Spray scrubbing of particulate-laden SO(2) using a critical flow atomizer.
Bandyopadhyay, Amitava; Biswas, Manindra Nath
2008-08-01
The performance of a spray tower using an energy efficient two-phase critical flow atomizer on the scrubbing of particulate-laden SO(2) using water and dilute NaOH is reported in this article. Experimentation revealed that SO(2) removal was enhanced due to presence of particles (fly-ash) and almost 100% removal efficiency was achieved in water scrubbing. The removal efficiency is elucidated in reference to atomizing air pressure, droplet diameter and droplet velocity besides other pertinent variables of the system studied. The presence of fly-ash particles improved the removal efficiency to about 20% within the range of variables studied. Empirical and semi-empirical correlations were developed for predicting the removal efficiency in water and dilute NaOH respectively. Predicted data fitted excellently well with experimental values. The performance of the spray tower is compared with the performances of existing systems and very encouraging results are obtained.
Sarkar, Amit Kumar; Pal, Aniruddha; Ghorai, Soumitra; Mandre, N R; Pal, Sagar
2014-10-13
This article reports on the application of a high performance biodegradable adsorbent based on amylopectin and poly(acrylic acid) (AP-g-PAA) for removal of toxic malachite green dye (MG) from aqueous solution. The graft copolymer has been synthesized and characterized using various techniques including FTIR, GPC, SEM and XRD analyses. Biodegradation study suggests that the co-polymer is biodegradable in nature. The adsorbent shows excellent potential (Qmax, 352.11 mg g(-1); 99.05% of MG has been removed within 30 min) for removal of MG from aqueous solution. It has been observed that point to zero charge (pzc) of graft copolymer plays significant role in adsorption efficacy. The adsorption kinetics and isotherm follow pseudo-second order and Langmuir isotherm models, respectively. Thermodynamics parameters suggest that the process of dye uptake is spontaneous. Finally desorption study shows excellent regeneration efficiency of adsorbent. Copyright © 2014 Elsevier Ltd. All rights reserved.
Ebeling, J.M.; Ogden, S.R.; Sibrell, P.L.; Rishel, K.L.
2004-01-01
An evaluation of two commonly used coagulation-flocculation aids (alum and ferric chloride) was conducted to determine optimum conditions for treating the backwash effluent from microscreen filters in an intensive recirculating aquaculture system. Tests were carried out to evaluate the dosages and conditions (mixing and flocculation stirring speeds, durations, and settling times) required to achieve optimum waste capture. The orthophosphate removal efficiency for alum and ferric chloride were greater than 90% at a dosage of 60 mg/L. Optimum turbidity removal was achieved with a 60-mg/L dosage for both alum and ferric chloride. Both alum and ferric chloride demonstrated excellent removal of suspended solids from initial total suspended solid values of approximately 320 mg/L to approximately 10 mg/L at a dosage of 60 mg/L. Flocculation and mixing speed and duration played only a minor role in the removal efficiencies for both orthophosphates and suspended solids. Both coagulation-flocculation aids also exhibited excellent settling characteristics, with the majority of the floc quickly settling out in the first 5 min.
Tran, Ngoc Han; Gin, Karina Yew-Hoong
2017-12-01
This study provided the first comprehensive data on the occurrence and removal of twenty-five target emerging contaminants (ECs) in a full-scale water reclamation plant (WRP) in the Southeast Asian region. Nineteen out of the twenty-five ECs were ubiquitously detected in raw influent samples. Concentrations of the detected ECs in raw influent samples ranged substantially from 44.3 to 124,966ng/L, depending upon the compound and sampling date. The elimination of ECs in full-scale conventional activated sludge (CAS) and membrane bioreactor (MBR) systems at a local WRP was evaluated and compared. Several ECs, such as acetaminophen, atenolol, fenoprofen, indomethacin, ibuprofen, and oxybenzone, exhibited excellent removal efficiencies (>90%) in biological wastewater treatment processes, while some of the investigated compounds (carbamazepine, crotamiton, diclofenac, and iopamidol) appeared to be persistent in the both CAS and MBR systems. Field-based monitoring results showed that MBR outperformed CAS in the elimination of most target ECs. The relationship between molecular characteristics of ECs (i.e. physicochemical properties and structural features) and their removal efficiencies during biological wastewater treatment was also elucidated. Excellent removal efficiencies (>90%) were often noted for ECs with the sole presence of electron donating groups (i.e. phenolic [OH], amine [NH 2 ], methoxy [OCH 3 ], phenoxy [OC 6 H 5 ], or alkyl groups). Conversely, ECs with the absence of electron donating groups or the predominance of strong electron withdrawing groups (e.g. halogenated, carbonyl, carboxyl, and sulfonamide) tended to show poor removal efficiencies (<30%) in biological wastewater treatment processes. Copyright © 2017 Elsevier B.V. All rights reserved.
Synthesis of magnetic metal-organic framework (MOF) for efficient removal of organic dyes from water
NASA Astrophysics Data System (ADS)
Zhao, Xiaoli; Liu, Shuangliu; Tang, Zhi; Niu, Hongyun; Cai, Yaqi; Meng, Wei; Wu, Fengchang; Giesy, John P.
2015-07-01
A novel, simple and efficient strategy for fabricating a magnetic metal-organic framework (MOF) as sorbent to remove organic compounds from simulated water samples is presented and tested for removal of methylene blue (MB) as an example. The novel adsorbents combine advantages of MOFs and magnetic nanoparticles and possess large capacity, low cost, rapid removal and easy separation of the solid phase, which makes it an excellent sorbent for treatment of wastewaters. The resulting magnetic MOFs composites (also known as MFCs) have large surface areas (79.52 m2 g-1), excellent magnetic response (14.89 emu g-1), and large mesopore volume (0.09 cm3 g-1), as well as good chemical inertness and mechanical stability. Adsorption was not drastically affected by pH, suggesting π-π stacking interaction and/or hydrophobic interactions between MB and MFCs. Kinetic parameters followed pseudo-second-order kinetics and adsorption was described by the Freundlich isotherm. Adsorption capacity was 84 mg MB g-1 at an initial MB concentration of 30 mg L-1, which increased to 245 mg g-1 when the initial MB concentration was 300 mg L-1. This capacity was much greater than most other adsorbents reported in the literature. In addition, MFC adsorbents possess excellent reusability, being effective after at least five consecutive cycles.
Synthesis of magnetic metal-organic framework (MOF) for efficient removal of organic dyes from water
Zhao, Xiaoli; Liu, Shuangliu; Tang, Zhi; Niu, Hongyun; Cai, Yaqi; Meng, Wei; Wu, Fengchang; Giesy, John P.
2015-01-01
A novel, simple and efficient strategy for fabricating a magnetic metal-organic framework (MOF) as sorbent to remove organic compounds from simulated water samples is presented and tested for removal of methylene blue (MB) as an example. The novel adsorbents combine advantages of MOFs and magnetic nanoparticles and possess large capacity, low cost, rapid removal and easy separation of the solid phase, which makes it an excellent sorbent for treatment of wastewaters. The resulting magnetic MOFs composites (also known as MFCs) have large surface areas (79.52 m2 g−1), excellent magnetic response (14.89 emu g−1), and large mesopore volume (0.09 cm3 g−1), as well as good chemical inertness and mechanical stability. Adsorption was not drastically affected by pH, suggesting π–π stacking interaction and/or hydrophobic interactions between MB and MFCs. Kinetic parameters followed pseudo-second-order kinetics and adsorption was described by the Freundlich isotherm. Adsorption capacity was 84 mg MB g−1 at an initial MB concentration of 30 mg L−1, which increased to 245 mg g−1 when the initial MB concentration was 300 mg L−1. This capacity was much greater than most other adsorbents reported in the literature. In addition, MFC adsorbents possess excellent reusability, being effective after at least five consecutive cycles. PMID:26149818
Ebeling, J.M.; Sibrell, P.L.; Ogden, S.R.; Summerfelt, S.T.
2003-01-01
An evaluation of two commonly used coagulation-flocculation aids (alum and ferric chloride) was conducted for the supernatant overflow from settling cones used to treat the effluent from microscreen filters in an intensive recirculating aquaculture system. In addition to determining the effectiveness of these aids in removing both suspended solids and phosphorus, a systematic testing of the variables normally encountered in the coagulation-flocculation process was performed. Tests were carried out to evaluate the dosages and conditions (mixing and flocculation stirring speeds, durations, and settling times) required to achieve optimum waste capture. The orthophosphate removal efficiency for alum and ferric chloride were 89 and 93%, respectively, at a dosage of 90 mg/l. Optimum turbidity removal was achieved with a 60 mg/l dosage for both alum and ferric chloride. Both alum and ferric. chloride demonstrated excellent removal of suspended solids from initial TSS values of approximately 100-10 mg/l at a dosage of 90 mg/l. Flocculation and mixing speed played only a minor role in the removal efficiencies for both orthophosphates and suspended solids. Both coagulation-flocculation aids also exhibited excellent settling characteristics, with the majority of the floc quickly settling out in the first 5 min. ?? 2003 Elsevier B.V. All rights reserved.
Dhillon, Ankita; Nair, Manjula; Bhargava, Suresh K; Kumar, Dinesh
2015-11-01
The aim of the present study is to develop an efficient nanomaterial for the removal of fluoride and disinfection of harmful bacteria in order to make water potable according to Environmental Protection Agency (EPA) guidelines. Hydrous hybrid Fe-Ca-Zr oxide nanoadsorbent presented a marked fluoride adsorption capacity of 250 mg/g at pH 7.0 (±0.1) much greater than other commercially accessible adsorbents for both synthetic and real water samples. The adsorption isotherms, Freundlich and Dubinin-Radushkevich (D-R) fitted reasonably well fine having high coefficient of regression values. The adsorption of fluoride was established well using pseudo-second-order kinetics. The fluoride loaded adsorbent was efficiently regenerated by using an alkali solution. Interestingly, the developed nanomaterial not only showed excellent fluoride removal capacity but also demonstrated good antibacterial activity against Escherichia coli with IC50 (25 μg/mL). Copyright © 2015 Elsevier Inc. All rights reserved.
NASA Astrophysics Data System (ADS)
Zhang, Qingdong; Liu, Na; Cao, Yingze; Zhang, Weifeng; Wei, Yen; Feng, Lin; Jiang, Lei
2018-03-01
In this work, a novel thiol covered polyamide (nylon 66) microfiltration membrane was fabricated by combining mussel-inspired chemistry and coupling reaction, which owns excellent dual-function that can simultaneously remove oil from water efficiently and adsorb the mercury ions contained in the wastewater reversibly. Such membrane exhibited high oil/water separation efficiency, outstanding mercury adsorption ability, and good stability. Moreover, it can be regenerated in nitric acid solution, and maintain its good adsorption performance. The as-prepared membrane showed great potentials for water purification to reduce the heavy metal ion pollution and complicated industrial oily wastewater and living wastewater.
Removal of mercury by adsorption: a review.
Yu, Jin-Gang; Yue, Bao-Yu; Wu, Xiong-Wei; Liu, Qi; Jiao, Fei-Peng; Jiang, Xin-Yu; Chen, Xiao-Qing
2016-03-01
Due to natural and production activities, mercury contamination has become one of the major environmental problems over the world. Mercury contamination is a serious threat to human health. Among the existing technologies available for mercury pollution control, the adsorption process can get excellent separation effects and has been further studied. This review is attempted to cover a wide range of adsorbents that were developed for the removal of mercury from the year 2011. Various adsorbents, including the latest adsorbents, are presented along with highlighting and discussing the key advancements on their preparation, modification technologies, and strategies. By comparing their adsorption capacities, it is evident from the literature survey that some adsorbents have shown excellent potential for the removal of mercury. However, there is still a need to develop novel, efficient adsorbents with low cost, high stability, and easy production and manufacture for practical utility.
Tang, Yanhong; Luo, Shenglian; Teng, Yarong; Liu, Chengbin; Xu, Xiangli; Zhang, Xilin; Chen, Liang
2012-11-30
A new photocatalyst, Ag nanoparticles (NPs) and reduced graphene oxide (RGO) co-decorated TiO(2) nanotube arrays (NTs) (Ag/RGO-TiO(2) NTs), was designed and facilely produced by combining electrodeposition and photoreduction processes. The structures and properties of the photocatalysts were characterized. The ternary catalyst exhibited almost 100% photocatalytic removal efficiency of typical herbicide 2,4-dichlorophenoxyacetic acid (2,4-D) from water under simulated solar light irradiation. The photodegradation rate toward 2,4-D over Ag/RGO-TiO(2) NTs is 11.3 times that over bare TiO(2) NTs. After 10 successive cycles with 1600 min of irradiation, Ag/RGO-TiO(2) NTs maintained as high 2,4-D removal efficiency as 97.3% with excellent stability and easy recovery, which justifies the photocatalytic system a promising application for herbicide removal from water. Copyright © 2012 Elsevier B.V. All rights reserved.
Hg⁰ removal from flue gas by ionic liquid/H₂O₂.
Cheng, Guangwen; Bai, Bofeng; Zhang, Qiang; Cai, Ming
2014-09-15
1-Alkyl-3-methylimidazolium chloride ionic liquids ([Cnmim] Cl, n=4, 6, 8) were prepared. The ionic liquid was then mixed with hydrogen peroxide (H2O2) to form an absorbent. The Hg(0) removal performance of the absorbent was investigated in a gas/liquid scrubber using simulated flue gas. It was found that the ionic liquid/H2O2 mixture was an excellent absorbent and could be used to remove Hg(0) from flue gas. When the mass ratio of H2O2 to ionic liquid was 0.5, the absorbent showed high Hg(0) removal efficiency (up to 98%). The Hg(0) removal efficiency usually increased with the absorption temperature, while decreased with the increase of alkyl chain length in ionic liquid molecule. The Hg(0) removal mechanism involved with Hg(0) oxidation by H2O2 and Hg(2+) transfer from aqueous phase to ionic liquid phase. Copyright © 2014 Elsevier B.V. All rights reserved.
Jang, Sung-Chan; Haldorai, Yuvaraj; Lee, Go-Woon; Hwang, Seung-Kyu; Han, Young-Kyu; Roh, Changhyun; Huh, Yun Suk
2015-01-01
In this study, a simple one-step hydrothermal reaction is developed to prepare composite based on Prussian blue (PB)/reduced graphene oxide foam (RGOF) for efficient removal of radioactive cesium (137Cs) from contaminated water. Scanning electron microscopy and transmission electron microscopy show that cubic PB nanoparticles are decorated on the RGO surface. Owing to the combined benefits of RGOF and PB, the composite shows excellent removal efficiency (99.5%) of 137Cs from the contaminated water. The maximum adsorption capacity is calculated to be 18.67 mg/g. An adsorption isotherm fit-well the Langmuir model with a linear regression correlation value of 0.97. This type of composite is believed to hold great promise for the clean-up of 137Cs from contaminated water around nuclear plants and/or after nuclear accidents. PMID:26670798
Flexible Superhydrophobic and Superoleophilic MoS2 Sponge for Highly Efficient Oil-Water Separation.
Gao, Xiaojia; Wang, Xiufeng; Ouyang, Xiaoping; Wen, Cuie
2016-06-02
Removal of oils and organic solvents from water is an important global challenge for energy conservation and environmental protection. Advanced sorbent materials with excellent sorption capacity need to be developed. Here we report on a superhydrophobic and superoleophilic MoS2 nanosheet sponge (SMS) for highly efficient separation and absorption of oils or organic solvents from water. This novel sponge exhibits excellent absorption performance through a combination of superhydrophobicity, high porosity, robust stability in harsh conditions (including flame retardance and inertness to corrosive and different temperature environments) and excellent mechanical properties. The dip-coating strategy proposed for the fabrication of the SMS, which does not require a complicated process or sophisticated equipment, is very straightforward and easy to scale up. This finding shows promise for water remediation and oil recovery.
Yang, Hanbae; McCoy, Edward L; Grewal, Parwinder S; Dick, Warren A
2010-08-01
Rain gardens are bioretention systems that have the potential to reduce peak runoff flow and improve water quality in a natural and aesthetically pleasing manner. We compared hydraulic performance and removal efficiencies of nutrients and atrazine in a monophasic rain garden design versus a biphasic design at a column-scale using simulated runoff. The biphasic rain garden was designed to increase retention time and removal efficiency of runoff pollutants by creating a sequence of water saturated to unsaturated conditions. We also evaluated the effect of C substrate availability on pollutant removal efficiency in the biphasic rain garden. Five simulated runoff events with various concentrations of runoff pollutants (i.e. nitrate, phosphate, and atrazine) were applied to the monophasic and biphasic rain gardens once every 5d. Hydraulic performance was consistent over the five simulated runoff events. Peak flow was reduced by approximately 56% for the monophasic design and 80% for the biphasic design. Both rain garden systems showed excellent removal efficiency of phosphate (89-100%) and atrazine (84-100%). However, significantly (p<0.001) higher removal of nitrate was observed in the biphasic (42-63%) compared to the monophasic rain garden (29-39%). Addition of C substrate in the form of glucose increased removal efficiency of nitrate significantly (p<0.001), achieving up to 87% removal at a treatment C/N ratio of 2.0. This study demonstrates the importance of retention time, environmental conditions (i.e. saturated/unsaturated conditions), and availability of C substrate for bioremediation of pollutants, especially nitrates, in rain gardens. (c) 2010 Elsevier Ltd. All rights reserved.
He, Hailing; Duan, Zhiwei; Wang, Zhenqing; Yue, Bo
2017-07-01
The removal efficiencies of two horizontal subsurface flow constructed wetlands (HSSF CWs, down-flow (F1) and up-flow (F2)) filled with the zeolite-slag hybrid substrate for the rural landfill leachate treatment were investigated. The adsorption experiment was conducted to evaluate the potential of zeolite and slag as the wetland substrate. The effects of distance variations along the longitudinal profile of wetland bed on pollutant removal were assessed by sampling at four locations (inlet, outlet, 0.55 m, and 1.10 m from the inlet). During the operation time, the influent and effluent concentrations of chemical oxygen demand (COD), ammonia nitrogen (NH 3 -N), total nitrogen (TN), heavy metals, and polycyclic aromatic hydrocarbon (PAH) were measured. The results showed that the constructed wetlands were capable of removing COD, 20.5-48.2% (F1) and 18.6-61.2% (F2); NH 3 -N, 84.0-99.9% (F1) and 93.5-99.2% (F2); TN, 80.3-92.1% (F1) and 80.3-91.2% (F2); and heavy metals, about 90% (F1 and F2). The zeolite-slag hybrid substrate performed excellent removal efficiency for the nitrogen and heavy metals. The inlet area was the most active region of leachate removal. The up-flow constructed wetland (F2) has a higher removal efficiency for the PAH compounds. The significant removal efficiency illustrated that the rural landfill leachate can be treated using the horizontal subsurface flow constructed wetland filled with the zeolite-slag hybrid substrate.
Nanoceramics for blood-borne virus removal.
Zhao, Yufeng; Sugiyama, Sadahiro; Miller, Thomas; Miao, Xigeng
2008-05-01
The development of nanoscience and nanotechnology in the field of ceramics has brought new opportunities for the development of virus-removal techniques. A number of nanoceramics, including nanostructured alumina, titania and zirconia, have been introduced for the applications in virus removal or separation. Filtration or adsorption of viruses, and thus the removal of viruses through nanoceramics, such as nanoporous/mesoporous ceramic membranes, ceramic nanofibers and ceramic nanoparticles, will make it possible to produce an efficient system for virus removal from blood and one with excellent chemical/thermal stability. Currently, nanoceramic membranes and filters based on sol-gel alumina membranes and NanoCeram nanofiber filters have been commercialized and applied to remove viruses from the blood. Nevertheless, filtration using nanoporous filters is limited to the removal of only free viruses in the bloodstream.
Hu, Jundie; Chen, Dongyun; Li, Najun; Xu, Qingfeng; Li, Hua; He, Jinghui; Lu, Jianmei
2018-05-01
3D materials are considered promising for photocatalytic applications in air purification because of their large surface areas, controllability, and recyclability. Here, a series of aerogels consisting of graphitic-carbon nitride (g-C 3 N 4 ) modified with a perylene imide (PI) and graphene oxide (GO) are prepared for nitric oxide (NO) removal under visible-light irradiation. All of the photocatalysts exhibit excellent activity in NO removal because of the strong light absorption and good planarity of PI-g-C 3 N 4 coupled with the favorable charge transport properties of GO, which slow the recombination of electron-hole pairs. The aerogel containing thiophene displays the most efficient NO removal of the aerogel series, with a removal ratio of up to 66%. Density functional theory calculations are conducted to explain this result and recycling experiments are carried out to verify the stability and recyclability of these photocatalysts. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Du, Yucheng; Zhang, Shihao; Wang, Jinshu; Wu, Junshu; Dai, Hongxing
2018-04-01
Niobium oxide nanowire-deposited carbon fiber (CF) samples were prepared using a hydrothermal method with amorphous Nb 2 O 5 ·nH 2 O as precursor. The physical properties of the samples were characterized by means of numerous techniques, including X-ray diffraction (XRD), energy-dispersive spectroscopy (EDS), scanning electron microscopy (SEM), transmission electron microscopy (TEM), selected-area electron diffraction (SAED), UV-visible spectroscopy (UV-vis), N 2 adsorption-desorption, Fourier transform infrared spectroscopy (FT-IR), and X-ray photoelectron spectroscopy. The efficiency for the removal of Cr(VI) was determined. Parameters such as pH value and initial Cr(VI) concentration could influence the Cr(VI) removal efficiency or adsorption capacity of the Nb 2 O 5 /carbon fiber sample obtained after hydrothermal treatment at 160°C for 14hr. The maximal Cr(VI) adsorption capacity of the Nb 2 O 5 nanowire/CF sample was 115mg/g. This Nb 2 O 5 /CF sample also showed excellent photocatalytic activity and stability for the reduction of Cr(VI) under UV-light irradiation: the Cr(VI) removal efficiency reached 99.9% after UV-light irradiation for 1hr and there was no significant decrease in photocatalytic performance after the use of the sample for 10 repeated cycles. Such excellent Cr(VI) adsorption capacity and photocatalytic performance was related to its high surface area, abundant surface hydroxyl groups, and good UV-light absorption ability. Copyright © 2017. Published by Elsevier B.V.
A modified UCT method for biological nutrient removal: configuration and performance.
Vaiopoulou, E; Aivasidis, A
2008-07-01
A pilot-scale prototype activated sludge system is presented, which combines both, the idea of University of Cape Town (UCT) concept and the step denitrification cascade for removal of carbon, nitrogen and phosphorus. The experimental set-up consists of an anaerobic selector and stepwise feeding in subsequent three identical pairs of anoxic and oxic tanks. Raw wastewater with influent flow rates ranging between 48 and 168 l d(-1) was fed to the unit at hydraulic residence times (HRTs) of 5-18 h and was distributed at percentages of 60/25/15%, 40/30/30% and 25/40/35% to the anaerobic selector, 2nd and 3rd anoxic tanks, respectively (influent flow distribution before the anaerobic selector). The results for the entire experimental period showed high removal efficiencies of organic matter of 89% as total chemical oxygen demand removal and 95% removal for biochemical oxygen demand, 90% removal of total Kjeldahl nitrogen and total nitrogen removal through denitrification of 73%, mean phosphorus removal of 67%, as well as excellent settleability. The highest removal efficiency and the optimum performance were recorded at an HRT of about 9h and influent flow rate of 96 l d(-1), in which 60% is distributed to the anaerobic selector, 25% to the second anoxic tank and 15% to the last anoxic tank. Consequently, the plant configuration enhanced removal efficiency, optimized performance, saved energy, formed good settling sludge and provided operational assurance.
Jang, Sung-Chan; Kang, Sung-Min; Kim, Gi Yong; Rethinasabapathy, Muruganantham; Haldorai, Yuvaraj; Lee, Ilsong; Han, Young-Kyu; Renshaw, Joanna C; Roh, Changhyun; Huh, Yun Suk
2018-06-12
In this work, we elucidate polymer-layered hollow Prussian blue-coated magnetic nanocomposites as an adsorbent to remove radioactive cesium from environmentally contaminated water. To do this, Fe₃O₄ nanoparticles prepared using a coprecipitation method were thickly covered with a layer of cationic polymer to attach hollow Prussian blue through a self-assembly process. The as-synthesized adsorbent was confirmed through various analytical techniques. The adsorbent showed a high surface area (166.16 m²/g) with an excellent cesium adsorbent capacity and removal efficiency of 32.8 mg/g and 99.69%, respectively. Moreover, the superparamagnetism allows effective recovery of the adsorbent using an external magnetic field after the adsorption process. Therefore, the magnetic adsorbent with a high adsorption efficiency and convenient recovery is expected to be effectively used for rapid remediation of radioactive contamination.
Nguyen, Dinh Duc; Yoon, Yong Soo; Bui, Xuan Thanh; Kim, Sung Su; Chang, Soon Woong; Guo, Wenshan; Ngo, Huu Hao
2017-11-01
Performance of an electrocoagulation (EC) process in batch and continuous operating modes was thoroughly investigated and evaluated for enhancing wastewater phosphorus removal under various operating conditions, individually or combined with initial phosphorus concentration, wastewater conductivity, current density, and electrolysis times. The results revealed excellent phosphorus removal (72.7-100%) for both processes within 3-6 min of electrolysis, with relatively low energy requirements, i.e., less than 0.5 kWh/m 3 for treated wastewater. However, the removal efficiency of phosphorus in the continuous EC operation mode was better than that in batch mode within the scope of the study. Additionally, the rate and efficiency of phosphorus removal strongly depended on operational parameters, including wastewater conductivity, initial phosphorus concentration, current density, and electrolysis time. Based on experimental data, statistical model verification of the response surface methodology (RSM) (multiple factor optimization) was also established to provide further insights and accurately describe the interactive relationship between the process variables, thus optimizing the EC process performance. The EC process using iron electrodes is promising for improving wastewater phosphorus removal efficiency, and RSM can be a sustainable tool for predicting the performance of the EC process and explaining the influence of the process variables.
Use of ozone in a water reuse system for salmonids
Williams, R.C.; Hughes, S.G.; Rumsey, G.L.
1982-01-01
A water reuse system is described in which ozone is used in addition to biological filters to remove toxic metabolic wastes from the water. The system functions at a higher rate of efficiency than has been reported for other reuse systems and supports excellent growth of rainbow trout (Salmo gairdneri).
NASA Astrophysics Data System (ADS)
Yao, Yunjin; Zhang, Jie; Chen, Hao; Yu, Maojing; Gao, Mengxue; Hu, Yi; Wang, Shaobin
2018-05-01
N-doped carbon nanotubes encapsulating Ni0 nanoparticles (Ni@N-C) were fabricated via thermal reduction of dicyandiamide and NiCl2·6H2O, and used to remove CrVI in polluted water. The resultant products present an excellent catalytic activity for CrVI reduction using formic acid under relatively mild conditions. The CrVI reduction efficiency of Ni@N-C was significantly affected by the preparation conditions including the mass of nickel salt and synthesis temperatures. The impacts of several reaction parameters, such as initial concentrations of CrVI and formic acid, solution pH and temperatures, as well as inorganic anions in solution on CrVI reduction efficiency were also evaluated in view of scalable industrial applications. Owing to the synergistic effects amongst tubes-coated Ni0, doped nitrogen, oxygen containing groups, and the configuration of carbon nanotubes, Ni@N-C catalysts exhibit excellent catalytic activity and recyclable capability for CrVI reduction. Carbon shell can efficiently protect inner Ni0 core and N species from corrosion and subsequent leaching, while Ni0 endows the Ni@N-C catalysts with ferromagnetism, so that the composites can be easily separated via a permanent magnet. This study opens up an avenue for design of N-doped carbon nanotubes encapsulating Ni0 nanoparticles with high CrVI removal efficiency and magnetic recyclability as low-cost catalysts for industrial applications.
Lee, H; Min, Y M; Park, C H; Park, Y H
2004-01-01
Many small-size wastewater treatment plants in Korea's rural communities are designed to remove organic and suspended matter only, and they generally show a large fluctuation in the influent loading compared to municipal wastewater treatment plants (MWWTPs). They also have no professional engineers stationed for efficient operation against mechanical breakdown. For those reasons, the wastewater treatment plants have low efficiency in treatment of nitrogen and phosphorus as well as organic matter. In order to solve those problems, this study developed an automatic control system and RMS (remote monitoring system), which can keep efficiency stable despite any change in the small plants' loading rates and are capable of removing nutrient materials such as nitrogen or phosphorus. According to the results of the Experimental SBR system of the automatic control program, complete nitrification was made under oxic conditions and denitrification occurred as NO3-N concentration decreased by 0.5 mg/l in anoxic conditions and excellent nitrogen removal efficiency was seen generally. The Experimental SBR system created "phosphate release and uptake" effectively and displayed phosphate-removing efficiency up to more than 80% as the concentration of effluent was kept low by 0.4 mg/l. RMS developed in this study transmits a plant's data and operation states to clients in remote locations in real-time interval through the Internet. Therefore, although you are in a remote location, it allows you to see if a plant is properly operated or there is any breakdown.
Lv, Xiaoshu; Jiang, Guangming; Xue, Xiaoqin; Wu, Donglei; Sheng, Tiantian; Sun, Chen; Xu, Xinhua
2013-11-15
In this study, Fe(0)-Fe3O4 nanocomposites embedded polyvinyl alcohol (PVA)/sodium alginate (SA) beads were synthesized, which exhibited an excellent physical properties and catalytic reactivity, and a robust performance of post-separation (complete separation using a simple grille) and reusability (efficiency of 69.8% after four runs) in Cr(VI) removal. 5.0 wt% PVA with 1.5 wt% SA was the optimal proportion for beads molding, and the followed acidification and reduction treatments were critical to ensure high mechanical strength and high Cr(VI) removal ability of beads. Effects of Fe(0) and Fe3O4 mass fraction, initial pH and Cr(VI) concentration on final removal efficiency were also evaluated. Merely 0.075 wt% Fe(0) together with 0.30 wt% Fe3O4 was sufficient to deal with 20 mg L(-1) Cr(VI) solution. The efficiency decreased from 100 to 79.5% as initial Cr(VI) increased from 5 to 40 mg L(-1), while from 99.3 to 76.3% with increasing pH from 3.0 to 11.0. This work provides a practical and high-efficient method for heavy metal removal from water body, and simultaneously solves the problems in stabilization, separation and regeneration of Fe(0) nanoparticles. Copyright © 2013 Elsevier B.V. All rights reserved.
Nanofibrous polymeric beads from aramid fibers for efficient bilirubin removal.
Peng, Zihang; Yang, Ye; Luo, Jiyue; Nie, Chuanxiong; Ma, Lang; Cheng, Chong; Zhao, Changsheng
2016-08-16
Polymer based hemoperfusion has been developed as an effective therapy to remove the extra bilirubin from patients. However, the currently applied materials suffer from either low removal efficiency or poor blood compatibility. In this study, we report the development of a new class of nanofibrous absorbent that exhibited high bilirubin removal efficiency and good blood compatibility. The Kevlar nanofiber was prepared by dissolving micron-sized Kevlar fiber in proper solvent, and the beads were prepared by dropping Kevlar nanofiber solutions into ethanol. Owing to the nanofiborous structure of the Kevlar nanofiber, the beads displayed porous structures and large specific areas, which would facilitate the adsorption of toxins. In the adsorption test, it was noticed that the beads possessed an adsorption capacity higher than 40 mg g(-1) towards bilirubin. In plasma mimetic solutions, the beads still showed high bilirubin removal efficiency. Furthermore, after incorporating with carbon nanotubes, the beads were found to have increased adsorption capacity for human degradation waste. Moreover, the beads showed excellent blood compatibility in terms of a low hemolysis ratio, prolonged clotting times, suppressed coagulant activation, limited platelet activation, and inhibited blood related inflammatory activation. Additionally, the beads showed good compatibility with endothelial cells. In general, the Kevlar nanofiber beads, which integrated with high adsorption capacity, good blood compatibility and low cytotoxicity, may have great potential for hemoperfusion and some other applications in biomedical fields.
[Removal efficiency of red tide organisms by modified clay and its impacts on cultured organisms].
Cao, Xi-hua; Song, Xiu-xian; Yu, Zhi-ming
2004-09-01
Removal efficiencies of Prorocentrum donghaiense (Prorocentrum dentatum) by Hexadecyltrimethylammonium (HDTMA) bromide and organo-clay modified by HDTMA were identified. Moreover the toxicity of the unbound HDTMA and HDTMA plus clay to aquacultural organisms, Penaeus japonicus, was also tested. The results suggested that (1) The unbound HDTMA had an excellent ability to remove the red tide organisms. However, its strong toxicity to Penaeus japonicus would restrict its practical use in red tide control. (2) The toxicity of HDTMA could be remarkably decreased by addition of clay and the organo-clay complex had a good ability to removal red tide organisms. At the same time the availability of organo-clay to remove the red tide of P. donghaiense and Heterosigma akashiwo in the lab-imitated cultures were studied. The results indicated that the organo-clay complex could remove 100% P. donghaiense at the dosage of 0.03 g/L and effectively control H. akashiwo at 0.09 g/L while the survival rate of Penaeus japonicus larvae, which were cultured in the red tide seawater, is kept 100%. According to the results in laboratory, the mesocosm tests (CEPEX) in East China Sea were conducted in April and May of 2003. The removal efficiencies of original clay, organic clay and inorganic clay were compared during the CEPEX tests. The results revealed that both inorganic clay and organic clay could remove red tide organisms more effectively than the original clay.
Removal of Cu(II) from leachate using natural zeolite as a landfill liner material.
Turan, N Gamze; Ergun, Osman Nuri
2009-08-15
All hazardous waste disposal facilities require composite liner systems to act as a barrier against migration of contaminated leachate into the subsurface environment. Removal of copper(II) from leachate was studied using natural zeolite. A serial of laboratory systems on bentonite added natural zeolite was conducted and copper flotation waste was used as hazardous waste. The adsorption capacities and sorption efficiencies were determined. The sorption efficiencies increased with increasing natural zeolite ratio. The pseudo-first-order, the pseudo-second-order, Elovich and the intra-particle diffusion kinetic models were used to describe the kinetic data to estimate the rate constants. The second-order model best described adsorption kinetic data. The results indicated that natural zeolite showed excellent adsorptive characteristics for the removal of copper(II) from leachate and could be used as very good liner materials due to its high uptake capacity and the abundance in availability.
Cocurrent scrubber evaluation TVA's Colbert Lime--Limestone Wet-Scrubbing Pilot Plant. Final report
DOE Office of Scientific and Technical Information (OSTI.GOV)
Robards, R.F.; Moore, N.D.; Kelso, T.M.
1979-01-01
The Tennessee Valley Authority (TVA) is actively engaged in a pilot plant program to develop and/or evaluate wet-scrubbing processes for removing sulfur dioxide (SO/sub 2/) from boiler flue gas. The physical size and general arrangement of flue gas scrubbing systems have a major impact on capital investment and operating cost, as do potential operating and maintenance advantages inherent to some systems. The equipment configuration for a cocurrent scrubber reflects some of these advantages. EPRI funded TVA to perform preliminary screening tests of TVA's 1 MW pilot plant (Colbert Steam Plant) to develop operating data on the cocurrent design for usemore » in designing and operating a 10 MW prototype cocurrent scrubber at TVA's Shawnee Scrubber Test Facility. Results of the Colbert tests showed excellent sulfur dioxide removal efficiencies, generally greater than 85%, low pressure drop, and high particulate removal efficiencies. This report covers these screening tests.« less
Ma, Jianqing; Yang, Qunfeng; Xu, Dongmei; Zeng, Xiaomei; Wen, Yuezhong; Liu, Weiping
2017-02-01
Powdered activated carbons (PACs) with micrometer size are showing great potential for enabling and improving technologies in water treatment. The critical problem in achieving practical application of PAC involves simple, effective fabrication of magnetic PAC and the design of a feasible reactor that can remove pollutants and recover the adsorbent efficiently. Herein, we show that such materials can be fabricated by the combination of PAC and magnetic Fe 3 O 4 with chitosan-Fe hydrogel through a simple co-precipitation method. According to the characterization results, CS-Fe/Fe 3 O 4 /PAC with different micrometers in size exhibited excellent magnetic properties. The adsorption of tetracycline was fast and efficient, and 99.9% removal was achieved in 30 min. It also possesses good usability and stability to co-existing ions, organics, and different pH values due to its dispersive interaction nature. Finally, the prepared CS-Fe/Fe 3 O 4 /PAC also performed well in the fluidized bed reactor with electromagnetic separation function. It could be easily separated by applying a magnetic field and was effectively in situ regenerated, indicating a potential of practical application for the removal of pollutants from water.
Poo, Kyung-Min; Son, Eun-Bi; Chang, Jae-Soo; Ren, Xianghao; Choi, Yun-Jung; Chae, Kyu-Jung
2018-01-15
For the purpose of reusing wasted marine macro-algae generated during cultivation, harvesting, processing and selling processes, biochars derived from Saccharina japonica (known as kelp) and Sargassum fusiforme (known as hijikia) were characterized and their removal capacities for Cu, Cd, and Zn in aqueous solution were assessed. Feedstocks, S. japonica, S. fusiforme, and also pinewood sawdust as a control, were pyrolyzed at 250, 400, 500, 600 and 700 °C. In evaluating heavy metal removal capacities, SJB (S. japonica biochar) showed the best performance, with removal efficiencies of more than 98% for the three heavy metals when pyrolyzed at over 400 °C. SFB (S. fusiforme biochar) also showed good potential as an adsorbent, with removal efficiencies for the three heavy metals of more than 86% when pyrolyzed at over 500 °C. On the contrary, the maximum removal efficiencies of PSB (pinewood sawdust biochar) were 81%, 46%, and 47% for Cu, Cd, and Zn, respectively, even at 700 °C, the highest pyrolysis temperature. This demonstrates that marine macro-algae were advantageous in terms of production energy for removing heavy metals even at relatively low pyrolysis temperatures, compared with PSB. The excellent heavy metal adsorption capacities of marine macro-algae biochars were considered due to their higher pH and more oxygen-containing functional groups, although the specific surface areas of SJB and SFB were significantly lower than that of PSB. This research confirmed that the use of marine macro-algae as a heavy metal adsorbent was suitable not only in the removal of heavy metals, but also in terms of resource recycling and energy efficiency. Copyright © 2017 Elsevier Ltd. All rights reserved.
Chen, Lili; Feng, Shaojie; Zhao, Donglin; Chen, Shaohua; Li, Feifei; Chen, Changlun
2017-03-15
In this work, zero-valent iron-polyaniline-graphene aerogel composite (Fe-PANI-GA) was prepared and applied in the removal of U(VI) from aqueous solutions by batch sorption experiments. The experimental results showed that the Fe-PANI-GA composite had an excellent removal capacity for the removal of U(VI) in acidic solutions. The results also showed that the maximum removal capacity of the Fe-PANI-GA toward U(VI) was 350.47mg/g at pH 5.5. The sorption kinetics data were well-described by pseudo-second-order. The sorption isotherms of U(VI) fitted well with Langmuir isotherm and exhibited better removal efficiency with the increase of temperature. The thermodynamic parameters (ΔG, ΔS, ΔH) indicated that the sorption of U(VI) on the Fe-PANI-GA was an endothermic and spontaneous process. Moreover, removal mechanisms were studied based on the results of XRD, FTIR and XPS. Both U(VI) sorption and partially reductive precipitation of U(VI) to U(IV) contributed to the removal of U(VI) on Fe-PANI-GA. Therefore, Fe-PANI-GA was an economic and effective material for the removal of uranium from nuclear waste in practical application. Copyright © 2016 Elsevier Inc. All rights reserved.
Tijink, Marlon S L; Wester, Maarten; Sun, Junfen; Saris, Anno; Bolhuis-Versteeg, Lydia A M; Saiful, Saiful; Joles, Jaap A; Borneman, Zandrie; Wessling, Matthias; Stamatialis, Dimitris F
2012-07-01
Hemodialysis is a commonly used blood purification technique in patients requiring kidney replacement therapy. Sorbents could increase uremic retention solute removal efficiency but, because of poor biocompatibility, their use is often limited to the treatment of patients with acute poisoning. This paper proposes a novel membrane concept for combining diffusion and adsorption of uremic retention solutes in one step: the so-called mixed-matrix membrane (MMM). In this concept, adsorptive particles are incorporated in a macro-porous membrane layer whereas an extra particle-free membrane layer is introduced on the blood-contacting side of the membrane to improve hemocompatibility and prevent particle release. These dual-layer mixed-matrix membranes have high clean-water permeance and high creatinine adsorption from creatinine model solutions. In human plasma, the removal of creatinine and of the protein-bound solute para-aminohippuric acid (PAH) by single and dual-layer membranes is in agreement with the removal achieved by the activated carbon particles alone, showing that under these experimental conditions the accessibility of the particles in the MMM is excellent. This study proves that the combination of diffusion and adsorption in a single step is possible and paves the way for the development of more efficient blood purification devices, excellently combining the advantages of both techniques. Copyright © 2012 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.
Ghorai, Soumitra; Sarkar, Amit Kumar; Pal, Sagar
2014-10-01
This work studied the application of a novel biodegradable nanocomposite based on partially hydrolyzed polyacrylamide grafted xanthan gum and nanosilica (h-XG/SiO2) towards efficient and rapid removal of toxic Pb(2+) ions from aqueous environment. The uptake ability of Pb(2+) using h-XG/SiO2 has been studied in batch adsorption experiments with variation of adsorption parameters. The excellent removal rate (99.54% adsorption within 25min) and superior adsorption capacity (Qmax=1012.15mgg(-1)) of the composite material have been explained on the basis of synergistic and chelating effects of h-XG/SiO2 with Pb(2+) ion through electrostatic interactions. The kinetics, isotherm and thermodynamics studies reveal that Pb(2+) adsorb rapidly on nanocomposite surface, which is in agreement with pseudo-second-order kinetics and Langmuir adsorption isotherm models. In consequence of excellent adsorption as well as regeneration characteristics of nanocomposite, it has been found to be a promising adsorbent towards removal of Pb(2+) ions from battery industry wastewater. Copyright © 2014 Elsevier Ltd. All rights reserved.
Wang, Lan; Wei, Benping; Chen, Ziai; Deng, Liangwei; Song, Li; Wang, Shuang; Zheng, Dan; Liu, Yi; Pu, Xiaodong; Zhang, Yunhong
2015-12-01
Four reactors were initiated to study the effect of inoculum and sulfide type on the simultaneous hydrogen sulfide removal from biogas and nitrogen removal from swine slurry (Ssu-Nir) process. Anaerobic sludge, aerobic sludge, and water were used as inocula, and Na2S and biogas were used as a sulfide substrate, respectively. Additionally, 454 pyrosequencing of the 16S rRNA gene was used to explore the bacterial diversity. The results showed that sulfur-oxidizing bacteria (Thiobacillus, 42.2-84.4 %) were dominant in Ssu-Nir process and led to the excellent performance. Aerobic sludge was more suitable for inoculation of the Ssu-Nir process because it is better for rapidly enriching dominant sulfur-oxidizing bacteria (Thiobacillus, 54.4 %), denitrifying sulfur-oxidizing bacteria (40.0 %) and denitrifiers (23.9 %). Lower S(2-) removal efficiency (72.6 %) and NO3 (-) removal efficiency (<90 %) of the Ssu-Nir process were obtained using biogas as a sulfide substrate than when Na2S was used. For the Ssu-Nir process with biogas as the sulfide substrate, limiting H2S absorption caused a high relative abundance of sulfur-oxidizing bacteria, Thiobacillus (84.8 %) and Thiobacillus sayanicus (39.6 %), which in turn led to low relative abundance of denitrifiers (1.6 %) and denitrifying sulfur-oxidizing bacteria (24.4 %), low NO3 (-) removal efficiency, and eventually poor performance.
Victor, Napoleon John; Gana, Janardhanan; Muraleedharan, Kannoth Manheri
2015-10-12
This report introduces N-methylpyrrolidone hydroperoxide (NMPOOH)/base as an excellent reagent system for hydroxy-directed syn selective epoxidation of electron-deficient olefins, characterized by high diastereoselectivity, short reaction times and remarkable chemoselectivity, especially in presence of oxidatively labile nitrogen or sulfur atoms. NMPOOH also proves efficient in the oxidation of electron-deficient aromatic aldehydes, in the removal of oxazolidinone chiral auxiliary, and in the functionalization of alkenes and alkynes, showing wide application potential. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Liu, Su; Xu, Wei-Hua; Liu, Yun-Guo; Tan, Xiao-Fei; Zeng, Guang-Ming; Li, Xin; Liang, Jie; Zhou, Zan; Yan, Zhi-Li; Cai, Xiao-Xi
2017-08-15
In this study, the effect factors and mechanisms of doxycycline hydrochloride (DOX) adsorption on copper nitrate modified biochar (Cu-BC) was investigated. Cu-BC absorbent was synthesized through calcination of peanut shells biomass at 450°C and then impregnation with copper nitrate. The Cu-BC has exhibited excellent sorption efficiency about 93.22% of doxycycline hydrochloride from aqueous solution, which was double higher than that of the unmodified biochar. The experimental results suggest that the adsorption efficiency of DOX on the Cu-BC is dominated by the strong complexation, electrostatic interactions between DOX molecules and the Cu-BC samples. Comprehensively considering the cost, efficiency and the application to realistic water, the Cu-BC hold the significant potential for enhancing the effectiveness to remove DOX from water. Copyright © 2017 Elsevier B.V. All rights reserved.
Evaluation of alternative cleaners for solder flux and mold release removal
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lopez, E.P.; Peebles, D.E.; Reich, J.E.
1991-01-01
As part of a solvent substitution program, an evaluation of selected alternative cleaners for solder flux and mold release removal has been performed. Six cleaners were evaluated for their efficiency in removing a rosin mildly activated flux and a silicone mold release from copper, 17-4PH stainless steel, polyimide quartz glass and tin-lead surfaces. A parallel effort also studied deionized water removal of organic acid fluxes. Auger electron spectroscopy and X-ray photoelectron spectroscopy were used to determine relative elemental cleanliness of the outermost atomic layers. An Omega Meter Test was used to measure residual ionic contamination. Water drop contact angles weremore » used to measure the effectiveness of silicone removal from Cu substrates. In most cases, the cleanliness levels were good to excellent. 10 refs., 8 figs., 19 tabs.« less
Dereli, Recep Kaan; van der Zee, Frank P; Heffernan, Barry; Grelot, Aurelie; van Lier, Jules B
2014-02-01
The potential of anaerobic membrane bioreactors (AnMBRs) for the treatment of lipid rich corn-to-ethanol thin stillage was investigated at three different sludge retention times (SRT), i.e. 20, 30 and 50 days. The membrane assisted biomass retention in AnMBRs provided an excellent solution to sludge washout problems reported for the treatment of lipid rich wastewaters by granular sludge bed reactors. The AnMBRs achieved high COD removal efficiencies up to 99% and excellent effluent quality. Although higher organic loading rates (OLRs) up to 8.0 kg COD m(-3) d(-1) could be applied to the reactors operated at shorter SRTs, better biological degradation efficiencies, i.e. up to 83%, was achieved at increased SRTs. Severe long chain fatty acid (LCFA) inhibition was observed at 50 days SRT, possibly caused by the extensive dissolution of LCFA in the reactor broth, inhibiting the methanogenic biomass. Physicochemical mechanisms such as precipitation with divalent cations and adsorption on the sludge played an important role in the occurrence of LCFA removal, conversion, and inhibition. Copyright © 2013 Elsevier Ltd. All rights reserved.
Chen, Rong; Nie, Yulun; Ji, Jiayuan; Utashiro, Tetsuya; Li, Qian; Komori, Daisuke; Li, Yu-You
2017-09-01
A submerged anaerobic membrane reactor (SAnMBR) was employed for comprehensive evaluation of sewage treatment at 25 °C and its performance in removal efficiency, biogas production and membrane fouling. Average 89% methanogenic degradation efficiency as well as 90%, 94% and 96% removal of total chemical oxygen demand (TCOD), biochemical oxygen demand (BOD) and nonionic surfactant were obtained, while nitrogen and phosphorus were only subjected to small removals. Results suggest that SAnMBRs can effectively decouple organic degradation and nutrients disposal, and reserve all the nitrogen and phosphorus in the effluent for further possible recovery. Small biomass yields of 0.11 g mixed liquor volatile suspended solids (MLVSS)/gCOD were achieved, coupled to excellent methane production efficiencies of 0.338 NLCH 4 /gCOD, making SAnMBR an attractive technology characterized by low excess sludge production and high bioenergy recovery. Batch tests revealed the SAnMBR appeared to have the potential to bear a high food-to-microorganism ratio (F/M) of 1.54 gCOD/gMLVSS without any inhibition effect, and maximum methane production rate occurred at F/M 0.7 gCOD/gMLVSS. Pore blocking dominated the membrane fouling behaviour at a relative long hydraulic retention time (HRT), i.e. >12 hours, while cake layer dominated significantly at shorter HRTs, i.e. <8 hours.
NASA Astrophysics Data System (ADS)
Zhang, Wei; Zhu, Wanyan; Xu, Wutong; Wang, Yan; Li, Ning; Zhang, Tingting; Wang, Hui
2017-12-01
Core-shell structured Fe3O4@PPy microspheres are synthesized successfully through a facile polyol reduction method in combination with a modified Stöber method. We show that the as-prepared Fe3O4@PPy microspheres with high saturation magnetization, superparamagnetism, and good dispersibility have a high efficient adsorption capacity for high efficient removal of Pb(II) ions of up to 391.71 mg g-1 and a fast adsorption equilibrium time of 20 min. Furthermore, the lead-adsorbed Fe3O4@PPy microspheres can be rapidly separated from solution because of the excellent superparamagnetic properties. The composite Fe3O4@PPy microspheres are characterized using X-ray powder diffraction (XRD), Fourier transform infrared spectroscopy (FT-IR), scanning electron microscopy (SEM), and vibrating sample magnetometer (VSM). The adsorption data from our experiments show that the adsorption process fits well with the pseudosecond- order kinetic model and the adsorption isotherm follows the Langmuir isotherm model. The thermodynamic studies show that the adsorption of Pb(II) on Fe3O4@PPy microspheres is an endothermic and spontaneous process. Comprehensive comparison among adsorbents for the removal of Pb(II) ions that literature reported, reusability, high adsorption efficiency, fast adsorption equilibrium, and rapid magnetic separation make these Fe3O4@PPy microspheres very promising application for removal of Pb(II) ions from contaminated water.
Zou, Haiming; Wang, Yan
2017-07-01
A new process of electrolysis cell (EC) coupled with microbial fuel cell (MFC) was developed here and its feasibility in methyl red (MR) wastewater treatment and simultaneous electricity generation was assessed. Results indicate that an excellent MR removal and electricity production performance was achieved, where the decolorization and COD removal efficiencies were 100% and 89.3%, respectively and a 0.56V of cell voltage output was generated. Electrolysis voltage showed a positive influence on decolorization rate (DR) but also cause a rapid decrease in current efficiency (CE). Although a low COD removal rate of 38.5% was found in EC system, biodegradability of MR solution was significantly enhanced, where the averaged DR was 85.6%. Importantly, COD removal rate in EC-MFC integrated process had a 50.8% improvement compared with the single EC system. The results obtained here would be beneficial to provide a prospective alternative for azo dyes wastewater treatment and power production. Copyright © 2017 Elsevier Ltd. All rights reserved.
Fe-MoS4: An Effective and Stable LDH-Based Adsorbent for Selective Removal of Heavy Metals.
Jawad, Ali; Liao, Zhuwei; Zhou, Zhihua; Khan, Aimal; Wang, Ting; Ifthikar, Jerosha; Shahzad, Ajmal; Chen, Zhulei; Chen, Zhuqi
2017-08-30
It has always been a serious challenge to design efficient, selective, and stable absorbents for heavy-metal removal. Herein, we design layered double hydroxide (LDH)-based Fe-MoS 4 , a highly efficient adsorbent, for selective removal of heavy metals. We initially synthesized FeMgAl-LDH and then enriched its protective layers with MoS 4 2- anions as efficient binding sites for heavy metals. Various characterization tools, such as X-ray diffraction (XRD), Fourier transform infrared (FTIR) spectroscopy, Raman spectroscopy, scanning electron microscopy, energy-dispersive X-ray, X-ray photoelectron spectroscopy (XPS), CHN analysis, and inductively coupled plasma analysis, were applied to confirm structural and compositional changes during the synthesis of Fe-MoS 4 as final product. The prepared Fe-MoS 4 offered excellent attraction for heavy metals, such as Hg 2+ , Ag + , Pb 2+ , and Cu 2+ , and displayed selectivity in the order Hg 2+ ∼ Ag + > Pb 2+ > Cu 2+ > Cr 6+ > As 3+ > Ni 2+ ∼ Zn 2+ ∼ Co 2+ . The immense capacities of Hg 2+ , Ag + , and Pb 2+ (583, 565, and 346 mg/g, respectively), high distribution coefficient (K d ∼ 10 7 -10 8 ), and fast kinetics place Fe-MoS 4 on the top of materials list known for removal of such metals. The sorption kinetics and isothermal studies conducted on Hg 2+ , Ag + , Pb 2+ , and Cu 2+ suit well pseudo-second-order kinetics and Langmuir model, suggesting monolayer chemisorption mechanism through M-S linkages. XRD and FTIR studies suggested that adsorbed metals could result as coordinated complexes in LDH interlayer region. More interestingly, LDH structure offers protective space for MoS 4 2- anions to avoid oxidation under ambient environments, as confirmed by XPS studies. These features provide Fe-MoS 4 with enormous capacity, good reusability, and excellent selectivity even in the presence of huge concentration of common cations.
Lam, K S; Chan, F S; Fung, W Y; Lui, B S S; Lau, L W L
2006-04-01
A study was carried out to investigate the feasibility of achieving ultra low respirable suspended particulates (RSP) in commercial offices without major modification of existing ventilation systems by enhancing the particulates removal efficiency of existing central ventilation systems. Four types of filters which include pre-filters, cartridge filters, bag filters and high efficiency particulates air (HEPA) filters were tested in a commercial building in Causeway Bay. The results show that an RSP objective of <20 microg/m3 could be met by removing RSP from both the return air and outdoor air supply simultaneously. This level of performance is classed as 'excellent' by the Hong Kong Government, Environmental Protection Department. Filters with efficiency that exceed 80% placed both in the return air and outdoor air were sufficient to meet the objective. It is not necessary to install HEPA filters to achieve the 'excellent' class. The outdoor air filter has great influence on the steady state indoor RSP concentration while the effective cleaning rate is governed by the return air filter. Higher efficiency filters increased the static drop but the volume flow of the air fan was not affected significantly. The additional cost incurred was <5% of the existing operation cost. This paper reports a field study of RSP control for an indoor office environment. The results are directly applicable to building service engineering in the design of ventilation systems using air-handling units. Field observations indicated that indoor RSP in an office environment could be suppressed below 20 microg/m3 within 1 h by the simultaneous filtration of outdoor air and return air. Outdoor air filtration has a great influence on the steady state indoor concentration and return air filtration governs the cleaning rate. It is believed that the results of this study could be extended to the cleaning of other indoor pollutants such as volatile organic compounds.
Mu, Bin; Tang, Jie; Zhang, Long; Wang, Aiqin
2017-07-13
Using graphene as adsorbent for removal of pollutants from polluted water is commonly recognized to be costly because the graphene is usually produced by a very complex process. Herein, a simple and eco-friendly method was employed to fabricate efficient superparamagnetic graphene/polyaniline/Fe 3 O 4 nanocomposites for removal of dyes. The exfoliation of graphite as nanosheets and the functionalization of nanosheets with polyaniline and Fe 3 O 4 nanoparticles were simultaneously achieved via a one-pot reaction process combining the intercalation polymerization of aniline and the co-precipitation of the residual Fe 3+ and the generated Fe 2+ . The obtained graphene/polyaniline/Fe 3 O 4 nanocomposites exhibited excellent adsorption performance for Congo red, even in the presence of Brilliant green. The adsorption kinetics and adsorption isotherms were well fitted with pseudo second-order kinetic model and Langmuir isotherm model, respectively. In a word, this method is simple and industrially feasible, which provides a new approach to fabricate highly efficient graphene-based adsorbents on large scale for removal of dyes. In addition, it also can be used to exfoliate other two-dimensional materials, such as boron nitride, carbon nitride and MoS 2 for a range of possible applications.
Xu, Yi; He, Tengxia; Li, Zhenlun; Ye, Qing; Chen, Yanli; Xie, Enyu; Zhang, Xue
2017-01-01
The cold-adapted bacterium Pseudomonas putida Y-9 was investigated and exhibited excellent capability for nitrogen removal at 15°C. The strain capable of heterotrophic nitrification and aerobic denitrification could efficiently remove ammonium, nitrate, and nitrite at an average removal rate of 2.85 mg, 1.60 mg, and 1.83 mg NL -1 h -1 , respectively. Strain Y-9 performed nitrification in preference to denitrification when ammonium and nitrate or ammonium and nitrite coexisted in the solution. Meantime, the presence of nitrate had no effect on the ammonium removal rate of strain Y-9, and yet the presence of high concentration of nitrite would inhibit the cell growth and decrease the nitrification rate. The experimental results indicate that P. putida Y-9 has potential application for the treatment of wastewater containing high concentrations of ammonium along with its oxidation products at low temperature.
Removal of fluoride from drinking water using aluminum hydroxide coated rice husk ash.
Ganvir, Vivek; Das, Kalyan
2011-01-30
Fluoride content in groundwater that is greater than the WHO limit of 1.5mg/L, causes dental and skeletal fluorosis. In India, several states are affected with excess fluoride in groundwater. The problem is aggravated due to the lack of appropriate and user friendly defluoridation technology. Several fluoride removal techniques are reported in the literature amongst which the Nalgonda technique and use of activated alumina have been studied extensively. However a simple, efficient and cost effective technology is not available for widespread use in many affected regions. In this paper, we present a novel cost effective defluoridation method that is based on surface modification of rice husk ash (RHA) by coating aluminum hydroxide. RHA is obtained by burning rice/paddy husk which is an abundantly available and is an inexpensive raw material. The results showed excellent fluoride removal efficiency and the adsorption capacity was found to be between 9 and 10mg/g. Copyright © 2010 Elsevier B.V. All rights reserved.
Song, Kaili; Xu, Helan; Xu, Lan; Xie, Kongliang; Yang, Yiqi
2017-05-01
High-efficiency and recyclable three-dimensional bioadsorbents were prepared by incorporating cellulose nanocrystal (CNC) as reinforcements in keratin sponge matrix to remove dyes from aqueous solution. Adsorption performance of dyes by CNC-reinforced keratin bioadsorbent was improved significantly as a result of adding CNC as filler. Batch adsorption results showed that the adsorption capacities for Reactive Black 5 and Direct Red 80 by the bioadsorbent were 1201 and 1070mgg -1 , respectively. The isotherms and kinetics for adsorption of both dyes on bioadsorbent followed the Langmuir isotherm model and pseudo-second order model, respectively. Desorption and regeneration experiments showed that the removal efficiencies of the bioadsorbent for both dyes could remain above 80% at the fifth recycling cycles. Moreover, the bioadsorbent possessed excellent packed-bed column operation performance. Those results suggested that the adsorbent could be considered as a high-performance and promising candidate for dye wastewater treatment. Copyright © 2017 Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Harahap, S. A. A.; Nazar, A.; Yunita, M.; Pasaribu, RA; Panjaitan, F.; Yanuar, F.; Misran, E.
2018-02-01
Adsorption of β-carotene in crude palm oil (CPO) was studied using activated carbon produced from tea waste (ACTW) an adsorbent. Isothermal studies were carried out at 60 °C with the ratio of activated carbon to CPO were 1:3, 1:4, 1:5, and 1:6, respectively. The ACTW showed excellent performance as the percentage of adsorption of β-carotene from CPO was > 99%. The best percentage removal (R) was achieved at ACTW to CPO ratio equal to 1:3, which was 99.61%. The appropriate isotherm model for this study was Freundlich isotherm model. The combination of Freundlich isotherm equation and mass balance equation showed a good agreement when validated to the experimental data. The equation subsequently executed to predict the removal efficiency under given sets of operating conditions. At a targetted R, CPO volume can be estimated for a certain initial concentration β-carotene in CPO C0 and mass of ACTW adsorbent M used.
Cultivation of aerobic granular sludge for rubber wastewater treatment.
Rosman, Noor Hasyimah; Nor Anuar, Aznah; Othman, Inawati; Harun, Hasnida; Sulong Abdul Razak, Muhammad Zuhdi; Elias, Siti Hanna; Mat Hassan, Mohd Arif Hakimi; Chelliapan, Shreesivadass; Ujang, Zaini
2013-02-01
Aerobic granular sludge (AGS) was successfully cultivated at 27±1 °C and pH 7.0±1 during the treatment of rubber wastewater using a sequential batch reactor system mode with complete cycle time of 3 h. Results showed aerobic granular sludge had an excellent settling ability and exhibited exceptional performance in the organics and nutrients removal from rubber wastewater. Regular, dense and fast settling granule (average diameter, 1.5 mm; settling velocity, 33 m h(-1); and sludge volume index, 22.3 mL g(-1)) were developed in a single reactor. In addition, 96.5% COD removal efficiency was observed in the system at the end of the granulation period, while its ammonia and total nitrogen removal efficiencies were up to 94.7% and 89.4%, respectively. The study demonstrated the capabilities of AGS development in a single, high and slender column type-bioreactor for the treatment of rubber wastewater. Copyright © 2012 Elsevier Ltd. All rights reserved.
Pd/activated carbon sorbents for mid-temperature capture of mercury from coal-derived fuel gas.
Li, Dekui; Han, Jieru; Han, Lina; Wang, Jiancheng; Chang, Liping
2014-07-01
Higher concentrations of Hg can be emitted from coal pyrolysis or gasification than from coal combustion, especially elemental Hg. Highly efficient Hg removal technology from coal-derived fuel gas is thus of great importance. Based on the very excellent Hg removal ability of Pd and the high adsorption abilities of activated carbon (AC) for H₂S and Hg, a series of Pd/AC sorbents was prepared by using pore volume impregnation, and their performance in capturing Hg and H₂S from coal-derived fuel gas was investigated using a laboratory-scale fixed-bed reactor. The effects of loading amount, reaction temperature and reaction atmosphere on Hg removal from coal-derived fuel gas were studied. The sorbents were characterized by N₂ adsorption, X-ray diffraction (XRD) and X-ray photoelectron spectroscopy (XPS). The results indicated that the efficiency of Hg removal increased with the increasing of Pd loading amount, but the effective utilization rate of the active component Pd decreased significantly at the same time. High temperature had a negative influence on the Hg removal. The efficiency of Hg removal in the N₂-H₂S-H₂-CO-Hg atmosphere (simulated coal gas) was higher than that in N₂-H₂S-Hg and N₂-Hg atmospheres, which showed that H₂ and CO, with their reducing capacity, could benefit promote the removal of Hg. The XPS results suggested that there were two different ways of capturing Hg over sorbents in N₂-H₂S-Hg and N₂-Hg atmospheres. Copyright © 2014. Published by Elsevier B.V.
Zhang, Xiaomei; Yu, Hongwen; Yang, Hongjun; Wan, Yuchun; Hu, Hong; Zhai, Zhuang; Qin, Jieming
2015-01-01
A simple sol-gel method using non-toxic and cost-effective precursors has been developed to prepare graphene oxide (GO)/cellulose bead (GOCB) composites for removal of dye pollutants. Taking advantage of the combined benefits of GO and cellulose, the prepared GOCB composites exhibit excellent removal efficiency towards malachite green (>96%) and can be reused for over 5 times through simple filtration method. The high-decontamination performance of the GOCB system is strongly dependent on encapsulation amount of GO, temperature and pH value. In addition, the adsorption behavior of this new adsorbent fits well with the Langmuir isotherm and pseudo-second-order kinetic model. Copyright © 2014 Elsevier Inc. All rights reserved.
Zhang, Gaosheng; Ren, Zongming; Zhang, Xiwang; Chen, Jing
2013-08-01
To obtain a highly efficient and low-cost adsorbent for arsenic removal from water, a novel nanostructured Fe-Cu binary oxide was synthesized via a facile co-precipitation method. Various techniques including BET surface area measurement, powder XRD, SEM, and XPS were used to characterize the synthetic Fe-Cu binary oxide. It showed that the oxide was poorly crystalline, 2-line ferrihydrite-like and was aggregated with many nanosized particles. Laboratory experiments were performed to investigate adsorption kinetics, adsorption isotherms, pH adsorption edge and regeneration of spent adsorbent. The results indicated that the Fe-Cu binary oxide with a Cu: Fe molar ratio of 1:2 had excellent performance in removing both As(V) and As(III) from water, and the maximal adsorption capacities for As(V) and As(III) were 82.7 and 122.3 mg/g at pH 7.0, respectively. The values are favorable, compared to those reported in the literature using other adsorbents. The coexisting sulfate and carbonate had no significant effect on arsenic removal. However, the presence of phosphate obviously inhibited the arsenic removal, especially at high concentrations. Moreover, the Fe-Cu binary oxide could be readily regenerated using NaOH solution and be repeatedly used. The Fe-Cu binary oxide could be a promising adsorbent for both As(V) and As(III) removal because of its excellent performance, facile and low-cost synthesis process, and easy regeneration. Copyright © 2013 Elsevier Ltd. All rights reserved.
Graphene-a promising material for removal of perchlorate (ClO4-) from water.
Lakshmi, Jothinathan; Vasudevan, Subramanyan
2013-08-01
A batch adsorption process was applied to investigate the removal of perchlorate (ClO4 (-)) from water by graphene. In doing so, the thermodynamic adsorption isotherm and kinetic studies were also carried out. Graphene was prepared by a facile liquid-phase exfoliation. Graphene was characterized by Raman spectroscopy, Fourier-transform infrared spectroscopy, powder X-ray diffraction, scanning electron microscope, and zeta potential measurements. A systematic study of the adsorption process was performed by varying pH, ionic strength, and temperature. The adsorption efficiency of graphene was 99.2 %, suggesting that graphene is an excellent adsorbent for ClO4 (-) removal from water. The rate constants for all these kinetic models were calculated, and the results indicate that second-order kinetics model was well suitable to model the kinetic adsorption of ClO4 (-). Equilibrium data were well described by the typical Langmuir adsorption isotherm. The experimental results showed that graphene is an excellent perchlorate adsorbent with an adsorbent capacity of up to 0.024 mg/g at initial perchlorate concentration of 2 mg/L and temperature of 298 K. Thermodynamic studies revealed that the adsorption reaction was a spontaneous and endothermic process. Graphene removed the perchlorate present in the water and reduced it to a permissible level making it drinkable.
Auvinen, Hannele; Gebhardt, Wilhelm; Linnemann, Volker; Du Laing, Gijs; Rousseau, Diederik P L
2017-09-01
Pharmaceutical residues in wastewater pose a challenge to wastewater treatment technologies. Constructed wetlands (CWs) are common wastewater treatment systems in rural areas and they discharge often in small water courses in which the ecology can be adversely affected by the discharged pharmaceuticals. Hence, there is a need for studies aiming to improve the removal of pharmaceuticals in CWs. In this study, the performance of a full-scale aerated sub-surface flow hybrid CW treating wastewater from a healthcare facility was studied in terms of common water parameters and pharmaceutical removal. In addition, a preliminary aquatic risk assessment based on hazard quotients was performed to estimate the likelihood of adverse effects on aquatic organisms in the forest creek where this CW discharges. The (combined) effect of aeration and hydraulic retention time (HRT) was evaluated in a laboratory-scale batch experiment. Excellent removal of the targeted pharmaceuticals was obtained in the full-scale CW (>90%) and, as a result, the aquatic risk was estimated low. The removal efficiency of only a few of the targeted pharmaceuticals was found to be dependent on the applied aeration (namely gabapentin, metformin and sotalol). Longer and the HRT increased the removal of carbamazepine, diclofenac and tramadol.
The use of waterworks sludge for the treatment of vegetable oil refinery industry wastewater.
Basibuyuk, M; Kalat, D G
2004-03-01
Water treatment works using coagulation/flocculation in the process stream will generate a waste sludge. This sludge is termed as ferric, alum, or lime sludge based on which coagulant was primarily used. The works in Adana, Turkey uses ferric chloride. The potential for using this sludge for the treatment of vegetable oil refinery industry wastewater by coagulation has been investigated. The sludge acted as a coagulant and excellent oil and grease, COD and TSS removal efficiencies were obtained. The optimum conditions were a pH of 6 and a sludge dose of 1100 mg SS l(-1). The efficiency of sludge was also compared with alum and ferric chloride for the vegetable oil refinery wastewater. At doses of 1300-1900 mg SS l(-1), the sludge was as effective as ferric chloride and alum at removing oil and grease, COD, and TSS. In addition, various combinations of ferric chloride and waterworks sludge were also examined. Under the condition of 12.5 mg l(-1) fresh ferric chloride and 1000 mg SS l(-1) sludge dose, 99% oil and grease 99% TSS and 83% COD removal efficiencies were obtained.
Sun, Ying-Xue; Yang, Zhe; Ye, Tao; Shi, Na; Tian, Yuan
2016-07-01
Reverse osmosis concentrate (ROC) from municipal wastewater reclamation reverse osmosis (mWRRO) contains elevated concentrations of contaminants which pose potential risks to aquatic environment. The treatment of ROC from an mWRRO using granular activated carbon (GAC) combined pretreatment of coagulation was optimized and evaluated. Among the three coagulants tested, ferric chloride (FeCl3) presented relatively higher DOC removal efficiency than polyaluminium chloride and lime at the same dosage and coagulation conditions. The removal efficiency of DOC, genotoxicity, and antiestrogenic activity concentration of the ROC could achieve 16.9, 18.9, and 39.7 %, respectively, by FeCl3 coagulation (with FeCl3 dosage of 180.22 mg/L), which can hardly reduce UV254 and genotoxicity normalized by DOC of the DOM with MW <5 kDa. However, the post-GAC adsorption column (with filtration velocity of 5.7 m/h, breakthrough point adsorption capacity of 0.22 mg DOC/g GAC) exhibited excellent removal efficiency on the dominant DOM fraction of MW <5 kDa in the ROC. The removal efficiency of DOC, UV254, and TDS in the ROC was up to 91.8, 96, and 76.5 %, respectively, by the FeCl3 coagulation and post-GAC adsorption. Also, the DOM with both genotoxicity and antiestrogenic activity were completely eliminated by the GAC adsorption. The results suggest that GAC adsorption combined pretreatment of FeCl3 coagulation as an efficient method to control organics, genotoxicity, and antiestrogenic activity in the ROC from mWRRO system.
Li, Daikun; Li, Qing; Mao, Daoyong; Bai, Ningning; Dong, Hongzhou
2017-12-01
Developing versatile materials for effective water purification is significant for environment and water source protection. Herein, a versatile bio-based material (CH-PAA-T) was reported by simple thermal cross-linking chitosan and polyacrylic acid which exhibits excellent performances for removing insoluble oil, soluble toxic dyes and heavy metal ions from water, simultaneously. The adsorption capacities are 990.1mgg -1 for methylene blue (MB) and 135.9mgg -1 for Cu 2+ , which are higher than most of present advanced absorbents. The adsorption towards organic dyes possesses high selectivity which makes CH-PAA-T be able to efficiently separate dye mixtures. The stable superoleophobicity under water endows CH-PAA-T good performance to separate toluene-in-water emulsion stabilized by Tween 80. Moreover, CH-PAA-T can be recycled for 10 times with negligible reduction of efficiency. Such versatile bio-based material is a potential candidate for water purification. Copyright © 2017. Published by Elsevier Ltd.
Anaerobic biodegradation of aircraft deicing fluid in UASB reactors.
Tham, P T Pham thi; Kennedy, K J Kevin J
2004-05-01
A central composite design was employed to methodically investigate anaerobic treatment of aircraft deicing fluid (ADF) in bench-scale Upflow Anaerobic Sludge Blanket (UASB) reactors. A total of 23 runs at 17 different operating conditions (0.8% 1.6% ADF (6000-12,000mg/L COD), 12-56h HRT, and 18-36gVSS/L) were conducted in continuous mode. The development of four empirical models describing process responses (i.e. COD removal efficiency, biomass-specific acetoclastic activity, methane production rate, and methane production potential) as functions of ADF concentration, hydraulic retention time, and biomass concentration is presented. Model verification indicated that predicted responses (COD removal efficiencies, biomass-specific acetoclastic activity, and methane production rates and potential) were in good agreement with experimental results. Biomass-specific acetoclastic activity was improved two-fold from 0.23gCOD/gVSS/d for inoculum to a maximum of 0.55gCOD/gVSS/d during ADF treatment in UASB reactors. For the design window, COD removal efficiencies were higher than 90%. The predicted methane production potentials were close to theoretical values, and methane production rates increased as the organic loading rate is increased. ADF toxicity effects were evident for 1.6% ADF at medium organic loadings (SOLR above 0.5gCOD/gVSS/d). In contrast, good reactor stability and excellent COD removal efficiencies were achieved at 1.2% ADF for reactor loadings approaching that of highly loaded systems (0.73gCOD/gVSS/d).
Ghorai, Soumitra; Sarkar, Asish; Raoufi, Mohammad; Panda, Asit Baran; Schönherr, Holger; Pal, Sagar
2014-04-09
The synthesis and characterization of a novel nanocomposite is reported that was developed as an efficient adsorbent for the removal of toxic methylene blue (MB) and methyl violet (MV) from aqueous solution. The nanocomposite comprises hydrolyzed polyacrylamide grafted onto xanthan gum as well as incorporated nanosilica. The synthesis exploits the saponification of the grafted polyacrylamide and the in situ formation of nanoscale SiO2 by a sol-gel reaction, in which the biopolymer matrix promotes the silica polymerization and therefore acts as a novel template for nanosilica formation. The detailed investigation of the kinetics and the adsorption isotherms of MB and MV from aqueous solution showed that the dyes adsorb rapidly, in accordance with a pseudo-second-order kinetics and a Langmuir adsorption isotherm. The entropy driven process was furthermore found to strongly depend on the point of zero charge (pzc) of the adsorbent. The remarkably high adsorption capacity of dyes on the nanocomposites (efficiency of MB removal, 99.4%; maximum specific removal Qmax, 497.5 mg g(-1); and efficiency of MV removal, 99.1%; Qmax, 378.8 mg g(-1)) is rationalized on the basis of H-bonding interactions as well as dipole-dipole and electrostatic interactions between anionic adsorbent and cationic dye molecules. Because of the excellent regeneration capacity the nanocomposites are considered interesting materials for the uptake of, for instance, toxic dyes from wastewater.
NASA Astrophysics Data System (ADS)
Zhao, Qihang; Xing, Yongxing; Liu, Zhiliang; Ouyang, Jing; Du, Chunfang
2018-03-01
The synthesis and characterization of BiOCl and Fe3+-grafted BiOCl (Fe/BiOCl) is reported that are developed as efficient adsorbents for the removal of cationic dyes rhodamine B (RhB) and methylene blue (MB) as well as anionic dyes methyl orange (MO) and acid orange (AO) from aqueous solutions with low concentration of 0.01 0.04 mmol/L. Characterizations by various techniques indicate that Fe3+ grafting induced more open porous structure and higher specific surface area. Both BiOCl and Fe/BiOCl with negatively charged surfaces showed excellent adsorption efficiency toward cationic dyes, which could sharply reach 99.6 and nearly 100% within 3 min on BiOCl and 97.0 and 98.0% within 10 min on Fe/BiOCl for removing RhB and MB, respectively. However, Fe/BiOCl showed higher adsorption capacity than BiOCl toward ionic dyes. The influence of initial dye concentration, temperature, and pH value on the adsorption capacity is comprehensively studied. The adsorption process of RhB conforms to Langmuir adsorption isotherm and pseudo-second-order kinetic feature. The excellent adsorption capacities of as-prepared adsorbents toward cationic dyes are rationalized on the basis of electrostatic attraction as well as open porous structure and high specific surface area. In comparison with Fe/BiOCl, BiOCl displays higher selective efficiency toward cationic dyes in mixed dye solutions.
MoS2 embedded TiO2 nanoparticles for concurrent role of adsorption and photocatalysis
NASA Astrophysics Data System (ADS)
Pal, Arnab; Jana, Tushar K.; Chatterjee, Kuntal
2018-04-01
In this work, MoS2 embedded TiO2 nanoparticles, synthesized through hydrothermal process, was successfully employed to remove organic pollutant dye like methylene blue(MB) through adsorption and as well as through photocatalysis under visible light irradiation. The system was characterized by structural and morphological study. The adsorption and photocatalytic study of MB were evaluated with different concentrations of dye in aqueous solution. This work brings the MoS2-TiO2 nanostructure as excellent adsorbent as well as efficient photocatalyst materials which can be used for organic dye removal towards waste-water treatment.
The improvement of removal effects on organic pollutants in Wastewater Treatment Plants (WWTP)
NASA Astrophysics Data System (ADS)
Marincas, O.; Petrov, P.; Ternes, T.; Avram, V.; Moldovan, Z.
2009-08-01
Purpose of this study is to improve the efficiency of removal in wastewater treatment plants of some organic pollutants like pharmaceuticals, antioxidants, pesticides (triazines, phenylurea herbicides), personal care products (PCPs) musk fragrances (galaxolide and tonalide) and estrogens using zeolites with excellent absorption capacity. The zeolite selected for all experiments was Szedimentin-MW. The experiment took place in three stages: no zeolite addition, zeolite added at the end of the bioreactor and zeolite added at the start of the bioreactor. The water samples were pre-concentrated with solid phase extraction (SPE) procedure and analyzed with analytical system Gas Chromatography/Mass Spectrometry (GC/MS).
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ou, Jinzhao; Mei, Mingliang; Xu, Xinxin, E-mail: xuxx@mail.neu.edu.cn
2016-06-15
A magnetic polyoxometalates based adsorbent has been synthesized successfully through the loading of amino functionalized Fe{sub 3}O{sub 4} (NH{sub 2}-Fe{sub 3}O{sub 4}) on nanoparticle of a coordination complex modified polyoxometalates (CC/POMNP). FTIR illustrate there exist intense hydrogen bonds between NH{sub 2}-Fe{sub 3}O{sub 4} and CC/POMNP, which keep the stability of this adsorbent. At room temperature, this adsorbent exhibits ferromagnetic character with saturation magnetization of 8.19 emu g{sup −1}, which provides prerequisite for fast magnetic separation. Water treatment experiment illustrates this POM based magnetic adsorbent exhibits high adsorption capacity on tetracycline. The adsorption process can be described well with Temkin model,more » which illustrates the interaction between adsorbent and tetracycline plays the dominated role in tetracycline removal. The rapid, high efficient tetracycline adsorption ability suggests this POM based magnetic adsorbent exhibits promising prospect in medical and agriculture waste water purification. A magnetic polyoxometalates based adsorbent, which exhibits excellent tetracycline adsorption removal property has been synthesized through the loading of NH{sub 2}-Fe{sub 3}O{sub 4} on coordination complex modified polyoxometalates - Graphical abstract: A magnetic polyoxometalates based adsorbent, which exhibits excellent tetracycline adsorption removal property has been synthesized through the loading of NH{sub 2}-Fe{sub 3}O{sub 4} on coordination complex modified polyoxometalate. Display Omitted - Highlights: • A POM based magnetic adsorbent was fabricated through the loading of NH{sub 2}-Fe{sub 3}O{sub 4} on POM nanoparticle. • This adsorbent possesses excellent tetracycline adsorption property. • Saturation magnetization value of this adsorbent is 8.19 emug−1, which is enough for magnetic separation.« less
Study on anaerobic treatment of wastewater containing hexavalent chromium.
Xu, Yan-bin; Xiao, Hua-hua; Sun, Shui-yu
2005-06-01
A self-made anaerobic bio-filter bed which was inoculated with special sludge showed high efficiency in removing hexavalent chromium. When pump flow was 47 ml/min and COD(Cr) of wastewater was about 140 mg/L, it took 4 h to decrease the Cr6+ concentrations from about 60 mg/L to under 0.5 mg/L, compared with 14 h without carbon source addition. Cr6+ concentrations ranged from 64.66 mg/L to 75.53 mg/L, the system efficiency was excellent. When Cr6+ concentration reached 95.47 mg/L, the treatment time was prolonged to 7.5 h. Compared with the contrast system, the system with trace metals showed clear superiority in that the Cr6+ removal rate increased by 21.26%. Some analyses also showed that hexavalent chromium could probably be bio-reduced to trivalent chromium, and that as a result, the chrome hydroxide sediment was formed on the surface of microorganisms.
He, Tengxia; Ye, Qing; Chen, Yanli; Xie, Enyu; Zhang, Xue
2017-01-01
The cold-adapted bacterium Pseudomonas putida Y-9 was investigated and exhibited excellent capability for nitrogen removal at 15°C. The strain capable of heterotrophic nitrification and aerobic denitrification could efficiently remove ammonium, nitrate, and nitrite at an average removal rate of 2.85 mg, 1.60 mg, and 1.83 mg NL−1 h−1, respectively. Strain Y-9 performed nitrification in preference to denitrification when ammonium and nitrate or ammonium and nitrite coexisted in the solution. Meantime, the presence of nitrate had no effect on the ammonium removal rate of strain Y-9, and yet the presence of high concentration of nitrite would inhibit the cell growth and decrease the nitrification rate. The experimental results indicate that P. putida Y-9 has potential application for the treatment of wastewater containing high concentrations of ammonium along with its oxidation products at low temperature. PMID:28293626
Two-stage anaerobic digestion enables heavy metal removal.
Selling, Robert; Håkansson, Torbjörn; Björnsson, Lovisa
2008-01-01
To fully exploit the environmental benefits of the biogas process, the digestate should be recycled as biofertiliser to agriculture. This practice can however be jeopardized by the presence of unwanted compounds such as heavy metals in the digestate. By using two-stage digestion, where the first stage includes hydrolysis/acidification and liquefaction of the substrate, heavy metals can be transferred to the leachate. From the leachate, metals can then be removed by adsorption. In this study, up to 70% of the Ni, 40% of the Zn and 25% of the Cd present in maize was removed when the leachate from hydrolysis was circulated over a macroporous polyacrylamide column for 6 days. For Cu and Pb, the mobilization in the hydrolytic stage was lower which resulted in a low removal. A more efficient two-stage process with improved substrate hydrolysis would give lower pH and/or longer periods with low pH in the hydrolytic stage. This is likely to increase metal mobilisation, and would open up for an excellent opportunity of heavy metal removal.
Gao, Junqian; Gao, Dan; Liu, Hao; Cai, Jiajai; Zhang, Junqi; Qi, Zhengliang
2018-05-24
Excessive nitrite accumulation is a very tough issue for intensive aquaculture. A high efficient aerobic denitrifier Bacillus megaterium S379 with 91.71±0.17% of NO 2 - -N (65 mg L -1 ) removal was successfully isolated for solving the problem. Denitrification of S379 showed excellent environment adaptation that it kept high nitrite removal ratio (more than 85%) when temperature ranged from 25°C to 40°C and pH varied between 7.0 and 9.0, and could endure as high as 560 mg L -1 of NO 2 - -N. Immobilization of S379 could enhance denitrification even when NO 2 - -N adding amount got to 340 mg L -1 . Immobilized cells also showed well pollutants removal performance in aquaculture wastewater treatment. Moreover, S379 possessed positive hydrolase activities for starch, casein, cellulose and fat and bore more than 60 ppt of salinity. Totally, all the results revealed significant potentiality of immobilized S379 applied in aquaculture water quality management. Copyright © 2018 Elsevier Ltd. All rights reserved.
Lu, Haijiao; Wang, Jingkang; Hao, Hongxun; Wang, Ting
2017-09-30
With a large specific surface area, high reactivity, and excellent adsorption properties, nano zerovalent iron (nZVI) can degrade a wide variety of contaminants in wastewater. However, aggregation, oxidation, and separation issues greatly impede its wide application. In this study, MoS₂/Fe₃O₄/nZVI nanocomposites were successfully synthesized by a facile step-by-step approach to overcome these problems. MoS₂ nanosheets (MNs) acted as an efficient support for nZVI and enriched the organic pollutants nearby, leading to an enhanced removal efficiency. Fe₃O₄ nanoparticles (NPs) could not only suppress the agglomeration and restacking of MNs, but also facilitate easy separation and recovery of the nanocomposites. The synergistic effect between MNs and Fe₃O₄ NPs effectively enhanced the reactivity and efficiency of nZVI. In the system, Cr(VI) was reduced to Cr(III) by nZVI in the nanocomposites, and Fe 2+ produced in the process was combined with H₂O₂ to further remove 4-Chlorophenol (4-CP) through a Fenton reaction. Furthermore, the nanocomposites could be easily separated from wastewater by a magnet and be reused for at least five consecutive runs, revealing good reusability. The results demonstrate that the novel nanocomposites are highly efficient and promising for the simultaneous removal of Cr(VI) and 4-CP in wastewater.
Huang, Bing; Shi, Zhe; Wang, Yan-Yan; Zhang, Shi-Ling
2010-06-01
An excellent desulfuration microorganism with a quick growth and propagation, high activation, high efficiency of removing SO2 is obtained from oxidation ditch of a city sewage treatment plant by inductive acclimatization over 6 d with low concentration SO2 gas (100-2 000 mg/m3). The desulfurition microorganism get their energy sources for growth from transforming SO2 (SO3(2-)) to SO4(2-). The predominant bacterium of the desulfuration microorganism has the same characteristic with Thiobacillus ferrooxidans (T. ferrooxidans), which showed that it was Gram negative, short rod bacteria with a single polar flagellum under a microscopic examination, and obtained its nourishment through the oxidation of inorganic compounds. The technology process condition of domestication and desulfuration of microorganism are particular studied, and the results showed that aerating time, SO2 flux and time to provide nutriment contained N, P, K to microorganism were very important. They have an ability with degradation rate of 160g/ (m3 x h) and degradation efficiency over 50% to transform sulfite to sulfate in liquid phase. The bacteria have a 98% of removing efficiency and over 80% of biodegradation efficiency for the 5 500 mg/m3 SO2 gas and the outlet concentration of SO2 is lower than 100 mg/m3, and also have a 95% of removing efficiency for 15 000 mg/m3 SO2 gas in the packed tower reactor with Raschig ring at 3s contact time.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kulkarni, Suresh D., E-mail: suresh.dk@manipal.edu; Kumbar, Sagar; Menon, Samvit G.
Highlights: • Phase pure, magnetic ZnFe{sub 2}O{sub 4}@ZnO nanoparticles synthesized with excellent yield. • ZnFe{sub 2}O{sub 4}@ZnO displayed higher UV photocatalytic efficiency than ZnO nanoparticles. • First report on visible light photodegradation of methyl orange by ZnFe{sub 2}O{sub 4}@ZnO. • Excellent reusability of ZnFe{sub 2}O{sub 4}@ZnO nanoparticles observed for azo dye removal. - Abstract: Visible light photodegradation of aqueous methyl orange using magnetically separable core–shell ZnFe{sub 2}O{sub 4}@ZnO nanoparticles is reported. A combination of low temperature (190 °C) microwave synthesis and hydrothermal method were used to prepare phase pure material with excellent yield (95%). The magnetic separability, surface area ofmore » 41 m{sup 2}/g and visible light absorption make ZnFe{sub 2}O{sub 4}@ZnO nanoparticles a good solar photocatalyst. ZnFe{sub 2}O{sub 4}@ZnO displayed greater UV photocatalytic efficiency than ZnO owing to the generation of large number of electron-hole pairs. Visible light photodegradation of MO using ZnFe{sub 2}O{sub 4}@ZnO nanoparticles is reported for the first time. Higher first order rate constants under both UV and visible light for core-shell nanoparticles suggested their superiority over its individual oxides. The ZnFe{sub 2}O{sub 4}@ZnO showed excellent reusability with high photocatalytic efficiencies suggesting its suitability for solar photocatalytic applications.« less
Rapid and efficient uranium(VI) capture by phytic acid/polyaniline/FeOOH composites.
Wei, Xintao; Liu, Qi; Zhang, Hongsen; Liu, Jingyuan; Chen, Rongrong; Li, Rumin; Li, Zhangshuang; Liu, Peili; Wang, Jun
2018-02-01
Uranium plays an indispensable role in nuclear energy, but there are limited land resources to meet the ever growing demand; therefore, a need exists to develop efficient materials for capturing uranium from water. Herein, we synthesize a promising adsorbent of phytic acid/polyaniline/FeOOH composites (PA/PANI/FeOOH) by oxidative polymerization. Phytic acid, acting asa gelator and dopant, plays an important role in the formation of polyaniline (PANI). The PA/PANI/FeOOH exhibites high adsorption capacity (q m =555.8mgg -1 , T=298K), rapid adsorption rate (within 5min), excellent selectivity and cyclic stability. In addition, the results show that the adsorption isotherm is well fitted to the Langmuir isotherm model, and the adsorption kinetics agree with a pseudo-second order model. XPS analysis indicates that the removal of uranium is mainly attributed to abundant amine and imine groups on the surface of PA/PANI/FeOOH. Importantly, the removal of uranium from low concentrations of simulated seawater is highly efficient with a removal rate exceeding 92%. From our study, superior adsorption capacities, along with a low-cost, environmentally friendly and facile synthesis, reveal PA/PANI/FeOOH asa promising material for uranium capture. Copyright © 2017. Published by Elsevier Inc.
Heterodyne efficiency for a coherent laser radar with diffuse or aerosol targets
NASA Technical Reports Server (NTRS)
Frehlich, R. G.
1993-01-01
The performance of a Coherent Laser Radar is determined by the statistics of the coherent Doppler signal. The heterodyne efficiency is an excellent indication of performance because it is an absolute measure of beam alignment and is independent of the transmitter power, the target backscatter coefficient, the atmospheric attenuation, and the detector quantum efficiency and gain. The theoretical calculation of heterodyne efficiency for an optimal monostatic lidar with a circular aperture and Gaussian transmit laser is presented including beam misalignment in the far-field and near-field regimes. The statistical behavior of estimates of the heterodyne efficiency using a calibration hard target are considered. For space based applications, a biased estimate of heterodyne efficiency is proposed that removes the variability due to the random surface return but retains the sensitivity to misalignment. Physical insight is provided by simulation of the fields on the detector surface. The required detector calibration is also discussed.
Integrated Cr(VI) removal using constructed wetlands and composting.
Sultana, Mar-Yam; Chowdhury, Abu Khayer Md Muktadirul Bari; Michailides, Michail K; Akratos, Christos S; Tekerlekopoulou, Athanasia G; Vayenas, Dimitrios V
2015-01-08
The present work was conducted to study integrated chromium removal from aqueous solutions in horizontal subsurface (HSF) constructed wetlands. Two pilot-scale HSF constructed wetlands (CWs) units were built and operated. One unit was planted with common reeds (Phragmites australis) and one was kept unplanted. Influent concentrations of Cr(VI) ranged from 0.5 to 10mg/L. The effect of temperature and hydraulic residence time (8-0.5 days) on Cr(VI) removal were studied. Temperature was proved to affect Cr(VI) removal in both units. In the planted unit maximum Cr(VI) removal efficiencies of 100% were recorded at HRT's of 1 day with Cr(VI) concentrations of 5, 2.5 and 1mg/L, while a significantly lower removal rate was recorded in the unplanted unit. Harvested reed biomass from the CWs was co-composted with olive mill wastes. The final product had excellent physicochemical characteristics (C/N: 14.1-14.7, germination index (GI): 145-157%, Cr: 8-10mg/kg dry mass), fulfills EU requirements and can be used as a fertilizer in organic farming. Copyright © 2014 Elsevier B.V. All rights reserved.
Sprenger, C; Lorenzen, G; Grunert, A; Ronghang, M; Dizer, H; Selinka, H-C; Girones, R; Lopez-Pila, J M; Mittal, A K; Szewzyk, R
2014-06-01
Emerging countries frequently afflicted by waterborne diseases require safe and cost-efficient production of drinking water, a task that is becoming more challenging as many rivers carry a high degree of pollution. A study was conducted on the banks of the Yamuna River, Delhi, India, to ascertain if riverbank filtration (RBF) can significantly improve the quality of the highly polluted surface water in terms of virus removal (coliphages, enteric viruses). Human adenoviruses and noroviruses, both present in the Yamuna River in the range of 10(5) genomes/100 mL, were undetectable after 50 m infiltration and approximately 119 days of underground passage. Indigenous somatic coliphages, used as surrogates of human pathogenic viruses, underwent approximately 5 log10 removal after only 3.8 m of RBF. The initial removal after 1 m was 3.3 log10, and the removal between 1 and 2.4 m and between 2.4 and 3.8 m was 0.7 log10 each. RBF is therefore an excellent candidate to improve the water situation in emerging countries with respect to virus removal.
Denitrifying bioreactor clogging potential during wastewater treatment.
Christianson, Laura E; Lepine, Christine; Sharrer, Kata L; Summerfelt, Steven T
2016-11-15
Chemoheterotrophic denitrification technologies using woodchips as a solid carbon source (i.e., woodchip bioreactors) have been widely trialed for treatment of diffuse-source agricultural nitrogen pollution. There is growing interest in the use of this simple, relatively low-cost biological wastewater treatment option in waters with relatively higher total suspended solids (TSS) and chemical oxygen demand (COD) such as aquaculture wastewater. This work: (1) evaluated hydraulic retention time (HRT) impacts on COD/TSS removal, and (2) assessed the potential for woodchip clogging under this wastewater chemistry. Four pilot-scale woodchip denitrification bioreactors operated for 267 d showed excellent TSS removal (>90%) which occurred primarily near the inlet, and that COD removal was maximized at lower HRTs (e.g., 56% removal efficiency and 25 g of COD removed per m 3 of bioreactor per d at a 24 h HRT). However, influent wastewater took progressively longer to move into the woodchips likely due to a combination of (1) woodchip settling, (2) clogging due to removed wastewater solids and/or accumulated bacterial growth, and (3) the pulsed flow system pushing the chips away from the inlet. The bioreactor that received the highest loading rate experienced the most altered hydraulics. Statistically significant increases in woodchip P content over time in woodchip bags placed near the bioreactor outlets (0.03 vs 0.10%P 2 O 5 ) and along the bioreactor floor (0.04 vs. 0.12%P 2 O 5 ) confirmed wastewater solids were being removed and may pose a concern for subsequent nutrient mineralization and release. Nevertheless, the excellent nitrate-nitrogen and TSS removal along with notable COD removal indicated woodchip bioreactors are a viable water treatment technology for these types of wastewaters given they are used downstream of a filtration device. Copyright © 2016 The Authors. Published by Elsevier Ltd.. All rights reserved.
Yu, Zongxue; Chen, Qi; Lv, Liang; Pan, Yang; Zeng, Guangyong; He, Yi
2017-05-01
The environmental applications of graphene oxide and β-cyclodextrin (β-CD) have attracted great attention since their first discovery. Novel nanocomposites were successfully prepared by using an esterification reaction between β-cyclodextrin/γ-(2,3-epoxypropoxy) propyl trimethoxysilane grafted graphene oxide (β-CD/GPTMS/GO). The β-CD/GPTMS/GO nanocomposites were used to remove the Cu 2+ from aqueous solutions. The characteristics of β-CD/GPTMS/GO were detected by scanning electron microscopy (SEM), Fourier transform infrared, X-ray diffraction (XRD), thermogravimetric analysis (TG) and energy dispersive X-ray (EDX). The dispersibility of graphene oxide was excellent due to the addition of β-CD. The adsorption isotherms data obtained at the optimum pH 7 were fitted by Langmuir isotherm model. The excellent adsorption properties of β-CD/GPTMS/GO for Cu 2+ ions could be attributed to the apolar cavity structure of β-CD, the high surface area and abundant functional groups on the surface of GO. The adsorption patterns of β-CD/GPTMS/GO were electrostatic attraction, formation of host-guest inclusion complexes and the ion exchange adsorption. The efficient adsorption of β-CD/GPTMS/GO for Cu 2+ ions suggested that these novel nanocomposites may be ideal candidates for removing other cation pollutants from waste water.
Wang, Xiu; Huang, Kai; Chen, Ying; Liu, Jiafa; Chen, Shan; Cao, Jianlei; Mei, Surong; Zhou, Yikai; Jing, Tao
2018-05-15
The nano-sized sorbents restrict their practical application in flow-through system due to excessive pressure. In this study, dumbbell MnO 2 /gelatin composites were synthesized based on the protein-assisted synthesis technology. Then they were immobilized on the amino-modified polymethyl methacrylate (PMMA) plate. SEM, TEM, XRD, XPS and FT-IR were employed to study the surface properties and the adsorption mechanism of MnO 2 /gelatin composites. Adsorption experiments for Pb(II) and Cd(II) ions were performed to study the adsorption isotherms, kinetics, and thermodynamics as well as the influencing factors. The maximum adsorption capacities of Pb(II) and Cd(II) ions were 318.7 mg g -1 and 105.1 mg g -1 respectively. The adsorption process met the pseudo-second-order kinetic model. Subsequently, MnO 2 /gelatin composites modified plates were used to remove the heavy metal ions in surface water and wastewater samples. The removal efficiencies of Pb(II) ion was changed from 83% (wastewater) to 100% (surface water), when the initial concentration was 10 mg L -1 . This device exhibited great application prospect in the removal of heavy metals taking advantage of its high removal efficiency, excellent stability and reusability and ease of operation. Copyright © 2018 Elsevier B.V. All rights reserved.
He, Tengxia; Ye, Qing; Sun, Quan; Cai, Xi; Ni, Jiupai; Li, Zhenlun; Xie, Deti
2018-01-01
Low temperatures and high pH generally inhibit the biodenitrification. Thus, it is important to explore the psychrotrophic and alkali-resisting microorganism for degradation of nitrogen. This research was mainly focused on the identification of a psychrotrophic strain and preliminary explored its denitrification characteristics. The new strain J was isolated using the bromothymol blue solid medium and identified as Pseudomonas taiwanensis on the basis of morphology and phospholipid fatty acid as well as 16S rRNA gene sequence analyses, which is further testified to work efficiently for removing nitrate from wastewater at low temperature circumstances. This is the first report that Pseudomonas taiwanensis possessed excellent tolerance to low temperature, with 15°C as its optimum and 5°C as viable. The Pseudomonas taiwanensis showed unusual ability of aerobic denitrification with the nitrate removal efficiencies of 100% at 15°C and 51.61% at 5°C. Single factor experiments showed that the optimal conditions for denitrification were glucose as carbon source, 15°C, shaking speed 150 r/min, C/N 15, pH ≥ 7, and incubation quantity 2.0 × 10 6 CFU/mL. The nitrate and total nitrogen removal efficiencies were up to 100% and 93.79% at 15°C when glucose is served as carbon source. These results suggested that strain J had aerobic denitrification ability, as well as the notable ability to tolerate the low temperature and high pH.
Decomposition of dimethylamine gas with dielectric barrier discharge.
Ye, Zhaolian; Zhao, Jie; Huang, Hong ying; Ma, Fei; Zhang, Renxi
2013-09-15
The decomposition of dimethylamine (DMA) with gas under high flow rate was investigated with dielectric barrier discharge (DBD) technology. Different parameters including removal efficiency, energy yield, carbon balance and CO2 selectivity, secondary products, as well as pathways and mechanisms of DMA degradation were studied. The experimental results showed that removal efficiency of DMA depended on applied voltage and gas flow rate, but had no obvious correlation with initial concentration. Excellent energy performance was obtained using present DBD technology for DMA abatement. When experiment conditions were controlled at: gas flow rate of 14.9 m(3)/h, initial concentration of 2104 mg/m(3), applied voltage of 4.8 kV, removal efficiency of DMA and energy yield can reach 85.2% and 953.9 g/kWh, respectively. However, carbon balance (around 40%) was not ideal due to shorter residence time (about 0.1s), implying that some additional conditions should be considered to improve the total oxidation of DMA. Moreover, secondary products in outlet gas stream were detected via gas chromatogram-mass spectrum and the amounts of NO3(-) and NO2(-) were analyzed by ion chromatogram. The obtained data demonstrated that NOx might be suppressed due to reductive NH radical form DMA dissociation. The likely reaction pathways and mechanisms for the removal of DMA were suggested based on products analysis. Experimental results demonstrated the application potential of DBD as a clean technology for organic nitrogen-containing gas elimination from gas streams. Copyright © 2013 Elsevier B.V. All rights reserved.
Hung, Pao Chen; Lo, Wei Chiao; Chi, Kai Hsien; Chang, Shu Hao; Chang, Moo Been
2011-01-01
A laboratory-scale multi-layer system was developed for the adsorption of PCDD/Fs from gas streams at various operating conditions, including gas flow rate, operating temperature and water vapor content. Excellent PCDD/F removal efficiency (>99.99%) was achieved with the multi-layer design with bead-shaped activated carbons (BACs). The PCDD/F removal efficiency achieved with the first layer adsorption bed decreased as the gas flow rate was increased due to the decrease of the gas retention time. The PCDD/F concentrations measured at the outlet of the third layer adsorption bed were all lower than 0.1 ng I-TEQ Nm⁻³. The PCDD/Fs desorbed from BAC were mainly lowly chlorinated congeners and the PCDD/F outlet concentrations increased as the operating temperature was increased. In addition, the results of pilot-scale experiment (real flue gases of an iron ore sintering plant) indicated that as the gas flow rate was controlled at 15 slpm, the removal efficiencies of PCDD/F congeners achieved with the multi-layer reactor with BAC were better than that in higher gas flow rate condition (20 slpm). Overall, the lab-scale and pilot-scale experiments indicated that PCDD/F removal achieved by multi-layer reactor with BAC strongly depended on the flow rate of the gas stream to be treated. Copyright © 2010 Elsevier Ltd. All rights reserved.
Yu, Lian; Peng, Xianjia; Ni, Fan; Li, Jin; Wang, Dongsheng; Luan, Zhaokun
2013-02-15
A novel Fe-Ti binary oxide magnetic nanoparticles which combined the photocatalytic oxidation property of TiO(2) and the high adsorption capacity and magnetic property of γ-Fe(2)O(3) have been synthesized using a coprecipitation and simultaneous oxidation method. The as-prepared samples were characterized by powder XRD, TEM, TG-DTA, VSM and BET methods. Photocatalytic oxidation of arsenite, the effect of solution pH values and initial As(III) concentration on arsenite removal were investigated in laboratory experiments. Batch experimental results showed that under UV light, As(III) can be efficiently oxidized to As(V) by dissolved O(2) in γ-Fe(2)O(3)-TiO(2) nanoparticle suspensions at various pH values. At the same time, As(V) was effectively removed by adsorption onto the surface of nanoparticles. The maximum removal capability of the nano-material for arsenite was 33.03 mg/g at pH 7.0. Among all the common coexisting ions investigated, phosphate was the greatest competitor with arsenic for adsorptive sites on the nano-material. Regeneration studies verified that the γ-Fe(2)O(3)-TiO(2) nanoparticles, which underwent five successive adsorption-desorption processes, still retained comparable catalysis and adsorption performance, indicating the excellent stability of the nanoparticles. The excellent photocatalytic oxidation performance and high uptake capability of the magnetic nano-material make it potentially attractive material for the removal of As(III) from water. Copyright © 2012 Elsevier B.V. All rights reserved.
Mercury removal from coal combustion flue gas by modified fly ash.
Xu, Wenqing; Wang, Hairui; Zhu, Tingyu; Kuang, Junyan; Jing, Pengfei
2013-02-01
Fly ash is a potential alternative to activated carbon for mercury adsorption. The effects of physicochemical properties on the mercury adsorption performance of three fly ash samples were investigated. X-ray fluorescence spectroscopy, X-ray photoelectron spectroscopy, and other methods were used to characterize the samples. Results indicate that mercury adsorption on fly ash is primarily physisorption and chemisorption. High specific surface areas and small pore diameters are beneficial to efficient mercury removal. Incompletely burned carbon is also an important factor for the improvement of mercury removal efficiency, in particular. The C-M bond, which is formed by the reaction of C and Ti, Si and other elements, may improve mercury oxidation. The samples modified with CuBr2, CuCl2 and FeCl3 showed excellent performance for Hg removal, because the chlorine in metal chlorides acts as an oxidant that promotes the conversion of elemental mercury (Hg0) into its oxidized form (Hg2+). Cu2+ and Fe3+ can also promote Hg0 oxidation as catalysts. HCl and O2 promote the adsorption of Hg by modified fly ash, whereas SO2 inhibits the Hg adsorption because of competitive adsorption for active sites. Fly ash samples modified with CuBr2, CuCl2 and FeCl3 are therefore promising materials for controlling mercury emissions.
Ning, Guoqing; Ma, Xinlong; Zhu, Xiao; Cao, Yanming; Sun, Yuzhen; Qi, Chuanlei; Fan, Zhuangjun; Li, Yongfeng; Zhang, Xin; Lan, Xingying; Gao, Jinsen
2014-09-24
Here, we report a new approach to synthesizing S-doped porous carbons and achieving both a high capacity and a high Coulombic efficiency in the first cycle for carbon nanostructures as anodes for Li ion batteries. S-doped porous carbons (S-PCs) were synthesized by carbonization of pitch using magnesium sulfate whiskers as both templates and S source, and a S doping up to 10.1 atom % (corresponding to 22.5 wt %) was obtained via a S doping reaction. Removal of functional groups or highly active C atoms during the S doping has led to formation of much thinner solid-electrolyte interface layer and hence significantly enhanced the Coulombic efficiency in the first cycle from 39.6% (for the undoped porous carbon) to 81.0%. The Li storage capacity of the S-PCs is up to 1781 mA h g(-1) at the current density of 50 mA g(-1), more than doubling that of the undoped porous carbon. Due to the enhanced conductivity, the hierarchically porous structure and the excellent stability, the S-PC anodes exhibit excellent rate capability and reliable cycling stability. Our results indicate that S doping can efficiently promote the Li storage capacity and reduce the irreversible Li combination for carbon nanostructures.
Wang, Jingkang; Wang, Ting
2017-01-01
With a large specific surface area, high reactivity, and excellent adsorption properties, nano zerovalent iron (nZVI) can degrade a wide variety of contaminants in wastewater. However, aggregation, oxidation, and separation issues greatly impede its wide application. In this study, MoS2/Fe3O4/nZVI nanocomposites were successfully synthesized by a facile step-by-step approach to overcome these problems. MoS2 nanosheets (MNs) acted as an efficient support for nZVI and enriched the organic pollutants nearby, leading to an enhanced removal efficiency. Fe3O4 nanoparticles (NPs) could not only suppress the agglomeration and restacking of MNs, but also facilitate easy separation and recovery of the nanocomposites. The synergistic effect between MNs and Fe3O4 NPs effectively enhanced the reactivity and efficiency of nZVI. In the system, Cr(VI) was reduced to Cr(III) by nZVI in the nanocomposites, and Fe2+ produced in the process was combined with H2O2 to further remove 4-Chlorophenol (4-CP) through a Fenton reaction. Furthermore, the nanocomposites could be easily separated from wastewater by a magnet and be reused for at least five consecutive runs, revealing good reusability. The results demonstrate that the novel nanocomposites are highly efficient and promising for the simultaneous removal of Cr(VI) and 4-CP in wastewater. PMID:28973986
A novel biodegradable β-cyclodextrin-based hydrogel for the removal of heavy metal ions.
Huang, Zhanhua; Wu, Qinglin; Liu, Shouxin; Liu, Tian; Zhang, Bin
2013-09-12
A novel biodegradable β-cyclodextrin-based gel (CAM) was prepared and applied to the removal of Cd(2+), Pb(2+) and Cu(2+) ions from aqueous solutions. CAM hydrogel has a typical three-dimensional network structure, and showed excellent capability for the removal of heavy metal ions. The effect of different experimental parameters, such as initial pH, adsorbent dosage and initial metal ion concentration, were investigated. The adsorption isotherm data fitted well to the Freundlich model. The adsorption capacity was in the order Pb(2+)>Cu(2+)>Cd(2+) under the same experimental conditions. The maximum adsorption capacities for the metal ions in terms of mg/g of dry gel were 210.6 for Pb(2+), 116.41 for Cu(2+), and 98.88 for Cd(2+). The biodegradation efficiency of the resin reached 79.4% for Gloeophyllum trabeum. The high adsorption capacity and kinetics results indicate that CAM can be used as an alternative adsorbent to remove heavy metals from aqueous solution. Published by Elsevier Ltd.
Removal of enteric bacteria in constructed treatment wetlands with emergent macrophytes: a review.
Vymazal, Jan
2005-01-01
Domestic and municipal sewage contains various pathogenic or potentially pathogenic microorganisms which, depending on species concentration, pose a potential risk to human health and whose presence must therefore be reduced in the course of wastewater treatment. The removal of microbiological pollution is seldom a primary target for constructed treatment wetlands (CWs). However, wetlands are known to act as excellent biofilters through a complex of physical, chemical and biological factors which all participate in the reduction of the number of bacteria. Measurement of human pathogenic organisms in untreated and treated wastewater is expensive and technically challenging. Consequently, environmental engineers have sought indicator organisms that are (1) easy to monitor and (2) correlate with population of pathogenic organisms. The most frequently used indicators are total coliforms, fecal coliforms, fecal streptococci and Escherichia coli. The literature survey of 60 constructed wetlands with emergent vegetation around the world revealed that removal of total and fecal coliforms in constructed wetlands with emergent macrophytes is high, usually 95 to > 99% while removal of fecal streptococci is lower, usually 80-95%. Because bacterial removal efficiency is a function of inflow bacteria number, the high removal effects are achieved for untreated or mechanically pretreated wastewater. Therefore, the outflow numbers of bacteria are more important. For TC and FC the outflow concentrations are usually in the range of 10(2) to 10(5) CFU/ 100 ml while for FS the range is between 10(2) and 10(4) CFU/ 100 ml. Results from operating systems suggest that enteric microbe removal efficiency in CWs with emergent macrophytes is primarily influenced by hydraulic loading rate (HLR) and the resultant hydraulic residence time (HRT) and the presence of vegetation. Removal of enteric bacteria follows approximately a first-order relationship.
Lv, Junping; Guo, Junyan; Feng, Jia; Liu, Qi; Xie, Shulian
2017-06-01
Sulfate is a primary sulfur source and can be available in wastewaters. Nevertheless, effect of sulfate ions on growth and pollutants removal of microalgae seems to be less investigated. At the present study, self-flocculating microalga Chlorococcum sp. GD was grown in synthetic municipal wastewater with different sulfate concentrations. Results indicated that Chlorococcum sp. GD grew better in synthetic municipal wastewater with 18, 45, 77, 136 and 271mg/L SO 4 2- than in wastewater without SO 4 2- . Chlorococcum sp. GD had also excellent removal efficiencies of nitrogen and phosphorus and effectively flocculated in sulfate wastewater. Sulfate deprivation weakened the growth, pollutants removal and self-flocculation of Chlorococcum sp. GD in wastewater. Antioxidative enzymes activity significantly increased and photosynthetic activity significantly decreased when Chlorococcum sp. GD was cultivated in sulfate-free wastewater. Sulfate deprivation probably reduced cell activity of growth, pollutants removal and flocculation via inducing the over-accumulation of reactive oxygen species (ROS). Copyright © 2017 Elsevier Ltd. All rights reserved.
Chen, Anwei; Shang, Cui; Shao, Jihai; Lin, Yiqing; Luo, Si; Zhang, Jiachao; Huang, Hongli; Lei, Ming; Zeng, Qingru
2017-01-02
A novel composite of carbon disulfide-modified magnetic ion-imprinted chitosan-Fe(III), i.e., MMIC-Fe(III) composite, was prepared as an efficient adsorbent for the simultaneous removal of tetracycline (TC) and Cd(II). This adsorbent showed excellent performance in removing TC and Cd(II) due to its rapid kinetics, high adsorption capacity, good reusability, and was well suited for use with real water samples. Kinetics studies demonstrated that the adsorption proceeded according to a pseudo-second order model. The adsorption isotherms were well described by the Langmuir model, with maximum adsorption capacity for TC and Cd(II) being 516.29 and 194.31mg/g, respectively. The synergistic effect of TC and Cd(II) adsorption might be due to the formation of TC-Cd(II) complex bridging the adsorbate and adsorbent. These properties demonstrate the potential application of MMIC-Fe(III) for the simultaneous removal of TC and Cd(II), and may provide some information for the synergistic removal of antibiotics and heavy metals from aquatic environments. Copyright © 2016 Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Tian, Huairu; Peng, Jun; Lv, Tingting; Sun, Chen; He, Hua
2018-01-01
In present study, a stable and magnetic metal-organic framework (MOF) material was synthesized by simple solvothermal method as adsorbent to rapid removal of two organic dyes, the Rhodamine B (RB) and Rhodamine 6G (Rh6G), in water samples. The prepared material showed great characteristics of large surface area (519.86 m2 g-1), excellent magnetic responsivity (35.00 emu g-1) and rapid removal (within 5 min). Maximum adsorption capacities of the magnetic material toward RB and Rh6G were up to 219.78 and 306.75 mg g-1, respectively. Adsorption kinetics suggested the adsorption process met the pseudo-second-order kinetic model. The prepared material could be reused at least 10 times by washing with acetonitrile solution, the relative standard deviation (RSD) of these ten cycles removal efficiency was 4.8%. In conclusion, good chemical inertness, a mechanical/water stability and super-hydrophilicity feature made this MOF a promising adsorbent for targets removal from environmental water sample.
A new installation for treatment of road runoff: up-flow filtration by porous polypropylene media.
Lee, B C; Matsui, S; Shimizu, Y; Matsuda, T; Tanaka, Y
2005-01-01
We installed a new device on a paved road to treat runoff from a roadway surface. All the stormwater runoff was transferred into the device and the runoff equivalent to 10 mm/hr or less was treated. The treatment method consists of sedimentation and up-flow filtration with porous polypropylene (PPL) processes. The treated runoff was discharged into the existing storm drainage pipe. The average removal efficiency of the initial runoff at the beginning of rainfall which has high pollution intensity was about 90% for SS, about 70% for COD, about 40% for total phosphorus (T-P), about 80% for Pb and Cd, about 70% for Zn, Cu, Mn and Cr, and about 60% for polycyclic aromatic hydrocarbons (PAHs). The overall removal efficiencies of the experiment that ran for four months remained > 60% of SS, > 40% of COD, > 60% of heavy metals, and > 40% of PAHs. The PPL is excellent for removing smaller size particulates of suspended solids, which originate basically from diesel exhaust, as well as larger size particulates from automobile tires, asphalt roads, and other accumulated source(s) of clay and sand, etc.
Huang, Chao; Ding, Yaping; Chen, Yingwen; Li, Peiwen; Zhu, Shemin; Shen, Shubao
2017-10-01
Zr-doped-TiO 2 loaded glass fiber (ZT/GF) composite photocatalysts with different Zr/Ti ratios were prepared with a sol-gel process. Zr 4+ can replace Ti 4+ in the TiO 2 lattice, which is conducive to forming the anatase phase and reducing the calcination temperature. The glass fiber carrier was responsible for better dispersion and loading of Zr-doped-TiO 2 particles, improving the applicability of the Zr-doped-TiO 2 . The ZT/GF photocatalysts were characterized by X-ray diffraction (XRD), scanning electron microscope (SEM), Fourier transform infrared spectroscopy (FT-IR), ultraviolet-visible spectroscopy (UV-vis) and Barrett-Joyner-Halenda (BJH). The performance of photocatalysts with different loading was evaluated in formaldehyde degradation under visible light at room temperature. ZT/GF0.2 exhibited the highest activity, with a formaldehyde removal rate as high as 95.14% being observed, which is better than that of the photocatalyst particles alone. The stability of the catalyst was also tested, and ZT/GF exhibited excellent catalytic performance with 94.38% removal efficiency, even after seven uses. Copyright © 2017. Published by Elsevier B.V.
Dong, Zhiyong; Lu, Mang; Huang, Wenhui; Xu, Xiaochun
2011-11-30
In this study, a novel suspended ceramic carrier was prepared, which has high strength, optimum density (close to water), and high porosity. Two different carriers, unmodified and sepiolite-modified suspended ceramic carriers were used to feed two moving bed biofilm reactors (MBBRs) with a filling fraction of 50% to treat oilfield produced water. The hydraulic retention time (HRT) was varied from 36 to 10h. The results, during a monitoring period of 190 days, showed that removal efficiency of chemical oxygen demand was the highest in reactor 3 filled with the sepiolite-modified carriers, followed by reactor 2 filled with the unmodified carriers, with the lowest in reactor 1 (activated sludge reactor), at an HRT of 10h. Similar trends were found in the removal efficiencies of ammonia nitrogen and polycyclic aromatic hydrocarbons. Reactor 3 was more shock resistant than reactors 2 and 1. The results indicate that the suspended ceramic carrier is an excellent MBBR carrier. Copyright © 2011 Elsevier B.V. All rights reserved.
Peach gum for efficient removal of methylene blue and methyl violet dyes from aqueous solution.
Zhou, Li; Huang, Jiachang; He, Benzhao; Zhang, Faai; Li, Huabin
2014-01-30
This study investigated the potential use of natural peach gum (PG) as alternative adsorbent for the removal of dyes from aqueous solutions. The PG showed high adsorption capacities and selectivity for cationic dyes (e.g., methylene blue (MB) and methyl violet (MV)) in the pH range 6-10. 98% of MB and MV could be adsorbed within 5 min, and both of the adsorptions reached equilibrium within 30 min. The dye uptake process followed the pseudo-second-order kinetic model. The intraparticle diffusion was not the sole rate controlling step. Equilibrium adsorption isotherm data indicated a good fit to the Langmuir isotherm model. Regeneration study revealed that PG could be well regenerated in acid solution. The recovered PG still exhibited high adsorption capacity even after five cycles of desorption-adsorption. On the basis of its excellent adsorption performance and facile availability, PG can be employed as an efficient low cost adsorbent for environmental cleanup. Copyright © 2013 Elsevier Ltd. All rights reserved.
Ghorai, Soumitra; Sarkar, Amit Kumar; Panda, A B; Pal, Sagar
2013-09-01
The aim of this work is to study the feasibility of XG-g-PAM/SiO2 nanocomposite towards its potential application as high performance adsorbent for removal of Congo red (CR) dye from aqueous solution. The surface area, average pore size and total pore volume of the developed nanocomposite has been determined. The efficiency of CR dye adsorption depends on various factors like pH, temperature of the solution, equilibrium time of adsorption, agitation speed, initial concentration of dye and adsorbent dosage. It has been observed that the nanocomposite is having excellent CR dye adsorption capacity (Q0=209.205 mg g(-1)), which is considerably high. The dye adsorption process is controlled by pseudo-second order and intraparticle diffusion kinetic models. The adsorption equilibrium data correlates well with Langmuir isotherm. Desorption study indicates the efficient regeneration ability of the dye loaded nanocomposite. Copyright © 2013 Elsevier Ltd. All rights reserved.
Castro-Gutiérrez, Víctor; Masís-Mora, Mario; Carazo-Rojas, Elizabeth; Mora-López, Marielos; Rodríguez-Rodríguez, Carlos E
2018-04-01
An experimental study evaluating the effect of bioaugmentation and antibiotic (oxytetracycline) application on pesticide degradation and microbial community structure of a biomixture used in a biopurification system (BPR) was conducted. The bioaugmentation employed a carbofuran-degrading bacterial consortium. The non-bioaugmented biomixture showed excellent performance for removal of atrazine (t 1/2 : 9.9 days), carbendazim (t 1/2 : 3.0 days), carbofuran (t 1/2 : 2.8 days), and metalaxyl (t 1/2 : 2.7 days). Neither the addition of oxytetracycline nor bioaugmentation affected the efficiency of pesticide removal or microbial community (bacterial and fungal) structure, as determined by DGGE analysis. Instead, biomixture aging was mainly responsible for microbial population shifts. Even though the bioaugmentation did not enhance the biomixtures' performance, this matrix showed a high capability to sustain initial stresses related to antibiotic addition; therefore, simultaneous elimination of this particular mixture of pesticides together with oxytetracycline residues is not discouraged.
Study on anaerobic treatment of wastewater containing hexavalent chromium*
Xu, Yan-bin; Xiao, Hua-hua; Sun, Shui-yu
2005-01-01
A self-made anaerobic bio-filter bed which was inoculated with special sludge showed high efficiency in removing hexavalent chromium. When pump flow was 47 ml/min and CODCr of wastewater was about 140 mg/L, it took 4 h to decrease the Cr6+ concentrations from about 60 mg/L to under 0.5 mg/L, compared with 14 h without carbon source addition. Cr6+ concentrations ranged from 64.66 mg/L to 75.53 mg/L, the system efficiency was excellent. When Cr6+ concentration reached 95.47 mg/L, the treatment time was prolonged to 7.5 h. Compared with the contrast system, the system with trace metals showed clear superiority in that the Cr6+ removal rate increased by 21.26%. Some analyses also showed that hexavalent chromium could probably be bio-reduced to trivalent chromium, and that as a result, the chrome hydroxide sediment was formed on the surface of microorganisms. PMID:15909347
Ehsan, Asma; Bhatti, Haq Nawaz; Iqbal, Munawar; Noreen, Saima
2017-02-01
Environmental applications of composites have attracted the interests of researchers due to their excellent adsorption efficiency for pollutants. Native, HCl pre-treated clay and MnFe 2 O 4 /clay composite were investigated as an adsorbent for removal of methyl green from aqueous solution. The adsorption behaviors of dye onto native, HCl pre-treated and composite clays were studied as a function of contact time, adsorbent dose, pH, initial dye concentration and temperature. Maximum dye adsorption of 44 mg/g was achieved at pH of 8, contact time 40 min, adsorbent dose 0.20 g/L and initial dye concentration of 125 mg/L using clay composite. The Langmuir isotherm and pseudo-second-order kinetic model best explained the methyl green dye adsorption onto clay adsorbents. Thermodynamic parameters revealed the endothermic and spontaneous adsorption nature of dye. From results, it is concluded that clay has potential for adsorbing methyl green and can be used for the removal of dyes from industrial effluents.
The drug release study of ceftriaxone from porous hydroxyapatite scaffolds.
Al-Sokanee, Zeki N; Toabi, Abedl Amer H; Al-Assadi, Mohammed J; Alassadi, Erfan A S
2009-01-01
Hydroxyapatite (HAP) is an important biomedical material that is used for grafting osseous defects. It has an excellent bioactivity and biocompatibility properties. To isolate hydroxyapatite, pieces of cleaned cattle's bone were heated at different temperature range from 400 degrees C up to 1,200 degrees C. A reasonable yield of 60.32% w/w HAP was obtained at temperature range from 1,000 degrees C to 1,200 degrees C. Fourier transform infrared spectra and the thermogravimetric measurement showed a clear removal of organic at 600 degrees C as well as an excellent isolation of HAP from the bones which was achieved at 1,000-1,200 degrees C. This was also confirmed from X-ray diffraction of bone sample heated at 1,200 degrees C. The concentration ions were found to be sodium, potassium, lithium, zinc, copper, iron, calcium, magnesium, and phosphate present in bones within the acceptable limits for its role in the bioactivity property of HAP. Glucose powder was used as a porosifier. Glucose was novel and excellent as porogen where it was completely removed by heating, giving an efficient porosity in the used scaffolds. The results exhibited that the ceftriaxone drug release was increased with increasing the porosity. It was found that a faster, higher, and more regular drug release was obtained from the scaffold with a porosity of 10%.
Shen, Wei; Gao, Zhiqiang
2015-03-15
Leveraging on the enzymatic processing of Dengue virus (DV) RNA hybridized quantum dot-capped DNA capture probes (QD-CPs), an ultrasensitive assay for the detection and serotyping of DVs is described in the report. Briefly, DV-specific DNA CPs are first capped by QDs and then conjugated to magnetic beads. In a sample solution, strands of DV RNA form heteroduplexes with the QD-CPs on the magnetic beads. The CPs together with the QDs in the heteroduplexes are subsequently cleaved off the magnetic beads by a duplex-specific nuclease (DSN), releasing the QDs to the solution, freeing the target RNA strands, and availing them for another around of hybridization with the remaining QD-CPs. After removing the magnetic beads along with unreacted (uncleaved) QD-CPs by using a permanent magnet, ultrasensitive fluorescent detection of DV is realized through the cleaved QDs. Serotyping of DV is accomplished by a judicious design of the QD-CPs. The assay combines excellent signal generation by the highly fluorescent QDs and the effortlessness of utilizing magnetic beads in the removal of the unreacted QD-CPs. The highly efficient DSN cleavage in conjunction with its excellent mismatch discrimination ability permits serotyping of DVs in one tube with excellent sensitivity and selectivity. Copyright © 2014 Elsevier B.V. All rights reserved.
Kuşçu, Özlem Selçuk; Sponza, Delia Teresa
2011-03-15
A sequential aerobic completely stirred tank reactor (CSTR) following the anaerobic migrating blanket reactor (AMBR) was used to treat a synthetic wastewater containing 2,4-dinitrotoluene (2,4-DNT). A Box-Wilson statistical experiment design was used to determine the effects of 2,4-DNT and the hydraulic retention times (HRTs) on 2,4-DNT and COD removal efficiencies in the AMBR reactor. The 2,4-DNT concentrations in the feed (0-280 mg/L) and the HRT (0.5-10 days) were considered as the independent variables while the 2,4-DNT and chemical oxygen demand (COD) removal efficiencies, total and methane gas productions, methane gas percentage, pH, total volatile fatty acid (TVFA) and total volatile fatty acid/bicarbonate alkalinity (TVFA/Bic.Alk.) ratio were considered as the objective functions in the Box-Wilson statistical experiment design in the AMBR. The predicted data for the parameters given above were determined from the response functions by regression analysis of the experimental data and exhibited excellent agreement with the experimental results. The optimum HRT which gave the maximum COD (97.00%) and 2,4-DNT removal (99.90%) efficiencies was between 5 and 10 days at influent 2,4-DNT concentrations 1-280 mg/L in the AMBR. The aerobic CSTR was used for removals of residual COD remaining from the AMBR, and for metabolites of 2,4-DNT. The maximum COD removal efficiency was 99% at an HRT of 1.89 days at a 2,4-DNT concentration of 239 mg/L in the aerobic CSTR. It was found that 280 mg/L 2,4-DNT transformed to 2,4-diaminotoluene (2,4-DAT) via 2-amino-4-nitrotoluene (2-A-4-NT) and 4-amino-2-nitrotoluene (4-A-2-NT) in the AMBR. The maximum 2,4-DAT removal was 82% at an HRT of 8.61 days in the aerobic CSTR. The maximum total COD and 2,4-DNT removal efficiencies were 99.00% and 99.99%, respectively, at an influent 2,4-DNT concentration of 239 mg/L and at 1.89 days of HRT in the sequential AMBR/CSTR. Copyright © 2011 Elsevier B.V. All rights reserved.
Chen, Jiangyao; Huang, Yong; Li, Guiying; An, Taicheng; Hu, Yunkun; Li, Yunlu
2016-01-25
Volatile organic compounds (VOCs) emitted during the electronic waste dismantling process (EWDP) were treated at a pilot scale, using integrated electrostatic precipitation (EP)-advanced oxidation technologies (AOTs, subsequent photocatalysis (PC) and ozonation). Although no obvious alteration was seen in VOC concentration and composition, EP technology removed 47.2% of total suspended particles, greatly reducing the negative effect of particles on subsequent AOTs. After the AOT treatment, average removal efficiencies of 95.7%, 95.4%, 87.4%, and 97.5% were achieved for aromatic hydrocarbons, aliphatic hydrocarbons, halogenated hydrocarbons, as well as nitrogen- and oxygen-containing compounds, respectively, over 60-day treatment period. Furthermore, high elimination capacities were also seen using hybrid technique of PC with ozonation; this was due to the PC unit's high loading rates and excellent pre-treatment abilities, and the ozonation unit's high elimination capacity. In addition, the non-cancer and cancer risks, as well as the occupational exposure cancer risk, for workers exposed to emitted VOCs in workshop were reduced dramatically after the integrated technique treatment. Results demonstrated that the integrated technique led to highly efficient and stable VOC removal from EWDP emissions at a pilot scale. This study points to an efficient approach for atmospheric purification and improving human health in e-waste recycling regions. Copyright © 2015 Elsevier B.V. All rights reserved.
Tian, J Y; Chen, Z L; Liang, H; Li, X; Wang, Z Z; Li, G B
2009-01-01
Biological activated carbon (BAC) and membrane bioreactor (MBR) were systematically compared for the drinking water treatment from slightly polluted raw water under the same hydraulic retention time (HRT) of 0.5 h. MBR exhibited excellent turbidity removal capacity due to the separation of the membrane; while only 60% of influent turbidity was intercepted by BAC. Perfect nitrification was achieved by MBR with the 89% reduction in ammonia; by contrast, BAC only eliminated a moderate amount of influent ammonia (by 54.5%). However, BAC was able to remove more dissolved organic matter (DOM, especially for organic molecules of 3,000 approximately 500 Daltons) and corresponding disinfection by-product formation potential (DBPFP) in raw water than MBR. Unfortunately, particulate organic matter (POM) was detected in the BAC effluent. On the other hand, BAC and MBR displayed essentially the same capacity for biodegradable organic matter (BOM) removal. Fractionation of DOM showed that the removal efficiencies of hydrophobic neutrals, hydrophobic acids, weakly hydrophobic acids and hydrophilic organic matter through BAC treatment were 11.7%, 8.8%, 13.9% and 4.8% higher than that through MBR; while MBR achieved 13.8% higher hydrophobic bases removal as compared with BAC.
He, Tengxia; Ye, Qing; Sun, Quan; Cai, Xi; Ni, Jiupai
2018-01-01
Low temperatures and high pH generally inhibit the biodenitrification. Thus, it is important to explore the psychrotrophic and alkali-resisting microorganism for degradation of nitrogen. This research was mainly focused on the identification of a psychrotrophic strain and preliminary explored its denitrification characteristics. The new strain J was isolated using the bromothymol blue solid medium and identified as Pseudomonas taiwanensis on the basis of morphology and phospholipid fatty acid as well as 16S rRNA gene sequence analyses, which is further testified to work efficiently for removing nitrate from wastewater at low temperature circumstances. This is the first report that Pseudomonas taiwanensis possessed excellent tolerance to low temperature, with 15°C as its optimum and 5°C as viable. The Pseudomonas taiwanensis showed unusual ability of aerobic denitrification with the nitrate removal efficiencies of 100% at 15°C and 51.61% at 5°C. Single factor experiments showed that the optimal conditions for denitrification were glucose as carbon source, 15°C, shaking speed 150 r/min, C/N 15, pH ≥ 7, and incubation quantity 2.0 × 106 CFU/mL. The nitrate and total nitrogen removal efficiencies were up to 100% and 93.79% at 15°C when glucose is served as carbon source. These results suggested that strain J had aerobic denitrification ability, as well as the notable ability to tolerate the low temperature and high pH. PMID:29789796
Jia, Zhenzhen; Shu, Yuehong; Huang, Renlong; Liu, Junguang; Liu, Lingling
2018-05-01
Novel supermacroporous PSA-nZVI composites with nanoscale zero-valent iron particles (nZVI) embedded into poly (sodium acrylate) (PSA) cryogels were synthesized through ion exchange followed by in-situ reduction. The magnetic composites were evaluated for material characterizations and their efficiency for Cr(VI) and total Cr removal from aqueous medium in batch experiments. PSA-nZVI composites with high nZVI loading capacity up to 128.70 mg Fe/g PSA were obtained, and the interconnected macroporous structure of PSA cryogel remained unaltered with nZVI uniformly distributed on PSA cryogel as determined by TGA, SEM, TEM, XRD and XPS analyses. PSA-nZVI composites showed faster reaction rate than free nZVI both for Cr(VI) and total Cr removal, suggesting no mass transfer resistance and the enhanced reactivity of nZVI in PSA carrier. PSA-nZVI composites exhibited much more remarkable performance for Cr(VI) and total Cr removal than free nZVI particles in high removal capacity and broad pH application range (pH 4-10). The reaction mechanisms were also elucidated with XPS analyses before and after Cr(VI) reduction reactions. These results demonstrate that PSA cryogel acts as an excellent carrier and shows multiple functions in nZVI particle dispersion, pH buffering and oxidation resistance in addition to immobilizing nZVI particles from release. Copyright © 2018 Elsevier Ltd. All rights reserved.
Settling Efficiency of Urban Particulate Matter Transported by Stormwater Runoff.
Carbone, Marco; Penna, Nadia; Piro, Patrizia
2015-09-01
The main purpose of control measures in urban areas is to retain particulate matter washed out by stormwater over impermeable surfaces. In stormwater control measures, particulate matter removal typically occurs via sedimentation. Settling column tests were performed to examine the settling efficiency of such units using monodisperse and heterodisperse particulate matter (for which the particle size distributions were measured and modelled by the cumulative gamma distribution). To investigate the dependence of settling efficiency from the particulate matter, a variant of the evolutionary polynomial regression (EPR), a Microsoft Excel function based on multi-objective EPR technique (EPR-MOGA), called EPR MOGA XL, was used as a data-mining strategy. The results from this study have shown that settling efficiency is a function of the initial total suspended solids (TSS) concentration and of the median diameter (d50 index), obtained from the particle size distributions (PSDs) of the samples.
Chen, T K; Chen, J N
2004-01-01
In TFT-LCD industry, water plays a variety of roles as a cleaning agent and reaction solvent. As good quality water is increasingly a scarce resource and wastewater treatment costs rises, the once-through use of industrial water is becoming uneconomical and environmentally unacceptable. Instead, recycling of TFT-LCD industrial wastewater is become more attractive from both an economic and environmental perspective. This research is mainly to explore the capacity of TFT-LCD industrial wastewater recycling by the process combined with membrane bioreactor and reverse osmosis processes. Over the whole experimental period, the MBR process achieved a satisfactory organic removal. The COD could be removed with an average of over 97.3%. For TOC and BOD5 items, the average removal efficiencies were 97.8 and 99.4% respectively. The stable effluent quality and satisfactory removal performance were ensured by the efficient interception performance of the UF membrane device incorporated with biological reactor. Moreover, the MBR effluent did not contain any suspended solids and the SDI value was under 3. After treatment of RO, excellent water quality of permeate were under 5 mg/l, 2.5 mg/l and 150 micros/cm for COD, TOC and conductivity respectively. The treated water can be recycled for the cooling tower make-up water or other purposes.
Hou, Baolin; Han, Hongjun; Zhuang, Haifeng; Xu, Peng; Jia, Shengyong; Li, Kun
2015-11-01
A novel integrated process with three-dimensional electro-Fenton (3D EF) and biological activated carbon (BAC) was employed in advanced treatment of biologically pretreated Lurgi coal gasification wastewater. SAC-Fe (sludge deserved activated carbon from sewage and iron sludge) and SAC (sludge deserved activated carbon) were used in 3D EF as catalytic particle electrodes (CPEs) and in BAC as carriers respectively. Results indicated that 3D EF with SAC-Fe as CPEs represented excellent pollutants and COLOR removals as well as biodegradability improvement. The efficiency enhancement attributed to generating more H2O2 and OH. The integrated process exhibited efficient performance of COD, BOD5, total phenols, TOC, TN and COLOR removals at a much shorter retention time, with the corresponding concentrations in effluent of 31.18, 6.69, 4.29, 17.82, 13.88mg/L and <20 times, allowing discharge criteria to be met. The integrated system was efficient, cost-effective and ecological sustainable and could be a promising technology for engineering applications. Copyright © 2015 Elsevier Ltd. All rights reserved.
Liu, Yangxian; Wang, Qian; Pan, Jianfeng
2016-12-06
A novel process for NO and SO 2 simultaneous removal using a vacuum ultraviolet (VUV, with 185 nm wavelength)-activated O 2 /H 2 O/H 2 O 2 system in a wet VUV-spraying reactor was developed. The influence of different process variables on NO and SO 2 removal was evaluated. Active species (O 3 and ·OH) and liquid products (SO 3 2- , NO 2 - , SO 4 2- , and NO 3 - ) were analyzed. The chemistry and routes of NO and SO 2 removal were investigated. The oxidation removal system exhibits excellent simultaneous removal capacity for NO and SO 2 , and a maximum removal of 96.8% for NO and complete SO 2 removal were obtained under optimized conditions. SO 2 reaches 100% removal efficiency under most of test conditions. NO removal is obviously affected by several process variables. Increasing VUV power, H 2 O 2 concentration, solution pH, liquid-to-gas ratio, and O 2 concentration greatly enhances NO removal. Increasing NO and SO 2 concentration obviously reduces NO removal. Temperature has a dual impact on NO removal, which has an optimal temperature of 318 K. Sulfuric acid and nitric acid are the main removal products of NO and SO 2 . NO removals by oxidation of O 3 , O·, and ·OH are the primary routes. NO removals by H 2 O 2 oxidation and VUV photolysis are the complementary routes. A potential scaled-up removal process was also proposed initially.
NASA Astrophysics Data System (ADS)
Liu, Xin; Jiang, Junzhe; Jia, Yushuai; Qiu, Jinmin; Xia, Tonglin; Zhang, Yuhong; Li, Yuqin; Chen, Xiangshu
2017-08-01
The efficient treatment of dye wastewater has been a hot topic of environment field. The integration of adsorption and photocatalytic degradation via fabrication of bi-component heterojunction photocatalyst is considered as a facile and effective strategy to enhance the dye elimination efficiency. In this report, a Z-scheme heterojunction material, SrTiO3(La,Cr)/WO3 with bifunction of adsorption and photocatalysis was successfully synthesized for efficient removal of methylene blue (MB) under visible light irradiation. The morphology and microstructure characterization demonstrates that the SrTiO3(La,Cr) nanoparticles are uniformly decorated on the WO3 nanosheets, forming an intimate heterojunction interface. MB degradation results indicate that the removal efficiency by the synergistic adsorption-photocatalysis process is greatly improved compared to pure WO3 and SrTiO3(La,Cr) with the adsorption and photocatalytic activity closely related to the composition of the material. The possible mechanism for the enhanced photocatalytic activity could be ascribed to the formation of a Z-scheme heterojunction system based on active species trapping experiments. Furthermore, the investigations of adsorption kinetics and isotherm show that the adsorption process follows pseudo-second-order kinetic model and Langmuir isotherm, respectively. Due to the synergistic advantages of negative zeta potential, large surface area and accelerated separation of photogenerated carriers driven by Z-scheme heterojunction, SrTiO3(La,Cr)/WO3 exhibits excellent adsorption-photocatalytic performance and stability on MB removal, which could be potentially used for practical wastewater treatment.
Magnetic mesoporous Fe/carbon aerogel structures with enhanced arsenic removal efficiency.
Lin, Yi-Feng; Chen, Jia-Ling
2014-04-15
Wastewater treatment has drawn significant research attention due to its associated environmental issues. Adsorption is a promising method for treating wastewater. The development of an adsorbent with a high surface area is important. Therefore, we successfully developed mesoporous Fe/carbon aerogel (CA) structures with high specific surface areas of 48 7m(2)/g via the carbonization of composite Fe3O4/phenol-formaldehyde resin structures, which were prepared using a hydrothermal process with the addition of phenol. The mesoporous Fe/CA structures were further used for the adsorption of arsenic ions with a maximum arsenic-ion uptake of calculated 216.9 mg/g, which is higher than that observed for other arsenic adsorbents. Ferromagnetic behavior was observed for the as-prepared mesoporous Fe/CA structures with an excellent response to applied external magnetic fields. As a result, the adsorbent Fe/CA structures can be easily separated from the solution using an external magnetic field. This study develops the mesoporous Fe/CA structures with high specific surface areas and an excellent response to an applied external magnetic field to provide a feasible approach for wastewater treatment including the removal of arsenic ions. Copyright © 2014 Elsevier Inc. All rights reserved.
Wu, Yingcheng; Wu, Peiwen; Chao, Yanhong; He, Jing; Li, Hongping; Lu, Linjie; Jiang, Wei; Zhang, Beibei; Li, Huaming; Zhu, Wenshuai
2018-01-12
Hexagonal boron nitride has been regarded to be an efficient catalyst in aerobic oxidation fields, but limited by the less-exposed active sites. In this contribution, we proposed a simple green liquid nitrogen gas exfoliation strategy for preparation of porous monolayer nanosheets (BN-1). Owing to the reduced layer numbers, decreased lateral sizes and artificially-constructed pores, increased exposure of active sites was expected, further contributed to an enhanced aerobic oxidative desulfurization (ODS) performance up to ∼98% of sulfur removal, achieving ultra-deep desulfurization. This work not only introduced an excellent catalyst for aerobic ODS, but also provided a strategy for construction of some other highly-efficient monolayer two-dimensional materials for enhanced catalytic performance.
NASA Astrophysics Data System (ADS)
Wu, Yingcheng; Wu, Peiwen; Chao, Yanhong; He, Jing; Li, Hongping; Lu, Linjie; Jiang, Wei; Zhang, Beibei; Li, Huaming; Zhu, Wenshuai
2018-01-01
Hexagonal boron nitride has been regarded to be an efficient catalyst in aerobic oxidation fields, but limited by the less-exposed active sites. In this contribution, we proposed a simple green liquid nitrogen gas exfoliation strategy for preparation of porous monolayer nanosheets (BN-1). Owing to the reduced layer numbers, decreased lateral sizes and artificially-constructed pores, increased exposure of active sites was expected, further contributed to an enhanced aerobic oxidative desulfurization (ODS) performance up to ˜98% of sulfur removal, achieving ultra-deep desulfurization. This work not only introduced an excellent catalyst for aerobic ODS, but also provided a strategy for construction of some other highly-efficient monolayer two-dimensional materials for enhanced catalytic performance.
Kong, Zhe; Li, Lu; Feng, Chuanping; Chen, Nan; Dong, Shanshan; Hu, Weiwu
2015-01-01
In this study, an integrated two-stage soil infiltration bioreactor incorporated with pyrite-based (mixotrophic) denitrification (SIBPD) was designed for domestic wastewater treatment. Benefited from excellent adsorption ability and water-permeability, soil infiltration could avoid clogging, shorten operating time and lower maintenance cost. Respiration and nitrification were mostly engaged in aerobic stage (AES), while nitrate was majorly removed by pyrite-based mixotrophic denitrification mainly occurred in anaerobic stage (ANS). Fed with synthetic and real wastewater for 120days at 1.5h HRT, SIBPD demonstrated good removal performance showing 87.14% for COD, 92.84% for NH4(+)-N and 82.58% for TP along with 80.72% of nitrate removed by ANS. TN removal efficiency was 83.74% when conducting real wastewater. Compared with sulfur-based process, the effluent pH of SIBPD was maintained at 6.99-7.34 and the highest SO4(2-) concentration was only 64.63mgL(-1). This study revealed a promising and feasible application prospect for on-site domestic wastewater treatment. Copyright © 2015 Elsevier Ltd. All rights reserved.
Yang, Liu; Li, Xiangkun; Chu, Zhaorui; Ren, Yuhui; Zhang, Jie
2014-03-01
A biofilter was developed in this study, which showed an excellent performance with the simultaneous removal of AsIII from 150 to 10mg L(-1) during biological iron and manganese oxidation. The distribution and genetic diversity of the microorganisms along the depth of the biofilter have been investigated using DGGE. Results suggested that Iron oxidizing bacteria (IOB, such as Gallionella, Leptothrix), Manganese oxidizing bacteria (MnOB, such as Leptothrix, Pseudomonas, Hyphomicrobium, Arthrobacter) and AsIII-oxidizing bacteria (AsOB, such as Alcaligenes, Pseudomonas) are dominant in the biofilter. The spatial distribution of IOB, MnOB and AsOB at different depths of the biofilter determined the removal zone of FeII, MnII and AsIII, which site at the depths of 20, 60 and 60cm, respectively, and the corresponding removal efficiencies were 86%, 84% and 87%, respectively. This process shows great potential to the treatment of groundwater contaminated with iron, manganese and arsenic due to its stable performance and significant cost-savings. Copyright © 2014 Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Xiong, Kun; Gao, Yuan; Zhou, Lin; Zhang, Xianming
2016-09-01
Nanoscale zero-valent iron (nZVI) particles were embedded on the walls of mesoporous silica-carbon (MSC) under the conditions of high-temperature carbonization and reduction and used to remove chromium (VI) from aqueous solution. The structure and textural properties of nZVI-MSC were characterized by the powder X-ray diffraction, transmission electron microscopy and N2 adsorption and desorption. The results show that nZVI-MSC has highly ordered mesoporous structure and large surface area, indistinguishable with that of MSC. Compared with the support MSC and iron particles supported on the activated carbon (nZVI/AC), nZVI-MSC exhibited much higher Cr(VI) removal efficiency with about 98 %. The removal process obeys a pseudo first-order model. Such excellent performance of nZVI-MSC could be ascribed to the large surface and iron particles embedded on the walls of the MSC, forming an intimate contact with the MSC. It is proposed that this feature might create certain micro-electrode on the interface of iron particles and MSC, which prevented the formation of metal oxide on the surface and provided fresh Fe surface for Cr(VI) removal.
Nitrate removal with lateral flow sulphur autotrophic denitrification reactor.
Lv, Xiaomei; Shao, Mingfei; Li, Ji; Xie, Chuanbo
2014-01-01
An innovative lateral flow sulphur autotrophic denitrification (LFSAD) reactor was developed in this study; the treatment performance was evaluated and compared with traditional sulphur/limestone autotrophic denitrification (SLAD) reactor. Results showed that nitrite accumulation in the LFSAD reactor was less than 1.0 mg/L during the whole operation. Denitrification rate increased with the increased initial alkalinity and was approaching saturation when initial alkalinity exceeded 2.5 times the theoretical value. Higher influent nitrate concentration could facilitate nitrate removal capacity. In addition, denitrification efficiency could be promoted under an appropriate reflux ratio, and the highest nitrate removal percentage was achieved under reflux ratio of 200%, increased by 23.8% than that without reflux. Running resistance was only about 1/9 of that in SLAD reactor with equal amount of nitrate removed, which was the prominent excellence of the new reactor. In short, this study indicated that the developed reactor was feasible for nitrate removal from waters with lower concentrations, including contaminated surface water, groundwater or secondary effluent of municipal wastewater treatment with fairly low running resistance. The innovation in reactor design in this study may bring forth new ideas of reactor development of sulphur autotrophic denitrification for nitrate-contaminated water treatment.
Efficient removal of methyl orange using Cu2O as a dual function catalyst
NASA Astrophysics Data System (ADS)
Zhang, Fan; Dong, Guohui; Wang, Mian; Zeng, Yubin; Wang, Chuanyi
2018-06-01
In this study, we synthesized Cu2O particles with rough surfaces by a facile solvothermal method as a dual-function material that can degrade contaminants not only under light irradiation but also in dark circumstance. Both the as-prepared Cu2O and commercial Cu2O exhibited excellent performance for the removal of methyl orange under visible light irradiation through a photocatalysis-based strategy. However, the former was found to show remarkable capability under dark circumstances by means of molecular oxygen activation, while the latter performed poor efficiently under the same condition. This significant difference of performances under dark circumstances was related to rich oxygen vacancies existed on the as-prepared Cu2O surfaces that are associated with the single-electron reduction of O2 to generate radO2-, which play a dominant role in the generation of Cu+. In addition, Cu+ was identified to play key roles in the broken of azo bond. Then, the generated intermediates were mineralized by radOH generated through molecular oxygen activation process. This study could not only deep the understanding of the MO removal mechanism by Cu2O but also show a novel direction of amphibious application for photocatalytic materials.
Manirethan, Vishnu; Raval, Keyur; Rajan, Reju; Thaira, Harsha; Balakrishnan, Raj Mohan
2018-05-15
The difficulty in removal of heavy metals at concentrations below 10 mg/L has led to the exploration of efficient adsorbents for removal of heavy metals. The adsorption capacity of biosynthesized melanin for Mercury (Hg(II)), Chromium (Cr(VI)), Lead (Pb(II)) and Copper (Cu(II)) was investigated at different operating conditions like pH, time, initial concentration and temperature. The heavy metals adsorption process was well illustrated by the Lagergren's pseudo-second-order kinetic model and the equilibrium data fitted excellently to Langmuir isotherm. Maximum adsorption capacity obtained from Langmuir isotherm for Hg(II) was 82.4 mg/g, Cr(VI) was 126.9 mg/g, Pb(II) was 147.5 mg/g and Cu(II) was 167.8 mg/g. The thermodynamic parameters revealed that the adsorption of heavy metals on melanin is favorable, spontaneous and endothermic in nature. Binding of heavy metals on melanin surface was proved by Fourier Transform Infrared Spectroscopy (FT-IR) and X-ray Photoelectron Spectroscopy (XPS). Contemplating the results, biosynthesized melanin can be a potential adsorbent for efficient removal of Hg(II), Cr(VI), Pb(II) and Cu(II) ions from aqueous solution. Copyright © 2018 Elsevier Ltd. All rights reserved.
Raboni, Massimo; Torretta, Vincenzo
2016-12-01
A conventional biotrickling filter for airborne ammonia nitrification has been modified, by converting the liquid sump into a biological denitrifying reactor. The biotrickling filter achieves an average ammonia removal efficiency of 92.4 %, with an empty bed retention time (EBRT) equal to 36 s and an average ammonia concentration of 54.7 mg Nm -3 in the raw air stream. The denitrification reactor converts ammonia into inert gas N 2 , in addition to other important advantages connected to the alkaline character of the biochemical pathway of the denitrifying bacteria. Firstly, the trickling water crossing the denitrification reactor underwent a notable pH increase from 7.3 to 8.0 which prevented the acidic inhibition of the nitrifying bacteria due to the buildup of nitric and nitrous acids. Secondly, the pH increase created the ideal conditions for the autotrophic nitrifying bacteria. The tests proved that an ammonia removal efficiency of above 90 % can be achieved with an EBRT greater than 30 s and a volumetric load lower than 200 g NH 3 m -3 day -1 . The results of the biofilm observation by using a scanning confocal laser microscope are reported together with the identification of degrading bacteria genera in the biotrickling filter. The efficiency of the plant and its excellent operational stability highlight the effectiveness of the synergistic action between the denitrification reactor and the biotrickling filter in removing airborne ammonia.
Zhou, G; Wang, K P; Liu, H W; Wang, L; Xiao, X F; Dou, D D; Fan, Y B
2018-07-01
Owing to low bearing capacity and efficiency, traditional filters or adsorbents for removal of contaminants like crystal violet (CV) dye required frequent replacement. Besides, the combination of three-dimensional (3D) printing and bionics could break the constraints of traditional configuration. In this study, a novel depth-type hybrid polylactic acid (PLA)@graphene oxide (GO)/chitosan (CS) sponge filter with bionic fish-mouth structure was prepared and fabricated, assisted by 3D printing and double freeze-drying technology, according to the theories of vertical cross-step filtration and swirling flow. And GO/CS sponge and its filtering device were characterized by FITR, SEM, water adsorption and so on. Moreover, it was explained that the impact factors on dye removal mechanism, like GO content (or CS content), contact time, pH, temperature and bionic configuration. As a result, the bionic 3D filtering device demonstrated excellent removal efficiency (97.8±0.5% for CV) and GO/CS sponge exhibited higher strength (74.5±3.5MPa) at the condition of GO content of 9wt%, contact time of 46min, pH of 8 and 35°C, respectively. Therefore, the resulting 3D PLA@GO/CS sponge bionic filter via gravity and vortex driving provided new alternatives for effectively dye-water separation, and it showed great promise for application of biological macromolecules in adsorption. Copyright © 2018 Elsevier B.V. All rights reserved.
Yu, Lan; Xue, Weihua; Cui, Lei; Xing, Wen; Cao, Xinli; Li, Hongyu
2014-03-01
Fe3O4 nanoparticles were modified with Hydroxypropyl-β-cyclodextrin (HP-β-CD) and Polyethylene glycol 400 (PEG400) by a facile one-pot homogeneous precipitation method, and were used as a novel nano-adsorbent for the removal of congo red (CR) from aqueous solutions. The polymer-modified composites were characterized by FTIR, TEM, TGA, XRD and VSM, and showed excellent adsorption efficiency for CR. The value of the maximum adsorption capacity calculated according to the Langmuir isotherm model were 1.895g/g, which are much high and about 19 times that of Fe3O4 nanoparticles. Desorption study further indicates the good regeneration ability of the nanocomposites. The results suggest that the HP-β-CD/PEG400-modified Fe3O4 nanoparticles is a promising adsorbent for CR removal from aqueous solutions, and it is easily recycled owing to its large specific surface area and unique magnetic responsiveness. Crown Copyright © 2013. Published by Elsevier B.V. All rights reserved.
Dobbeleers, Thomas; Daens, Dominique; Miele, Solange; D'aes, Jolien; Caluwé, Michel; Geuens, Luc; Dries, Jan
2017-02-01
In this study nitrogen removal via nitrite >80% was achieved after approximately 80days in a sequencing batch reactor (SBR) treating pre-treated industrial wastewater originating from the potato industry. Thereafter, SBR performance was investigated during the formation of aerobic nitrite granules (ANG). The first granules appeared after 26days leading to full granulation after 64days. ANG showed excellent settling properties, as the Sludge Volume Index (SVI) went down to 16mL/g and a SVI 10 /SVI 30 =1 was obtained. qPCR analysis showed that slow growing organisms, especially polyphosphate accumulating organisms (PAO) were stimulated by an anaerobic feeding strategy. The average nitrogen removal was 95.3% over the entire operational period, and it mainly followed the "nitrite-route". Moreover, with ANG also phosphorus removal efficiencies up to 65.7% could be achieved. However, it has to be mentioned that nitrous oxide was an important denitrification product, which implies some environmental concerns. Copyright © 2016 Elsevier Ltd. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zhang, Da-Quan; Sun, Tian-Ying; Yu, Xue-Feng, E-mail: yxf@whu.edu.cn
Highlights: • The morphology and properties of Ce-doped yttrium hydroxide fluoride nanotubes (YHF:Ce NTs) were investigated. • YHF:Ce NTs were conjugated with Au nanoparticles to produce Au-YHF:Ce nanocomposites. • Au-YHF:Ce NTs showed excellent capability and efficiency in removing Congo red from solutions. • Au-YHF:Ce NTs were utilized to determine the concentration of Congo red based on SERS. - Abstract: Ce-doped yttrium hydroxide fluoride nanotubes (YHF:Ce NTs) with large surface area are synthesized and conjugated with Au nanoparticles (NPs) to produce Au-YHF:Ce nanocomposites. The Au-YHF:Ce NTs have a hollow structure, rough surface, polymer coating, and good surface-enhanced Raman spectroscopy (SERS) properties.more » They are applied to wastewater treatment to remove Congo red as a typical pollutant. The materials not only remove pollutants rapidly from the wastewater, but also detect trace amounts of the pollutants quantitatively. The multifunctional Au-YHF:Ce NTs have commercial potential as nano-absorbents and nano-detectors in water treatment and environmental monitoring.« less
NASA Astrophysics Data System (ADS)
Han, Tongtong; Li, Caifeng; Guo, Xiangyu; Huang, Hongliang; Liu, Dahuan; Zhong, Chongli
2016-12-01
A series of SiO2@aluminum-MOF(MIL-68) composites with different SiO2 loadings have been synthesized by a simple and mild compositing strategy for high-efficiency removal of aniline. As evidenced from SEM and TEM images as well as the particle size distribution, the incorporation of SiO2 can improve the dispersity of MIL-68(Al) in composites, and result in the smaller particle size than that of pristine MIL-68(Al). Besides, the adsorption of aniline over SiO2, MIL-68(Al), the physical mixture of these two materials, and SiO2@MIL-68(Al) composites was investigated comparatively, demonstrating a relatively high adsorption capacity (531.9 mg g-1) of 7% SiO2@MIL-68(Al) towards aniline. Combining the ultrafast adsorption dynamics (reaching equilibrium within 40 s) and great reusability, 7% SiO2@MIL-68(Al) shows excellent adsorption performance. This indicates that the SiO2@MIL-68(Al) composites possess great potential applications as a kind of fascinating adsorbent in water pollution protection.
Baêta, B E L; Ramos, R L; Lima, D R S; Aquino, S F
2012-01-01
This work investigated the use of submerged anaerobic membrane bioreactors (SAMBRs) in the presence and absence of powdered activated carbon (PAC) for the treatment of genuine textile wastewater. The reactors were operated at 35 °C with an HRT of 24 h and the textile effluent was diluted (1:10) with nutrient solution containing yeast extract as the source of the redox mediation riboflavin. The results showed that although both SAMBRs exhibited an excellent performance, the presence of PAC inside SAMBR-1 enhanced reactor stability and removal efficiency of chemical oxygen demand (COD), volatile fatty acids (VFA), turbidity and color. The median removal efficiencies of COD and color in SAMBR-1 were, 90 and 94% respectively; whereas for SAMBR-2 (without PAC) these values were 79 and 86%, In addition, the median values of turbidity and VFA were 8 NTU and 8 mg/L for SAMBR-1 and 14 NTU and 26 mg/L for SAMBR-2, indicating that the presence of PAC inside SAMBR-1 led to the production of an anaerobic effluent of high quality regarding such parameters.
Yuan, Jiajia; Dong, Wenyi; Sun, Feiyun; Zhao, Ke; Du, Changhang; Shao, Yunxian
2016-11-01
A new-developed vegetation-activated sludge process (V-ASP) was implemented for decentralized domestic wastewater treatment, and studied in lab-scale and full-scale. The main purpose of this work was the investigation of biomass activities and microbial communities in V-ASP by comparison with conventional constructed wetland (CW), to unveil the causations of its consistently higher pollutants removal efficiencies. Compared with CWs, V-ASP has greater vegetation nitrogen and phosphorus uptake rates, higher biomass and enzymatic activities, and more bacteria community diversity. The microbial community structure was comprehensively analyzed by using high-throughput sequencing. It was observed that Proteobacteria was dominated in both CWs and V-ASPs, while their subdivisions distribution was rather different. V-ASPs contained a higher nitrite-oxidizing bacteria (Nitrospira) abundances that resulted in a consistently better nitrogen removal efficiency. Hence, a long-term experiment of full-scale V-ASP displayed stably excellent capability in resistance of influent loading shocks and seasonal temperature effect. Copyright © 2016 Elsevier Ltd. All rights reserved.
Chen, Dan; Wang, Hongyu; Yang, Kai; Ma, Fang
2018-02-01
Combined bioelectrochemical and sulfur autotrophic denitrification (CBSAD) system had proven to be feasible for nitrate removal at low temperature. This system obtained excellent denitrification efficiency 96.55% at 10 ± 2 °C long term operation. Nitrate removal efficiency presented increased tendency with applied current increased from 50 to 200 mA and then decreased when the applied current was further increased to 300 mA. The CBSAD system owned the most abundant and rich communities at current 200 mA, and the community structures of the microbial samples at different current conditions were clearly different from each other. Phyla Firmicutes, Proteobacteria and classes Epsilonproteobacteria, Gammaproteobacteria, Betaproteobacteria, Clostridia dominated in all the communities in the system. The largest genus at current 50 mA was Arcobacter, whereas Pseudomonas was the most dominant genus at current 100-300 mA condition, suggesting that high current changed the bacterial structure in this CBSAD reactor. Copyright © 2017 Elsevier Ltd. All rights reserved.
Liu, Dong-Hai; Guo, Yue; Zhang, Lu-Hua; Li, Wen-Cui; Sun, Tao; Lu, An-Hui
2013-11-25
Magnetic hollow structures with microporous shell and highly dispersed active cores (Fe/Fe3 C nanoparticles) are rationally designed and fabricated by solution-phase switchable transport of active iron species combined with a solid-state thermolysis technique, thus allowing selective encapsulation of functional Fe/Fe3 C nanoparticles in the interior cavity. These engineered functional materials show high loading (≈54 wt%) of Fe, excellent chromium removal capability (100 mg g(-1)), fast adsorption rate (8766 mL mg(-1) h(-1)), and easy magnetic separation property (63.25 emu g(-1)). During the adsorption process, the internal highly dispersed Fe/Fe3 C nanoparticles supply a driving force for facilitating Cr(VI) diffusion inward, thus improving the adsorption rate and the adsorption capacity. At the same time, the external microporous carbon shell can also efficiently trap guest Cr(VI) ions and protect Fe/Fe3 C nanoparticles from corrosion and subsequent leaching problems. Copyright © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Zou, Yidong; Wang, Xiangxue; Khan, Ayub; Wang, Pengyi; Liu, Yunhai; Alsaedi, Ahmed; Hayat, Tasawar; Wang, Xiangke
2016-07-19
The presence of heavy metals in the industrial effluents has recently been a challenging issue for human health. Efficient removal of heavy metal ions from environment is one of the most important issues from biological and environmental point of view, and many studies have been devoted to investigate the environmental behavior of nanoscale zerovalent iron (NZVI) for the removal of toxic heavy metal ions, present both in the surface and underground wastewater. The aim of this review is to show the excellent removal capacity and environmental remediation of NZVI-based materials for various heavy metal ions. A new look on NZVI-based materials (e.g., modified or matrix-supported NZVI materials) and possible interaction mechanism (e.g., adsorption, reduction and oxidation) and the latest environmental application. The effects of various environmental conditions (e.g., pH, temperature, coexisting oxy-anions and cations) and potential problems for the removal of heavy metal ions on NZVI-based materials with the DFT theoretical calculations and EXAFS technology are discussed. Research shows that NZVI-based materials have satisfactory removal capacities for heavy metal ions and play an important role in the environmental pollution cleanup. Possible improvement of NZVI-based materials and potential areas for future applications in environment remediation are also proposed.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Yoo, H.J.; Steinberg, M.
1982-10-01
Commercial calcium silicate bearing Portland cement type III (PC III), in the form of agglomerated cement sorbent (ACS) pellets, is being investigated for in-situ desulfurization of fuel gases and for improved coal gasification. The preparation procedure and conditions for pelletizing agglomerated cement sorbent (ACS) by a low energy, low cost agglomeration technique have been modified using a two-stage pelletization procedure, which yields ACS pellets of greater mechanical strength. A 40 mm ID bench scale fluidized bed gasifier (FBG) was used to determine sulfur removal efficiency of ACS pellets as well as their attrition resistance, using a simulated gas mixture. Thesemore » tests show that 90% or more of the sulfur removal from the gas is achieved until 35% of the ACS pellet is sulfidated and that it has excellent attrition resistance (less than 0.1% wt loss) during cyclic tests excluding the first conditioning cycle. The gasification of coal by partial oxidation with air to low Btu gas was conducted in a 1-inch bench scale FBG unit by our collaborator, the Foster Wheeler Corporation (FWC). At temperatures between 800/sup 0/C and 950/sup 0/C the efficiency of coal gasification is improved by as much as 40% when ACS pellets are used compared to the use of Greer limestone. At the same time the sulfur removal efficiency is increased from 50 to 65% with Greer limestone to over 95% with the ACS pellets. The test on sulfur fixation characteristics of the sorbent in the 1-inch FBG unit using a simulated gas also shows that the ACS pellet is much more reactive toward H/sub 2/S than Greer limestone. The ability of ACS pellets to simultaneously desulfurize and improve the gasification efficiency of coal in FBG justifies further investigation.« less
Experimental study on Hg0 removal from flue gas over columnar MnOx-CeO2/activated coke
NASA Astrophysics Data System (ADS)
Xie, Yine; Li, Caiting; Zhao, Lingkui; Zhang, Jie; Zeng, Guangming; Zhang, Xunan; Zhang, Wei; Tao, Shasha
2015-04-01
Mn-Ce mixed oxides supported on commercial columnar activated coke (MnCe/AC) were employed to remove elemental mercury (Hg0) at low temperatures (100-250 °C) without the assistance of HCl in flue gas. The samples were characterized by X-ray diffraction (XRD), Brunauer-Emmett-Teller (BET), X-ray photoelectron spectroscopy (XPS) and temperature programmed desorption (TPD). Effects of some factors, including Mn-Ce loading values, active component, reaction temperatures and flue gas components (O2, SO2, NO, H2O), on Hg0 removal efficiency were investigated. Results indicated that the optimal Mn-Ce loading value and reaction temperature were 6% and 190 °C, respectively. Considerable high Hg0 removal efficiency (>90%) can be obtained over MnCe6/AC under both N2/O2 atmosphere and simulated flue gas atmosphere at 190 °C. Besides, it was observed that O2 and NO exerted a promotional effect on Hg0 removal, H2O exhibited a suppressive effect, and SO2 hindered Hg0 removal seriously when in the absence of O2. Furthermore, the XPS spectra of Hg 4f and Hg-TPD results showed that the captured mercury were existed as Hg0 and HgO on the MnCe6/AC, and HgO was the major species, which illustrated that adsorption and catalytic oxidation process were included for Hg0 removal over MnCe6/AC, and catalytic oxidation played the critical role. What's more, both lattice oxygen and chemisorbed oxygen or OH groups on MnCe6/AC contributed to Hg0 oxidation. MnCe6/AC, which exhibited excellent performance on Hg0 removal in the absence of HCl, appeared to be promising in industrial application, especially for low-rank coal fired flue gas.
Advanced wastewater treatment simplified through research
DOE Office of Scientific and Technical Information (OSTI.GOV)
Souther, R.H.
A waste water treatment plant was built based on results of a small-scale pilot plant study, conducted largely in a search for efficiency as well as economy. Results were that 98 percent carbonaceous BOD (BOD/sub C/) and nitrogenous BOD (BOD/sub N/) were removed in a simplified, low-cost, single-stage advanced treatment process surpassing even some of the most sophisticated advanced complex waste treatment methods. The single-stage process treats domestic waste alone or combined with very high amounts of textile, electroplating, chemical, food, and other processing industrial wastewater. The process removed 100 percent of the sulfides above 98 percent of NH/sub 3/-N,more » over 90 percent of COD and phenols; chromium was converted from highly toxic hexavalent CrVI to nearly nontoxic trivalent chrome (CrIII). A pH up to 12 may be tolerated if no free hydroxyl (OH) ions are present. Equalization ponds, primary settling tanks, trickling filters, extra nitrogen removal tanks, carbon columns, and chemical treatment are not required. Color removal is excellent with clear effluent suitable for recycling after chlorination to water supply lakes. The construction cost of the single-stage advanced treatment plant is surprisingly low, about /sup 1///sub 2/ to /sup 1///sub 6/ as much as most conventional ineffective complex plants. This simplified, innovative process developed in independent research at Guilford College is considered by some a breakthrough in waste treatment efficiency and economy. (MU)« less
NiFe(C2O4)x as a heterogeneous Fenton catalyst for removal of methyl orange.
Liu, Yucan; Zhang, Guangming; Chong, Shan; Zhang, Nan; Chang, Huazhen; Huang, Ting; Fang, Shunyan
2017-05-01
This paper studies a heterogeneous Fenton catalyst NiFe(C 2 O 4 ) x , which showed better catalytic activity than Ni(C 2 O 4 ) x and better re-usability than Fe(C 2 O 4 ) x . The methyl orange removal efficiency was 98% in heterogeneous Fenton system using NiFe(C 2 O 4 ) x . The prepared NiFe(C 2 O 4 ) x had a laminated shape and the size was in the range of 2-4 μm, and Ni was doped into catalyst's structure successfully. The NiFe(C 2 O 4 ) x had a synergistic effect of catalyst of 24.7 for methyl orange removal, and the dope of Ni significantly reduced the leaching of Fe by 77%. The reaction factors and kinetics were investigated. Under the optimal conditions, 0.4 g/L of catalyst dose and 10 mmol/L of hydrogen peroxide concentration, 98% of methyl orange was removed within 20 min. Analysis showed that hydroxyl radicals and superoxide radicals participated in the reaction. With NiFe(C 2 O 4 ) x catalyst, the suitable pH range for heterogeneous Fenton system was wide from 3 to 10. The catalyst showed good efficiency after five times re-use. NiFe(C 2 O 4 ) x provided great potential in treatment of refractory wastewater with excellent property. Copyright © 2017 Elsevier Ltd. All rights reserved.
Fate of Volatile Organic Compounds in Constructed Wastewater Treatment Wetlands
Keefe, S.H.; Barber, L.B.; Runkel, R.L.; Ryan, J.N.
2004-01-01
The fate of volatile organic compounds was evaluated in a wastewater-dependent constructed wetland near Phoenix, AZ, using field measurements and solute transport modeling. Numerically based volatilization rates were determined using inverse modeling techniques and hydraulic parameters established by sodium bromide tracer experiments. Theoretical volatilization rates were calculated from the two-film method incorporating physicochemical properties and environmental conditions. Additional analyses were conducted using graphically determined volatilization rates based on field measurements. Transport (with first-order removal) simulations were performed using a range of volatilization rates and were evaluated with respect to field concentrations. The inverse and two-film reactive transport simulations demonstrated excellent agreement with measured concentrations for 1,4-dichlorobenzene, tetrachloroethene, dichloromethane, and trichloromethane and fair agreement for dibromochloromethane, bromo-dichloromethane, and toluene. Wetland removal efficiencies from inlet to outlet ranged from 63% to 87% for target compounds.
Detoxification of zearalenone from corn oil by adsorption of functionalized GO systems
NASA Astrophysics Data System (ADS)
Bai, Xiaojuan; Sun, Changpo; Xu, Jing; Liu, Di; Han, Yangying; Wu, Songling; Luo, Xiaohong
2018-02-01
Graphene oxide (GO) and its functionalized systems have very unique structural advantages as excellent adsorbent or substrate material in the removal of organic contaminants. Herein, we reported a strategy to establish functionalized GO system (FGO) using amphiphilic molecules didodecyldimethylammonium bromide (DDAB) as a modifier for the detoxification of zearalenone (ZEN) from corn oil. The adsorption property for the removal of ZEN from edible corn oils under different experimental conditions such as pH, amphiphilic molecules, time and temperature was investigated in detail. The morphology structure, adsorption isotherm, adsorption kinetics and the recyclability of FGO systems have also been researched, systematically. The FGO systems exhibit a higher adsorption efficiency, recyclability and thermostability in comparison with the traditional adsorbent materials. It provides an insight into the detoxification of mycotoxin from edible oils by graphene-based new materials.
Sheng, Zhao Min; Hong, Cheng Yang; Dai, Xian You; Chang, Cheng Kang; Chen, Jian Bin; Liu, Yan
2015-04-01
We demonstrate a new sulfur (S)-doping templated approach to fabricate highly nanoporous graphitic nanocages (GNCs) by air-oxidizing the templates in the graphitic shells to create nanopores. Sulfur can be introduced, when Fe@C core-shell nanoparticles are prepared and then S-doped GNCs can be obtained by removing their ferrous cores. Due to removing S-template, both the specific surface area (from 540 to 850 m2 g(-1)) and the mesopore volume (from 0.44 to 0.9 cm3 g(-1)) of the graphitic nanocages have sharply risen. Its high specific surface area improves catalyst loading to provide more reaction electro-active sites while its high mesopore volume pro- motes molecule diffusion across the nanocages, making it an excellent material to support Pt/Ru catalysts for direct methanol fuel cells.
Li, Jing; Wang, Ruoqi; Su, Zhen; Zhang, Dandan; Li, Heping; Yan, Youwei
2018-10-01
Nowadays, it is extremely urgent to search for efficient and effective catalysts for water purification due to the severe worldwide water-contamination crises. Here, 3D Fe@VO 2 core-shell mesh, a highly efficient catalyst toward removal of organic dyes with excellent recycling ability in the dark is designed and developed for the first time. This novel core-shell structure is actually 304 stainless steel mesh coated by VO 2 , fabricated by an electrophoretic deposition method. In such a core-shell structure, Fe as the core allows much easier separation from the water, endowing the catalyst with a flexible property for easy recycling, while VO 2 as the shell is highly efficient in degradation of organic dyes with the addition of H 2 O 2 . More intriguingly, the 3D Fe@VO 2 core-shell mesh exhibits favorable performance across a wide pH range. The 3D Fe@VO 2 core-shell mesh can decompose organic dyes both in a light-free condition and under visible irradiation. The possible catalytic oxidation mechanism of Fe@VO 2 /H 2 O 2 system is also proposed in this work. Considering its facile fabrication, remarkable catalytic efficiency across a wide pH range, and easy recycling characteristic, the 3D Fe@VO 2 core-shell mesh is a newly developed high-performance catalyst for addressing the universal water crises. Copyright © 2018 Elsevier B.V. All rights reserved.
Kapse, Gaurav; Patoliya, Pruthvi; Samadder, S R
2017-03-01
The huge quantity of effluent generated in coal washing processes contains large amount of suspended and dissolved solids, clay minerals, coal fines and other impurities associated with raw coal. The present system of recirculation of the effluent is found to be ineffective in removing colloidal fines, which is the major part of the impurities present in washery effluent. Hence, there is a need for the assessment of a better technique for an efficient removal of these impurities. This study deals with detailed characterisation of coal washery effluent and fine particles present in it. For efficient removal of impurities, the suitability of biocoag-flocculation process using Moringa oleifera seed biomass as a natural coagulant was examined. Various doses of M. oleifera ranging from 0.2 to 3 mL/L were used in order to determine the optimal conditions. The impact of the variations in pH of the effluent (2-10), contact time (5-30 min), settlement time (5-50 min), temperature (10-50 °C) and the effluent dilution (1:0-1:5) was also assessed to optimise the treatment process. Post treatment analysis was carried out for determination of the different parameters such as pH, conductivity, turbidity, solids and settling velocity. Excellent reduction in turbidity (97.42%) and suspended solids (97.78%) was observed at an optimum dose of M. oleifera seed coagulant of 0.8 mL/L with an optimum contact time of 15 and at 20 min of settling time. In comparison with very few past studies of M. oleifera in the treatment of coal washery effluent with high dose and inadequate removal, this study stands to be a major highlight with low dose and high removal of the impurities. M. oleifera coagulant is considered to be an environment-friendly material, therefore, its application is recommended for simple and efficient treatment of coal washery effluent.
Qin, Tingting; Wang, Zhaowei; Xie, Xiaoyun; Xie, Chaoran; Zhu, Junmin; Li, Yan
2017-12-01
The biochar was prepared by pyrolyzing the roots of cauliflowers, at a temperature of 500 °C under oxygen-limited conditions. The structure and characteristics of the biochar were examined using scanning electron microscopy, an energy dispersive spectrometer, a zeta potential analyzer, and Fourier transform infrared spectroscopy. The effects of the temperature, the initial pH, antibiotic concentration, and contact time on the adsorption of norfloxacin (NOR) and chlortetracycline (CTC) onto the biochar were investigated. The adsorption kinetics of NOR and CTC onto the biochar followed the pseudo-second-order kinetic and intra-particle diffusion models. The adsorption isotherm experimental data were well fitted to the Langmuir and Freundlich isotherm models. The maximum adsorption capacities of NOR and CTC were 31.15 and 81.30 mg/g, respectively. There was little difference between the effects of initial solution pH (4.0-10.0) on the adsorption of NOR or CTC onto the biochar because of the buffering effect. The biochar could remove NOR and CTC efficiently in aqueous solutions because of its large specific surface area, abundant surface functional groups, and particular porous structure. Therefore, it could be used as an excellent adsorbent material because of its low cost and high efficiency and the extensive availability of the raw materials.
NASA Astrophysics Data System (ADS)
Li, Deke; Guo, Zhiguang
2018-06-01
Superhydrophobic layers are extremely essential for protecting material surface in various applications. In this study, a stable superhydrophobic mixed matrix surface with a 152.2° contact angle can be fabricated through the technology of layer-by-layer hot-pressing (HoP), and then modified by 1H,1H,2H,2H-perfluorooctyltriethoxysilane (PFOTES) on the ZIF-8@Kevlar fabric surface. The morphology and chemical composition were analyzed by the means of SEM, XRD and FTIR. The obtained superhydrophobic coatings showed excellent antiwear performance and drag reduction under desired working conditions. Moreover, we successfully applied superhydrophobic F-ZIF-8@Kevlar fabric in the alcohol adsorbent with high removal capacity, and it can be reused for several times without serious efficiency loss.
Fluorescent and cathodoluminescent phophors structurally related to sodalite
Phillips, Mark L. F.; Shea, Lauren E.
1998-01-01
Blue, quantum-confined phosphors for field-emission displays made by reducing metal (M) sulfoaluminates at high temperature. This yields phases of the type M.sub.4 (AlO.sub.2).sub.6 S. Bulk sulfide contaminant mixed with the reduced sulfoaluminate phase is removed by treating it with a chelating agent in nonaqueous solution. A photometric cathodoluminescence efficiency of 9 lumen/watt at 1000 V for Sr.sub.3 PbS(AlO.sub.2).sub.6 is observed. Undoped Sr.sub.4 S(AlO).sub.6 displays 5 lumen/watt at 1000 V, with excellent blue chromatic saturation.
Shah, Nasrullah; Claessyns, Frederick; Rimmer, Stephen; Arain, Muhammad Balal; Rehan, Touseef; Wazwaz, Aref; Ahmad, Mohammad Wasi; Ul-Islam, Mazhar
2016-01-01
Affordable and efficient water treatment process to produce water free from various contaminants is a big challenge. The presence of toxic heavy metals, dyes, hazardous chemicals and other toxins causes contamination of water sources and our food chain and make them hazardous to living organisms. The current water treatment processes are no longer sustainable due to high cost and low efficiency. Due to advantageous properties, nanotechnology based materials can play a great role in increasing the efficiency of water treatment processes. Magnetic nanocomposites use nano as well as magnetic properties and have the potential to provide a sophisticated system to overcome most of the impurities present in water. There is a diversity of magnetic nanocomposites, however presently we have focussed the core-shell magnetic nanocomposites because they have excellent magnetic and separation properties, stability, and good biocompatibility. We collected systematically the bibliographic data bases for peer-reviewed research literature focusing on the theme of our review. The quality of the included research papers are selected by standard tools. A conceptual frame work is designed to arrange the topics and extracted the interventions and findings of the included studies. The overall study was divided into sections and each section incorporated the most appropriate literature citation. Total one hundred and eight references were included of which 32 references were used for basic description/introduction of core-shell magnetic nanocomposites. One review paper containing the synthesis methods for core shell magnetic nanocomposites is included while majority (76) of the references are included for comprehensive description of applications of the core-shell nanocomposites among which 25 were for dyes removal, 27 for hazardous metals, 07 for hazardous chemicals, 12 for pesticides and biological contaminants removal and five other including patents were added as miscellaneous substances removal from water sources. This review identified the effective role of core-shell magnetic nanocomposites for environmental remediation in terms of removal of various hazardous substances from water resources. The outcome of the present review confirms that the magnetic core-shell nanocomposites provide a cost effective and efficient way for the removal of various toxic substances including dyes, heavy metals, toxic organic chemicals, pesticides and some biological contaminants from water sources.
FeOOH-loaded MnO2 nano-composite: An efficient emergency material for thallium pollution incident.
Chen, Meiqing; Wu, Pingxiao; Yu, Langfeng; Liu, Shuai; Ruan, Bo; Hu, Haihui; Zhu, Nengwu; Lin, Zhang
2017-05-01
A FeOOH-loaded MnO 2 nano-composite was developed as an emergency material for Tl(I) pollution incident. Structural characterizations showed that FeOOH successfully loaded onto MnO 2 , the nanosheet-flower structure and high surface area (191 m 2 g -1 ) of material contributed to the excellent performance for Tl(I) removal. FeOOH-loaded MnO 2 with a Fe/Mn molar ratio of 1:2 exhibited a noticeable enhanced capacity for Tl(I) removal compared to that of pure MnO 2 . The outstanding performance for Tl(I) removal involves in extremely high efficiency (achieved equilibrium and drinking water standard within 4 min) and the large maximum adsorption capacity (450 mg g -1 ). Both the control-experiment and XPS characterization proved that the removal mechanism of Tl(I) on FeOOH-loaded MnO 2 included adsorption and oxidation: the oxidation of MnO 2 played an important role for Tl(I) removal, and the adsorption of FeOOH loaded on MnO 2 enhanced Tl(I) purification at the same time. In-depth purification of Tl(I) had reach drinking water standards (0.1 μg L -1 ) at pH above 7, and there wasn't security risk produced from the dissolution of Mn 2+ and Fe 2+ . Moreover, the as-prepared material could be utilized as a recyclable adsorbent regenerated by using NaOH-NaClO binary solution. Therefore, the synthesized FeOOH-loaded MnO 2 in this study has the potential to be applied as an emergency material for thallium pollution incident. Copyright © 2017 Elsevier Ltd. All rights reserved.
Khalid, Saira; Hashmi, Imran; Jamal Khan, Sher; Qazi, Ishtiaq A; Nasir, Habib
2016-10-01
Application of chlorpyrifos (CP) has increased its environmental concentration. Increasing CP concentration has increased chances of adverse health effects. Its removal from environment has attained researcher's attention. CP degrading bacterial strains were isolated from wastewater and agricultural soil. Finally, selected five bacterial strains were identified using 16S rRNA nucleotide sequence analysis as Pseudomonas kilonensis SRK1, Serratia marcescens SRK2, Bacillus pumilus SRK4, Achromobacter xylosoxidans SRK5, and Klebsiella sp. T13. Interaction studies among bacterial strains demonstrated possibility for development of five membered bacterial consortium. Biodegradation potential of bacterial consortium was investigated in the presence of petrochemicals and trace metals. About 98 % CP removal was observed in sequencing batch reactors at inoculum level, 10 %; pH, 7; CP concentration, 400 mgL -1 , and HRT, 48 h. Experimental data has shown an excellent fit to first order growth model. Among all petrochemicals only toluene (in low concentration) has stimulatory effect on biodegradation of CP. Addition of petrochemicals (benzene, toluene, and xylene) in high concentration (100 mg L -1 ) inhibited bacterial activity and decreased CP removal. At low concentration i.e., 1 mg L -1 of inorganic contaminants (Cu, Hg, and Zn) >96 % degradation was observed. Addition of Cu(II) in low concentration has stimulated CP removal efficiency. Hg(II) in all concentrations has strongly inhibited biodegradation rate except at 1 mgL -1 . In simulated pesticide, wastewater CP removal efficiency decreased to 77.5 %. Outcomes of study showed that both type and concentration of petrochemicals and trace metals influenced biodegradation of CP.
Zhao, Qian; Han, Hongjun; Hou, Baolin; Zhuang, Haifeng; Jia, Shengyong; Fang, Fang
2014-11-01
A system combining granular activated carbon and powdered activated carbon technologies along with shortcut biological nitrogen removal (GAC-PACT-SBNR) was developed to enhance total nitrogen (TN) removal for anaerobically treated coal gasification wastewater with less need for external carbon resources. The TN removal efficiency in SBNR was significantly improved by introducing the effluent from the GAC process into SBNR during the anoxic stage, with removal percentage increasing from 43.8%-49.6% to 68.8%-75.8%. However, the TN removal rate decreased with the progressive deterioration of GAC adsorption. After adding activated sludge to the GAC compartment, the granular carbon had a longer service-life and the demand for external carbon resources became lower. Eventually, the TN removal rate in SBNR was almost constant at approx. 43.3%, as compared to approx. 20.0% before seeding with sludge. In addition, the production of some alkalinity during the denitrification resulted in a net savings in alkalinity requirements for the nitrification reaction and refractory chemical oxygen demand (COD) degradation by autotrophic bacteria in SBNR under oxic conditions. PACT showed excellent resilience to increasing organic loadings. The microbial community analysis revealed that the PACT had a greater variety of bacterial taxons and the dominant species associated with the three compartments were in good agreement with the removal of typical pollutants. The study demonstrated that pre-adsorption by the GAC-sludge process could be a technically and economically feasible method to enhance TN removal in coal gasification wastewater (CGW). Copyright © 2014. Published by Elsevier B.V.
Post-anoxic denitrification via nitrite driven by PHB in feast-famine sequencing batch reactor.
Chen, Hong-Bo; Yang, Qi; Li, Xiao-Ming; Wang, Yan; Luo, Kun; Zeng, Guang-Ming
2013-08-01
Recently, it was found that excess phosphorus removal could be induced by aerobic/extended-idle regime. In this study, an anoxic period was introduced after the aeration to realize simultaneous nitrogen and phosphorus removal. The results demonstrated that stable partial nitrification could be achieved by controlling the aeration duration at 2.5h because it could not only obtain a desirable ammonia oxidation to nitrite but also avoid the extensive aeration converting nitrite to nitrate, and moreover, the accumulated poly-3-hydroxybutyrate still remain in a relative sufficient concentration (1.5mmolCg(-1) VSS), which could subsequently served as internal carbon source for post-anoxic denitrification. The nitrite accumulation ratio was observed to have relatively high correlation with biological nutrient removal. Over stages with stable high-level nitrite accumulation, the process achieved desirable and stable nitrogen and phosphorus removal efficiencies averaging 95% and 99% respectively. Fluorescence in situ hybridization analysis showed that the faster growth rate of the ammonia oxidizing bacteria than the nitrite oxidizing bacteria was the main reason for achieving nitrite accumulation. In addition, the secondary phosphorus release was negligible and the process maintained excellent nutrient removal under low influent ammonia nitrogen. Copyright © 2013 Elsevier Ltd. All rights reserved.
Wang, Zhongde; Feng, Yanting; Hao, Xiaogang; Huang, Wei; Guan, Guoqing; Abudula, Abuliti
2014-06-15
A concept of electrochemically switched ion exchange (ESIX) hybrid film system with piston-like proton pumping effect for the removal of heavy metal ions was proposed. Based on this concept, a novel ESIX hybrid film composed of layered alpha zirconium phosphate (α-Zr(HPO4)2; α-ZrP) nanosheets intercalated with a potential-responsive conducting polyaniline (PANI) was developed for the removal of Ni(2+) ions from wastewater. It is expected that the space between α-ZrP nanosheets acts as the reservoir for the functional ions while the intercalated PANI works as the potential-sensitive function element for piston-like proton pumping in such ESIX hybrid films. The prepared ESIX hybrid film showed an excellent property of rapid removal of Ni(2+) ions from wastewater with a high selectivity. The used film was simply regenerated by only altering the applied potential. The ion pumping effect for the ESIX of Ni(2+) ions using this kind of film was proved via XPS analysis. The proposed ESIX hybrid film should have high potential for the removal of Ni(2+) ions and/or other heavy metal ions from wastewater in various industrial processes. Copyright © 2014 Elsevier B.V. All rights reserved.
Azhar, Muhammad Rizwan; Abid, Hussein Rasool; Sun, Hongqi; Periasamy, Vijay; Tadé, Moses O; Wang, Shaobin
2016-09-15
The increasing concerns on toxicity of sulfonamide antibiotics in water require a prompt action to establish efficient wastewater treatment processes for their removal. In this study, adsorptive removal of a model sulfonamide antibiotic, sulfachloropyridazine (SCP), from wastewater is presented for the first time using a metal organic framework (MOF). A high surface area and thermally stable MOF, HKUST-1, was synthesized by a facile method. Batch adsorption studies were systematically carried out using HKUST-1. The high surface area and unsaturated metal sites resulted in a significant adsorption capacity with faster kinetics. Most of the SCP was removed in 15min and the kinetic data were best fitted with the pseudo second order model. Moreover, isothermal data were best fitted with the Langmuir model. The thermodynamic results showed that the adsorption is a spontaneous and endothermic process. The adsorption capacity of HKUST-1 is 384mg/g at 298K which is the highest compared to most of the materials for the antibiotics. The high adsorption capacity is attributed mainly to π-π stacking, hydrogen bonding and electrostatic interactions. Copyright © 2016 Elsevier Inc. All rights reserved.
Essawy, Hisham A; Mohamed, Magdy F; Ammar, Nabila S; Ibrahim, Hanan S
2017-10-01
A specially-designed graft copolymer of acrylic acid onto in-situ formed cellulose-fulvate hybrid showed privileged tendency for uptake of Pb(II) during competitive removal from a mixture containing Cd(II) and Ni(II) within 5min at pH 5. This novel trend is attributed mainly to the crowded high content of coordinating centers within the designed graft copolymer along with the acquired superabsorbency. This provides an outstanding tool to separate some metal ions selectively from mixtures containing multiple ions on kinetic basis. Thus, the designed graft copolymer structure exhibited superior efficiency that reached ∼95% for sole removal of Pb(II). Kinetic modeling for Pb(II) individual removal showed excellent fitting with a pseudo second-order model. Intraparticle diffusion model on the other hand ensured governance of boundary layer effect over diffusion during the removal process due to the superabsorbency feature of the graft copolymer. The experimental findings were described with models such as Freundlich, Langmuir, and Dubinin-Radushkevich. The Langmuir and Freundlich models showed convenience with the adsorption isotherm of Pb(II) onto the developed graft copolymer. Copyright © 2017 Elsevier B.V. All rights reserved.
Feng, Yan; Li, Xing; Song, Ting; Yu, Yanzhen; Qi, Jingyao
2017-11-01
Improving the stimulation effect of electric current density (ECD) on microbial community is critical in designing and operating TDE-BAF. This study investigated the effect of ECD at 0.00, 4.08, 6.12, 12.20, 14.25, 16.30 and 20.20A·m -2 on the removal performance, diversity and structure of microbial community in TDE-BAF. Results indicated that the ECD of 14.25A·m -2 exhibited the highest COD, TOC and NH 4 + -N average removal rates with 93.33%, 91.26% and 93.87%, respectively; Under high ECD, especially exceeding 14.25A·m -2 , the inhibition of growth and activity because of plasmatorrhexis was in agreement with the sharp biomass decline; there was no significant relation between community richness and diversity and removal efficiency below optimum ECD, while above optimal ECD, it was just the opposite; Microbial communities mainly including Hydrogenophaga, Saprospiraceae_uncultured, Delftia, Enterobacter, Pseudomonas, Pseudoxanthomonas, and Nitrosospira and physicochemical properties well explained the excellent removal performance at the optimum ECD. Copyright © 2017 Elsevier Ltd. All rights reserved.
Hu, Xinjiang; Zhao, Yunlin; Wang, Hui; Tan, Xiaofei; Yang, Yuanxiu; Liu, Yunguo
2017-01-01
A readily separated composite was prepared via direct assembly of Fe3O4 magnetic nanoparticles onto the surface of graphene oxide (GO) (labeled as Fe3O4@GO) and used as an adsorbent for the removal of tetracycline (TC) from wastewater. The effects of external environmental conditions, such as pH, ionic strength, humic acid (HA), TC concentration, and temperature, on the adsorption process were studied. The adsorption data were analyzed by kinetics and isothermal models. The results show that the Fe3O4@GO composite has excellent sorptive properties and can efficiently remove TC. At low pH, the adsorption capacity of Fe3O4@GO toward TC decreases slowly with increasing pH value, while the adsorption capacity decreases rapidly at higher pH values. The ionic strength has insignificant effect on TC adsorption. The presence of HA affects the affinity of Fe3O4@GO to TC. The pseudo-second-order kinetics model and Langmuir model fit the adsorption data well. When the initial concentration of TC is 100 mg/L, a slow adsorption process dominates. Film diffusion is the rate limiting step of the adsorption. Importantly, Fe3O4@GO has good regeneration performance. The above results are of great significance to promote the application of Fe3O4@GO in the treatment of antibiotic wastewater. PMID:29194395
Wu, Kai-cheng; Wu, Peng; Xu, Yue-zhong; Li, Yue-han; Shen, Yao-liang
2015-08-01
Anaerobic Baffled Reactor (ABR) was altered to make an integrated anaerobic-aerobic reactor. The research investigated the mechanism of aerobic sludge granulation, under the condition of continuous-flow. The last two compartments of the ABR were altered into aeration tank and sedimentation tank respectively with seeded sludge of anaerobic granular sludge in anaerobic zone and conventional activated sludge in aerobic zone. The HRT was gradually decreased in sedimentation tank from 2.0 h to 0.75 h and organic loading rate was increased from 1.5 kg x (M3 x d)(-1) to 2.0 kg x (M3 x d)(-1) while the C/N of 2 was controlled in aerobic zone. When the system operated for 110 days, the mature granular sludge in aerobic zone were characterized by compact structure, excellent sedimentation performance (average sedimentation rate was 20.8 m x h(-1)) and slight yellow color. The system performed well in nitrogen and phosphorus removal under the conditions of setting time of 0.75 h and organic loading rate of 2.0 kg (m3 x d)(-1) in aerobic zone, the removal efficiencies of COD, NH4+ -N, TP and TN were 90%, 80%, 65% and 45%, respectively. The results showed that the increasing selection pressure and the high organic loading rate were the main propulsions of the aerobic sludge granulation.
Sahinkaya, Erkan
2009-05-15
Sulfidogenic treatment of sulfate (2-10g/L) and zinc (65-677mg/L) containing simulated wastewater was studied in a mesophilic (35 degrees C) CSTR. Ethanol was supplemented (COD/sulfate=0.67) as carbon and energy source for sulfate-reducing bacteria (SRB). The robustness of the system was studied by increasing Zn, COD and sulfate loadings. Sulfate removal efficiency, which was 70% at 2g/L feed sulfate concentration, steadily decreased with increasing feed sulfate concentration and reached 40% at 10g/L. Over 99% Zn removal was attained due to the formation of zinc-sulfide precipitate. COD removal efficiency at 2g/L feed sulfate concentration was over 94%, whereas, it steadily decreased due to the accumulation of acetate at higher loadings. Alkalinity produced from acetate oxidation increased wastewater pH remarkably when feed sulfate concentration was 5g/L or lower. Electron flow from carbon oxidation to sulfate reduction averaged 83+/-13%. The rest of the electrons were most likely coupled with fermentative reactions as the amount of methane production was insignificant. The developed ANN model was very successful as an excellent to reasonable match was obtained between the measured and the predicted concentrations of sulfate (R=0.998), COD (R=0.993), acetate (R=0.976) and zinc (R=0.827) in the CSTR effluent.
Cabrera-Lafaurie, Wilman A; Román, Félix R; Hernández-Maldonado, Arturo J
2012-11-15
Pharmaceutical and Personal Care Products (PPCPs) are considered emerging contaminants, and their efficient removal from water is going to be a challenging endeavor. Microporous adsorbent materials, including pillared clays, could offer a potential solution if tailored properly. Although pillared clays have been employed previously for the removal of organics, the effective removal of PPCPs will only be possible if their surface and textural properties are manipulated from the bottom-up. This work presents the use of modified inorganic-organic pillared clays (IOCs) for the adsorption of salicylic acid, clofibric acid, carbamazepine, and caffeine. The IOCs have been modified with Co(2+), Cu(2+), or Ni(2+) to induce complexation-like adsorbate-adsorbent interactions at ambient conditions, in an attempt to provide an efficient and yet reversible driving force in the sub-ppm concentration range. Furthermore, the IOCs were partially calcined to increase effective surface area by an order of magnitude while preserving some hydrophobicity. In general, the Ni(2+) IOCs exhibited the greatest interaction with salicylic and clofibric acids, respectively, while the Co(2+) adsorbents excelled at adsorbing caffeine at low concentrations. All of the metal-modified IOCs showed comparable adsorption capacities for the case of carbamazepine, probably due to the lack of availability of particular functional groups in this adsorbate. Copyright © 2012 Elsevier Inc. All rights reserved.
Wei, Xiangxia; Sugumaran, Pon Janani; Peng, Erwin; Liu, Xiao Li; Ding, Jun
2017-10-25
Wastewater contaminated with heavy metals is a worldwide concern due to the toxicity to human and animals. The current study presents an incorporation of adsorption and low-field dynamic magnetic separation technique for the treatment of heavy-metal-contaminated water. The key components are the eco-fabricated magnetic filter with mesh architectures (constituted of a soft magnetic material (Ni,Zn)Fe 2 O 4 ) and poly(acrylic acid) (PAA)-coated quasi-superparamagnetic Fe 3 O 4 nanoparticles (NPs). PAA-coated Fe 3 O 4 NPs possess high adsorption capacity of heavy metal ions including Pb, Ni, Co, and Cu and can be easily regenerated after the adjustment of pH. Moreover, magnetic mesh filter has shown excellent collection ability of quasi-superparamagnetic particles under a magnetic field as low as 0.7 kOe (0.07 T) and can easily release these particles during ultrasonic washing when small magnets are removed. In the end, after one filtration process, the heavy metal concentration can be significantly decreased from 1.0 mg L -1 to below the drinking water standard recommended by the World Health Organization (e.g., less than 0.01 mg L -1 for Pb). Overall, a proof-of-concept adsorption and subsequent low-field dynamic separation technique is demonstrated as an economical and efficient route for heavy metal removal from wastewater.
A novel technique of semi-aerobic aged refuse biofilter for leachate treatment.
Han, Zhi-Yong; Liu, Dan; Li, Qi-Bin; Li, Gui-Zhi; Yin, Zhao-Yang; Chen, Xin; Chen, Jian-Nan
2011-08-01
We developed a semi-aerobic aged refuse biofilter (SAARB) for leachate treatment and examined its advantages and disadvantages compared to previous aged refuse biofilters (ARBs). To assess its treatment capability, decontamination mechanisms and optimal performance parameters, a single-period experiment and L(9)(3(4)) orthogonal array design experiments were conducted on artificial leachate. The SAARB markedly enhanced the treatment capability and removal efficiency of organic matter and nitrogen pollutants due to the alternating aerobic-anoxic-anaerobic zones in situ. The reduction in chemical oxygen demand (COD), ammonia nitrogen (NH(4)(+)-N) and total nitrogen (TN) exceeded 98%, 94%, and 80%, respectively. After the leachate was distributed onto the SAARB surface, the effluent velocity decreased as a logarithmic function, and there was a concomitant reduction in leachate effluent volume. Based on the capacity for removal of COD, NH(4)(+)-N, and TN, the effective height of aged refuse in a SAARB was enough to be 900mm. An excellent treatment efficiency could be achieved at 20-35°C, with a leachate distribution time of 1h once every period of 2-3 days, hydraulic loading of 11-30L/(m(3)day), and COD loading of 550-1200g/(m(3)day). This new SAARB system demonstrates superior efficacy for biofilter compared to other ARB systems, especially for nitrogen removal from leachate. Copyright © 2011 Elsevier Ltd. All rights reserved.
Kang, Sung-Min; Jang, Sung-Chan; Heo, Nam Su; Oh, Seo Yeong; Cho, Hye-Jin; Rethinasabapathy, Muruganantham; Vilian, A T Ezhil; Han, Young-Kyu; Roh, Changhyun; Huh, Yun Suk
2017-09-15
Radioactive isotopes and fission products have attracted considerable attention because of their long lasting serious damage to the health of humans and other organisms. This study examined the toxicity and accumulation behavior of cesium towards P. aeruginosa PAO1 and its capacity to remove cesium from waste water. Interestingly, the programmed bacterial growth inhibition occurred according to the cesium environment. The influence of cesium was analyzed using several optical methods for quantitative evaluation. Cesium plays vital role in the growth of microorganisms and functions as an anti-microbial agent. The toxicity of Cs to P. aeruginosa PAO1 increases as the concentration of cesium is increased in concentration-dependent manner. P. aeruginosa PAO1 shows excellent Cs removal efficiency of 76.1% from the contaminated water. The toxicity of cesium on the cell wall and in the cytoplasm were studied by transmission electron microscopy and electron dispersive X-ray analysis. Finally, the removal of cesium from wastewater using P. aeruginosa PAO1 as a potential biosorbent and the blocking of competitive interactions of other monovalent cation, such as potassium, were assessed. Overall, P. aeruginosa PAO1 can be used as a high efficient biomaterial in the field of radioactive waste disposal and management. Copyright © 2017 Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Wang, Liwei; Fang, Fei; Liu, Yang; Li, Jing; Huang, Xiaojun
2016-11-01
Low-density lipoprotein (LDL) gains worldwide attention for decades as the key risk factor to atherosclerosis that progressively deteriorating into cardiovascular diseases. Until recent years, LDL-apheresis comes to be extensively used as a direct and efficient LDL removal method, with LDL adsorption materials particularly important. In this paper, a new strategy based on the co-deposition of polydopamine (PDA) with polyethylenimine (PEI) onto polysulfone (PSf) membranes, then subsequent heparinization by amino-carbonyl reactions, to achieve LDL selectivity and simultaneous biocompatibility, is proposed. Surface properties of modified PSf membranes are characterized by ATR-FTIR, XPS, FESEM, Zeta potential and WCA measurements. LDL adsorption ability is investigated by ELISA, while blood biocompatibility is evaluated by platelet adhesion experiments. Results suggest that heparin-modified PSf membranes show high selectivity for LDL removal and fine biocompatibility in contact with plasma, as excellent potential materials for LDL-apheresis.
Potential Water Reuse for High Strength Fruit and Vegetable Processor Wastewater with an MBR.
Moore, Adam W; Zytner, Richard G; Chang, Sheng
High strength food processing wastewater from two processing plants was studied to determine the effectiveness of an aerobic membrane bioreactor (MBR) to reduce BOD, TSS and nutrients below municipal sewer discharge limits. The MBR comprised a 20 L lab-scale reactor combined with a flat sheet, ultrafiltration membrane module. The parameters studied included the operational flux, solids and hydraulic retention times and recirculation ratio with regards to nitrification/denitrification. The MBR system provided excellent removal efficiency at 97% COD, 99% BOD, 99.9% TSS, 90% TKN, and 60% TP for both processing plants, which eliminated the surcharges, allowing the firms to stay competitive. Effluent reuse tests showed that activated carbon proved effective in removing color from the MBR permeate, while UV treatment was able to achieve a 5 log reduction in bacteriophage. Overall, these treatment successes show the potential for water reuse in the agrifood sector.
A versatile MOF-based trap for heavy metal ion capture and dispersion.
Peng, Yaguang; Huang, Hongliang; Zhang, Yuxi; Kang, Chufan; Chen, Shuangming; Song, Li; Liu, Dahuan; Zhong, Chongli
2018-01-15
Current technologies for removing heavy metal ions are typically metal ion specific. Herein we report the development of a broad-spectrum heavy metal ion trap by incorporation of ethylenediaminetetraacetic acid into a robust metal-organic framework. The capture experiments for a total of 22 heavy metal ions, covering hard, soft, and borderline Lewis metal ions, show that the trap is very effective, with removal efficiencies of >99% for single-component adsorption, multi-component adsorption, or in breakthrough processes. The material can also serve as a host for metal ion loading with arbitrary selections of metal ion amounts/types with a controllable uptake ratio to prepare well-dispersed single or multiple metal catalysts. This is supported by the excellent performance of the prepared Pd 2+ -loaded composite toward the Suzuki coupling reaction. This work proposes a versatile heavy metal ion trap that may find applications in the fields of separation and catalysis.
Wang, Bing; Li, Wei; Liu, Lei; Huang, Guo He
2016-07-28
This study was undertaken to investigate the effects of different sludge reflux ratios (SRRs) on the overall performance and the fouling behavior of the up-flow anaerobic sludge blanket (UASB) reactor-anoxic-membrane bioreactor (MBR). The leachate and synthetic municipal wastewater were mixed in order to improve the biodegradability of the old leachate. Results showed that excellent removal efficiencies for chemical oxygen demand (COD) and ammonia nitrogen (NH3-N) were obtained by using the integrated UASB-anoxic-MBR process. The average COD removals were 91.01%, 93.90%, and 92.67% and that of NH3-N were 98.1%, 98.5%, and 98.9% when SRRs were 100%, 300%, and 500%, respectively. The study of the membrane fouling mechanism indicated that proteins, hydrocarbons and inorganic matter are the main elements of the cake layers.
Ultrahigh and Selective SO2 Uptake in Inorganic Anion-Pillared Hybrid Porous Materials.
Cui, Xili; Yang, Qiwei; Yang, Lifeng; Krishna, Rajamani; Zhang, Zhiguo; Bao, Zongbi; Wu, Hui; Ren, Qilong; Zhou, Wei; Chen, Banglin; Xing, Huabin
2017-07-01
The efficient capture of SO 2 is of great significance in gas-purification processes including flue-gas desulfurization and natural-gas purification, but the design of porous materials with high adsorption capacity and selectivity of SO 2 remains very challenging. Herein, the selective recognition and dense packing of SO 2 clusters through multiple synergistic host-guest and guest-guest interactions by controlling the pore chemistry and size in inorganic anion (SiF 6 2- , SIFSIX) pillared metal-organic frameworks is reported. The binding sites of anions and aromatic rings in SIFSIX materials grasp every atom of SO 2 firmly via S δ+ ···F δ- electrostatic interactions and O δ- ···H δ+ dipole-dipole interactions, while the guest-guest interactions between SO 2 molecules further promote gas trapping within the pore space, which is elucidated by first-principles density functional theory calculations and powder X-ray diffraction experiments. These interactions afford new benchmarks for the highly efficient removal of SO 2 from other gases, even if at a very low SO 2 concentration. Exceptionally high SO 2 capacity of 11.01 mmol g -1 is achieved at atmosphere pressure by SIFSIX-1-Cu, and unprecedented low-pressure SO 2 capacity is obtained in SIFSIX-2-Cu-i (4.16 mmol g -1 SO 2 at 0.01 bar and 2.31 mmol g -1 at 0.002 bar). More importantly, record SO 2 /CO 2 selectivity (86-89) and excellent SO 2 /N 2 selectivity (1285-3145) are also achieved. Experimental breakthrough curves further demonstrate the excellent performance of these hybrid porous materials in removing low-concentration SO 2 . © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Umbreen, Nadia; Sohni, Saima; Ahmad, Imtiaz; Khattak, Nimat Ullah; Gul, Kashif
2018-05-14
Herein, self-assembled three-dimensional reduced graphene oxide (RGO)-based hydrogels were synthesized and characterized in detail. A thorough investigation on the uptake of three widely used pharmaceutical drugs, viz. Naproxen (NPX), Ibuprofen (IBP) and Diclofenac (DFC) was carried out from aqueous solutions. To ensure the sustainability of developed hydrogel assembly, practically important parameters such as desorption, recyclability and applicability to real samples were also evaluated. Using the developed 3D hydrogels as adsorptive platforms, excellent decontamination for the above mentioned persistent pharmaceutical drugs was achieved in acidic pH with a removal efficiency in the range of 70-80%. These hydrogels showed fast adsorption kinetics and experimental findings were fitted to different kinetic models, such as pseudo-first order, pseudo-second order, intra-particle and the Elovich models in an attempt to better understand the adsorption kinetics. Furthermore, equilibrium adsorption data was fitted to the Langmuir and Freundlich models, where relatively higher R 2 values obtained in case of former one suggested that monolayer adsorption played an important part in drug uptake. Thermodynamic aspects were also studied and negative ΔG 0 values obtained indicated the spontaneous nature of adsorption process. The study was also extended to check practical utility of as-prepared hydrogels by spiking real aqueous samples with drug solution, where high % recoveries obtained for NPX, IBP and DFC were of particular importance with regard to prospective application in wastewater treatment systems. We advocate RGO-based hydrogels as environmentally benign, readily recoverable/recyclable material with excellent adsorption capacity for application in wastewater purification. Copyright © 2018 Elsevier Inc. All rights reserved.
Yang, Y; Wang, Z M; Liu, C; Guo, X C
2012-01-01
Construction solid waste (CSW), an inescapable by-product of the construction and demolition process, was used as main substrate in a four-stage vertical subsurface flow constructed wetland system to improve phosphorus P removal from domestic wastewater. A 'tidal flow' operation was also employed in the treatment system. Under a hydraulic loading rate (HLR) of 0.76 m3/m2 d for 1st and 3rd stage and HLR of 0.04 m3/m2 d for 2nd and 4th stage of the constructed wetland system respectively and tidal flow operation strategy, average removal efficiencies of 99.4% for P, 95.4% for ammoniacal-nitrogen, 56.5% for total nitrogen and 84.5% for total chemical oxygen demand were achieved during the operation period. The CSW-based constructed wetland system presents excellent P removal performance. The adoption of tidal flow strategy creates the aerobic/anoxic condition intermittently in the treatment system. This can achieve better oxygen transfer and hence lead to more complete nitrification and organic matter removal and enhanced denitrification. Overall, the CSW-based tidal flow constructed wetland system holds great promise for enabling high rate removal of P, ammoniacal-nitrogen and organic matter from domestic wastewater, and transforms CSW from a waste into a useful material.
Mahmoud, Mamdoh R; Seliman, Ayman F
2014-09-01
A novel mesoporous silica-coated ferrocyanide (MSCFC) composite was successfully synthesized and evaluated as a dual-function material for simultaneous removal of (137)Cs(+) cations and (99)TcO4(-) anions from aqueous solutions. Sorption behavior of both radionuclides on MSCFC under different experimental conditions has been studied using a batch technique. Results revealed that about 100% of (137)Cs(+) and 97% of (99)TcO4(-) were removed by MSCFC in the pH ranges of 2.2-12.4 and 4.1-9.5, respectively. Sorption kinetic data were analyzed by pseudo-first-order, pseudo-second-order and intraparticle diffusion kinetic models, while Langmuir and Freundlich models were applied for the sorption isotherms. The maximum sorption capacity of MSCFC for radiocesium was determined and compared with other reported sorbents. Applicability of the coated ferrocyanide for simultaneous removal of (137)Cs(+) and (99)TcO4(-) from low-level liquid radioactive waste (LLLW) was also tested, and the data revealed that 99.91% and 98.34% were removed from (137)Cs(+) and (99)TcO4(-), respectively. It is concluded that MSCFC exhibits excellent efficiency for simultaneous removal of the mixed radionuclides with different charge from LLLW. Copyright © 2014 Elsevier Ltd. All rights reserved.
Sustainability of a constructed wetland faced with a depredation event.
Maine, M A; Hadad, H R; Sánchez, G C; Mufarrege, M M; Di Luca, G A; Caffaratti, S E; Pedro, M C
2013-10-15
A free water surface constructed wetland (CW) designed for effluent treatment was dominated by the emergent macrophyte Typha domingensis reaching a cover of roughly 80% for 5 years. Highly efficient metal and nutrient removal was reported during this period. In June 2009, a population of approximately 30 capybaras (Hydrochoerus hydrochaeris) caused the complete depredation of the aerial parts of macrophytes. However, plant roots and rhizomes were not damaged. After depredation stopped, T. domingensis showed a luxuriant growth, reaching a cover of 60% in 30 days. The objective of this work was to evaluate the sustainability of the CW subjected to an extreme event. Removal efficiency of the system was compared during normal operation, during the depredation event and over the subsequent recovery period. The CW efficiently retained contaminants during all the periods studied. However, the best efficiencies were registered during the normal operation period. There were no significant differences between the performances of the CW over the last two periods, except for BOD. The mean removal percentages during normal operation/depredation event/recovery period, were: 84.9/73.2/74.7% Cr; 66.7/48.0/51.2% Ni; 97.2/91.0/89.4% Fe; 50.0/46.8/49.5% Zn; 81.0/84.0/80.4% NO3(-); 98.4/93.4/84.1% NO2(-); 73.9/28.2/53.2% BOD and 75.4/40.9/44.6% COD. SRP and TP presented low removal efficiencies. Despite the anoxic conditions, contaminants were not released from sediment, accumulating in fractions that proved to be stable faced with changes in the operating conditions of the CW. T. domingensis showed an excellent growth response, consequently the period without aerial parts lasted a few months and the CW could recover its normal operation. Plants continued retaining contaminants in their roots and the sediment increased its retention capacity, balancing the operating capacity of the system. This was probably due to the fact that the CW had reached its maturity, with a complete root-rhizome development. These results demonstrated that faced with an incidental problem, this mature CW was capable of maintaining its efficiency and recovering its vegetation, demonstrating the robustness of these treatment systems. Copyright © 2013 Elsevier Ltd. All rights reserved.
Ying, Diwen; Peng, Juan; Xu, Xinyan; Li, Kan; Wang, Yalin; Jia, Jinping
2012-08-30
A comparative study of treating mature landfill leachate with various treatment processes was conducted to investigate whether the method of combined processes of internal micro-electrolysis (IME) without aeration and IME with full aeration in one reactor was an efficient treatment for mature landfill leachate. A specifically designed novel sequencing batch internal micro-electrolysis reactor (SIME) with the latest automation technology was employed in the experiment. Experimental data showed that combined processes obtained a high COD removal efficiency of 73.7 ± 1.3%, which was 15.2% and 24.8% higher than that of the IME with and without aeration, respectively. The SIME reactor also exhibited a COD removal efficiency of 86.1 ± 3.8% to mature landfill leachate in the continuous operation, which is much higher (p<0.05) than that of conventional treatments of electrolysis (22.8-47.0%), coagulation-sedimentation (18.5-22.2%), and the Fenton process (19.9-40.2%), respectively. The innovative concept behind this excellent performance is a combination effect of reductive and oxidative processes of the IME, and the integration electro-coagulation. Optimal operating parameters, including the initial pH, Fe/C mass ratio, air flow rate, and addition of H(2)O(2), were optimized. All results show that the SIME reactor is a promising and efficient technology in treating mature landfill leachate. Copyright © 2012 Elsevier B.V. All rights reserved.
Wang, Mengjing; Liu, Wenbin; Hou, Meifang; Li, Qianqian; Han, Ying; Liu, Guorui; Li, Haifeng; Liao, Xiao; Chen, Xuebin; Zheng, Minghui
2016-01-01
The sintering flue gas samples were collected at the inlets and outlets of the desulfurization systems to evaluate the influence of the systems on PCNs emission concentrations, profiles, and emission factors. The PCNs concentrations at the inlets and outlets were 27888–153672 pg m−3 and 11988–42245 pg m−3,respectively. Desulfurization systems showed excellent removal for PCNs, and the removal efficiencies of PCNs increase with increasing chlorination level. Lower chlorinated homologs are more sensitive to the desulfurization process than higher ones. High levels of PCNs were also detected in the gypsum (11600–29720 pg g−1) and fly ash samples (4946–64172 pg g−1). The annual total emissions of PCNs released to flue gas and gypsum from the sintering plants were about 394 kg, 48.5% of which was in gypsum. The surface area of the fly ash samples increased significantly from the first to the fourth stage of the series-connected electrostatic precipitator, accompanying obvious rising of concentration of PCNs in the fly ash samples. PMID:27197591
Chen, Yufei; Ru, Jing; Geng, Biyao; Wang, Haiying; Tong, Congcong; Du, Chungui; Wu, Shengchun; Liu, Hongzhi
2017-10-15
A composite cryogel was prepared from quaternized nanofibrillated cellulose (Q-NFC) and chitosan (CS) through a combination of freeze-drying and cross-linking with epichlorohydrin. The specific surface area of the composite cryogel was approximately two times that of Q-NFC cryogel. And the composite cryogel exhibited superior adsorption properties of anionic dyes than either the Q-NFC or CS cryogel controls. The adsorption isotherm well fitted the Langmuir model with the maximum theoretical adsorption capacity up to 473.9mg/g. The adsorption behavior was found to follow pseudo second-order kinetic model, indicating the chemisorption nature. Notably, the composite cryogel could effectively separate the cationic dye from anionic one. Furthermore, the composite cryogel displayed excellent reusability, evidenced by the removal percentage of Acid red 88 still as high as 96% even after five adsorption-desorption cycles. These advantages would make it an environmentally friendly candidate for the use in the separation and efficient removal of anionic dyes. Copyright © 2017 Elsevier Ltd. All rights reserved.
Fluorescent and cathodoluminescent phosphors structurally related to sodalite
Phillips, M.L.F.; Shea, L.E.
1998-09-29
Blue, quantum-confined phosphors are disclosed for field-emission displays made by reducing metal (M) sulfoaluminates at high temperature. This yields phases of the type M{sub 4}(AlO{sub 2}){sub 6}S. Bulk sulfide contaminant mixed with the reduced sulfoaluminate phase is removed by treating it with a chelating agent in nonaqueous solution. A photometric cathodoluminescence efficiency of 9 lumen/watt at 1,000 V for Sr{sub 3}PbS(AlO{sub 2}){sub 6} is observed. Undoped Sr{sub 4}S(AlO){sub 6} displays 5 lumen/watt at 1,000 V, with excellent blue chromatic saturation. 2 figs.
Gondal, Mohammed A; Chang, Xiao F; Yamani, Zain H; Yang, Guo F; Ji, Guang B
2011-01-01
Single-crystalline Gallium Nitride (GaN) thin films were fabricated and grown by metal organic chemical vapor deposition (MOCVD) method on c-plane sapphire substrates and then characterized by high resolution-X-ray diffraction (HR-XRD) and photoluminescence (PL) measurements. The photocatalytic decomposition of Sulforhodamine B (SRB) molecules on GaN thin films was investigated under 355 nm pulsed UV laser irradiation. The results demonstrate that as-grown GaN thin films exhibited efficient degradation of SRB molecules and exhibited an excellent photocatalytic-activity-stability under UV pulsed laser exposure.
Son, Eun-Bi; Poo, Kyung-Min; Chang, Jae-Soo; Chae, Kyu-Jung
2018-02-15
Despite the excellent sorption ability of biochar for heavy metals, it is difficult to separate and reuse after adsorption when applied to wastewater treatment process. To overcome these drawbacks, we developed an engineered magnetic biochar by pyrolyzing waste marine macro-algae as a feedstock, and we doped iron oxide particles (e.g., magnetite, maghemite) to impart magnetism. The physicochemical characteristics and adsorption properties of the biochar were evaluated. When compared to conventional pinewood sawdust biochar, the waste marine algae-based magnetic biochar exhibited a greater potential to remove heavy metals despite having a lower surface area (0.97m 2 /g for kelp magnetic biochar and 63.33m 2 /g for hijikia magnetic biochar). Although magnetic biochar could be effectively separated from the solution, however, the magnetization of the biochar partially reduced its heavy metal adsorption efficiency due to the biochar's surface pores becoming plugged with iron oxide particles. Therefore, it is vital to determine the optimum amount of iron doping that maximizes the biochar's separation without sacrificing its heavy metal adsorption efficiency. The optimum concentration of the iron loading solution for the magnetic biochar was determined to be 0.025-0.05mol/L. The magnetic biochar's heavy metal adsorption capability is considerably higher than that of other types of biochar reported previously. Further, it demonstrated a high selectivity for copper, showing two-fold greater removal (69.37mg/g for kelp magnetic biochar and 63.52mg/g for hijikia magnetic biochar) than zinc and cadmium. This high heavy metal removal performance can likely be attributed to the abundant presence of various oxygen-containing functional groups (COOH and OH) on the magnetic biochar, which serve as potential adsorption sites for heavy metals. The unique features of its high heavy metal removal performance and easy separation suggest that the magnetic algae biochar can potentially be applied in diverse areas that require biosorbents for pollutant removal. Copyright © 2017 Elsevier B.V. All rights reserved.
Zhao, Limian; Lucas, Derick; Long, David; Richter, Bruce; Stevens, Joan
2018-05-11
This study presents the development and validation of a quantitation method for the analysis of multi-class, multi-residue veterinary drugs using lipid removal cleanup cartridges, enhanced matrix removal lipid (EMR-Lipid), for different meat matrices by liquid chromatography tandem mass spectrometry detection. Meat samples were extracted using a two-step solid-liquid extraction followed by pass-through sample cleanup. The method was optimized based on the buffer and solvent composition, solvent additive additions, and EMR-Lipid cartridge cleanup. The developed method was then validated in five meat matrices, porcine muscle, bovine muscle, bovine liver, bovine kidney and chicken liver to evaluate the method performance characteristics, such as absolute recoveries and precision at three spiking levels, calibration curve linearity, limit of quantitation (LOQ) and matrix effect. The results showed that >90% of veterinary drug analytes achieved satisfactory recovery results of 60-120%. Over 97% analytes achieved excellent reproducibility results (relative standard deviation (RSD) < 20%), and the LOQs were 1-5 μg/kg in the evaluated meat matrices. The matrix co-extractive removal efficiency by weight provided by EMR-lipid cartridge cleanup was 42-58% in samples. The post column infusion study showed that the matrix ion suppression was reduced for samples with the EMR-Lipid cartridge cleanup. The reduced matrix ion suppression effect was also confirmed with <15% frequency of compounds with significant quantitative ion suppression (>30%) for all tested veterinary drugs in all of meat matrices. The results showed that the two-step solid-liquid extraction provides efficient extraction for the entire spectrum of veterinary drugs, including the difficult classes such as tetracyclines, beta-lactams etc. EMR-Lipid cartridges after extraction provided efficient sample cleanup with easy streamlined protocol and minimal impacts on analytes recovery, improving method reliability and consistency. Copyright © 2018 Elsevier B.V. All rights reserved.
A simple device for efficient transfer and unit dose packaging of Xe-127: concise communication.
Kowalsky, R J; Dalton, D R; Saylor, W L
1978-04-01
An inexpensive system has been devised for the efficient transfer of Xe-127 gas from the manufacturer's ampule into individual dose vials for patient use. By displacing the gas with an aqueous solution, the initial transfer is made from an ampule of known activity into an evacuated serum vial of predetermined volume with transfer efficiency greater than 99%. A similar principle is used to transfer Xe-127 from the stock serum vial into individual dose vials, with total xenon recovery exceeding 98%. Ability to deliver the desired activity to each vial is within 90-110% of that predicted by calculation. Reproducibility in delivering a given activity was excellent, with all vials falling between 95 and 105% of the mean activity. Stability studies showed that 94% of the Xe-127 activity can be removed from the vials with only 6% absorbed in the rubber stopper after 5 wk of storage. The device costs less than $25.00 and can be constructed easily from common laboratory materials.
NASA Astrophysics Data System (ADS)
Yu, Ming'e.; Li, Caiting; Zeng, Guangming; Zhou, Yang; Zhang, Xunan; Xie, Yin'e.
2015-07-01
A series of novel catalysts (CexSny) for the selective catalytic reduction of NO by NH3 were prepared by the inverse co-precipitation method. The aim of this novel design was to improve the NO removal efficiency of CeTi by the introduction of SnO2. It was found that the Ce-Sn-Ti catalyst was much more active than Ce-Ti and the best Ce:Sn molar ratio was 2:1. Ce2Sn1 possessed a satisfied NO removal efficiency at low temperature (160-280 °C), while over 90% NO removal efficiency maintained in the temperature range of 280-400 °C at the gas hourly space velocity (GHSV) of 50,000 h-1. Besides, Ce2Sn1 kept a stable NO removal efficiency within a wide range of GHSV and a long period of reacting time. Meanwhile, Ce2Sn1 exhibited remarkable resistance to both respectively and simultaneously H2O and SO2 poisoning due to the introduction of SnO2. The promotional effect of SnO2 was studied by N2 adsorption-desorption, X-ray diffraction (XRD), Raman spectra, X-ray photoelectron spectroscopy (XPS) and H2 temperature programmed reduction (H2-TPR) for detail information. The characterization results revealed that the excellent catalytic performance of Ce2Sn1 was associated with the higher specific surface area, larger pore volume and poorer crystallization. Besides, the introduction of SnO2 could result in not only greater conversion of Ce4+ to Ce3+ but also the increase amount of chemisorbed oxygen, which are beneficial to improve the SCR activity. More importantly, a novel peak appearing at lower temperatures through the new redox equilibrium of 2Ce4+ + Sn2+ ↔ 2Ce3+ + Sn4+ and higher total H2 consumption can be obtained by the addition of SnO2. Finally, the possible reaction mechanism of the selective catalytic reduction over Ce2Sn1 was also proposed.
Zhang, Hui; Liu, Jianguo; Ou, Changjin; Faheem; Shen, Jinyou; Yu, Hongxia; Jiao, Zhenhuan; Han, Weiqing; Sun, Xiuyun; Li, Jiansheng; Wang, Lianjun
2017-03-01
The potentially hazardous iron-containing sludge from the Fenton process requires proper treatment and disposal, which often results in high treatment cost. In this study, a novel method for the reuse of Fenton sludge as an iron source for the synthesis of nickel ferrite particles (NiFe 2 O 4 ) is proposed. Through a co-precipitation method followed by sintering at 800°C, magnetic NiFe 2 O 4 particles were successfully synthesized, which was confirmed by powder X-ray diffraction (XRD), scanning electronic microscopy (SEM), energy dispersive spectroscopy (EDS), Fourier transform infrared spectroscopy (FT-IR) and Raman spectroscopy. The synthesized NiFe 2 O 4 could be used as an efficient catalyst in the heterogeneous Fenton process. In phenol degradation with H 2 O 2 or NiFe 2 O 4 alone, the phenol removal efficiencies within the reaction time of 330min were as low as 5.9%±0.1% and 13.5%±0.4%, respectively. However, in the presence of both NiFe 2 O 4 and H 2 O 2 , phenol removal efficiency as high as 95%±3.4% could be achieved, indicating the excellent catalytic performance of NiFe 2 O 4 in the heterogeneous Fenton process. Notably, a rapid electron exchange between Ni II and Fe III ions in the NiFe 2 O 4 structure could be beneficial for the Fenton reaction. In addition, the magnetic catalyst was relatively stable, highly active and recoverable, and has potential applications in the Fenton process for organic pollutant removal. Copyright © 2016. Published by Elsevier B.V.
ARSENIC REMOVAL COST ESTIMATING PROGRAM
The Arsenic Removal Cost Estimating program (Excel) calculates the costs for using adsorptive media and anion exchange treatment systems to remove arsenic from drinking water. The program is an easy-to-use tool to estimate capital and operating costs for three types of arsenic re...
Light-Emitting GaAs Nanowires on a Flexible Substrate.
Valente, João; Godde, Tillmann; Zhang, Yunyan; Mowbray, David J; Liu, Huiyun
2018-06-18
Semiconductor nanowire-based devices are among the most promising structures used to meet the current challenges of electronics, optics and photonics. Due to their high surface-to-volume ratio and excellent optical and electrical properties, devices with low power, high efficiency and high density can be created. This is of major importance for environmental issues and economic impact. Semiconductor nanowires have been used to fabricate high performance devices, including detectors, solar cells and transistors. Here, we demonstrate a technique for transferring large-area nanowire arrays to flexible substrates while retaining their excellent quantum efficiency in emission. Starting with a defect-free self-catalyzed molecular beam epitaxy (MBE) sample grown on a Si substrate, GaAs core-shell nanowires are embedded in a dielectric, removed by reactive ion etching and transferred to a plastic substrate. The original structural and optical properties, including the vertical orientation, of the nanowires are retained in the final plastic substrate structure. Nanowire emission is observed for all stages of the fabrication process, with a higher emission intensity observed for the final transferred structure, consistent with a reduction in nonradiative recombination via the modification of surface states. This transfer process could form the first critical step in the development of flexible nanowire-based light-emitting devices.
She, Jiarong; Tian, Cuihua; Wu, Yiqiang; Li, Xianjun; Luo, Sha; Qing, Yan; Jiang, Zheng
2018-06-01
Cellulose nanofibrils (CNFs), disintegrated from natural fibers, are promising alternatives in wastewater purification for the porous structure and numerous hydroxyls. The pristine CNFs aerogel has limited mechanical strength and are vulnerable to collapse when exposed to water. In this work, eco-friendly and recycled CNFs aerogel adsorbents were successfully prepared using cellulose nanofibrils (CNFs), which cross-linked by poly(vinyl alcohol) (PVA) and acrylic acid (AA). The combination of PVA and AA endowed CNFs aerogel strong three-dimensional porous structure and desirable adsorption properties. The heavy metal ions were adsorbed on the CNFs-PVA-AA (CPA) adsorbents efficiently and the maximum adsorption capacities for Cu2+ and Pb2+ approached 30.0 mg/g and 131.5 mg/g, respectively. The CPA adsorbent also showed excellent reusability and their adsorption capacities maintained 89% and 88% for Cu2+ and Pb2+ after 5 repeated uses. The adsorption of these heavy metal ions were confirmed to follow pseudo-second-order kinetic and Langmuir isotherm model. The functions of C ═ O and -OH were the major adsorption sites. Chemical adsorption combined with the porous physical adsorption made the CPA to be excellent adsorbent for the removal of heavy metal ions in wastewater.
Zhang, Hui; Li, Yuqi; Xu, Yaoguang; Lu, Zexiang; Chen, Lihui; Huang, Liulian; Fan, Mizi
2016-10-12
To deal with marine oil spillage and chemical leakage issues, a highly efficient absorbent (cellulose based aerogel) with a low density (ρ < 0.034 g cm -3 , φ > 98.5%) and high mechanical strength was fabricated via a novel physical-chemical foaming method, plasma treatment and subsequent silane modification process. This aerogel has a perfect 3D skeleton and interconnected pores similar to honeycomb, which are favorable to oil adsorption and storage. More importantly, without introducing additional micro/nanoparticles, the rough micro/nano structure of the surface was directly constructed using plasma irradiation in this study. The low surface energy substrate was further introduced using a simple physical-soaking method and the resulting aerogel exhibited excellent superhydrophobicity (WCA > 156°) and superoleophilicity (OCA = 0°), which can selectively and efficiently absorb various oils or organic solvents from polluted water. In addition, this aerogel has a high storage capacity and absorption capacity (up to 4300% and 99% of its weight and volume, respectively). More interestingly, this aerogel exhibits excellent mechanical abrasion resistance and corrosion resistance even in strong acid, alkali solution and salt marine environment. The aerogel could be reused more than 30 times after removal of the absorbed oil by rinsing with ethanol.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Suthar, K. J.; Lurie, Alexander M.; Den Hartog, P.
Heat pipes and vapour chambers work on heat exchange phenomena of two-phase flow and are widely used for in-dustrial and commercial applications. These devices offer very high effective thermal conductivities (5,000-200,000 W/m/K) and are adaptable to various sizes, shapes, and ori-entations. Although they have been found to be an excel-lent thermal management solution for laptops, satellites, and many things in-between, heat pipes and vapour cham-bers have yet to be adopted for use at particle accelerator facilities where they offer the possibility of more compact and more efficient means to remove heat from unwanted synchrotron radiation. As with all technologies, theremore » are inherent limitations. Foremost, they are limited by practi-cality to serve as local heat transfer devices; heat transfer over long distances is likely best provided by other means. Heat pipes also introduce unique failure modes which must be considered.« less
Highly-efficient, frequency-tripled Nd:YAG laser for spaceborne LIDARs
NASA Astrophysics Data System (ADS)
Treichel, R.; Hoffmann, H.-D.; Luttmann, J.; Morasch, V.; Nicklaus, K.; Wührer, C.
2017-11-01
For a spaceborne lidar a highly reliable, long living and efficient laser source is absolutely essential. Within the frame of the development of a laser source for the backscatter lidar ATLID, which will be flown on EarthCare mission, we setup and tested a predevelopment model of an injection-seeded, diode pumped, frequency tripled, pulsed high power Nd:YAG MOPA laser operating nominally at 100 Hz pulse repetition frequency. We also tested the burst operation mode. The excellent measured performance parameter will be introduced. The oscillator rod is longitudinally pumped from both sides. The oscillator has been operated with three cavity control methods: "Cavity Dither", "Pound-Drever-Hall" and "Adaptive Ramp & Fire". Especially the latter method is very suitable to operate the laser in harsh vibrating environment such in airplanes. The amplifier bases on the InnoSlab design concept. The constant keeping of a moderate fluence in the InnoSlab crystal permits excellent possibilities to scale the pulse energy to several 100 mJ. An innovative pump unit and optics makes the laser performance insensitive to inhomogeneous diode degradation and allows switching of additional redundant diodes. Further key features have been implemented in a FM design concept. The operational lifetime is extended by the implementation of internal redundancies for the most critical parts. The reliability is increased due to the higher margin onto the laser induced damage threshold by a pressurized housing. Additionally air-to-vacuum effects becomes obsolete. A high efficient heat removal concept has been implemented.
Schneider, Severin; Brohmann, Maximilian; Lorenz, Roxana; Hofstetter, Yvonne J; Rother, Marcel; Sauter, Eric; Zharnikov, Michael; Vaynzof, Yana; Himmel, Hans-Jörg; Zaumseil, Jana
2018-05-31
Efficient, stable, and solution-based n-doping of semiconducting single-walled carbon nanotubes (SWCNTs) is highly desired for complementary circuits but remains a significant challenge. Here, we present 1,2,4,5-tetrakis(tetramethylguanidino)benzene (ttmgb) as a strong two-electron donor that enables the fabrication of purely n-type SWCNT field-effect transistors (FETs). We apply ttmgb to networks of monochiral, semiconducting (6,5) SWCNTs that show intrinsic ambipolar behavior in bottom-contact/top-gate FETs and obtain unipolar n-type transport with 3-5-fold enhancement of electron mobilities (approximately 10 cm 2 V -1 s -1 ), while completely suppressing hole currents, even at high drain voltages. These n-type FETs show excellent on/off current ratios of up to 10 8 , steep subthreshold swings (80-100 mV/dec), and almost no hysteresis. Their excellent device characteristics stem from the reduction of the work function of the gold electrodes via contact doping, blocking of hole injection by ttmgb 2+ on the electrode surface, and removal of residual water from the SWCNT network by ttmgb protonation. The ttmgb-treated SWCNT FETs also display excellent environmental stability under bias stress in ambient conditions. Complementary inverters based on n- and p-doped SWCNT FETs exhibit rail-to-rail operation with high gain and low power dissipation. The simple and stable ttmgb molecule thus serves as an example for the larger class of guanidino-functionalized aromatic compounds as promising electron donors for high-performance thin film electronics.
Ji, Jing; Liu, Yang; Yang, Xue-Yuan; Xu, Juan; Li, Xiu-Yan
2018-07-15
The removal of high-concentration rhodamine B (RhB) wastewater was investigated in a three-dimensional electrochemical reactor (3DER) packed with granular activated carbon (GAC) particle electrodes. Response surface methodology (RSM) coupled with grey relational analysis (GRA) was used to evaluate the effects of voltage, initial pH, aeration rate and NaCl dosage on RhB removal and energy consumption of the 3DER. The optimal conditions were determined as voltage 7.25 V, pH 5.99, aeration rate 151.13 mL/min, and NaCl concentration 0.11 mol/L. After 30 min electrolysis, COD removal rate could arrive at 60.13% with an extremely low energy consumption of 6.22 kWh/kg COD. The voltage and NaCl were demonstrated to be the most significant factors affecting the COD removal and energy consumption of 3DER. The intermediates generated during the treatment process were identified and the possible degradation pathway of RhB was proposed. It is worth noting that 3DER also showed an excellent performance in total nitrogen (TN) removal under the optimal condition. The activated chlorine generated from chloride had great contributions to eliminate carbon and nitrogen of RhB wastewater. The treatment effluent had a good biodegradability, which was suitable for subsequent biological treatment. Copyright © 2018 Elsevier Ltd. All rights reserved.
Effect of Nitrogen Oxides on Elemental Mercury Removal by Nanosized Mineral Sulfide.
Li, Hailong; Zhu, Lei; Wang, Jun; Li, Liqing; Lee, Po-Heng; Feng, Yong; Shih, Kaimin
2017-08-01
Because of its large surface area, nanosized zinc sulfide (Nano-ZnS) has been demonstrated in a previous study to be efficient for removal of elemental mercury (Hg 0 ) from coal combustion flue gas. The excellent mercury adsorption performance of Nano-ZnS was found to be insusceptible to water vapor, sulfur dioxide, and hydrogen chloride. However, nitrogen oxides (NO X ) apparently inhibited mercury removal by Nano-ZnS; this finding was unlike those of many studies on the promotional effect of NO X on Hg 0 removal by other sorbents. The negative effect of NO X on Hg 0 adsorption over Nano-ZnS was systematically investigated in this study. Two mechanisms were identified as primarily responsible for the inhibitive effect of NO X on Hg 0 adsorption over Nano-ZnS: (1) active sulfur sites on Nano-ZnS were oxidized to inactive sulfate by NO X ; and (2) the chemisorbed mercury, i.e., HgS, was reduced to Hg 0 by NO X . This new insight into the role of NO X in Hg 0 adsorption over Nano-ZnS can help to optimize operating conditions, maximize Hg 0 adsorption, and facilitate the application of Nano-ZnS as a superior alternative to activated carbon for Hg 0 removal using existing particulate matter control devices in power plants.
NASA Astrophysics Data System (ADS)
Rani Agrawal, Pinki; Singh, Nahar; Kumari, Saroj; Dhakate, Sanjay R.
2018-03-01
It is well proposed that micron or nano size filters requires to separate adsorbent from water after removal of adsorbate. However, even after filtration trace quantity of adsorbent remains in purified water, which deteriorates the quality of water for potability. To overcome these problems, multi walled carbon nanotube (MWCNT) loaded Carbon Foam (CF) was fabricated by a sacrificial template process. In this process, multi walled carbon nanotubes (MWCNTs) and phenolic resin mixture was used for the impregnation of the polyurethane (PU) template. Impregnated PU Foam stabilized and carbonized to get MWCNTs embedded Carbon Foam (CF). The MWCNT loaded CF (MWCNTs-CF) was used for the removal of As (V) species from water. The proposed foam efficiently removes arsenic (As (V)) from water and it can be easily separated from water after purification without any sophisticated tools. The adsorption capacity of the proposed material was found to be 90.5 μg*g-1 at optimized condition of pH, time and concentration, which is excellent in comparison to several other materials utilized for removal of As (V). Kinetic and isotherm studies reveal that the multilayer adsorption over heterogeneous surface follows pseudo second order kinetics. The adsorption phenomena were further confirmed by several characterization techniques like scanning electron microscope (SEM), x-ray diffraction (XRD) spectroscopy and x-ray photoelectron spectroscopy (XPS).
Qin, Detao; Liu, Zhaoyang; Bai, Hongwei; Sun, Darren Delai; Song, Xiaoxiao
2016-01-01
Surfactant stabilized oil-in-water nanoemulsions pose a severe threat to both the environment and human health. Recent development of membrane filtration technology has enabled efficient oil removal from oil/water nanoemulsion, however, the concurrent removal of surfactant and oil remains unsolved because the existing filtration membranes still suffer from low surfactant removal rate and serious surfactant-induced fouling issue. In this study, to realize the concurrent removal of surfactant and oil from nanoemulsion, a novel hierarchically-structured membrane is designed with a nanostructured selective layer on top of a microstructured support layer. The physical and chemical properties of the overall membrane, including wettability, surface roughness, electric charge, thickness and structures, are delicately tailored through a nano-engineered fabrication process, that is, graphene oxide (GO) nanosheet assisted phase inversion coupled with surface functionalization. Compared with the membrane fabricated by conventional phase inversion, this novel membrane has four times higher water flux, significantly higher rejections of both oil (~99.9%) and surfactant (as high as 93.5%), and two thirds lower fouling ratio when treating surfactant stabilized oil-in-water nanoemulsion. Due to its excellent performances and facile fabrication process, this nano-engineered membrane is expected to have wide practical applications in the oil/water separation fields of environmental protection and water purification. PMID:27087362
Yang, Jiacheng; Wang, Xiangyu; Zhu, Minping; Liu, Huiling; Ma, Jun
2014-01-15
For the first time, the removal process of metronidazole (MNZ) from aqueous solutions over nano zerovalent iron (NZVI) encapsulated within poly(acrylic acid) (PAA)/poly(vinylidene fluoride) (PVDF) membranes was reported. The resultant composite (PPN) demonstrated high reactivity, excellent stability and reusability over the reaction course. Such excellent performance might be attributed to the presence of the charged carboxyl groups in PVDF membrane support, which could enhance NZVI dispersion and improve its longevity. Results showed that a lower initial concentration and higher reaction temperature facilitated the removal of MNZ by PPN, and that the acidic and neutral conditions generally exhibited more favorable effect on MNZ removal than the alkaline ones. Kinetics of the MNZ removal by PPN was found to follow a two-parameter pseudo-first-order decay model well, and the activation energy of the MNZ degradation by PPN was determined to be 30.49kJ/mol. The presence of chloride ions slightly enhanced the reactivity of PPN with MNZ, whereas sulfate ions inhibited its reactivity. In addition, MNZ degradation pathways by PPN were proposed based on the identified intermediates. This study suggests that PPN composite possessing excellent performance may be a promising functional material to pretreat antibiotic wastewaters. Copyright © 2013 Elsevier B.V. All rights reserved.
Silica-Silver Nanocomposites as Regenerable Sorbents for Hg0 Removal from Flue Gases.
Cao, Tiantian; Li, Zhen; Xiong, Yong; Yang, Yue; Xu, Shengming; Bisson, Teresa; Gupta, Rajender; Xu, Zhenghe
2017-10-17
Silica-silver nanocomposites (Ag-SBA-15) are a novel class of multifunctional materials with potential applications as sorbents, catalysts, sensors, and disinfectants. In this work, an innovative yet simple and robust method of depositing silver nanoparticles on a mesoporous silica (SBA-15) was developed. The synthesized Ag-SBA-15 was found to achieve a complete capture of Hg 0 at temperatures up to 200 °C. Silver nanoparticles on the SBA-15 were shown to be the critical active sites for the capture of Hg 0 by the Ag-Hg 0 amalgamation mechanism. An Hg 0 capture capacity as high as 13.2 mg·g -1 was achieved by Ag(10)-SBA-15, which is much higher than that achievable by existing Ag-based sorbents and comparable with that achieved by commercial activated carbon. Even after exposure to more complex simulated flue gas flow for 1 h, the Ag(10)-SBA-15 could still achieve an Hg 0 removal efficiency as high as 91.6% with a Hg 0 capture capacity of 457.3 μg·g -1 . More importantly, the spent sorbent could be effectively regenerated and reused without noticeable performance degradation over five cycles. The excellent Hg 0 removal efficiency combined with a simple synthesis procedure, strong tolerance to complex flue gas environment, great thermal stability, and outstanding regeneration capability make the Ag-SBA-15 a promising sorbent for practical applications to Hg 0 capture from coal-fired flue gases.
Guo, Xiang; Rao, Lei; Wang, Peifang; Wang, Chao; Ao, Yanhui; Jiang, Tao; Wang, Wanzhong
2018-04-01
TiO 2 films have received increasing attention for the removal of organic pollutants via photocatalysis. To develop a simple and effective method for improving the photodegradation efficiency of pollutants in surface water, we herein examined the preparation of a P25-TiO 2 composite film on a cement substrate via a sol-gel method. In this case, Rhodamine B (RhB) was employed as the target organic pollutant. The self-generated TiO 2 film and the P25-TiO 2 composite film were characterized by X-ray diffraction (XRD), N 2 adsorption/desorption measurements, scanning electron microscopy (SEM), transmission electron microscopy (TEM), and diffuse reflectance spectroscopy (DRS). The photodegradation efficiencies of the two films were studied by RhB removal in water under UV (ultraviolet) irradiation. Over 4day exposure, the P25-TiO 2 composite film exhibited higher photocatalytic performance than the self-generated TiO 2 film. The photodegradation rate indicated that the efficiency of the P25-TiO 2 composite film was enhanced by the addition of the rutile phase Degussa P25 powder. As such, cooperation between the anatase TiO 2 and rutile P25 nanoparticles was beneficial for separation of the photo-induced electrons and holes. In addition, the influence of P25 doping on the P25-TiO 2 composite films was evaluated. We found that up to a certain saturation point, increased doping enhanced the photodegradation ability of the composite film. Thus, we herein demonstrated that the doping of P25 powders is a simple but effective strategy to prepare a P25-TiO 2 composite film on a cement substrate, and the resulting film exhibits excellent removal efficiency in the degradation of organic pollutants. Copyright © 2017. Published by Elsevier B.V.
Efficient uranium capture by polysulfide/layered double hydroxide composites.
Ma, Shulan; Huang, Lu; Ma, Lijiao; Shim, Yurina; Islam, Saiful M; Wang, Pengli; Zhao, Li-Dong; Wang, Shichao; Sun, Genban; Yang, Xiaojing; Kanatzidis, Mercouri G
2015-03-18
There is a need to develop highly selective and efficient materials for capturing uranium (normally as UO2(2+)) from nuclear waste and from seawater. We demonstrate the promising adsorption performance of S(x)-LDH composites (LDH is Mg/Al layered double hydroxide, [S(x)](2-) is polysulfide with x = 2, 4) for uranyl ions from a variety of aqueous solutions including seawater. We report high removal capacities (q(m) = 330 mg/g), large K(d)(U) values (10(4)-10(6) mL/g at 1-300 ppm U concentration), and high % removals (>95% at 1-100 ppm, or ∼80% for ppb level seawater) for UO2(2+) species. The S(x)-LDHs are exceptionally efficient for selectively and rapidly capturing UO2(2+) both at high (ppm) and trace (ppb) quantities from the U-containing water including seawater. The maximum adsorption coeffcient value K(d)(U) of 3.4 × 10(6) mL/g (using a V/m ratio of 1000 mL/g) observed is among the highest reported for U adsorbents. In the presence of very high concentrations of competitive ions such as Ca(2+)/Na(+), S(x)-LDH exhibits superior selectivity for UO2(2+), over previously reported sorbents. Under low U concentrations, (S4)(2-) coordinates to UO2(2+) forming anionic complexes retaining in the LDH gallery. At high U concentrations, (S4)(2-) binds to UO2(2+) to generate neutral UO2S4 salts outside the gallery, with NO3(-) entering the interlayer to form NO3-LDH. In the presence of high Cl(-) concentration, Cl(-) preferentially replaces [S4](2-) and intercalates into LDH. Detailed comparison of U removal efficiency of S(x)-LDH with various known sorbents is reported. The excellent uranium adsorption ability along with the environmentally safe, low-cost constituents points to the high potential of S(x)-LDH materials for selective uranium capture.
Pype, Marie-Laure; Lawrence, Michael G; Keller, Jurg; Gernjak, Wolfgang
2016-07-01
A reverse osmosis (RO) process is often included in the treatment train to produce high quality reuse water from treated effluent for potable purposes because of its high removal efficiency for salinity and many inorganic and organic contaminants, and importantly, it also provides an excellent barrier for pathogens. In order to ensure the continued protection of public health from pathogen contamination, monitoring RO process integrity is necessary. Due to their small sizes, viruses are the most difficult class of pathogens to be removed in physical separation processes and therefore often considered the most challenging pathogen to monitor. To-date, there is a gap between the current log credit assigned to this process (determined by integrity testing approved by regulators) and its actual log removal capability as proven in a variety of laboratory and pilot studies. Hence, there is a challenge to establish a methodology that more closely links to the theoretical performance. In this review, after introducing the notion of risk management in water reuse, we provide an overview of existing and potentially new RO integrity monitoring techniques, highlight their strengths and drawbacks, and debate their applicability to full-scale treatment plants, which open to future research opportunities. Copyright © 2016 Elsevier Ltd. All rights reserved.
AgBr/diatomite for the efficient visible-light-driven photocatalytic degradation of Rhodamine B
NASA Astrophysics Data System (ADS)
Fang, Jing; Zhao, Huamei; Liu, Qinglei; Zhang, Wang; Gu, Jiajun; Su, Yishi; Abbas, Waseem; Su, Huilan; You, Zhengwei; Zhang, Di
2018-03-01
The treatment of organic pollution via photocatalysis has been investigated for a few decades. However, earth-abundant, cheap, stable, and efficient substrates are still to be developed. Here, we prepare an efficient visible-light-driven photocatalyst via the deposition of Ag nanoparticles (< 60 nm) on diatomite and the conversion of Ag to AgBr nanoparticles (< 600 nm). Experimental results show that 95% of Rhodamine B could be removed within 20 min, and the degradation rate constant ( κ) is 0.11 min-1 under 100 mW/cm2 light intensity. For comparison, AgBr/SiO2 ( κ = 0.04 min-1) and commercial AgBr nanoparticles ( κ = 0.05 min-1) were measured as well. The experimental results reveal that diatomite acted more than a substrate benefiting the dispersion of AgBr nanoparticles, as well as a cooperator to help harvest visible light and adsorb dye molecules, leading to the efficient visible-light-driven photocatalytic performance of AgBr/diatomite. Considering the low cost (10 per ton) and large-scale availability of diatomite, our study provides the possibility to prepare other types of diatomite-based efficient photocatalytic composites with low-cost but excellent photocatalytic performance.
Khan, Farman Ullah; Asimullah; Khan, Sher Bahadar; Kamal, Tahseen; Asiri, Abdullah M; Khan, Ihsan Ullah; Akhtar, Kalsoom
2017-09-01
A very simple and low-cost procedure has been adopted to synthesize efficient copper (Cu), silver (Ag) and copper-silver (Cu-Ag) mixed nanoparticles on the surface of pure cellulose acetate (CA) and cellulose acetate-copper oxide nanocomposite (CA-CuO). All nanoparticles loaded onto CA and CA-CuO presented excellent catalytic ability, but Cu-Ag nanoparticles loaded onto CA-CuO (Cu 0 -Ag 0 /CA-CuO) exhibited outstanding catalytic efficiency to convert 4-nitrophenol (4-NP) into 4-aminophenol (4-AP) in the presence of NaBH 4 . Additionally, the Cu 0 -Ag 0 /CA-CuO can be easily recovered by removing the sheet from the reaction media, and can be recycled several times, maintaining high catalytic ability for four cycles. Copyright © 2017 Elsevier B.V. All rights reserved.
Photocatalytically Renewable Micro-electrochemical Sensor for Real-Time Monitoring of Cells.
Xu, Jia-Quan; Liu, Yan-Ling; Wang, Qian; Duo, Huan-Huan; Zhang, Xin-Wei; Li, Yu-Tao; Huang, Wei-Hua
2015-11-23
Electrode fouling and passivation is a substantial and inevitable limitation in electrochemical biosensing, and it is a great challenge to efficiently remove the contaminant without changing the surface structure and electrochemical performance. Herein, we propose a versatile and efficient strategy based on photocatalytic cleaning to construct renewable electrochemical sensors for cell analysis. This kind of sensor was fabricated by controllable assembly of reduced graphene oxide (RGO) and TiO2 to form a sandwiching RGO@TiO2 structure, followed by deposition of Au nanoparticles (NPs) onto the RGO shell. The Au NPs-RGO composite shell provides high electrochemical performance. Meanwhile, the encapsulated TiO2 ensures an excellent photocatalytic cleaning property. Application of this renewable microsensor for detection of nitric oxide (NO) release from cells demonstrates the great potential of this strategy in electrode regeneration and biosensing. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Global metabolic rewiring for improved CO2 fixation and chemical production in cyanobacteria.
Kanno, Masahiro; Carroll, Austin L; Atsumi, Shota
2017-03-13
Cyanobacteria have attracted much attention as hosts to recycle CO 2 into valuable chemicals. Although cyanobacteria have been engineered to produce various compounds, production efficiencies are too low for commercialization. Here we engineer the carbon metabolism of Synechococcus elongatus PCC 7942 to improve glucose utilization, enhance CO 2 fixation and increase chemical production. We introduce modifications in glycolytic pathways and the Calvin Benson cycle to increase carbon flux and redirect it towards carbon fixation. The engineered strain efficiently uses both CO 2 and glucose, and produces 12.6 g l -1 of 2,3-butanediol with a rate of 1.1 g l -1 d -1 under continuous light conditions. Removal of native regulation enables carbon fixation and 2,3-butanediol production in the absence of light. This represents a significant step towards industrial viability and an excellent example of carbon metabolism plasticity.
Global metabolic rewiring for improved CO2 fixation and chemical production in cyanobacteria
NASA Astrophysics Data System (ADS)
Kanno, Masahiro; Carroll, Austin L.; Atsumi, Shota
2017-03-01
Cyanobacteria have attracted much attention as hosts to recycle CO2 into valuable chemicals. Although cyanobacteria have been engineered to produce various compounds, production efficiencies are too low for commercialization. Here we engineer the carbon metabolism of Synechococcus elongatus PCC 7942 to improve glucose utilization, enhance CO2 fixation and increase chemical production. We introduce modifications in glycolytic pathways and the Calvin Benson cycle to increase carbon flux and redirect it towards carbon fixation. The engineered strain efficiently uses both CO2 and glucose, and produces 12.6 g l-1 of 2,3-butanediol with a rate of 1.1 g l-1 d-1 under continuous light conditions. Removal of native regulation enables carbon fixation and 2,3-butanediol production in the absence of light. This represents a significant step towards industrial viability and an excellent example of carbon metabolism plasticity.
NASA Astrophysics Data System (ADS)
Chen, Dongju; Li, Dandan; Li, Xianfeng
2017-06-01
A hierarchical poly (ether sulfone) (PES) porous membrane is facilely fabricated via a hard template method for vanadium flow battery (VFB) application. The construction of this hierarchical porous membrane is prepared via removing templates (phenolphthalein). The pore size can be well controlled by optimizing the template content in the cast solution, ensuring the membrane conductivity and selectively. The prepared hierarchical porous membrane can combine high ion selectivity with high proton conductivity, which renders a good electrochemical performance in a VFB. The optimized hierarchical porous membrane shows a columbic efficiency of 94.52% and energy efficiency of 81.66% along with a superior ability to maintain stable capacity over extended cycling at a current density of 80 mA cm-2. The characteristics of low cost, proven chemical stability and high electrochemical performance afford the hierarchical PES porous membrane great prospect in VFB application.
NASA Astrophysics Data System (ADS)
Liu, Chunyi; Li, Xiang; Ma, Bomou; Qin, Aiwen; He, Chunju
2014-12-01
The functionalizing nanoporous polyacrylonitrile-based oxidized membrane (PAN-OM) firmly immobilized with highly reactive nanoscale zero-valent iron (NZVI) are successfully prepared via an innovative in situ synthesis method. Due to the formation of ladder structure, the PAN-OM present excellent thermal and chemical stabilities as a new carrier for the in-situ growth of NZVI via firm chelation and reduction action, respectively, which prevent the aggregation and release of NZVI. The developed NZVI-immobilized membrane present effective decolorizing efficiency to both anionic methyl blue and cationic methylene blue with a pseudo-first-order decay and degrading efficiency to trichloroethylene (TCE). The regeneration and stability results show that NZVI-immobilized membrane system can be regenerated without obvious performance reduction, which remain the reactivity after half a year storage period. These results suggest that PAN-based oxidized membrane immobilized with NZVI exhibit significant potential for environmental applications.
Bergeron, Raymond J.; Wiegand, Jan; Bharti, Neelam; McManis, James S.
2012-01-01
Desferrithiocin (DFT, 1) is a very efficient iron chelator when given orally. However, it is severely nephrotoxic. Structure-activity studies with 1 demonstrated that removal of the aromatic nitrogen to provide desazadesferrithiocin (DADFT, 2) and introduction of either a hydroxyl group or a polyether fragment onto the aromatic ring resulted in orally active iron chelators that were much less toxic than 1. The purpose of the current study was to determine if a comparable reduction in renal toxicity could be achieved by performing the same structural manipulations on 1 itself. Accordingly, three DFT analogues were synthesized. Iron clearing efficiency and ferrokinetics were evaluated in rats and primates; toxicity assessments were carried out in rodents. The resulting DFT ligands demonstrated a reduction in toxicity that was equivalent to that of the DADFT analogues and presented with excellent iron clearing properties. PMID:22889170
NASA Astrophysics Data System (ADS)
Jiang, Dong; Yu, Han; Yu, Hongbing
2017-01-01
Novel ternary nanocomposites with facet coupled structure were synthesized by using modified g-C3N4, TiO2 nanosheets and nano-ZnO. Nanosheet/nanosheet heterojunction structure was investigated by TEM, XPS and XRD. FT-IR and Nitrogen adsorption were illustrated for chemical/physical structure analyses. Solution of p-Toluenesulfonic acid (p-TSA) was chosen as target pollutant for visible light photodegradation and the excellent removal efficiency was achieved by this structurally modified g-C3N4/TiO2/ZnO hybrid. The visible light absorption improvement and quantum efficiency enhancement, which were testified by UV-vis DRS, PL and p-TSA photodegradation measurements, due to the facet coupled structure and appropriate quantity of modified g-C3N4 in the nanocomposites.
High performance of a unique mesoporous polystyrene-based adsorbent for blood purification
Chen, Jian; Han, Wenyan; Chen, Jie; Zong, Wenhui; Wang, Weichao; Wang, Yue; Cheng, Guanghui; Li, Chunran; Ou, Lailiang; Yu, Yaoting
2017-01-01
A multi-functional polystyrene based adsorbent (NKU-9) with a unique mesoporous and a high surface area was prepared by suspension polymerization for removal of therapeutic toxins in blood purification. The adsorbent produced had an almost equal amount of mesopore distribution in the range from 2 to 50 nm. The adsorption of serum toxins with different molecular weights were examined by in vitro adsorption assays and compared with some clinical currently used adsorbents such as HA-330, Cytosorb and BL-300 which are produced by China, America and Japan, respectively. Test results indicated that the adsorption rate for pentobarbital by NKU-9 was 81.24% which is nearly as high as HA-330 (81.44%). The latter adsorbent is currently used for acute detoxification treatment in China. To reach adsorption equilibrium, NKU-9 was faster than HA-330, which implies short treatment time. For the removal of middle molecular toxins such as β2-microglobulin (98.88%), NKU-9 performed better adsorptive selectivity than Cytosorb (92.80%). In addition, NKU-9 showed high performance for the removal of albumin-bound toxins (e.g., bilirubin), and its adsorption rate for total bilirubin (80.79%) in plasma was 8.4% higher than that of anion exchange resin BL-300 which is currently used to eliminate bilirubin in clinic. Therefore, our results indicate that the newly developed adsorbent with a wide distribution and almost equal amount of mesopores is a multifunctional adsorbent for high efficient removal of serum toxins with different molecular weights which might be an excellent blood purification adsorbent especially to treat diseases that conventional medical methods are low or not efficient. PMID:28149527
High performance of a unique mesoporous polystyrene-based adsorbent for blood purification.
Chen, Jian; Han, Wenyan; Chen, Jie; Zong, Wenhui; Wang, Weichao; Wang, Yue; Cheng, Guanghui; Li, Chunran; Ou, Lailiang; Yu, Yaoting
2017-02-01
A multi-functional polystyrene based adsorbent (NKU-9) with a unique mesoporous and a high surface area was prepared by suspension polymerization for removal of therapeutic toxins in blood purification. The adsorbent produced had an almost equal amount of mesopore distribution in the range from 2 to 50 nm. The adsorption of serum toxins with different molecular weights were examined by in vitro adsorption assays and compared with some clinical currently used adsorbents such as HA-330, Cytosorb and BL-300 which are produced by China, America and Japan, respectively. Test results indicated that the adsorption rate for pentobarbital by NKU-9 was 81.24% which is nearly as high as HA-330 (81.44%). The latter adsorbent is currently used for acute detoxification treatment in China. To reach adsorption equilibrium, NKU-9 was faster than HA-330, which implies short treatment time. For the removal of middle molecular toxins such as β2-microglobulin (98.88%), NKU-9 performed better adsorptive selectivity than Cytosorb (92.80%). In addition, NKU-9 showed high performance for the removal of albumin-bound toxins (e.g., bilirubin), and its adsorption rate for total bilirubin (80.79%) in plasma was 8.4% higher than that of anion exchange resin BL-300 which is currently used to eliminate bilirubin in clinic. Therefore, our results indicate that the newly developed adsorbent with a wide distribution and almost equal amount of mesopores is a multifunctional adsorbent for high efficient removal of serum toxins with different molecular weights which might be an excellent blood purification adsorbent especially to treat diseases that conventional medical methods are low or not efficient.
Marković, Darka; Šaponjić, Zoran; Radoičić, Marija; Radetić, Tamara; Vodnik, Vesna; Potkonjak, Branislav; Radetić, Maja
2015-05-01
This study discusses the possibility of using corona pre-treated polypropylene (PP) non-woven fabric as a support for immobilization of colloidal TiO2 and Ag nanoparticles in order to remove dye C.I. Acid Orange 7 from aqueous solution. Dye removal efficiency by sonocatalysis, photocatalysis and sonophotocatalysis was evaluated on corona pre-treated fabric loaded with TiO2 nanoparticles, corona pre-treated fabric double loaded with TiO2 nanoparticles and corona pre-treated fabrics loaded with TiO2 nanoparticles before and after deposition of Ag nanoparticles. In addition, the stability of PP non-woven fabric during these processes was investigated. The substrates were characterized by SEM, EDX and AAS analyses. The change of the dye concentration was evaluated by UV-VIS spectrophotometry. Unlike sonocatalysis and photocatalysis, complete dye removal from both solution and non-woven fabric was obtained already after 240-270 min of sonophotocatalysis. Corona pre-treated PP non-woven fabric loaded with Ag nanoparticles prior to deposition of TiO2 nanoparticles provided excellent degradation efficiency and superior reusability. Sonophotocatalytic degradation of dye in the presence of all investigated samples was the most prominent in acidic conditions. Although this nanocomposite system ensured fast discoloration of dye solution, TOC values of water measured after sonophotocatalysis were not satisfactory because of PP degradation. Therefore, it is suggested to include TOC evaluation in each case study where different supports for TiO2 nanoparticles are used since these nanoparticles may guarantee the dye removal from solution but the stability of support could be problematic causing even more serious environmental impact. Copyright © 2014 Elsevier B.V. All rights reserved.
Pan, Bingjun; Qiu, Hui; Pan, Bingcai; Nie, Guangze; Xiao, Lili; Lv, Lu; Zhang, Weiming; Zhang, Quanxing; Zheng, Shourong
2010-02-01
The present study developed a polymer-based hybrid sorbent (HFO-001) for highly efficient removal of heavy metals [e.g., Pb(II), Cd(II), and Cu(II)] by irreversibly impregnating hydrated Fe(III) oxide (HFO) nanoparticles within a cation-exchange resin D-001 (R-SO(3)Na), and revealed the underlying mechanism based on X-ray photoelectron spectroscopy (XPS) study. HFO-001 combines the excellent handling, flow characteristics, and attrition resistance of conventional cation-exchange resins with the specific affinity of HFOs toward heavy metal cations. As compared to D-001, sorption selectivity of HFO-001 toward Pb(II), Cu(II), and Cd(II) was greatly improved from the Ca(II) competition at greater concentration. Column sorption results indicated that the working capacity of HFO-001 was about 4-6 times more than D-001 with respect to removal of three heavy metals from simulated electroplating water (pH approximately 4.0). Also, HFO-001 is particularly effective in removing trace Pb(II) and Cd(II) from simulated natural waters to meet the drinking water standard, with treatment volume orders of magnitude higher than D-001. The superior performance of HFO-001 was attributed to the Donnan membrane effect exerted by the host D-001 as well as to the impregnated HFO nanoparticles of specific interaction toward heavy metal cations, as further confirmed by XPS study on lead sorption. More attractively, the exhausted HFO-001 beads can be effectively regenerated by HCl-NaCl solution (pH 3) for repeated use without any significant capacity loss. (c) 2009 Elsevier Ltd. All rights reserved.
ERIC Educational Resources Information Center
Saunders, Daniel B.; Blanco Ramírez, Gerardo
2017-01-01
In this article, the notion of excellence in relation to teaching is removed from its privileged place in order to render it, and its implications, for analysis. We argue that teaching excellence needs to be understood in the larger context of the neoliberal university in which competition is taken for granted, and therefore, metrics for…
Pan, B C; Zhang, Q R; Zhang, W M; Pan, B J; Du, W; Lv, L; Zhang, Q J; Xu, Z W; Zhang, Q X
2007-06-01
Zirconium phosphate (ZrP) has recently been demonstrated as an excellent sorbent for heavy metals due to its high selectivity, high thermal stability, and absolute insolubility in water. However, it cannot be readily adopted in fixed beds or any other flowthrough system due to the excessive pressure drop and poor mechanical strength resulting from its fine submicrometer particle sizes. In the present study a hybrid sorbent, i.e., polymer-supported ZrP, was prepared by dispersing ZrP within a strongly acidic cation exchanger D-001 and used for enhanced lead removal from contaminated waters. D-001 was selected as a host material for sorbent preparation mainly because of the Donnan membrane effect resulting from the nondiffusible negatively charged sulfonic acid group on the exchanger surface, which would enhance permeation of the targeted metal ions. The hybrid sorbent (hereafter denoted ZrP-001) was characterized using a nitrogen adsorption technique, scanning electron microscope (SEM), and X-ray diffraction (XRD). Lead sorption onto ZrP-001 was found to be pH dependent due to the ion-exchange mechanism, and its sorption kinetics onto ZrP-001 followed the pseudo-first-order model. Compared to D-001, ZrP-001 exhibited more favorable lead sorption particularly in terms of high selectivity, as indicated by its substantially larger distribution coefficients when other competing cations Na(+), Ca(2+), and Mg(2+) coexisted at a high level in solution. Fixed-bed column runs showed that lead sorption on ZrP-001 resulted in a conspicuous decrease of this toxic metal from 40 mg/L to below 0.05 mg/L. By comparison with D-001 and ZrP-CP (ZrP dispersion within a neutrally charged polymer CP), enhanced removal efficiency of ZrP-001 resulted from the Donnan membrane effect of the host material D-001. Moreover, its feasible regeneration by diluted acid solution and negligible ZrP loss during operation also helps ZrP-001 to be a potential candidate for lead removal from water. Thus, all the results suggested that ZrP-001 offers excellent potential for lead removal from contaminated water.
Dong, Fan; Lee, S C; Wu, Zhongbiao; Huang, Yu; Fu, Min; Ho, Wing-Kei; Zou, Shichun; Wang, Bo
2011-11-15
Rose-like monodisperse hierarchical (BiO)(2)CO(3) hollow microspheres are fabricated by a one-pot template-free method for the first time based on hydrothermal treatment of ammonia bismuth citrate and urea in water. The microstructure and band structure of the as-prepared (BiO)(2)CO(3) superstructure are characterized in detail by X-ray diffraction, Raman spectroscopy, Fourier transform-infrared spectroscopy, transmission electron microscopy, scanning electron microscopy, N(2) adsorption-desorption isotherms, X-ray photoelectron spectroscopy and UV-vis diffuse reflectance spectroscopy. The monodisperse hierarchical (BiO)(2)CO(3) microspheres are constructed by the self-assembly of single-crystalline nanosheets. The aggregation of nanosheets result in the formation of three dimensional hierarchical framework containing mesopores and macropores, which is favorable for efficient transport of reaction molecules and harvesting of photo-energy. The result reveals the existence of special two-band-gap structure (3.25 and 2.0 eV) for (BiO)(2)CO(3). The band gap of 3.25 eV is intrinsic and the formation of smaller band gap of 2.0 eV can be ascribed to the in situ doped nitrogen in lattice. The performance of hierarchical (BiO)(2)CO(3) microspheres as efficient photocatalyst are further demonstrated in the removal of NO in indoor air under both visible light and UV irradiation. It is found that the hierarchical (BiO)(2)CO(3) microspheres not only exhibit excellent photocatalytic activity but also high photochemical stability during long term photocatalytic reaction. The special microstructure, the high charge separation efficiency due to the inductive effect, and two-band-gap structure in all contribute to the outstanding photocatalytic activities. The discovery of monodisperse hierarchical nitrogen doped (BiO)(2)CO(3) hollow structure is significant because of its potential applications in environmental pollution control, solar energy conversion, catalysis and other related areas. Copyright © 2011 Elsevier B.V. All rights reserved.
Fundamentals of electrosurgery.
Hainer, B L
1991-01-01
Electrosurgery uses electricity to remove tissue, coagulate bleeding, or destroy tumors. Modern units, first developed for application in neurosurgery, are now available in office models that are most commonly used by the family physician for cutaneous surgery. Electrosurgery can accomplish cutting, coagulation, desiccation, and fulguration. Electrosurgical equipment for the office is relatively inexpensive and portable. The main advantage of this surgical modality is rapid completion of the procedure with minimal surgical time, because hemostasis occurs at the time of the incision. After some basic instruction and initial practice on animal tissue, which are provided through the guidance of several excellent texts or continuing education courses, the family physician can readily apply electrosurgery in an office-based practice safely, efficiently, and with satisfying results.
Efficient removal of tetracycline with KOH-activated graphene from aqueous solution
Sun, Yiran; Yu, Fei
2017-01-01
Activated graphene absorbents with high specific surface area (SSA) were prepared by an easy KOH-activated method, and were applied in absorbing antibiotics, such as tetracycline (TC). After activation, many micropores were introduced to graphene oxide sheets, leading to higher SSA and many new oxygen-containing functional groups, which gave KOH-activated graphene excellent adsorption capacity (approx. 532.59 mg g−1) of TC. Further study on the adsorption mechanism showed that the Langmuir isotherm model and the pseudo-second-order kinetic model fitted with experiment data. To further understand the adsorption process, the effects of solid–liquid ratio, pH, ionic strength and coexisting ions were also investigated. The results revealed that, compared with pH and ionic strength, solid–liquid ratio and coexisting ions (Cu2+, CrO42−) had more significant influence over the adsorption performance. The findings provide guidance for application of KOH-activated graphene as a promising alternative adsorbent for antibiotics removal from aqueous solutions. PMID:29291064
Chemically active reduced graphene oxide with tunable C/O ratios.
Compton, Owen C; Jain, Bonny; Dikin, Dmitriy A; Abouimrane, Ali; Amine, Khalil; Nguyen, Sonbinh T
2011-06-28
Organic dispersions of graphene oxide can be thermally reduced in polar organic solvents under reflux conditions to afford electrically conductive, chemically active reduced graphene oxide (CARGO) with tunable C/O ratios, dependent on the boiling point of the solvent. The reductions are achieved after only 1 h of reflux, and the corresponding C/O ratios do not change upon further thermal treatment. Hydroxyl and carboxyl groups can be removed when the reflux is carried out above 155 °C, while epoxides are removable only when the temperature is higher than 200 °C. The increasing hydrophobic nature of CARGO, as its C/O ratio increases, improves the dispersibility of the nanosheets in a polystyrene matrix, in contrast to the aggregates formed with CARGO having lower C/O ratios. The excellent processability of the obtained CARGO dispersions is demonstrated via free-standing CARGO papers that exhibit tunable electrical conductivity/chemical activity and can be used as lithium-ion battery anodes with enhanced Coulombic efficiency.
NASA Astrophysics Data System (ADS)
Cosano, Daniel; Esquinas, Carlos; Jiménez-Sanchidrián, César; Ruiz, José Rafael
2016-02-01
Calcining magnesium/aluminium layered double hydroxides (Mg/Al LDHs) at 450 °C provides excellent sorbents for removing cyanide from aqueous solutions. The process is based on the "memory effect" of LDHs; thus, rehydrating a calcined LDH in an aqueous solution restores its initial structure. The process, which conforms to a first-order kinetics, was examined by Raman spectroscopy. The metal ratio of the LDH was found to have a crucial influence on the adsorption capacity of the resulting mixed oxide. In this work, Raman spectroscopy was for the first time use to monitor the adsorption process. Based on the results, this technique is an effective, expeditious choice for the intended purpose and affords in situ monitoring of the adsorption process. The target solids were characterized by using various instrumental techniques including X-ray diffraction spectroscopy, which confirmed the layered structure of the LDHs and the periclase-like structure of the mixed oxides obtained by calcination.
Abdelkader, A M; Fray, D J
2017-10-05
Chemically-doped graphenes are promising electrode materials for energy storage and electrosorption applications. Here, an affordable electrochemical green process is introduced to dope graphene with nitrogen. The process is based on reversing the polarity of two identical graphene oxide (GO) electrodes in molten KCl-LiCl-Li 3 N. During the cathodic step, the oxygen functional groups on the GO surface are removed through direct electro-deoxidation reactions or a reaction with the deposited lithium. In the anodic step, nitrogen is adsorbed onto the surface of graphene and subsequently reacts to form nitrogen-doped graphene. The doping process is controllable, and graphene with up to 7.4 at% nitrogen can be produced. The electrochemically treated electrodes show a specific capacitance of 320 F g -1 in an aqueous KOH electrolyte and maintain 96% of this value after 10 000 cycles. The electrodes also display excellent electrosorption performance in capacitive deionisation devices with the salt removal efficiency reaching up to 18.6 mg g -1 .
Bioimpedance for the spot measurement of tissue density
NASA Astrophysics Data System (ADS)
Dylke, E. S.; Ward, L. C.; Stannard, C.; Leigh, A.; Kilbreath, S. L.
2013-04-01
Long-standing lymphoedema is characterised by tissues changes which are currently not detectable using bioimpedance spectroscopy. It has been suggested that a combination of bipolar and tetrapolar measurements may be used to detect these tissues changes for a single site in the transverse direction. This was technique was trialled in a group of control participants with no history of lymphoedema or recent upper limb trauma. Repeated spot measurements were done without removal of electrodes to determine biological variability as well as with removal of electrodes to determine technical reproducibility. The inter-limb spot ratio of the controls was then compared to that of a number of women previously diagnosed with secondary lymphoedema in the forearm. Biological variability was not found to greatly influence repeated measures but only moderate technical reliability was found despite excellent co-efficient of variation for the majority of the measurements. A difference was seen between those with more severe swelling and the controls. This novel technique shows promise in detecting tissue changes associated with long-standing lymphoedema.
Ma, Chong-Bo; Du, Yan; Du, Baoji; Wang, Hao; Wang, Erkang
2018-04-21
An adsorbent that exhibits high affinity for inorganic mercury (Hg 2+ ) with a high removal efficiency of methylmercury (MeHg + ) has been developed. The adsorbent demonstrates a symbiotic relationship between its two components, molybdenum disulphide nanoflowers (MoS 2 NFs) and a poly (vinyl alcohol) (PVA) aerogel. Furthermore, we modified the distribution and loading of the MoS 2 NFs, which was possible due to the stable porous support, and investigated the biocompatibility of the aerogel-support adsorbent. The performance of the optimized material exhibited a distribution coefficient of 9.71 × 10 7 mL g -1 . In addition, the adsorbent was effective over a wide pH range and could efficiently purify both contaminated lake and sea water. The key motivation for using an aerogel support was to stabilise the MoS 2 NFs during purification of the water (resulting in improved performance compared to using freestanding MoS 2 NFs) and the ability to regenerate the used adsorbent. In addition, animal tests confirmed an extremely low toxicity of the adsorbent to fish, along with the excellent purification results. Copyright © 2018 Elsevier Inc. All rights reserved.
NASA Astrophysics Data System (ADS)
Sun, Zhiyuan; Guo, Bing; Rao, Zhimin; Zhao, Qingliang
2014-08-01
In consideration of the excellent property of SiC, the ground micro-structured surface quality is hard to meet the requirement - consequently the ultrasonic vibration assisted polishing (UVAP) of micro-structures of molds is proposed in this paper. Through the orthogonal experiment, the parameters of UVAP of micro-structures were optimized. The experimental results show that, abrasive polishing process, the effect of the workpiece feed rate on the surface roughness (Ra), groove tip radius (R) and material removal rate (MRR) of micro-structures is significant. While, the UVAP, the most significant effect factor for Ra, R and MRR is the ultrasonic amplitude of the ultrasonic vibration. In addition, within the scope of the polishing process parameters selected by preliminary experiments, ultrasonic amplitude of 2.5μm, polishing force of 0.5N, workpiece feed rate of 5 mm·min-1, polishing wheel rotational speed of 50rpm, polishing time of 35min, abrasive size of 100nm and the polishing liquid concentration of 15% is the best technology of UVAP of micro-structures. Under the optimal parameters, the ground traces on the micro-structured surface were removed efficiently and the integrity of the edges of the micro-structure after grinding was maintained efficiently.
Green synthesis of tannin-hexamethylendiamine based adsorbents for efficient removal of Cr(VI).
Liu, Qiang; Liu, Qinze; Liu, Bingsi; Hu, Tao; Liu, Weiliang; Yao, Jinshui
2018-06-15
Newly developed adsorbents, poly(tannin-hexamethylendiamine) (PTHA), were fabricated by varying the mole ratio of tannin (TA) and hexamethylendiamine (HA) under one-pot reaction. The specific forming process of the adsorbent which had undergone the transition from hydrogen bonds to covalent bonds was subsequently explored. Based on the efficiency of Cr(VI) removal from aqueous solution over all prepared adsorbents, the PTHA-4 (mole ratio of TA/HA = 1:12.5) exhibited an excellent adsorption behavior. Adsorption experiments affected by contact time and ionic strength have been conducted successively by PTHA-4, and the equilibrium was reached at 24 h. The kinetic data revealed that the adsorption was good agreement with pseudo-second order model and needed to undergo the rate-controlling step. The maximum adsorption capacity was 283.29 mg/g at 30 °C, relying on the isothermal curve suitably described by Langmuir model. Furthermore, toxic Cr(VI) had been reduced to the low toxic Cr(III) during adsorption process. The structures and adsorption performance of adsorbent were confirmed by means of SEM, FT-IR, XPS etc. Thus, the cheap-sustainable adsorbents have a superior feature for Cr(VI)-wastewater purification in future. Copyright © 2018 Elsevier B.V. All rights reserved.
Qu, Songying; Xiong, Yuhan; Zhang, Jun
2018-05-15
Non-metallic graphene oxide (GO) and carbon nanodots (CDots) co-doped BiOBr ternary system (GO/CDots/BiOBr) were successfully synthesized via a simple one-step solvothermal process. The compositional characterization, optical and electrical properties of photocatalysts were investigated in detail. The prepared ternary photocatalysts possessed the excellent visible-light driven photocatalytic 4-chlorophenol (4-CP) degradation. Additionally, the 4-CP removal efficiencies decreased in the order of GO/CDots/BiOBr (88.9%) > CDots/BiOBr (62.9%) > GO/BiOBr (60.5%) > pristine BiOBr (46.9%) in 6 h under visible light irradiation. The dissolved organic carbon (DOC) removal and the dechlorination efficiency by the GO/CDots/BiOBr were 58.4% and 78.2%, respectively, much higher than pristine BiOBr. The co-existence of GO and CDots on the BiOBr greatly promoted visible light harvesting and utilizing ability and inhibited the recombination of photogenerated electron/hole pairs. The synergistic effect between GO, CDots and BiOBr was expounded, and the photocatalytic reaction mechanism was proposed in detail via the band structure analysis and free radical trapping experiments. Copyright © 2018 Elsevier Inc. All rights reserved.
Vinhal, Jonas O; Lima, Claudio F; Cassella, Ricardo J
2016-09-01
The cationic herbicides paraquat, diquat and difenzoquat are largely used in different cultures worldwide. With this, there is an intrinsic risk of environmental contamination when these herbicides achieve natural waters. The goal of this work was to propose a novel and low-cost sorbent for the removal of the cited herbicides from aqueous medium. The proposed sorbent was prepared by loading polyurethane foam with sodium dodecylsulfate. The influence of several parameters (SDS concentration, HCl concentration and shaking time) on the loading process was investigated. The results obtained in this work demonstrated that all studied variables influenced the loading process, having significant effect on the extraction efficiency of the resulted PUF-SDS. At optimized conditions, the PUF was loaded by shaking 200mg of crushed foam with 200mL of a solution containing 5.0×10(-3)molL(-1) SDS and 0.25molL(-1) HCl, for 30min. The obtained PUF-SDS was efficient for removing the three herbicides from aqueous medium, achieving extraction percentages higher than 90%. The sorption process followed a pseudo second-order kinetics, which presented excellent predictive capacity of the amount of herbicide retained with time. Copyright © 2016 Elsevier Inc. All rights reserved.
Evaluating of arsenic(V) removal from water by weak-base anion exchange adsorbents.
Awual, M Rabiul; Hossain, M Amran; Shenashen, M A; Yaita, Tsuyoshi; Suzuki, Shinichi; Jyo, Akinori
2013-01-01
Arsenic contamination of groundwater has been called the largest mass poisoning calamity in human history and creates severe health problems. The effective adsorbents are imperative in response to the widespread removal of toxic arsenic exposure through drinking water. Evaluation of arsenic(V) removal from water by weak-base anion exchange adsorbents was studied in this paper, aiming at the determination of the effects of pH, competing anions, and feed flow rates to improvement on remediation. Two types of weak-base adsorbents were used to evaluate arsenic(V) removal efficiency both in batch and column approaches. Anion selectivity was determined by both adsorbents in batch method as equilibrium As(V) adsorption capacities. Column studies were performed in fixed-bed experiments using both adsorbent packed columns, and kinetic performance was dependent on the feed flow rate and competing anions. The weak-base adsorbents clarified that these are selective to arsenic(V) over competition of chloride, nitrate, and sulfate anions. The solution pH played an important role in arsenic(V) removal, and a higher pH can cause lower adsorption capacities. A low concentration level of arsenic(V) was also removed by these adsorbents even at a high flow rate of 250-350 h(-1). Adsorbed arsenic(V) was quantitatively eluted with 1 M HCl acid and regenerated into hydrochloride form simultaneously for the next adsorption operation after rinsing with water. The weak-base anion exchange adsorbents are to be an effective means to remove arsenic(V) from drinking water. The fast adsorption rate and the excellent adsorption capacity in the neutral pH range will render this removal technique attractive in practical use in chemical industry.
Zereshki, Sina; Daraei, Parisa; Shokri, Amin
2018-05-18
Using an emulsion liquid membrane based on edible oils is investigated for removing cationic dyes from aqueous solutions. There is a great potential for using edible oils in food industry extraction processes. The parameters affecting the stability of the emulsion and the extraction rate were studied. These parameters were the emulsification time, the stirring speed, the surfactant concentration, the internal phase concentration, the feed phase concentration, the volume ratio of internal phase to organic phase and the treat ratio. In order to stabilize the emulsion without using a carrier, edible paraffin oil and heptane are used at an 80:20 ratio. The optimum conditions for the extraction of methylene blue (MB), crystal violet and methyl violet (CV and MV) cationic dyes using edible paraffin oil as an environment friendly solvent are represented. A removal percentage of 95% was achieved for a mixture of dyes. The optimum concentration of sodium hydroxide in the internal phase, which results a stabile emulsion with a high stripping efficiency of 96%, was 0.04 M. An excellent membrane recovery was observed and the extraction of dyes did not decrease up to seven run cycles. Copyright © 2018 Elsevier B.V. All rights reserved.
MIL-68 (In) nano-rods for the removal of Congo red dye from aqueous solution.
Jin, Li-Na; Qian, Xin-Ye; Wang, Jian-Guo; Aslan, Hüsnü; Dong, Mingdong
2015-09-01
MIL-68 (In) nano-rods were prepared by a facile solvothermal synthesis using NaOAc as modulator agent at 100°C for 30 min. The BET test showed that the specific surface area and pore volume of MIL-68 (In) nanorods were 1252 m(2) g(-1) and 0.80 cm(3) g(-1), respectively. The as-prepared MIL-68 (In) nanorods showed excellent adsorption capacity and rapid adsorption rate for removal of Congo red (CR) dye from water. The maximum adsorption capacity of MIL-68 (In) nanorods toward CR reached 1204 mg g(-1), much higher than MIL-68 (In) microrods and most of the previously reported adsorbents. The adsorption process of CR by MIL-68 (In) nano-rods was investigated and found to be obeying the Langmuir adsorption model in addition to pseudo-second-order rate equation. Moreover, the MIL-68 (In) nanorods showed an acceptable reusability after regeneration with ethanol. All information gives an indication that the as-prepared MIL-68 (In) nanorods show their potential as the adsorbent for highly efficient removal of CR in wastewater. Copyright © 2015 Elsevier Inc. All rights reserved.
Facile synthesis of Fe3O4@C hollow nanospheres and their application in polluted water treatment
NASA Astrophysics Data System (ADS)
Zhang, Yuanguang; Xu, Shihao; Xia, Hongyu; Zheng, Fangcai
2016-11-01
Nanostructured carbon-based materials, such as carbon nanotube arrays have shown respectable removal ability for heavy metal ions and organic dyes in aqueous solution. Although the carbon-based materials exhibited excellent removal ability, the separation of them from the aqueous solution is difficult and time-consuming. Here we demonstrated a novel and facile route for the large-scale fabrication of Fe3O4@C hollow nanospheres, with using ferrocene as a single reagent and SiO2 as a template. The as-prepared Fe3O4@C hollow nanospheres exhibited adsorption ability for heavy metal ions and organic dyes from aqueous solution, and can be easily separated by an external magnet. When the as-prepared Fe3O4@C hollow nanospheres were mixed with the aqueous solution of Hg2+ within 15 min, the removal efficiency was 90.3%. The as-prepared Fe3O4@C hollow nanospheres were also exhibited a high adsorption capacity (100%) as the adsorbent for methylene blue (MB). In addition, the as-prepared Fe3O4@C hollow nanospheres can be used as the recyclable sorbent for water treatment via a simple magnetic separation.
An overview of nanomaterials applied for removing dyes from wastewater.
Cai, Zhengqing; Sun, Youmin; Liu, Wen; Pan, Fei; Sun, Peizhe; Fu, Jie
2017-07-01
Organic dyes are one of the most commonly discharged pollutants in wastewaters; however, many conventional treatment methods cannot treat them effectively. Over the past few decades, we have witnessed rapid development of nanotechnologies, which offered new opportunities for developing innovative methods to treat dye-contaminated wastewater with low price and high efficiency. The large surface area, modified surface properties, unique electron conduction properties, etc. offer nanomaterials with excellent performances in dye-contaminated wastewater treatment. For examples, the agar-modified monometallic/bimetallic nanoparticles have the maximum methylene blue adsorption capacity of 875.0 mg/g, which are several times higher than conventional adsorbents. Among various nanomaterials, the carbonaceous nanomaterials, nano-sized TiO 2 , and graphitic carbon nitride (g-C 3 N 4 ) are considered as the most promising nanomaterials for removing dyes from water phase. However, some challenges, such as high cost and poor separation performance, still limit their engineering application. This article reviewed the recent advances in the nanomaterials used for dye removal via adsorption, photocatalytic degradation, and biological treatment. The modification methods for improving the effectiveness of nanomaterials are highlighted. Finally, the current knowledge gaps of developing nanomaterials on the environmental application were discussed, and the possible further research direction is proposed.
Yıldırım, Kubilay; Kasım, Gözde Çıtır
2018-03-01
Boron (B) pollution is an expanding environmental problem throughout the world due to intensive mining practices and extensive usage of B in agricultural chemicals and industrial products in recent years. The purpose of this study was to investigate B removal performance of four poplar and four willow species in small scale Constructed Wetland (CW). Rooted cuttings of tested species were treated with simulated wastewater having five elevated B concentrations (0.5, 5, 10, 20 and 40 ppm). All the tested species could resist up to 20 ppm wastewater B supply and could regrow from their roots in the soil having maximum 15 mg/kg B content. The result of the study indicated that 65% ± 5.3 of B was removed from the wastewater in 5 ppm B treatment while the same efficiency decreased to 45% ± 4.6 at 40 ppm B supply. The average effect of sediment on B removal was found to be approximately 20% for all B treatments while the remaining part of the loaded B was removed from the CW within effluent (35-54%). Therefore, actual effects of plant species on B removal was ranged from 45% to 25% between 5 and 40 ppm B treatments. Mass B removal within plant body (phytextraction) comprised the 13-10% of total loaded B in CW while the remaining part of the loaded B (31-15%) was stabilized into the sediment with the effects of poplar and willow roots. These results presented clear understanding of effective B purification mechanisms in CWs. Boron phytextraction capacity of a plant species was less effective than its phytstabilization efficiency which increase filtering capacity of the sediment and stabilization of more B around the rhizosphere. In terms of their B removal ability, P.nigra and S.anatolica had the highest B removal capacities with phytextraction (20-11%) while S.alba, P.alba and S.babylonica had more phytstabilizaiton performance (40-15%) in CW. Disposal of B loaded plant material create another environmental costs for CW applications. Therefore, B loaded wood and leaf tissues were mixed and used for production of wooden panels in the study. Then a combustion test was applied on these panels to test their fire resistance. The results of the tests revealed much higher burning tolerance of the B loaded panels (5-20%) compared to controls. Annual harvesting, fast growing and deep rooting ability of the poplar and willow species with their high phytstabilization and phytextraction efficiencies make these species excellent tools to remove B from the polluted waters. Utilization of these species for B removal in large scale CWs is quite possible which should be also investigated in further studies. Copyright © 2017 Elsevier Ltd. All rights reserved.
Ovulation Statuses of Surrogate Gilts Are Associated with the Efficiency of Excellent Pig Cloning.
Huan, Yanjun; Hu, Kui; Xie, Bingteng; Shi, Yongqian; Wang, Feng; Zhou, Yang; Liu, Shichao; Huang, Bo; Zhu, Jiang; Liu, Zhongfeng; He, Yilong; Li, Jingyu; Kong, Qingran; Liu, Zhonghua
2015-01-01
Somatic cell nuclear transfer (SCNT) is an assisted reproductive technique that can produce multiple copies of excellent livestock. However, low cloning efficiency limits the application of SCNT. In this study, we systematically investigated the major influencing factors related to the overall cloning efficiency in pigs. Here, 13620 cloned embryos derived from excellent pigs were transferred into 79 surrogate gilts, and 119 live cloned piglets were eventually generated. During cloning, group of cloned embryos derived from excellent Landrace or Large white pigs presented no significant differences of cleavage and blastocyst rates, blastocyst cell numbers, surrogate pregnancy and delivery rates, average numbers of piglets born and alive and cloning efficiencies, and group of 101-150, 151-200 or 201-250 cloned embryos transferred per surrogate also displayed a similar developmental efficiency. When estrus stage of surrogate gilts was compared, group of embryo transfer on Day 2 of estrus showed significantly higher pregnancy rate, delivery rate, average number of piglets born, average alive piglet number or cloning efficiency than group on Day 1, Day 3, Day 4 or Day 5, respectively (P<0.05). And, in comparison with the preovulation and postovulation groups, group of surrogate gilts during periovulation displayed a significantly higher overall cloning efficiency (P<0.05). Further investigation of surrogate estrus stage and ovulation status displayed that ovulation status was the real factor underlying estrus stage to determine the overall cloning efficiency. And more, follicle puncture for preovulation, not transfer position shallowed for preovulation or deepened for postovulation, significantly improved the average number of piglets alive and cloning efficiency (P<0.05). In conclusion, our results demonstrated that ovulation status of surrogate gilts was the fundamental factor determining the overall cloning efficiency of excellent pigs, and follicle puncture, not transfer position change, improved cloning efficiency. This work would have important implications in preserving and breeding excellent livestock and improving the overall cloning efficiency.
Ovulation Statuses of Surrogate Gilts Are Associated with the Efficiency of Excellent Pig Cloning
Huan, Yanjun; Hu, Kui; Xie, Bingteng; Shi, Yongqian; Wang, Feng; Zhou, Yang; Liu, Shichao; Huang, Bo; Zhu, Jiang; Liu, Zhongfeng; He, Yilong; Li, Jingyu; Kong, Qingran; Liu, Zhonghua
2015-01-01
Somatic cell nuclear transfer (SCNT) is an assisted reproductive technique that can produce multiple copies of excellent livestock. However, low cloning efficiency limits the application of SCNT. In this study, we systematically investigated the major influencing factors related to the overall cloning efficiency in pigs. Here, 13620 cloned embryos derived from excellent pigs were transferred into 79 surrogate gilts, and 119 live cloned piglets were eventually generated. During cloning, group of cloned embryos derived from excellent Landrace or Large white pigs presented no significant differences of cleavage and blastocyst rates, blastocyst cell numbers, surrogate pregnancy and delivery rates, average numbers of piglets born and alive and cloning efficiencies, and group of 101–150, 151–200 or 201–250 cloned embryos transferred per surrogate also displayed a similar developmental efficiency. When estrus stage of surrogate gilts was compared, group of embryo transfer on Day 2 of estrus showed significantly higher pregnancy rate, delivery rate, average number of piglets born, average alive piglet number or cloning efficiency than group on Day 1, Day 3, Day 4 or Day 5, respectively (P<0.05). And, in comparison with the preovulation and postovulation groups, group of surrogate gilts during periovulation displayed a significantly higher overall cloning efficiency (P<0.05). Further investigation of surrogate estrus stage and ovulation status displayed that ovulation status was the real factor underlying estrus stage to determine the overall cloning efficiency. And more, follicle puncture for preovulation, not transfer position shallowed for preovulation or deepened for postovulation, significantly improved the average number of piglets alive and cloning efficiency (P<0.05). In conclusion, our results demonstrated that ovulation status of surrogate gilts was the fundamental factor determining the overall cloning efficiency of excellent pigs, and follicle puncture, not transfer position change, improved cloning efficiency. This work would have important implications in preserving and breeding excellent livestock and improving the overall cloning efficiency. PMID:26565717
Li, Jie; Chen, Changlun; Zhang, Rui; Wang, Xiangke
2015-06-01
Nanoscale zero-valent iron particles supported on reduced graphene oxides (NZVI/rGOs) from spent graphene oxide (GO)-bound iron ions were developed by using a hydrogen/argon plasma reduction method to improve the reactivity and stability of NZVI. The NZVI/rGOs exhibited excellent water treatment performance with excellent removal capacities of 187.16 and 396.37 mg g(-1) for chromium and lead, respectively. Moreover, the NZVI/rGOs could be regenerated by plasma treatment and maintained high removal ability after four cycles. X-ray photoelectron spectroscopy analysis results implied that the removal mechanisms could be attributed to adsorption/precipitation, reduction, or both. Such multiple removal mechanisms by the NZVI/rGOs were attributed to the reduction ability of the NZVI particles and the role of dispersing and stabilizing abilities of the rGOs. The results indicated that the NZVI/rGOs prepared by a hydrogen/argon plasma reduction method might be an effective composite for heavy-metal-ion removal. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Zhao, Yonggui; Fang, Yang; Jin, Yanling; Huang, Jun; Bao, Shu; He, Zhiming; Wang, Feng; Zhao, Hai
2014-01-01
The effects of water depth, coverage rate and harvest regime on nutrient removal from wastewater and high-protein biomass production were assessed in a duckweed-based (Lemna aequinoctialis) pilot-scale wastewater treatment system (10 basins × 12 m(2)) that is located near Dianchi Lake in China. The results indicated that a water depth of 50 cm, a coverage rate of 150% and a harvest regime of 4 days were preferable conditions, under which excellent records of high-protein duckweed (dry matter production of 6.65 g/m(2)/d with crude protein content of 36.16% and phosphorus content of 1.46%) were obtained at a temperature of 12-21 °C. At the same time, the system achieved a removal efficiency of 66.16, 23.1, 48.3 and 76.52% for NH4(+)-N, TN, TP and turbidity, respectively, with the considerable removal rate of 0.465 g/m(2)/d for TN and 0.134 g/m(2)/d for TP at a hydraulic retention time of 6 days. In additionally, it was found that a lower duckweed density could lead to higher dissolved oxygen in the water and then a higher removal percentage of NH4(+)-N by nitrobacteria. This study obtains the preferable operation conditions for wastewater treatment and high-protein biomass production in a duckweed-based pilot-scale system, supplying an important reference for further large-scale applications of duckweed.
López-Maldonado, Eduardo A; Zavala García, Oscar Gabriel; Escobedo, Kevin Cruz; Oropeza-Guzman, Mercedes T
2017-08-05
In this paper nonstoichiometric interbiopolyelectrolyte green complexes (NIBPEGCs) were prepared using chitosan (Ch), alginate (AG) and poly(acrylic acid)(PAA). They are proposed as innovative formulations (polyelectrolytes and chelating agents) suitable for the elimination heavy metals contained in wastewater. This application may represent an integral solution for industries rejecting solid and aqueous metallic materials; however, it has not been previously reported. NIBPEGCs physicochemical performance was evaluated based on pH, particle size, surface charge, isoelectric point, dose, coagulation-flocculation kinetics and chemical affinity with seven metal ions. The experimental results showed that NIBPEGCs composed by AG/Ch and PAA/Chitosan have all the three complementary functions: chemical affinity, electrostatic interaction and particle entrapment anticipating more simple operation units to remove heavy metals. Complexes of AG/Ch (negative) were higher performance in removing heavy metals, with a dose window (150-180mg/L), lower dose of 410mg/L PAA/Ch (negative). Investigation of chelating performances of NIBPEGCs show that the efficiency of metal removal is: Ca˃Cr˃Cu˃Pb˃Ni˃Zn˃Cd. Transmittance vs time profiles, metals and zeta potential analysis showed that chelation capacity is the crucial factor to ensure metallic species removal, followed by physical entrapment of the metallic colloids. Integrating all presented results allow to sustain the development of excellent metals removal formulations. Copyright © 2017 Elsevier B.V. All rights reserved.
Guo, Chang-Zi; Peng, Dang-Cong; Cheng, Xue-Mei; Wang, Dan
2012-03-01
The oxidation ditch operation mode was simulated by sequencing batch reactor (SBR) system with alternate stirring and aeration. The nitrogen and phosphorus removal efficiencies were investigated in two different aeration modes: point aeration and step aeration. Experimental results show that oxygen is dissolved more efficiently in point aeration mode with a longer aerobic region in the same air supply capacity, but dissolved oxygen (DO) utilization efficiency for nitrogen and phosphorus removal is high in step aeration mode. Nitrification abilities of the two modes are equal with ammonia-nitrogen (NH4(+) -N) removal efficiency of 96.68% and 97.03%, respectively. Nitrifier activities are 4.65 and 4.66 mg x (g x h)(-1) respectively. When the ratio of anoxic zones and the aerobic zones were 1, the total nitrogen (TN) removal efficiency of point aeration mode in 2, 4 or 7 partitions was respectively 60.14%, 47.93% and 33.7%. The total phosphorus (TP) removal efficiency was respectively 28.96%, 23.75% and 24.31%. The less the partitions, the higher the nitrogen and phosphorus removal efficiencies, but it is in more favor of TN removal. As for step aeration mode with only one partitioning zone, the TN and TP removal efficiencies are respectively 64.21% and 49.09%, which is better than in point aeration mode, but more conducive to the improvement of TP removal efficiency. Under the condition of sufficient nitrification in step aeration mode, the nitrogen and phosphorus removal is better with the increase of anoxic zone. The removal efficiencies of TN and TP respectively rose to 73.94% and 54.18% when the ratio of anoxic zones and the aerobic zones was increased from 1 : 1 to 1. 8 : 1. As the proportion of anoxic zones was enlarged further, nitrification and operation stability were weakened so as to affect the nitrogen and phosphorus removal efficiencies.
NASA Astrophysics Data System (ADS)
Li, Chengwei; Zhang, Anchao; Zhang, Lixiang; Song, Jun; Su, Sheng; Sun, Zhijun; Xiang, Jun
2018-03-01
A series of magnetic Ag/BiOI/ZnFe2O4 hybrids synthesized via hydrothermal process, subsequent deposition-precipitation and photoreduction method were employed to remove elemental mercury (Hg0) under fluorescent light irradiation. The effects of Ag content, fluorescent light irradiation, reaction temperature, pH value, flue gas composition, anions and photocatalyst dosage on Hg0 removal were investigated in detail. The as-synthesized photocatalysts were characterized using N2 adsorption-desorption, XRD, SEM, TEM, HRTEM, XPS, VSM, DRS, ESR, PL and photocurrent response. The results showed that the ternary Ag/BiOI/ZnFe2O4 hybrids possessed enhanced visible-light-responsive photocatalytic performances for Hg0 removal. Ag/BiOI/ZnFe2O4 photocatalyst could be easily recovered from the reaction solution by an extra magnet and was stable in the process of Hg0 removal. Lower content of Ag was highly dispersed on the surface of BiOI/ZnFe2O4, while higher content of Ag would result in some aggregations and/or the blockages of micropore. In comparison to BiOI/ZnFe2O4, Ag deposited BiOI/ZnFe2O4 material showed lower recombination rate of electron-hole pairs. The superior Hg0 oxidation removal could correspond to good match of BiOI and ZnFe2O4, excellent fluidity and surface plasmon resonance effect of Ag0 nanoparticles, which led to higher separation efficiency of photogenerated electrons and holes, thereby enhancing the hybrids' photocatalytic activity.
Wang, Peng; Chung, Tai-Shung
2013-06-18
Due to the growing demand for potable water, the capacities for wastewater reclamation and saline water desalination have been increasing. More concerns are raised on the poor efficiency of removing certain contaminants by the current water purification technologies. Recent studies demonstrated superior separation performance of the vacuum membrane distillation (VMD) technology for the rejection of trace contaminants such as boron, dye, endocrine-disruptive chemical, and chloro-compound. However, the absence of suitable membranes with excellent wetting resistance and high permeation flux has severely hindered the VMD application as an effective water production process. This work presents a new generation multibore hollow fiber (MBF) membrane with excellent mechanical durability developed for VMD. Its micromorphology was uniquely designed with a tight surface and a fully porous matrix to maximize both high wetting resistance and permeation flux. Credit to the multibore configuration, a 65% improvement was obtained on the antiwetting property. Using a synthetic seawater feed, the new membrane with optimized fabrication condition exhibits a high flux and the salt rejection is consistently greater than 99.99%. In addition, a comparison of 7-bore and 6-bore MBF membranes was performed to investigate the optimum geometry design. The newly designed MBF membrane not only demonstrates its suitability for VMD but also makes VMD come true as an efficient process for water production.
NASA Astrophysics Data System (ADS)
Zhao, Yu; Xu, Shiping; Sun, Xiang; Xu, Xing; Gao, Baoyu
2018-04-01
In this work, a nanocomposite of TiO2 nanoparticles coupled with sulfur-doped C3N4 (S-C3N4) laminated layer was successfully fabricated using a facile impregnation method and the nanocomposite exhibited superior photocatalytic activity in pollutant removal under visible light irradiation, compared to bare TiO2, g-C3N4 and binary C3N4-TiO2 nanocomposite. The enhanced photocatalytic activity was benefited from the efficient migration and transformation of electron-hole (e--h+) pairs, improved visible light absorption capability, and relatively large specific surface area induce by sulfur doping. Interestingly, the introduction of sulfur changes regulated the morphology of g-C3N4 leading to the formation of ultrathin g-C3N4 layer nanosheet assemblies and unique bar-like g-C3N4/TiO2 nanocomposite, which is beneficial for the outstanding performance of the product. In addition, trapping experiment was carried out to identify the main active species in the photocatalytic reaction over the S-C3N4/TiO2 photocatalyst, and functional mechanism of the composite was proposed. This work may provide new ideas for the fabrication and utilization of highly efficient photocatalyst with excellent visible light response in environmental purification applications.
Xiao, Xiaolan; Huang, Zhenxing; Ruan, Wenquan; Yan, Lintao; Miao, Hengfeng; Ren, Hongyan; Zhao, Mingxing
2015-10-01
The anaerobic digestion of high-strength kitchen waste slurry via a pilot-scale anaerobic membrane bioreactor (AnMBR) was investigated at two different operational modes, including no sludge discharge and daily sludge discharge of 20 L. The AnMBR provided excellent and reliable permeate quality with high COD removal efficiencies over 99%. The obvious accumulations of long chain fatty acids (LCFAs) and Ca(2+) were found in the anaerobic digester by precipitation and agglomeration. Though the physicochemical process contributed to attenuating the free LCFAs toxicity on anaerobic digestion, the digestion efficiency was partly influenced for the low bioavailability of those precipitates. Moreover, higher organic loading rate (OLR) of 5.8 kg COD/(m(3) d) and digestion efficiency of 78% were achieved as the AnMBR was stably operated with sludge discharge, where the membrane fouling propensity was also alleviated, indicating the crucial significance of SRT control on the treatment of high-strength kitchen waste slurry via AnMBRs. Copyright © 2015 Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Murugesan, Pramila; Girichandran, Nandalal; Narayanan, Sheeba; Manickam, Matheswaran
2018-01-01
Zinc oxide (ZnO) hybridized with graphitic carbon nitride (g-C3N4) composite was prepared via one step calcination method and well characterized using various physiochemical techniques. The prepared composite exhibits excellent photocatalytic activity and stability for decolorization of methylene blue (MB) dye solution under visible light irradiation. Effect of various rate determining parameters such as catalyst loading, initial dye concentration and pH on the decolorization of MB has been analyzed. The optimum conditions for efficient color removal were found to be 7, 10 ppm and 2 g/L for pH, dye concentration and catalyst dosage respectively. The intermediate compounds formed during the decolorization process were evaluated by GCMS spectra. It was inferred that the ZnO/g-C3N4 (98.83%) composite exhibits highest decolorization efficiency as compare with pure g-C3N4 (35.21%). Such enhancement of photocataytic activity is mainly attributed to the efficient separation of photo induced electron hole pairs via Z-scheme model composed of ZnO and g-C3N4.
Cocurrent scrubber evaluation: TVA's Colbert lime-limestone wet-scrubbing pilot plant
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hollinden, G.A.; Robards, R.F.; Moore, N.D.
1979-01-01
The Tennessee Valley Authority (TVA) is actively engaged in a pilot plant program to develop and/or evaluate wet-scrubbing processes for removing sulfur dioxide (SO/sub 2/) from boiler flue gas. The physical size and general arrangement of flue gas scrubbing systems have a major impact on capital investment and operating cost, as do potential operating and maintenance advantages inherent to some systems. The equipment configuration for a cocurrent scrubber reflects some of these advantages. EPRI funded TVA to perform preliminary screening tests at TVA's 1 MW pilot plant (Colbert Steam Plant) to develop operating data on the cocurrent design for usemore » in designing and operating a 10 MW prototype cocurrent scrubber at TVA's Shawnee Scrubber Test Facility. Results of Colbert tests showed excellent sulfur dioxide removal efficiencies, generally greater than 85%, low pressure drop, and high particulate removal efficiencies. This report covers these screening tests. The results indicate that commercial application of the cocurrent scrubber concept may save substantial capital investment by reducing the number of scrubber modules and auxiliary equipment. These evaluation tests provided the basis for the design and construction of the 10 MW cocurrent scrubber at the Shawnee Facility. Operation of this scrubber began in August 1978 to develop the scale-up similarities and differences between the Colbert test program (1 MW) and the Shawnee test program (10 MW). It also demonstrated the practicality and reliability of the 10 MW prototype. Detailed results of the prototype test series will be available in late 1979.« less
NASA Astrophysics Data System (ADS)
Li, Xiaoli; Lu, Haijun; Zhang, Yun; He, Fu; Jing, Lingyun; He, Xinghua
2016-12-01
A simple and efficient method for production of magnetic composites by decorating CoFe2O4 with polydopamine (PDA) through oxidative polymerization of dopamine was conducted. Further, magnetic alginate beads with porous structure containing well-dispersed CoFe2O4-PDA were fabricated by ionic crosslinking technology. The resulting SA@CoFe2O4-PDA beads were characterized using scanning electron microscopy, Fourier transform infrared spectrometry, X-ray diffractometer, vibrating sample magnetometer and X-ray photoelectron spectroscopy. Adsorption potential of SA@CoFe2O4-PDA beads for organic dyes including Methylene Blue (MB), Crystal Violet (CV) and Malachite Green (MG) was evaluated. SA@CoFe2O4-PDA beads exhibited excellent adsorption performances due to the composite effect, large surface area and porous structure. Organic dyes could be removed from water solution with high efficiency in a wide pH range of 4.0-9.0. Moreover, it exhibited much higher adsorptivity towards MB and CV with the maximum adsorption capacities of 466.60 and 456.52 mg/g, respectively, which were much higher than that of MG (248.78 mg/g). Ca-electrolyte had obvious adverse effects on MB and CV adsorption than MG. FTIR and XPS demonstrated that carboxylate, catechol, hydroxyl and amine groups might be involved in adsorption of organic dyes. The characteristics of wide pH range, high adsorption capacity and convenient magnetic separation would make SA@CoFe2O4-PDA beads as effective adsorbent for removal of organic dyes from wastewater.
Comprehensive study for Anammox process via multistage anaerobic baffled reactors
NASA Astrophysics Data System (ADS)
Ismail, Sherif; Tawfik, Ahmed
2017-11-01
Continuous anaerobic ammonia oxidation (Anammox) process in multistage anaerobic baffled (MABR) reactor was investigated. The reactor was operated for approximately 150 days at constant hydraulic retention time (HRT) of 48 h and was fed with synthetic wastewater containing nitrite and ammonium as main substrates. The MABR was inoculated with mixed culture bacteria collected from activated sludge plant (41.6 g MLSS/L and 19.1 g MLVSS/L). The MABR reactor exhibited excellent performance for the start-up of Anammox process within a period of 35 days. The start-up period was divided into four successive phases; cell lysis, lag, activity elevation and steady state. Total inorganic nitrogen (TIN) removal efficiency of 96.8± 0.9% was achieved at steady state conditions, corresponding to nitrogen removal rate (NRR) of 50.2±1.7 mg N/L·d. Moreover, the effect of HRT on the Anammox process was assessed with applying five different HRTs of (48, 38.4, 28.8, 19.2 and 9.6 h). Decreasing HRT from 48 to 9.6 h reduced the removal efficiencies of NH4-N, NO2-N and TIN from 97.7±2.2 to 49.0±9.8%, from 95.7±1.9 to 71.0±8.5% and from 96.8±0.9 to 57.9±9.1%, respectively, that corresponding to reduction in NRR from 50.8±1.2 mg N/L·d at HRT of 48 h to 32.5±5.0 mg N/L·d at HRT of 9.6 h.
Cao, Baichuan; Gao, Baoyu; Liu, Xin; Wang, Mengmeng; Yang, Zhonglian; Yue, Qinyan
2011-11-15
The adjustment of pH is an important way to enhance removal efficiency in coagulation units, and in this process, the floc size, strength and structure can be changed, influencing the subsequent solid/liquid separation effect. In this study, an inorganic polymer coagulant, polyferric chloride (PFC) was used in a low dissolved organic carbon (DOC) and high alkalinity surface water treatment. The influence of coagulation pH on removal efficiency, floc growth, strength, re-growth capability and fractal dimension was examined. The optimum dosage was predetermined as 0.150 mmol/L, and excellent particle and organic matter removal appeared in the pH range of 5.50-5.75. The structure characteristics of flocs formed under four pH conditions were investigated through the analysis of floc size, effect of shear and particle scattering properties by a laser scattering instrument. The results indicated that flocs formed at neutral pH condition gave the largest floc size and the highest growth rate. During the coagulation period, the fractal dimension of floc aggregates increased in the first minutes and then decreased and larger flocs generally had smaller fractal dimensions. The floc strength, which was assessed by the relationship of floc diameter and velocity gradient, decreased with the increase of coagulation pH. Flocs formed at pH 4.00 had better recovery capability when exposed to lower shear forces, while flocs formed at neutral and alkaline conditions had better performance under higher shear forces. Copyright © 2011 Elsevier Ltd. All rights reserved.
Shiu, Ruei-Feng; Lee, Chon-Lin; Hsieh, Ping-Yen; Chen, Chi-Shuo; Kang, Yun-Yi; Chin, Wei-Chun; Tai, Nyan-Hwa
2018-05-15
Mechanical recovery of oils using oil sorbents is one of the most important approaches to manage marine oil spills. However, the properties of the oils spilled into sea are influenced by external environmental conditions. In this study, we present a graphene-based (GB) sponge as a novel sorbent for crude oil removal and compare its performance with that of a commercial sorbent sheet under various environmental parameters. The GB sponge with excellent superhydrophobic and superoleophilic characteristics is demonstrated to be an efficient sorbent for crude oils, with high sorption capacity (up to 85-95 times its weight) and good reusability. The crude-oil-sorption capacity of our GB sponge is remarkably higher (about 4-5 times) than that of the commercial sheet and most other previously reported sponge sorbents. Moreover, several challenging environmental conditions were examined for their effects on the sorption performance, including the weathering time of oils, seawater temperature, and turbulence (wave effect). The results show that the viscosity of the oil increased with increasing weathering time or decreasing temperature; therefore, the sorption rate seemed to decrease with longer weathering times and lower temperatures. Turbulence can facilitate inner sorption and promote higher oil sorption. Our results indicate that the extent of the effects of weather and other environmental factors on crude oil should be considered in the assessment of the effective adsorption capacity and efficiency of sorbents. The present work also highlights the widespread potential applications of our GB sponge in marine spilled-oil cleanup and hydrophobic solvent removal. Copyright © 2018 Elsevier Ltd. All rights reserved.
Orthogonal strip HPGe planar SmartPET detectors in Compton configuration
NASA Astrophysics Data System (ADS)
Boston, H. C.; Gillam, J.; Boston, A. J.; Cooper, R. J.; Cresswell, J.; Grint, A. N.; Mather, A. R.; Nolan, P. J.; Scraggs, D. P.; Turk, G.; Hall, C. J.; Lazarus, I.; Berry, A.; Beveridge, T.; Lewis, R.
2007-10-01
The evolution of Germanium detector technology over the last decade has lead to the possibility that they can be employed in medical and security imaging. The potential of excellent energy resolution coupled with good position information that Germanium affords removes the necessity for mechanical collimators that would be required in a conventional gamma camera system. By removing this constraint, the overall dose to the patient can be reduced or the throughput of the system can be increased. An additional benefit of excellent energy resolution is that tight gates can be placed on energies from either a multi-lined gamma source or from multi-nuclide sources increasing the number of sources that can be used in medical imaging. In terms of security imaging, segmented Germanium gives directionality and excellent spectroscopic information.
Code of Federal Regulations, 2011 CFR
2011-07-01
... device emission destruction or removal efficiency? 63.9323 Section 63.9323 Protection of Environment... determine the add-on control device emission destruction or removal efficiency? You must use the procedures... removal efficiency as part of the performance test required by § 63.9310. You must conduct three test runs...
Code of Federal Regulations, 2010 CFR
2010-07-01
... device emission destruction or removal efficiency? 63.9323 Section 63.9323 Protection of Environment... determine the add-on control device emission destruction or removal efficiency? You must use the procedures... removal efficiency as part of the performance test required by § 63.9310. You must conduct three test runs...
Code of Federal Regulations, 2011 CFR
2011-07-01
... device emission destruction or removal efficiency? 63.4166 Section 63.4166 Protection of Environment....4166 How do I determine the add-on control device emission destruction or removal efficiency? (a) For... device organic emissions destruction or removal efficiency, using Equation 2 of this section. ER23JY02...
Code of Federal Regulations, 2010 CFR
2010-07-01
... device emission destruction or removal efficiency? 63.3966 Section 63.3966 Protection of Environment... or removal efficiency? You must use the procedures and test methods in this section to determine the add-on control device emission destruction or removal efficiency as part of the performance test...
Code of Federal Regulations, 2011 CFR
2011-07-01
... device emission destruction or removal efficiency? 63.4965 Section 63.4965 Protection of Environment....4965 How do I determine the add-on control device emission destruction or removal efficiency? You must... destruction or removal efficiency as part of the performance test required by § 63.4960. You must conduct...
Code of Federal Regulations, 2011 CFR
2011-07-01
... device emission destruction or removal efficiency? 63.3966 Section 63.3966 Protection of Environment... or removal efficiency? You must use the procedures and test methods in this section to determine the add-on control device emission destruction or removal efficiency as part of the performance test...
Kurzbaum, Eyal; Kirzhner, Felix; Sela, Shlomo; Zimmels, Yoram; Armon, Robert
2010-09-01
In the last two decades, constructed wetland systems gained increasing interest in wastewater treatment and as such have been intensively studied around the world. While most of the studies showed excellent removal of various pollutants, the exact contribution, in kinetic terms, of its particular components (such as: root, gravel and water) combined with bacteria is almost nonexistent. In the present study, a phenol degrader bacterium identified as Pseudomonas pseudoalcaligenes was isolated from a constructed wetland, and used in an experimental set-up containing: plants and gravel. Phenol removal rate by planktonic and biofilm bacteria (on sterile Zea mays roots and gravel surfaces) was studied. Specific phenol removal rates revealed significant advantage of planktonic cells (1.04 × 10(-9) mg phenol/CFU/h) compared to root and gravel biofilms: 4.59 × 10(-11)-2.04 × 10(-10) and 8.04 × 10(-11)-4.39 × 10(-10) (mg phenol/CFU/h), respectively. In batch cultures, phenol biodegradation kinetic parameters were determined by biomass growth rates and phenol removal as a function of time. Based on Haldane equation, kinetic constants such as μ(max) = 1.15/h, K(s) = 35.4 mg/L and K(i) = 198.6 mg/L fit well phenol removal by P. pseudoalcaligenes. Although P. pseudoalcaligenes planktonic cells showed the highest phenol removal rate, in constructed wetland systems and especially in those with sub-surface flow, it is expected that surface associated microorganisms (biofilms) will provide a much higher contribution in phenol and other organics removal, due to greater bacterial biomass. Factors affecting the performance of planktonic vs. biofilm bacteria in sub-surface flow constructed wetlands are further discussed. Copyright © 2010 Elsevier Ltd. All rights reserved.
Khorramirouz, Reza; Sabetkish, Shabnam; Akbarzadeh, Aram; Muhammadnejad, Ahad; Heidari, Reza; Kajbafzadeh, Abdol-Mohammad
2014-09-01
To determine the best method for decellularisation of aortic valve conduits (AVCs) that efficiently removes the cells while preserving the extracellular matrix (ECM) by examining the valvular and conduit sections separately. Sheep AVCs were decellularised by using three different protocols: detergent-based (1% SDS+1% SDC), detergent and enzyme-based (Triton+EDTA+RNase and DNase), and enzyme-based (Trypsin+RNase and DNase) methods. The efficacy of the decellularisation methods to completely remove the cells while preserving the ECM was evaluated by histological evaluation, scanning electron microscopy (SEM), hydroxyproline analysis, tensile test, and DAPI staining. The detergent-based method completely removed the cells and left the ECM and collagen content in the valve and conduit sections relatively well preserved. The detergent and enzyme-based protocol did not completely remove the cells, but left the collagen content in both sections well preserved. ECM deterioration was observed in the aortic valves (AVs), but the ultrastructure of the conduits was well preserved, with no media distortion. The enzyme-based protocol removed the cells relatively well; however, mild structural distortion and poor collagen content was observed in the AVs. Incomplete cell removal (better than that observed with the detergent and enzyme-based protocol), poor collagen preservation, and mild structural distortion were observed in conduits treated with the enzyme-based method. The results suggested that the detergent-based methods are the most effective protocols for cell removal and ECM preservation of AVCs. The AVCs treated with this detergent-based method may be excellent scaffolds for recellularisation. Copyright © 2014 Medical University of Bialystok. Published by Elsevier Urban & Partner Sp. z o.o. All rights reserved.
A Quest for Excellence. Appendix
1986-06-01
the Joint Staff should be removed to permit the Chairman a staff sufficient to discharge his responsibilities. The Secretary of Defense should direct...better coordinated among DoD agencies and Congress. Guidelines must be developed to remove undesirable duplication of official effort and, when...specifically for commercial overall procurement system, with particular procurement are inconsistent and ineffective, attention given to the removal
Degradation of aniline by heterogeneous Fenton's reaction using a Ni-Fe oxalate complex catalyst.
Liu, Yucan; Zhang, Guangming; Fang, Shunyan; Chong, Shan; Zhu, Jia
2016-11-01
A Ni-Fe oxalate complex catalyst was synthesized and characterized by means of Brunauer-Emmet-Teller (BET) method, scanning electron microscope (SEM) and X-ray photo-electron spectroscopy (XPS). The catalyst showed good catalytic activity for aniline degradation by heterogeneous Fenton's reaction, in which the synergetic index was 9.3. The effects of reaction temperature, catalyst dosage, hydrogen peroxide concentration and initial pH were investigated. Under the optimum conditions (T = 293 K, catalyst dosage = 0.2 g/L, H2O2 concentration = 4 mmol/L and initial pH = 5.4), 100% aniline could be removed within 35 min, and approximately 88% deamination efficiency was achieved in 60 min. The aniline degradation process followed the pseudo-first-order kinetic (k = 0.177 min(-1)) with activation energy (Ea) of 49.4 kJ mol(-1). Aniline could be removed in a broad initial pH (3-8) due to the excellent pH-tolerance property of the catalyst. The detected ammonium ion indicated that deamination occurred during aniline degradation. It was proposed that deamination synchronized with aniline removal, and aniline was attacked by free radicals to generate benzoquinonimine and phenol. This system is promising for the removal of aniline from water. Copyright © 2016 Elsevier Ltd. All rights reserved.
He, Jinsong; Cui, Anan; Deng, Shihuai; Chen, J Paul
2018-02-15
Dye containing wastewater has increasingly become an important contamination due to operation of various industries such as textile industry. In this study, a micro-scale biochar particles/polysulfone mixed matrix hollow fiber membrane (MMM) was applied for the removal of methylene blue from water. The static and dynamic adsorption performance was investigated. We found that the MMM exhibited a high removal efficiency of methylene blue under a wide pH range of 4-10. The adsorption process on biochar and MMM obeyed the intraparticle surface diffusion model and Langmuir isotherm model. At neutral pH, the maximum adsorption capacity was 544.459 mg/g for biochar and 165.808 mg/g for MMM. Better regeneration with a desorption rate above 92% was achieved by 1-M NaCl in 90% ethanol aqueous solution. Furthermore, the MMM displayed good performance in treating methylene blue containing wastewater through a continuous filtration mode. More importantly, the MMM showed an excellent reusability for methylene blue removal; it was able to achieve 81% of the permeate yield of the fresh MMM after three regeneration cycles. Finally, the adsorption mechanism studies indicated that the removal of methylene blue was associated with electrostatic interaction, hydrogen bonding and hydrophobic interaction. Copyright © 2017 Elsevier Inc. All rights reserved.
Adsorption of heavy metal ions by hierarchically structured magnetite-carbonaceous spheres.
Gong, Jingming; Wang, Xiaoqing; Shao, Xiulan; Yuan, Shuang; Yang, Chenlin; Hu, Xianluo
2012-11-15
Magnetically driven separation technology has received considerable attention in recent decade for its great potential application. In this work, hierarchically structured magnetite-carbonaceous microspheres (Fe(3)O(4)-C MSs) have been synthesized for the adsorption of heavy metal ions from aqueous solution. Each sphere contains numerous unique rattle-type structured magnetic particles, realizing the integration of rattle-type building unit into microspheres. The as-prepared composites with high BET surface area, hierarchical as well as mesoporous structures, exhibit an excellent adsorption capacity for heavy metal ions and a convenient separation procedure with the help of an external magnet. It was found that the maximum adsorption capacity of the composite toward Pb(2+) was ∼126mgg(-1), displaying a high efficiency for the removal of heavy metal ions. The Freundlich adsorption isotherm was applicable to describe the removal processes. Kinetics of the Pb(2+) removal was found to follow pseudo-second-order rate equation. The as-prepared composite of Fe(3)O(4)-C MSs as well as Pb(2+)-adsorbed composite were carefully examined by scanning electron microscopy (SEM), Zeta potential measurements, Fourier transform infrared spectroscopy (FT-IR), nitrogen sorption measurements, and X-ray photoelectron spectroscopy (XPS). Based on the characterization results, a possible mechanism of Pb(2+) removal with the composite of Fe(3)O(4)-C MSs was proposed. Copyright © 2012 Elsevier B.V. All rights reserved.
Ismail, Zainab Z; AbdelKareem, Hala N
2015-11-01
Sustainable management of waste materials is an attractive approach for modern societies. In this study, recycling of raw waste lamb and chicken bones for defluoridation of water has been estimated. The effects of several experimental parameters including contact time, pH, bone dose, fluoride initial concentration, bone grains size, agitation rate, and the effect of co-existing anions in actual samples of wastewater were studied for fluoride removal from aqueous solutions. Results indicated excellent fluoride removal efficiency up to 99.4% and 99.8% using lamb and chicken bones, respectively at fluoride initial concentration of 10 mg F/L and 120 min contact time. Maximum fluoride uptake was obtained at neutral pH range 6-7. Fluoride removal kinetic was well described by the pseudo-second order kinetic model. Both, Langmuir and Freundlich isotherm models could fit the experimental data well with correlation coefficient values >0.99 suggesting favorable conditions of the process. Furthermore, for complete sustainable management of waste bones, the resulted fluoride-bearing sludge was reused in concrete mixes to partially replace sand. Tests of the mechanical properties of fluoride sludge-modified concrete mixes indicated a potential environmentally friendly approach to dispose fluoride sludge in concrete and simultaneously enhance concrete properties. Copyright © 2015 Elsevier Ltd. All rights reserved.
Suman; Kardam, Abhishek; Gera, Meeta; Jain, V K
2015-01-01
The present work proposed a nanocellulose (NC)-silver nanoparticles (AgNPs) embedded pebbles-based composite material as a novel reusable cost-effective water purification device for complete removal of dyes, heavy metals and microbes. NC was prepared using acid hydrolysis of cellulose. The AgNPs were generated in situ using glucose and embedded within the porous concrete pebbles by the technique of inter-diffusion of ion, providing a very strong binding of nanoparticles within the porous pebbles and thus preventing any nanomaterials leaching. Fabrication of a continual running water purifier was achieved by making different layering of NC and Ag nano-embedded pebbles in a glass column. The water purifier exhibited not only excellent dye and heavy metal adsorption capacity, but also long-term antibacterial activity against pathogenic and non-pathogenic bacterial strains. The adsorption mainly occurred through electrostatic interaction and pore diffusion also contributed to the process. The bed column purifier has shown 99.48% Pb(II) and 98.30% Cr(III) removal efficiency along with 99% decontamination of microbial load at an optimum working pH of 6.0. The high adsorption capacity and reusability, with complete removal of dyes, heavy metals and Escherichia coli from the simulated contaminated water of composite material, will provide new opportunities to develop a cost-effective and eco-friendly water purifier for commercial application.
Synthesis process and photocatalytic properties of BiOBr nanosheets for gaseous benzene.
Liu, Yu; Yin, Yongquan; Jia, Xueqing; Cui, Xiangyu; Tian, Canrui; Sang, Yuanhua; Liu, Hong
2016-09-01
A series of nano-BiOBr were prepared by an effective hydrothermal method in the presence of cetyltrimethyl ammonium bromide (CTAB) and ethanol at different calcination temperatures. The as-prepared nano-BiOBr samples were characterized by measuring the specific area (S BET), UV-Vis diffuse reflectance spectrum, scanning electron microscopy (SEM), transmission electron microscopy (TEM), and X-ray diffraction (XRD). The results show that the calcination temperature has an important impact on the morphology and microstructure of BiOBr. The nano-BiOBr calcined at 120 °C showed excellent photocatalytic degradation properties for benzene, with photocatalytic degradation rate of 75 % for benzene under UV irradiation for 90 min, and removal efficiency of benzene was significantly enhanced by using nano-BiOBr catalyst compared to UV irradiation alone. BiOBr catalyst possessed good photocatalytic activity even after three consecutive photocatalytic reaction cycles, illustrating its excellent stability. The photocatalytic degradation of benzene followed the first-order kinetics, and the good catalytic capability of nano-BiOBr catalyst can be attributed to its crystalline, hierarchical nanostructure and nanosheet thickness.
Sato, Itaru; Kudo, Hiroaki; Tsuda, Shuji
2011-01-01
The severe incident of Fukushima Daiichi Nuclear Power Station has caused radioactive contamination of environment including drinking water. Radioactive iodine, cesium, strontium, barium and zirconium are hazardous fission products because of the high yield and/or relatively long half-life. In the present study, 4 pot-type water purifiers and several adsorbents were examined for the removal effects on these elements from drinking water. Iodide, iodate, cesium and barium were removed by all water purifiers with efficiencies about 85%, 40%, 75-90% and higher than 85%, respectively. These efficiencies lasted for 200 l, which is near the recommended limits for use of filter cartridges, without decay. Strontium was removed with initial efficiencies from 70% to 100%, but the efficiencies were slightly decreased by use. Zirconium was removed by two models, but hardly removed by the other models. Synthetic zeolite A4 efficiently removed cesium, strontium and barium, but had no effect on iodine and zirconium. Natural zeolite, mordenite, removed cesium with an efficiency as high as zeolite A4, but the removal efficiencies for strontium and barium were far less than those of zeolite A4. Activated carbon had little removal effects on these elements. In case of radioactive contamination of tap water, water purifiers may be available for convenient decontamination of drinking water in the home.
A regenerative process for carbon dioxide removal and hydrogen production in IGCC
NASA Astrophysics Data System (ADS)
Hassanzadeh Khayyat, Armin
Advanced power generation technologies, such as Integrated Gasification-Combined Cycles (IGCC) processes, are among the leading contenders for power generation conversion because of their significantly higher efficiencies and potential environmental advantages, compared to conventional coal combustion processes. Although the increased in efficiency in the IGCC processes will reduce the emissions of carbon dioxide per unit of power generated, further reduction in CO2 emissions is crucial due to enforcement of green house gases (GHG) regulations. In IGCC processes to avoid efficiency losses, it is desirable to remove CO2 in the temperature range of 300° to 500°C, which makes regenerable MgO-based sorbents ideal for such operations. In this temperature range, CO2 removal results in the shifting of the water-gas shift (WGS) reaction towards significant reduction in carbon monoxide (CO), and enhancement in hydrogen production. However, regenerable, reactive and attrition resistant sorbents are required for such application. In this work, a highly reactive and attrition resistant regenerable MgO-based sorbent is prepared through dolomite modification, which can simultaneously remove carbon dioxide and enhance hydrogen production in a single reactor. The results of the experimental tests conducted in High-Pressure Thermogravimetric Analyzer (HP-TGA) and high-pressure packed-bed units indicate that in the temperature range of 300° to 500°C at 20 atm more than 95 molar percent of CO2 can be removed from the simulated coal gas, and the hydrogen concentration can be increased to above 70 percent. However, a declining trend is observed in the capacity of the sorbent exposed to long-term durability analysis, which appears to level off after about 20 cycles. Based on the physical and chemical analysis of the sorbent, a two-zone expanding grain model was applied to obtain an excellent fit to the carbonation reaction rate data at various operating conditions. The modeling results indicate that more than 90 percent purification of hydrogen is achievable, either by increasing the activity of the sorbent towards water-gas shift reaction or by mixing the sorbent bed with a commercialized water-gas shift catalyst. The preliminary economical evaluation of the MgO-based process indicates that this process can be economically viable compared to the commercially available WGS/Selexol(TM) processes.
Code of Federal Regulations, 2011 CFR
2011-07-01
... device emission destruction or removal efficiency? 63.3166 Section 63.3166 Protection of Environment... Limitations § 63.3166 How do I determine the add-on control device emission destruction or removal efficiency... emission destruction or removal efficiency as part of the performance test required by § 63.3160. You must...
Code of Federal Regulations, 2010 CFR
2010-07-01
... device emission destruction or removal efficiency? 63.3166 Section 63.3166 Protection of Environment... Limitations § 63.3166 How do I determine the add-on control device emission destruction or removal efficiency... emission destruction or removal efficiency as part of the performance test required by § 63.3160. You must...
Code of Federal Regulations, 2011 CFR
2011-07-01
... device emission destruction or removal efficiency? 63.4766 Section 63.4766 Protection of Environment... Option § 63.4766 How do I determine the add-on control device emission destruction or removal efficiency... emission destruction or removal efficiency as part of the performance test required by § 63.4760. You must...
Virus removal efficiency of Cambodian ceramic pot water purifiers.
Salsali, Hamidreza; McBean, Edward; Brunsting, Joseph
2011-06-01
Virus removal efficiency is described for three types of silver-impregnated, ceramic water filters (CWFs) produced in Cambodia. The tests were completed using freshly scrubbed filters and de-ionized (DI) water as an evaluation of the removal efficiency of the virus in isolation with no other interacting water quality variables. Removal efficiencies between 0.21 and 0.45 log are evidenced, which is significantly lower than results obtained in testing of similar filters by other investigators utilizing surface or rain water and a less frequent cleaning regime. Other experiments generally found virus removal efficiencies greater than 1.0 log. This difference may be because of the association of viruses with suspended solids, and subsequent removal of these solids during filtration. Variability in virus removal efficiencies between pots of the same manufacturer, and observed flow rates outside the manufacturer's specifications, suggest tighter quality control and consistency may be needed during production.
Liang, Wen; Dai, Chaomeng; Zhou, Xuefei; Zhang, Yalei
2014-01-01
Application of zero-valent iron nanoparticles (nZVI) for Zn2+ removal and its mechanism were discussed. It demonstrated that the uptake of Zn2+ by nZVI was efficient. With the solids concentration of 1 g/L nZVI, more than 85% of Zn2+ could be removed within 2 h. The pH value and dissolved oxygen (DO) were the important factors of Zn2+ removal by nZVI. The DO enhanced the removal efficiency of Zn2+. Under the oxygen-contained condition, oxygen corrosion gave the nZVI surface a shell of iron (oxy)hydroxide, which could show high adsorption affinity. The removal efficiency of Zn2+ increased with the increasing of the pH. Acidic condition reduced the removal efficiency of Zn2+ by nZVI because the existing H+ inhibited the formation of iron (oxy)hydroxide. Adsorption and co-precipitation were the most likely mechanism of Zn2+ removal by nZVI. The FeOOH-shell could enhance the adsorption efficiency of nZVI. The removal efficiency and selectivity of nZVI particles for Zn2+ were higher than Cd2+. Furthermore, a continuous flow reactor for engineering application of nZVI was designed and exhibited high removal efficiency for Zn2+. PMID:24416439
Production of large-scale, freestanding vanadium pentoxide nanobelt porous structures
NASA Astrophysics Data System (ADS)
Yun, Yong Ju; Kim, Byung Hoon; Hong, Won G.; Kim, Chang Hee; Kim, Yark Yeon; Jeong, Eun-Ju; Jang, Won Ick; Yu, Han Young
2012-02-01
Large-scale, freestanding, porous structures of vanadium pentoxide nanobelts (VPNs) were successfully prepared using the template-free freeze-drying method. The porous and multi-layered VPN macrostructures are composed of randomly oriented long nanobelts (over 100 μm) and their side length can be controlled up to a few tens of centimetres. Also, the bulk density and surface area of these macrostructures are 3-5 mg cm-3 and 40-80 m2 g-1, respectively, which are similar to those of the excellent adsorbents. In addition, the removal efficiency measurements of ammonia molecules revealed that the VPN porous structures can adsorb the ammonia molecules with the combinations of van der Waals forces and strong chemical bonding by functional groups on the VPN surface.
Production of large-scale, freestanding vanadium pentoxide nanobelt porous structures.
Yun, Yong Ju; Kim, Byung Hoon; Hong, Won G; Kim, Chang Hee; Kim, Yark Yeon; Jeong, Eun-ju; Jang, Won Ick; Yu, Han Young
2012-03-07
Large-scale, freestanding, porous structures of vanadium pentoxide nanobelts (VPNs) were successfully prepared using the template-free freeze-drying method. The porous and multi-layered VPN macrostructures are composed of randomly oriented long nanobelts (over 100 μm) and their side length can be controlled up to a few tens of centimetres. Also, the bulk density and surface area of these macrostructures are 3-5 mg cm(-3) and 40-80 m(2) g(-1), respectively, which are similar to those of the excellent adsorbents. In addition, the removal efficiency measurements of ammonia molecules revealed that the VPN porous structures can adsorb the ammonia molecules with the combinations of van der Waals forces and strong chemical bonding by functional groups on the VPN surface.
Takahashi, Fumitake; Kida, Akiko; Shimaoka, Takayuki
2010-10-15
Although representative removal efficiencies of gaseous mercury for air pollution control devices (APCDs) are important to prepare more reliable atmospheric emission inventories of mercury, they have been still uncertain because they depend sensitively on many factors like the type of APCDs, gas temperature, and mercury speciation. In this study, representative removal efficiencies of gaseous mercury for several types of APCDs of municipal solid waste incineration (MSWI) were offered using a statistical method. 534 data of mercury removal efficiencies for APCDs used in MSWI were collected. APCDs were categorized as fixed-bed absorber (FA), wet scrubber (WS), electrostatic precipitator (ESP), and fabric filter (FF), and their hybrid systems. Data series of all APCD types had Gaussian log-normality. The average removal efficiency with a 95% confidence interval for each APCD was estimated. The FA, WS, and FF with carbon and/or dry sorbent injection systems had 75% to 82% average removal efficiencies. On the other hand, the ESP with/without dry sorbent injection had lower removal efficiencies of up to 22%. The type of dry sorbent injection in the FF system, dry or semi-dry, did not make more than 1% difference to the removal efficiency. The injection of activated carbon and carbon-containing fly ash in the FF system made less than 3% difference. Estimation errors of removal efficiency were especially high for the ESP. The national average of removal efficiency of APCDs in Japanese MSWI plants was estimated on the basis of incineration capacity. Owing to the replacement of old APCDs for dioxin control, the national average removal efficiency increased from 34.5% in 1991 to 92.5% in 2003. This resulted in an additional reduction of about 0.86Mg emission in 2003. Further study using the methodology in this study to other important emission sources like coal-fired power plants will contribute to better emission inventories. Copyright © 2010 Elsevier B.V. All rights reserved.
Cultivation of aerobic granules in a novel configuration of sequencing batch airlift reactor.
Rezaei, Laya Siroos; Ayati, Bita; Ganjidoust, Hossein
2012-01-01
Aerobic granules can be formed in sequencing batch airlift reactors (SBAR) and sequencing batch reactors (SBR). Comparing these two systems, the SBAR has excellent mixing condition, but due to a high height-to-diameter ratio (H/D), there is no performance capability at full scale at the present time. This research examined a novel configuration of SBAR at laboratory scale (with a box structure) for industrial wastewater treatment. To evaluate chemical oxygen demand (COD) removal efficiency and granule formation of the novel reactor (R1), in comparison a conventional SBAR (R2) was operated under similar conditions during the experimental period. R1 and R2 with working volumes of 3.6 L and 4.5 L, respectively, were used to cultivate aerobic granules. Both reactors were operated for 4 h per cycle. Experiments were done at different organic loading rates (OLRs) ranging from 0.6-4.5 kg COD/m3.d for R1 and from 0.72-5.4 kg COD/m3.d for R2. After 150 days of operation, large-sized black filamentous granules with diameters of 0.5-2 mm and 2-11 mm were formed in R1 and R2, respectively. In the second part of the experiment, the efficiency of removal of a toxic substance by aerobic granules was investigated using aniline as a carbon source with a concentration in the range 1.2-6.6 kg COD/m3.d and 1.44-7.92 kg COD/m3.d in R1 and R2, respectively. It was found that COD removal efficiency of the novel airlift reactor was over 97% and 94.5% using glucose and aniline as carbon sources, respectively. Sludge volume index (SVI) was also decreased to 30 mL/g by granulation in the novel airlift reactor.
Shaban, Mohamed; Hassouna, Mohamed E M; Nasief, Fadya M; AbuKhadra, Mostafa R
2017-10-01
Raw kaolinite was used in the synthesis of metakaolinite/carbon nanotubes (K/CNTs) and kaolinite/starch (K/starch) nanocomposites. Raw kaolinite and the synthetic composites were characterized using XRD, SEM, and TEM techniques. The synthetic composites were used as adsorbents for Fe and Mn ions from aqueous solutions and natural underground water. The adsorption by the both composites is highly pH dependent and achieves high efficiency within the neutral pH range. The experimental adsorption data for the uptake of Fe and Mn ions by K/CNTs were found to be well represented by the pseudo-second-order kinetic model rather than the intra-particle diffusion model or Elovich model. For the adsorption using K/starch, the uptake results of Fe ions was well fitted by the second-order model, whereas the uptake of Mn ions fitted well to the Elovich model rather than pseudo-second-order and intra-particle diffusion models The equilibrium studies revealed the excellent fitting of the removal of Fe and Mn ions by K/CNTs and Fe using K/starch with the Langmuir isotherm model rather than with Freundlich and Temkin models. But the adsorption of Mn ions by K/starch is well fitted with Freundlich rather than Temkin and Langmuir isotherm models. The thermodynamic studies reflected the endothermic nature and the exothermic nature for the adsorption by K/CNTs and K/starch nanocomposites, respectively. Natural ground water contaminated by 0.4 mg/L Fe and 0.5 mg/L Mn was treated at the optimum conditions of pH 6 and 120 min contact time. Under these conditions, 92.5 and 72.5% Fe removal efficiencies were achieved using 20 mg of K/CNTs and K/starch nanocomposites, respectively. Also, K/CNTs nanocomposite shows higher efficiency in the removal of Mn ions as compared to K/starch nanocomposite.
Park, Jae-Min; Jang, Se Jin; Lee, Sang-Ick; Lee, Won-Jun
2018-03-14
We designed cyclosilazane-type silicon precursors and proposed a three-step plasma-enhanced atomic layer deposition (PEALD) process to prepare silicon nitride films with high quality and excellent step coverage. The cyclosilazane-type precursor, 1,3-di-isopropylamino-2,4-dimethylcyclosilazane (CSN-2), has a closed ring structure for good thermal stability and high reactivity. CSN-2 showed thermal stability up to 450 °C and a sufficient vapor pressure of 4 Torr at 60 °C. The energy for the chemisorption of CSN-2 on the undercoordinated silicon nitride surface as calculated by density functional theory method was -7.38 eV. The PEALD process window was between 200 and 500 °C, with a growth rate of 0.43 Å/cycle. The best film quality was obtained at 500 °C, with hydrogen impurity of ∼7 atom %, oxygen impurity less than 2 atom %, low wet etching rate, and excellent step coverage of ∼95%. At 300 °C and lower temperatures, the wet etching rate was high especially at the lower sidewall of the trench pattern. We introduced the three-step PEALD process to improve the film quality and the step coverage on the lower sidewall. The sequence of the three-step PEALD process consists of the CSN-2 feeding step, the NH 3 /N 2 plasma step, and the N 2 plasma step. The H radicals in NH 3 /N 2 plasma efficiently remove the ligands from the precursor, and the N 2 plasma after the NH 3 plasma removes the surface hydrogen atoms to activate the adsorption of the precursor. The films deposited at 300 °C using the novel precursor and the three-step PEALD process showed a significantly improved step coverage of ∼95% and an excellent wet etching resistance at the lower sidewall, which is only twice as high as that of the blanket film prepared by low-pressure chemical vapor deposition.
Coagulation effectiveness of graphene oxide for the removal of turbidity from raw surface water.
Aboubaraka, Abdelmeguid E; Aboelfetoh, Eman F; Ebeid, El-Zeiny M
2017-08-01
This study presents the performance of graphene oxide (GO) as a coagulant in turbidity removal from naturally and artificially turbid raw surface water. GO is considered an excellent alternative to alum, the more common coagulant used in water treatment processes, to reduce the environmental release of aluminum. Effects of GO dosage, pH, and temperature on its coagulation ability were studied to determine the ideal turbidity removal conditions. The turbidity removal was ≥95% for all levels of turbid raw surface water (20, 100, and 200 NTU) at optimum conditions. The role of alkalinity in inducing turbidity removal by GO coagulation was much more pronounced upon using raw surface water samples compared with that using artificially turbid deionized water samples. Moreover, GO demonstrated high-performance removal of biological contaminants such as algae, heterotrophic bacteria, and fecal coliform bacteria by 99.0%, 98.8% and 96.0%, respectively, at a dosage of 40 mg/L. Concerning the possible environmental release of GO into the treated water following filtration process, there was no residual GO in a wide range of pH values. The outcomes of the study highlight the excellent coagulation performance of GO for the removal of turbidity and biological contaminants from raw surface water. Copyright © 2017 Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Wang, Xingwei; Chen, Jiajun
2017-06-01
With an aim to investigate the influence of small-scale interlayer heterogeneity on DDT removal efficiency, batch test including surfactant-stabilized foam flushing and solution flushing were carried out. Two man-made heterogeneous patterns consisting of coarse and fine quartz sand were designed to reveal the influencing mechanism. Moreover, the removal mechanism and the corresponding contribution by foam flushing were quantitatively studied. Compared with surfactant solution flushing, the DDT removal efficiency by surfactant-stabilized foam flushing increased by 9.47% and 11.28% under heterogeneous patterns 1 and 2, respectively. The DDT removal contributions of improving sweep efficiency for heterogeneous patterns 1 and 2 by foam flushing were 40.82% and 45.98%, and the contribution of dissolving capacity were 59.18% and 54.02%, respectively. The dissolving capacity of DDT played a major role in DDT removal efficiency by foam flushing under laboratory conditions. And the DDT removal contribution of significant improving sweep efficiency was higher than that of removal decline caused by weak solubilizing ability of foam film compared with solution flushing. The obtained results indicated that the difference of DDT removal efficiency by foam flushing was decreased under two different heterogeneous patterns with the increase of the contribution of improving foam flushing sweep efficiency. It suggested that foam flushing can reduce the disturbance from interlayer heterogeneity in remediating DDT contaminated heterogeneous medium.
NASA Astrophysics Data System (ADS)
He, Lifei; Chen, Li; Zhao, Yue; Chen, Weilin; Shan, Chunhui; Su, Zhongmin; Wang, Enbo
2016-10-01
In this work, two kinds of polyoxometalate (POM) nanoparticles with controlled shapes and structures were synthesized by micelle directed method and then composited with TiO2 via calcination to remove the surfactants owing to the excellent electronic storage and transmission ability of POM, finally obtaining two kinds of TiO2 composites with highly dispersed and small-sized POM nanoparticles (∼1 nm). The TiO2 composites were then induced into the photoanodes of dye-sensitized (N719) solar cells (DSSCs). The separation of electron-holes becomes more favorable due to the nanostructure and high dispersion of POM which provide more active sites than pure POM tending to agglomeration. The TiO2 composite photoanodes finally yielded the power conversion efficiency (PCE) of 8.4% and 8.2%, respectively, which were 42% and 39% higher than the pristine TiO2 based anodes. In addition, the mechanisms of POM in DSSC are proposed.
Swords, Ronan T; Kelly, Kevin R; Cohen, Stephen C; Miller, Larry J; Philbeck, Thomas E; Hacker, Sander O; Spadaccini, Cathy J; Giles, Francis J; Brenner, Andrew J
2010-06-01
Recently, a new FDA-cleared battery powered bone marrow biopsy system was developed to allow operators access to the bone marrow space quickly and efficiently. A pre-clinical evaluation of the device (OnControl, Vidacare Corporation, San Antonio, TX, USA) on anesthetized pigs was conducted, in addition to a clinical evaluation in hematology clinic patients requiring a bone marrow biopsy. Twenty-six samples were collected from the swine model. No cellular artifact or thermal damage was reported in any of the samples obtained. For the clinical evaluation of the device, 16 patients were recruited. Mean time from needle contact with skin to needle removal was 38.5 +/- 13.94 seconds. No complications were reported. In this study, the manual and powered samples were equivalent in specimen quality. In the patients evaluated, the device was safe, easy to use and the mean procedural time was significantly faster than previously reported with a manual technique.
Gregus, Michal; Roberg-Larsen, Hanne; Lundanes, Elsa; Foret, Frantisek; Kuban, Petr; Wilson, Steven Ray
2017-10-01
Capillary electrophoresis (CE) can provide high separation efficiency with very simple instrumentation, but has yet to be explored regarding oxysterols/cholesterol. Cholesterol and 25-hydroxycholesterol (both are 4-ene-3-ketosteroids) were quantitatively transformed into hydrazones using Girard P reagent after enzymatic oxidation by cholesterol oxidase. Separation was achieved using non-aqueous capillary electrophoresis with UV detection at 280nm; the "charge-tagging" Girard P reagent ensured both charge and chromophore (which are requirements for CE-UV). Excess reagent was also separated from the two analytes, eliminating the need for removal prior to the analysis. The compounds were separated in less than 5min with excellent separation efficiency, using separation electrolytes fully compatible with mass spectrometry. The CE-UV method was used to optimize steps for charge-tagging, revealing that the procedure is affected by the analyte/reagent ratio and reaction time, but also the analyte structure. Copyright © 2017 Elsevier B.V. All rights reserved.
Technical advantages of disk laser technology in short and ultrashort pulse processes
NASA Astrophysics Data System (ADS)
Graham, P.; Stollhof, J.; Weiler, S.; Massa, S.; Faisst, B.; Denney, P.; Gounaris, E.
2011-03-01
This paper demonstrates that disk-laser technology introduces advantages that increase efficiency and allows for high productivity in micro-processing in both the nanosecond (ns) and picosecond (ps) regimes. Some technical advantages of disk technology include not requiring good pump beam quality or special wavelengths for pumping of the disk, high optical efficiencies, no thermal lensing effects and a possible scaling of output power without an increase of pump beam quality. With cavity-dumping, the pulse duration of the disk laser can be specified between 30 and hundreds of nanoseconds, but is independent of frequency, thus maintaining process stability. TRUMPF uses this technology in the 750 watts average power laser TruMicro 7050. High intensity, along with fluency, is important for high ablation rates in thinfilm removal. Thus, these ns lasers show high removal rates, above 60 cm2/s, in thin-film solar cell production. In addition, recent results in paint-stripping of aerospace material prove the green credentials and high processing rates inherent with this technology as it can potentially replace toxic chemical processes. The ps disk technology meanwhile is used in, for example, scribing of solar cells, wafer dicing and drilling injector nozzles, as the pulse duration is short enough to minimize heat input in the laser-matter interaction. In the TruMicro Series 5000, the multi-pass regenerative amplifier stage combines high optical-optical efficiencies together with excellent output beam quality for pulse durations of only 6 ps and high pulse energies of up to 0.25 mJ.
Safe disposal of radioactive iodide ions from solutions by Ag2O grafted sodium niobate nanofibers.
Mu, Wanjun; Li, Xingliang; Liu, Guoping; Yu, Qianhong; Xie, Xiang; Wei, Hongyuan; Jian, Yuan
2016-01-14
Radioactive iodine isotopes are released into the environment by the nuclear industry and medical research institutions using radioactive materials, and have negative effects on organisms living within the ecosystem. Thus, safe disposal of radioactive iodine is necessary and crucial. For this reason, the uptake of iodide ions was investigated in Ag2O nanocrystal grafted sodium niobate nanofibers, which were prepared by forming a well-matched phase coherent interface between them. The resulting composite was applied as an efficient adsorbent for I(-) anions by forming an AgI precipitate, which also remained firmly attached to the substrates. Due to their one-dimensional morphology, the new adsorbents can be easily dispersed in liquids and readily separated after purification. This significantly enhances the adsorption efficiency and reduces the separation costs. The change in structure from the pristine sodium niobate to Ag2O anchored sodium niobate and to the used adsorbent was examined by using various characterization techniques. The effects of Ag(+) concentration, pH, equilibration time, ionic strength and competing ions on the iodide ion removal ability of the composite were studied. The Ag2O nanocrystal grafted sodium niobate adsorbent showed a high adsorption capacity and excellent selectivity for I(-) anions in basic solutions. Our results are useful for the further development of improved adsorbents for removing I(-) anions from basic wastewater.
Yang, Dewei; Jing, Huijuan; Wang, Zhaowu; Li, Jiaheng; Hu, Mingxiang; Lv, Ruitao; Zhang, Rui; Chen, Deliang
2018-05-19
Activated carbon (AC) based supercapacitors exhibit intrinsic advantages in energy storage. Traditional two-step synthesis (carbonization and activation) of AC faces difficulties in precisely regulating its pore-size distribution and thoroughly removing residual impurities like silicon oxide. This paper reports a novel coupled ultrasonication-milling (CUM) process for the preparation of hierarchically porous carbon (HPC) using corn cobs as the carbon resource. The as-obtained HPC is of a large surface area (2288 m 2 g -1 ) with a high mesopore ratio of ∼44.6%. When tested in a three-electrode system, the HPC exhibits a high specific capacitance of 465 F g -1 at 0.5 Ag -1 , 2.7 times higher than that (170 F g -1 ) of the commercial AC (YP-50F). In the two-electrode test system, the HPC device exhibits a specific capacitance of 135 F g -1 at 1 A g -1 , twice higher than that (68 F g -1 ) of YP-50F. The above excellent energy-storage properties are resulted from the CUM process which efficiently removes the impurities and modulates the mesopore/micropore structures of the AC samples derived from the agricultural resides of corn cobs. The CUM process is an efficient method to prepare high-performance biomass-derived AC materials. Copyright © 2018 Elsevier Inc. All rights reserved.
NASA Astrophysics Data System (ADS)
Shaikh, Aasiya; Mishra, Shailendra Prasad; Mohapatra, Priyabrata; Parida, Smrutiranjan
2017-06-01
Hexavalent chromium, Cr(VI), is a mutagenic and carcinogenic heavy metal environmental pollutant. Photoreduction is one of the remediation methods of the hexavalent chromium Cr(VI), which necessitates design of an efficient catalyst for visible light performance. Here, we report a one-step solvothermal synthesis of TiO2-reduced graphene oxide (TiO2- xRGO) composite catalysts using a mild reducing agent, dimethylformamide (DMF). Nanoscale TiO2 particles in the size range of 4-9 nm were formed on the reduced graphene sheets. The formation of the composite catalysts was accompanied by the appearance of a large fluorescence quenching, which indicates an efficient separation of photogenerated electrons and holes. The composites displayed excellent photoreduction of Cr(VI) in the visible light, which was found to be a function of the weight percentage of RGO in the composite. At the optimum composition of TiO2- xRGO, a maximum removal rate of 96% was recorded, which was higher than that of the pristine TiO2, which showed no appreciable catalytic activity under the same condition. The performance degraded with increasing RGO content in the composite, which can be attributed to the higher electron-hole recombination on the RGO surface. The Cr(VI) photoreduction also exhibited a pH dependence. The highest removal rate was observed in the acidic medium.
Adsorptive Removal of Metal Ions from Water using Functionalized Biomaterials.
Deshpande, Kanchanmala
2017-01-01
Synthesis and modification of cost-effective sorbents for removing heavy metals from water resources is an area of significance. It had been reported that materials with biological origins, such as agricultural and animal waste, are excellent alternatives to conventional adsorbents due to their higher affinity, capacity and selectivity towards metal ions. These properties of biomaterials help to reduce or detoxify metal ions concentration in contaminated water to acceptable regulatory standards. Synthesis of novel, efficient, cost effective, eco-friendly biomaterials for heavy metal adsorption from water is still an area of challenge. In this comprehensive review, acompilation of patents as well as published articles is carried out to outline the properties of different biomaterials based on their precursors along withdetailed description of biomaterial morphology and various surface modification approaches. A detailed study of the performance of adsorbents and the role of physical and chemical modification in terms of enhancing their potential for metal adsorption from water is compiled here. The factors affecting adsorption behavior i.e., capacity and affinity of e biomaterials is also compiled. This paper presents a concise review of reported studies on the synthesis and modification of biomaterials, their use for heavy metal removal from waters and future prospects of this technology. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.
Ji, Wenhua; Ma, Xiuli; Xie, Hongkai; Chen, Lingxiao; Wang, Xiao; Zhao, Hengqiang; Huang, Luqi
2014-11-14
Dummy molecularly imprinted polymers (DMIPs) for simultaneously selective removal and enrichment of ginkgolic acids (GAs) during the processing of Ginkgo biloba leaves have been prepared. Two dummy template molecule with similar structural skeleton to GAs, 6-methoxysalicylic acid (MOSA, DT-1) and 6-hexadecyloxysalicylic acid (HOSA, DT-2), have been designed and synthesized. The performance of the DMIPs and NIPs were evaluated including selective recognition capacity, adsorption isotherm, and adsorption kinetics. The selective recognition capacity of the three GAs with four analogues on the sorbents illustrated that the DMIPs sorbents have high specificity for GAs. An efficient method based on DMIP-HOSA coupled with solid-phase extraction (SPE) was developed for simultaneously selective removal and enrichment of ginkgolic acids (GAs) during the processing of Ginkgo biloba leaves. The method showed excellent recoveries (82.5-88.7%) and precision (RSD 0.5-2.6%, n=5) for licorice extracts, Gastrodia elata extracts and pepper extracts spiked at three concentration levels each (50, 100, 200 μg mL(-1)). The results indicated that GAs and standardized Ginkgo biloba leaves extracts could be obtained simultaneously through the DMIP-SPE. Copyright © 2014 Elsevier B.V. All rights reserved.
Qiu, Hui; Liang, Chen; Zhang, Xiaolin; Chen, Mindong; Zhao, Yunxia; Tao, Tao; Xu, Zhengwen; Liu, Gang
2015-09-23
Advanced removal of phosphate by low-cost adsorbents from municipal wastewater or industrial effluents is an effective and economic way to prevent the occurrence of eutrophication. Here, we proposed a novel method to immobilize hydrous zirconium oxide nanoparticle within quaternary-aminated wheat straw, and obtained an inexpensive, eco-friendly nanocomposite Ws-N-Zr. The biomass-based Ws-N-Zr exhibited higher preference toward phosphate than commercial anion exchanger IRA-900 when competing sulfate ions coexisted at relatively high levels. Such excellent performance of Ws-N-Zr resulted from its specific hybrid structure, the quaternary ammonium groups bonded on the host favor the preconcentration of phosphate ions inside the wheat straw based on Donnan effect, and the encapsulated HZO nanoparticle exhibits preferable sequestration of phosphate ions through specific interaction, as further demonstrated by FTIR and X-ray photoelectron spectroscopy. Cycle adsorption and regeneration experiments demonstrated that Ws-N-Zr could be employed for repeated use without significant capacity loss, when the binary NaOH-NaCl solution was employed as the regenerant. The influence of solution pH and contact time was also examined. The results suggested that Ws-N-Zr has a great potential in efficient removal of phosphate in contaminated waters.
Liao, B Q; Xie, K; Lin, H J; Bertoldo, Daniel
2010-01-01
The feasibility of using a thermophilic submerged anaerobic membrane bioreactor (SAnMBR) for kraft evaporator condensate treatment was studied at 55+/-1 degrees C over 6.5 months. Under tested organic loading rate of 1-7 kg COD/m(3) day, a soluble COD removal efficiency of 85-97% was obtained. The methane production rate was 0.35+/-0.1 L methane/g COD and the produced biogas was of excellent fuel quality with 80-90% methane. A higher membrane fouling rate was related to the presence of a larger portion of fine colloidal particles (1-10 mum). The thermophilic SAnMBR was sensitive to the presence of toxic compounds in feed and unexpected pH probe failure (leading to a higher pH). Feed toxic shock caused sludge deflocculation and thus deteriorated membrane performance. Operating the reactor as a conventional anaerobic reactor to waste some of the fine flocs in treated effluent during the start-up process was an effective strategy to reduce membrane fouling. The experimental results from this study indicate that treatment of kraft evaporator condensate is feasible in terms of COD removal and biogas production using thermophilic SAnMBRs but pre-treatment may be needed to remove toxic sulfur compounds and membrane fouling caused by the large portion of fine particles may be a challenge.
MBR/RO/ozone processes for TFT-LCD industrial wastewater treatment and recycling.
Chen, T K; Ni, C H; Chan, Y C; Lu, M C
2005-01-01
This research is mainly to explore the treatment capacity for TFT-LCD industrial wastewater recycling by the processes combined with membrane bioreactor (MBR), reverse osmosis (RO) and ozone(O3). The organic wastewater from the TFT-LCD industry was selected as the target. MBR, RO and ozone plants were established for evaluation. An MBR plant consisted of a 2-stage anoxic/aerobic bioreactor and an immersed UF membrane unit was employed. The effluent of MBR was conducted into the RO system then into the ozone system. The RO system consisted of a spiral membrane in the vessel. One bubble column, 75 cm high and diameter 5 cm, were used as the ozonation reactor. On the bottom of ozonation reactor is a porous diffuser for releasing gas, with an aperture of 100 microm (0.1 cm). Over the whole experimental period, the MBR process achieved a satisfactory organic removal. The COD could be removed with an average of over 98.5%. For the TOC item, the average removal efficiency was 97.4%. The stable effluent quality and satisfactory removal performance were ensured by the efficient interception performance of an immersed UF membrane device incorporated with the biological reactor. Moreover, the MBR effluent did not contain any suspended solids and the SDI value was under 3. After the treatment of RO, excellent water quality was found. The water quality of permeate was under 5 mg/I, 2 mg/l and 50 micros/cm for COD, TOC and conductivity respectively. The treated water can be recycled and reused for the cooling tower make-up water or other purposes. After the treatment of ozone, the treated water quality was under 5 mg/l and 0.852 mg/l for COD and TOC respectively. The test results of MBR, MBR/RO and MBR/RO/ozone processes were compared as possible appropriate treatment technologies applied in TFT-LCD industrial wastewater reuse and recycling.
Ai, Jing; Zhang, Weijun; Liao, Guiying; Xia, Hua; Wang, Dongsheng
2017-11-01
In this work, magnetic Fe 3 O 4 was utilized to immobilize horseradish peroxidase (IM-HRP) in order to improve its stability and reusability by crosslinking method process with glutaraldehyde. The physicochemical properties of NH 2 Fe 3 O 4 @SiO 2 and IM-HRP were characterized by powder X-ray diffraction (XRD), Fourier transform infrared spectroscopy (FT-IR), Thermo-gravimetric Analysis (TGA) and Transmission electron microscopy (TEM). The thermal stability of immobilized-HRP was considerably improved in comparison with free counterpart. The catalytic performance of IM-HRP for estrogens removal from aqueous solution was evaluated, it was found that the presence of natural organic matters (NOM) have no significant effects on E2 removal and the E2 enzyme-degradation reached around 80% when pH = 7.0 with 0.552 × 10 -3 ratio of IM-HRP/H 2 O 2. In addition, the active radicals responsible for estrogens degradation were identified with electro-spin resonance spectra (ESR). It was found that immobilization process on Fe 3 O 4 showed no adverse effects on catalytic performance on HRP, estrogens degradation could be fitted well with pseudo-second kinetic equation. Estrogens degradation efficiency was reduced in the presence of humic substances. Both O 2 - and OH were detected in IM-HRP catalyzed H 2 O 2 system and radicals quenching test indicated O 2 - played a more important role in estrogens removal. IM-HRP exhibited excellent stability and E2 removal efficiency could reach 45.41% after use seven times. Therefore, HRP enzymes immobilized on NH 2 Fe 3 O 4 @SiO 2 by cross-linking method in glutaraldehyde solutions was an effective way to improve stability and reusability of HRP, and which could avoid potential secondary pollution in water environment caused by free HRP after treatment. Copyright © 2017 Elsevier Ltd. All rights reserved.
Lonappan, Linson; Rouissi, Tarek; Kaur Brar, Satinder; Verma, Mausam; Surampalli, Rao Y
2018-02-01
Biochars were prepared from feedstocks pinewood and pig manure. Biochar microparticles obtained through grinding were evaluated for the removal of emerging contaminant diclofenac (DCF) and the underlying mechanism were thoroughly studied. Characterization of biochar was carried out using particle size analyzer, SEM, BET, FT-IR, XRD, XPS and zeta potential instrument. Pig manure biochar (BC-PM) exhibited excellent removal efficiency (99.6%) over pine wood biochar (BC-PW) at 500 µg L -1 of DCF (environmentally significant concentration). Intraparticle diffusion was found to be the major process facilitated the adsorption. BC-PW followed pseudo first-order kinetics whereas BC-PM followed pseudo second-order kinetics. Pine wood biochar was largely affected by pH variations whereas for pig manure biochar, pH effects were minimal owing to its surface functional groups and DCF hydrophobicity. Thermodynamics, presence of co-existing ions, initial adsorbate concentration and particles size played substantial role in adsorption. Various isotherms models were also studied and results are presented. Copyright © 2017 Elsevier Ltd. All rights reserved.
UV-responsive nano-sponge for oil absorption and desorption
Kim, Do Hyun; Jung, Min Chan; Cho, So-Hye; Kim, Sang Hoon; Kim, Ho-Young; Lee, Heon Ju; Oh, Kyu Hwan; Moon, Myoung-Woon
2015-01-01
Controlled surface wettability for oil has been intensively studied to remove industrial oil waste or oil spill pollution from seas or rivers. In particular, external stimuli-induced special wetting materials, such as photo-responsive TiO2, have attracted considerable attention for oil-water separation. In this study, a novel method is reported to fabricate a nano-sponge which is composed of hydrophobic hydrocarbon and hydrophilic TiO2 nanoparticles for oil absorption or desorption that are responsive to UV irradiation. The hydrocarbon in the nano-sponge could selectively absorb oil from water, whereas the absorbed oil is released into the water by TiO2 in response to UV irradiation. The nano-sponge functionalized porous polydimethylsiloxane released more than 98% of the absorbed crude oil with UV irradiation and air-bubbling. It could be continuously reused while maintaining a high absorption capacity and desorption efficiency without incurring secondary air or water pollution. This smart oil absorption/desorption methodology with excellent selectivity and recyclability with almost perfect removal of absorbed oil can be applied for oil-water separation, oil spill cleanup and reuse of spilled oil. PMID:26260470
Decontamination of uranium-contaminated waste oil using supercritical fluid and nitric acid.
Sung, Jinhyun; Kim, Jungsoo; Lee, Youngbae; Seol, Jeunggun; Ryu, Jaebong; Park, Kwangheon
2011-07-01
The waste oil used in nuclear fuel processing is contaminated with uranium because of its contact with materials or environments containing uranium. Under current law, waste oil that has been contaminated with uranium is very difficult to dispose of at a radioactive waste disposal site. To dispose of the uranium-contaminated waste oil, the uranium was separated from the contaminated waste oil. Supercritical R-22 is an excellent solvent for extracting clean oil from uranium-contaminated waste oil. The critical temperature of R-22 is 96.15 °C and the critical pressure is 49.9 bar. In this study, a process to remove uranium from the uranium-contaminated waste oil using supercritical R-22 was developed. The waste oil has a small amount of additives containing N, S or P, such as amines, dithiocarbamates and dialkyldithiophosphates. It seems that these organic additives form uranium-combined compounds. For this reason, dissolution of uranium from the uranium-combined compounds using nitric acid was needed. The efficiency of the removal of uranium from the uranium-contaminated waste oil using supercritical R-22 extraction and nitric acid treatment was determined.
Hoffmann, Thomas J; Zhan, Yiping; Kvale, Mark N; Hesselson, Stephanie E; Gollub, Jeremy; Iribarren, Carlos; Lu, Yontao; Mei, Gangwu; Purdy, Matthew M; Quesenberry, Charles; Rowell, Sarah; Shapero, Michael H; Smethurst, David; Somkin, Carol P; Van den Eeden, Stephen K; Walter, Larry; Webster, Teresa; Whitmer, Rachel A; Finn, Andrea; Schaefer, Catherine; Kwok, Pui-Yan; Risch, Neil
2011-12-01
Four custom Axiom genotyping arrays were designed for a genome-wide association (GWA) study of 100,000 participants from the Kaiser Permanente Research Program on Genes, Environment and Health. The array optimized for individuals of European race/ethnicity was previously described. Here we detail the development of three additional microarrays optimized for individuals of East Asian, African American, and Latino race/ethnicity. For these arrays, we decreased redundancy of high-performing SNPs to increase SNP capacity. The East Asian array was designed using greedy pairwise SNP selection. However, removing SNPs from the target set based on imputation coverage is more efficient than pairwise tagging. Therefore, we developed a novel hybrid SNP selection method for the African American and Latino arrays utilizing rounds of greedy pairwise SNP selection, followed by removal from the target set of SNPs covered by imputation. The arrays provide excellent genome-wide coverage and are valuable additions for large-scale GWA studies. Copyright © 2011 Elsevier Inc. All rights reserved.
Replacement of tritiated water from irradiated fuel storage bay
DOE Office of Scientific and Technical Information (OSTI.GOV)
Castillo, I.; Boniface, H.; Suppiah, S.
2015-03-15
Recently, AECL developed a novel method to reduce tritium emissions (to groundwater) and personnel doses at the NRU (National Research Universal) reactor irradiated fuel storage bay (also known as rod or spent fuel bay) through a water swap process. The light water in the fuel bay had built up tritium that had been transferred from the heavy water moderator through normal fuel transfers. The major advantage of the thermal stratification method was that a very effective tritium reduction could be achieved by swapping a minimal volume of bay water and warm tritiated water would be skimmed off the bay surface.more » A demonstration of the method was done that involved Computational Fluid Dynamics (CFD) modeling of the swap process and a test program that showed excellent agreement with model prediction for the effective removal of almost all the tritium with a minimal water volume. Building on the successful demonstration, AECL fabricated, installed, commissioned and operated a full-scale system to perform a water swap. This full-scale water swap operation achieved a tritium removal efficiency of about 96%.« less
LC-MS/MS determination of tranexamic acid in human plasma after phospholipid clean-up.
Fabresse, Nicolas; Fall, Fanta; Etting, Isabelle; Devillier, Philippe; Alvarez, Jean-Claude; Grassin-Delyle, Stanislas
2017-07-15
Tranexamic acid is a widely used antifibrinolytic drug but its pharmacology and pharmacokinetics remains poorly understood. Owing to the recent knowledge on phospholipid-induced matrix effects during human plasma analysis, our aim was to develop a liquid chromatography-mass spectrometry method for the quantitation of tranexamic acid after efficient sample clean-up. Sample preparation consisted in phospholipid removal and protein precipitation. Hydrophilic interaction liquid chromatography was used and the detection was achieved with multiple reaction monitoring. The method was validated according to the European Medicine Agency guideline in the range 1.0-1000.0μg/mL. The performance of the method was excellent with a precision in the range 1.2-3.0%, an accuracy between 88.4 and 96.6% and a coefficient of variation of the internal standard-normalized matrix factor below 6.7%. This method is suitable for the quantification of tranexamic acid in the wide range of concentrations observed during clinical studies, with all the advantages related to phospholipid removal. Copyright © 2017 Elsevier B.V. All rights reserved.
Wang, Xingwei; Chen, Jiajun
2017-06-01
With an aim to investigate the influence of small-scale interlayer heterogeneity on DDT removal efficiency, batch test including surfactant-stabilized foam flushing and solution flushing were carried out. Two man-made heterogeneous patterns consisting of coarse and fine quartz sand were designed to reveal the influencing mechanism. Moreover, the removal mechanism and the corresponding contribution by foam flushing were quantitatively studied. Compared with surfactant solution flushing, the DDT removal efficiency by surfactant-stabilized foam flushing increased by 9.47% and 11.28% under heterogeneous patterns 1 and 2, respectively. The DDT removal contributions of improving sweep efficiency for heterogeneous patterns 1 and 2 by foam flushing were 40.82% and 45.98%, and the contribution of dissolving capacity were 59.18% and 54.02%, respectively. The dissolving capacity of DDT played a major role in DDT removal efficiency by foam flushing under laboratory conditions. And the DDT removal contribution of significant improving sweep efficiency was higher than that of removal decline caused by weak solubilizing ability of foam film compared with solution flushing. The obtained results indicated that the difference of DDT removal efficiency by foam flushing was decreased under two different heterogeneous patterns with the increase of the contribution of improving foam flushing sweep efficiency. It suggested that foam flushing can reduce the disturbance from interlayer heterogeneity in remediating DDT contaminated heterogeneous medium. Copyright © 2017 Elsevier B.V. All rights reserved.
Adsorption of SO2 and NO from incineration flue gas onto activated carbon fibers.
Liu, Zhen-Shu
2008-11-01
Activated carbon fibers (ACFs) were used to remove SO2 and NO from incineration flue gas. Three types of ACFs in their origin state and after pretreatment with HNO3, NaOH, and KOH were investigated. The removal efficiencies of SO2 and NO were determined experimentally at defined SO2 and NO concentrations and at temperatures of 150, 200 and 260 degrees C. Experimental results indicated that the removal efficiencies of SO2 and NO using the original ACFs were < 56% and < 27%, respectively. All ACFs modified with HNO3, NaOH, and KOH solution could increase the removal efficiencies of SO(2) and NO. The mesopore volumes and functional groups of ACFs are important in determining the removal of SO2 and NO. When the mesopore volumes of the ACFs are insufficient for removing SO2 and NO, the functional groups on the ACFs are not important in determining the removal of SO2 and NO. On the contrary, the effects of the functional groups on the removal of SO2 and NO are more important than the mesopore volumes as the amount of mesopores on the ACFs is sufficient to remove SO2 and NO. Moreover, the removal efficiencies of SO2 and NO were greatest at 200 degrees C. When the inlet concentration of SO2 increased to 600 ppm, the removal efficiency of SO2 increased slightly and the removal efficiency of NO decreased.
Removal of Cu2+ and turbidity from wastewater by mercaptoacetyl chitosan.
Chang, Qing; Zhang, Min; Wang, Jinxi
2009-09-30
A macromolecule heavy metal flocculant mercaptoacetyl chitosan (MAC) was prepared by reacting chitosan with mercaptoacetic acid. In preliminary experiments, the flocculation performance of MAC was evaluated by using wastewater containing Cu(2+) or/and turbidity. Some factors which affect the removal of Cu(2+) and turbidity were also studied. The experimental results showed that: (1) MAC can remove both Cu(2+) and turbidity from wastewater. The removal efficiency of Cu(2+) by using MAC combined with hydrolyzed polyacrylamide is higher than that by only using MAC, the removal efficiency of Cu(2+) reaches above 98%; (2) when water sample containing not only Cu(2+) but also turbidity-causing substance, the removal efficiency of both Cu(2+) and turbidity will be promoted by the cooperation effect of each other, the residual concentration of Cu(2+) reaches below 0.5 mg L(-1) and the turbidity reaches below 3NTU, Cu(2+) is more easily removed by MAC when turbidity is higher; (3) the removal efficiency of Cu(2+) increases with the increase in pH value, contrarily removal efficiency of turbidity decreases with the increase in pH value.
Miran, Waheed; Jang, Jiseon; Nawaz, Mohsin; Shahzad, Asif; Jeong, Sang Eun; Jeon, Che Ok; Lee, Dae Sung
2017-12-01
Microbial fuel cells (MFCs) have been widely investigated for organic-based waste/substrate conversion to electricity. However, toxic compounds such as heavy metals are ubiquitous in organic waste and wastewater. In this work, a sulfate reducing bacteria (SRB)-enriched anode is used to study the impact of Cu 2+ on MFC performance. This study demonstrates that MFC performance is slightly enhanced at concentrations of up to 20 mg/L of Cu 2+ , owing to the stimulating effect of metals on biological reactions. Cu 2+ removal involves the precipitation of metalloids out of the solution, as metal sulfide, after they react with the sulfide produced by SRB. Simultaneous power generation of 224.1 mW/m 2 at lactate COD/SO 4 2- mass ratio of 2.0 and Cu 2+ of 20 mg/L, and high Cu 2+ removal efficiency, at >98%, are demonstrated in the anodic chamber of a dual-chamber MFC. Consistent MFC performance at 20 mg/L of Cu 2+ for ten successive cycles shows the excellent reproducibility of this system. In addition, total organic content and sulfate removal efficiencies greater than 85% and 70%, respectively, are achieved up to 20 mg/L of Cu 2+ in 48 h batches. However, higher metal concentration and very low pH at <4.0 inhibit the SRB MFC system. Microbial community analysis reveals that Desulfovibrio is the most abundant SRB in anode biofilm at the genus level, at 38.1%. The experimental results demonstrate that biological treatment of low-concentration metal-containing wastewater with SRB in MFCs can be an attractive technique for the bioremediation of this type of medium with simultaneous energy generation. Copyright © 2017 Elsevier Ltd. All rights reserved.
Kocatürk-Schumacher, Nazlı Pelin; Zwart, Kor; Bruun, Sander; Brussaard, Lijbert; Jensen, Lars Stoumann
2017-05-01
Concentrating nutrients on biochar and clinoptilolite and subsequently using the nutrient-enriched sorbents as a fertiliser could be an alternative way to manage nutrients in digestate. In this study, we investigated the use of biochar and clinoptilolite columns in removing ammonium, potassium, orthophosphate and dissolved organic carbon (DOC) from the liquid fraction of digestate. Our objectives were to investigate the effect of the initial loading ratio between liquid and biochar on nutrient removal, and to investigate the effect of combining biochar with clinoptilolite on nutrient and DOC removal efficiency. Increasing the initial loading ratios increased nutrient concentrations on biochar to 8.61 mg NH 4 -N g -1 , 1.95 mg PO 4 -P g -1 and 13.01 mg DOC g -1 , but resulted in decreasing removal efficiencies. The combination of biochar and clinoptilolite resulted in improved ammonium, potassium and DOC removal efficiencies compared to biochar alone, but did not significantly change PO 4 -P removal efficiencies. Removal efficiencies with combined sorbents were up to 67% for ammonium, 58% for DOC and 58% for potassium. Clinoptilolite showed higher removal efficiencies compared to biochar alone, and combining clinoptilolite with biochar improved only total P removal efficiency. Concentrating nutrients with clinoptilolite and biochar may be an option when both sorbents are available at low cost.
Zhang, Xuemei; Zheng, Yuanyi; Wang, Zhigang; Huang, Shuai; Chen, Yu; Jiang, Wei; Zhang, Hua; Ding, Mingxia; Li, Qingshu; Xiao, Xiaoqiu; Luo, Xin; Wang, Zhibiao; Qi, Hongbo
2014-06-01
High intensity focused ultrasound (HIFU) has attracted the great attention in tumor ablation due to its non-invasive, efficient and economic features. However, HIFU ablation has its intrinsic limitations for removing the residual tumor cells, thus the tumor recurrence and metastasis cannot be avoided in this case. Herein, we developed a multifunctional targeted poly(lactic-co-glycolic acid) (PLGA) nanobubbles (NBs), which not only function as an efficient ultrasound contrast agent for tumor imaging, but also a targeted anticancer drug carrier and excellent synergistic agent for enhancing the therapeutic efficiency of HIFU ablation. Methotrexate (MTX)-loaded NBs were synthesized and filled with perfluorocarbon gas subsequently using a facile but general double emulsion evaporation method. The active tumor-targeting monoclonal anti-HLA-G antibodies (mAbHLA-G) were further conjugated onto the surface of nanobubbles. The mAbHLA-G/MTX/PLGA NBs could enhance the ultrasound imaging both in vitro and in vivo, and the targeting efficiency to HLA-G overexpressing JEG-3 cells has been demonstrated. The elaborately designed mAbHLA-G/MTX/PLGA NBs can specifically target to the tumor cells both in vitro and in vivo, and their blood circulation time in vivo was much longer than non-targeted MTX/PLGA NBs. Further therapeutic evaluations showed that the targeted NBs as a synergistic agent can significantly improve the efficiency of HIFU ablation by changing the acoustic environment, and the focused ultrasound can promote the on-demand MTX release both in vitro and in vivo. The in vivo histopathology test and immunohistochemical analysis showed that the mAbHLA-G/MTX/PLGA NBs plus HIFU group presented most serious coagulative necrosis, the lowest proliferation index and the highest apoptotic index. Therefore, the successful introduction of targeted mAbHLA-G/MTX/PLGA NBs provides an excellent platform for the highly efficient, imaging-guided and non-invasive HIFU synergistic therapy of cancer with the supplementary functions of killing residual tumor cells and preventing tumor recurrence/metastasis. Copyright © 2014 Elsevier Ltd. All rights reserved.
Liu, Yongliang; He, Yonghuan; Jin, Yulong; Huang, Yanyan; Liu, Guoquan; Zhao, Rui
2014-01-03
Porous polymers have aroused extensive attention due to their controllable porous structure in favor of mass transfer and binding capacity. In this work, the novel macroporous core-shell molecularly imprinted polymers (MIP) for selective recognition of 2,4-dichlorophenoxyacetic acid (2,4-D) were prepared by surface initiated atom transfer radical polymerization (si-ATRP). By using one-step swelling and polymerization method, the monodispersed macroporous poly(glycidyl methacrylate) (PGMA) particles were synthesized and used as supporting matrix for preparing surface MIP particles (PGMA@MIP). Thanks to the inner and outer surface-located binding cavities and the macroporous structure, the PGMA@MIPs revealed desirable efficiency for template removal and mass transfer, and thus excellent accessibility and affinity toward template 2,4-D. Moreover, PGMA@MIPs exhibited much higher selectivity toward 2,4-D than PGMA@NIPs. PGMA@MIP particles were directly used to selectively enrich 2,4-D from tap water and the recoveries of 2,4-D were obtained as 90.0-93.4% with relative standard division of 3.1-3.4% (n=3). The macroporous PGMA@MIPs also possessed steady and excellent reusable performance for 2,4-D in four extraction/stripping cycles. This novel macroporous core-shell imprinted material may become a powerful tool for rapid and efficient enrichment and separation of target compounds from the complicated samples. Copyright © 2013 Elsevier B.V. All rights reserved.
Wu, Dong; Wang, Chao; Dolfing, Jan; Xie, Bing
2015-04-15
Landfills implemented with onsite leachate recirculation can efficiently remove pollutants, but currently they are reckoned as N2O emission hot spots. In this project, we evaluated the relationship between N2O emission and nitrogen (N) removal efficiency with different types of leachate recirculated. Nitrate supplemented leachate showed low N2O emission rates with the highest N removal efficiency (~70%), which was equivalent to ~1% nitrogen emitted as N2O. Although in nitrite containing leachates' N removal efficiencies also reached to ~60%, their emitted N2O comprised ~40% of total removed nitrogen. Increasing nitrogen load promoted N2O emission and N removal efficiency, except in ammonia type leachate. When the ratio of BOD to total nitrogen increased from 0.2 to 0.4, the N2O emission flux from nitrate supplemented leachate decreased from ~25 to <0.5 μg N/kg-soil·h. We argue prior to leachate in situ recirculation, sufficient pre-aeration is critical to mitigate N2O surges and simultaneously enhance nitrogen removal efficiency. Copyright © 2015 Elsevier B.V. All rights reserved.
The use of CVD diamond burs for ultraconservative cavity preparations: a report of two cases.
Carvalho, Carlos Augusto R; Fagundes, Ticiane C; Barata, Terezinha J E; Trava-Airoldi, Vladimir Jesus; Navarro, Maria Fidela L
2007-01-01
During the past decades, scientific developments in cutting instruments have changed the conventional techniques used to remove caries lesions. Ultrasound emerged as an alternative for caries removal since the 1950s. However, the conventional technology for diamond powder aggregation with nickel metallic binders could not withstand ultrasonic power. Around 5 years ago, an alternative approach using chemical vapor deposition (CVD) resulted in synthetic diamond technology. CVD diamond burs are obtained with high adherence of the diamond as a unique stone on the metallic surface with excellent abrading performance. This technology allows for diamond deposition with coalescent granulation in different formats of substrates. When connected to an ultrasonic handpiece, CVD diamond burs become an option for cavity preparation, maximizing preservation of tooth structure. Potential advantages such as reduced noise, minimal damage to the gingival tissue, extended bur durability, improved proximal cavity access, reduced risk of hitting the adjacent tooth resulting from the high inclination angles, and minimal patient's risk of metal contamination. These innovative instruments also potentially eliminate some problems regarding decreased cutting efficiency of conventional diamond burs. This clinical report presents the benefits of using CVD diamond burs coupled with an ultrasonic handpiece in the treatment of incipient caries. CVD diamond burs coupled with an ultrasonic device offer a promising alternative for removal of carious lesions when ultraconservative cavity preparations are required. Additionally, this system provides a less-painful technique for caries removal, with minimal noise.
Metal oxide nanoparticle-modified graphene oxide for removal of elemental mercury.
Liu, Yuxi; Chen, Gang; Tian, Chong; Gupta, Rajender; Wang, Xiaogang; Zeng, Hongbo
2018-06-05
Mercury is an extremely toxic element that is primarily released by anthropogenic activities and natural sources. Controlling Hg emissions, especially from coal combustion flue gas, is of practical importance in protecting the environment and preventing human health risks. In the present work, three metal oxides (MnO 2 , CuO, and ZnO) were loaded on graphene oxide (GO) sorbents (designated as MnO 2 -GO, CuO-GO, and ZnO-GO). All three adsorbents were successfully synthesized and were well characterized using scanning electron microscopy (SEM), transmission electron microscopy (TEM), X-ray diffraction (XRD) and X-ray photoelectron spectroscopy (XPS). The results indicated that the metal oxide nanoparticles (NPs) successfully decorated the GO. The elemental Hg adsorption capabilities of the three sorbents were subsequently evaluated using an in-house built setup for cold vapour atomic fluorescence spectrophotometry (CVAFS) with argon as the carrier gas for mercury detection. The testing temperature ranged from 50°C to 200°C at intervals of 50°C. MnO 2 -GO showed an excel lent Hg 0 adsorption capacity via chemisorption from 50 to 150°C and a mercury removal efficiency as high as 85% at 200°C, indicating that the MnO 2 -NP-modified GO is applicable for enhancing gas-phase elemental mercury removal. However, neither CuO-GO nor ZnO-GO performed well. This work provides useful insights into the development of novel sorbent materials for the elemental mercury removal from flue gases.
Xu, Ronghua; Ou, Huase; Yu, Xubiao; He, Runsheng; Lin, Chong; Wei, Chaohai
2015-01-01
This paper taking a full-scale coking wastewater (CWW) treatment plant as a case study aimed to characterize removal behaviors of dissolved organic matter (DOM) by UV spectra and fluorescence excitation-emission matrix-parallel factor analysis (PARAFAC), and investigate the correlations between spectroscopic indices and water quality parameters. Efficient removal rates of chemical oxygen demand (COD), dissolved organic carbon (DOC) and total nitrogen (TN) after the bio-treatment were 91.3%, 87.3% and 69.1%, respectively. UV270 was proven to be a stable UV absorption peak of CWW that could reflect the mixture of phenols, heterocyclics, polynuclear aromatic hydrocarbons and their derivatives. Molecular weight and aromaticity were increased, and also the content of polar functional groups was greatly reduced after bio-treatment. Three fluorescent components were identified by PARAFAC: C1 (tyrosine-like), C2 (tryptophan-like) and C3 (humic-like). The removal rate of protein-like was higher than that of humic-like and C1 was identified as biodegradable substance. Correlation analysis showed UV270 had an excellent correlation with COD (r=0.921, n=60, P<0.01) and DOC (r=0.959, n=60, P<0.01) and significant correlation (r=0.875, n=60, P<0.01) was also found between C2 and TN. Therefore, spectroscopic characterization could provide novel insights into removal behaviors of DOM and potential to monitor water quality real-time during CWW bio-treatment.
NASA Astrophysics Data System (ADS)
Mittal, Hemant; Maity, Arjun; Ray, Suprakas Sinha
2016-02-01
Biodegradable hydrogel nanocomposites (HNC) of gum karaya (GK) grafted with poly(acrylic acid) (PAA) incorporated silicon carbide nanoparticles (SiC NPs) were synthesized using the in situ graft copolymerization method and tested for the adsorption of cationic dyes from aqueous solution. The structure and morphology of the HNC were characterized using different spectroscopic and microscopic techniques. The results showed that the surface area and porosity of the hydrogel polymer significantly increased after nanocomposite formation with SiC NPs. The HNC was employed for the removal of cationic dyes, i.e., malachite green (MG) and rhodamine B (RhB) from the aqueous solution. The HNC was found to remove 91% (MG) and 86% (RhB) of dyes with a polymer dose of 0.5 and 0.6 g l-1 in neutral medium, respectively. The adsorption process was found to be highly pH dependent and followed the pseudo-second-order rate model. The adsorption isotherm data fitted well with the Langmuir adsorption isotherm with a maximum adsorption capacity of 757.57 and 497.51 mg g-1 for MG and RhB, respectively. Furthermore, the HNC was demonstrated as a versatile adsorbent for the removal of both cationic and anionic dyes from the simulated wastewater. The HNC showed excellent regeneration capacity and was successfully used for the three cycles of adsorption-desorption. In summary, the HNC has shown its potential as an environment friendly and efficient adsorbent for the adsorption of cationic dyes from contaminated water.
Code of Federal Regulations, 2011 CFR
2011-07-01
... device emission destruction or removal efficiency? 63.4566 Section 63.4566 Protection of Environment... efficiency? You must use the procedures and test methods in this section to determine the add-on control device emission destruction or removal efficiency as part of the performance test required by § 63.4560...
Code of Federal Regulations, 2010 CFR
2010-07-01
... device emission destruction or removal efficiency? 63.4566 Section 63.4566 Protection of Environment... efficiency? You must use the procedures and test methods in this section to determine the add-on control device emission destruction or removal efficiency as part of the performance test required by § 63.4560...
Liu, Jun-xin; van Groenestijn, J W; Doddema, H J; Wang, Bao-zhen
2002-04-01
The oxidation ditch has been used for many years all over the world as an economic and efficient wastewater treatment technology. It can remove COD, nitrogen and a part of phosphorus efficiently. In the experiment described, a pilot scale Pasveer oxidation ditch system has been tested to investigate the removal of phosphorus from wastewater. The experimental results showed that influent total phosphorus(TP) was removed for 35%-50%. After this, two anaerobic tanks with total volume of 11 m3 were added to the system to release phosphorus. As a result, the TP removal efficiency increased by about 20%. At an anaerobic HRT of about 6 hours, a TP removal efficiency of 71% was achieved.
Salim, R; Al-Subu, M; Dawod, E
2008-05-01
Removal of cadmium from aqueous solutions using 20 species of plant leaves and combinations of these leaves have been studied. Several factors affecting the removal efficiency have been studied. The most efficient types of plant leaves for the removal of cadmium are those of styrax, plum, pomegranate and walnut. The interaction effect of the combined leaf samples on the efficiency of removal of cadmium has been found to be additive in combinations involving styrax plant leaves but seems to be antagonistic in all other combinations. The optimum experimental conditions for removal of cadmium have been found to be at pH 4.1, using high concentrations of naturally dried plant leaves, using ground leaves and to remove cadmium from agitated aqueous solutions. The percentage of metal removed at an initial cadmium concentration of 10mg/l by the most efficient types of leaves have been found to be 85% for styrax leaves, 85% for plum leaves, 80% for pomegranate leaves, 78% for walnut leaves and 77% for meddler leaves. The presence of foreign ions or complexing agents has been found to reduce the efficiency of removal of cadmium by plant leaves. About 80-85% of the cadmium in charged plant leaves has been released under the influence of changing the pH of the solution, addition of competing ions and the addition of EDTA. The results of removal of cadmium by plant leaves have been found to follow the Freundlich adsorption isotherm, first-order reaction with respect to cadmium and to have intra-pore diffusion as the rate-limiting step.
Kim, S O; Kim, K W
2001-08-17
This research focused on the monitoring of the electrokinetic removal of heavy metals from tailing-soils, and emphasizes the dependency of removal efficiencies upon their physico-chemical states, as demonstrated by the different extraction methods adopted, which included aqua regia and sequential extraction. The tailing-soils examined contained high concentrations of target metal contaminants (Cd=179mgkg(-1), Cu=207mgkg(-1), Pb=5175mgkg(-1), and Zn=7600mgkg(-1)). The removal efficiencies of the different metals were significantly influenced by their speciations, mobilities and affinities (adsorption capacities) in the soil matrix. The removal efficiencies of mobile and weakly bound fractions, such as the exchangeable fraction were more than 90% by electrokinetic treatment, but strongly bound fractions, such as the organically bound species and residual fraction were not significantly removed (less than 30% removal efficiencies). In accordance with the general sequence of mobilities of heavy metals in soils, the removal efficiencies of more mobile heavy metals (Cd, Cu, and Zn) were higher than that of less mobile heavy metal (Pb).
Wastewater treatment for nutrient removal with Ecuadorian native microalgae.
Benítez, María Belén; Champagne, Pascale; Ramos, Ana; Torres, Andres F; Ochoa-Herrera, Valeria
2018-04-12
The aim of this project was to study the feasibility of utilizing native microalgae for the removal of nitrogen and phosphorus, as a potential secondary wastewater treatment process in Ecuador. Agitation and aeration batch experiments were conducted using synthetic secondary wastewater effluent, to determine nitrogen and phosphorus removal efficiencies by a native Ecuadorian microalgal strain. Experimental results indicated that microalgal cultures could successfully remove nitrogen and phosphorus. [Formula: see text] and [Formula: see text] removal efficiencies of 52.6 and 55.6%, and 67.0 and 20.4%, as well as [Formula: see text] production efficiencies of 87.0 and 93.1% were reported in agitation and aeration photobioreactors, respectively. Aeration was not found to increase the nutrient removal efficiency of [Formula: see text]. Moreover, in the case of [Formula: see text], a negative impact was observed, where removal efficiencies decreased by a factor of 3.3 at higher aeration rates. To the best of our knowledge, this is the first report of the removal of nutrients by native Ecuadorian Chlorella sp., hence the results of this study would indicate that this native microalgal strain could be successfully incorporated in a potential treatment process for nutrient removal in Ecuador.
Removal of inhibitors from lignocellulosic hydrolyzates by vacuum membrane distillation.
Chen, Jingwen; Zhang, Yaqin; Wang, Yafei; Ji, Xiaosheng; Zhang, Lin; Mi, Xigeng; Huang, He
2013-09-01
In this study, vacuum membrane distillation (VMD) was used to remove two prototypical fermentation inhibitors (acetic acid and furfural) from lignocellulose hydrolyzates. The effect of operating parameters, such as feed temperature and feed velocity, on the removal efficiencies of inhibitors was investigated. Under optimal conditions, more than 98% of furfural could be removed by VMD. However, the removal efficiency of acetic acid was considerably lower. After furfural and acetic acid were selectively removed from hydrolyzates by VMD, ethanol production efficiency increased by 17.8% compared to original hydrolyzates. Copyright © 2013 Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Ling, Zhen; Li, Jie
2018-03-01
Subsurface Flow Constructed Wetland Plant 5 kinds of perennial herbs, there are Canna, Water onion, Iris, Calamus, Reed. Foucs on Subsurface Flow Constructed Wetlands on agricultural wastewater nitrogen and phosphorus removal effect. Research results: Different plants TP removal efficiency from high to low is Iris> reed> calamus> water onion> canna.And TN removal efficiency from high to low is reed> water onion> iris> calamus> canna. Compared with the blank test land, Wetland plants improves TN removal and TP removal is higher than TN. Wetland plants can reduce the PH of experimental water.
Zhang, Dong Qing; Gersberg, Richard M; Hua, Tao; Zhu, Junfei; Tuan, Nguyen Anh; Tan, Soon Keat
2012-04-01
Determining the fate of emerging organic contaminants in an aquatic ecosystem is important for developing constructed wetlands (CWs) treatment technology. Experiments were carried out in subsurface flow CWs in Singapore to evaluate the fate and transport of eight pharmaceutical compounds. The CW system included three parallel horizontal subsurface flow CWs and three parallel unplanted beds fed continuously with synthetic wastewater at different hydraulic retention times (HRTs). The findings of the tests at 2-6 d HRTs showed that the pharmaceuticals could be categorized as (i) efficiently removed compounds with removal higher than 85% (ketoprofen and salicylic acid); (ii) moderately removed compounds with removal efficiencies between 50% and 85% (naproxen, ibuprofen and caffeine); and (iii) poorly removed compounds with efficiency rate lower than 50% (carbamazepine, diclofenac, and clofibric acid). Except for carbamazepine and salicylic acid, removal efficiencies of the selected pharmaceuticals showed significant (p<0.05) enhancement in planted beds as compared to the unplanted beds. Removal of caffeine, ketoprofen and clofibric acid were found to follow first order decay kinetics with decay constants higher in the planted beds than the unplanted beds. Correlations between pharmaceutical removal efficiencies and log K(ow) were not significant (p>0.05), implying that their removal is not well related to the compound's hydrophobicity. Copyright © 2011 Elsevier Ltd. All rights reserved.
Hu, Lihua; Li, Yan; Zhang, Xuefei; Wang, Yaoguang; Cui, Limei; Wei, Qin; Ma, Hongmin; Yan, Liangguo; Du, Bin
2016-01-01
Magnetic water-soluble hyperbranched polyol functionalized graphene oxide nanocomposite (MWHPO-GO) was successfully prepared and applied to water remediation in this paper. MWHPO-GO was characterized by Fourier transform infrared spectroscopy (FTIR), X-ray diffraction (XRD), thermogravimetric analysis (TGA), magnetization curve, zeta potential, scanning electron microscope (SEM) and transmission electron microscope (TEM) analyses. MWHPO-GO exhibited excellent adsorption performance for the removal of synthetic dyes (methylene blue (MB) and methyl violet (MV)) and heavy metal (Pb(II)). Moreover, MWHPO-GO could be simply recovered from water with magnetic separation. The pseudo-second order equation and the Langmuir model exhibited good correlation with the adsorption kinetic and isotherm data, respectively, for these three pollutants. The thermodynamic results (ΔG < 0, ΔH < 0, ΔS < 0) implied that the adsorption process of MB, MV and Pb(II) was feasible, exothermic and spontaneous in nature. A possible adsorption mechanism has been proposed where π-π stacking interactions, H-bonding interaction and electrostatic attraction dominated the adsorption of MB/MV and chelation and electrostatic attraction dominated the adsorption of Pb(II). In addition, the excellent reproducibility endowed MWHPO-GO with the potential for application in water remediation. PMID:27354318
Bioremediation of contaminated surface water by immobilized Micrococcus roseus.
Li, H; Li, P; Hua, T; Zhang, Y; Xiong, X; Gong, Z
2005-08-01
The problems caused by contaminated surface water have gradually become more serious in recent years. Although various remediation technologies were investigated, unfortunately, no efficient method was developed. In this paper, a new bioremediation technology was studied using Micrococcus roseus, which was immobilized in porous spherical beads by an improved polyvinyl alcohol (PVA) - sodium alginate (SA) embedding method. The experimental results indicated that COD removal rate could reach 64.7 % within 72 hours when immobilized M. roseus beads were used, which was ten times as high as that of free cells. The optimum inoculation rate of immobilized M. roseus beads was 10 % (mass percent of the beads in water sample, g g(-1)). Suitable aeration was proved necessary to enhance the bioremediation process. The immobilized cells had an excellent tolerance to pH and temperature changes, and were also more resistant to heavy metal stress compared with free cells. The immobilized M. roseus beads had an excellent regeneration capacity and could be reused after 180-day continuous usage. The Scanning Electronic Microscope (SEM) analysis showed that the bead microstructure was suitable for M. roseus growth, however, some defect structures should still be improved.
Park, Taejun; Ampunan, Vanvimol; Maeng, Sungkyu; Chung, Eunhyea
2017-01-01
Phosphorus removal has been studied for decades to reduce the environmental impact of phosphorus in natural waterbodies. Slag has been applied for the phosphorus removal by several mechanisms. In this study, sodium hydroxide coating was applied on the slag surface to enhance the efficiency of precipitation-coagulation process. In the batch test, it was found that the capacity of the slag to maintain high pH decreases with increasing its exposure time to the aqueous solution. In the column test, the coarse-grained coated slag showed higher phosphorus removal efficiency than the fine-grained uncoated slag. The coated slag maintained pH higher than uncoated slag and, accordingly, the removal efficiency of phosphorus was higher. Especially, when pH was less than 8, the removal efficiency decreased significantly. However, coated slag provided an excess amount of aluminum and sodium. Thus, a return process to reuse aluminum and sodium as a coagulant was introduced. The return process yields longer lifespan of slag with higher phosphorus removal and lower concentration of cations in the effluent. With the return process, the phosphorus removal efficiency was kept higher than 60% until 150 bed volumes; meanwhile, the efficiency without return process became lower than 60% at 25 bed volumes. Copyright © 2016 Elsevier Ltd. All rights reserved.
Decolourization of remazol black-5 textile dyes using moving bed bio-film reactor
NASA Astrophysics Data System (ADS)
Pratiwi, R.; Notodarmojo, S.; Helmy, Q.
2018-01-01
The desizing and dyeing processes in the textile industries produces wastewaster containing high concentration of organic matter and colour, so it needs treatment before released to environment. In this research, removal of azo dye (Remazol Black 5/RB 5) and organic as COD was performed using Moving Bed Biofilm Reactor (MBBR). MBBR is biological treatment process with attached growth media system that can increase removal of organic matter in textile wastewater. The effectiveness of ozonation as pre-treatment process to increase the removal efficiency in MBBR was studied. The results showed that in MBBR batch system with detention time of 1 hour, pre-treatment with ozonation prior to MBBR process able to increase the colour removal efficiency of up to 86.74%. While on the reactor without ozone pre-treatment, the colour removal efficiency of up to 68.6% was achieved. From the continuous reactor experiments found that both colour and COD removal efficiency depends on time detention of RB-5 dyes in the system. The higher of detention time, the higher of colour and COD removal efficiency. It was found that optimum removal of colour and COD was achieved in 24 hour detention time with its efficiency of 96.9% and 89.13%, respectively.
Biosorption of lead, copper, and cadmium with continuous hollow-fiber microfiltration processes
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chang, J.S.; Chen, C.C.
1999-06-01
A hollow-fiber crossflow microfiltration membrane was utilized to retain a biomass of Pseudomonas aeruginosa PU21 for continuous biosorption of lead (Pb), copper (Cu), and cadmium (Cd) ions in single or ternary metal systems. The results obtained from the microfiltration systems showed that in both single and ternary biosorption, the metal removal efficiency based on a molar basis was clearly Pb > Cu > Cd. For a single-membrane process with an influent metal concentration of 200 {micro}M and a flow rate of 350 mL/h, the effluent concentration of Pb and Cu satisfied the national regulations for an influent volume of 6.3more » L. With a three-metal influent, the adsorption capacity of the biomass for Pb, Cu, and Cd was reduced 4, 50, and 74% compared to that for single-metal adsorption. Selective biosorption with a three-column sequential microfiltration operation exhibited an enhancement of 40 and 57% of total metal removal for Cu and Cd, respectively, over the results from single-membrane operation. The multimembrane operation also enabled locally optimal accumulation of Pb, Cu, and Cd at the first, second, and third stage, respectively. The regeneration efficiency of the biomass was 70% after three repetitive adsorption desorption cycles, whereas the Pb recovery efficiency was maintained at nearly 90%. A rapid-equilibrium model (Model A) and a mass-transfer model (Model B) were used to describe the results of single- and multimetal biosorption with the microfiltration processes. Model A exhibited excellent prediction for the results of single-metal biosorption, while Model B was more applicable to interpret the multimetal biosorption data.« less
Highly efficient decolorization of Malachite Green by a novel Micrococcus sp. strain BD15.
Du, Lin-Na; Zhao, Ming; Li, Gang; Zhao, Xiao-Ping; Zhao, Yu-Hua
2011-08-01
Malachite Green (MG) is used for a variety of applications but is also known to be carcinogenic and mutagenic. In this study, a novel Micrococcus sp. (strain BD15) was observed to efficiently decolorize MG. The purposes of this study were to explore the optimal conditions for decolorization and to evaluate the potential use of this strain for MG decolorization. Optical microscope and UV-visible analyses were carried out to determine whether the decolorization was due to biosorption or biodegradation. A Plackett-Burman design was employed to investigate the effect of various parameters on decolorization, and response surface methodology was then used to explore the optimal decolorization conditions. Kinetics analysis and antimicrobial activity tests were also performed. The results indicated that the decolorization by the strain was mainly due to biodegradation. Concentrations of MG, urea, and yeast extract and inoculum size had significantly positive effects on MG decolorization, while concentrations of CuCl(2) and MgCl(2), and temperature had significantly negative effects. The interaction between different parameters could significantly affect decolorization, and the optimal conditions for decolorization were 1.0 g/L urea, 0.9 g/L yeast extract, 100 mg/L MG, 0.1 g/L inoculums (dry weight), and incubation at 25.2°C. Under the optimal conditions, 96.9% of MG was removed by the strain within 1 h, which represents highly efficient microbial decolorization. Moreover, the kinetic data for decolorization fit a second-order model well, and the strain showed a good MG detoxification capability. Based on the results of this study, we propose Micrococcus sp. strain BD15 as an excellent candidate strain for MG removal from wastewater.
Wang, Huamin; Lu, Weike; Zhang, Junliang
2017-10-04
An efficient ferrocene-derived bifunctional phosphine-catalyzed enantioselective oxa-[4+2] cycloaddition of α-substituted allenones with a broad range of enones is investigated for the preparation of stereodefined dihydropyrans in good to excellent yields (up to 99 %) and excellent enantioselectivity (up to 99 % ee). Furthermore, a series of valuable chiral polyheterocyclic frameworks can be efficiently achieved in good yields with excellent enantioselectivities. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.
Regional assessment of groundwater quality for drinking purpose.
Jang, Cheng-Shin
2012-05-01
Owing to limited surface water during a long-term drought, this work attempted to locate clean and safe groundwater in the Choushui River alluvial fan of Taiwan based on drinking-water quality standards. Because aquifers contained several pollutants, multivariate indicator kriging (MVIK) was adopted to integrate the multiple pollutants in groundwater based on drinking- and raw-water quality standards and to explore spatial uncertainty. According to probabilities estimated by MVIK, safe zones were determined under four treatment conditions--no treatment; ammonium-N and iron removal; manganese and arsenic removal; and ammonium-N, iron, manganese, and arsenic removal. The analyzed results reveal that groundwater in the study area is not appropriate for drinking use without any treatments because of high ammonium-N, iron, manganese, and/or arsenic concentrations. After ammonium-N, iron, manganese, and arsenic removed, about 81.9-94.9% of total areas can extract safe groundwater for drinking. The proximal-fan, central mid-fan, southern mid-fan, and northern regions are the excellent locations to pump safe groundwater for drinking after treatment. Deep aquifers of exceeding 200 m depth have wider regions to obtain excellent groundwater than shallow aquifers do.
Modeling the Removal of Xenon from Lithium Hydrate with Aspen HYSYS
NASA Astrophysics Data System (ADS)
Efthimion, Phillip; Gentile, Charles
2011-10-01
The Laser Inertial Fusion Engine (LIFE) project mission is to provide a long-term, carbon-free source of sustainable energy, in the form of electricity. A conceptual xenon removal system has been modeled with the aid of Aspen HYSYS, a chemical process simulator. Aspen HYSYS provides excellent capability to model chemical flow processes, which generates outputs which includes specific variables such as temperature, pressure, and molar flow. The system is designed to strip out hydrogen isotopes deuterium and tritium. The base design bubbles plasma exhaust laden with x filled with liquid helium. The system separates the xenon from the hydrogen, deuterium, and tritium with a lithium hydrate and a lithium bubbler. After the removal of the hydrogen and its isotopes, the xenon is then purified by way of the process of cryogenic distillation. The pure hydrogen, deuterium, and tritium are then sent to the isotope separation system (ISS). The removal of xenon is an integral part of the laser inertial fusion engine and Aspen HYSYS is an excellent tool to calculate how to create pure xenon.
Using Wet-FGD systems for mercury removal.
Díaz-Somoano, Mercedes; Unterberger, Sven; Hein, Klaus R G
2005-09-01
A plan to control mercury emissions to the atmosphere and to establish mercury emission limits has recently been elaborated by the European Commission, making it necessary to devise an efficient and cost effective mercury removal technology. Towards this end wet flue gas desulfurization units appear as a promising option for multi-pollutant control. However, more investigation on mercury removal and a greater mercury removal efficiency are required to achieve this objective. In the present work scrubber chemistry and the application of various solid additives to enhance mercury removal in wet scrubbers is evaluated. The results obtained show a significant correlation between mercury removal efficiency and the pH of the scrubber slurry and SO2 concentration. A weaker correlation was observed between oxygen or slurry concentration and removal efficiency. Finally several solid oxides were found to be effective additives for enhancing mercury capture in wet scrubbers.
Removal of particulate matter emitted from a subway tunnel using magnetic filters.
Son, Youn-Suk; Dinh, Trieu-Vuong; Chung, Sang-Gwi; Lee, Jai-Hyo; Kim, Jo-Chun
2014-01-01
We removed particulate matter (PM) emitted from a subway tunnel using magnetic filters. A magnetic filter system was installed on the top of a ventilation opening. Magnetic field density was increased by increasing the number of permanent magnet layers to determine PM removal characteristics. Moreover, the fan's frequency was adjusted from 30 to 60 Hz to investigate the effect of wind velocity on PM removal efficiency. As a result, PM removal efficiency increased as the number of magnetic filters or fan frequency increased. We obtained maximum removal efficiency of PM10 (52%), PM2.5 (46%), and PM1 (38%) at a 60 Hz fan frequency using double magnetic filters. We also found that the stability of the PM removal efficiency by the double filter (RSD, 3.2-5.8%) was higher than that by a single filter (10.9-24.5%) at all fan operating conditions.
Zhu, Jiahui; Yao, Yan; Chen, Zhi; Zhang, Aijian; Zhou, Mengyuan; Guo, Jun; Wu, Winston Duo; Chen, Xiao Dong; Li, Yanguang; Wu, Zhangxiong
2018-06-06
Mo 2 C is a possible substitute to Pt-group metals for electrocatalytic hydrogen evolution reaction (HER). Both support-free and carbon-supported Mo 2 C nanomaterials with improved HER performance have been developed. Herein, distinct from prior research, novel ordered mesoporous core-shell nanowires with Mo 2 C cores and ultrathin graphitic carbon (GC) shells are rationally synthesized and demonstrated to be excellent for HER. The synthesis is fulfilled via a hard-templating approach combining in situ carburization and localized carbon deposition. Phosphomolybdic acid confined in the SBA-15 template is first converted to MoO 2 , which is then in situ carburized to Mo 2 C nanowires with abundant surface defects. Simultaneously, GC layer (the thickness is down to ∼1.0 nm in most areas) is controlled to be locally deposited on the Mo 2 C surface because of its strong affinity with carbon and catalytic effect on graphitization. Removal of the template results in the Mo 2 C@GC core-shell nanowire arrays with the structural properties well-characterized. They exhibit excellent performance for HER with a low overpotential of 125 mV at 10 mA cm -2 , a small Tafel slope of 66 mV dec -1 , and an excellent stability in acidic electrolytes. The influences of several factors, especially the spatial configuration and relative contents of the GC and Mo 2 C components, on HER performance are elucidated with control experiments. The excellent HER performance of the mesoporous Mo 2 C@GC core-shell nanowire arrays originates from the rough Mo 2 C nanowires with diverse active sites and short charge-transfer paths and the ultrathin GC shells with improved surface area, electronic conductivity, and stabilizing effect on Mo 2 C.
Removal of metals from industrial wastewater and urban runoff by mineral and bio-based sorbents.
Gogoi, Harshita; Leiviskä, Tiina; Heiderscheidt, Elisangela; Postila, Heini; Tanskanen, Juha
2018-03-01
The study was performed to evaluate chemically modified biosorbents, hydrochloric acid treated peat (HCl-P) and citric acid treated sawdust (Citric acid-SD) for their metal removal capacity from dilute industrial wastewater and urban runoff and compare their efficiency with that of commercially available mineral sorbents (AQM PalPower M10 and AQM PalPower T5M5 magnetite). Batch and column experiments were conducted using real water samples to assess the sorbents' metal sorption capacity. AQM PalPower M10 (consisting mainly of magnesium, iron and silicon oxides) exhibited excellent Zn removal from both industrial wastewater and spiked runoff water samples even at low dosages (0.1 g/L and 0.05 g/L, respectively). The high degree of Zn removal was associated with the release of hydroxyl ions from the sorbent and subsequent precipitation of zinc hydroxide. The biosorbents removed Ni and Cr better than AQM PalPower M10 from industrial wastewater and performed well in removing Cr and Cu from spiked runoff water, although at higher dosages (0.3-0.75 g/L). The main mechanism of sorption by biosorbents was ion exchange. The sorbents required a short contact time to reach equilibrium (15-30 min) in both tested water samples. AQM PalPower T5M5 magnetite was the worst performing sorbent, leaching Zn into both industrial and runoff water and Ni into runoff water. Column tests revealed that both HCl-P and AQM PalPower M10 were able to remove metals, although some leaching was witnessed, especially As from AQM PalPower M10. The low hydraulic conductivity observed for HCl-P may restrict the possibilities of using such small particle size peat material in a filter-type passive system. Copyright © 2017 Elsevier Ltd. All rights reserved.
Zhao, Qian; Han, Hongjun; Xu, Chunyan; Zhuang, Haifeng; Fang, Fang; Zhang, Linghan
2013-08-01
A combined process consisting of a powdered activated carbon technology (PACT) and short-cut biological nitrogen removal reactor (SBNR) was developed to enhance the removal efficiency of the total nitrogen (TN) from the effluent of an upflow anaerobic sludge bed (UASB) reactor, which was used to treat coal gasification wastewater (CGW). The SBNR performance was improved with the increasing of COD and TP removal efficiency via PACT. The average removal efficiencies of COD and TP in PACT were respectively 85.80% and 90.30%. Meanwhile, the NH3-N to NO2-N conversion rate was achieved 86.89% in SBNR and the total nitrogen (TN) removal efficiency was 75.54%. In contrast, the AOB in SBNR was significantly inhibited without PACT or with poor performance of PACT in advance, which rendered the removal of TN. Furthermore, PAC was demonstrated to remove some refractory compounds, which therefore improved the biodegradability of the coal gasification wastewater. Copyright © 2013 The Authors. Published by Elsevier Ltd.. All rights reserved.
Rapid degradation of azo dye Direct Black BN by magnetic MgFe2O4-SiC under microwave radiation
NASA Astrophysics Data System (ADS)
Gao, Jia; Yang, Shaogui; Li, Na; Meng, Lingjun; Wang, Fei; He, Huan; Sun, Cheng
2016-08-01
A novel microwave (MW) catalyst, MgFe2O4 loaded on SiC (MgFe2O4-SiC), was successfully synthesized by sol-gel method, and pure MgFe2O4 was used as reference. The MgFe2O4 and MgFe2O4-SiC catalysts were characterized by X-ray diffraction (XRD), Scanning electron microscopy (SEM), Transmission electron microscopy (TEM), N2 adsorption analyzer (BET specific surface area), X-ray photoelectron spectroscopy (XPS). The electromagnetic parameters of the prepared catalysts were measured by vector network analyzer. The reflection loss (RL) based on the electromagnetic parameters calculated in Matlab showed MgFe2O4-SiC attained the maximum absorbing value of 13.32 dB at 2.57 GHz, which reached extremely high RL value at low frequency range, revealing the excellent MW absorption property of MgFe2O4-SiC. MW-induced degradation of Direct Black BN (DB BN) over as-synthesized MgFe2O4-SiC indicated that degradation efficiency of DB BN (20 mg L-1) in 5 min reached 96.5%, the corresponding TOC removal was 65%, and the toxicity of DB BN after degradation by MgFe2O4-SiC obviously decreased. The good stability and applicability of MgFe2O4-SiC on the degradation process were also discovered. Moreover, the ionic chromatogram during degradation of DB BN demonstrated that the C-S, C-N and azo bonds in the DB BN molecule were destroyed gradually. MW-induced rad OH and holes could be responsible for the efficient removal involved in the system. These findings make MgFe2O4-SiC become an excellent MW absorbent as well as an effective MW catalyst with rapid degradation of DB BN. Therefore, it may be promising for MgFe2O4-SiC under MW radiation to deal with various dyestuffs and other toxic organic pollutants.
NASA Astrophysics Data System (ADS)
Roy, Sukumar; Ghosh, Subrata; Bhowmick, Niranjan
2018-06-01
A mechanism to remove the Pseudomonas bacteria from contaminated water by using textile fibrous media has been proposed in this article. The attachment of Pseudomonas bacteria on nylon fibrous media was studied in laboratory column experiment. A systematic study was carried out to investigate the attachment of bacteria on the fibrous material as a function of fiber orientation to the direction of the liquid flow. Three types of textiles media with different orientation fiber were selected for the experiment (i.e. 0°, 45° and 90°). It was found that the bacteria removal efficiency was comparatively higher at 90° orientation as compared to that of 45° and 0° orientation of fibrous media, suggesting that the removal efficiency of bacteria (1 - Fp) was depended on fiber orientation. The removal trends were explained on the basis of colloidal filtration theory. This is due to the higher single collector contact efficiency and attachment/collision efficiency as observed from the experimental data of removal efficiency.
NASA Astrophysics Data System (ADS)
Roy, Sukumar; Ghosh, Subrata; Bhowmick, Niranjan
2018-05-01
A mechanism to remove the Pseudomonas bacteria from contaminated water by using textile fibrous media has been proposed in this article. The attachment of Pseudomonas bacteria on nylon fibrous media was studied in laboratory column experiment. A systematic study was carried out to investigate the attachment of bacteria on the fibrous material as a function of fiber orientation to the direction of the liquid flow. Three types of textiles media with different orientation fiber were selected for the experiment (i.e. 0°, 45° and 90°). It was found that the bacteria removal efficiency was comparatively higher at 90° orientation as compared to that of 45° and 0° orientation of fibrous media, suggesting that the removal efficiency of bacteria (1 - Fp) was depended on fiber orientation. The removal trends were explained on the basis of colloidal filtration theory. This is due to the higher single collector contact efficiency and attachment/collision efficiency as observed from the experimental data of removal efficiency.
Sorlini, Sabrina; Gialdini, Francesca
2010-11-01
Arsenic is widespread in soils, water and air. In natural water the main forms are arsenite (As(III)) and arsenate (As(V)). The consumption of water containing high concentration of arsenic produces serious effects on human health, like skin and lung cancer. In Italy, Legislative Decree 2001/31 reduced the limit of arsenic from 50 to 10 μg/L, in agreement with the European Directive 98/83/EC. As consequence, many drinking water treatment plant companies needed to upgrade the existing plants where arsenic was previously removed or to build up new plants for arsenic removal when this contaminant was not previously a critical parameter. Arsenic removal from water may occur through the precipitation with iron or aluminum salts, adsorption on iron hydroxide or granular activated alumina (AA), reverse osmosis and ion exchange (IE). Some of the above techniques, especially precipitation, adsorption with AA and IE, can reach good arsenic removal yields only if arsenic is oxidized. The aim of the present work is to investigate the efficiency of the oxidation of As(III) by means of four conventional oxidants (chlorine dioxide, sodium hypochlorite, potassium permanganate and monochloramine) with different test conditions: different type of water (demineralised and real water), different pH values (5.7-6-7 and 8) and different doses of chemicals. The arsenic oxidation yields were excellent with potassium permanganate, very good with hypochlorite and low with monochloramine. These results were observed both on demineralised and real water for all the tested reagents with the exception of chlorine dioxide that showed a better arsenic oxidation on real groundwater than demineralised water. Copyright © 2010 Elsevier Ltd. All rights reserved.
Li, Hailong; Zhu, Lei; Wang, Jun; Li, Liqing; Shih, Kaimin
2016-09-06
The surface area of zinc sulfide (ZnS) was successfully enlarged using nanostructure particles synthesized by a liquid-phase precipitation method. The ZnS with the highest surface area (named Nano-ZnS) of 196.1 m(2)·g(-1) was then used to remove gas-phase elemental mercury (Hg(0)) from simulated coal combustion fuel gas at relatively high temperatures (140 to 260 °C). The Nano-ZnS exhibited far greater Hg(0) adsorption capacity than the conventional bulk ZnS sorbent due to the abundance of surface sulfur sites, which have a high binding affinity for Hg(0). Hg(0) was first physically adsorbed on the sorbent surface and then reacted with the adjacent surface sulfur to form the most stable mercury compound, HgS, which was confirmed by X-ray photoelectron spectroscopy analysis and a temperature-programmed desorption test. At the optimal temperature of 180 °C, the equilibrium Hg(0) adsorption capacity of the Nano-ZnS (inlet Hg(0) concentration of 65.0 μg·m(-3)) was greater than 497.84 μg·g(-1). Compared with several commercial activated carbons used exclusively for gas-phase mercury removal, the Nano-ZnS was superior in both Hg(0) adsorption capacity and adsorption rate. With this excellent Hg(0) removal performance, noncarbon Nano-ZnS may prove to be an advantageous alternative to activated carbon for Hg(0) removal in power plants equipped with particulate matter control devices, while also offering a means of reusing fly ash as a valuable resource, for example as a concrete additive.
Selective biosorption of thorium (IV) from aqueous solutions by ginkgo leaf.
Huang, Yaoyao; Hu, Yang; Chen, Lvcun; Yang, Tao; Huang, Hanfang; Shi, Runping; Lu, Peng; Zhong, Chenghua
2018-01-01
Low-cost biosorbents (ginkgo leaf, osmanthus leaf, banyan leaf, magnolia leaf, holly leaf, walnut shell, and grapefruit peel) were evaluated in the simultaneous removal of La3+, Ce3+, Pr3+, Nd3+, Sm3+, Eu3+, Gd3+, Yb3+, Lu3+, UO22+, Th4+, Y3+, Co2+, Zn2+, Ni2+, and Sr2+ from aqueous solutions. In single metal systems, all adsorbents exhibited good to excellent adsorption capacities toward lanthanides and actinides. In a simulated multicomponent mixed solution study, higher selectivity and efficiency were observed for Th4+ over other metal cations, with ginkgo leaves providing the highest adsorptivity (81.2%) among the seven biosorbents. Through optimization studies, the selectivity of Th4+ biosorption on ginkgo leaf was found to be highly pH-dependent, with optimum Th4+ removal observed at pH 4. Th4+ adsorption was found to proceed rapidly with an equilibrium time of 120 min and conform to pseudo-second-order kinetics. The Langmuir isotherm model best described Th4+ biosorption, with a maximum monolayer adsorption capacity of 103.8 mg g-1. Thermodynamic calculations indicated that Th4+ biosorption was spontaneous and endothermic. Furthermore, the physical and chemical properties of the adsorbent were determined by scanning electron microscopy, Brunauer-Emmett-Teller, X-ray powder diffraction, and Fourier transform infrared analysis. The biosorption of Th from a real sample (monazite mineral) was studied and an efficiency of 90.4% was achieved from nitric acid at pH 4 using ginkgo leaves.
Xu, Jie; Wang, Xue; Sun, Shiqing; Zhao, Yongjun; Hu, Changwei
2017-09-07
Three different treatment technologies, namely mono-algae culture, algal-bacterial culture, and algal-fungal culture, were applied to remove pollutants form synthetic domestic sewage and to remove CO 2 from biogas in a photobioreactor. The effects of different initial influent C/N ratios on microalgal growth rates and pollutants removal efficiencies by the three microalgal cultures were investigated. The best biogas upgrading and synthetic domestic sewage pollutants removal effect was achieved in the algal-fungal system at the influent C/N ratio of 5:1. At the influent C/N ratio of 5:1, the algal-fungal system achieved the highest mean chemical oxygen demand (COD) removal efficiency of 81.92% and total phosphorus (TP) removal efficiency of 81.52%, respectively, while the algal-bacterial system demonstrated the highest mean total nitrogen (TN) removal efficiency of 82.28%. The average CH 4 concentration in upgraded biogas and the removal efficiencies of COD, TN, and TP were 93.25 ± 3.84% (v/v), 80.23 ± 3.92%, 75.85 ± 6.61%, and 78.41 ± 3.98%, respectively. These results will provide a reference for wastewater purification ad biogas upgrading with microalgae based technology.
Stokke, Jennifer M; Mazyck, David W
2008-04-01
The release of mercury to the environment is of particular concern because of its volatility, persistence, and tendency to bioaccumulate. The recovery of mercury from end-box exhaust at chlor-alkali facilities is important to prevent release into the environment and reduce emissions as required by NESHAP (National Emission Standards for Hazardous Air Pollutants). A pilot-scale photocatalytic reactor packed with silica-titania composite (STC) pellets was tested at a chloralkali facility over a 3-month period. This pilot reactor treated up to 10 ft3/min (ACFM) of end-box exhaust and achieved 95% removal. The pilot reactor was able to maintain excellent removal efficiency even with large fluctuations in influent mercury concentration (400-1600 microg/ft3). The STC pellets were regenerated ex situ by regeneration with hydrochloric acid and performed similarly to virgin STC pellets when returned to service. On the basis of these promising results, two full-scale reactors with in situ regeneration capabilities were installed and operated. After optimization, these reactors performed similarly to the pilot reactor. A cost analysis was performed comparing the treatment costs (i.e., cost per pound of mercury removed) for sulfur-impregnated activated carbon and the STC system. The STC proved to be both technologically and economically feasible for this installation.
Restricting detergent protease action to surface of protein fibres by chemical modification.
Schroeder, M; Lenting, H B M; Kandelbauer, A; Silva, C J S M; Cavaco-Paulo, A; Gübitz, G M
2006-10-01
Due to their excellent properties, such as thermostability, activity over a broad range of pH and efficient stain removal, proteases from Bacillus sp. are commonly used in the textile industry including industrial processes and laundry and represent one of the most important groups of enzymes. However, due to the action of proteases, severe damage on natural protein fibres such as silk and wool result after washing with detergents containing proteases. To include the benefits of proteases in a wool fibre friendly detergent formulation, the soluble polymer polyethylene glycol (PEG) was covalently attached to a protease from Bacillus licheniformis. In contrast to activation of PEG with cyanuric chloride (50%) activation with 1,1'-carbonyldiimidazole (CDI) lead to activity recovery above 90%. With these modified enzymes, hydrolytic attack on wool fibres could be successfully prevented up to 95% compared to the native enzymes. Colour difference (DeltaE) measured in the three dimensional colour space showed good stain removal properties for the modified enzymes. Furthermore, half-life of the modified enzymes in buffers and commercial detergents solutions was nearly twice as high as those of the non-modified enzymes with values of up to 63 min. Out of the different modified proteases especially the B. licheniformis protease with the 2.0-kDa polymer attached both retained stain removal properties and did not hydrolyse/damage wool fibres.
Degradation of microcystin-RR using boron-doped diamond electrode.
Zhang, Chunyong; Fu, Degang; Gu, Zhongze
2009-12-30
Microcystins (MCs), produced by blue-green algae, are one of the most common naturally occurring toxins found in natural environment. The presence of MCs in drinking water sources poses a great threat to people's health. In this study, the degradation behavior of microcystin-RR on boron-doped diamond (BDD) electrode was investigated under galvanostatic conditions. Such parameters as reaction time, supporting electrolyte and applied current density were varied in order to determine their effects on this oxidation process. The experimental results revealed the suitability of electrochemical processes employing BDD electrode for removing MC-RR from the solution. However, the efficient removal of MC-RR only occurred in the presence of sodium chloride that acted as redox mediators and the reaction was mainly affected by the chloride concentration (c(NaCl)) and applied current density (I(appl)). Full and quick removal of 0.50 microg/ml MC-RR in solution was achieved when the operating conditions of c(NaCl) and I(appl) were 20mM and 46.3 mA/cm(2), or 35 mM and 18.2 mA/cm(2) respectively. The kinetics for MC-RR degradation followed a pesudo-first order reaction in most cases, indicating the process was under mass transfer control. As a result of its excellent performance, the BDD technology could be considered as a promising alternative to promote the degradation of MC-RR than chlorination in drinking water supplies.
Kang, Dongjuan; Yu, Xiaolin; Ge, Maofa; Xiao, Feng; Xu, Hui
2017-04-01
Al-doped carbon nanotubes (Al-doped CNTs) were prepared as a multifunctional integrated material of adsorbent and coagulant aid for organic pollutant removal from aqueous solution. It was observed that aluminum species were dispersed homogeneously on the surface of CNTs, and mainly anchored onto defect structures of the CNTs. The introduction of aluminium efficiently improved adsorption ability for methyl orange (MO) onto the CNTs, and maximum adsorption capacity calculated from the Langmuir isotherm model can reach 69.7mg/g. The MO adsorption kinetics can be better described by the pseudo-second-order and pore diffusion kinetic models, and the diffusion of MO anions into pores of the Al-doped CNT adsorbent should be the rate-determining step. Thermodynamic analyses indicated that the adsorption of MO onto Al-CNTs-2.0 was endothermic and spontaneous. Moreover, adsorption capacity for MO on the Al-doped CNTs was evidently dependent on the CNT dose, solution pH and adsorbent dose. From the perspective of low-cost and multifunctional, suspension obtained during the Al-doped CNT adsorbent preparation, was tested as coagulant to remove humic acid (HA). A significant observation is that the suspension exhibited an excellent coagulation performance for HA, because abundant aluminous polymer and Al-doped CNTs existed in the suspension. Copyright © 2016. Published by Elsevier B.V.
Li, Qiuying; Pham, Hoang
2017-01-01
In this paper, we propose a software reliability model that considers not only error generation but also fault removal efficiency combined with testing coverage information based on a nonhomogeneous Poisson process (NHPP). During the past four decades, many software reliability growth models (SRGMs) based on NHPP have been proposed to estimate the software reliability measures, most of which have the same following agreements: 1) it is a common phenomenon that during the testing phase, the fault detection rate always changes; 2) as a result of imperfect debugging, fault removal has been related to a fault re-introduction rate. But there are few SRGMs in the literature that differentiate between fault detection and fault removal, i.e. they seldom consider the imperfect fault removal efficiency. But in practical software developing process, fault removal efficiency cannot always be perfect, i.e. the failures detected might not be removed completely and the original faults might still exist and new faults might be introduced meanwhile, which is referred to as imperfect debugging phenomenon. In this study, a model aiming to incorporate fault introduction rate, fault removal efficiency and testing coverage into software reliability evaluation is developed, using testing coverage to express the fault detection rate and using fault removal efficiency to consider the fault repair. We compare the performance of the proposed model with several existing NHPP SRGMs using three sets of real failure data based on five criteria. The results exhibit that the model can give a better fitting and predictive performance.
Behavior of pharmaceuticals in waste water treatment plant in Japan.
Matsuo, H; Sakamoto, H; Arizono, K; Shinohara, R
2011-07-01
The fate of pharmaceuticals in a wastewater treatment plant (WWTP) in Kumamoto, Japan with activated sludge treatment is reported. Selected pharmaceuticals were detected in influent. Results from the present study confirmed that Acetaminophen, Amoxicillin, Ampicillin and Famotidine were removed at a high rate (>90% efficiency). In contrast, removal efficiency of Ketoprofen, Losartan, Oseltamivir, Carbamazepine, and Diclofenac was relatively low (<50%). The selected pharmaceuticals were also detected in raw sludge. In digestive process, Indomethacin, Atenolol, Famotidine, Trimethoprim and Cyclofosamide were removed at a high (>70% efficiency). On the other hand, removal of Carbamazepine, Ketoprofen and Diclofenac was not efficient (<50%).
2014-01-01
Arsenic contamination of drinking water is a global problem that will likely become more apparent in future years as scientists and engineers measure the true extent of the problem. Arsenic poisoning is preventable though as there are several methods for easily removing even trace amounts of arsenic from drinking water. In the present study, electrocoagulation was evaluated as a treatment technology for arsenic removal from aqueous solutions. The effects of parameters such as initial pH, current density, initial concentration, supporting electrolyte type and stirring speed on removal efficiency were investigated. It has been observed that initial pH was highly effective on the arsenic removal efficiency. The highest removal efficiency was observed at initial pH = 4. The obtained experimental results showed that the efficiency of arsenic removal increased with increasing current density and decreased with increasing arsenic concentration in the solution. Supporting electrolyte had not significant effects on removal, adding supporting electrolyte decreased energy consumption. The effect of stirring speed on removal efficiency was investigated and the best removal efficiency was at the 150 rpm. Under the optimum conditions of initial pH 4, current density of 0.54 mA/cm2, stirring speed of 150 rpm, electrolysis time of 30 minutes, removal was obtained as 99.50%. Energy consumption in the above conditions was calculated as 0.33 kWh/m3. Electrocoagulation with iron electrodes was able to bring down 50 mg/L arsenic concentration to less than 10 μg/L at the end of electrolysis time of 45 minutes with low electrical energy consumption as 0.52 kWh/m3. PMID:24991426
Lead Removal From Synthetic Leachate Matrices by a Novel Ion-Exchange Material
NASA Technical Reports Server (NTRS)
Street, Kenneth W., Jr.; Hovanitz, Edward S.; Chi, Sulan
2002-01-01
This report discusses the application of a novel polyacrylate-based ion-exchange material (IEM) for the removal of lead (Pb) ions from water. Preliminary testing includes the establishment of the operating pH range, capacity information, and the effect of calcium and anions in the matrix. Batch testing with powder indicates slightly different optimal operational conditions from those used for column testing. The ion exchanger is excellent for removing lead from aqueous solutions.
Nur-E-Alam, M; Islam, M Monirul; Islam, M Nazrul; Rima, Farhana Rahman; Islam, M Nurul
2016-03-01
The cleansing efficiencies of laundry detergents depend on composition and variation of ingredients such as surfactants, phosphate, and co-builders. Among these ingredients, surfactants and phosphate are considered as hazardous materials. Knowledge on compositions and micellar behavior is very useful for understanding their cleansing efficiencies and environmental impact. With this view, composition, critical micelle concentration, and dissolved oxygen level in aqueous solution of some laundry detergents available in Bangladesh such as keya, Wheel Power White, Tibet, Surf Excel, and Chaka were determined. Surfactant and phosphate were found to be maximum in Surf Excel and Wheel Power White, respectively, while both of the ingredients were found to be minimum in Tibet. The critical micelle concentration decreased with increasing surfactant content. The amount of laundry detergents required for efficient cleansing was found to be minimum for Surf Excel and maximum for Chaka; however, cleansing cost was the highest for Surf Excel and the lowest for Tibet. The maximum amount of surfactants and phosphate was discharged by Surf Excel and Wheel Power White, respectively, while discharges of both of the ingredients were minimum for Tibet. The maximum decrease of dissolved oxygen level was caused by Surf Excel and the minimum by Tibet. Therefore, it can be concluded that Tibet is cost-effective and environment friendly, whereas Surf Excel and Wheel Power White are expensive and pose a threat to water environment.
Code of Federal Regulations, 2014 CFR
2014-07-01
... native AOI concentration (ppm) of the effluent during stable conditions. (14) Post-test calibration. At... or removal efficiencies must be determined while etching a substrate (product, dummy, or test). For... curves for the subsequent destruction or removal efficiency tests. (8) Mass location calibration. A...
DOE Office of Scientific and Technical Information (OSTI.GOV)
TEDESCHI AR; CORBETT JE; WILSON RA
2012-01-26
Simulant testing of a full-scale thin-film evaporator system was conducted in 2011 for technology development at the Hanford tank farms. Test results met objectives of water removal rate, effluent quality, and operational evaluation. Dilute tank waste simulant, representing a typical double-shell tank supernatant liquid layer, was concentrated from a 1.1 specific gravity to approximately 1.5 using a 4.6 m{sup 2} (50 ft{sup 2}) heated transfer area Rototherm{reg_sign} evaporator from Artisan Industries. The condensed evaporator vapor stream was collected and sampled validating efficient separation of the water. An overall decontamination factor of 1.2E+06 was achieved demonstrating excellent retention of key radioactivemore » species within the concentrated liquid stream. The evaporator system was supported by a modular steam supply, chiller, and control computer systems which would be typically implemented at the tank farms. Operation of these support systems demonstrated successful integration while identifying areas for efficiency improvement. Overall testing effort increased the maturation of this technology to support final deployment design and continued project implementation.« less
Campos, Camila H; Ribeiro, Giselle R; Rodrigues Garcia, Renata C M
2018-05-01
Alzheimer disease (AD) can affect masticatory function, affecting oral health-related quality of life (OHRQoL). Whether oral rehabilitation with conventional removable prostheses can restore masticatory function and improve OHRQoL in these individuals is unknown. The purpose of this clinical study was to evaluate the influence of oral rehabilitation with removable prostheses on masticatory efficiency and OHRQoL in elders with and without AD. Thirty-two elders with mild AD (n=16, mean age=76.7 ±6.3 years) or without AD (n=16, mean age=75.2 ±4.4 years) were recruited. All participants first underwent masticatory efficiency and OHRQoL evaluations, and 2 months after insertion of new removable prostheses, the variables were reassessed. Masticatory efficiency was determined using the sieving method, and OHRQoL was measured by applying the Geriatric Oral Health Assessment Index (GOHAI). The data from the baseline and after insertion of the new removable prostheses were compared by paired t test. Group differences at each time point were assessed by t test (α=.05). After insertion of the new removable prostheses, masticatory efficiency and OHRQoL improved in both the elders with AD and the control. At baseline, elders with AD had lower masticatory efficiency and higher OHRQoL than controls (P<.05). After removable prosthesis insertion, elders with AD continued to show lower masticatory efficiency values than controls, but their OHRQoL was similar. Oral rehabilitation with new removable prostheses improved the masticatory efficiency and OHRQoL of elders with and without AD, although masticatory efficiency did not reach control levels in elders with AD. Copyright © 2017 Editorial Council for the Journal of Prosthetic Dentistry. Published by Elsevier Inc. All rights reserved.
Zupanc, Mojca; Kosjek, Tina; Petkovšek, Martin; Dular, Matevž; Kompare, Boris; Širok, Brane; Blažeka, Željko; Heath, Ester
2013-07-01
To augment the removal of pharmaceuticals different conventional and alternative wastewater treatment processes and their combinations were investigated. We tested the efficiency of (1) two distinct laboratory scale biological processes: suspended activated sludge and attached-growth biomass, (2) a combined hydrodynamic cavitation-hydrogen peroxide process and (3) UV treatment. Five pharmaceuticals were chosen including ibuprofen, naproxen, ketoprofen, carbamazepine and diclofenac, and an active metabolite of the lipid regulating agent clofibric acid. Biological treatment efficiency was evaluated using lab-scale suspended activated sludge and moving bed biofilm flow-through reactors, which were operated under identical conditions in respect to hydraulic retention time, working volume, concentration of added pharmaceuticals and synthetic wastewater composition. The suspended activated sludge process showed poor and inconsistent removal of clofibric acid, carbamazepine and diclofenac, while ibuprofen, naproxen and ketoprofen yielded over 74% removal. Moving bed biofilm reactors were filled with two different types of carriers i.e. Kaldnes K1 and Mutag BioChip™ and resulted in higher removal efficiencies for ibuprofen and diclofenac. Augmentation and consistency in the removal of diclofenac were observed in reactors using Mutag BioChip™ carriers (85%±10%) compared to reactors using Kaldnes carriers and suspended activated sludge (74%±22% and 48%±19%, respectively). To enhance the removal of pharmaceuticals hydrodynamic cavitation with hydrogen peroxide process was evaluated and optimal conditions for removal were established regarding the duration of cavitation, amount of added hydrogen peroxide and initial pressure, all of which influence the efficiency of the process. Optimal parameters resulted in removal efficiencies between 3-70%. Coupling the attached-growth biomass biological treatment, hydrodynamic cavitation/hydrogen peroxide process and UV treatment resulted in removal efficiencies of >90% for clofibric acid and >98% for carbamazepine and diclofenac, while the remaining compounds were reduced to levels below the LOD. For ibuprofen, naproxen, ketoprofen and diclofenac the highest contribution to overall removal was attributed to biological treatment, for clofibric acid UV treatment was the most efficient, while for carbamazepine hydrodynamic cavitation/hydrogen peroxide process and UV treatment were equally efficient. Copyright © 2012 Elsevier B.V. All rights reserved.
[Efficiency of photodecomposition of trace NDMA in water by UV irradiation].
Xu, Bing-Bing; Chen, Zhong-Lin; Qi, Fei; Ma, Jun
2008-07-01
Efficiency of photodecomposition of trace NDMA by UV irradiation was investigated with analyzing the initial concentration of NDMA, solution pH, irradiation area, irradiation intensity and water quality effect on NDMA photolysis. NDMA could be effectively photodegraded by UV irradiation. The removal efficiency of NDMA was 97.5% after 5 min of UV irradiation. Effect of initial NDMA concentration on photodecomposition of NDMA was not remarkable. With pH value ascending, the removal rate of NDMA photodecomposition decreased. The yields of photoquantum were more under lower solution pH than that under higher pH. NDMA had fastest reaction rate at solution pH = 2.2. Removal efficiency of NDMA increased with the available irradiation area ascending. Increscent ultraviolet irradiation intensity was good for NDMA degradation. Water quality affected the removal of NDMA slightly. The removal efficiency of NDMA in tap water and Songhua River raw water were 96.7% and 94.8%, respectively.
Treatment of emulsified oils by electrocoagulation: pulsed voltage applications.
Genc, Ayten; Bakirci, Busra
2015-01-01
The effect of pulsed voltage application on energy consumption during electrocoagulation was investigated. Three voltage profiles having the same arithmetic average with respect to time were applied to the electrodes. The specific energy consumption for these profiles were evaluated and analyzed together with oil removal efficiencies. The effects of applied voltages, electrode materials, electrode configurations, and pH on oil removal efficiency were determined. Electrocoagulation experiments were performed by using synthetic and real wastewater samples. The pulsed voltages saved energy during the electrocoagulation process. In continuous operation, energy saving was as high as 48%. Aluminum electrodes used for the treatment of emulsified oils resulted in higher oil removal efficiencies in comparison with stainless steel and iron electrodes. When the electrodes gap was less than 1 cm, higher oil removal efficiencies were obtained. The highest oil removal efficiencies were 95% and 35% for the batch and continuous operating modes, respectively.
Control of gaseous pollution via the leaves of non-edible trees
NASA Astrophysics Data System (ADS)
Al-Maliky, S. J. B.
2015-11-01
The accelerated increase of the use of various transportation means, industrial machinery and other power consuming technologies has led to tremendous degradation of outdoor air quality all around the world. Green solution was tested here as an innovative gas control mean via non edible Myrtus communis green leaves as natural sorption media. Statistical analyses were applied in order to examine the correlation between various parameters of this study. The tests of gas records around the tree that was targeted by a gas stream of 5 KW power generators have demonstrated an excellent gas control role of the green leaves, with average efficiencies of about 75% and 82% for the removal of Nitrogen Dioxide and Carbon Monoxide, respectively. An interesting finding of this research was that the sorption role of green leaves has promoted their sizes and Chlorophyll Content Index.
Applying fenton process in acrylic fiber wastewater treatment and practice teaching
NASA Astrophysics Data System (ADS)
Zhang, Chunhui; Jiang, Shan
2018-02-01
Acrylic fiber manufacturing wastewater, containing a wider range of pollutants, high concentration of refractory organics, poisonous and harmful matters, was significant to treat from the effluents of wastewater treatment plants (WWTPs). In this work, a Fenton reactor was employed for advanced treatment of the WWTP effluents. An orthogonal test and a parametric study were carried out to determine the effect of the main operating conditions and the Fenton process attain excellent performance on the degradation of pollutants under an optimal condition of ferrous dosage was 6.25 mM, hydrogen peroxide was 75 mM and initial pH value was 3.0 in 90 min reaction time. The removal efficiency of COD, TOC, NH4 +-N and TN reached from 45% to 69%. Lastly, as a teaching advice, the Fenton reactor was used in practicing teaching nicely.
Harvesting of Scenedesmus obliquus FSP-3 using dispersed ozone flotation.
Cheng, Ya-Ling; Juang, Yu-Chuan; Liao, Guan-Yu; Tsai, Pei-Wen; Ho, Shih-Hsin; Yeh, Kuei-Ling; Chen, Chun-Yen; Chang, Jo-Shu; Liu, Jhy-Chern; Chen, Wen-Ming; Lee, Duu-Jong
2011-01-01
The Scenedesmus obliquus FSP-3, a species with excellent potential for CO(2) capture and lipid production, was harvested using dispersed ozone flotation. While air aeration does not, ozone produces effective solid-liquid separation through flotation. Ozone dose applied for sufficient algal flotation is similar to those used in practical drinking waterworks. The algae removal rate, surface charge, and hydrophobicity of algal cells, and fluorescence characteristics and proteins and polysaccharides contents of algogenic organic matter (AOM) were determined during ozonation. Proteins released from tightly bound AOM are essential to modifying the hydrophobicity of bubble surfaces for easy cell attachment and to forming a top froth layer for collecting floating cells. Humic substances in the suspension scavenge dosed ozone that adversely affects ozone flotation efficiency of algal cells. Copyright © 2010 Elsevier Ltd. All rights reserved.
Multifunctional PMMA@Fe3O4@DR Magnetic Materials for Efficient Adsorption of Dyes
Yu, Bing; He, Liang; Wang, Yifan
2017-01-01
Magnetic porous microspheres are widely used in modern wastewater treatment technology due to their simple and quick dye adsorption and separation functions. In this article, we prepared porous polymethylmethacrylate (PMMA) microspheres by the seed-swelling method, followed by in situ formation of iron oxide (Fe3O4) nanoparticles within the pore. Then, we used diazo-resin (DR) to encapsulate the porous magnetic microspheres and achieve PMMA@Fe3O4@DR magnetic material. We studied the different properties of magnetic microspheres by different dye adsorption experiments before and after the encapsulation and demonstrated that the PMMA@Fe3O4@DR microspheres can be successfully used as a reusable absorbent for fast and easy removal of anionic and aromatic dyes from wastewater and can maintain excellent magnetic and adsorption properties in harsh environments. PMID:29077025
Magnetic graphene oxide for adsorption of organic dyes from aqueous solution
NASA Astrophysics Data System (ADS)
Drashya, Lal, Shyam; Hooda, Sunita
2018-05-01
Graphene oxide (GO), a 2-D carbon nanomaterial, large surface area, oxygen-containing groups (like: hydroxyl, epoxy and carboxyl) and excellent water dispersibility due to it is good adsorbent dye removal from pollutant water1. But it's difficult to separate GO from water after adsorption. Therefore, Iron oxide was introduced in Graphene oxide by decorating method to make separation more efficient2. We present herein a one step process to prepare Magnetic Graphene oxide (MGO). The Fourier transform infrared spectrometer (FT-IR), X-ray diffraction (XRD) and Raman Spectroscopy characterized the chemical structure of the MGO composite. The adsorption of dyes onto MGO was studied in relation to initial concentration of Dyes, contact time, adsorbent dose, temperature and pH value of solution. We have studied adsorption capacity of different dyes (Methylene blue and crystal violet) by MGO.
An, Taicheng; Wan, Shungang; Li, Guiying; Sun, Lei; Guo, Bin
2010-11-15
This study aims to compare the biological degradation performance of ethanethiol using strain RG-1 and B350 commercial mixed microorganisms, which were inoculated and immobilized on ceramic particles in twin-biotrickling filter columns. The parameters affecting the removal efficiency, such as empty bed residence time (EBRT) and inlet concentration, were investigated in detail. When EBRT ranged from 332 to 66 s at a fixed inlet concentration of 1.05 mg L(-1), the total removal efficiencies for RG-1 and B350 both decreased from 100% to 70.90% and 47.20%, respectively. The maximum elimination capacities for RG-1 and B350 were 38.36 (removal efficiency=89.20%) and 25.82 g m(-3) h(-1) (removal efficiency=57.10%), respectively, at an EBRT of 83 s. The variation of the inlet concentration at a fixed EBRT of 110 s did not change the removal efficiencies which remained at 100% for RG-1 and B350 at concentrations of less than 1.05 and 0.64 mg L(-1), respectively. The maximum elimination capacities were 39.93 (removal efficiency=60.30%) and 30.34 g m(-3) h(-1) (removal efficiency=46.20%) for RG-1 and B350, respectively, at an inlet concentration of 2.03 mg L(-1). Sulfate was the main metabolic product of sulfur in ethanethiol. Based the results, strain RG-1 would be a better choice than strain B350 for the biodegradation of ethanethiol. Copyright © 2010 Elsevier B.V. All rights reserved.
Jiang, Yu; Wang, Hongyu; Shang, Yu; Yang, Kai
2016-05-01
The high removal efficiencies of traditional biological aniline-degrading systems always lead to accumulation of ammonium. In this study, simultaneous removal of aniline, nitrogen and phosphorus in a single sequencing batch reactor was achieved by using anaerobic/aerobic/anoxic (A/O/A) operational process. The removal efficiencies of COD, NH4(+)-N, TN, TP were over 95.80%, 83.03%, 87.13%, 90.95%, respectively in most cases with 250mgL(-1) of initial aniline at 6h cycle when DO was 5.5±0.5mgL(-1). Aniline was able to be completely degraded when initial concentrations were less than 750mgL(-1). When DO increased, the removal rate of NH4(+)-N and TP slightly increased along with the moderate decrease of removal efficiencies of TN. The variation of HRT had obvious influence on removal performance of pollutants. The system showed high removal efficiencies of aniline, COD and nutrients during the variation of operating conditions, which might contribute to disposal of aniline-rich industrial wastewater. Copyright © 2016 Elsevier Ltd. All rights reserved.
Kothawala, Dolly N; Köhler, Stephan J; Östlund, Anna; Wiberg, Karin; Ahrens, Lutz
2017-09-15
Drinking water treatment plants (DWTPs) are constantly adapting to a host of emerging threats including the removal of micro-pollutants like perfluoroalkyl substances (PFASs), while concurrently considering how background levels of dissolved organic matter (DOM) influences their removal efficiency. Two adsorbents, namely anion exchange (AE) and granulated active carbon (GAC) have shown particular promise for PFAS removal, yet the influence of background levels of DOM remains poorly explored. Here we considered how the removal efficiency of 13 PFASs are influenced by two contrasting types of DOM at four concentrations, using both AE (Purolite A-600 ® ) and GAC (Filtrasorb 400 ® ). We placed emphasis on the pre-equilibrium conditions to gain better mechanistic insight into the dynamics between DOM, PFASs and adsorbents. We found AE to be very effective at removing both PFASs and DOM, while largely remaining resistant to even high levels of background DOM (8 mg carbon L -1 ) and surprisingly found that smaller PFASs were removed slightly more efficiently than longer chained counterparts, In contrast, PFAS removal efficiency with GAC was highly variable with PFAS chain length, often improving in the presence of DOM, but with variable response based on the type of DOM and PFAS chain length. Copyright © 2017 Elsevier Ltd. All rights reserved.
Rossmann, Maike; Matos, Antonio Teixeira; Abreu, Edgar Carneiro; Silva, Fabyano Fonseca; Borges, Alisson Carraro
2013-10-15
The aim of the present study was to evaluate the influence of aeration and vegetation on the removal of organic matter in coffee processing wastewater (CPW) treated in 4 constructed wetlands (CWs), characterized as follows: (i) ryegrass (Lolium multiflorum) cultivated system operating with an aerated influent; (ii) non-cultivated system operating with an aerated influent, (iii) ryegrass cultivated system operating with a non-aerated influent; and (iv) non-cultivated system operating with a non-aerated influent. The lowest average chemical oxygen demand (COD), biochemical oxygen demand (BOD) and total suspended solids (TSS) removal efficiencies of 87, 84 and 73%, respectively, were obtained in the ryegrass cultivated system operating with a non-aerated influent. However, ryegrass cultivation did not influence the removal efficiency of organic matter. Artificial aeration of the CPW, prior to its injection in the CW, did not improve the removal efficiencies of organic matter. On other hand it did contribute to increase the instantaneous rate at which the maximum COD removal efficiency was reached. Although aeration did not result in greater organic matter removal efficiencies, it is important to consider the benefits of aeration on the removal of the other compounds. Copyright © 2013 Elsevier Ltd. All rights reserved.
Transoral robotic surgery for neurogenic tumors of the prestyloid parapharyngeal space.
Lee, Hyoung Shin; Kim, Jinna; Lee, Hyun Jin; Koh, Yoon Woo; Choi, Eun Chang
2012-08-01
The parapharyngeal space is a difficult area for a surgical approach due to anatomical complexity. We performed a minimally invasive and precise surgical technique to remove neurogenic tumors of the prestyloid parapharyngeal space using transoral robotic instrumentation. The mass was successfully removed in the two cases with three-dimensional visualization providing an excellent view of the resection margin and the dissection plane preserving the vital structures. An adequate resection margin was acquired, and no violation of the tumor capsule occurred. No significant complications were noted. Transoral robotic surgery was feasible for neurogenic tumors of the prestyloid parapharyngeal space, providing a sufficient resection margin and delicate dissection through excellent surgical views and instrumentation. Copyright © 2012. Published by Elsevier Ireland Ltd.
Zhu, Yongfeng; Zheng, Yian; Zong, Li; Wang, Feng; Wang, Aiqin
2016-09-20
A series of magnetic hydroxypropyl cellulose-g-poly(acrylic acid) porous spheres were prepared via O/W Pickering high internal phase emulsions (HIPEs) integrated precipitation polymerization. The structure and composition of modified Fe3O4 and porous structures were characterized by TEM, XRD, TGA and SEM. The results indicated that the silanized Fe3O4 can influence greatly the pore structure of magnetic porous sphere in addition to non-negligible impacts of the proportion of mixed solvent and co-surfactant. The adsorption experiment demonstrated that the adsorption equilibrium can be reached within 40min and the maximal adsorption capacity was 300.00mg/g for Cd(2+) and 242.72mg/g for Cu(2+), suggesting its fast adsorption kinetics and high adsorption capacity. After five adsorption-desorption cycles, no significant changes in the adsorption capacity were observed, suggesting its excellent reusability. The magnetic porous sphere can be easily separated from the solution and then find its potential as a recyclable material for highly efficient removal of heavy metals. Copyright © 2016 Elsevier Ltd. All rights reserved.
Guo, Liang; Liang, Yuyan; Chen, Xuelan; Xu, Wei; Wu, Kesheng; Wei, Hua; Xiong, Yonghua
2016-03-01
Self-assembled iron oxide nanocomposites are good magnetic nano-adsorbents that can be prepared using simple methods. Four types of organic acid-functionalised (oleic acid, undecenoic acid, caprylic acid or hexanoic acid) magnetic nanoparticles (MNPs) were synthesised through a one-pot chemisorption method for the removal of tetracycline (TC) from aqueous solution. The undecenoic acid-coated MNPs (UA-MNPs) exhibited the highest adsorption efficiency and can be easily retrieved with a low-gradient magnetic separator (0.4 Tesla) at pH 5.0 aqueous solution. The TC adsorption process on the UA-MNPs followed the Langmuir isotherm and the maximum adsorption capacities increased from 86.96 mg g(-1) to 222.2 mg g(-1) with the increase in temperature from 288 K to 318 K. The kinetics of adsorption fits pseudo-second-order model perfectly with a rate constant, 5.946 g mg(-1) min(-1) at 298 K. The positive values of the enthalpy (AH) and the negative value of the free energy (AG) indicated an endothermic and spontaneous adsorption process of TC on the UA-MNPs. Moreover, the UA-MNPs possessed excellent ability to adsorb the other three major types of TC antibiotics, including chlortetracycline, oxytetracycline and doxycycline.
Zhang, Meng; Zheng, Ping; Abbas, Ghulam; Chen, Xiaoguang
2014-02-01
Phosphorus pollution control and phosphorus recycling, simultaneously, are focus of attention in the wastewater treatment. In this work, a novel reactor named partitionable-space enhanced coagulation (PEC) was invented for phosphorus control. The working performance and process mechanism of PEC reactor were investigated. The results showed that the PEC technology was highly efficient and cost-effective. The volumetric removal rate (VRR) reached up to 2.86 ± 0.04 kg P/(m(3) d) with a phosphorus removal rate of over 97%. The precipitant consumption was reduced to 2.60-2.76 kg Fe(II)/kg P with low operational cost of $ 0.632-0.673/kg P. The peak phosphorus content in precipitate was up to 30.44% by P2O5, which reveal the benefit of the recycling phosphorus resource. The excellent performance of PEC technology was mainly attributed to the partitionable-space and 'flocculation filter'. The partition limited the trans-regional back-mixing of reagents along the reactor, which promoted the precipitation reaction. The 'flocculation filter' retained the microflocs, enhancing the flocculation process. Copyright © 2013 Elsevier Ltd. All rights reserved.
NASA Technical Reports Server (NTRS)
Tai, Chang-Kou
1988-01-01
A new method (constrained sinusoidal crossover adjustment) for removing the orbit error in satellite altimetry is tested (using crossovers accumulated in the first 91 days of the Geosat non-repeat era in the tropical Pacific) and found to have excellent qualities. Two features distinguish the new method from the conventional bias-and-tilt crossover adjustment. First, a sine wave (with wavelength equaling the circumference of the Earth) is used to represent the orbit error for each satellite revolution, instead of the bias-and-tilt (and curvature, if necessary) approach for each segment of the satellite ground track. Secondly, the indeterminacy of the adjustment process is removed by a simple constraint minimizing the amplitudes of the sine waves, rather than by fixing selected tracks. Overall the new method is more accurate, more efficient, and much less cumbersome than the old. The idea of restricting the crossover adjustment to crossovers between tracks that are less than certain days apart in order to preserve the large-scale long-term oceanic variability is also tested with inconclusive results because the orbit error was unusually nonstationary in the initial 91 days of the GEOSAT mission.
Enhanced Removal of Lead by Chemically and Biologically Treated Carbonaceous Materials
Mahmoud, Mohamed E.; Osman, Maher M.; Ahmed, Somia B.; Abdel-Fattah, Tarek M.
2012-01-01
Hybrid sorbents and biosorbents were synthesized via chemical and biological treatment of active carbon by simple and direct redox reaction followed by surface loading of baker's yeast. Surface functionality and morphology of chemically and biologically modified sorbents and biosorbents were studied by Fourier Transform Infrared analysis and scanning electron microscope imaging. Hybrid carbonaceous sorbents and biosorbents were characterized by excellent efficiency and superiority toward lead(II) sorption compared to blank active carbon providing a maximum sorption capacity of lead(II) ion as 500 μmol g−1. Sorption processes of lead(II) by these hybrid materials were investigated under the influence of several controlling parameters such as pH, contact time, mass of sorbent and biosorbent, lead(II) concentration, and foreign ions. Lead(II) sorption mechanisms were found to obey the Langmuir and BET isotherm models. The potential applications of chemically and biologically modified-active carbonaceous materials for removal and extraction of lead from real water matrices were also studied via a double-stage microcolumn technique. The results of this study were found to denote to superior recovery values of lead (95.0–99.0 ± 3.0–5.0%) by various carbonaceous-modified-bakers yeast biosorbents. PMID:22629157
Stability of lanthanum oxide-based H 2S sorbents in realistic fuel processor/fuel cell operation
NASA Astrophysics Data System (ADS)
Valsamakis, Ioannis; Si, Rui; Flytzani-Stephanopoulos, Maria
We report that lanthana-based sulfur sorbents are an excellent choice as once-through chemical filters for the removal of trace amounts of H 2S and COS from any fuel gas at temperatures matching those of solid oxide fuel cells. We have examined sorbents based on lanthana and Pr-doped lanthana with up to 30 at.% praseodymium, having high desulfurization efficiency, as measured by their ability to remove H 2S from simulated reformate gas streams to below 50 ppbv with corresponding sulfur capacity exceeding 50 mg S g sorbent -1 at 800 °C. Intermittent sorbent operation with air-rich boiler exhaust-type gas mixtures and with frequent shutdowns and restarts is possible without formation of lanthanide oxycarbonate phases. Upon restart, desulfurization continues from where it left at the end of the previous cycle. These findings are important for practical applications of these sorbents as sulfur polishing units of fuel gases in the presence of small or large amounts of water vapor, and with the regular shutdown/start-up operation practiced in fuel processors/fuel cell systems, both stationary and mobile, and of any size/scale.
Kim-Wanner, Soo-Zin; Bug, Gesine; Steinmann, Juliane; Ajib, Salem; Sorg, Nadine; Poppe, Carolin; Bunos, Milica; Wingenfeld, Eva; Hümmer, Christiane; Luxembourg, Beate; Seifried, Erhard; Bonig, Halvard
2017-08-11
Red blood cell (RBC) depletion is a standard graft manipulation technique for ABO-incompatible bone marrow (BM) transplants. The BM processing module for Spectra Optia, "BMC", was previously introduced. We here report the largest series to date of routine quality data after performing 50 clinical-scale RBC-depletions. Fifty successive RBC-depletions from autologous (n = 5) and allogeneic (n = 45) BM transplants were performed with the Spectra Optia BMC apheresis suite. Product quality was assessed before and after processing for volume, RBC and leukocyte content; RBC-depletion and stem cell (CD34+ cells) recovery was calculated there from. Clinical engraftment data were collected from 26/45 allogeneic recipients. Median RBC removal was 98.2% (range 90.8-99.1%), median CD34+ cell recovery was 93.6%, minimum recovery being 72%, total product volume was reduced to 7.5% (range 4.7-23.0%). Products engrafted with expected probability and kinetics. Performance indicators were stable over time. Spectra Optia BMC is a robust and efficient technology for RBC-depletion and volume reduction of BM, providing near-complete RBC removal and excellent CD34+ cell recovery.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zhou, Jianying; Dann, Geoffrey P.; Shi, Tujin
2012-03-10
Sodium dodecyl sulfate (SDS) is one of the most popular laboratory reagents used for highly efficient biological sample extraction; however, SDS presents a significant challenge to LC-MS-based proteomic analyses due to its severe interference with reversed-phase LC separations and electrospray ionization interfaces. This study reports a simple SDS-assisted proteomic sample preparation method facilitated by a novel peptide-level SDS removal protocol. After SDS-assisted protein extraction and digestion, SDS was effectively (>99.9%) removed from peptides through ion substitution-mediated DS- precipitation with potassium chloride (KCl) followed by {approx}10 min centrifugation. Excellent peptide recovery (>95%) was observed for less than 20 {mu}g of peptides.more » Further experiments demonstrated the compatibility of this protocol with LC-MS/MS analyses. The resulting proteome coverage from this SDS-assisted protocol was comparable to or better than those obtained from other standard proteomic preparation methods in both mammalian tissues and bacterial samples. These results suggest that this SDS-assisted protocol is a practical, simple, and broadly applicable proteomic sample processing method, which can be particularly useful when dealing with samples difficult to solubilize by other methods.« less
Ramrakhiani, Lata; Ghosh, Sourja; Majumdar, Swachchha
2016-09-01
Heavy metal pollution in water emerges as a severe socio-environmental problem originating primarily from the discharge of industrial wastewater. In view of the toxic, non-biodegradable, and persistent nature of most of the heavy metal ions, remediation of such components becomes an absolute necessity. Biosorption is an emerging tool for bioremediation that has gained momentum for employing low-cost biological materials with effective metal binding capacities. Even though biological materials possess excellent metal adsorption abilities, they show poor mechanical strength and low rigidity. Other disadvantages include solid-liquid separation problems, possible biomass swelling, lower efficiency for regeneration or reuse, and frequent development of high pressure drop in the column mode that limits its applications under real conditions. To improve the biosorption efficiency, biomasses need to be modified with a simple technique for selective/multi-metal adsorption. This review is intended to cover discussion on biomass modification for enhanced biosorption efficiency, mechanism studies using various instrumental/analytical techniques, and future direction for research and development including the fate of spent biosorbent. In most of the previously published researches, difficulty of the process in scaling up has not been addressed. The current article outlines the application potential of biosorbents in the development of hybrid technology integrated with membrane processes for water and wastewater treatment in industrial scale.
Chen, Qingcai; Li, Zebing; Hua, Xiaoyu
2018-05-01
The control measures for estrogens in the aquatic environment are topics of growing concern. It is a meaningful issue to finding optimal process parameters for efficient removal of estrogens with the purpose of efficient total nitrogen (TN) or total phosphorus (TP) removal in sewage treatment plants. The present paper is concerned with the relationships between the estrogen removal and TN or TP removal in a pilot-scale three-stage anoxic/oxic (A/O) system treating real municipal wastewater. The total removal efficiency for estrone (E1) and 17β-estradiol (E2) and their sulfate and glucuronide conjugates were on average 87% in the pilot-scale system. The concentrations of the sulfate and glucuronide conjugates of estrogens (E1 and E2) in the system were much lower than the estrogens, which might be caused by the rapid degradation of conjugates in the pilot-scale system. The average removal efficiencies of E1 and E2 and their sulfate and glucuronide conjugates were significantly lower under high TP removal conditions than those under high TN removal conditions that suggested that the ammonia oxidation promotes estrogen degradation. When the system achieved efficient TN removal, the concentrations of both E1 and E2 were generally lower in the aerobic zones than those in the anoxic zones. Instead, when the system achieved efficient TP removal conditions, the estrogen concentrations were higher in the aerobic zones than in the anoxic zones. However, it was thought that the variation of the concentrations of the estrogen conjugates had weak influence on concentrations of the free estrogens. The increase of the free estrogens in the aerobic zones could be attributed to the release of the estrogens adsorbed on the sludge. The variation of estrogens in a three-stage A/O system can be properly estimated and measured by a binary linear regression model with the variables of TP and TON (NO 2 - -N and NO 3 - -N), which is probably the important information for the improvement and optimization of wastewater treatment processes to obtain higher removal efficiency for estrogens.
Li, Qiuying; Pham, Hoang
2017-01-01
In this paper, we propose a software reliability model that considers not only error generation but also fault removal efficiency combined with testing coverage information based on a nonhomogeneous Poisson process (NHPP). During the past four decades, many software reliability growth models (SRGMs) based on NHPP have been proposed to estimate the software reliability measures, most of which have the same following agreements: 1) it is a common phenomenon that during the testing phase, the fault detection rate always changes; 2) as a result of imperfect debugging, fault removal has been related to a fault re-introduction rate. But there are few SRGMs in the literature that differentiate between fault detection and fault removal, i.e. they seldom consider the imperfect fault removal efficiency. But in practical software developing process, fault removal efficiency cannot always be perfect, i.e. the failures detected might not be removed completely and the original faults might still exist and new faults might be introduced meanwhile, which is referred to as imperfect debugging phenomenon. In this study, a model aiming to incorporate fault introduction rate, fault removal efficiency and testing coverage into software reliability evaluation is developed, using testing coverage to express the fault detection rate and using fault removal efficiency to consider the fault repair. We compare the performance of the proposed model with several existing NHPP SRGMs using three sets of real failure data based on five criteria. The results exhibit that the model can give a better fitting and predictive performance. PMID:28750091
Phosphorous removal from aqueous solution can be enhanced through the calcination of lime sludge.
Bal Krishna, K C; Niaz, Mohamed R; Sarker, Dipok C; Jansen, Troy
2017-09-15
Water treatment plants generate an enormous amount of the sludge which is normally treated as waste. In the recent past, many investigations have been focused on developing an economical adsorbent using water treatment sludge to remove phosphorous (P) from aqueous solutions. However, the great extents of the studies have been limited in the use of alum- and iron-based sludges. This study, therefore, investigated the P removal performance of the calcined lime sludge. Calcined lime sludge at 700 °C significantly enhanced the P removal efficiency whereas marginal improvement was noted when the sludge calcined at 400 °C was tested. With increase P removal efficiency, final pH values of the solution also significantly increased. P removal efficiency of the calcined sludge decreased with increasing the initial P concentrations. However, the removal efficiency could be improved by increasing the weight of the sludge. Further analysis demonstrated that P removal trend followed both pseudo-second order and diffusion-chemisorption kinetics signifying the P removal is potentially due to a multi-mechanistic reaction in which, the process is controlled by intra-particle diffusion followed by chemisorptions. Copyright © 2017 Elsevier Ltd. All rights reserved.
The Use of Implants to Improve Removable Partial Denture Function.
Pimentel, Marcele Jardim; Arréllaga, Juan Pablo; Bacchi, Ataís; Del Bel Cury, Altair A
2014-12-01
The oral rehabilitation with conventional removable partial dentures in Kennedy class I patients allows continuous bone resorption, dislodgment of the prosthesis during the mastication caused by the resilience of the mucosa, and rotation of the prosthesis. Thus, the associations of distal implants become an attractive modality of treatment for these patients. This case report presented an association of removable partial dentures, milled crowns and osseointegrated implants to rehabilitate a partial edentulous patient. A removable partial denture associated with implants and metal-ceramic milled crowns can offer excellent esthetics, and will improve function and biomechanics, at a reduced cost.
Česen, Marjeta; Kosjek, Tina; Laimou-Geraniou, Maria; Kompare, Boris; Širok, Brane; Lambropolou, Dimitra; Heath, Ester
2015-09-15
Cytostatic drug residues in the aqueous environment are of concern due to their possible adverse effects on non-target organisms. Here we report the occurrence and removal efficiency of cyclophosphamide (CP) and ifosfamide (IF) by biological and abiotic treatments including advanced oxidation processes (AOPs). Cyclophosphamide was detected in hospital wastewaters (14-22,000 ng L(-1)), wastewater treatment plant influents (19-27 ng L(-1)) and effluent (17 ng L(-1)), whereas IF was detected only in hospital wastewaters (48-6800 ng L(-1)). The highest removal efficiency during biological treatment (attached growth biomass in a flow through bioreactor) was 59 ± 15% and 35 ± 9.3% for CP and IF, respectively. Also reported are the removal efficiencies of both compounds from wastewater using hydrodynamic cavitation (HC), ozonation (O3) and/or UV, either individually or in combination with hydrogen peroxide (H2O2). Hydrodynamic cavitation did not remove CP and IF to any significant degree. The highest removal efficiencies: 99 ± 0.71% for CP and 94 ± 2.4% for IF, were achieved using UV/O3/H2O2 at 5 g L(-1) for 120 min. When combined with biological treatment, removal efficiencies were >99% for both compounds. This is the first report of combined biological and AOP treatment of CP and IF from wastewater with a removal efficiency >99%. Copyright © 2015 Elsevier B.V. All rights reserved.
Study of the efficiency of some water treatment unit that present in houses in Erbil city-Iraq
NASA Astrophysics Data System (ADS)
Toma, Janan. Jabbar.; Hanna, Aveen. Matti.
2017-09-01
Many people in Erbil city started more than two decade to put special treatment units in their houses to purified water to become safer for drinking uses. The aim of this study was determine the efficiency of six kind water treatment units which include (two replicate of Crystal Water Purifier, So-Safe Water Filter, R O Water Purifier, Kontec Water Purified and Al-Kawther Purified Water). Water samples were collected in two sites one before and other after treatment unit. Each sample was collect with three replication during May to October-2016. Analyzed for Major cations concentration (calcium, magnesium, sodium and potassium), anions concentration (nitrate and chloride) and hydrogen ion concentration (pH), electrical conductivity (EC), total dissolved solids (TDS), alkalinity and total hardness by using standard methods. The water quality index values for all raw water sample befor and after treatment was good and excellent respectively for drinking purposes. Efficiency of So-Safe Water Filter was 66.32% it means was more efficiency than others special water treatment units while in RO Water Purifier was 27.14%, means less efficiency than other water purifier water under this study. Values for major cations, anions and others chemicals characteristics in the water samples after treatment became lower concentrations than befor treatment, likely an indication that these were removed by treatment. According to guideline of world health organization all of variables except total hardness befor treatment are safe and suitable for drinking purposes.
Removal of trace metal contaminants from potable water by electrocoagulation.
Heffron, Joe; Marhefke, Matt; Mayer, Brooke K
2016-06-21
This study investigated the effects of four operational and environmental variables on the removal of trace metal contaminants from drinking water by electrocoagulation (EC). Removal efficiencies for five metals (arsenic, cadmium, chromium, lead and nickel) were compared under varying combinations of electrode material, post-treatment, water composition and pH. Iron electrodes out-performed aluminum electrodes in removing chromium and arsenic. At pH 6.5, aluminum electrodes were slightly more effective at removing nickel and cadmium, while at pH 8.5, iron electrodes were more effective for these metals. Regardless of electrode, cadmium and nickel removal efficiencies were higher at pH 8.5 than at pH 6.5. Post-EC treatment using membrane filtration (0.45 μm) enhanced contaminant removal for all metals but nickel. With the exception of lead, all metals exhibited poorer removal efficiencies as the ionic strength of the background electrolyte increased, particularly in the very high-solids synthetic groundwaters. Residual aluminum concentrations were lowest at pH 6.5, while iron residuals were lowest in low ionic strength waters. Both aluminum and iron residuals required post-treatment filtration to meet drinking water standards. EC with post-treatment filtration appears to effectively remove trace metal contaminants to potable water standards, but both reactor and source water parameters critically impact removal efficiency.
NASA Astrophysics Data System (ADS)
Amri, N.; Hashim, M. I.; Ismail, N.; Rohman, F. S.; Bashah, N. A. A.
2017-09-01
Electrocoagulation (EC) is a promising technology that extensively used to remove fluoride ions efficiently from industrial wastewater. However, it has received very little consideration and understanding on mechanism and factors that affecting the fluoride removal process. In order to determine the efficiency of fluoride removal in EC process, the effect of operating parameters such as voltage and electrolysis time were investigated in this study. A batch experiment with monopolar aluminium electrodes was conducted to identify the model of fluoride removal using empirical model equation. The EC process was investigated using several parameters which include voltage (3 - 12 V) and electrolysis time (0 - 60 minutes) at a constant initial fluoride concentration of 25 mg/L. The result shows that the fluoride removal efficiency increased steadily with increasing voltage and electrolysis time. The best fluoride removal efficiency was obtained with 94.8 % removal at 25 mg/L initial fluoride concentration, voltage of 12 V and 60 minutes electrolysis time. The results indicated that the rate constant, k and number of order, n decreased as the voltage increased. The rate of fluoride removal model was developed based on the empirical model equation using the correlation of k and n. Overall, the result showed that EC process can be considered as a potential alternative technology for fluoride removal in wastewater.
Removal of trace metal contaminants from potable water by electrocoagulation
NASA Astrophysics Data System (ADS)
Heffron, Joe; Marhefke, Matt; Mayer, Brooke K.
2016-06-01
This study investigated the effects of four operational and environmental variables on the removal of trace metal contaminants from drinking water by electrocoagulation (EC). Removal efficiencies for five metals (arsenic, cadmium, chromium, lead and nickel) were compared under varying combinations of electrode material, post-treatment, water composition and pH. Iron electrodes out-performed aluminum electrodes in removing chromium and arsenic. At pH 6.5, aluminum electrodes were slightly more effective at removing nickel and cadmium, while at pH 8.5, iron electrodes were more effective for these metals. Regardless of electrode, cadmium and nickel removal efficiencies were higher at pH 8.5 than at pH 6.5. Post-EC treatment using membrane filtration (0.45 μm) enhanced contaminant removal for all metals but nickel. With the exception of lead, all metals exhibited poorer removal efficiencies as the ionic strength of the background electrolyte increased, particularly in the very high-solids synthetic groundwaters. Residual aluminum concentrations were lowest at pH 6.5, while iron residuals were lowest in low ionic strength waters. Both aluminum and iron residuals required post-treatment filtration to meet drinking water standards. EC with post-treatment filtration appears to effectively remove trace metal contaminants to potable water standards, but both reactor and source water parameters critically impact removal efficiency.
BCR have been successful at removing a high percentage of metals from MIW, while BCR effluent toxicity has not been examined previously in the field. This study examined 4 active pilot BCR systems for removal of metals and toxicity. Removal efficiency for Al, As, Cd, Cu, Ni, Pb...
Lu, Xinyan
2016-01-01
There is a clear requirement for enhancing laboratory information management during early absorption, distribution, metabolism and excretion (ADME) screening. The application of a commercial laboratory information management system (LIMS) is limited by complexity, insufficient flexibility, high costs and extended timelines. An improved custom in-house LIMS for ADME screening was developed using Excel. All Excel templates were generated through macros and formulae, and information flow was streamlined as much as possible. This system has been successfully applied in task generation, process control and data management, with a reduction in both labor time and human error rates. An Excel-based LIMS can provide a simple, flexible and cost/time-saving solution for improving workflow efficiencies in early ADME screening.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Byles, Bryan W.; Cullen, David A.; More, Karren Leslie
We report that hybrid capacitive deionization (HCDI), which combines a capacitive carbon electrode and a redox active electrode in a single device, has emerged as a promising method for water desalination, enabling higher ion removal capacity than devices containing two carbon electrodes. However, to date, the desalination performance of few redox active materials has been reported. For the first time, we present the electrochemical behavior of manganese oxide nanowires with four different tunnel crystal structures as faradaic electrodes in HCDI cells. Two of these phases are square tunnel structured manganese oxides, α-MnO 2 and todorokite-MnO 2. The other two phasesmore » have novel structures that cross-sectional scanning transmission electron microscopy analysis revealed to have ordered and disordered combinations of structural tunnels with different dimensions. The ion removal performance of the nanowires was evaluated not only in NaCl solution, which is traditionally used in laboratory experiments, but also in KCl and MgCl 2 solutions, providing better understanding of the behavior of these materials for desalination of brackish water that contains multiple cation species. High ion removal capacities (as large as 27.8 mg g -1, 44.4 mg g -1, and 43.1 mg g -1 in NaCl, KCl, and MgCl 2 solutions, respectively) and high ion removal rates (as large as 0.112 mg g -1 s -1, 0.165 mg g -1 s -1, and 0.164 mg g -1 s -1 in NaCl, KCl, and MgCl 2 solutions, respectively) were achieved. By comparing ion removal capacity to structural tunnel size, it was found that smaller tunnels do not favor the removal of cations with larger hydrated radii, and more efficient removal of larger hydrated cations can be achieved by utilizing manganese oxides with larger structural tunnels. Extended HCDI cycling and ex situ X-ray diffraction analysis revealed the excellent stability of the manganese oxide electrodes in repeated ion removal/ion release cycles, and compositional analysis of the electrodes indicated that ion removal is achieved through both surface redox reactions and intercalation of ions into the structural tunnels. In conclusion, this work contributes to the understanding of the behavior of faradaic materials in electrochemical water desalination and elucidates the relationship between the electrode material crystal structure and the ion removal capacity/ion removal rate in various salt solutions.« less
Byles, Bryan W.; Cullen, David A.; More, Karren Leslie; ...
2017-12-18
We report that hybrid capacitive deionization (HCDI), which combines a capacitive carbon electrode and a redox active electrode in a single device, has emerged as a promising method for water desalination, enabling higher ion removal capacity than devices containing two carbon electrodes. However, to date, the desalination performance of few redox active materials has been reported. For the first time, we present the electrochemical behavior of manganese oxide nanowires with four different tunnel crystal structures as faradaic electrodes in HCDI cells. Two of these phases are square tunnel structured manganese oxides, α-MnO 2 and todorokite-MnO 2. The other two phasesmore » have novel structures that cross-sectional scanning transmission electron microscopy analysis revealed to have ordered and disordered combinations of structural tunnels with different dimensions. The ion removal performance of the nanowires was evaluated not only in NaCl solution, which is traditionally used in laboratory experiments, but also in KCl and MgCl 2 solutions, providing better understanding of the behavior of these materials for desalination of brackish water that contains multiple cation species. High ion removal capacities (as large as 27.8 mg g -1, 44.4 mg g -1, and 43.1 mg g -1 in NaCl, KCl, and MgCl 2 solutions, respectively) and high ion removal rates (as large as 0.112 mg g -1 s -1, 0.165 mg g -1 s -1, and 0.164 mg g -1 s -1 in NaCl, KCl, and MgCl 2 solutions, respectively) were achieved. By comparing ion removal capacity to structural tunnel size, it was found that smaller tunnels do not favor the removal of cations with larger hydrated radii, and more efficient removal of larger hydrated cations can be achieved by utilizing manganese oxides with larger structural tunnels. Extended HCDI cycling and ex situ X-ray diffraction analysis revealed the excellent stability of the manganese oxide electrodes in repeated ion removal/ion release cycles, and compositional analysis of the electrodes indicated that ion removal is achieved through both surface redox reactions and intercalation of ions into the structural tunnels. In conclusion, this work contributes to the understanding of the behavior of faradaic materials in electrochemical water desalination and elucidates the relationship between the electrode material crystal structure and the ion removal capacity/ion removal rate in various salt solutions.« less
ERIC Educational Resources Information Center
Hightower, Timothy R.; Heeren, Jay D.
2006-01-01
Recrystallization of benzoic acid is an excellent way to remove insoluble impurities. In a traditional organic laboratory experiment, insoluble impurities are removed through the recrystallization of benzoic acid utilizing water as the recrystallization solvent. It was our goal to develop a peer-led, problem-solving organic laboratory exercise…
Shokoohi, Reza; Torkshavand, Zahra; Zolghadnasab, Hassan; Alikhani, Mohammad Yousef; Hemmat, Meisam Sedighi
2017-04-01
Detergents are considered one of the important pollutants in hospital wastewater. Achieving efficient and bio-friendly methods for the removal of these pollutants is considered as a concern for environmental researchers. This study aims at studying the efficiency of a moving bed biofilm reactor (MBBR) system for removing linear alkyl benzene sulfonate (LAS) from hospital wastewater with utilization of response surface methodology (RSM). The present study was carried out on a reactor with continuous hydraulic flow using media k 1 at pilot scale to remove detergent from hospital wastewater. The effect of independent variables including contact time, percentage of media filling and mixed liquor suspended solids (MLSS) concentration of 1000-3000 mg/l on the system efficiency were assessed. Methylene blue active substances (MBAS) and chemical oxygen demand (COD) 750-850 mg/l were used by closed laboratory method in order to measure the concentration of LAS. The results revealed that the removal efficiency of LAS detergent and COD using media k 1 , retention time of 24 hours, and MLSS concentration of around 3,000 mg/l were 92.3 and 95.8%, respectively. The results showed that the MBBR system as a bio-friendly compatible method has high efficiency in removing detergents from hospital wastewater and can achieve standard output effluent in acceptable time.
Mesophilic and thermophilic activated sludge post-treatment of paper mill process water.
Vogelaar, J C T; Bouwhuis, E; Klapwijk, A; Spanjers, H; van Lier, J B
2002-04-01
Increasing system closure in paper mills and higher process water temperatures make the applicability of thermophilic treatment systems increasingly important. The use of activated sludge as a suitable thermophilic post-treatment system for anaerobically pre-treated paper process water from a paper mill using recycled wastepaper was studied. Two lab-scale plug flow activated sludge reactors were run in parallel for 6 months; a thermophilic reactor at 55 degrees C and a reference reactor at 30 degrees C. Both reactors were operated simultaneously at 20, 15 and 10 days SRT. The effects of temperature and SRT on sludge settleability and chemical oxygen demand (COD) removal efficiencies of different fractions were studied. Total COD removal percentages over the whole experimental period were 58+/-5% at 30 degrees C and 48 +/- 10% at 55 degrees C. The effect of the SRT on the total COD removal was negligible. Differences in total COD removal between both systems were due to a lesser removal of soluble and colloidal COD at 55 degrees C compared to the reference system. At 30 degrees C, colloidal COD removal percentages were 65+/-25%, 75+/-17% and 86+/-22% at 20, 15 and 10 days SRT, respectively. At 55 degrees C, these percentages were 48+/-34%, 40+/-28% and 70+/-25%, respectively. The effluent concentrations of colloidal COD in both systems were related to the influent concentration of colloidal material. The thermophilic sludge was not able to retain influent colloidal material as well as the mesophilic sludge causing a higher thermophilic effluent turbidity. Sludge settling properties were excellent in both reactor systems. These were neither temperature nor SRT dependent but were rather caused by extensive calcium precipitation in the aeration tanks creating a very dense sludge. For application in the board industry, a thermophilic in line treatment system seems feasible. The higher effluent turbidity is most likely offset by the energy gains of treatment under thermophilic conditions.
Degradation of brominated flame retardant in computer housing plastic by supercritical fluids.
Wang, Yanmin; Zhang, Fu-Shen
2012-02-29
The degradation process of brominated flame retardant (BFR) and BFR-containing waste computer housing plastic in various supercritical fluids (water, methanol, isopropanol and acetone) was investigated. The results showed that the debromination and degradation efficiencies, final products were greatly affected by the solvent type. Among the four tested solvents, isopropanol was the most suitable solvent for the recovery of oil from BFR-containing plastic for its (1) excellent debromination effectiveness (debromination efficiency 95.7%), (2) high oil production (60.0%) and (3) mild temperature and pressure requirements. However, in this case, the removed bromine mostly existed in the oil. Introduction of KOH into the sc-isopropanol could capture almost all the inorganic bromine from the oil thus bromine-free oil could be obtained. Furthermore, KOH could enhance the depolymerization of the plastic. The obtained oil mainly consisted of single- and duplicate-ringed aromatic compounds in a carbon range of C9-C17, which had alkyl substituents or aliphatic bridges, such as butyl-benzene, (3-methylbutyl)-benzene, 1,1'-(1,3-propanediyl)bis benzene. Phenol, alkyl phenols and esters were the major oxygen-containing compounds in the oil. This study provides an efficient approach for debromination and simultaneous recovering valuable chemicals from BFR-containing plastic in e-waste. Copyright © 2011 Elsevier B.V. All rights reserved.
Zheng, Xiong; Su, Yinglong; Li, Xiang; Xiao, Naidong; Wang, Dongbo; Chen, Yinguang
2013-05-07
Short-chain fatty acids (SCFAs) have been regarded as the excellent carbon source of wastewater biological nutrient removal, and sludge alkaline (pH 10) fermentation has been reported to achieve highly efficient SCFAs production. In this study, the underlying mechanisms for the improved SCFAs production at pH 10 were investigated by using 454 pyrosequencing and fluorescent in situ hybridization (FISH) to analyze the microbial community structures in sludge fermentation reactors. It was found that sludge fermentation at pH 10 increased the abundances of Pseudomonas sp. and Alcaligenes sp., which were able to excrete extracellular proteases and depolymerases, and thus enhanced the hydrolysis of insoluble sludge protein and polyhydroxyalkanoates (PHA). Meanwhile, the abundance of acid-producing bacteria (such as Clostridium sp.) in the reactor of pH 10 was also higher than that of uncontrolled pH, which benefited the acidification of soluble organic substrates. Further study indicated that sludge fermentation at pH 10 significantly decreased the number of methanogenic archaea, resulting in lower SCFAs consumption and lower methane production. Therefore, anaerobic sludge fermentation under alkaline conditions increased the abundances of bacteria involved in sludge hydrolysis and acidification, and decreased the abundance of methanogenic archaea, which favored the competition of bacteria over methanogens and resulted in the efficient production of SCFAs.
Yao, Yimin; Zhu, Xiaodong; Zeng, Xiaoliang; Sun, Rong; Xu, Jian-Bin; Wong, Ching-Ping
2018-03-21
Efficient heat removal via thermal management materials has become one of the most critical challenges in the development of modern microelectronic devices. However, previously reported polymer composites exhibit limited enhancement of thermal conductivity, even when highly loaded with thermally conductive fillers, because of the lack of efficient heat transfer pathways. Herein, we report vertically aligned and interconnected SiC nanowire (SiCNW) networks as efficient fillers for polymer composites, achieving significantly enhanced thermal conductivity. The SiCNW networks are produced by freeze-casting nanowire aqueous suspensions followed by thermal sintering to consolidate the nanowire junctions, exhibiting a hierarchical architecture in which honeycomb-like SiCNW layers are aligned. The composite obtained by infiltrating SiCNW networks with epoxy resin, at a relatively low SiCNW loading of 2.17 vol %, represents a high through-plane thermal conductivity (1.67 W m -1 K -1 ) compared to the pure matrix, which is equivalent to a significant enhancement of 406.6% per 1 vol % loading. The orderly SiCNW network which can act as a macroscopic expressway for phonon transport is believed to be the main contributor for the excellent thermal performance. This strategy provides insights for the design of high-performance composites with potential to be used in advanced thermal management materials.
NASA Astrophysics Data System (ADS)
Sangareswari, M.; Meenakshi Sundaram, M.
2017-05-01
Heterogeneous photocatalytic degradation of organics in water and wastewater by large band gap semiconductors has offered an attractive alternative for environmental remediation. Zinc oxide is a very fast and efficient catalyst because of its wide band gap and large exciton binding energy. In this study, an efficient Bi2S3ZnO was synthesized by sonochemical method. The obtained product was further characterized by TEM, SEM, XRD, FT-IR and UV-DRS analysis. Scanning electron microscopy images revealed that Bi2S3ZnO has flower-like structure. The synthesized flower-like Bi2S3ZnO nanocomposites were more efficient than commercial ZnO for the degradation of organic contaminants under UV light irradiation. The prepared material shows enhanced photocatalytic activity on Rhodamine B dye solution under UV light irradiation. The percentage removal of dye was calculated by UV-Vis spectrophotometer. In addition, Bi2S3ZnO showed tremendous photocatalytic stability after seven cycles under UV light irradiation. A possible mechanism for the photocatalytic oxidative degradation was also discussed. It is concluded that the Bi2S3ZnO nanocomposite acts as an excellent photocatalyst for the decomposition of RhB and it could be a potential material for essential wastewater treatment.
Degradation of Tetracycline with BiFeO3 Prepared by a Simple Hydrothermal Method
Xue, Zhehua; Wang, Ting; Chen, Bingdi; Malkoske, Tyler; Yu, Shuili; Tang, Yulin
2015-01-01
BiFeO3 particles (BFO) were prepared by a simple hydrothermal method and characterized. BFO was pure, with a wide particle size distribution, and was visible light responsive. Tetracycline was chosen as the model pollutant in this study. The pH value was an important factor influencing the degradation efficiency. The total organic carbon (TOC) measurement was emphasized as a potential standard to evaluate the visible light photocatalytic degradation efficiency. The photo-Fenton process showed much better degradation efficiency and a wider pH adaptive range than photocatalysis or the Fenton process solely. The optimal residual TOC concentrations of the photocatalysis, Fenton and photo-Fenton processes were 81%, 65% and 21%, while the rate constants of the three processes under the same condition where the best residual TOC was acquired were 9.7 × 10−3, 3.2 × 10−2 and 1.5 × 10−1 min−1, respectively. BFO was demonstrated to have excellent stability and reusability. A comparison among different reported advanced oxidation processes removing tetracycline (TC) was also made. Our findings showed that the photo-Fenton process had good potential for antibiotic-containing waste water treatment. It provides a new method to deal with antibiotic pollution. PMID:28793568
Xu, MengMeng; Zhao, YaLei; Yan, QiShe
2015-01-01
Bi₇O₉I₃, a kind of visible-light-responsive photocatalyst, with hierarchical micro/nano-architecture was successfully synthesized by oil-bath heating method, with ethylene glycol as solvent, and applied to degrade sulfonamide antibiotics. The as-prepared product was characterized by X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS), UV-visible diffuse reflection spectra and scanning electron microscopy (SEM). XRD and XPS tests confirmed that the product was indeed Bi₇O₉I₃. The result of SEM observation shows that the as-synthesized Bi₇O₉I₃ consists of a large number of micro-sheets with parallel rectangle structure. The optical test exhibited strong photoabsorption in visible light irradiation, with 617 nm of absorption edges. Moreover, the difference in the photocatalytic efficiency of as-prepared Bi₇O₉I₃ at different seasons of a whole year was investigated in this study. The chemical oxygen demand removal efficiency and concentration of NO(3)(-) and SO(4)(2-) of solution after reaction were also researched to confirm whether degradation of the pollutant was complete; the results indicated a high mineralization capacity of Bi₇O₉I₃. The as-synthesized Bi₇O₉I₃exhibits an excellent oxidizing capacity of sulfadiazine sodium and favorable stability during the photocatalytic reaction.
In situ treatment of arsenic contaminated groundwater by aquifer iron coating: Experimental Study
DOE Office of Scientific and Technical Information (OSTI.GOV)
Xie, Xianjun; Wang, Yanxin; Pi, Kunfu
In situ arsenic removal from groundwater by an iron coating method has great potential to be a cost effective and simple groundwater remediation technique, especially in rural and remote areas where groundwater is used as the main source of drinking water. The in situ arsenic removal technique was first optimized by simulating arsenic removal in various quartz sand columns under anoxic conditions., Its effectiveness was then evaluated in an actual high-arsenic groundwater environment. The mechanism of arsenic removal by the iron coating was investigated under different conditions using scanning electron microscopy (SEM)/X-ray absorption spectroscopy, an electron microprobe, and Fourier transformationmore » infrared spectroscopy. A 4-step alternative cycle aquifer iron coating method was developed. A continuous injection of 5 mmol/L FeSO4 and 2.5 mmol/L NaClO for 96 hours can create a uniform coating of crystalline goethite on the surface of quartz sand in the columns without causing clogging. At a flow rate of 0.45 cm/min of the injection reagents (vi), the time for arsenic (as Na2HAsO4) to pass through the iron-coated quartz sand column was approximately 35 hours, which was much longer than that for tracer fluorescein sodium (approximately 2 hours). The retardation factor of arsenic was 23, and its adsorption capacity was 0.11 mol As per mol Fe, leading to an excellent arsenic removal. In situ arsenic removal from groundwater in an aquifer was achieved by simultaneous injections of As (V) and Fe (II) reagents. When the arsenic content in the groundwater was 233 μg/L, the aqueous phase arsenic was completely removed with an arsenic adsorption of 0.05 mol As per mol Fe. Arsenic fixation resulted from a process of adsorption/co-precipitation, in which arsenic and iron likely formed the arsenic-bearing iron mineral phases with poor crystallinity by way of bidentate binuclear complexes. Thus, the high arsenic removal efficiency of the technique likely resulted from the expanded specific iron oxide/hydroxide surface area with poor crystallinity and from coprecipitation.« less
NASA Astrophysics Data System (ADS)
Edwards, Nicholas W. M.; Best, Emma L.; Connell, Simon D.; Goswami, Parikshit; Carr, Chris M.; Wilcox, Mark H.; Russell, Stephen J.
2017-12-01
Healthcare associated infections (HCAIs) are responsible for substantial patient morbidity, mortality and economic cost. Infection control strategies for reducing rates of transmission include the use of nonwoven wipes to remove pathogenic bacteria from frequently touched surfaces. Wiping is a dynamic process that involves physicochemical mechanisms to detach and transfer bacteria to fibre surfaces within the wipe. The purpose of this study was to determine the extent to which systematic changes in fibre surface energy and nano-roughness influence removal of bacteria from an abiotic polymer surface in dry wiping conditions, without liquid detergents or disinfectants. Nonwoven wipe substrates composed of two commonly used fibre types, lyocell (cellulosic) and polypropylene, with different surface energies and nano-roughnesses, were manufactured using pilot-scale nonwoven facilities to produce samples of comparable structure and dimensional properties. The surface energy and nano-roughness of some lyocell substrates were further adjusted by either oxygen (O2) or hexafluoroethane (C2F6) gas plasma treatment. Static adpression wiping of an inoculated surface under dry conditions produced removal efficiencies of between 9.4% and 15.7%, with no significant difference (p < 0.05) in the relative removal efficiencies of Escherichia coli, Staphylococcus aureus or Enterococcus faecalis. However, dynamic wiping markedly increased peak wiping efficiencies to over 50%, with a minimum increase in removal efficiency of 12.5% and a maximum increase in removal efficiency of 37.9% (all significant at p < 0.05) compared with static wiping, depending on fibre type and bacterium. In dry, dynamic wiping conditions, nonwoven wipe substrates with a surface energy closest to that of the contaminated surface produced the highest E. coli removal efficiency, while the associated increase in fibre nano-roughness abrogated this trend with S. aureus and E. faecalis.
Yang, Shangyuan; Liang, Zhiwei; Yu, Huadong; Wang, Yunlong; Chen, Yingxu
2014-02-01
Micro-electrolysis was applied in the present study to investigate the effect of pH, iron-carbon mass ratio, contact time, and treatment batch on the removal efficiency of chemical oxygen demand (COD) within an aminosilicone emulsion. The results exhibited that the removal efficiency of COD decreased linearly with the batch increase, and this tendency was consistent under the various conditions. The adsorption of activated carbons contributes a large portion to the elimination of COD within the aminosilicone emulsion. The oxidation action of iron-carbon micro-electrolysis was proven and the aminosilicone emulsion's COD removal contribution was approximately 16%. Aminosilicone polymers were adsorbed on the surface of activated carbons and iron chips, which contributes to the decline of COD removal efficiency and limits the contribution of oxidation action.
NASA Technical Reports Server (NTRS)
Thompson, Rodger I.
1997-01-01
Near Infrared Camera and Multi-Object Spectrometer (NICMOS) has been in orbit for about 8 months. This is a report on its current status and future plans. Also included are some comments on particular aspects of data analysis concerning dark subtraction, shading, and removal of cosmic rays. At present NICMOS provides excellent images of high scientific content. Most of the observations utilize cameras 1 and 2 which are in excellent focus. Camera 3 is not yet within the range of the focus adjustment mechanism, but its current images are still quite excellent. In this paper we will present the status of various aspects of the NICMOS instrument.
Behnajady, Mohammad A; Dadkhah, Hojjat; Eskandarloo, Hamed
2018-04-01
In this study, a horizontally rotating disc recirculated (HRDR) photoreactor equipped with two UV lamps (6 W) was designed and fabricated for photocatalytic removal of p-nitrophenol (PNP). Photocatalyst (TiO 2 ) nanoparticles were immobilized onto a high-density polyethylene (HDPE) disc, and PNP containing solution was allowed to flow (flow rate of 310 mL min -1 ) in radial direction along the surface of the rotating disc illuminated with UV light. The efficiency of direct photolysis and photocatalysis and the effect of rotating speed on the removal of PNP were studied in the HRDR photoreactor. It was found that TiO 2 -P25 nanoparticles are needed for the effective removal of PNP and there was an optimum rotating speed (450 rpm) for the efficient performance of the HRDR photoreactor. Then effects of operational variables on the removal efficiency were optimized using response surface methodology. The results showed that the predicted values of removal efficiency are consistent with experimental results with an R 2 of 0.9656. Optimization results showed that maximum removal percent (82.6%) was achieved in the HRDR photoreactor at the optimum operational conditions. Finally, the reusability of the HRDR photoreactor was evaluated and the results showed high reusability and stability without any significant decrease in the photocatalytic removal efficiency.
Yang, Jianping; Zhao, Yongchun; Zhang, Junying; Zheng, Chuguang
2014-12-16
To remove Hg(0) in coal combustion flue gas and eliminate secondary mercury pollution of the spent catalyst, a new regenerable magnetic catalyst based on cobalt oxide loaded magnetospheres from fly ash (Co-MF) was developed. The catalyst, with an optimal loading of 5.8% cobalt species, attained approximately 95% Hg(0) removal efficiency at 150 °C under simulated flue gas atmosphere. O2 could enhance the Hg(0) removal activity of magnetospheres catalyst via the Mars-Maessen mechanism. SO2 displayed an inhibitive effect on Hg(0) removal capacity. NO with lower concentration could promote the Hg(0) removal efficiency. However, when increasing the NO concentration to 300 ppm, a slightly inhibitive effect of NO was observed. In the presence of 10 ppm of HCl, greater than 95.5% Hg(0) removal efficiency was attained, which was attributed to the formation of active chlorine species on the surface. H2O presented a seriously inhibitive effect on Hg(0) removal efficiency. Repeated oxidation-regeneration cycles demonstrated that the spent Co-MF catalyst could be regenerated effectively via thermally treated at 400 °C for 2 h.
Ge, Qihang; Wan, Chunyou; Liu, Yabei; Ji, Xu; Ma, Jihai; Cao, Haikun; Yong, Wei; Liu, Zhao; Zhang, Ningning
2017-08-01
To investigate the effect of axial stress stimulation on tibial and fibular open fractures healing after Taylor space stent fixation. The data of 45 cases with tibial and fibular open fractures treated by Taylor space stent fixation who meet the selection criteria between January 2015 and June 2016 were retrospectively analysed. The patients were divided into trial group (23 cases) and control group (22 cases) according to whether the axial stress stimulation was performed after operation. There was no significant difference in gender, age, affected side, cause of injury, type of fracture, and interval time from injury to operation between 2 groups ( P >0.05). The axial stress stimulation was performed in trial group after operation. The axial load sharing ratio was tested, and when the value was less than 10%, the external fixator was removed. The fracture healing time, full weight-bearing time, and external fixator removal time were recorded and compared. After 6 months of external fixator removal, the function of the limb was assessed by Johner-Wruhs criteria for evaluation of final effectiveness of treatment of tibial shaft fractures. There were 2 and 3 cases of needle foreign body reaction in trial group and control group, respectively, and healed after symptomatic anti allergic treatment. All the patients were followed up 8-12 months with an average of 10 months. All the fractures reached clinical healing, no complication such as delayed union, nonunion, or osteomyelitis occurred. The fracture healing time, full weight-bearing time, and external fixator removal time in trial group were significantly shorter than those in control group ( P <0.05). After 6 months of external fixator removal, the function of the limb was excellent in 13 cases, good in 6 cases, fair in 3 cases, and poor in 1 case in trial group, with an excellent and good rate of 82.6%; and was excellent in 5 cases, good in 10 cases, fair in 4 cases, and poor in 3 cases in control group, with an excellent and good rate of 68.2%, showing significant difference between 2 groups ( Z =-2.146, P =0.032). The axial stress stimulation of Taylor space stent fixation can promote the healing of tibial and fibular open fractures and promote local bone formation at fracture site.
Liao, Hanpeng; Lu, Xiaomei; Rensing, Christopher; Friman, Ville Petri; Geisen, Stefan; Chen, Zhi; Yu, Zhen; Wei, Zhong; Zhou, Shungui; Zhu, Yongguan
2018-01-02
Composting is an efficient way to convert organic waste into fertilizers. However, waste materials often contain large amounts of antibiotic resistance genes (ARGs) and mobile genetic elements (MGEs) that can reduce the efficacy of antibiotic treatments when transmitted to humans. Because conventional composting often fails to remove these compounds, we evaluated if hyperthermophilic composting with elevated temperature is more efficient at removing ARGs and MGEs and explored the underlying mechanisms of ARG removal of the two composting methods. We found that hyperthermophilic composting removed ARGs and MGEs more efficiently than conventional composting (89% and 49%, respectively). Furthermore, the half-lives of ARGs and MGEs were lower in hyperthermophilic compositing compared to conventional composting (67% and 58%, respectively). More-efficient removal of ARGs and MGEs was associated with a higher reduction in bacterial abundance and diversity of potential ARG hosts. Partial least-squares path modeling suggested that reduction of MGEs played a key role in ARG removal in hyperthermophilic composting, while ARG reduction was mainly driven by changes in bacterial community composition under conventional composting. Together these results suggest that hyperthermophilic composting can significantly enhance the removal of ARGs and MGEs and that the mechanisms of ARG and MGE removal can depend on composting temperature.
Kazemipour, Maryam; Ansari, Mehdi; Tajrobehkar, Shabnam; Majdzadeh, Majdeh; Kermani, Hamed Reihani
2008-01-31
In this work, adsorption of copper (Cu), zinc (Zn), lead (Pb), and cadmium (Cd) that exist in industrial wastewater onto the carbon produced from nutshells of walnut, hazelnut, pistachio, almond, and apricot stone has been investigated. All the agricultural shell or stone used were ground, sieved to a defined size range, and carbonized in an oven. Time and temperature of heating were optimized at 15 min and 800 degrees C, respectively, to reach maximum removal efficiency. Removal efficiency was optimized regarding to the initial pH, flow rate, and dose of adsorbent. The maximum removal occurred at pH 6-10, flow rate of 3 mL/min, and 0.1g of the adsorbent. Capacity of carbon sources for removing cations will be considerably decreased in the following times of passing through them. Results showed that the cations studied significantly can be removed by the carbon sources. Efficiency of carbon to remove the cations from real wastewater produced by copper industries was also studied. Finding showed that not only these cations can be removed considerably by the carbon sources noted above, but also removing efficiency are much more in the real samples. These results were in adoption to those obtained by standard mixture synthetic wastewater.
Khezri, Seyed Mostafa; Biati, Aida; Erfani, Zeynab
2012-01-01
In the present study, a pilot-scale sedimentation tank was used to determine the effect of wind velocity and direction on the removal efficiency of particles. For this purpose, a 1:20 scale pilot simulated according to Frude law. First, the actual efficiency of total suspended solids (TSS) removal was calculated in no wind condition. Then, the wind was blown in the same and the opposite directions of water flow. At each direction TSS removal was calculated at three different velocities from 2.5 to 7 m/s. Results showed that when the wind was in the opposite direction of water flow, TSS removal efficiency initially increased with the increase of wind velocity from 0 to 2.5 m/s, then it decreased with the increase of velocity to 5 m/s. This mainly might happen because the opposite direction of wind can increase particles' retention time in the sedimentation tank. However, higher wind velocities (i.e. 3.5 and 5.5 m/s) could not increase TSS removal efficiency. Thus, if sedimentation tanks are appropriately exposed to the wind, TSS removal efficiency increases by approximately 6%. Therefore, energy consumption will be reduced by a proper site selection for sedimentation tank unit in water and waste water treatment plants.
Salmani, M H; Mokhtari, M; Raeisi, Z; Ehrampoush, M H; Sadeghian, H A
2017-09-01
Wastewater containing pharmaceutical residual components must be treated before being discharged to the environment. This study was conducted to investigate the efficiency of tungsten-carbon nanocomposite in diclofenac removal using design of experiment (DOE). The 27 batch adsorption experiments were done by choosing three effective parameters (pH, adsorbent dose, and initial concentration) at three levels. The nanocomposite was prepared by tungsten oxide and activated carbon powder in a ratio of 1 to 4 mass. The remaining concentration of diclofenac was measured by a spectrometer with adding reagents of 2, 2'-bipyridine, and ferric chloride. Analysis of variance (ANOVA) was applied to determine the main and interaction effects. The equilibrium time for removal process was determined as 30 min. It was observed that the pH had the lowest influence on the removal efficiency of diclofenac. Nanocomposite gave a high removal at low concentration of 5.0 mg/L. The maximum removal for an initial concentration of 5.0 mg/L was 88.0% at contact time of 30 min. The results of ANOVA showed that adsorbent mass was among the most effective variables. Using DOE as an efficient method revealed that tungsten-carbon nanocomposite has high efficiency in the removal of residual diclofenac from the aqueous solution.
Jin, Pengkang; Wang, Xianbao; Wang, Xiaochang; Ngo, Huu Hao; Jin, Xin
2015-12-01
Two aeration modes, step aeration and point aeration, were used in a full-scale Carrousel oxidation ditch with microporous aeration. The nitrogen removal performance and mechanism were analyzed. With the same total aeration input, both aeration modes demonstrated good nitrification outcomes with the average efficiency in removing NH4(+)-N of more than 98%. However, the average removal efficiencies for total nitrogen were 89.3% and 77.6% under step aeration and point aeration, respectively. The results indicated that an extended aerobic zone followed the aeration zones could affect the proportion of anoxic and oxic zones. The step aeration with larger anoxic zones indicated better TN removal efficiency. More importantly, step aeration provided the suitable environment for both nitrifiers and denitrifiers. The diversity and relative abundance of denitrifying bacteria under the step aeration (1.55%) was higher than that under the point aeration (1.12%), which resulted in an overall higher TN removal efficiency. Copyright © 2015 Elsevier Ltd. All rights reserved.
Zhou, Zijun; Xu, Peng; Cao, Xiuyun; Zhou, Yiyong; Song, Chunlei
2016-10-01
Stromwater biofilter technology was greatly improved through adding iron-rich soil, plant detritus and eutrophic lake sediment. Significant ammonium and phosphate removal efficiencies (over 95%) in treatments with iron-rich soil were attributed to strong adsorption capability resulting in high available phosphorus (P) in media, supporting the abundance and activity of nitrifiers and denitrifiers as well as shaping compositions, which facilitated nitrogen (N) removal. Aquatic and terrestrial plant detritus was more beneficial to nitrification and denitrification by stimulating the abundance and activity of nitrifiers and denitrifiers respectively, which increased total nitrogen (TN) removal efficiencies by 17.6% and 22.5%. In addition, bioaugmentation of nitrifiers and denitrifiers from eutrophic sediment was helpful to nutrient removal. Above all, combined application of these materials could reach simultaneously maximum effects (removal efficiencies of P, ammonium and TN were 97-99%, 95-97% and 60-63% respectively), suggesting reasonable selection of materials has important contribution and application prospect in stormwater biofilters. Copyright © 2016 Elsevier Ltd. All rights reserved.
Zhang, Mengyuan; He, Jianhua; Jiang, Cuiping; Zhang, Wenli; Yang, Yun; Wang, Zhiyu; Liu, Jianping
2017-01-01
Increasing evidence has highlighted the pivotal role that intimal macrophage (iMΦ) plays in the pathophysiology of atherosclerotic plaques, which represents an attractive target for atherosclerosis treatment. In this work, to address the insufficient specificity of conventional reconstituted high-density lipoprotein (rHDL) for iMΦ and its limited cholesterol efflux ability, we designed a hyaluronan (HA)-anchored core–shell rHDL. This nanoparticle achieved efficient iMΦ-targeted drug delivery via a multistage-targeting approach, and excellent cellular cholesterol removal. It contained a biodegradable poly (lactic-co-glycolic acid) (PLGA) core within a lipid bilayer, and apolipoprotein A-I (apoA-I) absorbing on the lipid bilayer was covalently decorated with HA. The covalent HA coating with superior stability and greater shielding was favorable for not only minimizing the liver uptake but also facilitating the accumulation of nanoparticles at leaky endothelium overexpressing CD44 receptors in atherosclerotic plaques. The ultimate iMΦ homing was achieved via apoA-I after HA coating degraded by hyaluronidase (HAase) (abundant in atherosclerotic plaque). The multistage-targeting mechanism was revealed on the established injured endothelium–macrophage co-culture dynamic system. Upon treatment with HAase in vitro, the nanoparticle HA-(C)-PLGA-rHDL exhibited a greater cholesterol efflux capacity compared with conventional rHDL (2.43-fold). Better targeting efficiency toward iMΦ and attenuated liver accumulation were further proved by results from ex vivo imaging and iMΦ-specific fluorescence localization. Ultimately, HA-(C)-PLGA-rHDL loaded with simvastatin realized the most potent anti-atherogenic efficacies in model animals over other preparations. Thus, the HAase-responsive HDL-mimetic nanoparticle was shown in this study to be a promising nanocarrier for anti-atherogenic therapy, in the light of efficient iMΦ-targeted drug delivery and excellent function of mediating cellular cholesterol efflux. PMID:28144137
Li, Zhaoqiang; Yin, Longwei
2015-02-25
Nitrogen-doped carbon (NDC) spheres with abundant 22 nm mesopores and 0.5 nm micropores are obtained by directly carbonization of nitrogen-contained metal organic framework (MOF) nanocrystals. Large S8 and small S2-4 molecules are successfully infiltrated into 22 nm mesopores and 0.5 nm micropores, respectively. We successfully investigate the effect of sulfur immobilization in mesopores and micropores on the electrochemical performance of lithium-sulfur (Li-S) battery based on NDC-sulfur hybrid cathodes. The large S8 molecules in 22 nm mesopores can be removed by a prolonged heat treatment, with only small molecules of S2-4 immobilized in micropores of NDC matrices. The NDC/S2-4 hybrid exhibits excellent cycling performance, high Coulombic efficiency, and good rate capability as cathode for Li-S batteries. The confinement of smaller S2-4 molecules in the micropores of NDS efficiently avoids the loss of active sulfur and formation of soluble high-order Li polysulfides. The porous carbon can buffer the volume expansion and contraction changes, promising a stable structure for cathode. Furthermore, N doping in MOF-derived carbon not only facilitates the fast charge transfer but also is helpful in building a stronger interaction between carbon and sulfur, strengthening immobilization ability of S2-4 in micropores. The NDS-sulfur hybrid cathode exhibits a reversible capacity of 936.5 mAh g(-1) at 100th cycle with a Coulombic efficiency of 100% under a current density of 335 mA g(-1). It displays a superior rate capability performance, delivering a capacity of 632 mAh g(-1) at a high rate of 5 A g(-1). This uniquely porous NDC derived from MOF nanocrystals could be applied in related high-energy storage devices.
NASA Astrophysics Data System (ADS)
Pham, Thi Tham
2002-11-01
A central composite design was employed to methodically investigate anaerobic treatment of aircraft deicing fluid (ADF) in bench-scale Upflow Anaerobic Sludge Blanket (UASB) reactors. A total of 23 runs at 17 different operating conditions were conducted in continuous mode. The development of four empirical models describing process responses (i.e., chemical oxygen demand (COD) removal efficiency, biomass specific acetoclastic activity, methane production rate, and methane production potential) as functions of ADF concentration, hydraulic retention time (HRT), and biomass concentration is presented. Model verification indicated that predicted responses (COD removal efficiencies, biomass specific acetoclastic activity, and methane production rates and potential) were in good agreement with experimental results. Biomass specific acetoclastic activity was improved by almost two-fold during ADF treatment in UASB reactors. For the design window, COD removal efficiencies were higher than 90%. Predicted methane production potentials were close to theoretical values, and methane production rates increased as the organic loading rate (OLR) was increased. ADF toxicity effects were evident for 1.6% ADF at medium specific organic loadings (SOLR above 0.5 g COD/g VSS/d). In contrast, good reactor stability and excellent removal efficiencies were achieved at 1.2% ADF for reactor loadings approaching that of highly loaded systems (0.73 g COD/g VSS/d). Acclimation to ADF resulted in an initial reduction in the biomass settling velocity. The fate of ADF additives was also investigated. There was minimal sorption of benzotriazole (BT), 5-methyl-1 H-benzotriazole (MeBT), and 5,6-dimethyl-1 H-benzotriazole (DiMeBT) to anaerobic granules. A higher sorption capacity was measured for NP. Active transport may be one of the mechanisms for NP sorption. Ethylene glycol degradation experiments indicated that BT, MeBT, DiMeBT, and the nonionic surfactant Tergitol NP-4 had no significant effects on acidogenesis and methanogenesis at the concentration levels studied. A significant inhibition of acetoclastic activity was observed for NP at 100 mg/L, with acetic acid consumption rate at 38% of that for controls. No evidence for anaerobic degradation of benzotriazole and its derivatives was observed; however, both batch and continuous experiments suggested that anaerobic degradation of NP occurred. Kinetic analysis of operational data obtained for the anaerobic treatment of ADF in UASB reactors indicated that the substrate utilization rate was independent of the reactor biomass concentration. The maximum rate of substrate utilization and the half-velocity constants for ADF treatment were 28.4 g COD/L/d and 648 mg COD/L, respectively. For 1.2% ADF, the biomass yield and endogenous decay coefficients were 0.027 g VSS/g COD and 0.012 d-1 , respectively.
NASA Astrophysics Data System (ADS)
Tapias, Josefina C.; Vila, Marta; Himi, Mahjoub; Salvadó, Victoria; Casas, Albert; Hidalgo, Manuela
2017-04-01
The presence of emerging organic contaminants (EOC) such as pharmaceutical and personal care products, pesticides or antiseptics in wastewater is an increasing concern worldwide due to their potential toxicological effects for humans and other living organisms. Because of their low concentration and persistence their removal using conventional treatment technologies is often incomplete and for this reason there is a growing interest for assessing the efficiency of alternative wastewater treatment technologies such as constructed wetlands (CWs). CWs are engineered systems for wastewater treatment plant (WWTP) designed to take advantage of many of the same processes that occur in natural wetlands, but within a more controlled environment. CWs are a cost-effective alternative to conventional wastewater treatment plants especially in the context of small communities with less than 2000 people equivalent. Our study has been conducted at the Verdú WWTP (Lleida, Catalonia, NE Spain). This system has a primary treatment consisting on three septic tanks in parallel with a volume of 50 m3 and three chambers each one. The primary effluent is distributed to four parallel horizontal subsurface flow (HSSF) CWs. Originally the system was planted with common reed (Phragmites australis), but currently after twelve years of service the system show evidences of clogging and then gravel bed was replaced and plants removed. After the HSSF CWs, there are two wastewater stabilization ponds (WSPs) followed by two smaller polishing horizontal HSSF CWs. Excellent overall treatment performance was exhibited on the elimination of conventional water quality parameters (93-98% average removal efficiency for TSS, COD, BOD5 and NTK), and its final effluent proved to comply with existing Spanish guidelines. Sampling has been conducted along two years at different seasons and examined EOC substances included analgesic and anti-inflammatory drugs (ibuprofen, diclofenac, and naproxene), antidepressants (sertraline, paroxetine, fluoxetine and citalopram) and in addition carbamazepine and triclosan. For the analysis of water samples, a 200 mL volume was filtrated through 0.45µm nylon filters, acidified, and extracted with Oasis HLB cartridges. The analytes were recovered with 3mL methanol followed by 3 mL acetonitrile. The extract was evaporated under a gentle nitrogen stream, reconstituted with 500 µL MeOH:ACN (1:1) and analyzed by LC/MS/MS. Highest influent concentrations of studied EOCs in raw wastewater were for naproxene (ranging 2.1 - 24.76µg/L) and iboprufene (ranging 4.2 - 11.74 µg/L) and final effluent concentrations of these same compounds showed high but variable removal efficiencies depending on environmental temperature. Additionally to the reductions within the wetland beds attributed to sorption by particulate matter and biofilm, further reduction was completed at the waste water stabilization ponds by photodegradation.
Zhang, Xiaomeng; Jing, Ruiying; Feng, Xu; Dai, Yunyu; Tao, Ran; Vymazal, Jan; Cai, Nan; Yang, Yang
2018-10-15
To better understand the performance of constructed wetlands (CWs) to remove acidic pharmaceuticals (APs) in wastewaters in subtropical areas and to optimize CW design criteria, six small-scale CWs under different design configurations were operated. The factors (environmental parameters, water quality, and seasonality) influencing the APs removal were also analyzed to illustrate the removal mechanisms. The results indicated that the best performances of CWs were up to 80-90%. Subsurface flow (SSF) CWs showed high removal efficiency for ibuprofen, gemfibrozil and naproxen, but surface flow (SF) CWs performed better for ketoprofen and diclofenac. The positive relationship between the removal efficiencies of ibuprofen, gemfibrozil, and naproxen with dissolved oxygen and ammonia nitrogen reveals that SSF CWs under aerobic conditions benefit the biodegradation, while the favorable conditions created by SF CWs for receiving solar radiation promote the effective photolysis of ketoprofen and diclofenac. Planted SSF CWs had significantly higher removal efficiencies of ibuprofen and gemfibrozil than the unplanted controls had in all seasons. The removal of all APs was higher in summer and autumn than those in winter. Furthermore, an inverse relationship between removal efficiency and the distribution coefficient (logDow) was observed in SF CWs. Overall, CWs that provide aerobic degradation and photolysis would benefit APs removal in subtropical areas in the south of China. Copyright © 2018 Elsevier B.V. All rights reserved.
Arsenic Removal and Its Chemistry in Batch Electrocoagulation Studies.
Sharma, Anshul; Adapureddy, Sri Malini; Goel, Sudha
2014-04-01
The aim of this study was to evaluate the impact of different oxidizing agents like light, aeration (by mixing) and electrocoagulation (EC) on the oxidation of As (III) and its subsequent removal in an EC batch reactor. Arsenic solutions prepared using distilled water and groundwater were evaluated. Optimum pH and the effect of varying initial pH on As removal efficiency were also evaluated. MaximumAs (III) removal efficiency with EC, light and aeration was 97% from distilled water and 71% from groundwater. Other results show that EC alone resulted in 90% As removal efficiency in the absence of light and mixing from distilled water and 53.6% from groundwater. Removal with light and mixing but without EC resulted in only 26% As removal from distilled water and 29% from groundwater proving that electro-oxidation and coagulation were more effective in removing arsenic compared to the other oxidizing agents examined. Initial pH was varied from 5 to 10 in distilled water and from 3 to 12 in groundwater for evaluating arsenic removal efficiency by EC. The optimum initial pH for arsenic removal was 7 for distilled water and groundwater. For all initial pHs tested between 5 and 10 in distilled water, the final pH ranged between 7 and 8 indicating that the EC process tends towards near neutral pH under the conditions examined in this study.
Removal of trace metal contaminants from potable water by electrocoagulation
Heffron, Joe; Marhefke, Matt; Mayer, Brooke K.
2016-01-01
This study investigated the effects of four operational and environmental variables on the removal of trace metal contaminants from drinking water by electrocoagulation (EC). Removal efficiencies for five metals (arsenic, cadmium, chromium, lead and nickel) were compared under varying combinations of electrode material, post-treatment, water composition and pH. Iron electrodes out-performed aluminum electrodes in removing chromium and arsenic. At pH 6.5, aluminum electrodes were slightly more effective at removing nickel and cadmium, while at pH 8.5, iron electrodes were more effective for these metals. Regardless of electrode, cadmium and nickel removal efficiencies were higher at pH 8.5 than at pH 6.5. Post-EC treatment using membrane filtration (0.45 μm) enhanced contaminant removal for all metals but nickel. With the exception of lead, all metals exhibited poorer removal efficiencies as the ionic strength of the background electrolyte increased, particularly in the very high-solids synthetic groundwaters. Residual aluminum concentrations were lowest at pH 6.5, while iron residuals were lowest in low ionic strength waters. Both aluminum and iron residuals required post-treatment filtration to meet drinking water standards. EC with post-treatment filtration appears to effectively remove trace metal contaminants to potable water standards, but both reactor and source water parameters critically impact removal efficiency. PMID:27324564
Piri, Somayeh; Zanjani, Zahra Alikhani; Piri, Farideh; Zamani, Abbasali; Yaftian, Mohamadreza; Davari, Mehdi
2016-01-01
Nowadays significant attention is to nanocomposite compounds in water cleaning. In this article the synthesis and characterization of conductive polyaniline/clay (PANI/clay) as a hybrid nanocomposite with extended chain conformation and its application for water purification are presented. Clay samples were obtained from the central plain of Abhar region, Abhar, Zanjan Province, Iran. Clay was dried and sieved before used as adsorbent. The conductive polyaniline was inflicted into the layers of clay to fabricate a hybrid material. The structural properties of the fabricated nanocomposite are studied by X-ray diffraction (XRD), Fourier transform infrared spectroscopy (FT-IR) and scanning electron microscope (SEM). The elimination process of Pb(II) and Cd(II) ions from synthetics aqueous phase on the surface of PANI/clay as adsorbent were evaluated in batch experiments. Flame atomic absorption instrument spectrophotometer was used for determination of the studied ions concentration. Consequence change of the pH and initial metal amount in aqueous solution, the procedure time and the used adsorbent dose as the effective parameters on the removal efficiency was investigated. Surface characterization was exhibited that the clay layers were flaked in the hybrid nanocomposite. The results show that what happen when a nanocomposite polyaniline chain is inserted between the clay layers. The adsorption of ions confirmed a pH dependency procedure and a maximum removal value was seen at pH 5.0. The adsorption isotherm and the kinetics of the adsorption processes were described by Temkin model and pseudo-second-order equation. Time of procedure, pH and initial ion amount have a severe effect on adsorption efficiency of PANI/clay. By using suggested synthesise method, nano-composite as the adsorbent simply will be prepared. The prepared PANI/clay showed excellent adsorption capability for decontamination of Pb ions from contaminated water. Both of suggested synthesise and removal methods are affordable techniques.
Neural network modeling of the kinetics of SO2 removal by fly ash-based sorbent.
Raymond-Ooi, E H; Lee, K T; Mohamed, A R; Chu, K H
2006-01-01
The mechanistic modeling of the sulfation reaction between fly ash-based sorbent and SO2 is a challenging task due to a variety reasons including the complexity of the reaction itself and the inability to measure some of the key parameters of the reaction. In this work, the possibility of modeling the sulfation reaction kinetics using a purely data-driven neural network was investigated. Experiments on SO2 removal by a sorbent prepared from coal fly ash/CaO/CaSO4 were conducted using a fixed bed reactor to generate a database to train and validate the neural network model. Extensive SO2 removal data points were obtained by varying three process variables, namely, SO2 inlet concentration (500-2000 mg/L), reaction temperature (60-80 degreesC), and relative humidity (50-70%), as a function of reaction time (0-60 min). Modeling results show that the neural network can provide excellent fits to the SO2 removal data after considerable training and can be successfully used to predict the extent of SO2 removal as a function of time even when the process variables are outside the training domain. From a modeling standpoint, the suitably trained and validated neural network with excellent interpolation and extrapolation properties could have immediate practical benefits in the absence of a theoretical model.
Krupadam, Reddithota J; Patel, Govind P; Balasubramanian, Rajasekhar
2012-06-01
Microcystins (MCs; cyclic heptapeptides) are produced by freshwater cyanobacteria and cause public health concern in potable water supplies. There are more than 60 types of MCs identified to date, of which MC-LR is the most common found worldwide. For MC-LR, the WHO has established a threshold value of 1 μg L(-1) for drinking water. The present MCs removal methods such as coagulation, flocculation, adsorption, and filtration showed low efficiency for removing dissolved MC fraction from surface waters to the stipulated limit prescribed by WHO based on MC health impacts. The search for cost-effective and efficient removal method is still warranted for remediation of dissolved MC-LR-contaminated water resources. Molecularly imprinted polymer (MIP) adsorbent has been prepared using non-covalent imprinting approach. Using MC-LR as a template, itaconic acid as a functional monomer, and ethylene glycol dimethacrylate as a cross-linking monomer, a MIP has been synthesized. Computer simulations were used to design effective binding sites for MC-LR binding in aqueous solutions. Batch binding adsorption assay was followed to determine binding capacity of MIP under the influence of environmental parameters such as total dissolved solids and pH. The adsorptive removal of MC-LR from lake water has been investigated using MIPs. The MIP showed excellent adsorption potential toward MC-LR in aqueous solutions with a binding capacity of 3.64 μg mg(-1) which is about 60% and 70% more than the commercially used powdered activated carbon (PAC) and resin XAD, respectively. Environmental parameters such as total organic carbon (represented as chemical oxygen demand (COD)) and total dissolved solids (TDS) showed no significant interference up to 300 mg L(-1) for MC-LR removal from lake water samples. It was found that the binding sites on PAC and XAD have more affinity toward COD and TDS than the MC-LR. Further, the adsorption capacity of the MIP was evaluated rigorously by its repeated contact with fresh lake water, and it was found that the adsorption capacity of the MIP did not change even after seven adsorption/desorption cycles. The contaminated water of MC-LR (1.0 μg L(-1)) of 3,640 L could be treated by 1 g of MIP with an estimated cost of US $1.5. The adsorption capacity of the MIP is 40% more than commercially used PAC and resins and also the polymer showed reusable potential which is one of the important criteria in selection of cyanotoxins remediation methods.
NASA Astrophysics Data System (ADS)
Nawi, M. A.; Zain, Salmiah Md.
2012-06-01
A method has been developed for enhancing the surface properties of immobilized Degussa P-25 TiO2 nanoparticles on glass plate supports with excellent photocatalytic activity. The immobilization technique utilized a dip-coating method involving a coating solution containing Degussa P-25 TiO2 particles, epoxidized natural rubber (ENR-50) and poly vinyl chloride (PVC) in a mixture of toluene and dichloromethane. The optimum ratio of ENR/PVC blend was found to be 1:2. Immobilization process of the composite appeared to reduce the specific surface area by at least half of the pristine P-25 TiO2 particles. However, a systematic removal of ENR-50 additive via a 5 h photocatalytic process enabled the immobilized photocatalyst (P-25TiO2/ENR/PVC/5 h) to regenerate the surface area to within 86% of the pristine P-25 TiO2 particles, produce bigger pore volume and smaller particle size. The enhanced surface properties of the immobilized P-25/ENR/PVC/5 h photocatalyst system generated a photocatalytic performance as good as the slurry method of the P-25 TiO2 nanoparticles for the photocatalytic degradation of MB dye in aqueous solution. The immobilized P-25TiO2/ENR/PVC/5 h catalyst plate was also found to be highly reusable up to at least 10 runs without losing its photocatalytic efficiency. Above all, the system could avoid tedious filtration step of the treated water as normally observed with the aqueous slurry system.
Li, Yinong; Tian, Chen; Liu, Weizhen; Xu, Si; Xu, Yunyun; Cui, Rongxin; Lin, Zhang
2018-01-01
Nano-Mg(OH) 2 is attracting great attention as adsorbent for pre-concentration and recovery of rare earth elements (REEs) from low-concentration solution, due to its superior removal efficiency for REEs and environmental friendliness. However, the nanoparticles also cause some severe problems during application, including aggregation, blockage in fixed-bed column, as well as the difficulties in separation and reuse. Herein, in order to avoid the mentioned problems, a carbon cloth (CC) supported nano-Mg(OH) 2 (nano-Mg(OH) 2 @CC) was synthesized by electrodeposition. The X-ray diffraction and scanning electron microscopy analysis demonstrated that the interlaced nano-sheet of Mg(OH) 2 grew firmly and uniformly on the surface of carbon cloth fibers. Batch adsorption experiments of Eu(III) indicated that the nano-Mg(OH) 2 @CC composite maintained the excellent adsorption performance of nano-Mg(OH) 2 toward Eu(III). After adsorption, the Eu containing composite was calcined under nitrogen atmosphere. The content of Eu 2 O 3 in the calcined material was as high as 99.66%. Fixed-bed column experiments indicated that no blockage for Mg(OH) 2 @CC composite was observed during the treatment, while the complete blockage of occurred to nano-Mg(OH) 2 at an effluent volume of 240 mL. Moreover, the removal efficiency of Mg(OH) 2 @CC was still higher than 90% until 4,200 mL of effluent volume. This work provides a promising method for feasible application of nanoadsorbents in fixed-bed process to recycle low-concentration REEs from wastewater.
Selective biosorption of thorium (IV) from aqueous solutions by ginkgo leaf
Huang, Yaoyao; Hu, Yang; Chen, Lvcun; Yang, Tao; Huang, Hanfang; Shi, Runping; Lu, Peng
2018-01-01
Low–cost biosorbents (ginkgo leaf, osmanthus leaf, banyan leaf, magnolia leaf, holly leaf, walnut shell, and grapefruit peel) were evaluated in the simultaneous removal of La3+, Ce3+, Pr3+, Nd3+, Sm3+, Eu3+, Gd3+, Yb3+, Lu3+, UO22+, Th4+, Y3+, Co2+, Zn2+, Ni2+, and Sr2+ from aqueous solutions. In single metal systems, all adsorbents exhibited good to excellent adsorption capacities toward lanthanides and actinides. In a simulated multicomponent mixed solution study, higher selectivity and efficiency were observed for Th4+ over other metal cations, with ginkgo leaves providing the highest adsorptivity (81.2%) among the seven biosorbents. Through optimization studies, the selectivity of Th4+ biosorption on ginkgo leaf was found to be highly pH–dependent, with optimum Th4+ removal observed at pH 4. Th4+ adsorption was found to proceed rapidly with an equilibrium time of 120 min and conform to pseudo–second–order kinetics. The Langmuir isotherm model best described Th4+ biosorption, with a maximum monolayer adsorption capacity of 103.8 mg g–1. Thermodynamic calculations indicated that Th4+ biosorption was spontaneous and endothermic. Furthermore, the physical and chemical properties of the adsorbent were determined by scanning electron microscopy, Brunauer–Emmett–Teller, X-ray powder diffraction, and Fourier transform infrared analysis. The biosorption of Th from a real sample (monazite mineral) was studied and an efficiency of 90.4% was achieved from nitric acid at pH 4 using ginkgo leaves. PMID:29509801
NASA Astrophysics Data System (ADS)
Li, Yinong; Tian, Chen; Liu, Weizhen; Xu, Si; Xu, Yunyun; Cui, Rongxin; Lin, Zhang
2018-04-01
Nano-Mg(OH)2 is attracting great attention as adsorbent for pre-concentration and recovery of rare earth elements (REEs) from low-concentration solution, due to its superior removal efficiency for REEs and environmental friendliness. However, the nanoparticles also cause some severe problems during application, including aggregation, blockage in fixed-bed column, as well as the difficulties in separation and reuse. Herein, in order to avoid the mentioned problems, a carbon cloth (CC) supported nano-Mg(OH)2 (nano-Mg(OH)2@CC) was synthesized by electrodeposition. The X-ray diffraction and scanning electron microscopy analysis demonstrated that the interlaced nano-sheet of Mg(OH)2 grew firmly and uniformly on the surface of carbon cloth fibers. Batch adsorption experiments of Eu(III) indicated that the nano-Mg(OH)2@CC composite maintained the excellent adsorption performance of nano-Mg(OH)2 toward Eu(III). After adsorption, the Eu containing composite was calcined under nitrogen atmosphere. The content of Eu2O3 in the calcined material was as high as 99.66%. Fixed-bed column experiments indicated that no blockage for Mg(OH)2@CC composite was observed during the treatment, while the complete blockage of occurred to nano-Mg(OH)2 at an effluent volume of 240 mL. Moreover, the removal efficiency of Mg(OH)2@CC was still higher than 90% until 4200 mL of effluent volume. This work provides a promising method for feasible application of nanoadsorbents in fixed-bed process to recycle low-concentration REEs from wastewater.
Li, Yinong; Tian, Chen; Liu, Weizhen; Xu, Si; Xu, Yunyun; Cui, Rongxin; Lin, Zhang
2018-01-01
Nano-Mg(OH)2 is attracting great attention as adsorbent for pre-concentration and recovery of rare earth elements (REEs) from low-concentration solution, due to its superior removal efficiency for REEs and environmental friendliness. However, the nanoparticles also cause some severe problems during application, including aggregation, blockage in fixed-bed column, as well as the difficulties in separation and reuse. Herein, in order to avoid the mentioned problems, a carbon cloth (CC) supported nano-Mg(OH)2 (nano-Mg(OH)2@CC) was synthesized by electrodeposition. The X-ray diffraction and scanning electron microscopy analysis demonstrated that the interlaced nano-sheet of Mg(OH)2 grew firmly and uniformly on the surface of carbon cloth fibers. Batch adsorption experiments of Eu(III) indicated that the nano-Mg(OH)2@CC composite maintained the excellent adsorption performance of nano-Mg(OH)2 toward Eu(III). After adsorption, the Eu containing composite was calcined under nitrogen atmosphere. The content of Eu2O3 in the calcined material was as high as 99.66%. Fixed-bed column experiments indicated that no blockage for Mg(OH)2@CC composite was observed during the treatment, while the complete blockage of occurred to nano-Mg(OH)2 at an effluent volume of 240 mL. Moreover, the removal efficiency of Mg(OH)2@CC was still higher than 90% until 4,200 mL of effluent volume. This work provides a promising method for feasible application of nanoadsorbents in fixed-bed process to recycle low-concentration REEs from wastewater. PMID:29721492
Shen, Liang; Jiang, Xiuli; Chen, Zheng; Fu, Dun; Li, Qingbiao; Ouyang, Tong; Wang, Yuanpeng
2017-06-01
Layered double hydroxides (LDHs) intercalated with amino acids such as methionine (Met) were synthesized as new adsorbents to remediate arsenic-polluted water. This Zn 2 Al-Met-LDHs, identified with the formula of Zn 0.7 Al 0.3 (OH) 2 (Met) 0.3 ·0.32H 2 O, has good thermal stability. Adsorption experiments with Zn 2 Al-Met-LDHs showed that the residual arsenic in solution could be reduced below the regulation limit, and this adsorption process fitted Langmuir isotherm and the pseudo-second-order kinetics well. A remarkably high removal efficiency and the maximum adsorption capacity for As(III) were achieved, 96.7% and 94.1 mg/g, respectively, at 298 K. The desorption efficiency of As(III) from the arsenic-saturated Zn 2 Al-Met-LDHs (<8.7%), far less than that of As(V), promises a specific and reliable uptake of As(III) in sorts of solutions. More importantly, a complete and in-depth spectra analysis through FTIR, XPS and NMR was conducted to explain the excellent performance of Zn 2 Al-Met-LDHs in arsenic removal. Herein, two special chemical reactions were proposed as the dominant mechanisms, i.e., hydrogen bonding between the carboxyl group of the host Met and the hydroxyl group of As(III) or As(V), and the formation of a chelate ring between the guest As(III) and the S, N bidentate ligands of the intercalated Met in the LDHs. Copyright © 2017 Elsevier Ltd. All rights reserved.
Wu, Xiaoyu; Li, Songmei; Wang, Bo; Liu, Jianhua; Yu, Mei
2017-05-10
Transition-metal sulfide hollow nanostructures have received intensive attention in energy-related applications due to their unique structural features and high electrochemical activities. Here, a well-designed composite of NiCo 2 S 4 @C is successfully fabricated using a facile in situ template removal method. The obtained composite shows unique microstructures of hollow nanospheres (∼650 nm in diameter) assembled from ultrathin NiCo 2 S 4 @C nanosheets, in which numerous scattered NiCo 2 S 4 nanoparticles are embedded in ultrathin carbon nanosheets, exhibiting mesoporous features with a high surface area of 247.25 m 2 g -1 . When used as anode materials for LIBs, NiCo 2 S 4 @C hollow nanospheres exhibit a high reversible capacity of 1592 mA h g -1 at a current density of 500 mA g -1 , enhanced cycling performance maintaining a capacity of 1178 mA h g -1 after 200 cycles, and a remarkable rate capability. Meanwhile, the hollow nanospheres display excellent catalytic activity as ORR catalysts with a four-electron pathway and superior durability to that of commercial Pt/C catalysts. Their excellent lithium storage and ORR catalysis performance can be attributed to the rational incorporation of high-activity NiCo 2 S 4 and ultrathin carbon nanosheets, as well as unique hollow microstructures, which offer efficient electron/ion transport, an enhanced electroactive material/electrolyte contact area, numerous active sites, and excellent structural stability.
Thin film heater for removable volatile protecting coatings.
Karim, Abid
2013-01-01
Freshly coated aluminum mirrors have excellent reflectivity at far ultraviolet wavelengths. However, reflectivity rapidly degrades when the mirror surfaces are exposed to atmosphere. In order to avoid this problem, freshly coated aluminum surface can be protected by over-coating of a removable volatile protecting coating. This protecting coating can be re-evaporated by controlled heating or by some other methods when required. This type of removable coating has immediate application in UV space astronomy. The purpose of this paper is to demonstrate the feasibility of re-evaporation of removable volatile Zn protecting coating using a NiCr thin film heater without affecting the reflection properties of Al mirror surfaces.
Kashitarash, Zahra Esfahani; Taghi, Samadi Mohammad; Kazem, Naddafi; Abbass, Afkhami; Alireza, Rahmani
2012-12-27
This study was performed with the objective of determining the efficiency of iron nanoparticles for reducing chemical oxygen demand (COD), 5-day biological oxygen demand (BOD5), total solids (TS) and color of Hamadan city landfill leachate. Experiments were performed in a batch reactor and the main effective factors of pH, reaction time and concentration of iron nanoparticles were investigated. The obtained data were analyzed with One-Way ANOVA statistical test and SPSS-13 software. Maximum removal efficiencies were 47.94%, 35%, 55.62% and 76.66% for COD, BOD5, TS and color, respectively (for 2.5 g/L iron nanoparticles dosage, pH = 6.5 and 10 min reaction time). The results showed that the removal of COD, BOD5 and color had reverse relationship with contact time and TS removal followed a direct relationship (P < 0.05). Iron nanoparticles could remove averagely 53% of leachate COD, BOD5, TS and color in a short contact time (10 min) increasing pH up to 6.5, increased the removal efficiency for COD, BOD5, TS and color and then removal efficiency decreased with increasing pH to 8.5. Increasing the dosage of nanoparticles to 2.5 g/L increased the efficiency of process. High compatibility and efficiency of this process was proven by landfill leachate pre-treatment or post-treatment, so this removal method may be recommended for municipal solid waste landfill leachate treatment plants.
2012-01-01
This study was performed with the objective of determining the efficiency of iron nanoparticles for reducing chemical oxygen demand (COD), 5-day biological oxygen demand (BOD5), total solids (TS) and color of Hamadan city landfill leachate. Experiments were performed in a batch reactor and the main effective factors of pH, reaction time and concentration of iron nanoparticles were investigated. The obtained data were analyzed with One-Way ANOVA statistical test and SPSS-13 software. Maximum removal efficiencies were 47.94%, 35%, 55.62% and 76.66% for COD, BOD5, TS and color, respectively (for 2.5 g/L iron nanoparticles dosage, pH = 6.5 and 10 min reaction time). The results showed that the removal of COD, BOD5 and color had reverse relationship with contact time and TS removal followed a direct relationship (P < 0.05). Iron nanoparticles could remove averagely 53% of leachate COD, BOD5, TS and color in a short contact time (10 min) increasing pH up to 6.5, increased the removal efficiency for COD, BOD5, TS and color and then removal efficiency decreased with increasing pH to 8.5. Increasing the dosage of nanoparticles to 2.5 g/L increased the efficiency of process. High compatibility and efficiency of this process was proven by landfill leachate pre-treatment or post-treatment, so this removal method may be recommended for municipal solid waste landfill leachate treatment plants. PMID:23369361
Heavy metal tolerance and removal potential in mixed-species biofilm.
Grujić, Sandra; Vasić, Sava; Čomić, Ljiljana; Ostojić, Aleksandar; Radojević, Ivana
2017-08-01
The aim of the study was to examine heavy metal tolerance (Cd 2+ , Zn 2+ , Ni 2+ and Cu 2+ ) of single- and mixed-species biofilms (Rhodotorula mucilaginosa and Escherichia coli) and to determine metal removal efficiency (Cd 2+ , Zn 2+ , Ni 2+ , Cu 2+ , Pb 2+ and Hg 2+ ). Metal tolerance was quantified by crystal violet assay and results were confirmed by fluorescence microscopy. Metal removal efficiency was determined by batch biosorption assay. The tolerance of the mixed-species biofilm was higher than the single-species biofilms. Single- and mixed-species biofilms showed the highest sensitivity in the presence of Cu 2+ (E. coli-MIC 4 mg/ml, R. mucilaginosa-MIC 8 mg/ml, R. mucilaginosa/E. coli-MIC 64 mg/ml), while the highest tolerance was observed in the presence of Zn 2+ (E. coli-MIC 80 mg/ml, R. mucilaginosa-MIC 161 mg/ml, R. mucilaginosa-E. coli-MIC 322 mg/ml). The mixed-species biofilm exhibited better efficiency in removal of all tested metals than single-species biofilms. The highest efficiency in Cd 2+ removal was shown by the E. coli biofilm (94.85%) and R. mucilaginosa biofilm (97.85%), individually. The highest efficiency in Cu 2+ (99.88%), Zn 2+ (99.26%) and Pb 2+ (99.52%) removal was shown by the mixed-species biofilm. Metal removal efficiency was in the range of 81.56%-97.85% for the single- and 94.99%-99.88% for the mixed-species biofilm.
Domínguez, Joaquín R; Muñoz-Peña, Maria J; González, Teresa; Palo, Patricia; Cuerda-Correa, Eduardo M
2016-10-01
The removal efficiency of four commonly-used parabens by electrochemical advanced oxidation with boron-doped diamond anodes in two different aqueous matrices, namely ultrapure water and surface water from the Guadiana River, has been analyzed. Response surface methodology and a factorial, composite, central, orthogonal, and rotatable (FCCOR) statistical design of experiments have been used to optimize the process. The experimental results clearly show that the initial concentration of pollutants is the factor that influences the removal efficiency in a more remarkable manner in both aqueous matrices. As a rule, as the initial concentration of parabens increases, the removal efficiency decreases. The current density also affects the removal efficiency in a statistically significant manner in both aqueous matrices. In the water river aqueous matrix, a noticeable synergistic effect on the removal efficiency has been observed, probably due to the presence of chloride ions that increase the conductivity of the solution and contribute to the generation of strong secondary oxidant species such as chlorine or HClO/ClO - . The use of a statistical design of experiments made it possible to determine the optimal conditions necessary to achieve total removal of the four parabens in ultrapure and river water aqueous matrices.
Denitrification-Efficiencies of Alternate Carbon Sources
1984-07-01
carbon source evaluated, while sweet whey, corn steep liquor , acid whey and soluble potato solids followed in order of decreasing efficiency. Three of...denitrification and total organic carbon removal with ’I. sweet whey 11 3. Percent denitrification and total organic carbon removal with corn steep liquor ...and total organic carbon removal with hydrolyzed sludge 18 10. Percent denitrification and total organic carbon removal with fish stick 19 11
Zhang, Hangjun; Zhu, Guoying; Jia, Xiuying; Ding, Ying; Zhang, Mi; Gao, Qing; Hu, Ciming; Xu, Shuying
2011-01-01
A new kind of low-cost syntactic adsorbent from bamboo charcoal and chitosan was developed for the removal of microcystin-LR from drinking water. Removal efficiency was higher for the syntactic adsorbent when the amount of bamboo charcoal was increased. The optimum dose ratio of bamboo charcoal to chitosan was 6:4, and the optimum amount was 15 mg/L; equilibrium time was 6 hr. The adsorption isotherm was non-linear and could be simulated by the Freundlich model (R2 = 0.9337). Adsorption efficiency was strongly affected by pH and natural organic matter (NOM). Removal efficiency was 16% higher at pH 3 than at pH 9. Efficiency rate was reduced by 15% with 25 mg/L NOM (UV254 = 0.089 cm(-1)) in drinking water. This study demonstrated that the bamboo charcoal modified with chitosan can effectively remove microcystin-LR from drinking water.
Tang, Jie; Chen, Chunxia; Chen, Lei; Daroch, Maurycy; Cui, Yan
2017-10-01
Various geographical duckweed isolates have been developed for phytoremediation of lead. The Pb 2+ removal efficiency of Lemna aequinoctialis, Landoltia punctata, and Spirodela polyrhiza was investigated in monoculture and polyculture at different levels of pH and initial Pb 2+ concentrations. L. aequinoctialis was not sensitive to the tested pH but significantly affected by initial Pb 2+ concentration, whereas synergistic effect of pH and initial Pb 2+ concentration on removal efficiency of L. punctata and S. polyrhiza was found. Although the majority of polycultures showed median removal efficiency as compared to respective monocultures, some of the polycultures achieved higher Pb 2+ removal efficiencies and can promote population to remove Pb 2+ . Besides, the three duckweed strains could be potential candidates for Pb 2+ remediation as compared to previous reports. Conclusively, this study provides useful references for future large-scale duckweed phytoremediation.
Crumb rubber filtration: a potential technology for ballast water treatment.
Tang, Zhijian; Butkus, Michael A; Xie, Yuefeng F
2006-05-01
The removal of turbidity, particles, phytoplankton and zooplankton in water by crumb rubber filtration was investigated. A substantial reduction was achieved. Of the three variables, filter depth, media size and filtration rate, media size had the most significant influence. Smaller media size favored higher removal efficiency of all targeted matter. There was no apparent relationship between removal efficiency and filter depth. Higher filtration rate resulted in lower removal efficiency and higher head loss. Compared with conventional granular media filters, crumb rubber filters required less backwash, and developed lower head loss. Consequently crumb rubber filters could be run for a longer time or allow a higher filtration rate. The results also indicate that the crumb rubber filtration alone did not achieve the target removal of invasive species. However, crumb rubber filtration could potentially be used as a primary treatment technology to enhance the efficiency of a secondary treatment process (e.g., disinfection).
Enhanced performance of crumb rubber filtration for ballast water treatment.
Tang, Zhijian; Butkus, Michael A; Xie, Yuefeng F
2009-03-01
Waste-tire-derived crumb rubber was utilized as filter media to develop an efficient filter for ballast water treatment. In this study, the effects of coagulation, pressure filtration and dual-media (gravity) filtration on the performance of the crumb rubber filtration were investigated. The removal efficiencies of turbidity, phytoplankton and zooplankton, and head loss development were monitored during the filtration process. The addition of a coagulant enhanced the removal efficiencies of all targeted matter, but resulted in substantial increase of head loss. Pressure filtration increased filtration rates to 220 m(3)h(-1)m(-2) for 8-h operation and improved the zooplankton removal. Dual-media (crumb rubber/sand) gravity filtration also improved the removal efficiencies of phytoplankton and zooplankton over mono-media gravity crumb rubber filtration. However, these filtration techniques alone did not meet the criteria for removing indigenous organisms from ballast water. A combination of filtration and disinfection is suggested for future studies.
Li, Jianjun; Ye, Guangyun; Sun, Duanfang; Sun, Guoping; Zeng, Xiaowei; Xu, Jian; Liang, Shizhong
2012-09-01
Two identical biotrickling filters named BTFa and BTFb were run in parallel to examine their performances in removing hydrogen sulfide. BTFa was filled with ceramic granules, and BTFb was filled with volcanic rocks. The results showed that BTFb was more robust than BTFa under acidic conditions. At empty bed residence times (EBRTs) of 20 and 15 s, the removal efficiency of BTFa was close to 100%. At EBRTs of 10 and 5 s, the removal efficiency of BTFa slightly decreased. The removal efficiencies of BTFa decreased by different degrees at the end of each stage, dropping to 94%, 81%, 60%, and 71%, respectively. However, the H(2)S removal efficiency in BTFb consistently reached 99% throughout the experiment. Pyrosequencing analyses indicated that members of Thiomonas dominated in both BTFs, but the relative abundance of Acidithiobacillus was higher in BTFb than in BTFa.
[Fluorine removal efficiency of organic-calcium during coal combustion].
Liu, Jing; Liu, Jian-Zhong; Zhou, Jun-Hu; Xiao, Hai-Ping; Cen, Ke-Fa
2006-08-01
Effectiveness of calcium magnesium acetate (CMA) and calcium acetate(CA) as feasible HF capture were studied by means of fixed bed tube furnaces. The effects of temperature, particle diameter and Ca/S molar ratio on the fluorine removal efficiency were studied. By contract with CaCO3 at the same condition, we find that the HF capture effectiveness of those sorbents is superior to CaCO3, especially at high temperature. At 1 000 - 1 100 degrees C, the efficiency of fluorine removal during coal combustion of CMA is 1.68 - 1.74 times as that of CaCO3; the efficiency of fluorine removal during coal combustion of CA is 1.28 - 1.37 times as that of CaCO3.
76 FR 76201 - International Mail Contract
Federal Register 2010, 2011, 2012, 2013, 2014
2011-12-06
... Agreement and supporting financial documentation as a separate Excel file. In Order No. 549, the Commission... the Excel file included with its filing. It contends that improvements should enhance mail efficiency...
Chen, Yan; Wu, Qiong; Liu, Kuiren
2016-07-01
The photocatalytic film Ce doped VxOy/TiO2 was loaded on cordierite honeycomb (CHC), and this composite was prepared by sol-gel and dipping method, with Ce, oxides of V and TiO2 as dopant and key substances, respectively. Using gaseous 1,2-dichlorobenzene to replace dioxin as target pollutant, dual degradation experiments at 140-280 °C were carried out (thermal decomposition and photodegradation), and the effects of preparation conditions on catalytic activity were investigated: doping amount of Ce, dipping time in the gel, the concentration of ammonium metavanadate (NH4VO3) solution, dipping time in NH4VO3 solution, sintering temperature. The gaseous samples were taken before and after the reactor and analyzed by gas chromatography. According to the results, the optimal preparation conditions were determined, and the corresponding removal rate was above 95% after 90 min of degradation at 280 °C. The composite was examined by ultrasonic to analyze the adhesive strength between the film and CHC, and further characterized by XRD and SEM. Furthermore, flue gas from waste incinerator was chosen as target pollutant, which contained PCDD/Fs, the industrial sidestream degradation experiment was carried out and showed excellent removal efficiency of the composite, the removal rate of PCDD/Fs reached ca. 90% after 90 min of degradation. Copyright © 2016 Elsevier Ltd. All rights reserved.
Wen, Zhipan; Zhang, Yalei; Dai, Chaomeng; Sun, Zhen
2015-04-28
Magnetic mesoporous iron cerium bimetal oxides (MMIC) with large surface area and pore volume was synthesized via the hard template approach. This obtained MMIC was easily separated from aqueous solution with an external magnetic field and was proposed as a heterogeneous Fenton-like catalyst for oxidation of As(III). The MMIC presented excellent catalytic activity for the oxidation of As(III), achieving almost complete oxidation of 1000ppb As(III) after 60min and complete removal of arsenic species after 180min with reaction conditions of 0.4g/L catalyst, pH of 3.0 and 0.4mM H2O2. Kinetics analysis showed that arsenic removal followed the pseudo-first order, and the pseudo-first-order rate constants increased from 0.0014min(-1) to 0.0548min(-1) as the H2O2 concentration increased from 0.04mM to 0.4mM. On the basis of the effects of XPS analysis and reactive oxidizing species, As(III) in aqueous solution was mainly oxidized by OH radicals, including the surface-bound OHads generated on the MMIC surface which were involved in Fe(2+) and Ce(3+), and free OHfree generation by soluble iron ions which were released from the MMIC into the bulk solution, and the generated As(V) was finally removed by MMIC through adsorption. Copyright © 2015 Elsevier B.V. All rights reserved.
Adsorption and desorption of cationic malachite green dye on cellulose nanofibril aerogels.
Jiang, Feng; Dinh, Darren M; Hsieh, You-Lo
2017-10-01
Ultra-light aerogels have been assembled from cellulose nanofibrils into hierarchically macroporous (several hundred μm) honeycomb cellular structure surrounded with mesoporous (8-60nm) thin walls. The high specific surface (193m 2 /g) and surface carboxyl content (1.29mmol/g) of these aerogels were demonstrated to be highly capable of removing cationic malachite green (MG) dye from aqueous media. The rapid MG adsorption was driven by electrostatic interactions and followed a pseudo-second-order adsorption kinetic and monolayer Langmuir adsorption isotherm. At a low 1:5mg/mL aerogel/MG ratio, both initial MG adsorption rate (2.3-59.8mgg -1 min -1 ) and equilibrium adsorption capacity (53.0-203.7mgg -1 ) increased with increasing initial MG concentrations from 10 to 200mg/L, reaching a maximum adsorption of 212.7mgg -1 . The excellent dye removal efficiency was demonstrated by complete MG removal through four repetitive adsorptions at a low 1:5mg/mL aerogel/MG ratio and 10mg/L dye concentration as well as 92% MG adsorption in a single batch at one order of magnitude higher10:5mg/mL aerogel/MG ratio and 100mg/L dye concentration. The adsorbed MG in aerogels could be desorbed in aqueous media by increasing ionic strength, demonstrating facile recovery of both dye and aerogel as well as the robust capability of this aerogel for repetitive applications. Copyright © 2017 Elsevier Ltd. All rights reserved.
Mai, Lei; van den Akker, Ben; Du, Jun; Kookana, Rai S; Fallowfield, Howard
2016-06-01
The application of fixed bed high rate nitrifying trickling filters (NTFs) for the removal of track organic chemicals of concern (CoC) is less well known than their application to nutrient removal in water treatment. Particularly, the effect of exogenous organic carbon substrate (sucrose) loading on the performance of NTFs is not well understood. A laboratory-scale NTF system was operated in recirculation mode, with the objective of removing ammonia and CoC simultaneously. The efficiency of a high rate NTF for removal both of low concentration of ammonia (5 mg NH4-N L(-1)) and different concentrations of CoC in the presence of an exogenous organic carbon substrate (30 mg total organic carbon (TOC) L(-1)) was investigated. In the presence of exogenous organic carbon, the results demonstrated that the high rate NTF was able to successfully remove most of the CoCs investigated, with the removal ranging from 20.2% to 87.54%. High removal efficiencies were observed for acetaminophen (87.54%), bisphenol A (86.60%), trimethoprim (86.24%) and 17α-ethynylestradiol (80.60%). It was followed by the medium removal efficiency for N, N-diethyl-m-toluamide (61.31%) and atrazine (56.90%). In contrast, the removal of caffeine (28.43%) and benzotriazole (20.20%) was poorer in the presence of exogenous organic carbon. The removal efficiency for CoC was also compared with the results obtained in our previous study in the absence of exogenous organic carbon. The results showed that the addition of exogenous organic carbon was able to improve the removal of some of the CoC. Significant TOC percentage removals (45.68%-84.43%) and ammonia removal rate (mean value of 0.44 mg NH4-N L(-1) h(-1)) were also achieved in this study. The findings from this study provide valuable information for optimising the efficiency of high rate NTF for the removal of ammonia, CoC and TOC. Copyright © 2016 Elsevier Ltd. All rights reserved.
Performance of hybrid constructed wetland systems for treating septic tank effluent.
Cui, Li-hua; Liu, Wen; Zhu, Xi-zhen; Ma, Mei; Huang, Xi-hua; Xia, Yan-yang
2006-01-01
The integrated wetland systems were constructed by combining horizontal-flow and vertical-flow bed, and their purification efficiencies for septic tank effluent were detected when the hydraulic retention time (HRT) was 1 d, 3 d, 5 d under different seasons. The results showed that the removal efficiencies of the organics, phosphorus were steady in the hybrid systems, but the removal efficiency of total nitrogen was not steady due to high total nitrogen concentration in the septic tank effluent. The average removal rates of COD (chemical oxygen demand) were 89%, 87%, 83%, and 86% in summer, autumn, winter and spring, respectively, and it was up to 88%, 85%, 73%, and 74% for BOD5 (5 d biochemical oxygen demand) removal rate in four seasons. The average removal rates of TP (total phosphorous) could reach up to 97%, 98%, 95%, 98% in four seasons, but the removal rate of TN (total nitrogen) was very low. The results of this study also indicated that the capability of purification was the worst in winter. Cultivating with plants could improve the treated effluent quality from the hybrid systems. The results of the operation of the horizontal-flow and vertical-flow cells (hybrid systems) showed that the removal efficiencies of the organics, TP and TN in horizontal-flow and vertical-flow cells were improved significantly with the extension of HRT under the same season. The removal rate of 3 d HRT was obviously higher than that of 1 d HRT, and the removal rate of 5 d HRT was better than that of 3 d HRT, but the removal efficiency was not very obvious with the increment of HRT. Therefore, 3 d HRT might be recommended in the actual operation of the hybrid systems for economic and technical reasons.
Characterization of Polysulfone Membranes Prepared with Thermally Induced Phase Separation Technique
NASA Astrophysics Data System (ADS)
Tiron, L. G.; Pintilie, Ș C.; Vlad, M.; Birsan, I. G.; Baltă, Ș
2017-06-01
Abstract Membrane technology is one of the most used water treatment technology because of its high removal efficiency and cost effectiveness. Preparation techniques for polymer membranes show an important aspect of membrane properties. Generally, polysulfone (PSf) and polyethersulfone (PES) are used for the preparation of ultrafiltration (UF) membranes. Polysulfone (PSf) membranes have been widely used for separation and purification of different solutions because of their excellent chemical and thermal stability. Polymeric membranes were obtained by phase inversion method. The polymer solution introduced in the nonsolvent bath (distilled water) initiate the evaporation of the solvent from the solution, this phenomenon has a strong influence on the transport properties. The effect of the coagulation bath temperature on the membrane properties is of interest for this study. Membranes are characterized by pure water flux, permeability, porosity and retention of methylene blue. The low temperature of coagulation bath improve the membrane’s rejection and its influence was most notable.
Araya, F; Vera, I; Sáez, K; Vidal, G
2016-01-01
The objective was to evaluate the effects of intermittent artificial aeration cycles and natural zeolite as a support medium, in addition to the contribution of plants (Schoenoplectus californicus) on NH4(+)-N removal during sewage treatment by Constructed Wetlands (CW). Two lines of Mesocosm Constructed Wetland (MCW) were installed: (a) gravel line (i.e. G-Line) and (b) zeolite line (i.e. Z-Line). Aeration increased the NH4(+)-N removal efficiency by 20-45% in the G-Line. Natural zeolite increased the NH4(+)-N removal efficiency by up to 60% in the Z-Line. Plants contributed 15-30% of the NH4(+)-N removal efficiency and no difference between the G-Line and the Z-Line. Conversely, the NH4(+)-N removal rate was shown to only increase with the use of natural zeolite. However, the MCW with natural zeolite, the NH4(+)-N removal rate showed a direct relationship only with the NH4(+)-N influent concentration. Additionally, relationship between the oxygen, energy and area regarding the NH4(+)-N removal efficiency was established for 2.5-12.5 gO2/(kWh-m(2)) in the G-Line and 0.1-2.6 gO2/(kWh-m(2)) in the Z-Line. Finally, it was established that a combination of natural zeolite as a support medium and the aeration strategy in a single CW could regenerate the zeolite's adsorption sites and maintain a given NH4(+)-N removal efficiency over time.
Yu, Jae Choul; Hong, Ji A; Jung, Eui Dae; Kim, Da Bin; Baek, Soo-Min; Lee, Sukbin; Cho, Shinuk; Park, Sung Soo; Choi, Kyoung Jin; Song, Myoung Hoon
2018-01-18
The beneficial use of a hole transport layer (HTL) as a substitution for poly(3,4-ethlyenedioxythiophene): polystyrene sulfonate (PEDOT:PSS) is regarded as one of the most important approaches for improving the stability and efficiency of inverted perovskite solar cells. Here, we demonstrate highly efficient and stable inverted perovskite solar cells by applying a GO-doped PEDOT:PSS (PEDOT:GO) film as an HTL. The high performance of this solar cell stems from the excellent optical and electrical properties of the PEDOT:GO film, including a higher electrical conductivity, a higher work function related to the reduced contact barrier between the perovskite layer and the PEDOT:GO layer, enhanced crystallinity of the perovskite crystal, and suppressed leakage current. Moreover, the device with the PEDOT:GO layer showed excellent long-term stability in ambient air conditions. Thus, the enhancement in the efficiency and the excellent stability of inverted perovskite solar cells are promising for the eventual commercialization of perovskite optoelectronic devices.
Pueyo, N; Miguel, N; Ovelleiro, J L; Ormad, M P
The purpose of this study is to compare the efficiency of ozonation and the hydrogen peroxide-ozone process for the removal of cyanide from coking wastewater. The most efficient oxidation process is combined with coagulation-flocculation-decantation and lime-soda ash softening pretreatments. The oxidation in aqueous solution and industrial wastewater (at pH 9.5-12.3) by O3 was carried out using a range of concentration of consumed O3 from 10 to 290 mg/L. A molar ratio of H2O2/O3 from 0.1 to 5.2 with different concentrations of O3 constants was used for the H2O2-O3 process. The maximum cyanide removal obtained in coking wastewater was 90% using a mass ratio of O3/CN(-) of 9.5. Using lower concentrations of O3, cyanide is not removed and can even be generated due to the presence of other cyanide precursor organic micropollutants in the industrial matrix. The concentration of O3 is reduced to half for the same cyanide removal efficiency if the pretreatments are applied to reduce the carbonate and bicarbonate ions. The cyanide removal efficiency in coking wastewater is not improved if the O3 is combined with the H2O2. However, the preliminary cyanide removal treatment in aqueous solution showed an increase in the cyanide removal efficiency for the H2O2-O3 process.
Zhao, Zhimiao; Song, Xinshan; Zhang, Yinjiang; Zhao, Yufeng; Wang, Bodi; Wang, Yuhui
2017-12-01
In the paper, we explored the influences of different dosages of iron and calcium carbonate on contaminant removal efficiencies and microbial communities in algal ponds combined with constructed wetlands. After 1-year operation of treatment systems, based on the high-throughput pyrosequencing analysis of microbial communities, the optimal operating conditions were obtained as follows: the ACW10 system with Fe 3+ (5.6 mg L -1 ), iron powder (2.8 mg L -1 ), and CaCO 3 powder (0.2 mg L -1 ) in influent as the adjusting agents, initial phosphorus source (PO 4 3- ) in influent, the ratio of nitrogen to phosphorus (N/P) of 30 in influent, and hydraulic retention time (HRT) of 1 day. Total nitrogen (TN) removal efficiency and total phosphorus (TP) removal efficiency were improved significantly. The hydrolysis of CaCO 3 promoted the physicochemical precipitation in contaminant removal. Meanwhile, Fe 3+ and iron powder produced Fe 2+ , which improved contaminant removal. Iron ion improved the diversity, distribution, and metabolic functions of microbial communities in integrated treatment systems. In the treatment ACW10, the dominant phylum in the microbial community was PLANCTOMYCETES, which positively promoted nitrogen removal. After 5 consecutive treatments in ACW10, contaminant removal efficiencies for TN and TP respectively reached 80.6% and 57.3% and total iron concentration in effluent was 0.042 mg L -1 . Copyright © 2017 Elsevier Ltd. All rights reserved.
Sowlat, Mohammad Hossein; Kakavandi, Babak; Lotfi, Saeedeh; Yunesian, Masud; Abdollahi, Mohammad; Rezaei Kalantary, Roshanak
2017-05-01
In the present systematic review, we aimed to collect and analyze all the relevant evidence on the efficiency of cerium-impregnated versus virgin-activated carbons (ACs) for the removal of gas-phase elemental mercury (Hg 0 ) from the flue gas of coal-fired power plants and to assess the effect of different calcination and operational parameters on their efficiency. A total of eight relevant papers (out of 1193 hits produced by the search) met the eligibility criteria and were included in the study. Results indicated that the Hg 0 adsorption capacity of cerium-impregnated ACs is significantly higher than that of virgin ACs, depending highly on the impregnation and operational parameters. It was noticed that although cerium-impregnated ACs possessed smaller surface areas and pore volumes, their Hg 0 removal efficiencies were still higher than their virgin counterparts. An increased Hg 0 removal efficiency was in general found by increasing the operational adsorption temperature as high as 150-170 °C. Studies also indicated that NO, SO 2 , and HCl have promoting impacts on the Hg 0 removal efficiency of Ce-impregnated ACs, while H 2 O has an inhibitory effect.
Yi, Xinzhu; Tran, Ngoc Han; Yin, Tingru; He, Yiliang; Gin, Karina Yew-Hoong
2017-09-15
Landfill leachate could be a significant source of emerging contaminants (ECs) and antibiotic resistance genes (ARGs) into the environment. This study provides the first information on the occurrence of selected ECs and ARGs in raw leachate from 16-year old closed landfill site in Singapore. Among the investigated ECs, acetaminophen (ACT), bisphenol A (BPA), clofibric acid (CA), caffeine (CF), crotamiton (CTMT), diclofenac (DCF), N,N-diethyl-m-toluamide (DEET), gemfibrozil (GFZ), lincomycin (LIN), salicylic acid (SA), and sulfamethazine (SMZ) were the most frequently detected compounds in raw landfill leachate. The concentrations of detected ECs in raw landfill leachate varied significantly, from below quantification limit to 473,977 ng/L, depending on the compound. In this study, Class I integron (intl1) gene and ten ARGs were detected in raw landfill leachate. Sulfonamide resistance (sul1, sul2, and dfrA), aminoglycoside resistance (aac6), tetracycline resistance (tetO), quinolone resistance (qnrA), and intl1 were ubiquitously present in raw landfill leachate. Other resistance genes, such as beta-lactam resistance (blaNMD1, blaKPC, and blaCTX) and macrolide-lincosamide resistance (ermB) were also detected, detection frequency of <50%. The removal of target ECs and ARGs by a full-scale hybrid constructed wetland (CW) was also evaluated. The vast majority of ECs exhibited excellent removal efficiencies (>90%) in the investigated hybrid CW system. This hybrid CW system was also found to be effective in the reduction of several ARGs (intl1, sul1, sul2, and qnrA). Aeration lagoons and reed beds appeared to be the most important treatment units of the hybrid CW for removing the majority of ECs from the leachate. Copyright © 2017 Elsevier Ltd. All rights reserved.
Dixit, Fuhar; Barbeau, Benoit; Mohseni, Madjid
2018-02-01
This study investigated the efficiency of a strongly basic macroporous anion exchange resin for the co-removal of Microcystin-LR (MCLR) and natural organic matter (NOM) in waters affected by toxic algal blooms. Environmental factors influencing the uptake behavior included MCLR and resin concentrations, NOM and anionic species, specifically nitrate, sulphate and bicarbonate. A860 resin exhibited an excellent adsorption capacity of 3800 μg/g; more than 60% of the MCLR removal was achieved within 10 min with a resin dosage of 200 mg/L (∼1 mL/L). Further, kinetic studies revealed that the overall removal of MCLR is influenced by both external diffusion and intra-particle diffusion. Increasing NOM concentration resulted in a significant reduction of MCLR uptake, especially at lower resin dosages, where a competitive uptake between the charged NOM fractions and MCLR was observed due to limited active sites. In addition, MCLR uptake was significantly reduced in the presence of sulphate and nitrate in the water matrix. Moreover, performance of the resin proved to be stable from one regeneration cycle to another. Approximately 80% of MCLR and 50% of dissolved organic carbon (DOC) were recovered in the regenerated brine. Evidences of resin saturation and site reduction were also observed after 2000 bed volumes (BV) of operation. For all the investigated water matrices, a resin dosage of 1000 mg/L (∼4.5 mL/L) was sufficient to lower MCLR concentration from 100 μg/L to below the World Health Organization guideline of 1 μg/L, while simultaneously providing more than 80% NOM removal. Copyright © 2017 Elsevier Ltd. All rights reserved.
Senduran, Cem; Gunes, Kemal; Topaloglu, Duygu; Dede, Omer Hulusi; Masi, Fabio; Kucukosmanoglu, Ozen Arli
2018-08-01
This study performed in Sapanca Lake catchment area, used as a drinking water resource. Two highways located at northern and southern shores, and a railway at its south are significant sources of pollution. As a possible solution for protecting water quality a pocket wetland constructed and operated. Performances statistically interpreted by Spearman's Correlation test and univariate analysis of variance on collected data. The mean removal efficiencies obtaited were 52% (TSS), 4% (Nitrate), 26% (TN), -5% (TOC), 63% (TP), 4.5% (Chloride), 3% (Sulfate), 33% (Cr), 39% (Co), -19.5% (Ni), 7% (Cu), 55% (Zn), 36% (As), 38% (Cd) and 18% (Pb). TSS removal was in positive significant medium correlation with Co, Cu, Zn, and Pb removal respectively (p < 0.05). Other statistically significant positive high correlations calculated between removal efficiency of Nitrate-TN, Chloride-Sulfate, Cr-Co-Cu-As-Cd. According to ANOVA and Kruskal-Wallis test results, removal efficiencies of TSS and TOC partially affected by different temperature (p < 0.1 for TSS and p < 0.05 for TOC) and pH ranges (p < 0.1 for both removal efficiencies), TP removal efficiency significantly affected by different pH ranges (p < 0.001), and Chloride and Sulfate removal efficiencies were significantly (p < 0.001) affected by different temperature ranges. Regardless of geographical location and climatic factors, pocket wetland systems can be relied upon for minimizing heavy metals such as Cr, Co, Zn, As, Cd and Pb and critical pollutants such as TP and TSS caused by highway runoff. Copyright © 2018 Elsevier Ltd. All rights reserved.
Lee, Minhee; Yang, Minjune
2010-01-15
The uranium removal efficiencies of rhizofiltration in the remediation of groundwater were investigated in lab-scale experiments. Sunflower (Helianthus annuus L.) and bean (Phaseolus vulgaris L. var. vulgaris) were cultivated and an artificially uranium contaminated solution and three genuine groundwater samples were used in the experiments. More than 80% of the initial uranium in solution and genuine groundwater, respectively, was removed within 24h by using sunflower and the residual uranium concentration of the treated water was lower than 30 microg/L (USEPA drinking water limit). For bean, the uranium removal efficiency of the rhizofiltration was roughly 60-80%. The maximum uranium removal via rhizofiltration for the two plant cultivars occurred at pH 3-5 of solution and their uranium removal efficiencies exceeded 90%. The lab-scale continuous rhizofiltration clean-up system delivered over 99% uranium removal efficiency, and the results of SEM and EDS analyses indicated that most uranium accumulated in the roots of plants. The present results suggested that the uranium removal capacity of two plants evaluated in the clean-up system was about 25mg/kg of wet plant mass. Notably, the removal capacity of the root parts only was more than 500 mg/kg.
Meng, Fansheng; Xue, Hao; Wang, Yeyao; Zheng, Binghui; Wang, Juling
2018-02-01
Electrokinetic experiments were conducted on chromium-residue-contaminated soils collected from a chemical plant in China. Acidification-electrokinetic remediation technology was proposed in order to solve the problem of removing inefficient with ordinary electrokinetic. The results showed that electrokinetic remediation removal efficiency of chromium from chromium-contaminated soil was significantly enhanced with acidizing pretreatment. The total chromium [Cr(T)] and hexavalent chromium [Cr(VI)] removal rate of the group acidized by citric acid (0.9 mol/L) for 5 days was increased from 6.23% and 19.01% in the acid-free experiments to 26.97% and 77.66% in the acidification-treated experiments, respectively. In addition, part of chromium with the state of carbonate-combined will be converted into water-soluble state through acidification to improve the removal efficiency. Within the appropriate concentration range, the higher concentration of acid was, the more chromium was released. So the removal efficiency of chromium depended on the acid concentration. The citric acid is also a kind of complexing agent, which produced complexation with Cr that was released by the electrokinetic treatment and then enhanced the removal efficiency. The major speciation of chromium that was removed from soils by acidification-electrokinetics remediation was acid-soluble speciation, revivification speciation and oxidation speciation, which reduced biological availability of chromium.
NASA Astrophysics Data System (ADS)
Hu, Chun; Zhou, Yao; Ma, Ruguang; Liu, Qian; Wang, Jiacheng
2017-03-01
Oxygen reduction reaction (ORR) plays a dominant role in proton exchange membrane fuel cells (PEMFCs). Thus, the design and preparation of efficient ORR electrocatalysts is of high importance. In this work, we successfully prepared a series of nitrogen-doped graphene-like carbon nanosheets (NCNSs) with large pore volumes of up to 1.244 cm3 g-1 and high level of N dopants (5.3-6.8 at%) via a one-step, in-situ reactive template strategy by co-pyrolysis of hydroxypropyl methylcellulose (HPMC) and dicyandiamide (DICY) as the precursors at 1000 °C. The DICY-derived graphitic carbon nitride (g-C3N4) nanosheets could act as the hard template for the confined growth of 2D carbon nanosheets, and the further increase in the pyrolysis temperature could directly remove off the g-C3N4 template by complete decomposition and simultaneously dope N atoms within the carbon nanosheets. The pyridinic and graphitic nitrogen groups are dominant among various N functional groups in the NCNSs. The NCNS_1:10 prepared with the HPMC/DICY mass ratio of 1/10 can be used as the metal-free ORR electrocatalysts with optimal activity (onset potential: -0.1 V vs. SCE; limiting current density: 4.8 mA cm-2) in O2-saturated 0.1 M KOH electrolyte among the NCNSs. Moreover, the NCNS_1:10 demonstrates a dominant four-electron reduction process, as well as excellent long-term operation stability and outstanding methanol crossover resistance. The excellent ORR activity of the NCNS_1:10 should be mainly owing to high contents of pyridinic and graphitic N dopants, large pore volume, hierarchical structures, and microstructural defects.
Lee, Jae-Ho; Park, Jeung-Jin; Choi, Gi-Choong; Byun, Im-Gyu; Park, Tae-Joo; Lee, Tae-Ho
2013-01-01
Spent sulfidic caustic (SSC) produced from petroleum industry can be reused to denitrify nitrate-nitrogen via a biological nitrogen removal process as an electron donor for sulfur-based autotrophic denitrification, because it has a large amount of dissolved sulfur. However, SSC has to be refined because it also contains some aromatic hydrocarbons, typically benzene, toluene, ethylbenzene, xylene (BTEX) and phenol that are recalcitrant organic compounds. In this study, laboratory-scale ultrasound irradiation and air stripping treatment were applied in order to remove these aromatic hydrocarbons. In the ultrasound system, both BTEX and phenol were exponentially removed by ultrasound irradiation during 60 min of reaction time to give the greatest removal efficiency of about 80%. Whereas, about 95% removal efficiency of BTEX was achieved, but not any significant phenol removal, within 30 min in the air stripping system, indicating that air stripping was a more efficient method than ultrasound irradiation. However, since air stripping did not remove any significant phenol, an additional process for degrading phenol was required. Accordingly, we applied a combined ultrasound and air stripping process. In these experiments, the removal efficiencies of BTEX and phenol were improved compared to the application of ultrasound and air stripping alone. Thus, the combined ultrasound and air stripping treatment is appropriate for refining SSC.
Gao, Pin; Ding, Yunjie; Li, Hui; Xagoraraki, Irene
2012-06-01
Occurrence and removal efficiencies of fifteen pharmaceuticals were investigated in a conventional municipal wastewater treatment plant in Michigan. Concentrations of these pharmaceuticals were determined in both wastewater and sludge phases by a high-performance liquid chromatograph coupled to a tandem mass spectrometer. Detailed mass balance analysis was conducted during the whole treatment process to evaluate the contributing processes for pharmaceutical removal. Among the pharmaceuticals studied, demeclocycline, sulfamerazine, erythromycin and tylosin were not detected in the wastewater treatment plant influent. Other target pharmaceuticals detected in wastewater were also found in the corresponding sludge phase. The removal efficiencies of chlortetracycline, tetracycline, sulfamerazine, acetaminophen and caffeine were >99%, while doxycycline, oxytetracycline, sulfadiazine and lincomycin exhibited relatively lower removal efficiencies (e.g., <50%). For sulfamethoxazole, the removal efficiency was approximately 90%. Carbamazepine manifested a net increase of mass, i.e. 41% more than the input from the influent. Based on the mass balance analysis, biotransformation is believed to be the predominant process responsible for the removal of pharmaceuticals (22% to 99%), whereas contribution of sorption to sludge was relatively insignificant (7%) for the investigated pharmaceuticals. Copyright © 2012 Elsevier Ltd. All rights reserved.
Zhou, Xin; Guo, Xuesong; Han, Yunping; Liu, Junxin; Ren, Jincheng; Wang, Yu; Guo, Yantao
2012-09-01
Seven different aeration modes, in which oxygen supply was changed by adjusting the number of aerators, were designed and applied in a full-scale municipal wastewater treatment plant with Orbal oxidation ditch to investigate the influence of dissolved oxygen (DO) on nitrogen removal performance. The full-scale experiment results of 574 days showed that nitrogen removal efficiency depended on the degree of nitrification and denitrification in the outer channel, which was the largest contributor for TN removal in the Orbal oxidation ditch. Appropriate aeration control in the outer channel was essential to balance nitrification and denitrification in the Orbal oxidation ditch. When DO was as low as about 0.2 mg/L in the outer channel, the highest TN removal efficiency of 75% was obtained. Microbial analysis confirmed that aerobic and anaerobic bacteria coexisted in the outer channel. The greater species diversity and more intensive activities of these bacteria in aeration Mode V may be responsible for the higher TN removal efficiency compared with Mode III. These results suggest that different aerated conditions in the Orbal oxidation ditch might have a significant effect on microbial community characteristics and nitrogen removal efficiencies.
Su, Yanyan; Mennerich, Artur; Urban, Brigitte
2012-08-01
The influence of biotic (algal inoculum concentration) and abiotic factors (illumination cycle, mixing velocity and nutrient strength) on the treatment efficiency, biomass generation and settleability were investigated with selected mixed algal culture. Dark condition led to poor nutrient removal efficiency. No significant difference in the N, P removal and biomass settleability between continuous and alternating illumination was observed, but a higher biomass generation capability for the continuous illumination was obtained. Different mixing velocity led to similar phosphorus removal efficiencies (above 98%) with different retention times. The reactor with 300 rpm mixing velocity had the best N removal capability. For the low strength wastewater, the N rates were 5.4±0.2, 9.1±0.3 and 10.8±0.3 mg/l/d and P removal rates were 0.57±0.03, 0.56±0.03 and 0.72±0.05 mg/l/d for reactors with the algal inoculum concentration of 0.2, 0.5 and 0.8 g/l, respectively. Low nutrient removal efficiency and poor biomass settleability were obtained for high strength wastewater. Copyright © 2012 Elsevier Ltd. All rights reserved.
Kegel, F Schoonenberg; Rietman, B M; Verliefde, A R D
2010-01-01
Drinking water utilities in Europe are faced with a growing presence of organic micropollutants in their water sources. The aim of this research was to assess the robustness of a drinking water treatment plant equipped with reverse osmosis and subsequent activated carbon filtration for the removal of these pollutants. The total removal efficiency of 47 organic micropollutants was investigated. Results indicated that removal of most organic micropollutants was high for all membranes tested. Some selected micropollutants were less efficiently removed (e.g. the small and polar NDMA and glyphosate, and the more hydrophobic ethylbenzene and napthalene). Very high removal efficiencies for almost all organic micropollutants by the subsequent activated carbon, fed with the permeate stream of the RO element were observed except for the very small and polar NDMA and 1,4-dioxane. RO and subsequent activated carbon filtration are complementary and their combined application results in the removal of a large part of these emerging organic micropollutants. Based on these experiments it can be concluded that the robustness of a proposed treatment scheme for the drinking water treatment plant Engelse Werk is sufficiently guaranteed.
Biofilm Removal Using Carbon Dioxide Aerosols without Nitrogen Purge.
Hong, Seongkyeol; Jang, Jaesung
2016-11-06
Biofilms can cause serious concerns in many applications. Not only can they cause economic losses, but they can also present a public health hazard. Therefore, it is highly desirable to remove biofilms from surfaces. Many studies on CO2 aerosol cleaning have employed nitrogen purges to increase biofilm removal efficiency by reducing the moisture condensation generated during the cleaning. However, in this study, periodic jets of CO2 aerosols without nitrogen purges were used to remove Pseudomonas putida biofilms from polished stainless steel surfaces. CO2 aerosols are mixtures of solid and gaseous CO2 and are generated when high-pressure CO2 gas is adiabatically expanded through a nozzle. These high-speed aerosols were applied to a biofilm that had been grown for 24 hr. The removal efficiency ranged from 90.36% to 98.29% and was evaluated by measuring the fluorescence intensity of the biofilm as the treatment time was varied from 16 sec to 88 sec. We also performed experiments to compare the removal efficiencies with and without nitrogen purges; the measured biofilm removal efficiencies were not significantly different from each other (t-test, p > 0.55). Therefore, this technique can be used to clean various bio-contaminated surfaces within one minute.
Jia, Cuiying; Kang, Ruijuan; Zhang, Yuhui; Cong, Wei; Cai, Zhaoling
2007-03-01
Biodegradation and decolorization of monosodium glutamate wastewater were carried out by using an acidophilus yeast strain of Saccharomyces cerevisiae and Coriolus versicolor. For the yeast treatment, the highest COD removal and reducing sugar removal efficiency were 76.6% and 80.2%, respectively. The color removal was only 2%. For C. versicolor treatment, the highest COD removal, color removal and reducing sugar removal efficiencies were 78.7%, 56.5% and 90.9%, respectively. The synergic treatment process, in which the yeast and C. versicolor were successively applied,exhibited great advantage over the individual process.
Huang, Pengpeng; Ye, Zhengfang; Xie, Wuming; Chen, Qi; Li, Jing; Xu, Zhencheng; Yao, Maosheng
2013-08-01
Much work is devoted to heavy metal sorption, reduction and relevant mechanisms by nanoscale zero valent iron (nZVI) particle, but fewer studies utilize its magnetic properties in aqueous metal removals. Here, we have investigated the use of nZVI particles both electrosprayed (E-nZVI) and non-electrosprayed (NE-nZVI) with different concentration levels (0.186-1.86 mg/mL) in removing aqueous Cd(II), Cr(IV), and Pb(II) through the magnetic separation means. The effects of the reaction time (5-20 min) and magnetic treatment time (1-30 min) on relevant magnetic removal efficiencies were studied. Metal ion concentration was analyzed using inductively coupled plasma (ICP), and the magnetically obtained metal-nZVI mixtures were further analyzed using X-ray photoelectron spectroscopy (XPS). Results showed that the magnetic removal efficiencies of heavy metals varied with the metal species, nZVI loading, reaction and magnetic separation time. In most cases, use of 1.5 mg/mL E-nZVI or NE-nZVI resulted in removal efficiencies of more than 80% for Pb(II), Cd(II), and Cr(IV). Increasing the magnetic treatment time from 1 to 20 min was shown to lead to ≈ 20% increase in Pb(II) removal efficiency, but no improvements for Cd(II) and Cr(IV). In contrast, increasing the reaction time decreased the Pb(II) removal efficiency, yet no effects observed for Cd(II) and Cr(IV). In general, 1 min reaction and 5 min magnetic treatment were found sufficient to achieve considerable heavy metal removals. For comparable efficiencies, use of magnetic method could significantly reduce nZVI loading. XPS analysis results indicated that atomic percentages of O 1s, Fe 2p, Cd 3d, Pb 4f and Cr 2p varied with metal exposures. Different from Cd(II) and Cr(IV), aqueous iron ions might be possibly present when treating Pb(II). This study demonstrated a rapid heavy metal removal method using the magnetic property of nZVI particles, while contributing to understanding of the relevant removal mechanisms. Copyright © 2013 Elsevier Ltd. All rights reserved.
Meutia, A A
2001-01-01
Wastewater treatment by constructed wetland is an appropriate technology for tropical developing countries like Indonesia because it is inexpensive, easily maintained, and has environmentally friendly and sustainable characteristics. The aim of the research is to examine the capability of constructed wetlands for treating laboratory wastewater at our Center, to investigate the suitable flow for treatment, namely vertical subsurface or horizontal surface flow, and to study the effect of the seasons. The constructed wetland is composed of three chambered unplanted sedimentation tanks followed by the first and second beds, containing gravel and sand, planted with Typha sp.; the third bed planted with floating plant Lemna sp.; and a clarifier with two chambers. The results showed that the subsurface flow in the dry season removed 95% organic carbon (COD) and total phosphorus (T-P) respectively, and 82% total nitrogen (T-N). In the transition period from the dry season to the rainy season, COD removal efficiency decreased to 73%, T-N increased to 89%, and T-P was almost the same as that in the dry season. In the rainy season COD and T-N removal efficiencies increased again to 95% respectively, while T-P remained unchanged. In the dry season, COD and T-P concentrations in the surface flow showed that the removal efficiencies were a bit lower than those in the subsurface flow. Moreover, T-N removal efficiency was only half as much as that in the subsurface flow. However, in the transition period, COD removal efficiency decreased to 29%, while T-N increased to 74% and T-P was still constant, around 93%. In the rainy season, COD and T-N removal efficiencies increased again to almost 95%. On the other hand, T-P decreased to 76%. The results show that the constructed wetland is capable of treating the laboratory wastewater. The subsurface flow is more suitable for treatment than the surface flow, and the seasonal changes have effects on the removal efficiency.
[Influencing factors and mechanism of arsenic removal during the aluminum coagulation process].
Chen, Gui-Xia; Hu, Cheng-Zhi; Zhu, Ling-Feng; Tong, Hua-Qing
2013-04-01
Aluminum coagulants are widely used in arsenic (As) removal during the drinking water treatment process. Aluminium chloride (AlCl3) and polyaluminium chloride (PACl) which contains high content of Al13 were used as coagulants. The effects of aluminum species, pH, humic acid (HA) and coexisting anions on arsenic removal were investigated. Results showed that AlCl3 and PACl were almost ineffective in As(II) removal while the As(V) removal efficiency reached almost 100%. pH was an important influencing factor on the arsenic removal efficiency, because pH influenced the distribution of aluminum species during the coagulation process. The efficiency of arsenic removal by aluminum coagulants was positively correlated with the content of Al13 species. HA and some coexisting anions showed negative impact on arsenic removal because of the competitive adsorption. The negative influence of HA was more pronounced at low coagulant dosages. PO4(3-) and F(-) showed marked influence during arsenic removal, but there was no obvious influence when SiO3(2-), CO3(2-) and SO4(2-) coexisted. The present study would be helpful to direct arsenic removal by enhanced coagulation during the drinking water treatment.
Nitrogen removal via nitrite from seawater contained sewage.
Peng, Yongzhen; Yu, De-Shuang; Liang, Dawei; Zhu, Guibing
2004-01-01
Under the control of both pH and the concentration of free ammonia (FA), the nitrification-denitrification via nitrite pathway was accomplished in SBR to achieve enhanced biological nitrogen removal from seawater contained wastewater, which is used to flush toilet, under relatively high salinity. Several parameters including salinity, temperature, pH, and NH4+-N loading rate were studied to evaluate their effects. The results indicate that at different salinity the nitrogen removal efficiency is relative to ammonia-nitrogen loading rate. The nitrogen removal efficiency reaches above 90% when the NH4+-N loading does not exceed 0.15 kg NH4+-N/kg MLSS d. With the salinity increasing, the ammonia-nitrogen loading rate should be lowered to obtain high removal efficiency. The evaluation of temperature effect shows that nitrogen removal efficiency is promoted twice when reaction temperature is elevated from 20 to 30 degrees C. Moderately high pH in the range of 7.5-8.5 has advantage to achieve effective nitrification-denitrification via nitrite, the process of which is caused by the selective inhibition of free ammonia (FA).
NASA Astrophysics Data System (ADS)
Desmiarti, Reni; Hazmi, Ariadi; Martynis, Munas; Sutopo, Ulung Muhammad; Li, Fusheng
2018-02-01
Pathogenic bacteria, such as total coliforms (TC), fecal coliforms (FC) and other coliforms (OC), were removed from groundwater by inductively coupled plasma system treatment in continuous flow experiments. The objective of this study is to investigate the effect of flowrate and frequency on the behavior of microorganisms in drinking water treatment using inductively coupled plasma system (ICPS). The results showed that after 120 minutes of ICPS treatment, the removal efficiency with respect to TC, FC and OC decreased with increasing flowrate. The removal efficiency of FC was achieved at 100% in all runs. Compared to FC, the removal efficiencies with respect to TC and FC were lower than those with respect to TC and OC in the following order: FC >OC> TC. The disinfection yield of TC and OC significantly increased when the removal efficiency increased. The electromagnetic flux varied from 8.08±0.46 to 10.54±0.19 W/cm2. The results in the present work can be used to design a new technology for drinking water treatment to remove all pathogenic bacteria without using hazardous chemicals.
Role of robotics in managing mesh and suture complications of prior pelvic organ prolapse surgery.
Wilkinson, Michael N; O'Sullivan, Orfhlaith E; O'Reilly, Barry A
2017-03-01
Robotic surgery is proving essential in providing a minimally invasive approach to complex urogynaecological cases. This video highlights the diversity and complexity of cases performed using the robot-assisted approach. The robot-assisted approach was utilised for excellent effect in two complex urogynaecological cases. In the first case the entire left arm of an intravesically placed TVT was removed using a combined vaginal and robotic approach. The second case involved removing four paravaginal sutures, one of which breeched the bladder and was encrusted with calculus. These were placed during a laparoscopic paravaginal repair 2 years previously. She had a concomitant vaginal hysterectomy, Mc Calls culdoplasty and anterior wall repair. The robot-assisted approach allows for excellent access to the pelvis and retropubic space facilitating the surgical management of complex urogynaecology cases.
Removal of Cu(II) from acidic electroplating effluent by biochars generated from crop straws.
Tong, Xuejiao; Xu, Renkou
2013-04-01
The removal efficiency of copper (Cu(II)) from an actual acidic electroplating effluent by biochars generated from canola, rice, soybean and peanut straws was investigated. The biochars simultaneously removed Cu(II) from the effluent, mainly through the mechanisms of adsorption and precipitation, and neutralized its acidity. The removal efficiency of Cu(II) by the biochars followed the order: peanut straw char > soybean straw char > canola straw char > rice straw char > a commercial activated carbonaceous material, which is consistent with the alkalinity of the biochars. The pH of the effluent was a key factor determining the removal efficiency of Cu(II) by biochars. Raising the initial pH of the effluent enhanced the removal of Cu(II) from it. The optimum pyrolysis temperature was 400 degrees C for producing biochar from crop straws for acidic wastewater treatment, and the optimum reaction time was 8 hr.
Yuan, Rongfang; Zhou, Beihai; Ma, Li
2014-01-01
In this work, activated carbon (AC)-supported TiO2 containing 1.0% (mass percent) of 1.0 at.% (atomic percent) Fe(3+)-doped TiO2 nanotubes (Fe-TNTs) were successfully synthesized. The catalyst was used to effectively decompose toluene in water under O3/UV conditions, and some properties including the morphology, X-ray photoelectron spectroscopy, X-ray diffraction patterns, specific surface area and UV-visible diffuse reflectance spectroscopy were analyzed. A removal efficiency of 90.7% was achieved in the presence of fresh AC-supported Fe-TNTs calcined at 550 °C, with a pseudo-first-order rate constant of 0.038/min. The removal efficiency of toluene was reduced when the catalysts were repeatedly used, since the amount of adsorption sites of the supporting substrates decreased. However, even after AC-supported catalyst was used four times, the removal efficiency of toluene was still sufficient in water treatment. The enhanced photocatalytic activity of AC-supported Fe-TNTs was related to the synergistic effect of AC adsorption and Fe-TNTs photocatalytic ozonation. The water from a petrochemical company in China was used to obtain the removal efficiency of the pollutants, and the toluene and total organic carbon removal efficiencies were 69.9% and 58.3%, respectively.
Guvenc, Senem Yazici; Okut, Yusuf; Ozak, Mert; Haktanir, Birsu; Bilgili, Mehmet Sinan
2017-02-01
In this study, process parameters in chemical oxygen demand (COD) and turbidity removal from metal working industry (MWI) wastewater were optimized by electrocoagulation (EC) using aluminum, iron and steel electrodes. The effects of process variables on COD and turbidity were investigated by developing a mathematical model using central composite design method, which is one of the response surface methodologies. Variance analysis was conducted to identify the interaction between process variables and model responses and the optimum conditions for the COD and turbidity removal. Second-order regression models were developed via the Statgraphics Centurion XVI.I software program to predict COD and turbidity removal efficiencies. Under the optimum conditions, removal efficiencies obtained from aluminum electrodes were found to be 76.72% for COD and 99.97% for turbidity, while the removal efficiencies obtained from iron electrodes were found to be 76.55% for COD and 99.9% for turbidity and the removal efficiencies obtained from steel electrodes were found to be 65.75% for COD and 99.25% for turbidity. Operational costs at optimum conditions were found to be 4.83, 1.91 and 2.91 €/m 3 for aluminum, iron and steel electrodes, respectively. Iron electrode was found to be more suitable for MWI wastewater treatment in terms of operational cost and treatment efficiency.
Jin, Zhan; He, Yin; Xu, Xuan; Zheng, Xiang-yong
2017-01-01
There are two biological systems available for removing phosphorus from waste water, conventional phosphorus removal (CPR) and denitrifying phosphorus removal (DPR) systems, and each is characterized by the type of sludge used in the process. In this study, we compared the characteristics associated with the efficiency of carbon utilization between CPR and DPR sludge using acetate as a carbon source. For DPR sludge, the heat emitted during the phosphorus release and phosphorus uptake processes were 45.79 kJ/mol e- and 84.09 kJ/mol e-, respectively. These values were about 2 fold higher than the corresponding values obtained for CPR sludge, suggesting that much of the energy obtained from the carbon source was emitted as heat. Further study revealed a smaller microbial mass within the DPR sludge compared to CPR sludge, as shown by a lower sludge yield coefficient (0.05 gVSS/g COD versus 0.36 gVSS/g COD), a result that was due to the lower energy capturing efficiency of DPR sludge according to bioenergetic analysis. Although the efficiency of anoxic phosphorus removal was only 39% the efficiency of aerobic phosphorus removal, the consumption of carbon by DPR sludge was reduced by 27.8% compared to CPR sludge through the coupling of denitrification with dephosphatation. PMID:29065157
Degradation of caffeine by conductive diamond electrochemical oxidation.
Indermuhle, Chloe; Martín de Vidales, Maria J; Sáez, Cristina; Robles, José; Cañizares, Pablo; García-Reyes, Juan F; Molina-Díaz, Antonio; Comninellis, Christos; Rodrigo, Manuel A
2013-11-01
The use of Conductive-Diamond Electrochemical Oxidation (CDEO) and Sonoelectrochemical Oxidation (CDSEO) has been evaluated for the removal of caffeine of wastewater. Effects of initial concentration, current density and supporting electrolyte on the process efficiency are assessed. Results show that caffeine is very efficiently removed with CDEO and that depletion of caffeine has two stages depending on its concentration. At low concentrations, opposite to what it is expected in a mass-transfer controlled process, the efficiency increases with current density very significantly, suggesting a very important role of mediated oxidation processes on the removal of caffeine. In addition, the removal of caffeine is faster than TOC, indicating the formation of reaction intermediates. The number and relative abundance of them depend on the operating conditions and supporting electrolyte used. In chloride media, removal of caffeine is faster and more efficiently, although the occurrence of more intermediates takes place. CDSEO does not increase the efficiency of caffeine removal, but it affects to the formation of intermediates. A detailed characterization of intermediates by liquid chromatography time-of-flight mass spectrometry seems to indicate that the degradation of caffeine by CDEO follows an oxidation pathway similar to mechanism proposed by other advanced oxidation processes. Copyright © 2013 Elsevier Ltd. All rights reserved.
Yang, Lu; Wang, Fazhou; Shu, Chang; Liu, Peng; Zhang, Wenqin; Hu, Shuguang
2016-01-01
The absorption ability and photocatalytic activity of photocatalytic materials play important roles in improving the pollutants removal effects. Herein, we reported a new kind of photocatalytic material, which was synthesized by simultaneously designing hierarchical porous magnesian (PM) substrate and TiO2 catalyst modification. Particularly, PM substrate could be facilely prepared by controlling its crystal phase (Phase 5, Mg3Cl(OH)5·4H2O), while Ag/AgCl particles modification of TiO2 could be achieved by in situ ion exchange between Ag+ and above crystal Phase. Physiochemical analysis shows that Ag/AgCl/TiO2/PM material has higher visible and ultraviolet light absorption response, and excellent gas absorption performance compared to other controls. These suggested that Ag/AgCl/TiO2/PM material could produce more efficient photocatalytic effects. Its photocatalytic reaction rate was 5.21 and 30.57 times higher than that of TiO2/PM and TiO2/imporous magnesian substrate, respectively. Thus, this material and its intergration synthesis method could provide a novel strategy for high-efficiency application and modification of TiO2 photocatalyst in engineering filed. PMID:26883972
Integrated anaerobic/aerobic biological treatment for intensive swine production.
Bortone, Giuseppe
2009-11-01
Manure processing could help farmers to effectively manage nitrogen (N) surplus load. Many pig farms have to treat wastewater. Piggery wastewater treatment is a complex challenge, due to the high COD and N concentrations and low C/N ratio. Anaerobic digestion (AD) could be a convenient pre-treatment, particularly from the energetic view point and farm income, but this causes further reduction of C/N ratio and makes denitrification difficult. N removal can only be obtained integrating anaerobic/aerobic treatment by taking into account the best use of electron donors. Experiences gained in Italy during development of integrated biological treatment approaches for swine manure, from bench to full scale, are reported in this paper. Solid/liquid separation as pre-treatment of raw manure is an efficient strategy to facilitate liquid fraction treatment without significantly lowering C/N ratio. In Italy, two full scale SBRs showed excellent efficiency and reliability. Current renewable energy policy and incentives makes economically attractive the application of AD to the separated solid fraction using high solid anaerobic digester (HSAD) technology. Economic evaluation showed that energy production can reduce costs up to 60%, making sustainable the overall treatment.
Piezoelectric Nanoparticle-Polymer Composite Materials
NASA Astrophysics Data System (ADS)
McCall, William Ray
Herein we demonstrate that efficient piezoelectric nanoparticle-polymer composite materials can be synthesized and fabricated into complex microstructures using sugar-templating methods or optical printing techniques. Stretchable foams with excellent tunable piezoelectric properties are created by incorporating sugar grains directly into polydimethylsiloxane (PDMS) mixtures containing barium titanate (BaTiO3 -- BTO) nanoparticles and carbon nanotubes (CNTs), followed by removal of the sugar after polymer curing. Porosities and elasticity are tuned by simply adjusting the sugar/polymer mass ratio and the electrical performance of the foams showed a direct relationship between porosity and the piezoelectric outputs. User defined 2D and 3D optically printed piezoelectric microstructures are also fabricated by incorporating BTO nanoparticles into photoliable polymer solutions such as polyethylene glycol diacrylate (PEGDA) and exposing to digital optical masks that can be dynamically altered. Mechanical-to-electrical conversion efficiency of the optically printed composite is enhanced by chemically altering the surface of the BTO nanoparticles with acrylate groups which form direct covalent linkages with the polymer matrix under light exposure. Both of these novel materials should find exciting uses in a variety of applications including energy scavenging platforms, nano- and microelectromechanical systems (NEMS/MEMS), sensors, and acoustic actuators.
An, Junjian; Huang, Mengxuan; Wang, Mengling; Chen, Jiali; Wang, Peng
2018-04-12
Fe-doped NaBiO 3 nanoscaled compounds were prepared by hydrothermal method and evaluated as a highly efficient photo-Fenton-like catalyst under visible light irradiation. The Fe-doped NaBiO 3 compound had a specific surface area of 41.42 m 2 g -1 , which is considerably larger than that of NaBiO 3 nanoparticles (28.81 m 2 g -1 ). The compound exhibited an excellent visible light-Fenton-like catalysis activity, which is influenced by the iron content of the compound and the pH value of the solution. Under the optimal conditions, the Fe-doped NaBiO 3 compound led to fast degradation of Nonylphenol with an apparent rate constant of 5.71 × 10 -2 min -1 , which was 8.23-fold of that achieved by using NaBiO 3 . The significantly enhanced visible light-Fenton-like catalytic property of the Fe-doped NaBiO 3 was attributed to the large surface area and the high adsorption capacity of the compound, and the Fenton catalytic ability of iron in the compound.
DNA damage induced by hydroquinone can be prevented by fungal detoxification.
Pereira, Pedro; Enguita, Francisco J; Ferreira, João; Leitão, Ana Lúcia
2014-01-01
Hydroquinone is a benzene metabolite with a wide range of industrial applications, which has potential for widespread human exposure; however, the toxicity of hydroquinone on human cells remains unclear. The aims of this study are to investigate the cytotoxicity and genotoxicity of hydroquinone in human primary fibroblasts and human colon cancer cells (HCT116). Low doses of hydroquinone (227-454 μM) reduce the viability of fibroblasts and HCT116 cells, determined by resazurin conversion, and induce genotoxic damage (DNA strand breaks), as assessed by alkaline comet assays. Bioremediation may provide an excellent alternative to promote the degradation of hydroquinone, however few microorganisms are known that efficiently degrade it. Here we also investigate the capacity of a halotolerant fungus, Penicillium chrysogenum var. halophenolicum , to remove hydroquinone toxicity under hypersaline condition. The fungus is able to tolerate high concentrations of hydroquinone and can reverse these noxious effects via degradation of hydroquinone to completion, even when the initial concentration of this compound is as high as 7265 μM. Our findings reveal that P. chrysogenum var. halophenolicum efficiently degrade hydroquinone under hypersaline conditions, placing this fungus among the best candidates for the detoxification of habitats contaminated with this aromatic compound.
Cerminati, Sebastián; Paoletti, Luciana; Peirú, Salvador; Menzella, Hugo G; Castelli, María Eugenia
2018-06-16
βγ-crystallin has emerged as a superfamily of structurally homologous proteins with representatives across all domains of life. A major portion of this superfamily is constituted by microbial members. This superfamily has also been recognized as a novel group of Ca 2+ -binding proteins with a large diversity and variable properties in Ca 2+ binding and stability. We have recently described a new phosphatidylinositol phospholipase C from Lysinibacillus sphaericus (LS-PIPLC) which was shown to efficiently remove phosphatidylinositol from crude vegetable oil. Here, the role of the C-terminal βγ-crystallin domain of LS-PIPLC was analyzed in the context of the whole protein. A truncated protein in which the C-terminal βγ-crystallin domain was deleted (LS-PIPLC ΔCRY ) is catalytically as efficient as the full-length protein (LS-PIPLC). However, the thermal and chemical stability of LS-PIPLC ΔCRY are highly affected, demonstrating a stabilizing role for this domain. It is also shown that the presence of Ca 2+ increases the thermal and chemical stability of the protein both in aqueous media and in oil, making LS-PIPLC an excellent candidate for use in industrial soybean oil degumming.
Removal efficiency of nickel and lead from industrial wastewater using microbial desalination cell
NASA Astrophysics Data System (ADS)
Mirzaienia, Fariba; Asadipour, Ali; Jafari, Ahmad Jonidi; Malakootian, Mohammad
2017-11-01
Microbial desalination cell (MDC) is a new method of desalination. Its energy is supplied through microbial metabolism of organic materials. In this study, synthetic samples were provided with concentration of 25, 50, 75, 100 mg/L Ni and Pb. Removal efficiency of each metal was analyzed after 60, 90, 120 min, psychrophilic, mesophilic, thermophilic and 3-4, 4-5, 5-6 mg/L dissolved oxygen. Optimum conditions for removing Ni and Pb were achieved in 100, 4.5 and 4.6 mg/L dissolved oxygen, respectively, 26 °C and 120 min. Nickel and led were removed from wastewaters of Isfahan electroplating industry and steel company. The maximum removal efficiencies of Ni and Pb in real samples were 68.81 and 70.04%. MDC can be considered as a good choice for removing Ni and Pb from industrial wastewater. Due to microorganisms for decomposing organic material in municipal wastewater, metals from industrial wastewater can be removed simultaneously.
[Treatment of Urban Runoff Pollutants by a Multilayer Biofiltration System].
Wang, Xiao-lu; Zuo, Jian-e; Gan, Li-li; Xing, Wei; Miao, Heng-feng; Ruan, Wen-quan
2015-07-01
In order to control the non-point source pollution from road runoff in Wuxi City effectively, a multilayer biofiltration system was designed to remove a variety of pollutants according to the characteristics of road runoff in Wuxi, and the experimental research was carried out to study the effect on rainwater pollution purification. The results show that the system has a good performance on removing suspended solids (SS), organic pollutant (COD), nitrogen and phosphorus: all types of multilayer biofiltration systems have a high removal rate for SS, which can reach 90%. The system with activated carbon (GAC) has higher removal rates for COD and phosphorus. The system with zeolite (ZFM) has a relatively better removal efficiency for nitrogen. The addition of wood chips in the system can significantly improve the system efficiency for nitrogen removal. Between the two configurations of layered and distributed wood chips, configurations of distributed wood chips reach higher COD, phosphorus and nitrogen pollutants removal efficiencies since they can reduce the release of wood chips dissolution.
Hexavalent chromium removal by using synthesis of polyaniline and polyvinyl alcohol.
Riahi Samani, Majid; Ebrahimbabaie, Parisa; Vafaei Molamahmood, Hamed
2016-11-01
Over the past few years, heavy metals have been proved to be one of the most important contaminants in industrial wastewater. Chromium is one of these heavy metals, which is being utilized in several industries such as textile, finishing and leather industries. Since hexavalent chromium is highly toxic to human health, removal of it from the wastewater is essential for human safety. One of the techniques for removing chromium (VI) is the use of different adsorbents such as polyaniline. In this study, composites of polyaniline (PANi) were synthesized with various amounts of polyvinyl alcohol (PVA). The results showed that PANi/PVA removed around 76% of chromium at a pH of 6.5; the PVA has altered the morphology of the composites and increased the removal efficiency. Additionally, synthesis of 20 mg/L of PVA by PANi composite showed the best removal efficiency, and the optimal stirring time was calculated as 30 minutes. Moreover, the chromium removal efficiency was increased by decreasing the pH, initial chromium concentration and increasing stirring time.
Yi, Yuan-Rong; Han, Min-Fang
2012-07-01
The carbon dioxide (CO2) in flue gas was used to remove the sodium in the red mud (RM) , a kind of alkaline solid waste generated during alumina production. The reaction characteristics and mechanism of sodium removal by the synergistic action of CO2 and RM were studied with different medium pH, reaction time and temperature. It was demonstrated that the remove of sodium by RM was actually the result of the synergistic action of sodium-based solid waste in RM with the CO2-H2O and OH(-)-CO2 systems. The sodium removal efficiency was correlated with pH, reaction temperature and time. The characteristics of RM before and after sodium removal were analyzed using X-ray diffractometer (XRD) and scanning electron microscope (SEM), and the results showed that the alkaline materials in the red mud reacted with CO2 and the sodium content in solid phases decreased significantly after reaction. The sodium removal efficiency could reach up to 70% with scientific procedure. The results of this research will offer an efficient way for low-cost sodium removal.
Application of plant-based reed for potable water, in Tasik Chini, Pahang
NASA Astrophysics Data System (ADS)
Yasmin, H. A. M.; Idris, Mushrifah; Abdullah, Siti Rozaimah Syeikh
2016-11-01
Water from Tasik Chini has been used to run through a series of reed bed system to test for its use as potable water. This study used aquatic plants namely Lepironia articulata and Scirpus grossus which grows wild and abundant at Tasik Chini wetland as selected macrophyte to aid in the system. This study started with batch flow and free-surface flow (FSF) for 30 days. Result indicated that, L. articulate alone gave 76 % of removal efficiency in TSS and 86% in removal of E.coli number of colonies on the plate. This was higher than S. grossus and combination of S.grossus and L.articulata. However, tank combination of S. grossus and L. articulata gave 100% efficiency in removal color, and improved ph better. In trace element removal, L. articulata was also capable of removing arsenic and lead (Pb) at 34.8% and 64.2% respectively. While, S. grossus shows best efficient at removing cadmium (Cd), and manganese (Mn), which is 46.8 % and 75.6% respectively. Combination of S. grossus and L. articulata gave best removal percentage in removing iron (Fe) which was 74.3%.
Yang, Wu; Dong, Lili; Luo, Zhen; Cui, Xiaochun; Liu, Jiancong; Liu, Zhongmou; Huo, Mingxin
2014-04-01
To the best of our knowledge, little information is available on the combined use of ultrasound (US) and quartz sand (QS) in the removal of disinfection byproducts (DBPs) from drinking water. This study investigates the removal efficiency for 12 DBPs from drinking water by 20 kHz sonolytic treatment, QS adsorption, and their combination. Results indicate that DBPs with logKow≤1.12 could not be sonolysized; for logKow≥1.97, more than 20% removal efficiency was observed, but the removal efficiency was unrelated to logKow. DBPs containing a nitro group are more sensitive to US than those that comprise nitrile, hydrogen, and hydroxyl groups. Among the 12 investigated DBPs, 9 could be adsorbed by QS adsorption. The adsorption efficiency ranged from 12% for 1,1-dichloro-2-propanone to 80% for trichloroacetonitrile. A synergistic effect was found between the US and QS on DBPs removal, and all the 12 DBPs could be effectively removed by the combined use of US and QS. In the presence of US, part of the QS particles were corroded into small particles which play a role in increasing the number of cavitation bubbles and reducing cavitation bubble size and then improve the removal efficiency of DBPs. On the other hand, the presence of US enhances the DBP mass transfer rate to cavitation bubbles and quartz sand. In addition, sonolytic treatment led to a slight decrease of pH, and TOC values decreased under all the three treatment processes. Copyright © 2013 Elsevier Ltd. All rights reserved.
Xu, Congbin; Jiao, Chunlei; Yao, Ruihua; Lin, Aijun; Jiao, Wentao
2018-02-01
The cleaning-up of viscous oil spilled in ocean is a global challenge, especially in Bohai, due to its slow current movement and poor self-purification capacity. Frequent oil-spill accidents not only cause severe and long-term damages to marine ecosystems, but also lead to a great loss of valuable resources. To eliminate the environmental pollution of oil spills, an efficient and environment-friendly oil-recovery approach is necessary. In this study, 1 expanded graphite (EG) modified by CTAB-KBr/H 3 PO 4 was synthesized via composite intercalation agents of CTAB-KBr and natural flake graphite, followed by the activation of phosphoric acid at low temperature. The resultant modified expanded graphite (M-EG) obtained an interconnected and continuous open microstructure with lower polarity surface, more and larger pores, and increased surface hydrophobicity. Due to these characteristics, M-EG exhibited a superior adsorption capacity towards marine oil. The saturated adsorption capacities of M-EG were as large as 7.44 g/g for engine oil, 6.12 g/g for crude oil, 5.34 g/g for diesel oil and 4.10 g/g for gasoline oil in 120min, exceeding the capacity of pristine EG. Furthermore, M-EG maintained good removal efficiency under different adsorption conditions, such as temperature, oil types, and sodium salt concentration. In addition, oils sorbed into M-EG could be recovered either by a simple compression or filtration-drying treatment with a recovery ratio of 58-83%. However, filtration-drying treatment shows better performance in preserving microstructures of M-EG, which ensures the adsorbents can be recycled several times. High removal capability, fast adsorption efficiency, excellent stability and good recycling performance make M-EG an ideal candidate for treating marine oil pollution in practical application. Copyright © 2017 Elsevier Ltd. All rights reserved.
Electrolytic ammonia removal and current efficiency by a vermiculite-packed electrochemical reactor
Li, Liang; Yao, Ji; Fang, Xueyou; Huang, Yuanxing; Mu, Yan
2017-01-01
The ammonia removal as well as the current efficiency during electrolysis was investigated by using a vermiculite-packed electrochemical reactor under continuous mode. Experimental results showed that adsorption of ammonia by vermiculite and electrolytic desorption of ammonia simultaneously existed in the reactor, leading to 89% removal of initial 30 mg N/L ammonia and current efficiency of 25% under the condition of 2.0 A, 6.0 min hydraulic retention time with 300 mg Cl/L chloride as the catalyst. The ammonia removal capacity had a linear relationship with the products of hydraulic retention time, current and chloride concentration within experimental conditions. The treatment results of secondary effluent indicated that 29.9 mg N/L ammonia can be reduced to 4.6 mg N/L with 72% removal of total nitrogen and a current efficiency of 23%, which was 2% less than synthetic wastewater due to the reducing components in the real wastewater. PMID:28102340
Removal of bisphenol A (BPA) in a nitrifying system with immobilized biomass.
Zielińska, Magdalena; Cydzik-Kwiatkowska, Agnieszka; Bernat, Katarzyna; Bułkowska, Katarzyna; Wojnowska-Baryła, Irena
2014-11-01
The potential for bisphenol A (BPA) removal by mixed consortia of immobilized microorganisms with high nitrification activity was investigated with BPA concentrations in the influent from 2.5 to 10.0 mg/L. The presence of BPA limited ammonium oxidation; nitrification efficiency decreased from 91.2±1.3% in the control series to 47.4±9.4% when BPA concentration in wastewater was the highest. The efficiency of BPA removal rose from 87.1±5.5% to 92.9±2.9% with increased BPA concentration in the influent. Measurement of oxygen uptake rates by biomass exposed to BPA showed that BPA was mainly removed by heterotrophic bacteria. A strong negative correlation between the BPA removal efficiency and nitrification efficiency indicated the limited contribution of ammonia-oxidizing bacteria (AOB) to BPA biodegradation. Exposure of biomass to BPA changed the quantity and diversity of AOB in the biomass as shown by real-time PCR and denaturing gradient gel electrophoresis. Copyright © 2014 Elsevier Ltd. All rights reserved.
Lab-scale investigation on remediation of diesel-contaminated aquifer using microwave energy.
Falciglia, Pietro P; Maddalena, Riccardo; Mancuso, Giuseppe; Messina, Valeria; Vagliasindi, Federico G A
2016-02-01
Aquifer contamination with diesel fuel is a worldwide environmental problem, and related available remediation technologies may not be adequately efficient, especially for the simultaneous treatment of both solid and water phases. In this paper, a lab-scale 2.45 GHz microwave (MW) treatment of an artificially diesel-contaminated aquifer was applied to investigate the effects of operating power (160, 350 and 500 W) and time on temperature profiles and contaminant removal from both solid and water phases. Results suggest that in diesel-contaminated aquifer MW remediation, power significantly influences the final reachable temperature and, consequently, contaminant removal kinetics. A maximum temperature of about 120 °C was reached at 500 W. Observed temperature values depended on the simultaneous irradiation of both aquifer grains and groundwater. In this case, solid phase heating is limited by the maximum temperature that interstitial water can reach before evaporation. A minimal residual diesel concentration of about 100 mg kg(-1) or 100 mg L(-1) was achieved by applying a power of 500 W for a time of 60 min for the solid or water phase, respectively. Measured residual TPH fractions showed that MW heating resulted in preferential effects of the removal of different TPH molecular weight fractions and that the evaporation-stripping phenomena plays a major role in final contaminant removal processes. The power low kinetic equation shows an excellent fit (r(2) > 0.993) with the solid phase residual concentration observed for all the powers investigated. A maximum diesel removal of 88 or 80% was observed for the MW treatment of the solid or water phase, respectively, highlighting the possibility to successfully and simultaneously remediate both the aquifer phases. Consequently, MW, compared to other biological or chemical-physical treatments, appears to be a better choice for the fast remediation of diesel-contaminated aquifers. Copyright © 2015 Elsevier Ltd. All rights reserved.
Stripping methods studies for HVOF WC-10Co-4Cr coating removal
NASA Astrophysics Data System (ADS)
Menini, Richard; Salah, Nihad Ben; Nciri, Rachid
2004-04-01
The use of high-velocity oxyfuel (HVOF) cermet coatings is considered to be a valuable and innovative alternative technology to replace Cr(VI) electroplating. Among others, a WC-10Co-4Cr coating is one of the best choices for landing gear components due to its excellent tribology and corrosion properties. The stripping process of such a cermet coating was studied due to its importance for the repair and overhaul of landing gear components. Stripping solutions fulfill the following criteria: keep substrate integrity; exhibit a high strip rate (SR); lead to uniform dissolution; show no galvanic corrosion; and be environmentally friendly. Three different high-strength steel substrates (4340, 300M, and Aermet100) were studied. Five different stripping solutions were selected for the electrochemical study. Only three met the targeted criteria: the meta-nitrobenzane sulfonate-sodium cyanide solution; the Rochelle salt; and a commercial nickel stripper. It was found that the process must be electrolytic, and that ultrasonic agitation is needed to enhance the overall mass transport and removal of WC particles and metallic matrix residues. When choosing the most efficient solution and conditions, the SR was found to be as high as 162 µm h-1, which is a very acceptable SR for productivity sake.
Electrospun AOPAN/RC blend nanofiber membrane for efficient removal of heavy metal ions from water.
Feng, Quan; Wu, Dingsheng; Zhao, Yong; Wei, Anfang; Wei, Qufu; Fong, Hao
2018-02-15
In this study, an innovative nano-material was prepared, which was ultilized to removal of heavy metal ions from wastewater. Polyacrylonitrile/cellulose acetate (PAN/CA) composite nanofibrous membranes were generated by the electronspinning technique first, and then amidoxime ployarcylonitrile/regenerate cellulose (AOPAN/RC) composite nanofibrous membranes were prepared by combining hydrolysis and amidoximation modification. The modification of composite nanofibers (AOPAN/RC) were consequently used in heavy metal ions adsorption. The characterizations of various different nanofibers were analyzed using scanning electron microscopy, Fourier transform infrared spectroscopy, surface area and pore size distribution analyzer and energy dispersive X-ray spectroscopy. Meantime, the adsorption equilibrium studies were studied. In addition, the saturation adsorption amount of nanofibrous membranes (at 25°C) for Fe(III), Cu(II) and Cd(II) of 7.47, 4.26 and 1.13mmolg -1 , respectively. The effects of pH value of solution, adsorption time and ions concentration on adsorption capacity were also investigated. Furthermore, the composite nanofibrous membranes after five times consecutive adsorption and desorption tests, the desorption rate of the Fe(III), Cu(II) and Cd(II) mental ions maintained more than 80% of their first desorption rate, AOPAN/RC composite nanofibrous reflected excellent resuability. Copyright © 2017 Elsevier B.V. All rights reserved.
Industrial wastewater advanced treatment via catalytic ozonation with an Fe-based catalyst.
Li, Xufang; Chen, Weiyu; Ma, Luming; Wang, Hongwu; Fan, Jinhong
2018-03-01
An Fe-based catalyst was used as a heterogeneous catalyst for the ozonation of industrial wastewater, and key operational parameters (pH and catalyst dosage) were studied. The results indicated that the Fe-based catalyst significantly improved the mineralization of organic pollutants in wastewater. TOC (total organic carbon) removal was high, at 78.7%, with a catalyst concentration of 200 g/L, but only 31.6% with ozonation alone. The Fe-based catalyst significantly promoted ozone decomposition by 70% in aqueous solution. Hydroxyl radicals (·OH) were confirmed to be existed directly via EPR (electron paramagnetic resonance) experiments, and ·OH were verified to account for about 34.4% of TOC removal with NaHCO 3 as a radical scavenger. Through characterization by SEM-EDS (field emission scanning electron microscope with energy-dispersive spectrometer), XRD (X-ray powder diffraction) and XPS (X-ray photoelectron spectroscopy), it was deduced that FeOOH on the surface of the catalyst was the dominant contributor to the catalytic efficiency. The catalyst was certified as having good stability and excellent reusability based on 50 successive operations and could be used as a filler simultaneously. Thereby, it is a promising catalyst for practical industrial wastewater advanced treatment. Copyright © 2017 Elsevier Ltd. All rights reserved.
Falah, Mahroo; MacKenzie, Kenneth J D; Knibbe, Ruth; Page, Samuel J; Hanna, John V
2016-11-15
New photoactive composites to efficiently remove organic dyes from water are reported. These consist of Cu2O/TiO2 nanoparticles in a novel inorganic geopolymer matrix modified by a large tertiary ammonium species (cetyltrimethylammonium bromide, CTAB) whose presence in the matrix is demonstrated by FTIR spectroscopy. The CTAB does not disrupt the tetrahedral geopolymer structural silica and alumina units as demonstrated by (29)Si and (27)Al MAS NMR spectroscopy. SEM/EDS, TEM and BET measurements suggest that the Cu2O/TiO2 nanoparticles are homogenously distributed on the surface and within the geopolymer pores. The mechanism of removal of methylene blue (MB) dye from solution consists of a combination of adsorption (under dark conditions) and photodegradation (under UV radiation). MB adsorption in the dark follows pseudo second-order kinetics and is described by Freundlich-Langmuir type isotherms. The performance of the CTAB-modified geopolymer based composites is superior to composites based on unmodified geopolymer hosts, the most effective composite containing 5wt% Cu2O/TiO2 in a CTAB-modified geopolymer host. These composites constitute a new class of materials with excellent potential in environmental protection applications. Copyright © 2016 Elsevier B.V. All rights reserved.
Zhang, Tao; Zou, Hua; Ji, Minhui; Li, Xiaolin; Li, Liqiao; Tang, Tang
2014-02-01
Optimizing process parameters that affect the remediation time and power consumption can improve the treatment efficiency of the electrokinetic remediation as well as determine the cost of a remediation action. Lab-scale electrokinetic remediation of Pb-contaminated soils was investigated for the effect of complexant ethylenediaminetetraacetic acid (EDTA) and acetic acid and approaching anode on the removal efficiency of Pb. When EDTA was added to the catholyte, EDTA dissolved insoluble Pb in soils to form soluble Pb-EDTA complexes, increasing Pb mobility and accordingly removal efficiency. The removal efficiency was enhanced from 47.8 to 61.5 % when the EDTA concentration was increased from 0.1 to 0.2 M, showing that EDTA played an important role in remediation. And the migration rate of Pb was increased to 72.3 % when both EDTA and acetic acid were used in the catholyte. The "approaching anode electrokinetic remediation" process in the presence of both EDTA and acetic acid had a higher Pb-removal efficiency with an average efficiency of 83.8 %. The efficiency of electrokinetic remediation was closely related to Pb speciation. Exchangeable and carbonate-bounded Pb were likely the forms which could be removed. All results indicate that the approaching anode method in the presence of EDTA and acetic acid is an advisable choice for electrokinetic remediation of Pb-contaminated soil.
Kumar, Dinesh; Lee, Ahreum; Lee, Taegon; Lim, Manho; Lim, Dong-Kwon
2016-03-09
We report that reduced graphene-coated gold nanoparticles (r-GO-AuNPs) are excellent visible-light-responsive photocatalysts for the photoconversion of CO2 into formic acid (HCOOH). The wavelength-dependent quantum and chemical yields of HCOOH shows a significant contribution of plasmon-induced hot electrons for CO2 photoconversion. Furthermore, the presence and reduced state of the graphene layers are critical parameters for the efficient CO2 photoconversion because of the electron mobility of graphene. With an excellent selectivity toward HCOOH (>90%), the quantum yield of HCOOH using r-GO-AuNPs is 1.52%, superior to that of Pt-coated AuNPs (quantum yield: 1.14%). This indicates that r-GO is a viable alternative to platinum metal. The excellent colloidal stability and photocatalytic stability of r-GO-AuNPs enables CO2 photoconversion under more desirable reaction conditions. These results highlight the role of reduced graphene layers as highly efficient electron acceptors and transporters to facilitate the use of hot electrons for plasmonic photocatalysts. The femtosecond transient spectroscopic analysis also shows 8.7 times higher transport efficiency of hot plasmonic electrons in r-GO-AuNPs compared with AuNPs.
Giuliano, Antonella; Astolfi, Maria Luisa; Congedo, Rossana; Masotti, Andrea; Canepari, Silvia
2018-01-01
Recent studies have shown the potential of food waste materials as low cost adsorbents for the removal of heavy metals and toxic elements from wastewater. However, the adsorption experiments have been performed in heterogeneous conditions, consequently it is difficult to compare the efficiency of the individual adsorbents. In this study, the adsorption capacities of 12 food waste materials were evaluated by comparing the adsorbents’ efficiency for the removal of 23 elements from complex multi-element solutions, maintaining homogeneous experimental conditions. The examined materials resulted to be extremely efficient for the adsorption of many elements from synthetic multi-element solutions as well as from a heavy metal wastewater. The 12 adsorbent surfaces were analyzed by Fourier transform infrared spectroscopy and showed different types and amounts of functional groups, which demonstrated to act as adsorption active sites for various elements. By multivariate statistical computations of the obtained data, the 12 food waste materials were grouped in five clusters characterized by different elements’ removal efficiency which resulted to be in correlation with the specific adsorbents’ chemical structures. Banana peel, watermelon peel and grape waste resulted the least selective and the most efficient food waste materials for the removal of most of the elements. PMID:29495363
Massimi, Lorenzo; Giuliano, Antonella; Astolfi, Maria Luisa; Congedo, Rossana; Masotti, Andrea; Canepari, Silvia
2018-02-26
Recent studies have shown the potential of food waste materials as low cost adsorbents for the removal of heavy metals and toxic elements from wastewater. However, the adsorption experiments have been performed in heterogeneous conditions, consequently it is difficult to compare the efficiency of the individual adsorbents. In this study, the adsorption capacities of 12 food waste materials were evaluated by comparing the adsorbents' efficiency for the removal of 23 elements from complex multi-element solutions, maintaining homogeneous experimental conditions. The examined materials resulted to be extremely efficient for the adsorption of many elements from synthetic multi-element solutions as well as from a heavy metal wastewater. The 12 adsorbent surfaces were analyzed by Fourier transform infrared spectroscopy and showed different types and amounts of functional groups, which demonstrated to act as adsorption active sites for various elements. By multivariate statistical computations of the obtained data, the 12 food waste materials were grouped in five clusters characterized by different elements' removal efficiency which resulted to be in correlation with the specific adsorbents' chemical structures. Banana peel, watermelon peel and grape waste resulted the least selective and the most efficient food waste materials for the removal of most of the elements.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kim, Won-Seok; Nam, Seongsik; Chang, Seeun
Decontamination techniques proposed and used to remove Chalk River unidentified deposit (CRUD) in radioactive waste management. In cases of huge volumes of metal or radionuclides contaminated by CRUD, removal of CRUD by mechanical or chemical decontamination is difficult. An advanced electrokinetic process combined with chemical decontamination was applied to remove CRUD and experimentally evaluated. We used oxalic acid for CRUD removal, and cobalt (Co) released from the CRUD was transferred to the cathode in an electrokinetic reactor. Our results indicate that the combined system is efficient for CRUD removal with enhanced, efficiency by use of the cation exchange membrane andmore » zeolite.« less
Kim, Won-Seok; Nam, Seongsik; Chang, Seeun; ...
2017-08-13
Decontamination techniques proposed and used to remove Chalk River unidentified deposit (CRUD) in radioactive waste management. In cases of huge volumes of metal or radionuclides contaminated by CRUD, removal of CRUD by mechanical or chemical decontamination is difficult. An advanced electrokinetic process combined with chemical decontamination was applied to remove CRUD and experimentally evaluated. We used oxalic acid for CRUD removal, and cobalt (Co) released from the CRUD was transferred to the cathode in an electrokinetic reactor. Our results indicate that the combined system is efficient for CRUD removal with enhanced, efficiency by use of the cation exchange membrane andmore » zeolite.« less
Zhang, Li-Zhu; Chen, Xiao-Dong; Ma, Jun; Yu, Min; Li, Xin
2011-10-01
Phenol was selected as a model compound. Factors, such as Ca2+, tannic acid, dose of kaolinite, dose of manganese dioxide formed in situ and pH, were invested on phenol removal in the process of enhanced coagulation by manganese dioxide formed in situ. Results showed that the addition of Ca2+ is beneficial for phenol removal. In the range of Ca2+ varied from 0 to 1.0 mmol x L(-1), the efficiency of phenol removal was enhanced more than 10%. Tannic acid can enhance phenol removal significantly when they are coexisted in water. As tannic acid was added to 10 mg x L(-1), phenol removal can be increased about 30% and 50% in the process of coagulation by AlCl3 and enhanced coagulation by manganese dioxide formed in situ, respectively. The dose of coagulant can be reduced in the process of enhanced coagulation with the addition of manganese dioxide formed in situ. The point of 1 mg x L(-1) manganese dioxide formed in situ linked with 30 mg x L(-1) AlCl3 can have the same phenol removal efficiency as the addition of 50 mg x L(-1) AlCl3. In the range of pH varied from 5 to 9, phenol can be removed with the high efficiency in the process of enhanced coagulation by manganese dioxide formed in situ. While under the strong acid condition and strong basic condition, phenol has lower removal efficiency.
[Degradation of styrene by coupling ultraviolet and biofiltration].
Sha, Hao-Lei; Yang, Guo-Jing; Xia, Jing-Fen
2013-12-01
Purification of styrene by ultraviolet (UV)-biofiltration was studied in this paper. The light source and the biofilm carrier were ozone producing lamp at 185 nm and the peat, palm fiber, porous acticarbon, respectively. Styrene inlet concentration was controlled between 320-583 mg x m(-3), and the removal efficiency remained above 95% after stabilization. The UV converted styrene into more soluble and biodegradable intermediates, such as alcohol, aldehyde and acid, thus the performance of biofilter can be improved. In the stable operation stage, the variation of inlet concentration did not affect the removal efficiency when the total residence time (TRT) was long, however, the inlet concentration obviously affected the removal efficiency when the TRT decreased. The removal load of coupling system increased linearly with increasing inlet load, and the removal efficiency was higher than 95% under a TRT of 102 s. When TRT was 68 s and the inlet load was low, the variation of removal load complied with the law described above, but it gradually deviated from the straight line and tended to stabilized at a certain value when the inlet load became higher than 30 g x (m3 x h)(-). If considering the fluctuation of styrene concentration only, the contribution rate of ultraviolet photolysis to styrene removal was greater than that of the biofilter, and the removal effect could be restored on the fourth day, after closing the system for ten days and restarting.
Zhan, Xiao; Gao, Bao-yu; Liu, Bin; Xu, Chun-hua; Yue, Qin-yan
2010-05-01
Two types of inorganic polymer coagulants, polyferric chloride (PFC) and polyaluminum chloride (PAC), were chosen to treat the Yellow River water. Different dosages were investigated in order to investigate the turbidity, UV24, DOC and permanganate index removal efficiency and their coagulation mechanisms based on the Zeta potentials. The natural organic matter removal by the combination of coagulation and adsorption with powder activated carbon were analyzed based on different coagulant and adsorbent dosages and dosing orders. The effects of combination of coagulation and adsorption on the residual chlorine decay were analyzed. The results showed that the two coagulants had high turbidity removal efficiency ( > 90%). The UV254, DOC, permanganate index removal efficiency were 29.2%, 26.1% and 27.9% respectively for PAC coagulation and were 32.3%, 23.3% and 32.9% respectively for PFC. Electric neutralization played an important role in the PAC coagulation process while both adsorption bridging and electric neutralization performed when PFC was used. The removal percentage of organic matter increased with the increase coagulant and adsorbent. The adsorption after coagulation process gave the better UV254 and DOC removal efficiency than the coagulation after adsorption. The UV254 and DOC removal efficiency were 95.2% and 99.9% for PAC coagulation after adsorption and were 90.1% and 99.9% for PFC coagulation first. But adding powder activated carbon can improve floc settlement performance and maintained persistent disinfection effect.
Surface etching technologies for monocrystalline silicon wafer solar cells
NASA Astrophysics Data System (ADS)
Tang, Muzhi
With more than 200 GW of accumulated installations in 2015, photovoltaics (PV) has become an important green energy harvesting method. The PV market is dominated by solar cells made from crystalline silicon wafers. The engineering of the wafer surfaces is critical to the solar cell cost reduction and performance enhancement. Therefore, this thesis focuses on the development of surface etching technologies for monocrystalline silicon wafer solar cells. It aims to develop a more efficient alkaline texturing method and more effective surface cleaning processes. Firstly, a rapid, isopropanol alcohol free texturing method is successfully demonstrated to shorten the process time and reduce the consumption of chemicals. This method utilizes the special chemical properties of triethylamine, which can form Si-N bonds with wafer surface atoms. Secondly, a room-temperature anisotropic emitter etch-back process is developed to improve the n+ emitter passivation. Using this method, 19.0% efficient screen-printed aluminium back surface field solar cells are developed that show an efficiency gain of 0.15% (absolute) compared with conventionally made solar cells. Finally, state-of-the-art silicon surface passivation results are achieved using hydrogen plasma etching as a dry alternative to the classical hydrofluoric acid wet-chemical process. The effective native oxide removal and the hydrogenation of the silicon surface are shown to be the reasons for the excellent level of surface passivation achieved with this novel method.
NASA Astrophysics Data System (ADS)
Kar, Prasenjit; Sardar, Samim; Liu, Bo; Sreemany, Monjoy; Lemmens, Peter; Ghosh, Srabanti; Pal, Samir Kumar
2016-01-01
Here, we report a facile approach, by the photochemical reduction technique, for in situ synthesis of Au-reduced graphene oxide (Au-RGO) nanohybrids, which demonstrate excellent adsorption capacities and recyclability for a broad range of dyes. High-resolution transmission electron microscopy (HRTEM), X-ray diffraction (XRD), and X-ray photoelectron spectroscopy (XPS) data confirm the successful synthesis of Au-RGO nanohybrids. The effect of several experimental parameters (temperature and pH) variation can effectively control the dye adsorption capability. Furthermore, kinetic adsorption data reveal that the adsorption process follows a pseudo second-order model. The negative value of Gibbs free energy (ΔG0) confirms spontaneity while the positive enthalpy (ΔH0) indicates the endothermic nature of the adsorption process. Picosecond resolved fluorescence technique unravels the excited state dynamical processes of dye molecules adsorbed on the Au-RGO surface. Time resolved fluorescence quenching of Rh123 after adsorption on Au-RGO nanohybrids indicates efficient energy transfer from Rh123 to Au nanoparticles. A prototype device has been fabricated using Au-RGO nanohybrids on a syringe filter (pore size: 0.220 μm) and the experimental data indicate efficient removal of dyes from waste water with high recyclability. The application of this nanohybrid may lead to the development of an efficient reusable adsorbent in portable water purification.