providing high optical transparency and mechanical flexibility requires an optimized combination of functional materials and smart device architecture design. However, it remains a great challenge to realize fully functional transparent and mechanically durable nonvolatile memory because of the limitations of conventional rigid, opaque metal electrodes. Here, we demonstrate ferroelectric nonvolatile memory devices that use graphene electrodes as the epitaxial growth substrate for crystalline poly(vinylidene fluoride-trifluoroethylene) (PVDF-TrFE) polymer. The strong crystallographic interaction between PVDF-TrFE and graphene results in the orientation of the crystals with distinct symmetry, which is favorable for polarization switching upon the electric field. The epitaxial growth of PVDF-TrFE on a graphene layer thus provides excellent ferroelectric performance with high remnant polarization in metal/ferroelectric polymer/metal devices. Furthermore, a fully transparent and flexible array of ferroelectric field effect transistors was successfully realized by adopting transparent poly[bis(4-phenyl)(2,4,6-trimethylphenyl)amine] semiconducting polymer.
Peng, Qingyu; Qin, Yuyang; Zhao, Xu; Sun, Xianxian; Chen, Qiang; Xu, Fan; Lin, Zaishan; Yuan, Ye; Li, Ying; Li, Jianjun; Yin, Weilong; Gao, Chao; Zhang, Fan; He, Xiaodong; Li, Yibin
2017-12-20
Lightweight, high-performance, thermally insulating, and antifrosting porous materials are in increasing demand to improve energy efficiency in many fields, such as aerospace and wearable devices. However, traditional thermally insulating materials (porous ceramics, polymer-based sponges) could not simultaneously meet these demands. Here, we propose a hierarchical assembly strategy for producing nanocomposite foams with lightweight, mechanically flexible, superinsulating, and antifrosting properties. The nanocomposite foams consist of a highly anisotropic reduced graphene oxide/polyimide (abbreviated as rGO/PI) network and hollow graphene oxide microspheres. The hierarchical nanocomposite foams are ultralight (density of 9.2 mg·cm -3 ) and exhibit ultralow thermal conductivity of 9 mW·m -1 ·K -1 , which is about a third that of traditional polymer-based insulating materials. Meanwhile, the nanocomposite foams show excellent icephobic performance. Our results show that hierarchical nanocomposite foams have promising applications in aerospace, wearable devices, refrigerators, and liquid nitrogen/oxygen transportation.
Effect of Different Concentration of Sodium Hydroxide [NaOH] on Kenaf Sandwich Structures
NASA Astrophysics Data System (ADS)
Aziz, M.; Halim, Z.; Othman, M.
2018-01-01
Sandwich panels are structures that made of three layers, low-density core inserted in between thin skin layers. This structures allow the achievement of excellent mechanical performance with low weight, thus this characteristic fulfil requirement to be use in aircraft application. In recent time, sandwich structures have been studied due to it has multifunction properties and lightweight. The aim of this study is to fabricate a composite sandwich structures with biodegradable material for face sheet [skin] where the fibre being treat with different concentration of sodium hydroxide [NaOH] with 10 and 20 hours of soaking time. Kenaf fibre [treated] reinforced epoxy will be used as skins and Nomex honeycomb is chosen to perform as core for this sandwich composite structure. The mechanical properties that are evaluated such as flexural strength and impact energy of kenaf fibre-reinforced epoxy sandwich structures. For flexural test, the optimum flexural strength is 13.4 MPa and impact strength is 18.3 J.
Nacre-inspired integrated strong and tough reduced graphene oxide-poly(acrylic acid) nanocomposites
NASA Astrophysics Data System (ADS)
Wan, Sijie; Hu, Han; Peng, Jingsong; Li, Yuchen; Fan, Yuzun; Jiang, Lei; Cheng, Qunfeng
2016-03-01
Inspired by the relationship between interface interactions and the high performance mechanical properties of nacre, a strong and tough nacre-inspired nanocomposite was demonstrated based on graphene oxide (GO) and polyacrylic acid (PAA) prepared via a vacuum-assisted filtration self-assembly process. The abundant hydrogen bonding between GO and PAA results in both high strength and toughness of the bioinspired nanocomposites, which are 2 and 3.3 times higher than that of pure reduced GO film, respectively. In addition, the effect of environmental relative humidity on the mechanical properties of bioinspired nanocomposites is also investigated, and is consistent with previous theoretical predictions. Moreover, this nacre-inspired nanocomposite also displays high electrical conductivity of 108.9 S cm-1. These excellent physical properties allow this type of nacre-inspired nanocomposite to be used in many applications, such as flexible electrodes, aerospace applications, and artificial muscles etc. This nacre-inspired strategy also opens an avenue for constructing integrated high performance graphene-based nanocomposites in the near future.
Fatigue stress concentration and notch sensitivity in nanocrystalline metals
DOE Office of Scientific and Technical Information (OSTI.GOV)
Furnish, Timothy A.; Boyce, Brad L.; Sharon, John A.
Recent studies have shown the potential for nanocrystalline metals to possess excellent fatigue resistance compared to their coarse-grained counterparts. Although the mechanical properties of nanocrystalline metals are believed to be particularly susceptible to material defects, a systematic study of the effects of geometric discontinuities on their fatigue performance has not yet been performed. In the present work, nanocrystalline Ni–40 wt%Fe containing both intrinsic and extrinsic defects were tested in tension–tension fatigue. The defects were found to dramatically reduce the fatigue resistance, which was attributed to the relatively high notch sensitivity in the nanocrystalline material. Microstructural analysis within the crack-initiation zonesmore » underneath the defects revealed cyclically-induced abnormal grain growth (AGG) as a predominant deformation and crack initiation mechanism during high-cycle fatigue. Furthermore, the onset of AGG and the ensuing fracture is likely accelerated by the stress concentrations, resulting in the reduced fatigue resistance compared to the relatively defect-free counterparts.« less
Fatigue stress concentration and notch sensitivity in nanocrystalline metals
Furnish, Timothy A.; Boyce, Brad L.; Sharon, John A.; ...
2016-03-11
Recent studies have shown the potential for nanocrystalline metals to possess excellent fatigue resistance compared to their coarse-grained counterparts. Although the mechanical properties of nanocrystalline metals are believed to be particularly susceptible to material defects, a systematic study of the effects of geometric discontinuities on their fatigue performance has not yet been performed. In the present work, nanocrystalline Ni–40 wt%Fe containing both intrinsic and extrinsic defects were tested in tension–tension fatigue. The defects were found to dramatically reduce the fatigue resistance, which was attributed to the relatively high notch sensitivity in the nanocrystalline material. Microstructural analysis within the crack-initiation zonesmore » underneath the defects revealed cyclically-induced abnormal grain growth (AGG) as a predominant deformation and crack initiation mechanism during high-cycle fatigue. Furthermore, the onset of AGG and the ensuing fracture is likely accelerated by the stress concentrations, resulting in the reduced fatigue resistance compared to the relatively defect-free counterparts.« less
1D Piezoelectric Material Based Nanogenerators: Methods, Materials and Property Optimization
Li, Xing; Sun, Mei; Wei, Xianlong; Shan, Chongxin
2018-01-01
Due to the enhanced piezoelectric properties, excellent mechanical properties and tunable electric properties, one-dimensional (1D) piezoelectric materials have shown their promising applications in nanogenerators (NG), sensors, actuators, electronic devices etc. To present a clear view about 1D piezoelectric materials, this review mainly focuses on the characterization and optimization of the piezoelectric properties of 1D nanomaterials, including semiconducting nanowires (NWs) with wurtzite and/or zinc blend phases, perovskite NWs and 1D polymers. Specifically, the piezoelectric coefficients, performance of single NW-based NG and structure-dependent electromechanical properties of 1D nanostructured materials can be respectively investigated through piezoresponse force microscopy, atomic force microscopy and the in-situ scanning/transmission electron microcopy. Along with the introduction of the mechanism and piezoelectric properties of 1D semiconductor, perovskite materials and polymers, their performance improvement strategies are summarized from the view of microstructures, including size-effect, crystal structure, orientation and defects. Finally, the extension of 1D piezoelectric materials in field effect transistors and optoelectronic devices are simply introduced. PMID:29570639
ERIC Educational Resources Information Center
National Center on Performance Incentives, 2008
2008-01-01
In "Characteristics and Determinants of Teacher-Designed Pay for Performance Plans: Evidence from Texas' Governor's Educator Excellence Grant (GEEG) Program"--a paper presented at the February 2008 National Center on Performance Incentives research to policy conference--Lori Taylor, Matthew Springer, and Mark Ehlert describe the teacher…
NASA Astrophysics Data System (ADS)
Lin, Dongguo; Kang, Tae Gon; Han, Jun Sae; Park, Seong Jin; Chung, Seong Taek; Kwon, Young-Sam
2018-02-01
Both experimental and numerical analysis of powder injection molding (PIM) of Ti-6Al-4V alloy were performed to prepare a defect-free high-performance Ti-6Al-4V part with low carbon/oxygen contents. The prepared feedstock was characterized with specific experiments to identify its viscosity, pressure-volume-temperature and thermal properties to simulate its injection molding process. A finite-element-based numerical scheme was employed to simulate the thermomechanical process during the injection molding. In addition, the injection molding, debinding, sintering and hot isostatic pressing processes were performed in sequence to prepare the PIMed parts. With optimized processing conditions, the PIMed Ti-6Al-4V part exhibits excellent physical and mechanical properties, showing a final density of 99.8%, tensile strength of 973 MPa and elongation of 16%.
Wan, Wenjin; Li, Yuehua; Ren, Xingping; Zhao, Yinping; Gao, Fan; Zhao, Heyun
2018-01-01
Two dimensional (2D)SnO2 nanosheets were synthesized by a substrate-free hydrothermal route using sodium stannate and sodium hydroxide in a mixed solvent of absolute ethanol and deionized water at a lower temperature of 130 °C. The characterization results of the morphology, microstructure, and surface properties of the as-prepared products demonstrated that SnO2 nanosheets with a tetragonal rutile structure, were composed of oriented SnO2 nanoparticles with a diameter of 6–12 nm. The X-ray diffraction (XRD) and high-resolution transmission electron microscope (FETEM) results demonstrated that the dominant exposed surface of the SnO2 nanoparticles was (101), but not (110). The growth and formation was supposed to follow the oriented attachment mechanism. The SnO2 nanosheets exhibited an excellent sensing response toward ethylene glycol at a lower optimal operating voltage of 3.4 V. The response to 400 ppm ethylene glycol reaches 395 at 3.4 V. Even under the low concentration of 5, 10, and 20 ppm, the sensor exhibited a high response of 6.9, 7.8, and 12.0 to ethylene glycol, respectively. The response of the SnO2 nanosheets exhibited a linear dependence on the ethylene glycol concentration from 5 to 1000 ppm. The excellent sensing performance was attributed to the present SnO2 nanoparticles with small size close to the Debye length, the larger specific surface, the high-energy exposed facets of the (101) surface, and the synergistic effects of the SnO2 nanoparticles of the nanosheets. PMID:29462938
Noël, Audrey; Berhin, Catherine; Hoebeke, Martin; Bouchahrouf, Warda; Yunus, Sami; Bogaerts, Pierre; Glupczynski, Youri
2016-01-01
ABSTRACT Four screening assays aimed for rapid detection of carbapenemase production from Gram-negative bacterial isolates, i.e., the Neo-Rapid Carb kit (Rosco Diagnostica A/S), the Rapidec Carba NP test (bioMérieux SA), the β Carba test (Bio-Rad Laboratories N.V.), and a homemade electrochemical assay (BYG Carba test) were evaluated against a panel comprising 328 clinical isolates (Enterobacteriaceae [n = 198] and nonfermentative Gram-negative bacilli [n = 130]) with previously characterized resistance mechanisms to carbapenems. Among Enterobacteriaceae isolates, the BYG Carba test and the β Carba test showed excellent sensitivities (respectively, 100% and 97.3%) and specificities (respectively, 98.9% and 97.7%). The two other assays yielded poorer performances with sensitivity and specificity of 91.9% and 83.9% for the Rapidec Carba NP test and of 89.2% and 89.7% for the Neo-Rapid Carb kit, respectively. Among Pseudomonas spp., sensitivities and specificities ranged, respectively, from 87.3% to 92.7% and from 88.2% to 94.1%. Finally, all tests performed poorly against Acinetobacter spp., with sensitivities and specificities, respectively, ranging from 27.3% to 75.8% and from 75 to 100%. Among commercially available assays, the β Carba test appeared to be the most convenient for routine use and showed the best overall performances, especially against OXA-48-like producers. The excellent performance of the BYG Carba test against Enterobacteriaceae was confirmed (100% sensitivity and 98.9% specificity). PMID:27927915
Chen, Fashen; Liu, Xiaohe; Zhang, Zhian; Zhang, Ning; Pan, Anqiang; Liang, Shuquan; Ma, Renzhi
2016-09-27
Urchin-like cobalt oxide (Co 3 O 4 ) hollow spheres can be successfully prepared by thermal decomposition of cobalt carbonate hydroxide hydrate (Co(CO 3 ) 0.5 (OH)·0.11H 2 O) obtained by template-assisted hydrothermal synthesis. The morphology, crystal structure evolution and thermal decomposition behaviors of the as-prepared products have been carefully investigated. A plausible formation mechanism of the urchin-like Co 3 O 4 hollow spheres in the presence of hexadecyl trimethyl ammonium bromide (CTAB) as the surfactant template is proposed. The urchin-like Co 3 O 4 hollow spheres are further constructed as electrode materials for high-performance supercapacitors with a high specific capacitance of 460 F g -1 at a current density of 4 A g -1 and excellent cycling stability. Furthermore, as anode materials for lithium-ion batteries (LIBs), superior lithium storage performance of 1342.2 mA h g -1 (0.1 C) and 1122.7 mA h g -1 (0.2 C) can also be achieved. The excellent performances can be ascribed to the unique hierarchical urchin-like hollow structure of the electrode materials, which offers a large specific surface area, short electron and ion diffusion paths and high permeability while being directly in contact with the electrolyte. Moreover, the hollow structure with sufficient internal void spaces can self-accommodate volume change during electrochemical reactions, which improves the structural stability and integrity.
Effect of LPSO and SFs on microstructure evolution and mechanical properties of Mg-Gd-Y-Zn-Zr alloy
NASA Astrophysics Data System (ADS)
Xu, Chao; Nakata, Taiki; Qiao, Xiaoguang; Zheng, Mingyi; Wu, Kun; Kamado, Shigeharu
2017-01-01
High performance Mg-8.2Gd-3.8Y-1.0Zn-0.4Zr alloy with high strength and excellent ductility has been successfully developed by hot extrusion. The effect of plate-shaped long period stacking ordered (LPSO) phases and solute-segregated stacking faults (SFs) on the dynamically recrystallization (DRX) behavior was analyzed. The plate-shaped LPSO phases stimulate the DRX by particle stimulated nucleation mechanism, leading to higher DRX ratio and weaker basal texture. While for the alloy with dense fine SFs inside the original grains, discontinuous DRX initially occurs at the original grain boundaries, and the DRX is obviously restricted. Consequently, alloy containing dense SFs exhibits higher strength but lower ductility compared with alloy with plated-shaped LPSO phases.
Effect of LPSO and SFs on microstructure evolution and mechanical properties of Mg-Gd-Y-Zn-Zr alloy
Xu, Chao; Nakata, Taiki; Qiao, Xiaoguang; Zheng, Mingyi; Wu, Kun; Kamado, Shigeharu
2017-01-01
High performance Mg-8.2Gd-3.8Y-1.0Zn-0.4Zr alloy with high strength and excellent ductility has been successfully developed by hot extrusion. The effect of plate-shaped long period stacking ordered (LPSO) phases and solute-segregated stacking faults (SFs) on the dynamically recrystallization (DRX) behavior was analyzed. The plate-shaped LPSO phases stimulate the DRX by particle stimulated nucleation mechanism, leading to higher DRX ratio and weaker basal texture. While for the alloy with dense fine SFs inside the original grains, discontinuous DRX initially occurs at the original grain boundaries, and the DRX is obviously restricted. Consequently, alloy containing dense SFs exhibits higher strength but lower ductility compared with alloy with plated-shaped LPSO phases. PMID:28134297
Mechanical characterization and modeling of sponge-reinforced hydrogel composites under compression.
Wu, Lei; Mao, Guoyong; Nian, Guodong; Xiang, Yuhai; Qian, Jin; Qu, Shaoxing
2018-05-30
Load-bearing applications of hydrogels call for materials with excellent mechanical properties. Despite the considerable progress in developing tough hydrogels, there is still a requirement to prepare high-performance hydrogels using simple strategies. In this paper, a sponge-reinforced hydrogel composite is synthesized by combining poly(acrylamide) (PAAm) hydrogel and polyurethane (PU) sponge. Uniaxial compressive testing of the hydrogel composites reveals that both the compressive modulus and the strength of the hydrogel composites are much higher than those of the PAAm hydrogel or sponge. In order to predict the compressive modulus of the hydrogel composite, we develop a theoretical model that is validated by experiments and numerical simulations. The present work may guide the design and manufacture of hydrogel-based composite materials, especially for biomaterial scaffolds and soft transducers.
Chen, Guangbo; Zhao, Yufei; Shang, Lu; Waterhouse, Geoffrey I N; Kang, Xiaofeng; Wu, Li-Zhu; Tung, Chen-Ho; Zhang, Tierui
2016-07-01
Monovalent Zn + (3d 10 4s 1 ) systems possess a special electronic structure that can be exploited in heterogeneous catalysis and photocatalysis, though it remains challenge to synthesize Zn + -containing materials. By careful design, Zn + -related species can be synthesized in zeolite and layered double hydroxide systems, which in turn exhibit excellent catalytic potential in methane, CO and CO 2 activation. Furthermore, by utilizing advanced characterization tools, including electron spin resonance, X-ray absorption fine structure and density functional theory calculations, the formation mechanism of the Zn + species and their structure-performance relationships can be understood. Such advanced characterization tools guide the rational design of high-performance Zn + -containing catalysts for efficient energy conversion.
Chen, Guangbo; Zhao, Yufei; Shang, Lu; Waterhouse, Geoffrey I. N.; Kang, Xiaofeng; Wu, Li‐Zhu; Tung, Chen‐Ho
2016-01-01
Monovalent Zn+ (3d104s1) systems possess a special electronic structure that can be exploited in heterogeneous catalysis and photocatalysis, though it remains challenge to synthesize Zn+‐containing materials. By careful design, Zn+‐related species can be synthesized in zeolite and layered double hydroxide systems, which in turn exhibit excellent catalytic potential in methane, CO and CO2 activation. Furthermore, by utilizing advanced characterization tools, including electron spin resonance, X‐ray absorption fine structure and density functional theory calculations, the formation mechanism of the Zn+ species and their structure‐performance relationships can be understood. Such advanced characterization tools guide the rational design of high‐performance Zn+‐containing catalysts for efficient energy conversion. PMID:27818902
Anion-Tunable Properties and Electrochemical Performance of Functionalized Ferrocene Compounds
NASA Astrophysics Data System (ADS)
Cosimbescu, Lelia; Wei, Xiaoliang; Vijayakumar, M.; Xu, Wu; Helm, Monte L.; Burton, Sarah D.; Sorensen, Christina M.; Liu, Jun; Sprenkle, Vincent; Wang, Wei
2015-09-01
We report a series of ionically modified ferrocene compounds for hybrid lithium-organic non-aqueous redox flow batteries, based on the ferrocene/ferrocenium redox couple as the active catholyte material. Tetraalkylammonium ionic moieties were incorporated into the ferrocene structure, in order to enhance the solubility of the otherwise relatively insoluble ferrocene. The effect of various counter anions of the tetraalkylammonium ionized species appended to the ferrocene, such as bis(trifluoromethanesulfonyl)imide, hexafluorophosphate, perchlorate, tetrafluoroborate, and dicyanamide on the solubility of the ferrocene was investigated. The solution chemistry of the ferrocene species was studied, in order to understand the mechanism of solubility enhancement. Finally, the electrochemical performance of these ionized ferrocene species was evaluated and shown to have excellent cell efficiency and superior cycling stability.
Anion-Tunable Properties and Electrochemical Performance of Functionalized Ferrocene Compounds.
Cosimbescu, Lelia; Wei, Xiaoliang; Vijayakumar, M; Xu, Wu; Helm, Monte L; Burton, Sarah D; Sorensen, Christina M; Liu, Jun; Sprenkle, Vincent; Wang, Wei
2015-09-16
We report a series of ionically modified ferrocene compounds for hybrid lithium-organic non-aqueous redox flow batteries, based on the ferrocene/ferrocenium redox couple as the active catholyte material. Tetraalkylammonium ionic moieties were incorporated into the ferrocene structure, in order to enhance the solubility of the otherwise relatively insoluble ferrocene. The effect of various counter anions of the tetraalkylammonium ionized species appended to the ferrocene, such as bis(trifluoromethanesulfonyl)imide, hexafluorophosphate, perchlorate, tetrafluoroborate, and dicyanamide on the solubility of the ferrocene was investigated. The solution chemistry of the ferrocene species was studied, in order to understand the mechanism of solubility enhancement. Finally, the electrochemical performance of these ionized ferrocene species was evaluated and shown to have excellent cell efficiency and superior cycling stability.
Ferroelectric nanoparticle-embedded sponge structure triboelectric generators
NASA Astrophysics Data System (ADS)
Park, Daehoon; Shin, Sung-Ho; Yoon, Ick-Jae; Nah, Junghyo
2018-05-01
We report high-performance triboelectric nanogenerators (TENGs) employing ferroelectric nanoparticles (NPs) embedded in a sponge structure. The ferroelectric BaTiO3 NPs inside the sponge structure play an important role in increasing surface charge density by polarized spontaneous dipoles, enabling the packaging of TENGs even with a minimal separation gap. Since the friction surfaces are encapsulated in the packaged device structure, it suffers negligible performance degradation even at a high relative humidity of 80%. The TENGs also demonstrated excellent mechanical durability due to the elasticity and flexibility of the sponge structure. Consequently, the TENGs can reliably harvest energy even under harsh conditions. The approach introduced here is a simple, effective, and reliable way to fabricate compact and packaged TENGs for potential applications in wearable energy-harvesting devices.
NASA Astrophysics Data System (ADS)
Chiu, Nan-Fu; Huang, Teng-Yi; Kuo, Chun-Chuan
2015-05-01
We describe a fundamental study on the plasmonic properties and advanced biosensing mechanisms of functionalized graphene. We discuss a specific design using modified carboxyl groups, which can modulate surface plasmon (SP) coupling and provide an advantage for their binding to the sensing layer with high-performance affinity in an immunological reaction. The functionalized graphene-based surface plasmon resonance (SPR) biosensors have three advantages: high performance, high sensitivity, and excellent molecular kinetic response. In the future, functionalized graphene sheets will make a unique contribution to photonic and SPR diagnosis devices. We wish to highlight the essential characteristics of functionalized graphene-based SPR biosensors to assist researchers in developing and advancing suitable biosensors for unique applications.
Ferroelectric nanoparticle-embedded sponge structure triboelectric generators.
Park, Daehoon; Shin, Sung-Ho; Yoon, Ick-Jae; Nah, Junghyo
2018-05-04
We report high-performance triboelectric nanogenerators (TENGs) employing ferroelectric nanoparticles (NPs) embedded in a sponge structure. The ferroelectric BaTiO 3 NPs inside the sponge structure play an important role in increasing surface charge density by polarized spontaneous dipoles, enabling the packaging of TENGs even with a minimal separation gap. Since the friction surfaces are encapsulated in the packaged device structure, it suffers negligible performance degradation even at a high relative humidity of 80%. The TENGs also demonstrated excellent mechanical durability due to the elasticity and flexibility of the sponge structure. Consequently, the TENGs can reliably harvest energy even under harsh conditions. The approach introduced here is a simple, effective, and reliable way to fabricate compact and packaged TENGs for potential applications in wearable energy-harvesting devices.
Moon, In Kyu; Yoon, Seonno; Oh, Jungwoo
2017-01-12
To achieve high energy storage on three-dimensional (3D) structures at low cost, materials with high power and long cycle life characteristics have to be developed. We synthesized ZnCo 2 O 4 /reduced graphene oxide (rGO) binary composites in commercial sponges. ZnCo 2 O 4 nanosheets were grown on the surface of GO/sponge through a hydrothermal reaction. The resulting flexible, free-standing ZnCo 2 O 4 /rGO/sponge electrodes were used as the electrodes in a symmetric supercapacitor. ZnCo 2 O 4 /rGO/sponge electrodes have a large specific capacitance of 1116.6 F g -1 at a scan rate of 2 mV s -1 in aqueous electrolyte. The all-solid-state flexible supercapacitor is assembled based on ZnCo 2 O 4 /rGO/sponge electrodes, which show excellent electrochemical performances with a specific capacitance of 143 F g -1 at a current density of 1 A g -1 . The as-fabricated supercapacitor also exhibits excellent cycling stability (93.4 % capacitance retention after 5000 cycles) and exceptional mechanical flexibility. These results demonstrate the potential of ZnCo 2 O 4 /rGO/sponge as an electrode in flexible, high-performance supercapacitors. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.
Herrmann, M; Gieschke, P; Ruther, P; Paul, O
2011-12-01
We present a torsional bridge setup for the electro-mechanical characterization of devices integrated in the surface of silicon beams under mechanical in-plane shear stress. It is based on the application of a torsional moment to the longitudinal axis of the silicon beams, which results in a homogeneous in-plane shear stress in the beam surface. The safely applicable shear stresses span the range of ±50 MPa. Thanks to a specially designed clamping mechanism, the unintended normal stress typically stays below 2.5% of the applied shear stress. An analytical model is presented to compute the induced shear stress. Numerical computations verify the analytical results and show that the homogeneity of the shear stress is very high on the beam surface in the region of interest. Measurements with piezoresistive microsensors fabricated using a complementary metal-oxide-semiconductor process show an excellent agreement with both the computational results and comparative measurements performed on a four-point bending bridge. The electrical connection to the silicon beam is performed with standard bond wires. This ensures that minimal forces are applied to the beam by the electrical interconnection to the external instrumentation and that devices with arbitrary bond pad layout can be inserted into the setup.
NASA Astrophysics Data System (ADS)
Grewal, H. S.; Agrawal, Anupam; Singh, H.; Shollock, B. A.
2014-02-01
In this paper, slurry erosion performance of high velocity flame-sprayed Ni-Al2O3 based coatings was evaluated. The coatings were deposited on a hydroturbine steel (CA6NM) by varying the content of Al2O3 in Ni. Using jet-type test rig, erosion behavior of coatings and bare steel was evaluated at different impingement angles. Detailed investigation of the surface morphology of the eroded specimens was undertaken using SEM/EDS to identify potential erosion mechanism. A parameter named "erosion mechanism identifier" (ξ) was used to predict the mode of erosion. It was observed that the coating prepared using 40 wt.% of Al2O3 showed a highest resistance to erosion. This coating enhanced the erosion resistance of the steel by 2 to 4 times. Spalling in the form of splats and chunks of material (formed by interlinking of cracks) along with fracture of Al2O3 splats were identified as primary mechanisms responsible for the loss of coating material. The erosion mechanism of coatings and bare steel predicted by ξ was in good agreement with that observed experimentally. Among different parameters,, a function of fracture toughness ( K IC) and hardness ( H) showed excellent correlation with erosion resistance of coatings at both the impingement angles.
Organic/inorganic hybrid coatings for anticorrosion
NASA Astrophysics Data System (ADS)
He, Zhouying
Compared to organic coatings, organic-inorganic hybrid coatings can potentially improve the anticorrosion performance. The organic phase provides the excellent mechaincal and barrier properties while the inorganic phase acts as an adhesion promoter and corrosion inhibitor. Despite that many studies on alkoxylsilane-based hybrid coatings have been developed and studied, their weatherability and anticorrosion performance has been rarely evaluated. On the other hand, organic-inorganic hybrid coatings based on mixed sol-gel precursors have received much less attention compared to alkoxylsilane-based hybrid coatings. In the first part, polyurethane hybrid coatings with a unique hybrid crosslinked structure as an improved unicoat were successfully prepared. The effect of polyesters on physical properties of the hybrid coatings was studied. Polyurethane coatings derived from cycloaliphatic polyester show comparable properties than those derived from the commercially viable aromatic polyester. Introducing the polysiloxane part into the polyurethane coatings enhanced the crosslinking density, Tg, mechanical properties, and general coating properties. The increased adhesion between the hybrid coating and the substrate make the hybrid coating a good candidate for anticorrosion application, which is shown by electrochemical impedance spectroscopy (EIS). The degradation mechanism of the polyurethane/polysiloxane hybrid coatings under various weathering conditions was shown to be the scission of the urethane and ester groups in the organic phase along with reorganizing and rearranging of the inorganic phase. The anticorrosion performance of the cycloaliphatic hybrid was much better than that of aromatic based hybrid under outdoor weathering based on visual observation and EIS analysis. Acid undercutting is an issue for TEOS based hybrid coating. In the second part, design of experiments (DOEs) was used to statistically investigate on the effect of sol-gel precursors. The synergistic effect of the mixed sol-gel precursors was shown to enhance the overall properties and was also observed structurally by SAXS and SEM. The improved resistance to the acid undercutting was observed for mixed sol-gel precursors based hybrids. The application of hybrids provides excellent anticorrosive properties as observed in salt spray and EIS study. The formation of Al2O3 protective layer as well as M-O-Al covalent bond provided the basis for excellent corrosion protection on Al substrate. However, the generation of Fe ions as corrosion product caused the accumulation of electrolyte, which resulted in the delamination of the coating on steel substrate. In this way, the corrosion of steel substrate is much faster than that of Al substrate. The maintenance of high impedance and corresponding resistance and capacitance based on EIS results further confirmed the great anticorrosion performance of hybrids on both Al and steel substrate.
Research on precise control of 3D print nozzle temperature in PEEK material
NASA Astrophysics Data System (ADS)
Liu, Zhichao; Wang, Gong; Huo, Yu; Zhao, Wei
2017-10-01
3D printing technology has shown more and more applicability in medication, designing and other fields for its low cost and high timeliness. PEEK (poly-ether-ether-ketone), as a typical high-performance special engineering plastic, become one of the most excellent materials to be used in 3D printing technology because of its excellent mechanical property, good lubricity, chemical resistance, and other properties. But the nozzle of 3D printer for PEEK has also a series of very high requirements. In this paper, we mainly use the nozzle temperature control as the research object, combining with the advantages and disadvantages of PID control and fuzzy control. Finally realize a kind of fuzzy PID controller to solve the problem of the inertia of the temperature system and the seriousness of the temperature control hysteresis in the temperature control of the nozzle, and to meet the requirements of the accuracy of the nozzle temperature control and rapid reaction.
Yu, Denis Y. W.; Hoster, Harry E.; Batabyal, Sudip K.
2014-01-01
Nanomaterials as anode for lithium-ion batteries (LIB) have gained widespread interest in the research community. However, scaling up and processibility are bottlenecks to further commercialization of these materials. Here, we report that bulk antimony sulfide with a size of 10–20 μm exhibits a high capacity and stable cycling of 800 mAh g−1. Mechanical and chemical stabilities of the electrodes are ensured by an optimal electrode-electrolyte system design, with a polyimide-based binder together with fluoroethylene carbonate in the electrolyte. The polyimide binder accommodates the volume expansion during alloying process and fluoroethylene carbonate suppresses the increase in charge transfer resistance of the electrodes. We observed that particle size is not a major factor affecting the charge-discharge capacities, rate capability and stability of the material. Despite the large particle size, bulk antimony sulfide shows excellent rate performance with a capacity of 580 mAh g−1 at a rate of 2000 mA g−1. PMID:24691396
Nanocarbon-Based Materials for Flexible All-Solid-State Supercapacitors.
Lv, Tian; Liu, Mingxian; Zhu, Dazhang; Gan, Lihua; Chen, Tao
2018-04-01
Because of the rapid development of flexible electronics, it is important to develop high-performance flexible energy-storage devices, such as supercapacitors and metal-ion batteries. Compared with metal-ion batteries, supercapacitors exhibit higher power density, longer cycling life, and excellent safety, and they can be easily fabricated into all-solid-state devices by using polymer gel electrolytes. All-solid-state supercapacitors (ASSSCs) have the advantages of being lightweight and flexible, thus showing great potential to be used as power sources for flexible portable electronics. Because of their high specific surface area and excellent electrical and mechanical properties, nanocarbon materials (such as carbon nanotubes, graphene, carbon nanofibers, and so on) have been widely used as efficient electrode materials for flexible ASSSCs, and great achievements have been obtained. Here, the recent advances in flexible ASSSCs are summarized, from design strategies to fabrication techniques for nanocarbon electrodes and devices. Current challenges and future perspectives are also discussed. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kuhlmann, Andreas V.; Houel, Julien; Warburton, Richard J.
Optically active quantum dots, for instance self-assembled InGaAs quantum dots, are potentially excellent single photon sources. The fidelity of the single photons is much improved using resonant rather than non-resonant excitation. With resonant excitation, the challenge is to distinguish between resonance fluorescence and scattered laser light. We have met this challenge by creating a polarization-based dark-field microscope to measure the resonance fluorescence from a single quantum dot at low temperature. We achieve a suppression of the scattered laser exceeding a factor of 10{sup 7} and background-free detection of resonance fluorescence. The same optical setup operates over the entire quantum dotmore » emission range (920–980 nm) and also in high magnetic fields. The major development is the outstanding long-term stability: once the dark-field point has been established, the microscope operates for days without alignment. The mechanical and optical designs of the microscope are presented, as well as exemplary resonance fluorescence spectroscopy results on individual quantum dots to underline the microscope's excellent performance.« less
Yang, Chen; Wang, Jinfeng; Chen, Ying; Liu, Dan; Huang, Shaoming; Lei, Weiwei
2018-06-14
3D functionalized flower-like boron nitride nanosheets (FBNNSs) were synthesized by a novel template-free method involving "cylinder compressing". Due to the high surface area (1114 m2 g-1), pore volume (0.7 cm3 g-1), hierarchical pore distributions, and abundant edge groups (-OH and -NH2), the 3D functionalized FBNNSs displayed excellent NH3 and CO2 adsorption up to 91 mg g-1 and 37.9 cc g-1 (74.4 mg g-1) at 1 bar, respectively. Moreover, the reusable performance of the material for gas adsorption was maintained for 10 cycles, indicating the stable structure of the FBNNSs. In addition, the adsorption mechanism was mainly explained by Lewis acid/base interactions, weak van der Waals interactions, and H-bonds. The combination of the enhanced adsorption capacity, excellent regenerability, and extraordinary chemical and thermal stability means that 3D FBNNSs possess huge potential for implementation in practical NH3 and CO2 capture.
Zhang, Kai; Ding, Jia; Lou, Zheng; Chai, Ruiqing; Zhong, Mianzeng; Shen, Guozhen
2017-10-19
Heterostructured ZnS/InP nanowires, composed of single-crystalline ZnS nanowires coated with a layer of InP shell, were synthesized via a one-step chemical vapor deposition process. As-grown heterostructured ZnS/InP nanowires exhibited an ultrahigh I on /I off ratio of 4.91 × 10 3 , a high photoconductive gain of 1.10 × 10 3 , a high detectivity of 1.65 × 10 13 Jones and high response speed even in the case of very weak ultraviolet light illumination (1.87 μW cm -2 ). The values are much higher than those of previously reported bare ZnS nanowires owing to the formation of core/shell heterostructures. Flexible ultraviolet photodetectors were also fabricated with the heterostructured ZnS/InP nanowires, which showed excellent mechanical flexibility, electrical stability and folding endurance besides excellent photoresponse properties. The results elucidated that the heterostructured ZnS/InP nanowires could find good applications in next generation flexible optoelectronic devices.
NASA Astrophysics Data System (ADS)
Reck, James; Wang, Yar-Ming; Kuo, Hong-Hsiang Harry
This work examines the use of hexafluorozirconic acid based solutions at concentrations from 0.025 M to 0.100 M and pH values of 2.0 to 4.0 for the creation of a zirconia-based conversion coating less than 1 micron thick to protect magnesium alloy AZ91D. Similar coatings have been found to give excellent protection for steel and aluminum alloys, but little research has been conducted on its application to magnesium. Work was performed to gain an understanding of the film formation mechanisms and related kinetics using x-ray photo-electron spectroscopy, scanning electron microscopy, and open circuit potential monitoring techniques. A design of experiments approach was taken to determine the effects of acid concentration, pH, and soak time on the corrosion properties both as-deposited and with an application of electrocoat. It was found that the application of the zirconia-based coating significantly increased corrosion resistance, and allowed for an acceptable e-coat application with excellent adherence.
John, Temitope M; Badejo, Joke A; Popoola, Segun I; Omole, David O; Odukoya, Jonathan A; Ajayi, Priscilla O; Aboyade, Mary; Atayero, Aderemi A
2018-06-01
This data article presents data of academic performances of undergraduate students in Science, Technology, Engineering and Mathematics (STEM) disciplines in Covenant University, Nigeria. The data shows academic performances of Male and Female students who graduated from 2010 to 2014. The total population of samples in the observation is 3046 undergraduates mined from Biochemistry (BCH), Building technology (BLD), Computer Engineering (CEN), Chemical Engineering (CHE), Industrial Chemistry (CHM), Computer Science (CIS), Civil Engineering (CVE), Electrical and Electronics Engineering (EEE), Information and Communication Engineering (ICE), Mathematics (MAT), Microbiology (MCB), Mechanical Engineering (MCE), Management and Information System (MIS), Petroleum Engineering (PET), Industrial Physics-Electronics and IT Applications (PHYE), Industrial Physics-Applied Geophysics (PHYG) and Industrial Physics-Renewable Energy (PHYR). The detailed dataset is made available in form of a Microsoft Excel spreadsheet in the supplementary material of this article.
A tough performance simultaneous semi-interpenetrating polymer network
NASA Technical Reports Server (NTRS)
Pater, Ruth H. (Inventor)
1989-01-01
A semi-interpenetrating polyimide (semi-IPN) network and methods for making and using the same are disclosed. The semi-IPN system comprises a high performance thermosetting polyimide having an acetylene-terminated group acting as a crosslinking site and a high performance linear thermoplastic polyimide. The polymer is made by combining low viscosity precursors and low molecular weight polymers of the thermosetting and thermoplastic polyimides and allowing them to react in the immediate presence of each other to form a simultaneous semi-interpenetrating polyimide network. Provided is a high temperature system having significantly improved processability and damage tolerance while maintaining excellent thermo-oxidative stability, mechanical properties and resistance to humidity, when compared with the commercial high temperature resin, Thermid 600. This material is particularly adapted for use as a molding, adhesive and advanced composite matrix for aerospace structural and electronic applications.
Li, Yuqi; Zhang, Hui; Fan, Mizi; Zheng, Peitao; Zhuang, Jiandong; Chen, Lihui
2017-01-01
Marine pollution caused by frequent oil spill accidents has brought about tremendous damages to marine ecological environment. Therefore, the facile large-scale preparation of three-dimensional (3D) porous functional materials with special wettability is in urgent demand. In this study, we report a low-cost and salt-tolerant superoleophobic aerogel for efficient oil/seawater separation. The aerogel is prepared through incorporating graphene oxide (GO) into alginate (ALG) matrix by using a facile combined freeze-drying and ionic cross-linking method. The 3D structure interconnected by ALG and GO ensures the high mechanical strength and good flexibility of the developed aerogel. The rough microstructure combined with the hydrophilicity of the aerogel ensures its excellent underwater superoleophobic and antifouling properties. High-content polysaccharides contained in the aerogel guarantees its excellent salt-tolerant property. More impressively, the developed aerogel can retain its underwater superoleophobicity even after 30 days of immersion in seawater, indicating its good stability in marine environments. Furthermore, the aerogel could separate various oil/water mixtures with high separation efficiency (>99%) and good reusability (at least 40 cycles). The facile fabrication process combined with the excellent separation performance makes it promising for practical applications in marine environments. PMID:28397862
NASA Astrophysics Data System (ADS)
Wang, Huan; Qiu, Xueqing; Liu, Weifeng; Yang, Dongjie
2017-12-01
In this work, a novel lignin-based carbon/ZnO (LC/ZnO) hybrid composite with excellent photocatalytic performance was prepared through a convenient and environment friendly method using alkali lignin (AL) as carbon source. The morphological, microstructure and optical properties of the as-prepared LC/ZnO hybrid composite was characterized with scanning electron microscope (SEM), X-ray diffraction (XRD), Raman and UV-vis. The resulting LC/ZnO hybrid is composed of highly dispersed ZnO nanoparticles embedded on a lignin-based carbon nanosheet, showing excellent photogenerated electrons and holes separation and migration efficiency. The photocatalytic activity of LC/ZnO was much higher than the pure ZnO. The LC/ZnO hybrid composite showed different photocatalytic mechanism for degradation of negative methyl orange (MO) and positive Rhodamine B (RhB). It showed that h+ was the main photocatalytic active group during the degradation of MO, ·O2- and ·OH were the photocatalytic active groups during degradation of RhB. This reported photocatalyst with selective degradation of positive and negative organic dyes may have a great application prospect for photoelectric conversion and catalytic materials. Results of this work were of practical importance for high-valued utilization of lignin for carbon materials.
Lin, Jing; Yuan, Xiaohai; Li, Gen; Huang, Yang; Wang, Weijia; He, Xin; Yu, Chao; Fang, Yi; Liu, Zhenya; Tang, Chengchun
2017-12-27
As a kind of macroscopic boron nitride (BN) architectures, ultralight BN cellular materials with high porosity and great resilience would have a broad range of applications in energy and environment areas. However, creating such BN cellular materials in large sizes has still been proven challenging. Here, we report on the unique self-assembly of one-dimensional porous BN microfibers into an integral three-dimensional BN foam with open-cell cellular architectures. An ultrasonic-assisted self-assembly, freeze-drying, and high-temperature pyrolysis process has been developed for the preparation of cellular BN foam with a large size and desired shape. The developed BN foam has low density, high porosity (∼99.3%), great resilience, and excellent hydrophobic-lipophilic nature. The foam also exhibits excellent absorption capacities for a wide range of organic solvents and oils (wt % of ∼5130-7820%), as well as a high recovery efficiency (∼94%). Moreover, the unique hierarchical porous structure enables the foam to demonstrate a very low thermal conductivity (∼0.035 W/K/m). The excellent thermal insulation performance, superior mechanical property, and superb chemical and thermal stability enable the developed BN foam as an integrating multifunctional material in a broad range of high-end applications.
Highly Stretchable and Conductive Superhydrophobic Coating for Flexible Electronics.
Su, Xiaojing; Li, Hongqiang; Lai, Xuejun; Chen, Zhonghua; Zeng, Xingrong
2018-03-28
Superhydrophobic materials integrating stretchability with conductivity have huge potential in the emerging application horizons such as wearable electronic sensors, flexible power storage apparatus, and corrosion-resistant circuits. Herein, a facile spraying method is reported to fabricate a durable superhydrophobic coating with excellent stretchable and electrical performance by combing 1-octadecanethiol-modified silver nanoparticles (M-AgNPs) with polystyrene- b-poly(ethylene- co-butylene)- b-polystyrene (SEBS) on a prestretched natural rubber (NR) substrate. The embedding of M-AgNPs in elastic SEBS matrix and relaxation of prestretched NR substrate construct hierarchical rough architecture and endow the coating with dense charge-transport pathways. The fabricated coating exhibits superhydrophobicity with water contact angle larger than 160° and a high conductivity with resistance of about 10 Ω. The coating not only maintains superhydrophobicity at low/high stretch ratio for the newly generated small/large protuberances but also responds to stretching and bending with good sensitivity, broad sensing range, and stable response cycles. Moreover, the coating exhibits excellent durability to heat and strong acid/alkali and mechanical forces including droplet impact, kneading, torsion, and repetitive stretching-relaxation. The findings conceivably stand out as a new tool to fabricate multifunctional superhydrophobic materials with excellent stretchability and conductivity for flexible electronics under wet or corrosive environments.
Nela, Luca; Tang, Jianshi; Cao, Qing; Tulevski, George; Han, Shu-Jen
2018-03-14
Artificial "electronic skin" is of great interest for mimicking the functionality of human skin, such as tactile pressure sensing. Several important performance metrics include mechanical flexibility, operation voltage, sensitivity, and accuracy, as well as response speed. In this Letter, we demonstrate a large-area high-performance flexible pressure sensor built on an active matrix of 16 × 16 carbon nanotube thin-film transistors (CNT TFTs). Made from highly purified solution tubes, the active matrix exhibits superior flexible TFT performance with high mobility and large current density, along with a high device yield of nearly 99% over 4 inch sample area. The fully integrated flexible pressure sensor operates within a small voltage range of 3 V and shows superb performance featuring high spatial resolution of 4 mm, faster response than human skin (<30 ms), and excellent accuracy in sensing complex objects on both flat and curved surfaces. This work may pave the road for future integration of high-performance electronic skin in smart robotics and prosthetic solutions.
Origami-based earthworm-like locomotion robots.
Fang, Hongbin; Zhang, Yetong; Wang, K W
2017-10-16
Inspired by the morphology characteristics of the earthworms and the excellent deformability of origami structures, this research creates a novel earthworm-like locomotion robot through exploiting the origami techniques. In this innovation, appropriate actuation mechanisms are incorporated with origami ball structures into the earthworm-like robot 'body', and the earthworm's locomotion mechanism is mimicked to develop a gait generator as the robot 'centralized controller'. The origami ball, which is a periodic repetition of waterbomb units, could output significant bidirectional (axial and radial) deformations in an antagonistic way similar to the earthworm's body segment. Such bidirectional deformability can be strategically programmed by designing the number of constituent units. Experiments also indicate that the origami ball possesses two outstanding mechanical properties that are beneficial to robot development: one is the structural multistability in the axil direction that could contribute to the robot control implementation; and the other is the structural compliance in the radial direction that would increase the robot robustness and applicability. To validate the origami-based innovation, this research designs and constructs three robot segments based on different axial actuators: DC-motor, shape-memory-alloy springs, and pneumatic balloon. Performance evaluations reveal their merits and limitations, and to prove the concept, the DC-motor actuation is selected for building a six-segment robot prototype. Learning from earthworms' fundamental locomotion mechanism-retrograde peristalsis wave, seven gaits are automatically generated; controlled by which, the robot could achieve effective locomotion with qualitatively different modes and a wide range of average speeds. The outcomes of this research could lead to the development of origami locomotion robots with low fabrication costs, high customizability, light weight, good scalability, and excellent re-configurability.
Torsional Angle Driver (TorAD) System for HyperChem/Excel
NASA Astrophysics Data System (ADS)
Starkey, Ronald
1999-02-01
The torsional angle driver system for HyperChem/Excel is a package of several Excel spreadsheets and macro programs to be used with HyperChem to obtain and plot information, such as total energy, for the conformations that result from a 360° rotation about a torsional angle system in a molecule. The TorAD system also includes several HyperChem scripts to facilitate its use. TorAD was developed for use in the undergraduate organic chemistry laboratory. The results obtained with TorAD could be obtained manually with HyperChem, but it would take considerable time and would not be instructive to the students. Use of the TorAD system allows students to spend their time on the more important aspect of conformation analysisinterpretation of results. The Excel spreadsheet/macro programs in TorAD include:
· Tor_xl_a and tor_xl obtain and plot the total energy at 5° torsional-angle intervals. The calculation method, the torsional-angle restraint, and the structure to be used at each angle can be set by the user. The advanced version, tor_xl_a, which requires HyperChem 4.5 or later, also allows torsional-angle structures to be saved for later recall as individual structures or, using a HyperChem script, in a movie format. It also provides a rapid scan of the 360° rotation where only single-point calculations, rather than geometry optimizations, are performed. The tor_xl system will perform routine tasks in a manner suitable for most instructional settings. · Tor_Comp performs molecular mechanics optimizations at 5° intervals and obtains and plots four energy parameters (total, torsional, nonbonded, and bond [bend plus stretch] energy) as a function of torsional angle. The calculation method and the restraint can be specified.Both tor2_180 and tor2_360 provide an x, y, z plot (x = angle 1, y = angle 2, z = energy) and a topo plot (x = angle 1, y = angle 2, z = topo lines and color coding). The molecular mechanics method and the restraint can be specified. Hardware and Software Requirement Hardware and software requirements for Torsional Angle Driver (TorAD) are shown in Table 1. These programs require a version of HyperChem 4.0 or later that supports DDE. Also required is Microsoft Excel 5.0 or higher. HyperChem and Excel are not included with the issue.· TorDipol produces a plot of the total energy and the calculated dipole moment at 5° steps of the torsional angle. The default calculation is the semi-empirical AM1 method, but other methods can be used. The calculation method and the restraint can be specified. · Tor2_180 and Tor2_360 rotate two torsional angles to provide a 3D plot of the resulting total energy surface. Tor2_180 performs a 0 to 180° rotation, in 10° steps, on each of the two torsional angle systems (tor1 and tor2) selected. Tor2_360 will do a -180° to +180° (360° total) rotation of the two torsional angles in 20° steps.

ERIC Educational Resources Information Center
Springer, Matthew G.; Lewis, Jessica L.; Podgursky, Michael J.; Ehlert, Mark W.; Taylor, Lori L.; Lopez, Omar S.; Peng, Art
2009-01-01
The Governor's Educator Excellence Grant (GEEG) program was federally- and state-funded and provided three-year grants to schools to design and implement performance pay plans from the 2005-06 to 2007-08 school years. GEEG was implemented in 99 high poverty, high performing Texas public schools. Performance pay for teachers entered Texas state…
ERIC Educational Resources Information Center
Serban, Andreea M.
This study provides a brief overview of the current status of performance funding programs around the country, and compares California's Partnership for Excellence for Community Colleges with programs applicable to two-year institutions in five other states: Florida, Illinois, Missouri, South Carolina, and Tennessee. The comparative analysis…
ERIC Educational Resources Information Center
Springer, Matthew G.; Lewis, Jessica L.; Podgursky, Michael J.; Ehlert, Mark W.; Gronberg, Timothy J.; Hamilton, Laura S.; Jansen, Dennis W.; Stecher, Brian M.; Taylor, Lori L.; Lopez, Omar S.; Peng, Art
2009-01-01
The Texas Educator Excellence Grant (TEEG) program was state-funded and provided annual grants to schools to design and implement performance pay plans during the 2006-07 to 2009-10 school year. TEEG was implemented each year (i.e., Cycle) in approximately 1,000 high poverty, high performing Texas public schools. Performance pay for teachers…
ERIC Educational Resources Information Center
Plucker, Jonathan A.
2015-01-01
Every country strives for its students to have advanced achievement in some way, shape, or form. But too often, competence is a higher policy priority than excellence, and shrinking minimum competency gaps is a higher priority than closing excellence gaps. In this brief, educational excellence is defined as the percent of students who meet or…
ERIC Educational Resources Information Center
Springer, Matthew G.; Lewis, Jessica L.; Podgursky, Michael J.; Ehlert, Mark W.; Taylor, Lori L.; Lopez, Omar S.; Ghoshdastidar, Bonnie; Peng, Art
2010-01-01
The District Awards for Teacher Excellence's (D.A.T.E.'s) first year of implementation in 2008-09 occurred at a time when Texas was operating several state-funded performance pay programs. The three-year Governor's Educator Excellence Grant (G.E.E.G.) program was coming to its expected completion, while the Texas Educator Excellence Grant…
NASA Astrophysics Data System (ADS)
Mu, Junwu; Guan, Zhidong; Bian, Tianya; Li, Zengshan; Wang, Kailun; Liu, Sui
2014-10-01
Fasteners made of the anisotropic carbon/carbon (C/C) composite material have been developed for joining C/C composite material components in the high-temperature environment. The fastener specimens are fabricated from the C/C composites which are made from laminated carbon cloths with Z-direction carbon fibers being punctured as perform. Densification process cycles such as the thermal gradient chemical vapor infiltration (CVI) technology were repeated to obtain high density C/C composites fastener. The fasteners were machined parallel to the carbon cloths (X-Y direction). A method was proposed to test pull-through mechanical behavior of the countersunk-head C/C composite material fasteners. The damage morphologies of the fasteners were observed through the charge coupled device (CCD) and the scanning electron microscope (SEM). The internal micro-structure were observed through the high-resolution Mirco-CT systems. Finally, an excellent simulation of the C/C composite countersunk-head fasteners were performed with the finite element method (FEM), in which the damage evolution model of the fastener was established based on continuum damage mechanics. The simulation is correspond well with the test result . The damage evolution process and the relation between the countersunk depth and the ultimate load was investigated.
Flexible nanopillar-based electrochemical sensors for genetic detection of foodborne pathogens
NASA Astrophysics Data System (ADS)
Park, Yoo Min; Lim, Sun Young; Jeong, Soon Woo; Song, Younseong; Bae, Nam Ho; Hong, Seok Bok; Choi, Bong Gill; Lee, Seok Jae; Lee, Kyoung G.
2018-06-01
Flexible and highly ordered nanopillar arrayed electrodes have brought great interest for many electrochemical applications, especially to the biosensors, because of its unique mechanical and topological properties. Herein, we report an advanced method to fabricate highly ordered nanopillar electrodes produced by soft-/photo-lithography and metal evaporation. The highly ordered nanopillar array exhibited the superior electrochemical and mechanical properties in regard with the wide space to response with electrolytes, enabling the sensitive analysis. As-prepared gold and silver electrodes on nanopillar arrays exhibit great and stable electrochemical performance to detect the amplified gene from foodborne pathogen of Escherichia coli O157:H7. Additionally, lightweight, flexible, and USB-connectable nanopillar-based electrochemical sensor platform improves the connectivity, portability, and sensitivity. Moreover, we successfully confirm the performance of genetic analysis using real food, specially designed intercalator, and amplified gene from foodborne pathogens with high reproducibility (6% standard deviation) and sensitivity (10 × 1.01 CFU) within 25 s based on the square wave voltammetry principle. This study confirmed excellent mechanical and chemical characteristics of nanopillar electrodes have a great and considerable electrochemical activity to apply as genetic biosensor platform in the fields of point-of-care testing (POCT).
Cao, Ran; Zhou, Tao; Wang, Bin; Yin, Yingying; Yuan, Zuqing; Li, Congju; Wang, Zhong Lin
2017-08-22
Currently, a triboelectric nanogenerator (TENG) and an electromagnetic generator (EMG) have been hybridized to effectively scavenge mechanical energy. However, one critical issue of the hybrid device is the limited output power due to the mismatched output impedance between the two generators. In this work, impedance matching between the TENG and EMG is achieved facilely through commercial transformers, and we put forward a highly integrated hybrid device. The rotating-sleeve triboelectric-electromagnetic hybrid nanogenerator (RSHG) is designed by simulating the structure of a common EMG, which ensures a high efficiency in transferring ambient mechanical energy into electric power. The RSHG presents an excellent performance with a short-circuit current of 1 mA and open-circuit voltage of 48 V at a rotation speed of 250 rpm. Systematic measurements demonstrate that the hybrid nanogenerator can deliver the largest output power of 13 mW at a loading resistance of 8 kΩ. Moreover, it is demonstrated that a wind-driven RSHG can light dozens of light-emitting diodes and power an electric watch. The distinctive structure and high output performance promise the practical application of this rotating-sleeve structured hybrid nanogenerator for large-scale energy conversion.
What's Special about Human Imitation? A Comparison with Enculturated Apes.
Subiaul, Francys
2016-07-07
What, if anything, is special about human imitation? An evaluation of enculturated apes' imitation skills, a "best case scenario" of non-human apes' imitation performance, reveals important similarities and differences between this special population of apes and human children. Candidates for shared imitation mechanisms include the ability to imitate various familiar transitive responses and object-object actions that involve familiar tools. Candidates for uniquely derived imitation mechanisms include: imitating novel transitive actions and novel tool-using responses as well as imitating opaque or intransitive gestures, regardless of familiarity. While the evidence demonstrates that enculturated apes outperform non-enculturated apes and perform more like human children, all apes, regardless of rearing history, generally excel at imitating familiar, over-rehearsed responses and are poor, relative to human children, at imitating novel, opaque or intransitive responses. Given the similarities between the sensory and motor systems of preschool age human children and non-human apes, it is unlikely that differences in sensory input and/or motor-output alone explain the observed discontinuities in imitation performance. The special rearing history of enculturated apes-including imitation-specific training-further diminishes arguments suggesting that differences are experience-dependent. Here, it is argued that such differences are best explained by distinct, specialized mechanisms that have evolved for copying rules and responses in particular content domains. Uniquely derived social and imitation learning mechanisms may represent adaptations for learning novel communicative gestures and complex tool-use. Given our species' dependence on both language and tools, mechanisms that accelerated learning in these domains are likely to have faced intense selective pressures, starting with the earliest of human ancestors.
Bioinspired surface functionalization of metallic biomaterials.
Su, Yingchao; Luo, Cheng; Zhang, Zhihui; Hermawan, Hendra; Zhu, Donghui; Huang, Jubin; Liang, Yunhong; Li, Guangyu; Ren, Luquan
2018-01-01
Metallic biomaterials are widely used for clinical applications because of their excellent mechanical properties and good durability. In order to provide essential biofunctionalities, surface functionalization is of particular interest and requirement in the development of high-performance metallic implants. Inspired by the functional surface of natural biological systems, many new designs and conceptions have recently emerged to create multifunctional surfaces with great potential for biomedical applications. This review firstly introduces the metallic biomaterials, important surface properties, and then elaborates some strategies on achieving the bioinspired surface functionalization for metallic biomaterials. Copyright © 2017 Elsevier Ltd. All rights reserved.
Lee, Hyungjin; Lee, Donghwa; Ahn, Yumi; Lee, Eun-Woo; Park, Lee Soon; Lee, Youngu
2014-08-07
Highly flexible and efficient silver nanowire-based organic light-emitting diodes (OLEDs) have been successfully fabricated by employing a n-type hole injection layer (HIL). The silver nanowire-based OLEDs without light outcoupling structures exhibited excellent device characteristics such as extremely low turn-on voltage (3.6 V) and high current and power efficiencies (44.5 cd A(-1) and 35.8 lm W(-1)). In addition, flexible OLEDs with the silver nanowire transparent conducting electrode (TCE) and n-type HIL fabricated on plastic substrates showed remarkable mechanical flexibility as well as device performance.
Witten, Michael R.; Jacobsen, Eric N.
2016-01-01
A new primary amine catalyst for the asymmetric α-hydroxylation and α-fluorination of α-branched aldehydes is described. The products of the title transformations are generated in excellent yields and with high enantioselectivities. Both processes can be performed within short reaction times and on gram scale. The similarity in the results obtained in both reactions, combined with computational evidence, implies a common basis for stereoinduction and the possibility of a general catalytic mechanism for α-functionalizations. Promising initial results in α-amination and α-chlorination reactions support this hypothesis. PMID:25952578
Podder, Susmita; Choudhury, Joyanta; Roy, Sujit
2007-04-13
A highly efficient secondary benzylation procedure has been demonstrated using a high-valent heterobimetallic complex [Ir2(COD)2(SnCl3)2(Cl)2(mu-Cl)2] 1 as the catalyst in 1,2-dichloroethane to afford the corresponding benzylated products in moderate to excellent yields. The reaction was performed not only with carbon nucleophiles (arenes and heteroarenes) but also with oxygen (alcohol), nitrogen (amide and sulfonamide), and sulfur (thiol) nucleophiles. Mechanistic investigation showed the intermediacy of the ether in this reaction. An electrophilic mechanism is proposed from Hammett correlation.
Carrier-envelope phase dynamics and noise analysis in octave-spanning Ti:sapphire lasers.
Matos, Lia; Mücke, Oliver D; Chen, Jian; Kärtner, Franz X
2006-03-20
We investigate the carrier-envelope phase dynamics of octave-spanning Ti:sapphire lasers and perform a complete noise analysis of the carrier-envelope phase stabilization. We model the effect of the laser dynamics on the residual carrier-envelope phase noise by deriving a transfer function representation of the octave-spanning frequency comb. The modelled phase noise and the experimental results show excellent agreement. This greatly enhances our capability of predicting the dependence of the residual carrier-envelope phase noise on the feedback loop filter, the carrier-envelope frequency control mechanism and the pump laser used.
An analytical approach of thermodynamic behavior in a gas target system on a medical cyclotron.
Jahangiri, Pouyan; Zacchia, Nicholas A; Buckley, Ken; Bénard, François; Schaffer, Paul; Martinez, D Mark; Hoehr, Cornelia
2016-01-01
An analytical model has been developed to study the thermo-mechanical behavior of gas targets used to produce medical isotopes, assuming that the system reaches steady-state. It is based on an integral analysis of the mass and energy balance of the gas-target system, the ideal gas law, and the deformation of the foil. The heat transfer coefficients for different target bodies and gases have been calculated. Excellent agreement is observed between experiments performed at TRIUMF's 13 MeV cyclotron and the model. Copyright © 2015 Elsevier Ltd. All rights reserved.
Improved epoxy thermosets by the use of poly(ethyleneimine) derivatives
NASA Astrophysics Data System (ADS)
Acebo, Cristina; Ramis, Xavier; Serra, Angels
2017-07-01
Epoxy resins are commonly used as thermosetting materials due to their excellent mechanical properties, high adhesion to many substrates and good heat and chemical resistances. This type of thermosets is intensively used in a wide range of fields, where they act as fiber-reinforced materials, general-purpose adhesives, high-performance coatings and encapsulating materials. These materials are formed by the chemical reaction of multifunctional epoxy monomers forming a polymer network produced through an irreversible way. In this article the improvement of the characteristics of epoxy thermosets using different hyperbranched poly(ethyleneimine) (PEI) derivatives will be explained.
Mesoporous Prussian blue analogues: template-free synthesis and sodium-ion battery applications.
Yue, Yanfeng; Binder, Andrew J; Guo, Bingkun; Zhang, Zhiyong; Qiao, Zhen-An; Tian, Chengcheng; Dai, Sheng
2014-03-17
The synthesis of mesoporous Prussian blue analogues through a template-free methodology and the application of these mesoporous materials as high-performance cathode materials in sodium-ion batteries is presented. Crystalline mesostructures were produced through a synergistically coupled nanocrystal formation and aggregation mechanism. As cathodes for sodium-ion batteries, the Prussian blue analogues all show a reversible capacity of 65 mA h g-1 at low current rate and show excellent cycle stability. The reported method stands as an environmentally friendly and low-cost alternative to hard or soft templating for the fabrication of mesoporous materials.
Toughening mechanisms in bioinspired multilayered materials.
Askarinejad, Sina; Rahbar, Nima
2015-01-06
Outstanding mechanical properties of biological multilayered materials are strongly influenced by nanoscale features in their structure. In this study, mechanical behaviour and toughening mechanisms of abalone nacre-inspired multilayered materials are explored. In nacre's structure, the organic matrix, pillars and the roughness of the aragonite platelets play important roles in its overall mechanical performance. A micromechanical model for multilayered biological materials is proposed to simulate their mechanical deformation and toughening mechanisms. The fundamental hypothesis of the model is the inclusion of nanoscale pillars with near theoretical strength (σth ~ E/30). It is also assumed that pillars and asperities confine the organic matrix to the proximity of the platelets, and, hence, increase their stiffness, since it has been previously shown that the organic matrix behaves more stiffly in the proximity of mineral platelets. The modelling results are in excellent agreement with the available experimental data for abalone nacre. The results demonstrate that the aragonite platelets, pillars and organic matrix synergistically affect the stiffness of nacre, and the pillars significantly contribute to the mechanical performance of nacre. It is also shown that the roughness induced interactions between the organic matrix and aragonite platelet, represented in the model by asperity elements, play a key role in strength and toughness of abalone nacre. The highly nonlinear behaviour of the proposed multilayered material is the result of distributed deformation in the nacre-like structure due to the existence of nano-asperities and nanopillars with near theoretical strength. Finally, tensile toughness is studied as a function of the components in the microstructure of nacre.
Toughening mechanisms in bioinspired multilayered materials
Askarinejad, Sina; Rahbar, Nima
2015-01-01
Outstanding mechanical properties of biological multilayered materials are strongly influenced by nanoscale features in their structure. In this study, mechanical behaviour and toughening mechanisms of abalone nacre-inspired multilayered materials are explored. In nacre's structure, the organic matrix, pillars and the roughness of the aragonite platelets play important roles in its overall mechanical performance. A micromechanical model for multilayered biological materials is proposed to simulate their mechanical deformation and toughening mechanisms. The fundamental hypothesis of the model is the inclusion of nanoscale pillars with near theoretical strength (σth ~ E/30). It is also assumed that pillars and asperities confine the organic matrix to the proximity of the platelets, and, hence, increase their stiffness, since it has been previously shown that the organic matrix behaves more stiffly in the proximity of mineral platelets. The modelling results are in excellent agreement with the available experimental data for abalone nacre. The results demonstrate that the aragonite platelets, pillars and organic matrix synergistically affect the stiffness of nacre, and the pillars significantly contribute to the mechanical performance of nacre. It is also shown that the roughness induced interactions between the organic matrix and aragonite platelet, represented in the model by asperity elements, play a key role in strength and toughness of abalone nacre. The highly nonlinear behaviour of the proposed multilayered material is the result of distributed deformation in the nacre-like structure due to the existence of nano-asperities and nanopillars with near theoretical strength. Finally, tensile toughness is studied as a function of the components in the microstructure of nacre. PMID:25551150
ERIC Educational Resources Information Center
Moorse, Rosemary; Reisenberger, Anna
This publication outlines prerequisites for success, critical factors in achieving excellence, and strategies for sustaining excellence once high levels of performance have been achieved. It considers how quality and improvement models might be used to support colleges in this work and draws on the work of 10 colleges in the United Kingdom that…
Microstructure, Properties and Weldability of Duplex Stainless Steel 2101
NASA Astrophysics Data System (ADS)
Ma, Li; Hu, Shengsun; Shen, Junqi
2017-01-01
The continuous development of duplex stainless steels (DSSs) is due to their excellent corrosion resistance in aggressive environments and their mechanical strength, which is usually twice of conventional austenitic stainless steels (ASSs). In this paper, a designed lean duplex stainless steel 2101, with the alloy design of reduced nickel content and increased additions of manganese and nitrogen, is studied by being partly compared with typical ASS 304L steels. The microstructure, mechanical properties, impact toughness, corrosion resistance and weldability of the designed DSS 2101 were conducted. The results demonstrated that both 2101 steel and its weldment show excellent mechanical properties, impact toughness and corrosion resistance, so DSS 2101 exhibits good comprehensive properties and can be used to replace 304L in numerous applications.
Li, Chunmei; Hotz, Blake; Ling, Shengjie; Guo, Jin; Haas, Dylan S.; Marelli, Benedetto; Omenetto, Fiorenzo; Lin, Samuel J.; Kaplan, David L.
2016-01-01
Silk fibers spun by silkworms and spiders exhibit exceptional mechanical properties with a unique combination of strength, extensibility and toughness. In contrast, the mechanical properties of regenerated silk materials can be tuned through control of the fabrication process. Here we introduce a biomimetic, all-aqueous process, to obtain bulk regenerated silk-based materials for the fabrication of functionalized orthopedic devices. The silk materials generated in the process replicate the nano-scale structure of natural silk fibers and possess excellent mechanical properties. The biomimetic materials demonstrated excellent machinability, providing a path towards the fabrication of a new family of resorbable orthopedic devices where organic solvents are avoided, thus allowing functionalization with bioactive molecules to promote bone remodeling and integration. PMID:27697669
Engineering Polymer Nanocomoposite Aerogels for Energy Storage and Harvesting
NASA Astrophysics Data System (ADS)
Zheng, Qifeng
Various porous polymer nanocomposite aerogels were synthesized using an environmentally friendly freeze-drying process. These polymer nanocomposite aerogels exhibit ultralow densities, high porosities, high specific surface areas and high flexibility. The advantages of these polymer nanocomposites aerogels for energy storage and energy harvesting applications have been demonstrated. Flexible supercapacitors (SCs) are particularly attractive for energy storage applications due to their high power densities and long life cycles. A novel type of highly flexible and all-solid-state SCs using cellulose nanofibril (CNF)-reduced graphene oxide (RGO)-carbon nanotube (CNT) aerogels as electrodes was developed. Due to the porous structure of the CNF/RGO/CNT aerogel electrodes, and the excellent electrolyte absorption properties of the CNFs present in the electrodes, the resulting all-solid-state SCs exhibited excellent electrochemical performance, superior flexibility and cycle stability. To further increase the capacitances and energy densities, pseudocapacitive materials (i.e., MoO3) were incorporated to prepare the free-standing and highly flexible CNF-RGO-molybdenum oxynitride (MoOxNy) aerogel film electrode. Supercapacitors made with the CNF/RGO/MoOxNy aerogel electrodes exhibited outstanding specific capacitances and remarkable energy densities in different electrolytes while maintaining the high power densities and superior cycle stability. Flexible nanogenerators (NGs) that can harvest ubiquitous mechanical energy from ambient environments have attracted significant attention during the past decade. A novel, simple, cost-effective, and scalable technique was developed to fabricate high-performance flexible compact NGs using porous CNF-poly(dimethylsiloxane) (PDMS) aerogel film. Under external stress, the resulting NGs exhibited very stable and high output signals. We hypothesized that the remarkable electric outputs would not only be attributable to the intrinsic piezoelectric properties of the CNFs, but also to the mechanoradicals generated by the porous PDMS coated on the surface of the CNF aerogel film, which can lead to a change in the electric dipole moments and consequently generate electric outputs. A series of systematic studies were carried out to substantiate this new mechanism. These systematic studies have demonstrated that high-performance NGs can be made from porous mechanoradical-generating polymer films. The elucidation of the mechanisms for this family of porous mechanoradical-generating polymers will lead to a new class of energy harvesting materials and high-performance flexible energy generation devices.
Total elbow arthroplasty for primary osteoarthritis.
Schoch, Bradley S; Werthel, Jean-David; Sánchez-Sotelo, Joaquín; Morrey, Bernard F; Morrey, Mark
2017-08-01
Primary osteoarthritis of the elbow is a less common indication for total elbow arthroplasty (TEA). Higher complication rates in younger, active patients may offset short-term improvements in pain and function. The purpose of this study was to determine pain relief, functional outcomes, complications, and survival of TEA in this population. Between 1984 and 2011, 20 consecutive TEAs were performed for primary elbow osteoarthritis. Two patients died before the 2-year follow-up. Mean age at surgery was 68 years (range, 51-85 years). Outcome measures included pain, motion, Mayo Elbow Performance Score, satisfaction, complications, and reoperations. Mean follow-up was 8.9 years (range, 2-20 years). Three elbows sustained mechanical failures. Complications included intraoperative fracture (n = 2), wound irrigation and débridement (n = 1), bony ankylosis (n = 1), humeral loosening (n = 1), humeral component fracture (n = 1), and mechanical failure of a radial head component (n = 1). Fifteen elbows without mechanical failure were examined clinically. Pain improved from 3.6 to 1.5 (P < .001). Range of motion remained clinically unchanged (P > .05), with preoperative flexion contractures not improving. Mayo Elbow Performance Scores were available for 13 elbows without mechanical failure, averaging 81.5 points (range, 60-100 points); these were graded as excellent (n = 5), good (n = 2), and fair (n = 6). Subjectively, all patients without mechanical failure were satisfied. TEA represents a reliable surgical option for pain relief in patients with primary osteoarthritis. However, restoration of extension is not always obtained, indicating that more aggressive soft tissue releases or bony resection should be considered. Complications occurred in a large number of elbows, but mechanical failure was low considering the nature of this population and the length of follow-up. Copyright © 2017 Journal of Shoulder and Elbow Surgery Board of Trustees. Published by Elsevier Inc. All rights reserved.
Making a World of Difference: Collaboration. Excellence for Intercultural Teams
ERIC Educational Resources Information Center
Schneider, Luise; Romberg, Claudia
2011-01-01
Cultural awareness training that emphasizes communication delivers only a partial solution to the challenges that intercultural work teams face. Improving collaboration requires a strong foundation of performance management before a work team can determine how they will cooperate to perform to excellence. Against the backdrop of the authors'…
DOT National Transportation Integrated Search
2012-08-01
Carbon nanotubes (CNTs) and carbon nanofirbers (CNFs) have excellent properties : (mechanical, electrical, magnetic, etc.), which can make them effective : nanoreinforcements for improving the properties of materials. The incorporation of : CNT/Fs in...
ERIC Educational Resources Information Center
Marazza, Lawrence L.
This book explores the necessity for building strong relationships among administrators, teachers, parents, and the community by applying what the book calls the five essentials of organizational excellence. The five essentials are planning strategically; benchmarking for excellence; leading collaboratively; engaging the community; and governing…
WASP (Write a Scientific Paper) using Excel - 13: Correlation and Regression.
Grech, Victor
2018-07-01
Correlation and regression measure the closeness of association between two continuous variables. This paper explains how to perform these tests in Microsoft Excel and their interpretation, as well as how to apply these tests dynamically using Excel's functions. Copyright © 2018 Elsevier B.V. All rights reserved.
Confirmatory factor analysis using Microsoft Excel.
Miles, Jeremy N V
2005-11-01
This article presents a method for using Microsoft (MS) Excel for confirmatory factor analysis (CFA). CFA is often seen as an impenetrable technique, and thus, when it is taught, there is frequently little explanation of the mechanisms or underlying calculations. The aim of this article is to demonstrate that this is not the case; it is relatively straightforward to produce a spreadsheet in MS Excel that can carry out simple CFA. It is possible, with few or no programming skills, to effectively program a CFA analysis and, thus, to gain insight into the workings of the procedure.
Solution-processed assembly of ultrathin transparent conductive cellulose nanopaper embedding AgNWs
NASA Astrophysics Data System (ADS)
Song, Yuanyuan; Jiang, Yaoquan; Shi, Liyi; Cao, Shaomei; Feng, Xin; Miao, Miao; Fang, Jianhui
2015-08-01
Natural biomass based cellulose nanopaper is becoming a promising transparent substrate to supersede traditional petroleum based polymer films in realizing future flexible paper-electronics. Here, ultrathin, highly transparent, outstanding conductive hybrid nanopaper with excellent mechanical flexibility was synthesized by the assembly of nanofibrillated cellulose (NFC) and silver nanowires (AgNWs) using a pressured extrusion paper-making technique. The hybrid nanopaper with a thickness of 4.5 μm has a good combination of transparent conductive performance and mechanical stability using bamboo/hemp NFC and AgNWs cross-linked by hydroxypropylmethyl cellulose (HPMC). The heterogeneous fibrous structure of BNFC/HNFC/AgNWs endows a uniform distribution and an enhanced forward light scattering, resulting in high electrical conductivity and optical transmittance. The hybrid nanopaper with an optimal weight ratio of BNFC/HNFC to AgNWs shows outstanding synergistic properties with a transmittance of 86.41% at 550 nm and a sheet resistance of 1.90 ohm sq-1, equal to the electronic conductivity, which is about 500 S cm-1. The BNFC/HNFC/AgNW hybrid nanopaper maintains a stable electrical conductivity after the peeling test and bending at 135° for 1000 cycles, indicating remarkably strong adhesion and mechanical flexibility. Of importance here is that the high-performance and low-cost hybrid nanopaper shows promising potential for electronics application in solar cells, flexible displays and other high-technology products.Natural biomass based cellulose nanopaper is becoming a promising transparent substrate to supersede traditional petroleum based polymer films in realizing future flexible paper-electronics. Here, ultrathin, highly transparent, outstanding conductive hybrid nanopaper with excellent mechanical flexibility was synthesized by the assembly of nanofibrillated cellulose (NFC) and silver nanowires (AgNWs) using a pressured extrusion paper-making technique. The hybrid nanopaper with a thickness of 4.5 μm has a good combination of transparent conductive performance and mechanical stability using bamboo/hemp NFC and AgNWs cross-linked by hydroxypropylmethyl cellulose (HPMC). The heterogeneous fibrous structure of BNFC/HNFC/AgNWs endows a uniform distribution and an enhanced forward light scattering, resulting in high electrical conductivity and optical transmittance. The hybrid nanopaper with an optimal weight ratio of BNFC/HNFC to AgNWs shows outstanding synergistic properties with a transmittance of 86.41% at 550 nm and a sheet resistance of 1.90 ohm sq-1, equal to the electronic conductivity, which is about 500 S cm-1. The BNFC/HNFC/AgNW hybrid nanopaper maintains a stable electrical conductivity after the peeling test and bending at 135° for 1000 cycles, indicating remarkably strong adhesion and mechanical flexibility. Of importance here is that the high-performance and low-cost hybrid nanopaper shows promising potential for electronics application in solar cells, flexible displays and other high-technology products. Electronic supplementary information (ESI) available. See DOI: 10.1039/c5nr03218k
Hierarchical structure and mechanical properties of remineralized dentin.
Chen, Yi; Wang, Jianming; Sun, Jian; Mao, Caiyun; Wang, Wei; Pan, Haihua; Tang, Ruikang; Gu, Xinhua
2014-12-01
It is widely accepted that the mechanical properties of dentin are significantly determined by its hierarchical structure. The current correlation between the mechanical properties and the hierarchical structure was mainly established by studying altered forms of dentin, which limits the potential outcome of the research. In this study, dentins with three different hierarchical structures were obtained via two different remineralization procedures and at different remineralization stages: (1) a dentin structure with amorphous minerals incorporated into the collagen fibrils, (2) a dentin with crystallized nanominerals incorporated into the collagen fibrils, and (3) a dentin with an out-of-order mineral layer filling the collagen fibrils matrix. Nanoindentation tests were performed to investigate the mechanical behavior of the remineralized dentin slides. The results showed that the incorporation of the crystallized nanominerals into the acid-etched demineralized organic fibrils resulted in a remarkable improvement of the mechanical properties of the dentin. In contrast, for the other two structures, i.e. the amorphous minerals inside the collagen fibrils and the out-of-order mineral layer within the collagen fibrils matrix, the excellent mechanical properties of dentin could not be restored. Copyright © 2014 Elsevier Ltd. All rights reserved.
Thermo-mechanical simulations of early-age concrete cracking with durability predictions
NASA Astrophysics Data System (ADS)
Havlásek, Petr; Šmilauer, Vít; Hájková, Karolina; Baquerizo, Luis
2017-09-01
Concrete performance is strongly affected by mix design, thermal boundary conditions, its evolving mechanical properties, and internal/external restraints with consequences to possible cracking with impaired durability. Thermo-mechanical simulations are able to capture those relevant phenomena and boundary conditions for predicting temperature, strains, stresses or cracking in reinforced concrete structures. In this paper, we propose a weakly coupled thermo-mechanical model for early age concrete with an affinity-based hydration model for thermal part, taking into account concrete mix design, cement type and thermal boundary conditions. The mechanical part uses B3/B4 model for concrete creep and shrinkage with isotropic damage model for cracking, able to predict a crack width. All models have been implemented in an open-source OOFEM software package. Validations of thermo-mechanical simulations will be presented on several massive concrete structures, showing excellent temperature predictions. Likewise, strain validation demonstrates good predictions on a restrained reinforced concrete wall and concrete beam. Durability predictions stem from induction time of reinforcement corrosion, caused by carbonation and/or chloride ingress influenced by crack width. Reinforcement corrosion in concrete struts of a bridge will serve for validation.
NASA Astrophysics Data System (ADS)
Peng, Zhenhuan; Fang, Wenying; Zhao, Hongbin; Fang, Jianhui; Cheng, Hongwei; Doan, The Nam Long; Xu, Jiaqiang; Chen, Pu
2015-05-01
Ultrathin microporous carbon (UMPC) for lithium-sulfur (Li-S) cathode with uniform pore width of approximately 0.6 nm and dozens nm in thickness is synthesized with graphene oxide as template by glucose hydrothermal carbonization and surfactant-assisted assembling method. The UMPC supplies desirable S pregnancy space and the intimate contact between UMPC and S, therefore improving the conductivity of S@UMPC composite and dynamic performance. Smaller sulfur molecules limited in UMPC thoroughly prevent the formation of electrolyte-soluble polysulfides, hence excellent cycling performance with 900 mAh g-1 after 150 cycles is kept. Ultrathin three-dimensional carbon nanosheets are significant to fast electron transfer and Li+ diffusion contributing to excellent dynamic performance (710 mAh g-1 at 3 C).
Marita, Enock; Oule, Jared; Mungai, Margaret; Thiam, Sylla; Ilako, Festus
2016-01-01
Civil Society Organizations (CSOs) contribute to achieving development goals through advocacy, social mobilisation and provision of health services. CSO programming is a key component of Global Fund (GF) grants; however, CSOs face technical and governance capacity challenges in grant utilisation leading to missed opportunities for improving health at community level. Amref Health Africa was appointed Principal Recipient of a GF grant aimed at scaling up community case management of malaria through CSOs as sub-recipients in western Kenya. To identify potential risks and strengthen grant management, Amref Health Africa and the Ministry of Health conducted a capacity needs assessment to determine the capacity of CSOs to effectively utilise grants. 26 selected CSOs participated in this study. Document reviews and on-site assessments and observations were conducted using structured tool. The five main assessment areas were: governance and risk management; strategic and operational planning; monitoring and evaluation; programme management; and financial management. Overall performance was grouped into four categories: 3.0-2.5 (excellent), 2.0-2.4 (good), 1.5-1.9 (fair), and 1.0-1.4 (poor). Data were collected and analysed using Excel software. Twenty five out of 26 CSOs were legally compliant. 14(54%) CSOs were categorized as good; 7(27%) as excellent; 3(12%) as poor and 2(8%) as fair. Most CSOs had good programme management capacity but monitoring and evaluation presented the most capacity gaps. More than 75% of the CSOs were rated as excellent or good. A capacity building plan, programme risk management plan and oversight mechanisms were important for successful grant implementation.
Technical Excellence: A Requirement for Good Engineering
NASA Technical Reports Server (NTRS)
Gill, Paul S.; Vaughan, William W.
2008-01-01
Technical excellence is a requirement for good engineering. Technical excellence has many different ways of expressing itself within engineering. NASA has initiatives that address the enhancement of the Agency's technical excellence and thrust to maintain the associated high level of performance by the Agency on current programs/projects and as it moves into the Constellation Program and the return to the Moon with plans to visit Mars. This paper addresses some of the key initiatives associated with NASA's technical excellence thrust. Examples are provided to illustrate some results being achieved and plans to enhance these initiatives.
An Excel-based implementation of the spectral method of action potential alternans analysis.
Pearman, Charles M
2014-12-01
Action potential (AP) alternans has been well established as a mechanism of arrhythmogenesis and sudden cardiac death. Proper interpretation of AP alternans requires a robust method of alternans quantification. Traditional methods of alternans analysis neglect higher order periodicities that may have greater pro-arrhythmic potential than classical 2:1 alternans. The spectral method of alternans analysis, already widely used in the related study of microvolt T-wave alternans, has also been used to study AP alternans. Software to meet the specific needs of AP alternans analysis is not currently available in the public domain. An AP analysis tool is implemented here, written in Visual Basic for Applications and using Microsoft Excel as a shell. This performs a sophisticated analysis of alternans behavior allowing reliable distinction of alternans from random fluctuations, quantification of alternans magnitude, and identification of which phases of the AP are most affected. In addition, the spectral method has been adapted to allow detection and quantification of higher order regular oscillations. Analysis of action potential morphology is also performed. A simple user interface enables easy import, analysis, and export of collated results. © 2014 The Author. Physiological Reports published by Wiley Periodicals, Inc. on behalf of the American Physiological Society and The Physiological Society.
Hu, Min; Zhang, Zhenwei; Luo, Chenkun; Qiao, Xiuqing
2017-12-01
In this paper, hierarchical Ag-decorated SnO 2 microspheres were synthesized by a facile one-pot hydrothermal method. The resulting composites were characterized by XRD, SEM, TEM, XPS, BET, and FTIR analysis. The catalytic performances of the samples were evaluated with the reduction of 4-nitrophenol to 4-aminophenol by potassium borohydride (KBH 4 ) as a model reaction. Time-dependent experiments indicated that the hierarchical microspheres assembled from SnO 2 and Ag nanoparticles can be formed when the react time is less than 10 h. With the increase of hydrothermal time, SnO 2 nanoparticles will self-assemble into SnO 2 nanosheets and Ag nanoparticles decorated SnO 2 nanosheets were obtained. When evaluated as catalyst, the obtained Ag-decorated SnO 2 microsphere prepared for 36 h exhibited excellent catalytic performance with normalized rate constant (κ nor ) of 6.20 min -1 g -1 L, which is much better than that of some previous reported catalysts. Moreover, this Ag-decorated SnO 2 microsphere demonstrates good reusability after the first five cycles. In addition, we speculate the formation mechanism of the hierarchical Ag-decorated SnO 2 microsphere and discussed the possible origin of the excellent catalytic activity.
Soft plasma electrolysis with complex ions for optimizing electrochemical performance
NASA Astrophysics Data System (ADS)
Kamil, Muhammad Prisla; Kaseem, Mosab; Ko, Young Gun
2017-03-01
Plasma electrolytic oxidation (PEO) was a promising surface treatment for light metals to tailor an oxide layer with excellent properties. However, porous coating structure was generally exhibited due to excessive plasma discharges, restraining its performance. The present work utilized ethylenediaminetetraacetic acid (EDTA) and Cu-EDTA complexing agents as electrolyte additives that alter the plasma discharges to improve the electrochemical properties of Al-1.1Mg alloy coated by PEO. To achieve this purpose, PEO coatings were fabricated under an alternating current in silicate electrolytes containing EDTA and Cu-EDTA. EDTA complexes were found to modify the plasma discharging behaviour during PEO that led to a lower porosity than that without additives. This was attributed to a more homogeneous electrical field throughout the PEO process while the coating growth would be maintained by an excess of dissolved Al due to the EDTA complexes. When Cu-EDTA was used, the number of discharge channels in the coating layer was lower than that with EDTA due to the incorporation of Cu2O and CuO altering the dielectric behaviour. Accordingly, the sample in the electrolyte containing Cu-EDTA constituted superior corrosion resistance to that with EDTA. The electrochemical mechanism for excellent corrosion protection was elucidated in the context of equivalent circuit model.
NASA Astrophysics Data System (ADS)
Yamamoto, Hiroki; Kozawa, Takahiro; Tagawa, Seiichi
2013-03-01
The requirements for the next generation resist materials are so challenging that it is indispensable for feasibility of EUV lithography to grasp basic chemistry of resist matrices in all stage of resist processes. Under such circumstances, it is very important to know dissolution characteristics of the resist film into alkaline developer though the dissolution of exposed area of resist films in alkaline developer to form a pattern is a complex reactive process. In this study, the influence of EUV and KrF exposure on the dissolution behavior of polymer bound PAG and polymer blended PAG was studied in detail using quartz crystal microbalance (QCM) methods. The difference in swelling formation between KrF and EUV exposure was observed. It is likely that difference of reaction mechanism induces the difference of these swelling. Also, it is observed that the swelling of polymer-bound PAG is less than that of polymer blended PAG in both KrF and EUV exposure. This result indicates that polymer-bound PAG suppresses swelling very well and showed an excellent performance. Actually, the developed polymer bound-PAG resist showed an excellent performance (half pitch 50 nm line and space pattern). Thus, polymer bound PAG is one of the promising candidate for 16 nm EUV resist.
Soft plasma electrolysis with complex ions for optimizing electrochemical performance
Kamil, Muhammad Prisla; Kaseem, Mosab; Ko, Young Gun
2017-01-01
Plasma electrolytic oxidation (PEO) was a promising surface treatment for light metals to tailor an oxide layer with excellent properties. However, porous coating structure was generally exhibited due to excessive plasma discharges, restraining its performance. The present work utilized ethylenediaminetetraacetic acid (EDTA) and Cu-EDTA complexing agents as electrolyte additives that alter the plasma discharges to improve the electrochemical properties of Al-1.1Mg alloy coated by PEO. To achieve this purpose, PEO coatings were fabricated under an alternating current in silicate electrolytes containing EDTA and Cu-EDTA. EDTA complexes were found to modify the plasma discharging behaviour during PEO that led to a lower porosity than that without additives. This was attributed to a more homogeneous electrical field throughout the PEO process while the coating growth would be maintained by an excess of dissolved Al due to the EDTA complexes. When Cu-EDTA was used, the number of discharge channels in the coating layer was lower than that with EDTA due to the incorporation of Cu2O and CuO altering the dielectric behaviour. Accordingly, the sample in the electrolyte containing Cu-EDTA constituted superior corrosion resistance to that with EDTA. The electrochemical mechanism for excellent corrosion protection was elucidated in the context of equivalent circuit model. PMID:28281672
Shi, Minjie; Yang, Cheng; Song, Xuefeng; Liu, Jing; Zhao, Liping; Zhang, Peng; Gao, Lian
2017-05-24
Wire-shaped supercapacitors (SCs) based on shape memory materials are of considerable interest for next-generation portable and wearable electronics. However, the bottleneck in this field is how to develop the devices with excellent electrochemical performance while well-maintaining recoverability and flexibility. Herein, a unique asymmetric electrode concept is put forward to fabricate smart wire-shaped SCs with ultrahigh energy density, which is realized by using porous carbon dodecahedra coated on NiTi alloy wire and flexible graphene fiber as yarn electrodes. Notably, the wire-shaped SCs not only exhibit high flexibility that can be readily woven into real clothing but also represent the available recoverable ability. When irreversible plastic deformations happen, the deformed shape of the devices can automatically resume the initial predesigned shape in a warm environment (about 35 °C). More importantly, the wire-shaped SCs act as efficient energy storage devices, which display high volumetric energy density (8.9 mWh/cm 3 ), volumetric power density (1080 mW/cm 3 ), strong durability in multiple mechanical states, and steady electrochemical behavior after repeated shape recovery processes. Considering their relative facile fabrication technology and excellent electrochemical performance, this asymmetric electrode strategy produced smart wire-shaped supercapacitors desirable for multifunctional portable and wearable electronics.
Center of Excellence in Model-Based Human Performance
NASA Technical Reports Server (NTRS)
Wandell, Brian A.
1997-01-01
The Center of Excellence (COE) was created in 1984 to facilitate active collaboration between the scientists at Ames Research Center and the Stanford Psychology Department. As this document will review, over that period of time, the COE served its function well. Funds from the Center supported a large number of projects over the last ten years. Many of the people who were supported by the Center have gone on to distinguished research careers in government, industry and university. In fact, several of the people currently working at NASA Ames were initially funded by the Center mechanism, which served as a useful vehicle for attracting top quality candidates and supporting their research efforts. We are grateful for NASA's support over the years. As we reviewed in the reports for each year, the COE budget generally provided a portion of the true costs of the individual research projects. Hence, the funds from the COE were leveraged with funds from industry and other government agencies. In this way, we feel that all parties benefitted greatly from the collaborative spirit and interactive aspects of the COE. The portion of the support from NASA was particularly important in helping members of the COE to set aside the time to publish papers and communicate advances in our understanding of human performance in NASA-related missions.
Center of Excellence in Model-Based Human Performance
NASA Technical Reports Server (NTRS)
Wandell, Brian A.
1997-01-01
The Center of Excellence (COE) was created in 1984 to facilitate active collaboration between the scientists at Ames Research Center and the Stanford Psychology Department. As this document will review, over that period of time, the COE served its function well. Funds from the Center supported a large number of projects over the last ten years. Many of the people who were supported by the Center Have gone on to distinguished research careers in government, industry and university. In fact, several of the people currently working at NASA Ames were initially funded by the Center mechanism, which served as a useful vehicle for attracting top quality candidates and supporting their research efforts. We are grateful for NASA's support over the years. As we reviewed in the reports for each year, the COE budget generally provided a portion of the true costs of the individual research project. Hence, the funds from the COE were leveraged with funds from industry and other government agencies. In this way, we feel that all parties benefitted greatly from the collaborative spirit and interactive aspects of the COE. The portion of the support from NASA was particularly important in helping members of the COE to set aside the time to publish papers and communicate advances in our understanding of human performance in NASA-related missions.
NASA Astrophysics Data System (ADS)
Sahatiya, Parikshit; Jones, S. Solomon; Thanga Gomathi, P.; Badhulika, Sushmee
2017-06-01
Strain modulation is considered to be an effective way to modulate the electronic structure and carrier behavior in flexible semiconductors heterojunctions. In this work, 2D Graphene (Gr)/ZnO junction was successfully fabricated on flexible eraser substrate using simple, low-cost solution processed hydrothermal method and has been utilized for broadband photodetection in the UV to visible range at room temperature. Optimization in terms of process parameters were done to obtain 2D ZnO over 2D graphene which shows decrease in bandgap and broad absorption range from UV to visible. Under compressive strain piezopotential induced by the atoms displacements in 2D ZnO, 87% enhanced photosensing for UV light was observed under 30% strain. This excellent performance improvement can be attributed to piezopotential induced under compressive strain in 2D ZnO which results in lowering of conduction band energy and raising the schottky barrier height thereby facilitating electron-hole pair separation in 2D Gr/ZnO junction. Detailed mechanism studies in terms of density of surface states and energy band diagram is presented to understand the proposed phenomena. Results provide an excellent approach for improving the optoelectronic performance of 2D Gr/ZnO interface which can also be applied to similar semiconductor heterojunctions.
NASA Astrophysics Data System (ADS)
Phuan, Yi Wen; Ibrahim, Elyas; Chong, Meng Nan; Zhu, Tao; Lee, Byeong-Kyu; Ocon, Joey D.; Chan, Eng Seng
2017-01-01
Nanostructured nickel oxide-hematite (NiO/α-Fe2O3) p-n junction photoanodes synthesized from in situ doping of nickel (Ni) during cathodic electrodeposition of hematite were successfully demonstrated. A postulation model was proposed to explain the fundamental mechanism of Ni2+ ions involved, and the eventual formation of NiO on the subsurface region of hematite that enhanced the potential photoelectrochemical water oxidation process. Through this study, it was found that the measured photocurrent densities of the Ni-doped hematite photoanodes were highly dependent on the concentrations of Ni dopant used. The optimum Ni dopant at 25 M% demonstrated an excellent photoelectrochemical performance of 7-folds enhancement as compared to bare hematite photoanode. This was attributed to the increased electron donor density through the p-n junction and thus lowering the energetic barrier for water oxidation activity at the optimum Ni dopant concentration. Concurrently, the in situ Ni-doping of hematite has also lowered the photogenerated charge carrier transfer resistance as measured using the electrochemical impedance spectroscopy. It is expected that the fundamental understanding gained through this study is helpful for the rational design and construction of highly efficient photoanodes for application in photoelectrochemical process.
Sivaraj, Aravind
2013-01-01
Background: Application of light and continuous forces for optimum physiological response and least damage to the tooth supporting structures should be the primary aim of the orthodontist. Nickel titanium alloys with the properties of excellent spring back, super elasticity and wide range of action is one of the natural choices for the clinicians to achieve this goal. In recent periods, various wire manufacturers have come with a variety of wires exhibiting different properties. It is the duty of the clinician to select appropriate wires during various stages of treatment for excellent results. For achieving this evaluation of the properties of these wires is essential. Materials & Methods: This study is focussed on evaluating the super elastic property of eight groups of austenite active nickel titanium wires. Eight groups of archwires bought from eight different manufacturers were studied. These wires were tested through mechanical tensile testing and electrical resistivity methods. Results: Unloading curves were carefully assessed for superelastic behaviour on deactivation. Rankings of the wires tested were based primarily upon the unloading curve’s slope Conclusion: Ortho organisers wires ranked first and superior, followed by American Orthodontics and Ormco A wires. Morelli and GAClowland NiTi wires were ranked last. It can be concluded that the performance of these wires based on rankings should be further evaluated by clinical studies. How to cite this article: Sivaraj A. Comparison of Superelasticity of Nickel Titanium Orthodontic Arch wires using Mechanical Tensile Testing and Correlating with Electrical Resistivity. J Int Oral Health 2013; 5(3):1-12. PMID:24155596
Pan, Xinju; Zhou, Gang
2018-03-28
It is desirable, yet challenging, to utilize non-precious metals instead of noble-metals as efficient catalysts in the renewable energy manufacturing industry. Using first principles calculations, we study the structural characteristics of partially oxidized nickel-based nanoheterostructures (NiO/Ni NHSs), and the interfacial effects on hydrogen evolution. The origin of the enhanced hydrogen evolution performance is discussed at the microscopic level. This study identifies two types of active sites of the exposed Ni surface available for the hydrogen evolution reaction (HER). One is the hcp-hollow sites near the perimeter boundary that exhibit a more excellent HER performance than platinum (Pt), and the other the second nearest neighbor fcc-hollow sites away from the boundary that exhibit a similar performance to Pt. The interfacial effects result from the competitive charge transfer between NiO and Ni surfaces in NHSs, and enhance the reactivity of NiO/Ni NHSs by shifting the d-states of surface atoms down in energy. The illumination of the mechanism would be helpful for the design of more efficient and cheap transition metal-based catalysts.
The E-Balanced Scorecard (e-BSC) for Measuring Academic Staff Performance Excellence
ERIC Educational Resources Information Center
Yu, May Leen; Hamid, Suraya; Ijab, Mohamad Taha; Soo, Hsaio Pei
2009-01-01
This research paper is a pilot study that investigated the suitability of adopting an automated balanced scorecard for managing and measuring the performance excellence of academic staffs in the higher education setting. A comprehensive study of related literature with requirements elicited from the target population in a selected premier…
ERIC Educational Resources Information Center
Schick, Hella; Phillipson, Shane N.
2009-01-01
In the development of performance excellence, the relative roles played by intellectual ability and motivation remain speculative. This study investigates the role played by general intelligence, school environment, self-efficacy, and aspects of personal identity in the formation of learning motivation in German students attending the Gymnasium…
ERIC Educational Resources Information Center
Diezmann, Carmel M.
2018-01-01
Many Australian universities have prioritised improving discipline performance on the national research assessment--Excellence for Research in Australia. However, a "culture of secrecy" pervades "Excellence in Research for Australia" (ERA). There are no specified criteria for the assignment of ratings on a 5-point scale ranging…
Projected phase-change memory devices.
Koelmans, Wabe W; Sebastian, Abu; Jonnalagadda, Vara Prasad; Krebs, Daniel; Dellmann, Laurent; Eleftheriou, Evangelos
2015-09-03
Nanoscale memory devices, whose resistance depends on the history of the electric signals applied, could become critical building blocks in new computing paradigms, such as brain-inspired computing and memcomputing. However, there are key challenges to overcome, such as the high programming power required, noise and resistance drift. Here, to address these, we present the concept of a projected memory device, whose distinguishing feature is that the physical mechanism of resistance storage is decoupled from the information-retrieval process. We designed and fabricated projected memory devices based on the phase-change storage mechanism and convincingly demonstrate the concept through detailed experimentation, supported by extensive modelling and finite-element simulations. The projected memory devices exhibit remarkably low drift and excellent noise performance. We also demonstrate active control and customization of the programming characteristics of the device that reliably realize a multitude of resistance states.
Zhang, Mingyi; Shao, Changlu; Guo, Zengcai; Zhang, Zhenyi; Mu, Jingbo; Zhang, Peng; Cao, Tieping; Liu, Yichun
2011-07-01
The hierarchical tetranitro copper phthalocyanine (TNCuPc) hollow spheres were fabricated by a simple solvothermal method. The formation mechanism was proposed based on the evolution of morphology as a function of solvothermal time, which involved the initial formation of nanoparticles followed by their self-aggregation to microspheres and transformation into hierarchical hollow spheres by Ostwald ripening. Furthermore, the hierarchical TNCuPc hollow spheres exhibited high adsorption capacity and excellent simultaneously visible-light-driven photocatalytic performance for Rhodamine B (RB) under visible light. A possible mechanism for the "aqueous-solid phase transfer and in situ photocatalysis" was suggested. Repetitive tests showed that the hierarchical TNCuPc hollow spheres maintained high catalytic activity over several cycles, and it had a better regeneration capability under mild conditions.
NASA Astrophysics Data System (ADS)
Dan, Cai; Lie, Liu; Jin-Chuan, Ju; Xue-Long, Zhao; Hong-Yu, Zhou; Xiao, Wang
2016-04-01
The carbon nanotube (CNT)-based materials can be used as vacuum device cathodes. Owing to the excellent field emission properties of CNT, it has great potentials in the applications of an explosive field emission cathode. The falling off of CNT from the substrate, which frequently appears in experiments, restricts its application. In addition, the onset time of vacuum breakdown limits the performance of the high-power explosive-emission-cathode-based diode. In this paper, the characteristics of the CNT, electric field strength, contact resistance and the kind of substrate material are varied to study the parameter effects on the onset time of vacuum breakdown and failure mechanism of the CNT by using the finite element method. Project supported by the National Natural Science Foundation of China (Grant Nos. 11305263 and 61401484).
A unique set of micromechanics equations for high temperature metal matrix composites
NASA Technical Reports Server (NTRS)
Hopkins, D. A.; Chamis, C. C.
1985-01-01
A unique set of micromechanic equations is presented for high temperature metal matrix composites. The set includes expressions to predict mechanical properties, thermal properties and constituent microstresses for the unidirectional fiber reinforced ply. The equations are derived based on a mechanics of materials formulation assuming a square array unit cell model of a single fiber, surrounding matrix and an interphase to account for the chemical reaction which commonly occurs between fiber and matrix. A three-dimensional finite element analysis was used to perform a preliminary validation of the equations. Excellent agreement between properties predicted using the micromechanics equations and properties simulated by the finite element analyses are demonstrated. Implementation of the micromechanics equations as part of an integrated computational capability for nonlinear structural analysis of high temperature multilayered fiber composites is illustrated.
Ding, Fuchuan; Liu, Jingjing; Zeng, Songshan; Xia, Yan; Wells, Kacie M.; Nieh, Mu-Ping; Sun, Luyi
2017-01-01
Large-scale biomimetic organic/inorganic hybrid nanocoatings with a nacre-like microstructure were prepared via a facile coassembly process. Different from conventional polymer nanocomposites, these nanocoatings contain a high concentration of nanosheets, which can be well aligned along the substrate surface. Moreover, the nanosheets and polymer matrix can be chemically co–cross-linked. As a result, the nanocoatings exhibit exceptional mechanical properties (high stiffness and strength), barrier properties (to both oxygen and water vapor), and flame retardancy, but they are also highly transparent (maintaining more than 85% of their original transmittance to visible light). The nanocoatings can be applied to various substrates and regular or irregular surfaces (for example, films and foams). Because of their excellent performance and high versatility, these nanocoatings are expected to find widespread application. PMID:28776038
Fabrication of a stretchable solid-state micro-supercapacitor array.
Kim, Daeil; Shin, Gunchul; Kang, Yu Jin; Kim, Woong; Ha, Jeong Sook
2013-09-24
We fabricated a stretchable micro-supercapacitor array with planar SWCNT electrodes and an ionic liquid-based triblock copolymer electrolyte. The mechanical stability of the entire supercapacitor array upon stretching was obtained by adopting strategic design concepts. First, the narrow and long serpentine metallic interconnections were encapsulated with polyimide thin film to ensure that they were within the mechanical neutral plane. Second, an array of two-dimensional planar micro-supercapacitor with SWCNT electrodes and an ion-gel-type electrolyte was made to achieve all-solid-state energy storage devices. The formed micro-supercapacitor array showed excellent performances which were stable over stretching up to 30% without any noticeable degradation. This work shows the strong potential of a stretchable micro-supercapacitor array in applications such as wearable computers, power dressing, electronic newspapers, paper-like mobile phones, and other easily collapsible gadgets.
NASA Astrophysics Data System (ADS)
Guo, Junmeng; Wang, Yongfu; Liang, Hongyu; Liang, Aimin; Zhang, Junyan
2016-02-01
Fullerene-like hydrogenated carbon (FL-C:H) films as carbon materials were prepared by direct current plasma enhanced chemical vapor deposition (dc-PECVD) technique. The content of FL nanostructure was confirmed by high-resolution transmission electron microscopy (HRTEM), visible Raman spectroscopy, and X-ray photoelectron spectroscopy (XPS). The effect of fullerene-like nanostructure on the friction behavior of the films was studied using a reciprocating ball-on-flat tribometer in humid environment. It is concluded that the curved FL nanostructure provide the film excellent mechanical properties and friction performance. Interestingly, combining with the results of Raman analyses of the wear debris, we find that new FL nanostructure form during the friction process. These new FL nanostructure may originate from the rapid annealing and stress relaxation of unstable carbon clusters.
Billing, Beant Kaur; Dhar, Purbarun; Singh, Narinder; Agnihotri, Prabhat K
2018-01-03
A detailed experimental investigation was carried out to establish the relationship between CNT purification and functionalization routes and the average response of CNT/epoxy nanocomposites under static and dynamic loading. It was shown that the relative improvement in the mechanical properties of the epoxy matrix due to the addition of CNTs depends on the choice of purification and functionalization steps. A better dispersion of CNTs was recorded for the functionalized CNTs as compared to the oxidized and CVD grown CNTs. Moreover, tensile, 3-point bending and nanoDMA testing performed on nanocomposites processed with CVD-grown, oxidized and functionalized CNTs revealed that COOH functionalization after the oxidation of CNTs at 350 °C is the optimized processing route to harness the excellent properties of CNTs in CNT/epoxy nanocomposites.
System Verification of MSL Skycrane Using an Integrated ADAMS Simulation
NASA Technical Reports Server (NTRS)
White, Christopher; Antoun, George; Brugarolas, Paul; Lih, Shyh-Shiuh; Peng, Chia-Yen; Phan, Linh; San Martin, Alejandro; Sell, Steven
2012-01-01
Mars Science Laboratory (MSL) will use the Skycrane architecture to execute final descent and landing maneuvers. The Skycrane phase uses closed-loop feedback control throughout the entire phase, starting with rover separation, through mobility deploy, and through touchdown, ending only when the bridles have completely slacked. The integrated ADAMS simulation described in this paper couples complex dynamical models created by the mechanical subsystem with actual GNC flight software algorithms that have been compiled and linked into ADAMS. These integrated simulations provide the project with the best means to verify key Skycrane requirements which have a tightly coupled GNC-Mechanical aspect to them. It also provides the best opportunity to validate the design of the algorithm that determines when to cut the bridles. The results of the simulations show the excellent performance of the Skycrane system.
High-performance flexible resistive memory devices based on Al2O3:GeOx composite
NASA Astrophysics Data System (ADS)
Behera, Bhagaban; Maity, Sarmistha; Katiyar, Ajit K.; Das, Samaresh
2018-05-01
In this study a resistive switching random access memory device using Al2O3:GeOx composite thin films on flexible substrate is presented. A bipolar switching characteristic was observed for the co-sputter deposited Al2O3:GeOx composite thin films. Al/Al2O3:GeOx/ITO/PET memory device shows excellent ON/OFF ratio (∼104) and endurance (>500 cycles). GeOx nanocrystals embedded in the Al2O3 matrix have been found to play a significant role in enhancing the switching characteristics by facilitating oxygen vacancy formation. Mechanical endurance was retained even after several bending. The conduction mechanism of the device was qualitatively discussed by considering Ohmic and SCLC conduction. This flexible device is a potential candidate for next-generation electronics device.
NASA Astrophysics Data System (ADS)
Dahmen, Martin; Lindner, Stefan; Monfort, Damien; Petring, Dirk
The increasing demand for ultra-high strength steels in vehicle manufacturing leads to the application of new alloys. This poses a challenge on joining especially by fusion welding. A stainless high manganese steel sheet with excellent strength and deformation properties stands in the centre of the development. Similar and dissimilar welds with a metastable austenitic steel and a hot formed martensitic stainless steel were performed. An investigation of the mixing effects on the local microstructure and the hardness delivers the metallurgical features of the welds. Despite of carbon contents above 0.4 wt.% none of the welds have shown cracks. Mechanical properties drawn from tensile tests deliver high breaking forces enabling a high stiffness of the joints. The results show the potential for the application of laser beam welding for joining in assembly of structural parts.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Dr. Mohit Jain; Dr. Ganesh Skandan; Dr. Gordon E. Khose
Generation IV Very High Temperature power generating nuclear reactors will operate at temperatures greater than 900 oC. At these temperatures, the components operating in these reactors need to be fabricated from materials with excellent thermo-mechanical properties. Conventional pure or composite materials have fallen short in delivering the desired performance. New materials, or conventional materials with new microstructures, and associated processing technologies are needed to meet these materials challenges. Using the concept of functionally graded materials, we have fabricated a composite material which has taken advantages of the mechanical and thermal properties of ceramic and metals. Functionally-graded composite samples with variousmore » microstructures were fabricated. It was demonstrated that the composition and spatial variation in the composition of the composite can be controlled. Some of the samples were tested for irradiation resistance to neutrons. The samples did not degrade during initial neutron irradiation testing.« less
Zhou, Xia; Qiu, Shuilai; Xing, Weiyi; Gangireddy, Chandra Sekhar Reddy; Gui, Zhou; Hu, Yuan
2017-08-30
A novel polyphosphazene (PZS) microsphere@molybdenum disulfide nanoflower (MoS 2 ) hierarchical hybrid architecture was first synthesized and applied for enhancing the mechanical performance and flame retardancy of epoxy (EP) resin via a cooperative effect. Herein, using PZS microsphere as the template, a layer of MoS 2 nanoflowers were anchored to PZS spheres via a hydrothermal strategy. The well-designed PZS@MoS 2 exhibits excellent fire retardancy and a reinforcing effect. The obtained PZS@MoS 2 significantly enhanced the flame-retardant performance of EP composites, which can be proved by thermogravimetric and cone calorimeter results. For instance, the incorporation of 3 wt % PZS@MoS 2 brought about a 41.3% maximum reduction in the peak heat-release rate and decreased by 30.3% maximum in the total heat release, accompanying the higher graphitized char layer. With regard to mechanical property, the storage modulus of EP/PZS@MoS 2 3.0 in the glassy state was dramatically increased to 22.4 GPa in comparison with that of pure EP (11.15 GPa). It is sensible to know that the improved flame-retardant performance for EP composites is primarily assigned to a physical barrier effect of the MoS 2 nanoflowers and the polyphosphazene structure has an positive impact on promoting char formation in the condensed phase.
Facile synthesis of high strength hot-water wood extract films with oxygen-barrier performance
NASA Astrophysics Data System (ADS)
Chen, Ge-Gu; Fu, Gen-Que; Wang, Xiao-Jun; Gong, Xiao-Dong; Niu, Ya-Shuai; Peng, Feng; Yao, Chun-Li; Sun, Run-Cang
2017-01-01
Biobased nanocomposite films for food packaging with high mechanical strength and good oxygen-barrier performance were developed using a hot-water wood extract (HWE). In this work, a facile approach to produce HWE/montmorillonite (MMT) based nanocomposite films with excellent physical properties is described. The focus of this study was to determine the effects of the MMT content on the structure and mechanical properties of nanocomposites and the effects of carboxymethyl cellulose (CMC) on the physical properties of the HWE-MMT films. The experimental results suggested that the intercalation of HWE and CMC in montmorillonite could produce compact, robust films with a nacre-like structure and multifunctional characteristics. This results of this study showed that the mechanical properties of the film designated FCMC0.05 (91.5 MPa) were dramatically enhanced because the proportion of HWE, MMT and CMC was 1:1.5:0.05. In addition, the optimized films exhibited an oxygen permeability below 2.0 cm3 μm/day·m2·kPa, as well as good thermal stability due to the small amount of CMC. These results provide a comprehensive understanding for further development of high-performance nanocomposites which are based on natural polymers (HWE) and assembled layered clays (MMT). These films offer great potential in the field of sustainable packaging.
Facile synthesis of high strength hot-water wood extract films with oxygen-barrier performance
Chen, Ge-Gu; Fu, Gen-Que; Wang, Xiao-Jun; Gong, Xiao-Dong; Niu, Ya-Shuai; Peng, Feng; Yao, Chun-Li; Sun, Run-Cang
2017-01-01
Biobased nanocomposite films for food packaging with high mechanical strength and good oxygen-barrier performance were developed using a hot-water wood extract (HWE). In this work, a facile approach to produce HWE/montmorillonite (MMT) based nanocomposite films with excellent physical properties is described. The focus of this study was to determine the effects of the MMT content on the structure and mechanical properties of nanocomposites and the effects of carboxymethyl cellulose (CMC) on the physical properties of the HWE-MMT films. The experimental results suggested that the intercalation of HWE and CMC in montmorillonite could produce compact, robust films with a nacre-like structure and multifunctional characteristics. This results of this study showed that the mechanical properties of the film designated FCMC0.05 (91.5 MPa) were dramatically enhanced because the proportion of HWE, MMT and CMC was 1:1.5:0.05. In addition, the optimized films exhibited an oxygen permeability below 2.0 cm3 μm/day·m2·kPa, as well as good thermal stability due to the small amount of CMC. These results provide a comprehensive understanding for further development of high-performance nanocomposites which are based on natural polymers (HWE) and assembled layered clays (MMT). These films offer great potential in the field of sustainable packaging. PMID:28112259
Process Optimization of Bismaleimide (BMI) Resin Infused Carbon Fiber Composite
NASA Technical Reports Server (NTRS)
Ehrlich, Joshua W.; Tate, LaNetra C.; Cox, Sarah B.; Taylor, Brian J.; Wright, M. Clara; Faughnan, Patrick D.; Batterson, Lawrence M.; Caraccio, Anne J.; Sampson, Jeffery W.
2013-01-01
Engineers today are presented with the opportunity to design and build the next generation of space vehicles out of the lightest, strongest, and most durable materials available. Composites offer excellent structural characteristics and outstanding reliability in many forms that will be utilized in future aerospace applications including the Commercial Crew and Cargo Program and the Orion space capsule. NASA's Composites for Exploration (CoEx) project researches the various methods of manufacturing composite materials of different fiber characteristics while using proven infusion methods of different resin compositions. Development and testing on these different material combinations will provide engineers the opportunity to produce optimal material compounds for multidisciplinary applications. Through the CoEx project, engineers pursue the opportunity to research and develop repair patch procedures for damaged spacecraft. Working in conjunction with Raptor Resins Inc., NASA engineers are utilizing high flow liquid infusion molding practices to manufacture high-temperature composite parts comprised of intermediate modulus 7 (IM7) carbon fiber material. IM7 is a continuous, high-tensile strength composite with outstanding structural qualities such as high shear strength, tensile strength and modulus as well as excellent corrosion, creep, and fatigue resistance. IM7 carbon fiber, combined with existing thermoset and thermoplastic resin systems, can provide improvements in material strength reinforcement and deformation-resistant properties for high-temperature applications. Void analysis of the different layups of the IM7 material discovered the largest total void composition within the [ +45 , 90 , 90 , -45 ] composite panel. Tensile and compressional testing proved the highest mechanical strength was found in the [0 4] layup. This paper further investigates the infusion procedure of a low-cost/high-performance BMI resin into an IM7 carbon fiber material and the optical, chemical, and mechanical analyses performed.
Alam, U; Kumar, S; Bahnemann, D; Koch, J; Tegenkamp, C; Muneer, M
2018-02-07
The photocatalytic performance of MoO 3 is limited due to its weak visible light absorption ability and quick recombination of charge carriers. In the present work, we report the facile synthesis of Fe(iii)-grafted MoO 3 nanorods using a hydrothermal method followed by an impregnation technique with the aim of enhancing the light harvesting ability and photocatalytic efficiency of MoO 3 . The prepared samples were characterized through the standard analytical techniques of XRD, SEM-EDS, TEM, XPS, UV-Vis-DRS, FT-IR, TG-DTA and PL spectrophotometry. XPS and TEM analyses reveal that Fe(iii) ions are successfully grafted onto the surface of the MoO 3 nanorod with intimate interfacial contact. The photocatalytic performances of the prepared samples were investigated by studying the degradation of methylene blue (MB), rhodamine B (RhB) and 4-nitrophenol (4-NP) under visible light irradiation. The surface-modified MoO 3 with Fe(iii) ions showed excellent photocatalytic activity towards the degradation of the above-mentioned pollutants, where Fe(iii) ions act as effective cocatalytic sites to produce hydroxyl radicals through multi-electron reduction of oxygen molecules. The improved photocatalytic activity could be ascribed to the effective separation of charge carriers and efficient production of hydroxyl radicals via the rapid capture of electrons by Fe(iii) through a well-known photoinduced interfacial charge transfer mechanism. Based on scavenger analysis study, a mechanism for the enhanced photocatalytic activity has been discussed and proposed. The concept of surface grafting onto large bandgap semiconductors with ubiquitous elements opens up a new avenue for the development of visible-light-responsive photocatalysts with excellent photocatalytic activity.
Mechanically robust silver coatings prepared by electroless plating on thermoplastic polyurethane
NASA Astrophysics Data System (ADS)
Vasconcelos, B.; Vediappan, K.; Oliveira, J. C.; Fonseca, C.
2018-06-01
A simple and low-cost surface functionalization method is proposed to activate a thermoplastic polyurethane (TPU) for the electroless deposition of a silver coating with excellent adhesion and low resistivity. The TPU surface functionalization was performed in solution and consisted in forming a physical interpenetrating network at the TPU surface, involving TPU and polyvinylpyrrolidone (PVP), a polymer displaying a strong affinity for metals. The presence of PVP on the TPU surface and its stability in aqueous solution were assessed by ATR-FTIR and contact angle measurements as a function of the PVP concentration and treatment time. A modified Tollens solution was used to grow a silver film on the TPU substrate, by using the electroless plating method. Compact silver films with an average thickness of 12.5 μm and a resistivity of 8.57 mΩ·cm were obtained for a 24 h plating time. The adhesion strength of the silver film proved to be higher than 8.5 N/cm. The resistance to fatigue of the silver films was studied by performing series of compression/stretching tests (150 cycles). It was concluded that the films kept low resistance values, although displaying a higher sensitivity to compression than to stretching. Furthermore, the films keep a good conductivity for strains up to 400%. The excellent electrical and mechanical properties of the films make them suitable candidates for the coating of multipin dry bioelectrodes. Owing to the high affinity of many metals for PVP, this activation technique has the potential to be extended to the deposition of other metals and other polymers as well, provided a suitable solvent is used.
The United States Army Medical Department Journal, July-September 2009
2009-09-01
have contributed an excellent article reporting a formal study they performed in Kenya evaluating deet in comparison with 4 other commercially...article is another excellent example of the high caliber of work being performed every day by the US military’s dedicated scientific professionals in...impact on US military personnel deployed to southeast Asia and the Pacific islands that the military initiated a research project performed by the
Zhang, Yu; Du, Dongfeng; Li, Xuejin; Sun, Hongman; Li, Li; Bai, Peng; Xing, Wei; Xue, Qingzhong; Yan, Zifeng
2017-09-20
A novel sandwich-like composite with ultrathin CoAl-layered double hydroxide (LDH) nanoplates electrostatically assembled on both sides of two-dimensional polypyrrole/graphene (PG) substrate has been successfully fabricated using facile hydrothermal techniques. The PG not only serves as an excellent conductive and structural scaffold to enhance the transmission of electrons and prevent aggregation of CoAl-LDH nanoplates but also contributes to the enhancement of the specific capacitance. Owing to the homogeneous dispersion of CoAl-LDH nanoplates and its intimate interaction with PG substrate, the resulting CoAl-LDH/PG nanocomposite material exhibits excellent capacitive performance, for example, enhanced gravimetric specific capacitance (864 F g -1 at 1 A g -1 ), high rate performance (75% retention at 20 A g -1 ), and excellent cycle life (almost no degradation in supercapacitor performance after 5000 cycles) in aqueous KOH solution. Furthermore, the assembled asymmetric capacitor is able to deliver a superhigh energy density of 46.8 Wh kg -1 at 1.2 kW kg -1 and maintain 90.1% of its initial capacitance after 10 000 cycles. These results indicate a rational assembly strategy toward a high-performance pseudocapacitive electrode material with excellent rate performance, high specific capacitance, and outstanding cycle stability.
The rolling performance of Fe-6.5 wt.% Si sheets edged with stainless steel
NASA Astrophysics Data System (ADS)
Zhang, B.; Ye, F.; Liang, Y. F.; Shi, X. J.; Lin, J. P.
2017-10-01
Compared with common electrical steel, high silicon electrical steel (Fe-6.5 wt.% Si alloy) exhibits excellent soft magnetic properties and a wide application prospect in high frequency electromagnetic fields. In the process of cold rolling Fe-6.5 wt.% Si alloy, edge-crack often occurs on the sheets due to the inadequate ductility and limited formability. It was found that the Fe-6.5 wt.% Si alloy sheet edged with 304 stainless steel by laser welding show an improved rolling performance. The composite sheet could be cold rolled to a thickness of 0.07 mm without observed edge cracks. The mechanical property of the edging material should be in an appropriate window in reference to that of the Fe-6.5 wt.% Si alloy.
Carbonaceous electrode materials for supercapacitors.
Hao, Long; Li, Xianglong; Zhi, Linjie
2013-07-26
Supercapacitors have been widely studied around the world in recent years, due to their excellent power density and long cycle life. As the most frequently used electrode materials for supercapacitors, carbonaceous materials attract more and more attention. However, their relatively low energy density still holds back the widespread application. Up to now, various strategies have been developed to figure out this problem. This research news summarizes the recent advances in improving the supercapacitor performance of carbonaceous materials, including the incorporation of heteroatoms and the pore size effect (subnanopores' contribution). In addition, a new class of carbonaceous materials, porous organic networks (PONs) has been managed into the supercapacitor field, which promises great potential in not only improving the supercapacitor performances, but also unraveling the related mechanisms. Copyright © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Anion-Tunable Properties and Electrochemical Performance of Functionalized Ferrocene Compounds
Cosimbescu, Lelia; Wei, Xiaoliang; Vijayakumar, M.; Xu, Wu; Helm, Monte L.; Burton, Sarah D.; Sorensen, Christina M.; Liu, Jun; Sprenkle, Vincent; Wang, Wei
2015-01-01
We report a series of ionically modified ferrocene compounds for hybrid lithium-organic non-aqueous redox flow batteries, based on the ferrocene/ferrocenium redox couple as the active catholyte material. Tetraalkylammonium ionic moieties were incorporated into the ferrocene structure, in order to enhance the solubility of the otherwise relatively insoluble ferrocene. The effect of various counter anions of the tetraalkylammonium ionized species appended to the ferrocene, such as bis(trifluoromethanesulfonyl)imide, hexafluorophosphate, perchlorate, tetrafluoroborate, and dicyanamide on the solubility of the ferrocene was investigated. The solution chemistry of the ferrocene species was studied, in order to understand the mechanism of solubility enhancement. Finally, the electrochemical performance of these ionized ferrocene species was evaluated and shown to have excellent cell efficiency and superior cycling stability. PMID:26374254
Anion-tunable properties and electrochemical performance of functionalized ferrocene compounds
Cosimbescu, Lelia; Wei, Xiaoliang; Vijayakumar, M.; ...
2015-09-16
We report a series of ionically modified ferrocene compounds for hybrid lithium-organic non-aqueous redox flow batteries, based on the ferrocene/ferrocenium redox couple as the active catholyte material. Tetraalkylammonium ionic moieties were incorporated into the ferrocene structure, in order to enhance the solubility of the otherwise relatively insoluble ferrocene. The effect of various counter anions of the tetraalkylammonium ionized species appended to the ferrocene, such as bis(trifluoromethanesulfonyl)imide, hexafluorophosphate, perchlorate, tetrafluoroborate, and dicyanamide on the solubility of the ferrocene was investigated. The solution chemistry of the ferrocene species was studied, in order to understand the mechanism of solubility enhancement. Lastly, the electrochemicalmore » performance of these ionized ferrocene species was evaluated and shown to have excellent cell efficiency and superior cycling stability.« less
Piezoelectric Actuator with Frequency Characteristics for a Middle-Ear Implant.
Shin, Dong Ho; Cho, Jin-Ho
2018-05-24
The design and implementation of a novel piezoelectric-based actuator for an implantable middle-ear hearing aid is described in this paper. The proposed actuator has excellent low-frequency output characteristics, and can generate high output in a specific frequency band by adjusting the mechanical resonance. The actuator consists of a piezoelectric element, a miniature bellows, a cantilever membrane, a metal ring support, a ceramic tip, and titanium housing. The optimal structure of the cantilever-membrane design, which determines the frequency characteristics of the piezoelectric actuator, was derived through finite element analysis. Based on the results, the piezoelectric actuator was implemented, and its performance was verified through a cadaveric experiment. It was confirmed that the proposed actuator provides better performance than currently used actuators, in terms of frequency characteristics.
Green and biodegradable composite films with novel antimicrobial performance based on cellulose.
Wu, Yuehan; Luo, Xiaogang; Li, Wei; Song, Rong; Li, Jing; Li, Yan; Li, Bin; Liu, Shilin
2016-04-15
In order to obtain a safe and biodegradable material with antimicrobial properties from cellulose for food packaging, we presented a facile way to graft chitosan onto the oxidized cellulose films. The obtained films had a high transparent property of above 80% transmittance, excellent barrier properties against oxygen and antimicrobial properties against Escherichia coli and Staphylococcus aureus. The antimicrobial properties, mechanical properties, and water vapor permeability of composites are essential characteristics in determining their applicability as food-packaging materials. Moreover, using a sausage model, it was shown that the composites exhibited better performance than traditional polyethylene packaging material and demonstrated good potential as food packaging materials. The results presented a new insight into the development of green materials for food packaging. Copyright © 2015 Elsevier Ltd. All rights reserved.
High transparent shape memory gel
NASA Astrophysics Data System (ADS)
Gong, Jin; Arai, Masanori; Kabir, M. H.; Makino, Masato; Furukawa, Hidemitsu
2014-03-01
Gels are a new material having three-dimensional network structures of macromolecules. They possess excellent properties as swellability, high permeability and biocompatibility, and have been applied in various fields of daily life, food, medicine, architecture, and chemistry. In this study, we tried to prepare new multi-functional and high-strength gels by using Meso-Decoration (Meso-Deco), one new method of structure design at intermediate mesoscale. High-performance rigid-rod aromatic polymorphic crystals, and the functional groups of thermoreversible Diels-Alder reaction were introduced into soft gels as crosslinkable pendent chains. The functionalization and strengthening of gels can be realized by meso-decorating the gels' structure using high-performance polymorphic crystals and thermoreversible pendent chains. New gels with good mechanical properties, novel optical properties and thermal properties are expected to be developed.
Meso-decorated self-healing gels: network structure and properties
NASA Astrophysics Data System (ADS)
Gong, Jin; Sawamura, Kensuke; Igarashi, Susumu; Furukawa, Hidemitsu
2013-04-01
Gels are a new material having three-dimensional network structures of macromolecules. They possess excellent properties as swellability, high permeability and biocompatibility, and have been applied in various fields of daily life, food, medicine, architecture, and chemistry. In this study, we tried to prepare new multi-functional and high-strength gels by using Meso-Decoration (Meso-Deco), one new method of structure design at intermediate mesoscale. High-performance rigid-rod aromatic polymorphic crystals, and the functional groups of thermoreversible Diels-Alder reaction were introduced into soft gels as crosslinkable pendent chains. The functionalization and strengthening of gels can be realized by meso-decorating the gels' structure using high-performance polymorphic crystals and thermoreversible pendent chains. New gels with good mechanical properties, novel optical properties and thermal properties are expected to be developed.
Enhanced glucose biosensor properties of gold nanoparticle-decorated ZnO nanorods
NASA Astrophysics Data System (ADS)
Wang, Zi-Hao; Yang, Chih-Chiang; Su, Yan-Kuin; Ruand, Jian-Long
2017-04-01
As new materials have been reported and more knowledge on detailed mechanism of glucose oxidation has been unveiled, the non-enzymatic glucose sensor keeps coming closer to practical applications. Nanostructures with higher surface specific area has great potential applications in sensing devices ZnO nanoords were synthesized in a hydrothermal method using simply available laboratory chemicals. Results showed that as-synthesized Gold Nanoparticle-decorated ZnO Nanorods possessing higher specific surface area, significantly increased the non-enzyme efficiency which in turn improved the sensing performances. The electrode also demonstrated excellent performance in sensing glucose concentration with remarkable sensitivity (46.6 μA/mM-cm2) and good repeatability. This work is expected to open a new avenue to fabricate non-enzymatic electrochemical sensors of glucose involving co-mediating.
International Standards for Properties and Performance of Advanced Ceramics - 30 years of Excellence
NASA Technical Reports Server (NTRS)
Jenkins, Michael G.; Salem, Jonathan A.; Helfinstine, John; Quinn, George D.; Gonczy, Stephen T.
2016-01-01
Mechanical and physical properties/performance of brittle bodies (e.g., advanced ceramics and glasses) can be difficult to measure correctly unless the proper techniques are used. For three decades, ASTM Committee C28 on Advanced Ceramics, has developed numerous full-consensus standards (e.g., test methods, practices, guides, terminology) to measure various properties and performance of a monolithic and composite ceramics and coatings that, in some cases, may be applicable to glasses. These standards give the "what, how, how not, why, why not, etc." for many mechanical, physical, thermal, properties and performance of advanced ceramics. Use of these standards provides accurate, reliable, repeatable and complete data. Involvement in ASTM Committee C28 has included users, producers, researchers, designers, academicians, etc. who write, continually update, and validate through round robin test programmes, more than 45 standards in the 30 years since the Committee's inception in 1986. Included in this poster is a pictogram of the ASTM Committee C28 standards and how to obtain them either as i) individual copies with full details or ii) a complete collection in one volume. A listing of other ASTM committees of interest is included. In addition, some examples of the tangible benefits of standards for advanced ceramics are employed to demonstrate their practical application.
Song, Kenan; Zhang, Yiying; Meng, Jiangsha; Green, Emily C.; Tajaddod, Navid; Li, Heng; Minus, Marilyn L.
2013-01-01
Among the many potential applications of carbon nanotubes (CNT), its usage to strengthen polymers has been paid considerable attention due to the exceptional stiffness, excellent strength, and the low density of CNT. This has provided numerous opportunities for the invention of new material systems for applications requiring high strength and high modulus. Precise control over processing factors, including preserving intact CNT structure, uniform dispersion of CNT within the polymer matrix, effective filler–matrix interfacial interactions, and alignment/orientation of polymer chains/CNT, contribute to the composite fibers’ superior properties. For this reason, fabrication methods play an important role in determining the composite fibers’ microstructure and ultimate mechanical behavior. The current state-of-the-art polymer/CNT high-performance composite fibers, especially in regards to processing–structure–performance, are reviewed in this contribution. Future needs for material by design approaches for processing these nano-composite systems are also discussed. PMID:28809290
NASA Astrophysics Data System (ADS)
Chen, Yanli; Du, Lianhuan; Yang, Peihua; Sun, Peng; Yu, Xiang; Mai, Wenjie
2015-08-01
Here, we report robust, flexible CNT-based supercapacitor (SC) electrodes fabricated by electrodepositing polypyrrole (PPy) on freestanding vacuum-filtered CNT film. These electrodes demonstrate significantly improved mechanical properties (with the ultimate tensile strength of 16 MPa), and greatly enhanced electrochemical performance (5.6 times larger areal capacitance). The major drawback of conductive polymer electrodes is the fast capacitance decay caused by structural breakdown, which decreases cycling stability but this is not observed in our case. All-solid-state SCs assembled with the robust CNT/PPy electrodes exhibit excellent flexibility, long lifetime (95% capacitance retention after 10,000 cycles) and high electrochemical performance (a total device volumetric capacitance of 4.9 F/cm3). Moreover, a flexible SC pack is demonstrated to light up 53 LEDs or drive a digital watch, indicating the broad potential application of our SCs for portable/wearable electronics.
A cermet fuel reactor for nuclear thermal propulsion
NASA Technical Reports Server (NTRS)
Kruger, Gordon
1991-01-01
Work on the cermet fuel reactor done in the 1960's by General Electric (GE) and the Argonne National Laboratory (ANL) that had as its goal the development of systems that could be used for nuclear rocket propulsion as well as closed cycle propulsion system designs for ship propulsion, space nuclear propulsion, and other propulsion systems is reviewed. It is concluded that the work done in the 1960's has demonstrated that we can have excellent thermal and mechanical performance with cermet fuel. Thousands of hours of testing were performed on the cermet fuel at both GE and AGL, including very rapid transients and some radiation performance history. We conclude that there are no feasibility issues with cermet fuel. What is needed is reactivation of existing technology and qualification testing of a specific fuel form. We believe this can be done with a minimum development risk.
Beyond Standards: Excellence in the High School English Classroom.
ERIC Educational Resources Information Center
Jago, Carol
Each student is capable of achieving excellence, but it requires a nurturing, vigorous classroom environment. To help current and future high school English teachers create and maintain this kind of environment, this book offers concrete ways to reconceive what it means to foster excellent performance in the classroom and vivid examples of student…
Excellence Gaps in Education: Expanding Opportunities for Talented Students
ERIC Educational Resources Information Center
Plucker, Jonathan A.; Peters, Scott J.
2016-01-01
In "Excellence Gaps in Education," Jonathan A. Plucker and Scott J. Peters shine a spotlight on "excellence gaps"--the achievement gaps among subgroups of students performing at the highest levels of achievement. Much of the focus of recent education reform has been on closing gaps in achievement between students from different…
Yang, Ke; Huang, Xingyi; Fang, Lijun; He, Jinliang; Jiang, Pingkai
2014-12-21
Flexible nanodielectric materials with high dielectric constant and low dielectric loss have huge potential applications in the modern electronic and electric industry. Graphene sheets (GS) and reduced-graphene oxide (RGO) are promising fillers for preparing flexible polymer-based nanodielectric materials because of their unique two-dimensional structure and excellent electrical and mechanical properties. However, the easy aggregation of GS/RGO significantly limits the potential of graphene in enhancing the dielectric constant of polymer composites. In addition, the poor filler/matrix nanoscale interfacial adhesion also causes difficulties in suppressing the dielectric loss of the composites. In this work, using a facile and environmentally friendly approach, polydopamine coated RGO (PDA-RGO) and fluoro-polymer functionalized RGO (PF-PDA-RGO) were prepared. Compared with the RGO prepared by the conventional methods [i.e. hydrazine reduced-graphene oxide (H-RGO)] and PDA-RGO, the resulting PF-PDA-RGO nanosheets exhibit excellent dispersion in the ferroelectric polymer matrix [i.e. poly(vinylidene fluoride-co-hexafluoro propylene), P(VDF-HFP)] and strong interfacial adhesion with the matrix, leading to a low percolation threshold (fc = 1.06 vol%) and excellent flexibility for the corresponding nanocomposites. Among the three nanocomposites, the P(VDF-HFP)/PF-PDA-RGO nanocomposites exhibited the optimum performance (i.e. simultaneously having high dielectric constant and low dielectric loss). For instance, at 1000 Hz, the P(VDF-HFP) nanocomposite sample with 1.0 vol% PF-PDA-RGO has a dielectric constant of 107.9 and a dielectric loss of 0.070, showing good potential for dielectric applications. Our strategy provides a new pathway to prepare high performance flexible nanodielectric materials.
NASA Astrophysics Data System (ADS)
Zhao, Yu; Xu, Shiping; Sun, Xiang; Xu, Xing; Gao, Baoyu
2018-04-01
In this work, a nanocomposite of TiO2 nanoparticles coupled with sulfur-doped C3N4 (S-C3N4) laminated layer was successfully fabricated using a facile impregnation method and the nanocomposite exhibited superior photocatalytic activity in pollutant removal under visible light irradiation, compared to bare TiO2, g-C3N4 and binary C3N4-TiO2 nanocomposite. The enhanced photocatalytic activity was benefited from the efficient migration and transformation of electron-hole (e--h+) pairs, improved visible light absorption capability, and relatively large specific surface area induce by sulfur doping. Interestingly, the introduction of sulfur changes regulated the morphology of g-C3N4 leading to the formation of ultrathin g-C3N4 layer nanosheet assemblies and unique bar-like g-C3N4/TiO2 nanocomposite, which is beneficial for the outstanding performance of the product. In addition, trapping experiment was carried out to identify the main active species in the photocatalytic reaction over the S-C3N4/TiO2 photocatalyst, and functional mechanism of the composite was proposed. This work may provide new ideas for the fabrication and utilization of highly efficient photocatalyst with excellent visible light response in environmental purification applications.
Sadeghi, Fatemeh; Torab, Mansour; Khattab, Mostafa; Homayouni, Alireza; Afrasiabi Garekani, Hadi
2013-01-01
Objective(s): This study was performed aiming to investigate the effect of particle engineering via spray drying of hydroalcoholic solution on solid states and physico-mechanical properties of acetaminophen. Materials and Methods: Spray drying of hydroalcoholic solution (25% v/v ethanol/water) of acetaminophen (5% w/v) in the presence of small amounts of polyninylpyrrolidone K30 (PVP) (0, 1.25, 2.5 and 5% w/w based on acetaminophen weight) was carried out. The properties of spray dried particles namely morphology, surface characteristics, particle size, crystallinity, dissolution rate and compactibility were evaluated. Results: Spray drying process significantly changed the morphology of acetaminophen crystals from acicular (rod shape) to spherical microparticle. Differential scanning calorimetery (DSC) and x-ray powder diffraction (XRPD) studies ruled out any polymorphism in spray dried samples, however, a major reduction in crystallinity up to 65%, especially for those containing 5% w/w PVP was observed. Spray dried acetaminophen particles especially those obtained in the presence of PVP exhibited an obvious improvement of the dissolution and compaction properties. Tablets produced from spray dried samples exhibited excellent crushing strengths and no tendency to cap. Conclusions: The findings of this study revealed that spray drying of acetaminophen from hydroalcoholic solution in the presence of small amount of PVP produced partially amorphous particles with improved dissolution and excellent compaction properties. PMID:24379968
NASA Astrophysics Data System (ADS)
Ma, Wenzhong; Zhao, Yuchen; Li, Yuxue; Zhang, Peng; Cao, Zheng; Yang, Haicun; Liu, Chunlin; Tao, Guoliang; Gong, Fanghong; Matsuyama, Hideto
2018-03-01
Surface modification of azide-decorated multiwalled carbon nanotubes (MWCNTs) with well-defined alkyne-terminated poly(methyl methacrylate) (PMMA) chains was accomplished via the combination of reversible addition fragmentation chain transfer (RAFT) and "click" chemistry. Successful attachment of PMMA onto MWCNT was confirmed by Fourier transform infrared spectroscopy, thermogravimetric analysis (TGA), gel permeation chromatography, Raman spectroscopy, and transmission electron microscopy. The highest grafting percentage (GP) of the PMMA chains (GP = 23.3%) was calculated using TGA. The effect of the PMMA-grafted-MWCNTs (MWCNTs-g-PMMA) content on the performance of the poly(vinylidene fluoride) (PVDF)-MWCNTs-g-PMMA composite membrane was studied. The MWCNTs-g-PMMA was found to be well dispersed in the PVDF composite membrane matrix because of the excellent compatibility between the PMMA and PVDF chains. The composite membranes showed improved porosity, hydrophilicity, water flux, β-PVDF content, and mechanical properties at an optimal amount of 2 wt% MWCNTs-g-PMMA incorporated in the PVDF membrane matrix. In contrast, the hydroxyl functionalized MWCNTs (MWCNTs-OH) showed limited enhancement in the water flux and mechanical strength, which is mainly due to the poor dispersion of MWCNT because of the weak interaction between the MWCNT and PVDF chains. This study reveals the excellent prospect of the MWCNT-based ultrafiltration membrane with enhanced properties in water treatment applications.
Experimental Investigations on the Pull-Out Behavior of Tire Strips Reinforced Sands
Li, Li-Hua; Chen, Yan-Jun; Ferreira, Pedro Miguel Vaz; Liu, Yong; Xiao, Heng-Lin
2017-01-01
Waste tires have excellent mechanical performance and have been used as reinforcing material in geotechnical engineering; however, their interface properties are poorly understood. To further our knowledge, this paper examines the pull-out characteristics of waste tire strips in a compacted sand, together with uniaxial and biaxial geogrids also tested under the same conditions. The analysis of the results shows that the interlocking effect and pull-out resistance between the tire strip and the sand is very strong and significantly higher than that of the geogrids. In the early stages of the pull-out test, the resistance is mainly provided by the front portion of the embedded tire strips, as the pull-out test continues, more and more of the areas towards the end of the tire strips are mobilized, showing a progressive failure mechanism. The deformations are proportional to the frictional resistance between the tire-sand interface, and increase as the normal stresses increase. Tire strips of different wear intensities were tested and presented different pull-out resistances; however, the pull-out resistance mobilization patterns were generally similar. The pull-out resistance values obtained show that rubber reinforcement can provide much higher pull-out forces than the geogrid reinforcements tested here, showing that waste tires are an excellent alternative as a reinforcing system, regardless of the environmental advantages. PMID:28773069
NASA Astrophysics Data System (ADS)
Ismail, Muhammad; Ullah, Rehmat; Hussain, Riaz; Talib, Ijaz; Rana, Anwar Manzoor; Hussain, Muhammad; Mahmood, Khalid; Hussain, Fayyaz; Ahmed, Ejaz; Bao, Dinghua
2018-02-01
Cerium oxide (CeO2-x) film was deposited on Pt/Ti/SiO2/Si substrate by rf magnetron sputtering at room temperature. Resistive switching characteristics of these ceria films have been improved by increasing oxygen content during deposition process. Endurance and statistical analyses indicate that the operating stability of CeO2-x-based memory is highly dependent on the oxygen content. Results indicate that CeO2-x film-based RRAM devices exhibit optimum performance when fabricated at an argon/oxygen ratio of 6:24. An increase in the oxygen content introduced during CeO2-x film deposition not only stabilizes the conventional bipolar RS but also improves excellent switching uniformity such as large ON/OFF ratio (102), excellent switching device-to-device uniformity and good sweep endurance over 500 repeated RS cycles. Conduction in the low-resistance state (LRS) as well as in the low bias field region in the high-resistance state (HRS) is found to be Ohmic and thus supports the conductive filament (CF) theory. In the high voltage region of HRS, space charge limited conduction (SCLC) and Schottky emission are found to be the dominant conduction mechanisms. A feasible filamentary RS mechanism based on the movement of oxygen ions/vacancies under the bias voltage has been discussed.
Li, Chunmei; Hotz, Blake; Ling, Shengjie; Guo, Jin; Haas, Dylan S; Marelli, Benedetto; Omenetto, Fiorenzo; Lin, Samuel J; Kaplan, David L
2016-12-01
Silk fibers spun by silkworms and spiders exhibit exceptional mechanical properties with a unique combination of strength, extensibility and toughness. In contrast, the mechanical properties of regenerated silk materials can be tuned through control of the fabrication process. Here we introduce a biomimetic, all-aqueous process, to obtain bulk regenerated silk-based materials for the fabrication of functionalized orthopedic devices. The silk materials generated in the process replicate the nano-scale structure of natural silk fibers and possess excellent mechanical properties. The biomimetic materials demonstrate excellent machinability, providing a path towards the fabrication of a new family of resorbable orthopedic devices where organic solvents are avoided, thus allowing functionalization with bioactive molecules to promote bone remodeling and integration. Copyright © 2016 Elsevier Ltd. All rights reserved.
Progress and prospect on failure mechanisms of solid-state lithium batteries
NASA Astrophysics Data System (ADS)
Ma, Jun; Chen, Bingbing; Wang, Longlong; Cui, Guanglei
2018-07-01
By replacing traditional liquid organic electrolyte with solid-state electrolyte, the solid-state lithium batteries powerfully come back to the energy storage field due to their eminent safety and energy density. In recent years, a variety of solid-state lithium batteries based on excellent solid-state electrolytes are developed. However, the performance degradation of solid-state lithium batteries during cycling and storing is still a serious challenge for practical application. Therefore, this review summarizes the research progress of solid-state lithium batteries from the perspectives of failure phenomena and failure mechanisms. Additionally, the development of methodologies on studying the failure mechanisms of solid-state lithium batteries is also reviewed. Moreover, some perspectives on the remaining questions for understanding the failure behaviors and achieving long cycle life, high safety and high energy density solid-state lithium batteries are presented. This review will help researchers to recognize the status of solid-state lithium batteries objectively and attract much more research interest in conquering the failure issues of solid-state lithium batteries.
Collective behaviours: from biochemical kinetics to electronic circuits
Agliari, Elena; Barra, Adriano; Burioni, Raffaella; Di Biasio, Aldo; Uguzzoni, Guido
2013-01-01
In this work we aim to highlight a close analogy between cooperative behaviors in chemical kinetics and cybernetics; this is realized by using a common language for their description, that is mean-field statistical mechanics. First, we perform a one-to-one mapping between paradigmatic behaviors in chemical kinetics (i.e., non-cooperative, cooperative, ultra-sensitive, anti-cooperative) and in mean-field statistical mechanics (i.e., paramagnetic, high and low temperature ferromagnetic, anti-ferromagnetic). Interestingly, the statistical mechanics approach allows a unified, broad theory for all scenarios and, in particular, Michaelis-Menten, Hill and Adair equations are consistently recovered. This framework is then tested against experimental biological data with an overall excellent agreement. One step forward, we consistently read the whole mapping from a cybernetic perspective, highlighting deep structural analogies between the above-mentioned kinetics and fundamental bricks in electronics (i.e. operational amplifiers, flashes, flip-flops), so to build a clear bridge linking biochemical kinetics and cybernetics. PMID:24322327
NASA Astrophysics Data System (ADS)
Liu, Jun; Zhang, Liqun
In this talk, by employing molecular dynamics simulation, we aim to provide the structure design and property prediction of novel elastomer nanocomposites(ENCs), by considering three typical systems such as physical compounding, self-assembly and end-linked systems. We examine the dispersion, interfacial interaction and the resulting static and dynamic mechanical properties of each system. Emphasis is placed on how to tune the visco-elasticity and decrease the dynamic hysteresis loss of ENCs, by considering to introduce the flexible nanoparticles(NPs) with reversible mechanical deformation such as carbon nanosprings and graphene nanoribbon, or by achieving a homogeneous distribution of NPs in the elastomeric polymer matrix together with decreasing the mobility of the end-groups of polymer chains. In particular, the end-linked system exhibits both excellent static and dynamic mechanical properties, independent of the temperature. This novel ENCs could provide some useful guidances for the fabrication of high performance ENCs tailored for tire tread of green tires by cutting the fuel consumption.
Application-Oriented Chemical Optimization of a Metakaolin Based Geopolymer.
Ferone, Claudio; Colangelo, Francesco; Roviello, Giuseppina; Asprone, Domenico; Menna, Costantino; Balsamo, Alberto; Prota, Andrea; Cioffi, Raffaele; Manfredi, Gaetano
2013-05-10
In this study the development of a metakaolin based geopolymeric mortar to be used as bonding matrix for external strengthening of reinforced concrete beams is reported. Four geopolymer formulations have been obtained by varying the composition of the activating solution in terms of SiO₂/Na₂O ratio. The obtained samples have been characterized from a structural, microstructural and mechanical point of view. The differences in structure and microstructure have been correlated to the mechanical properties. A major issue of drying shrinkage has been encountered in the high Si/Al ratio samples. In the light of the characterization results, the optimal geopolymer composition was then applied to fasten steel fibers to reinforced concrete beams. The mechanical behavior of the strengthened reinforced beams was evaluated by four-points bending tests, which were performed also on reinforced concrete beams as they are for comparison. The preliminary results of the bending tests point out an excellent behavior of the geopolymeric mixture tested, with the failure load of the reinforced beams roughly twice that of the control beam.
Hang, Gui-Yun; Yu, Wen-Li; Wang, Tao; Wang, Jin-Tao; Li, Zhen
2017-11-30
In this article, different CL-20/FOX-7 cocrystal models were established by the substitution method based on the molar ratios of CL-20:FOX-7. The structures and comprehensive properties, including mechanical properties, stabilities, and energy density, of different cocrystal models were obtained and compared with each other. The main aim was to estimate the influence of molar ratios on properties of cocrystal explosives. The molecular dynamics (MD) simulation results show that the cocrystal model with molar ratio 1:1 has the best mechanical properties and highest binding energy, so the CL-20/FOX-7 cocrystal model is more likely to form in 1:1 M ratio. The detonation parameters show that the cocrystal explosive exhibited preferable energy density and excellent detonation performance. In a word, the 1:1 cocrystal model has the best comprehensive properties, is very promising, and worth more theoretical investigations and experimental tests. This paper gives some original theories to better understand the cocrystal mechanism and provides some helpful guidance and useful instructions to help design CL-20 cocrystal explosives.
Mechanical performance of pyrolytic carbon in prosthetic heart valve applications.
Cao, H
1996-06-01
An experimental procedure has been developed for rigorous characterization of the fracture resistance and fatigue crack extension in pyrolytic carbon for prosthetic heart valve application. Experiments were conducted under sustained and cyclic loading in a simulated biological environment using Carbomedics Pyrolite carbon. While the material was shown to have modest fracture toughness, it exhibited excellent resistance to subcritical crack growth. The crack growth kinetics in pyrolytic carbon were formulated using a phenomenological description. A fatigue threshold was observed below which the crack growth rate diminishes. A damage tolerance concept based on fracture mechanics was used to develop an engineering design approach for mechanical heart valve prostheses. In particular, a new quantity, referred to as the safe-life index, was introduced to assess the design adequacy against subcritical crack growth in brittle materials. In addition, a weakest-link statistical description of the fracture strength is provided and used in the design of component proof-tests. It is shown that the structural reliability of mechanical heart valves can be assured by combining effective flaw detection and manufacturing quality control with adequate damage tolerance design.
Electrostrictive Graft Elastomers and Applications
NASA Technical Reports Server (NTRS)
Su, J.; Harrison, J. S.; St.Clair, T. L.; Bar-Cohen, Y.; Leary, S.
1999-01-01
Efficient actuators that are lightweight, high performance and compact are needed to support telerobotic requirements for future NASA missions. In this work, we present a new class of electromechanically active polymers that can potentially be used as actuators to meet many NASA needs. The materials are graft elastomers that offer high strain under an applied electric field. Due to its higher mechanical modulus, this elastomer also has a higher strain energy density as compared to previously reported electrostrictive polyurethane elastomers. The dielectric, mechanical and electromechanical properties of this new electrostrictive elastomer have been studied as a function of temperature and frequency. Combined with structural analysis using x-ray diffraction and differential scanning calorimetry on the new elastomer, structure-property interrelationship and mechanisms of the electric field induced strain in the graft elastomer have also been investigated. This electroactive polymer (EAP) has demonstrated high actuation strain and high mechanical energy density. The combination of these properties with its tailorable molecular composition and excellent processability makes it attractive for a variety of actuation tasks. The experimental results and applications will be presented.
Microelectrodes with Three-Dimensional Structures for Improved Neural Interfacing
2001-10-25
highly xible bio-interfaces [2]. Polyimides combine excellent ectrical and mechanical characteristics with biocompatibility ], and are well known in...excellent biocompatibility , polyimide -based electrodes promise for fabrication of long-term implants for the use in prostheses. The flexible structures...R. R. Richardson, J. A. Miller, and W. M. Reichert, " Polyimides as Biomaterials - Preliminary Biocompatibility Testing," Biomaterials, vol. 14, pp
Shi, Kaiyuan; Zhitomirsky, Igor
2013-12-26
A conceptually new approach to the fabrication of polypyrrole (PPy)-coated multiwalled carbon nanotubes (MWCNT) for application in electrodes of electrochemical supercapacitors (ES) is proposed. Cetrimonium persulfate (CTA)2S2O8 in the form of nanocrystals is used as an oxidant for the chemical polymerization of PPy. Ponceau S (PS) dye is investigated as a new anionic dopant. Testing results show that PS allows reduced PPy particle size and improved electrochemical performance, whereas (CTA)2S2O8 nanocrystals promote the formation of PPy nanofibers. We demonstrate for the first time that MWCNT can be efficiently dispersed using (CTA)2S2O8 nanocrystals. The analysis of the dispersion mechanism indicates that (CTA)2S2O8 dissociation is catalyzed by MWCNT. This new finding opens a new and promising strategy in MWCNT dispersion for colloidal processing of nanomaterials and electrophoretic nanotechnology. Uniformly coated MWCNT are obtained using (CTA)2S2O8 as a dispersant for MWCNT and oxidant for PPy polymerization and utilizing advantages of PS as an efficient dopant and nanostructure controlling agent. The analysis of the testing results provides an insight into the influence of PS molecular structure on PPy nanostructure and electrochemical properties. The PPy-coated MWCNT show superior electrochemical performance compared to PPy nanoparticles. The proof-of-principle is demonstrated by the fabrication of ES electrodes with excellent electrochemical performance at high active material loadings, good capacitance retention at high charge-discharge rates, and excellent cycling stability.
Lim, Chul-Hyun; Kim, Won Chul; Kim, Jin Soo; Cho, Yu Kyung; Park, Jae Myung; Lee, In Seok; Kim, Sang Woo; Choi, Kyu Yong; Chung, In-Sik
2012-01-01
Background/Aims It is believed that disposable biopsy forceps are more costly than reusable biopsy forceps. In this study, we evaluated performance and cost of disposable forceps versus reusable forceps in esophagogastroduodenoscopic biopsy. Methods Between October 2009 and July 2010, we enrolled 200 patients undergoing esophagogastroduodenoscopic biopsy at Seoul St. Mary's Hospital. Biopsies were performed with 100 disposable or 5 reusable forceps by random assignment. Seventy-five additional patients were studied to estimate durability of reusable forceps. The assisting nurses estimated the performance of the forceps. The evaluation of costs included purchase prices and reprocessing costs. The adequacy of the sample was estimated according to the diameter of the obtained tissue. Results Performance of disposable forceps was estimated as excellent in 97.0%, good in 2.0% and adequate in 1.0%. Reusable forceps were estimated as excellent in 36.0%, good in 36.0%, adequate in 25.1% and inadequate in 2.9%. The performance of reusable forceps declined with the number of uses. The reprocessing cost of reusable forceps for one biopsy session was calculated as ₩8,021. The adequacy of the sample was excellent for both forceps. Conclusions Disposable forceps showed excellent performance. Considering the reprocessing costs of reusable forceps, usage of disposable forceps with a low price should be considered. PMID:22741133
NASA Astrophysics Data System (ADS)
Park, Hyun-Woo; Song, Aeran; Kwon, Sera; Choi, Dukhyun; Kim, Younghak; Jun, Byung-Hyuk; Kim, Han-Ki; Chung, Kwun-Bum
2018-03-01
This study suggests a sequential ambient annealing process as an excellent post-treatment method to enhance the device performance and stability of W (tungsten) doped InZnO thin film transistors (WIZO-TFTs). Sequential ambient annealing at 250 °C significantly enhanced the device performance and stability of WIZO-TFTs, compared with other post-treatment methods, such as air ambient annealing and vacuum ambient annealing at 250 °C. To understand the enhanced device performance and stability of WIZO-TFT with sequential ambient annealing, we investigate the correlations between device performance and stability and electronic structures, such as band alignment, a feature of the conduction band, and band edge states below the conduction band. The enhanced performance of WIZO-TFTs with sequential ambient annealing is related to the modification of the electronic structure. In addition, the dominant mechanism responsible for the enhanced device performance and stability of WIZO-TFTs is considered to be a change in the shallow-level and deep-level band edge states below the conduction band.
Partnerships for Educational Excellence and Research: HPT in the Townships of South Africa
ERIC Educational Resources Information Center
Robbins, Joanne K.; Weisenburgh-Snyder, Amy B.; Damons, Bruce; Van Rooyen, Marie; Ismail, Camila
2011-01-01
Effective performance-based instruction is making a sustained and noticeable impact on township schools in the Eastern Cape of South Africa. We document the performance improvement effort made over the past 7 years by Partnerships for Educational Excellence and Research International (P.E.E.R), a team of educators, instructional system designers,…
ERIC Educational Resources Information Center
Nelson, Barry
2013-01-01
The purpose of this study was to determine if a commercial teacher selection tool, the Ventures for Excellence Teacher StyleProfile, had a statistically significant relationship with teacher evaluation and performance feedback data gathered during a teacher's first year of teaching in the Midwest School District. A review of the literature…
NASA Astrophysics Data System (ADS)
He, Feng; Li, Kai; Yin, Cong; Ding, Yingchun; Tang, Hao; Wang, Ying; Wu, Zhijian
2018-01-01
To effectively restrain the dissolution of soluble polysulfides and fully utilize the active sulfur materials in lithium-sulfur (Li-S) batteries, host materials with unique compositions and porous structures have been pursued. Herein, we have investigated the mechanism of the excellent activity of oxygenated g-C3N4 for Li-S batteries from theoretical perspective, and the further experiment confirms that our O-g-C3N4-S cathode exhibits much better electrochemical performance compared with those in previous reports. Our DFT calculations reveal that the oxygenated material has better electrical conductivity and stronger adsorption ability with the Li2Sx species compared with the pristine g-C3N4 and other two-dimensional (2D) materials. Furthermore, we have confirmed experimentally that the O-g-C3N4-S composite cathode exhibits excellent electrochemical performance in Li-S batteries with high reversible discharge capacity of 1030 mAh g-1 after 100 cycles at 0.2 C, great rate capability with the discharge capacity of 364 mAh g-1 even at 5.0 C, and outstanding long-term cyclic stability with the discharge capacity of 465 mAh g-1 after 1000 cycles at 1.0 C (capacity decay was only 0.046% per cycle). Our results also suggest that theoretical study will play a significant role in predicting and screening novel materials with better performance.
NASA Astrophysics Data System (ADS)
Rhazi, Naima; Oumam, Mina; Sesbou, Abdessadek; Hannache, Hassan; Charrier-El Bouhtoury, Fatima
2017-06-01
The objective of this research was to develop ecological adhesives for bonding plywood panels using lignosulfonates, a common waste product of the wood pulp industry, and natural tannin extracted from Moroccan bark of Acacia mollissima using different process. Natural tannin and lignin were used in wood adhesives formulation to substitute resins based on phenol and formaldehyde. To achieve this, the lignosulfonates were glyoxalated to enhance their reactivity and the used tannins obtained by three different extraction methods were compared with commercial mimosa tannin. The proportion of Acacia mollissima tannins and lignosulfonates, the pressing time, the pressing temperature, and the pressure used were studied to improve mechanical properties, and bonding quality of plywood panel. The properties of plywood panels produced with these adhesives were tested in accordance with normative tests. Thus, the tensile strength, and the shear strength were measured. The results showed that the performance of the plywood panels made using biobased tannin adhesives was influenced by physical conditions such as pressure, press temperature as well as by chemical conditions, such as the tannin-lignin ratio. It exhibited excellent mechanical properties comparable to commercially available phenol-formaldehyde plywood adhesives. This study showed that biobased adhesives formulations presented good and higher mechanical performance and no formaldehyde emission. Contribution to the topical issue "Materials for Energy harvesting, conversion and storage II (ICOME 2016)", edited by Jean-Michel Nunzi, Rachid Bennacer and Mohammed El Ganaoui
Pulsed Laser Deposition Processing of Improved Titanium Nitride Coatings for Implant Applications
NASA Astrophysics Data System (ADS)
Haywood, Talisha M.
Recently surface coating technology has attracted considerable attention of researchers to develop novel coatings with enhanced functional properties such as hardness, biocompatibility, wear and corrosion resistance for medical devices and surgical tools. The materials currently being used for surgical implants include predominantly stainless steel (316L), cobalt chromium (Co-Cr), titanium and its alloys. Some of the limitations of these implants include improper mechanical properties, corrosion resistance, cytotoxicity and bonding with bone. One of the ways to improve the performance and biocompatibility of these implants is to coat their surfaces with biocompatible materials. Among the various coating materials, titanium nitride (TiN) shows excellent mechanical properties, corrosion resistance and low cytotoxicity. In the present work, a systematic study of pulsed laser ablation processing of TiN coatings was conducted. TiN thin film coatings were grown on commercially pure titanium (Ti) and stainless steel (316L) substrates at different substrate temperatures and different nitrogen partial pressures using the pulsed laser deposition (PLD) technique. Microstructural, surface, mechanical, chemical, corrosion and biological analysis techniques were applied to characterize the TiN thin film coatings. The PLD processed TiN thin film coatings showed improvements in mechanical strength, corrosion resistance and biocompatibility when compared to the bare substrates. The enhanced performance properties of the TiN thin film coatings were a result of the changing and varying of the deposition parameters.
Fire-Retardant, Self-Extinguishing Inorganic/Polymer Composite Memory Foams.
Chatterjee, Soumyajyoti; Shanmuganathan, Kadhiravan; Kumaraswamy, Guruswamy
2017-12-27
Polymeric foams used in furniture and automotive and aircraft seating applications rely on the incorporation of environmentally hazardous fire-retardant additives to meet fire safety norms. This has occasioned significant interest in novel approaches to the elimination of fire-retardant additives. Foams based on polymer nanocomposites or based on fire-retardant coatings show compromised mechanical performance and require additional processing steps. Here, we demonstrate a one-step preparation of a fire-retardant ice-templated inorganic/polymer hybrid that does not incorporate fire-retardant additives. The hybrid foams exhibit excellent mechanical properties. They are elastic to large compressional strain, despite the high inorganic content. They also exhibit tunable mechanical recovery, including viscoelastic "memory". These hybrid foams are prepared using ice-templating that relies on a green solvent, water, as a porogen. Because these foams are predominantly comprised of inorganic components, they exhibit exceptional fire retardance in torch burn tests and are self-extinguishing. After being subjected to a flame, the foam retains its porous structure and does not drip or collapse. In micro-combustion calorimetry, the hybrid foams show a peak heat release rate that is only 25% that of a commercial fire-retardant polyurethanes. Finally, we demonstrate that we can use ice-templating to prepare hybrid foams with different inorganic colloids, including cheap commercial materials. We also demonstrate that ice-templating is amenable to scale up, without loss of mechanical performance or fire-retardant properties.
Cell-wall recovery after irreversible deformation of wood
NASA Astrophysics Data System (ADS)
Keckes, Jozef; Burgert, Ingo; Frühmann, Klaus; Müller, Martin; Kölln, Klaas; Hamilton, Myles; Burghammer, Manfred; Roth, Stephan V.; Stanzl-Tschegg, Stefanie; Fratzl, Peter
2003-12-01
The remarkable mechanical properties of biological materials reside in their complex hierarchical architecture and in specific molecular mechanistic phenomena. The fundamental importance of molecular interactions and bond recovery has been suggested by studies on deformation and fracture of bone and nacre. Like these mineral-based materials, wood also represents a complex nanocomposite with excellent mechanical performance, despite the fact that it is mainly based on polymers. In wood, however, the mechanistic contribution of processes in the cell wall is not fully understood. Here we have combined tensile tests on individual wood cells and on wood foils with simultaneous synchrotron X-ray diffraction analysis in order to separate deformation mechanisms inside the cell wall from those mediated by cell-cell interactions. We show that tensile deformation beyond the yield point does not deteriorate the stiffness of either individual cells or foils. This indicates that there is a dominant recovery mechanism that re-forms the amorphous matrix between the cellulose microfibrils within the cell wall, maintaining its mechanical properties. This stick-slip mechanism, rather like Velcro operating at the nanometre level, provides a 'plastic response' similar to that effected by moving dislocations in metals. We suggest that the molecular recovery mechanism in the cell matrix is a universal phenomenon dominating the tensile deformation of different wood tissue types.
Thin-disk piezoceramic ultrasonic motor. Part I: design and performance evaluation.
Wen, Fuh Liang; Yen, Chi Yung; Ouyang, Minsun
2003-08-01
The purpose of this study is to gain the knowledge and experience in the design of thin-disk piezoceramic-driving ultrasonic actuator dedicated. In this paper, the design and construction of an innovative ultrasonic actuator is developed as a stator, which is a composite structure consisting of piezoceramic (PZT) membrane bonded on a metal sheet. Such a concentric PZT structure possesses the electrical and mechanical coupling characteristics in flexural wave. The driving ability of the actuator comes from the mechanical vibration of extension and shrinkage of a metal sheet due to the converse piezoelectric effect, corresponding to the frequency of a single-phase AC power. By applying the constraints on the specific geometry positions on the metal sheet, the various behaviors of flexural waves have been at the different directions. The rotor is impelled by the actuator with rotational speeds of 600 rpm in maximum using a friction-contact mechanism. Very high actuating and braking abilities are obtained. This simple and inexpensive structure of actuator demonstrates that the mechanical design of actuator and rotor could be done separately and flexibly according to the requirements for various applications. And, its running accuracy and positioning precision are described in Part II.A closed loop servo positioning control i.e. sliding mode control (SMC) is used to compensate automatically for nonlinearly mechanical behaviors such as dry friction, ultrasonic vibrating, slip-stick phenomena. Additionally, SMC scheme has been successfully applied to position tracking to prove the excellent robust performance in noise rejection.
Hang, Gui-Yun; Yu, Wen-Li; Wang, Tao; Li, Zhen
2018-03-19
In this work, a CL-20/DNB cocrystal explosive model was established and six different kinds of fluoropolymers, i.e., PVDF, PCTFE, F 2311 , F 2312 , F 2313 and F 2314 were added into the (1 0 0), (0 1 0), (0 0 1) crystal orientations to obtain the corresponding polymer bonded explosives (PBXs). The influence of fluoropolymers on PBX properties (energetic property, stability and mechanical properties) was investigated and evaluated using molecular dynamics (MD) methods. The results reveal a decrease in engineering moduli, an increase in Cauchy pressure (i.e., rigidity and stiffness is lessened), and an increase in plastic properties and ductility, thus indicating that the fluoropolymers have a beneficial influence on the mechanical properties of PBXs. Of all the PBXs models tested, the mechanical properties of CL-20/DNB/F 2311 were the best. Binding energies show that CL-20/DNB/F 2311 has the highest intermolecular interaction energy and best compatibility and stability. Therefore, F 2311 is the most suitable fluoropolymer for PBXs. The mechanical properties and binding energies of the three crystal orientations vary in the order (0 1 0) > (0 0 1) > (1 0 0), i.e., the mechanical properties of the (0 1 0) crystal orientation are best, and this is the most stable crystal orientation. Detonation performance results show that the density and detonation parameters of PBXs are lower than those of the pure CL-20 and CL-20/DNB cocrystal explosive. The power and energetic performance of PBXs are thus weakened; however, these PBXs still have excellent detonation performance and are very promising. The results and conclusions provide some helpful guidance and novel instructions for the design and manufacture of PBXs.
What’s Special about Human Imitation? A Comparison with Enculturated Apes
Subiaul, Francys
2016-01-01
What, if anything, is special about human imitation? An evaluation of enculturated apes’ imitation skills, a “best case scenario” of non-human apes’ imitation performance, reveals important similarities and differences between this special population of apes and human children. Candidates for shared imitation mechanisms include the ability to imitate various familiar transitive responses and object–object actions that involve familiar tools. Candidates for uniquely derived imitation mechanisms include: imitating novel transitive actions and novel tool-using responses as well as imitating opaque or intransitive gestures, regardless of familiarity. While the evidence demonstrates that enculturated apes outperform non-enculturated apes and perform more like human children, all apes, regardless of rearing history, generally excel at imitating familiar, over-rehearsed responses and are poor, relative to human children, at imitating novel, opaque or intransitive responses. Given the similarities between the sensory and motor systems of preschool age human children and non-human apes, it is unlikely that differences in sensory input and/or motor-output alone explain the observed discontinuities in imitation performance. The special rearing history of enculturated apes—including imitation-specific training—further diminishes arguments suggesting that differences are experience-dependent. Here, it is argued that such differences are best explained by distinct, specialized mechanisms that have evolved for copying rules and responses in particular content domains. Uniquely derived social and imitation learning mechanisms may represent adaptations for learning novel communicative gestures and complex tool-use. Given our species’ dependence on both language and tools, mechanisms that accelerated learning in these domains are likely to have faced intense selective pressures, starting with the earliest of human ancestors. PMID:27399786
ERIC Educational Resources Information Center
Lakin, Joni M.; Lohman, David F.
2011-01-01
Effective talent-identification procedures minimize the proportion of students whose subsequent performance indicates that they were mistakenly included in or excluded from the program. Classification errors occur when students who were predicted to excel subsequently do not excel or when students who were not predicted to excel do. Using a…
Vanhooydonck, B; James, R S; Tallis, J; Aerts, P; Tadic, Z; Tolley, K A; Measey, G J; Herrel, A
2014-02-22
Trade-offs arise when two functional traits impose conflicting demands on the same design trait. Consequently, excellence in one comes at the cost of performance in the other. One of the most widely studied performance trade-offs is the one between sprint speed and endurance. Although biochemical, physiological and (bio)mechanical correlates of either locomotor trait conflict with each other, results at the whole-organism level are mixed. Here, we test whether burst (speed, acceleration) and sustained locomotion (stamina) trade off at both the isolated muscle and whole-organism level among 17 species of lacertid lizards. In addition, we test for a mechanical link between the organismal and muscular (power output, fatigue resistance) performance traits. We find weak evidence for a trade-off between burst and sustained locomotion at the whole-organism level; however, there is a significant trade-off between muscle power output and fatigue resistance in the isolated muscle level. Variation in whole-animal sprint speed can be convincingly explained by variation in muscular power output. The variation in locomotor stamina at the whole-organism level does not relate to the variation in muscle fatigue resistance, suggesting that whole-organism stamina depends not only on muscle contractile performance but probably also on the performance of the circulatory and respiratory systems.
Vanhooydonck, B.; James, R. S.; Tallis, J.; Aerts, P.; Tadic, Z.; Tolley, K. A.; Measey, G. J.; Herrel, A.
2014-01-01
Trade-offs arise when two functional traits impose conflicting demands on the same design trait. Consequently, excellence in one comes at the cost of performance in the other. One of the most widely studied performance trade-offs is the one between sprint speed and endurance. Although biochemical, physiological and (bio)mechanical correlates of either locomotor trait conflict with each other, results at the whole-organism level are mixed. Here, we test whether burst (speed, acceleration) and sustained locomotion (stamina) trade off at both the isolated muscle and whole-organism level among 17 species of lacertid lizards. In addition, we test for a mechanical link between the organismal and muscular (power output, fatigue resistance) performance traits. We find weak evidence for a trade-off between burst and sustained locomotion at the whole-organism level; however, there is a significant trade-off between muscle power output and fatigue resistance in the isolated muscle level. Variation in whole-animal sprint speed can be convincingly explained by variation in muscular power output. The variation in locomotor stamina at the whole-organism level does not relate to the variation in muscle fatigue resistance, suggesting that whole-organism stamina depends not only on muscle contractile performance but probably also on the performance of the circulatory and respiratory systems. PMID:24403334
NASA Astrophysics Data System (ADS)
Rasia, Rodolfo J.; Rasia-Valverde, Juana R.; Stoltz, Jean F.
1996-01-01
Laser backscattering is an excellent tool to investigate size and concentration of suspended particles. It was successfully applied to the analysis of erythrocyte aggregation. A method is proposed that applies laser backscattering to the evaluation of the strength of the immunologic erythrocyte agglutination by approaching the energy required for the mechanical dissociation of agglutinates. Mills and Snabre have proposed a theory of laser backscattering for erythrocyte aggregation analysis. It is applied here to analyze the dissociation process of erythrocyte agglutinates performed by imposing a constant shear rate to the agglutinate suspension in a couette viscometer until a dispersion of isolated red cells is attained. Experimental verifications of the method were performed on the erythrocytes of the ABO group reacting against an anti-A test serum in twofold series dilutions. Spent energy is approached by a numerical process carried out on the backscattered intensity data registered during mechanical dissociation. Velocities of agglutination and dissociation lead to the calculation of dissociation parameters These values are used to evaluate the strength of the immunological reaction and to discriminate weak subgroups of ABO system.
Microstrip reflectarray antenna for the SCANSCAT radar application
NASA Technical Reports Server (NTRS)
Huang, John
1990-01-01
This publication presents an antenna system that has been proposed as one of the candidates for the SCANSCAT (Scanned Scatterometer) radar application. It is the mechanically steered planar microstrip reflectarray. Due to its thin, lightweight structure, the antenna's mechanical rotation will impose minimum angular momentum for the spacecraft. Since no power-dividing circuitry is needed for its many radiating microstrip patches, this electrically large array antenna demonstrates excellent power efficiency. In addition, this fairly new antenna concept can provide many significant advantages over a conventional parabolic reflector. The basic formulation for the radiation fields of the microstrip reflectarray is presented. This formulation is based on the array theory augmented by the Uniform Geometrical Theory of Diffraction (UTD). A computer code for analyzing the microstrip reflectarray's performances, such as far-field patterns, efficiency, etc., is also listed in this report. It is proposed here that a breadboard unit of this microstrip reflectarray should be constructed and tested in the future to validate the calculated performance. The antenna concept presented here can also be applied in many other types of radars where a large array antenna is needed.
Oxidation resistant porous material for transpiration cooled vanes
NASA Technical Reports Server (NTRS)
Madsen, P.; Rusnak, R. M.
1972-01-01
Porous metal sheet with controlled permeability was made by space winding and diffusion bonding fine wire. Two iron-chromium-aluminum alloys and three-chromium alloys were used: GE 1541 (Fe-Cr-Al-Y), H 875 (Fe-Cr-Al-Si), TD Ni Cr, DH 245 (Ni-Cr-Al-Si) and DH 242 (Ni-Cr-Si-Cb). GE 1541 and H 875 were shown in initial tests to have greater oxidation resistance than the other candidate alloys and were therefore tested more extensively. These two materials were cyclic furnace oxidation tested in air at 1800 and 2000 F for accumulated exposure times of 4, 16, 64, 100, 200, 300, 400, 500, and and 600 hours. Oxidation weight gain, permeability change and mechanical properties were determined after exposure. Metallographic examination was performed to determine effects of exposure on the porous metal and electron beam weld joints of porous sheet to IN 100 strut material. Hundred hour stress rupture life and tensile tests were performed at 1800 F. Both alloys had excellent oxidation resistance and retention of mechanical properties and appear suitable for use as transpiration cooling materials in high temperature gas turbine engines.
Evaluation of Subsequent Heat Treatment Routes for Near-β Forged TA15 Ti-Alloy
Sun, Zhichao; Wu, Huili; Yang, He
2016-01-01
TA15 Ti-alloy is widely used to form key load-bearing components in the aerospace field, where excellent service performance is needed. Near-β forging technology provides an attractive way to form these complicated Ti-alloy components but subsequent heat treatment has a great impact on the final microstructure and mechanical properties. Therefore evaluation and determination of the heat treatment route is of particular significance. In this paper, for the near-β forged TA15 alloy, the formation and evolution of microstructures under different subsequent heat treatment routes (annealing, solution and aging, toughening and strengthening) were studied and the cooling mode after forging was also considered. Then, the type and characteristics of the obtained microstructures were discussed through quantitative metallographic analysis. The corresponding mechanical properties (tensile, impact toughness, and fracture toughness) and effects of microstructural characteristics were investigated. Finally, for a required microstructure and performance a reasonable heat treatment route was recommended. The work is of importance for the application and development of near-β forging technology. PMID:28773994
NASA Technical Reports Server (NTRS)
Thompson, Rodger I.
1997-01-01
Near Infrared Camera and Multi-Object Spectrometer (NICMOS) has been in orbit for about 8 months. This is a report on its current status and future plans. Also included are some comments on particular aspects of data analysis concerning dark subtraction, shading, and removal of cosmic rays. At present NICMOS provides excellent images of high scientific content. Most of the observations utilize cameras 1 and 2 which are in excellent focus. Camera 3 is not yet within the range of the focus adjustment mechanism, but its current images are still quite excellent. In this paper we will present the status of various aspects of the NICMOS instrument.
Engine & Vehicle Mechanics Curriculum.
ERIC Educational Resources Information Center
Alaska State Dept. of Education, Juneau. Div. of Adult and Vocational Education.
This competency-based curriculum includes all competencies a student will acquire in an engine and vehicle mechanics educational program. It follows guidelines established for automobile technician training programs leading toward certification and addresses requirements of the National Institute for Automotive Service Excellence (ASE). The…
Aging of XLPE cable insulation under combined electrical and mechanical stresses
DOE Office of Scientific and Technical Information (OSTI.GOV)
David, E.; Parpal, J.L.; Crine, J.P.
1996-12-31
Extruded crosslinked polyethylene (XLPE) insulation is widely used in high-voltage cables since it presents such attractive features as excellent dielectric properties and good thermomechanical behavior. However, its performance is affected by long-term degradation when it is subjected to the various thermal, mechanical and environmental stresses occurring in service in combination with electrical stress. The synergetic effect of superposed electrical and other stresses remains to be fully clarified. In particular, a fairly high level of mechanical stresses can be present in the insulation volume, originating from residual internal stresses created during the cooling process in the fabrication, external forces when cablesmore » are bent sharply, or thermomechanical stresses caused by differential thermal expansion between the conductor and the insulating material. In order to investigate the influence of the superposition of mechanical and electrical stresses, various measurements were conducted on XLPE and LDPE specimens in tip-plane and plane-plane geometries. Experimental data of time-to-breakdown, breakdown field and tree length are presented as a function of the magnitude of the stresses. In all cases, superposition of the mechanical stress was found to reduce the dielectric strength of the material.« less
Mechanically Strong Graphene/Aramid Nanofiber Composite Electrodes for Structural Energy and Power.
Kwon, Se Ra; Harris, John; Zhou, Tianyang; Loufakis, Dimitrios; Boyd, James G; Lutkenhaus, Jodie L
2017-07-25
Structural energy and power systems offer both mechanical and electrochemical performance in a single multifunctional platform. These are of growing interest because they potentially offer reduction in mass and/or volume for aircraft, satellites, and ground transportation. To this end, flexible graphene-based supercapacitors have attracted much attention due to their extraordinary mechanical and electrical properties, yet they suffer from poor strength. This problem may be exacerbated with the inclusion of functional guest materials, often yielding strengths of <15 MPa. Here, we show that graphene paper supercapacitor electrodes containing aramid nanofibers as guest materials exhibit extraordinarily high tensile strength (100.6 MPa) and excellent electrochemical stability. This is achieved by extensive hydrogen bonding and π-π interactions between the graphene sheets and aramid nanofibers. The trade-off between capacitance and mechanical properties is evaluated as a function of aramid nanofiber loading, where it is shown that these electrodes exhibit multifunctionality superior to that of other graphene-based supercapacitors, nearly rivaling those of graphene-based pseudocapacitors. We anticipate these composite electrodes to be a starting point for structural energy and power systems that harness the mechanical properties of aramid nanofibers.
Han, Quan Feng; Wang, Ze Wu; Tang, Chak Yin; Chen, Ling; Tsui, Chi Pong; Law, Wing Cheung
2017-07-01
Poly-D-L-lactide/nano-hydroxyapatite (PDLLA/nano-HA) can be used as the biological scaffold material in bone tissue engineering as it can be readily made into a porous composite material with excellent performance. However, constitutive modeling for the mechanical response of porous PDLLA/nano-HA under various stress conditions has been very limited so far. In this work, four types of fundamental compressible hyper-elastic constitutive models were introduced for constitutive modeling and investigation of mechanical behaviors of porous PDLLA/nano-HA. Moreover, the unitary expressions of Cauchy stress tensor have been derived for the PDLLA/nano-HA under uniaxial compression (or stretch), biaxial compression (or stretch), pure shear and simple shear load by using the theory of continuum mechanics. The theoretical results determined from the approach based on the Ogden compressible hyper-elastic constitutive model were in good agreement with the experimental data from the uniaxial compression tests. Furthermore, this approach can also be used to predict the mechanical behaviors of the porous PDLLA/nano-HA material under the biaxial compression (or stretch), pure shear and simple shear. Copyright © 2017 Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Alamgir, Zahiruddin
RRAM has recently emerged as a strong candidate for non-volatile memory (NVM). Beyond memory applications, RRAM holds promise for use in performing logic functions, mimicking neuromorphic activities, enabling multi-level switching, and as one of the key elements of hardware based encryption or signal processing systems. It has been shown previously that RRAM resistance levels can be changed by adjusting compliance current or voltage level. This characteristic makes RRAM suitable for use in setting the synaptic weight in neuromorphic computing circuits. RRAM is also considered as a key element in hardware encryption systems, to produce unique and reproducible signals. However, a key challenge to implement RRAM in these applications is significant cycle to cycle performance variability. We sought to develop RRAM that can be tuned to different resistance levels gradually, with high reliability, and low variability. To achieve this goal, we focused on elucidating the conduction mechanisms underlying the resistive switching behavior for these devices. Electrical conduction mechanisms were determined by curve fitting I-V data using different current conduction equations. Temperature studies were also performed to corroborate these data. It was found that Schottky barrier height and width modulation was one of the key parameters that could be tuned to achieve different resistance levels, and for switching resistance states, primarily via oxygen vacancy movement. Oxygen exchange layers with different electronegativity were placed between top electrode and the oxide layer of TaOx devices to determine the effect of oxygen vacancy concentrations and gradients in these devices. It was found that devices with OELs with lower electronegativity tend to yield greater separation in the OFF vs. ON state resistance levels. As an extension of this work, TaOx based RRAM with Hf as the OEL was fabricated and could be tuned to different resistance level using pulse width and height modulation, yielding excellent uniformity and reliability. These findings improve our understanding of conduction within TaO x-based RRAM devices, providing a physical basis for switching in these devices. The value of this work lies in the demonstration of devices with excellent performance and demonstrated devices constitute a significant step toward real-world applications.
Control of Ultracold Photodissociation with Magnetic Fields
NASA Astrophysics Data System (ADS)
McDonald, M.; Majewska, I.; Lee, C.-H.; Kondov, S. S.; McGuyer, B. H.; Moszynski, R.; Zelevinsky, T.
2018-01-01
Photodissociation of a molecule produces a spatial distribution of photofragments determined by the molecular structure and the characteristics of the dissociating light. Performing this basic reaction at ultracold temperatures allows its quantum mechanical features to dominate. In this regime, weak applied fields can be used to control the reaction. Here, we photodissociate ultracold diatomic strontium in magnetic fields below 10 G and observe striking changes in photofragment angular distributions. The observations are in excellent agreement with a multichannel quantum chemistry model that includes nonadiabatic effects and predicts strong mixing of partial waves in the photofragment energy continuum. The experiment is enabled by precise quantum-state control of the molecules.
An ultrasensitive strain sensor with a wide strain range based on graphene armour scales.
Yang, Yi-Fan; Tao, Lu-Qi; Pang, Yu; Tian, He; Ju, Zhen-Yi; Wu, Xiao-Ming; Yang, Yi; Ren, Tian-Ling
2018-06-12
An ultrasensitive strain sensor with a wide strain range based on graphene armour scales is demonstrated in this paper. The sensor shows an ultra-high gauge factor (GF, up to 1054) and a wide strain range (ε = 26%), both of which present an advantage compared to most other flexible sensors. Moreover, the sensor is developed by a simple fabrication process. Due to the excellent performance, this strain sensor can meet the demands of subtle, large and complex human motion monitoring, which indicates its tremendous application potential in health monitoring, mechanical control, real-time motion monitoring and so on.
Transient studies of capillary-induced flow
NASA Technical Reports Server (NTRS)
Reagan, M. K.; Bowman, W. J.
1993-01-01
This paper presents the numerical and experimental results of a study performed on the transient rise of fluid in a capillary tube. The capillary tube problem provides an excellent mechanism from which to launch an investigation into the transient flow of a fluid in a porous wick structure where capillary forces must balance both adverse gravitational effects and frictional losses. For the study, a capillary tube, initially charged with a small volume of water, was lowered into a pool of water. The behavior of the column of fluid during the transient that followed as more water entered the tube from the pool was both numerically and experimentally studied.
NASA Astrophysics Data System (ADS)
Krishnan, Vinoadh Kumar; Sinnaeruvadi, Kumaran
2016-10-01
Vanadium metal powders, ball milled with different surfactants viz., stearic acid, KCl and NaCl, have been studied by X-ray diffraction and transmission electron microscopy. The surfactants alter the microstructural and morphological characteristics of the powders. Ball milling with stearic acid results in solid-state amorphization, while powders milled with KCl yield vanadium-tungsten carbide nanocomposite mixtures. NaCl proved to be an excellent surfactant for obtaining nanostructured fusion-grade vanadium powders. In order to understand the reaction mechanism behind any interstitial addition in the ball-milled powders, CHNOS analysis was performed.
2010-01-01
Three types of carbon paste electrodes (CPEs) with different liquid binders were fabricated, and their electrochemical behavior was characterized via a potassium hexacyanoferrate(II) probe. 1-Octyl-3-methylimidazolium hexafluorophosphate ionic liquid (IL) as a hydrophobic conductive pasting binder showed better electrochemical performance compared with the commonly employed binder. The IL-contained CPEs demonstrated excellent electroactivity for oxidation of hydroquinone. A diffusion control mechanism was confirmed and the diffusion coefficient (D) of 5.05 × 10-4 cm2 s-1 was obtained. The hydrophobic IL-CPE is promising for the determination of hydroquinone in terms of high sensitivity, easy operation, and good durability. PMID:20977733
Solid-Body Fuse Developed for High- Voltage Space Power Missions
NASA Technical Reports Server (NTRS)
Dolce, James L.; Baez, Anastacio N.
2001-01-01
AEM Incorporated has completed the development, under a NASA Glenn Research Center contract, of a solid-body fuse for high-voltage power systems of satellites and spacecraft systems. High-reliability fuses presently defined by MIL-PRF-23419 do not meet the increased voltage and amperage requirements for the next generation of spacecraft. Solid-body fuses exhibit electrical and mechanical attributes that enable these fuses to perform reliably in the vacuum and high-vibration and -shock environments typically present in spacecraft applications. The construction and screening techniques for solid-body fuses described by MIL-PRF-23419/12 offer an excellent roadmap for the development of high-voltage solid-body fuses.
High-performance carbon nanotube thin-film transistors on flexible paper substrates
DOE Office of Scientific and Technical Information (OSTI.GOV)
Liu, Na; Yun, Ki Nam; Yu, Hyun-Yong
Single-walled carbon nanotubes (SWCNTs) are promising materials as active channels for flexible transistors owing to their excellent electrical and mechanical properties. However, flexible SWCNT transistors have never been realized on paper substrates, which are widely used, inexpensive, and recyclable. In this study, we fabricated SWCNT thin-film transistors on photo paper substrates. The devices exhibited a high on/off current ratio of more than 10{sup 6} and a field-effect mobility of approximately 3 cm{sup 2}/V·s. The proof-of-concept demonstration indicates that SWCNT transistors on flexible paper substrates could be applied as low-cost and recyclable flexible electronics.
Yang, Wenjing; Wang, Qihui; Xu, Ke; Yin, Yanjun; Bao, Hebin; Li, Xueming; Niu, Lidan; Chen, Shiqi
2017-08-16
The biodegradable inhibitors, which could effectively reduce the rate of corrosion of carbon steel, were investigated by potentiodynamic polarization and electrochemical impedance spectroscopy (EIS). The mixed-type inhibitors extracted from Eriobotrya japonica Thunb. leaf exhibited excellent inhibition performance, and the inhibition efficiency for carbon steel reached 90.0% at 298 K in hydrochloric acid. Moreover, the adsorption mechanism of the inhibitors on a carbon steel surface is described by the Langmuir adsorption isotherm. Simultaneously, the corrosion morphology of the carbon steel and the inhibitor structure were analyzed by scanning electron microscope (SEM) and Fourier transform infrared spectroscopy (FT-IR), respectively.
NASA Astrophysics Data System (ADS)
Xia, Tifeng; Zhu, Fengliang; Cui, Yuanjing; Yang, Yu; Wang, Zhiyu; Qian, Guodong
2017-01-01
A water-stable metal-organic framework (MOF) EuNDC has been synthesized for selective detection of the well-known contaminant and toxicant picric acid (PA) in aqueous solution. Due to the photo-induced electron transfer and self-absorption mechanism, EuNDC displayed rapid, selective and sensitive detection of PA with a detection limit of 37.6 ppb. Recyclability experiments revealed that EuNDC retains its initial luminescent intensity and same quenching efficiency in each cycle, suggesting high photostability and reusability for long-term sensing applications. The excellent detection performance of EuNDC makes it a promising PA sensing material for practical applications.
Zhang, Jianjun; Yue, Liping; Kong, Qingshan; Liu, Zhihong; Zhou, Xinhong; Zhang, Chuanjian; Xu, Quan; Zhang, Bo; Ding, Guoliang; Qin, Bingsheng; Duan, Yulong; Wang, Qingfu; Yao, Jianhua; Cui, Guanglei; Chen, Liquan
2014-01-01
A sustainable, heat-resistant and flame-retardant cellulose-based composite nonwoven has been successfully fabricated and explored its potential application for promising separator of high-performance lithium ion battery. It was demonstrated that this flame-retardant cellulose-based composite separator possessed good flame retardancy, superior heat tolerance and proper mechanical strength. As compared to the commercialized polypropylene (PP) separator, such composite separator presented improved electrolyte uptake, better interface stability and enhanced ionic conductivity. In addition, the lithium cobalt oxide (LiCoO2)/graphite cell using this composite separator exhibited better rate capability and cycling retention than that for PP separator owing to its facile ion transport and excellent interfacial compatibility. Furthermore, the lithium iron phosphate (LiFePO4)/lithium cell with such composite separator delivered stable cycling performance and thermal dimensional stability even at an elevated temperature of 120°C. All these fascinating characteristics would boost the application of this composite separator for high-performance lithium ion battery. PMID:24488228
Transcontinental anaesthesia: a pilot study.
Hemmerling, T M; Arbeid, E; Wehbe, M; Cyr, S; Giunta, F; Zaouter, C
2013-05-01
Although telemedicine is one of the key initiatives of the World Health Organization, no study has explored the feasibility and efficacy of teleanaesthesia. This bi-centre pilot study investigates the feasibility of transcontinental anaesthesia. Twenty patients aged ≥ 18 yr undergoing elective thyroid surgery for ≥ 30 min were enrolled in this study. The remote and local set-up was composed of a master-computer (Montreal) and a slave-computer (Pisa). Standard Internet connection, remote desktop control, and video conference software were used. All patients received total i.v. anaesthesia controlled remotely (Montreal). The main outcomes were feasibility, clinical performance, and controller performance of transcontinental anaesthesia. The clinical performance of hypnosis control was the efficacy to maintain bispectral index (BIS) at 45: 'excellent', 'good', 'poor', and 'inadequate' control represented BIS values within 10, from 11 to 20, from 21 to 30, or >30% from target. The clinical performance of analgesia was the efficacy to maintain Analgoscore values at 0 (-9 to 9); -3 to +3 representing 'excellent' pain control, -3 to -6 and +3 to +6 representing 'good' pain control, and -6 to -9 and +6 to +9 representing 'insufficient' pain control. The controller performance was evaluated using Varvel parameters. Transcontinental anaesthesia was successful in all 20 consecutive patients. The clinical performance of hypnosis showed an 'excellent and good' control for 69% of maintenance time, and the controller performance showed an average global performance index of 57. The clinical performance of analgesia was 'excellent and good' for 92% of maintenance time, and the controller performance showed a global performance index of 1118. Transcontinental anaesthesia is feasible; control of anaesthesia shows good performance indexes. Clinical registration number NCT01331096.
Amorphous and Metastable Microcrystalline Rapidly Solidified Alloys: Status and Potential.
1980-05-01
stability. 9. More effective quenching techniques should be studied, to produce thicker amorphous tapes for magnetic applications. 10. The production of bulk ...for some metallic glasses * excellent magnetic properties for metallic glasses * high strength, toughness and excellent fatigue and crack growth...Forming 65 Chapter 8 - PROPERTIES OF METALLIC GLASSES 69 Magnetic Properties 69 Electrical Properties 81 Mechanical Properties 83 Radiation Stability 101
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gussev, Maxim N.; Field, Kevin G.; Briggs, Samuel A.
The iron-based, iron-chromium-aluminum (FeCrAl) alloys are promising, robust materials for deployment in current and future nuclear power plants. This class of alloys demonstrates excellent performance in a range of environments and conditions, including high-temperature steam (>1000°C). Furthermore, these alloys have the potential to have prolonged survival under loss-of-coolant accident (LOCA) conditions compared to the more traditional cladding materials that are either Zr-based alloys or austenitic steels. However, one of the issues associated with FeCrAl alloys is cracking during welding. The present project investigates the possibility of mitigating welding-induced cracking via alloying and precise structure control of the weldments; in themore » frame work of the project, several advanced alloys were developed and are being investigated prior to and after neutron irradiation to provide insight into the radiation tolerance and mechanical performance of the weldments. The present report provides preliminary results on the post-irradiation characterization and mechanical tests performed during United States Fiscal Year (FY) 2016. Chapter 1 provides a general introduction, and Chapter 2 describes the alloy compositions, welding procedure, specimen geometry and manufacturing parameters. Also, a brief discussion of the irradiation at the High Flux Isotope Reactor (HFIR) is provided. Chapter 3 is devoted to the analysis of mechanical tests performed at the hot cell facility; tensile curves and mechanical properties are discussed in detail focusing on the irradiation temperature. Limited fractography results are also presented and analyzed. The discussion highlights the limitations of the testing within a hot cell. Chapter 4 underlines the advantages of in-situ testing and discusses the preliminary results obtained with newly developed miniature specimens. Specimens were moved to the Low Activation Materials Development and Analysis (LAMDA) laboratory and prepared for mechanical tests. Tensile tests were conducted at LAMDA using a modern digital image correlation approach allowing for strain distribution analysis. Plastic strain initiation and necking are discussed in detail; a concept of strain rate maps is also introduced and discussed. Follow-on SEM-EBSD and FIBTEM analysis is planned.« less
ERIC Educational Resources Information Center
Springer, Matthew G.; Lewis, Jessica L.; Podgursky, Michael J.; Ehlert, Mark W.; Taylor, Lori L.; Lopez, Omar S.; Peng, Art
2009-01-01
The Governor's Educator Excellence Grant (GEEG) program was federally- and state-funded and provided three-year grants to schools to design and implement performance pay plans from the 2005-06 to 2007-08 school years. GEEG was implemented in 99 high poverty, high performing Texas public schools. This report builds on the previous GEEG evaluation…
ERIC Educational Resources Information Center
Winters, Michael Joseph
2017-01-01
This quantitative correlational study examined the relationship between teacher pre-hiring effectiveness evaluation and their performance evaluation scores at the end of the first year of teaching. Prior to this study, it was not known if and to what degree teachers' scores on the Ventures for Excellence B-22 screening interview correlated to…
Liu, Ying; Liao, Mei; He, Xueling; Liu, Xia; Kou, Xingming; Xiao, Dan
2015-01-01
In this paper, nitrogen-doped carbon dots (N-CDs) with high quantum yield (QY) of 40.5% were prepared through a facile and straightforward hydrothermal route. The as-prepared N-CDs exhibited excellent photoluminescence properties, good water-solublity and photostability, negligible cytotoxicity and favourable biocompatibility. Such N-CDs were found to serve as an effective fluorescent sensor for selective and sensitive detection of Hg(2+) in a wide linear response concentration range of 0 - 8 μM with a limit of detection (LOD) of 0.087 μM and could be applied to the determination of Hg(2+) in environmental water samples. The corresponding mechanisms were discussed in detail. Moreover, another attractive finding was that the N-CDs showed satisfactory performance in bioimaging before and after the addition of Hg(2+) in human lung cancer PC14 cells. With excellent sensitivity, selectivity and biocompatibility, such cheap carbonmaterials are potentially suitable for monitoring of Hg(2+) in environmental applications and promising for biological applications.
Preparation of Si-containing oxide coating and biomimetic apatite induction on magnesium alloy
NASA Astrophysics Data System (ADS)
Yu, Huijun; Dong, Qing; Dou, Jinhe; Pan, Yaokun; Chen, Chuanzhong
2016-12-01
Magnesium and its alloys are recently found important in the field of bone repairing for their ideal mechanical performance and excellent biocompatibility. Micro-arc oxidation (MAO) is a simple, controllable and efficient electrochemistry method that can prepare protective ceramic coatings on magnesium alloys. The properties of the MAO coating, such as thickness, microstructure, roughness and composition, can easily be controlled by adjusting the voltage, current density, duration or the electrolyte concentration. In this work, MAO coatings are prepared on ZK61 magnesium alloy at different voltages. The structure characteristics and element distributions of the coating are investigated by XRD, TEM, SEM and EPMA. The MAO samples are immersed in SBF for 7, 14 and 28 days respectively. The corrosion behaviors of the samples in SBF were also investigated by potentiodynamic polarization curves. The corrosion products were characterized by EDS and FT-IR. The MAO coated ZK61 alloy samples showed excellent corrosion resistance and bioactivity. The MAO method demonstrates a great potential in the preparation of degradable and bioactive orthopedic magnesium-based implants.
Graphene hot-electron light bulb: incandescence from hBN-encapsulated graphene in air
NASA Astrophysics Data System (ADS)
Son, Seok-Kyun; Šiškins, Makars; Mullan, Ciaran; Yin, Jun; Kravets, Vasyl G.; Kozikov, Aleksey; Ozdemir, Servet; Alhazmi, Manal; Holwill, Matthew; Watanabe, Kenji; Taniguchi, Takashi; Ghazaryan, Davit; Novoselov, Kostya S.; Fal'ko, Vladimir I.; Mishchenko, Artem
2018-01-01
The excellent electronic and mechanical properties of graphene allow it to sustain very large currents, enabling its incandescence through Joule heating in suspended devices. Although interesting scientifically and promising technologically, this process is unattainable in ambient environment, because graphene quickly oxidises at high temperatures. Here, we take the performance of graphene-based incandescent devices to the next level by encapsulating graphene with hexagonal boron nitride (hBN). Remarkably, we found that the hBN encapsulation provides an excellent protection for hot graphene filaments even at temperatures well above 2000 K. Unrivalled oxidation resistance of hBN combined with atomically clean graphene/hBN interface allows for a stable light emission from our devices in atmosphere for many hours of continuous operation. Furthermore, when confined in a simple photonic cavity, the thermal emission spectrum is modified by a cavity mode, shifting the emission to the visible range spectrum. We believe our results demonstrate that hBN/graphene heterostructures can be used to conveniently explore the technologically important high-temperature regime and to pave the way for future optoelectronic applications of graphene-based systems.
Study of advanced electric propulsion system concept using a flywheel for electric vehicles
NASA Technical Reports Server (NTRS)
Younger, F. C.; Lackner, H.
1979-01-01
Advanced electric propulsion system concepts with flywheels for electric vehicles are evaluated and it is predicted that advanced systems can provide considerable performance improvement over existing electric propulsion systems with little or no cost penalty. Using components specifically designed for an integrated electric propulsion system avoids the compromises that frequently lead to a loss of efficiency and to inefficient utilization of space and weight. A propulsion system using a flywheel power energy storage device can provide excellent acceleration under adverse conditions of battery degradation due either to very low temperatures or high degrees of discharge. Both electrical and mechanical means of transfer of energy to and from the flywheel appear attractive; however, development work is required to establish the safe limits of speed and energy storage for advanced flywheel designs and to achieve the optimum efficiency of energy transfer. Brushless traction motor designs using either electronic commutation schemes or dc-to-ac inverters appear to provide a practical approach to a mass producible motor, with excellent efficiency and light weight. No comparisons were made with advanced system concepts which do not incorporate a flywheel.
Wang, Tianyu; Peng, Zheng; Wang, Yuhang; Tang, Jing; Zheng, Gengfeng
2013-01-01
We demonstrate a facile, two-step coating/calcination approach to grow a uniform MnO nanoparticle@mesoporous carbon (MnO@C) composite on conducting substrates, by direct coating of the Mn-oleate precursor solution without any conducting/binding reagents, and subsequent thermal calcination. The monodispersed, sub-10 nm MnO nanoparticles offer high theoretical energy storage capacities and catalytic properties, and the mesoporous carbon coating allows for enhanced electrolyte transport and charge transfer towards/from MnO surface. In addition, the direct growth and attachment of the MnO@C nanocomposite in the supporting conductive substrates provide much reduced contact resistances and efficient charge transfer. These excellent features allow the use of MnO@C nanocomposites as lithium-ion battery and supercapacitor electrodes for energy storage, with high reversible capacity at large current densities, as well as excellent cycling and mechanical stabilities. Moreover, this MnO@C nanocomposite has also demonstrated a high sensitivity for H2O2 detection, and also exhibited attractive potential for the tumor cell analysis. PMID:24045767
NASA Astrophysics Data System (ADS)
Kuhlmann, Andreas V.; Houel, Julien; Brunner, Daniel; Ludwig, Arne; Reuter, Dirk; Wieck, Andreas D.; Warburton, Richard J.
2013-07-01
Optically active quantum dots, for instance self-assembled InGaAs quantum dots, are potentially excellent single photon sources. The fidelity of the single photons is much improved using resonant rather than non-resonant excitation. With resonant excitation, the challenge is to distinguish between resonance fluorescence and scattered laser light. We have met this challenge by creating a polarization-based dark-field microscope to measure the resonance fluorescence from a single quantum dot at low temperature. We achieve a suppression of the scattered laser exceeding a factor of 107 and background-free detection of resonance fluorescence. The same optical setup operates over the entire quantum dot emission range (920-980 nm) and also in high magnetic fields. The major development is the outstanding long-term stability: once the dark-field point has been established, the microscope operates for days without alignment. The mechanical and optical designs of the microscope are presented, as well as exemplary resonance fluorescence spectroscopy results on individual quantum dots to underline the microscope's excellent performance.
NASA Astrophysics Data System (ADS)
Wang, Shuai; Li, Tong; Chen, Chen; Chen, Sheng; Liu, Baicang; Crittenden, John
2018-03-01
Ultrafiltration (UF) membranes composed of poly(vinylidene fluoride) (PVDF) blended with poly(vinylidene fluoride)-graft-poly(ethylene glycol) methyl ether methacrylate (PVDF-g-PEGMA) can present high flux and excellent foulant removal efficiencies under suitable preparation conditions. However, these PVDF/PVDF-g-PEGMA blended membranes cannot be applied industrially because of the insufficient mechanical strength (strength-to-break value of 8.4 ± 0.6 MPa). We incorporated two types of non-woven polyethylene terephthalate (PET) fabrics (thin hydrophobic and thick hydrophilic fabrics) as support layers to improve the mechanical properties of the blended membranes. The thin and thick PET fabrics were able to significantly improve the tensile strength to 23.3 ± 3.7 MPa and 30.1 ± 1.4 MPa, respectively. The PET fabrics had a limited impact on the separation-related membrane performance such as hydrophilicity, foulant rejection, whereas the mechanical strength and pure water flux was improved several folds. The enhanced flux was attributed to the higher surface porosity and wider finger-like voids in the cross-section. The thin PET fabric with larger porosity was able to maintain a consistent toughness simultaneously; thus it is recommended as a support material for this blended membrane.
Performance and Mechanism of Uranium Adsorption from Seawater to Poly(dopamine)-Inspired Sorbents.
Wu, Fengcheng; Pu, Ning; Ye, Gang; Sun, Taoxiang; Wang, Zhe; Song, Yang; Wang, Wenqing; Huo, Xiaomei; Lu, Yuexiang; Chen, Jing
2017-04-18
Developing facile and robust technologies for effective enrichment of uranium from seawater is of great significance for resource sustainability and environmental safety. By exploiting mussel-inspired polydopamine (PDA) chemistry, diverse types of PDA-functionalized sorbents including magnetic nanoparticle (MNP), ordered mesoporous carbon (OMC), and glass fiber carpet (GFC) were synthesized. The PDA functional layers with abundant catechol and amine/imine groups provided an excellent platform for binding to uranium. Due to the distinctive structure of PDA, the sorbents exhibited multistage kinetics which was simultaneously controlled by chemisorption and intralayer diffusion. Applying the diverse PDA-modified sorbents for enrichment of low concentration (parts per billion) uranium in laboratory-prepared solutions and unpurified seawater was fully evaluated under different scenarios: that is, by batch adsorption for MNP and OMC and by selective filtration for GFC. Moreover, high-resolution X-ray photoelectron spectroscopic and extended X-ray absorption fine structure studies were performed for probing the underlying coordination mechanism between PDA and U(VI). The catechol hydroxyls of PDA were identified as the main bidentate ligands to coordinate U(VI) at the equatorial plane. This study assessed the potential of versatile PDA chemistry for development of efficient uranium sorbents and provided new insights into the interaction mechanism between PDA and uranium.
The Consolidation Behavior of Silk Hydrogels
Kluge, Jonathan A.; Rosiello, Nicholas C.; Leisk, Gary G.; Kaplan, David L.; Dorfmann, A. Luis
2010-01-01
Hydrogels have mechanical properties and structural features that are similar to load bearing soft tissues including intervertebral disc and articular cartilage, and can be implanted for tissue restoration or for local release of therapeutic factors. To help predict their performance, mechanical characterization and mathematical modeling are available methods for use in tissue engineering and drug delivery settings. In this study, confined compression creep tests were performed on silk hydrogels, over a range of concentrations, to examine the phenomenological behavior of the gels under a physiological loading scenario. Based on the observed behavior, we show that the time-dependent response can be explained by a consolidation mechanism, and modeled using Biot’s poroelasticity theory. Two observations are in strong support of this modeling framework, namely, the excellent numerical agreement between increasing load step creep data and the linear Terzaghi theory, and the similar values obtained from numerical simulations and direct measurements of the permeability coefficient. The higher concentration gels (8% and 12% w/v) clearly show a strain-stiffening response to creep loading with increasing loads, while the lower concentration gel (4% w/v) does not. A nonlinear elastic constitutive formulation is employed to account for the stiffening. Furthermore, an empirical formulation is used to represent the deformation-dependent permeability. PMID:20142112
Zhao, Shanyu; Malfait, Wim J; Demilecamps, Arnaud; Zhang, Yucheng; Brunner, Samuel; Huber, Lukas; Tingaut, Philippe; Rigacci, Arnaud; Budtova, Tatiana; Koebel, Matthias M
2015-11-23
Silica aerogels are excellent thermal insulators, but their brittle nature has prevented widespread application. To overcome these mechanical limitations, silica-biopolymer hybrids are a promising alternative. A one-pot process to monolithic, superinsulating pectin-silica hybrid aerogels is presented. Their structural and physical properties can be tuned by adjusting the gelation pH and pectin concentration. Hybrid aerogels made at pH 1.5 exhibit minimal dust release and vastly improved mechanical properties while remaining excellent thermal insulators. The change in the mechanical properties is directly linked to the observed "neck-free" nanoscale network structure with thicker struts. Such a design is superior to "neck-limited", classical inorganic aerogels. This new class of materials opens up new perspectives for novel silica-biopolymer nanocomposite aerogels. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Li, Z.; Zhao, S.; Diao, H.; Liaw, P. K.; Meyers, M. A.
2017-01-01
The mechanical behavior of a single phase (fcc) Al0.3CoCrFeNi high-entropy alloy (HEA) was studied in the low and high strain-rate regimes. The combination of multiple strengthening mechanisms such as solid solution hardening, forest dislocation hardening, as well as mechanical twinning leads to a high work hardening rate, which is significantly larger than that for Al and is retained in the dynamic regime. The resistance to shear localization was studied by dynamically-loading hat-shaped specimens to induce forced shear localization. However, no adiabatic shear band could be observed. It is therefore proposed that the excellent strain hardening ability gives rise to remarkable resistance to shear localization, which makes this material an excellent candidate for penetration protection applications such as armors. PMID:28210000
ERIC Educational Resources Information Center
DeHart, A. Robert
1984-01-01
"In Search of Excellence," by Peters and Waterman identifies one characteristic of corporate excellence as "unusual effort on the part of apparently ordinary employees." The community college has many students who fit into the category of "ordinary people." Their academic performance can be maximized by recognizing their individual differences,…
Marita, Enock; Oule, Jared; Mungai, Margaret; Thiam, Sylla; Ilako, Festus
2016-01-01
Introduction Civil Society Organizations (CSOs) contribute to achieving development goals through advocacy, social mobilisation and provision of health services. CSO programming is a key component of Global Fund (GF) grants; however, CSOs face technical and governance capacity challenges in grant utilisation leading to missed opportunities for improving health at community level. Amref Health Africa was appointed Principal Recipient of a GF grant aimed at scaling up community case management of malaria through CSOs as sub-recipients in western Kenya. To identify potential risks and strengthen grant management, Amref Health Africa and the Ministry of Health conducted a capacity needs assessment to determine the capacity of CSOs to effectively utilise grants. Methods 26 selected CSOs participated in this study. Document reviews and on-site assessments and observations were conducted using structured tool. The five main assessment areas were: governance and risk management; strategic and operational planning; monitoring and evaluation; programme management; and financial management. Overall performance was grouped into four categories: 3.0-2.5 (excellent), 2.0-2.4 (good), 1.5-1.9 (fair), and 1.0-1.4 (poor). Data were collected and analysed using Excel software. Results Twenty five out of 26 CSOs were legally compliant. 14(54%) CSOs were categorized as good; 7(27%) as excellent; 3(12%) as poor and 2(8%) as fair. Most CSOs had good programme management capacity but monitoring and evaluation presented the most capacity gaps. Conclusion More than 75% of the CSOs were rated as excellent or good. A capacity building plan, programme risk management plan and oversight mechanisms were important for successful grant implementation. PMID:28523081
Lahiri, Debrupa; Singh, Virendra; Benaduce, Ana Paula; Seal, Sudipta; Kos, Lidia; Agarwal, Arvind
2011-01-01
This study proposes boron nitride nanotube (BNNT) reinforced hydroxyapatite (HA) as a novel composite material for orthopedic implant applications. The spark plasma sintered (SPS) composite structure shows higher density compared to HA. Minimal lattice mismatch between HA and BNNT leads to coherent bonding and strong interface. HA-4 wt% BNNT composite offers excellent mechanical properties-120% increment in elastic modulus, 129% higher hardness and 86% more fracture toughness, as compared to HA. Improvements in the hardness and fracture toughness are related to grain refinement and crack bridging by BNNTs. HA-BNNT composite also shows 75% improvement in the wear resistance. The wear morphology suggests localized plastic deformation supported by the sliding of outer walls of BNNT. Osteoblast proliferation and cell viability show no adverse effect of BNNT addition. HA-BNNT composite is, thus, envisioned as a potential material for stronger orthopedic implants. Copyright © 2010 Elsevier Ltd. All rights reserved.
Mesoscale assembly of chemically modified graphene into complex cellular networks
Barg, Suelen; Perez, Felipe Macul; Ni, Na; do Vale Pereira, Paula; Maher, Robert C.; Garcia-Tuñon, Esther; Eslava, Salvador; Agnoli, Stefano; Mattevi, Cecilia; Saiz, Eduardo
2014-01-01
The widespread technological introduction of graphene beyond electronics rests on our ability to assemble this two-dimensional building block into three-dimensional structures for practical devices. To achieve this goal we need fabrication approaches that are able to provide an accurate control of chemistry and architecture from nano to macroscopic levels. Here, we describe a versatile technique to build ultralight (density ≥1 mg cm−3) cellular networks based on the use of soft templates and the controlled segregation of chemically modified graphene to liquid interfaces. These novel structures can be tuned for excellent conductivity; versatile mechanical response (elastic-brittle to elastomeric, reversible deformation, high energy absorption) and organic absorption capabilities (above 600 g per gram of material). The approach can be used to uncover the basic principles that will guide the design of practical devices that by combining unique mechanical and functional performance will generate new technological opportunities. PMID:24999766
Catching on it early: Bodily and brain anticipatory mechanisms for excellence in sport.
Abreu, Ana M; Candidi, Matteo; Aglioti, Salvatore M
2017-01-01
Programming and executing a subsequent move is inherently linked to the ability to anticipate the actions of others when interacting. Such fundamental social ability is particularly important in sport. Here, we discuss the possible mechanisms behind the highly sophisticated anticipation skills that characterize experts. We contend that prediction in sports might rely on a finely tuned perceptual system that endows experts with a fast, partially unconscious, pickup of relevant cues. Furthermore, we discuss the role of the multimodal, perceptuomotor, multiple-duty cells (mirror neurons) that play an important function in action anticipation by means of an inner motor simulation process. Finally, we suggest the role of predictive coding, interoception, and the enteric nervous system as the processual and biological support for intuition and "gut feelings" in sports-the missing link that might explain outstanding expert performance based on action anticipation. © 2017 Elsevier B.V. All rights reserved.
Poly(Amide-imide) Aerogel Materials Produced via an Ice Templating Process
Gawryla, Matthew D.; Arndt, Eric M.
2018-01-01
Low density composites of sodium montmorillonite and poly(amide-imide) polymers have been created using an ice templating method, which serves as an alternative to the often-difficult foaming of high temperature/high performance polymers. The starting polymer was received in the poly(amic acid) form which can be cured using heat, into a water insoluble amide-imide copolymer. The resulting materials have densities in the 0.05 g/cm3 range and have excellent mechanical properties. Using a tertiary amine as a processing aid provides for lower viscosity and allows more concentrated polymer solutions to be used. The concentration of the amine relative to the acid groups on the polymer backbone has been found to cause significant difference in the mechanical properties of the dried materials. The synthesis and characterization of low density versions of two poly(amide-imide) polymers and their composites with sodium montmorillonite clay are discussed in the present work. PMID:29401663
Learning of nature: The curious case of the naked mole rat.
Lagunas-Rangel, Francisco Alejandro; Chávez-Valencia, Venice
2017-06-01
Naked mole rats (NMRs) are the longest-living rodents known, living up to approximately 30 years and showing sustained good health. Nowadays, NMRs are considered excellent models for aging and, additionally, for cancer research, due to the evidence of a remarkable cancer resistance demonstrated through thousands of necropsies performed with very few cases that describe this pathology, which is believed to be a disease that unavoidably accompanies aging. Since some years ago, several studies have tried to explain the possible mechanisms underlying longevity and cancer resistance in NMRs through different perspectives and directions, creating new knowledge that subsequently could be used for cancer prevention and delaying aging in humans. Thus, the purpose of this review is to summarize the recent knowledge on naked mole rats with a particular emphasis on the molecular mechanisms associated with their longevity and cancer resistance. Copyright © 2017 Elsevier B.V. All rights reserved.
Gao, Hongcai; Xiao, Fei; Ching, Chi Bun; Duan, Hongwei
2012-12-01
We report the design of all-solid-state asymmetric supercapacitors based on free-standing carbon nanotube/graphene (CNTG) and Mn(3)O(4) nanoparticles/graphene (MG) paper electrodes with a polymer gel electrolyte of potassium polyacrylate/KCl. The composite paper electrodes with carbon nanotubes or Mn(3)O(4) nanoparticles uniformly intercalated between the graphene nanosheets exhibited excellent mechanical stability, greatly improved active surface areas, and enhanced ion transportation, in comparison with the pristine graphene paper. The combination of the two paper electrodes with the polymer gel electrolyte endowed our asymmetric supercapacitor of CNTG//MG an increased cell voltage of 1.8 V, a stable cycling performance (capacitance retention of 86.0% after 10,000 continuous charge/discharge cycles), more than 2-fold increase of energy density (32.7 Wh/kg) compared with the symmetric supercapacitors, and importantly a distinguished mechanical flexibility.
The development of additive manufacturing technique for nickel-base alloys: A review
NASA Astrophysics Data System (ADS)
Zadi-Maad, Ahmad; Basuki, Arif
2018-04-01
Nickel-base alloys are an attractive alloy due to its excellent mechanical properties, a high resistance to creep deformation, corrosion, and oxidation. However, it is a hard task to control performance when casting or forging for this material. In recent years, additive manufacturing (AM) process has been implemented to replace the conventional directional solidification process for the production of nickel-base alloys. Due to its potentially lower cost and flexibility manufacturing process, AM is considered as a substitute technique for the existing. This paper provides a comprehensive review of the previous work related to the AM techniques for Ni-base alloys while highlighting current challenges and methods to solving them. The properties of conventionally manufactured Ni-base alloys are also compared with the AM fabricated alloys. The mechanical properties obtained from tension, hardness and fatigue test are included, along with discussions of the effect of post-treatment process. Recommendations for further work are also provided.