NASA Technical Reports Server (NTRS)
Bigger, J. T. Jr; Steinman, R. C.; Rolnitzky, L. M.; Fleiss, J. L.; Albrecht, P.; Cohen, R. J.
1996-01-01
BACKGROUND. The purposes of the present study were (1) to establish normal values for the regression of log(power) on log(frequency) for, RR-interval fluctuations in healthy middle-aged persons, (2) to determine the effects of myocardial infarction on the regression of log(power) on log(frequency), (3) to determine the effect of cardiac denervation on the regression of log(power) on log(frequency), and (4) to assess the ability of power law regression parameters to predict death after myocardial infarction. METHODS AND RESULTS. We studied three groups: (1) 715 patients with recent myocardial infarction; (2) 274 healthy persons age and sex matched to the infarct sample; and (3) 19 patients with heart transplants. Twenty-four-hour RR-interval power spectra were computed using fast Fourier transforms and log(power) was regressed on log(frequency) between 10(-4) and 10(-2) Hz. There was a power law relation between log(power) and log(frequency). That is, the function described a descending straight line that had a slope of approximately -1 in healthy subjects. For the myocardial infarction group, the regression line for log(power) on log(frequency) was shifted downward and had a steeper negative slope (-1.15). The transplant (denervated) group showed a larger downward shift in the regression line and a much steeper negative slope (-2.08). The correlation between traditional power spectral bands and slope was weak, and that with log(power) at 10(-4) Hz was only moderate. Slope and log(power) at 10(-4) Hz were used to predict mortality and were compared with the predictive value of traditional power spectral bands. Slope and log(power) at 10(-4) Hz were excellent predictors of all-cause mortality or arrhythmic death. To optimize the prediction of death, we calculated a log(power) intercept that was uncorrelated with the slope of the power law regression line. We found that the combination of slope and zero-correlation log(power) was an outstanding predictor, with a relative risk of > 10, and was better than any combination of the traditional power spectral bands. The combination of slope and log(power) at 10(-4) Hz also was an excellent predictor of death after myocardial infarction. CONCLUSIONS. Myocardial infarction or denervation of the heart causes a steeper slope and decreased height of the power law regression relation between log(power) and log(frequency) of RR-interval fluctuations. Individually and, especially, combined, the power law regression parameters are excellent predictors of death of any cause or arrhythmic death and predict these outcomes better than the traditional power spectral bands.
NASA Technical Reports Server (NTRS)
Seybert, A. F.; Wu, X. F.; Oswald, Fred B.
1992-01-01
Analytical and experimental validation of methods to predict structural vibration and radiated noise are presented. A rectangular box excited by a mechanical shaker was used as a vibrating structure. Combined finite element method (FEM) and boundary element method (BEM) models of the apparatus were used to predict the noise radiated from the box. The FEM was used to predict the vibration, and the surface vibration was used as input to the BEM to predict the sound intensity and sound power. Vibration predicted by the FEM model was validated by experimental modal analysis. Noise predicted by the BEM was validated by sound intensity measurements. Three types of results are presented for the total radiated sound power: (1) sound power predicted by the BEM modeling using vibration data measured on the surface of the box; (2) sound power predicted by the FEM/BEM model; and (3) sound power measured by a sound intensity scan. The sound power predicted from the BEM model using measured vibration data yields an excellent prediction of radiated noise. The sound power predicted by the combined FEM/BEM model also gives a good prediction of radiated noise except for a shift of the natural frequencies that are due to limitations in the FEM model.
The effect of leaf size on the microwave backscattering by corn
NASA Technical Reports Server (NTRS)
Paris, J. F.
1986-01-01
Attema and Ulaby (1978) proposed the cloud model to predict the microwave backscattering properties of vegetation. This paper describes a modification in which the biophysical properties and microwave properties of vegetation are related at the level of the individual scatterer (e.g., the leaf or the stalk) rather than at the level of the aggregated canopy (e.g., the green leaf area index). Assuming that the extinction cross section of an average leaf was proportional to its water content, that a power law relationship existed between the backscattering cross section of an average green corn leaf and its area, and that the backscattering coefficient of the surface was a linear function of its volumetric soil moisture content, it is found that the explicit inclusion of the effects of corn leaf size in the model led to an excellent fit between the observed and predicted backscattering coefficients. Also, an excellent power law relationship existed between the backscattering cross section of a corn leaf and its area.
Boundary layer control for airships
NASA Technical Reports Server (NTRS)
Pake, F. A.; Pipitone, S. J.
1975-01-01
An investigation is summarized of the aerodynamic principle of boundary layer control for nonrigid LTA craft. The project included a wind tunnel test on a BLC body of revolution at zero angle of attack. Theoretical analysis is shown to be in excellent agreement with the test data. Methods are evolved for predicting the boundary layer development on a body of revolution and the suction pumping and propulsive power requirements. These methods are used to predict the performance characteristics of a full-scale airship. The analysis indicates that propulsive power reductions of 15 to 25 percent and endurance improvements of 20 to 40 percent may be realized in employing boundary-layer control to nonrigid airships.
Power prediction in mobile communication systems using an optimal neural-network structure.
Gao, X M; Gao, X Z; Tanskanen, J A; Ovaska, S J
1997-01-01
Presents a novel neural-network-based predictor for received power level prediction in direct sequence code division multiple access (DS/CDMA) systems. The predictor consists of an adaptive linear element (Adaline) followed by a multilayer perceptron (MLP). An important but difficult problem in designing such a cascade predictor is to determine the complexity of the networks. We solve this problem by using the predictive minimum description length (PMDL) principle to select the optimal numbers of input and hidden nodes. This approach results in a predictor with both good noise attenuation and excellent generalization capability. The optimized neural networks are used for predictive filtering of very noisy Rayleigh fading signals with 1.8 GHz carrier frequency. Our results show that the optimal neural predictor can provide smoothed in-phase and quadrature signals with signal-to-noise ratio (SNR) gains of about 12 and 7 dB at the urban mobile speeds of 5 and 50 km/h, respectively. The corresponding power signal SNR gains are about 11 and 5 dB. Therefore, the neural predictor is well suitable for power control applications where ldquodelaylessrdquo noise attenuation and efficient reduction of fast fading are required.
ERIC Educational Resources Information Center
Yang, Cheng-Cheng; Huang, Yueh-Chun
2012-01-01
As some comparative educators predict, educational policies will move toward similar paths when globalization becomes more powerful. The global higher education expansion in the past decades is one example. The quest of establishing world class universities in the world is another case. The Taiwan government experiences challenges from expansion…
Flexible piezoelectric energy harvesting from jaw movements
NASA Astrophysics Data System (ADS)
Delnavaz, Aidin; Voix, Jérémie
2014-10-01
Piezoelectric fiber composites (PFC) represent an interesting subset of smart materials that can function as sensor, actuator and energy converter. Despite their excellent potential for energy harvesting, very few PFC mechanisms have been developed to capture the human body power and convert it into an electric current to power wearable electronic devices. This paper provides a proof of concept for a head-mounted device with a PFC chin strap capable of harvesting energy from jaw movements. An electromechanical model based on the bond graph method is developed to predict the power output of the energy harvesting system. The optimum resistance value of the load and the best stretch ratio in the strap are also determined. A prototype was developed and tested and its performances were compared to the analytical model predictions. The proposed piezoelectric strap mechanism can be added to all types of head-mounted devices to power small-scale electronic devices such as hearing aids, electronic hearing protectors and communication earpieces.
Finite element thermal analysis of multispectral coatings for the ABL
NASA Astrophysics Data System (ADS)
Shah, Rashmi S.; Bettis, Jerry R.; Stewart, Alan F.; Bonsall, Lynn; Copland, James; Hughes, William; Echeverry, Juan C.
1999-04-01
The thermal response of a coated optical surface is an important consideration in the design of any high average power system. Finite element temperature distribution were calculated for both coating witness samples and calorimetry wafers and were compared to actual measured data under tightly controlled conditions. Coatings for ABL were deposited on various substrates including fused silica, ULE, Zerodur, and silicon. The witness samples were irradiate data high power levels at 1.315micrometers to evaluate laser damage thresholds and study absorption levels. Excellent agreement was obtained between temperature predictions and measured thermal response curves. When measured absorption values were not available, the code was used to predict coating absorption based on the measured temperature rise on the back surface. Using the finite element model, the damaging temperature rise can be predicted for a coating with known absorption based on run time, flux, and substrate material.
Spanagel, Rainer
2017-01-01
In recent years, animal models in psychiatric research have been criticized for their limited translational value to the clinical situation. Failures in clinical trials have thus often been attributed to the lack of predictive power of preclinical animal models. Here, I argue that animal models of voluntary drug intake—under nonoperant and operant conditions—and addiction models based on the Diagnostic and Statistical Manual of Mental Disorders are crucial and informative tools for the identification of pathological mechanisms, target identification, and drug development. These models provide excellent face validity, and it is assumed that the neurochemical and neuroanatomical substrates involved in drug-intake behavior are similar in laboratory rodents and humans. Consequently, animal models of drug consumption and addiction provide predictive validity. This predictive power is best illustrated in alcohol research, in which three approved medications—acamprosate, naltrexone, and nalmefene—were developed by means of animal models and then successfully translated into the clinical situation. PMID:29302222
Predictive aging results for cable materials in nuclear power plants
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gillen, K.T.; Clough, R.L.
1990-11-01
In this report, we provide a detailed discussion of methodology of predicting cable degradation versus dose rate, temperature, and exposure time and its application to data obtained on a number of additional nuclear power plant cable insulation (a hypalon, a silicon rubber and two ethylenetetrafluoroethylenes) and jacket (a hypalon) materials. We then show that the predicted, low-dose-rate results for our materials are in excellent agreement with long-term (7 to 9 years), low dose-rate results recently obtained for the same material types actually aged under nuclear power plant conditions. Based on a combination of the modelling and long-term results, we findmore » indications of reasonably similar degradation responses among several different commercial formulations for each of the following generic'' materials: hypalon, ethylenetetrafluoroethylene, silicone rubber and PVC. If such generic'' behavior can be further substantiated through modelling and long-term results on additional formulations, predictions of cable life for other commercial materials of the same generic types would be greatly facilitated. Finally, to aid utilities in their cable life extension decisions, we utilize our modelling results to generate lifetime prediction curves for the materials modelled to data. These curves plot expected material lifetime versus dose rate and temperature down to the levels of interest to nuclear power plant aging. 18 refs., 30 figs., 3 tabs.« less
NASA Technical Reports Server (NTRS)
Gasner, S.; Sharmit, K.; Stella, P. M.; Craig, C.; Mumaw, S.
2003-01-01
The Stardust program, part of NASA's Discovery Missions was launched on February 7. 1999. It's seven-year mission is to gather interstellar dust and material from the comet Wild-2 and return the material to earth in January 2006. In order to accomplish this mission, the satellite will orbit the sun a total of three times, traversing distances from a little under 1 AU to 2.7 AU. On April 18 2002 , the Stardust spacecraft reached its furthest distance and broke the record for being the farthest spacecraft from the sun powered by solar energy, The Stardust solar panels were built with standard off the shelf 10 Ohm-cm high efficiency silicon solar cells. These solar cells are relatively inexpensive and have shown excellent characteristics under LILT conditions. In order to accommodate the varying temperature and intensity conditions on the electrical power subsystem, an electronic switch box was designed to reconfigure the string length and number of swings depending on the mission phase. This box allowed the use of an inexpensive direct energy transfer system for the electrical power system architecture. The solar panels and electrical power system have met all requirements. Telemetry data from the solar panels at 2.7 AU are in excellent agreement with flight predictions.
People, planning, predictions pull DP&L to pinnacle
DOE Office of Scientific and Technical Information (OSTI.GOV)
Beaty, W.; Warkentin, D.
Dayton Power and Light was chosen as the 26th utility to receive Electric Light and Power`s annual Utility of the Year award for investor-owned electric utilities. The award not only recognizes management for having guided the company to a high level of achievement, but to each employee for their contribution to the company`s success. Using its formula of three Ps to success - people, planning, and predict and prevent - this West Central Ohio utility plans on using its current plain vanilla approach to business to carve out its own pattern for the years ahead. DP&L`s employees have gone abovemore » and beyond the call of duty to serve its customers and shareholders. The utility`s operations are epitomized by the excellent fuel efficiency of its generating plants. DP&L has been in Electric Light & Power`s top 10 heat rate rankings for nine out of the past 10 years. Investor earnings per share increased from $1.15 in 1991 to $1.34 in 1992, with earnings per share rising by 6% to $1.42 in 1993.« less
Achieving BLISS: Challenges for Building Fast, Ultra-Sensitive Transition-Edge Sensors
NASA Technical Reports Server (NTRS)
Beyer, Andrew D.; Runyan, M. C.; Kenyon, M.; Echternach, P. M .; Chui, T.; Bumble, B.; Bradford, C. M.; Holmes, W. A.; Bock, J. J.
2012-01-01
Topics: 1.Motivation and Intro to TESs. 2. BLISS Specifications-tolerance to dark power. 3.Measuring stray (dark) power-Tc (alpha) and G measurements. a) Overview two methods: JTD vs. TES. b) TES arrays: measurement and complications for Pd, Tc, and alpha. 4. Results: Pd compare, NEP, tau, 1/f issues. LIRGs and ULIRGs: Excellent example of distinct optical/UV and IR luminosity. Interaction long known, but huge luminosity is not predicted based on optical studies. (greater than 90% of the energy is emitted at in the far-IR). Large luminosity has both starburst and accretion components.
Comparison of sound power radiation from isolated airfoils and cascades in a turbulent flow.
Blandeau, Vincent P; Joseph, Phillip F; Jenkins, Gareth; Powles, Christopher J
2011-06-01
An analytical model of the sound power radiated from a flat plate airfoil of infinite span in a 2D turbulent flow is presented. The effects of stagger angle on the radiated sound power are included so that the sound power radiated upstream and downstream relative to the fan axis can be predicted. Closed-form asymptotic expressions, valid at low and high frequencies, are provided for the upstream, downstream, and total sound power. A study of the effects of chord length on the total sound power at all reduced frequencies is presented. Excellent agreement for frequencies above a critical frequency is shown between the fast analytical isolated airfoil model presented in this paper and an existing, computationally demanding, cascade model, in which the unsteady loading of the cascade is computed numerically. Reasonable agreement is also observed at low frequencies for low solidity cascade configurations. © 2011 Acoustical Society of America
Validity of the Miller forensic assessment of symptoms test in psychiatric inpatients.
Veazey, Connie H; Wagner, Alisha L; Hays, J Ray; Miller, Holly A
2005-06-01
This study investigated the validity of the Miller Forensic Assessment of Symptoms Test (M-FAST), a brief measure of malingering, in an inpatient psychiatric sample of 70. Among those patients who also completed the Personality Assessment Inventory (N=44), Total M-FAST score was related in the expected directions to the Personality Assessment Inventory validity scales and indexes, providing evidence for concurrent validity of the M-FAST. With the PAI malingering index used as a criterion, we examined the diagnostic efficiency of the M-FAST and found a cut score of 8 represented the best balance of sensitivity, specificity, positive predictive power, and negative predictive power. Based on this cut-score of 8, 16% of the population was classified as malingering. The M-FAST appears to be an excellent rapid screen for symptom exaggeration in this population and setting.
Zipf's law from scale-free geometry.
Lin, Henry W; Loeb, Abraham
2016-03-01
The spatial distribution of people exhibits clustering across a wide range of scales, from household (∼10(-2) km) to continental (∼10(4) km) scales. Empirical data indicate simple power-law scalings for the size distribution of cities (known as Zipf's law) and the population density fluctuations as a function of scale. Using techniques from random field theory and statistical physics, we show that these power laws are fundamentally a consequence of the scale-free spatial clustering of human populations and the fact that humans inhabit a two-dimensional surface. In this sense, the symmetries of scale invariance in two spatial dimensions are intimately connected to urban sociology. We test our theory by empirically measuring the power spectrum of population density fluctuations and show that the logarithmic slope α=2.04 ± 0.09, in excellent agreement with our theoretical prediction α=2. The model enables the analytic computation of many new predictions by importing the mathematical formalism of random fields.
Prediction of apparent extinction for optical transmission through rain
NASA Astrophysics Data System (ADS)
Vasseur, H.; Gibbins, C. J.
1996-12-01
At optical wavelengths, geometrical optics holds that the extinction efficiency of raindrops is equal to two. This approximation yields a wavelength-independent extinction coefficient that, however, can hardly be used to predict accurately rain extinction measured in optical transmissions. Actually, in addition to the extinct direct incoming light, a significant part of the power scattered by the rain particles reaches the receiver. This leads to a reduced apparent extinction that depends on both rain characteristics and link parameters. A simple method is proposed to evaluate this apparent extinction. It accounts for the additional scattered power that enters the receiver when one considers the forward-scattering pattern of the raindrops as well as the multiple-scattering effects using, respectively, the Fraunhofer diffraction and Twersky theory. It results in a direct analytical formula that enables a quick and accurate estimation of the rain apparent extinction and highlights the influence of the link parameters. Predictions of apparent extinction through rain are found in excellent agreement with measurements in the visible and IR regions.
Trujillo, Francisco Javier; Knoerzer, Kai
2011-11-01
High power ultrasound reactors have gained a lot of interest in the food industry given the effects that can arise from ultrasonic-induced cavitation in liquid foods. However, most of the new food processing developments have been based on empirical approaches. Thus, there is a need for mathematical models which help to understand, optimize, and scale up ultrasonic reactors. In this work, a computational fluid dynamics (CFD) model was developed to predict the acoustic streaming and induced heat generated by an ultrasonic horn reactor. In the model it is assumed that the horn tip is a fluid inlet, where a turbulent jet flow is injected into the vessel. The hydrodynamic momentum rate of the incoming jet is assumed to be equal to the total acoustic momentum rate emitted by the acoustic power source. CFD velocity predictions show excellent agreement with the experimental data for power densities higher than W(0)/V ≥ 25kWm(-3). This model successfully describes hydrodynamic fields (streaming) generated by low-frequency-high-power ultrasound. Crown Copyright © 2011. Published by Elsevier B.V. All rights reserved.
NASA Technical Reports Server (NTRS)
Posey, Joe W.; Dunn, M. H.; Farassat, F.
2004-01-01
This paper addresses two aspects of duct propagation and radiation which can contribute to more efficient fan noise predictions. First, we assess the effectiveness of Rayleigh's formula as a ducted fan noise prediction tool. This classical result which predicts the sound produced by a piston in a flanged duct is expanded to include the uniform axial inflow case. Radiation patterns using Rayleigh's formula with single radial mode input are compared to those obtained from the more precise ducted fan noise prediction code TBIEM3D. Agreement between the two methods is excellent in the peak noise regions both forward and aft. Next, we use TBIEM3D to calculate generalized radiation impedances and power transmission coefficients. These quantities are computed for a wide range of operating parameters. Results were obtained for higher Mach numbers, frequencies, and circumferential mode orders than have been previously published. Viewed as functions of frequency, calculated trends in lower order inlet impedances and power transmission coefficients are in agreement with known results. The relationships are more oscillatory for higher order modes and higher Mach numbers.
A perturbative approach to the redshift space correlation function: beyond the Standard Model
NASA Astrophysics Data System (ADS)
Bose, Benjamin; Koyama, Kazuya
2017-08-01
We extend our previous redshift space power spectrum code to the redshift space correlation function. Here we focus on the Gaussian Streaming Model (GSM). Again, the code accommodates a wide range of modified gravity and dark energy models. For the non-linear real space correlation function used in the GSM we use the Fourier transform of the RegPT 1-loop matter power spectrum. We compare predictions of the GSM for a Vainshtein screened and Chameleon screened model as well as GR. These predictions are compared to the Fourier transform of the Taruya, Nishimichi and Saito (TNS) redshift space power spectrum model which is fit to N-body data. We find very good agreement between the Fourier transform of the TNS model and the GSM predictions, with <= 6% deviations in the first two correlation function multipoles for all models for redshift space separations in 50Mpch <= s <= 180Mpc/h. Excellent agreement is found in the differences between the modified gravity and GR multipole predictions for both approaches to the redshift space correlation function, highlighting their matched ability in picking up deviations from GR. We elucidate the timeliness of such non-standard templates at the dawn of stage-IV surveys and discuss necessary preparations and extensions needed for upcoming high quality data.
NASA Astrophysics Data System (ADS)
Dutta, Ivy; Chowdhury, Anirban Roy; Kumbhakar, Dharmadas
2013-03-01
Using Chebyshev power series approach, accurate description for the first higher order (LP11) mode of graded index fibers having three different profile shape functions are presented in this paper and applied to predict their propagation characteristics. These characteristics include fractional power guided through the core, excitation efficiency and Petermann I and II spot sizes with their approximate analytic formulations. We have shown that where two and three Chebyshev points in LP11 mode approximation present fairly accurate results, the values based on our calculations involving four Chebyshev points match excellently with available exact numerical results.
Predictive aging results in radiation environments
NASA Astrophysics Data System (ADS)
Gillen, Kenneth T.; Clough, Roger L.
1993-06-01
We have previously derived a time-temperature-dose rate superposition methodology, which, when applicable, can be used to predict polymer degradation versus dose rate, temperature and exposure time. This methodology results in predictive capabilities at the low dose rates and long time periods appropriate, for instance, to ambient nuclear power plant environments. The methodology was successfully applied to several polymeric cable materials and then verified for two of the materials by comparisons of the model predictions with 12 year, low-dose-rate aging data on these materials from a nuclear environment. In this paper, we provide a more detailed discussion of the methodology and apply it to data obtained on a number of additional nuclear power plant cable insulation (a hypalon, a silicone rubber and two ethylene-tetrafluoroethylenes) and jacket (a hypalon) materials. We then show that the predicted, low-dose-rate results for our materials are in excellent agreement with long-term (7-9 year) low-dose-rate results recently obtained for the same material types actually aged under bnuclear power plant conditions. Based on a combination of the modelling and long-term results, we find indications of reasonably similar degradation responses among several different commercial formulations for each of the following "generic" materials: hypalon, ethylene-tetrafluoroethylene, silicone rubber and PVC. If such "generic" behavior can be further substantiated through modelling and long-term results on additional formulations, predictions of cable life for other commercial materials of the same generic types would be greatly facilitated.
Predictive power of the DASA-IV: Variations in rating method and timescales.
Nqwaku, Mphindisi; Draycott, Simon; Aldridge-Waddon, Luke; Bush, Emma-Louise; Tsirimokou, Alexandra; Jones, Dominic; Puzzo, Ignazio
2018-05-10
This project evaluated the predictive validity of the Dynamic Appraisal of Situational Aggression - Inpatient Version (DASA-IV) in a high-secure psychiatric hospital in the UK over 24 hours and over a single nursing shift. DASA-IV scores from three sequential nursing shifts over a 24-hour period were compared with the mean (average of three scores across the 24-hour period) and peak (highest of the three scores across the 24-hour period) scores across these shifts. In addition, scores from a single nursing shift were used to predict aggressive incidents over each of the following three shifts. The DASA-IV was completed by nursing staff during handover meetings, rating 43 male psychiatric inpatients over a period of 6 months. Data were compared to incident reports recorded over the same period. Receiver operating characteristic (ROC) curves and generalized estimating equations assessed the predictive ability of various DASA-IV scores over 24-hour and single-shift timescales. Scores from the DASA-IV based on a single shift had moderate predictive ability for aggressive incidents occurring the next calendar day, whereas scores based on all three shifts had excellent predictive ability. DASA-IV scores from a single shift showed moderate predictive ability for each of the following three shifts. The DASA-IV has excellent predictive ability for aggressive incidents within a secure setting when data are summarized over a 24-hour period, as opposed to when a single rating is taken. In addition, it has moderate value for predicting incidents over even shorter timescales. © 2018 Australian College of Mental Health Nurses Inc.
Marlowe, D B; Husband, S D; Bonieskie, L M; Kirby, K C; Platt, J J
1997-01-01
The study compared structured interview (SCID-II) and self-report test (MCMI-II) vantages for the detection and characterization of personality pathology among 144 urban, poor, cocaine-addicted individuals seeking outpatient treatment. Diagnostic agreement was inadequate for most disorders, and the instruments at best shared only modest common variance. Positive predictive power was poor for all MCMI-II scales, though negative predictive power was good to excellent. This lends support for the use of the MCMI-II as a screening measure to rule out Axis II disorders; however, confirmation of positive diagnoses will require follow-up interview assessment. Future development of self-report personality inventories for substance abusers should focus on controlling for the acute dysphoric effects of drug use and related dysfunction, expanding attention to Cluster B content domains, and incorporating more objective criteria for assessing paranoia and "odd/eccentric" traits.
Calculations and experiments concerning lifting force and power in TEMPUS
NASA Technical Reports Server (NTRS)
Zong, J. H.; Szekely, J.; Lohofer, G.
1993-01-01
A critical comparison is reported between the theoretically predicted and experimentally measured values for the electromagnetic lifting force and the heating rates which may be achieved, under simulated microgravity conditions, using the TEMPUS electromagnetic levitation device. The experiments involved the suspending of a metallic sample from one arm of a recording balance, such that it was carefully positioned between the heating and the positioning coils of the levitation device. The net force exerted by the sample was measured as a function of position, the coil currents, and the nature of the sample. Some calculations are also reported regarding the power absorption by the sample. The theoretical predictions, based on the numerical solution of Maxwell's equations using the volume integral technique, were found to be in excellent agreement with the measurements. For the idealized case of a spherical sample, analytical solutions describing the lifting force were also found to agree very well with the computed results.
Investigation of a liquid-fed water resistojet plume
NASA Technical Reports Server (NTRS)
Manzella, D. H.; Carney, L. M.
1989-01-01
Measurements of mass flux and flow angle were taken throughout the forward flow region of the exhaust of a liquid-fed water resistojet using a quartz crystal microbalance (QCM). The resistojet operated at a mass flow rate of 0.1 g/s with a power input of 330 Watts. Measured values were compared to theoretical predictions obtained by employing a source flow approximation. Excellent agreement between predicted and measured mass flux values was attained; however, this agreement was highly dependent on knowledge of nozzle flow conditions. Measurements of the temperature at which the exhaust condensed on the QCM were obtained as a function of incident mass flux.
A perturbative approach to the redshift space correlation function: beyond the Standard Model
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bose, Benjamin; Koyama, Kazuya, E-mail: benjamin.bose@port.ac.uk, E-mail: kazuya.koyama@port.ac.uk
We extend our previous redshift space power spectrum code to the redshift space correlation function. Here we focus on the Gaussian Streaming Model (GSM). Again, the code accommodates a wide range of modified gravity and dark energy models. For the non-linear real space correlation function used in the GSM we use the Fourier transform of the RegPT 1-loop matter power spectrum. We compare predictions of the GSM for a Vainshtein screened and Chameleon screened model as well as GR. These predictions are compared to the Fourier transform of the Taruya, Nishimichi and Saito (TNS) redshift space power spectrum model whichmore » is fit to N-body data. We find very good agreement between the Fourier transform of the TNS model and the GSM predictions, with ≤ 6% deviations in the first two correlation function multipoles for all models for redshift space separations in 50Mpc h ≤ s ≤ 180Mpc/ h . Excellent agreement is found in the differences between the modified gravity and GR multipole predictions for both approaches to the redshift space correlation function, highlighting their matched ability in picking up deviations from GR. We elucidate the timeliness of such non-standard templates at the dawn of stage-IV surveys and discuss necessary preparations and extensions needed for upcoming high quality data.« less
ERIC Educational Resources Information Center
Lakin, Joni M.; Lohman, David F.
2011-01-01
Effective talent-identification procedures minimize the proportion of students whose subsequent performance indicates that they were mistakenly included in or excluded from the program. Classification errors occur when students who were predicted to excel subsequently do not excel or when students who were not predicted to excel do. Using a…
Monte Carlo turbulence simulation using rational approximations to von Karman spectra
NASA Technical Reports Server (NTRS)
Campbell, C. W.
1986-01-01
Turbulence simulation is computationally much simpler using rational spectra, but turbulence falls off as f exp -5/3 in frequency ranges of interest to aircraft response and as predicted by von Karman's model. Rational approximations to von Karman spectra should satisfy three requirements: (1) the rational spectra should provide a good approximation to the von Karman spectra in the frequency range of interest; (2) for stability, the resulting rational transfer function should have all its poles in the left half-plane; and (3) at high frequencies, the rational spectra must fall off as an integer power of frequency, and since the -2 power is closest to the -5/3 power, the rational approximation should roll off as the -2 power at high frequencies. Rational approximations to von Karman spectra that satisfy these three criteria are presented, along with spectra from simulated turbulence. Agreement between the spectra of the simulated turbulence and von Karman spectra is excellent.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kim, Hyeokjin; Chen, Hua; Maksimovic, Dragan
An experimental 30 kW boost composite converter is described in this paper. The composite converter architecture, which consists of a buck module, a boost module, and a dual active bridge module that operates as a DC transformer (DCX), leads to substantial reductions in losses at partial power points, and to significant improvements in weighted efficiency in applications that require wide variations in power and conversion ratio. A comprehensive loss model is developed, accounting for semiconductor conduction and switching losses, capacitor losses, as well as dc and ac losses in magnetic components. Based on the developed loss model, the module andmore » system designs are optimized to maximize efficiency at a 50% power point. Experimental results for the 30 kW prototype demonstrate 98.5%peak efficiency, very high efficiency over wide ranges of power and voltage conversion ratios, as well as excellent agreements between model predictions and measured efficiency curves.« less
Cesium alignment produced by pumping with unpolarized light★
NASA Astrophysics Data System (ADS)
Shi, Yongqi; Weis, Antoine
2018-04-01
We demonstrate optical pumping on the four hyperfine components of the Cs D 1 transition by unpolarized (UPL) resonant laser light. The evidence is based on the reduction of the absorption coefficients κ 0 with increasing light power P in an uncoated Cs vapor cell with isotropic spin relaxation. For comparison we perform the same quantitative κ 0( P) measurements with linearly-polarized light (LPL) and circularly-polarized light (CPL). We find that our previously published algebraic expressions give an excellent description of all experimentally recorded induced transparency signals. Based on this we can make reliable absolute predictions for the power dependence of the spin orientation and alignment produced by pumping with LPL, CPL and UPL.
Pulsar Polar Cap and Slot Gap Models: Confronting Fermi Data
NASA Technical Reports Server (NTRS)
Harding, Alice K.
2012-01-01
Rotation-powered pulsars are excellent laboratories for studying particle acceleration as well as fundamental physics of strong gravity, strong magnetic fields and relativity. I will review acceleration and gamma-ray emission from the pulsar polar cap and slot gap. Predictions of these models can be tested with the data set on pulsars collected by the Large Area Telescope on the Fermi Gamma-Ray Telescope over the last four years, using both detailed light curve fitting and population synthesis.
Eom, Youngsub; Ryu, Dongok; Kim, Dae Wook; Yang, Seul Ki; Song, Jong Suk; Kim, Sug-Whan; Kim, Hyo Myung
2016-10-01
To evaluate the toric intraocular lens (IOL) calculation considering posterior corneal astigmatism, incision-induced posterior corneal astigmatism, and effective lens position (ELP). Two thousand samples of corneal parameters with keratometric astigmatism ≥ 1.0 D were obtained using bootstrap methods. The probability distributions for incision-induced keratometric and posterior corneal astigmatisms, as well as ELP were estimated from the literature review. The predicted residual astigmatism error using method D with an IOL add power calculator (IAPC) was compared with those derived using methods A, B, and C through Monte-Carlo simulation. Method A considered the keratometric astigmatism and incision-induced keratometric astigmatism, method B considered posterior corneal astigmatism in addition to the A method, method C considered incision-induced posterior corneal astigmatism in addition to the B method, and method D considered ELP in addition to the C method. To verify the IAPC used in this study, the predicted toric IOL cylinder power and its axis using the IAPC were compared with ray-tracing simulation results. The median magnitude of the predicted residual astigmatism error using method D (0.25 diopters [D]) was smaller than that derived using methods A (0.42 D), B (0.38 D), and C (0.28 D) respectively. Linear regression analysis indicated that the predicted toric IOL cylinder power and its axis had excellent goodness-of-fit between the IAPC and ray-tracing simulation. The IAPC is a simple but accurate method for predicting the toric IOL cylinder power and its axis considering posterior corneal astigmatism, incision-induced posterior corneal astigmatism, and ELP.
Novel fiber-MOPA-based high power blue laser
NASA Astrophysics Data System (ADS)
Engin, Doruk; Fouron, Jean-Luc; Chen, Youming; Huffman, Andromeda; Fitzpatrick, Fran; Burnham, Ralph; Gupta, Shantanu
2012-06-01
5W peak power at 911 nm is demonstrated with a pulsed Neodymium (Nd) doped fiber master oscillator power amplifier (MOPA). This result is the first reported high gain (16dB) fiber amplifier operation at 911nm. Pulse repetition frequency (PRF) and duty-cycle dependence of the all fiber system is characterized. Negligible performance degreadation is observed down to 1% duty cycle and 10 kHz PRF, where 2.5μJ of pulse energy is achieved. Continuous wave (CW) MOPA experiments achieved 55mW average power and 9dB gain with 15% optical to optical (o-o) efficiency. Excellent agreement is established between dynammic fiber MOPA simulation tool and experimental results in predicting output amplified spontaneous emission (ase) and signal pulse shapes. Using the simulation tool robust Stimulated Brillion Scattering (SBS) free operation is predicted out of a two stage all fiber system that generates over 10W's of peak power with 500 MHz line-width. An all fiber 911 nm pulsed laser source with >10W of peak power is expected to increase reliability and reduce complexity of high energy 455 nm laser system based on optical parametric amplification for udnerwater applications. The views expressed are thos of the author and do not reflect the official policy or position of the Department of Defense or the U.S. Government.
Guided-wave approaches to spectrally selective energy absorption
NASA Technical Reports Server (NTRS)
Stegeman, G. I.; Burke, J. J.
1987-01-01
Results of experiments designed to demonstrate spectrally selective absorption in dielectric waveguides on semiconductor substrates are reported. These experiments were conducted with three waveguides formed by sputtering films of PSK2 glass onto silicon-oxide layers grown on silicon substrates. The three waveguide samples were studied at 633 and 532 nm. The samples differed only in the thickness of the silicon-oxide layer, specifically 256 nm, 506 nm, and 740 nm. Agreement between theoretical predictions and measurements of propagation constants (mode angles) of the six or seven modes supported by these samples was excellent. However, the loss measurements were inconclusive because of high scattering losses in the structures fabricated (in excess of 10 dB/cm). Theoretical calculations indicated that the power distribution among all the modes supported by these structures will reach its steady state value after a propagation length of only 1 mm. Accordingly, the measured loss rates were found to be almost independent of which mode was initially excited. The excellent agreement between theory and experiment leads to the conclusion that low loss waveguides confirm the predicted loss rates.
Decoding genes with coexpression networks and metabolomics - 'majority report by precogs'.
Saito, Kazuki; Hirai, Masami Y; Yonekura-Sakakibara, Keiko
2008-01-01
Following the sequencing of whole genomes of model plants, high-throughput decoding of gene function is a major challenge in modern plant biology. In view of remarkable technical advances in transcriptomics and metabolomics, integrated analysis of these 'omics' by data-mining informatics is an excellent tool for prediction and identification of gene function, particularly for genes involved in complicated metabolic pathways. The availability of Arabidopsis public transcriptome datasets containing data of >1000 microarrays reinforces the potential for prediction of gene function by transcriptome coexpression analysis. Here, we review the strategy of combining transcriptome and metabolome as a powerful technology for studying the functional genomics of model plants and also crop and medicinal plants.
Spacecraft Internal Acoustic Environment Modeling
NASA Technical Reports Server (NTRS)
Chu, Shao-Sheng R.; Allen Christopher S.
2010-01-01
Acoustic modeling can be used to identify key noise sources, determine/analyze sub-allocated requirements, keep track of the accumulation of minor noise sources, and to predict vehicle noise levels at various stages in vehicle development, first with estimates of noise sources, later with experimental data. This paper describes the implementation of acoustic modeling for design purposes by incrementally increasing model fidelity and validating the accuracy of the model while predicting the noise of sources under various conditions. During FY 07, a simple-geometry Statistical Energy Analysis (SEA) model was developed and validated using a physical mockup and acoustic measurements. A process for modeling the effects of absorptive wall treatments and the resulting reverberation environment were developed. During FY 08, a model with more complex and representative geometry of the Orion Crew Module (CM) interior was built, and noise predictions based on input noise sources were made. A corresponding physical mockup was also built. Measurements were made inside this mockup, and comparisons were made with the model and showed excellent agreement. During FY 09, the fidelity of the mockup and corresponding model were increased incrementally by including a simple ventilation system. The airborne noise contribution of the fans was measured using a sound intensity technique, since the sound power levels were not known beforehand. This is opposed to earlier studies where Reference Sound Sources (RSS) with known sound power level were used. Comparisons of the modeling result with the measurements in the mockup showed excellent results. During FY 10, the fidelity of the mockup and the model were further increased by including an ECLSS (Environmental Control and Life Support System) wall, associated closeout panels, and the gap between ECLSS wall and mockup wall. The effect of sealing the gap and adding sound absorptive treatment to ECLSS wall were also modeled and validated.
Classical Mathematical Models for Description and Prediction of Experimental Tumor Growth
Benzekry, Sébastien; Lamont, Clare; Beheshti, Afshin; Tracz, Amanda; Ebos, John M. L.; Hlatky, Lynn; Hahnfeldt, Philip
2014-01-01
Despite internal complexity, tumor growth kinetics follow relatively simple laws that can be expressed as mathematical models. To explore this further, quantitative analysis of the most classical of these were performed. The models were assessed against data from two in vivo experimental systems: an ectopic syngeneic tumor (Lewis lung carcinoma) and an orthotopically xenografted human breast carcinoma. The goals were threefold: 1) to determine a statistical model for description of the measurement error, 2) to establish the descriptive power of each model, using several goodness-of-fit metrics and a study of parametric identifiability, and 3) to assess the models' ability to forecast future tumor growth. The models included in the study comprised the exponential, exponential-linear, power law, Gompertz, logistic, generalized logistic, von Bertalanffy and a model with dynamic carrying capacity. For the breast data, the dynamics were best captured by the Gompertz and exponential-linear models. The latter also exhibited the highest predictive power, with excellent prediction scores (≥80%) extending out as far as 12 days in the future. For the lung data, the Gompertz and power law models provided the most parsimonious and parametrically identifiable description. However, not one of the models was able to achieve a substantial prediction rate (≥70%) beyond the next day data point. In this context, adjunction of a priori information on the parameter distribution led to considerable improvement. For instance, forecast success rates went from 14.9% to 62.7% when using the power law model to predict the full future tumor growth curves, using just three data points. These results not only have important implications for biological theories of tumor growth and the use of mathematical modeling in preclinical anti-cancer drug investigations, but also may assist in defining how mathematical models could serve as potential prognostic tools in the clinic. PMID:25167199
Classical mathematical models for description and prediction of experimental tumor growth.
Benzekry, Sébastien; Lamont, Clare; Beheshti, Afshin; Tracz, Amanda; Ebos, John M L; Hlatky, Lynn; Hahnfeldt, Philip
2014-08-01
Despite internal complexity, tumor growth kinetics follow relatively simple laws that can be expressed as mathematical models. To explore this further, quantitative analysis of the most classical of these were performed. The models were assessed against data from two in vivo experimental systems: an ectopic syngeneic tumor (Lewis lung carcinoma) and an orthotopically xenografted human breast carcinoma. The goals were threefold: 1) to determine a statistical model for description of the measurement error, 2) to establish the descriptive power of each model, using several goodness-of-fit metrics and a study of parametric identifiability, and 3) to assess the models' ability to forecast future tumor growth. The models included in the study comprised the exponential, exponential-linear, power law, Gompertz, logistic, generalized logistic, von Bertalanffy and a model with dynamic carrying capacity. For the breast data, the dynamics were best captured by the Gompertz and exponential-linear models. The latter also exhibited the highest predictive power, with excellent prediction scores (≥80%) extending out as far as 12 days in the future. For the lung data, the Gompertz and power law models provided the most parsimonious and parametrically identifiable description. However, not one of the models was able to achieve a substantial prediction rate (≥70%) beyond the next day data point. In this context, adjunction of a priori information on the parameter distribution led to considerable improvement. For instance, forecast success rates went from 14.9% to 62.7% when using the power law model to predict the full future tumor growth curves, using just three data points. These results not only have important implications for biological theories of tumor growth and the use of mathematical modeling in preclinical anti-cancer drug investigations, but also may assist in defining how mathematical models could serve as potential prognostic tools in the clinic.
Nur-E-Alam, M; Islam, M Monirul; Islam, M Nazrul; Rima, Farhana Rahman; Islam, M Nurul
2016-03-01
The cleansing efficiencies of laundry detergents depend on composition and variation of ingredients such as surfactants, phosphate, and co-builders. Among these ingredients, surfactants and phosphate are considered as hazardous materials. Knowledge on compositions and micellar behavior is very useful for understanding their cleansing efficiencies and environmental impact. With this view, composition, critical micelle concentration, and dissolved oxygen level in aqueous solution of some laundry detergents available in Bangladesh such as keya, Wheel Power White, Tibet, Surf Excel, and Chaka were determined. Surfactant and phosphate were found to be maximum in Surf Excel and Wheel Power White, respectively, while both of the ingredients were found to be minimum in Tibet. The critical micelle concentration decreased with increasing surfactant content. The amount of laundry detergents required for efficient cleansing was found to be minimum for Surf Excel and maximum for Chaka; however, cleansing cost was the highest for Surf Excel and the lowest for Tibet. The maximum amount of surfactants and phosphate was discharged by Surf Excel and Wheel Power White, respectively, while discharges of both of the ingredients were minimum for Tibet. The maximum decrease of dissolved oxygen level was caused by Surf Excel and the minimum by Tibet. Therefore, it can be concluded that Tibet is cost-effective and environment friendly, whereas Surf Excel and Wheel Power White are expensive and pose a threat to water environment.
Quantum mechanical design of enzyme active sites.
Zhang, Xiyun; DeChancie, Jason; Gunaydin, Hakan; Chowdry, Arnab B; Clemente, Fernando R; Smith, Adam J T; Handel, T M; Houk, K N
2008-02-01
The design of active sites has been carried out using quantum mechanical calculations to predict the rate-determining transition state of a desired reaction in presence of the optimal arrangement of catalytic functional groups (theozyme). Eleven versatile reaction targets were chosen, including hydrolysis, dehydration, isomerization, aldol, and Diels-Alder reactions. For each of the targets, the predicted mechanism and the rate-determining transition state (TS) of the uncatalyzed reaction in water is presented. For the rate-determining TS, a catalytic site was designed using naturalistic catalytic units followed by an estimation of the rate acceleration provided by a reoptimization of the catalytic site. Finally, the geometries of the sites were compared to the X-ray structures of related natural enzymes. Recent advances in computational algorithms and power, coupled with successes in computational protein design, have provided a powerful context for undertaking such an endeavor. We propose that theozymes are excellent candidates to serve as the active site models for design processes.
Predicting Factors of Zone 4 Attack in Volleyball.
Costa, Gustavo C; Castro, Henrique O; Evangelista, Breno F; Malheiros, Laura M; Greco, Pablo J; Ugrinowitsch, Herbert
2017-06-01
This study examined 142 volleyball games of the Men's Super League 2014/2015 seasons in Brazil from which we analyzed 24-26 games of each participating team, identifying 5,267 Zone 4 attacks for further analysis. Within these Zone 4 attacks, we analyzed the association between the effect of the attack carried out and the separate effects of serve reception, tempo and type of attack. We found that the reception, tempo of attack, second tempo of attack, and power of diagonal attack were predictors of the attack effect in Zone 4. Moreover, placed attacks showed a tendency to not yield a score. In conclusion, winning points in high-level men's volleyball requires excellent receptions, a fast attack tempo and powerfully executed of attacks.
Observation of an optical spring with a beam splitter
NASA Astrophysics Data System (ADS)
Cripe, Jonathan; Danz, Baylee; Lane, Benjamin; Lorio, Mary Catherine; Falcone, Julia; Cole, Garrett D.; Corbitt, Thomas
2018-05-01
We present the experimental observation of an optical spring without the use of an optical cavity. The optical spring is produced by interference at a beamsplitter and, in principle, does not have the damping force associated with optical springs created in detuned cavities. The experiment consists of a Michelson-Sagnac interferometer (with no recycling cavities) with a partially reflective GaAs microresonator as the beamsplitter that produces the optical spring. Our experimental measurements at input powers of up to 360 mW show the shift of the optical spring frequency as a function of power and are in excellent agreement with theoretical predictions. In addition, we show that the optical spring is able to keep the interferometer stable and locked without the use of external feedback.
Can human experts predict solubility better than computers?
Boobier, Samuel; Osbourn, Anne; Mitchell, John B O
2017-12-13
In this study, we design and carry out a survey, asking human experts to predict the aqueous solubility of druglike organic compounds. We investigate whether these experts, drawn largely from the pharmaceutical industry and academia, can match or exceed the predictive power of algorithms. Alongside this, we implement 10 typical machine learning algorithms on the same dataset. The best algorithm, a variety of neural network known as a multi-layer perceptron, gave an RMSE of 0.985 log S units and an R 2 of 0.706. We would not have predicted the relative success of this particular algorithm in advance. We found that the best individual human predictor generated an almost identical prediction quality with an RMSE of 0.942 log S units and an R 2 of 0.723. The collection of algorithms contained a higher proportion of reasonably good predictors, nine out of ten compared with around half of the humans. We found that, for either humans or algorithms, combining individual predictions into a consensus predictor by taking their median generated excellent predictivity. While our consensus human predictor achieved very slightly better headline figures on various statistical measures, the difference between it and the consensus machine learning predictor was both small and statistically insignificant. We conclude that human experts can predict the aqueous solubility of druglike molecules essentially equally well as machine learning algorithms. We find that, for either humans or algorithms, combining individual predictions into a consensus predictor by taking their median is a powerful way of benefitting from the wisdom of crowds.
Investigation of Rotor Performance and Loads of a UH-60A Individual Blade Control System
NASA Technical Reports Server (NTRS)
Yeo, Hyeonsoo; Romander, Ethan A.; Norman, Thomas R.
2011-01-01
Wind tunnel measurements of performance, loads, and vibration of a full-scale UH-60A Black Hawk main rotor with an individual blade control (IBC) system are compared with calculations obtained using the comprehensive helicopter analysis CAMRAD II and a coupled CAMRAD II/OVERFLOW 2 analysis. Measured data show a 5.1% rotor power reduction (8.6% rotor lift to effective-drag ratio increase) using 2/rev IBC actuation with 2.0 amplitude at = 0.4. At the optimum IBC phase for rotor performance, IBC actuator force (pitch link force) decreased, and neither flap nor chord bending moments changed significantly. CAMRAD II predicts the rotor power variations with the IBC phase reasonably well at = 0.35. However, the correlation degrades at = 0.4. Coupled CAMRAD II/OVERFLOW 2 shows excellent correlation with the measured rotor power variations with the IBC phase at both = 0.35 and = 0.4. Maximum reduction of IBC actuator force is better predicted with CAMRAD II, but general trends are better captured with the coupled analysis. The correlation of vibratory hub loads is generally poor by both methods, although the coupled analysis somewhat captures general trends.
Investigation of Rotor Performance and Loads of a UH-60A Individual Blade Control System
NASA Technical Reports Server (NTRS)
Yeo, Hyeonsoo; Romander, Ethan A.; Norman, Thomas R.
2011-01-01
Wind tunnel measurements of performance, loads, and vibration of a full-scale UH-60A Black Hawk main rotor with an individual blade control (IBC) system are compared with calculations obtained using the comprehensive helicopter analysis CAMRAD II and a coupled CAMRAD II/OVERFLOW 2 analysis. Measured data show a 5.1% rotor power reduction (8.6% rotor lift to effective-drag ratio increase) using 2/rev IBC actuation with 2.0. amplitude at u = 0.4. At the optimum IBC phase for rotor performance, IBC actuator force (pitch link force) decreased, and neither flap nor chord bending moments changed significantly. CAMRAD II predicts the rotor power variations with IBC phase reasonably well at u = 0.35. However, the correlation degrades at u = 0.4. Coupled CAMRAD II/OVERFLOW 2 shows excellent correlation with the measured rotor power variations with IBC phase at both u = 0.35 and u = 0.4. Maximum reduction of IBC actuator force is better predicted with CAMRAD II, but general trends are better captured with the coupled analysis. The correlation of vibratory hub loads is generally poor by both methods, although the coupled analysis somewhat captures general trends.
Performance of epitaxial back surface field cells
NASA Technical Reports Server (NTRS)
Brandhorst, H. W., Jr.; Baraona, C. R.; Swartz, C. K.
1973-01-01
Epitaxial back surface field structures were formed by depositing a 10 micron thick 10 Omega-cm epitaxial silicon layer onto substrates with resistivities of 0.01, 0.1, 1.0 and 10 Omega-cm. A correlation between cell open-circuit voltage and substrate resistivity was observed and was compared to theory. The cells were also irradiated with 1 MeV electrons to a fluence of 5 X 10 to the 15th power e/cm2. The decrease of cell open-circuit voltage was in excellent agreement with theoretical predictions and the measured short circuit currents were within 2% of the prediction. Calculations are presented of optimum cell performance as functions of epitaxial layer thickness, radiation fluence and substrate diffusion length.
Design and Adaptation of an Optical System for Slit Lamp Delivery of a CO2 Laser Beam.
1981-12-01
laser’s efficacy to serve as a photocoagulator. A non-linear barium sodium niobate crystal converted the near infrared radiation (1.064 pm) to green...recommendations. 10 II. Theoretical Development and Predictions Corneal tissue is an excellent absorber of infrared radiation. Therefore, when high power CO2...in general, that the waist will be formed slightly to one Lde of the focal plane, as shown in Eq (4) (Ref 18:31). f2 (zl-f) 2. = + wW2 (4) (zl-f) 2
NASA Technical Reports Server (NTRS)
Smith, Wayne Farrior
1973-01-01
The effect of finite source size on the power statistics in a reverberant room for pure tone excitation was investigated. Theoretical results indicate that the standard deviation of low frequency, pure tone finite sources is always less than that predicted by point source theory and considerably less when the source dimension approaches one-half an acoustic wavelength or greater. A supporting experimental study was conducted utilizing an eight inch loudspeaker and a 30 inch loudspeaker at eleven source positions. The resulting standard deviation of sound power output of the smaller speaker is in excellent agreement with both the derived finite source theory and existing point source theory, if the theoretical data is adjusted to account for experimental incomplete spatial averaging. However, the standard deviation of sound power output of the larger speaker is measurably lower than point source theory indicates, but is in good agreement with the finite source theory.
NASA Astrophysics Data System (ADS)
Abdul-Aziz, O. I.; Ishtiaq, K. S.
2015-12-01
We present a user-friendly modeling tool on MS Excel to predict the greenhouse gas (GHG) fluxes and estimate potential carbon sequestration from the coastal wetlands. The dominant controls of wetland GHG fluxes and their relative mechanistic linkages with various hydro-climatic, sea level, biogeochemical and ecological drivers were first determined by employing a systematic data-analytics method, including Pearson correlation matrix, principal component and factor analyses, and exploratory partial least squares regressions. The mechanistic knowledge and understanding was then utilized to develop parsimonious non-linear (power-law) models to predict wetland carbon dioxide (CO2) and methane (CH4) fluxes based on a sub-set of climatic, hydrologic and environmental drivers such as the photosynthetically active radiation, soil temperature, water depth, and soil salinity. The models were tested with field data for multiple sites and seasons (2012-13) collected from the Waquoit Bay, MA. The model estimated the annual wetland carbon storage by up-scaling the instantaneous predicted fluxes to an extended growing season (e.g., May-October) and by accounting for the net annual lateral carbon fluxes between the wetlands and estuary. The Excel Spreadsheet model is a simple ecological engineering tool for coastal carbon management and their incorporation into a potential carbon market under a changing climate, sea level and environment. Specifically, the model can help to determine appropriate GHG offset protocols and monitoring plans for projects that focus on tidal wetland restoration and maintenance.
Phonon-tunnelling dissipation in mechanical resonators
Cole, Garrett D.; Wilson-Rae, Ignacio; Werbach, Katharina; Vanner, Michael R.; Aspelmeyer, Markus
2011-01-01
Microscale and nanoscale mechanical resonators have recently emerged as ubiquitous devices for use in advanced technological applications, for example, in mobile communications and inertial sensors, and as novel tools for fundamental scientific endeavours. Their performance is in many cases limited by the deleterious effects of mechanical damping. In this study, we report a significant advancement towards understanding and controlling support-induced losses in generic mechanical resonators. We begin by introducing an efficient numerical solver, based on the 'phonon-tunnelling' approach, capable of predicting the design-limited damping of high-quality mechanical resonators. Further, through careful device engineering, we isolate support-induced losses and perform a rigorous experimental test of the strong geometric dependence of this loss mechanism. Our results are in excellent agreement with the theory, demonstrating the predictive power of our approach. In combination with recent progress on complementary dissipation mechanisms, our phonon-tunnelling solver represents a major step towards accurate prediction of the mechanical quality factor. PMID:21407197
Fatigue life analysis of a turboprop reduction gearbox
NASA Technical Reports Server (NTRS)
Lewicki, D. G.; Black, J. D.; Savage, M.; Coy, J. J.
1985-01-01
A fatigue life analysis of the Allison T56/501 turboprop reduction gearbox was developed. The life and reliability of the gearbox was based on the lives and reliabilities of the main power train bearings and gears. The bearing and gear lives were determined using the Lundberg-Palmgren theory and a mission profile. The five planet bearing set had the shortest calculated life among the various gearbox components, which agreed with field experience where the planet bearing had the greatest incidences of failure. The analytical predictions of relative lives among the various bearings were in reasonable agreement with field experience. The predicted gearbox life was in excellent agreement with field data when the material life adjustment factors alone were used. The gearbox had a lower predicted life in comparison with field data when no life adjustment factors were used or when lubrication life adjustment factors were used either alone or in combination with the material factors.
Fatigue life analysis of a turboprop reduction gearbox
NASA Technical Reports Server (NTRS)
Lewicki, D. G.; Coy, J. J.; Black, J. D.; Savage, M.
1986-01-01
A fatigue life analysis of the Allison T56/501 turboprop reduction gearbox was developed. The life and reliability of the gearbox was based on the lives and reliabilities of the main power train bearings and gears. The bearing and gear lives were determined using the Lundberg-Palmgren theory and a mission profile. The five planet bearing set had the shortest calculated life among the various gearbox components, which agreed with field experience where the planet bearing had the greatest incidences of failure. The analytical predictions of relative lives among the various bearings were in reasonable agreement with field experience. The predicted gearbox life was in excellent agreement with field data when the material life adjustment factors alone were used. The gearbox had a lower predicted life in comparison with field data when no life adjustment factors were used or when lubrication life adjustment factors were used either alone or in combination with the material factors.
Observation of an optical spring with a beam splitter.
Cripe, Jonathan; Danz, Baylee; Lane, Benjamin; Lorio, Mary Catherine; Falcone, Julia; Cole, Garrett D; Corbitt, Thomas
2018-05-01
We present the experimental observation of an optical spring without the use of an optical cavity. The optical spring is produced by interference at a beam splitter and, in principle, does not have the damping force associated with optical springs created in detuned cavities. The experiment consists of a Michelson-Sagnac interferometer (with no recycling cavities) with a partially reflective GaAs microresonator as the beam splitter that produces the optical spring. Our experimental measurements at input powers of up to 360 mW show the shift of the optical spring frequency as a function of power and are in excellent agreement with theoretical predictions. In addition, we show that the optical spring is able to keep the interferometer stable and locked without the use of external feedback.
ERIC Educational Resources Information Center
Texeira, Antonio; Rosa, Alvaro; Calapez, Teresa
2009-01-01
This article presents statistical power analysis (SPA) based on the normal distribution using Excel, adopting textbook and SPA approaches. The objective is to present the latter in a comparative way within a framework that is familiar to textbook level readers, as a first step to understand SPA with other distributions. The analysis focuses on the…
NASA Astrophysics Data System (ADS)
Guillemaut, C.; Metzger, C.; Moulton, D.; Heinola, K.; O’Mullane, M.; Balboa, I.; Boom, J.; Matthews, G. F.; Silburn, S.; Solano, E. R.; contributors, JET
2018-06-01
The design and operation of future fusion devices relying on H-mode plasmas requires reliable modelling of edge-localized modes (ELMs) for precise prediction of divertor target conditions. An extensive experimental validation of simple analytical predictions of the time evolution of target plasma loads during ELMs has been carried out here in more than 70 JET-ITER-like wall H-mode experiments with a wide range of conditions. Comparisons of these analytical predictions with diagnostic measurements of target ion flux density, power density, impact energy and electron temperature during ELMs are presented in this paper and show excellent agreement. The analytical predictions tested here are made with the ‘free-streaming’ kinetic model (FSM) which describes ELMs as a quasi-neutral plasma bunch expanding along the magnetic field lines into the Scrape-Off Layer without collisions. Consequences of the FSM on energy reflection and deposition on divertor targets during ELMs are also discussed.
Kim, Dong-Hee; Gautam, Mridul; Gera, Dinesh
2002-05-01
This paper presents the results from a study that is aimed at predicting the nucleation, coagulation, and dynamics of particulate matter (PM) emissions from on-road heavy-duty diesel vehicles. The PM concentration is predicted from the composition of fuel, and operating and ambient conditions. A numerical algorithm for simultaneously solving the coagulation, condensation, and nucleation equations is developed. The effect of relative humidity on the nucleation rate and the nucleus size is also discussed. In addition, the effect of the ambient air dilution on PM size distribution is numerically predicted for a diesel-powered truck operating in a controlled environment at NASA Langley wind-tunnel facility. The particle size distribution and concentration are measured at four different locations in a turbulent plume from the diesel exhaust in the tunnel, and an excellent agreement between the measured and predicted PM concentration values at these locations inside the tunnel is observed.
... County-level Lyme disease data from 2000-2016 Microsoft Excel file [Excel CSV – 209KB] ––Right–click the link ... PDF file Microsoft PowerPoint file Microsoft Word file Microsoft Excel file Audio/Video file Apple Quicktime file RealPlayer ...
Wang, JianLi; Sareen, Jitender; Patten, Scott; Bolton, James; Schmitz, Norbert; Birney, Arden
2014-05-01
Prediction algorithms are useful for making clinical decisions and for population health planning. However, such prediction algorithms for first onset of major depression do not exist. The objective of this study was to develop and validate a prediction algorithm for first onset of major depression in the general population. Longitudinal study design with approximate 3-year follow-up. The study was based on data from a nationally representative sample of the US general population. A total of 28 059 individuals who participated in Waves 1 and 2 of the US National Epidemiologic Survey on Alcohol and Related Conditions and who had not had major depression at Wave 1 were included. The prediction algorithm was developed using logistic regression modelling in 21 813 participants from three census regions. The algorithm was validated in participants from the 4th census region (n=6246). Major depression occurred since Wave 1 of the National Epidemiologic Survey on Alcohol and Related Conditions, assessed by the Alcohol Use Disorder and Associated Disabilities Interview Schedule-diagnostic and statistical manual for mental disorders IV. A prediction algorithm containing 17 unique risk factors was developed. The algorithm had good discriminative power (C statistics=0.7538, 95% CI 0.7378 to 0.7699) and excellent calibration (F-adjusted test=1.00, p=0.448) with the weighted data. In the validation sample, the algorithm had a C statistic of 0.7259 and excellent calibration (Hosmer-Lemeshow χ(2)=3.41, p=0.906). The developed prediction algorithm has good discrimination and calibration capacity. It can be used by clinicians, mental health policy-makers and service planners and the general public to predict future risk of having major depression. The application of the algorithm may lead to increased personalisation of treatment, better clinical decisions and more optimal mental health service planning.
Overcoming Microsoft Excel's Weaknesses for Crop Model Building and Simulations
ERIC Educational Resources Information Center
Sung, Christopher Teh Boon
2011-01-01
Using spreadsheets such as Microsoft Excel for building crop models and running simulations can be beneficial. Excel is easy to use, powerful, and versatile, and it requires the least proficiency in computer programming compared to other programming platforms. Excel, however, has several weaknesses: it does not directly support loops for iterative…
Federal Register 2010, 2011, 2012, 2013, 2014
2010-12-23
... joint NRC-DEK ITS conversion Web page, hosted by EXCEL Services Corporation (EXCEL) can be found in... http://www.excelservices.com . Persons who visit the EXCEL Web site and are unable to locate Kewaunee ITS Conversion information should contact EXCEL directly to acquire archived content. As an...
Freezing of soft spheres: A critical test for weighted-density-functional theories
NASA Astrophysics Data System (ADS)
Laird, Brian B.; Kroll, D. M.
1990-10-01
We study the freezing properties of systems with inverse-power and Yukawa interactions (soft spheres), using recently developed weighted-density-functional theories. We find that the modified weighted-density-functional approximation (MWDA) of Denton and Ashcroft yields results for the liquid to face-centered-cubic (fcc) structure transition that represent a significant improvement over those of earlier ``second-order'' density-functional freezing theories; however, this theory, like the earlier ones, fails to predict any liquid to body-centered-cubic (bcc) transition, even under conditions where the computer simulations indicate that this should be the equilibrium solid structure. In addition, we show that both the modified effective-liquid approximation (MELA) of Baus [J. Phys. Condens. Matter 2, 2111 (1990)] and the generalized effective-liquid approximation of Lutsko and Baus [Phys. Rev. Lett. 64, 761 (1990)], while giving excellent results for the freezing of hard spheres, fail completely to predict freezing into either fcc or bcc solid phases for soft inverse-power potentials. We also give an alternate derivation of the MWDA that makes clearer its connection to earlier theories.
A Comparative Study Using CFD to Predict Iced Airfoil Aerodynamics
NASA Technical Reports Server (NTRS)
Chi, x.; Li, Y.; Chen, H.; Addy, H. E.; Choo, Y. K.; Shih, T. I-P.
2005-01-01
WIND, Fluent, and PowerFLOW were used to predict the lift, drag, and moment coefficients of a business-jet airfoil with a rime ice (rough and jagged, but no protruding horns) and with a glaze ice (rough and jagged end has two or more protruding horns) for angles of attack from zero to and after stall. The performance of the following turbulence models were examined by comparing predictions with available experimental data. Spalart-Allmaras (S-A), RNG k-epsilon, shear-stress transport, v(sup 2)-f, and a differential Reynolds stress model with and without non-equilibrium wall functions. For steady RANS simulations, WIND and FLUENT were found to give nearly identical results if the grid about the iced airfoil, the turbulence model, and the order of accuracy of the numerical schemes used are the same. The use of wall functions was found to be acceptable for the rime ice configuration and the flow conditions examined. For rime ice, the S-A model was found to predict accurately until near the stall angle. For glaze ice, the CFD predictions were much less satisfactory for all turbulence models and codes investigated because of the large separated region produced by the horns. For unsteady RANS, WIND and FLUENT did not provide better results. PowerFLOW, based on the Lattice Boltzmann method, gave excellent results for the lift coefficient at and near stall for the rime ice, where the flow is inherently unsteady.
NASA Technical Reports Server (NTRS)
Ellis, David L.; Calder, James; Siamidis, John
2011-01-01
A full-scale radiator for a lunar fission surface power application was manufactured by Material innovations, Inc., for the NASA Glenn Research Center. The radiator was designed to reject 6 kWt with an inlet water temperature of 400 K and a water mass flow rate of 0.5 kg/s. While not flight hardware, the radiator incorporated many potential design features and manufacturing techniques for future flight hardware. The radiator was tested at NASA Glenn Research Center for heat rejection performance. The results showed that the radiator design was capable of rejecting over 6 kWt when operating at the design conditions. The actual performance of the radiator as a function of operational manifolds, inlet water temperature and facility sink temperature was compared to the predictive model developed by NASA Glenn Research Center. The results showed excellent agreement with the model with the actual average face sheet temperature being within 1% of the predicted value. The results will be used in the design and production of NASA s next generation fission power heat rejection systems. The NASA Glenn Research Center s Technology Demonstration Unit will be the first project to take advantage of the newly developed manufacturing techniques and analytical models.
NASA Technical Reports Server (NTRS)
Delleur, Ann M.; Kerslake, Thomas W.
2002-01-01
With the first United States (U.S.) photovoltaic array (PVA) activated on International Space Station (ISS) in December 2000, on-orbit data can now be compared to analytical predictions. Due to ISS operational constraints, it is not always possible to point the front side of the arrays at the Sun. Thus, in many cases, sunlight directly illuminates the backside of the PVA as well as albedo illumination on either the front or the back. During this time, appreciable power is produced since the solar cells are mounted on a thin, solar transparent substrate. It is important to present accurate predictions for both front and backside power generation for mission planning, certification of flight readiness for a given mission, and on-orbit mission support. To provide a more detailed assessment of the ISS power production capability, the authors developed a PVA electrical performance model applicable to generalized bifacial illumination conditions. On-orbit PVA performance data were also collected and analyzed. This paper describes the ISS PVA performance model, and the methods used to reduce orbital performance data. Analyses were performed using SPACE. a NASA-GRC developed computer code for the ISS program office. Results showed a excellent comparison of on-orbit performance data and analytical results.
ERIC Educational Resources Information Center
Sun, Haibin; Liu, Tingting
2010-01-01
Excellent senior high school physics teachers are the backbone power in the new course reform of physics in China. The excellent senior high school physics teachers' professional growth actuality in Shandong is surveyed in this article by the self-made "Questionnaire of Excellent Senior High School Physics Teachers' Professional Growth",…
Mei, Wenjuan; Zeng, Xianping; Yang, Chenglin; Zhou, Xiuyun
2017-01-01
The insulated gate bipolar transistor (IGBT) is a kind of excellent performance switching device used widely in power electronic systems. How to estimate the remaining useful life (RUL) of an IGBT to ensure the safety and reliability of the power electronics system is currently a challenging issue in the field of IGBT reliability. The aim of this paper is to develop a prognostic technique for estimating IGBTs’ RUL. There is a need for an efficient prognostic algorithm that is able to support in-situ decision-making. In this paper, a novel prediction model with a complete structure based on optimally pruned extreme learning machine (OPELM) and Volterra series is proposed to track the IGBT’s degradation trace and estimate its RUL; we refer to this model as Volterra k-nearest neighbor OPELM prediction (VKOPP) model. This model uses the minimum entropy rate method and Volterra series to reconstruct phase space for IGBTs’ ageing samples, and a new weight update algorithm, which can effectively reduce the influence of the outliers and noises, is utilized to establish the VKOPP network; then a combination of the k-nearest neighbor method (KNN) and least squares estimation (LSE) method is used to calculate the output weights of OPELM and predict the RUL of the IGBT. The prognostic results show that the proposed approach can predict the RUL of IGBT modules with small error and achieve higher prediction precision and lower time cost than some classic prediction approaches. PMID:29099811
Research update: Prediction of high figure of merit plateau in SnS and solid solution of (Pb,Sn)S
Hao, Shiqiang; Dravid, Vinayak P.; Kanatzidis, Mercouri G.; ...
2016-10-17
Direct conversion between thermal and electrical energy can be achieved by thermoelectric materials, which provide a viable route for power generation and solid state refrigeration. Here, we use a combination of energetic, electronic, and vibrational first-principles based results to predict the figure of merit performance in hole doped single crystals of SnS and (Pb,Sn)S. We find high ZT values for both materials, specifically for (Pb,Sn)S along the b-axis. Both SnS and (Pb,Sn)S have excellent power factors when doped, due to a combination of increased electrical conductivity (due to doping) and a significantly enhanced Seebeck coefficient obtained by a doping-induced multibandmore » effect. Anharmonic phonon calculations combined with a Debye-Calloway model show that the lattice thermal conductivity of both compounds is low, due to intrinsic anharmonicity, and is lowered further by the random, solid solution nature of the cation sublattice of (Pb,Sn)S. (Pb,Sn)S exhibits a high ZT plateau ranging from 1.3 at 300 K to 1.9 at 800 K. Finally, the overall ZT of the hole doped (Pb,Sn)S crystals is predicted to outperform most of the current state-of-the-art thermoelectric sulfide materials.« less
Research update: Prediction of high figure of merit plateau in SnS and solid solution of (Pb,Sn)S
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hao, Shiqiang; Dravid, Vinayak P.; Kanatzidis, Mercouri G.
Direct conversion between thermal and electrical energy can be achieved by thermoelectric materials, which provide a viable route for power generation and solid state refrigeration. Here, we use a combination of energetic, electronic, and vibrational first-principles based results to predict the figure of merit performance in hole doped single crystals of SnS and (Pb,Sn)S. We find high ZT values for both materials, specifically for (Pb,Sn)S along the b-axis. Both SnS and (Pb,Sn)S have excellent power factors when doped, due to a combination of increased electrical conductivity (due to doping) and a significantly enhanced Seebeck coefficient obtained by a doping-induced multibandmore » effect. Anharmonic phonon calculations combined with a Debye-Calloway model show that the lattice thermal conductivity of both compounds is low, due to intrinsic anharmonicity, and is lowered further by the random, solid solution nature of the cation sublattice of (Pb,Sn)S. (Pb,Sn)S exhibits a high ZT plateau ranging from 1.3 at 300 K to 1.9 at 800 K. Finally, the overall ZT of the hole doped (Pb,Sn)S crystals is predicted to outperform most of the current state-of-the-art thermoelectric sulfide materials.« less
NASA Astrophysics Data System (ADS)
Qu, Baihua; Chen, Yuejiao; Zhang, Ming; Hu, Lingling; Lei, Danni; Lu, Bingan; Li, Qiuhong; Wang, Yanguo; Chen, Libao; Wang, Taihong
2012-11-01
Electrochemical supercapacitors have drawn much attention because of their high power and reasonably high energy densities. However, their performances still do not reach the demand of energy storage. In this paper β-cobalt sulfide nanoparticles were homogeneously distributed on a highly conductive graphene (CS-G) nanocomposite, which was confirmed by transmission electron microscopy analysis, and exhibit excellent electrochemical performances including extremely high values of specific capacitance (~1535 F g-1) at a current density of 2 A g-1, high-power density (11.98 kW kg-1) at a discharge current density of 40 A g-1 and excellent cyclic stability. The excellent electrochemical performances could be attributed to the graphene nanosheets (GNSs) which could maintain the mechanical integrity. Also the CS-G nanocomposite electrodes have high electrical conductivity. These results indicate that high electronic conductivity of graphene nanocomposite materials is crucial to achieving high power and energy density for supercapacitors.
Qu, Baihua; Chen, Yuejiao; Zhang, Ming; Hu, Lingling; Lei, Danni; Lu, Bingan; Li, Qiuhong; Wang, Yanguo; Chen, Libao; Wang, Taihong
2012-12-21
Electrochemical supercapacitors have drawn much attention because of their high power and reasonably high energy densities. However, their performances still do not reach the demand of energy storage. In this paper β-cobalt sulfide nanoparticles were homogeneously distributed on a highly conductive graphene (CS-G) nanocomposite, which was confirmed by transmission electron microscopy analysis, and exhibit excellent electrochemical performances including extremely high values of specific capacitance (~1535 F g(-1)) at a current density of 2 A g(-1), high-power density (11.98 kW kg(-1)) at a discharge current density of 40 A g(-1) and excellent cyclic stability. The excellent electrochemical performances could be attributed to the graphene nanosheets (GNSs) which could maintain the mechanical integrity. Also the CS-G nanocomposite electrodes have high electrical conductivity. These results indicate that high electronic conductivity of graphene nanocomposite materials is crucial to achieving high power and energy density for supercapacitors.
Study of radiatively sustained cesium plasmas for solar energy conversion
NASA Technical Reports Server (NTRS)
Palmer, A. J.; Dunning, G. J.
1980-01-01
The results of a study aimed at developing a high temperature solar electric converter are reported. The converter concept is based on the use of an alkali plasma to serve as both an efficient high temperature collector of solar radiation as well as the working fluid for a high temperature working cycle. The working cycle is a simple magnetohydrodynamic (MHD) Rankine cycle employing a solid electrode Faraday MHD channel. Research milestones include the construction of a theoretical model for coupling sunlight in a cesium plasma and the experimental demonstration of cesium plasma heating with a solar simulator in excellent agreement with the theory. Analysis of a solar MHD working cycle in which excimer laser power rather than electric power is extracted is also presented. The analysis predicts a positive gain coefficient on the cesium-xenon excimer laser transition.
Propfan test assessment propfan propulsion system static test report
NASA Technical Reports Server (NTRS)
Orourke, D. M.
1987-01-01
The propfan test assessment (PTA) propulsion system successfully completed over 50 hours of extensive static ground tests, including a 36 hour endurance test. All major systems performed as expected, verifying that the large-scale 2.74 m diameter propfan, engine, gearbox, controls, subsystems, and flight instrumentation will be satisfactory with minor modifications for the upcoming PTA flight tests on the GII aircraft in early 1987. A test envelope was established for static ground operation to maintain propfan blade stresses within limits for propfan rotational speeds up to 105 percent and power levels up to 3880 kW. Transient tests verified stable, predictable response of engine power and propfan speed controls. Installed engine TSFC was better than expected, probably due to the excellent inlet performance coupled with the supercharging effect of the propfan. Near- and far-field noise spectra contained three dominant components, which were dependent on power, tip speed, and direction. The components were propfan blade tones, propfan random noise, and compressor/propfan interaction noise. No significant turbine noise or combustion noise was evident.
Detecting axion stars with radio telescopes
NASA Astrophysics Data System (ADS)
Bai, Yang; Hamada, Yuta
2018-06-01
When axion stars fly through an astrophysical magnetic background, the axion-to-photon conversion may generate a large electromagnetic radiation power. After including the interference effects of the spacially-extended axion-star source and the macroscopic medium effects, we estimate the radiation power when an axion star meets a neutron star. For a dense axion star with 10-13M⊙, the radiated power is at the order of 1011W ×(100 μeV /ma) 4(B /1010Gauss) 2 with ma as the axion particle mass and B the strength of the neutron star magnetic field. For axion stars occupy a large fraction of dark matter energy density, this encounter event with a transient O (0.1s) radio signal may happen in our galaxy with the averaged source distance of one kiloparsec. The predicted spectral flux density is at the order of μJy for a neutron star with B ∼1013 Gauss. The existing Arecibo, GBT, JVLA and FAST and the ongoing SKA radio telescopes have excellent discovery potential of dense axion stars.
Arriola-Villalobos, P; Almendral-Gómez, J; Garzón, N; Ruiz-Medrano, J; Fernández-Pérez, C; Martínez-de-la-Casa, J M; Díaz-Valle, D
2017-01-01
Purpose To compare measurements taken using a swept-source optical coherence tomography-based optical biometer (IOLmaster 700) and an optical low-coherence reflectometry biometer (Lenstar 900), and to determine the clinical impacts of differences in their measurements on intraocular lens (IOL) power predictions. Methods Eighty eyes of 80 patients scheduled to undergo cataract surgery were examined with both biometers. The measurements made using each device were axial length (AL), central corneal thickness (CCT), aqueous depth (AQD), lens thickness (LT), mean keratometry (MK), white-to-white distance (WTW), and pupil diameter (PD). Holladay 2 and SRK/T formulas were used to calculate IOL power. Differences in measurement between the two biometers were determined using the paired t-test. Agreement was assessed through intraclass correlation coefficients (ICC) and Bland–Altman plots. Results Mean patient age was 76.3±6.8 years (range 59–89). Using the Lenstar, AL and PD could not be measured in 12.5 and 5.25% of eyes, respectively, while IOLMaster 700 took all measurements in all eyes. The variables CCT, AQD, LT, and MK varied significantly between the two biometers. According to ICCs, correlation between measurements made with both devices was excellent except for WTW and PD. Using the SRK/T formula, IOL power prediction based on the data from the two devices were statistically different, but differences were not clinically significant. Conclusions No clinically relevant differences were detected between the biometers in terms of their measurements and IOL power predictions. Using the IOLMaster 700, it was easier to obtain biometric measurements in eyes with less transparent ocular media or longer AL. PMID:27834962
NASA Astrophysics Data System (ADS)
Cipcigan, Flaviu S.; Sokhan, Vlad P.; Crain, Jason; Martyna, Glenn J.
2016-12-01
One key factor that limits the predictive power of molecular dynamics simulations is the accuracy and transferability of the input force field. Force fields are challenged by heterogeneous environments, where electronic responses give rise to biologically important forces such as many-body polarisation and dispersion. The importance of polarisation in the condensed phase was recognised early on, as described by Cochran in 1959 [Philosophical Magazine 4 (1959) 1082-1086] [32]. Currently in molecular simulation, dispersion forces are treated at the two-body level and in the dipole limit, although the importance of three-body terms in the condensed phase was demonstrated by Barker in the 1980s [Phys. Rev. Lett. 57 (1986) 230-233] [72]. One approach for treating both polarisation and dispersion on an equal basis is to coarse grain the electrons surrounding a molecular moiety to a single quantum harmonic oscillator (cf. Hirschfelder, Curtiss and Bird 1954 [The Molecular Theory of Gases and Liquids (1954)] [37]). The approach, when solved in strong coupling beyond the dipole limit, gives a description of long-range forces that includes two- and many-body terms to all orders. In the last decade, the tools necessary to implement the strong coupling limit have been developed, culminating in a transferable model of water with excellent predictive power across the phase diagram. Transferability arises since the environment automatically identifies the important long range interactions, rather than the modeller through a limited set of expressions. Here, we discuss the role of electronic coarse-graining in predictive multiscale materials modelling and describe the first implementation of the method in a general purpose molecular dynamics software: QDO_MD.
Thermodynamics of reformulated automotive fuels
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zudkevitch, D.; Murthy, A.K.S.; Gmehling, J.
1995-06-01
Two methods for predicting Reid vapor pressure (Rvp) and initial vapor emissions of reformulated gasoline blends that contain one or more oxygenated compounds show excellent agreement with experimental data. In the first method, method A, D-86 distillation data for gasoline blends are used for predicting Rvp from a simulation of the mini dry vapor pressure equivalent (Dvpe) experiment. The other method, method B, relies on analytical information (PIANO analyses) of the base gasoline and uses classical thermodynamics for simulating the same Rvp equivalent (Rvpe) mini experiment. Method B also predicts composition and other properties for the fuel`s initial vapor emission.more » Method B, although complex, is more useful in that is can predict properties of blends without a D-86 distillation. An important aspect of method B is its capability to predict composition of initial vapor emissions from gasoline blends. Thus, it offers a powerful tool to planners of gasoline blending. Method B uses theoretically sound formulas, rigorous thermodynamic routines and uses data and correlations of physical properties that are in the public domain. Results indicate that predictions made with both methods agree very well with experimental values of Dvpe. Computer simulation methods were programmed and tested.« less
Three-dimensional laser cooling at the Doppler limit
NASA Astrophysics Data System (ADS)
Chang, R.; Hoendervanger, A. L.; Bouton, Q.; Fang, Y.; Klafka, T.; Audo, K.; Aspect, A.; Westbrook, C. I.; Clément, D.
2014-12-01
Many predictions of Doppler-cooling theory of two-level atoms have never been verified in a three-dimensional geometry, including the celebrated minimum achievable temperature ℏ Γ /2 kB , where Γ is the transition linewidth. Here we show that, despite their degenerate level structure, we can use helium-4 atoms to achieve a situation in which these predictions can be verified. We make measurements of atomic temperatures, magneto-optical trap sizes, and the sensitivity of optical molasses to a power imbalance in the laser beams, finding excellent agreement with Doppler theory. We show that the special properties of helium, particularly its small mass and narrow transition linewidth, prevent effective sub-Doppler cooling with red-detuned optical molasses. This discussion can be generalized to identify when a given species is likely to be subject to the same limitation.
Numerical analysis of 2.7 μm lasing in Er3+-doped tellurite fiber lasers
Wang, Weichao; Li, Lixiu; Chen, Dongdan; Zhang, Qinyuan
2016-01-01
The laser performance of Er3+-doped tellurite fiber lasers operating at 2.7 μm due to 4I11/2 → 4I13/2 transition has been theoretically studied by using rate equations and propagation equations. The effects of pumping configuration and fiber length on the output power, slope efficiency, threshold, and intracavity pump and laser power distributions have been systematically investigated to optimize the performance of fiber lasers. When the pump power is 20 W, the maximum slope efficiency (27.62%), maximum output power (5.219 W), and minimum threshold (278.90 mW) are predicted with different fiber lengths (0.05–5 m) under three pumping configurations. It is also found that reasonable output power is expected for fiber loss below 2 dB/ m. The numerical modeling on the two- and three-dimensional laser field distributions are further analyzed to reveal the characteristics of this multimode step-index tellurite fiber. Preliminary simulation results show that this Er3+-doped tellurite fiber is an excellent alternative to conventional fluoride fiber for developing efficient 2.7 μm fiber lasers. PMID:27545663
NASA Technical Reports Server (NTRS)
Eichenberg, Dennis J.
2005-01-01
The NASA John H. Glenn Research Center initiated baseline testing of ultracapacitors for the Next Generation Launch Transportation (NGLT) project to obtain empirical data for determining the feasibility of using ultracapacitors for the project. There are large transient loads associated with NGLT that require either a very large primary energy source or an energy storage system. The primary power source used for these tests is a proton exchange membrane (PEM) fuel cell. The energy storage system can consist of devices such as batteries, flywheels, or ultracapacitors. Ultracapacitors were used for these tests. Ultracapacitors are ideal for applications such as NGLT where long life, maintenance-free operation, and excellent low-temperature performance is essential. State-of-the-art symmetric ultracapacitors were used for these tests. The ultracapacitors were interconnected in an innovative configuration to minimize interconnection impedance. PEM fuel cells provide excellent energy density, but not good power density. Ultracapacitors provide excellent power density, but not good energy density. The combination of PEM fuel cells and ultracapacitors provides a power source with excellent energy density and power density. The life of PEM fuel cells is shortened significantly by large transient loads. Ultracapacitors used in conjunction with PEM fuel cells reduce the transient loads applied to the fuel cell, and thus appreciably improves its life. PEM fuel cells were tested with and without ultracapacitors, to determine the benefits of ultracapacitors. The report concludes that the implementation of symmetric ultracapacitors in the NGLT power system can provide significant improvements in power system performance and reliability.
Baseline Testing of Ultracapacitors for the Next Generation Launch Technology (NGLT) Project
NASA Technical Reports Server (NTRS)
Eichenberg, Dennis J.
2004-01-01
The NASA John H. Glenn Research Center initiated baseline testing of ultracapacitors for the Next Generation Launch Transportation (NGLT) project to obtain empirical data for determining the feasibility of using ultracapacitors for the project. There are large transient loads associated with NGLT that require either a very large primary energy source or an energy storage system. The primary power source used for these tests is a proton exchange membrane (PEM) fuel cell. The energy storage system can consist of devices such as batteries, flywheels, or ultracapacitors. Ultracapacitors were used for these tests. Ultracapacitors are ideal for applications such as NGLT where long life, maintenance-free operation, and excellent low-temperature performance is essential. State-of-the-art symmetric ultracapacitors were used for these tests. The ultracapacitors were interconnected in an innovative configuration to minimize interconnection impedance. PEM fuel cells provide excellent energy density, but not good power density. Ultracapacitors provide excellent power density, but not good energy density. The combination of PEM fuel cells and ultracapacitors provides a power source with excellent energy density and power density. The life of PEM fuel cells is shortened significantly by large transient loads. Ultracapacitors used in conjunction with PEM fuel cells reduce the transient loads applied to the fuel cell, and thus appreciably improves its life. PEM fuel cells were tested with and without ultracapacitors, to determine the benefits of ultracapacitors. The report concludes that the implementation of symmetric ultracapacitors in the NGLT power system can provide significant improvements in power system performance and reliability.
Abe, Eiji; Abe, Mari
2011-08-01
With the spread of total intravenous anesthesia, clinical pharmacology has become more important. We report Microsoft Excel file applying three compartment model and response surface model to clinical anesthesia. On the Microsoft Excel sheet, propofol, remifentanil and fentanyl effect-site concentrations are predicted (three compartment model), and probabilities of no response to prodding, shaking, surrogates of painful stimuli and laryngoscopy are calculated using predicted effect-site drug concentration. Time-dependent changes in these calculated values are shown graphically. Recent development in anesthetic drug interaction studies are remarkable, and its application to clinical anesthesia with this Excel file is simple and helpful for clinical anesthesia.
Sotomayor-Peterson, Marcela; Figueredo, Aurelio J; Christensen, Donna H; Taylor, Angela R
2012-06-01
This study tested a model of shared parenting as its centerpiece that incorporates cultural values as predictors and family emotional climate as the outcome variable of interest. We aimed to assess the predictive power of the Mexican cultural values of familismo and simpatia over couples' shared parenting practices. We anticipated that higher levels of shared parenting would predict family emotional climate. The participants were 61 Mexican American, low income couples, with at least one child between 3 and 4 years of age, recruited from a home-based Head Start program. The predictive model demonstrated excellent goodness of fit, supporting the hypothesis that a positive emotional climate within the family is fostered when Mexican American couples practice a sufficient level of shared parenting. Empirical evidence was previously scarce on this proposition. The findings also provide evidence for the role of cultural values, highlighting the importance of family solidarity and avoidance of confrontation as a pathway to shared parenting within Mexican American couples. © FPI, Inc.
Generalized statistical mechanics of cosmic rays: Application to positron-electron spectral indices.
Yalcin, G Cigdem; Beck, Christian
2018-01-29
Cosmic ray energy spectra exhibit power law distributions over many orders of magnitude that are very well described by the predictions of q-generalized statistical mechanics, based on a q-generalized Hagedorn theory for transverse momentum spectra and hard QCD scattering processes. QCD at largest center of mass energies predicts the entropic index to be [Formula: see text]. Here we show that the escort duality of the nonextensive thermodynamic formalism predicts an energy split of effective temperature given by Δ [Formula: see text] MeV, where T H is the Hagedorn temperature. We carefully analyse the measured data of the AMS-02 collaboration and provide evidence that the predicted temperature split is indeed observed, leading to a different energy dependence of the e + and e - spectral indices. We also observe a distinguished energy scale E * ≈ 50 GeV where the e + and e - spectral indices differ the most. Linear combinations of the escort and non-escort q-generalized canonical distributions yield excellent agreement with the measured AMS-02 data in the entire energy range.
Rocket measurements of mesospheric ionization irregularities
NASA Technical Reports Server (NTRS)
Stoltzfus, R. B.; Bowhill, S. A.
1985-01-01
The Langmuir probe technique for measurement of electron concentration in the mesosphere is capable of excellent altitude resolution, of order 1 m. Measurements from nine daytime rocket flights carrying an electron density fine structure experiment frequently show small scale ionization structures in the altitude region 70 to 90 km. The irregularities are believed to be the result of turbulent advection of ions and electrons. The fine structure experiment flown by the University of Illinois is described and methods of analyzing the collected data is presented. Theories of homogeneous, isotropic turbulence are reviewed. Power spectra of the measured irregularities are calculated and compared to spectra predicted by turbulence theories.
Waveform agile high-power fiber laser illuminators for directed-energy weapon systems
NASA Astrophysics Data System (ADS)
Engin, Doruk; Lu, Wei; Kimpel, Frank; Gupta, Shantanu
2012-06-01
A kW-class fiber-amplifier based laser illuminator system at 1030nm is demonstrated. At 125 kHz pulse repetition rate, 1.9mJ energy per pulse (235W average power) is achieved for 100nsec pulses with >72% optical conversion efficiency, and at 250kHz repetition, >350W average power is demonstrated, limited by the available pumps. Excellent agreement is established between the experimental results and dynamic fiber amplifier simulation, for predicting the pulse shape, spectrum and ASE accumulation throughout the fiber-amplifier chain. High pulse-energy, high power fiber-amplifier operation requires careful engineering - minimize ASE content throughout the pre-amplifier stages, use of large mode area gain fiber in the final power stage for effective pulse energy extraction, and pulse pre-shaping to compensate for the laser gain-saturation induced intra-pulse and pulse-pattern dependent distortion. Such optimization using commercially available (VLMA) fibers with core size in the 30-40μm range is estimated to lead to >4mJ pulse energy for 100nsec pulse at 50kHz repetition rate. Such waveform agile high-power, high-energy pulsed fiber laser illuminators at λ=1030nm satisfies requirements for active-tracking/ranging in high-energy laser (HEL) weapon systems, and in uplink laser beacon for deep space communication.
Bhamidipati, Ravi Kanth; Syed, Muzeeb; Mullangi, Ramesh; Srinivas, Nuggehally
2018-02-01
1. Dalbavancin, a lipoglycopeptide, is approved for treating gram-positive bacterial infections. Area under plasma concentration versus time curve (AUC inf ) of dalbavancin is a key parameter and AUC inf /MIC ratio is a critical pharmacodynamic marker. 2. Using end of intravenous infusion concentration (i.e. C max ) C max versus AUC inf relationship for dalbavancin was established by regression analyses (i.e. linear, log-log, log-linear and power models) using 21 pairs of subject data. 3. The predictions of the AUC inf were performed using published C max data by application of regression equations. The quotient of observed/predicted values rendered fold difference. The mean absolute error (MAE)/root mean square error (RMSE) and correlation coefficient (r) were used in the assessment. 4. MAE and RMSE values for the various models were comparable. The C max versus AUC inf exhibited excellent correlation (r > 0.9488). The internal data evaluation showed narrow confinement (0.84-1.14-fold difference) with a RMSE < 10.3%. The external data evaluation showed that the models predicted AUC inf with a RMSE of 3.02-27.46% with fold difference largely contained within 0.64-1.48. 5. Regardless of the regression models, a single time point strategy of using C max (i.e. end of 30-min infusion) is amenable as a prospective tool for predicting AUC inf of dalbavancin in patients.
Net energy analysis: Powerful tool for selecting electric power options
NASA Astrophysics Data System (ADS)
Baron, S.
A number of net energy analysis studies have been conducted in recent years for electric power production from coal, oil and uranium fuels; synthetic fuels from coal and oil shale; and heat and electric power from solar energy. This technique is an excellent indicator of investment costs, environmental impact and potential economic competitiveness of alternative electric power systems for energy planners from the Eastern European countries considering future options. Energy conservation is also important to energy planners and the net energy analysis technique is an excellent accounting system on the extent of energy resource conservation. The author proposes to discuss the technique and to present the results of his studies and others in the field. The information supplied to the attendees will serve as a powerful tool to the energy planners considering their electric power options in the future.
Jiang, Luohua; Yang, Jing; Huang, Haixiao; Johnson, Ann; Dill, Edward J; Beals, Janette; Manson, Spero M; Roubideaux, Yvette
2016-05-01
Participant attrition in clinical trials and community-based interventions is a serious, common, and costly problem. In order to develop a simple predictive scoring system that can quantify the risk of participant attrition in a lifestyle intervention project, we analyzed data from the Special Diabetes Program for Indians Diabetes Prevention Program (SDPI-DP), an evidence-based lifestyle intervention to prevent diabetes in 36 American Indian and Alaska Native communities. SDPI-DP participants were randomly divided into a derivation cohort (n = 1600) and a validation cohort (n = 801). Logistic regressions were used to develop a scoring system from the derivation cohort. The discriminatory power and calibration properties of the system were assessed using the validation cohort. Seven independent factors predicted program attrition: gender, age, household income, comorbidity, chronic pain, site's user population size, and average age of site staff. Six factors predicted long-term attrition: gender, age, marital status, chronic pain, site's user population size, and average age of site staff. Each model exhibited moderate to fair discriminatory power (C statistic in the validation set: 0.70 for program attrition, and 0.66 for long-term attrition) and excellent calibration. The resulting scoring system offers a low-technology approach to identify participants at elevated risk for attrition in future similar behavioral modification intervention projects, which may inform appropriate allocation of retention resources. This approach also serves as a model for other efforts to prevent participant attrition.
Accurate prediction of RNA-binding protein residues with two discriminative structural descriptors.
Sun, Meijian; Wang, Xia; Zou, Chuanxin; He, Zenghui; Liu, Wei; Li, Honglin
2016-06-07
RNA-binding proteins participate in many important biological processes concerning RNA-mediated gene regulation, and several computational methods have been recently developed to predict the protein-RNA interactions of RNA-binding proteins. Newly developed discriminative descriptors will help to improve the prediction accuracy of these prediction methods and provide further meaningful information for researchers. In this work, we designed two structural features (residue electrostatic surface potential and triplet interface propensity) and according to the statistical and structural analysis of protein-RNA complexes, the two features were powerful for identifying RNA-binding protein residues. Using these two features and other excellent structure- and sequence-based features, a random forest classifier was constructed to predict RNA-binding residues. The area under the receiver operating characteristic curve (AUC) of five-fold cross-validation for our method on training set RBP195 was 0.900, and when applied to the test set RBP68, the prediction accuracy (ACC) was 0.868, and the F-score was 0.631. The good prediction performance of our method revealed that the two newly designed descriptors could be discriminative for inferring protein residues interacting with RNAs. To facilitate the use of our method, a web-server called RNAProSite, which implements the proposed method, was constructed and is freely available at http://lilab.ecust.edu.cn/NABind .
Qian, Weiguo; Tang, Yunjia; Yan, Wenhua; Sun, Ling; Lv, Haitao
2018-03-09
Kawasaki disease (KD) is the most common pediatric vasculitis. Several models have been established to predict intravenous immunoglobulin (IVIG) resistance. The present study was aimed to evaluate the efficacy of prediction models using the medical data of KD patients. We collected the medical records of patients hospitalized in the Department of Cardiology in Children's Hospital of Soochow University with a diagnosis of KD from Jan 2015 to Dec 2016. IVIG resistance was defined as recrudescent or persistent fever ≥36 h after the end of their IVIG infusion. Patients with IVIG resistance tended to be younger, have higher occurrence of rash and changes of extremities. They had higher levels of c-reactive protein, aspartate aminotransferase, neutrophils proportion (N%), total bilirubin and lower level of albumin. Our prediction model had a sensitivity of 0.72 and a specificity of 0.75. Sensitivity of Kobayashi, Egami, Kawamura, Sano and Formosa were 0.72, 0.44, 0.48, 0.20, and 0.68, respectively. Specificity of these models were 0.62, 0.82, 0.66, 0.91, and 0.48, respectively. Our prediction model had a powerful predictive value in this area, followed by Kobayashi model while all the other prediction models had less excellent performances than ours.
The Roads of "Excellence" in Central and Eastern Europe
ERIC Educational Resources Information Center
Antonowicz, Dominik; Kohoutek, Jan; Pinheiro, Rómulo; Hladchenko, Myroslava
2017-01-01
The aim of the article is to explore the impact of excellence as a powerful policy idea in the context of recent and contemporary developments in three selected Central and Eastern European countries, namely, the Czech Republic, Poland and Ukraine. More specifically, we explore how excellence as a "global script" was translated by policy…
From Planck Data to Planck Era: Observational Tests of Holographic Cosmology
NASA Astrophysics Data System (ADS)
Afshordi, Niayesh; Corianò, Claudio; Delle Rose, Luigi; Gould, Elizabeth; Skenderis, Kostas
2017-01-01
We test a class of holographic models for the very early Universe against cosmological observations and find that they are competitive to the standard cold dark matter model with a cosmological constant (Λ CDM ) of cosmology. These models are based on three-dimensional perturbative superrenormalizable quantum field theory (QFT), and, while they predict a different power spectrum from the standard power law used in Λ CDM , they still provide an excellent fit to the data (within their regime of validity). By comparing the Bayesian evidence for the models, we find that Λ CDM does a better job globally, while the holographic models provide a (marginally) better fit to the data without very low multipoles (i.e., l ≲30 ), where the QFT becomes nonperturbative. Observations can be used to exclude some QFT models, while we also find models satisfying all phenomenological constraints: The data rule out the dual theory being a Yang-Mills theory coupled to fermions only but allow for a Yang-Mills theory coupled to nonminimal scalars with quartic interactions. Lattice simulations of 3D QFTs can provide nonperturbative predictions for large-angle statistics of the cosmic microwave background and potentially explain its apparent anomalies.
From Planck Data to Planck Era: Observational Tests of Holographic Cosmology.
Afshordi, Niayesh; Corianò, Claudio; Delle Rose, Luigi; Gould, Elizabeth; Skenderis, Kostas
2017-01-27
We test a class of holographic models for the very early Universe against cosmological observations and find that they are competitive to the standard cold dark matter model with a cosmological constant (ΛCDM) of cosmology. These models are based on three-dimensional perturbative superrenormalizable quantum field theory (QFT), and, while they predict a different power spectrum from the standard power law used in ΛCDM, they still provide an excellent fit to the data (within their regime of validity). By comparing the Bayesian evidence for the models, we find that ΛCDM does a better job globally, while the holographic models provide a (marginally) better fit to the data without very low multipoles (i.e., l≲30), where the QFT becomes nonperturbative. Observations can be used to exclude some QFT models, while we also find models satisfying all phenomenological constraints: The data rule out the dual theory being a Yang-Mills theory coupled to fermions only but allow for a Yang-Mills theory coupled to nonminimal scalars with quartic interactions. Lattice simulations of 3D QFTs can provide nonperturbative predictions for large-angle statistics of the cosmic microwave background and potentially explain its apparent anomalies.
NASA Technical Reports Server (NTRS)
Eichenberg, Dennis J.
2004-01-01
In fiscal year 2003, the continuation of the Hybrid Power Management (HPM) Program through NASA Glenn Research Center's Commercial Technology Office resulted in several new successful applications of this pioneering technology. HPM is the innovative integration of diverse, state-of-the-art power devices in an optimal configuration for space and terrestrial applications. The appropriate application and control of the various power devices significantly improves overall system performance and efficiency. The advanced power devices include ultracapacitors, fuel cells, and photovoltaics. HPM has extremely wide potential, with applications from nanowatts to megawatts--including power generation, transportation systems, biotechnology systems, and space power systems. HPM has the potential to significantly alleviate global energy concerns, improve the environment, and stimulate the economy. Fuel cells provide excellent efficiency and energy density, but do not have good power density. In contrast, ultracapacitors have excellent power density and virtually unlimited cycle life. To improve the power density of the fuel cell, the combination of fuel cells and ultracapacitors was evaluated.
Langenbucher, Frieder
2007-08-01
This paper discusses Excel applications related to the prediction of drug absorbability from physicochemical constants. PHDISSOC provides a generalized model for pH profiles of electrolytic dissociation, water solubility, and partition coefficient. SKMODEL predicts drug absorbability, based on a log-log plot of water solubility and O/W partitioning; augmented by additional features such as electrolytic dissociation, melting point, and the dose administered. GIABS presents a mechanistic model of g.i. drug absorption. BIODATCO presents a database compiling relevant drug data to be used for quantitative predictions.
Assessing fitness to stand trial: the utility of the Fitness Interview Test (revised edition).
Zapf, P A; Roesch, R; Viljoen, J L
2001-06-01
In Canada most evaluations of fitness to stand trial are conducted on an inpatient basis. This costs time and money, and deprives those defendants remanded for evaluation of liberty. This research assessed the predictive efficiency of the Fitness Interview Test, revised edition (FIT) as a screening instrument for fitness to stand trial. We compared decisions about fitness to stand trial, based on the FIT, with the results of institution-based evaluations for 2 samples of men remanded for inpatient fitness assessments. The FIT demonstrates excellent utility as a screening instrument. The FIT shows good sensitivity and negative predictive power, which suggests that it can reliably screen those individuals who are clearly fit to stand trial, before they are remanded to an inpatient facility for a fitness assessment. We discuss the implications for evaluating fitness to stand trial, particularly in terms of the need for community-based alternatives to traditional forensic assessments.
Rational assignment of key motifs for function guides in silico enzyme identification.
Höhne, Matthias; Schätzle, Sebastian; Jochens, Helge; Robins, Karen; Bornscheuer, Uwe T
2010-11-01
Biocatalysis has emerged as a powerful alternative to traditional chemistry, especially for asymmetric synthesis. One key requirement during process development is the discovery of a biocatalyst with an appropriate enantiopreference and enantioselectivity, which can be achieved, for instance, by protein engineering or screening of metagenome libraries. We have developed an in silico strategy for a sequence-based prediction of substrate specificity and enantiopreference. First, we used rational protein design to predict key amino acid substitutions that indicate the desired activity. Then, we searched protein databases for proteins already carrying these mutations instead of constructing the corresponding mutants in the laboratory. This methodology exploits the fact that naturally evolved proteins have undergone selection over millions of years, which has resulted in highly optimized catalysts. Using this in silico approach, we have discovered 17 (R)-selective amine transaminases, which catalyzed the synthesis of several (R)-amines with excellent optical purity up to >99% enantiomeric excess.
NASA Astrophysics Data System (ADS)
Yoon, Heonjun; Kim, Miso; Park, Choon-Su; Youn, Byeng D.
2018-01-01
Piezoelectric vibration energy harvesting (PVEH) has received much attention as a potential solution that could ultimately realize self-powered wireless sensor networks. Since most ambient vibrations in nature are inherently random and nonstationary, the output performances of PVEH devices also randomly change with time. However, little attention has been paid to investigating the randomly time-varying electroelastic behaviors of PVEH systems both analytically and experimentally. The objective of this study is thus to make a step forward towards a deep understanding of the time-varying performances of PVEH devices under nonstationary random vibrations. Two typical cases of nonstationary random vibration signals are considered: (1) randomly-varying amplitude (amplitude modulation; AM) and (2) randomly-varying amplitude with randomly-varying instantaneous frequency (amplitude and frequency modulation; AM-FM). In both cases, this study pursues well-balanced correlations of analytical predictions and experimental observations to deduce the relationships between the time-varying output performances of the PVEH device and two primary input parameters, such as a central frequency and an external electrical resistance. We introduce three correlation metrics to quantitatively compare analytical prediction and experimental observation, including the normalized root mean square error, the correlation coefficient, and the weighted integrated factor. Analytical predictions are in an excellent agreement with experimental observations both mechanically and electrically. This study provides insightful guidelines for designing PVEH devices to reliably generate electric power under nonstationary random vibrations.
Zhu, Zhengju; Jiang, Hao; Guo, Shaojun; Cheng, Qilin; Hu, Yanjie; Li, Chunzhong
2015-10-30
Rational design of advanced carbon nanomaterials with a balanced mesoporosity to microporosity is highly desirable for achieving high energy/power density for supercapacitors because the mesopore can allow better transport pathways for the solvated ions of larger than 1 nm. Inspired by the inherent meso/macroporous architecture and huge absorption ability to aqueous solution of auricularia biomass, we demonstrate a new biomass-derived synthesis process for the three-dimensional (3D) few-layered graphene nanosheets incorporated hierarchical porous carbon (GHPC) nanohybrids. The as-prepared GHPC nanohybrids possess a balanced mesoporosity to microporosity with much improved conductivity, which is highly desirable for achieving high energy/power density for supercapacitors. As we predicted, they delivered a high specific capacitance of 256 F g(-1) at 1 A g(-1) with excellent rate capability (120 F g(-1) at 50 A g(-1)) and long cycle life (92% capacity retention after 10000 cycles) for symmetric supercapacitors in 1 M H2SO4. Based on the as-obtained carbon materials, a flexible and all-solid-state supercapacitor was also assembled, which can be fully recharged within 10 s and able to light an LED even under bended state. Such excellent performance is at least comparable to the best reports in the literature for two-electrode configuration under aqueous systems.
NASA Astrophysics Data System (ADS)
Zhu, Zhengju; Jiang, Hao; Guo, Shaojun; Cheng, Qilin; Hu, Yanjie; Li, Chunzhong
2015-10-01
Rational design of advanced carbon nanomaterials with a balanced mesoporosity to microporosity is highly desirable for achieving high energy/power density for supercapacitors because the mesopore can allow better transport pathways for the solvated ions of larger than 1 nm. Inspired by the inherent meso/macroporous architecture and huge absorption ability to aqueous solution of auricularia biomass, we demonstrate a new biomass-derived synthesis process for the three-dimensional (3D) few-layered graphene nanosheets incorporated hierarchical porous carbon (GHPC) nanohybrids. The as-prepared GHPC nanohybrids possess a balanced mesoporosity to microporosity with much improved conductivity, which is highly desirable for achieving high energy/power density for supercapacitors. As we predicted, they delivered a high specific capacitance of 256 F g-1 at 1 A g-1 with excellent rate capability (120 F g-1 at 50 A g-1) and long cycle life (92% capacity retention after 10000 cycles) for symmetric supercapacitors in 1 M H2SO4. Based on the as-obtained carbon materials, a flexible and all-solid-state supercapacitor was also assembled, which can be fully recharged within 10 s and able to light an LED even under bended state. Such excellent performance is at least comparable to the best reports in the literature for two-electrode configuration under aqueous systems.
Zhu, Zhengju; Jiang, Hao; Guo, Shaojun; Cheng, Qilin; Hu, Yanjie; Li, Chunzhong
2015-01-01
Rational design of advanced carbon nanomaterials with a balanced mesoporosity to microporosity is highly desirable for achieving high energy/power density for supercapacitors because the mesopore can allow better transport pathways for the solvated ions of larger than 1 nm. Inspired by the inherent meso/macroporous architecture and huge absorption ability to aqueous solution of auricularia biomass, we demonstrate a new biomass-derived synthesis process for the three-dimensional (3D) few-layered graphene nanosheets incorporated hierarchical porous carbon (GHPC) nanohybrids. The as-prepared GHPC nanohybrids possess a balanced mesoporosity to microporosity with much improved conductivity, which is highly desirable for achieving high energy/power density for supercapacitors. As we predicted, they delivered a high specific capacitance of 256 F g−1 at 1 A g−1 with excellent rate capability (120 F g−1 at 50 A g−1) and long cycle life (92% capacity retention after 10000 cycles) for symmetric supercapacitors in 1 M H2SO4. Based on the as-obtained carbon materials, a flexible and all-solid-state supercapacitor was also assembled, which can be fully recharged within 10 s and able to light an LED even under bended state. Such excellent performance is at least comparable to the best reports in the literature for two-electrode configuration under aqueous systems. PMID:26515442
A Simple Microsoft Excel Method to Predict Antibiotic Outbreaks and Underutilization.
Miglis, Cristina; Rhodes, Nathaniel J; Avedissian, Sean N; Zembower, Teresa R; Postelnick, Michael; Wunderink, Richard G; Sutton, Sarah H; Scheetz, Marc H
2017-07-01
Benchmarking strategies are needed to promote the appropriate use of antibiotics. We have adapted a simple regressive method in Microsoft Excel that is easily implementable and creates predictive indices. This method trends consumption over time and can identify periods of over- and underuse at the hospital level. Infect Control Hosp Epidemiol 2017;38:860-862.
Power Efficient Hydraulic Systems. Volume 1. Study Phase
1988-07-01
AIRCRAFT SUBSYSTEMS TABLE 14. Baseline aircraft systems o HYDRAULIC SYSTEM o ELECTRICAL SYSTEM o 8000 PSI, 3 INDEPENDENT SYSTEMS o HVDC POWER o APU...neither aluminum nor titanium provide good wear surfaces. Hydraulic fittings and valve bodies appear to be excellent candidates for PM technology...Actuator Bodies Savings Over Steel ys. Time of Heat and 25% Over Treatment To Be Resolved T1-3AL-2.5V - Heat Treatment May Cause - Excellent
Song, Xinbo; Chen, Yuanfu; Li, Pingjian; Liu, Jingbo; Qi, Fei; Zheng, Binjie; Zhou, Jinhao; Hao, Xin; Zhang, Wanli
2016-07-29
The reported flexible and transparent triboelectric generator (FTTG) can only output ultralow power density (∼2 μW cm(-2)), which has seriously hindered its further development and application. The low power density of FTTG is mainly limited by the transparent material and the electrode structure. Herein, for the first time, a FTTG with a superior power density of 60.7 μW cm(-2) has been fabricated by designing asymmetric electrodes where graphene and indium tin oxide (ITO) act as top and bottom electrodes respectively. Moreover, the performance of FTTG with graphene/ITO (G/I) asymmetric electrodes (GI-FTTG) almost remains unchanged even after 700 cycles, indicating excellent mechanical stability. The excellent performance of GI-FTTG can be attributed to the suitable materials and unique asymmetric electrode structure: the extraordinary flexibility of the graphene top electrode ensures the GI-FTTG excellent mechanical robustness and stability even after longer cycles, and the bottom electrode with very low sheet resistance guarantees lower internal resistance and higher production rate of induction charges to obtain higher output power density. It shows that light-emitting diodes (LED) can be easily powered by GI-FTTG, which demonstrates that the GI-FTTG is very promising for harvesting electrical energy from human activities by using flexible and transparent devices.
NASA Astrophysics Data System (ADS)
Theodorsen, A.; Garcia, O. E.; Kube, R.; LaBombard, B.; Terry, J. L.
2017-11-01
Fluctuations in the boundary region of the Alcator C-Mod tokamak have been analyzed using gas puff imaging data from a set of Ohmically heated plasma density scan experiments. It is found that the relative fluctuation amplitudes are modest and close to normally distributed at the separatrix but become increasingly larger and skewed towards the main chamber wall. The frequency power spectra are nevertheless similar for all radial positions and line-averaged densities. Predictions of a stochastic model, describing the plasma fluctuations as a super-position of uncorrelated pulses, are shown to be in excellent agreement with the measurements. This implies that the pulse duration is the same, while the degree of pulse overlap decreases radially outwards in the scrape-off layer. The universal frequency power spectral density is thus determined by the shape and duration of the large-amplitude bursts associated with blob-like structures. The model also describes the rate of threshold level crossings, for which the exponential tails underline the intermittency of the fluctuations in the far scarpe-off layer.
Molecular beacon sequence design algorithm.
Monroe, W Todd; Haselton, Frederick R
2003-01-01
A method based on Web-based tools is presented to design optimally functioning molecular beacons. Molecular beacons, fluorogenic hybridization probes, are a powerful tool for the rapid and specific detection of a particular nucleic acid sequence. However, their synthesis costs can be considerable. Since molecular beacon performance is based on its sequence, it is imperative to rationally design an optimal sequence before synthesis. The algorithm presented here uses simple Microsoft Excel formulas and macros to rank candidate sequences. This analysis is carried out using mfold structural predictions along with other free Web-based tools. For smaller laboratories where molecular beacons are not the focus of research, the public domain algorithm described here may be usefully employed to aid in molecular beacon design.
Machine learning molecular dynamics for the simulation of infrared spectra.
Gastegger, Michael; Behler, Jörg; Marquetand, Philipp
2017-10-01
Machine learning has emerged as an invaluable tool in many research areas. In the present work, we harness this power to predict highly accurate molecular infrared spectra with unprecedented computational efficiency. To account for vibrational anharmonic and dynamical effects - typically neglected by conventional quantum chemistry approaches - we base our machine learning strategy on ab initio molecular dynamics simulations. While these simulations are usually extremely time consuming even for small molecules, we overcome these limitations by leveraging the power of a variety of machine learning techniques, not only accelerating simulations by several orders of magnitude, but also greatly extending the size of systems that can be treated. To this end, we develop a molecular dipole moment model based on environment dependent neural network charges and combine it with the neural network potential approach of Behler and Parrinello. Contrary to the prevalent big data philosophy, we are able to obtain very accurate machine learning models for the prediction of infrared spectra based on only a few hundreds of electronic structure reference points. This is made possible through the use of molecular forces during neural network potential training and the introduction of a fully automated sampling scheme. We demonstrate the power of our machine learning approach by applying it to model the infrared spectra of a methanol molecule, n -alkanes containing up to 200 atoms and the protonated alanine tripeptide, which at the same time represents the first application of machine learning techniques to simulate the dynamics of a peptide. In all of these case studies we find an excellent agreement between the infrared spectra predicted via machine learning models and the respective theoretical and experimental spectra.
NASA Technical Reports Server (NTRS)
Butts, Glenn C.
2007-01-01
Excel is a powerful tool with a plethora of largely unused capabilities that can make the life of an engineer cognizant of them a great deal easier. This paper offers tips, tricks and techniques for better worksheets. Including the use of data validation, conditional formatting, subtotals, text formulas, custom functions and much more. It is assumed that the reader will have a cursory understanding of Excel so the basics will not be covered, if you get hung up try Excel's built in help menus, or a good book.
Guo, Jing-Yi; Zheng, Yong-Ping; Xie, Hong-Bo; Koo, Terry K
2013-02-01
The inherent properties of surface electromyography limit its potential for multi-degrees of freedom control. Our previous studies demonstrated that wrist angle could be predicted by muscle thickness measured from B-mode ultrasound, and hence, it could be an alternative signal for prosthetic control. However, an ultrasound imaging machine is too bulky and expensive. We aim to utilize a portable A-mode ultrasound system to examine the feasibility of using one-dimensional sonomyography (i.e. muscle thickness signals detected by A-mode ultrasound) to predict wrist angle with three different machine learning models - (1) support vector machine (SVM), (2) radial basis function artificial neural network (RBF ANN), and (3) back-propagation artificial neural network (BP ANN). Feasibility study using nine healthy subjects. Each subject performed wrist extension guided at 15, 22.5, and 30 cycles/minute, respectively. Data obtained from 22.5 cycles/minute trials was used to train the models and the remaining trials were used for cross-validation. Prediction accuracy was quantified by relative root mean square error (RMSE) and correlation coefficients (CC). Excellent prediction was noted using SVM (RMSE = 13%, CC = 0.975), which outperformed the other methods. It appears that one-dimensional sonomyography could be an alternative signal for prosthetic control. Clinical relevance Surface electromyography has inherent limitations that prohibit its full functional use for prosthetic control. Research that explores alternative signals to improve prosthetic control (such as the one-dimensional sonomyography signals evaluated in this study) may revolutionize powered prosthesis design and ultimately benefit amputee patients.
Study of advanced electric propulsion system concept using a flywheel for electric vehicles
NASA Technical Reports Server (NTRS)
Younger, F. C.; Lackner, H.
1979-01-01
Advanced electric propulsion system concepts with flywheels for electric vehicles are evaluated and it is predicted that advanced systems can provide considerable performance improvement over existing electric propulsion systems with little or no cost penalty. Using components specifically designed for an integrated electric propulsion system avoids the compromises that frequently lead to a loss of efficiency and to inefficient utilization of space and weight. A propulsion system using a flywheel power energy storage device can provide excellent acceleration under adverse conditions of battery degradation due either to very low temperatures or high degrees of discharge. Both electrical and mechanical means of transfer of energy to and from the flywheel appear attractive; however, development work is required to establish the safe limits of speed and energy storage for advanced flywheel designs and to achieve the optimum efficiency of energy transfer. Brushless traction motor designs using either electronic commutation schemes or dc-to-ac inverters appear to provide a practical approach to a mass producible motor, with excellent efficiency and light weight. No comparisons were made with advanced system concepts which do not incorporate a flywheel.
The silver effect of admission glucose level on excellent outcome in thrombolysed stroke patients.
Rosso, Charlotte; Baronnet, Flore; Diaz, Belen; Le Bouc, Raphael; Frasca Polara, Giulia; Moulton, Eric Jr; Deltour, Sandrine; Leger, Anne; Crozier, Sophie; Samson, Yves
2018-05-18
Higher admission glucose levels (AGL) are associated with less favorable outcome in thrombolysis. But, could AGL's impact on outcome vary by onset-to-treatment (OTT) time? Is hyperglycemia associated with a shorter therapeutic time window for excellent outcome for thrombolysed stroke patients? We assessed predictive values of AGL, baseline NIHSS, age, and OTT time quartiles on excellent outcome (3-month modified Rankin score of 0-1) in 773 patients treated by rt-Pa. We added the AGL × OTT time quartile interaction in the model and separately analyzed the predictive values of AGL, age, and NIHSS for each OTT time quartile if the interaction was significant. AGL, baseline NIHSS, age, and OTT time quartiles were significant predictors. When added in the model, the AGL × OTT interaction was significant (OR: 0.96, 95% CI: 0.94-0.99, p: 0.0009). AGL was predictive only during the third OTT time quartile (181-224 min). During this period, the predicted rate of excellent outcome was 16% for AGL = 6.5 mmol/L and 8% for AGL = 8 mmol/L. The rate of excellent outcome was not decreased in hyperglycemic patients for OTT time ≤ 180 min (20 vs. 24.5% p: 0.37), but was decreased for OTT time > 180 min (9.6 vs. 26.7% p: 0.00001). Similar results were found in patients with MCA recanalization, but not in patients without recanalization. The therapeutic time window for excellent outcome is shortened in hyperglycemic patients. This would support the design of "freezing penumbra" randomized trials based on ultra-early AGL control.
Failure Detecting Method of Fault Current Limiter System with Rectifier
NASA Astrophysics Data System (ADS)
Tokuda, Noriaki; Matsubara, Yoshio; Asano, Masakuni; Ohkuma, Takeshi; Sato, Yoshibumi; Takahashi, Yoshihisa
A fault current limiter (FCL) is extensively needed to suppress fault current, particularly required for trunk power systems connecting high-voltage transmission lines, such as 500kV class power system which constitutes the nucleus of the electric power system. We proposed a new type FCL system (rectifier type FCL), consisting of solid-state diodes, DC reactor and bypass AC reactor, and demonstrated the excellent performances of this FCL by developing the small 6.6kV and 66kV model. It is important to detect the failure of power devices used in the rectifier under the normal operating condition, for keeping the excellent reliability of the power system. In this paper, we have proposed a new failure detecting method of power devices most suitable for the rectifier type FCL. This failure detecting system is simple and compact. We have adapted the proposed system to the 66kV prototype single-phase model and successfully demonstrated to detect the failure of power devices.
NASA Technical Reports Server (NTRS)
Kuczmarski, Maria A.; Neudeck, Philip G.
2000-01-01
Most solid-state electronic devices diodes, transistors, and integrated circuits are based on silicon. Although this material works well for many applications, its properties limit its ability to function under extreme high-temperature or high-power operating conditions. Silicon carbide (SiC), with its desirable physical properties, could someday replace silicon for these types of applications. A major roadblock to realizing this potential is the quality of SiC material that can currently be produced. Semiconductors require very uniform, high-quality material, and commercially available SiC tends to suffer from defects in the crystalline structure that have largely been eliminated in silicon. In some power circuits, these defects can focus energy into an extremely small area, leading to overheating that can damage the device. In an effort to better understand the way that these defects affect the electrical performance and reliability of an SiC device in a power circuit, the NASA Glenn Research Center at Lewis Field began an in-house three-dimensional computational modeling effort. The goal is to predict the temperature distributions within a SiC diode structure subjected to the various transient overvoltage breakdown stresses that occur in power management circuits. A commercial computational fluid dynamics computer program (FLUENT-Fluent, Inc., Lebanon, New Hampshire) was used to build a model of a defect-free SiC diode and generate a computational mesh. A typical breakdown power density was applied over 0.5 msec in a heated layer at the junction between the p-type SiC and n-type SiC, and the temperature distribution throughout the diode was then calculated. The peak temperature extracted from the computational model agreed well (within 6 percent) with previous first-order calculations of the maximum expected temperature at the end of the breakdown pulse. This level of agreement is excellent for a model of this type and indicates that three-dimensional computational modeling can provide useful predictions for this class of problem. The model is now being extended to include the effects of crystal defects. The model will provide unique insights into how high the temperature rises in the vicinity of the defects in a diode at various power densities and pulse durations. This information also will help researchers in understanding and designing SiC devices for safe and reliable operation in high-power circuits.
A simplified approach to predict performance degradation of a solid oxide fuel cell anode
NASA Astrophysics Data System (ADS)
Khan, Muhammad Zubair; Mehran, Muhammad Taqi; Song, Rak-Hyun; Lee, Jong-Won; Lee, Seung-Bok; Lim, Tak-Hyoung
2018-07-01
The agglomeration of nickel (Ni) particles in a Ni-cermet anode is a significant degradation phenomenon for solid oxide fuel cells (SOFCs). This work aims to predict the performance degradation of SOFCs due to Ni grain growth by using a simplified approach. Accelerated aging of Ni-scandia stabilized zirconia (SSZ) as an SOFC anode is carried out at 900 °C and subsequent microstructural evolution is investigated every 100 h up to 1000 h using scanning electron microscopy (SEM). The resulting morphological changes are quantified using a two-dimensional image analysis technique that yields the particle size, phase proportion, and triple phase boundary (TPB) point distribution. The electrochemical properties of an anode-supported SOFC are characterized using electrochemical impedance spectroscopy (EIS). The changes of particle size and TPB length in the anode as a function of time are in excellent agreement with the power-law coarsening model. This model is further combined with an electrochemical model to predict the changes in the anode polarization resistance. The predicted polarization resistances are in good agreement with the experimentally obtained values. This model for prediction of anode lifetime provides deep insight into the time-dependent Ni agglomeration behavior and its impact on the electrochemical performance degradation of the SOFC anode.
Task-specific motor performance and musculoskeletal response in self-classified right handers.
Kumar, Sameer; Mandal, Manas K
2003-11-01
We examined the difference between the left and right hand motor performance (in terms of erg produced) of self-classified right handers (15 men, 15 women) for power (task involving muscle force) and skilled (task involving precision and eye hand coordination) tasks. Musculoskeletal response during task performance was measured by electromyogram to test the hypothesis that performance with the nondominant hand would trigger more generalized muscle tension. The difference between the left and right hand performance of men was nonsignificant for power task; for women, right hand performance was significantly superior than left for such task. Men excelled in power and women excelled in skilled tasks relative to their counterparts. Generalized muscle tension was significantly more during the left than the right hand performance for power but not for skilled tasks.
Reconstructing a f ( R ) theory from the α-Attractors
DOE Office of Scientific and Technical Information (OSTI.GOV)
Miranda, T.; Fabris, J. C.; Piattella, O. F., E-mail: tays.andrade@aluno.ufes.br, E-mail: oliver.piattella@pq.cnpq.br, E-mail: fabris@pq.cnpq.br
We show an analogy at high curvature between a f ( R ) = R + aR {sup n} {sup −} {sup 1} + bR {sup 2} theory and the α-Attractors. We calculate the expressions of the parameters a , b and n as functions of α and the predictions of the model f ( R ) = R + aR {sup n} {sup −} {sup 1} + bR {sup 2} on the scalar spectral index n {sub s} and the tensor-to-scalar ratio r . We find that the power law correction R {sup n} {sup −} {sup 1} allowsmore » for a production of gravitational waves enhanced with respect to the one in the Starobinsky model, while maintaining a viable prediction on n {sub s}. We numerically reconstruct the full α-Attractors class of models testing the goodness of our high-energy approximation f ( R ) = R + aR {sup n} {sup −} {sup 1} + bR {sup 2}. Moreover, we also investigate the case of a single power law f ( R ) = γ R {sup 2} {sup −} {sup δ} theory, with γ and δ free parameters. We calculate analytically the predictions of this model on the scalar spectral index n {sub s} and the tensor-to-scalar ratio r and the values of δ which are allowed from the current observational results. We find that −0.015 < δ < 0.016, confirming once again the excellent agreement between the Starobinsky model and observation.« less
Schrank, Elisa S; Hitch, Lester; Wallace, Kevin; Moore, Richard; Stanhope, Steven J
2013-10-01
Passive-dynamic ankle-foot orthosis (PD-AFO) bending stiffness is a key functional characteristic for achieving enhanced gait function. However, current orthosis customization methods inhibit objective premanufacture tuning of the PD-AFO bending stiffness, making optimization of orthosis function challenging. We have developed a novel virtual functional prototyping (VFP) process, which harnesses the strengths of computer aided design (CAD) model parameterization and finite element analysis, to quantitatively tune and predict the functional characteristics of a PD-AFO, which is rapidly manufactured via fused deposition modeling (FDM). The purpose of this study was to assess the VFP process for PD-AFO bending stiffness. A PD-AFO CAD model was customized for a healthy subject and tuned to four bending stiffness values via VFP. Two sets of each tuned model were fabricated via FDM using medical-grade polycarbonate (PC-ISO). Dimensional accuracy of the fabricated orthoses was excellent (average 0.51 ± 0.39 mm). Manufacturing precision ranged from 0.0 to 0.74 Nm/deg (average 0.30 ± 0.36 Nm/deg). Bending stiffness prediction accuracy was within 1 Nm/deg using the manufacturer provided PC-ISO elastic modulus (average 0.48 ± 0.35 Nm/deg). Using an experimentally derived PC-ISO elastic modulus improved the optimized bending stiffness prediction accuracy (average 0.29 ± 0.57 Nm/deg). Robustness of the derived modulus was tested by carrying out the VFP process for a disparate subject, tuning the PD-AFO model to five bending stiffness values. For this disparate subject, bending stiffness prediction accuracy was strong (average 0.20 ± 0.14 Nm/deg). Overall, the VFP process had excellent dimensional accuracy, good manufacturing precision, and strong prediction accuracy with the derived modulus. Implementing VFP as part of our PD-AFO customization and manufacturing framework, which also includes fit customization, provides a novel and powerful method to predictably tune and precisely manufacture orthoses with objectively customized fit and functional characteristics.
Kiernan, Michaela; Moore, Susan D.; Schoffman, Danielle E.; Lee, Katherine; King, Abby C.; Taylor, C. Barr; Kiernan, Nancy Ellen; Perri, Michael G.
2015-01-01
Social support could be a powerful weight-loss treatment moderator or mediator but is rarely assessed. We assessed the psychometric properties, initial levels, and predictive validity of a measure of perceived social support and sabotage from friends and family for healthy eating and physical activity (eight subscales). Overweight/obese women randomized to one of two 6-month, group-based behavioral weight-loss programs (N=267; mean BMI 32.1±3.5; 66.3% White) completed subscales at baseline, and weight loss was assessed at 6 months. Internal consistency, discriminant validity, and content validity were excellent for support subscales and adequate for sabotage subscales; qualitative responses revealed novel deliberate instances not reflected in current sabotage items. Most women (>75%) “never” or “rarely” experienced support from friends or family. Using non-parametric classification methods, we identified two subscales—support from friends for healthy eating and support from family for physical activity—that predicted three clinically meaningful subgroups who ranged in likelihood of losing ≥5% of initial weight at 6 months. Women who “never” experienced family support were least likely to lose weight (45.7% lost weight) whereas women who experienced both frequent friend and family support were more likely to lose weight (71.6% lost weight). Paradoxically, women who “never” experienced friend support were most likely to lose weight (80.0% lost weight), perhaps because the group-based programs provided support lacking from friendships. Psychometrics for support subscales were excellent; initial support was rare; and the differential roles of friend versus family support could inform future targeted weight-loss interventions to subgroups at risk. PMID:21996661
Status Report on the CEBAF IR and UV FELs
DOE Office of Scientific and Technical Information (OSTI.GOV)
Leemann, Christoph; Bisognano, Joseph; Douglas, David
1993-07-01
The CEBAF five pass recirculating, superconducting linac, being developed as a high power electron source for nuclear physics, is also an ideal FEL driver.The 45 MeV front end linac is presently operational with a CW (low peak current) nuclear physics gun and has met all CEBAF performance specifications including low emittance and energy spread (< 1 * 10^-4). Progress will be reported in commissioning.This experience leads to predictions of excellent FEL performance.Initial designs reported last year have been advanced.Using the output of a high charge DC photoemission gun under development with a 6 cm period wiggler produces kilowatt output powersmore » in the 3.6 to 17 micrometer range in the fundamental.Third harmonic operation extends IR performance down to 1.2 micrometer.Beam at energies up to 400 MeV from the first full CEBAF linac will interact in a similar but longer wiggler to yield kilowatt UV light production at wavelengths as short as 0.15 micrometers.Full power FEL« less
Generalizing a nonlinear geophysical flood theory to medium-sized river networks
Gupta, Vijay K.; Mantilla, Ricardo; Troutman, Brent M.; Dawdy, David; Krajewski, Witold F.
2010-01-01
The central hypothesis of a nonlinear geophysical flood theory postulates that, given space-time rainfall intensity for a rainfall-runoff event, solutions of coupled mass and momentum conservation differential equations governing runoff generation and transport in a self-similar river network produce spatial scaling, or a power law, relation between peak discharge and drainage area in the limit of large area. The excellent fit of a power law for the destructive flood event of June 2008 in the 32,400-km2 Iowa River basin over four orders of magnitude variation in drainage areas supports the central hypothesis. The challenge of predicting observed scaling exponent and intercept from physical processes is explained. We show scaling in mean annual peak discharges, and briefly discuss that it is physically connected with scaling in multiple rainfall-runoff events. Scaling in peak discharges would hold in a non-stationary climate due to global warming but its slope and intercept would change.
Energy spectra of cosmic-ray nuclei to above 100 GeV per nucleon
NASA Technical Reports Server (NTRS)
Simon, M.; Spiegelhauer, H.; Schmidt, W. K. H.; Siohan, F.; Ormes, J. F.; Balasubrahmanyan, V. K.; Arens, J. F.
1980-01-01
Energy spectra of cosmic-ray nuclei boron to iron have been measured from 2 GeV per nucleon to beyond 100 GeV per nucleon. The data were obtained using an ionization calorimeter flown on a balloon from Palestine, Texas. The 3450 kg payload floated at 7 g/sq cm for almost 24 hours. The results are in excellent agreement with those of other workers where overlaps exist. The spectra are not consistent with single power laws, and demonstrate the power of using a single technique sensitive over a large dynamic range. The data are consistent with the leaky box model of cosmic-ray propagation. The boron data indicate that the cosmic-ray escape length decreases with increasing energy as E to the -(0.4 + or - 0.1) up to 100 GeV per nucleon. Secondary nuclei from iron are also consistent with this dependence. Predicted changes in the energy dependence of the ratios of primary nuclei O/C and (Fe + Ni)/(C + O) are also observed.
The Fuel Cell Powered Club Car Carryall
NASA Technical Reports Server (NTRS)
Eichenberg, Dennis J.
2005-01-01
The NASA Glenn Research Center initiated development of the Fuel Cell Powered Club Car Carryall as a way to reduce pollution in industrial settings, reduce fossil fuel consumption and reduce operating costs for transportation systems. The Club Car Carryall provides an inexpensive approach to advance the state of the art in electric vehicle technology in a practical application. The project transfers space technology to terrestrial use via non-traditional partners, and provides power system data valuable for future aeronautics and space applications. The work was done under the Hybrid Power Management (HPM) Program. The Carryall is a state of the art, dedicated, electric utility vehicle. Hydrogen powered proton exchange membrane (PEM) fuel cells are the primary power source. Ultracapacitors were used for energy storage as long life, maintenance free operation, and excellent low temperature performance is essential. Metal hydride hydrogen storage was used to store hydrogen in a safe and efficient low-pressure solid form. The report concludes that the Fuel Cell Powered Club Car Carryall can provide excellent performance, and that the implementation of fuel cells in conjunction with ultracapacitors in the power system can provide significant reliability and performance improvements.
A summary of wind power prediction methods
NASA Astrophysics Data System (ADS)
Wang, Yuqi
2018-06-01
The deterministic prediction of wind power, the probability prediction and the prediction of wind power ramp events are introduced in this paper. Deterministic prediction includes the prediction of statistical learning based on histor ical data and the prediction of physical models based on NWP data. Due to the great impact of wind power ramp events on the power system, this paper also introduces the prediction of wind power ramp events. At last, the evaluation indicators of all kinds of prediction are given. The prediction of wind power can be a good solution to the adverse effects of wind power on the power system due to the abrupt, intermittent and undulation of wind power.
NASA Astrophysics Data System (ADS)
Carignano, Mauro G.; Costa-Castelló, Ramon; Roda, Vicente; Nigro, Norberto M.; Junco, Sergio; Feroldi, Diego
2017-08-01
Offering high efficiency and producing zero emissions Fuel Cells (FCs) represent an excellent alternative to internal combustion engines for powering vehicles to alleviate the growing pollution in urban environments. Due to inherent limitations of FCs which lead to slow transient response, FC-based vehicles incorporate an energy storage system to cover the fast power variations. This paper considers a FC/supercapacitor platform that configures a hard constrained powertrain providing an adverse scenario for the energy management strategy (EMS) in terms of fuel economy and drivability. Focusing on palliating this problem, this paper presents a novel EMS based on the estimation of short-term future energy demand and aiming at maintaining the state of energy of the supercapacitor between two limits, which are computed online. Such limits are designed to prevent active constraint situations of both FC and supercapacitor, avoiding the use of friction brakes and situations of non-power compliance in a short future horizon. Simulation and experimentation in a case study corresponding to a hybrid electric bus show improvements on hydrogen consumption and power compliance compared to the widely reported Equivalent Consumption Minimization Strategy. Also, the comparison with the optimal strategy via Dynamic Programming shows a room for improvement to the real-time strategies.
Analysis and design of a high power laser adaptive phased array transmitter
NASA Technical Reports Server (NTRS)
Mevers, G. E.; Soohoo, J. F.; Winocur, J.; Massie, N. A.; Southwell, W. H.; Brandewie, R. A.; Hayes, C. L.
1977-01-01
The feasibility of delivering substantial quantities of optical power to a satellite in low earth orbit from a ground based high energy laser (HEL) coupled to an adaptive antenna was investigated. Diffraction effects, atmospheric transmission efficiency, adaptive compensation for atmospheric turbulence effects, including the servo bandwidth requirements for this correction, and the adaptive compensation for thermal blooming were examined. To evaluate possible HEL sources, atmospheric investigations were performed for the CO2, (C-12)(O-18)2 isotope, CO and DF wavelengths using output antenna locations of both sea level and mountain top. Results indicate that both excellent atmospheric and adaption efficiency can be obtained for mountain top operation with a micron isotope laser operating at 9.1 um, or a CO laser operating single line (P10) at about 5.0 (C-12)(O-18)2um, which was a close second in the evaluation. Four adaptive power transmitter system concepts were generated and evaluated, based on overall system efficiency, reliability, size and weight, advanced technology requirements and potential cost. A multiple source phased array was selected for detailed conceptual design. The system uses a unique adaption technique of phase locking independent laser oscillators which allows it to be both relatively inexpensive and most reliable with a predicted overall power transfer efficiency of 53%.
Design, fabrication, and testing of a SMA hybrid composite jet engine chevron
NASA Technical Reports Server (NTRS)
Turner, Travis L.; Cabell, Randolph H.; Cano, Roberto J.; Fleming, Gary A.
2006-01-01
Control of jet noise continues to be an important research topic. Exhaust nozzle chevrons have been shown to reduce jet noise, but parametric effects are not well understood. Additionally, thrust loss due to chevrons at cruise suggests significant benefit from deployable chevrons. The focus of this study is development of an active chevron concept for the primary purpose of parametric studies for jet noise reduction in the laboratory and technology development to leverage for full scale systems. The active chevron concept employed in this work consists of a laminated composite structure with embedded shape memory alloy (SMA) actuators, termed a SMA hybrid composite (SMAHC). The actuators are embedded on one side of the middle surface such that thermal excitation generates a moment and deflects the structure. A brief description of the chevron design is given followed by details of the fabrication approach. Results from bench top tests are presented and correlated with numerical predictions from a model for such structures that was recently implemented in MSC.Nastran and ABAQUS. Excellent performance and agreement with predictions is demonstrated. Results from tests in a representative flow environment are also presented. Excellent performance is again achieved for both open- and closed-loop tests, the latter demonstrating control to a specified immersion into the flow. The actuation authority and immersion performance is shown to be relatively insensitive to nozzle pressure ratio (NPR). Very repeatable immersion control with modest power requirements is demonstrated.
A quantum chemistry study of Qinghaosu
NASA Astrophysics Data System (ADS)
Gu, Jian-De; Chen, Kai-Xian; Jiang, Hua-Liang; Zhu, Wei-Liang; Chen, Jian-Zhong; Ji, Ru-Yun
1997-10-01
The powerful anti-malarial drug, Qinghaosu (Artemisinin), has been studied using ab initio methods. The DFT B3LYP method with the 6-31G ∗ basis set gives an excellent geometry compared to experiments, especially for the OO bond length and the 1,2,4-Trioxane ring subsystem. The R(OO) bond length predicted at this level is 1.460 Å, only 0.018 Å shorter than the experimental measurement. The vibrational analysis shows that the OO stretching mode is combined with the OC vibration mode, having the character of an OOC entity. The OO vibrational band at 722 cm -1 suggested in the experimental studies has been assigned as 1,2,4-trioxane ring breathing.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Godfrey, Andrew T.; Collins, Benjamin S.; Gentry, Cole A.
CASL members TVA, Westinghouse, and Oak Ridge National Laboratory have successfully completed a detailed simulation of the initial startup of Watts Bar Nuclear Unit 2 (WBN2) using the advanced reactor simulation tools known as VERA. WBN2 is the first commercial power reactor to join the nation’s electrical grid in over two decades, and the modern core design and availability of data make it an excellent benchmark for CASL. Calculations were performed three months prior to the startup, and in the first blind application of VERA to a new reactor, predicted criticality and physics parameters very close to those later measuredmore » by TVA. Subsequent calculations with the latest version of VERA and using exact measurement conditions improved the results even further.« less
Three-Dimensional Displacement Measurement Using Diffractive Optic Interferometry
NASA Technical Reports Server (NTRS)
Gilbert, John A.; Cole, Helen J.; Shepherd, Robert L.; Ashley Paul R.
1999-01-01
This paper introduces a powerful new optical method which utilizes diffractive optic interferometry (DOI) to measure both in-plane and out-of-plane displacement with variable sensitivity using the same optical system. Sensitivity is varied by utilizing various combinations of the different wavefronts produced by a conjugate pair of binary Optical elements; a transmission grating is used to produce several illumination beams while a reflective grating replicated on the surface of a specimen, provides the reference for the undeformed state. A derivation of the equations which govern the method is included along with a discussion Of the experimental tests conducted to verify the theory. Overall, the results are excellent, with experimental data agreeing to within a few percent of the theoretical predictions.
NASA Astrophysics Data System (ADS)
Coletta, Vincent P.; Evans, Jonathan
2008-10-01
We analyze the motion of a gravity powered model race car on a downhill track of variable slope. Using a simple algebraic function to approximate the height of the track as a function of the distance along the track, and taking account of the rotational energy of the wheels, rolling friction, and air resistance, we obtain analytic expressions for the velocity and time of the car as functions of the distance traveled along the track. Photogates are used to measure the time at selected points along the track, and the measured values are in excellent agreement with the values predicted from theory. The design and analysis of model race cars provides a good application of principles of mechanics and suggests interesting projects for classes in introductory and intermediate mechanics.
The first target experiments on the National Ignition Facility
NASA Astrophysics Data System (ADS)
Landen, O. L.; Glenzer, S. H.; Froula, D. H.; Dewald, E. L.; Suter, L. J.; Schneider, M. B.; Hinkel, D. E.; Fernandez, J. C.; Kline, J. L.; Goldman, S. R.; Braun, D. G.; Celliers, P. M.; Moon, S. J.; Robey, H. S.; Lanier, N. E.; Glendinning, S. G.; Blue, B. E.; Wilde, B. H.; Jones, O. S.; Schein, J.; Divol, L.; Kalantar, D. H.; Campbell, K. M.; Holder, J. P.; McDonald, J. W.; Niemann, C.; MacKinnon, A. J.; Collins, G. W.; Bradley, D. K.; Eggert, J. H.; Hicks, D. G.; Gregori, G.; Kirkwood, R. K.; Young, B. K.; Foster, J. M.; Hansen, J. F.; Perry, T. S.; Munro, D. H.; Baldis, H. A.; Grim, G. P.; Heeter, R. F.; Hegelich, M. B.; Montgomery, D. S.; Rochau, G. A.; Olson, R. E.; Turner, R. E.; Workman, J. B.; Berger, R. L.; Cohen, B. I.; Kruer, W. L.; Langdon, A. B.; Langer, S. H.; Meezan, N. B.; Rose, H. A.; Still, C. H.; Williams, E. A.; Dodd, E. S.; Edwards, M. J.; Monteil, M.-C.; Stevenson, R. M.; Thomas, B. R.; Coker, R. F.; Magelssen, G. R.; Rosen, P. A.; Stry, P. E.; Woods, D.; Weber, S. V.; Young, P. E.; Alvarez, S.; Armstrong, G.; Bahr, R.; Bourgade, J.-L.; Bower, D.; Celeste, J.; Chrisp, M.; Compton, S.; Cox, J.; Constantin, C.; Costa, R.; Duncan, J.; Ellis, A.; Emig, J.; Gautier, C.; Greenwood, A.; Griffith, R.; Holdner, F.; Holtmeier, G.; Hargrove, D.; James, T.; Kamperschroer, J.; Kimbrough, J.; Landon, M.; Lee, F. D.; Malone, R.; May, M.; Montelongo, S.; Moody, J.; Ng, E.; Nikitin, A.; Pellinen, D.; Piston, K.; Poole, M.; Rekow, V.; Rhodes, M.; Shepherd, R.; Shiromizu, S.; Voloshin, D.; Warrick, A.; Watts, P.; Weber, F.; Young, P.; Arnold, P.; Atherton, L.; Bardsley, G.; Bonanno, R.; Borger, T.; Bowers, M.; Bryant, R.; Buckman, S.; Burkhart, S.; Cooper, F.; Dixit, S. N.; Erbert, G.; Eder, D. C.; Ehrlich, R. E.; Felker, B.; Fornes, J.; Frieders, G.; Gardner, S.; Gates, C.; Gonzalez, M.; Grace, S.; Hall, T.; Haynam, C. A.; Heestand, G.; Henesian, M. A.; Hermann, M.; Hermes, G.; Huber, S.; Jancaitis, K.; Johnson, S.; Kauffman, B.; Kelleher, T.; Kohut, T.; Koniges, A. E.; Labiak, T.; Latray, D.; Lee, A.; Lund, D.; Mahavandi, S.; Manes, K. R.; Marshall, C.; McBride, J.; McCarville, T.; McGrew, L.; Menapace, J.; Mertens, E.; Murray, J.; Neumann, J.; Newton, M.; Opsahl, P.; Padilla, E.; Parham, T.; Parrish, G.; Petty, C.; Polk, M.; Powell, C.; Reinbachs, I.; Rinnert, R.; Riordan, B.; Ross, G.; Robert, V.; Tobin, M.; Sailors, S.; Saunders, R.; Schmitt, M.; Shaw, M.; Singh, M.; Spaeth, M.; Stephens, A.; Tietbohl, G.; Tuck, J.; van Wonterghem, B. M.; Vidal, R.; Wegner, P. J.; Whitman, P.; Williams, K.; Winward, K.; Work, K.; Wallace, R.; Nobile, A.; Bono, M.; Day, B.; Elliott, J.; Hatch, D.; Louis, H.; Manzenares, R.; O'Brien, D.; Papin, P.; Pierce, T.; Rivera, G.; Ruppe, J.; Sandoval, D.; Schmidt, D.; Valdez, L.; Zapata, K.; MacGowan, B. J.; Eckart, M. J.; Hsing, W. W.; Springer, P. T.; Hammel, B. A.; Moses, E. I.; Miller, G. H.
2007-08-01
A first set of shock timing, laser-plasma interaction, hohlraum energetics and hydrodynamic experiments have been performed using the first 4 beams of the National Ignition Facility (NIF), in support of indirect drive Inertial Confinement Fusion (ICF) and High Energy Density Physics (HEDP). In parallel, a robust set of optical and X-ray spectrometers, interferometer, calorimeters and imagers have been activated. The experiments have been undertaken with laser powers and energies of up to 8 TW and 17 kJ in flattop and shaped 1 9 ns pulses focused with various beam smoothing options. The experiments have demonstrated excellent agreement between measured and predicted laser-target coupling in foils and hohlraums, even when extended to a longer pulse regime unattainable at previous laser facilities, validated the predicted effects of beam smoothing on intense laser beam propagation in long scale-length plasmas and begun to test 3D codes by extending the study of laser driven hydrodynamic jets to 3D geometries.
Design Models for the Development of Helium-Carbon Sorption Crycoolers
NASA Technical Reports Server (NTRS)
Lindensmith, C. A.; Ahart, M.; Bhandari, P.; Wade, L. A.; Paine, C. G.
2000-01-01
We have developed models for predicting the performance of helium-based Joule-Thomson continuous-flow cryocoolers using charcoal-pumped sorption compressors. The models take as inputs the number of compressors, desired heat-lift, cold tip temperature, and available precooling temperature and provide design parameters as outputs. Future laboratory development will be used to verify and improve the models. We will present a preliminary design for a two-stage vibration-free cryocooler that is being proposed as part of a mid-infrared camera on NASA's Next Generation Space Telescope. Model predictions show that a 10 mW helium-carbon cryocooler with a base temperature of 5.5 K will reject less than 650 mW at 18 K. The total input power to the helium-carbon stage is 650 mW. These models, which run in MathCad and Microsoft Excel, can be coupled to similar models for hydrogen sorption coolers to give designs for 2-stage vibration-free cryocoolers that provide cooling from approx. 50 K to 4 K.
Design Models for the Development of Helium-Carbon Sorption Cryocoolers
NASA Technical Reports Server (NTRS)
Lindensmith, Chris A.; Ahart, M.; Bhandari, P.; Wade, L. A.; Paine, C. G.
2000-01-01
We have developed models for predicting the performance of helium-based Joule-Thomson continuous-flow cryocoolers using charcoal-pumped sorption compressors. The models take as inputs the number of compressors, desired heat-lift, cold tip temperature, and available precooling temperature and provide design parameters as outputs. Future laboratory development will be used to verify and improve the models. We will present a preliminary design for a two-stage vibration-free cryocooler that is being proposed as part of a mid-infrared camera on NASA's Next Generation Space Telescope. Model predictions show that a 10 mW helium-carbon cryocooler with a base temperature of 5.5 K will reject less than 650 mW at 18 K. The total input power to the helium-carbon stage is 650 mW. These models, which run in MathCad and Microsoft Excel, can be coupled to similar models for hydrogen sorption coolers to give designs for 2-stage vibration-free cryocoolers that provide cooling from approximately 50 K to 4 K.
Nishioka, Yujiro; Yoshioka, Ryuji; Gonoi, Wataru; Sugawara, Toshitaka; Yoshida, Shuntaro; Hashimoto, Masaji; Shindoh, Junichi
2018-05-01
The computed tomography (CT) morphologic response of colorectal liver metastases (CLM) after chemotherapy is reportedly correlated with pathologic response and survival outcomes of patients undergoing surgery. However, they are rather subjective criteria and not evaluable without adequate quality of contrast-enhanced CT images. This study sought the potential use of fluorine-18-fluorodeoxyglucose (FDG) positron emission tomography (PET) as an objective substitute for predicting pathological viability of CLM after chemotherapy. Predictive ability of tumor viability of ≤10% was compared between FDG-PET/CT and contrast-enhanced CT in 34 patients who underwent curative surgical resection for CLM after chemotherapy. The CT morphology and response were defined according to the reported criteria (Chun YS, JAMA 2009). The mean standard uptake value (SUV-mean) in CLM was significantly lower in patients with group 1 and group 2 CT morphology (median, 2.53 and 3.00, respectively) than in group 3 (median, 3.32). The tumor SUV-mean showed moderate correlation with the tumor pathologic viability (r = 0.660, P < 0.0001). A receiver operating characteristic curve analysis revealed that both the tumor SUV-mean (area under the curve [AUC], 0.916; the cut-off value, 3.00) and the CT morphology (AUC, 0.882) have excellent predictive power for ≤10% of tumor viability, while degree of tumor shrinkage showed lower predictive power (AUC, 0.692). FDG-PET shows significant correlation with pathologic viability of CLM after chemotherapy and may offer additional objective information for estimating tumor viability when the CT morphologic response is not evaluable.
Physiologically based pharmacokinetic model for quinocetone in pigs and extrapolation to mequindox.
Zhu, Xudong; Huang, Lingli; Xu, Yamei; Xie, Shuyu; Pan, Yuanhu; Chen, Dongmei; Liu, Zhenli; Yuan, Zonghui
2017-02-01
Physiologically based pharmacokinetic (PBPK) models are scientific methods used to predict veterinary drug residues that may occur in food-producing animals, and which have powerful extrapolation ability. Quinocetone (QCT) and mequindox (MEQ) are widely used in China for the prevention of bacterial infections and promoting animal growth, but their abuse causes a potential threat to human health. In this study, a flow-limited PBPK model was developed to simulate simultaneously residue depletion of QCT and its marker residue dideoxyquinocetone (DQCT) in pigs. The model included compartments for blood, liver, kidney, muscle and fat and an extra compartment representing the other tissues. Physiological parameters were obtained from the literature. Plasma protein binding rates, renal clearances and tissue/plasma partition coefficients were determined by in vitro and in vivo experiments. The model was calibrated and validated with several pharmacokinetic and residue-depletion datasets from the literature. Sensitivity analysis and Monte Carlo simulations were incorporated into the PBPK model to estimate individual variation of residual concentrations. The PBPK model for MEQ, the congener compound of QCT, was built through cross-compound extrapolation based on the model for QCT. The QCT model accurately predicted the concentrations of QCT and DQCT in various tissues at most time points, especially the later time points. Correlation coefficients between predicted and measured values for all tissues were greater than 0.9. Monte Carlo simulations showed excellent consistency between estimated concentration distributions and measured data points. The extrapolation model also showed good predictive power. The present models contribute to improve the residue monitoring systems of QCT and MEQ, and provide evidence of the usefulness of PBPK model extrapolation for the same kinds of compounds.
Zhang, Lin; Sánchez del Río, Manuel; Monaco, Giulio; Detlefs, Carsten; Roth, Thomas; Chumakov, Aleksandr I.; Glatzel, Pieter
2013-01-01
X-ray crystal monochromators exposed to white-beam X-rays in third-generation synchrotron light sources are subject to thermal deformations that must be minimized using an adequate cooling system. A new approach was used to measure the crystal shape profile and slope of several cryogenically cooled (liquid nitrogen) silicon monochromators as a function of beam power in situ and under heat load. The method utilizes multiple angular scans across the Bragg peak (rocking curve) at various vertical positions of a narrow-gap slit downstream from the monochromator. When increasing the beam power, the surface of the liquid-nitrogen-cooled silicon crystal deforms from a concave shape at low heat load to a convex shape at high heat load, passing through an approximately flat shape at intermediate heat load. Finite-element analysis is used to calculate the crystal thermal deformations. The simulated crystal profiles and slopes are in excellent agreement with experiments. The parameters used in simulations, such as material properties, absorbed power distribution on the crystal and cooling boundary conditions, are described in detail as they are fundamental for obtaining accurate results. PMID:23765298
Modelling explicit fracture of nuclear fuel pellets using peridynamics
NASA Astrophysics Data System (ADS)
Mella, R.; Wenman, M. R.
2015-12-01
Three dimensional models of explicit cracking of nuclear fuel pellets for a variety of power ratings have been explored with peridynamics, a non-local, mesh free, fracture mechanics method. These models were implemented in the explicitly integrated molecular dynamics code LAMMPS, which was modified to include thermal strains in solid bodies. The models of fuel fracture, during initial power transients, are shown to correlate with the mean number of cracks observed on the inner and outer edges of the pellet, by experimental post irradiation examination of fuel, for power ratings of 10 and 15 W g-1 UO2. The models of the pellet show the ability to predict expected features such as the mid-height pellet crack, the correct number of radial cracks and initiation and coalescence of radial cracks. This work presents a modelling alternative to empirical fracture data found in many fuel performance codes and requires just one parameter of fracture strain. Weibull distributions of crack numbers were fitted to both numerical and experimental data using maximum likelihood estimation so that statistical comparison could be made. The findings show P-values of less than 0.5% suggesting an excellent agreement between model and experimental distributions.
Yan, Pengtao; Zhang, Xuesha; Hou, Meiling; Liu, Yanyan; Liu, Ting; Liu, Kang; Zhang, Ruijun
2018-06-22
In order to develop energy storage devices with high power performance, electrodes should hold well-defined pathways for efficient ionic and electronic transport. Herein, we demonstrate a highly conductive graphene nanosheet/nanometer-sized carbide-derived carbon framework (hcGNS/nCDC). In this architecture, nCDC possesses short transport paths for electrolyte ions, thus ensuring the rapid ions transportation. The excellent electrical conductivity of hcGNS can reduce the electrode internal resistance for the supercapacitor and thus endows the hcGNS/nCDC composite electrodes with excellent electronic transportation performance. Electrochemical measurements show that the cyclic voltammogram of hcGNS/nCDC can maintain a rectangular-like shape with the increase of the scan rate from 5 mV s -1 to 20 V s -1 , and the specific capacitance retention is up to 51% even at a high scan rate of 20 V s -1 , suggesting ultrahigh power performance, which, to the best of our knowledge, is among the best power performances reported so far for the carbon materials. Furthermore, the hcGNS/nCDC composite also shows an excellent cycling stability (no drop in its capacitance occurs even after 10000 cycles). This work demonstrates the advantage in the ultrahigh power performance for the framework having both short transport pathways for electrolyte ions and high electrical conductivity.
NASA Astrophysics Data System (ADS)
Yan, Pengtao; Zhang, Xuesha; Hou, Meiling; Liu, Yanyan; Liu, Ting; Liu, Kang; Zhang, Ruijun
2018-06-01
In order to develop energy storage devices with high power performance, electrodes should hold well-defined pathways for efficient ionic and electronic transport. Herein, we demonstrate a highly conductive graphene nanosheet/nanometer-sized carbide-derived carbon framework (hcGNS/nCDC). In this architecture, nCDC possesses short transport paths for electrolyte ions, thus ensuring the rapid ions transportation. The excellent electrical conductivity of hcGNS can reduce the electrode internal resistance for the supercapacitor and thus endows the hcGNS/nCDC composite electrodes with excellent electronic transportation performance. Electrochemical measurements show that the cyclic voltammogram of hcGNS/nCDC can maintain a rectangular-like shape with the increase of the scan rate from 5 mV s‑1 to 20 V s‑1, and the specific capacitance retention is up to 51% even at a high scan rate of 20 V s‑1, suggesting ultrahigh power performance, which, to the best of our knowledge, is among the best power performances reported so far for the carbon materials. Furthermore, the hcGNS/nCDC composite also shows an excellent cycling stability (no drop in its capacitance occurs even after 10000 cycles). This work demonstrates the advantage in the ultrahigh power performance for the framework having both short transport pathways for electrolyte ions and high electrical conductivity.
Diversity and Excellence in Higher Education: Is There a Conflict?
ERIC Educational Resources Information Center
Ghosh, Ratna
2012-01-01
In her teaching, research, and community activities in Canada, the author has repeatedly confronted questions regarding equality, diversity, and power. In this article, the author discusses diversity and equal opportunity to achieve excellence in education. Reflecting on these issues should help everyone to understand the complexities involved in…
Striving for Power: Hemingway's Neurosis.
ERIC Educational Resources Information Center
Tavernier-Courbin, Jacqueline
1978-01-01
Analyzes the psychological aspects of Ernest Hemingway's inability to accept old age as symptomatic of his neurotic quest for power, which is seen in his drive to excel in pursuits which he thought important, and to take his life when he realized that he was past the peak of his powers. (MB)
A novel model to predict gas-phase hydroxyl radical oxidation kinetics of polychlorinated compounds.
Luo, Shuang; Wei, Zongsu; Spinney, Richard; Yang, Zhihui; Chai, Liyuan; Xiao, Ruiyang
2017-04-01
In this study, a novel model based on aromatic meta-substituent grouping was presented to predict the second-order rate constants (k) for OH oxidation of PCBs in gas-phase. Since the oxidation kinetics are dependent on the chlorination degree and position, we hypothesized that it may be more accurate for k value prediction if we group PCB congeners based on substitution positions (i.e., ortho (o), meta (m), and para (p)). To test this hypothesis, we examined the correlation of polarizability (α), a quantum chemical based descriptor for k values, with an empirical Hammett constant (σ + ) on each substitution position. Our result shows that α is highly linearly correlated to ∑σ o,m,p + based on aromatic meta-substituents leading to the grouping based predictive model. With the new model, the calculated k values exhibited an excellent agreement with experimental measurements, and greater predictive power than the quantum chemical based quantitative structure activity relationship (QSAR) model. Further, the relationship of α and ∑σ o,m,p + for PCDDs congeners, together with highest occupied molecular orbital (HOMO) distribution, were used to validate the aromatic meta-substituent grouping method. This newly developed model features a combination of good predictability of quantum chemical based QSAR model and simplicity of Hammett relationship, showing a great potential for fast and computational tractable prediction of k values for gas-phase OH oxidation of polychlorinated compounds. Copyright © 2017 Elsevier Ltd. All rights reserved.
Predicting protein structures with a multiplayer online game.
Cooper, Seth; Khatib, Firas; Treuille, Adrien; Barbero, Janos; Lee, Jeehyung; Beenen, Michael; Leaver-Fay, Andrew; Baker, David; Popović, Zoran; Players, Foldit
2010-08-05
People exert large amounts of problem-solving effort playing computer games. Simple image- and text-recognition tasks have been successfully 'crowd-sourced' through games, but it is not clear if more complex scientific problems can be solved with human-directed computing. Protein structure prediction is one such problem: locating the biologically relevant native conformation of a protein is a formidable computational challenge given the very large size of the search space. Here we describe Foldit, a multiplayer online game that engages non-scientists in solving hard prediction problems. Foldit players interact with protein structures using direct manipulation tools and user-friendly versions of algorithms from the Rosetta structure prediction methodology, while they compete and collaborate to optimize the computed energy. We show that top-ranked Foldit players excel at solving challenging structure refinement problems in which substantial backbone rearrangements are necessary to achieve the burial of hydrophobic residues. Players working collaboratively develop a rich assortment of new strategies and algorithms; unlike computational approaches, they explore not only the conformational space but also the space of possible search strategies. The integration of human visual problem-solving and strategy development capabilities with traditional computational algorithms through interactive multiplayer games is a powerful new approach to solving computationally-limited scientific problems.
Ramji, Hasnain; Moore, Johnny; Moore, C B Tara; Shah, Sunil
2016-04-01
To optimise intraocular lens (IOL) power calculation techniques for a segmental multifocal IOL, LENTIS™ MPlus(®) (Oculentis GmbH, Berlin, Germany) and assess outcomes. A retrospective consecutive non-randomised case series of patients receiving the MPlus(®) IOL following cataract surgery or clear lens extraction was performed at a privately owned ophthalmic hospital, Midland Eye, Solihull, UK. Analysis was undertaken of 116 eyes, with uncomplicated lens replacement surgery using the LENTIS™ MPlus(®) lenses. Pre-operative biometry data were stratified into short (<22.00 mm) and long axial lengths (ALs) (≥22.00 mm). IOL power predictions were calculated with SRK/T, Holladay I, Hoffer Q, Holladay II and Haigis formulae and compared to the final manifest refraction. These were compared with the OKULIX ray tracing method and the stratification technique suggested by the Royal College of Ophthalmologists (RCOphth). Using SRK/T for long eyes and Hoffer Q for short eyes, 64% achieved postoperative subjective refractions of ≤±0.25 D, 83%≤±0.50 D and 93%≤±0.75 D, with a maximum predictive error of 1.25D. No specific calculation method performed best across all ALs; however for ALs under 22 mm Hoffer Q and Holliday I methods performed best. Excellent but equivalent overall refractive results were found between all biometry methods used in this multifocal IOL study. For eyes with ALs under 22 mm Hoffer Q and Holliday I performed best. Current techniques mean that patients are still likely to need top up glasses for certain situations. Copyright © 2015 Elsevier Ltd. All rights reserved.
OAO-C end-of-mission power subsystem engineering evaluation
NASA Technical Reports Server (NTRS)
Tasevoli, M.
1982-01-01
The battery performance on both Orbiting Astronomical Observatory missions was excellent. The end-of-mission power subsystem tests on the battery and the solar arrays provides a real-time degradation analysis for these two components.
High-Sensitivity and Low-Power Flexible Schottky Hydrogen Sensor Based on Silicon Nanomembrane.
Cho, Minkyu; Yun, Jeonghoon; Kwon, Donguk; Kim, Kyuyoung; Park, Inkyu
2018-04-18
High-performance and low-power flexible Schottky diode-based hydrogen sensor was developed. The sensor was fabricated by releasing Si nanomembrane (SiNM) and transferring onto a plastic substrate. After the transfer, palladium (Pd) and aluminum (Al) were selectively deposited as a sensing material and an electrode, respectively. The top-down fabrication process of flexible Pd/SiNM diode H 2 sensor is facile compared to other existing bottom-up fabricated flexible gas sensors while showing excellent H 2 sensitivity (Δ I/ I 0 > 700-0.5% H 2 concentrations) and fast response time (τ 10-90 = 22 s) at room temperature. In addition, selectivity, humidity, and mechanical tests verify that the sensor has excellent reliability and robustness under various environments. The operating power consumption of the sensor is only in the nanowatt range, which indicates its potential applications in low-power portable and wearable electronics.
Peng, Youyi; Keenan, Susan M; Zhang, Qiang; Kholodovych, Vladyslav; Welsh, William J
2005-03-10
Three-dimensional quantitative structure-activity relationship (3D-QSAR) models were constructed using comparative molecular field analysis (CoMFA) on a series of opioid receptor antagonists. To obtain statistically significant and robust CoMFA models, a sizable data set of naltrindole and naltrexone analogues was assembled by pooling biological and structural data from independent studies. A process of "leave one data set out", similar to the traditional "leave one out" cross-validation procedure employed in partial least squares (PLS) analysis, was utilized to study the feasibility of pooling data in the present case. These studies indicate that our approach yields statistically significant and highly predictive CoMFA models from the pooled data set of delta, mu, and kappa opioid receptor antagonists. All models showed excellent internal predictability and self-consistency: q(2) = 0.69/r(2) = 0.91 (delta), q(2) = 0.67/r(2) = 0.92 (mu), and q(2) = 0.60/r(2) = 0.96 (kappa). The CoMFA models were further validated using two separate test sets: one test set was selected randomly from the pooled data set, while the other test set was retrieved from other published sources. The overall excellent agreement between CoMFA-predicted and experimental binding affinities for a structurally diverse array of ligands across all three opioid receptor subtypes gives testimony to the superb predictive power of these models. CoMFA field analysis demonstrated that the variations in binding affinity of opioid antagonists are dominated by steric rather than electrostatic interactions with the three opioid receptor binding sites. The CoMFA steric-electrostatic contour maps corresponding to the delta, mu, and kappa opioid receptor subtypes reflected the characteristic similarities and differences in the familiar "message-address" concept of opioid receptor ligands. Structural modifications to increase selectivity for the delta over mu and kappa opioid receptors have been predicted on the basis of the CoMFA contour maps. The structure-activity relationships (SARs) together with the CoMFA models should find utility for the rational design of subtype-selective opioid receptor antagonists.
Control of Solar Power Plants Connected Grid with Simple Calculation Method on Residential Homes
NASA Astrophysics Data System (ADS)
Kananda, Kiki; Nazir, Refdinal
2017-12-01
One of the most compatible renewable energy in all regions to apply is solar energy. Solar power plants can be built connected to existing or stand-alone power grids. In assisting the residential electricity in which there is a power grid, then a small scale solar energy power plants is very appropriate. However, the general constraint of solar energy power plants is still low in terms of efficiency. Therefore, this study will explain how to control the power of solar power plants more optimally, which is expected to reactive power to zero to raise efficiency. This is a continuation of previous research using Newton Rapshon control method. In this study we introduce a simple method by using ordinary mathematical calculations of solar-related equations. In this model, 10 PV modules type of ND T060M1 with a 60 Wp capacity are used. The calculations performed using MATLAB Simulink provide excellent value. For PCC voltage values obtained a stable quantity of approximately 220 V. At a maximum irradiation condition of 1000 W / m2, the reactive power value of Q solar generating system maximum 20.48 Var and maximum active power of 417.5 W. In the condition of lower irradiation, value of reactive power Q almost close to zero 0.77Var. This simple mathematical method can provide excellent quality control power values.
NASA Astrophysics Data System (ADS)
Zhang, Yu; Zhao, Jiyun; Wang, Peng; Skyllas-Kazacos, Maria; Xiong, Binyu; Badrinarayanan, Rajagopalan
2015-09-01
Electrical equivalent circuit models demonstrate excellent adaptability and simplicity in predicting the electrical dynamic response of the all-vanadium redox flow battery (VRB) system. However, only a few publications that focus on this topic are available. The paper presents a comprehensive equivalent circuit model of VRB for system level analysis. The least square method is used to identify both steady-state and dynamic characteristics of VRB. The inherent features of the flow battery such as shunt current, ion diffusion and pumping energy consumption are also considered. The proposed model consists of an open-circuit voltage source, two parasitic shunt bypass circuits, a 1st order resistor-capacitor network and a hydraulic circuit model. Validated with experimental data, the proposed model demonstrates excellent accuracy. The mean-error of terminal voltage and pump consumption are 0.09 V and 0.49 W respectively. Based on the proposed model, self-discharge and system efficiency are studied. An optimal flow rate which maximizes the system efficiency is identified. Finally, the dynamic responses of the proposed VRB model under step current profiles are presented. Variables such as SOC and stack terminal voltage can be provided.
The wind power prediction research based on mind evolutionary algorithm
NASA Astrophysics Data System (ADS)
Zhuang, Ling; Zhao, Xinjian; Ji, Tianming; Miao, Jingwen; Cui, Haina
2018-04-01
When the wind power is connected to the power grid, its characteristics of fluctuation, intermittent and randomness will affect the stability of the power system. The wind power prediction can guarantee the power quality and reduce the operating cost of power system. There were some limitations in several traditional wind power prediction methods. On the basis, the wind power prediction method based on Mind Evolutionary Algorithm (MEA) is put forward and a prediction model is provided. The experimental results demonstrate that MEA performs efficiently in term of the wind power prediction. The MEA method has broad prospect of engineering application.
Rapid assessment of nonlinear optical propagation effects in dielectrics
Hoyo, J. del; de la Cruz, A. Ruiz; Grace, E.; Ferrer, A.; Siegel, J.; Pasquazi, A.; Assanto, G.; Solis, J.
2015-01-01
Ultrafast laser processing applications need fast approaches to assess the nonlinear propagation of the laser beam in order to predict the optimal range of processing parameters in a wide variety of cases. We develop here a method based on the simple monitoring of the nonlinear beam shaping against numerical prediction. The numerical code solves the nonlinear Schrödinger equation with nonlinear absorption under simplified conditions by employing a state-of-the art computationally efficient approach. By comparing with experimental results we can rapidly estimate the nonlinear refractive index and nonlinear absorption coefficients of the material. The validity of this approach has been tested in a variety of experiments where nonlinearities play a key role, like spatial soliton shaping or fs-laser waveguide writing. The approach provides excellent results for propagated power densities for which free carrier generation effects can be neglected. Above such a threshold, the peculiarities of the nonlinear propagation of elliptical beams enable acquiring an instantaneous picture of the deposition of energy inside the material realistic enough to estimate the effective nonlinear refractive index and nonlinear absorption coefficients that can be used for predicting the spatial distribution of energy deposition inside the material and controlling the beam in the writing process. PMID:25564243
Coherence bandwidth loss in transionospheric radio propagation
NASA Technical Reports Server (NTRS)
Rino, C. L.; Gonzalez, V. H.; Hessing, A. R.
1980-01-01
In this report a theoretical model is developed that predicts the single-point, two-frequency coherence function for transionospheric radio waves. The theoretical model is compared to measured complex frequency correlation coefficients using data from the seven equispaced, phase-coherent UHF signals transmitted by the Wideband satellite. The theory and data are in excellent agreement. The theory is critically dependent upon the power-law index, and the frequency coherence data clearly favor the comparatively small spectral indices that have been consistently measured from the wideband satellite phase data. A model for estimating the pulse delay jitter induced by the coherence bandwidth loss is also developed and compared with the actual delay jitter observed on synthesized pulses obtained from the Wideband UFH comb. The results are in good agreement with the theory. The results presented in this report, which are based on an asymptotic theory, are compared with the more commonly used quadratic theory. The model developed and validated in this report can be used to predict the effects of coherence bandwidth loss in disturbed nuclear environments. Simple formulas for the resultant pulse delay jitter are derived that can be used in predictive codes.
Conversion gain and noise of niobium superconducting hot-electron-mixers
NASA Technical Reports Server (NTRS)
Ekstrom, Hans; Karasik, Boris S.; Kollberg, Erik L.; Yngvesson, Sigfrid
1995-01-01
A study has been done of microwave mixing at 20 GHz using the nonlinear (power dependent) resistance of thin niobium strips in the resistive state. Our experiments give evidence that electron-heating is the main cause of the nonlinear phenomenon. Also a detailed phenomenological theory for the determination of conversion properties is presented. This theory is capable of predicting the frequency-conversion loss rather accurately for arbitrary bias by examining the I-V-characteristic. Knowing the electron temperature relaxation time, and using parameters derived from the I-V-characteristic also allows us to predict the -3 dB IF bandwidth. Experimental results are in excellent agreement with the theoretical predictions. The requirements on the mode of operation and on the film parameters for minimizing the conversion loss (and even achieving conversion gain) are discussed in some detail. Our measurements demonstrate an intrinsic conversion loss as low as 1 dB. The maximum IF frequency defined for -3 dB drop in conversion gain, is about 80 MHz. Noise measurements indicate a device output noise temperature of about 50 K and SSB mixer noise temperature below 250 K. This type of mixer is considered very promising for use in low-noise heterodyne receivers at THz frequencies.
Rapid assessment of nonlinear optical propagation effects in dielectrics.
del Hoyo, J; de la Cruz, A Ruiz; Grace, E; Ferrer, A; Siegel, J; Pasquazi, A; Assanto, G; Solis, J
2015-01-07
Ultrafast laser processing applications need fast approaches to assess the nonlinear propagation of the laser beam in order to predict the optimal range of processing parameters in a wide variety of cases. We develop here a method based on the simple monitoring of the nonlinear beam shaping against numerical prediction. The numerical code solves the nonlinear Schrödinger equation with nonlinear absorption under simplified conditions by employing a state-of-the art computationally efficient approach. By comparing with experimental results we can rapidly estimate the nonlinear refractive index and nonlinear absorption coefficients of the material. The validity of this approach has been tested in a variety of experiments where nonlinearities play a key role, like spatial soliton shaping or fs-laser waveguide writing. The approach provides excellent results for propagated power densities for which free carrier generation effects can be neglected. Above such a threshold, the peculiarities of the nonlinear propagation of elliptical beams enable acquiring an instantaneous picture of the deposition of energy inside the material realistic enough to estimate the effective nonlinear refractive index and nonlinear absorption coefficients that can be used for predicting the spatial distribution of energy deposition inside the material and controlling the beam in the writing process.
Rapid assessment of nonlinear optical propagation effects in dielectrics
NASA Astrophysics Data System (ADS)
Hoyo, J. Del; de La Cruz, A. Ruiz; Grace, E.; Ferrer, A.; Siegel, J.; Pasquazi, A.; Assanto, G.; Solis, J.
2015-01-01
Ultrafast laser processing applications need fast approaches to assess the nonlinear propagation of the laser beam in order to predict the optimal range of processing parameters in a wide variety of cases. We develop here a method based on the simple monitoring of the nonlinear beam shaping against numerical prediction. The numerical code solves the nonlinear Schrödinger equation with nonlinear absorption under simplified conditions by employing a state-of-the art computationally efficient approach. By comparing with experimental results we can rapidly estimate the nonlinear refractive index and nonlinear absorption coefficients of the material. The validity of this approach has been tested in a variety of experiments where nonlinearities play a key role, like spatial soliton shaping or fs-laser waveguide writing. The approach provides excellent results for propagated power densities for which free carrier generation effects can be neglected. Above such a threshold, the peculiarities of the nonlinear propagation of elliptical beams enable acquiring an instantaneous picture of the deposition of energy inside the material realistic enough to estimate the effective nonlinear refractive index and nonlinear absorption coefficients that can be used for predicting the spatial distribution of energy deposition inside the material and controlling the beam in the writing process.
Stræde, Mia; Brabrand, Mikkel
2014-01-01
Clinical scores can be of aid to predict early mortality after admission to a medical admission unit. A developed scoring system needs to be externally validated to minimise the risk of the discriminatory power and calibration to be falsely elevated. We performed the present study with the objective of validating the Simple Clinical Score (SCS) and the HOTEL score, two existing risk stratification systems that predict mortality for medical patients based solely on clinical information, but not only vital signs. Pre-planned prospective observational cohort study. Danish 460-bed regional teaching hospital. We included 3046 consecutive patients from 2 October 2008 until 19 February 2009. 26 (0.9%) died within one calendar day and 196 (6.4%) died within 30 days. We calculated SCS for 1080 patients. We found an AUROC of 0.960 (95% confidence interval [CI], 0.932 to 0.988) for 24-hours mortality and 0.826 (95% CI, 0.774-0.879) for 30-day mortality, and goodness-of-fit test, χ(2) = 2.68 (10 degrees of freedom), P = 0.998 and χ(2) = 4.00, P = 0.947, respectively. We included 1470 patients when calculating the HOTEL score. Discriminatory power (AUROC) was 0.931 (95% CI, 0.901-0.962) for 24-hours mortality and goodness-of-fit test, χ(2) = 5.56 (10 degrees of freedom), P = 0.234. We find that both the SCS and HOTEL scores showed an excellent to outstanding ability in identifying patients at high risk of dying with good or acceptable precision.
Advance Power Technology Experiment for the Starshine 3 Satellite
NASA Technical Reports Server (NTRS)
Jenkins, Phillip; Scheiman, David; Wilt, David; Raffaelle, Ryne; Button, Robert; Smith, Mark; Kerslake, Thomas; Miller, Thomas; Bailey, Sheila (Technical Monitor); Hepp, A. (Technical Monitor)
2001-01-01
The Starshine 3 satellite will carry several power technology demonstrations. Since Starshine 3 is primarily a passive experiment and does not need electrical power to successfully complete its mission, the requirement for a highly reliable power system is greatly reduced. This creates an excellent opportunity to test new power technologies. Several government and commercial interests have teamed up to provide Starshine 3 with a small power system using state-of-the-art components. Starshine 3 will also fly novel integrated microelectronic power supplies (IWS) for evaluation.
Advance Power Technology Demonstration on Starshine 3
NASA Technical Reports Server (NTRS)
Jenkins, Phillip; Scheiman, David; Wilt, David; Raffaelle, Ryne; Button, Robert; Smith, Mark; Kerslake, Thomas; Miller, Thomas
2002-01-01
The Starshine 3 satellite will carry several power technology demonstrations. Since Starshine 3 is primarily a passive experiment and does not need electrical power to successfully complete its mission, the requirement for a highly reliable power system is greatly reduced. This creates an excellent opportunity to test new power technologies. Several government and commercial interests have teamed up to provide Starshine 3 with a small power system using state-of-the-art components. Starshine 3 will also fly novel integrated microelectronic power supplies (IMPS) for evaluation.
Teaching Excellence for All Our Students
ERIC Educational Resources Information Center
King, Sabrina Hope; Watson, Audra
2010-01-01
Education has the power to change the world. We wrote this article in the spirit of the hope embodied by the election of President Obama and the critical need for improved teaching to benefit all the nation's students. This article offers a synthesis of the characteristics of excellent teaching for the diverse student population. This article…
508 Compliance: Preparing Presentations, Excel Files, Websites, and Multimedia Products
ERIC Educational Resources Information Center
Regional Educational Laboratory, 2014
2014-01-01
PowerPoint presentations, Excel documents, Web pages, and videos posted on federal websites must meet the requirements of the 1998 amendment to Section 508 of the Rehabilitation Act. Doing so ensures that these materials are accessible to a wide range of people with disabilities, including visual, auditory, sensory, and motor impairments. These…
Excel Yourself with Personalised Email Messages
ERIC Educational Resources Information Center
McClean, Stephen
2008-01-01
Combining the Excel spreadsheet with an email program provides a very powerful tool for sending students personalised emails. Most email clients now support a Mail Merge facility whereby a generic template is created and information unique to each student record in the spreadsheet is filled into that template, generating tens if not hundreds of…
Public Doublespeak, Critical Reading, and Verbal Action.
ERIC Educational Resources Information Center
Coe, Richard M.
1998-01-01
Suggests that public doublespeak is an abuse of language, power, and people and that it is an excellent site for investigating and understanding the power of discourse. Discusses motivation for doublespeak, skillful use of language, and deconstructing doublespeak. (RS)
Thermodynamics and proton activities of protic ionic liquids with quantum cluster equilibrium theory
NASA Astrophysics Data System (ADS)
Ingenmey, Johannes; von Domaros, Michael; Perlt, Eva; Verevkin, Sergey P.; Kirchner, Barbara
2018-05-01
We applied the binary Quantum Cluster Equilibrium (bQCE) method to a number of alkylammonium-based protic ionic liquids in order to predict boiling points, vaporization enthalpies, and proton activities. The theory combines statistical thermodynamics of van-der-Waals-type clusters with ab initio quantum chemistry and yields the partition functions (and associated thermodynamic potentials) of binary mixtures over a wide range of thermodynamic phase points. Unlike conventional cluster approaches that are limited to the prediction of thermodynamic properties, dissociation reactions can be effortlessly included into the bQCE formalism, giving access to ionicities, as well. The method is open to quantum chemical methods at any level of theory, but combination with low-cost composite density functional theory methods and the proposed systematic approach to generate cluster sets provides a computationally inexpensive and mostly parameter-free way to predict such properties at good-to-excellent accuracy. Boiling points can be predicted within an accuracy of 50 K, reaching excellent accuracy for ethylammonium nitrate. Vaporization enthalpies are predicted within an accuracy of 20 kJ mol-1 and can be systematically interpreted on a molecular level. We present the first theoretical approach to predict proton activities in protic ionic liquids, with results fitting well into the experimentally observed correlation. Furthermore, enthalpies of vaporization were measured experimentally for some alkylammonium nitrates and an excellent linear correlation with vaporization enthalpies of their respective parent amines is observed.
Zhang, Yan-Yan; Liu, Houfu; Summerfield, Scott G; Luscombe, Christopher N; Sahi, Jasminder
2016-05-02
Estimation of uptake across the blood-brain barrier (BBB) is key to designing central nervous system (CNS) therapeutics. In silico approaches ranging from physicochemical rules to quantitative structure-activity relationship (QSAR) models are utilized to predict potential for CNS penetration of new chemical entities. However, there are still gaps in our knowledge of (1) the relationship between marketed human drug derived CNS-accessible chemical space and preclinical neuropharmacokinetic (neuroPK) data, (2) interpretability of the selected physicochemical descriptors, and (3) correlation of the in vitro human P-glycoprotein (P-gp) efflux ratio (ER) and in vivo rodent unbound brain-to-blood ratio (Kp,uu), as these are assays routinely used to predict clinical CNS exposure, during drug discovery. To close these gaps, we explored the CNS druglike property boundaries of 920 market oral drugs (315 CNS and 605 non-CNS) and 846 compounds (54 CNS drugs and 792 proprietary GlaxoSmithKline compounds) with available rat Kp,uu data. The exact permeability coefficient (Pexact) and P-gp ER were determined for 176 compounds from the rat Kp,uu data set. Receiver operating characteristic curves were performed to evaluate the predictive power of human P-gp ER for rat Kp,uu. Our data demonstrates that simple physicochemical rules (most acidic pKa ≥ 9.5 and TPSA < 100) in combination with P-gp ER < 1.5 provide mechanistic insights for filtering BBB permeable compounds. For comparison, six classification modeling methods were investigated using multiple sets of in silico molecular descriptors. We present a random forest model with excellent predictive power (∼0.75 overall accuracy) using the rat neuroPK data set. We also observed good concordance between the structural interpretation results and physicochemical descriptor importance from the Kp,uu classification QSAR model. In summary, we propose a novel, hybrid in silico/in vitro approach and an in silico screening model for the effective development of chemical series with the potential to achieve optimal CNS exposure.
A Dynamic Network Model to Explain the Development of Excellent Human Performance
Den Hartigh, Ruud J. R.; Van Dijk, Marijn W. G.; Steenbeek, Henderien W.; Van Geert, Paul L. C.
2016-01-01
Across different domains, from sports to science, some individuals accomplish excellent levels of performance. For over 150 years, researchers have debated the roles of specific nature and nurture components to develop excellence. In this article, we argue that the key to excellence does not reside in specific underlying components, but rather in the ongoing interactions among the components. We propose that excellence emerges out of dynamic networks consisting of idiosyncratic mixtures of interacting components such as genetic endowment, motivation, practice, and coaching. Using computer simulations we demonstrate that the dynamic network model accurately predicts typical properties of excellence reported in the literature, such as the idiosyncratic developmental trajectories leading to excellence and the highly skewed distributions of productivity present in virtually any achievement domain. Based on this novel theoretical perspective on excellent human performance, this article concludes by suggesting policy implications and directions for future research. PMID:27148140
Lambert-Girard, Simon; Allard, Martin; Piché, Michel; Babin, François
2015-04-01
The development of a novel broadband and tunable optical parametric generator (OPG) is presented. The OPG properties are studied numerically and experimentally in order to optimize the generator's use in a broadband spectroscopic LIDAR operating in the short and mid-infrared. This paper discusses trade-offs to be made on the properties of the pump, crystal, and seeding signal in order to optimize the pulse spectral density and divergence while enabling energy scaling. A seed with a large spectral bandwidth is shown to enhance the pulse-to-pulse stability and optimize the pulse spectral density. A numerical model shows excellent agreement with output power measurements; the model predicts that a pump having a large number of longitudinal modes improves conversion efficiency and pulse stability.
Shiino, A; Nishida, Y; Yasuda, H; Suzuki, M; Matsuda, M; Inubushi, T
2004-01-01
Background: Normal pressure hydrocephalus (NPH) is considered to be a treatable form of dementia, because cerebrospinal fluid (CSF) shunting can lessen symptoms. However, neuroimaging has failed to predict when shunting will be effective. Objective: To investigate whether 1H (proton) magnetic resonance (MR) spectroscopy could predict functional outcome in patients after shunting. Methods: Neurological state including Hasegawa's dementia scale, gait, continence, and the modified Rankin scale were evaluated in 21 patients with secondary NPH who underwent ventriculo-peritoneal shunting. Outcomes were measured postoperatively at one and 12 months and were classified as excellent, fair, or poor. MR spectra were obtained from left hemispheric white matter. Results: Significant preoperative differences in N-acetyl aspartate (NAA)/creatine (Cr) and NAA/choline (Cho) were noted between patients with excellent and poor outcome at one month (p = 0.0014 and 0.0036, respectively). Multiple regression analysis linked higher preoperative NAA/Cr ratio, gait score, and modified Rankin scale to better one month outcome. Predictive value, sensitivity, and specificity for excellent outcome following shunting were 95.2%, 100%, and 87.5%. Multiple regression analysis indicated that NAA/Cho had the best predictive value for one year outcome (p = 0.0032); predictive value, sensitivity, and specificity were 89.5%, 90.0%, and 88.9%. Conclusions: MR spectroscopy predicted long term post-shunting outcomes in patients with secondary NPH, and it would be a useful assessment tool before lumbar drainage. PMID:15258216
Resistance of Silicon Nitride Turbine Components to Erosion and Hot Corrosion/oxidation Attack
NASA Technical Reports Server (NTRS)
Strangmen, Thomas E.; Fox, Dennis S.
1994-01-01
Silicon nitride turbine components are under intensive development by AlliedSignal to enable a new generation of higher power density auxiliary power systems. In order to be viable in the intended applications, silicon nitride turbine airfoils must be designed for survival in aggressive oxidizing combustion gas environments. Erosive and corrosive damage to ceramic airfoils from ingested sand and sea salt must be avoided. Recent engine test experience demonstrated that NT154 silicon nitride turbine vanes have exceptional resistance to sand erosion, relative to superalloys used in production engines. Similarly, NT154 silicon nitride has excellent resistance to oxidation in the temperature range of interest - up to 1400 C. Hot corrosion attack of superalloy gas turbine components is well documented. While hot corrosion from ingested sea salt will attack silicon nitride substantially less than the superalloys being replaced in initial engine applications, this degradation has the potential to limit component lives in advanced engine applications. Hot corrosion adversely affects the strength of silicon nitride in the 850 to 1300 C range. Since unacceptable reductions in strength must be rapidly identified and avoided, AlliedSignal and the NASA Lewis Research Center have pioneered the development of an environmental life prediction model for silicon nitride turbine components. Strength retention in flexure specimens following 1 to 3300 hour exposures to high temperature oxidation and hot corrosion has been measured and used to calibrate the life prediction model. Predicted component life is dependent upon engine design (stress, temperature, pressure, fuel/air ratio, gas velocity, and inlet air filtration), mission usage (fuel sulfur content, location (salt in air), and times at duty cycle power points), and material parameters. Preliminary analyses indicate that the hot corrosion resistance of NT154 silicon nitride is adequate for AlliedSignal's initial engine applications. Protective coatings and/or inlet air filtration may be required to achieve required ceramic component lives in more aggressive environments.
Baryon acoustic oscillations in 2D: Modeling redshift-space power spectrum from perturbation theory
DOE Office of Scientific and Technical Information (OSTI.GOV)
Taruya, Atsushi; Institute for the Physics and Mathematics of the Universe, University of Tokyo, Kashiwa, Chiba 277-8568; Nishimichi, Takahiro
2010-09-15
We present an improved prescription for the matter power spectrum in redshift space taking proper account of both nonlinear gravitational clustering and redshift distortion, which are of particular importance for accurately modeling baryon acoustic oscillations (BAOs). Contrary to the models of redshift distortion phenomenologically introduced but frequently used in the literature, the new model includes the corrections arising from the nonlinear coupling between the density and velocity fields associated with two competitive effects of redshift distortion, i.e., Kaiser and Finger-of-God effects. Based on the improved treatment of perturbation theory for gravitational clustering, we compare our model predictions with the monopolemore » and quadrupole power spectra of N-body simulations, and an excellent agreement is achieved over the scales of BAOs. Potential impacts on constraining dark energy and modified gravity from the redshift-space power spectrum are also investigated based on the Fisher-matrix formalism, particularly focusing on the measurements of the Hubble parameter, angular diameter distance, and growth rate for structure formation. We find that the existing phenomenological models of redshift distortion produce a systematic error on measurements of the angular diameter distance and Hubble parameter by 1%-2%, and the growth-rate parameter by {approx}5%, which would become non-negligible for future galaxy surveys. Correctly modeling redshift distortion is thus essential, and the new prescription for the redshift-space power spectrum including the nonlinear corrections can be used as an accurate theoretical template for anisotropic BAOs.« less
The Politics of Management Knowledge.
ERIC Educational Resources Information Center
Clegg, Stewart R., Ed.; Palmer, Gill, Ed.
This book recognizes the political nature of management knowledge, as a discourse produced from, and reproducing, power processes within and between organizations. Critical examinations of certain current management theories--lean production, excellence, entrepreneurship--are examples of relations of power that intermingle with relations of…
Model based analysis of piezoelectric transformers.
Hemsel, T; Priya, S
2006-12-22
Piezoelectric transformers are increasingly getting popular in the electrical devices owing to several advantages such as small size, high efficiency, no electromagnetic noise and non-flammable. In addition to the conventional applications such as ballast for back light inverter in notebook computers, camera flash, and fuel ignition several new applications have emerged such as AC/DC converter, battery charger and automobile lighting. These new applications demand high power density and wide range of voltage gain. Currently, the transformer power density is limited to 40 W/cm(3) obtained at low voltage gain. The purpose of this study was to investigate a transformer design that has the potential of providing higher power density and wider range of voltage gain. The new transformer design utilizes radial mode both at the input and output port and has the unidirectional polarization in the ceramics. This design was found to provide 30 W power with an efficiency of 98% and 30 degrees C temperature rise from the room temperature. An electro-mechanical equivalent circuit model was developed to describe the characteristics of the piezoelectric transformer. The model was found to successfully predict the characteristics of the transformer. Excellent matching was found between the computed and experimental results. The results of this study will allow to deterministically design unipoled piezoelectric transformers with specified performance. It is expected that in near future the unipoled transformer will gain significant importance in various electrical components.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Cipcigan, Flaviu S., E-mail: flaviu.cipcigan@ed.ac.uk; National Physical Laboratory, Hampton Road, Teddington, Middlesex TW11 0LW; Sokhan, Vlad P.
One key factor that limits the predictive power of molecular dynamics simulations is the accuracy and transferability of the input force field. Force fields are challenged by heterogeneous environments, where electronic responses give rise to biologically important forces such as many-body polarisation and dispersion. The importance of polarisation in the condensed phase was recognised early on, as described by Cochran in 1959 [Philosophical Magazine 4 (1959) 1082–1086] [32]. Currently in molecular simulation, dispersion forces are treated at the two-body level and in the dipole limit, although the importance of three-body terms in the condensed phase was demonstrated by Barker inmore » the 1980s [Phys. Rev. Lett. 57 (1986) 230–233] [72]. One approach for treating both polarisation and dispersion on an equal basis is to coarse grain the electrons surrounding a molecular moiety to a single quantum harmonic oscillator (cf. Hirschfelder, Curtiss and Bird 1954 [The Molecular Theory of Gases and Liquids (1954)] [37]). The approach, when solved in strong coupling beyond the dipole limit, gives a description of long-range forces that includes two- and many-body terms to all orders. In the last decade, the tools necessary to implement the strong coupling limit have been developed, culminating in a transferable model of water with excellent predictive power across the phase diagram. Transferability arises since the environment automatically identifies the important long range interactions, rather than the modeler through a limited set of expressions. Here, we discuss the role of electronic coarse-graining in predictive multiscale materials modelling and describe the first implementation of the method in a general purpose molecular dynamics software: QDO-MD. - Highlights: • Electronic coarse graining unites many-body dispersion and polarisation beyond the dipole limit. • It consists of replacing the electrons of a molecule using a quantum harmonic oscillator, called a Quantum Drude Oscillator. • We present the first general implementation of Quantum Drude Oscillators in the molecular dynamics package QDO-MD. • We highlight the successful construction of a new, transferable molecular model of water: QDO-water. - Graphical abstract:.« less
Federal Register 2010, 2011, 2012, 2013, 2014
2010-03-25
... were created, such as Microsoft Excel, Microsoft Word, or Microsoft PowerPoint (``native format'')? We... (condensed) or expanded (detailed) format Export search results to Excel or PDF As noted above, system is...., Microsoft Word ``.doc'' format or non-copy protected text- searchable ``.pdf'' format)? Should submissions...
Excel-Based Tool for Pharmacokinetically Guided Dose Adjustment of Paclitaxel.
Kraff, Stefanie; Lindauer, Andreas; Joerger, Markus; Salamone, Salvatore J; Jaehde, Ulrich
2015-12-01
Neutropenia is a frequent and severe adverse event in patients receiving paclitaxel chemotherapy. The time above a paclitaxel threshold concentration of 0.05 μmol/L (Tc > 0.05 μmol/L) is a strong predictor for paclitaxel-associated neutropenia and has been proposed as a target pharmacokinetic (PK) parameter for paclitaxel therapeutic drug monitoring and dose adaptation. Up to now, individual Tc > 0.05 μmol/L values are estimated based on a published PK model of paclitaxel by using the software NONMEM. Because many clinicians are not familiar with the use of NONMEM, an Excel-based dosing tool was developed to allow calculation of paclitaxel Tc > 0.05 μmol/L and give clinicians an easy-to-use tool. Population PK parameters of paclitaxel were taken from a published PK model. An Alglib VBA code was implemented in Excel 2007 to compute differential equations for the paclitaxel PK model. Maximum a posteriori Bayesian estimates of the PK parameters were determined with the Excel Solver using individual drug concentrations. Concentrations from 250 patients were simulated receiving 1 cycle of paclitaxel chemotherapy. Predictions of paclitaxel Tc > 0.05 μmol/L as calculated by the Excel tool were compared with NONMEM, whereby maximum a posteriori Bayesian estimates were obtained using the POSTHOC function. There was a good concordance and comparable predictive performance between Excel and NONMEM regarding predicted paclitaxel plasma concentrations and Tc > 0.05 μmol/L values. Tc > 0.05 μmol/L had a maximum bias of 3% and an error on precision of <12%. The median relative deviation of the estimated Tc > 0.05 μmol/L values between both programs was 1%. The Excel-based tool can estimate the time above a paclitaxel threshold concentration of 0.05 μmol/L with acceptable accuracy and precision. The presented Excel tool allows reliable calculation of paclitaxel Tc > 0.05 μmol/L and thus allows target concentration intervention to improve the benefit-risk ratio of the drug. The easy use facilitates therapeutic drug monitoring in clinical routine.
Cosmological flux noise and measured noise power spectra in SQUIDs
Beck, Christian
2016-01-01
The understanding of the origin of 1/f magnetic flux noise commonly observed in superconducting devices such as SQUIDs and qubits is still a major unsolved puzzle. Here we discuss the possibility that a significant part of the observed low-frequency flux noise measured in these devices is ultimately seeded by cosmological fluctuations. We consider a theory where a primordial flux noise field left over in unchanged form from an early inflationary or quantum gravity epoch of the universe intrinsically influences the phase difference in SQUIDs and qubits. The perturbation seeds generated by this field can explain in a quantitatively correct way the form and amplitude of measured low-frequency flux noise spectra in SQUID devices if one takes as a source of fluctuations the primordial power spectrum of curvature fluctuations as measured by the Planck collaboration. Our theoretical predictions are in excellent agreement with recent low-frequency flux noise measurements of various experimental groups. Magnetic flux noise, so far mainly considered as a nuisance for electronic devices, may thus contain valuable information about fluctuation spectra in the very early universe. PMID:27320418
Cosmological flux noise and measured noise power spectra in SQUIDs.
Beck, Christian
2016-06-20
The understanding of the origin of 1/f magnetic flux noise commonly observed in superconducting devices such as SQUIDs and qubits is still a major unsolved puzzle. Here we discuss the possibility that a significant part of the observed low-frequency flux noise measured in these devices is ultimately seeded by cosmological fluctuations. We consider a theory where a primordial flux noise field left over in unchanged form from an early inflationary or quantum gravity epoch of the universe intrinsically influences the phase difference in SQUIDs and qubits. The perturbation seeds generated by this field can explain in a quantitatively correct way the form and amplitude of measured low-frequency flux noise spectra in SQUID devices if one takes as a source of fluctuations the primordial power spectrum of curvature fluctuations as measured by the Planck collaboration. Our theoretical predictions are in excellent agreement with recent low-frequency flux noise measurements of various experimental groups. Magnetic flux noise, so far mainly considered as a nuisance for electronic devices, may thus contain valuable information about fluctuation spectra in the very early universe.
Campos, Carlos M; van Klaveren, David; Farooq, Vasim; Simonton, Charles A; Kappetein, Arie-Pieter; Sabik, Joseph F; Steyerberg, Ewout W; Stone, Gregg W; Serruys, Patrick W
2015-05-21
To prospectively validate the SYNTAX Score II and forecast the outcomes of the randomized Evaluation of the Xience Everolimus-Eluting Stent Versus Coronary Artery Bypass Surgery for Effectiveness of Left Main Revascularization (EXCEL) Trial. Evaluation of the Xience Everolimus Eluting Stent vs. Coronary Artery Bypass Surgery for Effectiveness of Left Main Revascularization is a prospective, randomized multicenter trial designed to establish the efficacy and safety of percutaneous coronary intervention (PCI) with the everolimus-eluting stent compared with coronary artery bypass graft (CABG) surgery in subjects with unprotected left-main coronary artery (ULMCA) disease and low-intermediate anatomical SYNTAX scores (<33). After completion of patient recruitment in EXCEL, the SYNTAX Score II was prospectively applied to predict 4-year mortality in the CABG and PCI arms. The 95% prediction intervals (PIs) for mortality were computed using simulation with bootstrap resampling (10 000 times). For the entire study cohort, the 4-year predicted mortalities were 8.5 and 10.5% in the PCI and CABG arms, respectively [odds ratios (OR) 0.79; 95% PI 0.43-1.50). In subjects with low (≤22) anatomical SYNTAX scores, the predicted OR was 0.69 (95% PI 0.34-1.45); in intermediate anatomical SYNTAX scores (23-32), the predicted OR was 0.93 (95% PI 0.53-1.62). Based on 4-year mortality predictions in EXCEL, clinical characteristics shifted long-term mortality predictions either in favour of PCI (older age, male gender and COPD) or CABG (younger age, lower creatinine clearance, female gender, reduced left ventricular ejection fraction). The SYNTAX Score II indicates at least an equipoise for long-term mortality between CABG and PCI in subjects with ULMCA disease up to an intermediate anatomical complexity. Both anatomical and clinical characteristics had a clear impact on long-term mortality predictions and decision making between CABG and PCI. Published on behalf of the European Society of Cardiology. All rights reserved. © The Author 2015. For permissions please email: journals.permissions@oup.com.
Zhao, Chuanxi; Liang, Zhimin; Su, Mingze; Liu, Pengyi; Mai, Wenjie; Xie, Weiguang
2015-11-25
Photodetectors with a wide spectrum response are important components for sensing, imaging, and other optoelectronic applications. A molybdenum oxide (MoO(3-x))/Si heterojunction has been applied as solar cells with great success, but its potential in photodetectors has not been explored yet. Herein, a self-powered, high-speed heterojunction photodetector fabricated by coating an n-type Si hierarchical structure with an ultrathin hole-selective layer of molybdenum oxide (MoO(3-x)) is first investigated. Excellent and stable photoresponse performance is obtained by using a methyl group passivated interface. The heterojunction photodetector demonstrated high sensitivity to a wide spectrum from 300 to 1100 nm. The self-powered photodetector shows a high detectivity of (∼6.29 × 10(12) cmHz(1/2) W(-1)) and fast response time (1.0 μs). The excellent photodetecting performance is attributed to the enhanced interfacial barrier height and three-dimensional geometry of Si nanostructures, which is beneficial for efficient photocarrier collection and transportation. Finally, our devices show excellent long-term stability in air for 6 months with negligible performance degradation. The thermal evaporation method for large-scale fabrication of MoO(3-x)/n-Si photodetectors makes it suitable for self-powered, multispectral, and high-speed response photodetecting applications.
Jang, Jin-Young; Park, Taesung; Lee, Selyeong; Kim, Yongkang; Lee, Seung Yeoun; Kim, Sun-Whe; Kim, Song-Cheol; Song, Ki-Byung; Yamamoto, Masakazu; Hatori, Takashi; Hirono, Seiko; Satoi, Sohei; Fujii, Tsutomu; Hirano, Satoshi; Hashimoto, Yasushi; Shimizu, Yashuhiro; Choi, Dong Wook; Choi, Seong Ho; Heo, Jin Seok; Motoi, Fuyuhiko; Matsumoto, Ippei; Lee, Woo Jung; Kang, Chang Moo; Han, Ho-Seong; Yoon, Yoo-Seok; Sho, Masayuki; Nagano, Hiroaki; Honda, Goro; Kim, Sang Geol; Yu, Hee Chul; Chung, Jun Chul; Nagakawa, Yuichi; Seo, Hyung Il; Yamaue, Hiroki
2017-12-01
This study evaluated individual risks of malignancy and proposed a nomogram for predicting malignancy of branch duct type intraductal papillary mucinous neoplasms (BD-IPMNs) using the large database for IPMN. Although consensus guidelines list several malignancy predicting factors in patients with BD-IPMN, those variables have different predictability and individual quantitative prediction of malignancy risk is limited. Clinicopathological factors predictive of malignancy were retrospectively analyzed in 2525 patients with biopsy proven BD-IPMN at 22 tertiary hospitals in Korea and Japan. The patients with main duct dilatation >10 mm and inaccurate information were excluded. The study cohort consisted of 2258 patients. Malignant IPMNs were defined as those with high grade dysplasia and associated invasive carcinoma. Of 2258 patients, 986 (43.7%) had low, 443 (19.6%) had intermediate, 398 (17.6%) had high grade dysplasia, and 431 (19.1%) had invasive carcinoma. To construct and validate the nomogram, patients were randomly allocated into training and validation sets, with fixed ratios of benign and malignant lesions. Multiple logistic regression analysis resulted in five variables (cyst size, duct dilatation, mural nodule, serum CA19-9, and CEA) being selected to construct the nomogram. In the validation set, this nomogram showed excellent discrimination power through a 1000 times bootstrapped calibration test. A nomogram predicting malignancy in patients with BD-IPMN was constructed using a logistic regression model. This nomogram may be useful in identifying patients at risk of malignancy and for selecting optimal treatment methods. The nomogram is freely available at http://statgen.snu.ac.kr/software/nomogramIPMN.
Operating characteristics of a three-stage Stirling pulse tube cryocooler operating around 5 K
NASA Astrophysics Data System (ADS)
Qiu, L. M.; Cao, Q.; Zhi, X. Q.; Han, L.; Gan, Z. H.; Yu, Y. B.; Liu, Y.; Zhang, X. J.; Pfotenhauer, J. M.
2012-07-01
A Stirling pulse tube cryocooler (SPTC) operating at the liquid-helium temperatures represents an excellent prospect for satisfying the requirements of space applications because of its compactness, high efficiency and reliability. However, the working mechanism of a 4 K SPTC is more complicated than that of the Gifford McMahon (GM) PTC that operates at the relatively low frequency of 1-2 Hz, and has not yet been well understood. In this study, the primary operating parameters, including frequency, charge pressure, input power and precooling temperature, are systematically investigated in a home-developed separate three-stage SPTC. The investigation demonstrates that the frequency and precooling temperature are closely coupled via phase shift. In order to improve the cooling capacity it is important to lower the frequency and the precooling temperature simultaneously. In contrast to the behavior predicted by previous studies, the pressure dependence of the gas properties results in an optimized pressure that decreases significantly as the temperature is lowered. The third stage reaches a lowest temperature of 4.97 K at 29.9 Hz and 0.91 MPa. A cooling power of 25 mW is measured at 6.0 K. The precooling temperature is 23.7 K and the input power is 100 W.
An online dispatcher training simulator function for real-time analysis and training
DOE Office of Scientific and Technical Information (OSTI.GOV)
Vadari, S.V.; Montstream, M.J.; Ross, H.B. Jr.
1995-11-01
Today`s power systems have become so complex that it is not easy for the system dispatcher to realistically predict the results of outages. The situation is compounded whenever the power grid is not in its normal configuration due to maintenance switching or equipment failure. The authors feel that the DTS is an excellent tool that can be used to teach the dispatcher how to react under these conditions. In this paper, the authors present an on-line implementation of the DTS which allows the user to initialize the DTS to an EMS disturbance using data that was captured at the timemore » of the disturbance; and place the DTS in a playback mode and go back to specific times in the scenario. The former feature allows the analyst to investigate EMS disturbances and then train the various dispatchers to be able to recognize such disturbances and to recover from them when they occur. The latter feature allows the instructor (with the trainee) to review and re-experience desired portions of the scenario. It is the authors` feeling that these two features will help the EMS operational staff understand their power system better and help their dispatchers in dealing with operational problems associated with the proper running of the system.« less
Low-Power Consumption InGaAs PIN Diode Switches for V-band Applications
NASA Astrophysics Data System (ADS)
Ziegler, Volker; Berg, Michael; Tobler, Hans; Woelk, Claus; Deufel, Reinhard; Trasser, Andreas; Schumacher, Hermann; Alekseev, Egor; Pavlidis, Dimitris; Dickmann, Juergen
1999-02-01
In this paper, we present the measurement results of two InP-based coplanar SPST (single pole single throw) PIN diode switches operating at V-band frequencies. The switches show excellent mm-wave performance combined with a very low DC-power consumption. The SPST with on-chip biasing and DC-blocking capacitors demonstrates an insertion loss as low as 0.84 dB and a high isolation value of 21.8 dB at a center frequency of 53 GHz with only 0.8 mW of DC-power consumption. A more simple SPST exhibits under equivalent conditions (0.9 mW) an excellent insertion loss of 0.52 dB and an isolation of 21.7 dB. Furthermore the power-handling capability of the InGaAs PIN diodes, which are used as active switching elements, is investigated in this paper and found to exceed 25 dBm at a reverse voltage of -5 V.
EnzyNet: enzyme classification using 3D convolutional neural networks on spatial representation
Amidi, Afshine; Megalooikonomou, Vasileios; Paragios, Nikos
2018-01-01
During the past decade, with the significant progress of computational power as well as ever-rising data availability, deep learning techniques became increasingly popular due to their excellent performance on computer vision problems. The size of the Protein Data Bank (PDB) has increased more than 15-fold since 1999, which enabled the expansion of models that aim at predicting enzymatic function via their amino acid composition. Amino acid sequence, however, is less conserved in nature than protein structure and therefore considered a less reliable predictor of protein function. This paper presents EnzyNet, a novel 3D convolutional neural networks classifier that predicts the Enzyme Commission number of enzymes based only on their voxel-based spatial structure. The spatial distribution of biochemical properties was also examined as complementary information. The two-layer architecture was investigated on a large dataset of 63,558 enzymes from the PDB and achieved an accuracy of 78.4% by exploiting only the binary representation of the protein shape. Code and datasets are available at https://github.com/shervinea/enzynet. PMID:29740518
Back in the saddle: large-deviation statistics of the cosmic log-density field
NASA Astrophysics Data System (ADS)
Uhlemann, C.; Codis, S.; Pichon, C.; Bernardeau, F.; Reimberg, P.
2016-08-01
We present a first principle approach to obtain analytical predictions for spherically averaged cosmic densities in the mildly non-linear regime that go well beyond what is usually achieved by standard perturbation theory. A large deviation principle allows us to compute the leading order cumulants of average densities in concentric cells. In this symmetry, the spherical collapse model leads to cumulant generating functions that are robust for finite variances and free of critical points when logarithmic density transformations are implemented. They yield in turn accurate density probability distribution functions (PDFs) from a straightforward saddle-point approximation valid for all density values. Based on this easy-to-implement modification, explicit analytic formulas for the evaluation of the one- and two-cell PDF are provided. The theoretical predictions obtained for the PDFs are accurate to a few per cent compared to the numerical integration, regardless of the density under consideration and in excellent agreement with N-body simulations for a wide range of densities. This formalism should prove valuable for accurately probing the quasi-linear scales of low-redshift surveys for arbitrary primordial power spectra.
EnzyNet: enzyme classification using 3D convolutional neural networks on spatial representation.
Amidi, Afshine; Amidi, Shervine; Vlachakis, Dimitrios; Megalooikonomou, Vasileios; Paragios, Nikos; Zacharaki, Evangelia I
2018-01-01
During the past decade, with the significant progress of computational power as well as ever-rising data availability, deep learning techniques became increasingly popular due to their excellent performance on computer vision problems. The size of the Protein Data Bank (PDB) has increased more than 15-fold since 1999, which enabled the expansion of models that aim at predicting enzymatic function via their amino acid composition. Amino acid sequence, however, is less conserved in nature than protein structure and therefore considered a less reliable predictor of protein function. This paper presents EnzyNet, a novel 3D convolutional neural networks classifier that predicts the Enzyme Commission number of enzymes based only on their voxel-based spatial structure. The spatial distribution of biochemical properties was also examined as complementary information. The two-layer architecture was investigated on a large dataset of 63,558 enzymes from the PDB and achieved an accuracy of 78.4% by exploiting only the binary representation of the protein shape. Code and datasets are available at https://github.com/shervinea/enzynet.
Habib, Basant A; Sayed, Sinar; Elsayed, Ghada M
2018-03-30
This study aimed to formulate suitable nanovesicles (NVs) for transdermal delivery of Ondansetron. It also illustrated a practical example for the importance of Box-Cox transformation. A 2 3 full factorial design was used to enable testing transfersomes, ethosomes, and transethosomes of Ondansetron simultaneously. The independent variables (IVs) studied were sodium taurocholate amount, ethanol volume in hydration medium and sonication time. The studied dependent variables (DVs) were: particle size (PS), zeta potential (ZP) and entrapment efficiency (EE). Polynomial equations were used to study the influence of IVs on each DV. Numerical multiple response optimization was applied to select an optimized formula (OF) with the goals of minimizing PS and maximizing ZP absolute value and EE. Box-Cox transformation was adopted to enable modeling PS raised to the power of 1.2 with an excellent prediction R 2 of 1.000. ZP and EE were adequately represented directly with prediction R 2 of 0.9549 and 0.9892 respectively. Response surface plots helped in explaining the influence of IVs on each DV. Two-sided 95% prediction interval test and percent deviation of actual values from predicted ones proved the validity of the elucidated models. The OF was a transfersomal formula with desirability of 0.866 and showed promising results in ex-vivo permeation study. Copyright © 2018 Elsevier B.V. All rights reserved.
A novel approach to model hydraulic and electrical conductivity in fractal porous media
NASA Astrophysics Data System (ADS)
Ghanbarian, B.; Daigle, H.; Sahimi, M.
2014-12-01
Accurate prediction of conductivity in partially-saturated porous media has broad applications in various phenomena in porous media, and has been studied intensively since the 1940s by petroleum, chemical and civil engineers, and hydrologists. Many of the models developed in the past are based on the bundle of capillary tubes. In addition, pore network models have also been developed for simulating multiphase fluid flow in porous media and computing the conductivity in unsaturated porous media. In this study, we propose a novel approach using concepts from the effective-medium approximation (EMA) and percolation theory to model hydraulic and electrical conductivity in fractal porous media whose pore-size distributions exhibit power-law scaling. In our approach, the EMA, originally developed for predicting electrical conductivity of composite materials, is used to predict the effective conductivity, from complete saturation to some intermediate water content that represents a crossover point. Below the crossover water content, but still above a critical saturation (percolation threshold), a universal scaling predicted by percolation theory, a power law that expresses the dependence of the conductivity on the water content (less a critical water saturation) with an exponent of 2, is invoked to describe the effective conductivity. In order to evaluate the accuracy of the approach, experimental data were used from the literature. The predicted hydraulic conductivities for most cases are in excellent agreement with the data. In a few cases the theory underestimates the hydraulic conductivities, which correspond to porous media with very broad pore-size distribution in which the largest pore radius is more than 7 orders of magnitude greater than the smallest one. The approach is also used to predict the saturation dependence of the electrical conductivity for experiments in which capillary pressure data are available. The results indicate that the universal scaling of the electrical conductivity is valid from the percolation threshold all the way up to the complete saturation point. Our results confirm those reported previously by Ewing and Hunt (2006) who argued that the electrical conductivity should follow universal scaling over the entire range of saturation.
Stræde, Mia; Brabrand, Mikkel
2014-01-01
Background Clinical scores can be of aid to predict early mortality after admission to a medical admission unit. A developed scoring system needs to be externally validated to minimise the risk of the discriminatory power and calibration to be falsely elevated. We performed the present study with the objective of validating the Simple Clinical Score (SCS) and the HOTEL score, two existing risk stratification systems that predict mortality for medical patients based solely on clinical information, but not only vital signs. Methods Pre-planned prospective observational cohort study. Setting Danish 460-bed regional teaching hospital. Findings We included 3046 consecutive patients from 2 October 2008 until 19 February 2009. 26 (0.9%) died within one calendar day and 196 (6.4%) died within 30 days. We calculated SCS for 1080 patients. We found an AUROC of 0.960 (95% confidence interval [CI], 0.932 to 0.988) for 24-hours mortality and 0.826 (95% CI, 0.774–0.879) for 30-day mortality, and goodness-of-fit test, χ2 = 2.68 (10 degrees of freedom), P = 0.998 and χ2 = 4.00, P = 0.947, respectively. We included 1470 patients when calculating the HOTEL score. Discriminatory power (AUROC) was 0.931 (95% CI, 0.901–0.962) for 24-hours mortality and goodness-of-fit test, χ2 = 5.56 (10 degrees of freedom), P = 0.234. Conclusion We find that both the SCS and HOTEL scores showed an excellent to outstanding ability in identifying patients at high risk of dying with good or acceptable precision. PMID:25144186
Modelling redshift space distortion in the post-reionization H I 21-cm power spectrum
NASA Astrophysics Data System (ADS)
Sarkar, Debanjan; Bharadwaj, Somnath
2018-05-01
The post-reionization H I 21-cm signal is an excellent candidate for precision cosmology, this however requires accurate modelling of the expected signal. Sarkar et al. have simulated the real space H I 21-cm signal and have modelled the H I power spectrum as P_{{H I}}(k)=b^2 P(k), where P(k) is the dark matter power spectrum and b(k) is a (possibly complex) scale-dependent bias for which fitting formulas have been provided. This paper extends these simulations to incorporate redshift space distortion and predicts the expected redshift space H I 21-cm power spectrum P^s_{{H I}}(k_{\\perp },k_{allel }) using two different prescriptions for the H I distributions and peculiar velocities. We model P^s_{{H I}}(k_{\\perp },k_{allel }), assuming that it is the product of P_{{H I}}(k)=b^2 P(k) with a Kaiser enhancement term and a Finger of God (FoG) damping which has σp the pair velocity dispersion as a free parameter. Considering several possibilities for the bias and the damping profile, we find that the models with a scale-dependent bias and a Lorentzian damping profile best fit the simulated P^s_{{H I}}(k_{\\perp },k_{allel }) over the entire range 1 ≤ z ≤ 6. The best-fitting value of σp falls approximately as (1 + z)-m with m = 2 and 1.2, respectively, for the two different prescriptions. The model predictions are consistent with the simulations for k < 0.3 Mpc-1 over the entire z range for the monopole P^s_0(k), and at z ≤ 3 for the quadrupole P^s_2(k). At z ≥ 4 the models underpredict P^s_2(k) at large k, and the fit is restricted to k < 0.15 Mpc-1.
Predicting the Cosmological Constant from the CausalEntropic Principle
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bousso, Raphael; Harnik, Roni; Kribs, Graham D.
2007-02-20
We compute the expected value of the cosmological constant in our universe from the Causal Entropic Principle. Since observers must obey the laws of thermodynamics and causality, it asserts that physical parameters are most likely to be found in the range of values for which the total entropy production within a causally connected region is maximized. Despite the absence of more explicit anthropic criteria, the resulting probability distribution turns out to be in excellent agreement with observation. In particular, we find that dust heated by stars dominates the entropy production, demonstrating the remarkable power of this thermodynamic selection criterion. Themore » alternative approach--weighting by the number of ''observers per baryon''--is less well-defined, requires problematic assumptions about the nature of observers, and yet prefers values larger than present experimental bounds.« less
Mechanism behind Erosive Bursts In Porous Media.
Jäger, R; Mendoza, M; Herrmann, H J
2017-09-22
Erosion and deposition during flow through porous media can lead to large erosive bursts that manifest as jumps in permeability and pressure loss. Here we reveal that the cause of these bursts is the reopening of clogged pores when the pressure difference between two opposite sites of the pore surpasses a certain threshold. We perform numerical simulations of flow through porous media and compare our predictions to experimental results, recovering with excellent agreement shape and power-law distribution of pressure loss jumps, and the behavior of the permeability jumps as a function of particle concentration. Furthermore, we find that erosive bursts only occur for pressure gradient thresholds within the range of two critical values, independent of how the flow is driven. Our findings provide a better understanding of sudden sand production in oil wells and breakthrough in filtration.
Weaver, J L; Busquet, M; Colombant, D G; Mostovych, A N; Feldman, U; Klapisch, M; Seely, J F; Brown, C; Holland, G
2005-02-04
Absolutely calibrated, time-resolved spectral intensity measurements of soft-x-ray emission (hnu approximately 0.1-1.0 keV) from laser-irradiated polystyrene targets are compared to radiation-hydrodynamic simulations that include our new postprocessor, Virtual Spectro. This new capability allows a unified, detailed treatment of atomic physics and radiative transfer in nonlocal thermodynamic equilibrium conditions for simple spectra from low-Z materials as well as complex spectra from high-Z materials. The excellent agreement (within a factor of approximately 1.5) demonstrates the powerful predictive capability of the codes for the complex conditions in the ablating plasma. A comparison to data with high spectral resolution (E/deltaE approximately 1000) emphasizes the importance of including radiation coupling in the quantitative simulation of emission spectra.
NASA Technical Reports Server (NTRS)
Smart, M.C.; Ratnakumar, B.V.; Whitcanack, L. D.; Dewell, E. A.; Jones, L. E.; Salvo, C. G.; Puglia, F. J.; Cohen, S.; Gitzendanner, R.
2008-01-01
In 2009, JPL is planning to launch an unmanned rover mission to the planet Mars. This mission, referred to as the Mars Science Laboratory (MSL), will involve the use of a rover that is much larger than the previously developed Spirit and Opportunity Rovers for the 2003 Mars Exploration Rover (MER) mission, that are currently still in operation on the surface of the planet after more than three years. Part of the reason that the MER rovers have operated so successfully, far exceeding the required mission duration of 90 sols, is that they possess robust Li-ion batteries, manufactured by Yardney Technical Products, which have demonstrated excellent life characteristics. Given the excellent performance characteristics displayed, similar lithium-ion batteries have been projected to successfully meet the mission requirements of the up-coming MSL mission. Although comparable in many facets, such as being required to operate over a wide temperature range (-20 to 40 C), the MSL mission has more demanding performance requirements compared to the MER mission, including much longer mission duration (approx. 687 sols vs. 90 sols), higher power capability, and the need to withstand higher temperature excursions. In addition, due to the larger rover size, the MSL mission necessitates the use of a much larger battery to meet the energy, life, and power requirements. In order to determine the viability of meeting these requirements, a number of performance verification tests were performed on 10 Ah Yardney lithium-ion cells (MER design) under MSL-relevant conditions, including mission surface operation simulation testing. In addition, the performance of on-going ground life testing of 10 Ah MER cells and 8-cell batteries will be discussed in the context of capacity loss and impedance growth predictions.
Very-short-term wind power prediction by a hybrid model with single- and multi-step approaches
NASA Astrophysics Data System (ADS)
Mohammed, E.; Wang, S.; Yu, J.
2017-05-01
Very-short-term wind power prediction (VSTWPP) has played an essential role for the operation of electric power systems. This paper aims at improving and applying a hybrid method of VSTWPP based on historical data. The hybrid method is combined by multiple linear regressions and least square (MLR&LS), which is intended for reducing prediction errors. The predicted values are obtained through two sub-processes:1) transform the time-series data of actual wind power into the power ratio, and then predict the power ratio;2) use the predicted power ratio to predict the wind power. Besides, the proposed method can include two prediction approaches: single-step prediction (SSP) and multi-step prediction (MSP). WPP is tested comparatively by auto-regressive moving average (ARMA) model from the predicted values and errors. The validity of the proposed hybrid method is confirmed in terms of error analysis by using probability density function (PDF), mean absolute percent error (MAPE) and means square error (MSE). Meanwhile, comparison of the correlation coefficients between the actual values and the predicted values for different prediction times and window has confirmed that MSP approach by using the hybrid model is the most accurate while comparing to SSP approach and ARMA. The MLR&LS is accurate and promising for solving problems in WPP.
WASP (Write a Scientific Paper) using Excel - 11: Test characteristics.
Grech, Victor
2018-07-01
The calculation of various test characteristics may be required as part of a data analysis exercise. This paper explains how to set up these calculations in Microsoft Excel in order to obtain sensitivity, specificity, positive and negative predictive values, diagnostic accuracy and prevalence. Copyright © 2018 Elsevier B.V. All rights reserved.
Öhman, M C; Atkins, T E H; Cooksley, T; Brabrand, M
2018-06-01
The Medical Admission Risk System (MARS) uses 11 physiological and laboratory data and had promising results in its derivation study for predicting 5- and 7- day mortality. To perform an external independent validation of the MARS score. An unplanned secondary cohort study. Patients admitted to the medical admission unit at The Hospital of South West Jutland were included from 2 October 2008 until 19 February 2009 and 23 February 2010 until 26 May 2010 were analysed. Validation of the MARS scores using 5- and 7- day mortality was the primary endpoint. Patients of 5858 were included in the study. Patients of 2923 (49.9%) were women with a median age of 65 years (15-107). The MARS score had an area under the receiving operator characteristic curve of 0.858 (95% CI: 0.831-0.884) for 5-day mortality and 0.844 (0.818-0.870) for 7 day mortality with poor calibration for both outcomes. The MARS score had excellent discriminatory power but poor calibration in predicting both 5- and 7-day mortality. The development of accurate combination physiological/laboratory data risk scores has the potential to improve the recognition of at risk patients.
Cascades/Aleutian Play Fairway Analysis: Data and Map Files
Lisa Shevenell
2015-11-15
Contains Excel data files used to quantifiably rank the geothermal potential of each of the young volcanic centers of the Cascade and Aleutian Arcs using world power production volcanic centers as benchmarks. Also contains shapefiles used in play fairway analysis with power plant, volcano, geochemistry and structural data.
Nonlinear evolution of baryon acoustic oscillations
DOE Office of Scientific and Technical Information (OSTI.GOV)
Crocce, Martin; Institut de Ciencies de l'Espai, IEEC-CSIC, Campus UAB, Facultat de Ciencies, Torre C5 par-2, Barcelona 08193; Scoccimarro, Roman
2008-01-15
We study the nonlinear evolution of baryon acoustic oscillations in the dark matter power spectrum and the correlation function using renormalized perturbation theory. In a previous paper we showed that renormalized perturbation theory successfully predicts the damping of acoustic oscillations; here we extend our calculation to the enhancement of power due to mode coupling. We show that mode coupling generates additional oscillations that are out of phase with those in the linear spectrum, leading to shifts in the scales of oscillation nodes defined with respect to a smooth spectrum. When Fourier transformed, these out-of-phase oscillations induce percent-level shifts in themore » acoustic peak of the two-point correlation function. We present predictions for these shifts as a function of redshift; these should be considered as a robust lower limit to the more realistic case that includes, in addition, redshift distortions and galaxy bias. We show that these nonlinear effects occur at very large scales, leading to a breakdown of linear theory at scales much larger than commonly thought. We discuss why virialized halo profiles are not responsible for these effects, which can be understood from basic physics of gravitational instability. Our results are in excellent agreement with numerical simulations, and can be used as a starting point for modeling baryon acoustic oscillations in future observations. To meet this end, we suggest a simple physically motivated model to correct for the shifts caused by mode coupling.« less
An add-in implementation of the RESAMPLING syntax under Microsoft EXCEL.
Meineke, I
2000-10-01
The RESAMPLING syntax defines a set of powerful commands, which allow the programming of probabilistic statistical models with few, easily memorized statements. This paper presents an implementation of the RESAMPLING syntax using Microsoft EXCEL with Microsoft WINDOWS(R) as a platform. Two examples are given to demonstrate typical applications of RESAMPLING in biomedicine. Details of the implementation with special emphasis on the programming environment are discussed at length. The add-in is available electronically to interested readers upon request. The use of the add-in facilitates numerical statistical analyses of data from within EXCEL in a comfortable way.
Groenendijk, Piet; Heinen, Marius; Klammler, Gernot; Fank, Johann; Kupfersberger, Hans; Pisinaras, Vassilios; Gemitzi, Alexandra; Peña-Haro, Salvador; García-Prats, Alberto; Pulido-Velazquez, Manuel; Perego, Alessia; Acutis, Marco; Trevisan, Marco
2014-11-15
The agricultural sector faces the challenge of ensuring food security without an excessive burden on the environment. Simulation models provide excellent instruments for researchers to gain more insight into relevant processes and best agricultural practices and provide tools for planners for decision making support. The extent to which models are capable of reliable extrapolation and prediction is important for exploring new farming systems or assessing the impacts of future land and climate changes. A performance assessment was conducted by testing six detailed state-of-the-art models for simulation of nitrate leaching (ARMOSA, COUPMODEL, DAISY, EPIC, SIMWASER/STOTRASIM, SWAP/ANIMO) for lysimeter data of the Wagna experimental field station in Eastern Austria, where the soil is highly vulnerable to nitrate leaching. Three consecutive phases were distinguished to gain insight in the predictive power of the models: 1) a blind test for 2005-2008 in which only soil hydraulic characteristics, meteorological data and information about the agricultural management were accessible; 2) a calibration for the same period in which essential information on field observations was additionally available to the modellers; and 3) a validation for 2009-2011 with the corresponding type of data available as for the blind test. A set of statistical metrics (mean absolute error, root mean squared error, index of agreement, model efficiency, root relative squared error, Pearson's linear correlation coefficient) was applied for testing the results and comparing the models. None of the models performed good for all of the statistical metrics. Models designed for nitrate leaching in high-input farming systems had difficulties in accurately predicting leaching in low-input farming systems that are strongly influenced by the retention of nitrogen in catch crops and nitrogen fixation by legumes. An accurate calibration does not guarantee a good predictive power of the model. Nevertheless all models were able to identify years and crops with high- and low-leaching rates. Copyright © 2014 Elsevier B.V. All rights reserved.
Limiter Observations during W7-X First Plasmas
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wurden, Glen Anthony; Biedermann, C.; Effenberg, F.
During the first operational phase (referred to as OP1.1) of the new Wendelstein 7-X (W7-X) stellarator, five poloidal graphite limiters were mounted on the inboard side of the vacuum vessel, one in each of the five toroidal modules which form the W7-X vacuum vessel. Each limiter consisted of nine specially shaped graphite tiles, designed to conform to the last closed field line geometry in the bean-shaped section of the standard OP1.1 magnetic field configuration (Sunn Pedersen et al 2015 Nucl. Fusion 55 126001). Here, we observed the limiters with multiple infrared and visible camera systems, as well as filtered photomultipliers.more » Power loads are calculated from infrared (IR) temperature measurements using THEODOR, and heating patterns (dual stripes) compare well with field line mapping and EMC3-EIRENE predictions. While the poloidal symmetry of the heat loads was excellent, the toroidal heating pattern showed up to a factor of 2× variation, with peak heat loads on Limiter 1. The total power intercepted by the limiters was up to ~60% of the input ECRH heating power. Calorimetry using bulk tile heating (measured via post-shot IR thermography) on Limiter 3 showed a difference between short high power discharges, and longer lower power ones, with regards to the fraction of energy deposited on the limiters. Finally, fast heating transients, with frequency >1 kHz were detected, and their visibility was enhanced by the presence of surface coatings which developed on the limiters by the end of the campaign.« less
Effects of porous films on the light reflectivity of pigmentary titanium dioxide particles
NASA Astrophysics Data System (ADS)
Liang, Yong; Qiao, Bing; Wang, Tig-Jie; Gao, Han; Yu, Keyi
2016-11-01
The light reflectivity of the film-coated titanium dioxide particles (TiO2) as a function of the film refractive index was derived and calculated using a plane film model. For the refractive index in the range of 1.00-2.15, the lower the film refractive index is, the higher is the light reflectivity of the film. It is inferred that the lower apparent refractive index of the porous film resulted in the higher reflectivity of light, i.e., the higher hiding power of the titanium dioxide particles. A dense film coating on TiO2 particles with different types of oxides, i.e., SiO2, Al2O3, MgO, ZnO, ZrO2, TiO2, corresponding to different refractive indices of the film from 1.46 to 2.50, was achieved, and the effects of refractive index on the hiding power from the model prediction were confirmed. Porous film coating of TiO2 particles was achieved by adding the organic template agent triethanolamine (TEA). The hiding power of the coated TiO2 particles was increased from 88.3 to 90.8 by adding the TEA template to the film coating (5-20 wt%). In other words, the amount of titanium dioxide needed was reduced by approximately 10% without a change in the hiding power. It is concluded that the film structure coated on TiO2 particle surface affects the light reflectivity significantly, namely, the porous film exhibits excellent performance for pigmentary titanium dioxide particles with high hiding power.
Limiter Observations during W7-X First Plasmas
Wurden, Glen Anthony; Biedermann, C.; Effenberg, F.; ...
2017-04-03
During the first operational phase (referred to as OP1.1) of the new Wendelstein 7-X (W7-X) stellarator, five poloidal graphite limiters were mounted on the inboard side of the vacuum vessel, one in each of the five toroidal modules which form the W7-X vacuum vessel. Each limiter consisted of nine specially shaped graphite tiles, designed to conform to the last closed field line geometry in the bean-shaped section of the standard OP1.1 magnetic field configuration (Sunn Pedersen et al 2015 Nucl. Fusion 55 126001). Here, we observed the limiters with multiple infrared and visible camera systems, as well as filtered photomultipliers.more » Power loads are calculated from infrared (IR) temperature measurements using THEODOR, and heating patterns (dual stripes) compare well with field line mapping and EMC3-EIRENE predictions. While the poloidal symmetry of the heat loads was excellent, the toroidal heating pattern showed up to a factor of 2× variation, with peak heat loads on Limiter 1. The total power intercepted by the limiters was up to ~60% of the input ECRH heating power. Calorimetry using bulk tile heating (measured via post-shot IR thermography) on Limiter 3 showed a difference between short high power discharges, and longer lower power ones, with regards to the fraction of energy deposited on the limiters. Finally, fast heating transients, with frequency >1 kHz were detected, and their visibility was enhanced by the presence of surface coatings which developed on the limiters by the end of the campaign.« less
Discrete sequence prediction and its applications
NASA Technical Reports Server (NTRS)
Laird, Philip
1992-01-01
Learning from experience to predict sequences of discrete symbols is a fundamental problem in machine learning with many applications. We apply sequence prediction using a simple and practical sequence-prediction algorithm, called TDAG. The TDAG algorithm is first tested by comparing its performance with some common data compression algorithms. Then it is adapted to the detailed requirements of dynamic program optimization, with excellent results.
Transcranial Duplex Sonography Predicts Outcome following an Intracerebral Hemorrhage.
Camps-Renom, P; Méndez, J; Granell, E; Casoni, F; Prats-Sánchez, L; Martínez-Domeño, A; Guisado-Alonso, D; Martí-Fàbregas, J; Delgado-Mederos, R
2017-08-01
Several radiologic features such as hematoma volume are related to poor outcome following an intracerebral hemorrhage and can be measured with transcranial duplex sonography. We sought to determine the prognostic value of transcranial duplex sonography in patients with intracerebral hemorrhage. We conducted a prospective study of patients diagnosed with spontaneous intracerebral hemorrhage. Transcranial duplex sonography examinations were performed within 2 hours of baseline CT, and we recorded the following variables: hematoma volume, midline shift, third ventricle and lateral ventricle diameters, and the pulsatility index in both MCAs. We correlated these data with the CT scans and assessed the prognostic value of the transcranial duplex sonography measurements. We assessed early neurologic deterioration during hospitalization and mortality at 1-month follow-up. We included 35 patients with a mean age of 72.2 ± 12.8 years. Median baseline hematoma volume was 9.85 mL (interquartile range, 2.74-68.29 mL). We found good agreement and excellent correlation between transcranial duplex sonography and CT when measuring hematoma volume ( r = 0.791; P < .001) and midline shift ( r = 0.827; P < .001). The logistic regression analysis with transcranial duplex sonography measurements showed that hematoma volume was an independent predictor of early neurologic deterioration (OR, 1.078; 95% CI, 1.023-1.135) and mortality (OR, 1.089; 95% CI, 1.020-1.160). A second regression analysis with CT variables also demonstrated that hematoma volume was associated with early neurologic deterioration and mortality. When we compared the rating operation curves of both models, their predictive power was similar. Transcranial duplex sonography showed an excellent correlation with CT in assessing hematoma volume and midline shift in patients with intracerebral hemorrhage. Hematoma volume measured with transcranial duplex sonography was an independent predictor of poor outcome. © 2017 by American Journal of Neuroradiology.
Gbm.auto: A software tool to simplify spatial modelling and Marine Protected Area planning
Officer, Rick; Clarke, Maurice; Reid, David G.; Brophy, Deirdre
2017-01-01
Boosted Regression Trees. Excellent for data-poor spatial management but hard to use Marine resource managers and scientists often advocate spatial approaches to manage data-poor species. Existing spatial prediction and management techniques are either insufficiently robust, struggle with sparse input data, or make suboptimal use of multiple explanatory variables. Boosted Regression Trees feature excellent performance and are well suited to modelling the distribution of data-limited species, but are extremely complicated and time-consuming to learn and use, hindering access for a wide potential user base and therefore limiting uptake and usage. BRTs automated and simplified for accessible general use with rich feature set We have built a software suite in R which integrates pre-existing functions with new tailor-made functions to automate the processing and predictive mapping of species abundance data: by automating and greatly simplifying Boosted Regression Tree spatial modelling, the gbm.auto R package suite makes this powerful statistical modelling technique more accessible to potential users in the ecological and modelling communities. The package and its documentation allow the user to generate maps of predicted abundance, visualise the representativeness of those abundance maps and to plot the relative influence of explanatory variables and their relationship to the response variables. Databases of the processed model objects and a report explaining all the steps taken within the model are also generated. The package includes a previously unavailable Decision Support Tool which combines estimated escapement biomass (the percentage of an exploited population which must be retained each year to conserve it) with the predicted abundance maps to generate maps showing the location and size of habitat that should be protected to conserve the target stocks (candidate MPAs), based on stakeholder priorities, such as the minimisation of fishing effort displacement. Gbm.auto for management in various settings By bridging the gap between advanced statistical methods for species distribution modelling and conservation science, management and policy, these tools can allow improved spatial abundance predictions, and therefore better management, decision-making, and conservation. Although this package was built to support spatial management of a data-limited marine elasmobranch fishery, it should be equally applicable to spatial abundance modelling, area protection, and stakeholder engagement in various scenarios. PMID:29216310
NASA Astrophysics Data System (ADS)
Orhan, K.; Mayerle, R.
2016-12-01
A methodology comprising of the estimates of power yield, evaluation of the effects of power extraction on flow conditions, and near-field investigations to deliver wake characteritics, recovery and interactions is described and applied to several straits in Indonesia. Site selection is done with high-resolution, three-dimensional flow models providing sufficient spatiotemporal coverage. Much attention has been given to the meteorological forcing, and conditions at the open sea boundaries to adequately capture the density gradients and flow fields. Model verification using tidal records shows excellent agreement. Sites with adequate depth for the energy conversion using horizontal axis tidal turbines, average kinetic power density greater than 0.5 kW/m2, and surface area larger than 0.5km2 are defined as energy hotspots. Spatial variation of the average extractable electric power is determined, and annual tidal energy resource is estimated for the straits in question. The results showed that the potential for tidal power generation in Indonesia is likely to exceed previous predictions reaching around 4,800MW. To assess the impact of the devices, flexible mesh models with higher resolutions have been developed. Effects on flow conditions, and near-field turbine wakes are resolved in greater detail with triangular horizontal grids. The energy is assumed to be removed uniformly by sub-grid scale arrays of turbines, and calculations are made based on velocities at the hub heights of the devices. An additional drag force resulting in dissipation of the pre-existing kinetic power from %10 to %60 within a flow cross-section is introduced to capture the impacts. It was found that the effect of power extraction on water levels and flow speeds in adjacent areas is not significant. Results show the effectivess of the method to capture wake characteritics and recovery reasonably well with low computational cost.
Advanced cathode materials for high-power applications
NASA Astrophysics Data System (ADS)
Amine, K.; Liu, J.; Belharouak, I.; Kang, S.-H.; Bloom, I.; Vissers, D.; Henriksen, G.
In our efforts to develop low cost high-power Li-ion batteries with excellent safety, as well as long cycle and calendar life, lithium manganese oxide spinel and layered lithium nickel cobalt manganese oxide cathode materials were investigated. Our studies with the graphite/LiPF 6/spinel cells indicated a very significant degradation of capacity with cycling at 55 °C. This degradation was caused by the reduction of manganese ions on the graphite surface which resulted in a significant increase of the charge-transfer impedance at the anode/electrolyte interface. To improve the stability of the spinel, we investigated an alternative salt that would not generate HF acid that may attack the spinel. The alternative salt we selected for this work was lithium bisoxalatoborate, LiB(C 2O 4) 2 ("LiBoB"). In this case, the graphite/LiBoB/spinel Li-ion cells exhibited much improved cycle/calendar life at 55 °C and better abuse tolerance, as well as excellent power. A second system based on LiNi 1/3Co 1/3Mn 1/3O 2 layered material was also investigated and its performance was compared to commercial LiNi 0.8Co 0.15Al 0.05O 2. Cells based on LiNi 1/3Co 1/3Mn 1/3O 2 showed lower power fade and better thermal safety than the LiNi 0.8Co 0.15Al 0.05O 2-based commercial cells under similar test conditions. Li-ion cells based on the material with excess lithium (Li 1.1Ni 1/3Co 1/3Mn 1/3O 2) exhibited excellent power performance that exceeded the FreedomCAR requirements.
High-power arrays of quantum cascade laser master-oscillator power-amplifiers.
Rauter, Patrick; Menzel, Stefan; Goyal, Anish K; Wang, Christine A; Sanchez, Antonio; Turner, George; Capasso, Federico
2013-02-25
We report on multi-wavelength arrays of master-oscillator power-amplifier quantum cascade lasers operating at wavelengths between 9.2 and 9.8 μm. All elements of the high-performance array feature longitudinal (spectral) as well as transverse single-mode emission at peak powers between 2.7 and 10 W at room temperature. The performance of two arrays that are based on different seed-section designs is thoroughly studied and compared. High output power and excellent beam quality render the arrays highly suitable for stand-off spectroscopy applications.
Li, Zheng-Wei; You, Zhu-Hong; Chen, Xing; Li, Li-Ping; Huang, De-Shuang; Yan, Gui-Ying; Nie, Ru; Huang, Yu-An
2017-04-04
Identification of protein-protein interactions (PPIs) is of critical importance for deciphering the underlying mechanisms of almost all biological processes of cell and providing great insight into the study of human disease. Although much effort has been devoted to identifying PPIs from various organisms, existing high-throughput biological techniques are time-consuming, expensive, and have high false positive and negative results. Thus it is highly urgent to develop in silico methods to predict PPIs efficiently and accurately in this post genomic era. In this article, we report a novel computational model combining our newly developed discriminative vector machine classifier (DVM) and an improved Weber local descriptor (IWLD) for the prediction of PPIs. Two components, differential excitation and orientation, are exploited to build evolutionary features for each protein sequence. The main characteristics of the proposed method lies in introducing an effective feature descriptor IWLD which can capture highly discriminative evolutionary information from position-specific scoring matrixes (PSSM) of protein data, and employing the powerful and robust DVM classifier. When applying the proposed method to Yeast and H. pylori data sets, we obtained excellent prediction accuracies as high as 96.52% and 91.80%, respectively, which are significantly better than the previous methods. Extensive experiments were then performed for predicting cross-species PPIs and the predictive results were also pretty promising. To further validate the performance of the proposed method, we compared it with the state-of-the-art support vector machine (SVM) classifier on Human data set. The experimental results obtained indicate that our method is highly effective for PPIs prediction and can be taken as a supplementary tool for future proteomics research.
Molten Salt Power Tower Cost Model for the System Advisor Model (SAM)
DOE Office of Scientific and Technical Information (OSTI.GOV)
Turchi, C. S.; Heath, G. A.
2013-02-01
This report describes a component-based cost model developed for molten-salt power tower solar power plants. The cost model was developed by the National Renewable Energy Laboratory (NREL), using data from several prior studies, including a contracted analysis from WorleyParsons Group, which is included herein as an Appendix. The WorleyParsons' analysis also estimated material composition and mass for the plant to facilitate a life cycle analysis of the molten salt power tower technology. Details of the life cycle assessment have been published elsewhere. The cost model provides a reference plant that interfaces with NREL's System Advisor Model or SAM. The referencemore » plant assumes a nominal 100-MWe (net) power tower running with a nitrate salt heat transfer fluid (HTF). Thermal energy storage is provided by direct storage of the HTF in a two-tank system. The design assumes dry-cooling. The model includes a spreadsheet that interfaces with SAM via the Excel Exchange option in SAM. The spreadsheet allows users to estimate the costs of different-size plants and to take into account changes in commodity prices. This report and the accompanying Excel spreadsheet can be downloaded at https://sam.nrel.gov/cost.« less
Monolithic solid oxide fuel cell development
NASA Technical Reports Server (NTRS)
Myles, K. M.; Mcpheeters, C. C.
1989-01-01
The feasibility of the monolithic solid oxide fuel cell (MSOFC) concept has been proven, and the performance has been dramatically improved. The differences in thermal expansion coefficients and firing shrinkages among the fuel cell materials have been minimized, thus allowing successful fabrication of the MSOFC with few defects. The MSOFC shows excellent promise for development into a practical power source for many applications from stationary power, to automobile propulsion, to space pulsed power.
Candidacy for Kidney Transplantation of Older Adults
Grams, Morgan E.; Kucirka, Lauren M.; Hanrahan, Colleen F.; Montgomery, Robert A.; Massie, Allan B.; Segev, Dorry L.
2013-01-01
OBJECTIVES To develop a prediction model for kidney transplantation (KT) outcomes specific to older adults with end-stage renal disease (ESRD) and to use this model to estimate the number of excellent older KT candidates who lack access to KT. DESIGN Secondary analysis of data collected by the United Network for Organ Sharing and U.S. Renal Disease System. SETTING Retrospective analysis of national registry data. PARTICIPANTS Model development: Medicare-primary older recipients (aged ≥ 65) of a first KT between 1999 and 2006 (N = 6,988). Model application: incident Medicare-primary older adults with ESRD between 1999 and 2006 without an absolute or relative contraindication to transplantation (N = 128,850). MEASUREMENTS Comorbid conditions were extracted from U.S. Renal Disease System Form 2728 data and Medicare claims. RESULTS The prediction model used 19 variables to estimate post-KT outcome and showed good calibration (Hosmer–Lemeshow P = .44) and better prediction than previous population-average models (P < .001). Application of the model to the population with incident ESRD identified 11,756 excellent older transplant candidates (defined as >87% predicted 3-year post-KT survival, corresponding to the top 20% of transplanted older adults used in model development), of whom 76.3% (n = 8,966) lacked access. It was estimated that 11% of these candidates would have identified a suitable live donor had they been referred for KT. CONCLUSION A risk-prediction model specific to older adults can identify excellent KT candidates. Appropriate referral could result in significantly greater rates of KT in older adults. PMID:22239290
Peng, Mingzeng; Liu, Yudong; Yu, Aifang; Zhang, Yang; Liu, Caihong; Liu, Jingyu; Wu, Wei; Zhang, Ke; Shi, Xieqing; Kou, Jinzong; Zhai, Junyi; Wang, Zhong Lin
2016-01-26
Flexible self-powered sensing is urgently needed for wearable, portable, sustainable, maintenance-free and long-term applications. Here, we developed a flexible and self-powered GaN membrane-based ultraviolet (UV) photoswitch with high on/off ratio and excellent sensitivity. Even without any power supply, the driving force of UV photogenerated carriers can be well boosted by the combination of both built-in electric field and piezoelectric polarization field. The asymmetric metal-semiconductor-metal structure has been elaborately utilized to enhance the carrier separation and transport for highly sensitive UV photoresponse. Its UV on/off ratio and detection sensitivity reach to 4.67 × 10(5) and 1.78 × 10(12) cm·Hz(0.5) W(1-), respectively. Due to its excellent mechanical flexibility, the piezoelectric polarization field in GaN membrane can be easily tuned/controlled based on piezo-phototronic effect. Under 1% strain, a stronger and broader depletion region can be obtained to further enhance UV on/off ratio up to 154%. As a result, our research can not only provide a deep understanding of local electric field effects on self-powered optoelectronic detection, but also promote the development of self-powered flexible optoelectronic devices and integrated systems.
A low cost hermetic packaging for high power industry fiber lasers
NASA Astrophysics Data System (ADS)
Ding, Jianwu; Liu, Jinhui
2018-02-01
For water-cooled fiber lasers, humidity and the resulting water-condensation has always been the biggest threat for laser reliability or power degradation, especially when used in harsh industrial environment. Here we present an innovative fiber laser packaging method featuring cast aluminum frame and an almost screw-free exterior packaging. A CW fiber laser with 1.5KW laser output power in such a compact and light-weight package has been demonstrated with an excellent beam quality and power stability for industry applications.
Emissions & Generation Resource Integrated Database (eGRID), eGRID2010
The Emissions & Generation Resource Integrated Database (eGRID) is a comprehensive source of data on the environmental characteristics of almost all electric power generated in the United States. These environmental characteristics include air emissions for nitrogen oxides, sulfur dioxide, carbon dioxide, methane, and nitrous oxide; emissions rates; net generation; resource mix; and many other attributes.eGRID2010 contains the complete release of year 2007 data, as well as years 2005 and 2004 data. Excel spreadsheets, full documentation, summary data, eGRID subregion and NERC region representational maps, and GHG emission factors are included in this data set. The Archived data in eGRID2002 contain years 1996 through 2000 data.For year 2007 data, the first Microsoft Excel workbook, Plant, contains boiler, generator, and plant spreadsheets. The second Microsoft Excel workbook, Aggregation, contains aggregated data by state, electric generating company, parent company, power control area, eGRID subregion, NERC region, and U.S. total levels. The third Microsoft Excel workbook, ImportExport, contains state import-export data, as well as U.S. generation and consumption data for years 2007, 2005, and 2004. For eGRID data for years 2005 and 2004, a user friendly web application, eGRIDweb, is available to select, view, print, and export specified data.
Agreement and accuracy using the FIGO, ACOG and NICE cardiotocography interpretation guidelines.
Santo, Susana; Ayres-de-Campos, Diogo; Costa-Santos, Cristina; Schnettler, William; Ugwumadu, Austin; Da Graça, Luís M
2017-02-01
One of the limitations reported with cardiotocography is the modest interobserver agreement observed in tracing interpretation. This study compared agreement, reliability and accuracy of cardiotocography interpretation using the International Federation of Gynecology and Obstetrics, American College of Obstetrics and Gynecology and National Institute for Health and Care Excellence guidelines. A total of 151 tracings were evaluated by 27 clinicians from three centers where International Federation of Gynecology and Obstetrics, American College of Obstetrics and Gynecology and National Institute for Health and Care Excellence guidelines were routinely used. Interobserver agreement was evaluated using the proportions of agreement and reliability with the κ statistic. The accuracy of tracings classified as "pathological/category III" was assessed for prediction of newborn acidemia. For all measures, 95% confidence interval were calculated. Cardiotocography classifications were more distributed with International Federation of Gynecology and Obstetrics (9, 52, 39%) and National Institute for Health and Care Excellence (30, 33, 37%) than with American College of Obstetrics and Gynecology (13, 81, 6%). The category with the highest agreement was American College of Obstetrics and Gynecology category II (proportions of agreement = 0.73, 95% confidence interval 0.70-76), and the ones with the lowest agreement were American College of Obstetrics and Gynecology categories I and III. Reliability was significantly higher with International Federation of Gynecology and Obstetrics (κ = 0.37, 95% confidence interval 0.31-0.43), and National Institute for Health and Care Excellence (κ = 0.33, 95% confidence interval 0.28-0.39) than with American College of Obstetrics and Gynecology (κ = 0.15, 95% confidence interval 0.10-0.21); however, all represent only slight/fair reliability. International Federation of Gynecology and Obstetrics and National Institute for Health and Care Excellence showed a trend towards higher sensitivities in prediction of newborn acidemia (89 and 97%, respectively) than American College of Obstetrics and Gynecology (32%), but the latter achieved a significantly higher specificity (95%). With American College of Obstetrics and Gynecology guidelines there is high agreement in category II, low reliability, low sensitivity and high specificity in prediction of acidemia. With International Federation of Gynecology and Obstetrics and National Institute for Health and Care Excellence guidelines there is higher reliability, a trend towards higher sensitivity, and lower specificity in prediction of acidemia. © 2016 Nordic Federation of Societies of Obstetrics and Gynecology.
Univariate Time Series Prediction of Solar Power Using a Hybrid Wavelet-ARMA-NARX Prediction Method
DOE Office of Scientific and Technical Information (OSTI.GOV)
Nazaripouya, Hamidreza; Wang, Yubo; Chu, Chi-Cheng
This paper proposes a new hybrid method for super short-term solar power prediction. Solar output power usually has a complex, nonstationary, and nonlinear characteristic due to intermittent and time varying behavior of solar radiance. In addition, solar power dynamics is fast and is inertia less. An accurate super short-time prediction is required to compensate for the fluctuations and reduce the impact of solar power penetration on the power system. The objective is to predict one step-ahead solar power generation based only on historical solar power time series data. The proposed method incorporates discrete wavelet transform (DWT), Auto-Regressive Moving Average (ARMA)more » models, and Recurrent Neural Networks (RNN), while the RNN architecture is based on Nonlinear Auto-Regressive models with eXogenous inputs (NARX). The wavelet transform is utilized to decompose the solar power time series into a set of richer-behaved forming series for prediction. ARMA model is employed as a linear predictor while NARX is used as a nonlinear pattern recognition tool to estimate and compensate the error of wavelet-ARMA prediction. The proposed method is applied to the data captured from UCLA solar PV panels and the results are compared with some of the common and most recent solar power prediction methods. The results validate the effectiveness of the proposed approach and show a considerable improvement in the prediction precision.« less
Solar-pumped solid state Nd lasers
NASA Technical Reports Server (NTRS)
Williams, M. D.; Zapata, L.
1985-01-01
Solid state neodymium lasers are considered candidates for space-based polar-pumped laser for continuous power transmission. Laser performance for three different slab laser configurations has been computed to show the excellent power capability of such systems if heat problems can be solved. Ideas involving geometries and materials are offered as potential solutions to the heat problem.
High-power-density, high-energy-density fluorinated graphene for primary lithium batteries
NASA Astrophysics Data System (ADS)
Zhong, Guiming; Chen, Huixin; Huang, Xingkang; Yue, Hongjun; Lu, Canzhong
2018-03-01
Li/CFx is one of the highest-energy-density primary batteries; however, poor rate capability hinders its practical applications in high-power devices. Here we report a preparation of fluorinated graphene (GFx) with superior performance through a direct gas fluorination. We find that the so-called “semi-ionic” C-F bond content in all C-F bonds presents a more critical impact on rate performance of the GFx in comparison with sp2 C content in the GFx, morphology, structure, and specific surface area of the materials. The rate capability remains excellent before the semi-ionic C-F bond proportion in the GFx decreases. Thus, by optimizing semi-ionic C-F content in our GFx, we obtain the optimal x of 0.8, with which the GF0.8 exhibits a very high energy density of 1073 Wh kg-1 and an excellent power density of 21460 W kg-1 at a high current density of 10 A g-1. More importantly, our approach opens a new avenue to obtain fluorinated carbon with high energy densities without compromising high power densities.
Zheng, Jun-Sheng; Zhang, Lei; Shellikeri, Annadanesh; Cao, Wanjun; Wu, Qiang; Zheng, Jim P
2017-02-07
Li ion battery (LIB) and electrochemical capacitor (EC) are considered as the most widely used energy storage systems (ESSs) because they can produce a high energy density or a high power density, but it is a huge challenge to achieve both the demands of a high energy density as well as a high power density on their own. A new hybrid Li ion capacitor (HyLIC), which combines the advantages of LIB and Li ion capacitor (LIC), is proposed. This device can successfully realize a potential match between LIB and LIC and can avoid the excessive depletion of electrolyte during the charge process. The galvanostatic charge-discharge cycling tests reveal that at low current, the HyLIC exhibits a high energy density, while at high current, it demonstrates a high power density. Ragone plot confirms that this device can make a synergetic balance between energy and power and achieve a highest energy density in the power density range of 80 to 300 W kg -1 . The cycle life test proves that HyLIC exhibits a good cycle life and an excellent coulombic efficiency. The present study shows that HyLIC, which is capable of achieving a high energy density, a long cycle life and an excellent power density, has the potential to achieve the winning combination of a high energy and power density.
Zheng, Jun-Sheng; Zhang, Lei; Shellikeri, Annadanesh; Cao, Wanjun; Wu, Qiang; Zheng, Jim P.
2017-01-01
Li ion battery (LIB) and electrochemical capacitor (EC) are considered as the most widely used energy storage systems (ESSs) because they can produce a high energy density or a high power density, but it is a huge challenge to achieve both the demands of a high energy density as well as a high power density on their own. A new hybrid Li ion capacitor (HyLIC), which combines the advantages of LIB and Li ion capacitor (LIC), is proposed. This device can successfully realize a potential match between LIB and LIC and can avoid the excessive depletion of electrolyte during the charge process. The galvanostatic charge-discharge cycling tests reveal that at low current, the HyLIC exhibits a high energy density, while at high current, it demonstrates a high power density. Ragone plot confirms that this device can make a synergetic balance between energy and power and achieve a highest energy density in the power density range of 80 to 300 W kg−1. The cycle life test proves that HyLIC exhibits a good cycle life and an excellent coulombic efficiency. The present study shows that HyLIC, which is capable of achieving a high energy density, a long cycle life and an excellent power density, has the potential to achieve the winning combination of a high energy and power density. PMID:28169329
Gao, Xiang-Ming; Yang, Shi-Feng; Pan, San-Bo
2017-01-01
Predicting the output power of photovoltaic system with nonstationarity and randomness, an output power prediction model for grid-connected PV systems is proposed based on empirical mode decomposition (EMD) and support vector machine (SVM) optimized with an artificial bee colony (ABC) algorithm. First, according to the weather forecast data sets on the prediction date, the time series data of output power on a similar day with 15-minute intervals are built. Second, the time series data of the output power are decomposed into a series of components, including some intrinsic mode components IMFn and a trend component Res, at different scales using EMD. The corresponding SVM prediction model is established for each IMF component and trend component, and the SVM model parameters are optimized with the artificial bee colony algorithm. Finally, the prediction results of each model are reconstructed, and the predicted values of the output power of the grid-connected PV system can be obtained. The prediction model is tested with actual data, and the results show that the power prediction model based on the EMD and ABC-SVM has a faster calculation speed and higher prediction accuracy than do the single SVM prediction model and the EMD-SVM prediction model without optimization.
2017-01-01
Predicting the output power of photovoltaic system with nonstationarity and randomness, an output power prediction model for grid-connected PV systems is proposed based on empirical mode decomposition (EMD) and support vector machine (SVM) optimized with an artificial bee colony (ABC) algorithm. First, according to the weather forecast data sets on the prediction date, the time series data of output power on a similar day with 15-minute intervals are built. Second, the time series data of the output power are decomposed into a series of components, including some intrinsic mode components IMFn and a trend component Res, at different scales using EMD. The corresponding SVM prediction model is established for each IMF component and trend component, and the SVM model parameters are optimized with the artificial bee colony algorithm. Finally, the prediction results of each model are reconstructed, and the predicted values of the output power of the grid-connected PV system can be obtained. The prediction model is tested with actual data, and the results show that the power prediction model based on the EMD and ABC-SVM has a faster calculation speed and higher prediction accuracy than do the single SVM prediction model and the EMD-SVM prediction model without optimization. PMID:28912803
Ko, Eun Yi; Park, Gi Eun; Lee, Ji Hyung; Kim, Hyung Jong; Lee, Dae Hee; Ahn, Hyungju; Uddin, Mohammad Afsar; Woo, Han Young; Cho, Min Ju; Choi, Dong Hoon
2017-03-15
New small molecules having modified acceptor strength and π-conjugation length and containing dicyanovinylene (DCV) and tricyanovinylene (TCV) as a strongly electron-accepting unit with indacenodithiophene, IDT(DCV) 2 , IDT(TCV) 2 , and IDTT(TCV) 2 , were synthesized and studied in terms of their applicability to polymer solar cells with PTB7-Th as an electron-donating polymer. Intriguingly, the blended films containing IDT(TCV) 2 and IDTT(TCV) 2 exhibited superior shelf life stabilities of more than 1000 h without any reduction in the initial power conversion efficiency. The low-lying lowest unoccupied molecular orbital energy levels and robust internal morphologies of small TCV-containing molecules could afford excellent shelf life stability.
Solar Spectral Irradiance Variability in Cycle 24: Model Predictions and OMI Observations
NASA Technical Reports Server (NTRS)
Marchenko, S.; DeLand, M.; Lean, J.
2016-01-01
Utilizing the excellent stability of the Ozone Monitoring Instrument (OMI), we characterize both short-term (solar rotation) and long-term (solar cycle) changes of the solar spectral irradiance (SSI) between 265-500 nanometers during the ongoing Cycle 24. We supplement the OMI data with concurrent observations from the GOME-2 (Global Ozone Monitoring Experiment - 2) and SORCE (Solar Radiation and Climate Experiment) instruments and find fair-to-excellent agreement between the observations and predictions of the NRLSSI2 (Naval Research Laboratory Solar Spectral Irradiance - post SORCE) and SATIRE-S (the Naval Research Laboratory's Spectral And Total Irradiance REconstruction for the Satellite era) models.
Perraton, Luke G.; Bower, Kelly J.; Adair, Brooke; Pua, Yong-Hao; Williams, Gavin P.; McGaw, Rebekah
2015-01-01
Introduction Hand-held dynamometry (HHD) has never previously been used to examine isometric muscle power. Rate of force development (RFD) is often used for muscle power assessment, however no consensus currently exists on the most appropriate method of calculation. The aim of this study was to examine the reliability of different algorithms for RFD calculation and to examine the intra-rater, inter-rater, and inter-device reliability of HHD as well as the concurrent validity of HHD for the assessment of isometric lower limb muscle strength and power. Methods 30 healthy young adults (age: 23±5yrs, male: 15) were assessed on two sessions. Isometric muscle strength and power were measured using peak force and RFD respectively using two HHDs (Lafayette Model-01165 and Hoggan microFET2) and a criterion-reference KinCom dynamometer. Statistical analysis of reliability and validity comprised intraclass correlation coefficients (ICC), Pearson correlations, concordance correlations, standard error of measurement, and minimal detectable change. Results Comparison of RFD methods revealed that a peak 200ms moving window algorithm provided optimal reliability results. Intra-rater, inter-rater, and inter-device reliability analysis of peak force and RFD revealed mostly good to excellent reliability (coefficients ≥ 0.70) for all muscle groups. Concurrent validity analysis showed moderate to excellent relationships between HHD and fixed dynamometry for the hip and knee (ICCs ≥ 0.70) for both peak force and RFD, with mostly poor to good results shown for the ankle muscles (ICCs = 0.31–0.79). Conclusions Hand-held dynamometry has good to excellent reliability and validity for most measures of isometric lower limb strength and power in a healthy population, particularly for proximal muscle groups. To aid implementation we have created freely available software to extract these variables from data stored on the Lafayette device. Future research should examine the reliability and validity of these variables in clinical populations. PMID:26509265
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hammel, T.E.; Srinivas, V.
1978-11-01
This initial definition of the power degradation prediction technique outlines a model for predicting SIG/Galileo mean EOM power using component test data and data from a module power degradation demonstration test program. (LCL)
Zanarini, Mary C; Temes, Christina M; Frankenburg, Frances R; Reich, D Bradford; Fitzmaurice, Garrett M
2018-04-01
One purpose of this study was to determine the cumulative rates of excellent recovery for borderline patients and axis II comparison subjects followed prospectively for 20 years. Another purpose was to find the best set of baseline predictors of excellent recovery for borderline patients. A total of 290 inpatients meeting rigorous criteria for borderline personality disorder and 72 axis II comparison subjects completed semistructured interviews and self-report measures during their index admission. Subjects were reassessed prospectively over 10 contiguous two-year waves of follow-up. Thirty-nine percent of borderline patients and 73% of personality-disordered comparison subjects met our operationalized definition of excellent recovery (concurrent remission of borderline or another primary personality disorder, good social and full-time vocational functioning, and absence of an axis I disorder associated decreased social and/or vocational functioning). Five variables formed our multivariate predictive model of excellent recovery for borderline patients: higher IQ, good childhood work history, good adult vocational record, lower trait neuroticism, and higher trait agreeableness. The results of this study suggest that complete recovery is difficult for borderline patients to achieve even over long periods of time. They also suggest that competence displayed in both childhood and adulthood is the best predictor of this important outcome. Copyright © 2018 Elsevier B.V. All rights reserved.
Karev, Georgy P; Wolf, Yuri I; Koonin, Eugene V
2003-10-12
The distributions of many genome-associated quantities, including the membership of paralogous gene families can be approximated with power laws. We are interested in developing mathematical models of genome evolution that adequately account for the shape of these distributions and describe the evolutionary dynamics of their formation. We show that simple stochastic models of genome evolution lead to power-law asymptotics of protein domain family size distribution. These models, called Birth, Death and Innovation Models (BDIM), represent a special class of balanced birth-and-death processes, in which domain duplication and deletion rates are asymptotically equal up to the second order. The simplest, linear BDIM shows an excellent fit to the observed distributions of domain family size in diverse prokaryotic and eukaryotic genomes. However, the stochastic version of the linear BDIM explored here predicts that the actual size of large paralogous families is reached on an unrealistically long timescale. We show that introduction of non-linearity, which might be interpreted as interaction of a particular order between individual family members, allows the model to achieve genome evolution rates that are much better compatible with the current estimates of the rates of individual duplication/loss events.
Preliminary flight test results of the F100 EMD engine in an F-15 airplane
NASA Technical Reports Server (NTRS)
Myers, L. P.; Burcham, F. W., Jr.
1984-01-01
A flight evaluation of the F100 Engine Model Derivative (EMD) is conducted. The F100 EMD is an advanced version of the F100 engine that powers the F15 and F16 airplanes. The F100 EMD features a bigger fan, higher temperature turbine, a Digital Electronic Engine Control system (DEEC), and a newly designed 16 segment afterburner, all of which results in a 15 to 20 percent increase in sea level thrust. The flight evaluations consist of investigation of performance (thrust, fuel flow, and airflow) and operability (transient response and airstart) in the F-15 airplane. The performance of the F100 EMD is excellent. Aircraft acceleration time to Mach 2.0 is reduced by 23 percent with two F100 EMD engines. Several anomalies are discovered in the operability evaluations. A software change to the DEEC improved the throttle, and subsequent Cooper Harper ratings of 3 to 4 are obtained. In the extreme upper left hand corner of the flight enveloped, compressor stalls occurr when the throttle is retarded to idle power. These stalls are not predicted by altitude facility tests or stability for the compressor.
Data acquisition and real-time control using spreadsheets: interfacing Excel with external hardware.
Aliane, Nourdine
2010-07-01
Spreadsheets have become a popular computational tool and a powerful platform for performing engineering calculations. Moreover, spreadsheets include a macro language, which permits the inclusion of standard computer code in worksheets, and thereby enable developers to greatly extend spreadsheets' capabilities by designing specific add-ins. This paper describes how to use Excel spreadsheets in conjunction to Visual Basic for Application programming language to perform data acquisition and real-time control. Afterwards, the paper presents two Excel applications with interactive user interfaces developed for laboratory demonstrations and experiments in an introductory course in control. 2010 ISA. Published by Elsevier Ltd. All rights reserved.
Rantalainen, Timo; Gastin, Paul B; Spangler, Rhys; Wundersitz, Daniel
2018-09-01
The purpose of the present study was to evaluate the concurrent validity and test-retest repeatability of torso-worn IMU-derived power and jump height in a counter-movement jump test. Twenty-seven healthy recreationally active males (age, 21.9 [SD 2.0] y, height, 1.76 [0.7] m, mass, 73.7 [10.3] kg) wore an IMU and completed three counter-movement jumps a week apart. A force platform and a 3D motion analysis system were used to concurrently measure the jumps and subsequently derive power and jump height (based on take-off velocity and flight time). The IMU significantly overestimated power (mean difference = 7.3 W/kg; P < 0.001) compared to force-platform-derived power but good correspondence between methods was observed (Intra-class correlation coefficient [ICC] = 0.69). IMU-derived power exhibited good reliability (ICC = 0.67). Velocity-derived jump heights exhibited poorer concurrent validity (ICC = 0.72 to 0.78) and repeatability (ICC = 0.68) than flight-time-derived jump heights, which exhibited excellent validity (ICC = 0.93 to 0.96) and reliability (ICC = 0.91). Since jump height and power are closely related, and flight-time-derived jump height exhibits excellent concurrent validity and reliability, flight-time-derived jump height could provide a more desirable measure compared to power when assessing athletic performance in a counter-movement jump with IMUs.
NASA Astrophysics Data System (ADS)
Gebhardt, Martin; Gaida, Christian; Heuermann, T.; Stutzki, F.; Jauregui, C.; Antonio-Lopez, J.; Schüuzgen, A.; Amezcua-Correa, R.; Tünnermann, A.; Limpert, J.
2018-02-01
In this contribution we demonstrate the nonlinear pulse compression of an ultrafast thulium-doped fiber laser down to 14 fs FWHM duration (sub-3 optical cycles) at a record average power of 43 W and 34.5 μJ pulse energy. To the best of our knowledge, we present the highest average power few-cycle laser source at 2 μm wavelength. This performance level in combination with GW-class peak power makes our laser source extremely interesting for driving high-harmonic generation or for generating mid-infrared frequency combs via intra-pulse frequency down-conversion at an unprecedented average power. The experiments were enabled by an ultrafast thulium-doped fiber laser delivering 110 fs pulses at high repetition rates, and an argon gas-filled antiresonant hollow-core fiber (ARHCF) with excellent transmission and weak anomalous dispersion, leading to the self-compression of the pulses. We have shown that ARHCFs are well-suited for nonlinear pulse compression around 2 μm wavelength and that this concept features excellent power handling capabilities. Based on this result, we discuss the next steps for energy and average power scaling including upscaling the fiber dimensions in order to fully exploit the capabilities of our laser system, which can deliver several GW of peak power. This way, a 100 W-class laser source with mJ-level few-cycle pulses at 2 μm wavelength is feasible in the near future.
ERIC Educational Resources Information Center
Wamala, Robert
2016-01-01
Purpose: Prospective students of law are required to demonstrate competence in certain disciplines to attain admission to law school. The grounding in the disciplines is expected to demonstrate competencies required to excel academically in law school. The purpose of this study is to investigate the relevance of the law school admission test to…
We succeeded in developing a Natural Language Processing ( NLP ) System with excellent performance characteristics for determining the type of...people (quadruple-annotated) and7,226 of which were double annotated. We also developed an NLP system to extract PT Checklist (PCL) scores from clinical notes with excellent accuracy (98 positive predictive value).
A Solar Dynamic Power Option for Space Solar Power
NASA Technical Reports Server (NTRS)
Mason, Lee S.
1999-01-01
A study was performed to determine the potential performance and related technology requirements of Solar Dynamic power systems for a Space Solar Power satellite. Space Solar Power is a concept where solar energy is collected in orbit and beamed to Earth receiving stations to supplement terrestrial electric power service. Solar Dynamic systems offer the benefits of high solar-to-electric efficiency, long life with minimal performance degradation, and high power scalability. System analyses indicate that with moderate component development, SD systems can exhibit excellent mass and deployed area characteristics. Using the analyses as a guide, a technology roadmap was -enerated which identifies the component advances necessary to make SD power generation a competitive option for the SSP mission.
Optical Peaking Enhancement in High-Speed Ring Modulators
Müller, J.; Merget, F.; Azadeh, S. Sharif; Hauck, J.; García, S. Romero; Shen, B.; Witzens, J.
2014-01-01
Ring resonator modulators (RRM) combine extreme compactness, low power consumption and wavelength division multiplexing functionality, making them a frontrunner for addressing the scalability requirements of short distance optical links. To extend data rates beyond the classically assumed bandwidth capability, we derive and experimentally verify closed form equations of the electro-optic response and asymmetric side band generation resulting from inherent transient time dynamics and leverage these to significantly improve device performance. An equivalent circuit description with a commonly used peaking amplifier model allows straightforward assessment of the effect on existing communication system architectures. A small signal analytical expression of peaking in the electro-optic response of RRMs is derived and used to extend the electro-optic bandwidth of the device above 40 GHz as well as to open eye diagrams penalized by intersymbol interference at 32, 40 and 44 Gbps. Predicted peaking and asymmetric side band generation are in excellent agreement with experiments. PMID:25209255
Würfel, Uli; Neher, Dieter; Spies, Annika; Albrecht, Steve
2015-01-01
This work elucidates the impact of charge transport on the photovoltaic properties of organic solar cells. Here we show that the analysis of current–voltage curves of organic solar cells under illumination with the Shockley equation results in values for ideality factor, photocurrent and parallel resistance, which lack physical meaning. Drift-diffusion simulations for a wide range of charge-carrier mobilities and illumination intensities reveal significant carrier accumulation caused by poor transport properties, which is not included in the Shockley equation. As a consequence, the separation of the quasi Fermi levels in the organic photoactive layer (internal voltage) differs substantially from the external voltage for almost all conditions. We present a new analytical model, which considers carrier transport explicitly. The model shows excellent agreement with full drift-diffusion simulations over a wide range of mobilities and illumination intensities, making it suitable for realistic efficiency predictions for organic solar cells. PMID:25907581
Diverse Region-Based CNN for Hyperspectral Image Classification.
Zhang, Mengmeng; Li, Wei; Du, Qian
2018-06-01
Convolutional neural network (CNN) is of great interest in machine learning and has demonstrated excellent performance in hyperspectral image classification. In this paper, we propose a classification framework, called diverse region-based CNN, which can encode semantic context-aware representation to obtain promising features. With merging a diverse set of discriminative appearance factors, the resulting CNN-based representation exhibits spatial-spectral context sensitivity that is essential for accurate pixel classification. The proposed method exploiting diverse region-based inputs to learn contextual interactional features is expected to have more discriminative power. The joint representation containing rich spectral and spatial information is then fed to a fully connected network and the label of each pixel vector is predicted by a softmax layer. Experimental results with widely used hyperspectral image data sets demonstrate that the proposed method can surpass any other conventional deep learning-based classifiers and other state-of-the-art classifiers.
Perspective: Quantum Hamiltonians for optical interactions
NASA Astrophysics Data System (ADS)
Andrews, David L.; Jones, Garth A.; Salam, A.; Woolley, R. Guy
2018-01-01
The multipolar Hamiltonian of quantum electrodynamics is extensively employed in chemical and optical physics to treat rigorously the interaction of electromagnetic fields with matter. It is also widely used to evaluate intermolecular interactions. The multipolar version of the Hamiltonian is commonly obtained by carrying out a unitary transformation of the Coulomb gauge Hamiltonian that goes by the name of Power-Zienau-Woolley (PZW). Not only does the formulation provide excellent agreement with experiment, and versatility in its predictive ability, but also superior physical insight. Recently, the foundations and validity of the PZW Hamiltonian have been questioned, raising a concern over issues of gauge transformation and invariance, and whether observable quantities obtained from unitarily equivalent Hamiltonians are identical. Here, an in-depth analysis of theoretical foundations clarifies the issues and enables misconceptions to be identified. Claims of non-physicality are refuted: the PZW transformation and ensuing Hamiltonian are shown to rest on solid physical principles and secure theoretical ground.
Assessing Politicized Sexual Orientation Identity: Validating the Queer Consciousness Scale.
Duncan, Lauren E; Mincer, Elizabeth; Dunn, Sarah R
2017-01-01
Building on psychological theories of motivation for collective action, we introduce a new individual difference measure of queer consciousness, defined as a politicized collective identity around sexual orientation. The Queer Consciousness Scale (QCS) consists of 12 items measuring five aspects of a politicized queer identity: sense of common fate, power discontent, system blame, collective orientation, and cognitive centrality. In four samples of adult women and men of varied sexual orientations, the QCS showed good test-retest and Cronbach's reliability and excellent known-groups and predictive validity. Specifically, the QCS was positively correlated with identification as a member of the LGBTQ community, political liberalism, personal political salience, and LGBTQ activism and negatively correlated with right-wing authoritarianism and social dominance orientation. QCS mediated relationships between several individual difference variables and gay rights activism and can be used with both LGBTQ people and allies.
Pulsars and Acceleration Sites
NASA Technical Reports Server (NTRS)
Harding, Alice
2008-01-01
Rotation-powered pulsars are excellent laboratories for the studying particle acceleration as well as fundamental physics of strong gravity, strong magnetic fields and relativity. But even forty years after their discovery, we still do not understand their pulsed emission at any wavelength. I will review both the basic physics of pulsars as well as the latest developments in understanding their high-energy emission. Special and general relativistic effects play important roles in pulsar emission, from inertial frame-dragging near the stellar surface to aberration, time-of-flight and retardation of the magnetic field near the light cylinder. Understanding how these effects determine what we observe at different wavelengths is critical to unraveling the emission physics. Fortunately the Gamma-Ray Large Area Space Telescope (GLAST), with launch in May 2008 will detect many new gamma-ray pulsars and test the predictions of these models with unprecedented sensitivity and energy resolution for gamma-rays in the range of 30 MeV to 300 GeV.
Laser surface alloying on aluminum and its alloys: A review
NASA Astrophysics Data System (ADS)
Chi, Yiming; Gu, Guochao; Yu, Huijun; Chen, Chuanzhong
2018-01-01
Aluminum and its alloys have been widely used in aerospace, automotive and transportation industries owing to their excellent properties such as high specific strength, good ductility and light weight. Surface modification is of crucial importance to the surface properties of aluminum and its alloys since high coefficient of friction, wear characteristics and low hardness have limited their long term performance. Laser surface alloying is one of the most effective methods of producing proper microstructure by means of non-equilibrium solidification which results from rapid heating and cooling. In this paper, the influence of different processing parameters, such as laser power and scanning velocity is discussed. The developments of various material systems including ceramics, metals or alloys, and metal matrix composites (MMCs) are reviewed. The microstructure, hardness, wear properties and other behaviors of laser treated layer are analyzed. Besides, the existing problems during laser surface treatment and the corresponding solutions are elucidated and the future developments are predicted.
Designing high-performance layered thermoelectric materials through orbital engineering
Zhang, Jiawei; Song, Lirong; Madsen, Georg K. H.; Fischer, Karl F. F.; Zhang, Wenqing; Shi, Xun; Iversen, Bo B.
2016-01-01
Thermoelectric technology, which possesses potential application in recycling industrial waste heat as energy, calls for novel high-performance materials. The systematic exploration of novel thermoelectric materials with excellent electronic transport properties is severely hindered by limited insight into the underlying bonding orbitals of atomic structures. Here we propose a simple yet successful strategy to discover and design high-performance layered thermoelectric materials through minimizing the crystal field splitting energy of orbitals to realize high orbital degeneracy. The approach naturally leads to design maps for optimizing the thermoelectric power factor through forming solid solutions and biaxial strain. Using this approach, we predict a series of potential thermoelectric candidates from layered CaAl2Si2-type Zintl compounds. Several of them contain nontoxic, low-cost and earth-abundant elements. Moreover, the approach can be extended to several other non-cubic materials, thereby substantially accelerating the screening and design of new thermoelectric materials. PMID:26948043
New Neutron Cross-Section Measurements at ORELA for Improved Nuclear Data Calculations
NASA Astrophysics Data System (ADS)
Guber, K. H.; Leal, L. C.; Sayer, R. O.; Koehler, P. E.; Valentine, T. E.; Derrien, H.; Harvey, J. A.
2005-05-01
Many older neutron cross-section evaluations from libraries such as ENDF/B-VI or JENDL-3.2 exhibit deficiencies or do not cover energy ranges that are important for criticality safety applications. These deficiencies may occur in the resolved and unresolved-resonance regions. Consequently, these evaluated data may not be adequate for nuclear criticality calculations where effects such as self-shielding, multiple scattering, or Doppler broadening are important. To support the Nuclear Criticality Predictability Program, neutron cross-section measurements have been initiated at the Oak Ridge Electron Linear Accelerator (ORELA). ORELA is the only high-power white neutron source with excellent time resolution still operating in the United States. It is ideally suited to measure fission, neutron total, and capture cross sections in the energy range from 1 eV to ˜600 keV, which is important for many nuclear criticality safety applications.
NIR techniques create added values for the pellet and biofuel industry.
Lestander, Torbjörn A; Johnsson, Bo; Grothage, Morgan
2009-02-01
A 2(3)-factorial experiment was carried out in an industrial plant producing biofuel pellets with sawdust as feedstock. The aim was to use on-line near infrared (NIR) spectra from sawdust for real time predictions of moisture content, blends of sawdust and energy consumption of the pellet press. The factors varied were: drying temperature and wood powder dryness in binary blends of sawdust from Norway spruce and Scots pine. The main results were excellent NIR calibration models for on-line prediction of moisture content and binary blends of sawdust from the two species, but also for the novel finding that the consumption of electrical energy per unit pelletized biomass can be predicted by NIR reflectance spectra from sawdust entering the pellet press. This power consumption model, explaining 91.0% of the variation, indicated that NIR data contained information of the compression and friction properties of the biomass feedstock. The moisture content model was validated using a running NIR calibration model in the pellet plant. It is shown that the adjusted prediction error was 0.41% moisture content for grinded sawdust dried to ca. 6-12% moisture content. Further, although used drying temperatures influenced NIR spectra the models for drying temperature resulted in low prediction accuracy. The results show that on-line NIR can be used as an important tool in the monitoring and control of the pelletizing process and that the use of NIR technique in fuel pellet production has possibilities to better meet customer specifications, and therefore create added production values.
NASA Astrophysics Data System (ADS)
Baumbach, S.; Pricking, S.; Overbuschmann, J.; Nutsch, S.; Kleinbauer, J.; Gebs, R.; Tan, C.; Scelle, R.; Kahmann, M.; Budnicki, A.; Sutter, D. H.; Killi, A.
2017-02-01
Multi-megawatt ultrafast laser systems at micrometer wavelength are commonly used for material processing applications, including ablation, cutting and drilling of various materials or cleaving of display glass with excellent quality. There is a need for flexible and efficient beam guidance, avoiding free space propagation of light between the laser head and the processing unit. Solid core step index fibers are only feasible for delivering laser pulses with peak powers in the kW-regime due to the optical damage threshold in bulk silica. In contrast, hollow core fibers are capable of guiding ultra-short laser pulses with orders of magnitude higher peak powers. This is possible since a micro-structured cladding confines the light within the hollow core and therefore minimizes the spatial overlap between silica and the electro-magnetic field. We report on recent results of single-mode ultra-short pulse delivery over several meters in a lowloss hollow core fiber packaged with industrial connectors. TRUMPF's ultrafast TruMicro laser platforms equipped with advanced temperature control and precisely engineered opto-mechanical components provide excellent position and pointing stability. They are thus perfectly suited for passive coupling of ultra-short laser pulses into hollow core fibers. Neither active beam launching components nor beam trackers are necessary for a reliable beam delivery in a space and cost saving packaging. Long term tests with weeks of stable operation, excellent beam quality and an overall transmission efficiency of above 85 percent even at high average power confirm the reliability for industrial applications.
Sevilla, Marta; Fuertes, Antonio B
2014-05-27
An easy, one-step procedure is proposed for the synthesis of highly porous carbon nanosheets with an excellent performance as supercapacitor electrodes. The procedure is based on the carbonization of an organic salt, i.e., potassium citrate, at a temperature in the 750-900 °C range. In this way, carbon particles made up of interconnected carbon nanosheets with a thickness of <80 nm are obtained. The porosity of the carbon nanosheets consists essentially of micropores distributed in two pore systems of 0.7-0.85 nm and 0.95-1.6 nm. Importantly, the micropore sizes of both systems can be enlarged by simply increasing the carbonization temperature. Furthermore, the carbon nanosheets possess BET surface areas in the ∼1400-2200 m(2) g(-1) range and electronic conductivities in the range of 1.7-7.4 S cm(-1) (measured at 7.1 MPa). These materials behave as high-performance supercapacitor electrodes in organic electrolyte and exhibit an excellent power handling ability and a superb robustness over long-term cycling. Excellent results were obtained with the supercapacitor fabricated from the material synthesized at 850 °C in terms of both gravimetric and volumetric energy and power densities. This device was able to deliver ∼13 Wh kg(-1) (5.2 Wh L(-1)) at an extremely high power density of 78 kW kg(-1) (31 kW L(-1)) and ∼30 Wh kg(-1) (12 Wh L(-1)) at a power density of 13 kW kg(-1) (5.2 kW L(-1)) (voltage range of 2.7 V).
Regional climate change predictions from the Goddard Institute for Space Studies high resolution GCM
NASA Technical Reports Server (NTRS)
Crane, Robert G.; Hewitson, Bruce
1990-01-01
Model simulations of global climate change are seen as an essential component of any program aimed at understanding human impact on the global environment. A major weakness of current general circulation models (GCMs), however, is their inability to predict reliably the regional consequences of a global scale change, and it is these regional scale predictions that are necessary for studies of human/environmental response. This research is directed toward the development of a methodology for the validation of the synoptic scale climatology of GCMs. This is developed with regard to the Goddard Institute for Space Studies (GISS) GCM Model 2, with the specific objective of using the synoptic circulation form a doubles CO2 simulation to estimate regional climate change over North America, south of Hudson Bay. This progress report is specifically concerned with validating the synoptic climatology of the GISS GCM, and developing the transfer function to derive grid-point temperatures from the synoptic circulation. Principal Components Analysis is used to characterize the primary modes of the spatial and temporal variability in the observed and simulated climate, and the model validation is based on correlations between component loadings, and power spectral analysis of the component scores. The results show that the high resolution GISS model does an excellent job of simulating the synoptic circulation over the U.S., and that grid-point temperatures can be predicted with reasonable accuracy from the circulation patterns.
Computational prediction of ionic liquid 1-octanol/water partition coefficients.
Kamath, Ganesh; Bhatnagar, Navendu; Baker, Gary A; Baker, Sheila N; Potoff, Jeffrey J
2012-04-07
Wet 1-octanol/water partition coefficients (log K(ow)) predicted for imidazolium-based ionic liquids using adaptive bias force-molecular dynamics (ABF-MD) simulations lie in excellent agreement with experimental values. These encouraging results suggest prospects for this computational tool in the a priori prediction of log K(ow) values of ionic liquids broadly with possible screening implications as well (e.g., prediction of CO(2)-philic ionic liquids).
Effect of Vibration Training on Anaerobic Power and Quardroceps Surface EMG in Long Jumpers
ERIC Educational Resources Information Center
Liu, Bin; Luo, Jiong
2015-01-01
Objective: To explore the anaerobic power and surface EMG (sEMG) of quardrocep muscle in lower extremities after single vibration training intervention. Methods: 8 excellent male long jumpers voluntarily participated in this study. Four intervention modes were devised, including high frequency high amplitude (HFHA,30Hz,6mm), low frequency low…
NASA Astrophysics Data System (ADS)
Takahashi, Leo
2011-03-01
The use of animation as a teaching tool has long been of interest to the readers of and contributors to this journal.1-5 While the sophisticated techniques presented in the cited papers are excellent and useful, there is one overlooked technique that may be of interest to the teacher who wants something quick and simple to enhance classroom presentations: PowerPoint animation.
Teacher Activism in Response to North Carolina's 2013 Excellent Public Schools Act
ERIC Educational Resources Information Center
Cox, Courtnee Danielle
2017-01-01
In 2013, North Carolina's political power balances shifted with the election of a Republican governor, Pat McCrory, and a Republican super-majority in the General Assembly. This shift in political power allowed for more conservative legislation to be introduced in the North Carolina General Assembly. Some of the newly proposed legislation,…
The White House Conference on Global Literacy
ERIC Educational Resources Information Center
US Agency for International Development, 2006
2006-01-01
Literacy is power--the power to improve one's life and shape one's community. All people should know how to read and write, yet 771 million people (18 percent of the world's population) are illiterate. The programs described in this booklet address this challenge. They are samples of a few of the many hundreds of excellent programs around the…
You, Zhu-Hong; Lei, Ying-Ke; Zhu, Lin; Xia, Junfeng; Wang, Bing
2013-01-01
Protein-protein interactions (PPIs) play crucial roles in the execution of various cellular processes and form the basis of biological mechanisms. Although large amount of PPIs data for different species has been generated by high-throughput experimental techniques, current PPI pairs obtained with experimental methods cover only a fraction of the complete PPI networks, and further, the experimental methods for identifying PPIs are both time-consuming and expensive. Hence, it is urgent and challenging to develop automated computational methods to efficiently and accurately predict PPIs. We present here a novel hierarchical PCA-EELM (principal component analysis-ensemble extreme learning machine) model to predict protein-protein interactions only using the information of protein sequences. In the proposed method, 11188 protein pairs retrieved from the DIP database were encoded into feature vectors by using four kinds of protein sequences information. Focusing on dimension reduction, an effective feature extraction method PCA was then employed to construct the most discriminative new feature set. Finally, multiple extreme learning machines were trained and then aggregated into a consensus classifier by majority voting. The ensembling of extreme learning machine removes the dependence of results on initial random weights and improves the prediction performance. When performed on the PPI data of Saccharomyces cerevisiae, the proposed method achieved 87.00% prediction accuracy with 86.15% sensitivity at the precision of 87.59%. Extensive experiments are performed to compare our method with state-of-the-art techniques Support Vector Machine (SVM). Experimental results demonstrate that proposed PCA-EELM outperforms the SVM method by 5-fold cross-validation. Besides, PCA-EELM performs faster than PCA-SVM based method. Consequently, the proposed approach can be considered as a new promising and powerful tools for predicting PPI with excellent performance and less time.
The SAMPL4 host-guest blind prediction challenge: an overview.
Muddana, Hari S; Fenley, Andrew T; Mobley, David L; Gilson, Michael K
2014-04-01
Prospective validation of methods for computing binding affinities can help assess their predictive power and thus set reasonable expectations for their performance in drug design applications. Supramolecular host-guest systems are excellent model systems for testing such affinity prediction methods, because their small size and limited conformational flexibility, relative to proteins, allows higher throughput and better numerical convergence. The SAMPL4 prediction challenge therefore included a series of host-guest systems, based on two hosts, cucurbit[7]uril and octa-acid. Binding affinities in aqueous solution were measured experimentally for a total of 23 guest molecules. Participants submitted 35 sets of computational predictions for these host-guest systems, based on methods ranging from simple docking, to extensive free energy simulations, to quantum mechanical calculations. Over half of the predictions provided better correlations with experiment than two simple null models, but most methods underperformed the null models in terms of root mean squared error and linear regression slope. Interestingly, the overall performance across all SAMPL4 submissions was similar to that for the prior SAMPL3 host-guest challenge, although the experimentalists took steps to simplify the current challenge. While some methods performed fairly consistently across both hosts, no single approach emerged as consistent top performer, and the nonsystematic nature of the various submissions made it impossible to draw definitive conclusions regarding the best choices of energy models or sampling algorithms. Salt effects emerged as an issue in the calculation of absolute binding affinities of cucurbit[7]uril-guest systems, but were not expected to affect the relative affinities significantly. Useful directions for future rounds of the challenge might involve encouraging participants to carry out some calculations that replicate each others' studies, and to systematically explore parameter options.
O’Connor, Christopher D.; Lynch, Ann M.
2016-01-01
A significant concern about Metabolic Scaling Theory (MST) in real forests relates to consistent differences between the values of power law scaling exponents of tree primary size measures used to estimate mass and those predicted by MST. Here we consider why observed scaling exponents for diameter and height relationships deviate from MST predictions across three semi-arid conifer forests in relation to: (1) tree condition and physical form, (2) the level of inter-tree competition (e.g. open vs closed stand structure), (3) increasing tree age, and (4) differences in site productivity. Scaling exponent values derived from non-linear least-squares regression for trees in excellent condition (n = 381) were above the MST prediction at the 95% confidence level, while the exponent for trees in good condition were no different than MST (n = 926). Trees that were in fair or poor condition, characterized as diseased, leaning, or sparsely crowned had exponent values below MST predictions (n = 2,058), as did recently dead standing trees (n = 375). Exponent value of the mean-tree model that disregarded tree condition (n = 3,740) was consistent with other studies that reject MST scaling. Ostensibly, as stand density and competition increase trees exhibited greater morphological plasticity whereby the majority had characteristically fair or poor growth forms. Fitting by least-squares regression biases the mean-tree model scaling exponent toward values that are below MST idealized predictions. For 368 trees from Arizona with known establishment dates, increasing age had no significant impact on expected scaling. We further suggest height to diameter ratios below MST relate to vertical truncation caused by limitation in plant water availability. Even with environmentally imposed height limitation, proportionality between height and diameter scaling exponents were consistent with the predictions of MST. PMID:27391084
Swetnam, Tyson L; O'Connor, Christopher D; Lynch, Ann M
2016-01-01
A significant concern about Metabolic Scaling Theory (MST) in real forests relates to consistent differences between the values of power law scaling exponents of tree primary size measures used to estimate mass and those predicted by MST. Here we consider why observed scaling exponents for diameter and height relationships deviate from MST predictions across three semi-arid conifer forests in relation to: (1) tree condition and physical form, (2) the level of inter-tree competition (e.g. open vs closed stand structure), (3) increasing tree age, and (4) differences in site productivity. Scaling exponent values derived from non-linear least-squares regression for trees in excellent condition (n = 381) were above the MST prediction at the 95% confidence level, while the exponent for trees in good condition were no different than MST (n = 926). Trees that were in fair or poor condition, characterized as diseased, leaning, or sparsely crowned had exponent values below MST predictions (n = 2,058), as did recently dead standing trees (n = 375). Exponent value of the mean-tree model that disregarded tree condition (n = 3,740) was consistent with other studies that reject MST scaling. Ostensibly, as stand density and competition increase trees exhibited greater morphological plasticity whereby the majority had characteristically fair or poor growth forms. Fitting by least-squares regression biases the mean-tree model scaling exponent toward values that are below MST idealized predictions. For 368 trees from Arizona with known establishment dates, increasing age had no significant impact on expected scaling. We further suggest height to diameter ratios below MST relate to vertical truncation caused by limitation in plant water availability. Even with environmentally imposed height limitation, proportionality between height and diameter scaling exponents were consistent with the predictions of MST.
Power load prediction based on GM (1,1)
NASA Astrophysics Data System (ADS)
Wu, Di
2017-05-01
Currently, Chinese power load prediction is highly focused; the paper deeply studies grey prediction and applies it to Chinese electricity consumption during the recent 14 years; through after-test test, it obtains grey prediction which has good adaptability to medium and long-term power load.
Effect of accuracy of wind power prediction on power system operator
NASA Technical Reports Server (NTRS)
Schlueter, R. A.; Sigari, G.; Costi, T.
1985-01-01
This research project proposed a modified unit commitment that schedules connection and disconnection of generating units in response to load. A modified generation control is also proposed that controls steam units under automatic generation control, fast responding diesels, gas turbines and hydro units under a feedforward control, and wind turbine array output under a closed loop array control. This modified generation control and unit commitment require prediction of trend wind power variation one hour ahead and the prediction of error in this trend wind power prediction one half hour ahead. An improved meter for predicting trend wind speed variation is developed. Methods for accurately simulating the wind array power from a limited number of wind speed prediction records was developed. Finally, two methods for predicting the error in the trend wind power prediction were developed. This research provides a foundation for testing and evaluating the modified unit commitment and generation control that was developed to maintain operating reliability at a greatly reduced overall production cost for utilities with wind generation capacity.
X-Ray and UV Photoelectron Spectroscopy | Materials Science | NREL
backsheet material, showing excellent quantitative agreement between measured and predicted peak area ratios quantitative agreement between measured and predicted peak area ratios. Subtle differences in polymer functionality are assessed by deviations from stoichiometry. Elemental Analysis Uses quantitative identification
Predicting School Performance with the Early Screening Inventory.
ERIC Educational Resources Information Center
Meisels, Samuel J.; And Others
1984-01-01
Proposes criteria for defining and selecting preschool developmental screening instruments and describes the Early Screening Inventory (ESI), a developmental screening instrument designed to satisfy these criteria. Presents results of several studies demonstrating that the ESI predicts school performance with moderate to excellent accuracy through…
Yb-doped aluminophosphosilicate ternary fiber with high efficiency and excellent laser stability
NASA Astrophysics Data System (ADS)
Li, Yuwei; Peng, Kun; Zhan, Huan; Liu, Shuang; Ni, Li; Wang, Yuying; Yu, Juan; Wang, Xiaolong; Wang, Jianjun; Jing, Feng; Lin, Aoxiang
2018-03-01
By using chelate precursor doping technique and traditional modified chemical vapor deposition system, we fabricated Yb-doped aluminophosphosilicate (Al2O3-P2O5-SiO2, ternary Yb-APS) large-mode-area fiber and reported on its laser performance. The fiber preform was doped with Al, P and Yb with concentration of ∼8000 ppm, ∼1700 ppm and ∼400 ppm in molar percent, respectively. Tested with master oscillator power amplifier system, the home-made Yb-APS fiber was found to present 1.02 kW at 1061.1 nm with a high slope efficiency of 81.2% and excellent laser stability with power fluctuation less than ±1.1% for over 10 h. Compared with Yb-doped aluminosilicate (Al2O3-SiO2, binary Yb-AS) fiber, the introduction of P2O5 effectively suppressed photodarkening effect even the P/Al ratio is much less than 1, indicating that Yb-APS fiber is a better candidate for high power fiber lasers.
NASA Astrophysics Data System (ADS)
O'Shea, Thomas T.; Beale, Kristy L. C.; Brucker, Kyle A.; Wyatt, Donald C.; Drazen, David; Fullerton, Anne M.; Fu, Tom C.; Dommermuth, Douglas G.
2010-11-01
Numerical Flow Analysis (NFA) predictions of the flow around a transom-stern hull form are compared to laboratory measurements collected at NSWCCD. The simulations are two-phase, three-dimensional, and unsteady. Each required 1.15 billion grid cells and 200,000 CPU hours to accurately resolve the unsteady flow and obtain a sufficient statistical ensemble size. Two speeds, 7 and 8 knots, are compared. The 7 knots (Fr=Uo /√gLo=0.38) case is a partially wetted transom condition and the 8 knots (Fr=0.43) case is a dry transom condition. The results of a detailed comparison of the mean free surface elevation, surface roughness (RMS), and spectra of the breaking stern-waves, measured by Light Detection And Ranging (LiDAR) and Quantitative Visualization (QViz) sensors, are presented. All of the comparisons showed excellent agreement. The concept of height-function processing is introduced, and the application of this type of processing to the simulation data shows a k-5/3 power law behavior for both the 7 and 8 knot cases. The simulations also showed that a multiphase shear layer forms in the rooster-tail region and that its thickness depends on the Froude number.
Flow/Damage Surfaces for Fiber-Reinforced Metals Having Different Periodic Microstructures
NASA Technical Reports Server (NTRS)
Lissenden, Cliff J.; Arnold, Steven M.; Iyer, Saiganesh K.
1998-01-01
Flow/damage surfaces can be defined in terms of stress, inelastic strain rate, and internal variables using a thermodynamics framework. A macroscale definition relevant to thermodynamics and usable in an experimental program is employed to map out surfaces of constant inelastic power in various stress planes. The inelastic flow of a model silicon carbide/ titanium composite system having rectangular, hexagonal, and square diagonal fiber packing arrays subjected to biaxial stresses is quantified by flow/damage surfaces that are determined numerically from micromechanics, using both finite element analysis and the generalized method of cells. Residual stresses from processing are explicitly included and damage in the form of fiber-matrix debonding under transverse tensile and/or shear loading is represented by a simple interface model. The influence of microstructural architecture is largest whenever fiber-matrix debonding is not an issue; for example in the presence of transverse compressive stresses. Additionally, as the fiber volume fraction increases, so does the effect of microstructural architecture. With regard to the micromechanics analysis, the overall inelastic flow predicted by the generalized method of cells is in excellent agreement with that predicted using a large number of displacement-based finite elements.
Flow/Damage Surfaces for Fiber-Reinforced Metals having Different Periodic Microstructures
NASA Technical Reports Server (NTRS)
Lissenden, Cliff J.; Arnold, Steven M.; Iyer, Saiganesh K.
1998-01-01
Flow/damage surfaces can be defined in terms of stress, inelastic strain rate, and internal variables using a thermodynamics framework. A macroscale definition relevant to thermodynamics and usable in an experimental program is employed to map out surfaces of constant inelastic power in various stress planes. The inelastic flow of a model silicon carbide/ titanium composite system having rectangular, hexagonal, and square diagonal fiber packing, arrays subjected to biaxial stresses is quantified by flow/damage surfaces that are determined numerically from micromechanics. using both finite element analysis and the generalized method of cells. Residual stresses from processing are explicitly included and damage in the form of fiber-matrix debonding under transverse tensile and/or shear loading is represented by a simple interface model. The influence of microstructural architecture is largest whenever fiber-matrix debonding is not an issue, for example in the presence of transverse compressive stresses. Additionally, as the fiber volume fraction increases, so does the effect of microstructural architecture. With regard to the micromechanics analysis, the overall inelastic flow predicted by the generalized method of cells is in excellent agreement with that predicted using a large number of displacement-based finite elements.
Elastic pion-nucleon scattering in chiral perturbation theory: A fresh look
NASA Astrophysics Data System (ADS)
Siemens, D.; Bernard, V.; Epelbaum, E.; Gasparyan, A.; Krebs, H.; Meißner, Ulf-G.
2016-07-01
Elastic pion-nucleon scattering is analyzed in the framework of chiral perturbation theory up to fourth order within the heavy-baryon expansion and a covariant approach based on an extended on-mass-shell renormalization scheme. We discuss in detail the renormalization of the various low-energy constants and provide explicit expressions for the relevant β functions and the finite subtractions of the power-counting breaking terms within the covariant formulation. To estimate the theoretical uncertainty from the truncation of the chiral expansion, we employ an approach which has been successfully applied in the most recent analysis of the nuclear forces. This allows us to reliably extract the relevant low-energy constants from the available scattering data at low energy. The obtained results provide clear evidence that the breakdown scale of the chiral expansion for this reaction is related to the Δ resonance. The explicit inclusion of the leading contributions of the Δ isobar is demonstrated to substantially increase the range of applicability of the effective field theory. The resulting predictions for the phase shifts are in an excellent agreement with the predictions from the recent Roy-Steiner-equation analysis of pion-nucleon scattering.
Lucantoni, Leonardo; Silvestrini, Francesco; Signore, Michele; Siciliano, Giulia; Eldering, Maarten; Dechering, Koen J.; Avery, Vicky M.; Alano, Pietro
2015-01-01
Plasmodium falciparum gametocytes, specifically the mature stages, are the only malaria parasite stage in humans transmissible to the mosquito vector. Anti-malarial drugs capable of killing these forms are considered essential for the eradication of malaria and tools allowing the screening of large compound libraries with high predictive power are needed to identify new candidates. As gametocytes are not a replicative stage it is difficult to apply the same drug screening methods used for asexual stages. Here we propose an assay, based on high content imaging, combining “classic” gametocyte viability readout based on gametocyte counts with a functional viability readout, based on gametocyte activation and the discrimination of the typical gamete spherical morphology. This simple and rapid assay has been miniaturized to a 384-well format using acridine orange staining of wild type P. falciparum 3D7A sexual forms, and was validated by screening reference antimalarial drugs and the MMV Malaria Box. The assay demonstrated excellent robustness and ability to identify quality hits with high likelihood of confirmation of transmission reducing activity in subsequent mosquito membrane feeding assays. PMID:26553647
Christensen, Anders S.; Linnet, Troels E.; Borg, Mikael; Boomsma, Wouter; Lindorff-Larsen, Kresten; Hamelryck, Thomas; Jensen, Jan H.
2013-01-01
We present the ProCS method for the rapid and accurate prediction of protein backbone amide proton chemical shifts - sensitive probes of the geometry of key hydrogen bonds that determine protein structure. ProCS is parameterized against quantum mechanical (QM) calculations and reproduces high level QM results obtained for a small protein with an RMSD of 0.25 ppm (r = 0.94). ProCS is interfaced with the PHAISTOS protein simulation program and is used to infer statistical protein ensembles that reflect experimentally measured amide proton chemical shift values. Such chemical shift-based structural refinements, starting from high-resolution X-ray structures of Protein G, ubiquitin, and SMN Tudor Domain, result in average chemical shifts, hydrogen bond geometries, and trans-hydrogen bond (h3 JNC') spin-spin coupling constants that are in excellent agreement with experiment. We show that the structural sensitivity of the QM-based amide proton chemical shift predictions is needed to obtain this agreement. The ProCS method thus offers a powerful new tool for refining the structures of hydrogen bonding networks to high accuracy with many potential applications such as protein flexibility in ligand binding. PMID:24391900
Interfacial contact stiffness of fractal rough surfaces.
Zhang, Dayi; Xia, Ying; Scarpa, Fabrizio; Hong, Jie; Ma, Yanhong
2017-10-09
In this work we describe a theoretical model that predicts the interfacial contact stiffness of fractal rough surfaces by considering the effects of elastic and plastic deformations of the fractal asperities. We also develop an original test rig that simulates dovetail joints for turbo machinery blades, which can fine tune the normal contact load existing between the contacting surfaces of the blade root. The interfacial contact stiffness is obtained through an inverse identification method in which finite element simulations are fitted to the experimental results. Excellent agreement is observed between the contact stiffness predicted by the theoretical model and by the analogous experimental results. We demonstrate that the contact stiffness is a power law function of the normal contact load with an exponent α within the whole range of fractal dimension D(1 < D < 2). We also show that for 1 < D < 1.5 the Pohrt-Popov behavior (α = 1/(3 - D)) is valid, however for 1.5 < D < 2, the exponent α is different and equal to 2(D - 1)/D. The diversity between the model developed in the work and the Pohrt-Popov one is explained in detail.
2016-01-01
Many excellent methods exist that incorporate cryo-electron microscopy (cryoEM) data to constrain computational protein structure prediction and refinement. Previously, it was shown that iteration of two such orthogonal sampling and scoring methods – Rosetta and molecular dynamics (MD) simulations – facilitated exploration of conformational space in principle. Here, we go beyond a proof-of-concept study and address significant remaining limitations of the iterative MD–Rosetta protein structure refinement protocol. Specifically, all parts of the iterative refinement protocol are now guided by medium-resolution cryoEM density maps, and previous knowledge about the native structure of the protein is no longer necessary. Models are identified solely based on score or simulation time. All four benchmark proteins showed substantial improvement through three rounds of the iterative refinement protocol. The best-scoring final models of two proteins had sub-Ångstrom RMSD to the native structure over residues in secondary structure elements. Molecular dynamics was most efficient in refining secondary structure elements and was thus highly complementary to the Rosetta refinement which is most powerful in refining side chains and loop regions. PMID:25883538
Predicting High-Power Performance in Professional Cyclists.
Sanders, Dajo; Heijboer, Mathieu; Akubat, Ibrahim; Meijer, Kenneth; Hesselink, Matthijs K
2017-03-01
To assess if short-duration (5 to ~300 s) high-power performance can accurately be predicted using the anaerobic power reserve (APR) model in professional cyclists. Data from 4 professional cyclists from a World Tour cycling team were used. Using the maximal aerobic power, sprint peak power output, and an exponential constant describing the decrement in power over time, a power-duration relationship was established for each participant. To test the predictive accuracy of the model, several all-out field trials of different durations were performed by each cyclist. The power output achieved during the all-out trials was compared with the predicted power output by the APR model. The power output predicted by the model showed very large to nearly perfect correlations to the actual power output obtained during the all-out trials for each cyclist (r = .88 ± .21, .92 ± .17, .95 ± .13, and .97 ± .09). Power output during the all-out trials remained within an average of 6.6% (53 W) of the predicted power output by the model. This preliminary pilot study presents 4 case studies on the applicability of the APR model in professional cyclists using a field-based approach. The decrement in all-out performance during high-intensity exercise seems to conform to a general relationship with a single exponential-decay model describing the decrement in power vs increasing duration. These results are in line with previous studies using the APR model to predict performance during brief all-out trials. Future research should evaluate the APR model with a larger sample size of elite cyclists.
Lee, Ying Li; Chien, Tsai Feng; Kuo, Ming Chuan; Chang, Polun
2014-01-01
This study aims to understand the relationship between participating nurses' motivation, achievement and satisfaction before and after they learned to program in Excel Visual Basic for Applications (Excel VBA). We held a workshop to train nurses in developing simple Excel VBA information systems to support their clinical or administrative practices. Before and after the workshop, the participants were evaluated on their knowledge of Excel VBA, and a questionnaire was given to survey their learning motivation and satisfaction. Statistics softwares Winsteps and SPSS were used for data analysis. Results show that the participants are more knowledgeable about VBA as well as more motivated in learning VBA after the workshop. Participants were highly satisfied with the overall arrangement of the workshop and instructors, but didn't have enough confidence in promoting the application of Excel VBA themselves. In addition, we were unable to predict the participants' achievement by their demographic characteristics or pre-test motivation level.
From non-trivial geometries to power spectra and vice versa
NASA Astrophysics Data System (ADS)
Brooker, D. J.; Tsamis, N. C.; Woodard, R. P.
2018-04-01
We review a recent formalism which derives the functional forms of the primordial—tensor and scalar—power spectra of scalar potential inflationary models. The formalism incorporates the case of geometries with non-constant first slow-roll parameter. Analytic expressions for the power spectra are given that explicitly display the dependence on the geometric properties of the background. Moreover, we present the full algorithm for using our formalism, to reconstruct the model from the observed power spectra. Our techniques are applied to models possessing "features" in their potential with excellent agreement.
ERIC Educational Resources Information Center
Leblanc, Michael; Dufore, Emily; McDougal, James
2012-01-01
Cutscores for reading and math (general outcome measures) to predict passage on New York state-mandated assessments were created by using a freely available Excel workbook. The authors used linear regression to create the cutscores and diagnostic indicators were provided. A rationale and procedure for using this method is outlined. This method…
Artificial Aurora and Ionospheric Heating by HAARP
NASA Astrophysics Data System (ADS)
Hadavandkhani, S.; Nikouravan, Bijan; Ghazimaghrebi, F.
2016-08-01
A recent experiment was achieved at HAARP to study the scaling of the ionospherically generated ELF signal with power transmitted from the high frequency (HF) array. The results were in excellent agreement with computer simulations. The outcomes approving that the ELF power increases with the square of the incident HF power. This paper present a review on the situation of the ionized particles in Ionospheric layer when stimulated by artificial an ELF and VLF external high energy radio waves.
NASA Astrophysics Data System (ADS)
Xu, Han; Zhang, Chi; Zhou, Wen; Li, Gao-Ren
2015-10-01
High power density, high energy density and excellent cycling stability are the main requirements for high-performance supercapacitors (SCs) that will be widely used for portable consumer electronics and hybrid electric vehicles. Here we investigate novel types of hybrid Co(OH)2/reduced graphene oxide (RGO)/NiO sandwich-structured nanotube arrays (SNTAs) as positive electrodes for asymmetric supercapacitors (ASCs). The synthesized Co(OH)2/RGO/NiO SNTAs exhibit a significantly improved specific capacity (~1470 F g-1 at 5 mV s-1) and excellent cycling stability with ~98% Csp retention after 10 000 cycles because of the fast transport and short diffusion paths for electroactive species, the high utilization rate of electrode materials, and special synergistic effects among Co(OH)2, RGO, and NiO. The high-performance ASCs are assembled using Co(OH)2/RGO/NiO SNTAs as positive electrodes and active carbon (AC) as negative electrodes, and they exhibit a high energy density (115 Wh kg-1), a high power density (27.5 kW kg-1) and an excellent cycling stability (less 5% Csp loss after 10 000 cycles). This study shows an important breakthrough in the design and fabrication of multi-walled hybrid nanotube arrays as positive electrodes for ASCs.High power density, high energy density and excellent cycling stability are the main requirements for high-performance supercapacitors (SCs) that will be widely used for portable consumer electronics and hybrid electric vehicles. Here we investigate novel types of hybrid Co(OH)2/reduced graphene oxide (RGO)/NiO sandwich-structured nanotube arrays (SNTAs) as positive electrodes for asymmetric supercapacitors (ASCs). The synthesized Co(OH)2/RGO/NiO SNTAs exhibit a significantly improved specific capacity (~1470 F g-1 at 5 mV s-1) and excellent cycling stability with ~98% Csp retention after 10 000 cycles because of the fast transport and short diffusion paths for electroactive species, the high utilization rate of electrode materials, and special synergistic effects among Co(OH)2, RGO, and NiO. The high-performance ASCs are assembled using Co(OH)2/RGO/NiO SNTAs as positive electrodes and active carbon (AC) as negative electrodes, and they exhibit a high energy density (115 Wh kg-1), a high power density (27.5 kW kg-1) and an excellent cycling stability (less 5% Csp loss after 10 000 cycles). This study shows an important breakthrough in the design and fabrication of multi-walled hybrid nanotube arrays as positive electrodes for ASCs. Electronic supplementary information (ESI) available: SEM images, XPS spectra, equivalent circuit, and CVs. See DOI: 10.1039/c5nr04449a
Fast Conceptual Cost Estimating of Aerospace Projects Using Historical Information
NASA Technical Reports Server (NTRS)
Butts, Glenn
2007-01-01
Accurate estimates can be created in less than a minute by applying powerful techniques and algorithms to create an Excel-based parametric cost model. In five easy steps you will learn how to normalize your company 's historical cost data to the new project parameters. This paper provides a complete, easy-to-understand, step by step how-to guide. Such a guide does not seem to currently exist. Over 2,000 hours of research, data collection, and trial and error, and thousands of lines of Excel Visual Basic Application (VBA) code were invested in developing these methods. While VBA is not required to use this information, it increases the power and aesthetics of the model. Implementing all of the steps described, while not required, will increase the accuracy of the results.
Ovonic nickel metal hydride batteries for space applications
NASA Technical Reports Server (NTRS)
Venkatesan, S.; Corrigan, D. A.; Fetcenko, M. A.; Gifford, P. R.; Dhar, S. K.; Ovshinsky, S. R.
1993-01-01
Ovonic nickel-metal hydride (NiMH) rechargeable batteries are easily adaptable to a variety of applications. Small consumer NiMH cells were developed and are now being manufactured by licensees throughout the world. This technology was successfully scaled up in larger prismatic cells aimed at electric vehicle applications. Sealed cells aimed at satellite power applications were also built and cycle tested by OBC and other outside agencies. Prototype batteries with high specific energy (over 80 Wh/kg), high energy density (245 Wh/L), and excellent power capability (400 W/kg) were produced. Ovonic NiMH batteries demonstrated an excellent cycle life of over 10,000 cycles at 30 percent DOD. Presently, Ovonic Battery Company is working on an advanced version of this battery for space applications as part of an SBIR contract from NASA.
Stochastic Short-term High-resolution Prediction of Solar Irradiance and Photovoltaic Power Output
DOE Office of Scientific and Technical Information (OSTI.GOV)
Melin, Alexander M.; Olama, Mohammed M.; Dong, Jin
The increased penetration of solar photovoltaic (PV) energy sources into electric grids has increased the need for accurate modeling and prediction of solar irradiance and power production. Existing modeling and prediction techniques focus on long-term low-resolution prediction over minutes to years. This paper examines the stochastic modeling and short-term high-resolution prediction of solar irradiance and PV power output. We propose a stochastic state-space model to characterize the behaviors of solar irradiance and PV power output. This prediction model is suitable for the development of optimal power controllers for PV sources. A filter-based expectation-maximization and Kalman filtering mechanism is employed tomore » estimate the parameters and states in the state-space model. The mechanism results in a finite dimensional filter which only uses the first and second order statistics. The structure of the scheme contributes to a direct prediction of the solar irradiance and PV power output without any linearization process or simplifying assumptions of the signal’s model. This enables the system to accurately predict small as well as large fluctuations of the solar signals. The mechanism is recursive allowing the solar irradiance and PV power to be predicted online from measurements. The mechanism is tested using solar irradiance and PV power measurement data collected locally in our lab.« less
Simulating the universe(s) II: phenomenology of cosmic bubble collisions in full general relativity
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wainwright, Carroll L.; Aguirre, Anthony; Johnson, Matthew C.
2014-10-01
Observing the relics of collisions between bubble universes would provide direct evidence for the existence of an eternally inflating Multiverse; the non-observation of such events can also provide important constraints on inflationary physics. Realizing these prospects requires quantitative predictions for observables from the properties of the possible scalar field Lagrangians underlying eternal inflation. Building on previous work, we establish this connection in detail. We perform a fully relativistic numerical study of the phenomenology of bubble collisions in models with a single scalar field, computing the comoving curvature perturbation produced in a wide variety of models. We also construct a setmore » of analytic predictions, allowing us to identify the phenomenologically relevant properties of the scalar field Lagrangian. The agreement between the analytic predictions and numerics in the relevant regions is excellent, and allows us to generalize our results beyond the models we adopt for the numerical studies. Specifically, the signature is completely determined by the spatial profile of the colliding bubble just before the collision, and the de Sitter invariant distance between the bubble centers. The analytic and numerical results support a power-law fit with an index 1< κ ∼< 2. For collisions between identical bubbles, we establish a lower-bound on the observed amplitude of collisions that is set by the present energy density in curvature.« less
Toggle navigation National Water Center Home (current) Visualize Map Image Viewer What's New About National Water Center National Water Model National Weather Service National Oceanic and Atmospheric Administration Welcome to the Office of Water Prediction Scientific excellence and innovation driving water
COMPARISON OF DATA FROM AN IAQ TEST HOUSE WITH PREDICTIONS OF AN IAQ COMPUTER MODEL
The paper describes several experiments to evaluate the impact of indoor air pollutant sources on indoor air quality (IAQ). Measured pollutant concentrations are compared with concentrations predicted by an IAQ model. The measured concentrations are in excellent agreement with th...
Falciglia, P P; Vagliasindi, F G A
2014-01-01
In this study, the remediation of diesel-polluted soils was investigated by simulating an ex situ microwave (MW) heating treatment under different conditions, including soil moisture, operating power and heating duration. Based on experimental data, a technical, energy and economic assessment for the optimization of full-scale remediation activities was carried out. Main results show that the operating power applied significantly influences the contaminant removal kinetics and the moisture content in soil has a major effect on the final temperature reachable during MW heating. The first-order kinetic model showed an excellent correlation (r2 > 0.976) with the experimental data for residual concentration at all operating powers and for all soil moistures tested. Excellent contaminant removal values up to 94.8% were observed for wet soils at power higher than 600 W for heating duration longer than 30 min. The use of MW heating with respect to a conventional ex situ thermal desorption treatment could significantly decrease the energy consumption needed for the removal of hydrocarbon contaminants from soils. Therefore, the MW treatment could represent a suitable cost-effective alternative to the conventional thermal treatment for the remediation of hydrocarbon-polluted soil.
Predictors of future success in otolaryngology residency applicants.
Chole, Richard A; Ogden, M Allison
2012-08-01
To evaluate the information available about otolaryngology residency applicants for factors that may predict future success as an otolaryngologist. Retrospective review of residency applications; survey of resident graduates and otolaryngology clinical faculty. Otolaryngology residency program. Otolaryngology program graduates from 2001 to 2010 and current clinical faculty from Barnes-Jewish Hospital/Washington University School of Medicine. Overall ratings of the otolaryngology graduates by clinical faculty (on a 5-point scale) were compared with the resident application attributes that might predict success. The application factors studied are United States Medical Licensing Examination part 1 score, Alpha Omega Alpha Honor Medical Society election, medical school grades, letter of recommendation, rank of the medical school, extracurricular activities, residency interview, experience with acting intern, and extracurricular activities. Forty-six graduates were included in the study. The overall faculty rating of the residents showed good interrater reliability. The objective factors, letters of recommendation, experience as an acting intern, and musical excellence showed no correlation with higher faculty rating. Rank of the medical school and faculty interview weakly correlated with faculty rating. Having excelled in a team sport correlated with higher faculty rating. Many of the application factors typically used during otolaryngology residency candidate selection may not be predictive of future capabilities as a clinician. Prior excellence in a team sport may suggest continued success in the health care team.
Who Will Win?: Predicting the Presidential Election Using Linear Regression
ERIC Educational Resources Information Center
Lamb, John H.
2007-01-01
This article outlines a linear regression activity that engages learners, uses technology, and fosters cooperation. Students generated least-squares linear regression equations using TI-83 Plus[TM] graphing calculators, Microsoft[C] Excel, and paper-and-pencil calculations using derived normal equations to predict the 2004 presidential election.…
2006-09-01
such products as MS Word, MS Excel, MS PowerPoint, Adobe Acrobat, Adobe FrameMaker , Claris FileMaker, Adobe PhotoShop and Adobe Illustrator, it is easy...Adobe FrameMaker , etc. Information can be exported out in the same formats as above plus HTML, MS PowerPoint, and MS Outlook. DOORS is very user...including Postscript, RTF (for PowerPoint), HTML, Interleaf, SVG, FrameMaker , HP LaserJet, HPGL, and EPS. Examples of such charts produced by DOORS
Hao, Chen; Erzheng, Chen; Anwei, Mao; Zhicheng, Yu; Baiyong, Shen; Xiaxing, Deng; Weixia, Zhang; Chenghong, Peng; Hongwei, Li
2007-12-01
Mycophenolate mofetil (MMF) is indicated as immunosuppressive therapy in liver transplantation. The abbreviated models for the estimation of mycophenolic acid (MPA) area under the concentration-time curve (AUC) have been established by limited sampling strategies (LSSs) in adult liver transplant recipients. In the current study, the performance of the abbreviated models to predict MPA exposure was validated in an independent group of patients. A total of 30 MPA pharmacokinetic profiles from 30 liver transplant recipients receiving MMF in combination with tacrolimus were used to compare 8 models' performance with a full 10 time-point MPA-AUC. Linear regression analysis and Bland-Altman analysis were used to compare the estimated MPA-AUC0-12h from each model against the measured MPA-AUC0-12h. A wide range of agreement was shown when estimated MPA-AUC0-12h was compared with measured MPA-AUC0-12h, and the range of coefficient of determination (r2) was from 0.479 to 0.936. The model based on MPA pharmacokinetic parameters C1h, C2h, C6h, and C8h had the best ability to predict measured MPA-AUC0-12h, with the best coefficient of determination (r2=0.936), the excellent prediction bias (2.18%), the best prediction precision (5.11%), and the best prediction variation (2SD=+/-7.88 mg.h/L). However, the model based on MPA pharmacokinetic sampling time points C1h, C2h, and C4h was more suitable when concerned with clinical convenience, which had shorter sampling interval, an excellent coefficient of determination (r2=0.795), an excellent prediction bias (3.48%), an acceptable prediction precision (14.37%), and a good prediction variation (2SD=+/-13.23 mg.h/L). Measured MPA-AUC0-12h could be best predicted by using MPA pharmacokinetic parameters C1h, C2h, C6h, and C8h. The model based on MPA pharmacokinetic parameters C1h, C2h, and C4h was more feasible in clinical application. Copyright (c) 2007 AASLD.
Prediction of Wind Energy Resources (PoWER) Users Guide
2016-01-01
ARL-TR-7573● JAN 2016 US Army Research Laboratory Prediction of Wind Energy Resources (PoWER) User’s Guide by David P Sauter...not return it to the originator. ARL-TR-7573 ● JAN 2016 US Army Research Laboratory Prediction of Wind Energy Resources (PoWER...2016 2. REPORT TYPE Final 3. DATES COVERED (From - To) 09/2015–11/2015 4. TITLE AND SUBTITLE Prediction of Wind Energy Resources (PoWER) User’s
Multi-Watt femtosecond optical parametric master oscillator power amplifier at 43 MHz.
Mörz, Florian; Steinle, Tobias; Steinmann, Andy; Giessen, Harald
2015-09-07
We present a high repetition rate mid-infrared optical parametric master oscillator power amplifier (MOPA) scheme, which is tunable from 1370 to 4120nm. Up to 4.3W average output power are generated at 1370nm, corresponding to a photon conversion efficiency of 78%. Bandwidths of 6 to 12nm with pulse durations between 250 and 400fs have been measured. Strong conversion saturation over the whole signal range is observed, resulting in excellent power stability. The system consists of a fiber-feedback optical parametric oscillator that seeds an optical parametric power amplifier. Both systems are pumped by the same Yb:KGW femtosecond oscillator.
Bierman, A S; Bubolz, T A; Fisher, E S; Wasson, J H
1999-01-01
Responses to simple questions that predict subsequent health care utilization are of interest to both capitated health plans and the payer. To determine how responses to a single question about general health status predict subsequent health care expenditures. Participants in the 1992 Medicare Current Beneficiary Survey were asked the following question: "In general, compared to other people your age, would you say your health is: excellent, very good, good, fair or poor?" To obtain each participant's total Medicare expenditures and number of hospitalizations in the ensuing year, we linked the responses to this question with data from the 1993 Medicare Continuous History Survey. Nationally representative sample of 8775 noninstitutionalized Medicare beneficiaries 65 years of age and older. Annual age- and sex-adjusted Medicare expenditures and hospitalization rates. Eighteen percent of the beneficiaries rated their health as excellent, 56% rated it as very good or good, 17% rated it as fair, and 7% rated it as poor. Medicare expenditures had a marked inverse relation to self-assessed health ratings. In the year after assessment, age- and sex-adjusted annual expenditures varied fivefold, from $8743 for beneficiaries rating their health as poor to $1656 for beneficiaries rating their health as excellent. Hospitalization rates followed the same pattern: Respondents who rated their health as poor had 675 hospitalizations per 1000 beneficiaries per year compared with 136 per 1000 for those rating their health as excellent. The response to a single question about general health status strongly predicts subsequent health care utilization. Self-reports of fair or poor health identify a group of high-risk patients who may benefit from targeted interventions. Because the current Medicare capitation formula does not account for health status, health plans can maximize profits by disproportionately enrolling beneficiaries who judge their health to be good. However, they are at a competitive disadvantage if they enroll beneficiaries who view themselves as sick.
Aissa, Oualid; Moulahoum, Samir; Colak, Ilhami; Babes, Badreddine; Kabache, Nadir
2017-10-12
This paper discusses the use of the concept of classical and predictive direct power control for shunt active power filter function. These strategies are used to improve the active power filter performance by compensation of the reactive power and the elimination of the harmonic currents drawn by non-linear loads. A theoretical analysis followed by a simulation using MATLAB/Simulink software for the studied techniques has been established. Moreover, two test benches have been carried out using the dSPACE card 1104 for the classic and predictive DPC control to evaluate the studied methods in real time. Obtained results are presented and compared in this paper to confirm the superiority of the predictive technique. To overcome the pollution problems caused by the consumption of fossil fuels, renewable energies are the alternatives recommended to ensure green energy. In the same context, the tested predictive filter can easily be supplied by a renewable energy source that will give its impact to enhance the power quality.
Odds Ratio Product of Sleep EEG as a Continuous Measure of Sleep State
Younes, Magdy; Ostrowski, Michele; Soiferman, Marc; Younes, Henry; Younes, Mark; Raneri, Jill; Hanly, Patrick
2015-01-01
Study Objectives: To develop and validate an algorithm that provides a continuous estimate of sleep depth from the electroencephalogram (EEG). Design: Retrospective analysis of polysomnograms. Setting: Research laboratory. Participants: 114 patients who underwent clinical polysomnography in sleep centers at the University of Manitoba (n = 58) and the University of Calgary (n = 56). Interventions: None. Measurements and Results: Power spectrum of EEG was determined in 3-second epochs and divided into delta, theta, alpha-sigma, and beta frequency bands. The range of powers in each band was divided into 10 aliquots. EEG patterns were assigned a 4-digit number that reflects the relative power in the 4 frequency ranges (10,000 possible patterns). Probability of each pattern occurring in 30-s epochs staged awake was determined, resulting in a continuous probability value from 0% to 100%. This was divided by 40 (% of epochs staged awake) producing the odds ratio product (ORP), with a range of 0–2.5. In validation testing, average ORP decreased progressively as EEG progressed from wakefulness (2.19 ± 0.29) to stage N3 (0.13 ± 0.05). ORP < 1.0 predicted sleep and ORP > 2.0 predicted wakefulness in > 95% of 30-s epochs. Epochs with intermediate ORP occurred in unstable sleep with a high arousal index (> 70/h) and were subject to much interrater scoring variability. There was an excellent correlation (r2 = 0.98) between ORP in current 30-s epochs and the likelihood of arousal or awakening occurring in the next 30-s epoch. Conclusions: Our results support the use of the odds ratio product (ORP) as a continuous measure of sleep depth. Citation: Younes M, Ostrowski M, Soiferman M, Younes H, Younes M, Raneri J, Hanly P. Odds ratio product of sleep EEG as a continuous measure of sleep state. SLEEP 2015;38(4):641–654. PMID:25348125
CDC Vital Signs: Adult Smoking among People with Mental Illness
... PDF file Microsoft PowerPoint file Microsoft Word file Microsoft Excel ... National Center for Chronic Disease Prevention and Health Promotion, Office on Smoking and Health Page maintained by: Office ...
... and Team Healthcare Providers Prevention Information and Advice Posters for the Athletic Community General MRSA Information and ... site? Adobe PDF file Microsoft PowerPoint file Microsoft Word file Microsoft Excel file Audio/Video file Apple ...
von Busse, Rhea; Waldman, Rye M.; Swartz, Sharon M.; Voigt, Christian C.; Breuer, Kenneth S.
2014-01-01
Aerodynamic theory has long been used to predict the power required for animal flight, but widely used models contain many simplifications. It has been difficult to ascertain how closely biological reality matches model predictions, largely because of the technical challenges of accurately measuring the power expended when an animal flies. We designed a study to measure flight speed-dependent aerodynamic power directly from the kinetic energy contained in the wake of bats flying in a wind tunnel. We compared these measurements with two theoretical predictions that have been used for several decades in diverse fields of vertebrate biology and to metabolic measurements from a previous study using the same individuals. A high-accuracy displaced laser sheet stereo particle image velocimetry experimental design measured the wake velocities in the Trefftz plane behind four bats flying over a range of speeds (3–7 m s−1). We computed the aerodynamic power contained in the wake using a novel interpolation method and compared these results with the power predicted by Pennycuick's and Rayner's models. The measured aerodynamic power falls between the two theoretical predictions, demonstrating that the models effectively predict the appropriate range of flight power, but the models do not accurately predict minimum power or maximum range speeds. Mechanical efficiency—the ratio of aerodynamic power output to metabolic power input—varied from 5.9% to 9.8% for the same individuals, changing with flight speed. PMID:24718450
Building Interactive Visualizations for Geochronological Data
NASA Astrophysics Data System (ADS)
Zeringue, J.; Bowring, J. F.; McLean, N. M.; Pastor, F.
2014-12-01
Since the early 1990s, Ken Ludwig's Isoplot software has been the tool of choice for visualization and analysis of isotopic data used for geochronology. The software is an add-in to Microsoft Excel that allows users to generate visual representations of data. However, recent changes to Excel have made Isoplot more difficult to use and maintain, and the software is no longer supported. In the last several years, the Cyber Infrastructure Research and Development Lab for the Earth Sciences (CIRDLES), at the College of Charleston, has worked collaboratively with geochronologists to develop U-Pb_Redux, a software product that provides some of Isoplot's functionality for U-Pb geochronology. However, the community needs a full and complete Isoplot replacement that is open source, platform independent, and not dependent on proprietary software. This temporary lapse in tooling also presents a tremendous opportunity for scientific computing in the earth sciences. When Isoplot was written for Excel, it gained much of the platform's flexibility and power but also was burdened with its limitations. For example, Isoplot could not be used outside of Excel, could not be cross-platform (so long as Excel wasn't), could not be embedded in other applications, and only static images could be produced. Nonetheless this software was and still is a powerful tool that has served the community for more than two decades and the trade-offs were more than acceptable. In 2014, we seek to gain flexibility not available with Excel. We propose that the next generation of charting software be reusable, platform-agnostic, and interactive. This new software should allow scientists to easily explore—not just passively view—their data. Beginning in the fall of 2013, researchers at CIRDLES began planning for and prototyping a 21st-century replacement for Isoplot, which we call Topsoil, an anagram of Isoplot. This work is being conducted in the public domain at https://github.com/CIRDLES/topsoil. We welcome and encourage community participation and contributions.
Prediction of anaerobic power values from an abbreviated WAnT protocol.
Stickley, Christopher D; Hetzler, Ronald K; Kimura, Iris F
2008-05-01
The traditional 30-second Wingate anaerobic test (WAnT) is a widely used anaerobic power assessment protocol. An abbreviated protocol has been shown to decrease the mild to severe physical discomfort often associated with the WAnT. Therefore, the purpose of this study was to determine whether a 20-second WAnT protocol could be used to accurately predict power values of a standard 30-second WAnT. In 96 college females, anaerobic power variables were assessed using a standard 30-second WAnT protocol. Maximum power values as well as instantaneous power at 10, 15, and 20 seconds were recorded. Based on these results, stepwise regression analysis was performed to determine the accuracy with which mean power, minimum power, 30-second power, and percentage of fatigue for a standard 30-second WAnT could be predicted from values obtained during the first 20 seconds of testing. Mean power values showed the highest level of predictability (R2 = 0.99) from the 20-second values. Minimum power, 30-second power, and percentage of fatigue also showed high levels of predictability (R2 = 0.91, 0.84, and 0.84, respectively) using only values obtained during the first 20 seconds of the protocol. An abbreviated (20-second) WAnT protocol appears to effectively predict results of a standard 30-second WAnT in college-age females, allowing for comparison of data to published norms. A shortened test may allow for a decrease in unwanted side effects associated with the traditional WAnT protocol.
Design and fabrication of low power GaAs/AlAs resonant tunneling diodes
NASA Astrophysics Data System (ADS)
Md Zawawi, Mohamad Adzhar; Missous, Mohamed
2017-12-01
A very low peak voltage GaAs/AlAs resonant tunneling diode (RTD) grown by molecular beam epitaxy (MBE) has been studied in detail. Excellent growth control with atomic-layer precision resulted in a peak voltage of merely 0.28 V (0.53 V) in forward (reverse) direction. The peak current density in forward bias is around 15.4 kA/cm2 with variation of within 7%. As for reverse bias, the peak current density is around 22.8 kA/cm2 with 4% variation which implies excellent scalability. In this work, we have successfully demonstrated the fabrication of a GaAs/AlAs RTD by using a conventional optical lithography and chemical wet-etching with very low peak voltage suitable for application in low dc input power RTD-based sub-millimetre wave oscillators.
Outcome scoring systems for short-term prognosis in critically ill cirrhotic patients.
Tu, Kun-Hua; Jenq, Chang-Chyi; Tsai, Ming-Hung; Hsu, Hsiang-Hao; Chang, Ming-Yang; Tian, Ya-Chung; Hung, Cheng-Chieh; Fang, Ji-Tseng; Yang, Chih-Wei; Chen, Yung-Chang
2011-11-01
Cirrhotic patients admitted to intensive care units (ICUs) have high mortality rates. This study evaluated specific predictors and scoring systems for hospital and 6-month mortality in critically ill cirrhotic patients. This investigation is a prospective clinical study performed in a 10-bed specialized hepatogastroenterology ICU in a tertiary care university hospital in Taiwan. Two hundred two consecutive cirrhotic patients admitted to the ICU during a 2-year period were enrolled in this study. Demographic, clinical, and laboratory variables recorded on the first day of ICU admission and scoring systems applied were prospectively recorded for post hoc analysis for predicting survival. The overall hospital mortality was 59.9%, and the 6-month mortality rate was 70.8%. The main causes of cirrhosis were hepatitis B (29%), hepatitis C (22%), and alcoholism (20%). The major cause of ICU admission was upper gastrointestinal bleeding (36%). Multiple logistic regression analysis revealed that the Acute Kidney Injury Network (AKIN) score at the 48th hour of ICU admission and the Sequential Organ Failure Assessment (SOFA) as well as the Model for End-Stage Liver Disease scores on the first day of ICU admission were independent risk factors for hospital mortality. The SOFA score had the best discriminatory power (0.872 ± 0.036), whereas the AKIN had the best Youden index (0.57) and the highest correctness of prediction (79%). Cumulative survival rates at the 6-month follow-up after hospital discharge differed significantly (P < 0.05) for AKIN stage 0 vs. stages 1, 2, and 3, and for AKIN stage 1 vs. stage 3. The AKIN, SOFA, and Model for End-stage Liver Disease (MELD) scores showed well discriminative power in predicting hospital mortality in this group of patients. The AKIN scoring system proved to be a reproducible evaluation tool with excellent prognostic abilities for these patients.
Highly Efficient Amplifier for Ka-Band Communications
NASA Technical Reports Server (NTRS)
1996-01-01
An amplifier developed under a Small Business Innovation Research (SBIR) contract will have applications for both satellite and terrestrial communications. This power amplifier uses an innovative series bias arrangement of active devices to achieve over 40-percent efficiency at Ka-band frequencies with an output power of 0.66 W. The amplifier is fabricated on a 2.0- by 3.8-square millimeter chip through the use of Monolithic Microwave Integrated Circuit (MMIC) technology, and it uses state-of-the-art, Pseudomorphic High-Electron-Mobility Transistor (PHEMT) devices. Although the performance of the MMIC chip depends on these high-performance devices, the real innovations here are a unique series bias scheme, which results in a high-voltage chip supply, and careful design of the on-chip planar output stage combiner. This design concept has ramifications beyond the chip itself because it opens up the possibility of operation directly from a satellite power bus (usually 28 V) without a dc-dc converter. This will dramatically increase the overall system efficiency. Conventional microwave power amplifier designs utilize many devices all connected in parallel from the bias supply. This results in a low-bias voltage, typically 5 V, and a high bias current. With this configuration, substantial I(sup 2) R losses (current squared times resistance) may arise in the system bias-distribution network. By placing the devices in a series bias configuration, the total current is reduced, leading to reduced distribution losses. Careful design of the on-chip planar output stage power combiner is also important in minimizing losses. Using these concepts, a two-stage amplifier was designed for operation at 33 GHz and fabricated in a standard MMIC foundry process with 0.20-m PHEMT devices. Using a 20-V bias supply, the amplifier achieved efficiencies of over 40 percent with an output power of 0.66 W and a 16-dB gain over a 2-GHz bandwidth centered at 33 GHz. With a 28-V bias, a power level of 1.1 W was achieved with a 12-dB gain and a 36-percent efficiency. This represents the best reported combination of power and efficiency at this frequency. In addition to delivering excellent power and gain, this Ka-band MMIC power amplifier has an efficiency that is 10 percent greater than existing designs. The unique design offers an excellent match for spacecraft applications since the amplifier supply voltage is closely matched to the typical value of spacecraft bus voltage. These amplifiers may be used alone in applications of 1 W or less, or several may be combined or used in an array to produce moderate power, Ka-band transmitters with minimal power combining and less thermal stress owing to the combination of excellent efficiency and power output. The higher voltage operation of this design may also save mass and power because the dc-dc power converter is replaced with a simpler voltage regulator.
Muller, David C; Johansson, Mattias; Brennan, Paul
2017-03-10
Purpose Several lung cancer risk prediction models have been developed, but none to date have assessed the predictive ability of lung function in a population-based cohort. We sought to develop and internally validate a model incorporating lung function using data from the UK Biobank prospective cohort study. Methods This analysis included 502,321 participants without a previous diagnosis of lung cancer, predominantly between 40 and 70 years of age. We used flexible parametric survival models to estimate the 2-year probability of lung cancer, accounting for the competing risk of death. Models included predictors previously shown to be associated with lung cancer risk, including sex, variables related to smoking history and nicotine addiction, medical history, family history of lung cancer, and lung function (forced expiratory volume in 1 second [FEV1]). Results During accumulated follow-up of 1,469,518 person-years, there were 738 lung cancer diagnoses. A model incorporating all predictors had excellent discrimination (concordance (c)-statistic [95% CI] = 0.85 [0.82 to 0.87]). Internal validation suggested that the model will discriminate well when applied to new data (optimism-corrected c-statistic = 0.84). The full model, including FEV1, also had modestly superior discriminatory power than one that was designed solely on the basis of questionnaire variables (c-statistic = 0.84 [0.82 to 0.86]; optimism-corrected c-statistic = 0.83; p FEV1 = 3.4 × 10 -13 ). The full model had better discrimination than standard lung cancer screening eligibility criteria (c-statistic = 0.66 [0.64 to 0.69]). Conclusion A risk prediction model that includes lung function has strong predictive ability, which could improve eligibility criteria for lung cancer screening programs.
New Techniques for Exciting Linearly Tapered Slot Antennas with Coplanar Waveguide
NASA Technical Reports Server (NTRS)
Simons, R. N.; Lee, R. Q.; Perl, T. D.
1992-01-01
Two new techniques for exciting a linearly tapered slot antenna (LTSA) with coplanar waveguide (CPW) are introduced. In the first approach, an air bridge is used to couple power from a CPW to an LTSA. In the second approach, power is electromagnetically coupled from a finite CPW (FCPW) to an LTSA. Measured results at 18 GHz show excellent return loss and radiation patterns.
Thermal Management of Quantum Cascade Lasers in an individually Addressable Array Architecture
2016-02-08
Thermal Management of Quantum Cascade Lasers in an Individually Addressable Monolithic Array Architecture Leo Missaggia, Christine Wang, Michael...power laser systems in the mid-to-long-infrared wavelength range. By virtue of their demonstrated watt-level performance and wavelength diversity...quantum cascade laser (QCL) and amplifier devices are an excellent choice of emitter for those applications. To realize the power levels of interest
NASA Astrophysics Data System (ADS)
He, Shuijian; Hou, Haoqing; Chen, Wei
2015-04-01
3D porous and self-supported carbon hybrids are promising electrode materials for supercapacitor application attributed to their prominent properties such as binder-free electrode fabrication process, excellent electric conductivity and high power density etc. We present here a facile chemical vapor deposition method to fabricate a novel 3D flexible carbon hybrid nanostructure by growing a monolayer of nitrogen-doped carbon nanotubes on the skeleton of carbon foam (N-CNTs/CF) with Fe nanoparticle as catalyst. With such 3D porous, flexible and ultralight carbon nanostructure as binder-free electrode material, large surface area is available and fast ionic transport is facilitated. Moreover, the carbon-based network can provide excellent electronic conductivity. The electrochemical studies demonstrate that the supercapacitor constructed from the N-CNTs/CF hybrid exhibit high power density of 69.3 kW kg-1 and good stability with capacitance retention ration above 95% after cycled at 50 A g-1 for 5000 cycles. Therefore, the prepared porous N-CNTs/CF nanostructure is expected to be a type of excellent electrode material for electrical double layer capacitors.
Exploring the Effects of Low Power Schemas in Mothers.
ERIC Educational Resources Information Center
Mills, Rosemary S. L.
1999-01-01
Assessed whether low perceived maternal power and temperamentally fearful preschool-aged daughters predicted subsequent maternal overcontrol and internalizing symptoms in daughters 2 years later. Found that low perceived maternal power predicted subsequent maternal overcontrol with initially fearful daughters but did not predict subsequent…
Benefits of low-power lasers on oral soft tissue
NASA Astrophysics Data System (ADS)
Eduardo, Carlos d. P.; Cecchini, Silvia C. M.; Cecchini, Renata C.
1996-04-01
The last five years have represented a great advance in relation to laser development. Countries like Japan, United States, French, England, Israel and others, have been working on the association of researches and clinical applications, in the field of laser. Low power lasers like He-Ne laser, emitting at 632,8 nm and Ga-As-Al laser, at 790 nm, have been detached acting not only as a coadjutant but some times as an specific treatment. Low power lasers provide non thermal effect at wavelengths believed to stimulate circulation and cellular activity. These lasers have been used to promote wound healing and reduce inflammation edema and pain. This work presents a five year clinical study with good results related to oral tissue healing. Oral cavity lesions, like herpes and aphthous ulcers were irradiated with Ga-Al- As laser. In both cases, an excellent result was obtained. The low power laser application decrease the painful sintomatology immediately and increase the reparation process of these lesions. An excellent result was obtained with application of low power laser in herpetic lesions associated with a secondary infection situated at the lip commissure covering the internal tissue of the mouth. The healing occurred after one week. An association of Ga-Al-As laser and Nd:YAG laser have been also proven to be good therapy for these kind of lesions. This association of low and high power laser has been done since 1992 and it seems to be a complement of the conventional therapies.
Center of Excellence for Individuation of Therapy for Breast Cancer
2012-03-01
Sledge, B. Leyland-Jones (2011) Gene copy number and expression of TYMP and TYMS are predictive of outcome in breast cancer patients treated with... Gene copy number and expression of TYMP and TYMS are predictive of outcome in breast cancer patients treated with capecitabine. R. Audet, C...determine if a specific gene expression signature could be used as predictive marker for treatment outcome . Results summary for Cohort A: doxorubicin
Oh, Ein; Yoo, Tae Keun; Park, Eun-Cheol
2013-09-13
Blindness due to diabetic retinopathy (DR) is the major disability in diabetic patients. Although early management has shown to prevent vision loss, diabetic patients have a low rate of routine ophthalmologic examination. Hence, we developed and validated sparse learning models with the aim of identifying the risk of DR in diabetic patients. Health records from the Korea National Health and Nutrition Examination Surveys (KNHANES) V-1 were used. The prediction models for DR were constructed using data from 327 diabetic patients, and were validated internally on 163 patients in the KNHANES V-1. External validation was performed using 562 diabetic patients in the KNHANES V-2. The learning models, including ridge, elastic net, and LASSO, were compared to the traditional indicators of DR. Considering the Bayesian information criterion, LASSO predicted DR most efficiently. In the internal and external validation, LASSO was significantly superior to the traditional indicators by calculating the area under the curve (AUC) of the receiver operating characteristic. LASSO showed an AUC of 0.81 and an accuracy of 73.6% in the internal validation, and an AUC of 0.82 and an accuracy of 75.2% in the external validation. The sparse learning model using LASSO was effective in analyzing the epidemiological underlying patterns of DR. This is the first study to develop a machine learning model to predict DR risk using health records. LASSO can be an excellent choice when both discriminative power and variable selection are important in the analysis of high-dimensional electronic health records.
NASA Technical Reports Server (NTRS)
Spiering, Barry A.; Lee, Stuart M. C.; Mulavara, Ajitkumar P.; Bentley, Jason, R.; Buxton, Roxanne E.; Lawrence, Emily L.; Sinka, Joseph; Guilliams, Mark E.; Ploutz-Snyder, Lori L.; Bloomberg, Jacob J.
2010-01-01
Spaceflight affects nearly every physiological system. Spaceflight-induced alterations in physiological function translate to decrements in functional performance. Purpose: To develop a test battery for quickly and safely assessing diverse indices of neuromuscular performance. I. Quickly: Battery of tests can be completed in approx.30-40 min. II. Safely: a) No eccentric muscle actions or impact forces. b) Tests present little challenge to postural stability. III. Diverse indices: a) Strength: Excellent reliability (ICC = 0.99) b) Central activation: Very good reliability (ICC = 0.87) c) Power: Excellent reliability (ICC = 0.99) d) Endurance: Total work has excellent reliability (ICC = 0.99) e) Force steadiness: Poor reliability (ICC = 0.20 - 0.60) National
Analytic Formulation and Numerical Implementation of an Acoustic Pressure Gradient Prediction
NASA Technical Reports Server (NTRS)
Lee, Seongkyu; Brentner, Kenneth S.; Farassat, F.; Morris, Philip J.
2008-01-01
Two new analytical formulations of the acoustic pressure gradient have been developed and implemented in the PSU-WOPWOP rotor noise prediction code. The pressure gradient can be used to solve the boundary condition for scattering problems and it is a key aspect to solve acoustic scattering problems. The first formulation is derived from the gradient of the Ffowcs Williams-Hawkings (FW-H) equation. This formulation has a form involving the observer time differentiation outside the integrals. In the second formulation, the time differentiation is taken inside the integrals analytically. This formulation avoids the numerical time differentiation with respect to the observer time, which is computationally more efficient. The acoustic pressure gradient predicted by these new formulations is validated through comparison with available exact solutions for a stationary and moving monopole sources. The agreement between the predictions and exact solutions is excellent. The formulations are applied to the rotor noise problems for two model rotors. A purely numerical approach is compared with the analytical formulations. The agreement between the analytical formulations and the numerical method is excellent for both stationary and moving observer cases.
Liu, Yushan; Ge, Baoming; Abu-Rub, Haitham; ...
2016-06-14
In this study, the active power filter (APF) that consists of a half-bridge leg and an ac capacitor is integrated in the single-phase quasi-Z-source inverter (qZSI) in this paper to avoid the second harmonic power flowing into the dc side. The capacitor of APF buffers the second harmonic power of the load, and the ac capacitor allows highly pulsating ac voltage, so that the capacitances of both dc and ac sides can be small. A model predictive direct power control (DPC) is further proposed to achieve the purpose of this newtopology through predicting the capacitor voltage of APF at eachmore » sampling period and ensuring the APF power to track the second harmonic power of single-phase qZSI. Simulation and experimental results verify the model predictive DPC for the APF-integrated single-phase qZSI.« less
Potentiality Prediction of Electric Power Replacement Based on Power Market Development Strategy
NASA Astrophysics Data System (ADS)
Miao, Bo; Yang, Shuo; Liu, Qiang; Lin, Jingyi; Zhao, Le; Liu, Chang; Li, Bin
2017-05-01
The application of electric power replacement plays an important role in promoting the development of energy conservation and emission reduction in our country. To exploit the potentiality of regional electric power replacement, the regional GDP (gross domestic product) and energy consumption are taken as potentiality evaluation indicators. The principal component factors are extracted with PCA (principal component analysis), and the integral potentiality analysis is made to the potentiality of electric power replacement in the national various regions; a region is taken as a research object, and the potentiality of electric power replacement is defined and quantified. The analytical model for the potentiality of multi-scenario electric power replacement is developed, and prediction is made to the energy consumption with the grey prediction model. The relevant theoretical research is utilized to realize prediction analysis on the potentiality amount of multi-scenario electric power replacement.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Liu, Yushan; Ge, Baoming; Abu-Rub, Haitham
In this study, the active power filter (APF) that consists of a half-bridge leg and an ac capacitor is integrated in the single-phase quasi-Z-source inverter (qZSI) in this paper to avoid the second harmonic power flowing into the dc side. The capacitor of APF buffers the second harmonic power of the load, and the ac capacitor allows highly pulsating ac voltage, so that the capacitances of both dc and ac sides can be small. A model predictive direct power control (DPC) is further proposed to achieve the purpose of this newtopology through predicting the capacitor voltage of APF at eachmore » sampling period and ensuring the APF power to track the second harmonic power of single-phase qZSI. Simulation and experimental results verify the model predictive DPC for the APF-integrated single-phase qZSI.« less
Rufibach, Kaspar; Burger, Hans Ulrich; Abt, Markus
2016-09-01
Bayesian predictive power, the expectation of the power function with respect to a prior distribution for the true underlying effect size, is routinely used in drug development to quantify the probability of success of a clinical trial. Choosing the prior is crucial for the properties and interpretability of Bayesian predictive power. We review recommendations on the choice of prior for Bayesian predictive power and explore its features as a function of the prior. The density of power values induced by a given prior is derived analytically and its shape characterized. We find that for a typical clinical trial scenario, this density has a u-shape very similar, but not equal, to a β-distribution. Alternative priors are discussed, and practical recommendations to assess the sensitivity of Bayesian predictive power to its input parameters are provided. Copyright © 2016 John Wiley & Sons, Ltd. Copyright © 2016 John Wiley & Sons, Ltd.
NASA Astrophysics Data System (ADS)
Lee, Ching-Sung; Liao, Chen-Hsian
2007-12-01
Kink effects in an In-rich InxGa1-xAs (x=0.53-0.63) linearly graded channel of an In0.45Al0.55As/InxGa1-xAs metamorphic high-electron-mobility transistor have been effectively relieved by depositing a high-barrier Ni /Au gate with the silicon nitride passivation. Complete physical investigations for the relieved kink effects have been made by comparing identical devices with/without a high-barrier Schottky gate or the surface passivation. After successfully suppressing the kink effects, the proposed device has shown a superior voltage gain of 173.8, low output conductance of 2.09mS/mm, and excellent power-added efficiency of 54.1% with high output power (power gain) of 14.87dBm (14.53dB). Improved linearity and excellent thermal threshold coefficient (∂Vth/∂T) of -0.14mV/K have also been achieved. The proposed design provides good potential for high-gain and high-linearity circuit applications.
Chen, Wanjun; He, Yongmin; Li, Xiaodong; Zhou, Jinyuan; Zhang, Zhenxing; Zhao, Changhui; Gong, Chengshi; Li, Shuankui; Pan, Xiaojun; Xie, Erqing
2013-12-07
Flexible and high performance supercapacitors are very critical in modern society. In order to develop the flexible supercapacitors with high power density, free-standing and flexible three-dimensional graphene/carbon nanotubes/MnO2 (3DG/CNTs/MnO2) composite electrodes with interconnected ternary 3D structures were fabricated, and the fast electron and ion transport channels were effectively constructed in the rationally designed electrodes. Consequently, the obtained 3DG/CNTs/MnO2 composite electrodes exhibit superior specific capacitance and rate capability compared to 3DG/MnO2 electrodes. Furthermore, the 3DG/CNTs/MnO2 based asymmetric supercapacitor demonstrates the maximum energy and power densities of 33.71 W h kg(-1) and up to 22,727.3 W kg(-1), respectively. Moreover, the asymmetric supercapacitor exhibits excellent cycling stability with 95.3% of the specific capacitance maintained after 1000 cycle tests. Our proposed synthesis strategy to construct the novel ternary 3D structured electrodes can be efficiently applied to other high performance energy storage/conversion systems.
Phase boundaries of power-law Anderson and Kondo models: A poor man's scaling study
NASA Astrophysics Data System (ADS)
Cheng, Mengxing; Chowdhury, Tathagata; Mohammed, Aaron; Ingersent, Kevin
2017-07-01
We use the poor man's scaling approach to study the phase boundaries of a pair of quantum impurity models featuring a power-law density of states ρ (ɛ ) ∝|ɛ| r , either vanishing (for r >0 ) or diverging (for r <0 ) at the Fermi energy ɛ =0 , that gives rise to quantum phase transitions between local-moment and Kondo-screened phases. For the Anderson model with a pseudogap (i.e., r >0 ), we find the phase boundary for (a) 0
Differential gene expression profiles of peripheral blood mononuclear cells in childhood asthma.
Kong, Qian; Li, Wen-Jing; Huang, Hua-Rong; Zhong, Ying-Qiang; Fang, Jian-Pei
2015-05-01
Asthma is a common childhood disease with strong genetic components. This study compared whole-genome expression differences between asthmatic young children and healthy controls to identify gene signatures of childhood asthma. Total RNA extracted from peripheral blood mononuclear cells (PBMC) was subjected to microarray analysis. QRT-PCR was performed to verify the microarray results. Classification and functional characterization of differential genes were illustrated by hierarchical clustering and gene ontology analysis. Multiple logistic regression (MLR) analysis, receiver operating characteristic (ROC) curve analysis, and discriminate power were used to scan asthma-specific diagnostic markers. For fold-change>2 and p < 0.05, there were 758 named differential genes. The results of QRT-PCR confirmed successfully the array data. Hierarchical clustering divided 29 highly possible genes into seven categories and the genes in the same cluster were likely to possess similar expression patterns or functions. Gene ontology analysis presented that differential genes primarily enriched in immune response, response to stress or stimulus, and regulation of apoptosis in biological process. MLR and ROC curve analysis revealed that the combination of ADAM33, Smad7, and LIGHT possessed excellent discriminating power. The combination of ADAM33, Smad7, and LIGHT would be a reliable and useful childhood asthma model for prediction and diagnosis.
Transport on percolation clusters with power-law distributed bond strengths.
Alava, Mikko; Moukarzel, Cristian F
2003-05-01
The simplest transport problem, namely finding the maximum flow of current, or maxflow, is investigated on critical percolation clusters in two and three dimensions, using a combination of extremal statistics arguments and exact numerical computations, for power-law distributed bond strengths of the type P(sigma) approximately sigma(-alpha). Assuming that only cutting bonds determine the flow, the maxflow critical exponent v is found to be v(alpha)=(d-1)nu+1/(1-alpha). This prediction is confirmed with excellent accuracy using large-scale numerical simulation in two and three dimensions. However, in the region of anomalous bond capacity distributions (0< or =alpha< or =1) we demonstrate that, due to cluster-structure fluctuations, it is not the cutting bonds but the blobs that set the transport properties of the backbone. This "blob dominance" avoids a crossover to a regime where structural details, the distribution of the number of red or cutting bonds, would set the scaling. The restored scaling exponents, however, still follow the simplistic red bond estimate. This is argued to be due to the existence of a hierarchy of so-called minimum cut configurations, for which cutting bonds form the lowest level, and whose transport properties scale all in the same way. We point out the relevance of our findings to other scalar transport problems (i.e., conductivity).
Welded joints integrity analysis and optimization for fiber laser welding of dissimilar materials
NASA Astrophysics Data System (ADS)
Ai, Yuewei; Shao, Xinyu; Jiang, Ping; Li, Peigen; Liu, Yang; Liu, Wei
2016-11-01
Dissimilar materials welded joints provide many advantages in power, automotive, chemical, and spacecraft industries. The weld bead integrity which is determined by process parameters plays a significant role in the welding quality during the fiber laser welding (FLW) of dissimilar materials. In this paper, an optimization method by taking the integrity of the weld bead and weld area into consideration is proposed for FLW of dissimilar materials, the low carbon steel and stainless steel. The relationships between the weld bead integrity and process parameters are developed by the genetic algorithm optimized back propagation neural network (GA-BPNN). The particle swarm optimization (PSO) algorithm is taken for optimizing the predicted outputs from GA-BPNN for the objective. Through the optimization process, the desired weld bead with good integrity and minimum weld area are obtained and the corresponding microstructure and microhardness are excellent. The mechanical properties of the optimized joints are greatly improved compared with that of the un-optimized welded joints. Moreover, the effects of significant factors are analyzed based on the statistical approach and the laser power (LP) is identified as the most significant factor on the weld bead integrity and weld area. The results indicate that the proposed method is effective for improving the reliability and stability of welded joints in the practical production.
The nuclear superbubble of NGC 3079
NASA Technical Reports Server (NTRS)
Veilleux, S.; Cecil, G.; Bland-Hawthorn, J.; Tully, R. B.; Filippenko, A. V.; Sargent, W. L. W.
1994-01-01
We have used the Hawaii Imaging Fabry-Perot Interferometer (HIFI) at the CFH 3.6 m telescope to map H-alpha + (N II) lambda-lambda 6548, 6583 emission-line profiles across the entire edge-on, nearby SBc galaxy NGC 3079, with resolution 70 km/s and subarcsecond sampling. Blue and red long-slit spectra were obtained with the Double Spectrograph on the Palomar 5 meter telescope to provide additional emission-line diagnostics. A spectacular, line emitting bubble of diameter 13 sec (approximately 1.1 kpc) is observed immediately east of the nucleus. Its unusual gaseous excitation (e.g., (N II) lambda(6583)/H-alpha greater than 1) suggests that shocks are important. Extremely violent gas motions that range over 2000 km/s are detected across the bubble and diametrically opposite on the west side of the nucleus. Nonrotational motions are also found in the inner galaxy disk. The superbubble of NGC 3079 is the most powerful example known of a wind-blown bubble, and an excellent laboratory to study wind dynamics. The dimensions and energies of the bubble imply that is likely to be in the blowout phase and partially ruptured. The predicted rate of kinetic energy output from the central starburst appears sufficient to power most of this outflow. It is possible that a central active galactic nucleus also contributes to the outflow.
Power maximization of a point absorber wave energy converter using improved model predictive control
NASA Astrophysics Data System (ADS)
Milani, Farideh; Moghaddam, Reihaneh Kardehi
2017-08-01
This paper considers controlling and maximizing the absorbed power of wave energy converters for irregular waves. With respect to physical constraints of the system, a model predictive control is applied. Irregular waves' behavior is predicted by Kalman filter method. Owing to the great influence of controller parameters on the absorbed power, these parameters are optimized by imperialist competitive algorithm. The results illustrate the method's efficiency in maximizing the extracted power in the presence of unknown excitation force which should be predicted by Kalman filter.
An accurate reactive power control study in virtual flux droop control
NASA Astrophysics Data System (ADS)
Wang, Aimeng; Zhang, Jia
2017-12-01
This paper investigates the problem of reactive power sharing based on virtual flux droop method. Firstly, flux droop control method is derived, where complicated multiple feedback loops and parameter regulation are avoided. Then, the reasons for inaccurate reactive power sharing are theoretically analyzed. Further, a novel reactive power control scheme is proposed which consists of three parts: compensation control, voltage recovery control and flux droop control. Finally, the proposed reactive power control strategy is verified in a simplified microgrid model with two parallel DGs. The simulation results show that the proposed control scheme can achieve accurate reactive power sharing and zero deviation of voltage. Meanwhile, it has some advantages of simple control and excellent dynamic and static performance.
Operational Results From a High Power Alternator Test Bed
NASA Technical Reports Server (NTRS)
Birchenough, Arthur; Hervol, David
2007-01-01
The Alternator Test Unit (ATU) in the Lunar Power System Facility (LPSF) located at the NASA Glenn Research Center (GRC) in Cleveland, Ohio was used to simulate the operating conditions and evaluate the performance of the ATU and its interaction with various LPSF components in accordance with the current Fission Surface Power System (FSPS) requirements. The testing was carried out at the breadboard development level. These results successfully demonstrated excellent ATU power bus characteristics and rectified user load power quality during steady state and transient conditions. Information gained from this work could be used to assist the design and primary power quality considerations for a possible future FSPS. This paper describes the LPSF components and some preliminary test results.
Liu, Ren-Hu; Meng, Jin-Ling
2003-05-01
MAPMAKER is one of the most widely used computer software package for constructing genetic linkage maps.However, the PC version, MAPMAKER 3.0 for PC, could not draw the genetic linkage maps that its Macintosh version, MAPMAKER 3.0 for Macintosh,was able to do. Especially in recent years, Macintosh computer is much less popular than PC. Most of the geneticists use PC to analyze their genetic linkage data. So a new computer software to draw the same genetic linkage maps on PC as the MAPMAKER for Macintosh to do on Macintosh has been crying for. Microsoft Excel,one component of Microsoft Office package, is one of the most popular software in laboratory data processing. Microsoft Visual Basic for Applications (VBA) is one of the most powerful functions of Microsoft Excel. Using this program language, we can take creative control of Excel, including genetic linkage map construction, automatic data processing and more. In this paper, a Microsoft Excel macro called MapDraw is constructed to draw genetic linkage maps on PC computer based on given genetic linkage data. Use this software,you can freely construct beautiful genetic linkage map in Excel and freely edit and copy it to Word or other application. This software is just an Excel format file. You can freely copy it from ftp://211.69.140.177 or ftp://brassica.hzau.edu.cn and the source code can be found in Excel's Visual Basic Editor.
Development and design of photovoltaic power prediction system
NASA Astrophysics Data System (ADS)
Wang, Zhijia; Zhou, Hai; Cheng, Xu
2018-02-01
In order to reduce the impact of power grid safety caused by volatility and randomness of the energy produced in photovoltaic power plants, this paper puts forward a construction scheme on photovoltaic power generation prediction system, introducing the technical requirements, system configuration and function of each module, and discussing the main technical features of the platform software development. The scheme has been applied in many PV power plants in the northwest of China. It shows that the system can produce reasonable prediction results, providing a right guidance for dispatching and efficient running for PV power plant.
NASA Technical Reports Server (NTRS)
Mengshoel, Ole Jakob; Poll, Scott; Kurtoglu, Tolga
2009-01-01
This CD contains files that support the talk (see CASI ID 20100021404). There are 24 models that relate to the ADAPT system and 1 Excel worksheet. In the paper an investigation into the use of Bayesian networks to construct large-scale diagnostic systems is described. The high-level specifications, Bayesian networks, clique trees, and arithmetic circuits representing 24 different electrical power systems are described in the talk. The data in the CD are the models of the 24 different power systems.
2007-04-01
7 Habits of Highly Effective People – Powerful...leading an organization to success, are also excellent candidates for such a program: The 7 Habits of Highly Effective People by Stephen R. Covey, The...Covey, The 7 Habits of Highly Effective People – Powerful Lessons in Personal Change (New York, NY: Simon and Schuster, 1989), 150. 4 Ibid., 151.
Zhai, Teng; Lu, Xihong; Wang, Hanyu; Wang, Gongming; Mathis, Tyler; Liu, Tianyu; Li, Cheng; Tong, Yexiang; Li, Yat
2015-05-13
Electrochemical capacitors represent a new class of charge storage devices that can simultaneously achieve high energy density and high power density. Previous reports have been primarily focused on the development of high performance capacitor electrodes. Although these electrodes have achieved excellent specific capacitance based on per unit mass of active materials, the gravimetric energy densities calculated based on the weight of entire capacitor device were fairly small. This is mainly due to the large mass ratio between current collector and active material. We aimed to address this issue by a 2-fold approach of minimizing the mass of current collector and increasing the electrode performance. Here we report an electrochemical capacitor using 3D graphene hollow structure as current collector, vanadium sulfide and manganese oxide as anode and cathode materials, respectively. 3D graphene hollow structure provides a lightweight and highly conductive scaffold for deposition of pseudocapacitive materials. The device achieves an excellent active material ratio of 24%. Significantly, it delivers a remarkable energy density of 7.4 Wh/kg (based on the weight of entire device) at the average power density of 3000 W/kg. This is the highest gravimetric energy density reported for asymmetric electrochemical capacitors at such a high power density.
Measurement Properties of the Smartphone-Based B-B Score in Current Shoulder Pathologies
Pichonnaz, Claude; Duc, Cyntia; Gleeson, Nigel; Ancey, Céline; Jaccard, Hervé; Lécureux, Estelle; Farron, Alain; Jolles, Brigitte M.; Aminian, Kamiar
2015-01-01
This study is aimed at the determination of the measurement properties of the shoulder function B-B Score measured with a smartphone. This score measures the symmetry between sides of a power-related metric for two selected movements, with 100% representing perfect symmetry. Twenty healthy participants, 20 patients with rotator cuff conditions, 23 with fractures, 22 with capsulitis, and 23 with shoulder instabilities were measured twice across a six-month interval using the B-B Score and shoulder function questionnaires. The discriminative power, responsiveness, diagnostic power, concurrent validity, minimal detectable change (MDC), minimal clinically important improvement (MCII), and patient acceptable symptom state (PASS) were evaluated. Significant differences with the control group and significant baseline—six-month differences were found for the rotator cuff condition, fracture, and capsulitis patient groups. The B-B Score was responsive and demonstrated excellent diagnostic power, except for shoulder instability. The correlations with clinical scores were generally moderate to high, but lower for instability. The MDC was 18.1%, the MCII was 25.2%, and the PASS was 77.6. No floor effect was observed. The B-B Score demonstrated excellent measurement properties in populations with rotator cuff conditions, proximal humerus fractures, and capsulitis, and can thus be used as a routine test to evaluate those patients. PMID:26506355
Tada, Toshifumi; Kumada, Takashi; Toyoda, Hidenori; Tsuji, Kunihiko; Hiraoka, Atsushi; Tanaka, Junko
2017-02-01
Nucleos(t)ide analogue (NA) therapy has been reported to reduce the risk of hepatocellular carcinoma (HCC) development in patients with chronic hepatitis B (CHB). However, even during NA therapy, development of HCC has been observed in patients with CHB. Therefore, we clarified the predictive power of clinical factors for HCC incidence using receiver operating characteristic (ROC) analysis that takes time dependence into account. A total of 539 patients with CHB treated with NAs were enrolled. Univariate, multivariate, and time-dependent ROC curves for clinical factors associated with the development of HCC were analyzed. Eighty-one patients developed HCC during the follow-up period (median duration, 5.9 years). α-fetoprotein (AFP) and FIB-4 index at 24 weeks from the initiation of treatment and sex were significantly associated with HCC incidence according to the log-rank test. Cox proportional hazards models including the covariates of sex, hepatitis B genotype, basal core promoter mutations, AFP at 24 weeks, and FIB-4 index at 24 weeks showed that FIB-4 index >2.65 (HR, 5.03; 95% CI, 3.06-8.26; P < 0.001) and male sex were independently associated with HCC incidence. In addition, time-dependent ROC analysis showed that compared with AFP at 24 weeks, FIB-4 index at 24 weeks had higher predictive power for HCC incidence throughout the follow-up period. Elevated FIB-4 index at 24 weeks in patients with CHB receiving NA therapy is a risk factor for developing HCC. The FIB-4 index is an excellent predictor of HCC development. © 2016 Journal of Gastroenterology and Hepatology Foundation and John Wiley & Sons Australia, Ltd.
Palucci Vieira, Luiz H; de Andrade, Vitor L; Aquino, Rodrigo L; Moraes, Renato; Barbieri, Fabio A; Cunha, Sérgio A; Bedo, Bruno L; Santiago, Paulo R
2017-12-01
The main aim of this study was to verify the relationship between the classification of coaches and actual performance in field tests that measure the kicking performance in young soccer players, using the K-means clustering technique. Twenty-three U-14 players performed 8 tests to measure their kicking performance. Four experienced coaches provided a rating for each player as follows: 1: poor; 2: below average; 3: average; 4: very good; 5: excellent as related to three parameters (i.e. accuracy, power and ability to put spin on the ball). The scores interval established from k-means cluster metric was useful to originating five groups of performance level, since ANOVA revealed significant differences between clusters generated (P<0.01). Accuracy seems to be moderately predicted by the penalty kick, free kick, kicking the ball rolling and Wall Volley Test (0.44≤r≤0.56), while the ability to put spin on the ball can be measured by the free kick and the corner kick tests (0.52≤r≤0.61). Body measurements, age and PHV did not systematically influence the performance. The Wall Volley Test seems to be a good predictor of other tests. Five tests showed reasonable construct validity and can be used to predict the accuracy (penalty kick, free kick, kicking a rolling ball and Wall Volley Test) and ability to put spin on the ball (free kick and corner kick tests) when kicking in soccer. In contrast, the goal kick, kicking the ball when airborne and the vertical kick tests exhibited low power of discrimination and using them should be viewed with caution.
Managing PV Power on Mars - MER Rovers
NASA Technical Reports Server (NTRS)
Stella, Paul M.; Chin, Keith; Wood, Eric; Herman, Jennifer; Ewell, Richard
2009-01-01
The MER Rovers have recently completed over 5 years of operation! This is a remarkable demonstration of the capabilities of PV power on the Martian surface. The extended mission required the development of an efficient process to predict the power available to the rovers on a day-to-day basis. The performance of the MER solar arrays is quite unlike that of any other Space array and perhaps more akin to Terrestrial PV operation, although even severe by that comparison. The impact of unpredictable factors, such as atmospheric conditions and dust accumulation (and removal) on the panels limits the accurate prediction of array power to short time spans. Based on the above, it is clear that long term power predictions are not sufficiently accurate to allow for detailed long term planning. Instead, the power assessment is essentially a daily activity, effectively resetting the boundary points for the overall predictive power model. A typical analysis begins with the importing of the telemetry from each rover's previous day's power subsystem activities. This includes the array power generated, battery state-of-charge, rover power loads, and rover orientation, all as functions of time. The predicted performance for that day is compared to the actual performance to identify the extent of any differences. The model is then corrected for these changes. Details of JPL's MER power analysis procedure are presented, including the description of steps needed to provide the final prediction for the mission planners. A dust cleaning event of the solar array is also highlighted to illustrate the impact of Martian weather on solar array performance
High-power Broadband Organic THz Generator
Jeong, Jae-Hyeok; Kang, Bong-Joo; Kim, Ji-Soo; Jazbinsek, Mojca; Lee, Seung-Heon; Lee, Seung-Chul; Baek, In-Hyung; Yun, Hoseop; Kim, Jongtaek; Lee, Yoon Sup; Lee, Jae-Hyeok; Kim, Jae-Ho; Rotermund, Fabian; Kwon, O-Pil
2013-01-01
The high-power broadband terahertz (THz) generator is an essential tool for a wide range of THz applications. Here, we present a novel highly efficient electro-optic quinolinium single crystal for THz wave generation. For obtaining intense and broadband THz waves by optical-to-THz frequency conversion, a quinolinium crystal was developed to fulfill all the requirements, which are in general extremely difficult to maintain simultaneously in a single medium, such as a large macroscopic electro-optic response and excellent crystal characteristics including a large crystal size with desired facets, good environmental stability, high optical quality, wide transparency range, and controllable crystal thickness. Compared to the benchmark inorganic and organic crystals, the new quinolinium crystal possesses excellent crystal properties and THz generation characteristics with broader THz spectral coverage and higher THz conversion efficiency at the technologically important pump wavelength of 800 nm. Therefore, the quinolinium crystal offers great potential for efficient and gap-free broadband THz wave generation. PMID:24220234
High-power broadband organic THz generator.
Jeong, Jae-Hyeok; Kang, Bong-Joo; Kim, Ji-Soo; Jazbinsek, Mojca; Lee, Seung-Heon; Lee, Seung-Chul; Baek, In-Hyung; Yun, Hoseop; Kim, Jongtaek; Lee, Yoon Sup; Lee, Jae-Hyeok; Kim, Jae-Ho; Rotermund, Fabian; Kwon, O-Pil
2013-11-13
The high-power broadband terahertz (THz) generator is an essential tool for a wide range of THz applications. Here, we present a novel highly efficient electro-optic quinolinium single crystal for THz wave generation. For obtaining intense and broadband THz waves by optical-to-THz frequency conversion, a quinolinium crystal was developed to fulfill all the requirements, which are in general extremely difficult to maintain simultaneously in a single medium, such as a large macroscopic electro-optic response and excellent crystal characteristics including a large crystal size with desired facets, good environmental stability, high optical quality, wide transparency range, and controllable crystal thickness. Compared to the benchmark inorganic and organic crystals, the new quinolinium crystal possesses excellent crystal properties and THz generation characteristics with broader THz spectral coverage and higher THz conversion efficiency at the technologically important pump wavelength of 800 nm. Therefore, the quinolinium crystal offers great potential for efficient and gap-free broadband THz wave generation.
Hybrid Power Management-Based Vehicle Architecture
NASA Technical Reports Server (NTRS)
Eichenberg, Dennis J.
2011-01-01
Hybrid Power Management (HPM) is the integration of diverse, state-of-the-art power devices in an optimal configuration for space and terrestrial applications (s ee figure). The appropriate application and control of the various power devices significantly improves overall system performance and efficiency. The basic vehicle architecture consists of a primary power source, and possibly other power sources, that provides all power to a common energy storage system that is used to power the drive motors and vehicle accessory systems. This architecture also provides power as an emergency power system. Each component is independent, permitting it to be optimized for its intended purpose. The key element of HPM is the energy storage system. All generated power is sent to the energy storage system, and all loads derive their power from that system. This can significantly reduce the power requirement of the primary power source, while increasing the vehicle reliability. Ultracapacitors are ideal for an HPM-based energy storage system due to their exceptionally long cycle life, high reliability, high efficiency, high power density, and excellent low-temperature performance. Multiple power sources and multiple loads are easily incorporated into an HPM-based vehicle. A gas turbine is a good primary power source because of its high efficiency, high power density, long life, high reliability, and ability to operate on a wide range of fuels. An HPM controller maintains optimal control over each vehicle component. This flexible operating system can be applied to all vehicles to considerably improve vehicle efficiency, reliability, safety, security, and performance. The HPM-based vehicle architecture has many advantages over conventional vehicle architectures. Ultracapacitors have a much longer cycle life than batteries, which greatly improves system reliability, reduces life-of-system costs, and reduces environmental impact as ultracapacitors will probably never need to be replaced and disposed of. The environmentally safe ultracapacitor components reduce disposal concerns, and their recyclable nature reduces the environmental impact. High ultracapacitor power density provides high power during surges, and the ability to absorb high power during recharging. Ultracapacitors are extremely efficient in capturing recharging energy, are rugged, reliable, maintenance-free, have excellent lowtemperature characteristic, provide consistent performance over time, and promote safety as they can be left indefinitely in a safe, discharged state whereas batteries cannot.
NASA's Prediction Of Worldwide Energy Resource (POWER) Project Unveils a New Geospatial Data Portal
Atmospheric Science Data Center
2018-03-16
NASA's Prediction Of Worldwide Energy Resource (POWER) Project Unveils a New Geospatial Data Portal ... current POWER home page. The new POWER will include improved solar and meteorological data with all parameters available on a 0.5-degree ...
Microstructural analysis of W-SiCf/SiC composite
NASA Astrophysics Data System (ADS)
Yoon, Hanki; Oh, Jeongseok; Kim, Gonho; Kim, Hyunsu; Takahashi, Heishichiro; Kohyama, Akira
2015-03-01
Continuous silicon carbide fiber-reinforced silicon carbide (SiCf/SiC) composites are promising structure candidates for future fusion power systems such as gas coolant fast channels, extreme high temperature reactor and fusion reactors, because of their intrinsic properties such as excellent mechanical properties, high thermal conductivity, good thermal-shock resistance as well as excellent physical and chemical stability in various environments under elevated temperature conditions. In this study, bonding of tungsten and SiCf/SiC was produced by hot-press method. Microstructure analyses were performed using SEM and TEM.
Locke, Kenneth D; Heller, Sonja
2017-01-01
Seven studies involving 1,343 participants showed how circumplex models of social motives can help explain individual differences in preferences for status (having others' admiration) versus power (controlling valuable resources). Studies 1 to 3 and 7 concerned interpersonal motives in workplace contexts, and found that stronger communal motives (to have mutual trust, support, and cooperation) predicted being more attracted to status (but not power) and achieving more workplace status, while stronger agentic motives (to be firm, decisive, and influential) predicted being more attracted to and achieving more workplace power, and experiencing a stronger connection between workplace power and job satisfaction. Studies 4 to 6 found similar effects for intergroup motives: Stronger communal motives predicted wanting one's ingroup (e.g., country) to have status-but not power-relative to other groups. Finally, most people preferred status over power, and this was especially true for women, which was partially explained by women having stronger communal motives.
Using Human Capital Planning to Predict Future Talent Needs
ERIC Educational Resources Information Center
Ruse, Donald; Jansen, Karen
2008-01-01
Human capital planning is an important tool in predicting future talent needs and sustaining organizational excellence over the long term. This article examines the concept of human capital planning and outlines how institutions can use HCP to identify the type and number of talent needed both now and in the future, recognize and prioritize talent…
ERIC Educational Resources Information Center
Nalukenge, Betty; Wamala, Robert; Ocaya, Bruno
2016-01-01
Purpose: Introduction of law school admission examinations has increased the debate regarding the relevance of prior studies for the enrollees in the program. The key issues of contention are whether prior studies reliably predict academic achievement of enrollees, and demonstrate proficiencies required for admission in the program. The purpose of…
Transient and asymptotic behaviour of the binary breakage problem
NASA Astrophysics Data System (ADS)
Mantzaris, Nikos V.
2005-06-01
The general binary breakage problem with power-law breakage functions and two families of symmetric and asymmetric breakage kernels is studied in this work. A useful transformation leads to an equation that predicts self-similar solutions in its asymptotic limit and offers explicit knowledge of the mean size and particle density at each point in dimensionless time. A novel moving boundary algorithm in the transformed coordinate system is developed, allowing the accurate prediction of the full transient behaviour of the system from the initial condition up to the point where self-similarity is achieved, and beyond if necessary. The numerical algorithm is very rapid and its results are in excellent agreement with known analytical solutions. In the case of the symmetric breakage kernels only unimodal, self-similar number density functions are obtained asymptotically for all parameter values and independent of the initial conditions, while in the case of asymmetric breakage kernels, bimodality appears for high degrees of asymmetry and sharp breakage functions. For symmetric and discrete breakage kernels, self-similarity is not achieved. The solution exhibits sustained oscillations with amplitude that depends on the initial condition and the sharpness of the breakage mechanism, while the period is always fixed and equal to ln 2 with respect to dimensionless time.
NASA Astrophysics Data System (ADS)
Garcia, O. E.; Kube, R.; Theodorsen, A.; LaBombard, B.; Terry, J. L.
2018-05-01
Plasma fluctuations in the scrape-off layer of the Alcator C-Mod tokamak in ohmic and high confinement modes have been analyzed using gas puff imaging data. In all cases investigated, the time series of emission from a single spatially resolved view into the gas puff are dominated by large-amplitude bursts, attributed to blob-like filament structures moving radially outwards and poloidally. There is a remarkable similarity of the fluctuation statistics in ohmic plasmas and in edge localized mode-free and enhanced D-alpha high confinement mode plasmas. Conditionally averaged waveforms have a two-sided exponential shape with comparable temporal scales and asymmetry, while the burst amplitudes and the waiting times between them are exponentially distributed. The probability density functions and the frequency power spectral densities are similar for all these confinement modes. These results provide strong evidence in support of a stochastic model describing the plasma fluctuations in the scrape-off layer as a super-position of uncorrelated exponential pulses. Predictions of this model are in excellent agreement with experimental measurements in both ohmic and high confinement mode plasmas. The stochastic model thus provides a valuable tool for predicting fluctuation-induced plasma-wall interactions in magnetically confined fusion plasmas.
FIRST-PRINCIPLES CALCULATIONS OF INTRINSIC DEFECTS AND Mg TRANSMUTANTS IN 3C-SiC
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hu, Shenyang Y.; Setyawan, Wahyu; Van Ginhoven, Renee M.
2013-09-25
Silicon carbide (SiC) possesses many desirable attributes for applications in high-temperature and neutron radiation environments. These attributes include excellent dimensional and thermodynamic stability, low activation, high strength, and high thermal conductivity. Therefore, SiC based materials draw broad attention as structural materials for the first wall (FW) and blanket in fusion power plants. Under the severe high-energy neutron environment of D-T fusion systems, SiC suffers significant transmutation resulting in both gaseous and metallic transmutants. Recent calculations by Sawan, et al. [2] predict that at a fast neutron dose of ~100 dpa, there will be about 0.5 at% Mg generated in SiCmore » through nuclear transmutation. Other transmutation products, including 0.15 at% Al, 0.2 at% Be and 2.2 at% He, also emerge. Formation and migration energies of point defects in 3C-SiC have been widely investigated using density functional theory (DFT). However, the properties of defects associated with transmutants are currently not well understood. Fundamental understanding of where the transmutation products go and how they affect microstructure evolution of SiC composites will help to predict property evolution and performance of SiC-based materials in fusion reactors.« less
Review of electronic transport models for thermoelectric materials
NASA Astrophysics Data System (ADS)
Bulusu, A.; Walker, D. G.
2008-07-01
Thermoelectric devices have gained importance in recent years as viable solutions for applications such as spot cooling of electronic components, remote power generation in space stations and satellites etc. These solid-state devices have long been known for their reliability rather than their efficiency; they contain no moving parts, and their performance relies primarily on material selection, which has not generated many excellent candidates. Research in recent years has been focused on developing both thermoelectric structures and materials that have high efficiency. In general, thermoelectric research is two-pronged with (1) experiments focused on finding new materials and structures with enhanced thermoelectric performance and (2) analytical models that predict thermoelectric behavior to enable better design and optimization of materials and structures. While numerous reviews have discussed the importance of and dependence on materials for thermoelectric performance, an overview of how to predict the performance of various materials and structures based on fundamental quantities is lacking. In this paper we present a review of the theoretical models that were developed since thermoelectricity was first observed in 1821 by Seebeck and how these models have guided experimental material search for improved thermoelectric devices. A new quantum model is also presented, which provides opportunities for the optimization of nanoscale materials to enhance thermoelectric performance.
The predictive power of local properties of financial networks
NASA Astrophysics Data System (ADS)
Caraiani, Petre
2017-01-01
The literature on analyzing the dynamics of financial networks has focused so far on the predictive power of global measures of networks like entropy or index cohesive force. In this paper, I show that the local network properties have similar predictive power. I focus on key network measures like average path length, average degree or cluster coefficient, and also consider the diameter and the s-metric. Using Granger causality tests, I show that some of these measures have statistically significant prediction power with respect to the dynamics of aggregate stock market. Average path length is most robust relative to the frequency of data used or specification (index or growth rate). Most measures are found to have predictive power only for monthly frequency. Further evidences that support this view are provided through a simple regression model.
Assessment of Passive Intestinal Permeability Using an Artificial Membrane Insert System.
Berben, Philippe; Brouwers, Joachim; Augustijns, Patrick
2018-01-01
Despite reasonable predictive power of current cell-based and cell-free absorption models for the assessment of intestinal drug permeability, high costs and lengthy preparation steps hamper their use. The use of a simple artificial membrane (without any lipids present) as intestinal barrier substitute would overcome these hurdles. In the present study, a set of 14 poorly water-soluble drugs, dissolved in 2 different media (fasted state simulated/human intestinal fluids [FaSSIF/FaHIF]), were applied to the donor compartment of an artificial membrane insert system (AMI-system) containing a regenerated cellulose membrane. Furthermore, to investigate the predictive capacity of the AMI-system as substitute for the well-established Caco-2 system to assess intestinal permeability, the same set of 14 drugs dissolved in FaHIF were applied to the donor compartment of a Caco-2 system. For 14 drugs, covering a broad range of physicochemical parameters, a reasonable correlation between both absorption systems was observed, characterized by a Pearson correlation coefficient r of 0.95 (FaHIF). Using the AMI-system, an excellent predictive capacity of FaSSIF as surrogate medium for FaHIF was demonstrated (r = 0.96). Based on the acquired data, the AMI-system appears to be a time- and cost-effective tool for the early-stage estimation of passive intestinal permeability for poorly water-soluble drugs. Copyright © 2018 American Pharmacists Association®. Published by Elsevier Inc. All rights reserved.
Conger, Scott A; Scott, Stacy N; Bassett, David R
2014-07-01
To examine the relationship between hand rim propulsion power and energy expenditure (EE) during wheelchair wheeling and to investigate whether adding other variables to the model could improve on the prediction of EE. Individuals who use manual wheelchairs (n=14) performed five different wheeling activities in a wheelchair with a PowerTap power meter hub built into the right rear wheel. Activities included wheeling on a smooth, level surface at three different speeds (4.5, 5.5 and 6.5 km/h), wheeling on a rubberised track at one speed (5.5 km/h) and wheeling on a sidewalk course that included uphill and downhill segments at a self-selected speed. EE was measured using a portable indirect calorimetry system. Stepwise linear regression was performed to predict EE from power output variables. A repeated-measures analysis of variance was used to compare the measured EE to the estimates from the power models. Bland-Altman plots were used to assess the agreement between the criterion values and the predicted values. EE and power were significantly correlated (r=0.694, p<0.001). Regression analysis yielded three significant prediction models utilising measured power; measured power and speed; and measured power, speed and heart rate. No significant differences were found between measured EE and any of the prediction models. EE can be accurately and precisely estimated based on hand rim propulsion power. These results indicate that power could be used as a method to assess EE in individuals who use wheelchairs. Published by the BMJ Publishing Group Limited. For permission to use (where not already granted under a licence) please go to http://group.bmj.com/group/rights-licensing/permissions.
Cognitive consistency and math-gender stereotypes in Singaporean children.
Cvencek, Dario; Meltzoff, Andrew N; Kapur, Manu
2014-01-01
In social psychology, cognitive consistency is a powerful principle for organizing psychological concepts. There have been few tests of cognitive consistency in children and no research about cognitive consistency in children from Asian cultures, who pose an interesting developmental case. A sample of 172 Singaporean elementary school children completed implicit and explicit measures of math-gender stereotype (male=math), gender identity (me=male), and math self-concept (me=math). Results showed strong evidence for cognitive consistency; the strength of children's math-gender stereotypes, together with their gender identity, significantly predicted their math self-concepts. Cognitive consistency may be culturally universal and a key mechanism for developmental change in social cognition. We also discovered that Singaporean children's math-gender stereotypes increased as a function of age and that boys identified with math more strongly than did girls despite Singaporean girls' excelling in math. The results reveal both cultural universals and cultural variation in developing social cognition. Copyright © 2013 Elsevier Inc. All rights reserved.
Lippa, Sara M
2018-04-01
Over the past two decades, there has been much research on measures of response bias and myriad measures have been validated in a variety of clinical and research samples. This critical review aims to guide clinicians through the use of performance validity tests (PVTs) from test selection and administration through test interpretation and feedback. Recommended cutoffs and relevant test operating characteristics are presented. Other important issues to consider during test selection, administration, interpretation, and feedback are discussed including order effects, coaching, impact on test data, and methods to combine measures and improve predictive power. When interpreting performance validity measures, neuropsychologists must use particular caution in cases of dementia, low intelligence, English as a second language/minority cultures, or low education. PVTs provide valuable information regarding response bias and, under the right circumstances, can provide excellent evidence of response bias. Only after consideration of the entire clinical picture, including validity test performance, can concrete determinations regarding the validity of test data be made.
Simulation of Watts Bar Unit 1 Initial Startup Tests with Continuous Energy Monte Carlo Methods
DOE Office of Scientific and Technical Information (OSTI.GOV)
Godfrey, Andrew T; Gehin, Jess C; Bekar, Kursat B
2014-01-01
The Consortium for Advanced Simulation of Light Water Reactors* is developing a collection of methods and software products known as VERA, the Virtual Environment for Reactor Applications. One component of the testing and validation plan for VERA is comparison of neutronics results to a set of continuous energy Monte Carlo solutions for a range of pressurized water reactor geometries using the SCALE component KENO-VI developed by Oak Ridge National Laboratory. Recent improvements in data, methods, and parallelism have enabled KENO, previously utilized predominately as a criticality safety code, to demonstrate excellent capability and performance for reactor physics applications. The highlymore » detailed and rigorous KENO solutions provide a reliable nu-meric reference for VERAneutronics and also demonstrate the most accurate predictions achievable by modeling and simulations tools for comparison to operating plant data. This paper demonstrates the performance of KENO-VI for the Watts Bar Unit 1 Cycle 1 zero power physics tests, including reactor criticality, control rod worths, and isothermal temperature coefficients.« less
Hol C Y; Chen, B C; Tsai, Y H; Ma, C; Wen, M Y
2015-11-01
This paper investigates the thermal transport in hollow microscale and nanoscale spheres subject to electrical heat source using nontraditional thermal transport model. Working as supercapacitor electrodes, carbon hollow micrometer- and nanometer-sized spheres needs excellent heat transfer characteristics to maintain high specific capacitance, long cycle life, and high power density. In the nanoscale regime, the prediction of heat transfer from the traditional heat conduction equation based on Fourier's law deviates from the measured data. Consequently, the electrical heat source-induced heat transfer characteristics in hollow micrometer- and nanometer-sized spheres are studied using nontraditional thermal transport model. The effects of parameters on heat transfer in the hollow micrometer- and nanometer-sized spheres are discussed in this study. The results reveal that the heat transferred into the spherical interior, temperature and heat flux in the hollow sphere decrease with the increasing Knudsen number when the radius of sphere is comparable to the mean free path of heat carriers.
Atomistic understanding of cation exchange in PbS nanocrystals using simulations with pseudoligands
Fan, Zhaochuan; Lin, Li-Chiang; Buijs, Wim; Vlugt, Thijs J. H.; van Huis, Marijn A.
2016-01-01
Cation exchange is a powerful tool for the synthesis of nanostructures such as core–shell nanocrystals, however, the underlying mechanism is poorly understood. Interactions of cations with ligands and solvent molecules are systematically ignored in simulations. Here, we introduce the concept of pseudoligands to incorporate cation-ligand-solvent interactions in molecular dynamics. This leads to excellent agreement with experimental data on cation exchange of PbS nanocrystals, whereby Pb ions are partially replaced by Cd ions from solution. The temperature and the ligand-type control the exchange rate and equilibrium composition of cations in the nanocrystal. Our simulations reveal that Pb ions are kicked out by exchanged Cd interstitials and migrate through interstitial sites, aided by local relaxations at core–shell interfaces and point defects. We also predict that high-pressure conditions facilitate strongly enhanced cation exchange reactions at elevated temperatures. Our approach is easily extendable to other semiconductor compounds and to other families of nanocrystals. PMID:27160371
SVM-RFE based feature selection and Taguchi parameters optimization for multiclass SVM classifier.
Huang, Mei-Ling; Hung, Yung-Hsiang; Lee, W M; Li, R K; Jiang, Bo-Ru
2014-01-01
Recently, support vector machine (SVM) has excellent performance on classification and prediction and is widely used on disease diagnosis or medical assistance. However, SVM only functions well on two-group classification problems. This study combines feature selection and SVM recursive feature elimination (SVM-RFE) to investigate the classification accuracy of multiclass problems for Dermatology and Zoo databases. Dermatology dataset contains 33 feature variables, 1 class variable, and 366 testing instances; and the Zoo dataset contains 16 feature variables, 1 class variable, and 101 testing instances. The feature variables in the two datasets were sorted in descending order by explanatory power, and different feature sets were selected by SVM-RFE to explore classification accuracy. Meanwhile, Taguchi method was jointly combined with SVM classifier in order to optimize parameters C and γ to increase classification accuracy for multiclass classification. The experimental results show that the classification accuracy can be more than 95% after SVM-RFE feature selection and Taguchi parameter optimization for Dermatology and Zoo databases.
SVM-RFE Based Feature Selection and Taguchi Parameters Optimization for Multiclass SVM Classifier
Huang, Mei-Ling; Hung, Yung-Hsiang; Lee, W. M.; Li, R. K.; Jiang, Bo-Ru
2014-01-01
Recently, support vector machine (SVM) has excellent performance on classification and prediction and is widely used on disease diagnosis or medical assistance. However, SVM only functions well on two-group classification problems. This study combines feature selection and SVM recursive feature elimination (SVM-RFE) to investigate the classification accuracy of multiclass problems for Dermatology and Zoo databases. Dermatology dataset contains 33 feature variables, 1 class variable, and 366 testing instances; and the Zoo dataset contains 16 feature variables, 1 class variable, and 101 testing instances. The feature variables in the two datasets were sorted in descending order by explanatory power, and different feature sets were selected by SVM-RFE to explore classification accuracy. Meanwhile, Taguchi method was jointly combined with SVM classifier in order to optimize parameters C and γ to increase classification accuracy for multiclass classification. The experimental results show that the classification accuracy can be more than 95% after SVM-RFE feature selection and Taguchi parameter optimization for Dermatology and Zoo databases. PMID:25295306
Development and prototype testing of MgCl 2 /graphite foam latent heat thermal energy storage system
DOE Office of Scientific and Technical Information (OSTI.GOV)
Singh, Dileep; Yu, Wenhua; Zhao, Weihuan
Composites of graphite foam infiltrated with a magnesium chloride phase-change material have been developed as high-temperature thermal energy storage media for concentrated solar power applications. This storage medium provides a high thermal energy storage density, a narrow operating temperature range, and excellent heat transfer characteristics. In this study, experimental investigations were conducted on laboratory-scale prototypes with magnesium chloride/graphite foam composite as the latent heat thermal energy storage system. Prototypes were designed and built to monitor the melt front movement during the charging/discharging tests. A test loop was built to ensure the charging/discharging of the prototypes at temperatures > 700 degreesmore » C. Repeated thermal cycling experiments were carried out on the fabricated prototypes, and the experimental temperature profiles were compared to the predicted results from numerical simulations using COMSOL Multiphysics software. Experimental results were found to be in good agreement with the simulations to validate the thermal models.« less
Development of lithium doped radiation resistent solar cells
NASA Technical Reports Server (NTRS)
Berman, P. A.
1972-01-01
Lithium-doped solar cells have been fabricated with initial lot efficiencies averaging 11.9 percent in an air mass zero (AMO) solar simulator and a maximum observed efficiency of 12.8 percent. The best lithium-doped solar cells are approximately 15 percent higher in maximum power than state-of-the-art n-p cells after moderate to high fluences of 1-MeV electrons and after 6-7 months exposure to low flux irradiation by a Sr-90 beta source, which approximates the electron spectrum and flux associated with near Earth space. Furthermore, lithium-doped cells were found to degrade at a rate only one tenth that of state-of-the-art n-p cells under 28-MeV electron irradiation. Excellent progress has been made in quantitative predictions of post-irradiation current-voltage characteristics as a function of cell design by means of capacitance-voltage measurements, and this information has been used to achieve further improvements in lithium-doped cell design.
Simulation and characterization of silicon-based 0.5-MHz ultrasonic nozzles
NASA Astrophysics Data System (ADS)
Song, Y. L.; Tsai, S. C.; Chen, W. J.; Chou, Y. F.; Tseng, T. K.; Tsai, C. S.
2004-01-01
This paper compares the simulation results with the experimental results of impedance analysis and longitudinal vibration measurement of micro-fabricated 0.5 MHz silicon-based ultrasonic nozzles. Impedance analysis serves as a good diagnostic tool for evaluation of longitudinal vibration of the nozzles. Each nozzle is made of a piezoelectric drive section and a silicon-resonator consisting of multiple Fourier horns each with half wavelength design and twice amplitude magnification. The experimental results verified the simulation prediction of one pure longitudinal vibration mode at the resonant frequency in excellent agreement with the design value. Furthermore, at the resonant frequency, the measured longitudinal vibration amplitude gain at the nozzle tip increases as the number of Fourier horns (n) increases in good agreement with the theoretical value of 2n. Using this design, very high vibration amplitude at the nozzle tip can be achieved with no reduction in the tip cross sectional area. Therefore, the required electric drive power should be drastically reduced, decreasing the likelihood of transducer failure in ultrasonic atomization.
Pinsker, R. I.; Austin, M. E.; Diem, S. J.; ...
2014-02-12
Fast Wave (FW) heating and electron cyclotron heating (ECH) are used in the DIII-D tokamak to study plasmas with low applied torque and dominant electron heating characteristic of burning plasmas. FW heating via direct electron damping has reached the 2.5 MW level in high performance ELMy H-mode plasmas. In Advanced Inductive (AI) plasmas, core FW heating was found to be comparable to that of ECH, consistent with the excellent first-pass absorption of FWs predicted by ray-tracing models at high electron beta. FW heating at the ~2 MW level to ELMy H-mode discharges in the ITER Baseline Scenario (IBS) showed unexpectedlymore » strong absorption of FW power by injected neutral beam (NB) ions, indicated by significant enhancement of the D-D neutron rate, while the intended absorption on core electrons appeared rather weak. As a result, the AI and IBS discharges are compared in an effort to identify the causes of the different response to FWs.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Pinsker, R. I.; Jackson, G. L.; Luce, T. C.
Fast Wave (FW) heating and electron cyclotron heating (ECH) are used in the DIII-D tokamak to study plasmas with low applied torque and dominant electron heating characteristic of burning plasmas. FW heating via direct electron damping has reached the 2.5 MW level in high performance ELMy H-mode plasmas. In Advanced Inductive (AI) plasmas, core FW heating was found to be comparable to that of ECH, consistent with the excellent first-pass absorption of FWs predicted by ray-tracing models at high electron beta. FW heating at the ∼2 MW level to ELMy H-mode discharges in the ITER Baseline Scenario (IBS) showed unexpectedlymore » strong absorption of FW power by injected neutral beam (NB) ions, indicated by significant enhancement of the D-D neutron rate, while the intended absorption on core electrons appeared rather weak. The AI and IBS discharges are compared in an effort to identify the causes of the different response to FWs.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Pinsker, R. I.; Austin, M. E.; Diem, S. J.
Fast Wave (FW) heating and electron cyclotron heating (ECH) are used in the DIII-D tokamak to study plasmas with low applied torque and dominant electron heating characteristic of burning plasmas. FW heating via direct electron damping has reached the 2.5 MW level in high performance ELMy H-mode plasmas. In Advanced Inductive (AI) plasmas, core FW heating was found to be comparable to that of ECH, consistent with the excellent first-pass absorption of FWs predicted by ray-tracing models at high electron beta. FW heating at the ~2 MW level to ELMy H-mode discharges in the ITER Baseline Scenario (IBS) showed unexpectedlymore » strong absorption of FW power by injected neutral beam (NB) ions, indicated by significant enhancement of the D-D neutron rate, while the intended absorption on core electrons appeared rather weak. As a result, the AI and IBS discharges are compared in an effort to identify the causes of the different response to FWs.« less
Sun, Libo; Wan, Ying
2018-04-22
Conditional power and predictive power provide estimates of the probability of success at the end of the trial based on the information from the interim analysis. The observed value of the time to event endpoint at the interim analysis could be biased for the true treatment effect due to early censoring, leading to a biased estimate of conditional power and predictive power. In such cases, the estimates and inference for this right censored primary endpoint are enhanced by incorporating a fully observed auxiliary variable. We assume a bivariate normal distribution of the transformed primary variable and a correlated auxiliary variable. Simulation studies are conducted that not only shows enhanced conditional power and predictive power but also can provide the framework for a more efficient futility interim analysis in terms of an improved accuracy in estimator, a smaller inflation in type II error and an optimal timing for such analysis. We also illustrated the new approach by a real clinical trial example. Copyright © 2018 John Wiley & Sons, Ltd.
The predictive power of Japanese candlestick charting in Chinese stock market
NASA Astrophysics Data System (ADS)
Chen, Shi; Bao, Si; Zhou, Yu
2016-09-01
This paper studies the predictive power of 4 popular pairs of two-day bullish and bearish Japanese candlestick patterns in Chinese stock market. Based on Morris' study, we give the quantitative details of definition of long candlestick, which is important in two-day candlestick pattern recognition but ignored by several previous researches, and we further give the quantitative definitions of these four pairs of two-day candlestick patterns. To test the predictive power of candlestick patterns on short-term price movement, we propose the definition of daily average return to alleviate the impact of correlation among stocks' overlap-time returns in statistical tests. To show the robustness of our result, two methods of trend definition are used for both the medium-market-value and large-market-value sample sets. We use Step-SPA test to correct for data snooping bias. Statistical results show that the predictive power differs from pattern to pattern, three of the eight patterns provide both short-term and relatively long-term prediction, another one pair only provide significant forecasting power within very short-term period, while the rest three patterns present contradictory results for different market value groups. For all the four pairs, the predictive power drops as predicting time increases, and forecasting power is stronger for stocks with medium market value than those with large market value.
NASA Astrophysics Data System (ADS)
Qiu, Yunfei; Li, Xizhong; Zheng, Wei; Hu, Qinghe; Wei, Zhanmeng; Yue, Yaqin
2017-08-01
The climate changes have great impact on the residents’ electricity consumption, so the study on the impact of climatic factors on electric power load is of significance. In this paper, the effects of the data of temperature, rainfall and wind of smart city on short-term power load is studied to predict power load. The authors studied the relation between power load and daily temperature, rainfall and wind in the 31 days of January of one year. In the research, the authors used the Matlab neural network toolbox to establish the combinational forecasting model. The authors trained the original input data continuously to get the internal rules inside the data and used the rules to predict the daily power load in the next January. The prediction method relies on the accuracy of weather forecasting. If the weather forecasting is different from the actual weather, we need to correct the climatic factors to ensure accurate prediction.
[Managing a health research institute: towards research excellence through continuous improvement].
Olmedo, Carmen; Buño, Ismael; Plá, Rosa; Lomba, Irene; Bardinet, Thierry; Bañares, Rafael
2015-01-01
Health research institutes are a strategic commitment considered the ideal environment to develop excellence in translational research. Achieving quality research requires not only a powerful scientific and research structure but also the quality and integrity of management systems that support it. The essential instruments in our institution were solid strategic planning integrated into and consistent with the system of quality management, systematic evaluation through periodic indicators, measurement of key user satisfaction and internal audits, and implementation of an innovative information management tool. The implemented management tools have provided a strategic thrust to our institute while ensuring a level of quality and efficiency in the development and management of research that allows progress towards excellence in biomedical research. Copyright © 2015 SESPAS. Published by Elsevier Espana. All rights reserved.
Evaluating Upper-Body Strength and Power From a Single Test: The Ballistic Push-up.
Wang, Ran; Hoffman, Jay R; Sadres, Eliahu; Bartolomei, Sandro; Muddle, Tyler W D; Fukuda, David H; Stout, Jeffrey R
2017-05-01
Wang, R, Hoffman, JR, Sadres, E, Bartolomei, S, Muddle, TWD, Fukuda, DH, and Stout, JR. Evaluating upper-body strength and power from a single test: the ballistic push-up. J Strength Cond Res 31(5): 1338-1345, 2017-The purpose of this study was to examine the reliability of the ballistic push-up (BPU) exercise and to develop a prediction model for both maximal strength (1 repetition maximum [1RM]) in the bench press exercise and upper-body power. Sixty recreationally active men completed a 1RM bench press and 2 BPU assessments in 3 separate testing sessions. Peak and mean force, peak and mean rate of force development, net impulse, peak velocity, flight time, and peak and mean power were determined. Intraclass correlation coefficients were used to examine the reliability of the BPU. Stepwise linear regression was used to develop 1RM bench press and power prediction equations. Intraclass correlation coefficient's ranged from 0.849 to 0.971 for the BPU measurements. Multiple regression analysis provided the following 1RM bench press prediction equation: 1RM = 0.31 × Mean Force - 1.64 × Body Mass + 0.70 (R = 0.837, standard error of the estimate [SEE] = 11 kg); time-based power prediction equation: Peak Power = 11.0 × Body Mass + 2012.3 × Flight Time - 338.0 (R = 0.658, SEE = 150 W), Mean Power = 6.7 × Body Mass + 1004.4 × Flight Time - 224.6 (R = 0.664, SEE = 82 W); and velocity-based power prediction equation: Peak Power = 8.1 × Body Mass + 818.6 × Peak Velocity - 762.0 (R = 0.797, SEE = 115 W); Mean Power = 5.2 × Body Mass + 435.9 × Peak Velocity - 467.7 (R = 0.838, SEE = 57 W). The BPU is a reliable test for both upper-body strength and power. Results indicate that the mean force generated from the BPU can be used to predict 1RM bench press, whereas peak velocity and flight time measured during the BPU can be used to predict upper-body power. These findings support the potential use of the BPU as a valid method to evaluate upper-body strength and power.
NASA Astrophysics Data System (ADS)
Thiesen, J.; Gulstad, L.; Ristic, I.; Maric, T.
2010-09-01
Summit: The wind power predictability is often a forgotten decision and planning factor for most major wind parks, both onshore and offshore. The results of the predictability are presented after having examined a number of European offshore and offshore parks power predictability by using three(3) mesoscale model IRIE_GFS and IRIE_EC and WRF. Full description: It is well known that the potential wind production is changing with latitude and complexity in terrain, but how big are the changes in the predictability and the economic impacts on a project? The concept of meteorological predictability has hitherto to some degree been neglected as a risk factor in the design, construction and operation of wind power plants. Wind power plants are generally built in places where the wind resources are high, but these are often also sites where the predictability of the wind and other weather parameters is comparatively low. This presentation addresses the question of whether higher predictability can outweigh lower average wind speeds with regard to the overall economy of a wind power project. Low predictability also tends to reduce the value of the energy produced. If it is difficult to forecast the wind on a site, it will also be difficult to predict the power production. This, in turn, leads to increased balance costs and a less reduced carbon emission from the renewable source. By investigating the output from three(3) mesoscale models IRIE and WRF, using ECMWF and GFS as boundary data over a forecasting period of 3 months for 25 offshore and onshore wind parks in Europe, the predictability are mapped. Three operational mesoscale models with two different boundary data have been chosen in order to eliminate the uncertainty with one mesoscale model. All mesoscale models are running in a 10 km horizontal resolution. The model output are converted into "day a head" wind turbine generation forecasts by using a well proven advanced physical wind power model. The power models are using a number of weather parameters like wind speed in different heights, friction velocity and DTHV. The 25 wind sites are scattered around in Europe and contains 4 offshore parks and 21 onshore parks in various terrain complexity. The "day a head" forecasts are compared with production data and predictability for the period February 2010-April 2010 are given in Mean Absolute Errors (MAE) and Root Mean Squared Errors (RMSE). The power predictability results are mapped for each turbine giving a clear picture of the predictability in Europe. . Finally a economic analysis are shown for each wind parks in different regimes of predictability will be compared with regard to the balance costs that result from errors in the wind power prediction. Analysis shows that it may very well be profitable to place wind parks in regions of lower, but more predictable wind ressource. Authors: Ivan Ristic, CTO Weather2Umberlla D.O.O Tomislav Maric, Meteorologist at Global Flow Solutions Vestas Wind Technology R&D Line Gulstad, Manager Global Flow Solutions Vestas Wind Technology R&D Jesper Thiesen, CEO ConWx ApS
Srinivas, N R
2016-02-01
Statins are widely prescribed medicines and are also available in fixed dose combinations with other drugs to treat several chronic ailments. Given the safety issues associated with statins it may be important to assess feasibility of a single time concentration strategy for prediction of exposure (area under the curve; AUC). The peak concentration (Cmax) was used to establish relationship with AUC separately for pravastatin and simvastatin using published pharmacokinetic data. The regression equations generated for statins were used to predict the AUC values from various literature references. The fold difference of the observed divided by predicted values along with correlation coefficient (r) were used to judge the feasibility of the single time point approach. Both pravastatin and simvastatin showed excellent correlation of Cmax vs. AUC values with r value ≥ 0.9638 (p<0.001). The fold difference was within 0.5-fold to 2-fold for 220 out of 227 AUC predictions and >81% of the predicted values were in a narrower range of >0.75-fold but <1.5-fold difference. Predicted vs. observed AUC values showed excellent correlation for pravastatin (r=0.9708, n=115; p<0.001) and simvastatin (r=0.9810; n=117; p<0.001) suggesting the utility of Cmax for AUC predictions. On the basis of the present work, it is feasible to develop a single concentration time point strategy that coincides with Cmax occurrence for both pravastatin and simvastatin from a therapeutic drug monitoring perspective. © Georg Thieme Verlag KG Stuttgart · New York.
Federal Register 2010, 2011, 2012, 2013, 2014
2010-04-20
... specific projects must demonstrate high artistic ability, excellent interpersonal skills, and be conversant... progress towards outcomes or the results achieved. Examples of outputs include the number of people trained...
W5″ Test: A simple method for measuring mean power output in the bench press exercise.
Tous-Fajardo, Julio; Moras, Gerard; Rodríguez-Jiménez, Sergio; Gonzalo-Skok, Oliver; Busquets, Albert; Mujika, Iñigo
2016-11-01
The aims of the present study were to assess the validity and reliability of a novel simple test [Five Seconds Power Test (W5″ Test)] for estimating the mean power output during the bench press exercise at different loads, and its sensitivity to detect training-induced changes. Thirty trained young men completed as many repetitions as possible in a time of ≈5 s at 25%, 45%, 65% and 85% of one-repetition maximum (1RM) in two test sessions separated by four days. The number of repetitions, linear displacement of the bar and time needed to complete the test were recorded by two independent testers, and a linear encoder was used as the criterion measure. For each load, the mean power output was calculated in the W5″ Test as mechanical work per time unit and compared with that obtained from the linear encoder. Subsequently, 20 additional subjects (10 training group vs. 10 control group) were assessed before and after completing a seven-week training programme designed to improve maximal power. Results showed that both assessment methods correlated highly in estimating mean power output at different loads (r range: 0.86-0.94; p < .01) and detecting training-induced changes (R(2): 0.78). Good to excellent intra-tester (intraclass correlation coefficient (ICC) range: 0.81-0.97) and excellent inter-tester (ICC range: 0.96-0.99; coefficient of variation range: 2.4-4.1%) reliability was found for all loads. The W5″ Test was shown to be a valid, reliable and sensitive method for measuring mean power output during the bench press exercise in subjects who have previous resistance training experience.
Test-retest reliability of sensor-based sit-to-stand measures in young and older adults.
Regterschot, G Ruben H; Zhang, Wei; Baldus, Heribert; Stevens, Martin; Zijlstra, Wiebren
2014-01-01
This study investigated test-retest reliability of sensor-based sit-to-stand (STS) peak power and other STS measures in young and older adults. In addition, test-retest reliability of the sensor method was compared to test-retest reliability of the Timed Up and Go Test (TUGT) and Five-Times-Sit-to-Stand Test (FTSST) in older adults. Ten healthy young female adults (20-23 years) and 31 older adults (21 females; 73-94 years) participated in two assessment sessions separated by 3-8 days. Vertical peak power was assessed during three (young adults) and five (older adults) normal and fast STS trials with a hybrid motion sensor worn on the hip. Older adults also performed the FTSST and TUGT. The average sensor-based STS peak power of the normal STS trials and the average sensor-based STS peak power of the fast STS trials showed excellent test-retest reliability in young adults (intra-class correlation (ICC)≥0.90; zero in 95% confidence interval of mean difference between test and retest (95%CI of D); standard error of measurement (SEM)≤6.7% of mean peak power) and older adults (ICC≥0.91; zero in 95%CI of D; SEM≤9.9%). Test-retest reliability of sensor-based STS peak power and TUGT (ICC=0.98; zero in 95%CI of D; SEM=8.5%) was comparable in older adults, test-retest reliability of the FTSST was lower (ICC=0.73; zero outside 95%CI of D; SEM=14.4%). Sensor-based STS peak power demonstrated excellent test-retest reliability and may therefore be useful for clinical assessment of functional status and fall risk. Copyright © 2014 Elsevier B.V. All rights reserved.
Utilization of Model Predictive Control to Balance Power Absorption Against Load Accumulation
DOE Office of Scientific and Technical Information (OSTI.GOV)
Abbas, Nikhar; Tom, Nathan M
2017-06-03
Wave energy converter (WEC) control strategies have been primarily focused on maximizing power absorption. The use of model predictive control strategies allows for a finite-horizon, multiterm objective function to be solved. This work utilizes a multiterm objective function to maximize power absorption while minimizing the structural loads on the WEC system. Furthermore, a Kalman filter and autoregressive model were used to estimate and forecast the wave exciting force and predict the future dynamics of the WEC. The WEC's power-take-off time-averaged power and structural loads under a perfect forecast assumption in irregular waves were compared against results obtained from the Kalmanmore » filter and autoregressive model to evaluate model predictive control performance.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Abbas, Nikhar; Tom, Nathan
Wave energy converter (WEC) control strategies have been primarily focused on maximizing power absorption. The use of model predictive control strategies allows for a finite-horizon, multiterm objective function to be solved. This work utilizes a multiterm objective function to maximize power absorption while minimizing the structural loads on the WEC system. Furthermore, a Kalman filter and autoregressive model were used to estimate and forecast the wave exciting force and predict the future dynamics of the WEC. The WEC's power-take-off time-averaged power and structural loads under a perfect forecast assumption in irregular waves were compared against results obtained from the Kalmanmore » filter and autoregressive model to evaluate model predictive control performance.« less
Demonstration of Hybrid DSMC-CFD Capability for Nonequilibrium Reacting Flow
2018-02-09
Lens-XX facility. This flow was chosen since a recent blind-code validation exercise revealed differences in CFD predictions and experimental data... experimental data that could be due to rarefied flow effects. The CFD solutions (using the US3D code) were run with no-slip boundary conditions and with...excellent agreement with that predicted by CFD. This implies that the dif- ference between CFD predictions and experimental data is not due to rarefied
Technology Projections for Solar Dynamic Power
NASA Technical Reports Server (NTRS)
Mason, Lee S.
1999-01-01
Solar Dynamic power systems can offer many potential benefits to Earth orbiting satellites including high solar-to-electric efficiency, long life without performance degradation, and high power capability. A recent integrated system test of a 2 kilowatt SD power system in a simulated space environment has successfully demonstrated technology readiness for space flight. Conceptual design studies of SD power systems have addressed several potential mission applications: a 10 kilowatt LEO satellite, a low power Space Based Radar, and a 30 kilowatt GEO communications satellite. The studies show that with moderate component development, SD systems can exhibit excellent mass and deployed area characteristics. Using the conceptual design studies as a basis, a SD technology roadmap was generated which identifies the component advances necessary to assure SD systems a competitive advantage for future NASA, DOD, and commercial missions.
OAO-3 end of mission power subsystem evaluation
NASA Technical Reports Server (NTRS)
Tasevoli, M.
1982-01-01
End of mission tests were performed on the OAO-3 power subsystem in three component areas: solar array, nickel-cadmium batteries and the On-Board Processor (OBP) power boost operation. Solar array evaluation consisted of analyzing array performance characteristics and comparing them to earlier flight data. Measured solar array degradation of 14.1 to 17.7% after 8 1/3 years is in good agreement with theortical radiation damage losses. Battery discharge characteristics were compared to results of laboratory life cycle tests performed on similar cells. Comparison of cell voltage profils reveals close correlation and confirms the validity of real time life cycle simulation. The successful operation of the system in the OBP/power boost regulation mode demonstrates the excellent life, reliability and greater system utilization of power subsystems using maximum power trackers.
Ultra-Short-Term Wind Power Prediction Using a Hybrid Model
NASA Astrophysics Data System (ADS)
Mohammed, E.; Wang, S.; Yu, J.
2017-05-01
This paper aims to develop and apply a hybrid model of two data analytical methods, multiple linear regressions and least square (MLR&LS), for ultra-short-term wind power prediction (WPP), for example taking, Northeast China electricity demand. The data was obtained from the historical records of wind power from an offshore region, and from a wind farm of the wind power plant in the areas. The WPP achieved in two stages: first, the ratios of wind power were forecasted using the proposed hybrid method, and then the transformation of these ratios of wind power to obtain forecasted values. The hybrid model combines the persistence methods, MLR and LS. The proposed method included two prediction types, multi-point prediction and single-point prediction. WPP is tested by applying different models such as autoregressive moving average (ARMA), autoregressive integrated moving average (ARIMA) and artificial neural network (ANN). By comparing results of the above models, the validity of the proposed hybrid model is confirmed in terms of error and correlation coefficient. Comparison of results confirmed that the proposed method works effectively. Additional, forecasting errors were also computed and compared, to improve understanding of how to depict highly variable WPP and the correlations between actual and predicted wind power.
Experimental validation of boundary element methods for noise prediction
NASA Technical Reports Server (NTRS)
Seybert, A. F.; Oswald, Fred B.
1992-01-01
Experimental validation of methods to predict radiated noise is presented. A combined finite element and boundary element model was used to predict the vibration and noise of a rectangular box excited by a mechanical shaker. The predicted noise was compared to sound power measured by the acoustic intensity method. Inaccuracies in the finite element model shifted the resonance frequencies by about 5 percent. The predicted and measured sound power levels agree within about 2.5 dB. In a second experiment, measured vibration data was used with a boundary element model to predict noise radiation from the top of an operating gearbox. The predicted and measured sound power for the gearbox agree within about 3 dB.
Predicting Rediated Noise With Power Flow Finite Element Analysis
2007-02-01
Defence R&D Canada – Atlantic DEFENCE DÉFENSE & Predicting Rediated Noise With Power Flow Finite Element Analysis D. Brennan T.S. Koko L. Jiang J...PREDICTING RADIATED NOISE WITH POWER FLOW FINITE ELEMENT ANALYSIS D.P. Brennan T.S. Koko L. Jiang J.C. Wallace Martec Limited Martec Limited...model- or full-scale data before it is available for general use. Brennan, D.P., Koko , T.S., Jiang, L., Wallace, J.C. 2007. Predicting Radiated
Dynamic Modeling and Very Short-term Prediction of Wind Power Output Using Box-Cox Transformation
NASA Astrophysics Data System (ADS)
Urata, Kengo; Inoue, Masaki; Murayama, Dai; Adachi, Shuichi
2016-09-01
We propose a statistical modeling method of wind power output for very short-term prediction. The modeling method with a nonlinear model has cascade structure composed of two parts. One is a linear dynamic part that is driven by a Gaussian white noise and described by an autoregressive model. The other is a nonlinear static part that is driven by the output of the linear part. This nonlinear part is designed for output distribution matching: we shape the distribution of the model output to match with that of the wind power output. The constructed model is utilized for one-step ahead prediction of the wind power output. Furthermore, we study the relation between the prediction accuracy and the prediction horizon.
Programmable differential capacitance-to-voltage converter for MEMS accelerometers
NASA Astrophysics Data System (ADS)
Royo, G.; Sánchez-Azqueta, C.; Gimeno, C.; Aldea, C.; Celma, S.
2017-05-01
Capacitive MEMS sensors exhibit an excellent noise performance, high sensitivity and low power consumption. They offer a huge range of applications, being the accelerometer one of its main uses. In this work, we present the design of a capacitance-to-voltage converter in CMOS technology to measure the acceleration from the capacitance variations. It is based on a low-power, fully-differential transimpedance amplifier with low input impedance and a very low input noise.
Fade Mitigation Techniques at Ka-Band
NASA Technical Reports Server (NTRS)
Dissanayake, Asoka (Editor)
1996-01-01
Rain fading is the dominant propagation impairment affecting Ka-band satellite links and rain fade mitigation is a key element in the design of Ka-band satellite networks. Some of the common fade mitigation techniques include: power control, diversity, adaptive coding, and resource sharing. The Advanced Communications Technology Satellite (ACTS) provides an excellent opportunity to develop and test Ka-band rain impairment amelioration techniques. Up-link power control and diversity are discussed in this paper.
NASA Technical Reports Server (NTRS)
Kloog, Itai; Chudnovsky, Alexandra A.; Just, Allan C.; Nordio, Francesco; Koutrakis, Petros; Coull, Brent A.; Lyapustin, Alexei; Wang, Yujie; Schwartz, Joel
2014-01-01
The use of satellite-based aerosol optical depth (AOD) to estimate fine particulate matter PM(sub 2.5) for epidemiology studies has increased substantially over the past few years. These recent studies often report moderate predictive power, which can generate downward bias in effect estimates. In addition, AOD measurements have only moderate spatial resolution, and have substantial missing data. We make use of recent advances in MODIS satellite data processing algorithms (Multi-Angle Implementation of Atmospheric Correction (MAIAC), which allow us to use 1 km (versus currently available 10 km) resolution AOD data.We developed and cross validated models to predict daily PM(sub 2.5) at a 1X 1 km resolution across the northeastern USA (New England, New York and New Jersey) for the years 2003-2011, allowing us to better differentiate daily and long term exposure between urban, suburban, and rural areas. Additionally, we developed an approach that allows us to generate daily high-resolution 200 m localized predictions representing deviations from the area 1 X 1 km grid predictions. We used mixed models regressing PM(sub 2.5) measurements against day-specific random intercepts, and fixed and random AOD and temperature slopes. We then use generalized additive mixed models with spatial smoothing to generate grid cell predictions when AOD was missing. Finally, to get 200 m localized predictions, we regressed the residuals from the final model for each monitor against the local spatial and temporal variables at each monitoring site. Our model performance was excellent (mean out-of-sample R(sup 2) = 0.88). The spatial and temporal components of the out-of-sample results also presented very good fits to the withheld data (R(sup 2) = 0.87, R(sup)2 = 0.87). In addition, our results revealed very little bias in the predicted concentrations (Slope of predictions versus withheld observations = 0.99). Our daily model results show high predictive accuracy at high spatial resolutions and will be useful in reconstructing exposure histories for epidemiological studies across this region.
Kloog, Itai; Chudnovsky, Alexandra A; Just, Allan C; Nordio, Francesco; Koutrakis, Petros; Coull, Brent A; Lyapustin, Alexei; Wang, Yujie; Schwartz, Joel
2014-10-01
The use of satellite-based aerosol optical depth (AOD) to estimate fine particulate matter (PM 2.5 ) for epidemiology studies has increased substantially over the past few years. These recent studies often report moderate predictive power, which can generate downward bias in effect estimates. In addition, AOD measurements have only moderate spatial resolution, and have substantial missing data. We make use of recent advances in MODIS satellite data processing algorithms (Multi-Angle Implementation of Atmospheric Correction (MAIAC), which allow us to use 1 km (versus currently available 10 km) resolution AOD data. We developed and cross validated models to predict daily PM 2.5 at a 1×1km resolution across the northeastern USA (New England, New York and New Jersey) for the years 2003-2011, allowing us to better differentiate daily and long term exposure between urban, suburban, and rural areas. Additionally, we developed an approach that allows us to generate daily high-resolution 200 m localized predictions representing deviations from the area 1×1 km grid predictions. We used mixed models regressing PM 2.5 measurements against day-specific random intercepts, and fixed and random AOD and temperature slopes. We then use generalized additive mixed models with spatial smoothing to generate grid cell predictions when AOD was missing. Finally, to get 200 m localized predictions, we regressed the residuals from the final model for each monitor against the local spatial and temporal variables at each monitoring site. Our model performance was excellent (mean out-of-sample R 2 =0.88). The spatial and temporal components of the out-of-sample results also presented very good fits to the withheld data (R 2 =0.87, R 2 =0.87). In addition, our results revealed very little bias in the predicted concentrations (Slope of predictions versus withheld observations = 0.99). Our daily model results show high predictive accuracy at high spatial resolutions and will be useful in reconstructing exposure histories for epidemiological studies across this region.
Kloog, Itai; Chudnovsky, Alexandra A.; Just, Allan C.; Nordio, Francesco; Koutrakis, Petros; Coull, Brent A.; Lyapustin, Alexei; Wang, Yujie; Schwartz, Joel
2017-01-01
Background The use of satellite-based aerosol optical depth (AOD) to estimate fine particulate matter (PM2.5) for epidemiology studies has increased substantially over the past few years. These recent studies often report moderate predictive power, which can generate downward bias in effect estimates. In addition, AOD measurements have only moderate spatial resolution, and have substantial missing data. Methods We make use of recent advances in MODIS satellite data processing algorithms (Multi-Angle Implementation of Atmospheric Correction (MAIAC), which allow us to use 1 km (versus currently available 10 km) resolution AOD data. We developed and cross validated models to predict daily PM2.5 at a 1×1km resolution across the northeastern USA (New England, New York and New Jersey) for the years 2003–2011, allowing us to better differentiate daily and long term exposure between urban, suburban, and rural areas. Additionally, we developed an approach that allows us to generate daily high-resolution 200 m localized predictions representing deviations from the area 1×1 km grid predictions. We used mixed models regressing PM2.5 measurements against day-specific random intercepts, and fixed and random AOD and temperature slopes. We then use generalized additive mixed models with spatial smoothing to generate grid cell predictions when AOD was missing. Finally, to get 200 m localized predictions, we regressed the residuals from the final model for each monitor against the local spatial and temporal variables at each monitoring site. Results Our model performance was excellent (mean out-of-sample R2=0.88). The spatial and temporal components of the out-of-sample results also presented very good fits to the withheld data (R2=0.87, R2=0.87). In addition, our results revealed very little bias in the predicted concentrations (Slope of predictions versus withheld observations = 0.99). Conclusion Our daily model results show high predictive accuracy at high spatial resolutions and will be useful in reconstructing exposure histories for epidemiological studies across this region. PMID:28966552
Social motives and cognitive power-sex associations: predictors of aggressive sexual behavior.
Zurbriggen, E L
2000-03-01
The present study investigated whether implicit social motives and cognitive power-sex associations would predict self-reports of aggressive sexual behavior. Participants wrote stories in response to Thematic Apperception Test pictures, which were scored for power and affiliation-intimacy motives. They also completed a lexical-decision priming task that provided an index of the strength of the cognitive association between the concepts of "power" and "sexuality." For men, high levels of power motivation and strong power-sex associations predicted more frequent aggression. There was also an interaction: Power motivation was unrelated to aggression for men with the weakest power-sex associations. For women, high levels of affiliation-intimacy motivation were associated with more frequent aggression. Strong power-sex associations were also predictive for women but only when affiliation-intimacy motivation was high.
Christopher Litvay; Alan Rudie; Peter Hart
2003-01-01
An Excel spreadsheet developed to solve the ion-exchange equilibrium in wood pulps has been linked by dynamic data exchange to WinGEMS and used to model the non-process elements in the hardwood bleach plant of the Mead/Westvaco Evandale mill. Pulp and filtrate samples were collected from the diffusion washers and final wash press of the bleach plant. A WinGEMS model of...
Dynamic power scheduling system for JPEG2000 delivery over wireless networks
NASA Astrophysics Data System (ADS)
Martina, Maurizio; Vacca, Fabrizio
2003-06-01
Third generation mobile terminals diffusion is encouraging the development of new multimedia based applications. The reliable transmission of audiovisual content will gain major interest being one of the most valuable services. Nevertheless, mobile scenario is severely power constrained: high compression ratios and refined energy management strategies are highly advisable. JPEG2000 as the source encoding stage assures excellent performance with extremely good visual quality. However the limited power budged imposes to limit the computational effort in order to save as much power as possible. Starting from an error prone environment, as the wireless one, high error-resilience features need to be employed. This paper tries to investigate the trade-off between quality and power in such a challenging environment.
NASA Astrophysics Data System (ADS)
Ma, Chaoyang; Cao, Yongge; Shen, Xiaofei; Wen, Zicheng; Ma, Ran; Long, Jiaqi; Yuan, Xuanyi
2017-07-01
Nowadays, major commercial w-LEDs fabricated by the traditionally gold-wire-welding packaging technology have undergone considerable development as indoor/outdoor lighting sources due to its high-energy utilization efficiency, long service life, environmental friendliness, and excellent chromatic stability. While, new generation applications in projections, automotive lighting, street lighting, plaza lighting, and high-end general lighting need further improvements in power handling and light extraction. Herein, transparent Ce:YAG glass-ceramics (GCs) phosphor was prepared by low-temperature co-sintering polycrystalline Ce:YAG phosphor powder and home-made PbO-B2O3-ZnO-SiO2 glass powder. Thereafter, the flip-chip (FC) w-LEDs were fabricated with the GCs phosphor plates and FC blue chips. The GCs-based FC w-LEDs show not only excellent heat- and humidity-resistance characteristics, but also superior optical performances with an LE of 112.8 lm/W, a CRI of 71.2, a CCT of 6103 K as well as a chromaticity coordinate of (0.3202, 0.3298), under a high operation current of 400 mA. The technology route will open a practically commercial feasible approach to achieve excellent performances for advanced high-power FC w-LEDs.
DPSSL and FL pumps based on 980-nm telecom pump laser technology: changing the industry
NASA Astrophysics Data System (ADS)
Lichtenstein, Norbert; Schmidt, Berthold E.; Fily, Arnaud; Weiss, Stefan; Arlt, Sebastian; Pawlik, Susanne; Sverdlov, Boris; Muller, Jurgen; Harder, Christoph S.
2004-06-01
Diode-pumped solid state laser (DPSSL) and fiber laser (FL) are believed to become the dominant systems of very high power lasers in the industrial environment. Today, ranging from 100 W to 5 - 10 kW in light output power, their field of applications spread from biomedical and sensoring to material processing. Key driver for the wide spread of such systems is a competitive ratio of cost, performance and reliability. Enabling high power, highly reliable broad-area laser diodes and laser diode bars with excellent performance at the relevant wavelengths can further optimize this ratio. In this communication we present, that this can be achieved by leveraging the tremendous improvements in reliability and performance together with the high volume, low cost manufacturing areas established during the "telecom-bubble." From today's generations of 980-nm narrow-stripe laser diodes 1.8 W of maximum CW output power can be obtained fulfilling the stringent telecom reliability at operating conditions. Single-emitter broad-area lasers deliver in excess of 11 W CW while from similar 940-nm laser bars more than 160 W output power (CW) can be obtained at 200 A. In addition, introducing telecom-grade AuSn-solder mounting technology on expansion matched subassemblies enables excellent reliability performance. Degradation rates of less than 1% over 1000 h at 60 A are observed for both 808-nm and 940-nm laser bars even under harsh intermittent operation conditions.
2013-01-01
Background Protein-protein interactions (PPIs) play crucial roles in the execution of various cellular processes and form the basis of biological mechanisms. Although large amount of PPIs data for different species has been generated by high-throughput experimental techniques, current PPI pairs obtained with experimental methods cover only a fraction of the complete PPI networks, and further, the experimental methods for identifying PPIs are both time-consuming and expensive. Hence, it is urgent and challenging to develop automated computational methods to efficiently and accurately predict PPIs. Results We present here a novel hierarchical PCA-EELM (principal component analysis-ensemble extreme learning machine) model to predict protein-protein interactions only using the information of protein sequences. In the proposed method, 11188 protein pairs retrieved from the DIP database were encoded into feature vectors by using four kinds of protein sequences information. Focusing on dimension reduction, an effective feature extraction method PCA was then employed to construct the most discriminative new feature set. Finally, multiple extreme learning machines were trained and then aggregated into a consensus classifier by majority voting. The ensembling of extreme learning machine removes the dependence of results on initial random weights and improves the prediction performance. Conclusions When performed on the PPI data of Saccharomyces cerevisiae, the proposed method achieved 87.00% prediction accuracy with 86.15% sensitivity at the precision of 87.59%. Extensive experiments are performed to compare our method with state-of-the-art techniques Support Vector Machine (SVM). Experimental results demonstrate that proposed PCA-EELM outperforms the SVM method by 5-fold cross-validation. Besides, PCA-EELM performs faster than PCA-SVM based method. Consequently, the proposed approach can be considered as a new promising and powerful tools for predicting PPI with excellent performance and less time. PMID:23815620
Jarrard, Jerry; Wizeman, Bill; Brown, Robert H; Mitzner, Wayne
2010-11-27
Bronchial thermoplasty is a novel technique designed to reduce an airway's ability to contract by reducing the amount of airway smooth muscle through controlled heating of the airway wall. This method has been examined in animal models and as a treatment for asthma in human subjects. At the present time, there has been little research published about how radiofrequency (RF) energy and heat is transferred to the airways of the lung during bronchial thermoplasty procedures. In this manuscript we describe a computational, theoretical model of the delivery of RF energy to the airway wall. An electro-thermal finite-element-analysis model was designed to simulate the delivery of temperature controlled RF energy to airway walls of the in vivo lung. The model includes predictions of heat generation due to RF joule heating and transfer of heat within an airway wall due to thermal conduction. To implement the model, we use known physical characteristics and dimensions of the airway and lung tissues. The model predictions were tested with measurements of temperature, impedance, energy, and power in an experimental canine model. Model predictions of electrode temperature, voltage, and current, along with tissue impedance and delivered energy were compared to experiment measurements and were within ± 5% of experimental averages taken over 157 sample activations.The experimental results show remarkable agreement with the model predictions, and thus validate the use of this model to predict the heat generation and transfer within the airway wall following bronchial thermoplasty. The model also demonstrated the importance of evaporation as a loss term that affected both electrical measurements and heat distribution. The model predictions showed excellent agreement with the empirical results, and thus support using the model to develop the next generation of devices for bronchial thermoplasty. Our results suggest that comparing model results to RF generator electrical measurements may be a useful tool in the early evaluation of a model.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Newman, Jennifer F.; Clifton, Andrew
Currently, cup anemometers on meteorological towers are used to measure wind speeds and turbulence intensity to make decisions about wind turbine class and site suitability; however, as modern turbine hub heights increase and wind energy expands to complex and remote sites, it becomes more difficult and costly to install meteorological towers at potential sites. As a result, remote-sensing devices (e.g., lidars) are now commonly used by wind farm managers and researchers to estimate the flow field at heights spanned by a turbine. Although lidars can accurately estimate mean wind speeds and wind directions, there is still a large amount ofmore » uncertainty surrounding the measurement of turbulence using these devices. Errors in lidar turbulence estimates are caused by a variety of factors, including instrument noise, volume averaging, and variance contamination, in which the magnitude of these factors is highly dependent on measurement height and atmospheric stability. As turbulence has a large impact on wind power production, errors in turbulence measurements will translate into errors in wind power prediction. The impact of using lidars rather than cup anemometers for wind power prediction must be understood if lidars are to be considered a viable alternative to cup anemometers.In this poster, the sensitivity of power prediction error to typical lidar turbulence measurement errors is assessed. Turbulence estimates from a vertically profiling WINDCUBE v2 lidar are compared to high-resolution sonic anemometer measurements at field sites in Oklahoma and Colorado to determine the degree of lidar turbulence error that can be expected under different atmospheric conditions. These errors are then incorporated into a power prediction model to estimate the sensitivity of power prediction error to turbulence measurement error. Power prediction models, including the standard binning method and a random forest method, were developed using data from the aeroelastic simulator FAST for a 1.5 MW turbine. The impact of lidar turbulence error on the predicted power from these different models is examined to determine the degree of turbulence measurement accuracy needed for accurate power prediction.« less
Atmospheric Science Data Center
2018-05-27
Description: Obtain Prediction of Worldwide Energy Resource (POWER) data The Prediction of Worldwide Energy ... (POWER) project was initiated to improve upon the current renewable energy data set and to create new data sets from new satellite ...
NASA Astrophysics Data System (ADS)
Iden, S. C.; Durner, W.; Delay, M.; Frimmel, F. H.
2009-04-01
Contaminated porous materials, like soils, dredged sediments or waste materials must be tested before they can be used as filling materials in order to minimize the risk of groundwater pollution. We applied a multiple batch extraction test at varying liquid-to-solid (L/S) ratios to a demolition waste material and a municipal waste incineration product and investigated the release of chloride, sulphate, sodium, copper, chromium and dissolved organic carbon from both waste materials. The liquid phase test concentrations were used to estimate parameters of a relatively simple mass balance model accounting for equilibrium partitioning. The model parameters were estimated within a Bayesian framework by applying an efficient MCMC sampler and the uncertainties of the model parameters and model predictions were quantified. We tested isotherms of the linear, Freundlich and Langmuir type and selected the optimal isotherm model by use of the Deviance Information Criterion (DIC). Both the excellent fit to the experimental data and a comparison between the model-predicted and independently measured concentrations at the L/S ratios of 0.25 and 0.5 L/kg demonstrate the applicability of the model for almost all studied substances and both waste materials. We conclude that batch extraction tests at varying L/S ratios provide, at moderate experimental cost, a powerful complement to established test designs like column leaching or single batch extraction tests. The method constitutes an important tool in risk assessments, because concentrations at soil water contents representative for the field situation can be predicted from easier-to-obtain test concentrations at larger L/S ratios. This helps to circumvent the experimental difficulties of the soil saturation extract and eliminates the need to apply statistical approaches to predict such representative concentrations which have been shown to suffer dramatically from poor correlations.
Bonaccorsi, Gloria; Fila, Enrica; Messina, Carmelo; Maietti, Elisa; Ulivieri, Fabio Massimo; Caudarella, Renata; Greco, Pantaleo; Guglielmi, Giuseppe
2017-10-01
To evaluate (a) the performance in predicting the presence of bone fractures of trabecular bone score (TBS) and hip structural analysis (HSA) in type 2 diabetic postmenopausal women compared to a control group and (b) the fracture prediction ability of TBS versus Fracture Risk Calculator (FRAX ® ) as well as whether TBS can improve the fracture prediction ability of FRAX ® in diabetic women. Eighty diabetic postmenopausal women were matched with 88 controls without major diseases for age and body mass index. The individual 10-year fracture risk was assessed by FRAX ® tool for Europe-Italy; bone mineral density (BMD) at lumbar spine, femoral neck and total hip was evaluated through dual-energy X-ray absorptiometry; TBS measurements were taken using the same region of interest as the BMD measurements; HSA was performed at proximal femur with the HSA software. Regarding variables of interest, the only significant difference between diabetic and control groups was observed for the value of TBS (median value: 1.215; IQR 1.138-1.285 in controls vs. 1.173; IQR 1.082-1.217 in diabetic; p = 0.002). The prevalence of fractures in diabetic women was almost tripled than in controls (13.8 vs. 3.4 %; p = 0.02). The receiver operator characteristic curve analysis showed that TBS alone (AUC = 0.71) had no significantly lower discriminative power for fracture prediction in diabetic women than FRAX major adjusted for TBS (AUC = 0.74; p = 0.65). In diabetic postmenopausal women TBS is an excellent tool in identifying fragility fractures.
The performance of an online osteoporosis detection system a sensitivity and specificity analysis.
Chang, Shu Fang; Hong, Chin Ming; Yang, Rong Sen
2014-07-01
To develop an online system for the detection of osteoporosis risk and to test its accuracy. Osteoporosis is a silent killer; usually, there are no symptoms, such as pain, until bone erosion and fracture occur. The risks of osteoporosis have been underestimated and neglected; as a result, osteoporosis can be as dangerous as heart diseases and cancers that lead to a healthcare crisis. Cross-sectional study. The study participants were individuals presenting for routine health examinations at a medical centre in Taiwan from 2006-2007. Women over 30 years of age who underwent dual-energy X-ray absorptiometry scanning for measurement of bone mineral density were eligible for this study. The system for osteoporosis detection and health risk, which was developed in this study, was analysed. The findings indicated a high sensitivity of 75%, specificity of 75%, positive predictive value of 75% and negative predictive value of 75%. In addition, the online osteoporosis detective system had a higher predictive power (24·2% vs. 11%) and a similar cut-off point (33% vs. 27%) compared with the tool designed by the International Osteoporosis Foundation. The online system for detection of osteoporosis risk had excellent reliability and validity. It performed well in predicting osteoporosis and the cut-off point used for identifying the risk among women at risk of developing osteoporosis. Therefore, it is suitable for the Asian women and can help women achieve the goals of early detection and health promotion. Early detection is the only way to prevent osteoporosis. Professional nurses should apply effective technology to promote health care in community-dwelling people. © 2013 John Wiley & Sons Ltd.
Highly conductive and porous activated reduced graphene oxide films for high-power supercapacitors.
Zhang, Li Li; Zhao, Xin; Stoller, Meryl D; Zhu, Yanwu; Ji, Hengxing; Murali, Shanthi; Wu, Yaping; Perales, Stephen; Clevenger, Brandon; Ruoff, Rodney S
2012-04-11
We present a novel method to prepare highly conductive, free-standing, and flexible porous carbon thin films by chemical activation of reduced graphene oxide paper. These flexible carbon thin films possess a very high specific surface area of 2400 m(2) g(-1) with a high in-plane electrical conductivity of 5880 S m(-1). This is the highest specific surface area for a free-standing carbon film reported to date. A two-electrode supercapacitor using these carbon films as electrodes demonstrated an excellent high-frequency response, an extremely low equivalent series resistance on the order of 0.1 ohm, and a high-power delivery of about 500 kW kg(-1). While higher frequency and power values for graphene materials have been reported, these are the highest values achieved while simultaneously maintaining excellent specific capacitances and energy densities of 120 F g(-1) and 26 W h kg(-1), respectively. In addition, these free-standing thin films provide a route to simplify the electrode-manufacturing process by eliminating conducting additives and binders. The synthetic process is also compatible with existing industrial level KOH activation processes and roll-to-roll thin-film fabrication technologies. © 2012 American Chemical Society
3D macroporous graphene frameworks for supercapacitors with high energy and power densities.
Choi, Bong Gill; Yang, Minho; Hong, Won Hi; Choi, Jang Wook; Huh, Yun Suk
2012-05-22
In order to develop energy storage devices with high power and energy densities, electrodes should hold well-defined pathways for efficient ionic and electronic transport. Herein, we demonstrate high-performance supercapacitors by building a three-dimensional (3D) macroporous structure that consists of chemically modified graphene (CMG). These 3D macroporous electrodes, namely, embossed-CMG (e-CMG) films, were fabricated by using polystyrene colloidal particles as a sacrificial template. Furthermore, for further capacitance boost, a thin layer of MnO(2) was additionally deposited onto e-CMG. The porous graphene structure with a large surface area facilitates fast ionic transport within the electrode while preserving decent electronic conductivity and thus endows MnO(2)/e-CMG composite electrodes with excellent electrochemical properties such as a specific capacitance of 389 F/g at 1 A/g and 97.7% capacitance retention upon a current increase to 35 A/g. Moreover, when the MnO(2)/e-CMG composite electrode was asymmetrically assembled with an e-CMG electrode, the assembled full cell shows remarkable cell performance: energy density of 44 Wh/kg, power density of 25 kW/kg, and excellent cycle life.
Recent progress in flexible OLED displays
NASA Astrophysics Data System (ADS)
Hack, Michael G.; Weaver, Michael S.; Mahon, Janice K.; Brown, Julie J.
2001-09-01
Organic light emitting device (OLED) technology has recently been shown to demonstrate excellent performance and cost characteristics for use in numerous flat panel display (FPD) applications. OLED displays emit bright, colorful light with excellent power efficiency, wide viewing angle and video response rates. OLEDs are also demonstrating the requisite environmental robustness for a wide variety of applications. OLED technology is also the first FPD technology with the potential to be highly functional and durable in a flexible format. The use of plastic and other flexible substrate materials offers numerous advantages over commonly used glass substrates, including impact resistance, light weight, thinness and conformability. Currently, OLED displays are being fabricated on rigid substrates, such as glass or silicon wafers. At Universal Display Corporation (UDC), we are developing a new class of flexible OLED displays (FOLEDs). These displays also have extremely low power consumption through the use of electrophosphorescent doped OLEDs. To commercialize FOLED technology, a number of technical issues related to packaging and display processing on flexible substrates need to be addressed. In this paper, we report on our recent results to demonstrate the key technologies that enable the manufacture of power efficient, long-life flexible OLED displays for commercial and military applications.
NASA Astrophysics Data System (ADS)
Chen, Wanjun; He, Yongmin; Li, Xiaodong; Zhou, Jinyuan; Zhang, Zhenxing; Zhao, Changhui; Gong, Chengshi; Li, Shuankui; Pan, Xiaojun; Xie, Erqing
2013-11-01
Flexible and high performance supercapacitors are very critical in modern society. In order to develop the flexible supercapacitors with high power density, free-standing and flexible three-dimensional graphene/carbon nanotubes/MnO2 (3DG/CNTs/MnO2) composite electrodes with interconnected ternary 3D structures were fabricated, and the fast electron and ion transport channels were effectively constructed in the rationally designed electrodes. Consequently, the obtained 3DG/CNTs/MnO2 composite electrodes exhibit superior specific capacitance and rate capability compared to 3DG/MnO2 electrodes. Furthermore, the 3DG/CNTs/MnO2 based asymmetric supercapacitor demonstrates the maximum energy and power densities of 33.71 W h kg-1 and up to 22 727.3 W kg-1, respectively. Moreover, the asymmetric supercapacitor exhibits excellent cycling stability with 95.3% of the specific capacitance maintained after 1000 cycle tests. Our proposed synthesis strategy to construct the novel ternary 3D structured electrodes can be efficiently applied to other high performance energy storage/conversion systems.Flexible and high performance supercapacitors are very critical in modern society. In order to develop the flexible supercapacitors with high power density, free-standing and flexible three-dimensional graphene/carbon nanotubes/MnO2 (3DG/CNTs/MnO2) composite electrodes with interconnected ternary 3D structures were fabricated, and the fast electron and ion transport channels were effectively constructed in the rationally designed electrodes. Consequently, the obtained 3DG/CNTs/MnO2 composite electrodes exhibit superior specific capacitance and rate capability compared to 3DG/MnO2 electrodes. Furthermore, the 3DG/CNTs/MnO2 based asymmetric supercapacitor demonstrates the maximum energy and power densities of 33.71 W h kg-1 and up to 22 727.3 W kg-1, respectively. Moreover, the asymmetric supercapacitor exhibits excellent cycling stability with 95.3% of the specific capacitance maintained after 1000 cycle tests. Our proposed synthesis strategy to construct the novel ternary 3D structured electrodes can be efficiently applied to other high performance energy storage/conversion systems. Electronic supplementary information (ESI) available: Additional experimental details; calculations of the specific capacitances, and energy and power densities; additional SEM and optical images; XPS results; additional electrochemical results. See DOI: 10.1039/c3nr03923d
NASA Astrophysics Data System (ADS)
Mussio, P.; Gnyp, A. W.; Henshaw, P. F.
A fluctuating plume dispersion model has been developed to facilitate the prediction of odour-impact frequencies in the communities surrounding elevated point sources. The model was used to predict the frequencies of occurrence of odours of various magnitudes for 1 h periods. In addition, the model predicted the maximum odour level. The model was tested with an extensive set of data collected in the residential areas surrounding the paint shop of an automotive assembly plant. Most of the perceived odours in the vicinity of the 64, 46 m high stacks ranged between 2 and 7 odour units and generally persisted for less than 30 s. Ninety-eight different field determinations of odour impact frequencies within 1 km of the plant were conducted during the course of the study. To simplify evaluation, the frequencies of occurrence of different odour levels were summed to give the total frequency of occurrence of all readily detectable (>2 OU) odours. The model provided excellent simulation of the total frequencies of occurrence where the odour was frequent (i.e . readily detectable more than 30% of the time). At lower frequencies of occurrence the model prediction was poor. The stability class did not seem to affect the model's ability to predict field frequency values. However, the model provided excellent predictions of the maximum odour levels without being sensitive to either stability class or distance from the source. Ninety-five percent of the predicted maximum values were within a factor of two of the measured field maximum values.
Executive roundtable on coal-fired generation
DOE Office of Scientific and Technical Information (OSTI.GOV)
NONE
2009-09-15
Power Engineering magazine invited six industry executives from the coal-fired sector to discuss issues affecting current and future prospects of coal-fired generation. The executives are Tim Curran, head of Alstom Power for the USA and Senior Vice President and General Manager of Boilers North America; Ray Kowalik, President and General Manager of Burns and McDonnell Energy Group; Jeff Holmstead, head of Environmental Strategies for the Bracewell Giuliani law firm; Jim Mackey, Vice President, Fluor Power Group's Solid Fuel business line; Tom Shelby, President Kiewit Power Inc., and David Wilks, President of Energy Supply for Excel Energy Group. Steve Blankinship, themore » magazine's Associate Editor, was the moderator. 6 photos.« less
Photonic crystal fiber technology for compact fiber-delivered high-power ultrafast fiber lasers
NASA Astrophysics Data System (ADS)
Triches, Marco; Michieletto, Mattia; Johansen, Mette M.; Jakobsen, Christian; Olesen, Anders S.; Papior, Sidsel R.; Kristensen, Torben; Bondue, Magalie; Weirich, Johannes; Alkeskjold, Thomas T.
2018-02-01
Photonic crystal fiber (PCF) technology has radically impacted the scientific and industrial ultrafast laser market. Reducing platform dimensions are important to decrease cost and footprint while maintaining high optical efficiency. We present our recent work on short 85 μm core ROD-type fiber amplifiers that maintain single-mode performance and excellent beam quality. Robust long-term performance at 100 W average power and 250 kW peak power in 20 ps pulses at 1030 nm wavelength is presented, exceeding 500 h with stable performance in terms of both polarization and power. In addition, we present our recent results on hollow-core ultrafast fiber delivery maintaining high beam quality and polarization purity.
Free-piston Stirling Engine system considerations for various space power applications
NASA Technical Reports Server (NTRS)
Dochat, George R.; Dhar, Manmohan
1991-01-01
Free-Piston Stirling Engines (FPSE) have the potential to provide high reliability, long life, and efficient operation. Therefore, they are excellent candidates for the dynamic power conversion module of a space-based, power-generating system. FPSE can be coupled with many potential heat sources (radioisotope, solar, or nuclear reactor), various heat input systems (pumped loop, heat pipe), heat rejection (pumped loop or heat pipe), and various power management and distribution systems (ac, dc, high or low voltage, and fixed or variable load). This paper reviews potential space missions that can be met using free-piston Stirling engines and discusses options of various system integration approaches. This paper briefly outlines the program and recent progress.
Atmospheric Science Data Center
2018-06-25
Description: Obtain Prediction of Worldwide Energy Resource (POWER) data The Prediction of Worldwide Energy ... (POWER) project was initiated to improve upon the current renewable energy data set and to create new data sets from new satellite ...
Turbofan forced mixer-nozzle internal flowfield. Volume 2: Computational fluid dynamic predictions
NASA Technical Reports Server (NTRS)
Werle, M. J.; Vasta, V. N.
1982-01-01
A general program was conducted to develop and assess a computational method for predicting the flow properties in a turbofan forced mixed duct. The detail assessment of the resulting computer code is presented. It was found that the code provided excellent predictions of the kinematics of the mixing process throughout the entire length of the mixer nozzle. The thermal mixing process between the hot core and cold fan flows was found to be well represented in the low speed portion of the flowfield.
NASA Astrophysics Data System (ADS)
Xie, Yan; Li, Mu; Zhou, Jin; Zheng, Chang-zheng
2009-07-01
Agricultural machinery total power is an important index to reflex and evaluate the level of agricultural mechanization. It is the power source of agricultural production, and is the main factors to enhance the comprehensive agricultural production capacity expand production scale and increase the income of the farmers. Its demand is affected by natural, economic, technological and social and other "grey" factors. Therefore, grey system theory can be used to analyze the development of agricultural machinery total power. A method based on genetic algorithm optimizing grey modeling process is introduced in this paper. This method makes full use of the advantages of the grey prediction model and characteristics of genetic algorithm to find global optimization. So the prediction model is more accurate. According to data from a province, the GM (1, 1) model for predicting agricultural machinery total power was given based on the grey system theories and genetic algorithm. The result indicates that the model can be used as agricultural machinery total power an effective tool for prediction.
Integrated Wind Power Planning Tool
NASA Astrophysics Data System (ADS)
Rosgaard, Martin; Giebel, Gregor; Skov Nielsen, Torben; Hahmann, Andrea; Sørensen, Poul; Madsen, Henrik
2013-04-01
This poster presents the current state of the public service obligation (PSO) funded project PSO 10464, with the title "Integrated Wind Power Planning Tool". The goal is to integrate a mesoscale numerical weather prediction (NWP) model with purely statistical tools in order to assess wind power fluctuations, with focus on long term power system planning for future wind farms as well as short term forecasting for existing wind farms. Currently, wind power fluctuation models are either purely statistical or integrated with NWP models of limited resolution. Using the state-of-the-art mesoscale NWP model Weather Research & Forecasting model (WRF) the forecast error is sought quantified in dependence of the time scale involved. This task constitutes a preparative study for later implementation of features accounting for NWP forecast errors in the DTU Wind Energy maintained Corwind code - a long term wind power planning tool. Within the framework of PSO 10464 research related to operational short term wind power prediction will be carried out, including a comparison of forecast quality at different mesoscale NWP model resolutions and development of a statistical wind power prediction tool taking input from WRF. The short term prediction part of the project is carried out in collaboration with ENFOR A/S; a Danish company that specialises in forecasting and optimisation for the energy sector. The integrated prediction model will allow for the description of the expected variability in wind power production in the coming hours to days, accounting for its spatio-temporal dependencies, and depending on the prevailing weather conditions defined by the WRF output. The output from the integrated short term prediction tool constitutes scenario forecasts for the coming period, which can then be fed into any type of system model or decision making problem to be solved. The high resolution of the WRF results loaded into the integrated prediction model will ensure a high accuracy data basis is available for use in the decision making process of the Danish transmission system operator. The need for high accuracy predictions will only increase over the next decade as Denmark approaches the goal of 50% wind power based electricity in 2025 from the current 20%.
Li, Chen; Zhang, Xiong; Wang, Kai; Sun, Xianzhong; Liu, Guanghua; Li, Jiangtao; Tian, Huanfang; Li, Jianqi; Ma, Yanwei
2017-02-01
An ultrafast self-propagating high-temperature synthesis technique offers scalable routes for the fabrication of mesoporous graphene directly from CO 2 . Due to the excellent electrical conductivity and high ion-accessible surface area, supercapacitor electrodes based on the obtained graphene exhibit superior energy and power performance. The capacitance retention is higher than 90% after one million charge/discharge cycles. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Shokouh, Seyed Hossein Hosseini; Pezeshki, Atiye; Ali Raza, Syed Raza; Lee, Hee Sung; Min, Sung-Wook; Jeon, Pyo Jin; Shin, Jae Min; Im, Seongil
2015-01-07
A 1D-2D hybrid complementary logic inverter comprising of ZnO nanowire and WSe2 nanosheet field-effect transistors (FETs) is fabricated on glass, which shows excellent static and dynamic electrical performances with a voltage gain of ≈60, sub-nanowatt power consumption, and at least 1 kHz inverting speed. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Clawges, R.M.; Titus, E.O.
1993-01-01
A method was developed to predict water demand for crop uses in New Jersey. A separate method was developed to estimate water use for livestock and selected sectors of the food-processing industry in 1987. Predictions of water demand for field- grown crops in New Jersey were made for 1990, 2000, 2010, and 2020 under three climatological scenarios: (1) wet year, (2) average year, and (3) drought year. These estimates ranged from 4.10 times 10 to the 9th power to 16.82 times 10 to the 9th power gal (gallons). Irrigation amounts calculated for the three climatological scenarios by using a daily water-balance model were multiplied by predicted numbers of irrigated acreage. Irrigated acreage was predicted from historical crop-irrigation data and from predictions of harvested acreage produced by using a statistical model relating population to harvested acreage. Predictions of water demand for cranberries and container-grown nursery crops also were made for 1990, 2000, 2010, and 2020. Predictions of water demand under the three climatological scenarios were made for container- grown nursery crops, but not for cranberries, because water demand for cranberries varies little in response to climatological factors. Water demand for cranberries was predicted to remain constant at 4.43 times 10 to the 9th power gal through the year 2020. Predictions of water demand for container-grown nursery crops ranged from 1.89 times 10 to the 9th power to 3.63 times 10 to the 9th power gal. Water-use for livestock in 1987 was estimated to be 0.78 times 10 to the 9th power gal, and water use for selected sectors of the food-processing industry was estimated to be 3.75 times 10 to the 9th power gal.
From Living Buildings to Living Campuses
ERIC Educational Resources Information Center
Alfieri, Tony; Damon, David; Smith, Z.
2009-01-01
Sustainable planning is a powerful tool in creating campus facilities that are environmentally, economically, and academically beneficial. As interconnected communities, college campuses provide an excellent model for sustainable intervention strategies. The University of British Columbia and the City University of New York's Lehman College have…
... PDF file Microsoft PowerPoint file Microsoft Word file Microsoft Excel file Audio/Video file Apple Quicktime file RealPlayer file Text file Zip Archive file SAS file ePub file RIS file Page last reviewed: February 18, 2013 Page last updated: March 30, 2017 Content source: ...
Stock market index prediction using neural networks
NASA Astrophysics Data System (ADS)
Komo, Darmadi; Chang, Chein-I.; Ko, Hanseok
1994-03-01
A neural network approach to stock market index prediction is presented. Actual data of the Wall Street Journal's Dow Jones Industrial Index has been used for a benchmark in our experiments where Radial Basis Function based neural networks have been designed to model these indices over the period from January 1988 to Dec 1992. A notable success has been achieved with the proposed model producing over 90% prediction accuracies observed based on monthly Dow Jones Industrial Index predictions. The model has also captured both moderate and heavy index fluctuations. The experiments conducted in this study demonstrated that the Radial Basis Function neural network represents an excellent candidate to predict stock market index.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lai, R.; Biedenbender, M.; Lee, J.
1995-12-31
The authors present a unique high yield, high performance 0.15 {mu}m HEMT production process which supports fabrication of MMW power MMICs up to 70 GHz. This process has been transferred successfully from an R&D process to TRW`s GaAs production line. This paper reports the on-wafer test results of more than 1300 V-band MMIC PA circuits measured over 24 wafers. The best 2-stage V-band power MMICs have demonstrated state-of-the-art performance with 9 dB power gain, 20% PAE and 330 mW output power. An excellent RF yield of 60% was achieved with an 8 dB power gain and 250 mW output powermore » specification.« less
PC Software graphics tool for conceptual design of space/planetary electrical power systems
NASA Technical Reports Server (NTRS)
Truong, Long V.
1995-01-01
This paper describes the Decision Support System (DSS), a personal computer software graphics tool for designing conceptual space and/or planetary electrical power systems. By using the DSS, users can obtain desirable system design and operating parameters, such as system weight, electrical distribution efficiency, and bus power. With this tool, a large-scale specific power system was designed in a matter of days. It is an excellent tool to help designers make tradeoffs between system components, hardware architectures, and operation parameters in the early stages of the design cycle. The DSS is a user-friendly, menu-driven tool with online help and a custom graphical user interface. An example design and results are illustrated for a typical space power system with multiple types of power sources, frequencies, energy storage systems, and loads.
NASA Astrophysics Data System (ADS)
Cheng, K.; Guo, L. M.; Wang, Y. K.; Zafar, M. T.
2017-11-01
In order to select effective samples in the large number of data of PV power generation years and improve the accuracy of PV power generation forecasting model, this paper studies the application of clustering analysis in this field and establishes forecasting model based on neural network. Based on three different types of weather on sunny, cloudy and rainy days, this research screens samples of historical data by the clustering analysis method. After screening, it establishes BP neural network prediction models using screened data as training data. Then, compare the six types of photovoltaic power generation prediction models before and after the data screening. Results show that the prediction model combining with clustering analysis and BP neural networks is an effective method to improve the precision of photovoltaic power generation.
Integrated modelling of H-mode pedestal and confinement in JET-ILW
NASA Astrophysics Data System (ADS)
Saarelma, S.; Challis, C. D.; Garzotti, L.; Frassinetti, L.; Maggi, C. F.; Romanelli, M.; Stokes, C.; Contributors, JET
2018-01-01
A pedestal prediction model Europed is built on the existing EPED1 model by coupling it with core transport simulation using a Bohm-gyroBohm transport model to self-consistently predict JET-ILW power scan for hybrid plasmas that display weaker power degradation than the IPB98(y, 2) scaling of the energy confinement time. The weak power degradation is reproduced in the coupled core-pedestal simulation. The coupled core-pedestal model is further tested for a 3.0 MA plasma with the highest stored energy achieved in JET-ILW so far, giving a prediction of the stored plasma energy within the error margins of the measured experimental value. A pedestal density prediction model based on the neutral penetration is tested on a JET-ILW database giving a prediction with an average error of 17% from the experimental data when a parameter taking into account the fuelling rate is added into the model. However the model fails to reproduce the power dependence of the pedestal density implying missing transport physics in the model. The future JET-ILW deuterium campaign with increased heating power is predicted to reach plasma energy of 11 MJ, which would correspond to 11-13 MW of fusion power in equivalent deuterium-tritium plasma but with isotope effects on pedestal stability and core transport ignored.
Maximum predictive power and the superposition principle
NASA Technical Reports Server (NTRS)
Summhammer, Johann
1994-01-01
In quantum physics the direct observables are probabilities of events. We ask how observed probabilities must be combined to achieve what we call maximum predictive power. According to this concept the accuracy of a prediction must only depend on the number of runs whose data serve as input for the prediction. We transform each probability to an associated variable whose uncertainty interval depends only on the amount of data and strictly decreases with it. We find that for a probability which is a function of two other probabilities maximum predictive power is achieved when linearly summing their associated variables and transforming back to a probability. This recovers the quantum mechanical superposition principle.
DOE Office of Scientific and Technical Information (OSTI.GOV)
None
2015-06-01
WEC-Sim is a DOE-funded software tool being jointly developed by NREL and SNL. WEC-Sim computationally models wave energy converters (WEC), devices that generate electricity using movement of water systems such as oceans, rivers, etc. There is great potential for WECs to generate electricity, but as of yet, the industry has yet to establish a commercially viable concept. Modeling, design, and simulations tools are essential to the successful development of WECs. Commercial WEC modeling software tools can't be modified by the user. In contrast, WEC-Sim is a free, open-source, and flexible enough to be modified to meet the rapidly evolving needsmore » of the WEC industry. By modeling the power generation performance and dynamic loads of WEC designs, WEC-Sim can help support the development of new WEC devices by optimizing designs for cost of energy and competitiveness. By being easily accessible, WEC-Sim promises to help level the playing field in the WEC industry. Importantly, WEC-Sim is also excellent at its job! In 2014, WEC-Sim was used in conjunction with NREL’s FAST modeling software to win a hydrodynamic modeling competition. WEC-Sim and FAST performed very well at predicting the motion of a test device in comparison to other modeling tools. The most recent version of WEC-Sim (v1.1) was released in April 2015.« less
Hsu, Shao-Hui; Miao, Jianwei; Zhang, Liping; Gao, Jiajian; Wang, Hongming; Tao, Huabing; Hung, Sung-Fu; Vasileff, Anthony; Qiao, Shi Zhang; Liu, Bin
2018-05-01
The implementation of water splitting systems, powered by sustainable energy resources, appears to be an attractive strategy for producing high-purity H 2 in the absence of the release of carbon dioxide (CO 2 ). However, the high cost, impractical operating conditions, and unsatisfactory efficiency and stability of conventional methods restrain their large-scale development. Seawater covers 70% of the Earth's surface and is one of the most abundant natural resources on the planet. New research is looking into the possibility of using seawater to produce hydrogen through electrolysis and will provide remarkable insight into sustainable H 2 production, if successful. Here, guided by density functional theory (DFT) calculations to predict the selectivity of gas-evolving catalysts, a seawater-splitting device equipped with affordable state-of-the-art electrocatalysts composed of earth-abundant elements (Fe, Co, Ni, and Mo) is demonstrated. This device shows excellent durability and specific selectivity toward the oxygen evolution reaction in seawater with near 100% Faradaic efficiency for the production of H 2 and O 2 . Powered by a single commercial III-V triple-junction photovoltaic cell, the integrated system achieves spontaneous and efficient generation of high-purity H 2 and O 2 from seawater at neutral pH with a remarkable 17.9% solar-to-hydrogen efficiency. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Scanning in situ Spectroscopy platform for imaging surgical breast tissue specimens
Krishnaswamy, Venkataramanan; Laughney, Ashley M.; Wells, Wendy A.; Paulsen, Keith D.; Pogue, Brian W.
2013-01-01
A non-contact localized spectroscopic imaging platform has been developed and optimized to scan 1x1cm2 square regions of surgically resected breast tissue specimens with ~150-micron resolution. A color corrected, image-space telecentric scanning design maintained a consistent sampling geometry and uniform spot size across the entire imaging field. Theoretical modeling in ZEMAX allowed estimation of the spot size, which is equal at both the center and extreme positions of the field with ~5% variation across the designed waveband, indicating excellent color correction. The spot sizes at the center and an extreme field position were also measured experimentally using the standard knife-edge technique and were found to be within ~8% of the theoretical predictions. Highly localized sampling offered inherent insensitivity to variations in background absorption allowing direct imaging of local scattering parameters, which was validated using a matrix of varying concentrations of Intralipid and blood in phantoms. Four representative, pathologically distinct lumpectomy tissue specimens were imaged, capturing natural variations in tissue scattering response within a given pathology. Variations as high as 60% were observed in the average reflectance and relative scattering power images, which must be taken into account for robust classification performance. Despite this variation, the preliminary data indicates discernible scatter power contrast between the benign vs malignant groups, but reliable discrimination of pathologies within these groups would require investigation into additional contrast mechanisms. PMID:23389199
Aortic stiffness predicts functional outcome in patients after ischemic stroke.
Gasecki, Dariusz; Rojek, Agnieszka; Kwarciany, Mariusz; Kubach, Marlena; Boutouyrie, Pierre; Nyka, Walenty; Laurent, Stephane; Narkiewicz, Krzysztof
2012-02-01
Increased aortic stiffness (measured by carotid-femoral pulse wave velocity) and central augmentation index have been shown to independently predict cardiovascular events, including stroke. We studied whether pulse wave velocity and central augmentation index predict functional outcome after ischemic stroke. In a prospective study, we enrolled 99 patients with acute ischemic stroke (age 63.7 ± 12.4 years, admission National Institutes of Health Stroke Scale score 6.6 ± 6.6, mean ± SD). Carotid-femoral pulse wave velocity and central augmentation index (SphygmoCor) were measured 1 week after stroke onset. Functional outcome was evaluated 90 days after stroke using the modified Rankin Scale with modified Rankin Scale score of 0 to 1 considered an excellent outcome. In univariate analysis, low carotid-femoral pulse wave velocity (P=0.000001) and low central augmentation index (P=0.028) were significantly associated with excellent stroke outcome. Age, severity of stroke, presence of previous stroke, diabetes, heart rate, and peripheral pressures also predicted stroke functional outcome. In multivariate analysis, the predictive value of carotid-femoral pulse wave velocity (<9.4 m/s) remained significant (OR, 0.21; 95% CI, 0.06-0.79; P=0.02) after adjustment for age, National Institutes of Health Stroke Scale score on admission, and presence of previous stroke. By contrast, central augmentation index had no significant predictive value after adjustment. This study indicates that aortic stiffness is an independent predictor of functional outcome in patients with acute ischemic stroke.
PR-EDB: Power Reactor Embrittlement Database - Version 3
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wang, Jy-An John; Subramani, Ranjit
2008-03-01
The aging and degradation of light-water reactor pressure vessels is of particular concern because of their relevance to plant integrity and the magnitude of the expected irradiation embrittlement. The radiation embrittlement of reactor pressure vessel materials depends on many factors, such as neutron fluence, flux, and energy spectrum, irradiation temperature, and preirradiation material history and chemical compositions. These factors must be considered to reliably predict pressure vessel embrittlement and to ensure the safe operation of the reactor. Large amounts of data from surveillance capsules are needed to develop a generally applicable damage prediction model that can be used for industrymore » standards and regulatory guides. Furthermore, the investigations of regulatory issues such as vessel integrity over plant life, vessel failure, and sufficiency of current codes, Standard Review Plans (SRPs), and Guides for license renewal can be greatly expedited by the use of a well-designed computerized database. The Power Reactor Embrittlement Database (PR-EDB) is such a comprehensive collection of data for U.S. designed commercial nuclear reactors. The current version of the PR-EDB lists the test results of 104 heat-affected-zone (HAZ) materials, 115 weld materials, and 141 base materials, including 103 plates, 35 forgings, and 3 correlation monitor materials that were irradiated in 321 capsules from 106 commercial power reactors. The data files are given in dBASE format and can be accessed with any personal computer using the Windows operating system. "User-friendly" utility programs have been written to investigate radiation embrittlement using this database. Utility programs allow the user to retrieve, select and manipulate specific data, display data to the screen or printer, and fit and plot Charpy impact data. The PR-EDB Version 3.0 upgrades Version 2.0. The package was developed based on the Microsoft .NET framework technology and uses Microsoft Access for backend data storage, and Microsoft Excel for plotting graphs. This software package is compatible with Windows (98 or higher) and has been built with a highly versatile user interface. PR-EDB Version 3.0 also contains an "Evaluated Residual File" utility for generating the evaluated processed files used for radiation embrittlement study.« less
The Development and Application of the Magnetron,
1982-03-31
of *medicine. The power of the magnetron used is from several tens of watts to several hundred watts. Microwave physiotherapy has been used in...clinical practice for the fast cure of arthritis , rheumatism and the subsidence of swelling. Therapeutic results have been excellent. In recent years
Staff Development and School Improvement: An Interview with Ernest Boyer.
ERIC Educational Resources Information Center
Sparks, Dennis
1984-01-01
The importance of developing teachers' skills and feelings of power and professionalism is stressed in an interview with Ernest Boyer. Other topics of discussion include the establishment of a "teacher excellence fund" and the concept that school improvement is "people improvement." (DF)
Scabies: Workplace Frequently Asked Questions (FAQs)
... PDF file Microsoft PowerPoint file Microsoft Word file Microsoft Excel file Audio/Video file Apple Quicktime file RealPlayer file Text file Zip Archive file SAS file ePub file RIS file Page last reviewed: July 19, 2013 Page last updated: July 19, 2013 Content source: ...
The Key Pieces of the Career Survival and Success Puzzle.
ERIC Educational Resources Information Center
Simonetti, Jack L.
1999-01-01
Analysis of career-success factors identified by 5,000 managers yielded 10 key pieces: excellent performance record, communication skills, interpersonal skills, personality, skill currency, significant work experiences, power, ability to withstand pressure, ability to make difficult decisions, and having a mentor. (SK)
Some Characteristics of One Type of High Reliability Organization.
ERIC Educational Resources Information Center
Roberts, Karlene H.
1990-01-01
Attempts to define organizational processes necessary to operate safely technologically complex organizations. Identifies nuclear powered aircraft carriers as examples of potentially hazardous organizations with histories of excellent operations. Discusses how carriers deal with components of risk and antecedents to catastrophe cited by Perrow and…
Diurnal Ensemble Surface Meteorology Statistics
Excel file containing diurnal ensemble statistics of 2-m temperature, 2-m mixing ratio and 10-m wind speed. This Excel file contains figures for Figure 2 in the paper and worksheets containing all statistics for the 14 members of the ensemble and a base simulation.This dataset is associated with the following publication:Gilliam , R., C. Hogrefe , J. Godowitch, S. Napelenok , R. Mathur , and S.T. Rao. Impact of inherent meteorology uncertainty on air quality model predictions. JOURNAL OF GEOPHYSICAL RESEARCH-ATMOSPHERES. American Geophysical Union, Washington, DC, USA, 120(23): 12,259–12,280, (2015).
Design and Measurements of Dual-Polarized Wideband Constant-Beamwidth Quadruple-Ridged Flared Horn
NASA Technical Reports Server (NTRS)
Akgiray, Ahmed; Weinreb, Sander; Imbriale, William
2011-01-01
A quad-ridged, flared horn achieving nearly constant beamwidth and excellent return loss over a 6:1 frequency bandwidth is presented. Radiation pattern measurements show excellent beamwidth stability from 2 to 12 GHz. Measured return loss is > 10 dB over the entire band and > 15 dB from 2.5 to 11 GHz. Using a custom physical optics code, system performance of a radio telescope is computed and predicted performance is average 70% aperture efficiency and 10 Kelvin of antenna noise temperature.
Attri, Pankaj
2015-01-01
We report the functionalization of multiwalled carbon nanotubes (MWCNT) via the 1,3-dipolar [3+2] cycloaddition of aromatic azides, which resulted in a detangled CNT as shown by transmission electron microscopy (TEM). Carboxylic moieties (-COOH) on aromatic azide result in highly stable aqueous dispersion (max. conc. ~ 10 mg/mL H2O), making the suitable for inkjet printing. Printed patterns on polyethylene terephthalate (PET) flexible substrate exhibit low sheet resistivity ~65 Ω. cm, which is attributed to enhanced conductivity. Fabricated Supercapacitors (SC) assembled using these printed substrates exhibit good electrochemical performance in organic as well as aqueous electrolytes. High energy and power density (57.8 Wh/kg and 0.85 kW/kg) in 1M H2SO4 aqueous electrolyte demonstrate the excellent performance of the proposed supercapacitor. Capacitive retention varies from ~85–94% with columbic efficiency ~95% after 1000 charge/discharge cycles in different electrolytes, demonstrating the excellent potential of the device for futuristic power applications. PMID:26153688
NASA Astrophysics Data System (ADS)
Ahuja, Preety; Kumar Ujjain, Sanjeev; Kanojia, Rajni
2017-05-01
In this work, we have used microemulsion method for synthesis of MnOx/C nanocomposite and investigated its electrochemical properties via fabrication of supercapacitor and non-enzymatic hydrogen peroxide (H2O2) sensor. In-situ inclusion of conducting carbon in manganese oxide (MnOx/C) enhances the network conductivity facilitating the charge transfer process which is beneficial for supercapacitor and sensing applications. MnOx/C provides high energy and power density, 31.6 Wh kg-1 and 3.8 kW kg-1 respectively and short relaxation time ∼3 ms for fabricated cell (MnOx/C//MnOx/C) endowing excellent power delivery capacity. Furthermore, MnOx/C as sensor, exhibits excellent catalytic activity toward the oxidation of H2O2 and shows high sensitivity (0.37 mA mM-1 cm-2) with low detection limit (0.5 μM at an S/N of 3). Hence, this study provides new avenue for high performance supercapacitor and H2O2 detection.
Nanocarbon-Based Materials for Flexible All-Solid-State Supercapacitors.
Lv, Tian; Liu, Mingxian; Zhu, Dazhang; Gan, Lihua; Chen, Tao
2018-04-01
Because of the rapid development of flexible electronics, it is important to develop high-performance flexible energy-storage devices, such as supercapacitors and metal-ion batteries. Compared with metal-ion batteries, supercapacitors exhibit higher power density, longer cycling life, and excellent safety, and they can be easily fabricated into all-solid-state devices by using polymer gel electrolytes. All-solid-state supercapacitors (ASSSCs) have the advantages of being lightweight and flexible, thus showing great potential to be used as power sources for flexible portable electronics. Because of their high specific surface area and excellent electrical and mechanical properties, nanocarbon materials (such as carbon nanotubes, graphene, carbon nanofibers, and so on) have been widely used as efficient electrode materials for flexible ASSSCs, and great achievements have been obtained. Here, the recent advances in flexible ASSSCs are summarized, from design strategies to fabrication techniques for nanocarbon electrodes and devices. Current challenges and future perspectives are also discussed. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
NASA Astrophysics Data System (ADS)
Jiang, Xue; Jiang, Zhou; Zhao, Jijun
2017-12-01
As an alternative to silicon-based solar cells, organic photovoltaic cells emerge for their easy manufacture, low cost, and light weight but are limited by their less stability, low power conversion efficiencies, and low charge carrier mobilities. Here, we design a series of two-dimensional (2D) organic materials incorporating zinc-phthalocyanine (ZnPc) based building blocks which can inherit their excellent intrinsic properties but overcome those shortcomings. Our first-principles calculation shows that such 2D ZnPc-based materials exhibit excellent thermal stabilities, suitable bandgaps, small effective masses, and good absorption properties. The additional benzene rings and nitrogen atoms incorporated between ZnPc molecules are mainly responsible for the modifications of electronic and optical properties. Moreover, some heterojunction solar cells constructed using those 2D ZnPc monolayers as the donor and acceptor have an appropriate absorber gap and interface band alignment. Among them, a power conversion efficiency up to 14.04% is achieved, which is very promising for the next-generation organic solar cells.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zeng, Zhou; Xu, Qing; University of Chinese Academy of Sciences, Beijing 100049
We present a high performance nonlinear piezoelectric energy harvester constituted by a cantilever with symmetrically middle-stops and double-clamped piezoelectric plates based on piezoelectric single crystal 0.7Pb(Mg{sub 1/3}Nb{sub 2/3})O{sub 3}-0.3PbTiO{sub 3}. Electrical properties of the device under different excitation frequencies, accelerations, and load resistances are studied systematically. Under a low acceleration of 3 m/s{sup 2} (0.3 g), a peak voltage of 26.2 V and a maximum normalized power of 25.6 mW/g{sup 2} were obtained across a matching impedance of 600 kΩ with favorable bandwidths. The low excitation acceleration and excellent performances indicate that the device can be a promising candidate for energy harvesting in low-power electronicsmore » and wireless sensors.« less
Souchon, Nicolas; Maio, Gregory R; Hanel, Paul H P; Bardin, Brigitte
2017-10-01
We conducted five studies testing whether an implicit measure of favorability toward power over universalism values predicts spontaneous prejudice and discrimination. Studies 1 (N = 192) and 2 (N = 86) examined correlations between spontaneous favorability toward power (vs. universalism) values, achievement (vs. benevolence) values, and a spontaneous measure of prejudice toward ethnic minorities. Study 3 (N = 159) tested whether conditioning participants to associate power values with positive adjectives and universalism values with negative adjectives (or inversely) affects spontaneous prejudice. Study 4 (N = 95) tested whether decision bias toward female handball players could be predicted by spontaneous attitude toward power (vs. universalism) values. Study 5 (N = 123) examined correlations between spontaneous attitude toward power (vs. universalism) values, spontaneous importance toward power (vs. universalism) values, and spontaneous prejudice toward Black African people. Spontaneous positivity toward power (vs. universalism) values was associated with spontaneous negativity toward minorities and predicted gender bias in a decision task, whereas the explicit measures did not. These results indicate that the implicit assessment of evaluative responses attached to human values helps to model value-attitude-behavior relations. © 2016 The Authors. Journal of Personality Published by Wiley Periodicals, Inc.
Electric Power Engineering Cost Predicting Model Based on the PCA-GA-BP
NASA Astrophysics Data System (ADS)
Wen, Lei; Yu, Jiake; Zhao, Xin
2017-10-01
In this paper a hybrid prediction algorithm: PCA-GA-BP model is proposed. PCA algorithm is established to reduce the correlation between indicators of original data and decrease difficulty of BP neural network in complex dimensional calculation. The BP neural network is established to estimate the cost of power transmission project. The results show that PCA-GA-BP algorithm can improve result of prediction of electric power engineering cost.
Laser heterodyne spectrometer for helioseismology
NASA Technical Reports Server (NTRS)
Glenar, D. A.; Deming, D.; Espenak, F.; Kostiuk, T.; Mumma, M. J.
1986-01-01
The technique of laser heterodyne spectroscopy has been applied to the measurement of solar oscillations. Coherent mixing of solar radiation with the output of a frequency-stabilized CO2 laser permits the measurement of fully resolved profiles of solar absorption lines with high spectral purity and excellent frequency stability. This technique has been used to measure OH pure rotation lines in the infrared solar spectrum. Power spectra of these line frequency measurements show the well-known 5-min oscillations as well as significant velocity power at shorter periods.
Performance of Low-Power Pulsed Arcjets
NASA Technical Reports Server (NTRS)
Burton, Rodney L.
1995-01-01
The Electric Propulsion Laboratory at UIUC has in place all the capability and diagnostics required for performance testing of low power pulsed and DC arcjets. The UIUC thrust stand is operating with excellent accuracy and sensitivity at very low thrust levels. An important aspect of the experimental setup is the use of a PID controller to maintain a constant thruster position, which reduces hysterisis effects. Electrical noise from the arcjet induces some noise into the thrust signal, but this does not affect the measurement.
Chen, Li-Feng; Huang, Zhi-Hong; Liang, Hai-Wei; Guan, Qing-Fang; Yu, Shu-Hong
2013-09-14
A new kind of high-performance asymmetric supercapacitor is designed with pyrolyzed bacterial cellulose (p-BC)-coated MnO₂ as a positive electrode material and nitrogen-doped p-BC as a negative electrode material via an easy, efficient, large-scale, and green fabrication approach. The optimal asymmetric device possesses an excellent supercapacitive behavior with quite high energy and power density. Copyright © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
1-mJ Q-switched diode-pumped Nd:BaY2F8 laser
NASA Astrophysics Data System (ADS)
Agnesi, Antonio; Carraro, Giovanni; Guandalini, Annalisa; Reali, Giancarlo; Sani, Elisa; Toncelli, Alessandra; Tonelli, Mauro
2004-08-01
We report what is to our knowledge the first high repetition rate Q-switched Nd:BaY2F8 (Nd:BaYF) laser pumped with a multiwatt fiber-coupled diode array tuned at 806 nm. As much as 2.42 W of average power and up to 1.05 mJ of pulse energy were obtained with 6.1 W of absorbed pump power, with excellent beam quality (M2<1.2) and linear polarization.
Environmental testing and laser transmission results for ruggedized high power IR fiber cables
NASA Astrophysics Data System (ADS)
Busse, Lynda; Kung, Frederic; Florea, Catalin; Shaw, Brandon; Aggarwal, Ishwar; Sanghera, Jas
2013-03-01
We present successful results of high mid-IR laser power transmission as well as MIL-SPEC environmental testing (thermal cycling and vibration testing) of ruggedized, IR-transmitting chalcogenide glass fiber cables. The cables tested included chalcogenide fiber cables with endfaces imprinted with anti-reflective "moth eye" surfaces, whereby the reflection loss is reduced from about 17% per end to less than 3%. The cables with these moth eye surfaces also show excellent laser damage resistance.
Evaluation of Data-Driven Models for Predicting Solar Photovoltaics Power Output
Moslehi, Salim; Reddy, T. Agami; Katipamula, Srinivas
2017-09-10
This research was undertaken to evaluate different inverse models for predicting power output of solar photovoltaic (PV) systems under different practical scenarios. In particular, we have investigated whether PV power output prediction accuracy can be improved if module/cell temperature was measured in addition to climatic variables, and also the extent to which prediction accuracy degrades if solar irradiation is not measured on the plane of array but only on a horizontal surface. We have also investigated the significance of different independent or regressor variables, such as wind velocity and incident angle modifier in predicting PV power output and cell temperature.more » The inverse regression model forms have been evaluated both in terms of their goodness-of-fit, and their accuracy and robustness in terms of their predictive performance. Given the accuracy of the measurements, expected CV-RMSE of hourly power output prediction over the year varies between 3.2% and 8.6% when only climatic data are used. Depending on what type of measured climatic and PV performance data is available, different scenarios have been identified and the corresponding appropriate modeling pathways have been proposed. The corresponding models are to be implemented on a controller platform for optimum operational planning of microgrids and integrated energy systems.« less
RESOURCE NEED AND USE OF MULTIETHNIC CAREGIVERS OF ELDERS IN THEIR HOMES
Friedemann, Marie-Luise; Newman, Frederick L.; Buckwalter, Kathleen C.; Montgomery, Rhonda J. V.
2013-01-01
Aims To predict South Florida family care-givers’ need for and use of informal help or formal services; specifically, to explore the predictive power of variables suggested by the Caregiver Identity Theory and the literature and develop and test a structural model 0. Background In the USA, most of the care to older adults is given by family members. Care-givers make economic and social sacrifices that endanger their health. They feel burdened, if they receive no assistance with their tasks; however, services available are not sufficiently used. Design This cross-sectional correlational study was a survey of family care-givers in their home, using standardized and/or pre-tested scales and a cognitive status test of their patients. Methods A random sample of 613 multiethnic care-givers of frail elders was recruited in home care and community agencies. The interviews occurred between 2006–2009. Analyses involved correlation and regression analyses and structural equation modeling. Outcome measures were need and use of family help and formal services. Results/Findings The model yielded excellent fit indices replicated on three random samples of 370. The patients’ functional limitations yielded the strongest predictive coefficients followed by care-giver stress. Cultural indicators played a minor role. Conclusion The lack of a link between resource need and use suggested access barriers. Important for policy makers and service providers are the delivery of high-quality services and the use of a personal and individualized approach with all ethnicities. Quality service includes understanding the care-giving situations and requires a trusting relationship with family care-givers. PMID:23980518
NASA Astrophysics Data System (ADS)
Lalit, Manisha; Gangwal, Rahul P.; Dhoke, Gaurao V.; Damre, Mangesh V.; Khandelwal, Kanchan; Sangamwar, Abhay T.
2013-10-01
A combined pharmacophore modelling, 3D-QSAR and molecular docking approach was employed to reveal structural and chemical features essential for the development of small molecules as LRH-1 agonists. The best HypoGen pharmacophore hypothesis (Hypo1) consists of one hydrogen-bond donor (HBD), two general hydrophobic (H), one hydrophobic aromatic (HYAr) and one hydrophobic aliphatic (HYA) feature. It has exhibited high correlation coefficient of 0.927, cost difference of 85.178 bit and low RMS value of 1.411. This pharmacophore hypothesis was cross-validated using test set, decoy set and Cat-Scramble methodology. Subsequently, validated pharmacophore hypothesis was used in the screening of small chemical databases. Further, 3D-QSAR models were developed based on the alignment obtained using substructure alignment. The best CoMFA and CoMSIA model has exhibited excellent rncv2 values of 0.991 and 0.987, and rcv2 values of 0.767 and 0.703, respectively. CoMFA predicted rpred2 of 0.87 and CoMSIA predicted rpred2 of 0.78 showed that the predicted values were in good agreement with the experimental values. Molecular docking analysis reveals that π-π interaction with His390 and hydrogen bond interaction with His390/Arg393 is essential for LRH-1 agonistic activity. The results from pharmacophore modelling, 3D-QSAR and molecular docking are complementary to each other and could serve as a powerful tool for the discovery of potent small molecules as LRH-1 agonists.
Teiber, John F; Kramer, Gerald L; Haley, Robert W
2013-08-01
Paraoxonase 1 (PON1), an esterase that hydrolyzes toxic organophosphates and has antioxidative and antiatherogenic properties, contains a common polymorphism at position 192: glutamine (Q) or arginine (R). The Q and R isoenzymes exhibit different physical and protective properties. We describe 2 methods for quantifying their serum activity levels. We measured serum hydrolytic activity with paraoxon [paraoxonase (PXN) activity], phenylacetate [arylesterase (AE) activity], and diazoxon [diazoxonase (DZN) activity] with standard automated assays. We determined PON1 Q192R genotypes with PCR and Q192R phenotypes using the PXN/AE and PXN/DZN ratios. Interpolation equations were empirically derived to predict the percentage of total PON1 hydrolytic activity due to the Q isoenzyme (%Q) from the PXN/AE and PXN/DZN ratios; %R is 100 - %Q. We estimated Q and R isoenzyme activity levels in sera from 2095 veterans by multiplying AE activity, a measure of total PON1 hydrolytic activity, by %Q and %R. In all 2095 samples, the PXN/AE and PXN/DZN ratios predicted Q192R phenotypes with nearly identical accuracy (κ = 0.997). In the 925 QR heterozygotes, the 2 interpolation methods predicted Q and R isoenzyme activity levels with excellent agreement (intraclass correlation 0.94). After excluding a few genotype/phenotype-discordant samples, the percentage of total PON1 activity due to the Q isoenzyme ranged from 22% to 70%. These new interpolation methods allow accurate estimation of PON1 192 Q and R isoenzyme activity levels, increasing specificity and power for studying susceptibility to disease.
Improved techniques for predicting spacecraft power
NASA Technical Reports Server (NTRS)
Chmielewski, A. B.
1987-01-01
Radioisotope Thermoelectric Generators (RTGs) are going to supply power for the NASA Galileo and Ulysses spacecraft now scheduled to be launched in 1989 and 1990. The duration of the Galileo mission is expected to be over 8 years. This brings the total RTG lifetime to 13 years. In 13 years, the RTG power drops more than 20 percent leaving a very small power margin over what is consumed by the spacecraft. Thus it is very important to accurately predict the RTG performance and be able to assess the magnitude of errors involved. The paper lists all the error sources involved in the RTG power predictions and describes a statistical method for calculating the tolerance.
ESB-based Sensor Web integration for the prediction of electric power supply system vulnerability.
Stoimenov, Leonid; Bogdanovic, Milos; Bogdanovic-Dinic, Sanja
2013-08-15
Electric power supply companies increasingly rely on enterprise IT systems to provide them with a comprehensive view of the state of the distribution network. Within a utility-wide network, enterprise IT systems collect data from various metering devices. Such data can be effectively used for the prediction of power supply network vulnerability. The purpose of this paper is to present the Enterprise Service Bus (ESB)-based Sensor Web integration solution that we have developed with the purpose of enabling prediction of power supply network vulnerability, in terms of a prediction of defect probability for a particular network element. We will give an example of its usage and demonstrate our vulnerability prediction model on data collected from two different power supply companies. The proposed solution is an extension of the GinisSense Sensor Web-based architecture for collecting, processing, analyzing, decision making and alerting based on the data received from heterogeneous data sources. In this case, GinisSense has been upgraded to be capable of operating in an ESB environment and combine Sensor Web and GIS technologies to enable prediction of electric power supply system vulnerability. Aside from electrical values, the proposed solution gathers ambient values from additional sensors installed in the existing power supply network infrastructure. GinisSense aggregates gathered data according to an adapted Omnibus data fusion model and applies decision-making logic on the aggregated data. Detected vulnerabilities are visualized to end-users through means of a specialized Web GIS application.
ESB-Based Sensor Web Integration for the Prediction of Electric Power Supply System Vulnerability
Stoimenov, Leonid; Bogdanovic, Milos; Bogdanovic-Dinic, Sanja
2013-01-01
Electric power supply companies increasingly rely on enterprise IT systems to provide them with a comprehensive view of the state of the distribution network. Within a utility-wide network, enterprise IT systems collect data from various metering devices. Such data can be effectively used for the prediction of power supply network vulnerability. The purpose of this paper is to present the Enterprise Service Bus (ESB)-based Sensor Web integration solution that we have developed with the purpose of enabling prediction of power supply network vulnerability, in terms of a prediction of defect probability for a particular network element. We will give an example of its usage and demonstrate our vulnerability prediction model on data collected from two different power supply companies. The proposed solution is an extension of the GinisSense Sensor Web-based architecture for collecting, processing, analyzing, decision making and alerting based on the data received from heterogeneous data sources. In this case, GinisSense has been upgraded to be capable of operating in an ESB environment and combine Sensor Web and GIS technologies to enable prediction of electric power supply system vulnerability. Aside from electrical values, the proposed solution gathers ambient values from additional sensors installed in the existing power supply network infrastructure. GinisSense aggregates gathered data according to an adapted Omnibus data fusion model and applies decision-making logic on the aggregated data. Detected vulnerabilities are visualized to end-users through means of a specialized Web GIS application. PMID:23955435
Wacker, Soren; Noskov, Sergei Yu
2018-05-01
Drug-induced abnormal heart rhythm known as Torsades de Pointes (TdP) is a potential lethal ventricular tachycardia found in many patients. Even newly released anti-arrhythmic drugs, like ivabradine with HCN channel as a primary target, block the hERG potassium current in overlapping concentration interval. Promiscuous drug block to hERG channel may potentially lead to perturbation of the action potential duration (APD) and TdP, especially when with combined with polypharmacy and/or electrolyte disturbances. The example of novel anti-arrhythmic ivabradine illustrates clinically important and ongoing deficit in drug design and warrants for better screening methods. There is an urgent need to develop new approaches for rapid and accurate assessment of how drugs with complex interactions and multiple subcellular targets can predispose or protect from drug-induced TdP. One of the unexpected outcomes of compulsory hERG screening implemented in USA and European Union resulted in large datasets of IC 50 values for various molecules entering the market. The abundant data allows now to construct predictive machine-learning (ML) models. Novel ML algorithms and techniques promise better accuracy in determining IC 50 values of hERG blockade that is comparable or surpassing that of the earlier QSAR or molecular modeling technique. To test the performance of modern ML techniques, we have developed a computational platform integrating various workflows for quantitative structure activity relationship (QSAR) models using data from the ChEMBL database. To establish predictive powers of ML-based algorithms we computed IC 50 values for large dataset of molecules and compared it to automated patch clamp system for a large dataset of hERG blocking and non-blocking drugs, an industry gold standard in studies of cardiotoxicity. The optimal protocol with high sensitivity and predictive power is based on the novel eXtreme gradient boosting (XGBoost) algorithm. The ML-platform with XGBoost displays excellent performance with a coefficient of determination of up to R 2 ~0.8 for pIC 50 values in evaluation datasets, surpassing other metrics and approaches available in literature. Ultimately, the ML-based platform developed in our work is a scalable framework with automation potential to interact with other developing technologies in cardiotoxicity field, including high-throughput electrophysiology measurements delivering large datasets of profiled drugs, rapid synthesis and drug development via progress in synthetic biology.
Power quality analysis based on spatial correlation
NASA Astrophysics Data System (ADS)
Li, Jiangtao; Zhao, Gang; Liu, Haibo; Li, Fenghou; Liu, Xiaoli
2018-03-01
With the industrialization and urbanization, the status of electricity in the production and life is getting higher and higher. So the prediction of power quality is the more potential significance. Traditional power quality analysis methods include: power quality data compression, disturbance event pattern classification, disturbance parameter calculation. Under certain conditions, these methods can predict power quality. This paper analyses the temporal variation of power quality of one provincial power grid in China from time angle. The distribution of power quality was analyzed based on spatial autocorrelation. This paper tries to prove that the research idea of geography is effective for mining the potential information of power quality.
Microstructural Characterization and Modeling of SLM Superalloy 718
NASA Technical Reports Server (NTRS)
Smith, Tim M.; Sudbrack, Chantal K.; Bonacuse, Pete; Rogers, Richard
2017-01-01
Superalloy 718 is an excellent candidate for selective laser melting (SLM) fabrication due to a combination of excellent mechanical properties and workability. Predicting and validating the microstructure of SLM-fabricated Superalloy 718 after potential post heat-treatment paths is an important step towards producing components comparable to those made using conventional methods. At present, obtaining accurate volume fraction and size measurements of gamma-double-prime, gamma-prime and delta precipitates has been challenging due to their size, low volume fractions, and similar chemistries. A technique combining high resolution distortion corrected SEM imaging and with x-ray energy dispersive spectroscopy has been developed to accurately and independently measure the size and volume fractions of the three precipitates. These results were further validated using x-ray diffraction and phase extraction methods and compared to the precipitation kinetics predicted by PANDAT and JMatPro. Discrepancies are discussed in context of materials properties, model assumptions, sampling, and experimental errors.
Development of theoretical models of integrated millimeter wave antennas
NASA Technical Reports Server (NTRS)
Yngvesson, K. Sigfrid; Schaubert, Daniel H.
1991-01-01
Extensive radiation patterns for Linear Tapered Slot Antenna (LTSA) Single Elements are presented. The directivity of LTSA elements is predicted correctly by taking the cross polarized pattern into account. A moment method program predicts radiation patterns for air LTSAs with excellent agreement with experimental data. A moment method program was also developed for the task LTSA Array Modeling. Computations performed with this program are in excellent agreement with published results for dipole and monopole arrays, and with waveguide simulator experiments, for more complicated structures. Empirical modeling of LTSA arrays demonstrated that the maximum theoretical element gain can be obtained. Formulations were also developed for calculating the aperture efficiency of LTSA arrays used in reflector systems. It was shown that LTSA arrays used in multibeam systems have a considerable advantage in terms of higher packing density, compared with waveguide feeds. Conversion loss of 10 dB was demonstrated at 35 GHz.
Predicting power-optimal kinematics of avian wings
Parslew, Ben
2015-01-01
A theoretical model of avian flight is developed which simulates wing motion through a class of methods known as predictive simulation. This approach uses numerical optimization to predict power-optimal kinematics of avian wings in hover, cruise, climb and descent. The wing dynamics capture both aerodynamic and inertial loads. The model is used to simulate the flight of the pigeon, Columba livia, and the results are compared with previous experimental measurements. In cruise, the model unearths a vast range of kinematic modes that are capable of generating the required forces for flight. The most efficient mode uses a near-vertical stroke–plane and a flexed-wing upstroke, similar to kinematics recorded experimentally. In hover, the model predicts that the power-optimal mode uses an extended-wing upstroke, similar to hummingbirds. In flexing their wings, pigeons are predicted to consume 20% more power than if they kept their wings full extended, implying that the typical kinematics used by pigeons in hover are suboptimal. Predictions of climbing flight suggest that the most energy-efficient way to reach a given altitude is to climb as steeply as possible, subjected to the availability of power. PMID:25392398
Maciejewski, Matthew L; Liu, Chuan-Fen; Fihn, Stephan D
2009-01-01
To compare the ability of generic comorbidity and risk adjustment measures, a diabetes-specific measure, and a self-reported functional status measure to explain variation in health care expenditures for individuals with diabetes. This study included a retrospective cohort of 3,092 diabetic veterans participating in a multisite trial. Two comorbidity measures, four risk adjusters, a functional status measure, a diabetes complication count, and baseline expenditures were constructed from administrative and survey data. Outpatient, inpatient, and total expenditure models were estimated using ordinary least squares regression. Adjusted R(2) statistics and predictive ratios were compared across measures to assess overall explanatory power and explanatory power of low- and high-cost subgroups. Administrative data-based risk adjusters performed better than the comorbidity, functional status, and diabetes-specific measures in all expenditure models. The diagnostic cost groups (DCGs) measure had the greatest predictive power overall and for the low- and high-cost subgroups, while the diabetes-specific measure had the lowest predictive power. A model with DCGs and the diabetes-specific measure modestly improved predictive power. Existing generic measures can be useful for diabetes-specific research and policy applications, but more predictive diabetes-specific measures are needed.
Prediction of light aircraft interior sound pressure level using the room equation
NASA Technical Reports Server (NTRS)
Atwal, M.; Bernhard, R.
1984-01-01
The room equation is investigated for predicting interior sound level. The method makes use of an acoustic power balance, by equating net power flow into the cabin volume to power dissipated within the cabin using the room equation. The sound power level transmitted through the panels was calculated by multiplying the measured space averaged transmitted intensity for each panel by its surface area. The sound pressure level was obtained by summing the mean square sound pressures radiated from each panel. The data obtained supported the room equation model in predicting the cabin interior sound pressure level.
NASA Astrophysics Data System (ADS)
Jiang, Liyang; Sui, Yanwei; Qi, Jiqiu; Chang, Yuan; He, Yezeng; Meng, Qingkun; Wei, Fuxiang; Sun, Zhi; Jin, Yunxue
2017-12-01
In this paper, ultrathin reduced graphene oxide films on nickel foam were fabricated via a facile dip-coating method combined with thermal reduction. Hierarchical Ni-Co layered double hydroxide nanosheets with network structure were electrodeposited on the ultrathin reduced graphene oxide films in a simple three-electrode system. The thickness of Ni-Co layered double hydroxide nanosheets can be controlled through adjusting the deposition temperature. The as-prepared electrode exhibited excellent electrochemical performance with specific capacitance of 1454.2 F g-1 at a current density of 1 A g-1. An asymmetric supercapacitor device was designed with the as-prepared composites as positive electrode material and Nitrogen-doped reduced graphene oxide as negative electrode material. This device could be operated in a working voltage range of 0-1.8 V in 1 M KOH aqueous electrolyte, delivering a high energy density of 56.4 W h kg-1 at a power density of 882.5 W kg-1. One supercapacitor can power two LEDs with rated voltage of 1.8-2.0 V. After 10,000 consecutive charge-discharge tests at 10 A g-1, this asymmetric supercapacitor revealed an excellent cycle life with 98.3% specific capacitance retention. These excellent electrochemical performances make it become one of most promising candidates for high energy supercapacitor device.
Xu, Han; Zhang, Chi; Zhou, Wen; Li, Gao-Ren
2015-10-28
High power density, high energy density and excellent cycling stability are the main requirements for high-performance supercapacitors (SCs) that will be widely used for portable consumer electronics and hybrid electric vehicles. Here we investigate novel types of hybrid Co(OH)2/reduced graphene oxide (RGO)/NiO sandwich-structured nanotube arrays (SNTAs) as positive electrodes for asymmetric supercapacitors (ASCs). The synthesized Co(OH)2/RGO/NiO SNTAs exhibit a significantly improved specific capacity (∼1470 F g(-1) at 5 mV s(-1)) and excellent cycling stability with ∼98% Csp retention after 10 000 cycles because of the fast transport and short diffusion paths for electroactive species, the high utilization rate of electrode materials, and special synergistic effects among Co(OH)2, RGO, and NiO. The high-performance ASCs are assembled using Co(OH)2/RGO/NiO SNTAs as positive electrodes and active carbon (AC) as negative electrodes, and they exhibit a high energy density (115 Wh kg(-1)), a high power density (27.5 kW kg(-1)) and an excellent cycling stability (less 5% Csp loss after 10 000 cycles). This study shows an important breakthrough in the design and fabrication of multi-walled hybrid nanotube arrays as positive electrodes for ASCs.
Rocheta, Margarida; Dionísio, F Miguel; Fonseca, Luís; Pires, Ana M
2007-12-01
Paternity analysis using microsatellite information is a well-studied subject. These markers are ideal for parentage studies and fingerprinting, due to their high-discrimination power. This type of data is used to assign paternity, to compute the average selfing and outcrossing rates and to estimate the biparental inbreeding. There are several public domain programs that compute all this information from data. Most of the time, it is necessary to export data to some sort of format, feed it to the program and import the output to an Excel book for further processing. In this article we briefly describe a program referred from now on as Paternity Analysis in Excel (PAE), developed at IST and IBET (see the acknowledgments) that computes paternity candidates from data, and other information, from within Excel. In practice this means that the end user provides the data in an Excel sheet and, by pressing an appropriate button, obtains the results in another Excel sheet. For convenience PAE is divided into two modules. The first one is a filtering module that selects data from the sequencer and reorganizes it in a format appropriate to process paternity analysis, assuming certain conventions for the names of parents and offspring from the sequencer. The second module carries out the paternity analysis assuming that one parent is known. Both modules are written in Excel-VBA and can be obtained at the address (www.math.ist.utl.pt/~fmd/pa/pa.zip). They are free for non-commercial purposes and have been tested with different data and against different software (Cervus, FaMoz, and MLTR).
Multi-Temporal Decomposed Wind and Load Power Models for Electric Energy Systems
NASA Astrophysics Data System (ADS)
Abdel-Karim, Noha
This thesis is motivated by the recognition that sources of uncertainties in electric power systems are multifold and may have potentially far-reaching effects. In the past, only system load forecast was considered to be the main challenge. More recently, however, the uncertain price of electricity and hard-to-predict power produced by renewable resources, such as wind and solar, are making the operating and planning environment much more challenging. The near-real-time power imbalances are compensated by means of frequency regulation and generally require fast-responding costly resources. Because of this, a more accurate forecast and look-ahead scheduling would result in a reduced need for expensive power balancing. Similarly, long-term planning and seasonal maintenance need to take into account long-term demand forecast as well as how the short-term generation scheduling is done. The better the demand forecast, the more efficient planning will be as well. Moreover, computer algorithms for scheduling and planning are essential in helping the system operators decide what to schedule and planners what to build. This is needed given the overall complexity created by different abilities to adjust the power output of generation technologies, demand uncertainties and by the network delivery constraints. Given the growing presence of major uncertainties, it is likely that the main control applications will use more probabilistic approaches. Today's predominantly deterministic methods will be replaced by methods which account for key uncertainties as decisions are made. It is well-understood that although demand and wind power cannot be predicted at very high accuracy, taking into consideration predictions and scheduling in a look-ahead way over several time horizons generally results in more efficient and reliable utilization, than when decisions are made assuming deterministic, often worst-case scenarios. This change is in approach is going to ultimately require new electricity market rules capable of providing the right incentives to manage uncertainties and of differentiating various technologies according to the rate at which they can respond to ever changing conditions. Given the overall need for modeling uncertainties in electric energy systems, we consider in this thesis the problem of multi-temporal modeling of wind and demand power, in particular. Historic data is used to derive prediction models for several future time horizons. Short-term prediction models derived can be used for look-ahead economic dispatch and unit commitment, while the long-term annual predictive models can be used for investment planning. As expected, the accuracy of such predictive models depends on the time horizons over which the predictions are made, as well as on the nature of uncertain signals. It is shown that predictive models obtained using the same general modeling approaches result in different accuracy for wind than for demand power. In what follows, we introduce several models which have qualitatively different patterns, ranging from hourly to annual. We first transform historic time-stamped data into the Fourier Transform (Fr) representation. The frequency domain data representation is used to decompose the wind and load power signals and to derive predictive models relevant for short-term and long-term predictions using extracted spectral techniques. The short-term results are interpreted next as a Linear Prediction Coding Model (LPC) and its accuracy is analyzed. Next, a new Markov-Based Sensitivity Model (MBSM) for short term prediction has been proposed and the dispatched costs of uncertainties for different predictive models with comparisons have been developed. Moreover, the Discrete Markov Process (DMP) representation is applied to help assess probabilities of most likely short-, medium- and long-term states and the related multi-temporal risks. In addition, this thesis discusses operational impacts of wind power integration in different scenario levels by performing more than 9,000 AC Optimal Power Flow runs. The effects of both wind and load variations on system constraints and costs are presented. The limitations of DC Optimal Power Flow (DCOPF) vs. ACOPF are emphasized by means of system convergence problems due to the effect of wind power on changing line flows and net power injections. By studying the effect of having wind power on line flows, we found that the divergence problem applies in areas with high wind and hydro generation capacity share (cheap generations). (Abstract shortened by UMI.).
DOE Office of Scientific and Technical Information (OSTI.GOV)
Love, Lonnie J; Richardson, Bradley S; Lind, Randall F
This work explores the integration of miniaturized fluid power and additive manufacturing. Oak Ridge National Laboratory (ORNL) has been developing an approach to miniaturized fluidic actuation and control that enables high dexterity, low cost and a pathway towards energy efficiency. Previous work focused on mesoscale digital control valves (high pressure, low flow) and the integration of actuation and fluid passages directly with the structure. The primary application being fluid powered robotics. The fundamental challenge was part complexity. Additive manufacturing technologies (E-Beam, Laser and Ultrasonic deposition) enable freeform manufacturing using conventional metal alloys with excellent mechanical properties. The combination of thesemore » two technologies (miniaturized fluid power and additive manufacturing) can enable a paradigm shift in fluid power, increasing efficiency while simultaneously reducing weight, size, complexity and cost.« less
High pumping-power fiber combiner for double-cladding fiber lasers and amplifiers
NASA Astrophysics Data System (ADS)
Zheng, Jinkun; Zhao, Wei; Zhao, Baoyin; Li, Zhe; Chang, Chang; Li, Gang; Gao, Qi; Ju, Pei; Gao, Wei; She, Shengfei; Wu, Peng; Hou, Chaoqi; Li, Weinan
2018-03-01
A high pumping-power fiber combiner for backward pumping configurations is fabricated and demonstrated by manufacturing process refinement. The pump power handling capability of every pump fiber can extend to 600 W, corresponding to the average pump coupling efficiency of 94.83%. Totally, 2.67-kW output power with the beam quality factor M2 of 1.41 was obtained, using this combiner in the fiber amplifier experimental setup. In addition, the temperature of the splicing region was less than 50.0°C in the designed combiner under the action of circulating cooling water. The experimental results prove that the designed combiner is a promising integrated all-fiber device for multikilowatt continuous-wave fiber laser with excellent beam quality.
The effects of load on system and lower-body joint kinetics during jump squats.
Moir, Gavin L; Gollie, Jared M; Davis, Shala E; Guers, John J; Witmer, Chad A
2012-11-01
To investigate the effects of different loads on system and lower-body kinetics during jump squats, 12 resistance-trained men performed jumps under different loading conditions: 0%, 12%, 27%, 42%, 56%, 71%, and 85% of 1-repetition maximum (1-RM). System power output was calculated as the product of the vertical component of the ground reaction force and the vertical velocity of the bar during its ascent. Joint power output was calculated during bar ascent for the hip, knee, and ankle joints, and was also summed across the joints. System power output and joint power at knee and ankle joints were maximized at 0% 1-RM (p < 0.001) and followed the linear trends (p < 0.001) caused by power output decreasing as the load increased. Power output at the hip was maximized at 42% 1-RM (p = 0.016) and followed a quadratic trend (p = 0.030). Summed joint power could be predicted from system power (p < 0.05), while system power could predict power at the knee and ankle joints under some of the loading conditions. Power at the hip could not be predicted from system power. System power during loaded jumps reflects the power at the knee and ankle, while power at the hip does not correspond to system power.
[Development of an Excel spreadsheet for meta-analysis of indirect and mixed treatment comparisons].
Tobías, Aurelio; Catalá-López, Ferrán; Roqué, Marta
2014-01-01
Meta-analyses in clinical research usually aimed to evaluate treatment efficacy and safety in direct comparison with a unique comparator. Indirect comparisons, using the Bucher's method, can summarize primary data when information from direct comparisons is limited or nonexistent. Mixed comparisons allow combining estimates from direct and indirect comparisons, increasing statistical power. There is a need for simple applications for meta-analysis of indirect and mixed comparisons. These can easily be conducted using a Microsoft Office Excel spreadsheet. We developed a spreadsheet for indirect and mixed effects comparisons of friendly use for clinical researchers interested in systematic reviews, but non-familiarized with the use of more advanced statistical packages. The use of the proposed Excel spreadsheet for indirect and mixed comparisons can be of great use in clinical epidemiology to extend the knowledge provided by traditional meta-analysis when evidence from direct comparisons is limited or nonexistent.
Comparison Between NIST and AF Laser Energy Standards Using High Power Lasers
Li, Xiaoyu; Scott (Retired), Thomas; Cromer, Chris; Cooper, David; Comisford, Steven
2007-01-01
We report the results of a high-energy laser calorimeter comparison conducted by the National Institute of Standards and Technology (NIST), Boulder, Colorado and the U.S. Air Force Primary Standards laboratory (AFPSL), Heath, Ohio. A laser power meter, used as a transfer standard, was calibrated at each laboratory, sequentially, and the measurement results were compared. These measurements were performed at a nominal power of 800 W and a wavelength of 10.6 μm using CO2 lasers. Excellent measurement agreement (1.02 %) was demonstrated, which was well within each of the expanded uncertainties from the two laboratories involved in this comparison. PMID:27110471
High power Yb:CALGO ultrafast regenerative amplifier for industrial application
NASA Astrophysics Data System (ADS)
Caracciolo, E.; Guandalini, A.; Pirzio, F.; Kemnitzer, M.; Kienle, F.; Agnesi, A.; Aus der Au, J.
2017-02-01
We present a high-power, single-crystal based, Yb:CALGO regenerative amplifier. The system delivers more than 50 W output power in continuous-wave regime, with diffraction limited beam quality. In Q-switching regime the spectrum is centered at 1043 nm and is 11 nm wide. In regenerative amplification experiments we achieved 34 W at 500 kHz with 12.7 nm FWHM wide spectra centered at 1044 nm seeding with a broadly tunable, single-prism SESAM mode-locked Yb:CALGO laser providing 9 nm wide spectra at 1049 nm. Pulse duration after compression was 140 fs, with excellent beam quality (M2 < 1.25).
Wind farms production: Control and prediction
NASA Astrophysics Data System (ADS)
El-Fouly, Tarek Hussein Mostafa
Wind energy resources, unlike dispatchable central station generation, produce power dependable on external irregular source and that is the incident wind speed which does not always blow when electricity is needed. This results in the variability, unpredictability, and uncertainty of wind resources. Therefore, the integration of wind facilities to utility electrical grid presents a major challenge to power system operator. Such integration has significant impact on the optimum power flow, transmission congestion, power quality issues, system stability, load dispatch, and economic analysis. Due to the irregular nature of wind power production, accurate prediction represents the major challenge to power system operators. Therefore, in this thesis two novel models are proposed for wind speed and wind power prediction. One proposed model is dedicated to short-term prediction (one-hour ahead) and the other involves medium term prediction (one-day ahead). The accuracy of the proposed models is revealed by comparing their results with the corresponding values of a reference prediction model referred to as the persistent model. Utility grid operation is not only impacted by the uncertainty of the future production of wind farms, but also by the variability of their current production and how the active and reactive power exchange with the grid is controlled. To address this particular task, a control technique for wind turbines, driven by doubly-fed induction generators (DFIGs), is developed to regulate the terminal voltage by equally sharing the generated/absorbed reactive power between the rotor-side and the gridside converters. To highlight the impact of the new developed technique in reducing the power loss in the generator set, an economic analysis is carried out. Moreover, a new aggregated model for wind farms is proposed that accounts for the irregularity of the incident wind distribution throughout the farm layout. Specifically, this model includes the wake effect and the time delay of the incident wind speed of the different turbines on the farm, and to simulate the fluctuation in the generated power more accurately and more closer to real-time operation. Recently, wind farms with considerable output power ratings have been installed. Their integrating into the utility grid will substantially affect the electricity markets. This thesis investigates the possible impact of wind power variability, wind farm control strategy, wind energy penetration level, wind farm location, and wind power prediction accuracy on the total generation costs and close to real time electricity market prices. These issues are addressed by developing a single auction market model for determining the real-time electricity market prices.
Vanacker, Peter; Heldner, Mirjam R; Amiguet, Michael; Faouzi, Mohamed; Cras, Patrick; Ntaios, George; Arnold, Marcel; Mattle, Heinrich P; Gralla, Jan; Fischer, Urs; Michel, Patrik
2016-06-01
Endovascular treatment for acute ischemic stroke with a large vessel occlusion was recently shown to be effective. We aimed to develop a score capable of predicting large vessel occlusion eligible for endovascular treatment in the early hospital management. Retrospective, cohort study. Two tertiary, Swiss stroke centers. Consecutive acute ischemic stroke patients (1,645 patients; Acute STroke Registry and Analysis of Lausanne registry), who had CT angiography within 6 and 12 hours of symptom onset, were categorized according to the occlusion site. Demographic and clinical information was used in logistic regression analysis to derive predictors of large vessel occlusion (defined as intracranial carotid, basilar, and M1 segment of middle cerebral artery occlusions). Based on logistic regression coefficients, an integer score was created and validated internally and externally (848 patients; Bernese Stroke Registry). None. Large vessel occlusions were present in 316 patients (21%) in the derivation and 566 (28%) in the external validation cohort. Five predictors added significantly to the score: National Institute of Health Stroke Scale at admission, hemineglect, female sex, atrial fibrillation, and no history of stroke and prestroke handicap (modified Rankin Scale score, < 2). Diagnostic accuracy in internal and external validation cohorts was excellent (area under the receiver operating characteristic curve, 0.84 both). The score performed slightly better than National Institute of Health Stroke Scale alone regarding prediction error (Wilcoxon signed rank test, p < 0.001) and regarding discriminatory power in derivation and pooled cohorts (area under the receiver operating characteristic curve, 0.81 vs 0.80; DeLong test, p = 0.02). Our score accurately predicts the presence of emergent large vessel occlusions, which are eligible for endovascular treatment. However, incorporation of additional demographic and historical information available on hospital arrival provides minimal incremental predictive value compared with the National Institute of Health Stroke Scale alone.
van Mourik, Maaike S M; Groenwold, Rolf H H; Berkelbach van der Sprenkel, Jan Willem; van Solinge, Wouter W; Troelstra, Annet; Bonten, Marc J M
2011-01-01
Monitoring of healthcare-associated infection rates is important for infection control and hospital benchmarking. However, manual surveillance is time-consuming and susceptible to error. The aim was, therefore, to develop a prediction model to retrospectively detect drain-related meningitis (DRM), a frequently occurring nosocomial infection, using routinely collected data from a clinical data warehouse. As part of the hospital infection control program, all patients receiving an external ventricular (EVD) or lumbar drain (ELD) (2004 to 2009; n = 742) had been evaluated for the development of DRM through chart review and standardized diagnostic criteria by infection control staff; this was the reference standard. Children, patients dying <24 hours after drain insertion or with <1 day follow-up and patients with infection at the time of insertion or multiple simultaneous drains were excluded. Logistic regression was used to develop a model predicting the occurrence of DRM. Missing data were imputed using multiple imputation. Bootstrapping was applied to increase generalizability. 537 patients remained after application of exclusion criteria, of which 82 developed DRM (13.5/1000 days at risk). The automated model to detect DRM included the number of drains placed, drain type, blood leukocyte count, C-reactive protein, cerebrospinal fluid leukocyte count and culture result, number of antibiotics started during admission, and empiric antibiotic therapy. Discriminatory power of this model was excellent (area under the ROC curve 0.97). The model achieved 98.8% sensitivity (95% CI 88.0% to 99.9%) and specificity of 87.9% (84.6% to 90.8%). Positive and negative predictive values were 56.9% (50.8% to 67.9%) and 99.9% (98.6% to 99.9%), respectively. Predicted yearly infection rates concurred with observed infection rates. A prediction model based on multi-source data stored in a clinical data warehouse could accurately quantify rates of DRM. Automated detection using this statistical approach is feasible and could be applied to other nosocomial infections.
NASA Astrophysics Data System (ADS)
Kloog, Itai; Koutrakis, Petros; Coull, Brent A.; Lee, Hyung Joo; Schwartz, Joel
2011-11-01
Land use regression (LUR) models provide good estimates of spatially resolved long-term exposures, but are poor at capturing short term exposures. Satellite-derived Aerosol Optical Depth (AOD) measurements have the potential to provide spatio-temporally resolved predictions of both long and short term exposures, but previous studies have generally showed relatively low predictive power. Our objective was to extend our previous work on day-specific calibrations of AOD data using ground PM 2.5 measurements by incorporating commonly used LUR variables and meteorological variables, thus benefiting from both the spatial resolution from the LUR models and the spatio-temporal resolution from the satellite models. Later we use spatial smoothing to predict PM 2.5 concentrations for day/locations with missing AOD measures. We used mixed models with random slopes for day to calibrate AOD data for 2000-2008 across New-England with monitored PM 2.5 measurements. We then used a generalized additive mixed model with spatial smoothing to estimate PM 2.5 in location-day pairs with missing AOD, using regional measured PM 2.5, AOD values in neighboring cells, and land use. Finally, local (100 m) land use terms were used to model the difference between grid cell prediction and monitored value to capture very local traffic particles. Out-of-sample ten-fold cross-validation was used to quantify the accuracy of our predictions. For days with available AOD data we found high out-of-sample R2 (mean out-of-sample R2 = 0.830, year to year variation 0.725-0.904). For days without AOD values, our model performance was also excellent (mean out-of-sample R2 = 0.810, year to year variation 0.692-0.887). Importantly, these R2 are for daily, rather than monthly or yearly, values. Our model allows one to assess short term and long-term human exposures in order to investigate both the acute and chronic effects of ambient particles, respectively.
Monsuur, Alienke J; de Bakker, Paul I W; Zhernakova, Alexandra; Pinto, Dalila; Verduijn, Willem; Romanos, Jihane; Auricchio, Renata; Lopez, Ana; van Heel, David A; Crusius, J Bart A; Wijmenga, Cisca
2008-05-28
The HLA genes, located in the MHC region on chromosome 6p21.3, play an important role in many autoimmune disorders, such as celiac disease (CD), type 1 diabetes (T1D), rheumatoid arthritis, multiple sclerosis, psoriasis and others. Known HLA variants that confer risk to CD, for example, include DQA1*05/DQB1*02 (DQ2.5) and DQA1*03/DQB1*0302 (DQ8). To diagnose the majority of CD patients and to study disease susceptibility and progression, typing these strongly associated HLA risk factors is of utmost importance. However, current genotyping methods for HLA risk factors involve many reactions, and are complicated and expensive. We sought a simple experimental approach using tagging SNPs that predict the CD-associated HLA risk factors. Our tagging approach exploits linkage disequilibrium between single nucleotide polymorphism (SNPs) and the CD-associated HLA risk factors DQ2.5 and DQ8 that indicate direct risk, and DQA1*0201/DQB1*0202 (DQ2.2) and DQA1*0505/DQB1*0301 (DQ7) that attribute to the risk of DQ2.5 to CD. To evaluate the predictive power of this approach, we performed an empirical comparison of the predicted DQ types, based on these six tag SNPs, with those executed with current validated laboratory typing methods of the HLA-DQA1 and -DQB1 genes in three large cohorts. The results were validated in three European celiac populations. Using this method, only six SNPs were needed to predict the risk types carried by >95% of CD patients. We determined that for this tagging approach the sensitivity was >0.991, specificity >0.996 and the predictive value >0.948. Our results show that this tag SNP method is very accurate and provides an excellent basis for population screening for CD. This method is broadly applicable in European populations.
2014-01-01
Background Binding free energy and binding hot spots at protein-protein interfaces are two important research areas for understanding protein interactions. Computational methods have been developed previously for accurate prediction of binding free energy change upon mutation for interfacial residues. However, a large number of interrupted and unimportant atomic contacts are used in the training phase which caused accuracy loss. Results This work proposes a new method, βACV ASA , to predict the change of binding free energy after alanine mutations. βACV ASA integrates accessible surface area (ASA) and our newly defined β contacts together into an atomic contact vector (ACV). A β contact between two atoms is a direct contact without being interrupted by any other atom between them. A β contact’s potential contribution to protein binding is also supposed to be inversely proportional to its ASA to follow the water exclusion hypothesis of binding hot spots. Tested on a dataset of 396 alanine mutations, our method is found to be superior in classification performance to many other methods, including Robetta, FoldX, HotPOINT, an ACV method of β contacts without ASA integration, and ACV ASA methods (similar to βACV ASA but based on distance-cutoff contacts). Based on our data analysis and results, we can draw conclusions that: (i) our method is powerful in the prediction of binding free energy change after alanine mutation; (ii) β contacts are better than distance-cutoff contacts for modeling the well-organized protein-binding interfaces; (iii) β contacts usually are only a small fraction number of the distance-based contacts; and (iv) water exclusion is a necessary condition for a residue to become a binding hot spot. Conclusions βACV ASA is designed using the advantages of both β contacts and water exclusion. It is an excellent tool to predict binding free energy changes and binding hot spots after alanine mutation. PMID:24568581
Propfan test assessment testbed aircraft flutter model test report
NASA Technical Reports Server (NTRS)
Jenness, C. M. J.
1987-01-01
The PropFan Test Assessment (PTA) program includes flight tests of a propfan power plant mounted on the left wind of a modified Gulfstream II testbed aircraft. A static balance boom is mounted on the right wing tip for lateral balance. Flutter analyses indicate that these installations reduce the wing flutter stabilizing speed and that torsional stiffening and the installation of a flutter stabilizing tip boom are required on the left wing for adequate flutter safety margins. Wind tunnel tests of a 1/9th scale high speed flutter model of the testbed aircraft were conducted. The test program included the design, fabrication, and testing of the flutter model and the correlation of the flutter test data with analysis results. Excellent correlations with the test data were achieved in posttest flutter analysis using actual model properties. It was concluded that the flutter analysis method used was capable of accurate flutter predictions for both the (symmetric) twin propfan configuration and the (unsymmetric) single propfan configuration. The flutter analysis also revealed that the differences between the tested model configurations and the current aircraft design caused the (scaled) model flutter speed to be significantly higher than that of the aircraft, at least for the single propfan configuration without a flutter boom. Verification of the aircraft final design should, therefore, be based on flutter predictions made with the test validated analysis methods.
Lucena-Santos, Paola; Trindade, Inês A; Oliveira, Margareth; Pinto-Gouveia, José
2017-05-19
Given the clinical usefulness of the CFQ-BI (Cognitive Fusion Questionnaire-Body Image; the only existing measure to assess the body-image-related cognitive fusion), the present study aimed to confirm its one-factor structure, to verify its measurement invariance between clinical and non-clinical samples, to analyze its internal consistency and sensitivity to detect differences between samples, as well as to explore the incremental and convergent validities of the CFQ-BI scores in Brazilian samples. This was a cross-sectional study, which was conducted in clinical (women with overweight or obesity in treatment for weight loss) and non-clinical samples (women from the general population). The one-factor structure was confirmed showing factorial measurement invariance across clinical and non-clinical samples. The CFQ-BI scores presented an excellent internal consistency, were able to discriminate clinical and non-clinical samples, and were positively associated with binge eating severity, general cognitive fusion, and psychological inflexibility. Furthermore, body-image-related cognitive fusion scores (CFQ-BI) presented incremental validity over a general measure of cognitive fusion in the prediction of binge eating symptoms. This study demonstrated that CFQ-BI is a short scale with reliable and robust scores in Brazilian samples, presenting incremental and convergent validities, measurement invariance, and sensitivity to detect differences between clinical and non-clinical groups of women, enabling comparative studies between them.
alpha-decay half-lives and Q{sub a}lpha values of superheavy nuclei
DOE Office of Scientific and Technical Information (OSTI.GOV)
Dong Jianmin; Graduate University of Chinese Academy of Sciences, Beijing 100049; School of Nuclear Science and Technology, Lanzhou University, Lanzhou 730000
2010-06-15
The alpha-decay half-lives of recently synthesized superheavy nuclei (SHN) are investigated by employing a unified fission model (UFM) where a new method to calculate the assault frequency of alpha emission is used. The excellent agreement with the experimental data indicates the UFM is a useful tool to investigate these alpha decays. It is found that the alpha-decay half-lives become more and more insensitive to the Q{sub a}lpha values as the atomic number increases on the whole, which is favorable for us to predict the half-lives of SHN. In addition, a formula is proposed to compute the Q{sub a}lpha values formore » the nuclei with Z>=92 and N>=140 with a good accuracy, according to which the long-lived SHN should be neutron rich. Several weeks ago, two isotopes of a new element with atomic number Z=117 were synthesized and their alpha-decay chains have been observed. The Q{sub a}lpha formula is found to work well for these nuclei, confirming its predictive power. The experimental half-lives are well reproduced by employing the UFM with the experimental Q{sub a}lpha values. This fact that the experimental half-lives are compatible with experimental Q{sub a}lpha values supports the synthesis of a new element 117 and the experimental measurements to a certain extent.« less
Principles & Standards for Quality Charter School Authorizing, 2015 Edition
ERIC Educational Resources Information Center
National Association of Charter School Authorizers, 2015
2015-01-01
Charter school authorizing is a powerful strategy for making excellent public schools and educational opportunities available to all students. Done well, charter authorizing increases student achievement by expanding the supply of quality public schools to satisfy unmet needs--particularly by providing life-changing opportunities for students…
Models of Excellence in Multicultural Colleges and Universities
ERIC Educational Resources Information Center
Lopez-Mulnix, Esther Elena; Mulnix, Michael William
2006-01-01
The authors examine definitions of culture and philosophical and political assumptions that underlie multicultural approaches that facilitate or discourage multicultural competence. The authors discover that campus culture--determined mostly by the dominant coalition or power elite--is critical to success or failure of effective multi-cultural…
FastStats: Chronic Liver Disease and Cirrhosis
... PDF file Microsoft PowerPoint file Microsoft Word file Microsoft Excel file Audio/Video file Apple Quicktime file RealPlayer file Text file Zip Archive file SAS file ePub file RIS file Page last reviewed: May 30, 2013 Page last updated: October 6, 2016 Content source: ...
Visual Communication: Integrating Visual Instruction into Business Communication Courses
ERIC Educational Resources Information Center
Baker, William H.
2006-01-01
Business communication courses are ideal for teaching visual communication principles and techniques. Many assignments lend themselves to graphic enrichment, such as flyers, handouts, slide shows, Web sites, and newsletters. Microsoft Publisher and Microsoft PowerPoint are excellent tools for these assignments, with Publisher being best for…
Liu, Hanhui; Li, Mengping; Kaner, Richard B; Chen, Songyan; Pei, Qibing
2018-05-09
Owing to the need for portable and sustainable energy sources and the development trend for microminiaturization and multifunctionalization in the electronic components, the study of integrated self-charging power packs has attracted increasing attention. A new self-charging power pack consisting of a silicon nanowire array/poly(3,4-ethylenedioxythiophene):polystyrenesulfonate (PEDOT:PSS) hybrid solar cell and a laser-scribed graphene (LSG) supercapacitor has been fabricated. The Si nanowire array/PEDOT:PSS hybrid solar cell structure exhibited a high power conversion efficiency (PCE) of 12.37%. The LSG demonstrated excellent energy storage capability for the power pack, with high current density, energy density, and cyclic stability when compared to other supercapacitor electrodes such as active carbon and conducting polymers. The overall efficiency of the power unit is 2.92%.
Atmospheric Science Data Center
2018-03-15
... effort has been developed under the Prediction Of Worldwide Energy Resource (POWER) Project funded largely by NASA Earth Applied Sciences ... to NASA's satellite and modeling analysis for Renewable Energy, Sustainable Buildings and Agroclimatology applications. A new POWER ...
Atmospheric Science Data Center
2018-06-15
... The Prediction of Worldwide Energy Resource (POWER) project was initiated to improve upon the current SSE ... continue to be focussed on the solar and wind Renewable Energy industry. New data sets will target Sustainable Buildings ... The Prediction of Worldwide Energy Resource (POWER) project was initiated to improve upon the current SSE ...
Kloog, Itai; Nordio, Francesco; Coull, Brent A; Schwartz, Joel
2012-11-06
Satellite-derived aerosol optical depth (AOD) measurements have the potential to provide spatiotemporally resolved predictions of both long and short-term exposures, but previous studies have generally shown moderate predictive power and lacked detailed high spatio- temporal resolution predictions across large domains. We aimed at extending our previous work by validating our model in another region with different geographical and metrological characteristics, and incorporating fine scale land use regression and nonrandom missingness to better predict PM(2.5) concentrations for days with or without satellite AOD measures. We start by calibrating AOD data for 2000-2008 across the Mid-Atlantic. We used mixed models regressing PM(2.5) measurements against day-specific random intercepts, and fixed and random AOD and temperature slopes. We used inverse probability weighting to account for nonrandom missingness of AOD, nested regions within days to capture spatial variation in the daily calibration, and introduced a penalization method that reduces the dimensionality of the large number of spatial and temporal predictors without selecting different predictors in different locations. We then take advantage of the association between grid-cell specific AOD values and PM(2.5) monitoring data, together with associations between AOD values in neighboring grid cells to develop grid cell predictions when AOD is missing. Finally to get local predictions (at the resolution of 50 m), we regressed the residuals from the predictions for each monitor from these previous steps against the local land use variables specific for each monitor. "Out-of-sample" 10-fold cross-validation was used to quantify the accuracy of our predictions at each step. For all days without AOD values, model performance was excellent (mean "out-of-sample" R(2) = 0.81, year-to-year variation 0.79-0.84). Upon removal of outliers in the PM(2.5) monitoring data, the results of the cross validation procedure was even better (overall mean "out of sample"R(2) of 0.85). Further, cross validation results revealed no bias in the predicted concentrations (Slope of observed vs predicted = 0.97-1.01). Our model allows one to reliably assess short-term and long-term human exposures in order to investigate both the acute and effects of ambient particles, respectively.
Life prediction of thermal-mechanical fatigue using strainrange partitioning
NASA Technical Reports Server (NTRS)
Halford, G. R.; Manson, S. S.
1975-01-01
This paper describes the applicability of the method of Strainrange Partitioning to the life prediction of thermal-mechanical strain-cycling fatigue. An in-phase test on 316 stainless steel is analyzed as an illustrative example. The observed life is in excellent agreement with the life predicted by the method using the recently proposed Step-Stress Method of experimental partitioning, the Interaction Damage Rule, and the life relationships determined at an isothermal temperature of 705 C. Implications of the present study are discussed relative to the general thermal fatigue problem.
Life prediction of thermal-mechanical fatigue using strain-range partitioning
NASA Technical Reports Server (NTRS)
Halford, G. R.; Manson, S. S.
1975-01-01
The applicability is described of the method of Strainrange Partitioning to the life prediction of thermal-mechanical strain-cycling fatigue. An in-phase test on 316 stainless steel is analyzed as an illustrative example. The observed life is in excellent agreement with the life predicted by the method using the recently proposed Step-Stress Method of experimental partitioning, the Interation Damage Rule, and the life relationships determined at an isothermal temperature of 705 C. Implications of the study are discussed relative to the general thermal fatigue problem.
A comparison of arcjet plume properties to model predictions
NASA Technical Reports Server (NTRS)
Cappelli, M. A.; Liebeskind, J. G.; Hanson, R. K.; Butler, G. W.; King, D. Q.
1993-01-01
This paper describes an experimental study of the plasma plume properties of a 1 kW class hydrogen arcjet thruster and the comparison of measured temperature and velocity field to model predictions. The experiments are based on laser-induced fluorescence excitation of the Balmer-alpha transition. The model is based on a single-fluid magnetohydrodynamic description of the flow originally developed to predict arcjet thruster performance. Excellent agreement between model predictions and experimental velocity is found, despite the complex nature of the flow. Measured and predicted exit plane temperatures are in disagreement by as much as 2000K over a range of operating conditions. The possible sources for this discrepancy are discussed.
Fasoula, S; Zisi, Ch; Gika, H; Pappa-Louisi, A; Nikitas, P
2015-05-22
A package of Excel VBA macros have been developed for modeling multilinear gradient retention data obtained in single or double gradient elution mode by changing organic modifier(s) content and/or eluent pH. For this purpose, ten chromatographic models were used and four methods were adopted for their application. The methods were based on (a) the analytical expression of the retention time, provided that this expression is available, (b) the retention times estimated using the Nikitas-Pappa approach, (c) the stepwise approximation, and (d) a simple numerical approximation involving the trapezoid rule for integration of the fundamental equation for gradient elution. For all these methods, Excel VBA macros have been written and implemented using two different platforms; the fitting and the optimization platform. The fitting platform calculates not only the adjustable parameters of the chromatographic models, but also the significance of these parameters and furthermore predicts the analyte elution times. The optimization platform determines the gradient conditions that lead to the optimum separation of a mixture of analytes by using the Solver evolutionary mode, provided that proper constraints are set in order to obtain the optimum gradient profile in the minimum gradient time. The performance of the two platforms was tested using experimental and artificial data. It was found that using the proposed spreadsheets, fitting, prediction, and optimization can be performed easily and effectively under all conditions. Overall, the best performance is exhibited by the analytical and Nikitas-Pappa's methods, although the former cannot be used under all circumstances. Copyright © 2015 Elsevier B.V. All rights reserved.
Xu, Xiaogang; Wang, Songling; Liu, Jinlian; Liu, Xinyu
2014-01-01
Blower and exhaust fans consume over 30% of electricity in a thermal power plant, and faults of these fans due to rotation stalls are one of the most frequent reasons for power plant outage failures. To accurately predict the occurrence of fan rotation stalls, we propose a support vector regression machine (SVRM) model that predicts the fan internal pressures during operation, leaving ample time for rotation stall detection. We train the SVRM model using experimental data samples, and perform pressure data prediction using the trained SVRM model. To prove the feasibility of using the SVRM model for rotation stall prediction, we further process the predicted pressure data via wavelet-transform-based stall detection. By comparison of the detection results from the predicted and measured pressure data, we demonstrate that the SVRM model can accurately predict the fan pressure and guarantee reliable stall detection with a time advance of up to 0.0625 s. This superior pressure data prediction capability leaves significant time for effective control and prevention of fan rotation stall faults. This model has great potential for use in intelligent fan systems with stall prevention capability, which will ensure safe operation and improve the energy efficiency of power plants. PMID:24854057
Wei, Wei; Hu, Baoyun; Jin, Fangming; ...
2017-03-29
The conversion of greenhouse gas CO 2 into novel materials is the most promising approach to solve greenhouse gas issues. In this paper, we report for the first time the reaction of potassium with CO 2 to synthesize three-dimensional honeycomb-like structured graphene (3DHG). Furthermore, 3DHG exhibited excellent performance as a counter electrode for hole transport material (HTM)-free perovskite solar cells, leading to a power conversion efficiency of 10.06%. Finally, this work constitutes a new aspect of potassium chemistry for material synthesis from a greenhouse gas and the generation of electrical energy from sunlight.
Polypyrrole based nanocomposites for supercapacitor applications: A review
NASA Astrophysics Data System (ADS)
Sardar, A.; Gupta, P. S.
2018-05-01
Recently conducting polymers have attracted great interest for supercapacitor applications. Among conducting polymers polypyrrole is most popular due to its unique electrical conductivity, optoelectrical properties, redox property and excellent environmental stability. In this article, we present a comprehensive review of polypyrrole and polypyrrole based nanocomposites for supercapacitor applications. We have included study of various parameters like power density, energy density, specific-capacitance by various authors for different kinds of nanocomposites where fillers are metal oxides, metal sulphides, graphene etc. Some polypyrrole nanocomposits show good electrochemical performances. The extremely stable supercapacitors with excellent flexibility and scalability hold considerable promise for the commerical application of flexible and wearable electronics.
Silicon carbide novel optical sensor for combustion systems and nuclear reactors
NASA Astrophysics Data System (ADS)
Lim, Geunsik; Kar, Aravinda
2014-09-01
Crystalline silicon carbide is a wide bandgap semiconductor material with excellent optical properties, chemical inertness, radiation hardness and high mechanical strength at high temperatures. It is an excellent material platform for sensor applications in harsh environments such as combustion systems and nuclear reactors. A laser doping technique is used to fabricate SiC sensors for different combustion gases such as CO2, CO, NO and NO2. The sensor operates based on the principle of semiconductor optics, producing optical signal in contrast to conventional electrical sensors that produces electrical signal. The sensor response is measured with a low power He-Ne or diode laser.
Canovas, Carmen; van der Mooren, Marrie; Rosén, Robert; Piers, Patricia A; Wang, Li; Koch, Douglas D; Artal, Pablo
2015-05-01
To determine the impact of the equivalent refractive index (ERI) on intraocular lens (IOL) power prediction for eyes with previous myopic laser in situ keratomileusis (LASIK) using custom ray tracing. AMO B.V., Groningen, the Netherlands, and the Department of Ophthalmology, Baylor College of Medicine, Houston, Texas, USA. Retrospective data analysis. The ERI was calculated individually from the post-LASIK total corneal power. Two methods to account for the posterior corneal surface were tested; that is, calculation from pre-LASIK data or from post-LASIK data only. Four IOL power predictions were generated using a computer-based ray-tracing technique, including individual ERI results from both calculation methods, a mean ERI over the whole population, and the ERI for normal patients. For each patient, IOL power results calculated from the four predictions as well as those obtained with the Haigis-L were compared with the optimum IOL power calculated after cataract surgery. The study evaluated 25 patients. The mean and range of ERI values determined using post-LASIK data were similar to those determined from pre-LASIK data. Introducing individual or an average ERI in the ray-tracing IOL power calculation procedure resulted in mean IOL power errors that were not significantly different from zero. The ray-tracing procedure that includes an average ERI gave a greater percentage of eyes with an IOL power prediction error within ±0.5 diopter than the Haigis-L (84% versus 52%). For IOL power determination in post-LASIK patients, custom ray tracing including a modified ERI was an accurate procedure that exceeded the current standards for normal eyes. Copyright © 2015 ASCRS and ESCRS. Published by Elsevier Inc. All rights reserved.
Work zone lane closure analysis model.
DOT National Transportation Integrated Search
2009-10-01
At the Alabama Department of Transportation (ALDOT), the tool used by traffic engineers to predict whether a queue will form at a freeway work zone is the Excel-based "Lane Rental Model" developed at the Oklahoma Department of Transportation (OkDOT) ...
Research on Matching Method of Power Supply Parameters for Dual Energy Source Electric Vehicles
NASA Astrophysics Data System (ADS)
Jiang, Q.; Luo, M. J.; Zhang, S. K.; Liao, M. W.
2018-03-01
A new type of power source is proposed, which is based on the traffic signal matching method of the dual energy source power supply composed of the batteries and the supercapacitors. First, analyzing the power characteristics is required to meet the excellent dynamic characteristics of EV, studying the energy characteristics is required to meet the mileage requirements and researching the physical boundary characteristics is required to meet the physical conditions of the power supply. Secondly, the parameter matching design with the highest energy efficiency is adopted to select the optimal parameter group with the method of matching deviation. Finally, the simulation analysis of the vehicle is carried out in MATLABSimulink, The mileage and energy efficiency of dual energy sources are analyzed in different parameter models, and the rationality of the matching method is verified.
The STAR-X X-Ray Telescope Assembly (XTA)
NASA Technical Reports Server (NTRS)
McClelland, Ryan S.; Bautz, Mark W.; Bonafede, Joseph A.; Miller, Eric D.; Saha, Timo T.; Solly, Peter M.; Zhang, William W.
2017-01-01
The Survey and Time-domain Astrophysical Research eXplorer (STAR-X) science goals are to discover what powers the most violent explosions in the Universe, understand how black holes grow across cosmic time and mass scale, and measure how structure formation heats the majority of baryons in the Universe. To achieve these goals, STAR-X requires a powerful X-ray telescope with a large field of view, large collecting area, and excellent point spread function. The STAR-X instrument, the X-Ray Telescope Assembly (XTA), meets these requirements using a powerful X-ray mirror technology based on precision-polished single crystal silicon and a mature CCD detector technology. The XTA is composed of three major subsystems: an X-ray Mirror Assembly (MA) of high resolution, lightweight mirror segments fabricated out of single crystal silicon; a Focal Plane Assembly (FPA) made of back-illuminated CCD's capable of detecting X-rays with excellent quantum efficiency; and a composite Telescope Tube that structurally links the MA and FPA. The MA consists of 5,972 silicon mirror segments mounted into five subassemblies called meta-shells. A meta-shell is constructed from an annular central structural shell covered with interlocking layers of mirror segments. This paper describes the requirements, design, and analysis of the XTA subsystems with particular focus on the MA.