Sample records for exceptional cold tolerance

  1. Transcriptome profiling of Vitis amurensis, an extremely cold-tolerant Chinese wild Vitis species, reveals candidate genes and events that potentially connected to cold stress.

    PubMed

    Xu, Weirong; Li, Ruimin; Zhang, Ningbo; Ma, Fuli; Jiao, Yuntong; Wang, Zhenping

    2014-11-01

    Vitis amurensis Rupr. is an exceptional wild-growing Vitis (grape) species that can safely survive a wide range of cold conditions, but the underlying cold-adaptive mechanism associated with gene regulation is poorly investigated. We have analyzed the physiochemical and transcriptomic changes caused by cold stress in a cold-tolerant accession, 'Heilongjiang seedling', of Chinese wild V. amurensis. We statistically determined that a total of 6,850 cold-regulated transcripts were involved in cold regulation, including 3,676 up-regulated and 3,174 down-regulated transcripts. A global survey of messenger RNA revealed that skipped exon is the most prevalent form of alternative spicing event. Importantly, we found that the total splicing events increased with the prolonged cold stress. We also identified thirty-eight major TF families that were involved in cold regulation, some of which were previously unknown. Moreover, a large number of candidate pathways for the metabolism or biosynthesis of secondary metabolites were found to be regulated by cold, which is of potential importance in coordinating cold tolerance with growth and development. Several heat shock proteins and heat shock factors were also detected to be intensively cold-regulated. Furthermore, we validated the expression profiles of 16 candidates using qRT-PCR to further confirm the accuracy of the RNA-seq data. Our results provide a genome-wide view of the dynamic changes in the transcriptome of V. amurensis, in which it is evident that various structural and regulatory genes are crucial for cold tolerance/adaptation. Moreover, our robust dataset advances our knowledge of the genes involved in the complex regulatory networks of cold stress and leads to a better understanding of cold tolerance mechanisms in this extremely cold-tolerant Vitis species.

  2. Genome wide transcriptional profile analysis of Vitis amurensis in response to cold stress

    USDA-ARS?s Scientific Manuscript database

    Grape is one of the most important fruit crops worldwide and is cultivated on all of the continents except Antarctica. However, low temperatures can limit the geographical locations and productivity of grapes. Vitis amurensis is a wild grapevine species with remarkable cold-tolerance, exceeding th...

  3. Cytokinin response factor 4 (CRF4) is induced by cold and involved in freezing tolerance.

    PubMed

    Zwack, Paul J; Compton, Margaret A; Adams, Cami I; Rashotte, Aaron M

    2016-03-01

    Cytokinin response factor 4 (CRF4) shows a short-term induction by cold (4 °C) that appears to play a role in non-acclimated freezing tolerance as seen in mutant and overexpression lines. Responses to abiotic stresses, such as cold stress, are critical to plant growth and optimal production. Examination of Arabidopsis cytokinin response factors (CRFs) showed transcriptional induction after exposure to cold (4 °C). In particular, CRF4 was strongly induced in both root and shoot tissues. As CRF4 is one of several CRFs not transcriptionally regulated by cytokinin, we further investigated its response to cold. Peak CRF4 induction occurred 6 h post cold exposure, after which expression was maintained at moderately elevated levels during extended cold and subsequent treatment recovery. Examination of CRF4 mutant and overexpression lines under standard (non-cold) conditions revealed little difference from WT. One exception was a small, but significant increase in primary root growth of overexpression plants (CRF4OX). Under cold conditions, the only phenotype observed was a reduction in the rate of germination of CRF4OX seeds. The pattern of CRF4 expression along with the lack of strong phenotype at 4 °C led us to hypothesize that cold induction of CRF4 could play a role in short-term cold acclimation leading to increased freeze tolerance. Examination of CRF4OX and crf4 plants exposed to freezing temperatures revealed mutants lacking expression of CRF4 were more sensitive to freezing, while CRF4OXs with increased levels CRF4 levels were more tolerant. Altered transcript expression of CBF and COR15a cold signaling pathway genes in crf4 mutant and overexpression lines suggest that CRF4 may be potentially connected to this pathway. Overall this indicates that CRF4 plays an important role in both cold response and freezing stress.

  4. Cold Tolerance of the Male Gametophyte during Germination and Tube Growth Depends on the Flowering Time

    PubMed Central

    Wagner, Johanna; Gastl, Evelyn; Kogler, Martin; Scheiber, Michaela

    2016-01-01

    In temperate climates, most plants flower during the warmer season of the year to avoid negative effects of low temperatures on reproduction. Nevertheless, few species bloom in midwinter and early spring despite severe and frequent frosts at that time. This raises the question of adaption of sensible progamic processes such as pollen germination and pollen tube growth to low temperatures. The performance of the male gametophyte of 12 herbaceous lowland species flowering in different seasons was examined in vitro at different test temperatures using an easy to handle testing system. Additionally, the capacity to recover after the exposure to cold was checked. We found a clear relationship between cold tolerance of the activated male gametophyte and the flowering time. In most summer-flowering species, pollen germination stopped between 1 and 5 °C, whereas pollen of winter and early spring flowering species germinated even at temperatures below zero. Furthermore, germinating pollen was exceptionally frost tolerant in cold adapted plants, but suffered irreversible damage already from mild sub-zero temperatures in summer-flowering species. In conclusion, male gametophytes show a high adaptation potential to cold which might exceed that of female tissues. For an overall assessment of temperature limits for sexual reproduction it is therefore important to consider female functions as well. PMID:28036058

  5. Conserved and narrow temperature limits in alpine insects: Thermal tolerance and supercooling points of the ice-crawlers, Grylloblatta (Insecta: Grylloblattodea: Grylloblattidae).

    PubMed

    Schoville, Sean D; Slatyer, Rachel A; Bergdahl, James C; Valdez, Glenda A

    2015-07-01

    For many terrestrial species, habitat associations and range size are dependent on physiological limits, which in turn may influence large-scale patterns of species diversity. The temperature range experienced by individuals is considered to shape the breadth of the thermal niche, with species occupying temporally and/or geographically stable climates tolerating a narrow temperature range. High-elevation environments experience large temperature fluctuations, with frequent periods below 0 °C, but Grylloblatta (Grylloblattodea: Grylloblattidae) occupy climatically stable microhabitats within this region. Here we test critical thermal limits and supercooling points for five Grylloblatta populations from across a large geographic area, to examine whether the stable microhabitats of this group are associated with a narrow thermal niche and assess their capacity to tolerate cold conditions. Thermal limits are highly conserved in Grylloblatta, despite substantial genetic divergence among populations spanning 1500 m elevation and being separated by over 500 km. Further, Grylloblatta show exceptionally narrow thermal limits compared to other insect taxa with little capacity to improve cold tolerance via plasticity. In contrast, upper thermal limits were significantly depressed by cold acclimation. Grylloblatta maintain coordinated movement until they freeze, and they die upon freezing. Convergence of the critical thermal minima, supercooling point and lower lethal limits point to adaptation to a cold but, importantly, constant thermal environment. These physiological data provide an explanation for the high endemism and patchy distribution of Grylloblatta, which relies on subterranean retreats to accommodate narrow thermal limits. These retreats are currently buffered from temperature fluctuations by snow cover, and a declining snowpack thus places Grylloblatta at risk of exposure to temperatures beyond its tolerance capacity. Copyright © 2015 Elsevier Ltd. All rights reserved.

  6. The effect of fasting and body reserves on cold tolerance in 2 pit-building insect predators.

    PubMed

    Scharf, Inon; Daniel, Alma; MacMillan, Heath Andrew; Katz, Noa

    2017-06-01

    Pit-building antlions and wormlions are 2 distantly-related insect species, whose larvae construct pits in loose soil to trap small arthropod prey. This convergent evolution of natural histories has led to additional similarities in their natural history and ecology, and thus, these 2 species encounter similar abiotic stress (such as periodic starvation) in their natural habitat. Here, we measured the cold tolerance of the 2 species and examined whether recent feeding or food deprivation, as well as body composition (body mass and lipid content) and condition (quantified as mass-to-size residuals) affect their cold tolerance. In contrast to other insects, in which food deprivation either enhanced or impaired cold tolerance, prolonged fasting had no effect on the cold tolerance of either species, which had similar cold tolerance. The 2 species differed, however, in how cold tolerance related to body mass and lipid content: although body mass was positively correlated with the wormlion cold tolerance, lipid content was a more reliable predictor of cold tolerance in the antlions. Cold tolerance also underwent greater change with ontogeny in wormlions than in antlions. We discuss possible reasons for this lack of effect of food deprivation on both species' cold tolerance, such as their high starvation tolerance (being sit-and-wait predators).

  7. TOLERANCE TIME OF EXPERIMENTAL THERMAL PAIN (COLD INDUCED) IN VOLUNTEERS.

    PubMed

    Vaid, V N; Wilkhoo, N S; Jain, A K

    1998-10-01

    Perception of thermal pain (cold induced) was studied in 106 volunteers from troops and civilians deployed in J & K. Thermal stimulus devised was "holding ice". Tolerance time of holding ice was taken to be a measure of thermal sensitivity, volunteers were classified based on their native areas, addiction habits and socio-economic status, out of 106 volunteers, 81 could & 25 could not hold ice over 10 min. Sixteen out of 40 from coastline States and 9 out of 66 from non-coast line States failed to hold ice over 10 min. In "below average" "average" and "high average" socio-economic groups, three out of 27, 19 out of 73 and 03 out of 6 failed to hold ice over 10 min respectively. Fifteen out of 64 from "addiction habit group" and 10 out of 42 from "no addiction habit group" failed to hold ice over 10 min. Statistically no classification used in the study revealed significant difference in "tolerance times" of volunteers except the one based on coastline and non-coastline States.

  8. Relationships of self-identified cold tolerance and cold-induced vasodilatation in the finger

    NASA Astrophysics Data System (ADS)

    Park, Joonhee; Lee, Joo-Young

    2016-04-01

    This study was conducted to investigate relationships of self-identified cold tolerance and cold-induced vasodilatation (CIVD) in the finger. Nine males and 34 females participated in the following 2 tests: a CIVD test and a self-reported survey. The CIVD test was conducted 30-min cold-water immersion (3.8 ± 0.3 °C) of the middle finger at an air temperature of 27.9 ± 0.1 °C. The self-reported questionnaire consisted of 28 questions about whole and local body cold and heat tolerances. By a cluster analysis on the survey results, the participants were divided into two groups: high self-identified cold tolerance (HSCT, n = 25) and low self-identified cold tolerance (LSCT, n = 18). LSCT had lower self-identified cold tolerance ( P < 0.001), preferred hot thermal stimulation ( P = 0.006), and wore heavier clothing during daily life ( P < 0.001) than HSCT. LSCT had significantly lower maximal finger temperatures ( T max) ( P = 0.040), smaller amplitude ( P = 0.029), and delayed onset time of CIVD ( P = 0.080) when compared to HSCT. Some questions examining the self-identified cold or heat tolerance had relationships with cold tolerance index, T max, and amplitude ( P < 0.1). These results indicate that self-identified cold tolerance classified through a standardized survey could be a good index to predict physiological cold tolerance.

  9. Relationships of self-identified cold tolerance and cold-induced vasodilatation in the finger.

    PubMed

    Park, Joonhee; Lee, Joo-Young

    2016-04-01

    This study was conducted to investigate relationships of self-identified cold tolerance and cold-induced vasodilatation (CIVD) in the finger. Nine males and 34 females participated in the following 2 tests: a CIVD test and a self-reported survey. The CIVD test was conducted 30-min cold-water immersion (3.8 ± 0.3 °C) of the middle finger at an air temperature of 27.9 ± 0.1 °C. The self-reported questionnaire consisted of 28 questions about whole and local body cold and heat tolerances. By a cluster analysis on the survey results, the participants were divided into two groups: high self-identified cold tolerance (HSCT, n = 25) and low self-identified cold tolerance (LSCT, n = 18). LSCT had lower self-identified cold tolerance (P < 0.001), preferred hot thermal stimulation (P = 0.006), and wore heavier clothing during daily life (P < 0.001) than HSCT. LSCT had significantly lower maximal finger temperatures (T max) (P = 0.040), smaller amplitude (P = 0.029), and delayed onset time of CIVD (P = 0.080) when compared to HSCT. Some questions examining the self-identified cold or heat tolerance had relationships with cold tolerance index, T max, and amplitude (P < 0.1). These results indicate that self-identified cold tolerance classified through a standardized survey could be a good index to predict physiological cold tolerance.

  10. The effects of cold acclimation on photosynthetic apparatus and the expression of COR14b in four genotypes of barley (Hordeum vulgare) contrasting in their tolerance to freezing and high-light treatment in cold conditions.

    PubMed

    Rapacz, Marcin; Wolanin, Barbara; Hura, Katarzyna; Tyrka, Miroslaw

    2008-04-01

    Cold acclimation modifies the balance of the energy absorbed and metabolized in the dark processes of photosynthesis, which may affect the expression of cold-regulated (COR) genes. At the same time, a gradual acclimation to the relatively high light conditions is observed, thereby minimizing the potential for photo-oxidative damage. As a result, the resistance to photoinhibition in the cold has often been identified as a trait closely related to freezing tolerance. Using four barley genotypes that differentially express both traits, the effect of cold acclimation on freezing tolerance and high-light tolerance was studied together with the expression of COR14b, one of the best-characterized barley COR genes. Plants were cold acclimated for 2 weeks at 2 degrees C. Freezing tolerance was studied by means of electrolyte leakage. Changes in photosynthetic apparatus and high-light tolerance were monitored by means of chlorophyll fluorescence. Accumulation of COR14b and some proteins important in photosynthetic acclimation to cold were studied with western analysis. COR14b transcript accumulation during cold acclimation was assessed with real-time PCR. Cold acclimation increased both freezing tolerance and high-light tolerance, especially when plants were treated with high light after non-lethal freezing. In all plants, cold acclimation triggered the increase in photosynthetic capacity during high-light treatment. In two plants that were characterized by higher high-light tolerance but lower freezing tolerance, higher accumulation of COR14b transcript and protein was observed after 7 d and 14 d of cold acclimation, while a higher transient induction of COR14b expression was observed in freezing-tolerant plants during the first day of cold acclimation. High-light tolerant plants were also characterized with a higher level of PsbS accumulation and more efficient dissipation of excess light energy. Accumulation of COR14b in barley seems to be important for resistance to combined freezing and high-light tolerance, but not for freezing tolerance per se.

  11. Gene expression analysis to understand cold tolerance in citrus

    USDA-ARS?s Scientific Manuscript database

    Citrus cultivars show a wide range of tolerance to cold temperatures. Lemons and limes are known to be sensitive to cold while certain mandarins and trifoliate oranges can endure severe winters. To understand the mechanism of cold tolerance in citrus, we selected three known cold-sensitive and three...

  12. An Overview of Signaling Regulons During Cold Stress Tolerance in Plants

    PubMed Central

    Pareek, Amit; Khurana, Ashima; Sharma, Arun K.; Kumar, Rahul

    2017-01-01

    Plants, being sessile organisms, constantly withstand environmental fluctuations, including low-temperature, also referred as cold stress. Whereas cold poses serious challenges at both physiological and developmental levels to plants growing in tropical or sub-tropical regions, plants from temperate climatic regions can withstand chilling or freezing temperatures. Several cold inducible genes have already been isolated and used in transgenic approach to generate cold tolerant plants. The conventional breeding methods and marker assisted selection have helped in developing plant with improved cold tolerance, however, the development of freezing tolerant plants through cold acclimation remains an unaccomplished task. Therefore, it is essential to have a clear understanding of how low temperature sensing strategies and corresponding signal transduction act during cold acclimation process. Herein, we synthesize the available information on the molecular mechanisms underlying cold sensing and signaling with an aim that the summarized literature will help develop efficient strategies to obtain cold tolerant plants. PMID:29204079

  13. Cold resistance depends on acclimation and behavioral caste in a temperate ant

    NASA Astrophysics Data System (ADS)

    Modlmeier, Andreas P.; Pamminger, Tobias; Foitzik, Susanne; Scharf, Inon

    2012-10-01

    Adjusting to low temperatures is important for animals living in cold environments. We studied the chill-coma recovery time in temperate ant workers ( Temnothorax nylanderi) from colonies collected in autumn and spring in Germany. We experimentally acclimated these ant colonies to cold temperatures followed by warm temperatures. As expected, cold-acclimated workers recovered faster from freezing temperatures, but subsequent heat acclimation did not change the short recovery times observed after cold acclimation. Hence, either heat acclimation improves cold tolerance, possibly as a general response to stress, or at least it does not negate enhanced cold tolerance following cold acclimation. Colonies collected in spring showed similar cold tolerance levels to cold-acclimated colonies in the laboratory. Next, we compared the chill-coma recovery time of different worker castes and found that exterior workers recovered faster than interior workers. This difference may be related to their more frequent exposure to cold, higher activity level, or distinct physiology. Interior workers were also heavier and showed a higher gaster-to-head ratio and thorax ratio compared to exterior workers. An obvious difference between exterior and interior workers is activity level, but we found no link between activity and cold tolerance. This suggests that physiology rather than behavioral differences could cause the increased cold tolerance of exterior workers. Our study reveals the importance of acclimation for cold tolerance under natural and standardized conditions and demonstrates differences in cold tolerance and body dimensions in monomorphic behavioral castes of an ant.

  14. Inducing Cold-Sensitivity in the Frigophilic Fly Drosophila montana by RNAi

    PubMed Central

    Cook, Nicola; Tournière, Océane; Sneddon, Tanya; Ritchie, Michael G.

    2016-01-01

    Cold acclimation is a critical physiological adaptation for coping with seasonal cold. By increasing their cold tolerance individuals can remain active for longer at the onset of winter and can recover more quickly from a cold shock. In insects, despite many physiological studies, little is known about the genetic basis of cold acclimation. Recently, transcriptomic analyses in Drosophila virilis and D. montana revealed candidate genes for cold acclimation by identifying genes upregulated during exposure to cold. Here, we test the role of myo-inositol-1-phosphate synthase (Inos), in cold tolerance in D. montana using an RNAi approach. D. montana has a circumpolar distribution and overwinters as an adult in northern latitudes with extreme cold. We assessed cold tolerance of dsRNA knock-down flies using two metrics: chill-coma recovery time (CCRT) and mortality rate after cold acclimation. Injection of dsRNAInos did not alter CCRT, either overall or in interaction with the cold treatment, however it did induced cold-specific mortality, with high levels of mortality observed in injected flies acclimated at 5°C but not at 19°C. Overall, injection with dsRNAInos induced a temperature-sensitive mortality rate of over 60% in this normally cold-tolerant species. qPCR analysis confirmed that dsRNA injection successfully reduced gene expression of Inos. Thus, our results demonstrate the involvement of Inos in increasing cold tolerance in D. montana. The potential mechanisms involved by which Inos increases cold tolerance are also discussed. PMID:27832122

  15. The negative effect of starvation and the positive effect of mild thermal stress on thermal tolerance of the red flour beetle, Tribolium castaneum

    NASA Astrophysics Data System (ADS)

    Scharf, Inon; Wexler, Yonatan; MacMillan, Heath Andrew; Presman, Shira; Simson, Eddie; Rosenstein, Shai

    2016-04-01

    The thermal tolerance of a terrestrial insect species can vary as a result of differences in population origin, developmental stage, age, and sex, as well as via phenotypic plasticity induced in response to changes in the abiotic environment. Here, we studied the effects of both starvation and mild cold and heat shocks on the thermal tolerance of the red flour beetle, Tribolium castaneum. Starvation led to impaired cold tolerance, measured as chill coma recovery time, and this effect, which was stronger in males than females, persisted for longer than 2 days but less than 7 days. Heat tolerance, measured as heat knockdown time, was not affected by starvation. Our results highlight the difficulty faced by insects when encountering multiple stressors simultaneously and indicate physiological trade-offs. Both mild cold and heat shocks led to improved heat tolerance in both sexes. It could be that both mild shocks lead to the expression of heat shock proteins, enhancing heat tolerance in the short run. Cold tolerance was not affected by previous mild cold shock, suggesting that such a cold shock, as a single event, causes little stress and hence elicits only weak physiological reaction. However, previous mild heat stress led to improved cold tolerance but only in males. Our results point to both hardening and cross-tolerance between cold and heat shocks.

  16. An apple NAC transcription factor negatively regulates cold tolerance via CBF-dependent pathway.

    PubMed

    An, Jian-Ping; Li, Rui; Qu, Feng-Jia; You, Chun-Xiang; Wang, Xiao-Fei; Hao, Yu-Jin

    2018-02-01

    Cold stress is an adverse stimulus that affects plant growth and development, and the C-repeat binding factor (CBF) cold-regulatory cascade has been regarded as a master regulator in the plant response to cold stress. Here, we showed that a NAC transcription factor modulated low-temperature tolerance. MdNAC029/MdNAP, an apple NAC gene was isolated and its role in regulating cold tolerance was investigated. MdNAC029 was responsive to low-temperature treatment, and over-expression of MdNAC029 reduced cold tolerance in apple calli and Arabidopsis. Furthermore, EMSA assays and transient expression assays demonstrated that MdNAC029 directly repressed the expression of MdCBF1 and MdCBF4 by binding to their promoters. Taken together, our data suggest that MdNAC029 functions as a negative regulator in regulating plant cold tolerance in a CBF-dependent manner, providing a deeper understanding of NAC transcription-factor-mediated cold tolerance. Copyright © 2017 Elsevier GmbH. All rights reserved.

  17. High cold tolerance through four seasons and all free-living stages in an ectoparasite.

    PubMed

    Härkönen, Laura; Kaitala, Arja; Kaunisto, Sirpa; Repo, Tapani

    2012-06-01

    Off-host stages of temperate parasites must cope with low temperatures. Cold tolerance is often highest in winter, as a result of diapause and cold acclimation, and low during the active summer stages. In some blood-feeding ectoparasites, offspring provisioning determines cold tolerance through all the non-feeding, off-host stages. Large size increases survival in the cold, but so far seasonal variation in within-female offspring size has not been associated with offspring cold tolerance. The deer ked (Lipoptena cervi) reproduces on cervids from autumn to spring. Newborn pupae drop off the host, facing frosts without any acclimation. We examined cold tolerance through 4 seasons and from birth to adulthood by means of short- and long-term frost exposure. We expected females to produce more tolerant offspring in winter than in spring. Large spring pupae survived prolonged frosts better than did small winter pupae. Thus more tolerant offspring were not produced when the temperature outside the host is at its lowest. Unexpectedly, the freezing points were -20 °C or below all year round. We showed that high cold tolerance is possible without acclimation regardless of life stage, which presumably correlates with other survival characteristics, such as the starvation resistance of free-living ectoparasites.

  18. Differential Modulation of Photosynthesis, Signaling, and Transcriptional Regulation between Tolerant and Sensitive Tomato Genotypes under Cold Stress

    PubMed Central

    Zhang, Junhong; Wang, Taotao; Li, Hanxia; Zhang, Yuyang; Yu, Chuying; Ye, Zhibiao

    2012-01-01

    The wild species Solanum habrochaites is more cold tolerant than the cultivated tomato (S. lycopersicum). To explore the mechanisms underlying cold tolerance of S. habrochaites, seedlings of S. habrochaites LA1777 introgression lines (ILs), as well as the two parents, were evaluated under low temperature (4°C). The IL LA3969 and its donor parent LA1777 were found to be more cold tolerant than the recurrent parent S. lycopersicum LA4024. The differences in physiology and global gene expression between cold-tolerant (LA1777 and LA3969) and -sensitive (LA4024) genotypes under cold stress were further investigated. Comparative transcriptome analysis identified 1613, 1456, and 1523 cold-responsive genes in LA1777, LA3969, and LA4024, respectively. Gene ontology (GO) term enrichment analysis revealed that more GO biological process terms were significantly enriched among the up-regulated genes in the two tolerant genotypes, whereas more biological processes were significantly repressed by cold stress in the sensitive one. A total of 92 genes with significant differential expression between tolerant and sensitive genotypes under cold stress were identified. Among these, many stress-related GO terms were significantly enriched, such as ‘response to stimulus’ and ‘response to stress’. Moreover, GO terms ‘response to hormone stimulus’, ‘response to reactive oxygen species (ROS)’, and ‘calcium-mediated signaling’ were also overrepresented. Several transcripts involved in hormone or ROS homeostasis were also differentially expressed. ROS, hormones, and calcium as signaling molecules may play important roles in regulating gene expression in response to cold stress. Moreover, the expression of various transcription factors, post-translational proteins, metabolic enzymes, and photosynthesis-related genes was also specifically modulated. These specific modifications may play pivotal roles in conferring cold tolerance in tomato. These results not only provide new insights into the molecular mechanisms of cold tolerance in tomato, but also provide potential candidate genes for genetic improvement. PMID:23226384

  19. 40 CFR 180.1291 - Cold pressed neem oil; exemption from the requirement of a tolerance.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 40 Protection of Environment 24 2011-07-01 2011-07-01 false Cold pressed neem oil; exemption from... FOOD Exemptions From Tolerances § 180.1291 Cold pressed neem oil; exemption from the requirement of a tolerance. Residues of the biochemical pesticide cold pressed neem oil are exempt from the requirement of a...

  20. 40 CFR 180.1291 - Cold pressed neem oil; exemption from the requirement of a tolerance.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 40 Protection of Environment 25 2013-07-01 2013-07-01 false Cold pressed neem oil; exemption from... FOOD Exemptions From Tolerances § 180.1291 Cold pressed neem oil; exemption from the requirement of a tolerance. Residues of the biochemical pesticide cold pressed neem oil are exempt from the requirement of a...

  1. 40 CFR 180.1291 - Cold pressed neem oil; exemption from the requirement of a tolerance.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 23 2010-07-01 2010-07-01 false Cold pressed neem oil; exemption from... FOOD Exemptions From Tolerances § 180.1291 Cold pressed neem oil; exemption from the requirement of a tolerance. Residues of the biochemical pesticide cold pressed neem oil are exempt from the requirement of a...

  2. 40 CFR 180.1291 - Cold pressed neem oil; exemption from the requirement of a tolerance.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 40 Protection of Environment 24 2014-07-01 2014-07-01 false Cold pressed neem oil; exemption from... FOOD Exemptions From Tolerances § 180.1291 Cold pressed neem oil; exemption from the requirement of a tolerance. Residues of the biochemical pesticide cold pressed neem oil are exempt from the requirement of a...

  3. 40 CFR 180.1291 - Cold pressed neem oil; exemption from the requirement of a tolerance.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 40 Protection of Environment 25 2012-07-01 2012-07-01 false Cold pressed neem oil; exemption from... FOOD Exemptions From Tolerances § 180.1291 Cold pressed neem oil; exemption from the requirement of a tolerance. Residues of the biochemical pesticide cold pressed neem oil are exempt from the requirement of a...

  4. Plasticity and local adaptation explain lizard cold tolerance.

    PubMed

    Card, Daren C; Schield, Drew R; Castoe, Todd A

    2018-05-01

    How does climate variation limit the range of species and what does it take for species to colonize new regions? In this issue of Molecular Ecology, Campbell-Staton et al. () address these broad questions by investigating cold tolerance adaptation in the green anole lizard (Anolis carolinensis) across a latitudinal transect. By integrating physiological data, gene expression data and acclimation experiments, the authors disentangle the mechanisms underlying cold adaptation. They first establish that cold tolerance adaptation in Anolis lizards follows the predictions of the oxygen- and capacity-limited thermal tolerance hypothesis, which states that organisms are limited by temperature thresholds at which oxygen supply cannot meet demand. They then explore the drivers of cold tolerance at a finer scale, finding evidence that northern populations are adapted to cooler thermal regimes and that both phenotypic plasticity and heritable genetic variation contribute to cold tolerance. The integration of physiological and gene expression data further highlights the varied mechanisms that drive cold tolerance adaptation in Anolis lizards, including both supply-side and demand-side adaptations that improve oxygen economy. Altogether, their work provides new insight into the physiological and genetic mechanisms underlying adaptation to new climatic niches and demonstrates that cold tolerance in northern lizard populations is achieved through the synergy of physiological plasticity and local genetic adaptation for thermal performance. © 2018 John Wiley & Sons Ltd.

  5. Identification and expression analysis of cold and freezing stress responsive genes of Brassica oleracea.

    PubMed

    Ahmed, Nasar Uddin; Jung, Hee-Jeong; Park, Jong-In; Cho, Yong-Gu; Hur, Yoonkang; Nou, Ill-Sup

    2015-01-10

    Cold and freezing stress is a major environmental constraint to the production of Brassica crops. Enhancement of tolerance by exploiting cold and freezing tolerance related genes offers the most efficient approach to address this problem. Cold-induced transcriptional profiling is a promising approach to the identification of potential genes related to cold and freezing stress tolerance. In this study, 99 highly expressed genes were identified from a whole genome microarray dataset of Brassica rapa. Blast search analysis of the Brassica oleracea database revealed the corresponding homologous genes. To validate their expression, pre-selected cold tolerant and susceptible cabbage lines were analyzed. Out of 99 BoCRGs, 43 were differentially expressed in response to varying degrees of cold and freezing stress in the contrasting cabbage lines. Among the differentially expressed genes, 18 were highly up-regulated in the tolerant lines, which is consistent with their microarray expression. Additionally, 12 BoCRGs were expressed differentially after cold stress treatment in two contrasting cabbage lines, and BoCRG54, 56, 59, 62, 70, 72 and 99 were predicted to be involved in cold regulatory pathways. Taken together, the cold-responsive genes identified in this study provide additional direction for elucidating the regulatory network of low temperature stress tolerance and developing cold and freezing stress resistant Brassica crops. Copyright © 2014 Elsevier B.V. All rights reserved.

  6. Effects of Starvation and Thermal Stress on the Thermal Tolerance of Silkworm, Bombyx mori: Existence of Trade-offs and Cross-Tolerances.

    PubMed

    Mir, A H; Qamar, A

    2017-09-27

    Organisms, in nature, are often subjected to multiple stressors, both biotic and abiotic. Temperature and starvation are among the main stressors experienced by organisms in their developmental cycle and the responses to these stressors may share signaling pathways, which affects the way these responses are manifested. Temperature is a major factor governing the performance of ectothermic organisms in ecosystems worldwide and, therefore, the thermal tolerance is a central issue in the thermobiology of these organisms. Here, we investigated the effects of starvation as well as mild heat and cold shocks on the thermal tolerance of the larvae of silkworm, Bombyx mori (Linnaeus). Starvation acted as a meaningful or positive stressor as it improved cold tolerance, measured as chill coma recovery time (CCRT), but, at the same time, it acted as a negative stressor and impaired the heat tolerance, measured as heat knockdown time (HKT). In the case of heat tolerance, starvation negated the positive effects of both mild cold as well as mild heat shocks and thus indicated the existence of trade-off between these stressors. Both mild heat and cold shocks improved the thermal tolerance, but the effects were more prominent when the indices were measured in response to a stressor of same type, i.e., a mild cold shock improved the cold tolerance more than the heat tolerance and vice versa. This improvement in thermal tolerance by both mild heat as well as cold shocks indicated the possibility of cross-tolerance between these stressors.

  7. Changes in extreme cold tolerance, membrane composition and cardiac transcriptome during the first day of thermal acclimation in the porcelain crab Petrolisthes cinctipes.

    PubMed

    Ronges, Daria; Walsh, Jillian P; Sinclair, Brent J; Stillman, Jonathon H

    2012-06-01

    Intertidal zone organisms can experience transient freezing temperatures during winter low tides, but their extreme cold tolerance mechanisms are not known. Petrolisthes cinctipes is a temperate mid-high intertidal zone crab species that can experience wintertime habitat temperatures below the freezing point of seawater. We examined how cold tolerance changed during the initial phase of thermal acclimation to cold and warm temperatures, as well as the persistence of cold tolerance during long-term thermal acclimation. Thermal acclimation for as little as 6 h at 8°C enhanced cold tolerance during a 1 h exposure to -2°C relative to crabs acclimated to 18°C. Potential mechanisms for this enhanced tolerance were elucidated using cDNA microarrays to probe for differences in gene expression in cardiac tissue of warm- and cold-acclimated crabs during the first day of thermal acclimation. No changes in gene expression were detected until 12 h of thermal acclimation. Genes strongly upregulated in warm-acclimated crabs represented immune response and extracellular/intercellular processes, suggesting that warm-acclimated crabs had a generalized stress response and may have been remodelling tissues or altering intercellular processes. Genes strongly upregulated in cold-acclimated crabs included many that are involved in glucose production, suggesting that cold acclimation involves increasing intracellular glucose as a cryoprotectant. Structural cytoskeletal proteins were also strongly represented among the genes upregulated in only cold-acclimated crabs. There were no consistent changes in composition or the level of unsaturation of membrane phospholipid fatty acids with cold acclimation, which suggests that neither short- nor long-term changes in cold tolerance are mediated by changes in membrane fatty acid composition. Overall, our study demonstrates that initial changes in cold tolerance are likely not regulated by transcriptomic responses, but that gene-expression-related changes in homeostasis begin within 12 h, the length of a tidal cycle.

  8. Differential gene expression profiling through transcriptome approach of Saccharum spontaneum L. under low temperature stress reveals genes potentially involved in cold acclimation.

    PubMed

    Selvarajan, Dharshini; Mohan, Chakravarthi; Dhandapani, Vignesh; Nerkar, Gauri; Jayanarayanan, Ashwin Narayan; Vadakkancherry Mohanan, Manoj; Murugan, Naveenarani; Kaur, Lovejot; Chennappa, Mahadevaiah; Kumar, Ravinder; Meena, Minturam; Ram, Bakshi; Chinnaswamy, Appunu

    2018-04-01

    Sugarcane ( Saccharum sp.) is predominantly grown in both tropics and subtropics in India, and the subtropics alone contribute more than half of sugarcane production. Sugarcane active growth period in subtropics is restricted to 8-9 months mainly due to winter's low temperature stress prevailing during November to February every year. Being a commercial crop, tolerance to low temperature is important in sugarcane improvement programs. Development of cold tolerant sugarcane varieties require a deep knowledge on molecular mechanism naturally adapted by cold tolerant genotypes during low temperature stress. To understand gene regulation under low temperature stress, control and stressed (10 °C, 24 h) leaf samples of cold tolerant S. spontaneum IND 00-1037 collected from high altitude region in Arunachal Pradesh were used for transcriptome analysis using the Illumina NextSeq 500 platform with paired-end sequencing method. Raw reads of 5.1 GB (control) and 5.3 GB (stressed) obtained were assembled using trinity and annotated with UNIPROT, KEGG, GO, COG and SUCEST databases, and transcriptome was validated using qRT-PCR. The differential gene expression (DGE) analysis showed that 2583 genes were upregulated and 3302 genes were down-regulated upon low temperature stress. A total of 170 cold responsive transcriptional factors belonging to 30 families were differentially regulated. CBF6 (C-binding factor), a DNA binding transcriptional activation protein associated with cold acclimation and freezing tolerance was differentially upregulated. Many low temperature responsive genes involved in various metabolic pathways, viz. cold sensing through membrane fluidity, calcium and lipid signaling genes, MAP kinases, phytohormone signaling and biosynthetic genes, antioxidative enzymes, membrane and cellular stabilizing genes, genes involved in biosynthesis of polyunsaturated fatty acids, chaperones, LEA proteins, soluble sugars, osmoprotectants, lignin and pectin biosynthetic genes were also differentially upregulated. Potential cold responsive genes and transcriptional factors involved in cold tolerance mechanism in cold tolerant S. spontaneum IND 00-1037 were identified. Together, this study provides insights into the cold tolerance to low temperature stress in S. spontaneum , thus opening applications in the genetic improvement of cold stress tolerance in sugarcane.

  9. Effect of photoperiod prior to cold acclimation on freezing tolerance and carbohydrate metabolism in alfalfa (Medicago sativa L.).

    PubMed

    Bertrand, Annick; Bipfubusa, Marie; Claessens, Annie; Rocher, Solen; Castonguay, Yves

    2017-11-01

    Cold acclimation proceeds sequentially in response to decreases in photoperiod and temperature. This study aimed at assessing the impact of photoperiod prior to cold acclimation on freezing tolerance and related biochemical and molecular responses in two alfalfa cultivars. The fall dormant cultivar Evolution and semi-dormant cultivar 6010 were grown in growth chambers under different photoperiods (8, 10, 12, 14 or 16h) prior to cold acclimation. Freezing tolerance was evaluated as well as carbohydrate concentrations, levels of transcripts encoding enzymes of carbohydrate metabolism as well as a K-3dehydrin, before and after cold acclimation. The fall dormant cultivar Evolution had a better freezing tolerance than the semi-dormant cultivar 6010. The effect of photoperiod prior to cold acclimation on the level of freezing tolerance differed between the two cultivars: an 8h-photoperiod induced the highest level of freezing tolerance in Evolution and the lowest in 6010. In Evolution, the 8h-induced superior freezing tolerance was associated with higher concentration of raffinose-family oligosaccharides (RFO). The transcript levels of sucrose synthase (SuSy) decreased whereas those of sucrose phosphatase synthase (SPS) and galactinol synthase (GaS) increased in response to cold acclimation in both cultivars. Our results indicate that RFO metabolism could be involved in short photoperiod-induced freezing tolerance in dormant alfalfa cultivars. Crown Copyright © 2017. Published by Elsevier B.V. All rights reserved.

  10. Transcriptome Profiling of the Pineapple under Low Temperature to Facilitate Its Breeding for Cold Tolerance

    PubMed Central

    Chen, Chengjie; Zhang, Yafeng; Xu, Zhiqiang; Luan, Aiping; Mao, Qi; Feng, Junting; Xie, Tao; Gong, Xue; Wang, Xiaoshuang; Chen, Hao; He, Yehua

    2016-01-01

    The pineapple (Ananas comosus) is cold sensitive. Most cultivars are injured during winter periods, especially in sub-tropical regions. There is a lack of molecular information on the pineapple’s response to cold stress. In this study, high-throughput transcriptome sequencing and gene expression analysis were performed on plantlets of a cold-tolerant genotype of the pineapple cultivar ‘Shenwan’ before and after cold treatment. A total of 1,186 candidate cold responsive genes were identified, and their credibility was confirmed by RT-qPCR. Gene set functional enrichment analysis indicated that genes related to cell wall properties, stomatal closure and ABA and ROS signal transduction play important roles in pineapple cold tolerance. In addition, a protein association network of CORs (cold responsive genes) was predicted, which could serve as an entry point to dissect the complex cold response network. Our study found a series of candidate genes and their association network, which will be helpful to cold stress response studies and pineapple breeding for cold tolerance. PMID:27656892

  11. MdHY5 positively regulates cold tolerance via CBF-dependent and CBF-independent pathways in apple.

    PubMed

    An, Jian-Ping; Yao, Ji-Fang; Wang, Xiao-Na; You, Chun-Xiang; Wang, Xiao-Fei; Hao, Yu-Jin

    2017-11-01

    Cold stress is a major external stimulator that affects crop quality and productivity. The CBF cold regulatory pathway has been regarded as a master regulator in the response to cold stress. In this study, we found that the apple bZIP transcription factor, MdHY5, was responsive to cold treatment both at the transcriptional and at the post-translational levels. Moreover, overexpression of MdHY5 enhanced cold tolerance in apple calli and Arabidopsis. Subsequently, EMSA assay and transient expression assay demonstrated that MdHY5 positively regulated the transcript of MdCBF1 by binding to G-Box motif of its promoter. Furthermore, MdHY5 also regulated the expression of CBF-independent cold-regulated genes. Taken together, our data suggest that MdHY5 positively modulates plant cold tolerance through CBF-dependent and CBF-independent pathways, providing a deeper understanding of MdHY5-regulated cold tolerance in apple. Copyright © 2017 Elsevier GmbH. All rights reserved.

  12. Genetic architecture of cold tolerance in rice (Oryza sativa) determined through high resolution genome-wide analysis

    PubMed Central

    Shakiba, Ehsan; Edwards, Jeremy D.; Jodari, Farman; Duke, Sara E.; Baldo, Angela M.; Korniliev, Pavel; McCouch, Susan R.; Eizenga, Georgia C.

    2017-01-01

    Cold temperature is an important abiotic stress which negatively affects morphological development and seed production in rice (Oryza sativa L.). At the seedling stage, cold stress causes poor germination, seedling injury and poor stand establishment; and at the reproductive stage cold decreases seed yield. The Rice Diversity Panel 1 (RDP1) is a global collection of over 400 O. sativa accessions representing the five major subpopulations from the INDICA and JAPONICA varietal groups, with a genotypic dataset consisting of 700,000 SNP markers. The objectives of this study were to evaluate the RDP1 accessions for the complex, quantitatively inherited cold tolerance traits at the germination and reproductive stages, and to conduct genome-wide association (GWA) mapping to identify SNPs and candidate genes associated with cold stress at these stages. GWA mapping of the germination index (calculated as percent germination in cold divided by warm treatment) revealed 42 quantitative trait loci (QTLs) associated with cold tolerance at the seedling stage, including 18 in the panel as a whole, seven in temperate japonica, six in tropical japonica, 14 in JAPONICA, and nine in INDICA, with five shared across all subpopulations. Twenty-two of these QTLs co-localized with 32 previously reported cold tolerance QTLs. GWA mapping of cold tolerance at the reproductive stage detected 29 QTLs, including seven associated with percent sterility, ten with seed weight per panicle, 14 with seed weight per plant and one region overlapping for two traits. Fifteen co-localized with previously reported QTLs for cold tolerance or yield components. Candidate gene ontology searches revealed these QTLs were associated with significant enrichment for genes related to with lipid metabolism, response to stimuli, response to biotic stimuli (suggesting cross-talk between biotic and abiotic stresses), and oxygen binding. Overall the JAPONICA accessions were more tolerant to cold stress than INDICA accessions. PMID:28282385

  13. Microarray-assisted fine-mapping of quantitative trait loci for cold tolerance in rice.

    PubMed

    Liu, Fengxia; Xu, Wenying; Song, Qian; Tan, Lubin; Liu, Jiayong; Zhu, Zuofeng; Fu, Yongcai; Su, Zhen; Sun, Chuanqing

    2013-05-01

    Many important agronomic traits, including cold stress resistance, are complex and controlled by quantitative trait loci (QTLs). Isolation of these QTLs will greatly benefit the agricultural industry but it is a challenging task. This study explored an integrated strategy by combining microarray with QTL-mapping in order to identify cold-tolerant QTLs from a cold-tolerant variety IL112 at early-seedling stage. All the early seedlings of IL112 survived normally for 9 d at 4-5°C, while Guichao2 (GC2), an indica cultivar, died after 4 d under the same conditions. Using the F2:3 population derived from the progeny of GC2 and IL112, we identified seven QTLs for cold tolerance. Furthermore, we performed Affymetrix rice whole-genome array hybridization and obtained the expression profiles of IL112 and GC2 under both low-temperature and normal conditions. Four genes were selected as cold QTL-related candidates, based on microarray data mining and QTL-mapping. One candidate gene, LOC_Os07g22494, was shown to be highly associated with cold tolerance in a number of rice varieties and in the F2:3 population, and its overexpression transgenic rice plants displayed strong tolerance to low temperature at early-seedling stage. The results indicated that overexpression of this gene (LOC_Os07g22494) could increase cold tolerance in rice seedlings. Therefore, this study provides a promising strategy for identifying candidate genes in defined QTL regions.

  14. Variation in chilling tolerance for photosynthesis and leaf extension growth among genotypes related to the C-4 grass Miscanthus xgiganteus

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Glowacka, K; Adhikari, S; Peng, JH

    The goal of this study was to identify cold-tolerant genotypes within two species of Miscanthus related to the exceptionally chilling-tolerant C-4 biomass crop accession: M. xgiganteus 'Illinois' (Mxg) as well as in other Mxg genotypes. The ratio of leaf elongation at 10 degrees C/5 degrees C to that at 25 degrees C/25 degrees C was used to identify initially the 13 most promising Miscanthus genotypes out of 51 studied. Net leaf CO2 uptake (A(sat)) and the maximum operating efficiency of photosystem II (Phi(PSII)) were measured in warm conditions (25 degrees C/20 degrees C), and then during and following a chillingmore » treatment of 10 degrees C/5 degrees C for 11 d. Accessions of M. sacchariflorus (Msa) showed the smallest decline in leaf elongation on transfer to chilling conditions and did not differ significantly from Mxg, indicating greater chilling tolerance than diploid M. sinensis (Msi). Msa also showed the smallest reductions in A(sat) and Phi(PSII), and greater chilling-tolerant photosynthesis than Msi, and three other forms of Mxg, including new triploid accessions and a hexaploid Mxg 'Illinois'. Tetraploid Msa 'PF30153' collected in Gifu Prefecture in Honshu, Japan did not differ significantly from Mxg 'Illinois' in leaf elongation and photosynthesis at low temperature, but was significantly superior to all other forms of Mxg tested. The results suggested that the exceptional chilling tolerance of Mxg 'Illinois' cannot be explained simply by the hybrid vigour of this intraspecific allotriploid. Selection of chilling-tolerant accessions from both of Mxg's parental species, Msi and Msa, would be advisable for breeding new highly chilling-tolerant Mxg genotypes.« less

  15. Multiple cold resistance loci confer the high cold tolerance adaptation of Dongxiang wild rice (Oryza rufipogon) to its high-latitude habitat.

    PubMed

    Mao, Donghai; Yu, Li; Chen, Dazhou; Li, Lanying; Zhu, Yuxing; Xiao, Yeqing; Zhang, Dechun; Chen, Caiyan

    2015-07-01

    Dongxiang wild rice is phylogenetically close to temperate japonica and contains multiple cold resistance loci conferring its adaptation to high-latitude habitat. Understanding the nature of adaptation in wild populations will benefit crop breeding in the development of climate-resilient crop varieties. Dongxiang wild rice (DXWR), the northernmost common wild rice known, possesses a high degree of cold tolerance and can survive overwintering in its native habitat. However, to date, it is still unclear how DXWR evolved to cope with low-temperature environment, resulting in limited application of DXWR in rice breeding programs. In this study, we carried out both QTL mapping and phylogenetic analysis to discern the genetic mechanism underlying the strong cold resistance. Through a combination of interval mapping and single locus analysis in two genetic populations, at least 13 QTLs for seedling cold tolerance were identified in DXWR. A phylogenetic study using both genome-wide InDel markers and markers associated with cold tolerance loci reveals that DXWR belongs to the Or-III group, which is most closely related to cold-tolerant Japonica rice rather than to the Indica cultivars that are predominant in the habitat where DXWR grows. Our study paves the way toward an understanding of the nature of adaptation to a northern habitat in O. rufipogon. The QTLs identified in DXWR in this study will be useful for molecular breeding of cold-tolerant rice.

  16. Phenol degradation and heavy metal tolerance of Antarctic yeasts.

    PubMed

    Fernández, Pablo Marcelo; Martorell, María Martha; Blaser, Mariana G; Ruberto, Lucas Adolfo Mauro; de Figueroa, Lucía Inés Castellanos; Mac Cormack, Walter Patricio

    2017-05-01

    In cold environments, biodegradation of organic pollutants and heavy metal bio-conversion requires the activity of cold-adapted or cold-tolerant microorganisms. In this work, the ability to utilize phenol, methanol and n-hexadecane as C source, the tolerance to different heavy metals and growth from 5 to 30 °C were evaluated in cold-adapted yeasts isolated from Antarctica. Fifty-nine percent of the yeasts were classified as psychrotolerant as they could grow in all the range of temperature tested, while the other 41% were classified as psychrophilic as they only grew below 25 °C. In the assimilation tests, 32, 78, and 13% of the yeasts could utilize phenol, n-hexadecane, and methanol as C source, respectively, but only 6% could assimilate the three C sources evaluated. In relation to heavy metals ions, 55, 68, and 80% were tolerant to 1 mM of Cr(VI), Cd(II), and Cu(II), respectively. Approximately a half of the isolates tolerated all of them. Most of the selected yeasts belong to genera previously reported as common for Antarctic soils, but several other genera were also isolated, which contribute to the knowledge of this cold environment mycodiversity. The tolerance to heavy metals of the phenol-degrading cold-adapted yeasts illustrated that the strains could be valuable as inoculant for cold wastewater treatment in extremely cold environments.

  17. Cold acclimation wholly reorganizes the Drosophila melanogaster transcriptome and metabolome

    PubMed Central

    MacMillan, Heath A.; Knee, Jose M.; Dennis, Alice B.; Udaka, Hiroko; Marshall, Katie E.; Merritt, Thomas J. S.; Sinclair, Brent J.

    2016-01-01

    Cold tolerance is a key determinant of insect distribution and abundance, and thermal acclimation can strongly influence organismal stress tolerance phenotypes, particularly in small ectotherms like Drosophila. However, there is limited understanding of the molecular and biochemical mechanisms that confer such impressive plasticity. Here, we use high-throughput mRNA sequencing (RNA-seq) and liquid chromatography – mass spectrometry (LC-MS) to compare the transcriptomes and metabolomes of D. melanogaster acclimated as adults to warm (rearing) (21.5 °C) or cold conditions (6 °C). Cold acclimation improved cold tolerance and led to extensive biological reorganization: almost one third of the transcriptome and nearly half of the metabolome were differentially regulated. There was overlap in the metabolic pathways identified via transcriptomics and metabolomics, with proline and glutathione metabolism being the most strongly-supported metabolic pathways associated with increased cold tolerance. We discuss several new targets in the study of insect cold tolerance (e.g. dopamine signaling and Na+-driven transport), but many previously identified candidate genes and pathways (e.g. heat shock proteins, Ca2+ signaling, and ROS detoxification) were also identified in the present study, and our results are thus consistent with and extend the current understanding of the mechanisms of insect chilling tolerance. PMID:27357258

  18. A Basic Helix-Loop-Helix Transcription Factor, PtrbHLH, of Poncirus trifoliata Confers Cold Tolerance and Modulates Peroxidase-Mediated Scavenging of Hydrogen Peroxide1[C][W

    PubMed Central

    Huang, Xiao-San; Wang, Wei; Zhang, Qian; Liu, Ji-Hong

    2013-01-01

    The basic helix-loop-helix (bHLH) transcription factors are involved in a variety of physiological processes. However, plant bHLHs functioning in cold tolerance and the underlying mechanisms remain poorly understood. Here, we report the identification and functional characterization of PtrbHLH isolated from trifoliate orange (Poncirus trifoliata). The transcript levels of PtrbHLH were up-regulated under various abiotic stresses, particularly cold. PtrbHLH was localized in the nucleus with transactivation activity. Overexpression of PtrbHLH in tobacco (Nicotiana tabacum) or lemon (Citrus limon) conferred enhanced tolerance to cold under chilling or freezing temperatures, whereas down-regulation of PtrbHLH in trifoliate orange by RNA interference (RNAi) resulted in elevated cold sensitivity. A range of stress-responsive genes was up-regulated or down-regulated in the transgenic lemon. Of special note, several peroxidase (POD) genes were induced after cold treatment. Compared with the wild type, POD activity was increased in the overexpression plants but decreased in the RNAi plants, which was inversely correlated with the hydrogen peroxide (H2O2) levels in the tested lines. Treatment of the transgenic tobacco plants with POD inhibitors elevated the H2O2 levels and greatly compromised their cold tolerance, while exogenous replenishment of POD enhanced cold tolerance of the RNAi line. In addition, transgenic tobacco and lemon plants were more tolerant to oxidative stresses. Yeast one-hybrid assay and transient expression analysis demonstrated that PtrbHLH could bind to the E-box elements in the promoter region of a POD gene. Taken together, these results demonstrate that PtrbHLH plays an important role in cold tolerance, at least in part, by positively regulating POD-mediated reactive oxygen species removal. PMID:23624854

  19. Comparative proteomic analysis of the stolon cold stress response between the C4 perennial grass species Zoysia japonica and Zoysia metrella.

    PubMed

    Xuan, Jiping; Song, Yufeng; Zhang, Hongxiao; Liu, Jianxiu; Guo, Zhongren; Hua, Yuelou

    2013-01-01

    Zoysiagrass, the most cold-tolerant grass among the warm-season turfgrasses, is often used as a model species for isolating cellular components related to cold stress. To understand the proteomic responses to cold stress in zoysiagrass stolons, we extracted stolon proteins from Zoysiajaponica, cv. Meyer (cold-tolerant) and Z. metrella, cv. Diamond (cold-sensitive), which were grown with or without cold treatment. Approximately 700 proteins were resolved on 2-DE gels, and 70 protein spots were differentially accumulated. We further observed that 45 of the identified proteins participate in 10 metabolic pathways and cellular processes. A significantly greater number of proteins accumulated in the Meyer than in the Diamond and 15 increased proteins were detected only in the Meyer cultivar under cold stress. Furthermore, we propose a cold stress-responsive protein network composed of several different functional components that exhibits a balance between reactive oxygen species (ROS) production and scavenging, accelerated protein biosynthesis and proteolysis, reduced protein folding, enhanced photosynthesis, abundant energy supply and enhanced biosynthesis of carbohydrates and nucleotides. Generally, the cold-tolerant Meyer cultivar showed a greater ROS scavenging ability, more abundant energy supply and increased photosynthesis and protein synthesis than did the cold-sensitive Diamond cultivar, which may partly explain why Meyer is more cold tolerant.

  20. Sorghum Landrace Collections from Cooler Regions of the World Exhibit Magnificent Genetic Differentiation and Early Season Cold Tolerance.

    PubMed

    Maulana, Frank; Weerasooriya, Dilooshi; Tesso, Tesfaye

    2017-01-01

    Cold temperature is an important abiotic stress affecting sorghum production in temperate regions. It reduces seed germination, seedling emergence and seedling vigor thus limiting the production of the crop both temporally and spatially. The objectives of this study were (1) to assess early season cold temperature stress response of sorghum germplasm from cooler environments and identify sources of tolerance for use in breeding programs, (2) to determine population structure and marker-trait association among these germplasms for eventual development of marker tools for improving cold tolerance. A total of 136 sorghum accessions from cooler regions of the world were phenotyped for seedling growth characteristics under cold temperature imposed through early planting. The accessions were genotyped using 67 simple sequence repeats markers spanning all ten linkage groups of sorghum, of which 50 highly polymorphic markers were used in the analysis. Genetic diversity and population structure analyses sorted the population into four subpopulations. Several accessions distributed in all subpopulations showed either better or comparable level of tolerance to the standard cold tolerance source, Shan qui red. Association analysis between the markers and seedling traits identified markers Xtxp 34, Xtxp 88, and Xtxp 319 as associated with seedling emergence, Xtxp 211 and Xtxp 304 with seedling dry weight, and Xtxp 20 with seedling height. The markers were detected on chromosomes previously found to harbor QTLs associated with cold tolerance in sorghum. Once validated these may serve as genomic tools in marker-assisted breeding or for screening larger pool of genotypes to identify additional sources of cold tolerance.

  1. Sorghum Landrace Collections from Cooler Regions of the World Exhibit Magnificent Genetic Differentiation and Early Season Cold Tolerance

    PubMed Central

    Maulana, Frank; Weerasooriya, Dilooshi; Tesso, Tesfaye

    2017-01-01

    Cold temperature is an important abiotic stress affecting sorghum production in temperate regions. It reduces seed germination, seedling emergence and seedling vigor thus limiting the production of the crop both temporally and spatially. The objectives of this study were (1) to assess early season cold temperature stress response of sorghum germplasm from cooler environments and identify sources of tolerance for use in breeding programs, (2) to determine population structure and marker-trait association among these germplasms for eventual development of marker tools for improving cold tolerance. A total of 136 sorghum accessions from cooler regions of the world were phenotyped for seedling growth characteristics under cold temperature imposed through early planting. The accessions were genotyped using 67 simple sequence repeats markers spanning all ten linkage groups of sorghum, of which 50 highly polymorphic markers were used in the analysis. Genetic diversity and population structure analyses sorted the population into four subpopulations. Several accessions distributed in all subpopulations showed either better or comparable level of tolerance to the standard cold tolerance source, Shan qui red. Association analysis between the markers and seedling traits identified markers Xtxp34, Xtxp88, and Xtxp319 as associated with seedling emergence, Xtxp211 and Xtxp304 with seedling dry weight, and Xtxp20 with seedling height. The markers were detected on chromosomes previously found to harbor QTLs associated with cold tolerance in sorghum. Once validated these may serve as genomic tools in marker-assisted breeding or for screening larger pool of genotypes to identify additional sources of cold tolerance. PMID:28536596

  2. A novel cold-regulated gene, COR25, of Brassica napus is involved in plant response and tolerance to cold stress.

    PubMed

    Chen, Liang; Zhong, Hui; Ren, Feng; Guo, Qian-Qian; Hu, Xu-Peng; Li, Xue-Bao

    2011-04-01

    Cold stress, which causes dehydration damage to the plant cell, is one of the most common abiotic stresses that adversely affect plant growth and crop productivity. To improve its cold-tolerance, plants often enhance expression of some cold-related genes. In this study, a cold-regulated gene encoding 25 KDa of protein was isolated from Brassica napus cDNA library using a macroarray analysis, and is consequently designated as BnCOR25. RT-PCR analysis demonstrated that BnCOR25 was expressed at high levels in hypocotyls, cotyledons, stems, and flowers, but its mRNA was found at low levels in roots and leaves. Northern blot analysis revealed that BnCOR25 transcripts were significantly induced by cold and osmotic stress treatment. The data also showed that BnCOR25 gene expression is mediated by ABA-dependent pathway. Overexpression of BnCOR25 in yeast (Schizosaccharomyces pombe) significantly enhanced the cell survival probability under cold stress, and overexpression of BnCOR25 in Arabidopsis enhances plant tolerance to cold stress. These results suggested that the BnCOR25 gene may play an important role in conferring freezing/cold tolerance in plants.

  3. Comparative proteomic analysis of seedling leaves of cold-tolerant and -sensitive spring soybean cultivars.

    PubMed

    Tian, Xin; Liu, Ying; Huang, Zhigang; Duan, Huaping; Tong, Jianhua; He, Xiaoling; Gu, Weihong; Ma, Hao; Xiao, Langtao

    2015-03-01

    Cold stress adversely affects the growth and development of seedling of spring soybean. Revealing responses in seedling to cold stress at proteomic level will help us to breed cold-tolerant spring soybean cultivars. In this study, to understand the responses, a proteomic analysis on the leaves of seedlings of one cold-tolerant soybean cultivar and one cold-sensitive soybean cultivar at 5°C for different times (12 and 24 h) was performed, with some proteomic results being further validated by physiological and biochemical analysis. Our results showed that 57 protein spots were found to be significantly changed in abundance and identified by MALDI-TOF/TOF MS. All the identified proteins were found to be involved in 13 metabolic pathways and cellular processes, including photosynthesis, protein folding and assembly, cell rescue and defense, cytoskeletal proteins, transcription and translation regulation, amino acid and nitrogen metabolism, protein degradation, storage proteins, signal transduction, carbohydrate metabolism, lipid metabolism, energy metabolism, and unknown. Based on the majority of the identified cold-responsive proteins, the effect of cold stress on seedling leaves of the two spring soybean cultivars was discussed. The reason that soybean cv. Guliqing is more cold-tolerant than soybean cv. Nannong 513 was due to its more protein, lipid and polyamine biosynthesis, more effective sulfur-containing metabolite recycling, and higher photosynthetic rate, as well as less ROS production and lower protein proteolysis and energy depletion under cold stress. Such a result will provide more insights into cold stress responses and for further dissection of cold tolerance mechanisms in spring soybean.

  4. Effect of the Winter Wheat Cheyenne 5A Substituted Chromosome on Dynamics of Abscisic Acid and Cytokinins in Freezing-Sensitive Chinese Spring Genetic Background

    PubMed Central

    Kalapos, Balázs; Novák, Aliz; Dobrev, Petre; Vítámvás, Pavel; Marincs, Ferenc; Galiba, Gábor; Vanková, Radomira

    2017-01-01

    The effect of short- and long-term cold treatment on the abscisic acid (ABA) and cytokinin (CK) metabolism, and their main biosynthesis- and signaling-related genes were investigated in freezing-sensitive and freezing-tolerant wheat genotypes. Varieties Cheyenne and Chinese Spring substituted with the 5A Cheyenne chromosome, which represented freezing-tolerant genotypes, were compared with the freezing-sensitive Chinese Spring. Hormone levels and gene expression data indicated that the short- and long-term cold treatments are associated with specific regulation of the accumulation of cold-protective proteins and phytohormone levels, as well as the expression profiles of the hormone-related genes. The significant differences were observed between the genotypes, and between their leaf and crown tissues, too. The level of dehydrins, including WCS120 protein, and expression of WCS120 gene were considerably higher in the freezing-tolerant genotypes after 21 days of cold treatment. Expression of Cor14b and CBF14, cold-responsive regulator genes, was increased by cold treatment in all genotypes, to higher extent in freezing-tolerant genotypes. Cluster analysis revealed that the tolerant genotypes had a similar response to cold treatment, regarding expression of the ABA and CK metabolic genes, as well as hormone levels in leaves. As far as hormone levels in crowns are concerned, however, the strongly freezing-tolerant Cheyenne variety clustered separately from the Chinese Spring and the substitution line, which were more similar to each other after both 1 and 21 days of cold treatment than to Cheyenne. Based on these results we concluded that the 5A chromosome of wheat might have both a direct and an indirect impact on the phytohormone-dependent cold-induced freezing tolerance. Based on the gene expression data, novel genetic markers could be developed, which may be used to determine the freezing tolerance level in a wide range of wheat varieties. PMID:29238355

  5. Suppression of Arabidopsis RING E3 ubiquitin ligase AtATL78 increases tolerance to cold stress and decreases tolerance to drought stress.

    PubMed

    Kim, Soo Jin; Kim, Woo Taek

    2013-08-19

    AtATL78 is an Arabidopsis RING E3 ubiquitin ligase. RT-PCR and promoter-GUS assays revealed that AtATL78 was up-regulated by cold stress and down-regulated by drought. AtATL78 was localized at the plasma-membrane. Suppression of AtATL78 increased tolerance to cold stress but decreased tolerance to drought. Our data suggests that AtATL78 is a negative regulator of cold stress response and a positive regulator of drought stress response in Arabidopsis. These results further suggest that AtATL78 plays opposing roles in cold and drought stress responses. Copyright © 2013 Federation of European Biochemical Societies. Published by Elsevier B.V. All rights reserved.

  6. Cold tolerance in rice germinating seeds revealed by deep RNAseq analysis of contrasting indica genotypes.

    PubMed

    Dametto, Andressa; Sperotto, Raul A; Adamski, Janete M; Blasi, Édina A R; Cargnelutti, Denise; de Oliveira, Luiz F V; Ricachenevsky, Felipe K; Fregonezi, Jeferson N; Mariath, Jorge E A; da Cruz, Renata P; Margis, Rogério; Fett, Janette P

    2015-09-01

    Rice productivity is largely affected by low temperature, which can be harmful throughout plant development, from germination to grain filling. Germination of indica rice cultivars under cold is slow and not uniform, resulting in irregular emergence and small plant population. To identify and characterize novel genes involved in cold tolerance during the germination stage, two indica rice genotypes (sister lines previously identified as cold-tolerant and cold-sensitive) were used in parallel transcriptomic analysis (RNAseq) under cold treatment (seeds germinating at 13 °C for 7 days). We detected 1,361 differentially expressed transcripts. Differences in gene expression found by RNAseq were confirmed for 11 selected genes using RT-qPCR. Biological processes enhanced in the cold-tolerant seedlings include: cell division and expansion (confirmed by anatomical sections of germinating seeds), cell wall integrity and extensibility, water uptake and membrane transport capacity, sucrose synthesis, generation of simple sugars, unsaturation of membrane fatty acids, wax biosynthesis, antioxidant capacity (confirmed by histochemical staining of H2O2), and hormone and Ca(2+)-signaling. The cold-sensitive seedlings respond to low temperature stress increasing synthesis of HSPs and dehydrins, along with enhanced ubiquitin/proteasome protein degradation pathway and polyamine biosynthesis. Our findings can be useful in future biotechnological approaches aiming to cold tolerance in indica rice. Copyright © 2015 Elsevier Ireland Ltd. All rights reserved.

  7. Deep Super-SAGE transcriptomic analysis of cold acclimation in lentil (Lens culinaris Medik.).

    PubMed

    Barrios, Abel; Caminero, Constantino; García, Pedro; Krezdorn, Nicolas; Hoffmeier, Klaus; Winter, Peter; Pérez de la Vega, Marcelino

    2017-06-30

    Frost is one of the main abiotic stresses limiting plant distribution and crop production. To cope with the stress, plants evolved adaptations known as cold acclimation or chilling tolerance to maximize frost tolerance. Cold acclimation is a progressive acquisition of freezing tolerance by plants subjected to low non-freezing temperatures which subsequently allows them to survive exposure to frost. Lentil is a cool season grain legume that is challenged by winter frost in some areas of its cultivation. To better understand the genetic base of frost tolerance differential gene expression in response to cold acclimation was investigated. Recombinant inbred lines (RILs) from the cross Precoz x WA8649041 were first classified as cold tolerant or cold susceptible according to their response to temperatures between -3 to -15 °C. Then, RILs from both extremes of the response curve were cold acclimated and the leaf transcriptomes of two bulks each of eight frost tolerant and seven cold susceptible RILs were investigated by Deep Super-SAGE transcriptome profiling. Thus, four RNA bulks were analysed: the acclimated susceptible, the acclimated tolerant and the respective controls (non-acclimated susceptible and non-acclimated tolerant). Approximately 16.5 million 26 nucleotide long Super-SAGE tags were sequenced in the four sets (between ~3 and 5.4 millions). In total, 133,077 different unitags, each representing a particular transcript isoform, were identified in these four sets. Tags which showed a significantly different abundance in any of the bulks (fold change ≥4.0 and a significant p-value <0.001) were selected and used to identify the corresponding lentil gene sequence. Three hundred of such lentil sequences were identified. Most of their known homologs coded for glycine-rich, cold and drought-regulated proteins, dormancy-associated proteins, proline-rich proteins (PRPs) and other membrane proteins. These were generally but not exclusively over-expressed in the acclimated tolerant lines. This set of candidate genes implicated in the response to frost in lentil represents an useful base for deeper and more detailed investigations into this important agronomic trait in future.

  8. Insect capa neuropeptides impact desiccation and cold tolerance

    PubMed Central

    Terhzaz, Selim; Teets, Nicholas M.; Cabrero, Pablo; Henderson, Louise; Ritchie, Michael G.; Nachman, Ronald J.; Dow, Julian A. T.; Denlinger, David L.; Davies, Shireen-A.

    2015-01-01

    The success of insects is linked to their impressive tolerance to environmental stress, but little is known about how such responses are mediated by the neuroendocrine system. Here we show that the capability (capa) neuropeptide gene is a desiccation- and cold stress-responsive gene in diverse dipteran species. Using targeted in vivo gene silencing, physiological manipulations, stress-tolerance assays, and rationally designed neuropeptide analogs, we demonstrate that the Drosophila melanogaster capa neuropeptide gene and its encoded peptides alter desiccation and cold tolerance. Knockdown of the capa gene increases desiccation tolerance but lengthens chill coma recovery time, and injection of capa peptide analogs can reverse both phenotypes. Immunohistochemical staining suggests that capa accumulates in the capa-expressing Va neurons during desiccation and nonlethal cold stress but is not released until recovery from each stress. Our results also suggest that regulation of cellular ion and water homeostasis mediated by capa peptide signaling in the insect Malpighian (renal) tubules is a key physiological mechanism during recovery from desiccation and cold stress. This work augments our understanding of how stress tolerance is mediated by neuroendocrine signaling and illustrates the use of rationally designed peptide analogs as agents for disrupting protective stress tolerance. PMID:25730885

  9. Identification of Arabidopsis mutants with altered freezing tolerance.

    PubMed

    Perea-Resa, Carlos; Salinas, Julio

    2014-01-01

    Low temperature is an important determinant in the configuration of natural plant communities and defines the range of distribution and growth of important crops. Some plants, including Arabidopsis, have evolved sophisticated adaptive mechanisms to tolerate low and freezing temperatures. Central to this adaptation is the process of cold acclimation. By means of this process, many plants from temperate regions are able to develop or increase their freezing tolerance in response to low, nonfreezing temperatures. The identification and characterization of factors involved in freezing tolerance are crucial to understand the molecular mechanisms underlying the cold acclimation response and have a potential interest to improve crop tolerance to freezing temperatures. Many genes implicated in cold acclimation have been identified in numerous plant species by using molecular approaches followed by reverse genetic analysis. Remarkably, however, direct genetic analyses have not been conveniently exploited in their capacity for identifying genes with pivotal roles in that adaptive response. In this chapter, we describe a protocol for evaluating the freezing tolerance of both non-acclimated and cold-acclimated Arabidopsis plants. This protocol allows the accurate and simple screening of mutant collections for the identification of novel factors involved in freezing tolerance and cold acclimation.

  10. Basal tolerance to heat and cold exposure of the spotted wing drosophila, Drosophila suzukii

    PubMed Central

    Enriquez, Thomas

    2017-01-01

    The spotted wing Drosophila, Drosophila suzukii, is a new pest in Europe and America which causes severe damages, mostly to stone fruit crops. Temperature and humidity are among the most important abiotic factors governing insect development and fitness. In many situations, temperature can become stressful thus compromising survival. The ability to cope with thermal stress depends on basal level of thermal tolerance. Basic knowledge on temperature-dependent mortality of D. suzukii is essential to facilitate management of this pest. The objective of the present study was to investigate D. suzukii basal cold and heat tolerance. Adults and pupae were subjected to six low temperatures (−5–7.5 °C) and seven high temperatures (30–37 °C) for various durations, and survival-time-temperature relationships were investigated. Data showed that males were globally more cold tolerant than females. At temperature above 5 °C, adult cold mortality became minor even after prolonged exposures (e.g., only 20% mortality after one month at 7.5 °C). Heat tolerance of males was lower than that of females at the highest tested temperatures (34, 35 and 37 °C). Pupae appeared much less cold tolerant than adults at all temperatures (e.g., Lt50 at 5° C: 4–5 d for adults vs. 21 h for pupae). Pupae were more heat tolerant than adults at the most extreme high temperatures (e.g., Lt50 at 37 °C: 30 min for adults vs. 4 h for pupae). The pupal thermal tolerance was further investigated under low vs. high humidity. Low relative humidity did not affect pupal cold survival, but it reduced survival under heat stress. Overall, this study shows that survival of D. suzukii under heat and cold conditions can vary with stress intensity, duration, humidity, sex and stage, and the methodological approach used here, which was based on thermal tolerance landscapes, provides a comprehensive description of D. suzukiithermal tolerance and limits. PMID:28348931

  11. Comparative Proteomic Analysis of the Stolon Cold Stress Response between the C4 Perennial Grass Species Zoysia japonica and Zoysia metrella

    PubMed Central

    Xuan, Jiping; Song, Yufeng; Zhang, Hongxiao; Liu, Jianxiu; Guo, Zhongren; Hua, Yuelou

    2013-01-01

    Zoysiagrass, the most cold-tolerant grass among the warm-season turfgrasses, is often used as a model species for isolating cellular components related to cold stress. To understand the proteomic responses to cold stress in zoysiagrass stolons, we extracted stolon proteins from Zoysia japonica , cv. Meyer (cold-tolerant) and Z . metrella , cv. Diamond (cold-sensitive), which were grown with or without cold treatment. Approximately 700 proteins were resolved on 2-DE gels, and 70 protein spots were differentially accumulated. We further observed that 45 of the identified proteins participate in 10 metabolic pathways and cellular processes. A significantly greater number of proteins accumulated in the Meyer than in the Diamond and 15 increased proteins were detected only in the Meyer cultivar under cold stress. Furthermore, we propose a cold stress-responsive protein network composed of several different functional components that exhibits a balance between reactive oxygen species (ROS) production and scavenging, accelerated protein biosynthesis and proteolysis, reduced protein folding, enhanced photosynthesis, abundant energy supply and enhanced biosynthesis of carbohydrates and nucleotides. Generally, the cold-tolerant Meyer cultivar showed a greater ROS scavenging ability, more abundant energy supply and increased photosynthesis and protein synthesis than did the cold-sensitive Diamond cultivar, which may partly explain why Meyer is more cold tolerant. PMID:24086619

  12. Comparative Transcriptome Analysis of Shoots and Roots of TNG67 and TCN1 Rice Seedlings under Cold Stress and Following Subsequent Recovery: Insights into Metabolic Pathways, Phytohormones, and Transcription Factors

    PubMed Central

    Yang, Yun-Wei; Chen, Hung-Chi; Jen, Wei-Fu; Liu, Li-Yu; Chang, Men-Chi

    2015-01-01

    Cold stress affects rice growth, quality and yield. The investigation of genome-wide gene expression is important for understanding cold stress tolerance in rice. We performed comparative transcriptome analysis of the shoots and roots of 2 rice seedlings (TNG67, cold-tolerant; and TCN1, cold-sensitive) in response to low temperatures and restoration of normal temperatures following cold exposure. TNG67 tolerated cold stress via rapid alterations in gene expression and the re-establishment of homeostasis, whereas the opposite was observed in TCN1, especially after subsequent recovery. Gene ontology and pathway analyses revealed that cold stress substantially regulated the expression of genes involved in protein metabolism, modification, translation, stress responses, and cell death. TNG67 takes advantage of energy-saving and recycling resources to more efficiently synthesize metabolites compared with TCN1 during adjustment to cold stress. During recovery, expression of OsRR4 type-A response regulators was upregulated in TNG67 shoots, whereas that of genes involved in oxidative stress, chemical stimuli and carbohydrate metabolic processes was downregulated in TCN1. Expression of genes related to protein metabolism, modification, folding and defense responses was upregulated in TNG67 but not in TCN1 roots. In addition, abscisic acid (ABA)-, polyamine-, auxin- and jasmonic acid (JA)-related genes were preferentially regulated in TNG67 shoots and roots and were closely associated with cold stress tolerance. The TFs AP2/ERF were predominantly expressed in the shoots and roots of both TNG67 and TCN1. The TNG67-preferred TFs which express in shoot or root, such as OsIAA23, SNAC2, OsWRKY1v2, 24, 53, 71, HMGB, OsbHLH and OsMyb, may be good candidates for cold stress tolerance-related genes in rice. Our findings highlight important alterations in the expression of cold-tolerant genes, metabolic pathways, and hormone-related and TF-encoding genes in TNG67 rice during cold stress and recovery. The cross-talk of hormones may play an essential role in the ability of rice plants to cope with cold stress. PMID:26133169

  13. Comparative Phosphoproteomics Reveals an Important Role of MKK2 in Banana (Musa spp.) Cold Signal Network

    PubMed Central

    Gao, Jie; Zhang, Sheng; He, Wei-Di; Shao, Xiu-Hong; Li, Chun-Yu; Wei, Yue-Rong; Deng, Gui-Ming; Kuang, Rui-Bin; Hu, Chun-Hua; Yi, Gan-Jun; Yang, Qiao-Song

    2017-01-01

    Low temperature is one of the key environmental stresses, which greatly affects global banana production. However, little is known about the global phosphoproteomes in Musa spp. and their regulatory roles in response to cold stress. In this study, we conducted a comparative phosphoproteomic profiling of cold-sensitive Cavendish Banana and relatively cold tolerant Dajiao under cold stress. Phosphopeptide abundances of five phosphoproteins involved in MKK2 interaction network, including MKK2, HY5, CaSR, STN7 and kinesin-like protein, show a remarkable difference between Cavendish Banana and Dajiao in response to cold stress. Western blotting of MKK2 protein and its T31 phosphorylated peptide verified the phosphoproteomic results of increased T31 phosphopeptide abundance with decreased MKK2 abundance in Daojiao for a time course of cold stress. Meanwhile increased expression of MKK2 with no detectable T31 phosphorylation was found in Cavendish Banana. These results suggest that the MKK2 pathway in Dajiao, along with other cold-specific phosphoproteins, appears to be associated with the molecular mechanisms of high tolerance to cold stress in Dajiao. The results also provide new evidence that the signaling pathway of cellular MKK2 phosphorylation plays an important role in abiotic stress tolerance that likely serves as a universal plant cold tolerance mechanism. PMID:28106078

  14. Preservation of potassium balance is strongly associated with insect cold tolerance in the field: a seasonal study of Drosophila subobscura.

    PubMed

    MacMillan, Heath A; Schou, Mads F; Kristensen, Torsten N; Overgaard, Johannes

    2016-05-01

    There is interest in pinpointing genes and physiological mechanisms explaining intra- and interspecific variations in cold tolerance, because thermal tolerance phenotypes strongly impact the distribution and abundance of wild animals. Laboratory studies have highlighted that the capacity to preserve water and ion homeostasis is linked to low temperature survival in insects. It remains unknown, however, whether adaptive seasonal acclimatization in free-ranging insects is governed by the same physiological mechanisms. Here, we test whether cold tolerance in field-caught Drosophila subobscura is high in early spring and lower during summer and whether this transition is associated with seasonal changes in the capacity of flies to preserve water and ion balance during cold stress. Indeed, flies caught during summer were less cold tolerant, and exposure of these flies to sub-zero temperatures caused a loss of haemolymph water and increased the concentration of K(+) in the haemolymph (as in laboratory-reared insects). This pattern of ion and water balance disruption was not observed in more cold-tolerant flies caught in early spring. Thus, we here provide a field verification of hypotheses based on laboratory studies and conclude that the ability to maintain ion homeostasis is important for the ability of free-ranging insects to cope with chilling. © 2016 The Author(s).

  15. Early Cold-Induced Peroxidases and Aquaporins Are Associated With High Cold Tolerance in Dajiao (Musa spp. ‘Dajiao’)

    PubMed Central

    He, Wei-Di; Gao, Jie; Dou, Tong-Xin; Shao, Xiu-Hong; Bi, Fang-Cheng; Sheng, Ou; Deng, Gui-Ming; Li, Chun-Yu; Hu, Chun-Hua; Liu, Ji-Hong; Zhang, Sheng; Yang, Qiao-Song; Yi, Gan-Jun

    2018-01-01

    Banana is an important tropical fruit with high economic value. One of the main cultivars (‘Cavendish’) is susceptible to low temperatures, while another closely related specie (‘Dajiao’) has considerably higher cold tolerance. We previously reported that some membrane proteins appear to be involved in the cold tolerance of Dajiao bananas via an antioxidation mechanism. To investigate the early cold stress response of Dajiao, here we applied comparative membrane proteomics analysis for both cold-sensitive Cavendish and cold-tolerant Dajiao bananas subjected to cold stress at 10°C for 0, 3, and 6 h. A total of 2,333 and 1,834 proteins were identified in Cavendish and Dajiao, respectively. Subsequent bioinformatics analyses showed that 692 Cavendish proteins and 524 Dajiao proteins were predicted to be membrane proteins, of which 82 and 137 differentially abundant membrane proteins (DAMPs) were found in Cavendish and Dajiao, respectively. Interestingly, the number of DAMPs with increased abundance following 3 h of cold treatment in Dajiao (80) was seven times more than that in Cavendish (11). Gene ontology molecular function analysis of DAMPs for Cavendish and Dajiao indicated that they belong to eight categories including hydrolase activity, binding, transporter activity, antioxidant activity, etc., but the number in Dajiao is twice that in Cavendish. Strikingly, we found peroxidases (PODs) and aquaporins among the protein groups whose abundance was significantly increased after 3 h of cold treatment in Dajiao. Some of the PODs and aquaporins were verified by reverse-transcription PCR, multiple reaction monitoring, and green fluorescent protein-based subcellular localization analysis, demonstrating that the global membrane proteomics data are reliable. By combining the physiological and biochemical data, we found that membrane-bound Peroxidase 52 and Peroxidase P7, and aquaporins (MaPIP1;1, MaPIP1;2, MaPIP2;4, MaPIP2;6, MaTIP1;3) are mainly involved in decreased lipid peroxidation and maintaining leaf cell water potential, which appear to be the key cellular adaptations contributing to the cold tolerance of Dajiao. This membrane proteomics study provides new insights into cold stress tolerance mechanisms of banana, toward potential applications for ultimate genetic improvement of cold tolerance in banana. PMID:29568304

  16. Mutational Evidence for the Critical Role of CBF Transcription Factors in Cold Acclimation in Arabidopsis1

    PubMed Central

    Zhang, Zhengjing; Li, Yuanya

    2016-01-01

    The three tandemly arranged CBF genes, CBF1, CBF2, and CBF3, are involved in cold acclimation. Due to the lack of stable loss-of-function Arabidopsis (Arabidopsis thaliana) mutants deficient in all three CBF genes, it is still unclear whether the CBF genes are essential for freezing tolerance and whether they may have other functions besides cold acclimation. In this study, we used the CRISPR/Cas9 system to generate cbf single, double, and triple mutants. Compared to the wild type, the cbf triple mutants are extremely sensitive to freezing after cold acclimation, demonstrating that the three CBF genes are essential for cold acclimation. Our results show that the three CBF genes also contribute to basal freezing tolerance. Unexpectedly, we found that the cbf triple mutants are defective in seedling development and salt stress tolerance. Transcript profiling revealed that the CBF genes regulate 414 cold-responsive (COR) genes, of which 346 are CBF-activated genes and 68 are CBF-repressed genes. The analysis suggested that CBF proteins are extensively involved in the regulation of carbohydrate and lipid metabolism, cell wall modification, and gene transcription. Interestingly, like the triple mutants, cbf2 cbf3 double mutants are more sensitive to freezing after cold acclimation compared to the wild type, but cbf1 cbf3 double mutants are more resistant, suggesting that CBF2 is more important than CBF1 and CBF3 in cold acclimation-dependent freezing tolerance. Our results not only demonstrate that the three CBF genes together are required for cold acclimation and freezing tolerance, but also reveal that they are important for salt tolerance and seedling development. PMID:27252305

  17. Genome-Wide Identification, Characterization, and Expression Profiling of Glutathione S-Transferase (GST) Family in Pumpkin Reveals Likely Role in Cold-Stress Tolerance

    PubMed Central

    Abdul Kayum, Md.; Nath, Ujjal Kumar; Park, Jong-In; Choi, Eung Kyoo; Song, Jae-Young; Kim, Hoy-Taek; Nou, Ill-Sup

    2018-01-01

    Plant growth and development can be adversely affected by cold stress, limiting productivity. The glutathione S-transferase (GST) family comprises important detoxifying enzymes, which play major roles in biotic and abiotic stress responses by reducing the oxidative damage caused by reactive oxygen species. Pumpkins (Cucurbita maxima) are widely grown, economically important, and nutritious; however, their yield can be severely affected by cold stress. The identification of putative candidate genes responsible for cold-stress tolerance, including the GST family genes, is therefore vital. For the first time, we identified 32 C. maxima GST (CmaGST) genes using a combination of bioinformatics approaches and characterized them by expression profiling. These CmaGST genes represent seven of the 14 known classes of plant GSTs, with 18 CmaGSTs categorized into the tau class. The CmaGSTs were distributed across 13 of pumpkin’s 20 chromosomes, with the highest numbers found on chromosomes 4 and 6. The large number of CmaGST genes resulted from gene duplication; 11 and 5 pairs of CmaGST genes were segmental- and tandem-duplicated, respectively. In addition, all CmaGST genes showed organ-specific expression. The expression of the putative GST genes in pumpkin was examined under cold stress in two lines with contrasting cold tolerance: cold-tolerant CP-1 (C. maxima) and cold-susceptible EP-1 (Cucurbita moschata). Seven genes (CmaGSTU3, CmaGSTU7, CmaGSTU8, CmaGSTU9, CmaGSTU11, CmaGSTU12, and CmaGSTU14) were highly expressed in the cold-tolerant line and are putative candidates for use in breeding cold-tolerant crop varieties. These results increase our understanding of the cold-stress-related functions of the GST family, as well as potentially enhancing pumpkin breeding programs. PMID:29439434

  18. The cold-induced basic helix-loop-helix transcription factor gene MdCIbHLH1 encodes an ICE-like protein in apple

    PubMed Central

    2012-01-01

    Background Plant growth is greatly affected by low temperatures, and the expression of a number of genes is induced by cold stress. Although many genes in the cold signaling pathway have been identified in Arabidopsis, little is known about the transcription factors involved in the cold stress response in apple. Results Here, we show that the apple bHLH (basic helix-loop-helix) gene MdCIbHLH1 (Cold-Induced bHLH1), which encodes an ICE-like protein, was noticeably induced in response to cold stress. The MdCIbHLH1 protein specifically bound to the MYC recognition sequences in the AtCBF3 promoter, and MdCIbHLH1 overexpression enhanced cold tolerance in transgenic Arabidopsis. In addition, the MdCIbHLH1 protein bound to the promoters of MdCBF2 and favorably contributed to cold tolerance in transgenic apple plants by upregulating the expression of MdCBF2 through the CBF (C-repeat-binding factor) pathway. Our findings indicate that MdCIbHLH1 functions in stress tolerance in different species. For example, ectopic MdCIbHLH1 expression conferred enhanced chilling tolerance in transgenic tobacco. Finally, we observed that cold induces the degradation of the MdCIbHLH1 protein in apple and that this degradation was potentially mediated by ubiquitination and sumoylation. Conclusions Based on these findings, MdCIbHLH1 encodes a transcription factor that is important for the cold tolerance response in apple. PMID:22336381

  19. Parallel Evolution of Cold Tolerance within Drosophila melanogaster

    PubMed Central

    Braun, Dylan T.; Lack, Justin B.

    2017-01-01

    Drosophila melanogaster originated in tropical Africa before expanding into strikingly different temperate climates in Eurasia and beyond. Here, we find elevated cold tolerance in three distinct geographic regions: beyond the well-studied non-African case, we show that populations from the highlands of Ethiopia and South Africa have significantly increased cold tolerance as well. We observe greater cold tolerance in outbred versus inbred flies, but only in populations with higher inversion frequencies. Each cold-adapted population shows lower inversion frequencies than a closely-related warm-adapted population, suggesting that inversion frequencies may decrease with altitude in addition to latitude. Using the FST-based “Population Branch Excess” statistic (PBE), we found only limited evidence for parallel genetic differentiation at the scale of ∼4 kb windows, specifically between Ethiopian and South African cold-adapted populations. And yet, when we looked for single nucleotide polymorphisms (SNPs) with codirectional frequency change in two or three cold-adapted populations, strong genomic enrichments were observed from all comparisons. These findings could reflect an important role for selection on standing genetic variation leading to “soft sweeps”. One SNP showed sufficient codirectional frequency change in all cold-adapted populations to achieve experiment-wide significance: an intronic variant in the synaptic gene Prosap. Another codirectional outlier SNP, at senseless-2, had a strong association with our cold trait measurements, but in the opposite direction as predicted. More generally, proteins involved in neurotransmission were enriched as potential targets of parallel adaptation. The ability to study cold tolerance evolution in a parallel framework will enhance this classic study system for climate adaptation. PMID:27777283

  20. Cold adaptation, aging, and Korean women divers haenyeo.

    PubMed

    Lee, Joo-Young; Park, Joonhee; Kim, Siyeon

    2017-08-08

    We have been studying the thermoregulatory responses of Korean breath-hold women divers, called haenyeo, in terms of aging and cold adaptation. During the 1960s to the 1980s, haenyeos received attention from environmental physiologists due to their unique ability to endure cold water while wearing only a thin cotton bathing suit. However, their overall cold-adaptive traits have disappeared since they began to wear wetsuits and research has waned since the 1980s. For social and economic reasons, the number of haenyeos rapidly decreased to 4005 in 2015 from 14,143 in 1970 and the average age of haenyeos is about 75 years old at present. For the past several years, we revisited and explored older haenyeos in terms of environmental physiology, beginning with questionnaire and field studies and later advancing to thermal tolerance tests in conjunction with cutaneous thermal threshold tests in a climate chamber. As control group counterparts, older non-diving females and young non-diving females were compared with older haenyeos in the controlled experiments. Our findings were that older haenyeos still retain local cold tolerance on the extremities despite their aging. Finger cold tests supported more superior local cold tolerance for older haenyeos than for older non-diving females. However, thermal perception in cold reflected aging effects rather than local cold acclimatization. An interesting finding was the possibility of positive cross-adaptation which might be supported by greater heat tolerance and cutaneous warm perception thresholds of older haenyeos who adapted to cold water. It was known that cold-adaptive traits of haenyeos disappeared, but we confirmed that cold-adaptive traits are still retained on the face and hands which could be interpreted by a mode switch to local adaptation from the overall adaptation to cold. Further studies on cross-adaptation between chronic cold stress and heat tolerance are needed.

  1. Genome-wide transcriptomic analysis of response to low temperature reveals candidate genes determining divergent cold-sensitivity of maize inbred lines.

    PubMed

    Sobkowiak, Alicja; Jończyk, Maciej; Jarochowska, Emilia; Biecek, Przemysław; Trzcinska-Danielewicz, Joanna; Leipner, Jörg; Fronk, Jan; Sowiński, Paweł

    2014-06-01

    Maize, despite being thermophyllic due to its tropical origin, demonstrates high intraspecific diversity in cold-tolerance. To search for molecular mechanisms of this diversity, transcriptomic response to cold was studied in two inbred lines of contrasting cold-tolerance. Microarray analysis was followed by extensive statistical elaboration of data, literature data mining, and gene ontology-based classification. The lines used had been bred earlier specifically for determination of QTLs for cold-performance of photosynthesis. This allowed direct comparison of present transcriptomic data with the earlier QTL mapping results. Cold-treated (14 h at 8/6 °C) maize seedlings of cold-tolerant ETH-DH7 and cold-sensitive ETH-DL3 lines at V3 stage showed strong, consistent response of the third leaf transcriptome: several thousand probes showed similar, statistically significant change in both lines, while only tens responded differently in the two lines. The most striking difference between the responses of the two lines to cold was the induction of expression of ca. twenty genes encoding membrane/cell wall proteins exclusively in the cold-tolerant ETH-DH7 line. The common response comprised mainly repression of numerous genes related to photosynthesis and induction of genes related to basic biological activity: transcription, regulation of gene expression, protein phosphorylation, cell wall organization. Among the genes showing differential response, several were close to the QTL regions identified in earlier studies with the same inbred lines and associated with biometrical, physiological or biochemical parameters. These transcripts, including two apparently non-protein-coding ones, are particularly attractive candidates for future studies on mechanisms determining divergent cold-tolerance of inbred maize lines.

  2. Stress cross-response of the antioxidative system promoted by superimposed drought and cold conditions in Coffea spp.

    PubMed Central

    Rodrigues, Ana P.; Lidon, Fernando C.; Marques, Luís M. C.; Leitão, A. Eduardo; Fortunato, Ana S.; Pais, Isabel P.; Silva, Maria J.; Scotti-Campos, Paula; Lopes, António; Reboredo, F. H.; Ribeiro-Barros, Ana I.

    2018-01-01

    The understanding of acclimation strategies to low temperature and water availability is decisive to ensure coffee crop sustainability, since these environmental conditions determine the suitability of cultivation areas. In this context, the impacts of single and combined exposure to drought and cold were evaluated in three genotypes of the two major cropped species, Coffea arabica cv. Icatu, Coffea canephora cv. Apoatã, and the hybrid Obatã. Crucial traits of plant resilience to environmental stresses have been examined: photosynthesis, lipoperoxidation and the antioxidant response. Drought and/or cold promoted leaf dehydration, which was accompanied by stomatal and mesophyll limitations that impaired leaf C-assimilation in all genotypes. However, Icatu showed a lower impact upon stress exposure and a faster and complete photosynthetic recovery. Although lipoperoxidation was increased by drought (Icatu) and cold (all genotypes), it was greatly reduced by stress interaction, especially in Icatu. In fact, although the antioxidative system was reinforced under single drought and cold exposure (e.g., activity of enzymes as Cu,Zn-superoxide dismutase, ascorbate peroxidase, APX, glutathione reductase and catalase, CAT), the stronger increases were observed upon the simultaneous exposure to both stresses, which was accompanied with a transcriptional response of some genes, namely related to APX. Complementary, non-enzyme antioxidant molecules were promoted mostly by cold and the stress interaction, including α-tocopherol (in C. arabica plants), ascorbate (ASC), zeaxanthin, and phenolic compounds (all genotypes). In general, drought promoted antioxidant enzymes activity, whereas cold enhanced the synthesis of both enzyme and non-enzyme antioxidants, the latter likely related to a higher need of antioxidative capability when enzyme reactions were probably quite repressed by low temperature. Icatu showed the wider antioxidative capability, with the triggering of all studied antioxidative molecules by drought (except CAT), cold, and, particularly, stress interaction (except ASC), revealing a clear stress cross-tolerance. This justified the lower impacts on membrane lipoperoxidation and photosynthetic capacity under stress interaction conditions, related to a better ROS control. These findings are also relevant to coffee water management, showing that watering in the cold season should be largely avoided. PMID:29870563

  3. Stress cross-response of the antioxidative system promoted by superimposed drought and cold conditions in Coffea spp.

    PubMed

    Ramalho, José C; Rodrigues, Ana P; Lidon, Fernando C; Marques, Luís M C; Leitão, A Eduardo; Fortunato, Ana S; Pais, Isabel P; Silva, Maria J; Scotti-Campos, Paula; Lopes, António; Reboredo, F H; Ribeiro-Barros, Ana I

    2018-01-01

    The understanding of acclimation strategies to low temperature and water availability is decisive to ensure coffee crop sustainability, since these environmental conditions determine the suitability of cultivation areas. In this context, the impacts of single and combined exposure to drought and cold were evaluated in three genotypes of the two major cropped species, Coffea arabica cv. Icatu, Coffea canephora cv. Apoatã, and the hybrid Obatã. Crucial traits of plant resilience to environmental stresses have been examined: photosynthesis, lipoperoxidation and the antioxidant response. Drought and/or cold promoted leaf dehydration, which was accompanied by stomatal and mesophyll limitations that impaired leaf C-assimilation in all genotypes. However, Icatu showed a lower impact upon stress exposure and a faster and complete photosynthetic recovery. Although lipoperoxidation was increased by drought (Icatu) and cold (all genotypes), it was greatly reduced by stress interaction, especially in Icatu. In fact, although the antioxidative system was reinforced under single drought and cold exposure (e.g., activity of enzymes as Cu,Zn-superoxide dismutase, ascorbate peroxidase, APX, glutathione reductase and catalase, CAT), the stronger increases were observed upon the simultaneous exposure to both stresses, which was accompanied with a transcriptional response of some genes, namely related to APX. Complementary, non-enzyme antioxidant molecules were promoted mostly by cold and the stress interaction, including α-tocopherol (in C. arabica plants), ascorbate (ASC), zeaxanthin, and phenolic compounds (all genotypes). In general, drought promoted antioxidant enzymes activity, whereas cold enhanced the synthesis of both enzyme and non-enzyme antioxidants, the latter likely related to a higher need of antioxidative capability when enzyme reactions were probably quite repressed by low temperature. Icatu showed the wider antioxidative capability, with the triggering of all studied antioxidative molecules by drought (except CAT), cold, and, particularly, stress interaction (except ASC), revealing a clear stress cross-tolerance. This justified the lower impacts on membrane lipoperoxidation and photosynthetic capacity under stress interaction conditions, related to a better ROS control. These findings are also relevant to coffee water management, showing that watering in the cold season should be largely avoided.

  4. Low temperature tolerance, cold hardening and acclimation in tadpoles of the neotropical túngara frog (Engystomops pustulosus).

    PubMed

    Vo, Pacific; Gridi-Papp, Marcos

    2017-05-01

    Many frogs from temperate climates can tolerate low temperatures and increase their thermal tolerance through hardening and acclimation. Most tropical frogs, on the other hand, fail to acclimate to low temperatures. This lack of acclimation ability is potentially due to lack of selection pressure for acclimation because cold weather is less common in the tropics. We tested the generality of this pattern by characterizing the critical temperature minimum (CTMin), hardening, and acclimation responses of túngara frogs (Engystomops pustulosus). These frogs belong to a family with unknown thermal ecology. They are found in a tropical habitat with a highly constant temperature regime. The CTMin of the tadpoles was on average 12.5°C. Pre-metamorphic tadpoles hardened by 1.18°C, while metamorphic tadpoles hardened by 0.36°C. When raised at 21°C, tadpoles acclimated expanding their cold tolerance by 1.3°C in relation to larvae raised at 28°C. These results indicate that the túngara frog has a greatly reduced cold tolerance when compared to species from temperate climates, but it responds to cold temperatures with hardening and acclimation comparable to those of temperate-zone species. Cold tolerance increased with body length but cold hardening was more extensive in pre-metamorphic tadpoles than in metamorphic ones. This study shows that lack of acclimation ability is not general to the physiology of tropical anurans. Copyright © 2017 Elsevier Ltd. All rights reserved.

  5. Interpopulational variation in the cold tolerance of a broadly distributed marine copepod

    PubMed Central

    Wallace, Gemma T.; Kim, Tiffany L.; Neufeld, Christopher J.

    2014-01-01

    Latitudinal trends in cold tolerance have been observed in many terrestrial ectotherms, but few studies have investigated interpopulational variation in the cold physiology of marine invertebrates. Here, the intertidal copepod Tigriopus californicus was used as a model system to study how local adaptation influences the cold tolerance of a broadly distributed marine crustacean. Among five populations spanning 18° in latitude, the following three metrics were used to compare cold tolerance: the temperature of chill-coma onset, the chill-coma recovery time and post-freezing recovery. In comparison to copepods from warmer southern latitudes, animals from northern populations exhibited lower chill-coma onset temperatures, shorter chill-coma recovery times and faster post-freezing recovery rates. Importantly, all three metrics showed a consistent latitudinal trend, suggesting that any single metric could be used equivalently in future studies investigating latitudinal variation in cold tolerance. Our results agree with previous studies showing that populations within a single species can display strong local adaptation to spatially varying climatic conditions. Thus, accounting for local adaptation in bioclimate models will be useful for understanding how broadly distributed species like T. californicus will respond to anthropogenic climate change. PMID:27293662

  6. Interpopulational variation in the cold tolerance of a broadly distributed marine copepod.

    PubMed

    Wallace, Gemma T; Kim, Tiffany L; Neufeld, Christopher J

    2014-01-01

    Latitudinal trends in cold tolerance have been observed in many terrestrial ectotherms, but few studies have investigated interpopulational variation in the cold physiology of marine invertebrates. Here, the intertidal copepod Tigriopus californicus was used as a model system to study how local adaptation influences the cold tolerance of a broadly distributed marine crustacean. Among five populations spanning 18° in latitude, the following three metrics were used to compare cold tolerance: the temperature of chill-coma onset, the chill-coma recovery time and post-freezing recovery. In comparison to copepods from warmer southern latitudes, animals from northern populations exhibited lower chill-coma onset temperatures, shorter chill-coma recovery times and faster post-freezing recovery rates. Importantly, all three metrics showed a consistent latitudinal trend, suggesting that any single metric could be used equivalently in future studies investigating latitudinal variation in cold tolerance. Our results agree with previous studies showing that populations within a single species can display strong local adaptation to spatially varying climatic conditions. Thus, accounting for local adaptation in bioclimate models will be useful for understanding how broadly distributed species like T. californicus will respond to anthropogenic climate change.

  7. Chlorophyll fluorescence emission as a reporter on cold tolerance in Arabidopsis thaliana accessions

    PubMed Central

    Mishra, Anamika; Höermiller, Imke I; Heyer, Arnd G; Nedbal, Ladislav

    2011-01-01

    Non-invasive, high-throughput screening methods are valuable tools in breeding for abiotic stress tolerance in plants. Optical signals such as chlorophyll fluorescence emission can be instrumental in developing new screening techniques. In order to examine the potential of chlorophyll fluorescence to reveal plant tolerance to low temperatures, we used a collection of nine Arabidopsis thaliana accessions and compared their fluorescence features with cold tolerance quantified by the well established electrolyte leakage method on detached leaves. We found that, during progressive cooling, the minimal chlorophyll fluorescence emission rose strongly and that this rise was highly dependent on the cold tolerance of the accessions. Maximum quantum yield of PSII photochemistry and steady state fluorescence normalized to minimal fluorescence were also highly correlated to the cold tolerance measured by the electrolyte leakage method. In order to further increase the capacity of the fluorescence detection to reveal the low temperature tolerance, we applied combinatorial imaging that employs plant classification based on multiple fluorescence features. We found that this method, by including the resolving power of several fluorescence features, can be well employed to detect cold tolerance already at mild sub-zero temperatures. Therefore, there is no need to freeze the screened plants to the largely damaging temperatures of around −15°C. This, together with the method's easy applicability, represents a major advantage of the fluorescence technique over the conventional electrolyte leakage method. PMID:21427532

  8. The overwintering physiology of the emerald ash borer, Agrilus planipennis fairmaire (coleoptera: buprestidae).

    PubMed

    Crosthwaite, Jill C; Sobek, Stephanie; Lyons, D Barry; Bernards, Mark A; Sinclair, Brent J

    2011-01-01

    Ability to survive cold is an important factor in determining northern range limits of insects. The emerald ash borer (Agrilus planipennis) is an invasive beetle introduced from Asia that is causing extensive damage to ash trees in North America, but little is known about its cold tolerance. Herein, the cold tolerance strategy and mechanisms involved in the cold tolerance of the emerald ash borer were investigated, and seasonal changes in these mechanisms monitored. The majority of emerald ash borers survive winter as freeze-intolerant prepupae. In winter, A. planipennis prepupae have low supercooling points (approximately -30°C), which they achieve by accumulating high concentrations of glycerol (approximately 4M) in their body fluids and by the synthesis of antifreeze agents. Cuticular waxes reduce inoculation from external ice. This is the first comprehensive study of seasonal changes in cold tolerance in a buprestid beetle. 2010 Elsevier Ltd. All rights reserved.

  9. Vernalization Requirement and the Chromosomal VRN1-Region can Affect Freezing Tolerance and Expression of Cold-Regulated Genes in Festuca pratensis

    PubMed Central

    Ergon, Åshild; Melby, Tone I.; Höglind, Mats; Rognli, Odd A.

    2016-01-01

    Plants adapted to cold winters go through annual cycles of gain followed by loss of freezing tolerance (cold acclimation and deacclimation). Warm spells during winter and early spring can cause deacclimation, and if temperatures drop, freezing damage may occur. Many plants are vernalized during winter, a process making them competent to flower in the following summer. In winter cereals, a coincidence in the timing of vernalization saturation, deacclimation, downregulation of cold-induced genes, and reduced ability to reacclimate, occurs under long photoperiods and is under control of the main regulator of vernalization requirement in cereals, VRN1, and/or closely linked gene(s). Thus, the probability of freezing damage after a warm spell may depend on both vernalization saturation and photoperiod. We investigated the role of vernalization and the VRN1-region on freezing tolerance of meadow fescue (Festuca pratensis Huds.), a perennial grass species. Two F2 populations, divergently selected for high and low vernalization requirement, were studied. Each genotype was characterized for the copy number of one of the four parental haplotypes of the VRN1-region. Clonal plants were cold acclimated for 2 weeks or vernalized/cold acclimated for a total of 9 weeks, after which the F2 populations reached different levels of vernalization saturation. Vernalized and cold acclimated plants were deacclimated for 1 week and then reacclimated for 2 weeks. All treatments were given at 8 h photoperiod. Flowering response, freezing tolerance and expression of the cold-induced genes VRN1, MADS3, CBF6, COR14B, CR7 (BLT14), LOS2, and IRI1 was measured. We found that some genotypes can lose some freezing tolerance after vernalization and a deacclimation–reacclimation cycle. The relationship between vernalization and freezing tolerance was complex. We found effects of the VRN1-region on freezing tolerance in plants cold acclimated for 2 weeks, timing of heading after 9 weeks of vernalization, expression of COR14B, CBF6, and LOS2 in vernalized and/or deacclimated treatments, and restoration of freezing tolerance during reacclimation. While expression of VRN1, COR14B, CBF6, LOS2, and IRI1 was correlated, CR7 was associated with vernalization requirement by other mechanisms, and appeared to play a role in freezing tolerance in reacclimated plants. PMID:26941767

  10. The ins and outs of water dynamics in cold tolerant soil invertebrates.

    PubMed

    Holmstrup, Martin

    2014-10-01

    Many soil invertebrates have physiological characteristics in common with freshwater animals and represent an evolutionary transition from aquatic to terrestrial life forms. Their high cuticular permeability and ability to tolerate large modifications of internal osmolality are of particular importance for their cold tolerance. A number of cold region species that spend some or most of their life-time in soil are in more or less intimate contact with soil ice during overwintering. Unless such species have effective barriers against cuticular water-transport, they have only two options for survival: tolerate internal freezing or dehydrate. The risk of internal ice formation may be substantial due to inoculative freezing and many species rely on freeze-tolerance for overwintering. If freezing does not occur, the desiccating power of external ice will cause the animal to dehydrate until vapor pressure equilibrium between body fluids and external ice has been reached. This cold tolerance mechanism is termed cryoprotective dehydration (CPD) and requires that the animal must be able to tolerate substantial dehydration. Even though CPD is essentially a freeze-avoidance strategy the associated physiological traits are more or less the same as those found in freeze tolerant species. The most well-known are accumulation of compatible osmolytes and molecular chaperones reducing or protecting against the stress caused by cellular dehydration. Environmental moisture levels of the habitat are important for which type of cold tolerance is employed, not only in an evolutionary context, but also within a single population. Some species use CPD under relatively dry conditions, but freeze tolerance when soil moisture is high. Copyright © 2014 Elsevier Ltd. All rights reserved.

  11. Deficit irrigation practices may alter Vitis vinifera L. resistance to cold injury: Empirical evidence from the field

    USDA-ARS?s Scientific Manuscript database

    Deficit irrigation reduces seasonal carbohydrate supply and decreases starch concentrations in vegetative tissues. The specific role of starch metabolism in conferring tolerance to cold is still poorly understood. A decrease in cold tolerance after sequential years of deficit irrigation would limit ...

  12. Starch-related alpha-glucan/water dikinase is involved in the cold-induced development of freezing tolerance in Arabidopsis.

    PubMed

    Yano, Ryoichi; Nakamura, Masanobu; Yoneyama, Tadakatsu; Nishida, Ikuo

    2005-06-01

    Cold-induced soluble sugar accumulation enhances the degree of freezing tolerance in various cold-hardy plants including Arabidopsis (Arabidopsis thaliana), where soluble sugars accumulate in only a few hours at 2 degrees C. Hence, along with photosynthesis, starch degradation might play a significant role in cold-induced sugar accumulation and enhanced freezing tolerance. Starch-related alpha-glucan/water dikinase (EC 2.7.9.4), encoded by Arabidopsis STARCH EXCESS 1 (SEX1), is hypothesized to regulate starch degradation in plastids by phosphorylating starch, thereby ensuring better accessibility by starch-degrading enzymes. Here, we show that Arabidopsis sex1 mutants, when incubated at 2 degrees C for 1 d, were unable to accumulate maltooligosaccharides or normal glucose and fructose levels. In addition, they displayed impaired freezing tolerance. After 7 d at 2 degrees C, sex1 mutants did not show any of the above abnormal phenotypes but displayed slightly higher leaf starch contents. The impaired freezing tolerance of sex1 mutants was restored by overexpression of wild-type SEX1 cDNA using the cauliflower mosaic virus 35S promoter. The results demonstrate a genetic link between the SEX1 locus and plant freezing tolerance, and show that starch degradation is important for enhanced freezing tolerance during an early phase of cold acclimation. However, induction of starch degradation was not accompanied by significant changes in alpha-glucan/water dikinase activity in leaf extracts and preceded cold-induced augmentation of SEX1 transcripts. Therefore, we conclude that augmentation of SEX1 transcripts might be a homeostatic response to low temperature, and that starch degradation during an early phase of cold acclimation could be regulated by a component(s) of a starch degradation pathway(s) downstream of SEX1.

  13. Arabidopsis dynamin-related protein 1E in sphingolipid-enriched plasma membrane domains is associated with the development of freezing tolerance.

    PubMed

    Minami, Anzu; Tominaga, Yoko; Furuto, Akari; Kondo, Mariko; Kawamura, Yukio; Uemura, Matsuo

    2015-08-01

    The freezing tolerance of Arabidopsis thaliana is enhanced by cold acclimation, resulting in changes in the compositions and function of the plasma membrane. Here, we show that a dynamin-related protein 1E (DRP1E), which is thought to function in the vesicle trafficking pathway in cells, is related to an increase in freezing tolerance during cold acclimation. DRP1E accumulated in sphingolipid and sterol-enriched plasma membrane domains after cold acclimation. Analysis of drp1e mutants clearly showed that DRP1E is required for full development of freezing tolerance after cold acclimation. DRP1E fused with green fluorescent protein was visible as small foci that overlapped with fluorescent dye-labelled plasma membrane, providing evidence that DRP1E localizes non-uniformly in specific areas of the plasma membrane. These results suggest that DRP1E accumulates in sphingolipid and sterol-enriched plasma membrane domains and plays a role in freezing tolerance development during cold acclimation. © 2015 The Authors The Plant Journal © 2015 John Wiley & Sons Ltd.

  14. Tolerance to multiple climate stressors: A case study of Douglas-fir drought and cold hardiness

    USGS Publications Warehouse

    Bansal, Sheel; Harrington, Constance A; St. Clair, John Bradley

    2016-01-01

    Summary: 1. Drought and freeze events are two of the most common forms of climate extremes which result in tree damage or death, and the frequency and intensity of both stressors may increase with climate change. Few studies have examined natural covariation in stress tolerance traits to cope with multiple stressors among wild plant populations. 2. We assessed the capacity of coastal Douglas-fir (Pseudotsuga menziesii var. menziesii), an ecologically and economically important species in the northwestern USA, to tolerate both drought and cold stress on 35 populations grown in common gardens. We used principal components analysis to combine drought and cold hardiness trait data into generalized stress hardiness traits to model geographic variation in hardiness as a function of climate across the Douglas-fir range. 3. Drought and cold hardiness converged among populations along winter temperature gradients and diverged along summer precipitation gradients. Populations originating in regions with cold winters had relatively high tolerance to both drought and cold stress, which is likely due to overlapping adaptations for coping with winter desiccation. Populations from regions with dry summers had increased drought hardiness but reduced cold hardiness, suggesting a trade-off in tolerance mechanisms. 4. Our findings highlight the necessity to look beyond bivariate trait–climate relationships and instead consider multiple traits and climate variables to effectively model and manage for the impacts of climate change on widespread species.

  15. Perspective Research Progress in Cold Responses of Capsella bursa-pastoris

    PubMed Central

    Noman, Ali; Kanwal, Hina; Khalid, Noreen; Sanaullah, Tayyaba; Tufail, Aasma; Masood, Atifa; Sabir, Sabeeh-ur-Rasool; Aqeel, Muhammad; He, Shuilin

    2017-01-01

    Plants respond to cold stress by modulating biochemical pathways and array of molecular events. Plant morphology is also affected by the onset of cold conditions culminating at repression in growth as well as yield reduction. As a preventive measure, cascades of complex signal transduction pathways are employed that permit plants to endure freezing or chilling periods. The signaling pathways and related events are regulated by the plant hormonal activity. Recent investigations have provided a prospective understanding about plant response to cold stress by means of developmental pathways e.g., moderate growth involved in cold tolerance. Cold acclimation assays and bioinformatics analyses have revealed the role of potential transcription factors and expression of genes like CBF, COR in response to low temperature stress. Capsella bursa-pastoris is a considerable model plant system for evolutionary and developmental studies. On different occasions it has been proved that C. bursa-pastoris is more capable of tolerating cold than A. thaliana. But, the mechanism for enhanced low or freezing temperature tolerance is still not clear and demands intensive research. Additionally, identification and validation of cold responsive genes in this candidate plant species is imperative for plant stress physiology and molecular breeding studies to improve cold tolerance in crops. We have analyzed the role of different genes and hormones in regulating plant cold resistance with special reference to C. bursa-pastoris. Review of collected data displays potential ability of Capsella as model plant for improvement in cold stress regulation. Information is summarized on cold stress signaling by hormonal control which highlights the substantial achievements and designate gaps that still happen in our understanding. PMID:28855910

  16. Exploring heteroplasmy as the basis for maternally-transmitted cold tolerance in cucumber

    USDA-ARS?s Scientific Manuscript database

    Cucumber is a warm-season crop that can be severely damaged by short periods of cold temperatures. Growers would benefit from cold tolerant cucumbers by preventing crop loss in inclement weather as well as by allowing for earlier planting and harvest, thus avoiding heavy late-season disease pressure...

  17. Cold tolerance of Littorinidae from southern Africa: intertidal snails are not constrained to freeze tolerance.

    PubMed

    Sinclair, Brent J; Marshall, David J; Singh, Sarika; Chown, Steven L

    2004-11-01

    All intertidal gastropods for which cold tolerance strategies have been assessed have been shown to be freeze tolerant. Thus, freeze tolerance is considered an adaptation to the intertidal environment. We investigated the cold tolerance strategies of three species of subtropical and temperate snails (Gastropoda: Littorinidae) to determine whether this group is phylogenetically constrained to freeze tolerance. We exposed 'dry' acclimated and 'wet' rehydrated snails to low temperatures to determine temperature of crystallisation (Tc), lower lethal temperature and LT(50) and to examine the relationship between ice formation and mortality. Tc was lowest in dry Afrolittorina knysnaensis (-13.6+/-0.4 degrees C), followed by dry Echinolittorina natalensis (-10.9+/-0.2 degrees C) and wet A. knysnaensis (-10.2+/-0.2 degrees C) . The Tc of both A. knysnaensis and E. natalensis increased with rehydration, whereas Tc of dry and wet Afrolittorina africana did not differ (-9.6+/-0.2 and -9.0+/-0.2 degrees C respectively). Wet snails of all species exhibited no or low survival of inoculative freezing, whereas dry individuals of A. knysnaensis could survive subzero temperatures above -8 degrees C when freezing was inoculated with ice . In the absence of external ice, Afrolittorina knysnaensis employs a freeze-avoidance strategy of cold tolerance, the first time this has been reported for an intertidal snail, indicating that there is no family-level phylogenetic constraint to freeze tolerance. Echinolittorina natalensis and A. africana both showed pre-freeze mortality and survival of some internal ice formation, but were not cold hardy in any strict sense.

  18. The Arabidopsis 14-3-3 Protein RARE COLD INDUCIBLE 1A Links Low-Temperature Response and Ethylene Biosynthesis to Regulate Freezing Tolerance and Cold Acclimation[C][W

    PubMed Central

    Catalá, Rafael; López-Cobollo, Rosa; Mar Castellano, M.; Angosto, Trinidad; Alonso, José M.; Ecker, Joseph R.; Salinas, Julio

    2014-01-01

    In plants, the expression of 14-3-3 genes reacts to various adverse environmental conditions, including cold, high salt, and drought. Although these results suggest that 14-3-3 proteins have the potential to regulate plant responses to abiotic stresses, their role in such responses remains poorly understood. Previously, we showed that the RARE COLD INDUCIBLE 1A (RCI1A) gene encodes the 14-3-3 psi isoform. Here, we present genetic and molecular evidence implicating RCI1A in the response to low temperature. Our results demonstrate that RCI1A functions as a negative regulator of constitutive freezing tolerance and cold acclimation in Arabidopsis thaliana by controlling cold-induced gene expression. Interestingly, this control is partially performed through an ethylene (ET)-dependent pathway involving physical interaction with different ACC SYNTHASE (ACS) isoforms and a decreased ACS stability. We show that, consequently, RCI1A restrains ET biosynthesis, contributing to establish adequate levels of this hormone in Arabidopsis under both standard and low-temperature conditions. We further show that these levels are required to promote proper cold-induced gene expression and freezing tolerance before and after cold acclimation. All these data indicate that RCI1A connects the low-temperature response with ET biosynthesis to modulate constitutive freezing tolerance and cold acclimation in Arabidopsis. PMID:25122152

  19. Assessment of five cold chilling tolerance traits and GWAS mapping in rice using the USDA mini-core collection

    USDA-ARS?s Scientific Manuscript database

    Rice (Oryza sativa L.) is often exposed to cool or cold temperatures during spring planting in a temperate climate. A better understanding of the genetic pathways regulating this chilling tolerance will enable breeders to develop varieties with improved tolerance during the germination and young see...

  20. The induction of menadione stress tolerance in the marine microalga, Dunaliella viridis, through cold pretreatment and modulation of the ascorbate and glutathione pools.

    PubMed

    Madadkar Haghjou, Maryam; Colville, Louise; Smirnoff, Nicholas

    2014-11-01

    The effect of cold pretreatment on menadione tolerance was investigated in the cells of the marine microalga, Dunaliella viridis. In addition, the involvement of ascorbate and glutathione in the response to menadione stress was tested by treating cell suspensions with l-galactono-1,4-lactone, an ascorbate precursor, and buthionine sulfoximine, an inhibitor of glutathione synthesis. Menadione was highly toxic to non cold-pretreated cells, and caused a large decrease in cell number. Cold pretreatment alleviated menadione toxicity and cold pretreated cells accumulated lower levels of reactive oxygen species, and had enhanced antioxidant capacity due to increased levels of β-carotene, reduced ascorbate and total glutathione compared to non cold-pretreated cells. Cold pretreatment also altered the response to l-galactono-1,4-lactone and buthionine sulfoximine treatments. Combined l-galactono-1,4-lactone and menadione treatment was lethal in non-cold pretreated cells, but in cold-pretreated cells it had a positive effect on cell numbers compared to menadione alone. Overall, exposure of Dunaliella cells to cold stress enhanced tolerance to subsequent oxidative stress induced by menadione. Copyright © 2014 Elsevier Masson SAS. All rights reserved.

  1. A proteome analysis of freezing tolerance in red clover (Trifolium pratense L.).

    PubMed

    Bertrand, Annick; Bipfubusa, Marie; Castonguay, Yves; Rocher, Solen; Szopinska-Morawska, Aleksandra; Papadopoulos, Yousef; Renaut, Jenny

    2016-03-10

    Improvement of freezing tolerance of red clover (Trifolium pratense L.) would increase its persistence under cold climate. In this study, we assessed the freezing tolerance and compared the proteome composition of non-acclimated and cold-acclimated plants of two initial cultivars of red clover: Endure (E-TF0) and Christie (C-TF0) and of populations issued from these cultivars after three (TF3) and four (TF4) cycles of phenotypic recurrent selection for superior freezing tolerance. Through this approach, we wanted to identify proteins that are associated with the improvement of freezing tolerance in red clover. Freezing tolerance expressed as the lethal temperature for 50 % of the plants (LT50) increased markedly from approximately -2 to -16 °C following cold acclimation. Recurrent selection allowed a significant 2 to 3 °C increase of the LT50 after four cycles of recurrent selection. Two-dimensional difference gel electrophoresis (2D-DIGE) was used to study variations in protein abundance. Principal component analysis based on 2D-DIGE revealed that the largest variability in the protein data set was attributable to the cold acclimation treatment and that the two genetic backgrounds had differential protein composition in the acclimated state only. Vegetative storage proteins (VSP), which are essential nitrogen reserves for plant regrowth, and dehydrins were among the most striking changes in proteome composition of cold acclimated crowns of red clovers. A subset of proteins varied in abundance in response to selection including a dehydrin that increased in abundance in TF3 and TF4 populations as compared to TF0 in the Endure background. Recurrent selection performed indoor is an effective approach to improve the freezing tolerance of red clover. Significant improvement of freezing tolerance by recurrent selection was associated with differential accumulation of a small number of cold-regulated proteins that may play an important role in the determination of the level of freezing tolerance.

  2. Is the wide distribution of aspen a result of its stress tolerance?

    Treesearch

    V. J. Lieffers; S. M. Landhausser; E. H. Hogg

    2001-01-01

    Populus tremuloides is distributed from drought-prone fringes of the Great Plains to extremely cold sites at arctic treeline. To occupy these conditions aspen appears to be more tolerant of stress than the other North American species of the genus Populus. Cold winters, cold soil conditions during the growing season, periodic drought, insect defoliation, and...

  3. Brief submaximal isometric exercise improves cold pressor pain tolerance.

    PubMed

    Foxen-Craft, Emily; Dahlquist, Lynnda M

    2017-10-01

    Exercise-induced hypoalgesia (EIH), or the inhibition of pain following physical exercise, has been demonstrated in adults, but its mechanisms have remained unclear due to variations in methodology. This study aimed to address methodological imitations of past studies and contribute to the literature demonstrating the generalizability of EIH to brief submaximal isometric exercise and cold pressor pain. Young adults (n = 134) completed a baseline cold pressor trial, maximal voluntary contraction (hand grip strength) assessment, 10-min rest, and either a 2-min submaximal isometric handgrip exercise or a sham exercise in which no force was exerted, followed by a cold pressor posttest. Results indicated that cold pressor pain tolerance significantly increased during the exercise condition, but not during the sham exercise condition. Exercise did not affect pain intensity and marginally affected pain unpleasantness ratings. These findings suggest that submaximal isometric exercise can improve cold pressor pain tolerance but may have an inconsistent analgesic effect on ratings of cold pressor pain.

  4. Apoplastic sugars and cell-wall invertase are involved in formation of the tolerance of cold-resistant potato plants to hypothermia.

    PubMed

    Deryabin, A N; Burakhanova, E A; Trunova, T I

    2015-01-01

    We studied the involvement of apoplastic sugars (glucose, fructose, and sucrose) and the cell-wall invertase (CWI) in the formation of the tolerance of cold-resistant potato plants (Solanum tuberosum L., cv Désirée) to hypothermia. The activity of CW1 and the content in the cell and the apoplast substrate (sucrose) and the reaction products of this enzyme (glucose and fructose) have a significant influence on the formation of the tolerance of cold-resistant potato plants to hypothermia.

  5. PpCBF3 from Cold-Tolerant Kentucky Bluegrass Involved in Freezing Tolerance Associated with Up-Regulation of Cold-Related Genes in Transgenic Arabidopsis thaliana

    PubMed Central

    Chen, Yu; Xu, Bin; Yang, Zhimin; Huang, Bingru

    2015-01-01

    Dehydration-Responsive Element Binding proteins (DREB)/C-repeat (CRT) Binding Factors (CBF) have been identified as transcriptional activators during plant responses to cold stress. The objective of this study was to determine the physiological roles of a CBF gene isolated from a cold-tolerant perennial grass species, Kentucky bluegrass (Poa pratensis L.), which designated as PpCBF3, in regulating plant tolerance to freezing stress. Transient transformation of Arabidopsis thaliana mesophyll protoplast with PpCBF3-eGFP fused protein showed that PpCBF3 was localized to the nucleus. RT-PCR analysis showed that PpCBF3 was specifically induced by cold stress (4°C) but not by drought stress [induced by 20% polyethylene glycol 6000 solution (PEG-6000)] or salt stress (150 mM NaCl). Transgenic Arabidopsis overexpressing PpCBF3 showed significant improvement in freezing (-20°C) tolerance demonstrated by a lower percentage of chlorotic leaves, lower cellular electrolyte leakage (EL) and H2O2 and O2 .- content, and higher chlorophyll content and photochemical efficiency compared to the wild type. Relative mRNA expression level analysis by qRT-PCR indicated that the improved freezing tolerance of transgenic Arabidopsis plants overexpressing PpCBF3 was conferred by sustained activation of downstream cold responsive (COR) genes. Other interesting phenotypic changes in the PpCBF3-transgenic Arabidopsis plants included late flowering and slow growth or ‘dwarfism’, both of which are desirable phenotypic traits for perennial turfgrasses. Therefore, PpCBF3 has potential to be used in genetic engineering for improvement of turfgrass freezing tolerance and other desirable traits. PMID:26177510

  6. ICE1 of Pyrus ussuriensis functions in cold tolerance by enhancing PuDREBa transcriptional levels through interacting with PuHHP1

    NASA Astrophysics Data System (ADS)

    Huang, Xiaosan; Li, Kongqing; Jin, Cong; Zhang, Shaoling

    2015-12-01

    ICE1 transcription factor plays an important role in plant cold stress via regulating the expression of stress-responsive genes. In this study, a PuICE1 gene isolated from Pyrus ussuriensis was characterized for its function in cold tolerance. The expression levels of the PuICE1 were induced by cold, dehydration and salt, with the greatest induction under cold conditions. PuICE1 was localized in the nucleus and could bind specifically to the MYC element in the PuDREBa promoter. The PuICE1 fused to the GAL4 DNA-binding domain to have transcriptional activation activity. Ectopic expression of the PuICE1 in tomato conferred enhanced tolerance to cold stress at cold temperatures, less electrolyte leakage, less MDA content, higher chlorophyll content, higher survival rate, higher proline content, higher activities of enzymes. In additon, steady-state mRNA levels of six stress-responsive genes coding for either functional or regulatory genes were induced to higher levels in the transgenic lines by cold stress. Yeast two-hybrid, transient assay, split luciferase complementation and BiFC assays all revealed that PuHHP1 protein can physically interact with PuICE1. Taken together, these results demonstrated that PuICE1 plays a positive role in cold tolerance, which may be due to enhancement of PuDREBa transcriptional levels through interacting with the PuHHP1.

  7. Heat stress affects carbohydrate metabolism during cold-induced sweetening of potato (Solanum tuberosum L.).

    PubMed

    Herman, Derek J; Knowles, Lisa O; Knowles, N Richard

    2017-03-01

    Tolerance to heat stress for retention of low-temperature sweetening-resistant phenotype in potato is conferred by insensitivity of acid invertase activity to cold induction. Heat stress exacerbated cold sweetening (buildup of reducing sugars) of the LTS (low-temperature sweetening)-susceptible potato (Solanum tuberosum L.) cultivars, Ranger Russet and Russet Burbank, and completely abolished the resistance to cold sweetening in the LTS-resistant cultivars/clones, Sage Russet, GemStar Russet, POR06V12-3 and A02138-2. Payette Russet and EGA09702-2, however, demonstrated considerable tolerance to heat stress for retention of their LTS-resistant phenotype. Heat-primed Payette Russet and EGA09702-2 tubers accumulated fourfold more sucrose when subsequently stored at 4 °C, while reducing sugar concentrations also increased marginally but remained low relative to the non-heat-tolerant LTS-resistant clones, resulting in light-colored fries. By contrast, sucrose concentrations in heat-primed tubers of the non-heat-tolerant clones remained unchanged during LTS, but reducing sugars increased fivefold, resulting in darkening of processed fries. Acid invertase activity increased in the LTS-susceptible and non-heat-tolerant LTS-resistant cultivars/clones during cold storage. However, Payette Russet tubers maintained very low invertase activity regardless of heat stress and cold storage treatments, as was the case for Innate ® Russet Burbank (W8) tubers, where silenced invertase conferred robust tolerance to heat stress for retention of LTS-resistant phenotype. Importantly, heat-stressed tubers of Payette Russet, EGA09702-2 and Innate ® Russet Burbank (W8) demonstrated similar low reducing sugar and high sucrose-accumulating phenotypes when stored at 4 °C. Tolerance to heat stress for retention of LTS-resistant phenotype in Payette Russet and likely its maternal parent, EGA09702-2, is, therefore, conferred by the ability to maintain low invertase activity during cold storage of heat-stressed tubers.

  8. Global Expression Profiling of Low Temperature Induced Genes in the Chilling Tolerant Japonica Rice Jumli Marshi

    PubMed Central

    Chawade, Aakash; Lindlöf, Angelica; Olsson, Björn; Olsson, Olof

    2013-01-01

    Low temperature is a key factor that limits growth and productivity of many important agronomical crops worldwide. Rice (Oryza sativa L.) is negatively affected already at temperatures below +10°C and is therefore denoted as chilling sensitive. However, chilling tolerant rice cultivars exist and can be commercially cultivated at altitudes up to 3,050 meters with temperatures reaching as low as +4°C. In this work, the global transcriptional response to cold stress (+4°C) was studied in the Nepalese highland variety Jumli Marshi (spp. japonica) and 4,636 genes were identified as significantly differentially expressed within 24 hours of cold stress. Comparison with previously published microarray data from one chilling tolerant and two sensitive rice cultivars identified 182 genes differentially expressed (DE) upon cold stress in all four rice cultivars and 511 genes DE only in the chilling tolerant rice. Promoter analysis of the 182 genes suggests a complex cross-talk between ABRE and CBF regulons. Promoter analysis of the 511 genes identified over-represented ABRE motifs but not DRE motifs, suggesting a role for ABA signaling in cold tolerance. Moreover, 2,101 genes were DE in Jumli Marshi alone. By chromosomal localization analysis, 473 of these cold responsive genes were located within 13 different QTLs previously identified as cold associated. PMID:24349120

  9. The OsMYB30 Transcription Factor Suppresses Cold Tolerance by Interacting with a JAZ Protein and Suppressing β-Amylase Expression.

    PubMed

    Lv, Yan; Yang, Mei; Hu, Dan; Yang, Zeyu; Ma, Siqi; Li, Xianghua; Xiong, Lizhong

    2017-02-01

    Cold stress is one of the major limiting factors for rice (Oryza sativa) productivity. Several MYB transcriptional factors have been reported as important regulators in the cold stress response, but the molecular mechanisms are largely unknown. In this study, we characterized a cold-responsive R2R3-type MYB gene, OsMYB30, for its regulatory function in cold tolerance in rice. Functional analysis revealed that overexpression of OsMYB30 in rice resulted in increased cold sensitivity, while the osmyb30 knockout mutant showed increased cold tolerance. Microarray and quantitative real-time polymerase chain reaction analyses revealed that a few β-amylase (BMY) genes were down-regulated by OsMYB30. The BMY activity and maltose content, which were decreased and increased in the OsMYB30 overexpression and osmyb30 knockout mutant, respectively, were correlated with the expression patterns of the BMY genes. OsMYB30 was shown to bind to the promoters of the BMY genes. These results suggested that OsMYB30 exhibited a regulatory effect on the breakdown of starch through the regulation of the BMY genes. In addition, application of maltose had a protective effect for cell membranes under cold stress conditions. Furthermore, we identified an OsMYB30-interacting protein, OsJAZ9, that had a significant effect in suppressing the transcriptional activation of OsMYB30 and in the repression of BMY genes mediated by OsMYB30. These results together suggested that OsMYB30 might be a novel regulator of cold tolerance through the negative regulation of the BMY genes by interacting with OsJAZ9 to fine-tune the starch breakdown and the content of maltose, which might contribute to the cold tolerance as a compatible solute. © 2017 American Society of Plant Biologists. All Rights Reserved.

  10. Breeding approaches and genomics technologies to increase crop yield under low-temperature stress.

    PubMed

    Jha, Uday Chand; Bohra, Abhishek; Jha, Rintu

    2017-01-01

    Improved knowledge about plant cold stress tolerance offered by modern omics technologies will greatly inform future crop improvement strategies that aim to breed cultivars yielding substantially high under low-temperature conditions. Alarmingly rising temperature extremities present a substantial impediment to the projected target of 70% more food production by 2050. Low-temperature (LT) stress severely constrains crop production worldwide, thereby demanding an urgent yet sustainable solution. Considerable research progress has been achieved on this front. Here, we review the crucial cellular and metabolic alterations in plants that follow LT stress along with the signal transduction and the regulatory network describing the plant cold tolerance. The significance of plant genetic resources to expand the genetic base of breeding programmes with regard to cold tolerance is highlighted. Also, the genetic architecture of cold tolerance trait as elucidated by conventional QTL mapping and genome-wide association mapping is described. Further, global expression profiling techniques including RNA-Seq along with diverse omics platforms are briefly discussed to better understand the underlying mechanism and prioritize the candidate gene (s) for downstream applications. These latest additions to breeders' toolbox hold immense potential to support plant breeding schemes that seek development of LT-tolerant cultivars. High-yielding cultivars endowed with greater cold tolerance are urgently required to sustain the crop yield under conditions severely challenged by low-temperature.

  11. Finger cold-induced vasodilation of older Korean female divers, haenyeo: effects of chronic cold exposure and aging

    NASA Astrophysics Data System (ADS)

    Lee, Joo-Young; Park, Joonhee; Koh, Eunsook; Cha, Seongwon

    2017-07-01

    The aim of the present study was to evaluate the local cold tolerance of older Korean female divers, haenyeo ( N = 22) in terms of cold acclimatization and ageing. As control groups, older non-diving females ( N = 25) and young females from a rural area ( N = 15) and an urban area ( N = 51) participated in this study. To evaluate local cold tolerance, finger cold-induced vasodilation (CIVD) during finger immersion of 4 °C water was examined. As a result, older haenyeos showed greater minimum finger temperature and recovery finger temperature than older non-diving females ( P < 0.05), but similar responses in onset time, peak time, maximum finger temperature, frequency of CIVD, heart rate, blood pressure, and thermal and pain sensations as those of older non-diving females. Another novel finding was that young urban females showed more vulnerable responses to local cold in CIVD variables and subjective sensations when compared to older females, whereas young rural females had the most excellent cold tolerance in terms of maximum temperature and frequency of CIVD among the four groups ( P < 0.05). The present results imply that older haenyeos still retain cold acclimatized features on the periphery even though they changed their cotton diving suits to wet suits in the early 1980s. However, cardiovascular responses and subjective sensations to cold reflect aging effects. In addition, we suggest that young people who have been adapted to highly insulated clothing and indoor heating systems in winter should be distinguished from young people who were exposed to less modern conveniences when compared to the aged in terms of cold tolerance.

  12. Finger cold-induced vasodilation of older Korean female divers, haenyeo: effects of chronic cold exposure and aging.

    PubMed

    Lee, Joo-Young; Park, Joonhee; Koh, Eunsook; Cha, Seongwon

    2017-07-01

    The aim of the present study was to evaluate the local cold tolerance of older Korean female divers, haenyeo (N = 22) in terms of cold acclimatization and ageing. As control groups, older non-diving females (N = 25) and young females from a rural area (N = 15) and an urban area (N = 51) participated in this study. To evaluate local cold tolerance, finger cold-induced vasodilation (CIVD) during finger immersion of 4 °C water was examined. As a result, older haenyeos showed greater minimum finger temperature and recovery finger temperature than older non-diving females (P < 0.05), but similar responses in onset time, peak time, maximum finger temperature, frequency of CIVD, heart rate, blood pressure, and thermal and pain sensations as those of older non-diving females. Another novel finding was that young urban females showed more vulnerable responses to local cold in CIVD variables and subjective sensations when compared to older females, whereas young rural females had the most excellent cold tolerance in terms of maximum temperature and frequency of CIVD among the four groups (P < 0.05). The present results imply that older haenyeos still retain cold acclimatized features on the periphery even though they changed their cotton diving suits to wet suits in the early 1980s. However, cardiovascular responses and subjective sensations to cold reflect aging effects. In addition, we suggest that young people who have been adapted to highly insulated clothing and indoor heating systems in winter should be distinguished from young people who were exposed to less modern conveniences when compared to the aged in terms of cold tolerance.

  13. Comparing Enchytraeus albidus populations from contrasting climatic environments suggest a link between cold tolerance and metabolic activity.

    PubMed

    Žagar, Anamarija; Holmstrup, Martin; Simčič, Tatjana; Debeljak, Barabara; Slotsbo, Stine

    2018-06-06

    Basal metabolic activity and freezing of body fluids create reactive oxygen species (ROS) in freeze-tolerant organisms. These sources of ROS can have an additive negative effect via oxidative stress. In cells, antioxidant systems are responsible for removing ROS in order to avoid damage due to oxidative stress. Relatively little is known about the importance of metabolic rate for the survival of freezing, despite a good understanding of several cold tolerance related physiological mechanisms. We hypothesized that low basal metabolism would be selected for in freeze-tolerant organisms where winter survival is important for fitness for two reasons. First, avoidance of the additive effect of ROS production from metabolism and freezing, and second, as an energy-saving mechanism under extended periods of freezing where the animal is metabolically active, but unable to feed. We used the terrestrial oligochaete, Enchytraeus albidus, which is widely distributed from Spain to the high Arctic and compared eight populations originating across a broad geographical and climatic gradient after they had been cold acclimated at 5 °C in a common garden experiment. Cold tolerance (lower lethal temperature: LT50) and the potential metabolic activity (PMA, an estimator of the maximal enzymatic potential of the mitochondrial respiration chain) of eight populations were positively correlated amongst each other and correlated negatively with latitude and positively with average yearly temperature and the average temperature of the coldest month. These results indicate that low PMA in cold tolerant populations is important for survival in extremely cold environments. Copyright © 2018 Elsevier Inc. All rights reserved.

  14. Large-scale evaluation of pea (Pisum sativum L.) germplasm for cold tolerance in the open field during winter in Qingdao.

    USDA-ARS?s Scientific Manuscript database

    As a cool season crop, pea (Pisum sativum L.) can tolerate frost at the vegetative stage but has yield loss when freezing stress occurs at reproductive stage. Cold tolerance improvement of pea varieties is important for the stable yield and the expansion of winter pea planting area. Under the natura...

  15. Comparative analysis of the response and gene regulation in cold resistant and susceptible tea plants

    PubMed Central

    Pan, Cheng; Wang, Yiwei; Kong, Lei; Jiang, Huiguang; Xu, Yiqun; Wang, Wenzhi; Pan, Yuting; Li, Yeyun; Jiang, Changjun

    2017-01-01

    Cold environment is the main constraint for tea plants (Camellia sinensis) distribution and tea farming. We identified two tea cultivars, called var. sinensis cv. Shuchazao (SCZ) with a high cold-tolerance and var. assamica cv. Yinghong9 (YH9) with low cold-tolerance. To better understand the response mechanism of tea plants under cold stress for improving breeding, we compared physiological and biochemical responses, and associated genes expression in response to 7-day and 14-day cold acclimation, followed by 7-day de-acclimation in these two tea cultivars. We found that the low EL50, low Fv/Fm, and high sucrose and raffinose accumulation are responsible for higher cold tolerance in SCZ comparing with YH9. We then measured the expression of 14 key homologous genes, known as involved in these responses in other plants, for each stages of treatment in both cultivars using RT-qPCR. Our results suggested that the increased expression of CsCBF1 and CsDHNs coupling with the accumulation of sucrose play key roles in conferring higher cold resistance in SCZ. Our findings have revealed key genes regulation responsible for cold resistance, which help to understand the cold-resistant mechanisms and guide breeding in tea plants. PMID:29211766

  16. Comparative analysis of the response and gene regulation in cold resistant and susceptible tea plants.

    PubMed

    Ban, Qiuyan; Wang, Xuewen; Pan, Cheng; Wang, Yiwei; Kong, Lei; Jiang, Huiguang; Xu, Yiqun; Wang, Wenzhi; Pan, Yuting; Li, Yeyun; Jiang, Changjun

    2017-01-01

    Cold environment is the main constraint for tea plants (Camellia sinensis) distribution and tea farming. We identified two tea cultivars, called var. sinensis cv. Shuchazao (SCZ) with a high cold-tolerance and var. assamica cv. Yinghong9 (YH9) with low cold-tolerance. To better understand the response mechanism of tea plants under cold stress for improving breeding, we compared physiological and biochemical responses, and associated genes expression in response to 7-day and 14-day cold acclimation, followed by 7-day de-acclimation in these two tea cultivars. We found that the low EL50, low Fv/Fm, and high sucrose and raffinose accumulation are responsible for higher cold tolerance in SCZ comparing with YH9. We then measured the expression of 14 key homologous genes, known as involved in these responses in other plants, for each stages of treatment in both cultivars using RT-qPCR. Our results suggested that the increased expression of CsCBF1 and CsDHNs coupling with the accumulation of sucrose play key roles in conferring higher cold resistance in SCZ. Our findings have revealed key genes regulation responsible for cold resistance, which help to understand the cold-resistant mechanisms and guide breeding in tea plants.

  17. Analysis of Stress-Responsive Gene Expression in Cultivated and Weedy Rice Differing in Cold Stress Tolerance

    PubMed Central

    Pereira, Andy; Tseng, Te-Ming; Zimmer, Paulo Dejalma; Burgos, Nilda Roma

    2015-01-01

    Rice (Oryza sativa L.) cultivars show impairment of growth in response to environmental stresses such as cold at the early seedling stage. Locally adapted weedy rice is able to survive under adverse environmental conditions, and can emerge in fields from greater soil depth. Cold-tolerant weedy rice can be a good genetic source for developing cold-tolerant, weed-competitive rice cultivars. An in-depth analysis is presented here of diverse indica and japonica rice genotypes, mostly weedy rice, for cold stress response to provide an understanding of different stress adaptive mechanisms towards improvement of the rice crop performance in the field. We have tested a collection of weedy rice genotypes to: 1) classify the subspecies (ssp.) grouping (japonica or indica) of 21 accessions; 2) evaluate their sensitivity to cold stress; and 3) analyze the expression of stress-responsive genes under cold stress and a combination of cold and depth stress. Seeds were germinated at 25°C at 1.5- and 10-cm sowing depth for 10d. Seedlings were then exposed to cold stress at 10°C for 6, 24 and 96h, and the expression of cold-, anoxia-, and submergence-inducible genes was analyzed. Control plants were seeded at 1.5cm depth and kept at 25°C. The analysis revealed that cold stress signaling in indica genotypes is more complex than that of japonica as it operates via both the CBF-dependent and CBF-independent pathways, implicated through induction of transcription factors including OsNAC2, OsMYB46 and OsF-BOX28. When plants were exposed to cold + sowing depth stress, a complex signaling network was induced that involved cross talk between stresses mediated by CBF-dependent and CBF-independent pathways to circumvent the detrimental effects of stresses. The experiments revealed the importance of the CBF regulon for tolerance to both stresses in japonica and indica ssp. The mechanisms for cold tolerance differed among weedy indica genotypes and also between weedy indica and cultivated japonica ssp. as indicated by the up/downregulation of various stress-responsive pathways identified from gene expression analysis. The cold-stress response is described in relation to the stress signaling pathways, showing complex adaptive mechanisms in different genotypes. PMID:26230579

  18. Abscisic acid induced freezing tolerance in chilling-sensitive suspension cultures and seedlings of rice

    PubMed Central

    2013-01-01

    Background The role of abscisic acid (ABA) as a possible activator of cold acclimation process was postulated since endogenous levels of ABA increase temporarily or constitutively during cold-hardening. Exogenous application of ABA has been known to induce freezing tolerance at ambient temperatures in in vitro systems derived from cold hardy plants. Yet, some cell cultures acquired much greater freezing tolerance by ABA than by cold whilst maintaining active growth. This raises questions about the relationships among ABA, cold acclimation and growth cessation. To address this question, we attempted to 1) determine whether exogenous ABA can confer freezing tolerance in chilling-sensitive rice suspension cells and seedlings, which obviously lack the mechanisms to acquire freezing tolerance in response to cold; 2) characterize this phenomenon by optimizing the conditions and compare with the case of cold hardy bromegrass cells. Results Non-embryogenic suspension cells of rice suffered serious chilling injury when exposed to 4°C. When incubated with ABA at the optimal conditions (0.5-1 g cell inoculum, 75 μM ABA, 25-30°C, 7–10 days), they survived slow freezing (2°C/h) to −9.0 ~ −9.3°C (LT50: 50% killing temperature) while control cells were mostly injured at −3°C (LT50: -0.5 ~ −1.5°C). Ice-inoculation of the cell suspension at −3°C and survival determination by regrowth confirmed that ABA-treated rice cells survived extracellular freezing at −9°C. ABA-induced freezing tolerance did not require any exposure to cold and was best achieved at 25-30°C where the rice cells maintained high growth even in the presence of ABA. ABA treatment also increased tolerance to heat (43°C) as determined by regrowth. ABA-treated cells tended to have more augmented cytoplasm and/or reduced vacuole sizes compared to control cultures with a concomitant increase in osmolarity and a decrease in water content. ABA-treated (2–7 days) in vitro grown seedlings and their leaves survived slow freezing to −3°C with only marginal injury (LT50: -4°C) whereas untreated seedlings were killed at −3°C (LT50: -2°C). Conclusions The results indicate that exogenous ABA can induce some levels of freezing tolerance in chilling-sensitive rice cells and seedlings, probably by eliciting mechanisms different from low temperature-induced cold acclimation. PMID:24004611

  19. Genetic variation of germination cold tolerance in Japanese rice germplasm

    PubMed Central

    Bosetti, Fátima; Montebelli, Camila; Novembre, Ana Dionísia L.C.; Chamma, Helena Pescarin; Pinheiro, José Baldin

    2012-01-01

    Low temperatures at the initial stages of rice development prevent fast germination and seedling establishment and may cause significant productivity losses. In order to develop rice cultivars exhibiting cold tolerance, it is necessary to investigate genetic resources, providing basic knowledge to allow the introduction of genes involved in low temperature germination ability from accessions into elite cultivars. Japanese rice accessions were evaluated at the germination under two conditions: 13°C for 28 days (cold stress) and 28°C for seven days (optimal temperature). The traits studied were coleoptile and radicle length under optimal temperature, coleoptile and radicle length under cold and percentage of the reduction in coleptile and radicle length due to low temperature. Among the accessions studied, genetic variation for traits related to germination under low temperatures was observed and accessions exhibiting adequate performance for all investigated traits were identified. The use of multivariate analysis allowed the identification of the genotypes displaying cold tolerance by smaller reductions in coleoptile and radicle lenght in the presence of cold and high vigour, by higher coleoptile and radicle growth under cold. PMID:23226080

  20. Genetic variation of germination cold tolerance in Japanese rice germplasm.

    PubMed

    Bosetti, Fátima; Montebelli, Camila; Novembre, Ana Dionísia L C; Chamma, Helena Pescarin; Pinheiro, José Baldin

    2012-09-01

    Low temperatures at the initial stages of rice development prevent fast germination and seedling establishment and may cause significant productivity losses. In order to develop rice cultivars exhibiting cold tolerance, it is necessary to investigate genetic resources, providing basic knowledge to allow the introduction of genes involved in low temperature germination ability from accessions into elite cultivars. Japanese rice accessions were evaluated at the germination under two conditions: 13°C for 28 days (cold stress) and 28°C for seven days (optimal temperature). The traits studied were coleoptile and radicle length under optimal temperature, coleoptile and radicle length under cold and percentage of the reduction in coleptile and radicle length due to low temperature. Among the accessions studied, genetic variation for traits related to germination under low temperatures was observed and accessions exhibiting adequate performance for all investigated traits were identified. The use of multivariate analysis allowed the identification of the genotypes displaying cold tolerance by smaller reductions in coleoptile and radicle lenght in the presence of cold and high vigour, by higher coleoptile and radicle growth under cold.

  1. Directional selection on cold tolerance does not constrain plastic capacity in a butterfly.

    PubMed

    Franke, Kristin; Dierks, Anneke; Fischer, Klaus

    2012-12-05

    Organisms may respond to environmental change by means of genetic adaptation, phenotypic plasticity or both, which may result in genotype-environment interactions (G x E) if genotypes differ in their phenotypic response. We here specifically target the latter source of variation (i.e. G x E) by comparing plastic responses among lines of the tropical butterfly Bicyclus anynana that had been selected for increased cold tolerance and according controls. Our main aim here was to test the hypothesis that directional selection on cold tolerance will interfere with plastic capacities. Plastic responses to temperature and feeding treatments were strong, with e.g. higher compared to lower temperatures reducing cold tolerance, longevity, pupal mass, and development time. We report a number of statistically significant genotype-environment interactions (i.e. interactions between selection regime and environmental variables), but most of these were not consistent across treatment groups. We found some evidence though for larger plastic responses to different rearing temperatures in the selection compared to the control lines, while plastic responses to different adult temperatures and feeding treatments were overall very similar across selection regimes. Our results indicate that plastic capacities are not always constrained by directional selection (on cold tolerance) and therefore genetic changes in trait means, but may operate independently.

  2. Videogame distraction using virtual reality technology for children experiencing cold pressor pain: the role of cognitive processing.

    PubMed

    Law, Emily F; Dahlquist, Lynnda M; Sil, Soumitri; Weiss, Karen E; Herbert, Linda Jones; Wohlheiter, Karen; Horn, Susan Berrin

    2011-01-01

    This study examined whether increasing the demand for central cognitive processing involved in a distraction task, by involving the child in ongoing, effortful interaction with the distraction stimulus, would increase children's tolerance for cold pressor pain. Seventy-nine children ages 6-15 years underwent a baseline cold pressor trial followed by two cold pressor trials in which they received interactive distraction (i.e., used voice commands to play a videogame) or passive distraction (in which they merely watched the output from the same videogame segment) in counterbalanced order. Both distraction conditions were presented via a virtual reality-type helmet. As expected, children demonstrated significant improvement in pain tolerance during distraction relative to baseline. Children showed the greatest improvement during the interactive distraction task. The effects of distraction on children's cold pressor pain tolerance are significantly enhanced when the distraction task also includes greater demands for central cognitive processing.

  3. Proteomic Characterization of Inbreeding-Related Cold Sensitivity in Drosophila melanogaster

    PubMed Central

    Beck, Hans C.; Petersen, Jørgen; Gagalova, Kristina Kirilova; Loeschcke, Volker

    2013-01-01

    Inbreeding depression is a widespread phenomenon of central importance to agriculture, medicine, conservation biology and evolutionary biology. Although the population genetic principles of inbreeding depression are well understood, we know little about its functional genomic causes. To provide insight into the molecular interplay between intrinsic stress responses, inbreeding depression and temperature tolerance, we performed a proteomic characterization of a well-defined conditional inbreeding effect in a single line of Drosophila melanogaster, which suffers from extreme cold sensitivity and lethality. We identified 48 differentially expressed proteins in a conditional lethal line as compared to two control lines. These proteins were enriched for proteins involved in hexose metabolism, in particular pyruvate metabolism, and many were found to be associated with lipid particles. These processes can be linked to known cold tolerance mechanisms, such as the production of cryoprotectants, membrane remodeling and the build-up of energy reserves. We checked mRNA-expression of seven genes with large differential protein expression. Although protein expression poorly correlated with gene expression, we found a single gene (CG18067) that, after cold shock, was upregulated in the conditional lethal line both at the mRNA and protein level. Expression of CG18067 also increased in control flies after cold shock, and has previously been linked to cold exposure and chill coma recovery time. Many differentially expressed proteins in our study appear to be involved in cold tolerance in non-inbred individuals. This suggest the conditional inbreeding effect to be caused by misregulation of physiological cold tolerance mechanisms. PMID:23658762

  4. Plasma Membrane CRPK1-Mediated Phosphorylation of 14-3-3 Proteins Induces Their Nuclear Import to Fine-Tune CBF Signaling during Cold Response.

    PubMed

    Liu, Ziyan; Jia, Yuxin; Ding, Yanglin; Shi, Yiting; Li, Zhen; Guo, Yan; Gong, Zhizhong; Yang, Shuhua

    2017-04-06

    In plant cells, changes in fluidity of the plasma membrane may serve as the primary sensor of cold stress; however, the precise mechanism and how the cell transduces and fine-tunes cold signals remain elusive. Here we show that the cold-activated plasma membrane protein cold-responsive protein kinase 1 (CRPK1) phosphorylates 14-3-3 proteins. The phosphorylated 14-3-3 proteins shuttle from the cytosol to the nucleus, where they interact with and destabilize the key cold-responsive C-repeat-binding factor (CBF) proteins. Consistent with this, the crpk1 and 14-3-3κλ mutants show enhanced freezing tolerance, and transgenic plants overexpressing 14-3-3λ show reduced freezing tolerance. Further study shows that CRPK1 is essential for the nuclear translocation of 14-3-3 proteins and for 14-3-3 function in freezing tolerance. Thus, our study reveals that the CRPK1-14-3-3 module transduces the cold signal from the plasma membrane to the nucleus to modulate CBF stability, which ensures a faithfully adjusted response to cold stress of plants. Copyright © 2017 Elsevier Inc. All rights reserved.

  5. The 70 kDa Heat Shock Protein Assists during the Repair of Chilling Injury in the Insect, Pyrrhocoris apterus

    PubMed Central

    Koštál, Vladimír; Tollarová-Borovanská, Michaela

    2009-01-01

    Background The Pyrrhocoris apterus (Insecta: Heteroptera) adults attain high levels of cold tolerance during their overwintering diapause. Non-diapause reproducing adults, however, lack the capacity to express a whole array of cold-tolerance adaptations and show relatively low survival when exposed to sub-zero temperatures. We assessed the competence of non-diapause males of P. apterus for responding to heat- and cold-stresses by up-regulation of 70 kDa heat shock proteins (Hsps) and the role of Hsps during repair of heat- and cold-induced injury. Principal Findings The fragments of P. apterus homologues of Hsp70 inducible (PaHsp70) and cognate forms (PaHsc70) were cloned and sequenced. The abundance of mRNA transcripts for the inducible form (qPCR) and corresponding protein (Western blotting) were significantly up-regulated in response to high and low temperature stimuli. In the cognate form, mRNA was slightly up-regulated in response to both stressors but very low or no up-regulation of protein was apparent after heat- or cold-stress, respectively. Injection of 695 bp-long Pahsp70 dsRNA (RNAi) caused drastic suppression of the heat- and cold-stress-induced Pahsp70 mRNA response and the up-regulation of corresponding protein was practically eliminated. Our RNAi predictably prevented recovery from heat shock and, in addition, negatively influenced repair of chilling injuries caused by cold stress. Cold tolerance increased when the insects were first exposed to a mild heat shock, in order to trigger the up-regulation of PaHsp70, and subsequently exposed to cold stress. Conclusion Our results suggest that accumulation of PaHsp70 belongs to a complex cold tolerance adaptation in the insect Pyrrhocoris apterus. PMID:19229329

  6. Geographic trend of bud hardiness response in Vitis riparia

    USDA-ARS?s Scientific Manuscript database

    A major goal of grapevine breeding efforts for production outside of Mediterranean climates is the production of varieties that have cold tolerance phenotypes. Typically, grapevine breeders use midwinter bud hardiness measures as the descriptive phenotype for cold tolerance. Historical practices of...

  7. Epigenetic switch from repressive to permissive chromatin in response to cold stress.

    PubMed

    Park, Junghoon; Lim, Chae Jin; Shen, Mingzhe; Park, Hee Jin; Cha, Joon-Yung; Iniesto, Elisa; Rubio, Vicente; Mengiste, Tesfaye; Zhu, Jian-Kang; Bressan, Ray A; Lee, Sang Yeol; Lee, Byeong-Ha; Jin, Jing Bo; Pardo, Jose M; Kim, Woe-Yeon; Yun, Dae-Jin

    2018-06-05

    Switching from repressed to active status in chromatin regulation is part of the critical responses that plants deploy to survive in an ever-changing environment. We previously reported that HOS15, a WD40-repeat protein, is involved in histone deacetylation and cold tolerance in Arabidopsis However, it remained unknown how HOS15 regulates cold responsive genes to affect cold tolerance. Here, we show that HOS15 interacts with histone deacetylase 2C (HD2C) and both proteins together associate with the promoters of cold-responsive COR genes, COR15A and COR47 Cold induced HD2C degradation is mediated by the CULLIN4 (CUL4)-based E3 ubiquitin ligase complex in which HOS15 acts as a substrate receptor. Interference with the association of HD2C and the COR gene promoters by HOS15 correlates with increased acetylation levels of histone H3. HOS15 also interacts with CBF transcription factors to modulate cold-induced binding to the COR gene promoters. Our results here demonstrate that cold induces HOS15-mediated chromatin modifications by degrading HD2C. This switches the chromatin structure status and facilitates recruitment of CBFs to the COR gene promoters. This is an apparent requirement to acquire cold tolerance. Copyright © 2018 the Author(s). Published by PNAS.

  8. Epigenetic switch from repressive to permissive chromatin in response to cold stress

    PubMed Central

    Park, Junghoon; Lim, Chae Jin; Shen, Mingzhe; Park, Hee Jin; Cha, Joon-Yung; Iniesto, Elisa; Rubio, Vicente; Mengiste, Tesfaye; Bressan, Ray A.; Lee, Sang Yeol; Lee, Byeong-ha; Kim, Woe-Yeon; Yun, Dae-Jin

    2018-01-01

    Switching from repressed to active status in chromatin regulation is part of the critical responses that plants deploy to survive in an ever-changing environment. We previously reported that HOS15, a WD40-repeat protein, is involved in histone deacetylation and cold tolerance in Arabidopsis. However, it remained unknown how HOS15 regulates cold responsive genes to affect cold tolerance. Here, we show that HOS15 interacts with histone deacetylase 2C (HD2C) and both proteins together associate with the promoters of cold-responsive COR genes, COR15A and COR47. Cold induced HD2C degradation is mediated by the CULLIN4 (CUL4)-based E3 ubiquitin ligase complex in which HOS15 acts as a substrate receptor. Interference with the association of HD2C and the COR gene promoters by HOS15 correlates with increased acetylation levels of histone H3. HOS15 also interacts with CBF transcription factors to modulate cold-induced binding to the COR gene promoters. Our results here demonstrate that cold induces HOS15-mediated chromatin modifications by degrading HD2C. This switches the chromatin structure status and facilitates recruitment of CBFs to the COR gene promoters. This is an apparent requirement to acquire cold tolerance. PMID:29784800

  9. The protective effect of rapid cold-hardening develops more quickly in frozen versus supercooled larvae of the Antarctic midge, Belgica antarctica.

    PubMed

    Kawarasaki, Yuta; Teets, Nicholas M; Denlinger, David L; Lee, Richard E

    2013-10-15

    During the austral summer, larvae of the terrestrial midge Belgica antarctica (Diptera: Chironomidae) experience highly variable and often unpredictable thermal conditions. In addition to remaining freeze tolerant year-round, larvae are capable of swiftly increasing their cold tolerance through the rapid cold-hardening (RCH) response. The present study compared the induction of RCH in frozen versus supercooled larvae. At the same induction temperature, RCH occurred more rapidly and conferred a greater level of cryoprotection in frozen versus supercooled larvae. Furthermore, RCH in frozen larvae could be induced at temperatures as low as -12°C, which is the lowest temperature reported to induce RCH. Remarkably, as little as 15 min at -5°C significantly enhanced larval cold tolerance. Not only is protection from RCH acquired swiftly, but it is also quickly lost after thawing for 2 h at 2°C. Because the primary difference between frozen and supercooled larvae is cellular dehydration caused by freeze concentration of body fluids, we also compared the effects of acclimation in dehydrated versus frozen larvae. Because slow dehydration without chilling significantly increased larval survival to a subsequent cold exposure, we hypothesize that cellular dehydration caused by freeze concentration promotes the rapid acquisition of cold tolerance in frozen larvae.

  10. Complementary regulation of four Eucalyptus CBF genes under various cold conditions

    PubMed Central

    Navarro, M.; Marque, G.; Ayax, C.; Keller, G.; Borges, J. P.; Marque, C.; Teulières, C.

    2009-01-01

    CBF transcription factors play central roles in the control of freezing tolerance in plants. The isolation of two additional CBF genes, EguCBF1c and EguCBF1d, from E. gunnii, one of the cold-hardiest Eucalyptus species, is described. While the EguCBF1D protein sequence is very similar to the previously characterized EguCBF1A and EguCBF1B sequences, EguCBF1C is more distinctive, in particular in the AP2-DBD (AP2-DNA binding domain). The expression analysis of the four genes by RT-qPCR reveals that none of them is specific to one stress but they are all preferentially induced by cold, except for the EguCBF1c gene which is more responsive to salt. The calculation of the transcript copy number enables the quantification of constitutive CBF gene expression. This basal level, significant for the four genes, greatly influences the final EguCBF1 transcript level in the cold. A cold shock at 4 °C, as well as a progressive freezing which mimics a natural frost episode, trigger a fast and strong response of the EguCBF1 genes, while growth at acclimating temperatures results in a lower but more durable induction. The differential expression of the four EguCBF1 genes under these cold regimes suggests that there is a complementary regulation. The high accumulation of the CBF transcript, observed in response to the different types of cold conditions, might be a key for the winter survival of this evergreen broad-leaved tree. PMID:19457981

  11. The Variable Effect of Polyploidization on the Phenotype in Escallonia.

    PubMed

    Denaeghel, Hanne E R; Van Laere, Katrijn; Leus, Leen; Lootens, Peter; Van Huylenbroeck, Johan; Van Labeke, Marie-Christine

    2018-01-01

    To induce new variation within the Escallonia genus, chromosome doubling was performed in E. rubra, E. rosea , and E. illinita , three important species within this genus of mainly evergreen woody ornamental species. Obtained tetraploids and diploid controls were analyzed for rooting capacity, leaf and flower characteristics, and plant architecture using image analysis and cold tolerance. In the present study, a breeders' collection of 23 accessions was characterized cytogenetically and described morphologically. All analyzed species and cultivars were diploid (2n = 2x = 24), with exception of E. pendula , a tetraploid. Today, breeding in Escallonia is limited to lucky finds in seedling populations and few efforts in interspecific hybridization. Three selected Escallonia species underwent an in vitro chromosome doubling with both oryzalin and trifluralin applied as either a continuous or shock treatment. The treatments successfully induced polyploids in all three species. Image analysis revealed that tetraploid E. rosea had decreased shoot length (from 3.8 to 1.3 cm), higher circularity and more dense growth habit compared to diploids. No significant changes in cold tolerance were seen. Tetraploid E. illinita did not differ in shoot length, but an increased outgrowth of axillary buds on the main axis led to denser plants. For tetraploid E. rubra , an increase in plant height (from 4.9 to 5.5 cm) was observed together with a large decrease in circularity and density due to a more polar outgrowth of branches on the main axis. E. rubra tetraploids bore larger flowers than diploids and had an increased cold tolerance (from -7.7 to -11.8°C). Leaf width and area of tetraploids increased for both E. illinita and E. rubra , while a decrease was seen in E. rosea genotypes. For all three species, the rooting capacity of the tetraploids did not differ from the diploids. We conclude that the effect of polyploidization on Escallonia was highly variable and species dependent.

  12. The Variable Effect of Polyploidization on the Phenotype in Escallonia

    PubMed Central

    Denaeghel, Hanne E. R.; Van Laere, Katrijn; Leus, Leen; Lootens, Peter; Van Huylenbroeck, Johan; Van Labeke, Marie-Christine

    2018-01-01

    To induce new variation within the Escallonia genus, chromosome doubling was performed in E. rubra, E. rosea, and E. illinita, three important species within this genus of mainly evergreen woody ornamental species. Obtained tetraploids and diploid controls were analyzed for rooting capacity, leaf and flower characteristics, and plant architecture using image analysis and cold tolerance. In the present study, a breeders' collection of 23 accessions was characterized cytogenetically and described morphologically. All analyzed species and cultivars were diploid (2n = 2x = 24), with exception of E. pendula, a tetraploid. Today, breeding in Escallonia is limited to lucky finds in seedling populations and few efforts in interspecific hybridization. Three selected Escallonia species underwent an in vitro chromosome doubling with both oryzalin and trifluralin applied as either a continuous or shock treatment. The treatments successfully induced polyploids in all three species. Image analysis revealed that tetraploid E. rosea had decreased shoot length (from 3.8 to 1.3 cm), higher circularity and more dense growth habit compared to diploids. No significant changes in cold tolerance were seen. Tetraploid E. illinita did not differ in shoot length, but an increased outgrowth of axillary buds on the main axis led to denser plants. For tetraploid E. rubra, an increase in plant height (from 4.9 to 5.5 cm) was observed together with a large decrease in circularity and density due to a more polar outgrowth of branches on the main axis. E. rubra tetraploids bore larger flowers than diploids and had an increased cold tolerance (from −7.7 to −11.8°C). Leaf width and area of tetraploids increased for both E. illinita and E. rubra, while a decrease was seen in E. rosea genotypes. For all three species, the rooting capacity of the tetraploids did not differ from the diploids. We conclude that the effect of polyploidization on Escallonia was highly variable and species dependent. PMID:29616065

  13. Cold Shock Domain Protein 3 Regulates Freezing Tolerance in Arabidopsis thaliana*

    PubMed Central

    Kim, Myung-Hee; Sasaki, Kentaro; Imai, Ryozo

    2009-01-01

    In response to cold, Escherichia coli produces cold shock proteins (CSPs) that have essential roles in cold adaptation as RNA chaperones. Here, we demonstrate that Arabidopsis cold shock domain protein 3 (AtCSP3), which shares a cold shock domain with bacterial CSPs, is involved in the acquisition of freezing tolerance in plants. AtCSP3 complemented a cold-sensitive phenotype of the E. coli CSP quadruple mutant and displayed nucleic acid duplex melting activity, suggesting that AtCSP3 also functions as an RNA chaperone. Promoter-GUS transgenic plants revealed tissue-specific expression of AtCSP3 in shoot and root apical regions. When exposed to low temperature, GUS activity was extensively induced in a broader region of the roots. In transgenic plants expressing an AtCSP3-GFP fusion, GFP signals were detected in both the nucleus and cytoplasm. An AtCSP3 knock-out mutant (atcsp3-2) was sensitive to freezing compared with wild-type plants under non-acclimated and cold-acclimated conditions, whereas expression of C-repeat-binding factors and their downstream genes during cold acclimation was not altered in the atcsp3-2 mutant. Overexpression of AtCSP3 in transgenic plants conferred enhanced freezing tolerance over wild-type plants. Together, the data demonstrated an essential role of RNA chaperones for cold adaptation in higher plants. PMID:19556243

  14. The Arabidopsis RCC1 Family Protein TCF1 Regulates Freezing Tolerance and Cold Acclimation through Modulating Lignin Biosynthesis

    PubMed Central

    Jenkins, Gareth I.; Wang, Shuangfeng; Shang, Zhonglin; Shi, Yiting; Yang, Shuhua; Li, Xia

    2015-01-01

    Abstract Cell water permeability and cell wall properties are critical to survival of plant cells during freezing, however the underlying molecular mechanisms remain elusive. Here, we report that a specifically cold-induced nuclear protein, Tolerant to Chilling and Freezing 1 (TCF1), interacts with histones H3 and H4 and associates with chromatin containing a target gene, BLUE-COPPER-BINDING PROTEIN (BCB), encoding a glycosylphosphatidylinositol-anchored protein that regulates lignin biosynthesis. Loss of TCF1 function leads to reduced BCB transcription through affecting H3K4me2 and H3K27me3 levels within the BCB gene, resulting in reduced lignin content and enhanced freezing tolerance. Furthermore, plants with knocked-down BCB expression (amiRNA-BCB) under cold acclimation had reduced lignin accumulation and increased freezing tolerance. The pal1pal2 double mutant (lignin content reduced by 30% compared with WT) also showed the freezing tolerant phenotype, and TCF1 and BCB act upstream of PALs to regulate lignin content. In addition, TCF1 acts independently of the CBF (C-repeat binding factor) pathway. Our findings delineate a novel molecular pathway linking the TCF1-mediated cold-specific transcriptional program to lignin biosynthesis, thus achieving cell wall remodeling with increased freezing tolerance. PMID:26393916

  15. Preference for safflower oil in rats exposed to a cold environment under free-feeding conditions.

    PubMed

    Saitoh, Masaji; Ishii, Toshiaki; Takewaki, Tadashi; Nishimura, Masakazu

    2005-07-01

    There are several benefits to a high-fat diet for animals exposed to cold, including improved tolerance to severe cold conditions and increased survival rates in cold environments. It is therefore of interest to examine whether animals exposed to cold will selectively consume lipids. We examined the intake of safflower oil (SO) by rats exposed to cold (4 +/- 2 degrees C) under a feeding condition in which the rats were given free access to SO. Rats exposed to cold consumed more SO than those housed at 25 +/- 2 degrees C. This finding suggests that rats prefer SO in a cold environment. There was no significant difference in the ratio of calories of SO ingested to that of matter (standard laboratory chow plus SO) ingested between rats exposed to cold and those at 25 +/- 2 degrees C. The high SO intake also affected cold tolerance and metabolite kinetics in the rats. Factors that affected the SO intake of rats exposed to cold are also discussed.

  16. Involvement of WRKY Transcription Factors in Abscisic-Acid-Induced Cold Tolerance of Banana Fruit.

    PubMed

    Luo, Dong-Lan; Ba, Liang-Jie; Shan, Wei; Kuang, Jian-Fei; Lu, Wang-Jin; Chen, Jian-Ye

    2017-05-10

    Phytohormone abscisic acid (ABA) and plant-specific WRKY transcription factors (TFs) have been implicated to play important roles in various stress responses. The involvement of WRKY TFs in ABA-mediated cold tolerance of economical fruits, such as banana fruit, however remains largely unknown. Here, we reported that ABA application could induce expressions of ABA biosynthesis-related genes MaNCED1 and MaNCED2, increase endogenous ABA contents, and thereby enhance cold tolerance in banana fruit. Four banana fruit WRKY TFs, designated as MaWRKY31, MaWRKY33, MaWRKY60, and MaWRKY71, were identified and characterized. All four of these MaWRKYs were nuclear-localized and displayed transactivation activities. Their expressions were induced by ABA treatment during cold storage. More importantly, the gel mobility shift assay and transient expression analysis revealed that MaWRKY31, MaWRKY33, MaWRKY60, and MaWRKY71 directly bound to the W-box elements in MaNCED1 and MaNCED2 promoters and activated their expressions. Taken together, our findings demonstrate that banana fruit WRKY TFs are involved in ABA-induced cold tolerance by, at least in part, increasing ABA levels via directly activating NECD expressions.

  17. Does selection on increased cold tolerance in the adult stage confer resistance throughout development?

    PubMed

    Dierks, A; Kölzow, N; Franke, K; Fischer, K

    2012-08-01

    Artificial selection is a powerful approach to unravel constraints on genetic adaptation. Although it has been frequently used to reveal genetic trade-offs among different fitness-related traits, only a few studies have targeted genetic correlations across developmental stages. Here, we test whether selection on increased cold tolerance in the adult stage increases cold resistance throughout ontogeny in the butterfly Bicyclus anynana. We used lines selected for decreased chill-coma recovery time and corresponding controls, which had originally been set up from three levels of inbreeding (outbred control, one or two full-sib matings). Four generations after having terminated selection, a response to selection was found in 1-day-old butterflies (the age at which selection took place). Older adults showed a very similar although weaker response. Nevertheless, cold resistance did not increase in either egg, larval or pupal stage in the selection lines but was even lower compared to control lines for eggs and young larvae. These findings suggest a cost of increased adult cold tolerance, presumably reducing resource availability for offspring provisioning and thereby stress tolerance during development, which may substantially affect evolutionary trajectories. © 2012 The Authors. Journal of Evolutionary Biology © 2012 European Society For Evolutionary Biology.

  18. Proteomic analyses reveal differences in cold acclimation mechanisms in freezing-tolerant and freezing-sensitive cultivars of alfalfa

    PubMed Central

    Chen, Jing; Han, Guiqing; Shang, Chen; Li, Jikai; Zhang, Hailing; Liu, Fengqi; Wang, Jianli; Liu, Huiying; Zhang, Yuexue

    2015-01-01

    Cold acclimation in alfalfa (Medicago sativa L.) plays a crucial role in cold tolerance to harsh winters. To examine the cold acclimation mechanisms in freezing-tolerant alfalfa (ZD) and freezing-sensitive alfalfa (W5), holoproteins, and low-abundance proteins (after the removal of RuBisCO) from leaves were extracted to analyze differences at the protein level. A total of 84 spots were selected, and 67 spots were identified. Of these, the abundance of 49 spots and 24 spots in ZD and W5, respectively, were altered during adaptation to chilling stress. Proteomic results revealed that proteins involved in photosynthesis, protein metabolism, energy metabolism, stress and redox and other proteins were mobilized in adaptation to chilling stress. In ZD, a greater number of changes were observed in proteins, and autologous metabolism and biosynthesis were slowed in response to chilling stress, thereby reducing consumption, allowing for homeostasis. The capability for protein folding and protein biosynthesis in W5 was enhanced, which allows protection against chilling stress. The ability to perceive low temperatures was more sensitive in freezing-tolerant alfalfa compared to freezing-sensitive alfalfa. This proteomics study provides new insights into the cold acclimation mechanism in alfalfa. PMID:25774161

  19. Populus euphratica APYRASE2 Enhances Cold Tolerance by Modulating Vesicular Trafficking and Extracellular ATP in Arabidopsis Plants.

    PubMed

    Deng, Shurong; Sun, Jian; Zhao, Rui; Ding, Mingquan; Zhang, Yinan; Sun, Yuanling; Wang, Wei; Tan, Yeqing; Liu, Dandan; Ma, Xujun; Hou, Peichen; Wang, Meijuan; Lu, Cunfu; Shen, Xin; Chen, Shaoliang

    2015-09-01

    Apyrase and extracellular ATP play crucial roles in mediating plant growth and defense responses. In the cold-tolerant poplar, Populus euphratica, low temperatures up-regulate APYRASE2 (PeAPY2) expression in callus cells. We investigated the biochemical characteristics of PeAPY2 and its role in cold tolerance. We found that PeAPY2 predominantly localized to the plasma membrane, but punctate signals also appeared in the endoplasmic reticulum and Golgi apparatus. PeAPY2 exhibited broad substrate specificity, but it most efficiently hydrolyzed purine nucleotides, particularly ATP. PeAPY2 preferred Mg(2+) as a cofactor, and it was insensitive to various, specific ATPase inhibitors. When PeAPY2 was ectopically expressed in Arabidopsis (Arabidopsis thaliana), cold tolerance was enhanced, based on root growth measurements and survival rates. Moreover, under cold stress, PeAPY2-transgenic plants maintained plasma membrane integrity and showed reduced cold-elicited electrolyte leakage compared with wild-type plants. These responses probably resulted from efficient plasma membrane repair via vesicular trafficking. Indeed, transgenic plants showed accelerated endocytosis and exocytosis during cold stress and recovery. We found that low doses of extracellular ATP accelerated vesicular trafficking, but high extracellular ATP inhibited trafficking and reduced cell viability. Cold stress caused significant increases in root medium extracellular ATP. However, under these conditions, PeAPY2-transgenic lines showed greater control of extracellular ATP levels than wild-type plants. We conclude that Arabidopsis plants that overexpressed PeAPY2 could increase membrane repair by accelerating vesicular trafficking and hydrolyzing extracellular ATP to avoid excessive, cold-elicited ATP accumulation in the root medium and, thus, reduced ATP-induced inhibition of vesicular trafficking. © 2015 American Society of Plant Biologists. All Rights Reserved.

  20. Do mitochondrial properties explain intraspecific variation in thermal tolerance?

    PubMed

    Fangue, Nann A; Richards, Jeffrey G; Schulte, Patricia M

    2009-02-01

    As global temperatures rise, there is a growing need to understand the physiological mechanisms that determine an organism's thermal niche. Here, we test the hypothesis that increases in mitochondrial capacity with cold acclimation and adaptation are associated with decreases in thermal tolerance using two subspecies of killifish (Fundulus heteroclitus) that differ in thermal niche. We assessed whole-organism metabolic rate, mitochondrial amount and mitochondrial function in killifish acclimated to several temperatures. Mitochondrial enzyme activities and mRNA levels were greater in fish from the northern subspecies, particularly in cold-acclimated fish, suggesting that the putatively cold-adapted northern subspecies has a greater capacity for increases in mitochondrial amount in response to cold acclimation. When tested at the fish's acclimation temperature, maximum ADP-stimulated (State III) rates of mitochondrial oxygen consumption in vitro were greater in cold-acclimated northern fish than in southern fish but did not differ between subspecies at higher acclimation temperatures. Whole-organism metabolic rate was greater in fish of the northern subspecies at all acclimation temperatures. Cold acclimation also changed the response of mitochondrial respiration to acute temperature challenge. Mitochondrial oxygen consumption was greater in cold-acclimated northern fish than in southern fish at low test temperatures, but the opposite was true at high test temperatures. These differences were reflected in whole-organism oxygen consumption. Our data indicate that the plasticity of mitochondrial function and amount differs between killifish subspecies, with the less high-temperature tolerant, and putatively cold adapted, northern subspecies having greater ability to increase mitochondrial capacity in the cold. However, there were few differences in mitochondrial properties between subspecies at warm acclimation temperatures, despite differences in both whole-organism oxygen consumption and thermal tolerance at these temperatures.

  1. Effects of Transcranial Direct Current Stimulation (tDCS) on Pain Distress Tolerance: A Preliminary Study.

    PubMed

    Mariano, Timothy Y; van't Wout, Mascha; Jacobson, Benjamin L; Garnaat, Sarah L; Kirschner, Jason L; Rasmussen, Steven A; Greenberg, Benjamin D

    2015-08-01

    Pain remains a critical medical challenge. Current treatments target nociception without addressing affective symptoms. Medically intractable pain is sometimes treated with cingulotomy or deep brain stimulation to increase tolerance of pain-related distress. Transcranial direct current stimulation (tDCS) may noninvasively modulate cortical areas related to sensation and pain representations. The present study aimed to test the hypothesis that cathodal ("inhibitory") stimulation targeting left dorsal anterior cingulate cortex (dACC) would increase tolerance to distress from acute painful stimuli vs anodal stimulation. Forty healthy volunteers received both anodal and cathodal stimulation. During stimulation, we measured pain distress tolerance with three tasks: pressure algometer, cold pressor, and breath holding. We measured pain intensity with a visual-analog scale before and after each task. Mixed ANOVA revealed that mean cold pressor tolerance tended to be higher with cathodal vs anodal stimulation (P = 0.055) for participants self-completing the task. Pressure algometer (P = 0.81) and breath holding tolerance (P = 0.19) did not significantly differ. The pressure algometer exhibited a statistically significant order effect irrespective of stimulation polarity (all P < 0.008). Pain intensity ratings increased acutely after cold pressor and pressure algometer tasks (both P < 0.01), but not after breath holding (P = 0.099). Cold pressor pain ratings tended to rise less after cathodal vs anodal tDCS (P = 0.072). Although our primary results were nonsignificant, there is a preliminary suggestion that cathodal tDCS targeting left dACC may increase pain distress tolerance to cold pressor. Pressure algometer results are consistent with task-related sensitization. Future studies are needed to refine this novel approach for pain neuromodulation. Wiley Periodicals, Inc.

  2. Cold tolerance in CCl4-treated rats and its modification by administration of garlic oil and glucose

    NASA Astrophysics Data System (ADS)

    Bhatia, B.; Ahujarai, P. L.

    1984-06-01

    Male Wistar rats weighing 150 200 g maintained under standard laboratory conditions and given Hindustan Lever Pellets and water ad libitum were exposed to -20°C for determination of the rate of fall of rectal temperature and survival time. The rate of fall of body temperature was significantly increased and the survival time was reduced, when animals were given an intraperitoneal injection of 1 ml/kg BW of CCl4 24 h but not 2 h earlier. Pre-treatment of the animals with 0.006 ml of garlic oil in a 2% solution of arachis oil for 3 days gave a significant protection to the animals against the CCl4-induced fall in cold tolerance. Administration of glucose orally 300 mg in 2 ml of saline eliminated the CCl4-induced fall in cold tolerance. The animals displayed a hypoglycemia 24 h, but not 2 h after injection of CCl4. CCl4-induced hypoglycemia was reduced by pre-treatment with garlic oil. The results indicate that the CCl4-induced reduction in cold tolerance is secondary to hypoglycemia and not due to the direct effect of CCl4 on the thermoregulatory mechanism in the CNS. The critical level of blood glucose below which the cold tolerance is reduced was found to be 76 mg/100 ml of blood.

  3. Winter cold-tolerance thresholds in field-grown Miscanthus hybrid rhizomes

    PubMed Central

    Peixoto, Murilo de Melo; Friesen, Patrick Calvin; Sage, Rowan F.

    2015-01-01

    The cold tolerance of winter-dormant rhizomes was evaluated in diploid, allotriploid, and allotetraploid hybrids of Miscanthus sinensis and Miscanthus sacchariflorus grown in a field setting. Two artificial freezing protocols were tested: one lowered the temperature continuously by 1°C h–1 to the treatment temperature and another lowered the temperature in stages of 24h each to the treatment temperature. Electrolyte leakage and rhizome sprouting assays after the cold treatment assessed plant and tissue viability. Results from the continuous-cooling trial showed that Miscanthus rhizomes from all genotypes tolerated temperatures as low as –6.5 °C; however, the slower, staged-cooling procedure enabled rhizomes from two diploid lines to survive temperatures as low as –14 °C. Allopolyploid genotypes showed no change in the lethal temperature threshold between the continuous and staged-cooling procedure, indicating that they have little ability to acclimate to subzero temperatures. The results demonstrated that rhizomes from diploid Miscanthus lines have superior cold tolerance that could be exploited to improve performance in more productive polyploid lines. With expected levels of soil insulation, low winter air temperatures should not harm rhizomes of tolerant diploid genotypes of Miscanthus in temperate to sub-boreal climates (up to 60°N); however, the observed winter cold in sub-boreal climates could harm rhizomes of existing polyploid varieties of Miscanthus and thus reduce stand performance. PMID:25788733

  4. Large reptiles and cold temperatures: Do extreme cold spells set distributional limits for tropical reptiles in Florida?

    USGS Publications Warehouse

    Mazzotti, Frank J.; Cherkiss, Michael S.; Parry, Mark; Beauchamp, Jeff; Rochford, Mike; Smith, Brian J.; Hart, Kristen M.; Brandt, Laura A.

    2016-01-01

    Distributional limits of many tropical species in Florida are ultimately determined by tolerance to low temperature. An unprecedented cold spell during 2–11 January 2010, in South Florida provided an opportunity to compare the responses of tropical American crocodiles with warm-temperate American alligators and to compare the responses of nonnative Burmese pythons with native warm-temperate snakes exposed to prolonged cold temperatures. After the January 2010 cold spell, a record number of American crocodiles (n = 151) and Burmese pythons (n = 36) were found dead. In contrast, no American alligators and no native snakes were found dead. American alligators and American crocodiles behaved differently during the cold spell. American alligators stopped basking and retreated to warmer water. American crocodiles apparently continued to bask during extreme cold temperatures resulting in lethal body temperatures. The mortality of Burmese pythons compared to the absence of mortality for native snakes suggests that the current population of Burmese pythons in the Everglades is less tolerant of cold temperatures than native snakes. Burmese pythons introduced from other parts of their native range may be more tolerant of cold temperatures. We documented the direct effects of cold temperatures on crocodiles and pythons; however, evidence of long-term effects of cold temperature on their populations within their established ranges remains lacking. Mortality of crocodiles and pythons outside of their current established range may be more important in setting distributional limits.

  5. Overwintering biology and limits of cold tolerance in larvae of pistachio twig borer, Kermania pistaciella.

    PubMed

    Mollaei, M; Izadi, H; Šimek, P; Koštál, V

    2016-08-01

    Pistachio twig borer, Kermania pistaciella is an important pest of pistachio trees. It has an univoltine life-cycle and its larvae tunnel and feed inside pistachio twigs for almost 10 months each year. The last larval instars overwinter inside the twigs. Survival/mortality associated with low temperatures during overwintering stage is currently unknown. We found that overwintering larvae of the Rafsanjan (Iran) population of K. pistaciella rely on maintaining a stably high supercooling capacity throughout the cold season. Their supercooling points (SCPs) ranged between -19.4 and -22.7°C from October to February. Larvae were able to survive 24 h exposures to -15°C anytime during the cold season. During December and January, larvae were undergoing quiescence type of dormancy caused probably by low ambient temperatures and/or changes in host tree physiology (tree dormancy). Larvae attain highest cold tolerance (high survival at -20°C) during dormancy, which offers them sufficient protection against geographically and ecologically relevant cold spells. High cold tolerance during dormancy was not associated with accumulation of any low-molecular mass cryoprotective substances. The SCP sets the limit of cold tolerance in pistachio twig borer, meaning that high mortality of overwintering populations can be expected only in the regions or years where or when the temperatures fall below the average larval SCP (i.e., below -20°C). Partial mortality can be expected also when temperatures repeatedly drop close to the SCP on a diurnal basis.

  6. The significance of the moult cycle to cold tolerance in the Antarctic collembolan Cryptopygus antarcticus.

    PubMed

    Worland, M R; Convey, P

    2008-08-01

    Research into the ecophysiology of arthropod cold tolerance has largely focussed on those parts of the year and/or the life cycle in which cold stress is most likely to be experienced, resulting in an emphasis on studies of the preparation for and survival in the overwintering state. However, the non-feeding stage of the moult cycle also gives rise to a period of increased cold hardiness in some microarthropods and, as a consequence, a proportion of the field population is cold tolerant even during the summer active period. In the case of the common Antarctic springtail Cryptopygus antarcticus, the proportion of time spent in this non-feeding stage is extended disproportionately relative to the feeding stage as temperature is reduced. As a result, the proportion of the population in a cold tolerant state, with low supercooling points (SCPs), increases at lower temperatures. We found that, at 5 degrees C, about 37% of the population are involved in ecdysis and exhibit low SCPs. At 2 degrees C this figure increased to 50% and, at 0 degrees C, we estimate that 80% of the population will have increased cold hardiness as a result of a prolonged non-feeding, premoult period. Thus, as part of the suite of life history and ecophysiological features that enable this Antarctic springtail to survive in its hostile environment, it appears that it can take advantage of and extend the use of a pre-existing characteristic inherent within the moulting cycle.

  7. An Assessment of Cold Hardiness and Biochemical Adaptations for Cold Tolerance Among Different Geographic Populations of the Bactrocera dorsalis (Diptera: Tephritidae) in China

    PubMed Central

    Wang, Junhua; Zeng, Ling; Han, Zhaojun

    2014-01-01

    Abstract The cold hardiness of larvae, pupae, and adults of the oriental fruit fly, Bactrocera Dorsalis (Hendel) (Diptera: Tephritidae) was characterized first, and then body water, total sugar and glycerol contents, and activities of superoxide dismutase (SOD), catalase (CAT), peroxidase (POD), and alcohol dehydrogenase (ADH) of different geographical populations subjected to suitable rearing conditions and under sublethal low-temperature stress were compared. The cold hardiness of different populations was well correlated with the latitudes of distributions. The northern marginal population (31.6° N) had higher cold tolerance than southern populations (23.1° N and 24.3° N). Among different life stages, larvae had the least cold tolerance, whereas pupae had the most tolerance. Under suitable rearing conditions, the marginal population had lower activities of all four tested enzymes than that of the southern populations and also had lower body water and higher total sugar and glycerol contents. The low-temperature stress induced higher SOD, CAT, POD, and ADH activities of all tested life stages and of all tested populations with higher increase intensity in adults and pupae than in larvae. The increase intensity was higher in the marginal population than in the southern populations. Pupae in the marginal population and adults in the southern populations showed the largest activity enhancement, which agreed with the insect’s overwinter stages in their respective locations. Lower temperature stress lowered body water and total sugar contents and increased glycerol contents. The results revealed a strong correlation between the cold hardiness of a population and the concentration or activity of various biochemicals and enzymes known to be involved in cold tolerance. The marginal population of B. dorsalis might have evolved a new biotype with better adaption to low temperature. PMID:25527597

  8. Effects of cold-acclimation on gene expression in Fall field cricket (Gryllus pennsylvanicus) ionoregulatory tissues.

    PubMed

    Des Marteaux, Lauren E; McKinnon, Alexander H; Udaka, Hiroko; Toxopeus, Jantina; Sinclair, Brent J

    2017-05-08

    Cold tolerance is a key determinant of temperate insect distribution and performance. Chill-susceptible insects lose ion and water homeostasis during cold exposure, but prior cold acclimation improves both cold tolerance and defense of homeostasis. The mechanisms underlying these processes are mostly unknown; cold acclimation is thought to enhance ion transport in the cold and/or prevent leak of water and ions. To identify candidate mechanisms of cold tolerance plasticity we generated transcriptomes of ionoregulatory tissues (hindgut and Malpighian tubules) from Gryllus pennsylvanicus crickets and compared gene expression in warm- and cold-acclimated individuals. We assembled a G. pennsylvanicus transcriptome de novo from 286 million 50-bp reads, yielding 70,037 contigs (~44% of which had putative BLAST identities). We compared the transcriptomes of warm- and cold-acclimated hindguts and Malpighian tubules. Cold acclimation led to a ≥ 2-fold change in the expression of 1493 hindgut genes (733 downregulated, 760 upregulated) and 2008 Malpighian tubule genes (1009 downregulated, 999 upregulated). Cold-acclimated crickets had altered expression of genes putatively associated with ion and water balance, including: a downregulation of V-ATPase and carbonic anhydrase in the Malpighian tubules and an upregulation of Na + -K + ATPase in the hindgut. We also observed acclimation-related shifts in the expression of cytoskeletal genes in the hindgut, including actin and actin-anchoring/stabilizing proteins, tubulin, α-actinin, and genes involved in adherens junctions organization. In both tissues, cold acclimation led to differential expression of genes encoding cytochrome P450s, glutathione-S-transferases, apoptosis factors, DNA repair, and heat shock proteins. This is the first G. pennsylvanicus transcriptome, and our tissue-specific approach yielded new candidate mechanisms of cold tolerance plasticity. Cold acclimation may reduce loss of hemolymph volume in the cold by 1) decreasing primary urine production via reduced expression of carbonic anhydrase and V-ATPase in the Malpighian tubules and 2) by increasing Na + (and therefore water) reabsorption across the hindgut via increase in Na + -K + ATPase expression. Cold acclimation may reduce chilling injury by remodeling and stabilizing the hindgut epithelial cytoskeleton and cell-to-cell junctions, and by increasing the expression of genes involved in DNA repair, detoxification, and protein chaperones.

  9. Molecular Prerequisites for Diminished Cold Sensitivity in Ground Squirrels and Hamsters.

    PubMed

    Matos-Cruz, Vanessa; Schneider, Eve R; Mastrotto, Marco; Merriman, Dana K; Bagriantsev, Sviatoslav N; Gracheva, Elena O

    2017-12-19

    Thirteen-lined ground squirrels and Syrian hamsters are known for their ability to withstand cold during hibernation. We found that hibernators exhibit cold tolerance even in the active state. Imaging and electrophysiology of squirrel somatosensory neurons reveal a decrease in cold sensitivity of TRPM8-expressing cells. Characterization of squirrel and hamster TRPM8 showed that the channels are chemically activated but exhibit poor activation by cold. Cold sensitivity can be re-introduced into squirrel and hamster TRPM8 by transferring the transmembrane domain from the cold sensitive rat ortholog. The same can be achieved in squirrel TRPM8 by mutating only six amino acids. Reciprocal mutations suppress cold sensitivity of the rat ortholog, supporting functional significance of these residues. Our results suggest that ground squirrels and hamsters exhibit reduced cold sensitivity, partially due to modifications in the transmembrane domain of TRPM8. Our study reveals molecular adaptations that accompany cold tolerance in two species of mammalian hibernators. Copyright © 2017 The Author(s). Published by Elsevier Inc. All rights reserved.

  10. Cold Tolerance of Pityophthorus juglandis (Coleoptera: Scolytidae) From Northern California

    Treesearch

    Andrea R. Hefty; Steven J. Seybold; Brian H. Aukema; Robert C. Venette

    2017-01-01

    Winter survivorship of insects is determined by a combination of physiological, behavioral, and microhabitat characteristics. We characterized the cold tolerance of the walnut twig beetle, Pityophthorus juglandis Blackman, a domestic alien invasive bark beetle that vectors a phytopathogenic fungus. The beetle and fungus cause thousand cankers...

  11. Critical temperature: A quantitative method of assessing cold tolerance

    Treesearch

    D.H. DeHayes; M.W., Jr. Williams

    1989-01-01

    Critical temperature (Tc), defined as the highest temperature at which freezing injury to plant tissues can be detected, provides a biologically meaningful and statistically defined assessment of the relative cold tolerance of plant tissues. A method is described for calculating critical temperatures in laboratory freezing studies that use...

  12. Characterizing thermal performance of an important pollinator, the alfalfa leafcutting bee Megachile rotundata

    USDA-ARS?s Scientific Manuscript database

    The alfalfa leafcutting bee, Megachile rotundata, undergoes metamorphosis in the spring when temperatures can be highly variable. It is unknown how cold tolerance varies across metamorphosis. We found earlier stages were more tolerant to cold exposure than later stages. Furthermore, we found exposur...

  13. Videogame Distraction using Virtual Reality Technology for Children Experiencing Cold Pressor Pain: The Role of Cognitive Processing

    PubMed Central

    Law, Emily F.; Sil, Soumitri; Weiss, Karen E.; Herbert, Linda Jones; Wohlheiter, Karen; Horn, Susan Berrin

    2011-01-01

    Objective This study examined whether increasing the demand for central cognitive processing involved in a distraction task, by involving the child in ongoing, effortful interaction with the distraction stimulus, would increase children's tolerance for cold pressor pain. Methods Seventy-nine children ages 6–15 years underwent a baseline cold pressor trial followed by two cold pressor trials in which they received interactive distraction (i.e., used voice commands to play a videogame) or passive distraction (in which they merely watched the output from the same videogame segment) in counterbalanced order. Both distraction conditions were presented via a virtual reality-type helmet. Results As expected, children demonstrated significant improvement in pain tolerance during distraction relative to baseline. Children showed the greatest improvement during the interactive distraction task. Conclusion The effects of distraction on children's cold pressor pain tolerance are significantly enhanced when the distraction task also includes greater demands for central cognitive processing. PMID:20656761

  14. Altering gender role expectations: effects on pain tolerance, pain threshold, and pain ratings.

    PubMed

    Robinson, Michael E; Gagnon, Christine M; Riley, Joseph L; Price, Donald D

    2003-06-01

    The literature demonstrating sex differences in pain is sizable. Most explanations for these differences have focused on biologic mechanisms, and only a few studies have examined social learning. The purpose of this study was to examine the contribution of gender-role stereotypes to sex differences in pain. This study used experimental manipulation of gender-role expectations for men and women. One hundred twenty students participated in the cold pressor task. Before the pain task, participants were given 1 of 3 instructional sets: no expectation, 30-second performance expectation, or a 90-second performance expectation. Pain ratings, threshold, and tolerance were recorded. Significant sex differences in the "no expectation" condition for pain tolerance (t = 2.32, df = 38, P <.05) and post-cold pressor pain ratings (t = 2.6, df = 37, P <.05) were found. Women had briefer tolerance times and higher post-cold pressor ratings than men. When given gender-specific tolerance expectations, men and women did not differ in their pain tolerance, pain threshold, or pain ratings. This is the first empirical study to show that manipulation of expectations alters sex differences in laboratory pain.

  15. Quantitative proteomic analysis reveals that antioxidation mechanisms contribute to cold tolerance in plantain (Musa paradisiaca L.; ABB Group) seedlings.

    PubMed

    Yang, Qiao-Song; Wu, Jun-Hua; Li, Chun-Yu; Wei, Yue-Rong; Sheng, Ou; Hu, Chun-Hua; Kuang, Rui-Bin; Huang, Yong-Hong; Peng, Xin-Xiang; McCardle, James A; Chen, Wei; Yang, Yong; Rose, Jocelyn K C; Zhang, Sheng; Yi, Gan-Jun

    2012-12-01

    Banana and its close relative, plantain are globally important crops and there is considerable interest in optimizing their cultivation. Plantain has superior cold tolerance compared with banana and a thorough understanding of the molecular mechanisms and responses of plantain to cold stress has great potential value for developing cold tolerant banana cultivars. In this study, we used iTRAQ-based comparative proteomic analysis to investigate the temporal responses of plantain to cold stress. Plantain seedlings were exposed for 0, 6, and 24 h of cold stress at 8 °C and subsequently allowed to recover for 24 h at 28 °C. A total of 3477 plantain proteins were identified, of which 809 showed differential expression from the three treatments. The majority of differentially expressed proteins were predicted to be involved in oxidation-reduction, including oxylipin biosynthesis, whereas others were associated with photosynthesis, photorespiration, and several primary metabolic processes, such as carbohydrate metabolic process and fatty acid beta-oxidation. Western blot analysis and enzyme activity assays were performed on seven differentially expressed, cold-response candidate plantain proteins to validate the proteomics data. Similar analyses of the seven candidate proteins were performed in cold-sensitive banana to examine possible functional conservation, and to compare the results to equivalent responses between the two species. Consistent results were achieved by Western blot and enzyme activity assays, demonstrating that the quantitative proteomics data collected in this study are reliable. Our results suggest that an increase of antioxidant capacity through adapted ROS scavenging capability, reduced production of ROS, and decreased lipid peroxidation contribute to molecular mechanisms for the increased cold tolerance in plantain. To the best of our knowledge, this is the first report of a global investigation on molecular responses of plantain to cold stress by proteomic analysis.

  16. Quantitative Proteomic Analysis Reveals that Antioxidation Mechanisms Contribute to Cold Tolerance in Plantain (Musa paradisiaca L.; ABB Group) Seedlings*

    PubMed Central

    Yang, Qiao-Song; Wu, Jun-Hua; Li, Chun-Yu; Wei, Yue-Rong; Sheng, Ou; Hu, Chun-Hua; Kuang, Rui-Bin; Huang, Yong-Hong; Peng, Xin-Xiang; McCardle, James A.; Chen, Wei; Yang, Yong; Rose, Jocelyn K. C.; Zhang, Sheng; Yi, Gan-Jun

    2012-01-01

    Banana and its close relative, plantain are globally important crops and there is considerable interest in optimizing their cultivation. Plantain has superior cold tolerance compared with banana and a thorough understanding of the molecular mechanisms and responses of plantain to cold stress has great potential value for developing cold tolerant banana cultivars. In this study, we used iTRAQ-based comparative proteomic analysis to investigate the temporal responses of plantain to cold stress. Plantain seedlings were exposed for 0, 6, and 24 h of cold stress at 8 °C and subsequently allowed to recover for 24 h at 28 °C. A total of 3477 plantain proteins were identified, of which 809 showed differential expression from the three treatments. The majority of differentially expressed proteins were predicted to be involved in oxidation-reduction, including oxylipin biosynthesis, whereas others were associated with photosynthesis, photorespiration, and several primary metabolic processes, such as carbohydrate metabolic process and fatty acid beta-oxidation. Western blot analysis and enzyme activity assays were performed on seven differentially expressed, cold-response candidate plantain proteins to validate the proteomics data. Similar analyses of the seven candidate proteins were performed in cold-sensitive banana to examine possible functional conservation, and to compare the results to equivalent responses between the two species. Consistent results were achieved by Western blot and enzyme activity assays, demonstrating that the quantitative proteomics data collected in this study are reliable. Our results suggest that an increase of antioxidant capacity through adapted ROS scavenging capability, reduced production of ROS, and decreased lipid peroxidation contribute to molecular mechanisms for the increased cold tolerance in plantain. To the best of our knowledge, this is the first report of a global investigation on molecular responses of plantain to cold stress by proteomic analysis. PMID:22982374

  17. Virtual-Reality Distraction and Cold-Pressor Pain Tolerance: Does Avatar Point of View Matter?

    PubMed Central

    Herbert, Linda J.; Weiss, Karen E.; Jimeno, Monica

    2010-01-01

    Abstract This study tested the effects of distraction using virtual-reality (VR) technology on acute pain tolerance in young adults. Forty-one undergraduate students, aged 18–23 years, used a VR head-mounted display helmet, steering wheel, and foot pedal to play an auto racing video game while undergoing exposure to very cold water (cold pressor set at 1°C). Two different game views were tested that were hypothesized to affect the degree to which participants felt “present” in the virtual environment: a first-person view, in which the participant saw the virtual environment through the eyes of the game character being manipulated; and a third-person view, in which the participant viewed the game character from a distance. The length of time participants tolerated the cold-water exposure (pain tolerance) under each distraction condition was compared to a baseline (no distraction) trial. Subjects also rated the degree to which they felt “present” in the virtual environment after each distraction trial. Results demonstrated that participants had significantly higher pain tolerance during both VR-distraction conditions relative to baseline (no distraction) trials. Although participants reported a greater sense of presence during the first-person condition than the third-person condition, pain-tolerance scores associated with the two distraction conditions did not differ. The types of VR applications in which presence may be more or less important are discussed. PMID:20950186

  18. Virtual-reality distraction and cold-pressor pain tolerance: does avatar point of view matter?

    PubMed

    Dahlquist, Lynnda M; Herbert, Linda J; Weiss, Karen E; Jimeno, Monica

    2010-10-01

    This study tested the effects of distraction using virtual-reality (VR) technology on acute pain tolerance in young adults. Forty-one undergraduate students, aged 18-23 years, used a VR head-mounted display helmet, steering wheel, and foot pedal to play an auto racing video game while undergoing exposure to very cold water (cold pressor set at 1 °C). Two different game views were tested that were hypothesized to affect the degree to which participants felt "present" in the virtual environment: a first-person view, in which the participant saw the virtual environment through the eyes of the game character being manipulated; and a third-person view, in which the participant viewed the game character from a distance. The length of time participants tolerated the cold-water exposure (pain tolerance) under each distraction condition was compared to a baseline (no distraction) trial. Subjects also rated the degree to which they felt "present" in the virtual environment after each distraction trial. Results demonstrated that participants had significantly higher pain tolerance during both VR-distraction conditions relative to baseline (no distraction) trials. Although participants reported a greater sense of presence during the first-person condition than the third-person condition, pain-tolerance scores associated with the two distraction conditions did not differ. The types of VR applications in which presence may be more or less important are discussed.

  19. Latitudinal variation of freeze tolerance in intertidal marine snails of the genus Melampus (Gastropoda: Ellobiidae).

    PubMed

    Dennis, A B; Loomis, S H; Hellberg, M E

    2014-01-01

    Abstract Low temperatures limit the poleward distribution of many species such that the expansion of geographic range can only be accomplished via evolutionary innovation. We have tested for physiological differences among closely related species to determine whether their poleward latitudinal ranges are limited by tolerance to cold. We measured lower temperature tolerance (LT50) among a group of intertidal pulmonate snails from six congeneric species and nine locales. Differences in tolerance are placed in the context of a molecular phylogeny based on one mitochondrial (cytochrome oxidase subunit I) and two nuclear (histone 3 and a mitochondrial phosphate carrier protein) markers. Temperate species from two separate lineages had significantly lower measures of LT50 than related tropical species. Range differences within the temperate zone, however, were not explained by LT50. These results show that multiple adaptations to cold and freezing may have enabled range expansions out of the tropics in Melampus. However, northern range limits within temperate species are not governed by cold tolerance alone.

  20. Effect of alterations in metabolic rate on the duration of tolerance in neonatally injected animals.

    PubMed

    St Rose, J E; Murray, G W; Howe, S A

    1976-01-01

    Exposure to low environmental temperature caused a decrease in the half-life of human albumin (HA) in rabbits injected with 20 mg HA at birth, and a twofold increase in the proportion of animals which lost their tolerance by 150 days of age. Administration of thyroxin produced an even greater effect with respect to tolerance loss. Simlar mechanisms may be involved in the effects of cold exposure and thyroxin administration on tolerance duration. One possible mecahnism is that the duration of tolerance is dependent upon the metabolic half-life of the tolerance-inducing antigen. An alternative mechanism could be a cold- or thyroxin-induced enhancement of the recruitment of immunologically competent cells from an undifferentiated population of stem cells.

  1. Identification of Rice Genes Associated With Enhanced Cold Tolerance by Comparative Transcriptome Analysis With Two Transgenic Rice Plants Overexpressing DaCBF4 or DaCBF7, Isolated From Antarctic Flowering Plant Deschampsia antarctica

    PubMed Central

    Byun, Mi Young; Cui, Li Hua; Lee, Jungeun; Park, Hyun; Lee, Andosung; Kim, Woo Taek; Lee, Hyoungseok

    2018-01-01

    Few plant species can survive in Antarctica, the harshest environment for living organisms. Deschampsia antarctica is the only natural grass species to have adapted to and colonized the maritime Antarctic. To investigate the molecular mechanism of the Antarctic adaptation of this plant, we identified and characterized D. antarctica C-repeat binding factor 4 (DaCBF4), which belongs to monocot CBF group IV. The transcript level of DaCBF4 in D. antarctica was markedly increased by cold and dehydration stress. To assess the roles of DaCBF4 in plants, we generated a DaCBF4-overexpressing transgenic rice plant (Ubi:DaCBF4) and analyzed its abiotic stress response phenotype. Ubi:DaCBF4 displayed enhanced tolerance to cold stress without growth retardation under any condition compared to wild-type plants. Because the cold-specific phenotype of Ubi:DaCBF4 was similar to that of Ubi:DaCBF7 (Byun et al., 2015), we screened for the genes responsible for the improved cold tolerance in rice by selecting differentially regulated genes in both transgenic rice lines. By comparative transcriptome analysis using RNA-seq, we identified 9 and 15 genes under normal and cold-stress conditions, respectively, as putative downstream targets of the two D. antarctica CBFs. Overall, our results suggest that Antarctic hairgrass DaCBF4 mediates the cold-stress response of transgenic rice plants by adjusting the expression levels of a set of stress-responsive genes in transgenic rice plants. Moreover, selected downstream target genes will be useful for genetic engineering to enhance the cold tolerance of cereal plants, including rice. PMID:29774046

  2. Identification of Rice Genes Associated With Enhanced Cold Tolerance by Comparative Transcriptome Analysis With Two Transgenic Rice Plants Overexpressing DaCBF4 or DaCBF7, Isolated From Antarctic Flowering Plant Deschampsia antarctica.

    PubMed

    Byun, Mi Young; Cui, Li Hua; Lee, Jungeun; Park, Hyun; Lee, Andosung; Kim, Woo Taek; Lee, Hyoungseok

    2018-01-01

    Few plant species can survive in Antarctica, the harshest environment for living organisms. Deschampsia antarctica is the only natural grass species to have adapted to and colonized the maritime Antarctic. To investigate the molecular mechanism of the Antarctic adaptation of this plant, we identified and characterized D. antarctica C-repeat binding factor 4 ( DaCBF4 ), which belongs to monocot CBF group IV. The transcript level of DaCBF4 in D. antarctica was markedly increased by cold and dehydration stress. To assess the roles of DaCBF4 in plants, we generated a DaCBF4 -overexpressing transgenic rice plant ( Ubi:DaCBF4 ) and analyzed its abiotic stress response phenotype. Ubi:DaCBF4 displayed enhanced tolerance to cold stress without growth retardation under any condition compared to wild-type plants. Because the cold-specific phenotype of Ubi:DaCBF4 was similar to that of Ubi:DaCBF7 (Byun et al., 2015), we screened for the genes responsible for the improved cold tolerance in rice by selecting differentially regulated genes in both transgenic rice lines. By comparative transcriptome analysis using RNA-seq, we identified 9 and 15 genes under normal and cold-stress conditions, respectively, as putative downstream targets of the two D. antarctica CBFs. Overall, our results suggest that Antarctic hairgrass DaCBF4 mediates the cold-stress response of transgenic rice plants by adjusting the expression levels of a set of stress-responsive genes in transgenic rice plants. Moreover, selected downstream target genes will be useful for genetic engineering to enhance the cold tolerance of cereal plants, including rice.

  3. Transcriptomic Insights into Phenological Development and Cold Tolerance of Wheat Grown in the Field1[OPEN

    PubMed Central

    Li, Qiang; Byrns, Brook; Badawi, Mohamed A.; Diallo, Abdoulaye Banire; Danyluk, Jean; Sarhan, Fathey; Zou, Jitao

    2018-01-01

    Cold acclimation and winter survival in cereal species is determined by complicated environmentally regulated gene expression. However, studies investigating these complex cold responses are mostly conducted in controlled environments that only consider the responses to single environmental variables. In this study, we have comprehensively profiled global transcriptional responses in crowns of field-grown spring and winter wheat (Triticum aestivum) genotypes and their near-isogenic lines with the VRN-A1 alleles swapped. This in-depth analysis revealed multiple signaling, interactive pathways that influence cold tolerance and phenological development to optimize plant growth and development in preparation for a wide range of over-winter stresses. Investigation of genetic differences at the VRN-A1 locus revealed that a vernalization requirement maintained a higher level of cold response pathways while VRN-A1 genetically promoted floral development. Our results also demonstrated the influence of genetic background on the expression of cold and flowering pathways. The link between delayed shoot apex development and the induction of cold tolerance was reflected by the gradual up-regulation of abscisic acid-dependent and C-REPEAT-BINDING FACTOR pathways. This was accompanied by the down-regulation of key genes involved in meristem development as the autumn progressed. The chromosome location of differentially expressed genes between the winter and spring wheat genetic backgrounds showed a striking pattern of biased gene expression on chromosomes 6A and 6D, indicating a transcriptional regulation at the genome level. This finding adds to the complexity of the genetic cascades and gene interactions that determine the evolutionary patterns of both phenological development and cold tolerance traits in wheat. PMID:29259104

  4. Cool-season annual grasses interseeded into bermudagrass with improved cold-tolerance for grazing in the upper south

    USDA-ARS?s Scientific Manuscript database

    Bermudagrass [Cynodon dactylon (Pers.) L.] cultivars with improved cold tolerance can be utilized for grazing in the transition zone between the temperate northeast and subtropical southeast, but these bermudagrasses generally do not provide adequate growth for stocking until late May to early June....

  5. Logistic Regression Analysis of the Response of Winter Wheat to Components of Artificial Freezing Episodes

    USDA-ARS?s Scientific Manuscript database

    Improvement of cold tolerance of winter wheat (Triticum aestivum L.) through breeding methods has been problematic. A better understanding of how individual wheat cultivars respond to components of the freezing process may provide new information that can be used to develop more cold tolerance culti...

  6. Affective pictures processing, attention, and pain tolerance.

    PubMed

    de Wied, M; Verbaten, M N

    2001-02-01

    Two experiments were conducted to determine whether attention mediates the effects of affective distractors on cold pressor pain, or whether the cognitive processes of priming and appraisal best account for the effects. In Experiment I, 65 male respondents were exposed to either pleasant, neutral or unpleasant pictures selected from the International Affective Pictures System (IAPS). The cold-pressor test was administered simultaneously. Consistent with predictions based on priming and appraisal hypotheses, results revealed a linear trend across conditions, such that pain tolerance scores were higher as a function of picture pleasantness. A second study was conducted to examine the role of pain cues in the effects of negative affect on cold pressor pain. Thirty-nine male respondents were exposed to unpleasant pictures that either did or did not include pain-related material. Respondents who viewed pictures without pain cues tolerated the cold water for a longer period of time than respondents who viewed pictures that contained pain-related information. Priming and appraisal processes that might underlie the observed differences, and the type of affective distractors that could be meaningful for enhancing pain tolerance, are discussed.

  7. Active and passive distraction using a head-mounted display helmet: effects on cold pressor pain in children.

    PubMed

    Dahlquist, Lynnda M; McKenna, Kristine D; Jones, Katia K; Dillinger, Lindsay; Weiss, Karen E; Ackerman, Claire Sonntag

    2007-11-01

    The current study tested the effectiveness of interactive versus passive distraction that was delivered via a virtual reality type head-mounted display helmet for children experiencing cold pressor pain. Forty children, aged 5 to 13 years, underwent 1 or 2 baseline cold pressor trials followed by interactive distraction and passive distraction trials in counterbalanced order. Pain threshold and pain tolerance. Children who experienced either passive or interactive distraction demonstrated significant improvements in both pain tolerance and pain threshold relative to their baseline scores. In contrast, children who underwent a second cold pressor trial without distraction showed no significant improvements in pain tolerance or threshold. Although both distraction conditions were effective, the interactive distraction condition was significantly more effective. Implications for the treatment of children's distress during painful medical procedures are discussed. (PsycINFO Database Record (c) 2007 APA, all rights reserved).

  8. Winter cold-tolerance thresholds in field-grown Miscanthus hybrid rhizomes.

    PubMed

    Peixoto, Murilo de Melo; Friesen, Patrick Calvin; Sage, Rowan F

    2015-07-01

    The cold tolerance of winter-dormant rhizomes was evaluated in diploid, allotriploid, and allotetraploid hybrids of Miscanthus sinensis and Miscanthus sacchariflorus grown in a field setting. Two artificial freezing protocols were tested: one lowered the temperature continuously by 1°C h(-1) to the treatment temperature and another lowered the temperature in stages of 24h each to the treatment temperature. Electrolyte leakage and rhizome sprouting assays after the cold treatment assessed plant and tissue viability. Results from the continuous-cooling trial showed that Miscanthus rhizomes from all genotypes tolerated temperatures as low as -6.5 °C; however, the slower, staged-cooling procedure enabled rhizomes from two diploid lines to survive temperatures as low as -14 °C. Allopolyploid genotypes showed no change in the lethal temperature threshold between the continuous and staged-cooling procedure, indicating that they have little ability to acclimate to subzero temperatures. The results demonstrated that rhizomes from diploid Miscanthus lines have superior cold tolerance that could be exploited to improve performance in more productive polyploid lines. With expected levels of soil insulation, low winter air temperatures should not harm rhizomes of tolerant diploid genotypes of Miscanthus in temperate to sub-boreal climates (up to 60°N); however, the observed winter cold in sub-boreal climates could harm rhizomes of existing polyploid varieties of Miscanthus and thus reduce stand performance. © The Author 2015. Published by Oxford University Press on behalf of the Society for Experimental Biology.

  9. [Low-temperature response and cold tolerance at spike differentiation stage of winter wheat varieties sowed in spring].

    PubMed

    Xu, Lan; Gao, Zhi-fiang; An, Wei; Yuan, Ya-qi; Li, Yan-liang

    2015-06-01

    A total of 10 winter wheat varieties were imported from the middle and lower reaches of the Yangtze River region in China. Those varieties were sowed in spring in Xinding basin area of Shanxi Province, and the field trials were performed for two years (2013-2014). The traits and physiological characteristics under low temperature stress including grain yield, total content of chlorophyll, osmotic adjustment, membrane system, ion leakage rate, contents of soluble sugar and soluble protein were investigated, and the cold tolerance levels of the wheat varieties were assessed. The results showed that low temperature stress led to increases in wheat leaf ion leakage rate, soluble sugar and protein contents, but obvious reduction of chlorophyll content. According to principal component analysis and cold tolerance (D value) , Yumai 10, Yangmai 20, and Yunmai 42 were classed as cold sensitive wheat varieties. Yangmai 13, Yumai 12, and Ningmai 13 were classed as stronger cold-resistant wheat genotypes, and showed stability through two-year field trials, with the D values being 0.665-0.659, 0.493-0.495, and 0.471-0.583, respectively, while the D values for the controls Ning 2038 and Xinchun 30 were 0.368-0.397, and 0.328-0.330, respectively. The grain yields of the cold resistant wheat varieties were significantly higher than that of the other varieties tested. Therefore, Yangmai 13, Yumai 12 and Ningmai 13 could be imported and used as the cold tolerant wheat varieties for North Plain of China.

  10. Evaluation of Diversity Based on Morphological Variabilities and ISSR Molecular Markers in Iranian Cynodon dactylon (L.) Pers. Accessions to Select and Introduce Cold-Tolerant Genotypes.

    PubMed

    Akbari, M; Salehi, H; Niazi, A

    2018-04-01

    The main goals of the present study were to screen Iranian common bermudagrasses to find cold-tolerant accessions and evaluate their genetic and morphological variabilities. In this study, 49 accessions were collected from 18 provinces of Iran. One foreign cultivar of common bermudagrass was used as control. Morphological variation was evaluated based on 14 morphological traits to give information about taxonomic position of Iranian common bermudagrass. Data from morphological traits were evaluated to categorize all accessions as either cold sensitive or tolerant using hierarchical clustering with Ward's method in SPSS software. Inter-Simple Sequence Repeat (ISSR) primers were employed to evaluate genetic variability of accessions. The results of our taxonomic investigation support the existence of two varieties of Cynodon dactylon in Iran: var. dactylon (hairless plant) and var. villosous (plant with hairs at leaf underside and/or upper side surfaces or exterior surfaces of sheath). All 15 primers amplified and gave clear and highly reproducible DNA fragments. In total, 152 fragments were produced, of which 144 (94.73%) being polymorphic. The polymorphic information content (PIC) values ranged from 0.700 to 0.928. The average PIC value obtained with 15 ISSR primers was 0.800, which shows that all primers were informative. Probability identity (PI) and discriminating power between all primers ranged from 0.029 to 0.185 and 0.815 to 0.971, respectively. Genetic data were converted into a binary data matrix. NTSYS software was used for data analysis. Clustering was done by the unweighted pair-group method with arithmetic averages and principle coordinate analysis, separated the accessions into six main clusters. According to both morphological and genetic diversity investigations of accessions, they can be clustered into three groups: cold sensitive, cold semi-tolerant, and cold tolerant. The most cold-tolerant accessions were: Taft, Malayear, Gorgan, Safashahr, Naein, Aligoudarz, and the foreign cultivar. This study may provide useful information for further breeding programs on common bermudagrass. Selected genotypes can be evaluated for other abiotic stresses such as drought and salinity.

  11. A novel cold-inducible zinc finger protein from soybean, SCOF-1, enhances cold tolerance in transgenic plants.

    PubMed

    Kim, J C; Lee, S H; Cheong, Y H; Yoo, C M; Lee, S I; Chun, H J; Yun, D J; Hong, J C; Lee, S Y; Lim, C O; Cho, M J

    2001-02-01

    Cold stress on plants induces changes in the transcription of cold response genes. A cDNA clone encoding C2H2-type zinc finger protein, SCOF-1, was isolated from soybean. The transcription of SCOF-1 is specifically induced by low temperature and abscisic acid (ABA) but not by dehydration or high salinity. Constitutive overexpression of SCOF-1 induced cold-regulated (COR) gene expression and enhanced cold tolerance of non-acclimated transgenic Arabidopsis and tobacco plants. SCOF-1 localized to the nucleus but did not bind directly to either C-repeat/dehydration (CRT/DRE) or ABA responsive element (ABRE), cis-acting DNA regulatory elements present in COR gene promoters. However, SCOF-1 greatly enhanced the DNA binding activity of SGBF-1, a soybean G-box binding bZIP transcription factor, to ABRE in vitro. SCOF-1 also interacted with SGBF-1 in a yeast two-hybrid system. The SGBF-1 transactivated the beta-glucuronidase reporter gene driven by the ABRE element in Arabidopsis leaf protoplasts. Furthermore, the SCOF-1 enhanced ABRE-dependent gene expression mediated by SGBF-1. These results suggest that SCOF-1 may function as a positive regulator of COR gene expression mediated by ABRE via protein-protein interaction, which in turn enhances cold tolerance of plants.

  12. Role of CBFs as Integrators of Chloroplast Redox, Phytochrome and Plant Hormone Signaling during Cold Acclimation

    PubMed Central

    Kurepin, Leonid V.; Dahal, Keshav P.; Savitch, Leonid V.; Singh, Jas; Bode, Rainer; Ivanov, Alexander G.; Hurry, Vaughan; Hüner, Norman P. A.

    2013-01-01

    Cold acclimation of winter cereals and other winter hardy species is a prerequisite to increase subsequent freezing tolerance. Low temperatures upregulate the expression of C-repeat/dehydration-responsive element binding transcription factors (CBF/DREB1) which in turn induce the expression of COLD-REGULATED (COR) genes. We summarize evidence which indicates that the integration of these interactions is responsible for the dwarf phenotype and enhanced photosynthetic performance associated with cold-acclimated and CBF-overexpressing plants. Plants overexpressing CBFs but grown at warm temperatures mimic the cold-tolerant, dwarf, compact phenotype; increased photosynthetic performance; and biomass accumulation typically associated with cold-acclimated plants. In this review, we propose a model whereby the cold acclimation signal is perceived by plants through an integration of low temperature and changes in light intensity, as well as changes in light quality. Such integration leads to the activation of the CBF-regulon and subsequent upregulation of COR gene and GA 2-oxidase (GA2ox) expression which results in a dwarf phenotype coupled with increased freezing tolerance and enhanced photosynthetic performance. We conclude that, due to their photoautotrophic nature, plants do not rely on a single low temperature sensor, but integrate changes in light intensity, light quality, and membrane viscosity in order to establish the cold-acclimated state. CBFs appear to act as master regulators of these interconnecting sensing/signaling pathways. PMID:23778089

  13. Handling Ibuprofen Increases Pain Tolerance and Decreases Perceived Pain Intensity in a Cold Pressor Test

    PubMed Central

    Rutchick, Abraham M.; Slepian, Michael L.

    2013-01-01

    Pain contributes to health care costs, missed work and school, and lower quality of life. Extant research on psychological interventions for pain has focused primarily on developing skills that individuals can apply to manage their pain. Rather than examining internal factors that influence pain tolerance (e.g., pain management skills), the current work examines factors external to an individual that can increase pain tolerance. Specifically, the current study examined the nonconscious influence of exposure to meaningful objects on the perception of pain. Participants (N = 54) completed a cold pressor test, examined either ibuprofen or a control object, then completed another cold pressor test. In the second test, participants who previously examined ibuprofen reported experiencing less intense pain and tolerated immersion longer (relative to baseline) than those who examined the control object. Theoretical and applied implications of these findings are discussed. PMID:23469170

  14. Do fibromyalgia patients benefit from cognitive restructuring and acceptance? An experimental study.

    PubMed

    Kohl, Annika; Rief, Winfried; Glombiewski, Julia Anna

    2014-12-01

    The aim of this study was to clarify mechanisms of psychological fibromyalgia treatment by experimentally examining the effectiveness of its core elements. We assessed the effects of cognitive restructuring and acceptance on experimentally-induced heat and cold pain tolerance and pain intensity in fibromyalgia patients. Cold and heat pain were induced in a sample of 60 fibromyalgia patients using a thermode. We conducted ANCOVAs to examine group differences in posttest scores, co-varying for pretest scores. The between-groups factor was the type of instruction provided (acceptance, cognitive restructuring, and a control condition). In addition, we controlled for pain sensitivity, age, and depression. We found that acceptance and cognitive restructuring were superior to the control condition in increasing heat pain tolerance, but did not differ from one another. With respect to cold pain tolerance, cognitive restructuring was associated with increases in cold pain tolerance compared to the control condition, while acceptance did not differ either from the control condition or from cognitive restructuring. Further experimental research on chronic pain treatment mechanisms is needed, particularly research on individually tailoring treatment strategies according to patients characteristics. Results show that both, cognitive restructuring and acceptance instructions, enhance pain tolerance in fibromyalgia patients. Copyright © 2014 Elsevier Ltd. All rights reserved.

  15. Cold tolerance is unaffected by oxygen availability despite changes in anaerobic metabolism

    NASA Astrophysics Data System (ADS)

    Boardman, Leigh; Sørensen, Jesper G.; Koštál, Vladimír; Šimek, Petr; Terblanche, John S.

    2016-09-01

    Insect cold tolerance depends on their ability to withstand or repair perturbations in cellular homeostasis caused by low temperature stress. Decreased oxygen availability (hypoxia) can interact with low temperature tolerance, often improving insect survival. One mechanism proposed for such responses is that whole-animal cold tolerance is set by a transition to anaerobic metabolism. Here, we provide a test of this hypothesis in an insect model system (Thaumatotibia leucotreta) by experimental manipulation of oxygen availability while measuring metabolic rate, critical thermal minimum (CTmin), supercooling point and changes in 43 metabolites in moth larvae at three key timepoints (before, during and after chill coma). Furthermore, we determined the critical oxygen partial pressure below which metabolic rate was suppressed (c. 4.5 kPa). Results showed that altering oxygen availability did not affect (non-lethal) CTmin nor (lethal) supercooling point. Metabolomic profiling revealed the upregulation of anaerobic metabolites and alterations in concentrations of citric acid cycle intermediates during and after chill coma exposure. Hypoxia exacerbated the anaerobic metabolite responses induced by low temperatures. These results suggest that cold tolerance of T. leucotreta larvae is not set by oxygen limitation, and that anaerobic metabolism in these larvae may contribute to their ability to survive in necrotic fruit.

  16. A cold-induced pectin methyl-esterase inhibitor gene contributes negatively to freezing tolerance but positively to salt tolerance in Arabidopsis.

    PubMed

    Chen, Jian; Chen, Xuehui; Zhang, Qingfeng; Zhang, Yidan; Ou, Xiangli; An, Lizhe; Feng, Huyuan; Zhao, Zhiguang

    2018-03-01

    Plant pectin methyl-esterase (PME) and PME inhibitor (PMEI) belong to large gene families whose members are proposed to be widely involved in growth, development, and stress responses; however, the biological functions of most PMEs and PMEIs have not been characterized. In this study, we studied the roles of CbPMEI1, a cold-induced pectin methyl-esterase inhibitor (PMEI) gene from Chorispora bungeana, under freezing and salt stress. The putative CbPMEI1 peptide shares highest similarity (83%) with AT5G62360 (PMEI13) of Arabidopsis. Overexpression of either CbPMEI1 or PMEI13 in Arabidopsis decreased tissue PME activity and enhanced the degree of methoxylation of cell wall pectins, indicating that both genes encode functional PMEIs. CbPMEI1 and PMEI13 were induced by cold but repressed by salt stress and abscisic acid, suggesting distinct roles of the genes in freezing and salt stress tolerance. Interestingly, transgenic Arabidopsis plants overexpressing CbPMEI1 or PMEI13 showed decreased freezing tolerance, as indicated by survival and electrolyte leakage assays. On the other hand, the salt tolerance of transgenic plants was increased, showing higher rates of germination, root growth, and survival under salinity conditions as compared with non-transgenic wild-type plants. Although the transgenic plants were freezing-sensitive, they showed longer roots than wild-type plants under cold conditions, suggesting a role of PMEs in balancing the trade-off between freezing tolerance and growth. Thus, our study indicates that CbPMEI1 and PMEI13 are involved in root growth regulation under cold and salt stresses, and suggests that PMEIs may be potential targets for genetic engineering aimed to improve fitness of plants under stress conditions. Copyright © 2018 Elsevier GmbH. All rights reserved.

  17. Constitutive expression of DaCBF7, an Antarctic vascular plant Deschampsia antarctica CBF homolog, resulted in improved cold tolerance in transgenic rice plants.

    PubMed

    Byun, Mi Young; Lee, Jungeun; Cui, Li Hua; Kang, Yoonjee; Oh, Tae Kyung; Park, Hyun; Lee, Hyoungseok; Kim, Woo Taek

    2015-07-01

    Deschampsia antarctica is an Antarctic hairgrass that grows on the west coast of the Antarctic peninsula. In this report, we have identified and characterized a transcription factor, D. antarctica C-repeat binding factor 7 (DaCBF7), that is a member of the monocot group V CBF homologs. The protein contains a single AP2 domain, a putative nuclear localization signal, and the typical CBF signature. DaCBF7, like other monocot group V homologs, contains a distinct polypeptide stretch composed of 43 amino acids in front of the AP2 motif. DaCBF7 was predominantly localized to nuclei and interacted with the C-repeat/dehydration responsive element (CRT/DRE) core sequence (ACCGAC) in vitro. DaCBF7 was induced by abiotic stresses, including drought, cold, and salinity. To investigate its possible cellular role in cold tolerance, a transgenic rice system was employed. DaCBF7-overexpressing transgenic rice plants (Ubi:DaCBF7) exhibited markedly increased tolerance to cold stress compared to wild-type plants without growth defects; however, overexpression of DaCBF7 exerted little effect on tolerance to drought or salt stress. Transcriptome analysis of a Ubi:DaCBF7 transgenic line revealed 13 genes that were up-regulated in DaCBF7-overexpressing plants compared to wild-type plants in the absence of cold stress and in short- or long-term cold stress. Five of these genes, dehydrin, remorin, Os03g63870, Os11g34790, and Os10g22630, contained putative CRT/DRE or low-temperature responsive elements in their promoter regions. These results suggest that overexpression of DaCBF7 directly and indirectly induces diverse genes in transgenic rice plants and confers enhanced tolerance to cold stress. Copyright © 2015 Elsevier Ireland Ltd. All rights reserved.

  18. C-reactive protein and cold-pressor tolerance in the general population: the Tromsø Study.

    PubMed

    Schistad, Elina Iordanova; Stubhaug, Audun; Furberg, Anne-Sofie; Engdahl, Bo Lars; Nielsen, Christopher Sivert

    2017-07-01

    The aim of this study was to examine whether increases in severity of subclinical inflammation, measured by high-sensitivity C-reactive protein (hs-CRP), increased experimental pain sensitivity, measured by cold-pressor tolerance, and to test whether this relationship is independent of chronic pain. A large population-based study from 2007 to 2008, the sixth Tromsø Study, provided data from 12,981 participants. For the present analysis, complete data for 10,274 participants (age: median 58 years) were available. The main outcome measure was cold-pressor tolerance, tested by placing the dominant hand in circulating cold water (3°C) for a maximum of 106 seconds. Cox proportional hazard models, treating hand withdrawal during the cold-pressor test as the event and enduring the full test time as censored data, were used to investigate the relationship between hs-CRP levels (≤3 or >3 mg/L) and cold-pressure tolerance. The fully adjusted model was controlled for age, sex, education, body mass index, smoking status, alcohol consumption, emotional distress, statin usage, and self-reported presence of chronic pain. Additional analysis was performed in participants without chronic pain. Higher levels of hs-CRP were negatively related to cold-pressor tolerance (hazard ratio [HR] = 1.24, 95% confidence interval [CI], 1.12-1.37, P < 0.001), adjusted for age and sex. This relationship remained essentially unaltered after controlling for potential confounders (HR = 1.22, 95% CI, 1.09-1.36, P < 0.001), as well as for the presence of chronic pain (HR = 1.22, 95% CI, 1.09-1.36, P < 0.001). The present data show that subclinical inflammation is related to increased pain sensitivity, suggesting a potential role of inflammation in experimental pain which may be of importance for the development of clinical pain.

  19. Comparative analysis of the cold acclimation and freezing tolerance capacities of seven diploid Brachypodium distachyon accessions

    PubMed Central

    Colton-Gagnon, Katia; Ali-Benali, Mohamed Ali; Mayer, Boris F.; Dionne, Rachel; Bertrand, Annick; Do Carmo, Sonia; Charron, Jean-Benoit

    2014-01-01

    Background and Aims Cold is a major constraint for cereal cultivation under temperate climates. Winter-hardy plants interpret seasonal changes and can acquire the ability to resist sub-zero temperatures. This cold acclimation process is associated with physiological, biochemical and molecular alterations in cereals. Brachypodium distachyon is considered a powerful model system to study the response of temperate cereals to adverse environmental conditions. To date, little is known about the cold acclimation and freezing tolerance capacities of Brachypodium. The main objective of this study was to evaluate the cold hardiness of seven diploid Brachypodium accessions. Methods An integrated approach, involving monitoring of phenological indicators along with expression profiling of the major vernalization regulator VRN1 orthologue, was followed. In parallel, soluble sugars and proline contents were determined along with expression profiles of two COR genes in plants exposed to low temperatures. Finally, whole-plant freezing tests were performed to evaluate the freezing tolerance capacity of Brachypodium. Key Results Cold treatment accelerated the transition from the vegetative to the reproductive phase in all diploid Brachypodium accessions tested. In addition, low temperature exposure triggered the gradual accumulation of BradiVRN1 transcripts in all accessions tested. These accessions exhibited a clear cold acclimation response by progressively accumulating proline, sugars and COR gene transcripts. However, whole-plant freezing tests revealed that these seven diploid accessions only have a limited capacity to develop freezing tolerance when compared with winter varieties of temperate cereals such as wheat and barley. Furthermore, little difference in terms of survival was observed among the accessions tested despite their previous classification as either spring or winter genotypes. Conclusions This study is the first to characterize the freezing tolerance capacities of B. distachyon and provides strong evidence that some diploid accessions such as Bd21 have a facultative growth habit. PMID:24323247

  20. The homologous HD-Zip I transcription factors HaHB1 and AtHB13 confer cold tolerance via the induction of pathogenesis-related and glucanase proteins.

    PubMed

    Cabello, Julieta V; Arce, Agustín L; Chan, Raquel L

    2012-01-01

    Plants deal with cold temperatures via different signal transduction pathways. The HD-Zip I homologous transcription factors HaHB1 from sunflower and AtHB13 from Arabidopsis were identified as playing a key role in such cold response. The expression patterns of both genes were analyzed indicating an up-regulation by low temperatures. When these genes were constitutively expressed in Arabidopsis, the transgenic plants showed similar phenotypes including cell membrane stabilization under freezing treatments and cold tolerance. An exploratory transcriptomic analysis of HaHB1 transgenic plants indicated that several transcripts encoding glucanases and chitinases were induced. Moreover, under freezing conditions some proteins accumulated in HaHB1 plants apoplasts and these extracts exerted antifreeze activity in vitro. Three genes encoding two glucanases and a chitinase were overexpressed in Arabidopsis and these plants were able to tolerate freezing temperatures. All the obtained transgenic plants exhibited cell membrane stabilization after a short freezing treatment. Finally, HaHB1 and AtHB13 were used to transiently transform sunflower and soybean leading to the up-regulation of HaHB1/AtHB13-target homologues thus indicating the conservation of cold response pathways. We propose that HaHB1 and AtHB13 are involved in plant cold tolerance via the induction of proteins able to stabilize cell membranes and inhibit ice growth. © 2011 The Authors. The Plant Journal © 2011 Blackwell Publishing Ltd.

  1. Proteome profiling reveals insights into cold-tolerant growth in sea buckthorn.

    PubMed

    He, Caiyun; Gao, Guori; Zhang, Jianguo; Duan, Aiguo; Luo, Hongmei

    2016-01-01

    Low temperature is one of the crucial environmental factors limiting the productivity and distribution of plants. Sea buckthorn ( Hippophae rhamnoides L.), a well recognized multipurpose plant species, live successfully in in cold desert regions. But their molecular mechanisms underlying cold tolerance are not well understood. Physiological and biochemical responses to low-temperature stress were studied in seedlings of sea buckthorn. Differentially expressed protein spots were analyzed using multiplexing fluorescent two-dimensional fluorescence difference gel electrophoresis (2D-DIGE) coupled with matrix-assisted laser desorption/ionization (MALDI) time-of-flight/time-of-flight (TOF/TOF) mass spectrometry (MS), the concentration of phytohormone was measured using enzyme-linked immunosorbent assay, and a spectrophotometric assay was used to measure enzymatic reactions. With the increase of cold stress intensity, the photosynthesis rate, transpiration rate, stomatal conductance in leaves and contents of abscisic acid (ABA) and indole acetic acid (IAA) in roots decreased significantly; however, water-use efficiency, ABA and zeatin riboside in leaves increased significantly, while cell membrane permeability, malondialdehyde and IAA in leaves increased at 7 d and then decreased at 14 d. DIGE and MS/MS analysis identified 32 of 39 differentially expressed protein spots under low-temperature stress, and their functions were mainly involved in metabolism, photosynthesis, signal transduction, antioxidative systems and post-translational modification. The changed protein abundance and corresponding physiological-biochemical response shed light on the molecular mechanisms related to cold tolerance in cold-tolerant plants and provide key candidate proteins for genetic improvement of plants.

  2. 76 FR 38036 - Propylene Oxide; Pesticide Tolerances

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-06-29

    ... regulation amends the propylene oxide tolerance on ``nut, tree, group 14'' to ``nutmeat, processed, except... propylene oxide tolerance (40 CFR 180.491) on ``nut, tree, group 14'' to read ``nutmeat, processed, except...) on ``nut, tree, group 14'' to read ``nutmeat, processed, except peanuts.'' IV. Statutory and...

  3. Effects of chronic N fertilization on foliar membranes, cold tolerance, and carbon storage in montane red spruce

    Treesearch

    Paul G. Schaberg; Donald H. DeHayes; Gary J. Hawley; Paula F. Murakami; G. Richard Strimbeck; Steven G. McNulty

    2002-01-01

    We evaluated the influence of protracted low-level nitrogen (N) fertilization on foliar membrane-associated calcium (mCa), sugar and starch concentrations, membrane stability, winter cold tolerance, and freezing injury of red spruce (Picea rubens Sarg.) trees growing in six experimental plots on Mount Ascutney, Vermont. For 12 consecutive years...

  4. Tolerance of subzero winter cold in kudzu (Pueraria montana var. lobata) and its implications for northward migration in a warming climate

    USDA-ARS?s Scientific Manuscript database

    Kudzu (Pueraria montana var. lobata) is an important invasive species that was planted throughout southeastern North America until the mid-20th century. Winter survival is commonly assumed to control its distribution; however, its cold tolerance thresholds have not been determined. Here, we used bio...

  5. Heat or cold priming-induced cross-tolerance to abiotic stresses in plants: key regulators and possible mechanisms.

    PubMed

    Hossain, Mohammad Anwar; Li, Zhong-Guang; Hoque, Tahsina Sharmin; Burritt, David J; Fujita, Masayuki; Munné-Bosch, Sergi

    2018-01-01

    Plants growing under field conditions are constantly exposed, either simultaneously or sequentially, to more than one abiotic stress factor. Plants have evolved sophisticated sensory systems to perceive a number of stress signals that allow them to activate the most adequate response to grow and survive in a given environment. Recently, cross-stress tolerance (i.e. tolerance to a second, strong stress after a different type of mild primary stress) has gained attention as a potential means of producing stress-resistant crops to aid with global food security. Heat or cold priming-induced cross-tolerance is very common in plants and often results from the synergistic co-activation of multiple stress signalling pathways, which involve reactive nitrogen species (RNS), reactive oxygen species (ROS), reactive carbonyl species (RCS), plant hormones and transcription factors. Recent studies have shown that the signalling functions of ROS, RNS and RCS, most particularly hydrogen peroxide, nitric oxide (NO) and methylglyoxal (MG), provide resistance to abiotic stresses and underpin cross-stress tolerance in plants by modulating the expression of genes as well as the post-translational modification of proteins. The current review highlights the key regulators and mechanisms underlying heat or cold priming-induced cross-stress tolerance in plants, with a focus on ROS, MG and NO signalling, as well as on the role of antioxidant and glyoxalase systems, osmolytes, heat-shock proteins (HSPs) and hormones. Our aim is also to provide a comprehensive idea on the topic for researchers using heat or cold priming-induced cross-tolerance as a mechanism to improve crop yields under multiple abiotic stresses.

  6. Line differences in Cor/Lea and fructan biosynthesis-related gene transcript accumulation are related to distinct freezing tolerance levels in synthetic wheat hexaploids.

    PubMed

    Yokota, Hirokazu; Iehisa, Julio C M; Shimosaka, Etsuo; Takumi, Shigeo

    2015-03-15

    In common wheat, cultivar differences in freezing tolerance are considered to be mainly due to allelic differences at two major loci controlling freezing tolerance. One of the two loci, Fr-2, is coincident with a cluster of genes encoding C-repeat binding factors (CBFs), which induce downstream Cor/Lea genes during cold acclimation. Here, we conducted microarray analysis to study comprehensive changes in gene expression profile under long-term low-temperature (LT) treatment and to identify other LT-responsive genes related to cold acclimation in leaves of seedlings and crown tissues of a synthetic hexaploid wheat line. The microarray analysis revealed marked up-regulation of a number of Cor/Lea genes and fructan biosynthesis-related genes under the long-term LT treatment. For validation of the microarray data, we selected four synthetic wheat lines that contain the A and B genomes from the tetraploid wheat cultivar Langdon and the diverse D genomes originating from different Aegilops tauschii accessions with distinct levels of freezing tolerance after cold acclimation. Quantitative RT-PCR showed increased transcript levels of the Cor/Lea, CBF, and fructan biosynthesis-related genes in more freezing-tolerant lines than in sensitive lines. After a 14-day LT treatment, a significant difference in fructan accumulation was observed among the four lines. Therefore, the fructan biosynthetic pathway is associated with cold acclimation in development of wheat freezing tolerance and is another pathway related to diversity in freezing tolerance, in addition to the CBF-mediated Cor/Lea expression pathway. Copyright © 2014 Elsevier GmbH. All rights reserved.

  7. Dissecting cold tolerance in rice as revealed by association mapping

    USDA-ARS?s Scientific Manuscript database

    Cold stress is an important abiotic stress which negatively affects morphological development and seed production in rice (Oryza sativa L.). At the seedling stage, cold stress causes poor germination, seedling injury and poor stand establishment; and at the reproductive stage cold decreases seed yi...

  8. The roles of call wall invertase inhibitor in regulating chilling tolerance in tomato.

    PubMed

    Xu, Xiao-Xia; Hu, Qin; Yang, Wan-Nian; Jin, Ye

    2017-11-09

    Hexoses are important metabolic signals that respond to abiotic and biotic stresses. Cold stress adversely affects plant growth and development, limiting productivity. The mechanism by which sugars regulate plant cold tolerance remains elusive. We examined the function of INVINH1, a cell wall invertase inhibitor, in tomato chilling tolerance. Cold stress suppressed the transcription of INVINH1 and increased that of cell wall invertase genes, Lin6 and Lin8 in tomato seedlings. Silencing INVINH1 expression in tomato increased cell wall invertase activity and enhanced chilling tolerance. Conversely, transgenic tomatoes over-expressing INVINH1 showed reduced cell wall invertase activity and were more sensitive to cold stress. Chilling stress increased glucose and fructose levels, and the hexoses content increased or decreased by silencing or overexpression INVINH1. Glucose applied in vitro masked the differences in chilling tolerance of tomato caused by the different expressions of INVINH1. The repression of INVINH1 or glucose applied in vitro regulated the expression of C-repeat binding factors (CBFs) genes. Transcript levels of NCED1, which encodes 9-cisepoxycarotenoid dioxygenase (NCED), a key enzyme in the biosynthesis of abscisic acid, were suppressed by INVINH1 after exposure to chilling stress. Meanwhile, application of ABA protected plant from chilling damage caused by the different expression of INVINH1. In tomato, INVINH1 plays an important role in chilling tolerance by adjusting the content of glucose and expression of CBFs.

  9. Cold acclimation alters DNA methylation patterns and confers tolerance to heat and increases growth rate in Brassica rapa

    PubMed Central

    Liu, Tongkun; Li, Ying; Duan, Weike; Huang, Feiyi

    2017-01-01

    Abstract Epigenetic modifications are implicated in plant adaptations to abiotic stresses. Exposure of plants to one stress can induce resistance to other stresses, a process termed cross-adaptation, which is not well understood. In this study, we aimed to unravel the epigenetic basis of elevated heat-tolerance in cold-acclimated Brassica rapa by conducting a genome-wide DNA methylation analysis of leaves from control (CK) and cold-acclimated (CA) plants. We found that both methylation and demethylation occurred during cold acclimation. Two significantly altered pathways, malate dehydrogenase activity and carbon fixation, and 1562 differentially methylated genes, including BramMDH1, BraKAT2, BraSHM4, and Bra4CL2, were identified in CA plants. Genetic validation and treatment of B. rapa with 5-aza-2-deoxycytidine (Aza) suggested that promoter demethylation of four candidate genes increased their transcriptional activities. Physiological analysis suggested that elevated heat-tolerance and high growth rate were closely related to increases in organic acids and photosynthesis, respectively. Functional analyses demonstrated that the candidate gene BramMDH1 (mMDH: mitochondrial malate dehydrogenase) directly enhances organic acids and photosynthesis to increase heat-tolerance and growth rate in Arabidopsis. However, Aza-treated B. rapa, which also has elevated BramMDH1 levels, did not exhibit enhanced heat-tolerance. We therefore suggest that DNA demethylation alone is not sufficient to increase heat-tolerance. This study demonstrates that altered DNA methylation contributes to cross-adaptation. PMID:28158841

  10. Dietary live yeast alters metabolic profiles, protein biosynthesis and thermal stress tolerance of Drosophila melanogaster.

    PubMed

    Colinet, Hervé; Renault, David

    2014-04-01

    The impact of nutritional factors on insect's life-history traits such as reproduction and lifespan has been excessively examined; however, nutritional determinant of insect's thermal tolerance has not received a lot of attention. Dietary live yeast represents a prominent source of proteins and amino acids for laboratory-reared drosophilids. In this study, Drosophila melanogaster adults were fed on diets supplemented or not with live yeast. We hypothesized that manipulating nutritional conditions through live yeast supplementation would translate into altered physiology and stress tolerance. We verified how live yeast supplementation affected body mass characteristics, total lipids and proteins, metabolic profiles and cold tolerance (acute and chronic stress). Females fed with live yeast had increased body mass and contained more lipids and proteins. Using GC/MS profiling, we found distinct metabolic fingerprints according to nutritional conditions. Metabolite pathway enrichment analysis corroborated that live yeast supplementation was associated with amino acid and protein biosyntheses. The cold assays revealed that the presence of dietary live yeast greatly promoted cold tolerance. Hence, this study conclusively demonstrates a significant interaction between nutritional conditions and thermal tolerance. Copyright © 2014 Elsevier Inc. All rights reserved.

  11. Light-quality and temperature-dependent CBF14 gene expression modulates freezing tolerance in cereals.

    PubMed

    Novák, Aliz; Boldizsár, Ákos; Ádám, Éva; Kozma-Bognár, László; Majláth, Imre; Båga, Monica; Tóth, Balázs; Chibbar, Ravindra; Galiba, Gábor

    2016-03-01

    C-repeat binding factor 14 (CBF14) is a plant transcription factor that regulates a set of cold-induced genes, contributing to enhanced frost tolerance during cold acclimation. Many CBF genes are induced by cool temperatures and regulated by day length and light quality, which affect the amount of accumulated freezing tolerance. Here we show that a low red to far-red ratio in white light enhances CBF14 expression and increases frost tolerance at 15°C in winter Triticum aesitivum and Hordeum vulgare genotypes, but not in T. monococcum (einkorn), which has a relatively low freezing tolerance. Low red to far-red ratio enhances the expression of PHYA in all three species, but induces PHYB expression only in einkorn. Based on our results, a model is proposed to illustrate the supposed positive effect of phytochrome A and the negative influence of phytochrome B on the enhancement of freezing tolerance in cereals in response to spectral changes of incident light. CBF-regulon, barley, cereals, cold acclimation, freezing tolerance, light regulation, low red/far-red ratio, phytochrome, wheat. © The Author 2015. Published by Oxford University Press on behalf of the Society for Experimental Biology. All rights reserved. For permissions, please email: journals.permissions@oup.com.

  12. Plasticity and stress tolerance override local adaptation in the responses of Mediterranean holm oak seedlings to drought and cold.

    PubMed

    Gimeno, Teresa E; Pías, Beatriz; Lemos-Filho, José P; Valladares, Fernando

    2009-01-01

    Plant populations of widely distributed species experience a broad range of environmental conditions that can be faced by phenotypic plasticity or ecotypic differentiation and local adaptation. The strategy chosen will determine a population's ability to respond to climate change. To explore this, we grew Quercus ilex (L.) seedlings from acorns collected at six selected populations from climatically contrasting localities and evaluated their response to drought and late season cold events. Maximum photosynthetic rate (A(max)), instantaneous water use efficiency (iWUE), and thermal tolerance to freeze and heat (estimated from chlorophyll fluorescence versus temperature curves) were measured in 5-month-old seedlings in control (no stress), drought (water-stressed), and cold (low suboptimal temperature) conditions. The observed responses were similar for the six populations: drought decreased A(max) and increased iWUE, and cold reduced A(max) and iWUE. All the seedlings maintained photosynthetic activity under adverse conditions (drought and cold), and rapidly increased their iWUE by closing stomata when exposed to drought. Heat and freeze tolerances were similarly high for seedlings from all the populations, and they were significantly increased by drought and cold, respectively; and were positively related to each other. Differences in seedling performance across populations were primarily induced by maternal effects mediated by seed size and to a lesser extent by idiosyncratic physiologic responses to drought and low temperatures. Tolerance to multiple stresses together with the capacity to physiologically acclimate to heat waves and cold snaps may allow Q. ilex to cope with the increasingly stressful conditions imposed by climate change. Lack of evidence of physiologic seedling adaptation to local climate may reflect opposing selection pressures to complex, multidimensional environmental conditions operating within the distribution range of this species.

  13. Heterologous expression of three Camellia sinensis small heat shock protein genes confers temperature stress tolerance in yeast and Arabidopsis thaliana.

    PubMed

    Wang, Mingle; Zou, Zhongwei; Li, Qinghui; Xin, Huahong; Zhu, Xujun; Chen, Xuan; Li, Xinghui

    2017-07-01

    CsHSP17.7, CsHSP18.1, and CsHSP21.8 expressions are induced by heat and cold stresses, and CsHSP overexpression confers tolerance to heat and cold stresses in transgenic Pichia pastoris and Arabidopsis thaliana. Small heat shock proteins (sHSPs) are crucial for protecting plants against biotic and abiotic stresses, especially heat stress. However, knowledge concerning the functions of Camellia sinensis sHSP in heat and cold stresses remains poorly understood. In this study, three C. sinensis sHSP genes (i.e., CsHSP17.7, CsHSP18.1, and CsHSP21.8) were isolated and characterized using suppression subtractive hybridization (SSH) technology. The CsHSPs expression levels in C. sinensis leaves were significantly up-regulated by heat and cold stresses. Phylogenetic analyses revealed that CsHSP17.7, CsHSP18.1, and CsHSP21.8 belong to sHSP Classes I, II, and IV, respectively. Heterologous expression of the three CsHSP genes in Pichia pastoris cells enhanced heat and cold stress tolerance. When exposed to heat and cold treatments, transgenic Arabidopsis thaliana plants overexpressing CsHSP17.7, CsHSP18.1, and CsHSP21.8 had lower malondialdehyde contents, ion leakage, higher proline contents, and transcript levels of stress-related genes (e.g., AtPOD, AtAPX1, AtP5CS2, and AtProT1) compared with the control line. In addition, improved seed germination vigor was also observed in the CsHSP-overexpressing seeds under heat stress. Taken together, our results suggest that the three identified CsHSP genes play key roles in heat and cold tolerance.

  14. The Role of Inducible Hsp70, and Other Heat Shock Proteins, in Adaptive Complex of Cold Tolerance of the Fruit Fly (Drosophila melanogaster)

    PubMed Central

    Štětina, Tomáš; Koštál, Vladimír; Korbelová, Jaroslava

    2015-01-01

    Background The ubiquitous occurrence of inducible Heat Shock Proteins (Hsps) up-regulation in response to cold-acclimation and/or to cold shock, including massive increase of Hsp70 mRNA levels, often led to hasty interpretations of its role in the repair of cold injury expressed as protein denaturation or misfolding. So far, direct functional analyses in Drosophila melanogaster and other insects brought either limited or no support for such interpretations. In this paper, we analyze the cold tolerance and the expression levels of 24 different mRNA transcripts of the Hsps complex and related genes in response to cold in two strains of D. melanogaster: the wild-type and the Hsp70- null mutant lacking all six copies of Hsp70 gene. Principal Findings We found that larvae of both strains show similar patterns of Hsps complex gene expression in response to long-term cold-acclimation and during recovery from chronic cold exposures or acute cold shocks. No transcriptional compensation for missing Hsp70 gene was seen in Hsp70- strain. The cold-induced Hsps gene expression is most probably regulated by alternative splice variants C and D of the Heat Shock Factor. The cold tolerance in Hsp70- null mutants was clearly impaired only when the larvae were exposed to severe acute cold shock. No differences in mortality were found between two strains when the larvae were exposed to relatively mild doses of cold, either chronic exposures to 0°C or acute cold shocks at temperatures down to -4°C. Conclusions The up-regulated expression of a complex of inducible Hsps genes, and Hsp70 mRNA in particular, is tightly associated with cold-acclimation and cold exposure in D. melanogaster. Genetic elimination of Hsp70 up-regulation response has no effect on survival of chronic exposures to 0°C or mild acute cold shocks, while it negatively affects survival after severe acute cold shocks at temperaures below -8°C. PMID:26034990

  15. The Role of Inducible Hsp70, and Other Heat Shock Proteins, in Adaptive Complex of Cold Tolerance of the Fruit Fly (Drosophila melanogaster).

    PubMed

    Štětina, Tomáš; Koštál, Vladimír; Korbelová, Jaroslava

    2015-01-01

    The ubiquitous occurrence of inducible Heat Shock Proteins (Hsps) up-regulation in response to cold-acclimation and/or to cold shock, including massive increase of Hsp70 mRNA levels, often led to hasty interpretations of its role in the repair of cold injury expressed as protein denaturation or misfolding. So far, direct functional analyses in Drosophila melanogaster and other insects brought either limited or no support for such interpretations. In this paper, we analyze the cold tolerance and the expression levels of 24 different mRNA transcripts of the Hsps complex and related genes in response to cold in two strains of D. melanogaster: the wild-type and the Hsp70- null mutant lacking all six copies of Hsp70 gene. We found that larvae of both strains show similar patterns of Hsps complex gene expression in response to long-term cold-acclimation and during recovery from chronic cold exposures or acute cold shocks. No transcriptional compensation for missing Hsp70 gene was seen in Hsp70- strain. The cold-induced Hsps gene expression is most probably regulated by alternative splice variants C and D of the Heat Shock Factor. The cold tolerance in Hsp70- null mutants was clearly impaired only when the larvae were exposed to severe acute cold shock. No differences in mortality were found between two strains when the larvae were exposed to relatively mild doses of cold, either chronic exposures to 0°C or acute cold shocks at temperatures down to -4°C. The up-regulated expression of a complex of inducible Hsps genes, and Hsp70 mRNA in particular, is tightly associated with cold-acclimation and cold exposure in D. melanogaster. Genetic elimination of Hsp70 up-regulation response has no effect on survival of chronic exposures to 0°C or mild acute cold shocks, while it negatively affects survival after severe acute cold shocks at temperatures below -8°C.

  16. Genetic Architecture of Cold Tolerance in Rice (Oryza sativa) Determined through High Resolution Genome-Wide Analysis

    USDA-ARS?s Scientific Manuscript database

    Cold temperature is an important abiotic stress which negatively affects morphological development and seed production in rice (Oryza sativa L.). At the seedling stage, cold stress causes poor germination, seedling injury and poor stand establishment; and at the reproductive stage cold decreases se...

  17. Cold tolerance and photosystem function in a montane red spruce population: physiological relationships with foliar carbohydrates

    Treesearch

    P.G. Schaberg; G.R. Strimbeck; G.J. Hawley; D.H. DeHayes; J.B. Shane; P.F. Murakami; T.D. Perkins; J.R. Donnelly; B.L. Wong

    2000-01-01

    Red spruce (Picea rubens Sarg.) growing in northern montane forests of eastern North America appears to be distinctive with respect to at least two aspects of winter physiology. First, red spruce attains only a modest level of midwinter cold tolerance compared to other north temperate conifers and appears barely capable of avoiding freezing injury at...

  18. Do limited cold tolerance and shallow depth of roots contribute to yellow-cedar decline?

    Treesearch

    Paul G. Schaberg; David V. D' Amore; Paul E. Hennon; Joshua M. Halman; Gary J. Hawley

    2011-01-01

    It has been proposed that yellow-cedar (Callitropsis nootkatensis) decline is initiated by the freezing injury of roots when soils freeze during times of limited snowpack. To explain the unique susceptibility of yellow-cedar in contrast to co-occurring species, yellow-cedar roots would need to be less cold tolerant and/or more concentrated in upper...

  19. Variation in waterlogging-triggered stomatal behavior contributes to changes in the cold acclimation process in prehardened Lolium perenne and Festuca pratensis.

    PubMed

    Jurczyk, Barbara; Pociecha, Ewa; Janowiak, Franciszek; Kabała, Dawid; Rapacz, Marcin

    2016-12-01

    According to predicted changes in climate, waterlogging events may occur more frequently in the future during autumn and winter at high latitudes of the Northern Hemisphere. If excess soil water coincides with the process of cold acclimation for plants, winter survival may potentially be affected. The effects of waterlogging during cold acclimation on stomatal aperture, relative water content, photochemical activity of photosystem II, freezing tolerance and plant regrowth after freezing were compared for two prehardened overwintering forage grasses, Lolium perenne and Festuca pratensis. The experiment was performed to test the hypothesis that changes in photochemical activity initiated by waterlogging-triggered modifications in the stomatal aperture contribute to changes in freezing tolerance. Principal component analysis showed that waterlogging activated different adaptive strategies in the two species studied. The increased freezing tolerance of F. pratensis was associated with increased photochemical activity connected with stomatal opening, whereas freezing tolerance of L. perenne was associated with a decrease in stomatal aperture. In conclusion, waterlogging-triggered stomatal behavior contributed to the efficiency of the cold acclimation process in L. perenne and F. pratensis. Copyright © 2016 Elsevier Masson SAS. All rights reserved.

  20. Jasmonate Regulates the INDUCER OF CBF EXPRESSION–C-REPEAT BINDING FACTOR/DRE BINDING FACTOR1 Cascade and Freezing Tolerance in Arabidopsis[W

    PubMed Central

    Hu, Yanru; Jiang, Liqun; Wang, Fang; Yu, Diqiu

    2013-01-01

    The INDUCER OF CBF EXPRESSION (ICE)–C-REPEAT BINDING FACTOR/DRE BINDING FACTOR1 (CBF/DREB1) transcriptional pathway plays a critical role in modulating cold stress responses in Arabidopsis thaliana. Dissecting crucial upstream regulatory signals or components of the ICE-CBF/DREB1 cascade will enhance our understanding of plant cold-tolerance mechanisms. Here, we show that jasmonate positively regulates plant responses to freezing stress in Arabidopsis. Exogenous application of jasmonate significantly enhanced plant freezing tolerance with or without cold acclimation. By contrast, blocking endogenous jasmonate biosynthesis and signaling rendered plants hypersensitive to freezing stress. Consistent with the positive role of jasmonate in freezing stress, production of endogenous jasmonate was triggered by cold treatment. In addition, cold induction of genes acting in the CBF/DREB1 signaling pathway was upregulated by jasmonate. Further investigation revealed that several JASMONATE ZIM-DOMAIN (JAZ) proteins, the repressors of jasmonate signaling, physically interact with ICE1 and ICE2 transcription factors. JAZ1 and JAZ4 repress the transcriptional function of ICE1, thereby attenuating the expression of its regulon. Consistent with this, overexpression of JAZ1 or JAZ4 represses freezing stress responses of Arabidopsis. Taken together, our study provides evidence that jasmonate functions as a critical upstream signal of the ICE-CBF/DREB1 pathway to positively regulate Arabidopsis freezing tolerance. PMID:23933884

  1. Jasmonate regulates the inducer of cbf expression-C-repeat binding factor/DRE binding factor1 cascade and freezing tolerance in Arabidopsis.

    PubMed

    Hu, Yanru; Jiang, Liqun; Wang, Fang; Yu, Diqiu

    2013-08-01

    The inducer of cbf expression (ICE)-C-repeat binding factor/DRE binding factor1 (CBF/DREB1) transcriptional pathway plays a critical role in modulating cold stress responses in Arabidopsis thaliana. Dissecting crucial upstream regulatory signals or components of the ICE-CBF/DREB1 cascade will enhance our understanding of plant cold-tolerance mechanisms. Here, we show that jasmonate positively regulates plant responses to freezing stress in Arabidopsis. Exogenous application of jasmonate significantly enhanced plant freezing tolerance with or without cold acclimation. By contrast, blocking endogenous jasmonate biosynthesis and signaling rendered plants hypersensitive to freezing stress. Consistent with the positive role of jasmonate in freezing stress, production of endogenous jasmonate was triggered by cold treatment. In addition, cold induction of genes acting in the CBF/DREB1 signaling pathway was upregulated by jasmonate. Further investigation revealed that several jasmonate ZIM-domain (JAZ) proteins, the repressors of jasmonate signaling, physically interact with ICE1 and ICE2 transcription factors. JAZ1 and JAZ4 repress the transcriptional function of ICE1, thereby attenuating the expression of its regulon. Consistent with this, overexpression of JAZ1 or JAZ4 represses freezing stress responses of Arabidopsis. Taken together, our study provides evidence that jasmonate functions as a critical upstream signal of the ICE-CBF/DREB1 pathway to positively regulate Arabidopsis freezing tolerance.

  2. Elevated Atmospheric CO2 and Strain of Rhizobium Alter Freezing Tolerance and Cold-induced Molecular Changes in Alfalfa (Medicago sativa)

    PubMed Central

    Bertrand, Annick; Prévost, Danielle; Bigras, Francine J.; Castonguay, Yves

    2007-01-01

    Background and Aims The objective of the study was to assess the impact of elevated CO2 in interaction with rhizobial strains on freezing tolerance and cold-induced molecular changes in alfalfa. Methods Alfalfa inoculated with two different strains of rhizobium (A2 and NRG34) was grown and cold acclimated (2 weeks at 2 °C) under either 400 (ambient) or 800 µmol mol−1 (elevated) CO2. Key Results Plants acclimated under 400 µmol mol−1 CO2 were more freezing tolerant than those maintained under 800 µmol mol−1. Cryoprotective sugars typically linked with the acquisition of freezing tolerance such as sucrose, stachyose and raffinose increased in roots in response to low temperature but did not differ between CO2 treatments. Similarly high CO2 did not alter the expression of many cold-regulated (COR) genes although it significantly increased the level of transcripts encoding a COR gene homologous to glyceraldehyde-3-phosphate-dehydrogenase (GAPDH). A significant effect of rhizobial strain was observed on both freezing tolerance and gene expression. Plants of alfalfa inoculated with strain A2 were more freezing tolerant than those inoculated with strain NRG34. Transcripts of COR genes homologous to a pathogenesis-related protein (PR-10) and to a nuclear-targeted protein were markedly enhanced in roots of alfalfa inoculated with strain A2 as compared with strain NRG34. Transcripts encoding the vegetative storage proteins (VSPs) β-amylase and chitinase were more abundant in roots of non-acclimated plants inoculated with strain NRG34 than with strain A2. Conclusions Taken together, the results suggest that elevated CO2 stimulates plant growth and reduces freezing tolerance. The acquisition of cold tolerance is also influenced by the rhizobial strain, as indicated by lower levels of expression of COR genes and sustained accumulation of VSP-encoding transcripts in alfalfa inoculated with strain NRG34 as compared with strain A2. PMID:17218341

  3. Roles for Arabidopsis CAMTA transcription factors in cold-regulated gene expression and freezing tolerance.

    PubMed

    Doherty, Colleen J; Van Buskirk, Heather A; Myers, Susan J; Thomashow, Michael F

    2009-03-01

    The Arabidopsis thaliana CBF cold response pathway plays a central role in cold acclimation. It is characterized by rapid cold induction of genes encoding the CBF1-3 transcription factors, followed by expression of the CBF gene regulon, which imparts freezing tolerance. Our goal was to further the understanding of the cis-acting elements and trans-acting factors involved in expression of CBF2. We identified seven conserved DNA motifs (CM), CM1 to 7, that are present in the promoters of CBF2 and another rapidly cold-induced gene encoding a transcription factor, ZAT12. The results presented indicate that in the CBF2 promoter, CM4 and CM6 have negative regulatory activity and that CM2 has both negative and positive activity. A Myc binding site in the CBF2 promoter was also found to have positive regulatory effects. Moreover, our results indicate that members of the calmodulin binding transcription activator (CAMTA) family of transcription factors bind to the CM2 motif, that CAMTA3 is a positive regulator of CBF2 expression, and that double camta1 camta3 mutant plants are impaired in freezing tolerance. These results establish a role for CAMTA proteins in cold acclimation and provide a possible point of integrating low-temperature calcium and calmodulin signaling with cold-regulated gene expression.

  4. Effects of photoperiod, growth temperature and cold acclimatisation on glucosinolates, sugars and fatty acids in kale.

    PubMed

    Steindal, Anne Linn Hykkerud; Rødven, Rolf; Hansen, Espen; Mølmann, Jørgen

    2015-05-01

    Curly kale is a robust, cold tolerant plant with a high content of health-promoting compounds, grown at a range of latitudes. To assess the effects of temperature, photoperiod and cold acclimatisation on levels of glucosinolates, fatty acids and soluble sugars in kale, an experiment was set up under controlled conditions. Treatments consisted of combinations of the temperatures 15/9 or 21/15 °C, and photoperiods of 12 or 24h, followed by a cold acclimatisation period. Levels of glucosinolates and fatty acid types in leaves were affected by growth conditions and cold acclimatisation, being generally highest before acclimatisation. The effects of growth temperature and photoperiod on freezing tolerance were most pronounced in plants grown without cold acclimatisation. The results indicate that cold acclimatisation can increase the content of soluble sugar and can thereby improve the taste, whilst the content of unsaturated fatty and glucosinolates acids may decrease. Copyright © 2014 Elsevier Ltd. All rights reserved.

  5. ABSCISIC ACID INSENSITIVE3 Is Involved in Cold Response and Freezing Tolerance Regulation in Physcomitrella patens.

    PubMed

    Tan, Tinghong; Sun, Yanni; Peng, Xingji; Wu, Guochun; Bao, Fang; He, Yikun; Zhou, Huapeng; Lin, Honghui

    2017-01-01

      Synopsis This work demonstrates that PpABI3 contributes to freezing tolerance regulation in Physcomitrella patens. Transcription factor ABSCISIC ACID INSENSITIVE3 (ABI3) is known to play a major role in regulating seed dormancy, germination, seedling development as well as stress responses. ABI3 is conserved among land plants; however, its roles in non-seed plants under stress conditions have not been well characterized. In this study, we report that ABI3 is involved in freezing tolerance regulation during cold acclimation at least in part through ABA signaling pathway in moss Physcomitrella patens ( P. patens ). Deletion of PpABI3 (Δ abi3-1 ) compromises the induction of genes related to cold response and antioxidative protection, resulting in reduced accumulation of cryoprotectants and antioxidants. In addition, photosystem II (PSII) activity is repressed in Δ abi3-1 during cold acclimation partially due to alternations of photosynthetic protein complexes compositions. The gametophyte of Δ abi3-1 displays severe growth inhibition and developmental deficiency under low temperature condition, while two independent complementary lines display phenotypes similar to that of wild-type P. patens (WT). Furthermore, the freezing tolerance of Δ abi3-1 was significantly affected by deletion of PpABI3 . These data revealed that PpABI3 plays an important role in low temperature response and freezing tolerance in P. patens .

  6. [Strategies and mechanisms of soil springtails in adapting lower temperature environment: research progress].

    PubMed

    Liu, Jing; Wang, Yun-Biao; Wu, Dong-Hui

    2012-12-01

    Low temperature and drought are the main environmental factors threatening the animals living in arctic area and cold temperate regions. To adapt the severe environment, the animals should adopt appropriate strategies. As a group of arthopods with freeze-avoiding strategy, soil springtails have the similar ecological mechanisms and modes of cold resistance/tolerance as insects, manifesting in the cold acclimation and drought tolerance to decrease the damage of ice crystal formation. During cold acclimation, there are a rapid increase of glycerol, a rapid decrease of fucose and glucose, and the production of anti-freeze proteins (AFP) , and exists the inter-transformation of different kinds of lipids to improve the flow of cell membrane to protect the cell from low temperature injury. In addition, soil springtails have their own specific modes and mechanisms to tolerate low temperature stress, mainly the vertical migration under the protection of snow cover and the excretion of ice nucleator from haemolymph, illustrating that it's of significance to research the cryobiology of soil springtails. This paper summarized the modes and mechanisms of soil springtails in tolerating low temperature environment, reviewed the research progress on the eco-physiology of the springtails, discussed the existing problems of the researches on the low temperature tolerance of the springtails, and prospected the research directions of the springtails low temperature ecology under the background of global change.

  7. Development of Cold Spray Coatings for Accident-Tolerant Fuel Cladding in Light Water Reactors

    NASA Astrophysics Data System (ADS)

    Maier, Benjamin; Yeom, Hwasung; Johnson, Greg; Dabney, Tyler; Walters, Jorie; Romero, Javier; Shah, Hemant; Xu, Peng; Sridharan, Kumar

    2018-02-01

    The cold spray coating process has been developed at the University of Wisconsin-Madison for the deposition of oxidation-resistant coatings on zirconium alloy light water reactor fuel cladding with the goal of improving accident tolerance during loss of coolant scenarios. Coatings of metallic (Cr), alloy (FeCrAl), and ceramic (Ti2AlC) materials were successfully deposited on zirconium alloy flats and cladding tube sections by optimizing the powder size, gas preheat temperature, pressure and composition, and other process parameters. The coatings were dense and exhibited excellent adhesion to the substrate. Evaluation of the samples after high-temperature oxidation tests at temperatures up to 1300°C showed that the cold spray coatings significantly mitigate oxidation kinetics because of the formation of thin passive oxide layers on the surface. The results of the study indicate that the cold spray coating process is a viable near-term option for developing accident-tolerant zirconium alloy fuel cladding.

  8. A comparison of the low temperature transcriptomes and CBF regulons of three plant species that differ in freezing tolerance: Solanum commersonii, Solanum tuberosum, and Arabidopsis thaliana

    PubMed Central

    Pino, María-Teresa; Jeknić, Zoran; Zou, Cheng; Shiu, Shin-Han; Chen, Tony H. H.; Thomashow, Michael F.

    2011-01-01

    Solanum commersonii and Solanum tuberosum are closely related plant species that differ in their abilities to cold acclimate; whereas S. commersonii increases in freezing tolerance in response to low temperature, S. tuberosum does not. In Arabidopsis thaliana, cold-regulated genes have been shown to contribute to freezing tolerance, including those that comprise the CBF regulon, genes that are controlled by the CBF transcription factors. The low temperature transcriptomes and CBF regulons of S. commersonii and S. tuberosum were therefore compared to determine whether there might be differences that contribute to their differences in ability to cold acclimate. The results indicated that both plants alter gene expression in response to low temperature to similar degrees with similar kinetics and that both plants have CBF regulons composed of hundreds of genes. However, there were considerable differences in the sets of genes that comprised the low temperature transcriptomes and CBF regulons of the two species. Thus differences in cold regulatory programmes may contribute to the differences in freezing tolerance of these two species. However, 53 groups of putative orthologous genes that are cold-regulated in S. commersonii, S. tuberosum, and A. thaliana were identified. Given that the evolutionary distance between the two Solanum species and A. thaliana is 112–156 million years, it seems likely that these conserved cold-regulated genes—many of which encode transcription factors and proteins of unknown function—have fundamental roles in plant growth and development at low temperature. PMID:21511909

  9. A comparison of the low temperature transcriptomes and CBF regulons of three plant species that differ in freezing tolerance: Solanum commersonii, Solanum tuberosum, and Arabidopsis thaliana.

    PubMed

    Carvallo, Marcela A; Pino, María-Teresa; Jeknic, Zoran; Zou, Cheng; Doherty, Colleen J; Shiu, Shin-Han; Chen, Tony H H; Thomashow, Michael F

    2011-07-01

    Solanum commersonii and Solanum tuberosum are closely related plant species that differ in their abilities to cold acclimate; whereas S. commersonii increases in freezing tolerance in response to low temperature, S. tuberosum does not. In Arabidopsis thaliana, cold-regulated genes have been shown to contribute to freezing tolerance, including those that comprise the CBF regulon, genes that are controlled by the CBF transcription factors. The low temperature transcriptomes and CBF regulons of S. commersonii and S. tuberosum were therefore compared to determine whether there might be differences that contribute to their differences in ability to cold acclimate. The results indicated that both plants alter gene expression in response to low temperature to similar degrees with similar kinetics and that both plants have CBF regulons composed of hundreds of genes. However, there were considerable differences in the sets of genes that comprised the low temperature transcriptomes and CBF regulons of the two species. Thus differences in cold regulatory programmes may contribute to the differences in freezing tolerance of these two species. However, 53 groups of putative orthologous genes that are cold-regulated in S. commersonii, S. tuberosum, and A. thaliana were identified. Given that the evolutionary distance between the two Solanum species and A. thaliana is 112-156 million years, it seems likely that these conserved cold-regulated genes-many of which encode transcription factors and proteins of unknown function-have fundamental roles in plant growth and development at low temperature.

  10. Environmental systems biology of cold-tolerant phenotype in Saccharomyces species adapted to grow at different temperatures.

    PubMed

    Paget, Caroline Mary; Schwartz, Jean-Marc; Delneri, Daniela

    2014-11-01

    Temperature is one of the leading factors that drive adaptation of organisms and ecosystems. Remarkably, many closely related species share the same habitat because of their different temporal or micro-spatial thermal adaptation. In this study, we seek to find the underlying molecular mechanisms of the cold-tolerant phenotype of closely related yeast species adapted to grow at different temperatures, namely S. kudriavzevii CA111 (cryo-tolerant) and S. cerevisiae 96.2 (thermo-tolerant). Using two different systems approaches, i. thermodynamic-based analysis of a genome-scale metabolic model of S. cerevisiae and ii. large-scale competition experiment of the yeast heterozygote mutant collection, genes and pathways important for the growth at low temperature were identified. In particular, defects in lipid metabolism, oxidoreductase and vitamin pathways affected yeast fitness at cold. Combining the data from both studies, a list of candidate genes was generated and mutants for two predicted cold-favouring genes, GUT2 and ADH3, were created in two natural isolates. Compared with the parental strains, these mutants showed lower fitness at cold temperatures, with S. kudriavzevii displaying the strongest defect. Strikingly, in S. kudriavzevii, these mutations also significantly improve the growth at warm temperatures. In addition, overexpression of ADH3 in S. cerevisiae increased its fitness at cold. These results suggest that temperature-induced redox imbalances could be compensated by increased glycerol accumulation or production of cytosolic acetaldehyde through the deletion of GUT2 or ADH3, respectively. © 2014 The Authors. Molecular Ecology Published by John Wiley & Sons Ltd.

  11. The Discrepant and Similar Responses of Genome-Wide Transcriptional Profiles between Drought and Cold Stresses in Cassava.

    PubMed

    Zeng, Changying; Ding, Zehong; Zhou, Fang; Zhou, Yufei; Yang, Ruiju; Yang, Zi; Wang, Wenquan; Peng, Ming

    2017-12-12

    Background : Cassava, an important tropical crop, has remarkable drought tolerance, but is very sensitive to cold. The growth, development, and root productivity of cassava are all adversely affected under cold and drought. Methods : To profile the transcriptional response to cold and drought stresses, cassava seedlings were respectively subjected to 0, 6, 24, and 48 h of cold stress and 0, 4, 6, and 10 days of drought stress. Their folded leaves, fully extended leaves, and roots were respectively investigated using RNA-seq. Results : Many genes specifically and commonly responsive to cold and drought were revealed: genes related to basic cellular metabolism, tetrapyrrole synthesis, and brassinosteroid metabolism exclusively responded to cold; genes related to abiotic stress and ethylene metabolism exclusively responded to drought; and genes related to cell wall, photosynthesis, and carbohydrate metabolism, DNA synthesis/chromatic structure, abscisic acid and salicylic acid metabolism, and calcium signaling commonly responded to both cold and drought. Discussion : Combined with cold- and/or drought-responsive transcription factors, the regulatory networks responding to cold and drought in cassava were constructed. All these findings will improve our understanding of the specific and common responses to cold and drought in cassava, and shed light on genetic improvement of cold and drought tolerance in cassava.

  12. Modeling cold tolerance in the mountain pine beetle, Dendroctonus ponderosae

    Treesearch

    Jacques Regniere; Barbara Bentz

    2007-01-01

    Cold-induced mortality is a key factor driving mountain pine beetle, Dendroctonus ponderosae, population dynamics. In this species, the supercooling point (SCP) is representative of mortality induced by acute cold exposure. Mountain pine beetle SCP and associated cold-induced mortality fluctuate throughout a generation, with the highest SCPs prior to and following...

  13. Role of Hsp-70 responses in cold acclimation of HUVEC-12 cells.

    PubMed

    Guan, Hao; Hu, Dahai; Zhao, Zhijing; Cai, Weixia; Zhou, Qin; Yang, Ximing; Yan, Ying; Zhu, Xiongxiang

    2015-01-01

    Endothelial recovery is a central feature of tissues after frostbite injuries. Thermo tolerance plays an important role in protecting cells against injury after frozen and thawing. The present study aimed to quantitatively assess the injury of human umbilical vein endothelial cells HUVEC-12 after repeated low temperature. Pretreatments (HUVEC-12) cells were repeatedly exposed to cold (1°C/min decrement to -20°C). Their proliferation, death, apoptosis, and protein and mRNA expressions of HSP70 were determined. Endothelial cells after repeated cold exposures were more resistant to apoptosis and necrosis than normal cells. The expressions of HSP70 in cells after repeated cold exposures were significantly higher than in normal HUVEC-12 cells (P < 0.05). Cold acclimation may induce the expression of HSP-70 which plays a protective role in the temperature tolerance.

  14. Acute effects of Finnish sauna and cold-water immersion on haemodynamic variables and autonomic nervous system activity in patients with heart failure.

    PubMed

    Radtke, Thomas; Poerschke, Daniel; Wilhelm, Matthias; Trachsel, Lukas D; Tschanz, Hansueli; Matter, Friederike; Jauslin, Daniel; Saner, Hugo; Schmid, Jean-Paul

    2016-04-01

    The haemodynamic response to Finnish sauna and subsequent cold-water immersion in heart failure patients is unknown. Haemodynamic response to two consecutive Finnish sauna (80℃) exposures, followed by a final head-out cold-water immersion (12℃) was measured in 37 male participants: chronic heart failure (n = 12, 61.8 ± 9.2 years), coronary artery disease (n = 13, 61.2 ± 10.6 years) and control subjects (n = 12, 60.9 ± 8.9 years). Cardiac output was measured non-invasively with an inert gas rebreathing method prior to and immediately after the first sauna exposure and after cold-water immersion, respectively. Blood pressure was measured before, twice during and after sauna. The autonomic nervous system was assessed by power spectral analysis of heart rate variability. Total power, low-frequency and high-frequency components were evaluated. The low frequency/high frequency ratio was used as a marker of sympathovagal balance. Sauna and cold-water immersion were well tolerated by all subjects. Cardiac output and heart rate significantly increased in all groups after sauna and cold-water immersion (p < 0.05), except for coronary artery disease patients after sauna exposure. Systolic blood pressure during sauna decreased significantly in all groups with a nadir after 6 min (all p < 0.05). Cold-water immersion significantly increased systolic blood pressure in all groups (p < 0.05). No change in the low/high frequency ratio was found in chronic heart failure patients. In coronary artery disease patients and controls a prolonged increase in low frequency/high frequency ratio was observed after the first sauna exposure. Acute exposure to Finnish sauna and cold-water immersion causes haemodynamic alterations in chronic heart failure patients similarly to control subjects and in particular did not provoke an excessive increase in adrenergic activity or complex arrhythmias. © The European Society of Cardiology 2015.

  15. Metabolite profiling during cold acclimation of Lolium perenne genotypes distinct in the level of frost tolerance.

    PubMed

    Bocian, Aleksandra; Zwierzykowski, Zbigniew; Rapacz, Marcin; Koczyk, Grzegorz; Ciesiołka, Danuta; Kosmala, Arkadiusz

    2015-11-01

    Abiotic stresses, including low temperature, can significantly reduce plant yielding. The knowledge on the molecular basis of stress tolerance could help to improve its level in species of relatively high importance to agriculture. Unfortunately, the complex research performed so far mainly on model species and also, to some extent, on cereals does not fully cover the demands of other agricultural plants of temperate climate, including forage grasses. Two Lolium perenne (perennial ryegrass) genotypes with contrasting levels of frost tolerance, the high frost tolerant (HFT) and the low frost tolerant (LFT) genotypes, were selected for comparative metabolomic research. The work focused on the analysis of leaf metabolite accumulation before and after seven separate time points of cold acclimation. Gas chromatography-mass spectrometry (GC/MS) was used to identify amino acids (alanine, proline, glycine, glutamic and aspartic acid, serine, lysine and asparagine), carbohydrates (fructose, glucose, sucrose, raffinose and trehalose) and their derivatives (mannitol, sorbitol and inositol) accumulated in leaves in low temperature. The observed differences in the level of frost tolerance between the analysed genotypes could be partially due to the time point of cold acclimation at which the accumulation level of crucial metabolite started to increase. In the HFT genotype, earlier accumulation was observed for proline and asparagine. The increased amounts of alanine, glutamic and aspartic acids, and asparagine during cold acclimation could be involved in the regulation of photosynthesis intensity in L. perenne. Among the analysed carbohydrates, only raffinose revealed a significant association with the acclimation process in this species.

  16. Cold tolerance of first-instar nymphs of the Australian plague locust, Chortoicetes terminifera.

    PubMed

    Woodman, James D

    2010-04-01

    The cold tolerance of first-instar nymphs of the Australian plague locust, Chortoicetes terminifera, was examined using measures of total body water content, supercooling point and mortality for a range of sub-zero temperature exposure regimes. The supercooling points for starved and fed nymphs were -13.1+/-0.9 and -12.6+/-1.6 degrees C, and freezing caused complete mortality. Above these temperatures, nymphs were cold tolerant to different degrees based on whether they were starved or given access to food and water for 24h prior to exposure. The rate of cooling also had a significant effect on mortality. Very rapid cooling to -7 degrees C caused 84 and 87% mortality for starved and fed nymphs respectively, but this significantly decreased for starved nymphs if temperature declined by more ecologically realistic rates of 0.5 and 0.1 degrees C min(-1). These results are indicative of a rapid cold hardening response and are discussed in terms of the likely effects of cold nights and frost on first-instar nymphal survival in the field. Crown Copyright (c) 2009. Published by Elsevier Ltd. All rights reserved.

  17. A Bulk Segregant Gene Expression Analysis of a Peach Population Reveals Components of the Underlying Mechanism of the Fruit Cold Response

    PubMed Central

    Pons, Clara; Martí, Cristina; Forment, Javier; Crisosto, Carlos H.; Dandekar, Abhaya M.; Granell, Antonio

    2014-01-01

    Peach fruits subjected for long periods of cold storage are primed to develop chilling injury once fruits are shelf ripened at room temperature. Very little is known about the molecular changes occurring in fruits during cold exposure. To get some insight into this process a transcript profiling analyses was performed on fruits from a PopDG population segregating for chilling injury CI responses. A bulked segregant gene expression analysis based on groups of fruits showing extreme CI responses indicated that the transcriptome of peach fruits was modified already during cold storage consistently with eventual CI development. Most peach cold-responsive genes have orthologs in Arabidopsis that participate in cold acclimation and other stresses responses, while some of them showed expression patterns that differs in fruits according to their susceptibility to develop mealiness. Members of ICE1, CBF1/3 and HOS9 regulons seem to have a prominent role in differential cold responses between low and high sensitive fruits. In high sensitive fruits, an alternative cold response program is detected. This program is probably associated with dehydration/osmotic stress and regulated by ABA, auxins and ethylene. In addition, the observation that tolerant siblings showed a series of genes encoding for stress protective activities with higher expression both at harvest and during cold treatment, suggests that preprogrammed mechanisms could shape fruit ability to tolerate postharvest cold-induced stress. A number of genes differentially expressed were validated and extended to individual genotypes by medium-throughput RT-qPCR. Analyses presented here provide a global view of the responses of peach fruits to cold storage and highlights new peach genes that probably play important roles in the tolerance/sensitivity to cold storage. Our results provide a roadmap for further experiments and would help to develop new postharvest protocols and gene directed breeding strategies to better cope with chilling injury. PMID:24598973

  18. A bulk segregant gene expression analysis of a peach population reveals components of the underlying mechanism of the fruit cold response.

    PubMed

    Pons, Clara; Martí, Cristina; Forment, Javier; Crisosto, Carlos H; Dandekar, Abhaya M; Granell, Antonio

    2014-01-01

    Peach fruits subjected for long periods of cold storage are primed to develop chilling injury once fruits are shelf ripened at room temperature. Very little is known about the molecular changes occurring in fruits during cold exposure. To get some insight into this process a transcript profiling analyses was performed on fruits from a PopDG population segregating for chilling injury CI responses. A bulked segregant gene expression analysis based on groups of fruits showing extreme CI responses indicated that the transcriptome of peach fruits was modified already during cold storage consistently with eventual CI development. Most peach cold-responsive genes have orthologs in Arabidopsis that participate in cold acclimation and other stresses responses, while some of them showed expression patterns that differs in fruits according to their susceptibility to develop mealiness. Members of ICE1, CBF1/3 and HOS9 regulons seem to have a prominent role in differential cold responses between low and high sensitive fruits. In high sensitive fruits, an alternative cold response program is detected. This program is probably associated with dehydration/osmotic stress and regulated by ABA, auxins and ethylene. In addition, the observation that tolerant siblings showed a series of genes encoding for stress protective activities with higher expression both at harvest and during cold treatment, suggests that preprogrammed mechanisms could shape fruit ability to tolerate postharvest cold-induced stress. A number of genes differentially expressed were validated and extended to individual genotypes by medium-throughput RT-qPCR. Analyses presented here provide a global view of the responses of peach fruits to cold storage and highlights new peach genes that probably play important roles in the tolerance/sensitivity to cold storage. Our results provide a roadmap for further experiments and would help to develop new postharvest protocols and gene directed breeding strategies to better cope with chilling injury.

  19. Impact of climate change on cold hardiness of Douglas-fir (Pseudotsuga menziesii): Environmental and genetic considerations

    Treesearch

    Sheel Bansal; Bradley J. St. Clair; Constance A. Harrington; Peter J. Gould

    2015-01-01

    The success of conifers over much of the world’s terrestrial surface is largely attributable to their tolerance to cold stress (i.e., cold hardiness). Due to an increase in climate variability, climate change may reduce conifer cold hardiness, which in turn could impact ecosystem functioning and productivity in conifer-dominated forests. The expression of cold...

  20. Natural genetic variation of freezing tolerance in Arabidopsis.

    PubMed

    Hannah, Matthew A; Wiese, Dana; Freund, Susanne; Fiehn, Oliver; Heyer, Arnd G; Hincha, Dirk K

    2006-09-01

    Low temperature is a primary determinant of plant growth and survival. Using accessions of Arabidopsis (Arabidopsis thaliana) originating from Scandinavia to the Cape Verde Islands, we show that freezing tolerance of natural accessions correlates with habitat winter temperatures, identifying low temperature as an important selective pressure for Arabidopsis. Combined metabolite and transcript profiling show that during cold exposure, global changes of transcripts, but not of metabolites, correlate with the ability of Arabidopsis to cold acclimate. There are, however, metabolites and transcripts, including several transcription factors, that correlate with freezing tolerance, indicating regulatory pathways that may be of primary importance for this trait. These data identify that enhanced freezing tolerance is associated with the down-regulation of photosynthesis and hormonal responses and the induction of flavonoid metabolism, provide evidence for naturally increased nonacclimated freezing tolerance due to the constitutive activation of the C-repeat binding factors pathway, and identify candidate transcriptional regulators that correlate with freezing tolerance.

  1. Overexpression of CaAPX Induces Orchestrated Reactive Oxygen Scavenging and Enhances Cold and Heat Tolerances in Tobacco

    PubMed Central

    Wang, Jiangying; Wu, Bin; Fan, Zhengqi; Li, Xinlei; Ni, Sui

    2017-01-01

    Ascorbate peroxidase (APX) acts indispensably in synthesizing L-ascorbate (AsA) which is pivotal to plant stress tolerance by detoxifying reactive oxygen species (ROS). Enhanced activity of APX has been shown to be a key step for genetic engineering of improving plant tolerance. However it needs a deeper understanding on the maintenance of cellular ROS homeostasis in response to stress. In this study, we identified and characterized an APX (CaAPX) gene from Camellia azalea. Quantitative real-time PCR (qRT-PCR) analysis showed that CaAPX was expressed in all tissues and peaked in immature green fruits; the expression levels were significantly upregulated upon cold and hot stresses. Transgenic plants displayed marked enhancements of tolerance under both cold and heat treatments, and plant growth was correlated with CaAPX expression levels. Furthermore, we monitored the activities of several ROS-scavenging enzymes including Cu/Zn-SOD, CAT, DHAR, and MDHAR, and we showed that stress tolerance was synchronized with elevated activities of ROS-scavenging. Moreover, gene expression analysis of ROS-scavenging enzymes revealed a role of CaAPX to orchestrate ROS signaling in response to temperature stresses. Overall, this study presents a comprehensive characterization of cellular response related to CaAPX expression and provides insights to breed crops with high temperature tolerances. PMID:28386551

  2. Overexpression of CaAPX Induces Orchestrated Reactive Oxygen Scavenging and Enhances Cold and Heat Tolerances in Tobacco.

    PubMed

    Wang, Jiangying; Wu, Bin; Yin, Hengfu; Fan, Zhengqi; Li, Xinlei; Ni, Sui; He, Libo; Li, Jiyuan

    2017-01-01

    Ascorbate peroxidase (APX) acts indispensably in synthesizing L-ascorbate (AsA) which is pivotal to plant stress tolerance by detoxifying reactive oxygen species (ROS). Enhanced activity of APX has been shown to be a key step for genetic engineering of improving plant tolerance. However it needs a deeper understanding on the maintenance of cellular ROS homeostasis in response to stress. In this study, we identified and characterized an APX ( CaAPX ) gene from Camellia azalea . Quantitative real-time PCR (qRT-PCR) analysis showed that CaAPX was expressed in all tissues and peaked in immature green fruits; the expression levels were significantly upregulated upon cold and hot stresses. Transgenic plants displayed marked enhancements of tolerance under both cold and heat treatments, and plant growth was correlated with CaAPX expression levels. Furthermore, we monitored the activities of several ROS-scavenging enzymes including Cu/Zn-SOD , CAT , DHAR , and MDHAR , and we showed that stress tolerance was synchronized with elevated activities of ROS-scavenging. Moreover, gene expression analysis of ROS-scavenging enzymes revealed a role of CaAPX to orchestrate ROS signaling in response to temperature stresses. Overall, this study presents a comprehensive characterization of cellular response related to CaAPX expression and provides insights to breed crops with high temperature tolerances.

  3. Relationship Between ABCB1 Polymorphisms and Cold Pain Sensitivity Among Healthy Opioid-naive Malay Males.

    PubMed

    Zahari, Zalina; Lee, Chee Siong; Ibrahim, Muslih Abdulkarim; Musa, Nurfadhlina; Mohd Yasin, Mohd Azhar; Lee, Yeong Yeh; Tan, Soo Choon; Mohamad, Nasir; Ismail, Rusli

    2017-09-01

    Endogenous and exogenous opioids are substrates of the permeability glycoprotein (P-gp) efflux transporter, which is encoded by the ABCB1 (MDR1) gene. Genetic polymorphisms of ABCB1 may contribute to interindividual differences in pain modulation and analgesic responses. We investigated the relationship between ABCB1 polymorphisms and cold pain sensitivity among healthy males. Cold pain responses, including pain threshold and pain tolerance, were measured using the cold-pressor test (CPT). DNA was extracted from whole blood and genotyped for ABCB1 polymorphisms, including c.1236C>T (rs1128503), c.2677G>T/A (rs2032582), and c.3435C>T (rs1045642), using the allelic discrimination real-time polymerase chain reaction. A total of 152 participants were recruited in this observational study. Frequencies of mutated allele for c.1236C>T, c.2677G>T/A, and c.3435C>T polymorphisms were 56.6%, 49.7%, and 43.4%, respectively. Our results revealed an association of the CGC/CGC diplotype (c.1236C>T, c.2677G>T/A, and c.3435C>T) with cold pain sensitivity. Participants with the CGC/CGC diplotype had 90% and 72% higher cold pain thresholds (87.62 seconds vs. 46.19 seconds, P = 0.010) and cold pain tolerances (97.24 seconds vs. 56.54 seconds, P = 0.021), respectively, when compared with those without the diplotype. The CGC/CGC diplotype of ABCB1 polymorphisms was associated with variability in cold pain threshold and pain tolerance in healthy males. © 2016 World Institute of Pain.

  4. Transcriptome responses to heat- and cold-stress in ladybirds (Cryptolaemus montrouzieri Mulasnt) analyzed by deep-sequencing.

    PubMed

    Zhang, Yuhong; Wu, Hongsheng; Xie, Jiaqin; Jiang, Ruixin; Deng, Congshuang; Pang, Hong

    2015-11-19

    Changed temperature not only threaten agricultural production, but they also affect individual biological behavior, population and community of many insects, and consequently reduce the stability of our ecosystem. Insect's ability to respond to temperature stress evolved through a complex adaptive process, thus resulting in varied temperature tolerance among different insects. Both high and low extreme temperatures are detrimental to insect development since they constitute an important abiotic stress capable of inducing abnormal biological responses. Many studies on heat or cold tolerance of ladybirds have focused on measurements of physiological and biochemical indexes such as supercooling point, higher/lower lethal temperatures, survival rate, dry body weight, water content, and developmental duration. And studies of the molecular mechanisms of ladybird responses to heat or cold stress have focused on single genes, such as those encoding heat shock proteins, but has not been analyzed by transcriptome profiling. In this study, we report the use of Digital Gene Expression (DGE) tag profiling to gain insight into transcriptional events associated with heat- and cold-stress in C. montrouzieri. About 6 million tags (49 bp in length) were sequenced in a heat stress group, a cold stress group and a negative control group. We obtained 687 and 573 genes that showed significantly altered expression levels following heat and cold shock treatments, respectively. Analysis of the global gene expression pattern suggested that 42 enzyme-encoding genes mapped to many Gene Ontology terms are associated with insect's response to heat- and cold-stress. These results provide a global assessment of genes and molecular mechanisms involved in heat and cold tolerance.

  5. Quantitative Trait Loci for Cold Tolerance of Rice Recombinant Inbred Lines in Low Temperature Environments

    PubMed Central

    Jiang, Wenzhu; Jin, Yong-Mei; Lee, Joohyun; Lee, Kang-Ie; Piao, Rihua; Han, Longzhi; Shin, Jin-Chul; Jin, Rong-De; Cao, Tiehua; Pan, Hong-Yu; Du, Xinglin; Koh, Hee-Jong

    2011-01-01

    Low temperature is one of the major environmental stresses in rice cultivation in high-altitude and high-latitude regions. In this study, we cultivated a set of recombinant inbred lines (RIL) derived from Dasanbyeo (indica) / TR22183 (japonica) crosses in Yanji (high-latitude area), Kunming (high-altitude area), Chuncheon (cold water irrigation) and Suwon (normal) to evaluate the main effects of quantitative trait loci (QTL) and epistatic QTL (E-QTL) with regard to their interactions with environments for coldrelated traits. Six QTLs for spikelet fertility (SF) were identified in three cold treatment locations. Among them, four QTLs on chromosomes 2, 7, 8, and 10 were validated by several near isogenic lines (NILs) under cold treatment in Chuncheon. A total of 57 QTLs and 76 E-QTLs for nine cold-related traits were identified as distributing on all 12 chromosomes; among them, 19 QTLs and E-QTLs showed significant interactions of QTLs and environments (QEIs). The total phenotypic variation explained by each trait ranged from 13.2 to 29.1% in QTLs, 10.6 to 29.0% in EQTLs, 2.2 to 8.8% in QEIs and 1.0% to 7.7% in E-QTL × environment interactions (E-QEIs). These results demonstrate that epistatic effects and QEIs are important properties of QTL parameters for cold tolerance at the reproductive stage. In order to develop cold tolerant varieties adaptable to wide-ranges of cold stress, a strategy facilitating marker-assisted selection (MAS) is being adopted to accumulate QTLs identified from different environments. PMID:22080374

  6. Cold Tolerance of Mountain Pine Beetle (Coleoptera: Curculionidae) Eggs From the Historic and Expanded Ranges.

    PubMed

    Bleiker, K P; Smith, G D; Humble, L M

    2017-10-01

    Winter mortality is expected to be a key factor determining the ability of mountain pine beetle, Dendroctonus ponderosae Hopkins (Coleoptera: Curculionidae), to expand its range in Canada. We determined the mortality rate and supercooling points of eggs from the beetle's historic range in southern British Columbia as well as the recently expanded range in north-central Alberta and tested if eggs require an extended period of chilling to reach their maximum cold tolerance. We found no effect of population source or acclimation time on egg cold tolerance. Although 50% of eggs can survive brief exposure to -20.5 °C (LT50), storage at 0.3 °C and -7.5 °C for 59 d resulted in 50% and 100% mortality, respectively. Our results indicate that eggs suffer significant prefreeze mortality and are not well-adapted to overwintering: eggs are unlikely to survive winter throughout much of the beetle's range. Our results provide information that can be used to help model the climatic suitability of mountain pine beetle, including how changes in seasonality associated with new or changing climates may affect winter survival. In addition to lower lethal temperatures, it is critical that the duration of exposure to sublethal cold temperatures are considered in a comprehensive index of cold tolerance and incorporated into survival and population models. © The Authors 2017. Published by Oxford University Press on behalf of Entomological Society of America. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  7. Copy number and haplotype variation at the VRN-A1 and central FR-A2 loci are associated with frost tolerance in hexaploid wheat.

    PubMed

    Zhu, Jie; Pearce, Stephen; Burke, Adrienne; See, Deven Robert; Skinner, Daniel Z; Dubcovsky, Jorge; Garland-Campbell, Kimberly

    2014-05-01

    The interaction between VRN - A1 and FR - A2 largely affect the frost tolerance of hexaploid wheat. Frost tolerance is critical for wheat survival during cold winters. Natural variation for this trait is mainly associated with allelic differences at the VERNALIZATION 1 (VRN1) and FROST RESISTANCE 2 (FR2) loci. VRN1 regulates the transition between vegetative and reproductive stages and FR2, a locus including several tandemly duplicated C-REPEAT BINDING FACTOR (CBF) transcription factors, regulates the expression of Cold-regulated genes. We identified sequence and copy number variation at these two loci among winter and spring wheat varieties and characterized their association with frost tolerance. We identified two FR-A2 haplotypes-'FR-A2-S' and 'FR-A2-T'-distinguished by two insertion/deletions and ten single nucleotide polymorphisms within the CBF-A12 and CBF-A15 genes. Increased copy number of CBF-A14 was frequently associated with the FR-A2-T haplotype and with higher CBF14 transcript levels in response to cold. Factorial ANOVAs revealed significant interactions between VRN1 and FR-A2 for frost tolerance in both winter and spring panels suggesting a crosstalk between vernalization and cold acclimation pathways. The model including these two loci and their interaction explained 32.0 and 20.7 % of the variation in frost tolerance in the winter and spring panels, respectively. The interaction was validated in a winter wheat F 4:5 population segregating for both genes. Increased VRN-A1 copy number was associated with improved frost tolerance among varieties carrying the FR-A2-T allele but not among those carrying the FR-A2-S allele. These results suggest that selection of varieties carrying the FR-A2-T allele and three copies of the recessive vrn-A1 allele would be a good strategy to improve frost tolerance in wheat.

  8. Characterization of cold-associated microRNAs in the freeze-tolerant gall fly Eurosta solidaginis using high-throughput sequencing.

    PubMed

    Lyons, Pierre J; Govaere, Louise; Crapoulet, Nicolas; Storey, Kenneth B; Morin, Pier Jr

    2016-12-01

    Significant physiological and biochemical changes are observed in freeze-tolerant insects when confronted with cold temperatures. These insects have adapted to winter by retreating into a hypometabolic state of diapause and implementing cryoprotective mechanisms that allow them to survive whole body freezing. MicroRNAs (miRNAs), a family of short ribonucleic acids, are emerging as likely molecular players underlying the process of cold adaptation. Unfortunately, the data is sparse concerning the signature of miRNAs that are modulated following cold exposure in the freeze-tolerant goldenrod gall fly Eurosta solidaginis. Leveraging for the first time a next-generation sequencing approach, differentially expressed miRNAs were evaluated in 5°C and -15°C-exposed E. solidaginis larvae. Next-generation sequencing expression data was subsequently validated by qRT-PCR for selected miRNA targets. Results demonstrate 24 differentially expressed freeze-responsive miRNAs. Notable, miR-1-3p, a miRNA modulated at low temperature in another cold-hardy insect, and miR-14-3p, a miRNA associated with stress response in the fruit fly, were shown to be significantly up-regulated in -15°C-exposed larvae. Overall, this work identifies, for the first time in a high-throughput manner, differentially expressed miRNAs in cold-exposed E. solidaginis larvae and further clarifies an emerging signature of miRNAs modulated at low temperatures in cold-hardy insects. Copyright © 2016 Elsevier Inc. All rights reserved.

  9. A specific glycerol kinase induces rapid cold hardening of the diamondback moth, Plutella xylostella.

    PubMed

    Park, Youngjin; Kim, Yonggyun

    2014-08-01

    Insects in temperate zones survive low temperatures by migrating or tolerating the cold. The diamondback moth, Plutella xylostella, is a serious insect pest on cabbage and other cruciferous crops worldwide. We showed that P. xylostella became cold-tolerant by expressing rapid cold hardiness (RCH) in response to a brief exposure to moderately low temperature (4°C) for 7h along with glycerol accumulation in hemolymph. Glycerol played a crucial role in the cold-hardening process because exogenously supplying glycerol significantly increased the cold tolerance of P. xylostella larvae without cold acclimation. To determine the genetic factor(s) responsible for RCH and the increase of glycerol, four glycerol kinases (GKs), and glycerol-3-phosphate dehydrogenase (PxGPDH) were predicted from the whole P. xylostella genome and analyzed for their function associated with glycerol biosynthesis. All predicted genes were expressed, but differed in their expression during different developmental stages and in different tissues. Expression of the predicted genes was individually suppressed by RNA interference (RNAi) using double-stranded RNAs specific to target genes. RNAi of PxGPDH expression significantly suppressed RCH and glycerol accumulation. Only PxGK1 among the four GKs was responsible for RCH and glycerol accumulation. Furthermore, PxGK1 expression was significantly enhanced during RCH. These results indicate that a specific GK, the terminal enzyme to produce glycerol, is specifically inducible during RCH to accumulate the main cryoprotectant. Copyright © 2014 Elsevier Ltd. All rights reserved.

  10. Effects of calcium fertilization and acid mist on calcium concentration and cold tolerance of red spruce needles

    Treesearch

    G. R. Strimbeck; David R. Vann; Arthur H. Johnson

    1996-01-01

    Several studies have shown that exposure to acid mist impairs cold tolerance of red spruce foliage, predisposing it to winter injury, which appears to be a major factor in the decline of montane populations of the species. Other studies have shown increases in calcium (Ca) concentration in canopy throughfall in montane spruce-fir forests, and decreases in foliar Ca...

  11. Overexpression of a wheat (Triticum aestivum L.) bZIP transcription factor gene, TabZIP6, decreased the freezing tolerance of transgenic Arabidopsis seedlings by down-regulating the expression of CBFs.

    PubMed

    Cai, Wangting; Yang, Yaling; Wang, Weiwei; Guo, Guangyan; Liu, Wei; Bi, Caili

    2018-03-01

    The basic leucine zipper (bZIP) proteins play important roles against abiotic stress in plants, including cold stress. However, most bZIPs involved in plant freezing tolerance are positive regulators. Only a few bZIPs function negatively in cold stress response. In this study, TabZIP6, a Group C bZIP transcription factor gene from common wheat (Triticum aestivum L.), was cloned and characterized. The transcript of TabZIP6 was strongly induced by cold treatment (4 °C). TabZIP6 is a nuclear-localized protein with transcriptional activation activity. Arabidopsis plants overexpressing TabZIP6 showed decreased tolerance to freezing stress. Microarray as well as quantitative real-time PCR (qRT-PCR) analysis showed that CBFs and some key COR genes, including COR47 and COR15B, were down-regulated by cold treatment in TabZIP6-overexpressing Arabidopsis lines. TabZIP6 was capable of binding to the G-box motif and the CBF1 and CBF3 promoters in yeast cells. A yeast two-hybrid assay revealed that TabZIP6, as well as the other two Group S bZIP proteins involved in cold stress tolerance in wheat, Wlip19 and TaOBF1, can form homodimers by themselves and heterodimers with each other. These results suggest that TabZIP6 may function negatively in the cold stress response by binding to the promoters of CBFs, and thereby decreasing the expression of downstream COR genes in TabZIP6-overexpressing Arabidopsis seedlings. Copyright © 2018. Published by Elsevier Masson SAS.

  12. Proline accumulation and its implication in cold tolerance of regenerable maize callus

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Duncan, D.R.; Widholm, J.M.

    1987-03-01

    Embryogenic callus of maize (Zea mays L.) inbreds B37wx, H99, H99/sup 3/H95, Mo17, and Pa91 accumulated proline to levels 2.1 to 2.5 times that of control callus when subjected to mannitol-induced water stress, cool temperatures (19/sup 0/C) and abscisic acid (ABA). A combination of 0.53 molar mannitol plus 0.1 millimolar ABA induced a proline accumulation to about 4.5 times that of control callus, equivalent to approximately 0.18 millimoles proline per gram fresh weight of callus. Proline accumulation was directly related to the level of mannitol in the medium. Levels of ABA greater than 1.0 micromolar were required in the mediummore » to induce proline accumulation comparable to that induced by mannitol. Mannitol and ABA levels that induced maximum accumulation of proline also inhibited callus growth and increased tolerance to cold. Proline (12 millimolar) added to culture media also increased the tolerance of callus to 4/sup 0/C. The increased cold tolerance induced by the combination of mannitol and ABA has permitted the storage of the maize inbreds A632, A634Ht, B37wx, C103DTrf, Fr27rhm, H99, Pa91, Va35, and W117Ht at 4/sup 0/C for 90 days which is more than double the typical survival time of callus. These studies show that proline accumulation increase the cold tolerance of regenerable maize callus.« less

  13. Arabidopsis ESK1 encodes a novel regulator of freezing tolerance.

    PubMed

    Xin, Zhanguo; Mandaokar, Ajin; Chen, Junping; Last, Robert L; Browse, John

    2007-03-01

    The eskimo1 (esk1) mutation of Arabidopsis resulted in a 5.5 degrees C improvement in freezing tolerance in the absence of cold acclimation. Here we show that the increase in freezing tolerance is not associated with any increase in the ability to survive drought or salt stresses, which are similar to freezing in their induction of cellular dehydration. Genome-wide comparisons of gene expression between esk1-1 and wild type indicate that mutations at esk1 result in altered expression of transcription factors and signaling components and of a set of stress-responsive genes. Interestingly, the list of 312 genes regulated by ESK1 shows greater overlap with sets of genes regulated by salt, osmotic and abscisic acid treatments than with genes regulated by cold acclimation or by the transcription factors CBF3 and ICE1, which have been shown to control genetic pathways for freezing tolerance. Map-based cloning identified the esk1 locus as At3g55990. The wild-type ESK1 gene encodes a 57-kDa protein and is a member of a large gene family of DUF231 domain proteins whose members encode a total of 45 proteins of unknown function. Our results indicate that ESK1 is a novel negative regulator of cold acclimation. Mutations in the ESK1 gene provide strong freezing tolerance through genetic regulation that is apparently very different from previously described genetic mechanisms of cold acclimation.

  14. Effects of videogame distraction using a virtual reality type head-mounted display helmet on cold pressor pain in children.

    PubMed

    Dahlquist, Lynnda M; Weiss, Karen E; Clendaniel, Lindsay Dillinger; Law, Emily F; Ackerman, Claire Sonntag; McKenna, Kristine D

    2009-06-01

    To test whether a head-mounted display helmet enhances the effectiveness of videogame distraction for children experiencing cold pressor pain. Forty-one children, aged 6-14 years, underwent one or two baseline cold pressor trials followed by two distraction trials in which they played the same videogame with and without the helmet in counterbalanced order. Pain threshold (elapsed time until the child reported pain) and pain tolerance (total time the child kept the hand submerged in the cold water) were measured for each cold pressor trial. Both distraction conditions resulted in improved pain tolerance relative to baseline. Older children appeared to experience additional benefits from using the helmet, whereas younger children benefited equally from both conditions. The findings suggest that virtual reality technology can enhance the effects of distraction for some children. Research is needed to identify the characteristics of children for whom this technology is best suited.

  15. Cold hardiness in molluscs

    NASA Astrophysics Data System (ADS)

    Ansart, Armelle; Vernon, Philippe

    2003-05-01

    Molluscs inhabit all types of environments: seawater, intertidal zone, freshwater and land, and of course may have to deal with subzero temperatures. Ectotherm animals survive cold conditions by avoiding it by extensive supercooling (freezing avoidant species) or by bearing the freezing of their extracellular body fluids (freezing tolerant species). Although some studies on cold hardiness are available for intertidal molluscs, they are scarce for freshwater and terrestrial ones. Molluscs often exhibit intermediary levels of cold hardiness, with a moderate or low ability to supercool and a limited survival to the freezing of their tissues. Several factors could be involved: their dependence on water, their ability to enter dormancy, the probability of inoculative freezing in their environment, etc. Size is an important parameter in the development of cold hardiness abilities: it influences supercooling ability in land snails, which are rather freezing avoidant and survival to ice formation in intertidal organisms, which generally tolerate freezing.

  16. Renal neuroendocrine control of desiccation and cold tolerance by Drosophila suzukii

    PubMed Central

    Alford, Lucy; Yeoh, Joseph GC; Marley, Richard; Dornan, Anthony J; Dow, Julian AT; Davies, Shireen A

    2017-01-01

    Abstract BACKGROUND Neuropeptides are central to the regulation of physiological and behavioural processes in insects, directly impacting cold and desiccation survival. However, little is known about the control mechanisms governing these responses in Drosophila suzukii. The close phylogenetic relationship of D. suzukii with Drosophila melanogaster allows, through genomic and functional studies, an insight into the mechanisms directing stress tolerance in D. suzukii. RESULTS Capability (Capa), leucokinin (LK), diuretic hormone 44 (DH44) and DH31 neuropeptides demonstrated a high level of conservation between D. suzukii and D. melanogaster with respect to peptide sequences, neuronal expression, receptor localisation, and diuretic function in the Malpighian tubules. Despite D. suzukii's ability to populate cold environments, it proved sensitive to both cold and desiccation. Furthermore, in D. suzukii, Capa acts as a desiccation‐ and cold stress‐responsive gene, while DH 44 gene expression is increased only after desiccation exposure, and the LK gene after nonlethal cold stress recovery. CONCLUSION This study provides a comparative investigation into stress tolerance mediation by neuroendocrine signalling in two Drosophila species, providing evidence that similar signalling pathways control fluid secretion in the Malpighian tubules. Identifying processes governing specific environmental stresses affecting D. suzukii could lead to the development of targeted integrated management strategies to control insect pest populations. © 2017 The Authors. Pest Management Science published by John Wiley & Sons Ltd on behalf of Society of Chemical Industry. PMID:28714258

  17. Overexpression of the Arabidopsis CBF3 Transcriptional Activator Mimics Multiple Biochemical Changes Associated with Cold Acclimation1

    PubMed Central

    Gilmour, Sarah J.; Sebolt, Audrey M.; Salazar, Maite P.; Everard, John D.; Thomashow, Michael F.

    2000-01-01

    We further investigated the role of the Arabidopsis CBF regulatory genes in cold acclimation, the process whereby certain plants increase in freezing tolerance upon exposure to low temperature. The CBF genes, which are rapidly induced in response to low temperature, encode transcriptional activators that control the expression of genes containing the C-repeat/dehydration responsive element DNA regulatory element in their promoters. Constitutive expression of either CBF1 or CBF3 (also known as DREB1b and DREB1a, respectively) in transgenic Arabidopsis plants has been shown to induce the expression of target COR (cold-regulated) genes and to enhance freezing tolerance in nonacclimated plants. Here we demonstrate that overexpression of CBF3 in Arabidopsis also increases the freezing tolerance of cold-acclimated plants. Moreover, we show that it results in multiple biochemical changes associated with cold acclimation: CBF3-expressing plants had elevated levels of proline (Pro) and total soluble sugars, including sucrose, raffinose, glucose, and fructose. Plants overexpressing CBF3 also had elevated P5CS transcript levels suggesting that the increase in Pro levels resulted, at least in part, from increased expression of the key Pro biosynthetic enzyme Δ1-pyrroline-5-carboxylate synthase. These results lead us to propose that CBF3 integrates the activation of multiple components of the cold acclimation response. PMID:11115899

  18. Heterotrimeric G-Protein γ Subunit CsGG3.2 Positively Regulates the Expression of CBF Genes and Chilling Tolerance in Cucumber

    PubMed Central

    Bai, Longqiang; Liu, Yumei; Mu, Ying; Anwar, Ali; He, Chaoxing; Yan, Yan; Li, Yansu; Yu, Xianchang

    2018-01-01

    Heterotrimeric guanine nucleotide-binding proteins (G proteins) composed of alpha (Gα), beta (Gβ), and gamma (Gγ) subunits are central signal transducers mediating the cellular response to multiple stimuli, such as cold, in eukaryotes. Plant Gγ subunits, divided into A, B, and C three structurally distinct types, provide proper cellular localization and functional specificity to the heterotrimer complex. Here, we demonstrate that a type C Gγ subunit CsGG3.2 is involved in the regulation of the CBF regulon and plant tolerance to cold stresses in cucumber (Cucumis sativus L.). We showed that CsGG3.2 transcript abundance was positively induced by cold treatments. Transgenic cucumber plants (T1) constitutively over-expressing CsGG3.2 exhibits tolerance to chilling conditions and increased expression of CBF genes and their regulon. Antioxidative enzymes, i.e., superoxide dismutase, catalase, peroxidase, and glutathione reductase activities increased in cold-stressed transgenic plants. The reactive oxygen species, oxygen free radical and H2O2, production, as well as membrane lipid peroxidation (MDA) production decreased in transgenic plants, suggesting a better antioxidant system to cope the oxidative-damages caused by cold stress. These findings provide evidence for a critical role of CsGG3.2 in mediating cold signal transduction in plant cells. PMID:29719547

  19. Heterologous expression of antifreeze protein gene AnAFP from Ammopiptanthus nanus enhances cold tolerance in Escherichia coli and tobacco.

    PubMed

    Deng, Long-Qun; Yu, Hao-Qiang; Liu, Yan-Ping; Jiao, Pei-Pei; Zhou, Shu-Feng; Zhang, Su-Zhi; Li, Wan-Chen; Fu, Feng-Ling

    2014-04-10

    Antifreeze proteins are a class of polypeptides produced by certain animals, plants, fungi and bacteria that permit their survival under the subzero environments. Ammopiptanthus nanus is the unique evergreen broadleaf bush endemic to the Mid-Asia deserts. It survives at the west edge of the Tarim Basin from the disappearance of the ancient Mediterranean in the Tertiary Period. Its distribution region is characterized by the arid climate and extreme temperatures, where the extreme temperatures range from -30 °C to 40 °C. In the present study, the antifreeze protein gene AnAFP of A. nanus was used to transform Escherichia coli and tobacco, after bioinformatics analysis for its possible function. The transformed E. coli strain expressed the heterologous AnAFP gene under the induction of isopropyl β-D-thiogalactopyranoside, and demonstrated significant enhancement of cold tolerance. The transformed tobacco lines expressed the heterologous AnAFP gene in response to cold stress, and showed a less change of relative electrical conductivity under cold stress, and a less wilting phenotype after 16 h of -3 °C cold stress and thawing for 1h than the untransformed wild-type plants. All these results imply the potential value of the AnAFP gene to be used in genetic modification of commercially important crops for improvement of cold tolerance. Copyright © 2014 Elsevier B.V. All rights reserved.

  20. Genome-wide identification of wheat (Triticum aestivum) expansins and expansin expression analysis in cold-tolerant and cold-sensitive wheat cultivars

    PubMed Central

    Zhang, Jun-Feng; Xu, Yong-Qing; Dong, Jia-Min; Peng, Li-Na; Feng, Xu; Wang, Xu; Li, Fei; Miao, Yu; Yao, Shu-Kuan; Zhao, Qiao-Qin; Feng, Shan-Shan; Hu, Bao-Zhong

    2018-01-01

    Plant expansins are proteins involved in cell wall loosening, plant growth, and development, as well as in response to plant diseases and other stresses. In this study, we identified 128 expansin coding sequences from the wheat (Triticum aestivum) genome. These sequences belong to 45 homoeologous copies of TaEXPs, including 26 TaEXPAs, 15 TaEXPBs and four TaEXLAs. No TaEXLB was identified. Gene expression and sub-expression profiles revealed that most of the TaEXPs were expressed either only in root tissues or in multiple organs. Real-time qPCR analysis showed that many TaEXPs were differentially expressed in four different tissues of the two wheat cultivars—the cold-sensitive ‘Chinese Spring (CS)’ and the cold-tolerant ‘Dongnongdongmai 1 (D1)’ cultivars. Our results suggest that the differential expression of TaEXPs could be related to low-temperature tolerance or sensitivity of different wheat cultivars. Our study expands our knowledge on wheat expansins and sheds new light on the functions of expansins in plant development and stress response. PMID:29596529

  1. Photoperiodic regulation of the C-repeat binding factor (CBF) cold acclimation pathway and freezing tolerance in Arabidopsis thaliana.

    PubMed

    Lee, Chin-Mei; Thomashow, Michael F

    2012-09-11

    The CBF (C-repeat binding factor) pathway has a major role in plant cold acclimation, the process whereby certain plants increase in freezing tolerance in response to low nonfreezing temperatures. In Arabidopsis thaliana, the pathway is characterized by rapid cold induction of CBF1, CBF2, and CBF3, which encode transcriptional activators, followed by induction of CBF-targeted genes that impart freezing tolerance. At warm temperatures, CBF transcript levels are low, but oscillate due to circadian regulation with peak expression occurring at 8 h after dawn (zeitgeber time 8; ZT8). Here, we establish that the CBF pathway is also regulated by photoperiod at warm temperatures. At ZT8, CBF transcript levels in short-day (SD; 8-h photoperiod) plants were three- to fivefold higher than in long-day plants (LD; 16-h photoperiod). Moreover, the freezing tolerance of SD plants was greater than that of LD plants. Genetic analysis indicated that phytochrome B (PHYB) and two phytochrome-interacting factors, PIF4 and PIF7, act to down-regulate the CBF pathway and freezing tolerance under LD conditions. Down-regulation of the CBF pathway in LD plants correlated with higher PIF4 and PIF7 transcript levels and greater stability of the PIF4 and PIF7 proteins under LD conditions. Our results indicate that during the warm LD growing season, the CBF pathway is actively repressed by PHYB, PIF4, and PIF7, thus mitigating allocation of energy and nutrient resources toward unneeded frost protection. This repression is relieved by shortening day length resulting in up-regulation of the CBF pathway and increased freezing tolerance in preparation for coming cold temperatures.

  2. Photoperiodic regulation of the C-repeat binding factor (CBF) cold acclimation pathway and freezing tolerance in Arabidopsis thaliana

    PubMed Central

    Lee, Chin-Mei; Thomashow, Michael F.

    2012-01-01

    The CBF (C-repeat binding factor) pathway has a major role in plant cold acclimation, the process whereby certain plants increase in freezing tolerance in response to low nonfreezing temperatures. In Arabidopsis thaliana, the pathway is characterized by rapid cold induction of CBF1, CBF2, and CBF3, which encode transcriptional activators, followed by induction of CBF-targeted genes that impart freezing tolerance. At warm temperatures, CBF transcript levels are low, but oscillate due to circadian regulation with peak expression occurring at 8 h after dawn (zeitgeber time 8; ZT8). Here, we establish that the CBF pathway is also regulated by photoperiod at warm temperatures. At ZT8, CBF transcript levels in short-day (SD; 8-h photoperiod) plants were three- to fivefold higher than in long-day plants (LD; 16-h photoperiod). Moreover, the freezing tolerance of SD plants was greater than that of LD plants. Genetic analysis indicated that phytochrome B (PHYB) and two phytochrome-interacting factors, PIF4 and PIF7, act to down-regulate the CBF pathway and freezing tolerance under LD conditions. Down-regulation of the CBF pathway in LD plants correlated with higher PIF4 and PIF7 transcript levels and greater stability of the PIF4 and PIF7 proteins under LD conditions. Our results indicate that during the warm LD growing season, the CBF pathway is actively repressed by PHYB, PIF4, and PIF7, thus mitigating allocation of energy and nutrient resources toward unneeded frost protection. This repression is relieved by shortening day length resulting in up-regulation of the CBF pathway and increased freezing tolerance in preparation for coming cold temperatures. PMID:22927419

  3. Salivary Cortisol and Cold Pain Sensitivity in Female Twins

    PubMed Central

    Godfrey, Kathryn M; Strachan, Eric; Dansie, Elizabeth; Crofford, Leslie J; Buchwald, Dedra; Goldberg, Jack; Poeschla, Brian; Succop, Annemarie; Noonan, Carolyn; Afari, Niloofar

    2013-01-01

    Background There is a dearth of knowledge about the link between cortisol and pain sensitivity. Purpose We examined the association of salivary cortisol with indices of cold pain sensitivity in 198 female twins and explored the role of familial confounding. Methods Three-day saliva samples were collected for cortisol levels and a cold pressor test was used to collect pain ratings and time to threshold and tolerance. Linear regression modeling with generalized estimating equations examined the overall and within-pair associations. Results Lower diurnal variation of cortisol was associated with higher pain ratings at threshold (p = 0.02) and tolerance (p < 0.01). The relationship of diurnal variation with pain ratings at threshold and tolerance was minimally influenced by familial factors (i.e., genetics and common environment). Conclusions Understanding the genetic and non-genetic mechanisms underlying the link between HPA axis dysregulation and pain sensitivity may help to prevent chronic pain development and maintenance. PMID:23955075

  4. The Influence of a Personal Values Intervention on Cold Pressor-Induced Distress Tolerance.

    PubMed

    Smith, Brooke M; Villatte, Jennifer L; Ong, Clarissa W; Butcher, Grayson M; Twohig, Michael P; Levin, Michael E; Hayes, Steven C

    2018-06-01

    Research has demonstrated that values and acceptance interventions can increase distress tolerance, but the individual contribution of each remains unclear. The current study examined the isolated effect of a values intervention on immersion time in a cold pressor. Participants randomized to Values ( n = 18) and Control ( n = 14) conditions completed two cold pressor tasks, separated by a 30-min values or control intervention. Immersion time increased 51.06 s for participants in the Values condition and decreased by 10.79 s for those in the Control condition. Increases in self-reported pain and distress predicted decreases in immersion time for Control, but not Values, participants. The best-fitting model accounted for 39% of the variance in immersion time change. Results suggest that a brief isolated values exercise can be used to improve distress tolerance despite increased perceptions of pain and distress, such that values alone may be sufficient to facilitate openness to difficult experiences.

  5. 78 FR 60709 - Methoxyfenozide; Pesticide Tolerances

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-10-02

    ... sunflower subgroup 20B at 1.0 ppm, and to amend the tolerance for herb and spice, group 19, except coriander, leaves at 4.5 ppm to spice subgroup 19B at 4.5 ppm. Upon approval of the proposed tolerances listed under... established tolerance for indirect or inadvertent residues in or on herb and spice, group 19, except coriander...

  6. Genotypes Associated with Listeria monocytogenes Isolates Displaying Impaired or Enhanced Tolerances to Cold, Salt, Acid, or Desiccation Stress

    PubMed Central

    Hingston, Patricia; Chen, Jessica; Dhillon, Bhavjinder K.; Laing, Chad; Bertelli, Claire; Gannon, Victor; Tasara, Taurai; Allen, Kevin; Brinkman, Fiona S. L.; Truelstrup Hansen, Lisbeth; Wang, Siyun

    2017-01-01

    The human pathogen Listeria monocytogenes is a large concern in the food industry where its continuous detection in food products has caused a string of recalls in North America and Europe. Most recognized for its ability to grow in foods during refrigerated storage, L. monocytogenes can also tolerate several other food-related stresses with some strains possessing higher levels of tolerances than others. The objective of this study was to use a combination of phenotypic analyses and whole genome sequencing to elucidate potential relationships between L. monocytogenes genotypes and food-related stress tolerance phenotypes. To accomplish this, 166 L. monocytogenes isolates were sequenced and evaluated for their ability to grow in cold (4°C), salt (6% NaCl, 25°C), and acid (pH 5, 25°C) stress conditions as well as survive desiccation (33% RH, 20°C). The results revealed that the stress tolerance of L. monocytogenes is associated with serotype, clonal complex (CC), full length inlA profiles, and the presence of a plasmid which was identified in 55% of isolates. Isolates with full length inlA exhibited significantly (p < 0.001) enhanced cold tolerance relative to those harboring a premature stop codon (PMSC) in this gene. Similarly, isolates possessing a plasmid demonstrated significantly (p = 0.013) enhanced acid tolerance. We also identified nine new L. monocytogenes sequence types, a new inlA PMSC, and several connections between CCs and the presence/absence or variations of specific genetic elements. A whole genome single-nucleotide-variants phylogeny revealed sporadic distribution of tolerant isolates and closely related sensitive and tolerant isolates, highlighting that minor genetic differences can influence the stress tolerance of L. monocytogenes. Specifically, a number of cold and desiccation sensitive isolates contained PMSCs in σB regulator genes (rsbS, rsbU, rsbV). Collectively, the results suggest that knowing the sequence type of an isolate in addition to screening for the presence of full-length inlA and a plasmid, could help food processors and food agency investigators determine why certain isolates might be persisting in a food processing environment. Additionally, increased sequencing of L. monocytogenes isolates in combination with stress tolerance profiling, will enhance the ability to identify genetic elements associated with higher risk strains. PMID:28337186

  7. Melatonin enhances cold tolerance in drought-primed wild-type and abscisic acid-deficient mutant barley.

    PubMed

    Li, Xiangnan; Tan, Dun-Xian; Jiang, Dong; Liu, Fulai

    2016-10-01

    Melatonin is involved in multiple plant developmental processes and various stress responses. To explore the roles of melatonin played as well as its association with abscisic acid (ABA) in a process of drought priming-induced cold tolerance (DPICT), a wild-type barley and its ABA-deficient mutant Az34 counterpart were selected for comparison, in which the effects of melatonin application (either foliarly or rhizospherically) and/or drought priming on the cold tolerance of both types of barleys were systematically investigated. It was demonstrated that the early drought priming induced an increase of endogenous melatonin production, which is not ABA dependent. In addition, exogenously applied melatonin resulted in higher ABA concentration in the drought-primed plants than in the nonprimed plants when exposed to cold stress, indicating that ABA responded in a drought-dependent manner. The interplay of melatonin and ABA leads to plants maintaining better water status. Drought priming-induced melatonin accumulation enhanced the antioxidant capacity in both chloroplasts and mitochondria, which sustained the photosynthetic electron transport in photosynthetic apparatus of the plants under cold stress. These results suggest that the exogenous melatonin application enhances the DPICT by modulating subcellular antioxidant systems and ABA levels in barley. © 2016 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  8. Effect of stressors on the viability of Listeria during an in vitro cold-smoking process

    USDA-ARS?s Scientific Manuscript database

    Listeria monocytogenes is a dangerous food-borne pathogen and is a frequent contaminant of the cold-smoked fish industry. Elimination of this bacterium from the cold-smoking processing environment requires an understanding of how this microbe tolerates the stressful conditions encountered. Therefo...

  9. Opposing Control by Transcription Factors MYB61 and MYB3 Increases Freezing Tolerance by Relieving C-Repeat Binding Factor Suppression1[OPEN

    PubMed Central

    Zhang, Yunqin; Miao, Zhenyan; Xie, Can; Meng, Xiangzhao; Deng, Jie; Mysore, Kirankumar S.; Frugier, Florian; Wang, Tao

    2016-01-01

    Cold acclimation is an important process by which plants respond to low temperature and enhance their winter hardiness. C-REPEAT BINDING FACTOR1 (CBF1), CBF2, and CBF3 genes were shown previously to participate in cold acclimation in Medicago truncatula. In addition, MtCBF4 is transcriptionally induced by salt, drought, and cold stresses. We show here that MtCBF4, shown previously to enhance drought and salt tolerance, also positively regulates cold acclimation and freezing tolerance. To identify molecular factors acting upstream and downstream of the MtCBF4 transcription factor (TF) in cold responses, we first identified genes that are differentially regulated upon MtCBF4 overexpression using RNAseq Digital Gene Expression Profiling. Among these, we showed that MtCBF4 directly activates the transcription of the COLD ACCLIMATION SPECIFIC15 (MtCAS15) gene. To gain insights into how MtCBF4 is transcriptionally regulated in response to cold, an R2R3-MYB TF, MtMYB3, was identified based on a yeast one-hybrid screen as binding directly to MYB cis-elements in the MtCBF4 promoter, leading to the inhibition of MtCBF4 expression. In addition, another MYB TF, MtMYB61, identified as an interactor of MtMYB3, can relieve the inhibitory effect of MtMYB3 on MtCBF4 transcription. This study, therefore, supports a model describing how MtCBF4 is regulated by antagonistic MtMYB3/MtMYB61 TFs, leading to the up-regulation of downstream targets such as MtCAS15 acting in cold acclimation in M. truncatula. PMID:27578551

  10. PtrA/NINV, an alkaline/neutral invertase gene of Poncirus trifoliata, confers enhanced tolerance to multiple abiotic stresses by modulating ROS levels and maintaining photosynthetic efficiency.

    PubMed

    Dahro, Bachar; Wang, Fei; Peng, Ting; Liu, Ji-Hong

    2016-03-29

    Alkaline/neutral invertase (A/N-INV), an enzyme that hydrolyzes sucrose irreversibly into glucose and fructose, is essential for normal plant growth,development, and stress tolerance. However, the physiological and/or molecular mechanism underpinning the role of A/N-INV in abiotic stress tolerance is poorly understood. In this report, an A/N-INV gene (PtrA/NINV) was isolated from Poncirus trifoliata, a cold-hardy relative of citrus, and functionally characterized. PtrA/NINV expression levels were induced by cold, salt, dehydration, sucrose, and ABA, but decreased by glucose. PtrA/NINV was found to localize in both chloroplasts and mitochondria. Overexpression of PtrA/NINV conferred enhanced tolerance to multiple stresses, including cold, high salinity, and drought, as supported by lower levels of reactive oxygen species (ROS), reduced oxidative damages, decreased water loss rate, and increased photosynthesis efficiency, relative to wild-type (WT). The transgenic plants exhibited higher A/N-INV activity and greater reducing sugar content under normal and stress conditions. PtrA/NINV is an important gene implicated in sucrose decomposition, and plays a positive role in abiotic stress tolerance by promoting osmotic adjustment, ROS detoxification and photosynthesis efficiency. Thus, PtrA/NINV has great potential to be used in transgenic breeding for improvement of stress tolerance.

  11. Genetic characterization of strains of Saccharomyces uvarum from New Zealand wineries.

    PubMed

    Zhang, Hanyao; Richards, Keith D; Wilson, Sandra; Lee, Soon A; Sheehan, Hester; Roncoroni, Miguel; Gardner, Richard C

    2015-04-01

    We present a genetic characterization of 65 isolates of Saccharomyces uvarum isolated from wineries in New Zealand, along with the complete nucleotide sequence of a single sulfite-tolerant isolate. The genome of the New Zealand isolate averaged 99.85% nucleotide identity to CBS7001, the previously sequenced strain of S. uvarum. However, three genomic segments (37-87 kb) showed 10% nucleotide divergence from CBS7001 but 99% identity to Saccharomyces eubayanus. We conclude that these three segments appear to have been introgressed from that species. The nucleotide sequence of the internal transcribed spacer (ITS) region from other New Zealand isolates were also very similar to that of CBS7001, and hybrids showed complete genetic compatibility for some strains, with tetrads giving four viable progeny that showed 2:2 segregations of marker genes. Some strains showed high tolerance to sulfite, with genetic analysis indicating linkage of this trait to the transcription factor FZF1, but not to SSU1, the sulfite efflux pump that it regulates in order to confer sulfite tolerance in Saccharomyces cerevisiae. The fermentation characteristics of selected strains of S. uvarum showed exceptionally good cold fermentation characteristics, superior to the best commercially available strains of S. cerevisiae. Copyright © 2014 Elsevier Ltd. All rights reserved.

  12. Elevated Temperature and CO2 Stimulate Late-Season Photosynthesis But Impair Cold Hardening in Pine.

    PubMed

    Chang, Christine Y; Fréchette, Emmanuelle; Unda, Faride; Mansfield, Shawn D; Ensminger, Ingo

    2016-10-01

    Rising global temperature and CO 2 levels may sustain late-season net photosynthesis of evergreen conifers but could also impair the development of cold hardiness. Our study investigated how elevated temperature, and the combination of elevated temperature with elevated CO 2 , affected photosynthetic rates, leaf carbohydrates, freezing tolerance, and proteins involved in photosynthesis and cold hardening in Eastern white pine (Pinus strobus). We designed an experiment where control seedlings were acclimated to long photoperiod (day/night 14/10 h), warm temperature (22°C/15°C), and either ambient (400 μL L -1 ) or elevated (800 μmol mol -1 ) CO 2 , and then shifted seedlings to growth conditions with short photoperiod (8/16 h) and low temperature/ambient CO 2 (LTAC), elevated temperature/ambient CO 2 (ETAC), or elevated temperature/elevated CO 2 (ETEC). Exposure to LTAC induced down-regulation of photosynthesis, development of sustained nonphotochemical quenching, accumulation of soluble carbohydrates, expression of a 16-kD dehydrin absent under long photoperiod, and increased freezing tolerance. In ETAC seedlings, photosynthesis was not down-regulated, while accumulation of soluble carbohydrates, dehydrin expression, and freezing tolerance were impaired. ETEC seedlings revealed increased photosynthesis and improved water use efficiency but impaired dehydrin expression and freezing tolerance similar to ETAC seedlings. Sixteen-kilodalton dehydrin expression strongly correlated with increases in freezing tolerance, suggesting its involvement in the development of cold hardiness in P. strobus Our findings suggest that exposure to elevated temperature and CO 2 during autumn can delay down-regulation of photosynthesis and stimulate late-season net photosynthesis in P. strobus seedlings. However, this comes at the cost of impaired freezing tolerance. Elevated temperature and CO 2 also impaired freezing tolerance. However, unless the frequency and timing of extreme low-temperature events changes, this is unlikely to increase risk of freezing damage in P. strobus seedlings. © 2016 American Society of Plant Biologists. All Rights Reserved.

  13. Elevated Temperature and CO2 Stimulate Late-Season Photosynthesis But Impair Cold Hardening in Pine[OPEN

    PubMed Central

    2016-01-01

    Rising global temperature and CO2 levels may sustain late-season net photosynthesis of evergreen conifers but could also impair the development of cold hardiness. Our study investigated how elevated temperature, and the combination of elevated temperature with elevated CO2, affected photosynthetic rates, leaf carbohydrates, freezing tolerance, and proteins involved in photosynthesis and cold hardening in Eastern white pine (Pinus strobus). We designed an experiment where control seedlings were acclimated to long photoperiod (day/night 14/10 h), warm temperature (22°C/15°C), and either ambient (400 μL L−1) or elevated (800 μmol mol−1) CO2, and then shifted seedlings to growth conditions with short photoperiod (8/16 h) and low temperature/ambient CO2 (LTAC), elevated temperature/ambient CO2 (ETAC), or elevated temperature/elevated CO2 (ETEC). Exposure to LTAC induced down-regulation of photosynthesis, development of sustained nonphotochemical quenching, accumulation of soluble carbohydrates, expression of a 16-kD dehydrin absent under long photoperiod, and increased freezing tolerance. In ETAC seedlings, photosynthesis was not down-regulated, while accumulation of soluble carbohydrates, dehydrin expression, and freezing tolerance were impaired. ETEC seedlings revealed increased photosynthesis and improved water use efficiency but impaired dehydrin expression and freezing tolerance similar to ETAC seedlings. Sixteen-kilodalton dehydrin expression strongly correlated with increases in freezing tolerance, suggesting its involvement in the development of cold hardiness in P. strobus. Our findings suggest that exposure to elevated temperature and CO2 during autumn can delay down-regulation of photosynthesis and stimulate late-season net photosynthesis in P. strobus seedlings. However, this comes at the cost of impaired freezing tolerance. Elevated temperature and CO2 also impaired freezing tolerance. However, unless the frequency and timing of extreme low-temperature events changes, this is unlikely to increase risk of freezing damage in P. strobus seedlings. PMID:27591187

  14. 76 FR 17611 - Propylene Oxide; Proposed Pesticide Tolerance

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-03-30

    ...: This document proposes to amend the propylene oxide tolerance on ``nut, tree, group 14'' to ``nutmeat... ``nut, tree, group 14'' to read ``nutmeat, processed, except peanuts.'' A final rule published in the... the propylene oxide tolerance by replacing ``nutmeat, processed, except peanuts'' with ``nut, tree...

  15. A single-repeat R3-MYB transcription factor MYBC1 negatively regulates freezing tolerance in Arabidopsis

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhai, Hong, E-mail: Zhai.h@hotmail.com; Bai, Xi, E-mail: baixi@neau.edu.cn; Zhu, Yanming, E-mail: ymzhu2001@neau.edu.cn

    2010-04-16

    We had previously identified the MYBC1 gene, which encodes a single-repeat R3-MYB protein, as a putative osmotic responding gene; however, no R3-MYB transcription factor has been reported to regulate osmotic stress tolerance. Thus, we sought to elucidate the function of MYBC1 in response to osmotic stresses. Real-time RT-PCR analysis indicated that MYBC1 expression responded to cold, dehydration, salinity and exogenous ABA at the transcript level. mybc1 mutants exhibited an increased tolerance to freezing stress, whereas 35S::MYBC1 transgenic plants exhibited decreased cold tolerance. Transcript levels of some cold-responsive genes, including CBF/DREB genes, KIN1, ADC1, ADC2 and ZAT12, though, were not alteredmore » in the mybc1 mutants or the 35S::MYBC1 transgenic plants in response to cold stress, as compared to the wild type. Microarray analysis results that are publically available were investigated and found transcript level of MYBC1 was not altered by overexpression of CBF1, CBF2, and CBF3, suggesting that MYBC1 is not down regulated by these CBF family members. Together, these results suggested that MYBC1is capable of negatively regulating the freezing tolerance of Arabidopsis in the CBF-independent pathway. In transgenic Arabidopsis carrying an MYBC1 promoter driven {beta}-glucuronidase (GUS) construct, GUS activity was observed in all tissues and was relatively stronger in the vascular tissues. Fused MYBC1 and GFP protein revealed that MYBC1 was localized exclusively in the nuclear compartment.« less

  16. Strong tolerance to freezing is a major survival strategy in insects inhabiting central Yakutia (Sakha Republic, Russia), the coldest region on earth.

    PubMed

    Li, N G

    2016-10-01

    Yakutia is a part of eastern Siberia, located in north-eastern Russia. The climate of this area is very harsh even by Siberian standards, and is characterized by the absolute temperature minimum, which is below -64.4 °C, and a long period of low temperatures reaching to a range between -47 and -55 °C. Despite such a severe climate, the fauna and flora of Yakutia present a considerably rich biodiversity, suggesting a high adaptation potential of the organisms in this area. In this study, 30 local species of insects belonging to Coleoptera, Diptera and Lepidoptera were selected to investigate cold adaptation. The identification of the cold adaptation strategy was based on the measurement of the insect body supercooling point (SCP) and hemolymph ice-nucleating activity. According to the data collected, there is a high incidence of freeze tolerant species among the insects found in Yakutsk area (Yakutsk, 62° latitude, 130° longitude): 93.3% of them were freeze tolerant, and only 6.7% were freeze avoiding. It is suggested that the evolution of cold hardiness in this region preferably develops for the selection of the strong freeze tolerance that allow the insects to survive extreme cold conditions. Copyright © 2016 Elsevier Inc. All rights reserved.

  17. Effects of heat, cold, acid and bile salt adaptations on the stress tolerance and protein expression of kefir-isolated probiotic Lactobacillus kefiranofaciens M1.

    PubMed

    Chen, Ming-Ju; Tang, Hsin-Yu; Chiang, Ming-Lun

    2017-09-01

    Lactobacillus kefiranofaciens M1 is a probiotic strain isolated from Taiwanese kefir grains. The present study evaluated the effects of heat, cold, acid and bile salt adaptations on the stress tolerance of L. kefiranofaciens M1. The regulation of protein expression of L. kefiranofaciens M1 under these adaptation conditions was also investigated. The results showed that adaptation of L. kefiranofaciens M1 to heat, cold, acid and bile salts induced homologous tolerance and cross-protection against heterologous challenge. The extent of induced tolerance varied depending on the type and condition of stress. Proteomic analysis revealed that 27 proteins exhibited differences in expression between non-adapted and stress-adapted L. kefiranofaciens M1 cells. Among these proteins, three proteins involved in carbohydrate metabolism (triosephosphate isomerase, enolase and NAD-dependent glycerol-3-phosphate dehydrogenase), two proteins involved in pH homeostasis (ATP synthase subunits AtpA and AtpB), two stress response proteins (chaperones DnaK and GroEL) and one translation-related protein (30S ribosomal protein S2) were up-regulated by three of the four adaptation treatments examined. The increased synthesis of these stress proteins might play a critical protective role in the cellular defense against heat, cold, acid and bile salt stresses. Copyright © 2017 Elsevier Ltd. All rights reserved.

  18. Community phylogenetics at the biogeographical scale: cold tolerance, niche conservatism and the structure of North American forests.

    PubMed

    Hawkins, Bradford A; Rueda, Marta; Rangel, Thiago F; Field, Richard; Diniz-Filho, José Alexandre F; Linder, Peter

    2014-01-01

    Aim The fossil record has led to a historical explanation for forest diversity gradients within the cool parts of the Northern Hemisphere, founded on a limited ability of woody angiosperm clades to adapt to mid-Tertiary cooling. We tested four predictions of how this should be manifested in the phylogenetic structure of 91,340 communities: (1) forests to the north should comprise species from younger clades (families) than forests to the south; (2) average cold tolerance at a local site should be associated with the mean family age (MFA) of species; (3) minimum temperature should account for MFA better than alternative environmental variables; and (4) traits associated with survival in cold climates should evolve under a niche conservatism constraint. Location The contiguous United States. Methods We extracted angiosperms from the US Forest Service's Forest Inventory and Analysis database. MFA was calculated by assigning age of the family to which each species belongs and averaging across the species in each community. We developed a phylogeny to identify phylogenetic signal in five traits: realized cold tolerance, seed size, seed dispersal mode, leaf phenology and height. Phylogenetic signal representation curves and phylogenetic generalized least squares were used to compare patterns of trait evolution against Brownian motion. Eleven predictors structured at broad or local scales were generated to explore relationships between environment and MFA using random forest and general linear models. Results Consistent with predictions, (1) southern communities comprise angiosperm species from older families than northern communities, (2) cold tolerance is the trait most strongly associated with local MFA, (3) minimum temperature in the coldest month is the environmental variable that best describes MFA, broad-scale variables being much stronger correlates than local-scale variables, and (4) the phylogenetic structures of cold tolerance and at least one other trait associated with survivorship in cold climates indicate niche conservatism. Main conclusions Tropical niche conservatism in the face of long-term climate change, probably initiated in the Late Cretaceous associated with the rise of the Rocky Mountains, is a strong driver of the phylogenetic structure of the angiosperm component of forest communities across the USA. However, local deterministic and/or stochastic processes account for perhaps a quarter of the variation in the MFA of local communities.

  19. Host-mediated shift in the cold tolerance of an invasive insect

    Treesearch

    Amy C. Morey; Robert C. Venette; Erica C. Nystrom Santacruz; Laurel A. Mosca; W. D. Hutchison

    2016-01-01

    While many insects cannot survive the formation of ice within their bodies, a few species can. On the evolutionary continuum from freeze-intolerant (i.e., freeze-avoidant) to freeze-tolerant insects, intermediates likely exist that can withstand some ice formation, but not enough to be considered fully freeze tolerant. Theory suggests that freeze tolerance should be...

  20. Does Resistance to Buprofezin Improve Heat and Cold Tolerance of Laodelphax striatellus (Hemiptera: Delphacidae)?

    PubMed

    Li, Yongteng; Zhang, Yueliang; Liu, Xiangdong; Guo, Huifang

    2017-08-01

    There is ample evidence that insecticide resistance causes fitness costs and benefits in pests, while the impact of insecticide resistance on thermotolerance of pests is mostly unclear. The Laodelphax striatellus (Fallén), is an important rice insect pest, which has developed resistance to buprofezin in China. Here, we investigated differences in heat tolerance and cold tolerance among L. striatellus lines with variable buprofezin resistance. The lethal time for 50% of the individuals to die (LT50) at 40 °C increased with an increase in buprofezin resistance level, whereas both the survival rate under -22 °C and the supercooling point of planthoppers did not differ significantly between resistant and susceptible strains. The metabolic enzyme carboxylesterase was found to have an association with buprofezin resistance. Our research showed that buprofezin resistance was positively related with heat tolerance in L. striatellus, but it had no effect on cold tolerance. Insecticide resistance in L. striatellus may therefore have broader implications for the ecology of L. striatellus, and the management of buprofezin resistance in this pest may be challenging. © The Authors 2017. Published by Oxford University Press on behalf of Entomological Society of America. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  1. 40 CFR 180.151 - Ethylene oxide; tolerances for residues.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ...) PESTICIDE PROGRAMS TOLERANCES AND EXEMPTIONS FOR PESTICIDE CHEMICAL RESIDUES IN FOOD Specific Tolerances..., except basil 7 Licorice, roots 7 Peppermint, tops, dried 7 Sesame, seed 7 Spearmint, tops, dried 7... 19, dried, except basil 940 Licorice, roots 940 Peppermint, tops, dried 940 Sesame, seed 940...

  2. 40 CFR 180.151 - Ethylene oxide; tolerances for residues.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ...) PESTICIDE PROGRAMS TOLERANCES AND EXEMPTIONS FOR PESTICIDE CHEMICAL RESIDUES IN FOOD Specific Tolerances..., except basil 7 Licorice, roots 7 Peppermint, tops, dried 7 Sesame, seed 7 Spearmint, tops, dried 7... 19, dried, except basil 940 Licorice, roots 940 Peppermint, tops, dried 940 Sesame, seed 940...

  3. 40 CFR 180.151 - Ethylene oxide; tolerances for residues.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ...) PESTICIDE PROGRAMS TOLERANCES AND EXEMPTIONS FOR PESTICIDE CHEMICAL RESIDUES IN FOOD Specific Tolerances..., except basil 7 Licorice, roots 7 Peppermint, tops, dried 7 Sesame, seed 7 Spearmint, tops, dried 7... 19, dried, except basil 940 Licorice, roots 940 Peppermint, tops, dried 940 Sesame, seed 940...

  4. 40 CFR 180.151 - Ethylene oxide; tolerances for residues.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ...) PESTICIDE PROGRAMS TOLERANCES AND EXEMPTIONS FOR PESTICIDE CHEMICAL RESIDUES IN FOOD Specific Tolerances..., except basil 7 Licorice, roots 7 Peppermint, tops, dried 7 Sesame, seed 7 Spearmint, tops, dried 7... 19, dried, except basil 940 Licorice, roots 940 Peppermint, tops, dried 940 Sesame, seed 940...

  5. 40 CFR 180.151 - Ethylene oxide; tolerances for residues.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ...) PESTICIDE PROGRAMS TOLERANCES AND EXEMPTIONS FOR PESTICIDE CHEMICAL RESIDUES IN FOOD Specific Tolerances..., except basil 7 Licorice, roots 7 Peppermint, tops, dried 7 Sesame, seed 7 Spearmint, tops, dried 7... 19, dried, except basil 940 Licorice, roots 940 Peppermint, tops, dried 940 Sesame, seed 940...

  6. Arginine and proline applied as food additives stimulate high freeze tolerance in larvae of Drosophila melanogaster.

    PubMed

    Koštál, Vladimír; Korbelová, Jaroslava; Poupardin, Rodolphe; Moos, Martin; Šimek, Petr

    2016-08-01

    The fruit fly Drosophila melanogaster is an insect of tropical origin. Its larval stage is evolutionarily adapted for rapid growth and development under warm conditions and shows high sensitivity to cold. In this study, we further developed an optimal acclimation and freezing protocol that significantly improves larval freeze tolerance (an ability to survive at -5°C when most of the freezable fraction of water is converted to ice). Using the optimal protocol, freeze survival to adult stage increased from 0.7% to 12.6% in the larvae fed standard diet (agar, sugar, yeast, cornmeal). Next, we fed the larvae diets augmented with 31 different amino compounds, administered in different concentrations, and observed their effects on larval metabolomic composition, viability, rate of development and freeze tolerance. While some diet additives were toxic, others showed positive effects on freeze tolerance. Statistical correlation revealed tight association between high freeze tolerance and high levels of amino compounds involved in arginine and proline metabolism. Proline- and arginine-augmented diets showed the highest potential, improving freeze survival to 42.1% and 50.6%, respectively. Two plausible mechanisms by which high concentrations of proline and arginine might stimulate high freeze tolerance are discussed: (i) proline, probably in combination with trehalose, could reduce partial unfolding of proteins and prevent membrane fusions in the larvae exposed to thermal stress (prior to freezing) or during freeze dehydration; (ii) both arginine and proline are exceptional among amino compounds in their ability to form supramolecular aggregates which probably bind partially unfolded proteins and inhibit their aggregation under increasing freeze dehydration. © 2016. Published by The Company of Biologists Ltd.

  7. Global transcriptional profiling of a cold-tolerant rice variety under moderate cold stress reveals different cold stress response mechanisms.

    PubMed

    Zhao, Junliang; Zhang, Shaohong; Yang, Tifeng; Zeng, Zichong; Huang, Zhanghui; Liu, Qing; Wang, Xiaofei; Leach, Jan; Leung, Hei; Liu, Bin

    2015-07-01

    Gene expression profiling under severe cold stress (4°C) has been conducted in plants including rice. However, rice seedlings are frequently exposed to milder cold stresses under natural environments. To understand the responses of rice to milder cold stress, a moderately low temperature (8°C) was used for cold treatment prior to genome-wide profiling of gene expression in a cold-tolerant japonica variety, Lijiangxintuanheigu (LTH). A total of 5557 differentially expressed genes (DEGs) were found at four time points during moderate cold stress. Both the DEGs and differentially expressed transcription factor genes were clustered into two groups based on their expression, suggesting a two-phase response to cold stress and a determinative role of transcription factors in the regulation of stress response. The induction of OsDREB2A under cold stress is reported for the first time in this study. Among the anti-oxidant enzyme genes, glutathione peroxidase (GPX) and glutathione S-transferase (GST) were upregulated, suggesting that the glutathione system may serve as the main reactive oxygen species (ROS) scavenger in LTH. Changes in expression of genes in signal transduction pathways for auxin, abscisic acid (ABA) and salicylic acid (SA) imply their involvement in cold stress responses. The induction of ABA response genes and detection of enriched cis-elements in DEGs suggest that ABA signaling pathway plays a dominant role in the cold stress response. Our results suggest that rice responses to cold stress vary with the specific temperature imposed and the rice genotype. © 2014 Scandinavian Plant Physiology Society.

  8. Proteome dynamics of cold-acclimating Rhododendron species contrasting in their freezing tolerance and thermonasty response

    USDA-ARS?s Scientific Manuscript database

    In the present study we used 2D-DIGE technique to document the Rhododendron proteome during the seasonal development of cold hardiness. We selected two genotypes with different cold hardiness levels. This enabled us to perform comparative analysis of their proteome profiles and screen differentially...

  9. Can Winter-Active Bumblebees Survive the Cold? Assessing the Cold Tolerance of Bombus terrestris audax and the Effects of Pollen Feeding

    PubMed Central

    Owen, Emily L.; Bale, Jeffrey S.; Hayward, Scott A. L.

    2013-01-01

    There is now considerable evidence that climate change is disrupting the phenology of key pollinator species. The recently reported UK winter activity of the bumblebee Bombus terrestris brings a novel set of thermal challenges to bumblebee workers that would typically only be exposed to summer conditions. Here we assess the ability of workers to survive acute and chronic cold stress (via lower lethal temperatures and lower lethal times at 0°C), the capacity for rapid cold hardening (RCH) and the influence of diet (pollen versus nectar consumption) on supercooling points (SCP). Comparisons are made with chronic cold stress indices and SCPs in queen bumblebees. Results showed worker bees were able to survive acute temperatures likely to be experienced in a mild winter, with queens significantly more tolerant to chronic cold temperature stress. The first evidence of RCH in any Hymenoptera is shown. In addition, dietary manipulation indicated the consumption of pollen significantly increased SCP temperature. These results are discussed in the light of winter active bumblebees and climate change. PMID:24224036

  10. Freezing tolerance and the histology of recovering nodes in St. Augustinegrass

    USDA-ARS?s Scientific Manuscript database

    St. Augustinegrass [Stenataphrum secundatum (Walt.) Kuntze] is a coarse-textured turfgrass commonly utilized for its excellent shade tolerance. However, inferior cold tolerance in comparison to other warm-season grasses limits its range primarily to the southeastern U. S., The objectives of this stu...

  11. Effects of Videogame Distraction using a Virtual Reality Type Head-Mounted Display Helmet on Cold Pressor Pain in Children

    PubMed Central

    Weiss, Karen E.; Dillinger Clendaniel, Lindsay; Law, Emily F.; Ackerman, Claire Sonntag; McKenna, Kristine D.

    2009-01-01

    Objective To test whether a head-mounted display helmet enhances the effectiveness of videogame distraction for children experiencing cold pressor pain. Method Forty-one children, aged 6–14 years, underwent one or two baseline cold pressor trials followed by two distraction trials in which they played the same videogame with and without the helmet in counterbalanced order. Pain threshold (elapsed time until the child reported pain) and pain tolerance (total time the child kept the hand submerged in the cold water) were measured for each cold pressor trial. Results Both distraction conditions resulted in improved pain tolerance relative to baseline. Older children appeared to experience additional benefits from using the helmet, whereas younger children benefited equally from both conditions. The findings suggest that virtual reality technology can enhance the effects of distraction for some children. Research is needed to identify the characteristics of children for whom this technology is best suited. PMID:18367495

  12. In Vivo Assessment of Cold Tolerance through Chlorophyll-a Fluorescence in Transgenic Zoysiagrass Expressing Mutant Phytochrome A

    PubMed Central

    Gururani, Mayank Anand; Venkatesh, Jelli; Ganesan, Markkandan; Strasser, Reto Jörg; Han, Yunjeong; Kim, Jeong-Il; Lee, Hyo-Yeon; Song, Pill-Soon

    2015-01-01

    Chlorophyll-a fluorescence analysis provides relevant information about the physiology of plants growing under abiotic stress. In this study, we evaluated the influence of cold stress on the photosynthetic machinery of transgenic turfgrass, Zoysia japonica, expressing oat phytochrome A (PhyA) or a hyperactive mutant phytochrome A (S599A) with post-translational phosphorylation blocked. Biochemical analysis of zoysiagrass subjected to cold stress revealed reduced levels of hydrogen peroxide, increased proline accumulation, and enhanced specific activities of antioxidant enzymes compared to those of control plants. Detailed analyses of the chlorophyll-a fluorescence data through the so-called OJIP test exhibited a marked difference in the physiological status among transgenic and control plants. Overall, these findings suggest an enhanced level of cold tolerance in S599A zoysiagrass cultivars as reflected in the biochemical and physiological analyses. Further, we propose that chlorophyll-a fluorescence analysis using OJIP test is an efficient tool in determining the physiological status of plants under cold stress conditions. PMID:26010864

  13. [Analysis of structural characteristics of alpha-tubulins in plants with enhanced cold tolerance].

    PubMed

    Nyporko, A Iu; Demchuk, O N; Blium, Ia B

    2003-01-01

    The uniqueness of the point substitutions in the sequences of two alpha-tubulin isotypes from psychrophilic alga Chloromonas that can determine the increased cold tolerance of this alga was analyzed. The comparison of all known amino acid sequences of plant alpha-tubulins enabled to ascertain that only M268-->V replacement is unique and may have a significant influence on spatial structure of plant alpha-tubulins. Modeling of molecular surfaces of alpha-tubulins from Chloromonas, Chalmydomonas reinhardtii and goose grass Eleusine indica showed that insertion of the amino acid replacement M268-->V into the sequence of goose grace tubulin led to the likening of this protein surface to the surface of native alpha-tubulin from Chloromonas. Alteration of local hydrophobic properties of alpha-tubulin molecular surface in interdimeric contact zone as a result of the mentioned replacement was shown that may play important role in increasing the level of cold resistance of microtubules. The crucial role of amino acid residue in 268 position for forming the interdimeric contact surface of alpha-tubulin molecule was revealed. The assumption is made about the importance of replacements at this position for plant tolerance to abiotic factors of different nature (cold, herbicides).

  14. Putrescine accumulation in Arabidopsis thaliana transgenic lines enhances tolerance to dehydration and freezing stress

    PubMed Central

    Alet, Analía I; Sanchez, Diego H; Cuevas, Juan C; del Valle, Secundino; Altabella, Teresa; Tiburcio, Antonio F; Marco, Francisco; Ferrando, Alejandro; Espasandín, Fabiana D; González, María E; Carrasco, Pedro

    2011-01-01

    Polyamines have been globally associated to plant responses to abiotic stress. Particularly, putrescine has been related to a better response to cold and dehydration stresses. It is known that this polyamine is involved in cold tolerance, since Arabidopsis thaliana plants mutated in the key enzyme responsible for putrescine synthesis (arginine decarboxilase, ADC; EC 4.1.1.19) are more sensitive than the wild type to this stress. Although it is speculated that the overexpression of ADC genes may confer tolerance, this is hampered by pleiotropic effects arising from the constitutive expression of enzymes from the polyamine metabolism. Here, we present our work using A. thaliana transgenic plants harboring the ADC gene from oat under the control of a stress-inducible promoter (pRD29A) instead of a constitutive promoter. The transgenic lines presented in this work were more resistant to both cold and dehydration stresses, associated with a concomitant increment in endogenous putrescine levels under stress. Furthermore, the increment in putrescine upon cold treatment correlates with the induction of known stress-responsive genes, and suggests that putrescine may be directly or indirectly involved in ABA metabolism and gene expression. PMID:21330789

  15. Putrescine accumulation in Arabidopsis thaliana transgenic lines enhances tolerance to dehydration and freezing stress.

    PubMed

    Alet, Analía I; Sanchez, Diego H; Cuevas, Juan C; Del Valle, Secundino; Altabella, Teresa; Tiburcio, Antonio F; Marco, Francisco; Ferrando, Alejandro; Espasandín, Fabiana D; González, María E; Ruiz, Oscar A; Carrasco, Pedro

    2011-02-01

    Polyamines have been globally associated to plant responses to abiotic stress. Particularly, putrescine has been related to a better response to cold and dehydration stresses. It is known that this polyamine is involved in cold tolerance, since Arabidopsis thaliana plants mutated in the key enzyme responsible for putrescine synthesis (arginine decarboxilase, ADC; EC 4.1.1.19) are more sensitive than the wild type to this stress. Although it is speculated that the over-expression of ADC genes may confer tolerance, this is hampered by pleiotropic effects arising from the constitutive expression of enzymes from the polyamine metabolism. Here, we present our work using A. thaliana transgenic plants harboring the ADC gene from oat under the control of a stress-inducible promoter (pRD29A) instead of a constitutive promoter. The transgenic lines presented in this work were more resistant to both cold and dehydration stresses, associated with a concomitant increment in endogenous putrescine levels under stress. Furthermore, the increment in putrescine upon cold treatment correlated with the induction of known stress-responsive genes, and suggested that putrescine may be directly or indirectly involved in ABA metabolism and gene expression.

  16. Overexpression of Arabidopsis NADPH-dependent thioredoxin reductase C (AtNTRC) confers freezing and cold shock tolerance to plants

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Moon, Jeong Chan; Lee, Sangmin; Shin, Su Young

    Overexpression of AtNTRC (AtNTRC{sup OE}) in Arabidopsis thaliana led to a freezing and cold stress tolerance, whereas a knockout mutant (atntrc) showed a stress-sensitive phenotype. Biochemical analyses showed that the recombinant AtNTRC proteins exhibited a cryoprotective activity for malate dehydrogenase and lactic dehydrogenase. Furthermore, conclusive evidence of its interaction with nucleic acids in vitro is provided here on the basis of gel shift and electron microscopy analysis. Recombinant AtNTRC efficiently protected RNA and DNA from RNase A and metal catalyzed oxidation damage, respectively. The C-terminal thioredoxin domain is required for the nucleic acid–protein complex formation. From these results, it can bemore » hypothesized that AtNTRC, which is known to be an electron donor of peroxiredoxin, contributes the stability of macromolecules under cold stress. - Highlights: • AtNTRC has a cryoprotective activity in vitro. • Overexpression of AtNTRC increases tolerance to freezing and cold shock stresses. • Thioredoxin domain of AtNTRC protects nucleic acids in vitro. • AtNTRC inhibits protein aggregation under freezing stress in vitro.« less

  17. The effect of landscape complexity and microclimate on the thermal tolerance of a pest insect.

    PubMed

    Alford, Lucy; Tougeron, Kévin; Pierre, Jean-Sébastien; Burel, Françoise; van Baaren, Joan

    2017-03-21

    Landscape changes are known to exacerbate the impacts of climate change. As such, understanding the combined effect of climate and landscape on agroecosystems is vital if we are to maintain the function of agroecosystems. This study aimed to elucidate the effects of agricultural landscape complexity on the microclimate and thermal tolerance of an aphid pest to better understand how landscape and climate may interact to affect the thermal tolerance of pest species within the context of global climate change. Meteorological data were measured at the landscape level, and cereal aphids (Sitobion avenae, Metopolophium dirhodum and Rhopalosiphum padi) sampled, from contrasting landscapes (simple and complex) in winter 2013/2014 and spring 2014 in cereal fields of Brittany, France. Aphids were returned to the laboratory and the effect of landscape of origin on aphid cold tolerance (as determined by CT min ) was investigated. Results revealed that local landscape complexity significantly affected microclimate, with simple homogenous landscapes being on average warmer, but with greater temperature variation. Landscape complexity was shown to impact aphid cold tolerance, with aphids from complex landscapes being more cold tolerant than those from simple landscapes in both winter and spring, but with differences among species. This study highlights that future changes to land use could have implications for the thermal tolerance and adaptability of insects. Furthermore, not all insect species respond in a similar way to microhabitat and microclimate, which could disrupt important predator-prey relationships and the ecosystem service they provide. © 2017 Institute of Zoology, Chinese Academy of Sciences.

  18. Persistent post-surgical pain and experimental pain sensitivity in the Tromsø study: comorbid pain matters.

    PubMed

    Johansen, Aslak; Schirmer, Henrik; Stubhaug, Audun; Nielsen, Christopher S

    2014-02-01

    In a large survey incorporating medical examination (N=12,981), information on chronic pain and surgery was collected, and sensitivity to different pain modalities was tested. Tolerance to the cold pressor test was analysed with survival statistics for 10,486 individuals, perceived cold pressor pain intensity was calculated for 10,367 individuals, heat pain threshold was assessed for 4,054 individuals, and pressure pain sensitivity for 4,689 individuals. Persistent post-surgical pain, defined by self-report, was associated with lower cold pressor tolerance (sex-adjusted hazard ratio=1.34, 95% confidence interval=1.08-1.66), but not when adjusting for other chronic pain. Other experimental pain modalities did not differentiate between individuals with or without post-surgical pain. Of the individuals with chronic pain (N=3352), 6.2% indicated surgery as a cause, although only 0.5% indicated surgery as the only cause. The associations found between persistent post-surgical pain and cold pressor tolerance is largely explained by the co-existence of chronic pain from other causes. We conclude that most cases of persistent post-surgical pain are coexistent with other chronic pain, and that, in an unselected post-surgical population, persistent post-surgical pain is not significantly associated with pain sensitivity when controlling for comorbid pain from other causes. A low prevalence of self-reported persistent pain from surgery attenuates statistically significant associations. We hypothesize that general chronic pain is associated with central changes in pain processing as expressed by reduced tolerance for the cold pressor test. Copyright © 2013 International Association for the Study of Pain. Published by Elsevier B.V. All rights reserved.

  19. CaPUB1, a Hot Pepper U-box E3 Ubiquitin Ligase, Confers Enhanced Cold Stress Tolerance and Decreased Drought Stress Tolerance in Transgenic Rice (Oryza sativa L.).

    PubMed

    Min, Hye Jo; Jung, Ye Jin; Kang, Bin Goo; Kim, Woo Taek

    2016-03-01

    Abiotic stresses such as drought and low temperature critically restrict plant growth, reproduction, and productivity. Higher plants have developed various defense strategies against these unfavorable conditions. CaPUB1 (Capsicum annuum Putative U-box protein 1) is a hot pepper U-box E3 Ub ligase. Transgenic Arabidopsis plants that constitutively expressed CaPUB1 exhibited drought-sensitive phenotypes, suggesting that it functions as a negative regulator of the drought stress response. In this study, CaPUB1 was over-expressed in rice (Oryza sativa L.), and the phenotypic properties of transgenic rice plants were examined in terms of their drought and cold stress tolerance. Ubi:CaPUB1 T3 transgenic rice plants displayed phenotypes hypersensitive to dehydration, suggesting that its role in the negative regulation of drought stress response is conserved in dicot Arabidopsis and monocot rice plants. In contrast, Ubi:CaPUB1 progeny exhibited phenotypes markedly tolerant to prolonged low temperature (4°C) treatment, compared to those of wild-type plants, as determined by survival rates, electrolyte leakage, and total chlorophyll content. Cold stress-induced marker genes, including DREB1A, DREB1B, DREB1C, and Cytochrome P450, were more up-regulated by cold treatment in Ubi:CaPUB1 plants than in wild-type plants. These results suggest that CaPUB1 serves as both a negative regulator of the drought stress response and a positive regulator of the cold stress response in transgenic rice plants. This raises the possibility that CaPUB1 participates in the cross-talk between drought and low-temperature signaling pathways.

  20. Combining gene expression and genetic analyses to identify candidate genes involved in cold responses in pea.

    PubMed

    Legrand, Sylvain; Marque, Gilles; Blassiau, Christelle; Bluteau, Aurélie; Canoy, Anne-Sophie; Fontaine, Véronique; Jaminon, Odile; Bahrman, Nasser; Mautord, Julie; Morin, Julie; Petit, Aurélie; Baranger, Alain; Rivière, Nathalie; Wilmer, Jeroen; Delbreil, Bruno; Lejeune-Hénaut, Isabelle

    2013-09-01

    Cold stress affects plant growth and development. In order to better understand the responses to cold (chilling or freezing tolerance), we used two contrasted pea lines. Following a chilling period, the Champagne line becomes tolerant to frost whereas the Terese line remains sensitive. Four suppression subtractive hybridisation libraries were obtained using mRNAs isolated from pea genotypes Champagne and Terese. Using quantitative polymerase chain reaction (qPCR) performed on 159 genes, 43 and 54 genes were identified as differentially expressed at the initial time point and during the time course study, respectively. Molecular markers were developed from the differentially expressed genes and were genotyped on a population of 164 RILs derived from a cross between Champagne and Terese. We identified 5 candidate genes colocalizing with 3 different frost damage quantitative trait loci (QTL) intervals and a protein quantity locus (PQL) rich region previously reported. This investigation revealed the role of constitutive differences between both genotypes in the cold responses, in particular with genes related to glycine degradation pathway that could confer to Champagne a better frost tolerance. We showed that freezing tolerance involves a decrease of expression of genes related to photosynthesis and the expression of a gene involved in the production of cysteine and methionine that could act as cryoprotectant molecules. Although it remains to be confirmed, this study could also reveal the involvement of the jasmonate pathway in the cold responses, since we observed that two genes related to this pathway were mapped in a frost damage QTL interval and in a PQL rich region interval, respectively. Copyright © 2013 Elsevier GmbH. All rights reserved.

  1. Low temperature tolerance and cold hardening of cacti

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Nobel, P.S.

    Reduced uptake by the chlorenchyma cells of cacti of a stain (neutral red) was used as an indicator of low-temperature damage resulting from cooling stems in the laboratory. Necrosis set in a few degrees below the temperature at which the fraction of cells accumulating stain was reduced by 50%. Coryphantha vivipara, Opuntia polyacantha, and Pediocactus simpsonii, which range to over 3000 m altitude in southern Wyoming, were quite cold tolerant (50% inhibition of staining occurred from -17/sup 0/ to -20/sup 0/C), while O. bigelovii and O. ramosissima, which are restricted to much warmer habitats, were not very cold tolerant (50%more » inhibition from -4/sup 0/ to -7/sup 0/). Relationships among tissue cold sensitivity, morphological features which protect the stems from low temperatures, and the occurrence of species in progressively colder regions were investigated. Differences in tissue cold sensitivity accounted for the =600 m higher elevational limit of Coryphantha vivipara var. rosea compared to the morphologically similar var. deserti in southern Nevada. In contrast, morphological differences alone could adequately explain the relative northern limits of the columnar cacti Carnegiea gigantea vs. Stenocereus gummosus and the barrel cacti Ferocactus acanthodes vs. F. wislizenii in the southwestern United States, as previously indicated using a computer model. Differences in both morphology and tissue cold sensitivity apparently influenced the relative northern ranges of Lophocereus schottii with respect to the other columnar cacti and F. covillei with respect to the other barrel cacti, as well as the relative elevational range of Denmoza rhodacantha with respect to Trichocereus candicans in northcentral Argentina. Cold hardening in response to decreasing day/night air temperatures was observed for 10 species.« less

  2. Transcriptome sequencing and identification of cold tolerance genes in hardy Corylus species (C. heterophylla Fisch) floral buds.

    PubMed

    Chen, Xin; Zhang, Jin; Liu, Qingzhong; Guo, Wei; Zhao, Tiantian; Ma, Qinghua; Wang, Guixi

    2014-01-01

    The genus Corylus is an important woody species in Northeast China. Its products, hazelnuts, constitute one of the most important raw materials for the pastry and chocolate industry. However, limited genetic research has focused on Corylus because of the lack of genomic resources. The advent of high-throughput sequencing technologies provides a turning point for Corylus research. In the present study, we performed de novo transcriptome sequencing for the first time to produce a comprehensive database for the Corylus heterophylla Fisch floral buds. The C. heterophylla Fisch floral buds transcriptome was sequenced using the Illumina paired-end sequencing technology. We produced 28,930,890 raw reads and assembled them into 82,684 contigs. A total of 40,941 unigenes were identified, among which 30,549 were annotated in the NCBI Non-redundant (Nr) protein database and 18,581 were annotated in the Swiss-Prot database. Of these annotated unigenes, 25,311 and 10,514 unigenes were assigned to gene ontology (GO) categories and clusters of orthologous groups (COG), respectively. We could map 17,207 unigenes onto 128 pathways using the Kyoto Encyclopedia of Genes and Genomes Pathway (KEGG) database. Additionally, based on the transcriptome, we constructed a candidate cold tolerance gene set of C. heterophylla Fisch floral buds. The expression patterns of selected genes during four stages of cold acclimation suggested that these genes might be involved in different cold responsive stages in C. heterophylla Fisch floral buds. The transcriptome of C. heterophylla Fisch floral buds was deep sequenced, de novo assembled, and annotated, providing abundant data to better understand the C. heterophylla Fisch floral buds transcriptome. Candidate genes potentially involved in cold tolerance were identified, providing a material basis for future molecular mechanism analysis of C. heterophylla Fisch floral buds tolerant to cold stress.

  3. Overexpression of the OsIMP Gene Increases the Accumulation of Inositol and Confers Enhanced Cold Tolerance in Tobacco through Modulation of the Antioxidant Enzymes' Activities.

    PubMed

    Zhang, Rong-Xiang; Qin, Li-Jun; Zhao, De-Gang

    2017-07-20

    Inositol is a cyclic polyol that is involved in various physiological processes, including signal transduction and stress adaptation in plants. l- myo -inositol monophosphatase (IMPase) is one of the metal-dependent phosphatase family members and catalyzes the last reaction step of biosynthesis of inositol. Although increased IMPase activity induced by abiotic stress has been reported in chickpea plants, the role and regulation of the IMP gene in rice ( Oryza sativa L.) remains poorly understood. In the present work, we obtained a full-length cDNA sequence coding IMPase in the cold tolerant rice landraces in Gaogonggui, which is named as OsIMP . Multiple alignment results have displayed that this sequence has characteristic signature motifs and conserved enzyme active sites of the phosphatase super family. Phylogenetic analysis showed that IMPase is most closely related to that of the wild rice Oryza brachyantha , while transcript analysis revealed that the expression of the OsIMP is significantly induced by cold stress and exogenous abscisic acid (ABA) treatment. Meanwhile, we cloned the 5' flanking promoter sequence of the OsIMP gene and identified several important cis -acting elements, such as LTR (low-temperature responsiveness), TCA-element (salicylic acid responsiveness), ABRE-element (abscisic acid responsiveness), GARE-motif (gibberellin responsive), MBS (MYB Binding Site) and other cis -acting elements related to defense and stress responsiveness. To further investigate the potential function of the OsIMP gene, we generated transgenic tobacco plants overexpressing the OsIMP gene and the cold tolerance test indicated that these transgenic tobacco plants exhibit improved cold tolerance. Furthermore, transgenic tobacco plants have a lower level of hydrogen peroxide (H₂O₂) and malondialdehyde (MDA), and a higher content of total chlorophyll as well as increased antioxidant enzyme activities of superoxide dismutase (SOD), catalase (CAT) and peroxidase (POD), when compared to wild type (WT) tobacco plants under normal and cold stress conditions.

  4. Isopods Failed to Acclimate Their Thermal Sensitivity of Locomotor Performance during Predictable or Stochastic Cooling

    PubMed Central

    Schuler, Matthew S.; Cooper, Brandon S.; Storm, Jonathan J.; Sears, Michael W.; Angilletta, Michael J.

    2011-01-01

    Most organisms experience environments that vary continuously over time, yet researchers generally study phenotypic responses to abrupt and sustained changes in environmental conditions. Gradual environmental changes, whether predictable or stochastic, might affect organisms differently than do abrupt changes. To explore this possibility, we exposed terrestrial isopods (Porcellio scaber) collected from a highly seasonal environment to four thermal treatments: (1) a constant 20°C; (2) a constant 10°C; (3) a steady decline from 20° to 10°C; and (4) a stochastic decline from 20° to 10°C that mimicked natural conditions during autumn. After 45 days, we measured thermal sensitivities of running speed and thermal tolerances (critical thermal maximum and chill-coma recovery time). Contrary to our expectation, thermal treatments did not affect the thermal sensitivity of locomotion; isopods from all treatments ran fastest at 33° to 34°C and achieved more than 80% of their maximal speed over a range of 10° to 11°C. Isopods exposed to a stochastic decline in temperature tolerated cold the best, and isopods exposed to a constant temperature of 20°C tolerated cold the worst. No significant variation in heat tolerance was observed among groups. Therefore, thermal sensitivity and heat tolerance failed to acclimate to any type of thermal change, whereas cold tolerance acclimated more during stochastic change than it did during abrupt change. PMID:21698113

  5. Seasonal- and temperature-dependent variation in CNS ascorbate and glutathione levels in anoxia-tolerant turtles.

    PubMed

    Pérez-Pinzón, M A; Rice, M E

    1995-12-24

    We determined the ascorbic acid (ascorbate) and glutathione (GSH) contents of eight regions of the CNS from anoxia-tolerant turtles collected in summer and in winter. Ascorbate was of special interest because it is found in exceptionally high levels in the turtle CNS. The temperature-dependence of CNS ascorbate content was established by comparing levels in animals collected from two geographic zones with different average winter temperatures and in animals re-acclimated to different temperatures in the laboratory. The analytical method was liquid chromatography with electrochemical detection. Turtle ascorbate levels were 30-40% lower in animals acclimatized to winter (2 degrees C) than to summer (23 degrees C) in all regions of the CNS. Similarly, GSH levels were 20-30% lower in winter than in summer. Winter ascorbate levels were higher in turtles from Louisiana (19 degrees C) than in turtles acclimatized to winter in Wisconsin (2 degrees C). Summer and winter levels of ascorbate could be reversed by re-acclimating animals to cold (1 degree C) or warm (23 degrees C) temperatures for at least one week. CNS water content did not differ between cold- and warm-acclimated turtles. Taken together, the data indicated that ascorbate and GSH undergo significant seasonal variation and that the catalyst for change is environmental temperature. Steady-state ascorbate content showed a linear dependence on temperature, with a slope of 1.5% per degree C that was independent of CNS region. Lower levels of cerebral antioxidants in turtles exposed to colder temperatures were consistent with the decreased rate of cerebral metabolism that accompanies winter hibernation. Cerebral ascorbate and GSH levels in the turtle remained similar to or higher than those in mammals, even during winter, however. These findings support the notion that unique mechanisms of antioxidant regulation in the turtle contribute to their tolerance of the hypoxia-reoxygenation that characterizes diving behavior.

  6. The secrets of cold tolerance at the seedling stage and heading in rice as revealed by association mapping

    USDA-ARS?s Scientific Manuscript database

    Cold stress at the seedling stage limits rice (Oryza sativa L.) production in temperate regions or at high elevations in the tropics due to poor plant stand establishment and delayed maturity. At the heading stage, cold temperature causes sterility, thus decreasing grain yield. To explore the mechan...

  7. Identification of Sweet Sorghum accessions with seedling cold tolerance using both lab cold germination test and field early Spring planting evaluation

    USDA-ARS?s Scientific Manuscript database

    Cultivars with quick seedling emergence and stand establishment at early spring cold conditions may be planted early in the same region with an extended period of plant growth and can potentially increase either grain yield, stem sugar yield, or biomass production of sorghum. Planting cultivars with...

  8. Induction of DREB2A pathway with repression of E2F, Jasmonic acid biosynthetic and photosynthesis pathways in cold acclimation specific freeze resistant wheat crown

    USDA-ARS?s Scientific Manuscript database

    Winter wheat lines can achieve cold acclimation (development of tolerance to freezing temperatures) and vernalization (delay in transition from vegetative to reproductive phase) in response to low non-freezing temperatures. To describe cold acclimation specific processes and pathways, we utilized co...

  9. Genotype dependent burst of transposable element expression in crowns of hexaploid wheat (Triticum aestivum L.) during cold acclimation

    USDA-ARS?s Scientific Manuscript database

    The expression of 1,613 transposable elements (TEs) represented in the Affymetix Wheat Genome Chip was examined during cold treatment in crowns of 4 hexaploid wheat genotypes that vary in tolerance to cold and in flowering time. The TE expression profiles showed a constant level of expression throug...

  10. Effects of Videogame Distraction and a Virtual Reality Type Head-Mounted Display Helmet on Cold Pressor Pain in Young Elementary School-Aged Children

    PubMed Central

    Weiss, Karen E.; Law, Emily F.; Sil, Soumitri; Herbert, Linda Jones; Horn, Susan Berrin; Wohlheiter, Karen; Ackerman, Claire Sonntag

    2010-01-01

    Objective This study examined the effects of videogame distraction and a virtual reality (VR) type head-mounted display helmet for children undergoing cold pressor pain. Methods Fifty children between the ages of 6 and 10 years underwent a baseline cold pressor trial followed by two cold pressor trials in which interactive videogame distraction was delivered via a VR helmet or without a VR helmet in counterbalanced order. Results As expected, children demonstrated significant improvements in pain threshold and pain tolerance during both distraction conditions. However, the two distraction conditions did not differ in effectiveness. Conclusions Using the VR helmet did not result in improved pain tolerance over and above the effects of interactive videogame distraction without VR technology. Clinical implications and possible developmental differences in elementary school-aged children's ability to use VR technology are discussed. PMID:19786489

  11. Effects of videogame distraction and a virtual reality type head-mounted display helmet on cold pressor pain in young elementary school-aged children.

    PubMed

    Dahlquist, Lynnda M; Weiss, Karen E; Law, Emily F; Sil, Soumitri; Herbert, Linda Jones; Horn, Susan Berrin; Wohlheiter, Karen; Ackerman, Claire Sonntag

    2010-07-01

    This study examined the effects of videogame distraction and a virtual reality (VR) type head-mounted display helmet for children undergoing cold pressor pain. Fifty children between the ages of 6 and 10 years underwent a baseline cold pressor trial followed by two cold pressor trials in which interactive videogame distraction was delivered via a VR helmet or without a VR helmet in counterbalanced order. As expected, children demonstrated significant improvements in pain threshold and pain tolerance during both distraction conditions. However, the two distraction conditions did not differ in effectiveness. Using the VR helmet did not result in improved pain tolerance over and above the effects of interactive videogame distraction without VR technology. Clinical implications and possible developmental differences in elementary school-aged children's ability to use VR technology are discussed.

  12. Hormonal responses and tolerance to cold of female quail following parathion ingestion

    USGS Publications Warehouse

    Rattner, B.A.; Sileo, L.; Scanes, C.G.

    1982-01-01

    Thirty-week-old female bobwhite quail (Colinus virginianus), maintained at 26 + 1?C, were provided diets containing 0,25, or 100 ppm parathion ad libitum. After 10 days, birds were exposed to mild cold (6 + 1?C) for 4,8, 12, 24, or 48 hr. Brain acetylcholinesterase activity was inhibited in a dose-dependent manner in birds receiving 25 and 100 ppm parathion. Body weight, egg production, and plasma luteinizing hormone and progesterone concentrations were reduced in birds receiving 100 ppm parathion compared with other groups. Cold exposure did not alter plasma corticosterone levels in the 0- and 25-ppm parathion groups, but a two- to five fold elevation of plasma corticosterone was observed in birds fed 100 ppm parathion. These findings indicate that (i) short-term ingestion of parathion can impair reproduction possibly by altering gonadotropin or steroid secretion, and (ii) tolerance to cold may be reduced following ingestion of this organophosphate.

  13. Characteristics of two novel cold- and salt-tolerant ammonia-oxidizing bacteria from Liaohe Estuarine Wetland.

    PubMed

    Huang, Xiao; Bai, Jie; Li, Kui-Ran; Zhao, Yang-Guo; Tian, Wei-Jun; Dang, Jia-Jia

    2017-01-15

    To achieve a better contaminant removal efficiency in a low-temperature and high-salt environment, two novel strains of cold- and salt-tolerant ammonia-oxidizing bacteria (AOB), i.e., Ochrobactrum sp. (HXN-1) and Aquamicrobium sp. (HXN-2), were isolated from the surface sediment of Liaohe Estuarine Wetland (LEW), China. The optimization of initial ammonia nitrogen concentration, pH, carbon-nitrogen ratio, and petroleum hydrocarbons (PHCs) to improve the ammonia-oxidation capacity of the two bacterial strains was studied. Both bacterial strains showed a high ammonia nitrogen removal rate of over 80% under a high salinity of 10‰. Even at a temperature as low as 15°C, HXN-1 and HXN-2 could achieve an ammonia nitrogen removal rate of 53% and 62%, respectively. The cold- and salt-tolerant AOB in this study demonstrated a high potential for ammonia nitrogen removal from LEW. Copyright © 2016 Elsevier Ltd. All rights reserved.

  14. COLD-PCR enriches low-level variant DNA sequences and increases the sensitivity of genetic testing.

    PubMed

    Castellanos-Rizaldos, Elena; Milbury, Coren A; Guha, Minakshi; Makrigiorgos, G Mike

    2014-01-01

    Detection of low-level mutations is important for cancer biomarker and therapy targets discovery, but reliable detection remains a technical challenge. The newly developed method of CO-amplification at Lower Denaturation temperature PCR (COLD-PCR) helps to circumvent this issue. This PCR-based technology preferentially enriches minor known or unknown variants present in samples with a high background of wild type DNA which often hampers the accurate identification of these minority alleles. This is a simple process that consists of lowering the temperature at the denaturation step during the PCR-cycling protocol (critical denaturation temperature, T c) and inducing DNA heteroduplexing during an intermediate step. COLD-PCR in its simplest forms does not need additional reagents or specific instrumentation and thus, can easily replace conventional PCR and at the same time improve the mutation detection sensitivity limit of downstream technologies. COLD-PCR can be applied in two basic formats: fast-COLD-PCR that can enrich T m-reducing mutations and full-COLD-PCR that can enrich all mutations, though it requires an intermediate cross-hybridization step that lengthens the thermocycling program. An improved version of full-COLD-PCR (improved and complete enrichment, ice-COLD-PCR) has also been described. Finally, most recently, we developed yet another form of COLD-PCR, temperature-tolerant-COLD-PCR, which gradually increases the denaturation temperature during the COLD-PCR reaction, enriching diverse targets using a single cycling program. This report describes practical considerations for application of fast-, full-, ice-, and temperature-tolerant-COLD-PCR for enrichment of mutations prior to downstream screening.

  15. Enhanced expression of Rubisco activase splicing variants differentially affects Rubisco activity during low temperature treatment in Lolium perenne.

    PubMed

    Jurczyk, Barbara; Pociecha, Ewa; Grzesiak, Maciej; Kalita, Katarzyna; Rapacz, Marcin

    2016-07-01

    Alternative splicing of the Rubisco activase gene was shown to be a point for optimization of photosynthetic carbon assimilation. It can be expected to be a stress-regulated event that depends on plant freezing tolerance. The aim of the study was to examine the relationships among Rubisco activity, the expression of two Rubisco activase splicing variants and photoacclimation to low temperature. The experiment was performed on two Lolium perenne genotypes with contrasting levels of freezing tolerance. The study investigated the effect of pre-hardening (15°C) and cold acclimation (4°C) on net photosynthesis, photosystem II photochemical activity, Rubisco activity and the expression of two splicing variants of the Rubisco activase gene. The results showed an induction of Rubisco activity at both 15°C and 4°C only in a highly freezing-tolerant genotype. The enhanced Rubisco activity after pre-hardening corresponded to increased expression of the splicing variant representing the large isoform, while the increase in Rubisco activity during cold acclimation was due to the activation of both transcript variants. These boosts in Rubisco activity also corresponded to an activation of non-photochemical mechanism of photoacclimation induced at low temperature exclusively in the highly freezing-tolerant genotype. In conclusion, enhanced expression of Rubisco activase splicing variants caused an increase in Rubisco activity during pre-hardening and cold acclimation in the more freezing-tolerant Lolium perenne genotype. The induction of the transcript variant representing the large isoform may be an important element of increasing the carbon assimilation rate supporting the photochemical mechanism of photosynthetic acclimation to cold. Copyright © 2016 Elsevier GmbH. All rights reserved.

  16. Changes in gene expression and catalase activity in Oryza sativa L. under abiotic stress.

    PubMed

    Vighi, I L; Benitez, L C; do Amaral, M N; Auler, P A; Moraes, G P; Rodrigues, G S; da Maia, L C; Pinto, L S; Braga, E J B

    2016-11-03

    Different rice (Oryza sativa L.) genotypes were subjected to high salinity and low temperature (150 mM NaCl and 13°C, respectively) for 0, 6, 24, 48, or 72 h. We evaluated the simultaneous expression of the genes OsCATA, OsCATB, and OsCATC, correlated gene expression with enzyme activity, and verified the regulation of these genes through identification of cis-elements in the promoter region. The hydrogen peroxide content increased in a tolerant genotype and decreased in a sensitive genotype under both stress conditions. Lipid peroxidation increased in the tolerant genotype when exposed to cold, and in the sensitive genotype when exposed to high salinity. Catalase activity significantly increased in both genotypes when subjected to 13°C. In the tolerant genotype, OsCATA and OsCATB were the most responsive to high salinity and cold, while in the sensitive genotype, OsCATA and OsCATC responded positively to saline stress, as did OsCATA and OsCATB to low temperature. Cis-element analysis identified different regulatory sequences in the catalase promoter region of each genotype. The sensitive genotype maintained a better balance between hydrogen oxyacid levels, catalase activity, and lipid peroxidation under low temperature than the resistant genotype. OsCATA and OsCATB were the most responsive in the salt-tolerant genotype to cold, OsCATA and OsCATC were the most responsive to saline stress, and OsCATA and OsCATB were the most responsive to chilling stress in the sensitive genotype. There were positive correlations between catalase activity and OsCATB expression in the tolerant genotype under saline stress and in the sensitive genotype under cold stress.

  17. Cold affects the transcription of fatty acid desaturases and oil quality in the fruit of Olea europaea L. genotypes with different cold hardiness

    PubMed Central

    Matteucci, M.; D'Angeli, S.; Errico, S.; Lamanna, R.; Perrotta, G.; Altamura, M. M.

    2011-01-01

    The olive tree lacks dormancy and is low temperature sensitive, with differences in cold tolerance and oil quality among genotypes. The oil is produced in the drupe, and the unsaturated fatty acids contribute to its quality. The aim of the present research was to investigate the relationship among development, cold response, expression of fatty acid desaturase (FAD) genes, and unsaturated fatty acid composition in drupes belonging to genotypes differing in leaf cold tolerance, but producing good oil (i.e. the non-hardy Moraiolo, the semi-hardy Frantoio, and the hardy Canino). In all genotypes, cold sensitivity, evaluated by cold-induced transient increases in cytosolic calcium, was high in the epi-mesocarp cells before oil body formation, and decreased during oil biogenesis. However, genotype-dependent differences in cold sensitivity appeared at the end of oil production. Genotype-dependent differences in FAD2.1, FAD2.2, FAD6, and FAD7 expression levels occurred in the epi-mesocarp cells during the oleogenic period. However, FAD2.1 and FAD7 were always the highest in the first part of this period. FAD2.2 and FAD7 increased after cold applications during oleogenesis, independently of the genotype. Unsaturated fatty acids increased in the drupes of the non-hardy genotype, but not in those of the hardy one, after cold exposure at the time of the highest FAD transcription. The results show a direct relationship between FAD expression and lipid desaturation in the drupes of the cold-sensitive genotype, and an inverse relationship in those of the cold-resistant genotype, suggesting that drupe cold acclimation requires a fine FAD post-transcriptional regulation. Hypotheses relating FAD desaturation to storage and membrane lipids, and genotype cold hardiness are discussed. PMID:21357772

  18. Transcriptomic characterization of cold acclimation in larval zebrafish

    PubMed Central

    2013-01-01

    Background Temperature is one of key environmental parameters that affect the whole life of fishes and an increasing number of studies have been directed towards understanding the mechanisms of cold acclimation in fish. However, the adaptation of larvae to cold stress and the cold-specific transcriptional alterations in fish larvae remain largely unknown. In this study, we characterized the development of cold-tolerance in zebrafish larvae and investigated the transcriptional profiles under cold stress using RNA-seq. Results Pre-exposure of 96 hpf zebrafish larvae to cold stress (16°C) for 24 h significantly increased their survival rates under severe cold stress (12°C). RNA-seq generated 272 million raw reads from six sequencing libraries and about 92% of the processed reads were mapped to the reference genome of zebrafish. Differential expression analysis identified 1,431 up- and 399 down-regulated genes. Gene ontology enrichment analysis of cold-induced genes revealed that RNA splicing, ribosome biogenesis and protein catabolic process were the most highly overrepresented biological processes. Spliceosome, proteasome, eukaryotic ribosome biogenesis and RNA transport were the most highly enriched pathways for genes up-regulated by cold stress. Moreover, alternative splicing of 197 genes and promoter switching of 64 genes were found to be regulated by cold stress. A shorter isoform of stk16 that lacks 67 amino acids at the N-terminus was specifically generated by skipping the second exon in cold-treated larvae. Alternative promoter usage was detected for per3 gene under cold stress, which leading to a highly up-regulated transcript encoding a truncated protein lacking the C-terminal domains. Conclusions These findings indicate that zebrafish larvae possess the ability to build cold-tolerance under mild low temperature and transcriptional and post-transcriptional regulations are extensively involved in this acclimation process. PMID:24024969

  19. Cold perception and gene expression differ in Olea europaea seed coat and embryo during drupe cold acclimation.

    PubMed

    D'Angeli, S; Falasca, G; Matteucci, M; Altamura, M M

    2013-01-01

    FAD2 and FAD7 desaturases are involved in cold acclimation of olive (Olea europaea) mesocarp. There is no research information available on cold acclimation of seeds during mesocarp cold acclimation or on differences in the cold response of the seed coat and embryo. How FAD2 and FAD7 affect seed coat and embryo cold responses is unknown. Osmotin positively affects cold acclimation in olive tree vegetative organs, but its role in the seeds requires investigation. OeFAD2.1, OeFAD2.2, OeFAD7 and Oeosmotin were investigated before and after mesocarp acclimation by transcriptomic, lipidomic and immunolabelling analyses, and cytosolic calcium concentration ([Ca(2+)](cyt)) signalling, F-actin changes and seed development were investigated by epifluorescence/histological analyses. Transient [Ca(2+)](cyt) rises and F-actin disassembly were found in cold-shocked protoplasts from the seed coat, but not from the embryo. The thickness of the outer endosperm cuticle increased during drupe exposure to lowering of temperature, whereas the embryo protoderm always lacked cuticle. OeFAD2 transcription increased in both the embryo and seed coat in the cold-acclimated drupe, but linoleic acid (i.e. the product of FAD2 activity) increased solely in the seed coat. Osmotin was immunodetected in the seed coat and endosperm of the cold-acclimated drupe, and not in the embryo. The results show cold responsiveness in the seed coat and cold tolerance in the embryo. We propose a role for the seed coat in maintaining embryo cold tolerance by increasing endosperm cutinization through FAD2 and osmotin activities. © 2012 The Authors. New Phytologist © 2012 New Phytologist Trust.

  20. Changes in thermo-tolerance and survival under simulated gastrointestinal conditions of Salmonella Enteritidis PT4 and Salmonella Typhimurium PT4 in chicken breast meat after exposure to sequential stresses.

    PubMed

    Melo, Adma Nadja Ferreira de; Souza, Geany Targino de; Schaffner, Donald; Oliveira, Tereza C Moreira de; Maciel, Janeeyre Ferreira; Souza, Evandro Leite de; Magnani, Marciane

    2017-06-19

    This study assessed changes in thermo-tolerance and capability to survive to simulated gastrointestinal conditions of Salmonella Enteritidis PT4 and Salmonella Typhimurium PT4 inoculated in chicken breast meat following exposure to stresses (cold, acid and osmotic) commonly imposed during food processing. The effects of the stress imposed by exposure to oregano (Origanum vulgare L.) essential oil (OVEO) on thermo-tolerance were also assessed. After exposure to cold stress (5°C for 5h) in chicken breast meat the test strains were sequentially exposed to the different stressing substances (lactic acid, NaCl or OVEO) at sub-lethal amounts, which were defined considering previously determined minimum inhibitory concentrations, and finally to thermal treatment (55°C for 30min). Resistant cells from distinct sequential treatments were exposed to simulated gastrointestinal conditions. The exposure to cold stress did not result in increased tolerance to acid stress (lactic acid: 5 and 2.5μL/g) for both strains. Cells of S. Typhimurium PT4 and S. Enteritidis PT4 previously exposed to acid stress showed higher (p<0.05) tolerance to osmotic stress (NaCl: 75 or 37.5mg/g) compared to non-acid-exposed cells. Exposure to osmotic stress without previous exposure to acid stress caused a salt-concentration dependent decrease in counts for both strains. Exposure to OVEO (1.25 and 0.62μL/g) decreased the acid and osmotic tolerance of both S. Enteritidis PT4 and S. Typhimurium PT4. Sequential exposure to acid and osmotic stress conditions after cold exposure increased (p<0.05) the thermo-tolerance in both strains. The cells that survived the sequential stress exposure (resistant) showed higher tolerance (p<0.05) to acidic conditions during continuous exposure (182min) to simulated gastrointestinal conditions. Resistant cells of S. Enteritidis PT4 and S. Typhimurium PT4 showed higher survival rates (p<0.05) than control cells at the end of the in vitro digestion. These results show that sequential exposure to multiple sub-lethal stresses may increase the thermo-tolerance and enhance the survival under gastrointestinal conditions of S. Enteritidis PT4 and S. Typhimurium PT4. Copyright © 2017 Elsevier B.V. All rights reserved.

  1. Environmental temperature variation influences fitness trade-offs and tolerance in a fish-tapeworm association.

    PubMed

    Franke, Frederik; Armitage, Sophie A O; Kutzer, Megan A M; Kurtz, Joachim; Scharsack, Jörn P

    2017-06-02

    Increasing temperatures are predicted to strongly impact host-parasite interactions, but empirical tests are rare. Host species that are naturally exposed to a broad temperature spectrum offer the possibility to investigate the effects of elevated temperatures on hosts and parasites. Using three-spined sticklebacks, Gasterosteus aculeatus L., and tapeworms, Schistocephalus solidus (Müller, 1776), originating from a cold and a warm water site of a volcanic lake, we subjected sympatric and allopatric host-parasite combinations to cold and warm conditions in a fully crossed design. We predicted that warm temperatures would promote the development of the parasites, while the hosts might benefit from cooler temperatures. We further expected adaptations to the local temperature and mutual adaptations of local host-parasite pairs. Overall, S. solidus parasites grew faster at warm temperatures and stickleback hosts at cold temperatures. On a finer scale, we observed that parasites were able to exploit their hosts more efficiently at the parasite's temperature of origin. In contrast, host tolerance towards parasite infection was higher when sticklebacks were infected with parasites at the parasite's 'foreign' temperature. Cold-origin sticklebacks tended to grow faster and parasite infection induced a stronger immune response. Our results suggest that increasing environmental temperatures promote the parasite rather than the host and that host tolerance is dependent on the interaction between parasite infection and temperature. Sticklebacks might use tolerance mechanisms towards parasite infection in combination with their high plasticity towards temperature changes to cope with increasing parasite infection pressures and rising temperatures.

  2. Low-temperature tolerance and cold hardening of cacti

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Nobel, P.S.

    Reduced uptake by the chlorenchyma cells of cacti of a stain (neutral red) was used as an indicator of low-temperature damage resulting from cooling stems in the laboratory. Necrosis set in a few degrees below the temperature at which the fraction of cells accumulating stain was reduced by 50%. Coryphantha vivipara, Opuntia polyacantha, and Pediocactus simpsonii, which range to over 300 m altitude in southern Wyoming, were quite cold tolerant. Relationships among tissue cold sensitivity, morphological features which protect the stems from low temperatures, and the occurrence of species in progressively colder regions were investigated. Differences in tissue cold sensitivitymore » accounted for the approx. = 600 m higher elevational limit of Coryphantha vivipara var. rosea compared to the morphologically similar var. deserti in southern Nevada. In contrast, morphological differences alone could adequately explain the relative northern limits of the columnar cacti Carnegiea gigantea vs Stenocereus gummosus and the barrel cacti Ferocactus acanthodes vs. F. wislizenii in the southwestern United States, as previously indicated using a computer model. Cold hardening in response to decreasing day/night air temperatures was observed for 10 species. A decrease from 50/sup 0//40/sup 0/ to 10/sup 0//0/sup 0/ lowered by 4/sup 0/ the temperature at which the fraction of the chlorenchyma cells taking up stain was reduced 50% for both D. rhodacantha and T. candicans, with a half-time for the shift of approx. = 3 d. The tolerance of subzero temperatures and the ability to cold harden allow cacti to range into regions with considerable wintertime freezing.« less

  3. Extensive Acclimation in Ectotherms Conceals Interspecific Variation in Thermal Tolerance Limits

    PubMed Central

    Pintor, Anna F. V.; Schwarzkopf, Lin; Krockenberger, Andrew K.

    2016-01-01

    Species’ tolerance limits determine their capacity to tolerate climatic extremes and limit their potential distributions. Interspecific variation in thermal tolerances is often proposed to indicate climatic vulnerability and is, therefore, the subject of many recent meta-studies on differential capacities of species from climatically different habitats to deal with climate change. Most studies on thermal tolerances do not acclimate animals or use inconsistent, and insufficient, acclimation times, limiting our knowledge of the shape, duration and extent of acclimation responses. Consequently patterns in thermal tolerances observed in meta-analyses, based on data from the literature are based on inconsistent, partial acclimation and true trends may be obscured. In this study we describe time-course of complete acclimation of critical thermal minima in the tropical ectotherm Carlia longipes and compare it to the average acclimation response of other reptiles, estimated from published data, to assess how much acclimation time may contribute to observed differences in thermal limits. Carlia longipes decreased their lower critical thermal limits by 2.4°C and completed 95% of acclimation in 17 weeks. Wild populations did not mirror this acclimation process over the winter. Other reptiles appear to decrease cold tolerance more quickly (95% in 7 weeks) and to a greater extent, with an estimated average acclimation response of 6.1°C. However, without data on tolerances after longer acclimation times available, our capacity to estimate final acclimation state is very limited. Based on the subset of data available for meta-analysis, much of the variation in cold tolerance observed in the literature can be attributed to acclimation time. Our results indicate that (i) acclimation responses can be slow and substantial, even in tropical species, and (ii) interspecific differences in acclimation speed and extent may obscure trends assessed in some meta-studies. Cold tolerances of wild animals are representative of cumulative responses to recent environments, while lengthy acclimation is necessary for controlled comparisons of physiological tolerances. Measures of inconsistent, intermediate acclimation states, as reported by many studies, represent neither the realised nor the potential tolerance in that population, are very likely underestimates of species’ physiological capacities and may consequently be of limited value. PMID:26990769

  4. Extensive Acclimation in Ectotherms Conceals Interspecific Variation in Thermal Tolerance Limits.

    PubMed

    Pintor, Anna F V; Schwarzkopf, Lin; Krockenberger, Andrew K

    2016-01-01

    Species' tolerance limits determine their capacity to tolerate climatic extremes and limit their potential distributions. Interspecific variation in thermal tolerances is often proposed to indicate climatic vulnerability and is, therefore, the subject of many recent meta-studies on differential capacities of species from climatically different habitats to deal with climate change. Most studies on thermal tolerances do not acclimate animals or use inconsistent, and insufficient, acclimation times, limiting our knowledge of the shape, duration and extent of acclimation responses. Consequently patterns in thermal tolerances observed in meta-analyses, based on data from the literature are based on inconsistent, partial acclimation and true trends may be obscured. In this study we describe time-course of complete acclimation of critical thermal minima in the tropical ectotherm Carlia longipes and compare it to the average acclimation response of other reptiles, estimated from published data, to assess how much acclimation time may contribute to observed differences in thermal limits. Carlia longipes decreased their lower critical thermal limits by 2.4°C and completed 95% of acclimation in 17 weeks. Wild populations did not mirror this acclimation process over the winter. Other reptiles appear to decrease cold tolerance more quickly (95% in 7 weeks) and to a greater extent, with an estimated average acclimation response of 6.1°C. However, without data on tolerances after longer acclimation times available, our capacity to estimate final acclimation state is very limited. Based on the subset of data available for meta-analysis, much of the variation in cold tolerance observed in the literature can be attributed to acclimation time. Our results indicate that (i) acclimation responses can be slow and substantial, even in tropical species, and (ii) interspecific differences in acclimation speed and extent may obscure trends assessed in some meta-studies. Cold tolerances of wild animals are representative of cumulative responses to recent environments, while lengthy acclimation is necessary for controlled comparisons of physiological tolerances. Measures of inconsistent, intermediate acclimation states, as reported by many studies, represent neither the realised nor the potential tolerance in that population, are very likely underestimates of species' physiological capacities and may consequently be of limited value.

  5. Effect of acid adaptation on the environmental stress tolerance of three strains of Vibrio parahaemolyticus.

    PubMed

    Chiang, Ming-Lun; Chen, Hsi-Chia; Wu, Chieh; Chen, Ming-Ju

    2014-04-01

    Three strains of Vibrio parahaemolyticus (690, BCRC 13023, and BCRC 13025), involved in foodborne outbreaks in Taiwan, were subjected to acid adaptation at pH 5.5 for 90 min. The effects of acid adaptation on the tolerance of V. parahaemolyticus to various environmental stresses, including heat (47°C), cold (4°C and -20°C), ethanol (8%), high salt (20% NaCl), and hydrogen peroxide (20 ppm) were examined. Results showed that acid adaptation increased the thermal tolerance of the three test strains of V. parahaemolyticus, while it did not affect their cold tolerance. Acid adaptation also increased the ethanol tolerance in V. parahaemolyticus 690 and BCRC 13025, but not in BCRC 13023. Differences in the tolerance to high salts were noted among the three strains after prior acid adaptation. However, these acid-adapted V. parahaemolyticus strains were more susceptible to hydrogen peroxide than their nonadapted controls. These findings demonstrated that acid adaption responses of V. parahaemolyticus varied among strains and types of stress challenge.

  6. A transcriptomic analysis of bermudagrass (Cynodon dactylon) provides novel insights into the basis of low temperature tolerance.

    PubMed

    Chen, Liang; Fan, Jibiao; Hu, Longxing; Hu, Zhengrong; Xie, Yan; Zhang, Yingzi; Lou, Yanhong; Nevo, Eviatar; Fu, Jinmin

    2015-09-11

    Cold stress is regarded as a key factor limiting widespread use for bermudagrass (Cynodon dactylon). Therefore, to improve cold tolerance for bermudagrass, it is urgent to understand molecular mechanisms of bermudagrass response to cold stress. However, our knowledge about the molecular responses of this species to cold stress is largely unknown. The objective of this study was to characterize the transcriptomic response to low temperature in bermudagrass by using RNA-Seq platform. Ten cDNA libraries were generated from RNA samples of leaves from five different treatments in the cold-resistant (R) and the cold-sensitive (S) genotypes, including 4 °C cold acclimation (CA) for 24 h and 48 h, freezing (-5 °C) treatments for 4 h with or without prior CA, and controls. When subjected to cold acclimation, global gene expressions were initiated more quickly in the R genotype than those in the S genotype. The R genotype activated gene expression more effectively in response to freezing temperature after 48 h CA than the S genotype. The differentially expressed genes were identified as low temperature sensing and signaling-related genes, functional proteins and transcription factors, many of which were specifically or predominantly expressed in the R genotype under cold treatments, implying that these genes play important roles in the enhanced cold hardiness of bermudagrass. KEGG pathway enrichment analysis for DEGs revealed that photosynthesis, nitrogen metabolism and carbon fixation pathways play key roles in bermudagrass response to cold stress. The results of this study may contribute to our understanding the molecular mechanism underlying the responses of bermudagrass to cold stress, and also provide important clues for further study and in-depth characterization of cold-resistance breeding candidate genes in bermudagrass.

  7. Deacclimation may be crucial for winter survival of cereals under warming climate.

    PubMed

    Rapacz, Marcin; Jurczyk, Barbara; Sasal, Monika

    2017-03-01

    Climate warming can change the winter weather patterns. Warmer temperatures during winter result in a lower risk of extreme freezing events. On the other hand the predicted warm gaps during winter will decrease their freezing tolerance. Both contradict effects will affect winter survival but their resultant effect is unclear. In this paper, we demonstrate that climate warming may result in a decrease in winter survival of plants. A field study of winterhardiness of common wheat and triticale was established at 11 locations and repeated during three subsequent winters. The freezing tolerance of the plants was studied after controlled cold acclimation and de-acclimation using both plant survival analysis and chlorophyll fluorescence measurements. Cold deacclimation resistance was shown to be independent from cold acclimation ability. Further, cold deacclimation resistance appeared to be crucial for overwintering when deacclimation conditions occurred in the field. The shortening of uninterrupted cold acclimation may increase cold deacclimation efficiency, which could threaten plant survival during warmer winters. Measurements of chlorophyll fluorescence transient showed some differences triggered by freezing before and after deacclimation. We conclude that cold deacclimation resistance should be considered in the breeding of winter cereals and in future models of winter damage risk. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.

  8. The ability of a cold-adapted Rhodotorula mucilaginosa strain from Tibet to control blue mold in pear fruit.

    PubMed

    Hu, Hao; Yan, Fujie; Wilson, Charles; Shen, Qing; Zheng, Xiaodong

    2015-12-01

    Cold-adapted yeasts were isolated from soil samples collected in Tibet and evaluated as potential biocontrol agents against blue mold (Penicillium expansum) of pear fruit in cold storage. YC1, an isolate identified as Rhodotorula mucilaginosa, was found to exhibit the greatest biocontrol activity among the different isolates that were screened. A washed cell suspension of YC1 exhibited the best biocontrol activity among three different preparations that were used in the current study. A concentration of 10(8) cells/ml reduced the incidence of decay to 35 %, compared to the control where decay incidence was 100 %. A higher intracellular level of trehalose and a higher proportion of polyunsaturated acids present in YC1, was associated with increased the tolerance of this strain to low temperatures, relative to the other strains that were evaluated. The increased tolerance to low temperature allowed the YC1 strain of yeast to more effectively compete for nutrients and space in wounded pear fruit that had been inoculated with spores of P. expansum and placed in cold storage. The present study demonstrated the ability to select cold-adapted yeasts from cold climates and use them as biocontrol agents of postharvest diseases of fruit placed in cold storage.

  9. Sub-zero cold tolerance of Spartina pectinata (prairie cordgrass) and Miscanthus × giganteus: candidate bioenergy crops for cool temperate climates

    PubMed Central

    Peixoto, Murilo de Melo; Lee, D. K.; Sage, Rowan F.

    2015-01-01

    Miscanthus × giganteus grown in cool temperate regions of North America and Europe can exhibit severe mortality in the year after planting, and poor frost tolerance of leaves. Spartina pectinata (prairie cordgrass), a productive C4 perennial grass native to North America, has been suggested as an alternative biofuel feedstock for colder regions; however, its cold tolerance relative to M. × giganteus is uncertain. Here, we compare the cold tolerance thresholds for winter-dormant rhizomes and spring/summer leaves of M. × giganteus and three accessions of S. pectinata. All genotypes were planted at a field site in Ontario, Canada. In November and February, the temperatures corresponding to 50% rhizome mortality (LT50) were near −24°C for S. pectinata and −4°C for M. × giganteus. In late April, the LT50 of rhizomes rose to −10°C for S. pectinata but remained near −4°C for M. × giganteus. Twenty percent of the M. × giganteus rhizomes collected in late April were dead while S. pectinata rhizomes showed no signs of winter injury. Photosynthesis and electrolyte leakage measurements in spring and summer demonstrate that S. pectinata leaves have greater frost tolerance in the field. For example, S. pectinata leaves remained viable above −9°C while the mortality threshold was near −5°C for M. × giganteus. These results indicate M. × giganteus will be unsuitable for production in continental interiors of cool-temperate climate zones unless freezing and frost tolerance are improved. By contrast, S. pectinata has the freezing and frost tolerance required for a higher-latitude bioenergy crop. PMID:25873680

  10. Putrescine Is Involved in Arabidopsis Freezing Tolerance and Cold Acclimation by Regulating Abscisic Acid Levels in Response to Low Temperature1

    PubMed Central

    Cuevas, Juan C.; López-Cobollo, Rosa; Alcázar, Rubén; Zarza, Xavier; Koncz, Csaba; Altabella, Teresa; Salinas, Julio; Tiburcio, Antonio F.; Ferrando, Alejandro

    2008-01-01

    The levels of endogenous polyamines have been shown to increase in plant cells challenged with low temperature; however, the functions of polyamines in the regulation of cold stress responses are unknown. Here, we show that the accumulation of putrescine under cold stress is essential for proper cold acclimation and survival at freezing temperatures because Arabidopsis (Arabidopsis thaliana) mutants defective in putrescine biosynthesis (adc1, adc2) display reduced freezing tolerance compared to wild-type plants. Genes ADC1 and ADC2 show different transcriptional profiles upon cold treatment; however, they show similar and redundant contributions to cold responses in terms of putrescine accumulation kinetics and freezing sensitivity. Our data also demonstrate that detrimental consequences of putrescine depletion during cold stress are due, at least in part, to alterations in the levels of abscisic acid (ABA). Reduced expression of NCED3, a key gene involved in ABA biosynthesis, and down-regulation of ABA-regulated genes are detected in both adc1 and adc2 mutant plants under cold stress. Complementation analysis of adc mutants with ABA and reciprocal complementation tests of the aba2-3 mutant with putrescine support the conclusion that putrescine controls the levels of ABA in response to low temperature by modulating ABA biosynthesis and gene expression. PMID:18701673

  11. Changes in freezing tolerance, plasma membrane H+-ATPase activity and fatty acid composition in Pinus resinosa needles during cold acclimation and de-acclimation.

    PubMed

    Martz, Françoise; Sutinen, Marja-Liisa; Kiviniemi, Sari; Palta, Jiwan P

    2006-06-01

    It has previously been suggested that plasma membrane ATPase (PM H+-ATPase, EC 3.6.1.3.) is a site of incipient freezing injury because activity increases following cold acclimation and there are published data indicating that activity of PM H+-ATPase is modulated by changes in lipids associated with the enzyme. To test and extend these findings in a tree species, we analyzed PM H+-ATPase activity and the fatty acid (FA) composition of glycerolipids in purified plasma membranes (PMs) prepared by the two-phase partition method from current-year needles of adult red pine (Pinus resinosa Ait.) trees. Freezing tolerance of the needles decreased from -56 degrees C in March to -9 degrees C in May, and increased from -15 degrees C in September to -148 degrees C in January. Specific activity of vanadate-sensitive PM H+-ATPase increased more than two-fold following cold acclimation, despite a concurrent increase in protein concentration. During de-acclimation, decreases in PM H+-ATPase activity and freezing tolerance were accompanied by decreases in the proportions of oleic (18:1) and linoleic (18:2) acids and increases in the proportions of palmitic (16:0) and linolenic (18:3) acids in total glycerolipids extracted from the plasma membrane fraction. This pattern of changes in PM H+-ATPase activity and the 18:1, 18:2 and 18:3 fatty acids was reversed during cold acclimation. In the PM fractions, changes in FA unsaturation, expressed as the double bond index (1 x 18:1 + 2 x 18:2 + 3 x 18:3), were closely correlated with changes in H+-ATPase specific activity (r2 = 0.995). Changes in freezing tolerance were well correlated with DBI (r2 = 0.877) and ATPase specific activity (r2 = 0.833) in the PM fraction. Total ATPase activity in microsomal fractions also closely followed changes in freezing tolerance (r2 = 0.969). We conclude that, as in herbaceous plants, simultaneous seasonal changes in PM H+-ATPase activity and fatty acid composition occur during cold acclimation and de-acclimation in an extremely winter hardy tree species under natural conditions, lending support to the hypothesis that FA-regulated PM H+-ATPase activity is involved in the cellular response underlying cold acclimation and de-acclimation.

  12. Overexpression of GhSARP1 encoding a E3 ligase from cotton reduce the tolerance to salt in transgenic Arabidopsis

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Liu, Yongchang; Zhang, Xinyu; Zhu, Shouhong

    Ubiquitination plays a very important role in the response to abiotic stresses of plant. To identify key regulators of salt stress, a gene GhSARP1(Salt-Associated Ring finger Protein)encoding C3H2C3-type E3 ligase, was cloned from cotton. Transcription level of GhSARP1 was high in leaf, flower and fiber of 24,27 and 27DPA (Days Post-Anthesis), but low in root and stem. Except PEG6000 treatment, the expression of GhSARP1 was down-regulated by NaCl, cold and ABA after being treated for 1 h. GhSARP1-GFP fusion protein located on the plasma membrane, which was dependent on trans-membrane motif. In vitro ubiquitination assay showed that GhSARP1 had E3 ligase activity.more » Heterogeneous overexpression of GhSARP1reduced salt tolerance of transgenic Arabidopsis in germination and post-germination stage. Our results suggested that the GhSARP1 might negatively regulate the response to salt stress mediated by the ubiquitination in cotton. - Highlights: • GhSARP1 expression was regulated by various abiotic stresses. • GhSARP1 have E3 ligase activity in vitro and locate on the plasma membrane. • Overexpression of GhSARP1 in Arabidopsis reduced the salt tolerance.« less

  13. Transcriptomic analysis of (group I) Clostridium botulinum ATCC 3502 cold shock response.

    PubMed

    Dahlsten, Elias; Isokallio, Marita; Somervuo, Panu; Lindström, Miia; Korkeala, Hannu

    2014-01-01

    Profound understanding of the mechanisms foodborne pathogenic bacteria utilize in adaptation to the environmental stress they encounter during food processing and storage is of paramount importance in design of control measures. Chill temperature is a central control measure applied in minimally processed foods; however, data on the mechanisms the foodborne pathogen Clostridium botulinum activates upon cold stress are scarce. Transcriptomic analysis on the C. botulinum ATCC 3502 strain upon temperature downshift from 37°C to 15°C was performed to identify the cold-responsive gene set of this organism. Significant up- or down-regulation of 16 and 11 genes, respectively, was observed 1 h after the cold shock. At 5 h after the temperature downshift, 199 and 210 genes were up- or down-regulated, respectively. Thus, the relatively small gene set affected initially indicated a targeted acute response to cold shock, whereas extensive metabolic remodeling appeared to take place after prolonged exposure to cold. Genes related to fatty acid biosynthesis, oxidative stress response, and iron uptake and storage were induced, in addition to mechanisms previously characterized as cold-tolerance related in bacteria. Furthermore, several uncharacterized DNA-binding transcriptional regulator-encoding genes were induced, suggesting involvement of novel regulatory mechanisms in the cold shock response of C. botulinum. The role of such regulators, CBO0477 and CBO0558A, in cold tolerance of C. botulinum ATCC 3502 was demonstrated by deteriorated growth of related mutants at 17°C.

  14. Down-Regulating α-Galactosidase Enhances Freezing Tolerance in Transgenic Petunia1

    PubMed Central

    Pennycooke, Joyce C.; Jones, Michelle L.; Stushnoff, Cecil

    2003-01-01

    α-Galactosidase (α-Gal; EC 3.2.1.22) is involved in many aspects of plant metabolism, including hydrolysis of the α-1,6 linkage of raffinose oligosaccharides during deacclimation. To examine the relationship between endogenous sugars and freezing stress, the expression of α-Gal was modified in transgenic petunia (Petunia × hybrida cv Mitchell). The tomato (Lycopersicon esculentum) Lea-Gal gene under the control of the Figwort Mosaic Virus promoter was introduced into petunia in the sense and antisense orientations using Agrobacterium tumefaciens-mediated transformation. RNA gel blots confirmed that α-Gal transcripts were reduced in antisense lines compared with wild type, whereas sense plants had increased accumulation of α-Gal mRNAs. α-Gal activity followed a similar trend, with reduced activity in antisense lines and increased activity in all sense lines evaluated. Raffinose content of nonacclimated antisense plants increased 12- to 22-fold compared with wild type, and 22- to 53-fold after cold acclimation. Based upon electrolyte leakage tests, freezing tolerance of the antisense lines increased from –4°C for cold-acclimated wild-type plants to –8°C for the most tolerant antisense line. Down-regulating α-Gal in petunia results in an increase in freezing tolerance at the whole-plant level in nonacclimated and cold-acclimated plants, whereas overexpression of the α-Gal gene caused a decrease in endogenous raffinose and impaired freezing tolerance. These results suggest that engineering raffinose metabolism by transformation with α-Gal provides an additional method for improving the freezing tolerance of plants. PMID:14500789

  15. The interaction between freezing tolerance and phenology in temperate deciduous trees

    PubMed Central

    Vitasse, Yann; Lenz, Armando; Körner, Christian

    2014-01-01

    Temperate climates are defined by distinct temperature seasonality with large and often unpredictable weather during any of the four seasons. To thrive in such climates, trees have to withstand a cold winter and the stochastic occurrence of freeze events during any time of the year. The physiological mechanisms trees adopt to escape, avoid, and tolerate freezing temperatures include a cold acclimation in autumn, a dormancy period during winter (leafless in deciduous trees), and the maintenance of a certain freezing tolerance during dehardening in early spring. The change from one phase to the next is mediated by complex interactions between temperature and photoperiod. This review aims at providing an overview of the interplay between phenology of leaves and species-specific freezing resistance. First, we address the long-term evolutionary responses that enabled temperate trees to tolerate certain low temperature extremes. We provide evidence that short term acclimation of freezing resistance plays a crucial role both in dormant and active buds, including re-acclimation to cold conditions following warm spells. This ability declines to almost zero during leaf emergence. Second, we show that the risk that native temperate trees encounter freeze injuries is low and is confined to spring and underline that this risk might be altered by climate warming depending on species-specific phenological responses to environmental cues. PMID:25346748

  16. Older Thinopyrum intermedium (Poaceae) plants exhibit superior photosynthetic tolerance to cold stress and greater increases in two photosynthetic enzymes under freezing stress compared with young plants

    PubMed Central

    Jaikumar, Nikhil S.; Snapp, Sieglinde S.; Sharkey, Thomas D.

    2016-01-01

    Effects of plant age on resource acquisition and stress tolerance processes is a largely unstudied subject in herbaceous perennials. In a field experiment, we compared rates of photosynthesis (A), ribulose-1,5-bisphosphate (RuBP) carboxylation capacity (V Cmax), maximum electron transport rate (J max), and triose phosphate utilization (TPU), as well as concentrations of Rubisco and sucrose-phosphate synthase (SPS) in 5-year-old and 2-year-old intermediate wheatgrass (Thinopyrum intermedium) under both optimal growing conditions and cold stress in early spring and autumn. This species is a relative of wheat undergoing domestication. An additional experiment compared photosynthetic rates in different cohorts at mid-season and under colder conditions. We hypothesized that photosynthetic capacity in older plants would be lower under favorable conditions but higher under cold stress. Our hypothesis was generally supported. Under cold stress, 5-year-old plants exhibited higher A, TPU, and temperature-adjusted V Cmax than younger plants, as well as 50% more SPS and 37% more Rubisco. In contrast, at mid-season, photosynthetic capacities in older plants were lower than in younger plants in one experiment, and similar in the other, independent of differences in water status. Both cohorts increased A, temperature-adjusted TPU and J max, [Rubisco], and [SPS] under cold stress, but changes were greater in older plants. Photosynthetic differences were largest at 1.2 ºC in very early spring, where older plants had 200% higher A and maintained up to 17% of their peak photosynthetic capacity. We find evidence of increased cold tolerance in older cohorts of wheatgrass, consistent with a growing body of research in woody perennials. PMID:27401911

  17. Overexpression of microRNA319 impacts leaf morphogenesis and leads to enhanced cold tolerance in rice (Oryza sativa L.).

    PubMed

    Yang, Chunhua; Li, Dayong; Mao, Donghai; Liu, Xue; Ji, Chengjun; Li, Xiaobing; Zhao, Xianfeng; Cheng, Zhukuan; Chen, Caiyan; Zhu, Lihuang

    2013-12-01

    MicroRNA319 (miR319) family is one of the conserved microRNA (miRNA) families among diverse plant species. It has been reported that miR319 regulates plant development in dicotyledons, but little is known at present about its functions in monocotyledons. In rice (Oryza sativa L.), the MIR319 gene family comprises two members, Osa-MIR319a and Osa-MIR319b. Here, we report an expression pattern analysis and a functional characterization of the two Osa-MIR319 genes in rice. We found that overexpressing Osa-MIR319a and Osa-MIR319b in rice both resulted in wider leaf blades. Leaves of osa-miR319 overexpression transgenic plants showed an increased number of longitudinal small veins, which probably accounted for the increased leaf blade width. In addition, we observed that overexpressing osa-miR319 led to enhanced cold tolerance (4 °C) after chilling acclimation (12 °C) in transgenic rice seedlings. Notably, under both 4 and 12 °C low temperatures, Osa-MIR319a and Osa-MIR319b were down-regulated while the expression of miR319-targeted genes was induced. Furthermore, genetically down-regulating the expression of either of the two miR319-targeted genes, OsPCF5 and OsPCF8, in RNA interference (RNAi) plants also resulted in enhanced cold tolerance after chilling acclimation. Our findings in this study demonstrate that miR319 plays important roles in leaf morphogenesis and cold tolerance in rice. © 2013 John Wiley & Sons Ltd.

  18. Physiological and biochemical responses to cold and drought in the rock-dwelling pulmonate snail, Chondrina avenacea.

    PubMed

    Koštál, Vladimír; Rozsypal, Jan; Pech, Pavel; Zahradníčková, Helena; Šimek, Petr

    2013-08-01

    The pulmonate snail Chondrina avenacea lives on exposed rock walls where it experiences drastic daily and seasonal fluctuations of abiotic conditions and food availability. We found that tolerance to dry conditions was maintained at a very high level throughout the year and was mainly based on the snails' ability to promptly enter into estivation (quiescence) whenever they experienced drying out of their environment. Snails rapidly suppressed their metabolism and minimized their water loss using discontinuous gas exchange pattern. The metabolic suppression probably included periods of tissue hypoxia and anaerobism as indicated by accumulation of typical end products of anaerobic metabolism: lactate, alanine and succinate. Though the drought-induced metabolic suppression was sufficient to stimulate moderate increase of supercooling capacity, the seasonally highest levels of supercooling capacity and the highest tolerance to subzero temperatures were tightly linked to hibernation (diapause). Hibernating snails did not survive freezing of their body fluids and instead relied on supercooling strategy which allowed them to survive when air temperatures dropped to as low as -21 °C. No accumulation of low-molecular weight compounds (potential cryoprotectants) was detected in hibernating snails except for small amounts of the end products of anaerobic metabolism.

  19. Molecular characterization and expression analysis of WRKY family genes in Dendrobium officinale.

    PubMed

    Wang, Tao; Song, Zheng; Wei, Li; Li, Lubin

    2018-03-01

    The WRKY family of transcription factors is one of the most important families of plant transcriptional regulators, and the members regulate multiple biological processes. However, there is limited information on WRKYs in Dendrobium officinale. In this study, 52 WRKY family genes of D. officinale were surveyed for the first time. Conserved domain, phylogenetic, exon-intron construction, and expression analyses were performed for the DoWRKY genes. Two major types of intron splicing (PR and VQR introns) were found, and the intron insertion position was observed to be relatively conserved in the conserved DoWRKY domains. The expression profiles of nine DoWRKYs were analyzed in cold- and methyl jasmonate (MeJA)-treated D. officinale seedlings; the DoWRKYs showed significant expression changes at different levels, which suggested their vital roles in stress tolerance. Moreover, the expression trends of most of the DoWRKYs after the simultaneous cold stress and MeJA treatment were the opposite of those of DoWRKYs after the individual cold stress and MeJA treatments, suggesting that the two stresses might have antagonistic effects and affect the adaptive capacity of the plants to stresses. Twelve DoWRKY genes were differentially expressed between symbiotic and asymbiotic germinated seeds; all were upregulated in the symbiotic germinated seeds except DoWRKY16. These differences in expression of DoWRKYs might be involved in promoting in vitro symbiotic germination of seeds with Tulasnella-like fungi. Our findings will be useful for further studies on the WRKY family genes in orchids.

  20. Temperature stress and plant sexual reproduction: uncovering the weakest links.

    PubMed

    Zinn, Kelly E; Tunc-Ozdemir, Meral; Harper, Jeffrey F

    2010-04-01

    The reproductive (gametophytic) phase in flowering plants is often highly sensitive to hot or cold temperature stresses, with even a single hot day or cold night sometimes being fatal to reproductive success. This review describes studies of temperature stress on several crop plants, which suggest that pollen development and fertilization may often be the most sensitive reproductive stage. Transcriptome and proteomic studies on several plant species are beginning to identify stress response pathways that function during pollen development. An example is provided here of genotypic differences in the reproductive stress tolerance between two ecotypes of Arabidopsis thaliana Columbia (Col) and Hilversum (Hi-0), when reproducing under conditions of hot days and cold nights. Hi-0 exhibited a more severe reduction in seed set, correlated with a reduction in pollen tube growth potential and tropism defects. Hi-0 thus provides an Arabidopsis model to investigate strategies for improved stress tolerance in pollen. Understanding how different plants cope with stress during reproductive development offers the potential to identify genetic traits that could be manipulated to improve temperature tolerance in selected crop species being cultivated in marginal climates.

  1. 7 CFR 1436.4 - Application for loans.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ..., except loans for renewable biomass storage facilities and cold storage facilities for fruits and... the administrative county office. (2) For loans for renewable biomass storage facilities and cold...

  2. 7 CFR 1436.4 - Application for loans.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ..., except loans for renewable biomass storage facilities and cold storage facilities for fruits and... the administrative county office. (2) For loans for renewable biomass storage facilities and cold...

  3. 7 CFR 1436.4 - Application for loans.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ..., except loans for renewable biomass storage facilities and cold storage facilities for fruits and... the administrative county office. (2) For loans for renewable biomass storage facilities and cold...

  4. 7 CFR 1436.4 - Application for loans.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ..., except loans for renewable biomass storage facilities and cold storage facilities for fruits and... the administrative county office. (2) For loans for renewable biomass storage facilities and cold...

  5. 7 CFR 1436.4 - Application for loans.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ..., except loans for renewable biomass storage facilities and cold storage facilities for fruits and... the administrative county office. (2) For loans for renewable biomass storage facilities and cold...

  6. Long-Term Cold Acclimation Extends Survival Time at 0°C and Modifies the Metabolomic Profiles of the Larvae of the Fruit Fly Drosophila melanogaster

    PubMed Central

    Koštál, Vladimír; Korbelová, Jaroslava; Rozsypal, Jan; Zahradníčková, Helena; Cimlová, Jana; Tomčala, Aleš; Šimek, Petr

    2011-01-01

    Background Drosophila melanogaster is a chill-susceptible insect. Previous studies on this fly focused on acute direct chilling injury during cold shock and showed that lower lethal temperature (LLT, approximately −5°C) exhibits relatively low plasticity and that acclimations, both rapid cold hardening (RCH) and long-term cold acclimation, shift the LLT by only a few degrees at the maximum. Principal Findings We found that long-term cold acclimation considerably improved cold tolerance in fully grown third-instar larvae of D. melanogaster. A comparison of the larvae acclimated at constant 25°C with those acclimated at constant 15°C followed by constant 6°C for 2 d (15°C→6°C) showed that long-term cold acclimation extended the lethal time for 50% of the population (Lt50) during exposure to constant 0°C as much as 630-fold (from 0.137 h to 86.658 h). Such marked physiological plasticity in Lt50 (in contrast to LLT) suggested that chronic indirect chilling injury at 0°C differs from that caused by cold shock. Long-term cold acclimation modified the metabolomic profiles of the larvae. Accumulations of proline (up to 17.7 mM) and trehalose (up to 36.5 mM) were the two most prominent responses. In addition, restructuring of the glycerophospholipid composition of biological membranes was observed. The relative proportion of glycerophosphoethanolamines (especially those with linoleic acid at the sn-2 position) increased at the expense of glycerophosphocholines. Conclusion Third-instar larvae of D. melanogaster improved their cold tolerance in response to long-term cold acclimation and showed metabolic potential for the accumulation of proline and trehalose and for membrane restructuring. PMID:21957472

  7. The peer effect on pain tolerance.

    PubMed

    Engebretsen, Solveig; Frigessi, Arnoldo; Engø-Monsen, Kenth; Furberg, Anne-Sofie; Stubhaug, Audun; de Blasio, Birgitte Freiesleben; Nielsen, Christopher Sivert

    2018-05-19

    Twin studies have found that approximately half of the variance in pain tolerance can be explained by genetic factors, while shared family environment has a negligible effect. Hence, a large proportion of the variance in pain tolerance is explained by the (non-shared) unique environment. The social environment beyond the family is a potential candidate for explaining some of the variance in pain tolerance. Numerous individual traits have previously shown to be associated with friendship ties. In this study, we investigate whether pain tolerance is associated with friendship ties. We study the friendship effect on pain tolerance by considering data from the Tromsø Study: Fit Futures I, which contains pain tolerance measurements and social network information for adolescents attending first year of upper secondary school in the Tromsø area in Northern Norway. Pain tolerance was measured with the cold-pressor test (primary outcome), contact heat and pressure algometry. We analyse the data by using statistical methods from social network analysis. Specifically, we compute pairwise correlations in pain tolerance among friends. We also fit network autocorrelation models to the data, where the pain tolerance of an individual is explained by (among other factors) the average pain tolerance of the individual's friends. We find a significant and positive relationship between the pain tolerance of an individual and the pain tolerance of their friends. The estimated effect is that for every 1 s increase in friends' average cold-pressor tolerance time, the expected cold-pressor pain tolerance of the individual increases by 0.21 s (p-value: 0.0049, sample size n=997). This estimated effect is controlled for sex. The friendship effect remains significant when controlling for potential confounders such as lifestyle factors and test sequence among the students. Further investigating the role of sex on this friendship effect, we only find a significant peer effect of male friends on males, while there is no significant effect of friends' average pain tolerance on females in stratified analyses. Similar, but somewhat lower estimates were obtained for the other pain modalities. We find a positive and significant peer effect in pain tolerance. Hence, there is a significant tendency for students to be friends with others with similar pain tolerance. Sex-stratified analyses show that the only significant effect is the effect of male friends on males. Two different processes can explain the friendship effect in pain tolerance, selection and social transmission. Individuals might select friends directly due to similarity in pain tolerance, or indirectly through similarity in other confounding variables that affect pain tolerance. Alternatively, there is an influence effect among friends either directly in pain tolerance, or indirectly through other variables that affect pain tolerance. If there is indeed a social influence effect in pain tolerance, then the social environment can account for some of the unique environmental variance in pain tolerance. If so, it is possible to therapeutically affect pain tolerance through alteration of the social environment.

  8. A cold-tolerant evergreen interspecific hybrid of Ocimum kilimandscharicum and Ocimum basilicum: analyzing trichomes and molecular variations.

    PubMed

    Dhawan, Sunita Singh; Shukla, Preeti; Gupta, Pankhuri; Lal, R K

    2016-05-01

    Ocimum (Lamiaceae) is an important source of essential oils and aroma chemicals especially eugenol, methyl eugenol, linalool, methyl chavicol etc. An elite evergreen hybrid has been developed from Ocimum kilimandscharicum and Ocimum basilicum, which demonstrated adaptive behavior towards cold stress. A comparative molecular analysis has been done through RAPD, AFLP, and ISSR among O. basilicum and O. kilimandscharicum and their evergreen cold-tolerant hybrid. The RAPD and AFLP analyses demonstrated similar results, i.e., the hybrid of O. basilicum and O. kilimandscharicum shares the same cluster with O. kilimandscharicum, while O. basilicum behaves as an outgroup, whereas in ISSR analysis, the hybrid genotype grouped in the same cluster with O. basilicum. Ocimum genotypes were analyzed and compared for their trichome density. There were distinct differences on morphology, distribution, and structure between the two kinds of trichomes, i.e., glandular and non-glandular. Glandular trichomes contain essential oils, polyphenols, flavonoids, and acid polysaccharides. Hair-like trichomes, i.e., non-glandular trichomes, help in keeping the frost away from the living surface cells. O. basilicum showed less number of non-glandular trichomes on leaves compared to O. kilimandscharicum and the evergreen cold-tolerant hybrid. Trichomes were analyzed in O. kilimandscharicum, O. basilicum, and their hybrid. An increased proline content at the biochemical level represents a higher potential to survive in a stress condition like cold stress. In our analysis, the proline content is quite higher in tolerant variety O. kilimandscharicum, low in susceptible variety O. basilicum, and intermediate in the hybrid. Gene expression analysis was done in O. basilicum, O. kilimandscharicum and their hybrid for TTG1, GTL1, and STICHEL gene locus which regulates trichome development and its formation and transcription factors WRKY and MPS involved in the regulation of plant responses to freezing and cold. The analysis showed that O. kilimandscharicum and the hybrid were very close to each other but O. basilicum was more distinct in all respects. The overexpression of the WRKY coding gene showed high expression in the hybrid as compared to O. kilimandscharicum and O. basilicum and the transcription factor microspore-specific (MPS) promoter has also shown overexpression in the hybrid for its response against cold stress. The developed evergreen interspecific hybrid may thus provide a base to various industries which are dependent upon the bioactive constituents of Ocimum species.

  9. The capacity to maintain ion and water homeostasis underlies interspecific variation in Drosophila cold tolerance

    PubMed Central

    MacMillan, Heath A.; Andersen, Jonas L.; Davies, Shireen A.; Overgaard, Johannes

    2015-01-01

    Many insects, including Drosophila, succumb to the physiological effects of chilling at temperatures well above those causing freezing. Low temperature causes a loss of extracellular ion and water homeostasis in such insects, and chill injuries accumulate. Using an integrative and comparative approach, we examined the role of ion and water balance in insect chilling susceptibility/ tolerance. The Malpighian tubules (MT), of chill susceptible Drosophila species lost [Na+] and [K+] selectivity at low temperatures, which contributed to a loss of Na+ and water balance and a deleterious increase in extracellular [K+]. By contrast, the tubules of chill tolerant Drosophila species maintained their MT ion selectivity, maintained stable extracellular ion concentrations, and thereby avoided injury. The most tolerant species were able to modulate ion balance while in a cold-induced coma and this ongoing physiological acclimation process allowed some individuals of the tolerant species to recover from chill coma during low temperature exposure. Accordingly, differences in the ability to maintain homeostatic control of water and ion balance at low temperature may explain large parts of the wide intra- and interspecific variation in insect chilling tolerance. PMID:26678786

  10. Evolutionary stasis and lability in thermal physiology in a group of tropical lizards.

    PubMed

    Muñoz, Martha M; Stimola, Maureen A; Algar, Adam C; Conover, Asa; Rodriguez, Anthony J; Landestoy, Miguel A; Bakken, George S; Losos, Jonathan B

    2014-03-07

    Understanding how quickly physiological traits evolve is a topic of great interest, particularly in the context of how organisms can adapt in response to climate warming. Adjustment to novel thermal habitats may occur either through behavioural adjustments, physiological adaptation or both. Here, we test whether rates of evolution differ among physiological traits in the cybotoids, a clade of tropical Anolis lizards distributed in markedly different thermal environments on the Caribbean island of Hispaniola. We find that cold tolerance evolves considerably faster than heat tolerance, a difference that results because behavioural thermoregulation more effectively shields these organisms from selection on upper than lower temperature tolerances. Specifically, because lizards in very different environments behaviourally thermoregulate during the day to similar body temperatures, divergent selection on body temperature and heat tolerance is precluded, whereas night-time temperatures can only be partially buffered by behaviour, thereby exposing organisms to selection on cold tolerance. We discuss how exposure to selection on physiology influences divergence among tropical organisms and its implications for adaptive evolutionary response to climate warming.

  11. Evolutionary stasis and lability in thermal physiology in a group of tropical lizards

    PubMed Central

    Muñoz, Martha M.; Stimola, Maureen A.; Algar, Adam C.; Conover, Asa; Rodriguez, Anthony J.; Landestoy, Miguel A.; Bakken, George S.; Losos, Jonathan B.

    2014-01-01

    Understanding how quickly physiological traits evolve is a topic of great interest, particularly in the context of how organisms can adapt in response to climate warming. Adjustment to novel thermal habitats may occur either through behavioural adjustments, physiological adaptation or both. Here, we test whether rates of evolution differ among physiological traits in the cybotoids, a clade of tropical Anolis lizards distributed in markedly different thermal environments on the Caribbean island of Hispaniola. We find that cold tolerance evolves considerably faster than heat tolerance, a difference that results because behavioural thermoregulation more effectively shields these organisms from selection on upper than lower temperature tolerances. Specifically, because lizards in very different environments behaviourally thermoregulate during the day to similar body temperatures, divergent selection on body temperature and heat tolerance is precluded, whereas night-time temperatures can only be partially buffered by behaviour, thereby exposing organisms to selection on cold tolerance. We discuss how exposure to selection on physiology influences divergence among tropical organisms and its implications for adaptive evolutionary response to climate warming. PMID:24430845

  12. Tolerance of unacclimated Beagle dogs to freezing and subfreezing temperatures.

    DOT National Transportation Integrated Search

    1987-03-01

    Beagle dogs (3 and 6 months of age) unacclimated to cold air temperatures were exposed to temperatures near freezing (32 F) or subfreezing (near 20 F), while housed in simulated transport crates. All exposed dogs safely tolerated 4 hours of continuou...

  13. Mechano-stimulated modifications in the chloroplast antioxidant system and proteome changes are associated with cold response in wheat.

    PubMed

    Li, Xiangnan; Hao, Chenglong; Zhong, Jianwen; Liu, Fulai; Cai, Jian; Wang, Xiao; Zhou, Qin; Dai, Tingbo; Cao, Weixing; Jiang, Dong

    2015-09-11

    Mechanical wounding can cause morphological and developmental changes in plants, which may affect the responses to abiotic stresses. However, the mechano-stimulation triggered regulation network remains elusive. Here, the mechano-stimulation was applied at two different times during the growth period of wheat before exposing the plants to cold stress (5.6 °C lower temperature than the ambient temperature, viz., 5.0 °C) at the jointing stage. Results showed that mechano-stimulation at the Zadoks growth stage 26 activated the antioxidant system, and substantially, maintained the homeostasis of reactive oxygen species. In turn, the stimulation improved the electron transport and photosynthetic rate of wheat plants exposed to cold stress at the jointing stage. Proteomic and transcriptional analyses revealed that the oxidative stress defense, ATP synthesis, and photosynthesis-related proteins and genes were similarly modulated by mechano-stimulation and the cold stress. It was concluded that mechano-stimulated modifications of the chloroplast antioxidant system and proteome changes are related to cold tolerance in wheat. The findings might provide deeper insights into roles of reactive oxygen species in mechano-stimulated cold tolerance of photosynthetic apparatus, and be helpful to explore novel approaches to mitigate the impacts of low temperature occurring at critical developmental stages.

  14. Cold Induction of Arabidopsis CBF Genes Involves Multiple ICE (Inducer of CBF Expression) Promoter Elements and a Cold-Regulatory Circuit That Is Desensitized by Low Temperature1

    PubMed Central

    Zarka, Daniel G.; Vogel, Jonathan T.; Cook, Daniel; Thomashow, Michael F.

    2003-01-01

    The Arabidopsis CBF1, 2, and 3 genes (also known as DREB1b, c, and a, respectively) encode transcriptional activators that have a central role in cold tolerance. CBF1-3 are rapidly induced upon exposing plants to low temperature, followed by expression of CBF-targeted genes, the CBF regulon, resulting in an increase in plant freezing tolerance. At present, little is known about the cold-sensing mechanism that controls CBF expression. Results presented here indicate that this mechanism does not require a cold shock to bring about the accumulation of CBF transcripts, but instead, absolute temperature is monitored with a greater degree of input, i.e. lower temperature, resulting in a greater output, i.e. higher levels of CBF transcripts. Temperature-shift experiments also indicate that the cold-sensing mechanism becomes desensitized to a given low temperature, such as 4°C, and that resensitization to that temperature requires between 8 and 24 h at warm temperature. Gene fusion experiments identified a 125-bp section of the CBF2 promoter that is sufficient to impart cold-responsive gene expression. Mutational analysis of this cold-responsive region identified two promoter segments that work in concert to impart robust cold-regulated gene expression. These sequences, designated ICEr1 and ICEr2 (induction of CBF expression region 1 or 2), were also shown to stimulate transcription in response to mechanical agitation and the protein synthesis inhibitor, cycloheximide. PMID:14500791

  15. Thyroid transcriptome analysis reveals different adaptive responses to cold environmental conditions between two chicken breeds

    PubMed Central

    Yang, Xukai; Wang, Dehe; Zhu, Feng; Yang, Ning; Hou, Zhuocheng; Ning, Zhonghua

    2018-01-01

    Selection for cold tolerance in chickens is important for improving production performance and animal welfare. The identification of chicken breeds with higher cold tolerance and production performance will help to target candidates for the selection. The thyroid gland plays important roles in thermal adaptation, and its function is influenced by breed differences and transcriptional plasticity, both of which remain largely unknown in the chicken thyroid transcriptome. In this study, we subjected Bashang Long-tail (BS) and Rhode Island Red (RIR) chickens to either cold or warm environments for 21 weeks and investigated egg production performance, body weight changes, serum thyroid hormone concentrations, and thyroid gland transcriptome profiles. RIR chickens had higher egg production than BS chickens under warm conditions, but BS chickens produced more eggs than RIRs under cold conditions. Furthermore, BS chickens showed stable body weight gain under cold conditions while RIRs did not. These results suggested that BS breed is a preferable candidate for cold-tolerance selection and that the cold adaptability of RIRs should be improved in the future. BS chickens had higher serum thyroid hormone concentrations than RIRs under both environments. RNA-Seq generated 344.3 million paired-end reads from 16 sequencing libraries, and about 90% of the processed reads were concordantly mapped to the chicken reference genome. Differential expression analysis identified 46–1,211 genes in the respective comparisons. With regard to breed differences in the thyroid transcriptome, BS chickens showed higher cell replication and development, and immune response-related activity, while RIR chickens showed higher carbohydrate and protein metabolism activity. The cold environment reduced breed differences in the thyroid transcriptome compared with the warm environment. Transcriptional plasticity analysis revealed different adaptive responses in BS and RIR chickens to cope with the cold, and showed higher responsiveness in BS compared with RIR chickens, suggesting greater adaptability of the thyroid in BS chickens. Moreover, 10,053 differential splicing events were revealed among the groups, with RNA splicing and processing, gene expression, transport, and metabolism being the main affected biological processes, identifying a valuable alternative splicing repertoire for the chicken thyroid. A short isoform of TPO (encoding thyroid peroxidase) containing multiple open reading frames was generated in both breeds by skipping exons 4 and 5 in the cold environment. These findings provide novel clues for future studies of the molecular mechanisms underlying cold adaptation and/or acclimation in chickens. PMID:29320582

  16. Thyroid transcriptome analysis reveals different adaptive responses to cold environmental conditions between two chicken breeds.

    PubMed

    Xie, Shanshan; Yang, Xukai; Wang, Dehe; Zhu, Feng; Yang, Ning; Hou, Zhuocheng; Ning, Zhonghua

    2018-01-01

    Selection for cold tolerance in chickens is important for improving production performance and animal welfare. The identification of chicken breeds with higher cold tolerance and production performance will help to target candidates for the selection. The thyroid gland plays important roles in thermal adaptation, and its function is influenced by breed differences and transcriptional plasticity, both of which remain largely unknown in the chicken thyroid transcriptome. In this study, we subjected Bashang Long-tail (BS) and Rhode Island Red (RIR) chickens to either cold or warm environments for 21 weeks and investigated egg production performance, body weight changes, serum thyroid hormone concentrations, and thyroid gland transcriptome profiles. RIR chickens had higher egg production than BS chickens under warm conditions, but BS chickens produced more eggs than RIRs under cold conditions. Furthermore, BS chickens showed stable body weight gain under cold conditions while RIRs did not. These results suggested that BS breed is a preferable candidate for cold-tolerance selection and that the cold adaptability of RIRs should be improved in the future. BS chickens had higher serum thyroid hormone concentrations than RIRs under both environments. RNA-Seq generated 344.3 million paired-end reads from 16 sequencing libraries, and about 90% of the processed reads were concordantly mapped to the chicken reference genome. Differential expression analysis identified 46-1,211 genes in the respective comparisons. With regard to breed differences in the thyroid transcriptome, BS chickens showed higher cell replication and development, and immune response-related activity, while RIR chickens showed higher carbohydrate and protein metabolism activity. The cold environment reduced breed differences in the thyroid transcriptome compared with the warm environment. Transcriptional plasticity analysis revealed different adaptive responses in BS and RIR chickens to cope with the cold, and showed higher responsiveness in BS compared with RIR chickens, suggesting greater adaptability of the thyroid in BS chickens. Moreover, 10,053 differential splicing events were revealed among the groups, with RNA splicing and processing, gene expression, transport, and metabolism being the main affected biological processes, identifying a valuable alternative splicing repertoire for the chicken thyroid. A short isoform of TPO (encoding thyroid peroxidase) containing multiple open reading frames was generated in both breeds by skipping exons 4 and 5 in the cold environment. These findings provide novel clues for future studies of the molecular mechanisms underlying cold adaptation and/or acclimation in chickens.

  17. Genome-Wide Association Mapping Reveals Multiple QTLs Governing Tolerance Response for Seedling Stage Chilling Stress in Indica Rice.

    PubMed

    Pandit, Elssa; Tasleem, Swaleha; Barik, Saumya R; Mohanty, Durga P; Nayak, Deepak K; Mohanty, Shakti P; Das, Sujata; Pradhan, Sharat K

    2017-01-01

    Rice crop is sensitive to cold stress at seedling stage. A panel of population representing 304 shortlisted germplasm lines was studied for seedling stage chilling tolerance in indica rice. Six phenotypic classes were exposed to six low temperature stress regimes under control phenotyping facility to investigate response pattern. A panel of 66 genotypes representing all phenotypic classes was used for ensuring genetic diversity, population structure and association mapping for the trait using 58 simple sequence repeat (SSR) and 2 direct trait linked markers. A moderate level of genetic diversity was detected in the panel population for the trait. Deviation of Hardy-Weinberg's expectation was detected in the studied population using Wright's F statistic. The panel showed 30% variation among population and 70% among individuals. The entire population was categorized into three sub-populations through STRUCTURE analysis. This revealed tolerance for the trait had a common primary ancestor for each sub-population with few admix individuals. The panel population showed the presence of many QTLs for cold stress tolerance in the individuals representing like genome-wide expression of the trait. Nineteen SSR markers were significantly associated at chilling stress of 8°C to 4°C for 7-21 days duration. Thus, the primers linked to the seedling stage cold tolerance QTLs namely qCTS9, qCTS-2, qCTS6.1, qSCT2, qSCT11, qSCT1a, qCTS-3.1, qCTS11.1, qCTS12.1, qCTS-1b, and CTB2 need to be pyramided for development of strongly chilling tolerant variety.

  18. Genome-Wide Association Mapping Reveals Multiple QTLs Governing Tolerance Response for Seedling Stage Chilling Stress in Indica Rice

    PubMed Central

    Pandit, Elssa; Tasleem, Swaleha; Barik, Saumya R.; Mohanty, Durga P.; Nayak, Deepak K.; Mohanty, Shakti P.; Das, Sujata; Pradhan, Sharat K.

    2017-01-01

    Rice crop is sensitive to cold stress at seedling stage. A panel of population representing 304 shortlisted germplasm lines was studied for seedling stage chilling tolerance in indica rice. Six phenotypic classes were exposed to six low temperature stress regimes under control phenotyping facility to investigate response pattern. A panel of 66 genotypes representing all phenotypic classes was used for ensuring genetic diversity, population structure and association mapping for the trait using 58 simple sequence repeat (SSR) and 2 direct trait linked markers. A moderate level of genetic diversity was detected in the panel population for the trait. Deviation of Hardy-Weinberg's expectation was detected in the studied population using Wright's F statistic. The panel showed 30% variation among population and 70% among individuals. The entire population was categorized into three sub-populations through STRUCTURE analysis. This revealed tolerance for the trait had a common primary ancestor for each sub-population with few admix individuals. The panel population showed the presence of many QTLs for cold stress tolerance in the individuals representing like genome-wide expression of the trait. Nineteen SSR markers were significantly associated at chilling stress of 8°C to 4°C for 7–21 days duration. Thus, the primers linked to the seedling stage cold tolerance QTLs namely qCTS9, qCTS-2, qCTS6.1, qSCT2, qSCT11, qSCT1a, qCTS-3.1, qCTS11.1, qCTS12.1, qCTS-1b, and CTB2 need to be pyramided for development of strongly chilling tolerant variety. PMID:28487705

  19. Strong Costs and Benefits of Winter Acclimatization in Drosophila melanogaster

    PubMed Central

    Schou, Mads Fristrup; Loeschcke, Volker; Kristensen, Torsten Nygaard

    2015-01-01

    Studies on thermal acclimation in insects are often performed on animals acclimated in the laboratory under conditions that are not ecologically relevant. Costs and benefits of acclimation responses under such conditions may not reflect costs and benefits in natural populations subjected to daily and seasonal temperature fluctuations. Here we estimated costs and benefits in thermal tolerance limits in relation to winter acclimatization of Drosophila melanogaster. We sampled flies from a natural habitat during winter in Denmark (field flies) and compared heat and cold tolerance of these to that of flies collected from the same natural population, but acclimated to 25 °C or 13 °C in the laboratory (laboratory flies). We further obtained thermal performance curves for egg-to-adult viability of field and laboratory (25 °C) flies, to estimate possible cross-generational effects of acclimation. We found much higher cold tolerance and a lowered heat tolerance in field flies compared to laboratory flies reared at 25 °C. Flies reared in the laboratory at 13 °C exhibited the same thermal cost-benefit relations as the winter acclimatized flies. We also found a cost of winter acclimatization in terms of decreased egg-to-adult viability at high temperatures of eggs laid by winter acclimatized flies. Based on our findings we suggest that winter acclimatization in nature can induce strong benefits in terms of increased cold tolerance. These benefits can be reproduced in the laboratory under ecologically relevant rearing and testing conditions, and should be incorporated in species distribution modelling. Winter acclimatization also leads to decreased heat tolerance. This may create a mismatch between acclimation responses and the thermal environment, e.g. if temperatures suddenly increase during spring, under current and expected more variable future climatic conditions. PMID:26075607

  20. Strong Costs and Benefits of Winter Acclimatization in Drosophila melanogaster.

    PubMed

    Schou, Mads Fristrup; Loeschcke, Volker; Kristensen, Torsten Nygaard

    2015-01-01

    Studies on thermal acclimation in insects are often performed on animals acclimated in the laboratory under conditions that are not ecologically relevant. Costs and benefits of acclimation responses under such conditions may not reflect costs and benefits in natural populations subjected to daily and seasonal temperature fluctuations. Here we estimated costs and benefits in thermal tolerance limits in relation to winter acclimatization of Drosophila melanogaster. We sampled flies from a natural habitat during winter in Denmark (field flies) and compared heat and cold tolerance of these to that of flies collected from the same natural population, but acclimated to 25 °C or 13 °C in the laboratory (laboratory flies). We further obtained thermal performance curves for egg-to-adult viability of field and laboratory (25 °C) flies, to estimate possible cross-generational effects of acclimation. We found much higher cold tolerance and a lowered heat tolerance in field flies compared to laboratory flies reared at 25 °C. Flies reared in the laboratory at 13 °C exhibited the same thermal cost-benefit relations as the winter acclimatized flies. We also found a cost of winter acclimatization in terms of decreased egg-to-adult viability at high temperatures of eggs laid by winter acclimatized flies. Based on our findings we suggest that winter acclimatization in nature can induce strong benefits in terms of increased cold tolerance. These benefits can be reproduced in the laboratory under ecologically relevant rearing and testing conditions, and should be incorporated in species distribution modelling. Winter acclimatization also leads to decreased heat tolerance. This may create a mismatch between acclimation responses and the thermal environment, e.g. if temperatures suddenly increase during spring, under current and expected more variable future climatic conditions.

  1. Integrative “omic” analysis reveals distinctive cold responses in leaves and roots of strawberry, Fragaria × ananassa ‘Korona’

    PubMed Central

    Koehler, Gage; Rohloff, Jens; Wilson, Robert C.; Kopka, Joachim; Erban, Alexander; Winge, Per; Bones, Atle M.; Davik, Jahn; Alsheikh, Muath K.; Randall, Stephen K.

    2015-01-01

    To assess underlying metabolic processes and regulatory mechanisms during cold exposure of strawberry, integrative “omic” approaches were applied to Fragaria × ananassa Duch. ‘Korona.’ Both root and leaf tissues were examined for responses to the cold acclimation processes. Levels of metabolites, proteins, and transcripts in tissues from plants grown at 18°C were compared to those following 1–10 days of cold (2°C) exposure. When leaves and roots were subjected to GC/TOF-MS-based metabolite profiling, about 160 compounds comprising mostly structurally annotated primary and secondary metabolites, were found. Overall, ‘Korona’ showed a modest increase of protective metabolites such as amino acids (aspartic acid, leucine, isoleucine, and valine), pentoses, phosphorylated and non-phosphorylated hexoses, and distinct compounds of the raffinose pathway (galactinol and raffinose). Distinctive responses were observed in roots and leaves. By 2DE proteomics a total of 845 spots were observed in leaves; 4.6% changed significantly in response to cold. Twenty-one proteins were identified, many of which were associated with general metabolism or photosynthesis. Transcript levels in leaves were determined by microarray, where dozens of cold associated transcripts were quantitatively characterized, and levels of several potential key contributors (e.g., the dehydrin COR47 and GADb) to cold tolerance were confirmed by qRT-PCR. Cold responses are placed within the existing knowledge base of low temperature-induced changes in plants, allowing an evaluation of the uniqueness or generality of Fragaria responses in photosynthetic tissues. Overall, the cold response characteristics of ‘Korona’ are consistent with a moderately cold tolerant plant. PMID:26528299

  2. Clinical assessment of the warming sensation accompanying flavor 316282 in a cold and cough syrup containing paracetamol, phenylephrine hydrochloride, and guaifenesin

    PubMed Central

    Monnet, Joëlle

    2014-01-01

    Objective: The primary objective was to assess the warming sensation caused by flavor 316282 in a cold and cough product in the target population. Methods: A single-cohort, single-treatment arm, open-label study. Subjects received one 30-mL dose of syrup containing flavor 316282, paracetamol, phenylephrine hydrochloride, and guaifenesin and recorded onset and disappearance of any warming sensation in the mouth/throat. Subjects’ assessment of strength and appeal of the sensation, taste, texture, and acceptability of the product as a cold and cough remedy was investigated using questionnaires. Results: A total of 51 subjects were included; 47 (92.1%) experienced a warming sensation. The median duration of the warming sensation was 100 s (95% confidence interval = 82 s, 112 s). The majority of subjects rated the syrup as excellent, good, or fair for treatment of cough and cold symptoms (96.1%), taste (80.4%), and texture (98.0%). There were no safety concerns, and the syrup was well tolerated. Most subjects liked the warming sensation. Conclusions: Flavor 316282 in a cold and cough syrup is associated with a warming sensation. The syrup is well tolerated, safe, and palatable. PMID:26770699

  3. Calcium addition at the Hubbard Brook Experimental Forest increases sugar storage, antioxidant activity and cold tolerance in native red spruce (Picea rubens).

    PubMed

    Halman, Joshua M; Schaberg, Paul G; Hawley, Gary J; Eagar, Christopher

    2008-06-01

    In fall (November 2005) and winter (February 2006), we collected current-year foliage of native red spruce (Picea rubens Sarg.) growing in a reference watershed and in a watershed treated in 1999 with wollastonite (CaSiO(3), a slow-release calcium source) to simulate preindustrial soil calcium concentrations (Ca-addition watershed) at the Hubbard Brook Experimental Forest (Thornton, NH). We analyzed nutrition, soluble sugar concentrations, ascorbate peroxidase (APX) activity and cold tolerance, to evaluate the basis of recent (2003) differences between watersheds in red spruce foliar winter injury. Foliar Ca and total sugar concentrations were significantly higher in trees in the Ca-addition watershed than in trees in the reference watershed during both fall (P=0.037 and 0.035, respectively) and winter (P=0.055 and 0.036, respectively). The Ca-addition treatment significantly increased foliar fructose and glucose concentrations in November (P=0.013 and 0.007, respectively) and foliar sucrose concentrations in winter (P=0.040). Foliar APX activity was similar in trees in both watersheds during fall (P=0.28), but higher in trees in the Ca-addition watershed during winter (P=0.063). Cold tolerance of foliage was significantly greater in trees in the Ca-addition watershed than in trees in the reference watershed (P<0.001). Our results suggest that low foliar sugar concentrations and APX activity, and reduced cold tolerance in trees in the reference watershed contributed to their high vulnerability to winter injury in 2003. Because the reference watershed reflects forest conditions in the region, the consequences of impaired physiological function caused by soil Ca depletion may have widespread implications for forest health.

  4. The overwintering biology of the acorn weevil, Curculio glandium in southwestern Ontario.

    PubMed

    Udaka, Hiroko; Sinclair, Brent J

    2014-08-01

    The acorn weevil, Curculio glandium, is a widespread predator of acorns in eastern North America that overwinters in the soil as a larva. It is possible that low temperatures limit its northern geographic range, so we determined the cold tolerance strategy, seasonal variation in cold tolerance, and explored the physiological plasticity of overwintering larvae. Weevil larvae were collected from acorns of red and bur oak from Pelee Island, southwestern Ontario in fall 2010 and 2011. C. glandium larvae are freeze avoidant and larvae collected from bur oak acorns had lower supercooling points (SCPs: -7.6±0.36°C, LT50: -7.2°C) than those collected from red oak acorns (SCPs: -6.1±0.40°C, LT50: -6.1°C). In the winter of 2010-2011, SCPs and water content decreased, however these changes did not occur in 2011-2012, when winter soil temperatures fluctuated greatly in the absence of the buffering effect of snow. To examine whether larvae utilize cryoprotective dehydration, larvae from red oak acorns were exposed to -5°C in the presence of ice for seven days. These conditions decreased the SCP without affecting water content, suggesting that SCP and water content are not directly coupled. Finally, long-term acclimation at 0°C for six weeks slightly increased cold tolerance but also did not affect water content. Thus, although larval diet affects cold tolerance, there is limited plasticity after other treatments. The soil temperatures we observed were not close to lethal limits, although we speculate that soil temperatures in northerly habitats, or in years of reduced snow cover, has the potential to cause mortality in the field. Copyright © 2014 Elsevier Ltd. All rights reserved.

  5. Discrepancy between stimulus response and tolerance of pain in Alzheimer disease

    PubMed Central

    Werner, Mads U.; Jensen, Troels Staehelin; Ballegaard, Martin; Andersen, Birgitte Bo; Høgh, Peter; Waldemar, Gunhild

    2015-01-01

    Background: Affective-motivational and sensory-discriminative aspects of pain were investigated in patients with mild to moderate Alzheimer disease (AD) and healthy elderly controls using the cold pressor test tolerance and repetitive stimuli of warmth and heat stimuli, evaluating the stimulus-response function. Methods: A case-control design was applied examining 33 patients with mild to moderate AD dementia and 32 healthy controls with the cold pressor test (4°C). Warmth detection threshold (WDT) and heat pain threshold (HPT) were assessed using 5 stimulations. A stimulus-response function was estimated using 4 incrementally increasing suprathreshold heat stimuli. Results: Cold pressor tolerance was lower in patients with AD dementia than in controls (p = 0.027). There were no significant differences between groups regarding WDT and HPT. Significant successive increases in HPT assessments indicated habituation (p < 0.0001), which was similar in the 2 groups (p = 0.85). A mixed model for repeated measures demonstrated that pain rating of suprathreshold stimuli depended on HPT (p = 0.0004) and stimulus intensity (p < 0.0001). Patients with AD dementia had significantly lower increases in pain ratings than controls during suprathreshold stimulation (p = 0.0072). Conclusion: Our results indicate that AD dementia is not associated with a propensity toward development of sensitization or a lack of habituation, suggesting preservation of sensory-discriminative aspects of pain perception. The results further suggest that the attenuated cold pressor pain tolerance may relate to impairment of coping abilities. Paradoxically, we found an attenuated stimulus-response function, compared to controls, suggesting that AD dementia interferes with pain ratings over time, most likely due to memory impairment. PMID:25788560

  6. Hotter nests produce hatchling lizards with lower thermal tolerance.

    PubMed

    Dayananda, Buddhi; Murray, Brad R; Webb, Jonathan K

    2017-06-15

    In many regions, the frequency and duration of summer heatwaves is predicted to increase in future. Hotter summers could result in higher temperatures inside lizard nests, potentially exposing embryos to thermally stressful conditions during development. Potentially, developmentally plastic shifts in thermal tolerance could allow lizards to adapt to climate warming. To determine how higher nest temperatures affect the thermal tolerance of hatchling geckos, we incubated eggs of the rock-dwelling velvet gecko, Amalosia lesueurii , at two fluctuating temperature regimes to mimic current nest temperatures (mean 23.2°C, range 10-33°C, 'cold') and future nest temperatures (mean 27.0°C, range 14-37°C, 'hot'). Hatchlings from the hot incubation group hatched 27 days earlier and had a lower critical thermal maximum (CT max 38.7°C) and a higher critical thermal minimum (CT min 6.2°C) than hatchlings from cold incubation group (40.2 and 5.7°C, respectively). In the field, hatchlings typically settle under rocks near communal nests. During the hatching period, rock temperatures ranged from 13 to 59°C, and regularly exceeded the CT max of both hot- and cold-incubated hatchlings. Because rock temperatures were so high, the heat tolerance of lizards had little effect on their ability to exploit rocks as retreat sites. Instead, the timing of hatching dictated whether lizards could exploit rocks as retreat sites; that is, cold-incubated lizards that hatched later encountered less thermally stressful environments than earlier hatching hot-incubated lizards. In conclusion, we found no evidence that CT max can shift upwards in response to higher incubation temperatures, suggesting that hotter summers may increase the vulnerability of lizards to climate warming. © 2017. Published by The Company of Biologists Ltd.

  7. Could behaviour and not physiological thermal tolerance determine winter survival of aphids in cereal fields?

    PubMed

    Alford, Lucy; Andrade, Thiago Oliveira; Georges, Romain; Burel, Françoise; van Baaren, Joan

    2014-01-01

    Traits of physiological thermotolerance are commonly measured in the laboratory as predictors of the field success of ectotherms at unfavourable temperatures (e.g. during harsh winters, heatwaves, or under conditions of predicted global warming). Due to being more complicated to measure, behavioural thermoregulation is less commonly studied, although both physiology and behaviour interact to explain the survival of ectotherms. The aphids Metopolophium dirhodum, Rhopalosiphum padi and Sitobion avenae are commercially important pests of temperate cereal crops. Although coexisting, these species markedly differ in winter success, with R. padi being the most abundant species during cold winters, followed by S. avenae and lastly M. dirhodum. To better understand the thermal physiology and behavioural factors contributing to differential winter success, the lethal temperature (physiological thermotolerance) and the behaviour of aphids in a declining temperature regime (behavioural thermotolerance) of these three species were investigated. Physiological thermotolerance significantly differed between the three species, with R. padi consistently the least cold tolerant and S. avenae the most cold tolerant. However, although the least cold tolerant of the study species, significantly more R. padi remained attached to the host plant at extreme sub-zero temperatures than S. avenae and M. dirhodum. Given the success of anholocyclic R. padi in harsh winters compared to its anholocyclic counterparts, this study illustrates that behavioural differences could be more important than physiological thermotolerance in explaining resistance to extreme temperatures. Furthermore it highlights that there is a danger to studying physiological thermotolerance in isolation when ascertaining risks of ectotherm invasions, the establishment potential of exotic species in glasshouses, or predicting species impacts under climate change scenarios.

  8. 21 CFR 133.125 - Cold-pack cheese food with fruits, vegetables, or meats.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... meats. 133.125 Section 133.125 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND... for Specific Standardized Cheese and Related Products § 133.125 Cold-pack cheese food with fruits... label declaration of ingredients, prescribed for cold pack cheese food by § 133.124, except that: (1...

  9. Calcium addition at the Hubbard Brook Experimental Forest increases the capacity for stress tolerance and carbon capture in red spruce (Picea rubens) trees during the cold season

    Treesearch

    Paul G. Schaberg; Rakesh Minocha; Stephanie Long; Joshua M. Halman; Gary J. Hawley; Christopher Eagar

    2011-01-01

    Red spruce (Picea rubens Sarg.) trees are uniquely vulnerable to foliar freezing injury during the cold season (fall and winter), but are also capable of photosynthetic activity if temperatures moderate. To evaluate the influence of calcium (Ca) addition on the physiology of red spruce during the cold season, we measured concentrations of foliar...

  10. Hot and cold body reference noise generators from 0 to 40 GHz

    NASA Technical Reports Server (NTRS)

    Hornbostel, D. H.

    1974-01-01

    This article describes the design, development, and analysis of exceptionally accurate radiometric noise generators from 0-40 GHz to serve as standard references. Size, weight, power, and reliability are optimized to meet the requirements of NASA air- and space-borne radiometers. The radiometric noise temperature of these noise generators is, unavoidably, calculated from measured values rather than measured directly. The absolute accuracy and stability are equal to or better than those of reliable standards available for comparison. A noise generator has been developed whose measurable properties (VSWR, line loss, thermometric temperatures) have been optimized in order to minimize the effects of the uncertainty in the calculated radiometric noise temperatures. Each measurable property is evaluated and analyzed to determine the effects of the uncertainty of the measured value. Unmeasurable properties (primarily temperature gradients) are analyzed, and reasonable precautions are designed into the noise generator to guarantee that the uncertainty of the value remains within tolerable limits.

  11. Master of all trades: thermal acclimation and adaptation of cardiac function in a broadly distributed marine invasive species, the European green crab, Carcinus maenas.

    PubMed

    Tepolt, Carolyn K; Somero, George N

    2014-04-01

    As global warming accelerates, there is increasing concern about how ecosystems may change as a result of species loss and replacement. Here, we examined the thermal physiology of the European green crab (Carcinus maenas Linnaeus 1758), a globally invasive species, along three parallel thermal gradients in its native and invasive ranges. At each site, we assessed cardiac physiology to determine heat and cold tolerance and acclimatory plasticity. We found that, overall, the species is highly tolerant of both heat and cold, and that it survives higher temperatures than co-occurring native marine crustaceans. Further, we found that both heat and cold tolerance are plastic in response to short-term acclimation (18-31 days at either 5 or 25°C). Comparing patterns within ranges, we found latitudinal gradients in thermal tolerance in the native European range and in the invasive range in eastern North America. This pattern is strongest in the native range, and likely evolved there. Because of a complicated invasion history, the latitudinal pattern in the eastern North American invasive range may be due either to rapid adaptation post-invasion or to adaptive differences between the ancestral populations that founded the invasion. Overall, the broad thermal tolerance ranges of green crabs, which may facilitate invasion of novel habitats, derive from high inherent eurythermality and acclimatory plasticity and potentially adaptive differentiation among populations. The highly flexible physiology that results from these capacities may represent the hallmark of a successful invasive species, and may provide a model for success in a changing world.

  12. Weyl Exceptional Rings in a Three-Dimensional Dissipative Cold Atomic Gas (Author’s Manuscript)

    DTIC Science & Technology

    2017-01-27

    Weyl Exceptional Rings in a Three-Dimensional Dissipative Cold Atomic Gas Yong Xu,∗ Sheng-Tao Wang, and L.-M. Duan Department of Physics, University...atomic gas trapped in an optical lattice. Recently, condensed matter systems have proven to be a powerful platform to study low energy gapless...possess a nonzero quantized Chern number. This leads to a natural question of whether there exists a topological ring exhibiting both a quantized Chern

  13. Metabolic Changes in Avena sativa Crowns Recovering from Freezing

    PubMed Central

    Henson, Cynthia A.; Duke, Stanley H.; Livingston, David P.

    2014-01-01

    Extensive research has been conducted on cold acclimation and freezing tolerance of fall-sown cereal plants due to their economic importance; however, little has been reported on the biochemical changes occurring over time after the freezing conditions are replaced by conditions favorable for recovery and growth such as would occur during spring. In this study, GC-MS was used to detect metabolic changes in the overwintering crown tissue of oat (Avena sativa L.) during a fourteen day time-course after freezing. Metabolomic analysis revealed increases in most amino acids, particularly proline, 5-oxoproline and arginine, which increased greatly in crowns that were frozen compared to controls and correlated very significantly with days after freezing. In contrast, sugar and sugar related metabolites were little changed by freezing, except sucrose and fructose which decreased dramatically. In frozen tissue all TCA cycle metabolites, especially citrate and malate, decreased in relation to unfrozen tissue. Alterations in some amino acid pools after freezing were similar to those observed in cold acclimation whereas most changes in sugar pools after freezing were not. These similarities and differences suggest that there are common as well as unique genetic mechanisms between these two environmental conditions that are crucial to the winter survival of plants. PMID:24675792

  14. De Novo Transcriptome Sequencing and the Hypothetical Cold Response Mode of Saussurea involucrata in Extreme Cold Environments

    PubMed Central

    Li, Jin; Liu, Hailiang; Xia, Wenwen; Mu, Jianqiang; Feng, Yujie; Liu, Ruina; Yan, Panyao; Wang, Aiying; Lin, Zhongping; Guo, Yong; Zhu, Jianbo; Chen, Xianfeng

    2017-01-01

    Saussurea involucrata grows in high mountain areas covered by snow throughout the year. The temperature of this habitat can change drastically in one day. To gain a better understanding of the cold response signaling pathways and molecular metabolic reactions involved in cold stress tolerance, genome-wide transcriptional analyses were performed using RNA-Seq technologies. A total of 199,758 transcripts were assembled, producing 138,540 unigenes with 46.8 Gb clean data. Overall, 184,416 (92.32%) transcripts were successfully annotated. The 365 transcription factors identified (292 unigenes) belonged to 49 transcription factor families associated with cold stress responses. A total of 343 transcripts on the signal transduction (132 upregulated and 212 downregulated in at least any one of the conditions) were strongly affected by cold temperature, such as the CBL-interacting serine/threonine-protein kinase (CIPKs), receptor-like protein kinases, and protein kinases. The circadian rhythm pathway was activated by cold adaptation, which was necessary to endure the severe temperature changes within a day. There were 346 differentially expressed genes (DEGs) related to transport, of which 138 were upregulated and 22 were downregulated in at least any one of the conditions. Under cold stress conditions, transcriptional regulation, molecular transport, and signal transduction were involved in the adaptation to low temperature in S. involucrata. These findings contribute to our understanding of the adaptation of plants to harsh environments and the survival traits of S. involucrata. In addition, the present study provides insight into the molecular mechanisms of chilling and freezing tolerance. PMID:28590406

  15. TaSK5, an abiotic stress-inducible GSK3/shaggy-like kinase from wheat, confers salt and drought tolerance in transgenic Arabidopsis.

    PubMed

    Christov, Nikolai Kirilov; Christova, Petya Koeva; Kato, Hideki; Liu, Yuelin; Sasaki, Kentaro; Imai, Ryozo

    2014-11-01

    A novel cold-inducible GSK3/shaggy-like kinase, TaSK5, was isolated from winter wheat using a macroarray-based differential screening approach. TaSK5 showed high similarity to Arabidopsis subgroup I GSK3/shaggy-like kinases ASK-alpha, AtSK-gamma and ASK-epsilon. RNA gel blot analyses revealed TaSK5 induction by cold and NaCl treatments and to a lesser extent by drought treatment. TaSK5 functionally complemented the cold- and salt-sensitive phenotypes of a yeast GSK3/shaggy-like kinase mutant, △mck1. Transgenic Arabidopsis plants overexpressing TaSK5 cDNA showed enhanced tolerance to salt and drought stresses. By contrast, the tolerance of the transgenic plants to freezing stress was not altered. Microarray analysis revealed that a number of abiotic stress-inducible genes were constitutively induced in the transgenic Arabidopsis plants, suggesting that TaSK5 may function in a novel signal transduction pathway that appears to be unrelated to DREB1/CBF regulon and may involve crosstalk between abiotic and hormonal signals. Copyright © 2014 Elsevier Masson SAS. All rights reserved.

  16. Cold tolerance and freeze-induced glucose accumulation in three terrestrial slugs.

    PubMed

    Slotsbo, Stine; Hansen, Lars Monrad; Jordaens, Kurt; Backeljau, Thierry; Malmendal, Anders; Nielsen, Niels Chr; Holmstrup, Martin

    2012-04-01

    Cold tolerance and metabolic responses to freezing of three slug species common in Scandinavia (Arion ater, Arion rufus and Arion lusitanicus) are reported. Autumn collected slugs were cold acclimated in the laboratory and subjected to freezing conditions simulating likely winter temperatures in their habitat. Slugs spontaneously froze at about -4 °C when cooled under dry conditions, but freezing of body fluids was readily induced at -1 °C when in contact with external ice crystals. All three species survived freezing for 2 days at -1 °C, and some A. rufus and A. lusitanicus also survived freezing at -2 °C. (1)H NMR spectroscopy revealed that freezing of body fluids resulted in accumulation of lactate, succinate and glucose. Accumulation of lactate and succinate indicates that ATP production occurred via fermentative pathways, which is likely a result of oxygen depletion in frozen tissues. Glucose increased from about 6 to 22 μg/mg dry tissue upon freezing in A. rufus, but less so in A. ater and A. lusitanicus. Glucose may thus act as a cryoprotectant in these slugs, although the concentrations are not as high as reported for other freeze tolerant invertebrates. Copyright © 2012 Elsevier Inc. All rights reserved.

  17. Musical Agency during Physical Exercise Decreases Pain.

    PubMed

    Fritz, Thomas H; Bowling, Daniel L; Contier, Oliver; Grant, Joshua; Schneider, Lydia; Lederer, Annette; Höer, Felicia; Busch, Eric; Villringer, Arno

    2017-01-01

    Objectives: When physical exercise is systematically coupled to music production, exercisers experience improvements in mood, reductions in perceived effort, and enhanced muscular efficiency. The physiology underlying these positive effects remains unknown. Here we approached the investigation of how such musical agency may stimulate the release of endogenous opioids indirectly with a pain threshold paradigm. Design: In a cross-over design we tested the opioid-hypothesis with an indirect measure, comparing the pain tolerance of 22 participants following exercise with or without musical agency. Method: Physical exercise was coupled to music by integrating weight-training machines with sensors that control music-synthesis in real time. Pain tolerance was measured as withdrawal time in a cold pressor test. Results: On average, participants tolerated cold pain for ~5 s longer following exercise sessions with musical agency. Musical agency explained 25% of the variance in cold pressor test withdrawal times after factoring out individual differences in general pain sensitivity. Conclusions: This result demonstrates a substantial pain reducing effect of musical agency in combination with physical exercise, probably due to stimulation of endogenous opioid mechanisms. This has implications for exercise endurance, both in sports and a multitude of rehabilitative therapies in which physical exercise is effective but painful.

  18. Musical Agency during Physical Exercise Decreases Pain

    PubMed Central

    Fritz, Thomas H.; Bowling, Daniel L.; Contier, Oliver; Grant, Joshua; Schneider, Lydia; Lederer, Annette; Höer, Felicia; Busch, Eric; Villringer, Arno

    2018-01-01

    Objectives: When physical exercise is systematically coupled to music production, exercisers experience improvements in mood, reductions in perceived effort, and enhanced muscular efficiency. The physiology underlying these positive effects remains unknown. Here we approached the investigation of how such musical agency may stimulate the release of endogenous opioids indirectly with a pain threshold paradigm. Design: In a cross-over design we tested the opioid-hypothesis with an indirect measure, comparing the pain tolerance of 22 participants following exercise with or without musical agency. Method: Physical exercise was coupled to music by integrating weight-training machines with sensors that control music-synthesis in real time. Pain tolerance was measured as withdrawal time in a cold pressor test. Results: On average, participants tolerated cold pain for ~5 s longer following exercise sessions with musical agency. Musical agency explained 25% of the variance in cold pressor test withdrawal times after factoring out individual differences in general pain sensitivity. Conclusions: This result demonstrates a substantial pain reducing effect of musical agency in combination with physical exercise, probably due to stimulation of endogenous opioid mechanisms. This has implications for exercise endurance, both in sports and a multitude of rehabilitative therapies in which physical exercise is effective but painful. PMID:29387030

  19. Temperature-Dependent Development, Cold Tolerance, and Potential Distribution of Cricotopus lebetis (Diptera: Chironomidae), a Tip Miner of Hydrilla verticillata (Hydrocharitaceae)

    PubMed Central

    Stratman, Karen N.; Overholt, William A.; Cuda, James P.; Mukherjee, A.; Diaz, R.; Netherland, Michael D.; Wilson, Patrick C.

    2014-01-01

    Abstract A chironomid midge, Cricotopus lebetis (Sublette) (Diptera: Chironomidae), was discovered attacking the apical meristems of Hydrilla verticillata (L.f. Royle) in Crystal River, Citrus Co., Florida in 1992. The larvae mine the stems of H. verticillata and cause basal branching and stunting of the plant. Temperature-dependent development, cold tolerance, and the potential distribution of the midge were investigated. The results of the temperature-dependent development study showed that optimal temperatures for larval development were between 20 and 30°C, and these data were used to construct a map of the potential number of generations per year of C. lebetis in Florida. Data from the cold tolerance study, in conjunction with historical weather data, were used to generate a predicted distribution of C. lebetis in the United States. A distribution was also predicted using an ecological niche modeling approach by characterizing the climate at locations where C. lebetis is known to occur and then finding other locations with similar climate. The distributions predicted using the two modeling approaches were not significantly different and suggested that much of the southeastern United States was climatically suitable for C. lebetis . PMID:25347841

  20. OeFAD8, OeLIP and OeOSM expression and activity in cold-acclimation of Olea europaea, a perennial dicot without winter-dormancy.

    PubMed

    D'Angeli, Simone; Matteucci, Maya; Fattorini, Laura; Gismondi, Angelo; Ludovici, Matteo; Canini, Antonella; Altamura, Maria Maddalena

    2016-05-01

    Cold-acclimation genes in woody dicots without winter-dormancy, e.g., olive-tree, need investigation. Positive relationships between OeFAD8, OeOSM , and OeLIP19 and olive-tree cold-acclimation exist, and couple with increased lipid unsaturation and cutinisation. Olive-tree is a woody species with no winter-dormancy and low frost-tolerance. However, cold-tolerant genotypes were empirically selected, highlighting that cold-acclimation might be acquired. Proteins needed for olive-tree cold-acclimation are unknown, even if roles for osmotin (OeOSM) as leaf cryoprotectant, and seed lipid-transfer protein for endosperm cutinisation under cold, were demonstrated. In other species, FAD8, coding a desaturase producing α-linolenic acid, is activated by temperature-lowering, concomitantly with bZIP-LIP19 genes. The research was focussed on finding OeLIP19 gene(s) in olive-tree genome, and analyze it/their expression, and that of OeFAD8 and OeOSM, in drupes and leaves under different cold-conditions/developmental stages/genotypes, in comparison with changes in unsaturated lipids and cell wall cutinisation. Cold-induced cytosolic calcium transients always occurred in leaves/drupes of some genotypes, e.g., Moraiolo, but ceased in others, e.g., Canino, at specific drupe stages/cold-treatments, suggesting cold-acclimation acquisition only in the latter genotypes. Canino and Moraiolo were selected for further analyses. Cold-acclimation in Canino was confirmed by an electrolyte leakage from leaf/drupe membranes highly reduced in comparison with Moraiolo. Strong increases in fruit-epicarp/leaf-epidermis cutinisation characterized cold-acclimated Canino, and positively coupled with OeOSM expression, and immunolocalization of the coded protein. OeFAD8 expression increased with cold-acclimation, as the production of α-linolenic acid, and related compounds. An OeLIP19 gene was isolated. Its levels changed with a trend similar to OeFAD8. All together, results sustain a positive relationship between OeFAD8, OeOSM and OeLIP19 expression in olive-tree cold-acclimation. The parallel changes in unsaturated lipids and cutinisation concur to suggest orchestrated roles of the coded proteins in the process.

  1. A novel cold-regulated gene from Camellia sinensis, CsCOR1, enhances salt- and dehydration-tolerance in tobacco

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Li, Xian-Wen, E-mail: xianwenli01@sina.com; College of Life Science, Xinyang Normal University, Xinyang 464000; Key Laboratory of Horticultural Plant Biology of the Ministry of Education, Huazhong Agricultural University, Wuhan 430070

    In present research, the full-length cDNA and the genomic sequence of a novel cold-regulated gene, CsCOR1, were isolated from Camellia sinensis L. The deduced protein CsCOR1 contains a hydrophobic N-terminus as a signal peptide and a hydrophilic C-terminal domain that is rich in glycine, arginine and proline. Two internal repetitive tridecapeptide fragments (HSVTAGRGGYNRG) exist in the middle of the C-terminal domain and the two nucleotide sequences encoding them are identical. CsCOR1 was localized in the cell walls of transgenic-tobaccos via CsCOR1::GFP fusion approach. The expression of CsCOR1 in tea leaves was enhanced dramatically by both cold- and dehydration-stress. And overexpressionmore » of CsCOR1 in transgenic-tobaccos improved obviously the tolerance to salinity and dehydration.« less

  2. Hormonal control of cold stress responses in plants.

    PubMed

    Eremina, Marina; Rozhon, Wilfried; Poppenberger, Brigitte

    2016-02-01

    Cold stress responses in plants are highly sophisticated events that alter the biochemical composition of cells for protection from damage caused by low temperatures. In addition, cold stress has a profound impact on plant morphologies, causing growth repression and reduced yields. Complex signalling cascades are utilised to induce changes in cold-responsive gene expression that enable plants to withstand chilling or even freezing temperatures. These cascades are governed by the activity of plant hormones, and recent research has provided a better understanding of how cold stress responses are integrated with developmental pathways that modulate growth and initiate other events that increase cold tolerance. Information on the hormonal control of cold stress signalling is summarised to highlight the significant progress that has been made and indicate gaps that still exist in our understanding.

  3. Tardigrades as a Potential Model Organism in Space Research

    NASA Astrophysics Data System (ADS)

    Jönsson, K. Ingemar

    2007-10-01

    Exposure of living organisms to open space requires a high level of tolerance to desiccation, cold, and radiation. Among animals, only anhydrobiotic species can fulfill these requirements. The invertebrate phylum Tardigrada includes many anhydrobiotic species, which are adapted to survive in very dry or cold environmental conditions. As a likely by-product of the adaptations for desiccation and freezing, tardigrades also show a very high tolerance to a number of other, unnatural conditions, including exposure to ionizing radiation. This makes tardigrades an interesting candidate for experimental exposure to open space. This paper reviews the tolerances that make tardigrades suitable for astrobiological studies and the reported radiation tolerance in other anhydrobiotic animals. Several studies have shown that tardigrades can survive γ-irradiation well above 1 kilogray, and desiccated and hydrated (active) tardigrades respond similarly to irradiation. Thus, tolerance is not restricted to the dry anhydrobiotic state, and I discuss the possible involvement of an efficient, but yet undocumented, mechanism for DNA repair. Other anhydrobiotic animals (Artemia, Polypedium), when dessicated, show a higher tolerance to γ-irradiation than hydrated animals, possibly due to the presence of high levels of the protective disaccharide trehalose in the dry state. Tardigrades and other anhydrobiotic animals provide a unique opportunity to study the effects of space exposure on metabolically inactive but vital metazoans.

  4. Tardigrades as a potential model organism in space research.

    PubMed

    Jönsson, K Ingemar

    2007-10-01

    Exposure of living organisms to open space requires a high level of tolerance to desiccation, cold, and radiation. Among animals, only anhydrobiotic species can fulfill these requirements. The invertebrate phylum Tardigrada includes many anhydrobiotic species, which are adapted to survive in very dry or cold environmental conditions. As a likely by-product of the adaptations for desiccation and freezing, tardigrades also show a very high tolerance to a number of other, unnatural conditions, including exposure to ionizing radiation. This makes tardigrades an interesting candidate for experimental exposure to open space. This paper reviews the tolerances that make tardigrades suitable for astrobiological studies and the reported radiation tolerance in other anhydrobiotic animals. Several studies have shown that tardigrades can survive gamma-irradiation well above 1 kilogray, and desiccated and hydrated (active) tardigrades respond similarly to irradiation. Thus, tolerance is not restricted to the dry anhydrobiotic state, and I discuss the possible involvement of an efficient, but yet undocumented, mechanism for DNA repair. Other anhydrobiotic animals (Artemia, Polypedium), when dessicated, show a higher tolerance to gamma-irradiation than hydrated animals, possibly due to the presence of high levels of the protective disaccharide trehalose in the dry state. Tardigrades and other anhydrobiotic animals provide a unique opportunity to study the effects of space exposure on metabolically inactive but vital metazoans.

  5. Freeze Tolerance of Nine Zoysiagrass Cultivars Using Natural Cold Acclimation and Freeze Chambers

    USDA-ARS?s Scientific Manuscript database

    Winter hardiness of zoysiagrass (Zoysia spp.) cultivars is an important attribute throughout the biogeographical transition zone, thus the inability to withstand freezing temperatures may limit the use of these cultivars. The objective of this research was to determine the freeze tolerance (LT50) of...

  6. Tomato expressing Arabidopsis glutaredoxin gene AtGRXS17 confers tolerance to chilling stress via modulating cold responsive components

    USDA-ARS?s Scientific Manuscript database

    Chilling stress is a production constraint of tomato, a tropical origin, chilling-sensitive horticultural crop. The development of chilling tolerant tomato thus has significant potential to impact tomato production. Glutaredoxins (GRXs) are ubiquitous oxidoreductases, which utilize the reducing powe...

  7. Effects of water and temperature

    Treesearch

    John R. Jones; Merrill R. Kaufmann; E. Arlo Richardson

    1985-01-01

    Aspen's geographic and elevational ranges indicate a species that tolerates severe cold but does not tolerate sustained high temperatures, or semiarid or even dry, subhumid conditions. Much can be inferred from observation of the sites on which quaking aspen grows in the West. Aspen's distribution is related to its regeneration characteristics, its pathology...

  8. Foliar applied abscisic acid increases 'Chardonnay' grapevines (Vitis vinifera) bud freezing tolerance during Autumn cold acclimation

    USDA-ARS?s Scientific Manuscript database

    Economic loss due to cold weather events is a major constraint to winegrape-related industries where extreme and/or fluctuating winter temperatures induce injury and required remedial retraining and replanting increases production costs and lowers yield and fruit quality. The purpose of this study ...

  9. Innovative cold tolerance test for conifer seedlings

    Treesearch

    Peter A. Balk; Peter Bronnum; Mike Perks; Eva Stattin; Lonneke H. M. van der Geest; Monique F. van Wordragen

    2007-01-01

    Forest tree nurseries rely on tight scheduling of operations to deliver vital seedlings to the planting site. Cold storage is required to: (1) prevent winter damage, especially in container seedlings; (2) to maintain planting stock in an inactive condition; and (3) to ensure plant supply for geographically distinct planting sites, a definite requirement for large-scale...

  10. Assessing foliar ascorbate content in the rice diversity panel 1

    USDA-ARS?s Scientific Manuscript database

    Early spring plantings of rice can have poor stands due to cold temperatures. Our previous studies have shown that high vitamin C (ascorbate AsA) Arabidopsis lines are tolerant to cold stress. The rice diversity panel 1 (RDP1) represents the genetic diversity of Oryza sativa and has been extensively...

  11. Lesser-known European wine grape cultivars in southwestern Idaho: cold hardiness, berry maturity and yield

    USDA-ARS?s Scientific Manuscript database

    The cold tolerance, phenology, yield and fruit maturity of lesser-known red and white-skinned wine grape cultivars (Vitis vinifera, L.) of European origin were compared to that of ‘Merlot’ and ‘Cabernet Sauvignon’ over two growing seasons in southwestern Idaho. Variability among cultivars was detec...

  12. Morpho-physiological characterization of cold-and pre-flowering drought tolerance in grain Sorghum (Sorghum bicolor L. Moench) inbreds

    USDA-ARS?s Scientific Manuscript database

    Aim: The relationships between early-season cold temperature germination and preflowering drought stress in eight grain sorghum inbreds were assessed using morphophysiological traits. Study Design: Field was laid out in a randomized complete block design. Place and Duration: The experiment was condu...

  13. Cold Pressor Pain Sensitivity in Twins Discordant for Chronic Fatigue Syndrome

    PubMed Central

    Ullrich, Phil; Afari, Niloofar; Jacobsen, Clemma; Goldberg, Jack; Buchwald, Dedra

    2010-01-01

    Objective Individuals with chronic fatigue syndrome (CFS) experience many pain symptoms. The present study examined whether pain and fatigue ratings and pain threshold and tolerance levels for cold pain differed between twins with CFS and their cotwins without CFS. Design Cotwin control design to assess cold pain sensitivity, pain, and fatigue in monozygotic twins discordant for CFS. Patients and Setting Fifteen twin pairs discordant for CFS recruited from the volunteer Chronic Fatigue Twin Registry at the University of Washington. Results Although cold pain threshold and tolerance levels were slightly lower in twins with CFS than their cotwins without CFS, these differences failed to reach statistical significance. Subjective ratings of pain and fatigue at multiple time points during the experimental protocol among twins with CFS were significantly higher than ratings of pain (p = 0.003) and fatigue (p < 0.001) by their cotwins without CFS. Conclusions These results, while preliminary, highlight the perceptual and cognitive components to the pain experience in CFS. Future studies should focus on examining the heritability of pain sensitivity and the underlying mechanisms involved in the perception of pain sensitivity in CFS. PMID:17371408

  14. Differential transcriptome analysis reveals genes related to cold tolerance in seabuckthorn carpenter moth, Eogystia hippophaecolus

    PubMed Central

    Hu, Ping; Wang, Tao; Tao, Jing; Zong, Shixiang

    2017-01-01

    Seabuckthorn carpenter moth, Eogystia hippophaecolus (Lepidoptera: Cossidae), is an important pest of sea buckthorn (Hippophae rhamnoides), which is a shrub that has significant ecological and economic value in China. E. hippophaecolus is highly cold tolerant, but limited studies have been conducted to elucidate the molecular mechanisms underlying its cold resistance. Here we sequenced the E. hippophaecolus transcriptome using RNA-Seq technology and performed de novo assembly from the short paired-end reads. We investigated the larval response to cold stress by comparing gene expression profiles between treatments. We obtained 118,034 unigenes, of which 22,161 were annotated with gene descriptions, conserved domains, gene ontology terms, and metabolic pathways. These resulted in 57 GO terms and 193 Kyoto Encyclopedia of Genes and Genomes (KEGG) pathways. By comparing transcriptome profiles for differential gene expression, we identified many differentially expressed proteins and genes, including heat shock proteins and cuticular proteins which have previously been reported to be involved in cold resistance of insects. This study provides a global transcriptome analysis and an assessment of differential gene expression in E. hippophaecolus under cold stress. We found seven differential expressed genes in common between developmental stages, which were verified with qPCR. Our findings facilitate future genomic studies aimed at improving our understanding of the molecular mechanisms underlying the response of insects to low temperatures. PMID:29131867

  15. Differential transcriptome analysis reveals genes related to cold tolerance in seabuckthorn carpenter moth, Eogystia hippophaecolus.

    PubMed

    Cui, Mingming; Hu, Ping; Wang, Tao; Tao, Jing; Zong, Shixiang

    2017-01-01

    Seabuckthorn carpenter moth, Eogystia hippophaecolus (Lepidoptera: Cossidae), is an important pest of sea buckthorn (Hippophae rhamnoides), which is a shrub that has significant ecological and economic value in China. E. hippophaecolus is highly cold tolerant, but limited studies have been conducted to elucidate the molecular mechanisms underlying its cold resistance. Here we sequenced the E. hippophaecolus transcriptome using RNA-Seq technology and performed de novo assembly from the short paired-end reads. We investigated the larval response to cold stress by comparing gene expression profiles between treatments. We obtained 118,034 unigenes, of which 22,161 were annotated with gene descriptions, conserved domains, gene ontology terms, and metabolic pathways. These resulted in 57 GO terms and 193 Kyoto Encyclopedia of Genes and Genomes (KEGG) pathways. By comparing transcriptome profiles for differential gene expression, we identified many differentially expressed proteins and genes, including heat shock proteins and cuticular proteins which have previously been reported to be involved in cold resistance of insects. This study provides a global transcriptome analysis and an assessment of differential gene expression in E. hippophaecolus under cold stress. We found seven differential expressed genes in common between developmental stages, which were verified with qPCR. Our findings facilitate future genomic studies aimed at improving our understanding of the molecular mechanisms underlying the response of insects to low temperatures.

  16. A prominent role for the CBF cold response pathway in configuring the low-temperature metabolome of Arabidopsis

    PubMed Central

    Cook, Daniel; Fowler, Sarah; Fiehn, Oliver; Thomashow, Michael F.

    2004-01-01

    The Arabidopsis CBF cold response pathway has a central role in cold acclimation, the process whereby plants increase in freezing tolerance in response to low nonfreezing temperatures. Here we examined the changes that occur in the Arabidopsis metabolome in response to low temperature and assessed the role of the CBF cold response pathway in bringing about these modifications. Of 434 metabolites monitored by GC-time-of-flight MS, 325 (75%) were found to increase in Arabidopsis Wassilewskija-2 (Ws-2) plants in response to low temperature. Of these 325 metabolites, 256 (79%) also increased in nonacclimated Ws-2 plants in response to overexpression of C-repeat/dehydration responsive element-binding factor (CBF)3. Extensive cold-induced changes also occurred in the metabolome of Arabidopsis Cape Verde Islands-1 (Cvi-1) plants, which were found to be less freezing tolerant than Ws-2 plants. However, low-temperature-induced expression of CBF1, CBF2, CBF3, and CBF-targeted genes was much lower in Cvi-1 than in Ws-2 plants, and the low-temperature metabolome of Cvi-1 plants was depleted in metabolites affected by CBF3 overexpression. Taken together, the results indicate that the metabolome of Arabidopsis is extensively reconfigured in response to low temperature, and that the CBF cold response pathway has a prominent role in this process. PMID:15383661

  17. A critical test of Drosophila anaesthetics: Isoflurane and sevoflurane are benign alternatives to cold and CO2.

    PubMed

    MacMillan, Heath A; Nørgård, Mikkel; MacLean, Heidi J; Overgaard, Johannes; Williams, Catherine J A

    2017-08-01

    Anaesthesia is often a necessary step when studying insects like the model organism Drosophila melanogaster. Most studies of Drosophila and other insects that require anaesthesia use either cold exposure or carbon dioxide exposure to induce a narcotic state. These anaesthetic methods are known to disrupt physiology and behavior with increasing exposure, and thus ample recovery time is required prior to experimentation. Here, we examine whether two halogenated ethers commonly used in vertebrate anaesthesia, isoflurane and sevoflurane, may serve as alternative means of insect anaesthesia. Using D. melanogaster, we generated dose-response curves to identify exposure times for each anaesthetic (cold, CO 2 , isoflurane and sevoflurane) that allow for five-minutes of experimental manipulation of the animals after the anaesthetic was removed (i.e. 5min recovery doses). We then compared the effects of this practical dose on high temperature, low temperature, starvation, and desiccation tolerance, as well as locomotor activity and fecundity of female flies following recovery from anaesthesia. Cold, CO 2 and isoflurane each had significant or near significant effects on the traits measured, but the specific effects of each anaesthetic differed, and effects on stress tolerance generally did not persist if the flies were given 48h to recover from anaesthesia. Sevoflurane had no measureable effect on any of the traits examined. Care must be taken when choosing an anaesthetic in Drosophila research, as the impacts of specific anaesthetics on stress tolerance, behavior and reproduction can widely differ. Sevoflurane may be a practical alternative to cold and CO 2 anaesthesia in insects - particularly if flies are to be used for experiments shortly after anesthesia. Copyright © 2017 Elsevier Ltd. All rights reserved.

  18. Glycine increases cold tolerance in rice via the regulation of N uptake, physiological characteristics, and photosynthesis.

    PubMed

    Xiaochuang, Cao; Chu, Zhong; Lianfeng, Zhu; Junhua, Zhang; Hussain, Sajid; Lianghuan, Wu; Qianyu, Jin

    2017-03-01

    To investigate the response of rice growth and photosynthesis to different nitrogen (N) sources under cold stress, hydroponic cultivation of rice was done in greenhouse, with glycine, ammonium, and nitrate as the sole N sources. The results demonstrate that exposure to low temperature reduced the rice biomass and leaf chlorophyll content, but their values in the glycine-treated plants were significantly higher than in the ammonium- and nitrate-treated plants. This might be attributed to the higher N uptake rate and root area and activity in the glycine-treated plants. The glycine-treated plants also maintained high contents of soluble proteins, soluble sugars, and proline as well as enhanced antioxidant enzyme activities to protect themselves against chilling injury. Under cold stress, reduced stomatal conductance (g s ) and effective quantum efficiency of PSII (Φ PSII ) significantly inhibited the leaf photosynthesis; however, glycine treatment alleviated these effects compared to the ammonium and nitrate treatments. The high non-photochemical quenching (qN) and excess energy dissipative energy (E x ) in the glycine-treated plants were beneficial for the release of extra energy, thereby, strengthening their photochemical efficiency. We, therefore, conclude that the strengthened cold tolerance of glycine-treated rice plants was closely associated with the higher accumulation of dry matter and photosynthesis through the up-regulation of N-uptake, and increase in the content of osmoprotectants, activities of the antioxidant defense enzymes, and photochemical efficiency. The results of the present study provide new ideas for improving the plant tolerance to extreme temperatures by nutrient resource management in the cold regions. Copyright © 2017 Elsevier Masson SAS. All rights reserved.

  19. The Small-RNA Profiles of Almond (Prunus dulcis Mill.) Reproductive Tissues in Response to Cold Stress.

    PubMed

    Karimi, Marzieh; Ghazanfari, Farahnaz; Fadaei, Adeleh; Ahmadi, Laleh; Shiran, Behrouz; Rabei, Mohammad; Fallahi, Hossein

    2016-01-01

    Spring frost is an important environmental stress that threatens the production of Prunus trees. However, little information is available regarding molecular response of these plants to the frost stress. Using high throughput sequencing, this study was conducted to identify differentially expressed miRNAs, both the conserved and the non-conserved ones, in the reproductive tissues of almond tolerant H genotype under cold stress. Analysis of 50 to 58 million raw reads led to identification of 174 unique conserved and 59 novel microRNAs (miRNAs). Differential expression pattern analysis showed that 50 miRNA families were expressed differentially in one or both of almond reproductive tissues (anther and ovary). Out of these 50 miRNA families, 12 and 15 displayed up-regulation and down-regulation, respectively. The distribution of conserved miRNA families indicated that miR482f harbor the highest number of members. Confirmation of miRNAs expression patterns by quantitative real- time PCR (qPCR) was performed in cold tolerant (H genotype) alongside a sensitive variety (Sh12 genotype). Our analysis revealed differential expression for 9 miRNAs in anther and 3 miRNAs in ovary between these two varieties. Target prediction of miRNAs followed by differential expression analysis resulted in identification of 83 target genes, mostly transcription factors. This study comprehensively catalogued expressed miRNAs under different temperatures in two reproductive tissues (anther and ovary). Results of current study and the previous RNA-seq study, which was conducted in the same tissues by our group, provide a unique opportunity to understand the molecular basis of responses of almond to cold stress. The results can also enhance the possibility for gene manipulation to develop cold tolerant plants.

  20. Factors contributing to enhanced freezing tolerance in wheat during frost hardening in the light.

    PubMed

    Janda, Tibor; Szalai, Gabriella; Leskó, Kornélia; Yordanova, Rusina; Apostol, Simona; Popova, Losanka Petrova

    2007-06-01

    The interaction between light and temperature during the development of freezing tolerance was studied in winter wheat (Triticum aestivum L. var. Mv Emese). Ten-day-old plants were cold hardened at 5 degrees C for 12 days under normal (250 micromol m(-2)s(-1)) or low light (20 micromol m(-2)s(-1)) conditions. Some of the plants were kept at 20/18 degrees C for 12 days at high light intensity (500 micromol m(-2)s(-1)), which also increased the freezing tolerance of winter wheat. The freezing survival rate, the lipid composition, the antioxidant activity, and the salicylic acid content were investigated during frost hardening. The saturation level of hexadecanoic acid decreased not only in plants hardened at low temperature, but also, to a lesser extent, in plants kept under high light irradiation at normal growth temperature. The greatest induction of the enzymes glutathione reductase (EC 1.6.4.2.) and ascorbate peroxidase (EC 1.11.1.11.) occurred when the cold treatment was carried out in normal light, but high light intensity at normal, non-hardening temperature also increased the activity of these enzymes. The catalase (EC 1.11.1.6.) activity was also higher in plants grown at high light intensity than in the controls. The greatest level of induction in the activity of the guaiacol peroxidase (EC 1.11.1.7.) enzyme occurred under cold conditions with low light. The bound ortho-hydroxy-cinnamic acid increased by up to two orders of magnitude in plants that were cold hardened in normal light. Both high light intensity and low temperature hardening caused an increase in the free and bound salicylic acid content of the leaves. This increase was most pronounced in plants that were cold treated in normal light.

  1. cDNA-AFLP analysis of transcripts induced in chickpea plants by TiO2 nanoparticles during cold stress.

    PubMed

    Amini, Saeed; Maali-Amiri, Reza; Mohammadi, Rahmat; Kazemi-Shahandashti, Seyyedeh-Sanam

    2017-02-01

    We evaluated the effect of TiO 2 nanoparticles (NPs) on cold tolerance (CT) development in two chickpea (Cicer arietinum L.) genotypes (Sel96Th11439, cold tolerant, and ILC533, cold susceptible) by using cDNA-amplified fragment length polymorphism (cDNA-AFLP) technique during the first and sixth days of cold stress (CS) at 4 °C. Selective amplification by primer combinations generated 4200 transcript-derived fragments (TDFs) while 100 of them (2.62%) were differentially expressed. During CS, 60 differentially expressed TDFs of TiO 2 NPs-treated plants were cloned and 10 of them produced successfully readable sequences. These data represented different groups of genes involved in metabolism pathways, cellular defense, cell connections and signaling, transcriptional regulation and chromatin architecture. Two out of 10 TDFs were unknown genes with uncharacterized functions or sequences without homology to known ones. The network-based analysis showed a gene-gene relationship in response to CS. Quantitative reverse-transcriptase polymerase chain reaction (qPCR) confirmed differential expression of identified genes (six out of 10 TDFs) with potential functions in CT and showed similar patterns with cDNA-AFLP results. An increase in transcription level of these TDFs, particularly on the first day of CS, was crucial for developing CT through decreasing electrolyte leakage index (ELI) content in tolerant plants compared to susceptible ones, as well as in TiO 2 NPs-treated plants compared to control ones. It could also indicate probable role of TiO 2 NPs against CS-induced oxidative stress. Therefore, a new application of TiO 2 NPs in CT development is suggested for preventing or controlling the damages in field conditions and increasing crop productivity. Copyright © 2016 Elsevier Masson SAS. All rights reserved.

  2. The Small-RNA Profiles of Almond (Prunus dulcis Mill.) Reproductive Tissues in Response to Cold Stress

    PubMed Central

    Shiran, Behrouz; Rabei, Mohammad; Fallahi, Hossein

    2016-01-01

    Spring frost is an important environmental stress that threatens the production of Prunus trees. However, little information is available regarding molecular response of these plants to the frost stress. Using high throughput sequencing, this study was conducted to identify differentially expressed miRNAs, both the conserved and the non-conserved ones, in the reproductive tissues of almond tolerant H genotype under cold stress. Analysis of 50 to 58 million raw reads led to identification of 174 unique conserved and 59 novel microRNAs (miRNAs). Differential expression pattern analysis showed that 50 miRNA families were expressed differentially in one or both of almond reproductive tissues (anther and ovary). Out of these 50 miRNA families, 12 and 15 displayed up-regulation and down-regulation, respectively. The distribution of conserved miRNA families indicated that miR482f harbor the highest number of members. Confirmation of miRNAs expression patterns by quantitative real- time PCR (qPCR) was performed in cold tolerant (H genotype) alongside a sensitive variety (Sh12 genotype). Our analysis revealed differential expression for 9 miRNAs in anther and 3 miRNAs in ovary between these two varieties. Target prediction of miRNAs followed by differential expression analysis resulted in identification of 83 target genes, mostly transcription factors. This study comprehensively catalogued expressed miRNAs under different temperatures in two reproductive tissues (anther and ovary). Results of current study and the previous RNA-seq study, which was conducted in the same tissues by our group, provide a unique opportunity to understand the molecular basis of responses of almond to cold stress. The results can also enhance the possibility for gene manipulation to develop cold tolerant plants. PMID:27253370

  3. Biochemical and molecular characterization of the antioxidative system of Coffea sp. under cold conditions in genotypes with contrasting tolerance.

    PubMed

    Fortunato, Ana S; Lidon, Fernando C; Batista-Santos, Paula; Leitão, António Eduardo; Pais, Isabel P; Ribeiro, Ana I; Ramalho, José Cochicho

    2010-03-15

    Low positive temperature (chilling) is frequently linked to the promotion of oxidative stress conditions, and is of particular importance in the coffee plant due to its severe impact on growth, development, photosynthesis and production. Nevertheless, some acclimation ability has been reported within the Coffea genus, and is possibly related to oxidative stress control. Using an integrated biochemical and molecular approach, the characterization of the antioxidative system of genotypes with different cold acclimation abilities was performed. Experiments were carried out using 1.5-year-old coffee seedlings of Coffea canephora cv. Apoatã, C. arabica cv. Catuaí, C. dewevrei and 2 hybrids, Icatu (C. arabicaxC. canephora) and Piatã (C. dewevreixC. arabica) subjected to a gradual cold treatment and a recovery period. Icatu showed the greatest ability to control oxidative stress, as reflected by the enhancement of several antioxidative components (Cu,Zn-SOD and APX activities; ascorbate, alpha-tocopherol and chlorogenic acids (CGAs) contents) and lower reactive oxygen species contents (H(2)O(2) and OH). Gene expression studies show that GRed, DHAR and class III and IV chitinases might also be involved in the cold acclimation ability of Icatu. Catuaí showed intermediate acclimation ability through the reinforcement of some antioxidative molecules, usually to a lesser extent than that observed in Icatu. On the other hand, C. dewevrei showed the poorest response in terms of antioxidant accumulation, and also showed the greatest increase in OH values. The difference in the triggering of antioxidative traits supports the hypothesis of its importance to cold (and photoinhibition) tolerance in Coffea sp. and could provide a useful probe to identify tolerant genotypes. Copyright 2009 Elsevier GmbH. All rights reserved.

  4. Deleterious effects of repeated cold exposure in a freeze-tolerant sub-Antarctic caterpillar.

    PubMed

    Sinclair, Brent J; Chown, Steven L

    2005-03-01

    Multiple freeze-thaw cycles are common in alpine, polar and temperate habitats. We investigated the effects of five consecutive cycles of approx. -5 degrees C on the freeze-tolerant larvae of Pringleophaga marioni Viette (Lepidoptera: Tineidae) on sub-Antarctic Marion Island. The likelihood of freezing was positively correlated with body mass, and decreased from 70% of caterpillars that froze on initial exposure to 55% of caterpillars that froze on subsequent exposures; however, caterpillars retained their freeze tolerance and did not appear to switch to a freeze-avoiding strategy. Apart from an increase in gut water, there was no difference in body composition of caterpillars frozen 0 to 5 times, suggesting that the observed effects were not due to freezing, but rather to exposure to cold per se. Repeated cold exposure did not result in mortality, but led to decreased mass, largely accounted for by a decreased gut mass caused by cessation of feeding by caterpillars. Treatment caterpillars had fragile guts with increased lipid content, suggesting damage to the gut epithelium. These effects persisted for 5 days after the final exposure to cold, and after 30 days, treatment caterpillars had regained their pre-exposure mass, whereas their control counterparts had significantly gained mass. We show that repeated cold exposure does occur in the field, and suggest that this may be responsible for the long life cycle in P. marioni. Although mean temperatures are increasing on Marion Island, several climate change scenarios predict an increase in exposures to sub-zero temperatures, which would result in an increased generation time for P. marioni. Coupled with increased predation from introduced house mice on Marion Island, this could have severe consequences for the P. marioni population.

  5. Cold-induced vasodilation comparison between Bangladeshi and Japanese natives.

    PubMed

    Khatun, Aklima; Ashikaga, Sakura; Nagano, Hisaho; Hasib, Md Abdul; Taimura, Akihiro

    2016-05-03

    The human thermoregulation system responds to changes in environmental temperature, so humans can self-adapt to a wide range of climates. People from tropical and temperate areas have different cold tolerance. This study compared the tolerance of Bangladeshi (tropical) and Japanese (temperate) people to local cold exposure on cold-induced vasodilation (CIVD). Eight Bangladeshi males (now residing in Japan) and 14 Japanese males (residing in Japan) participated in this study. All are sedentary, regular university students. The Bangladeshi subject's duration of stay in Japan was 2.50 ± 2.52 years. The subject's left hand middle finger was immersed in 5 °C water for 20 min to assess their CIVD response (the experiment was conducted in an artificial climate chamber controlled at 25 °C with 50% RH). Compared with the Bangladeshi (BD) group, the Japanese (JP) group displayed some differences. There were significant differences between the BD and JP groups in temperature before immersion (TBI), which were 33.04 ± 1.98 and 34.62 ± 0.94 °C, and time of temperature rise (TTR), which were 5.35 ± 0.82 and 3.72 ± 0.68 min, respectively. There was also a significant difference in the time of sensation rise (TSR) of 8.69 ± 6.49 and 3.26 ± 0.97 min between the BD and JP groups, respectively (P < 0.05). Moreover, the JP group showed a quick TTR after finishing immersion. The Japanese group (temperate) has a higher tolerance to local cold exposure than the Bangladeshi group (tropical) evaluated by the CIVD test.

  6. Tea plant SWEET transporters: expression profiling, sugar transport, and the involvement of CsSWEET16 in modifying cold tolerance in Arabidopsis.

    PubMed

    Wang, Lu; Yao, Lina; Hao, Xinyuan; Li, Nana; Qian, Wenjun; Yue, Chuan; Ding, Changqing; Zeng, Jianming; Yang, Yajun; Wang, Xinchao

    2018-04-01

    Thirteen SWEET transporters were identified in Camellia sinensis and the cold-suppression gene CsSWEET16 contributed to sugar compartmentation across the vacuole and function in modifying cold tolerance in Arabidopsis. The sugars will eventually be exported transporters (SWEET) family of sugar transporters in plants is a recently identified protein family of sugar uniporters that contain seven transmembrane helices harbouring two MtN3 motifs. SWEETs play important roles in various biological processes, including plant responses to environmental stimuli. In this study, 13 SWEET transporters were identified in Camellia sinensis and were divided into four clades. Transcript abundances of CsSWEET genes were detected in various tissues. CsSWEET1a/1b/2a/2b/2c/3/9b/16/17 were expressed in all of the selected tissues, whereas the expression of CsSWEET5/7/9a/15 was not detected in some tissues, including those of mature leaves. Expression analysis of nine CsSWEET genes in leaves in response to abiotic stresses, natural cold acclimation and Colletotrichum camelliae infection revealed that eight CsSWEET genes responded to abiotic stress, while CsSWEET3 responded to C. camelliae infection. Functional analysis of 13 CsSWEET activities in yeast revealed that CsSWEET1a/1b/7/17 exhibit transport activity for glucose analogues and other types of hexose molecules. Further characterization of the cold-suppression gene CsSWEET16 revealed that this gene is localized in the vacuolar membrane. CsSWEET16 contributed to sugar compartmentation across the vacuole and function in modifying cold tolerance in Arabidopsis. Together, these findings demonstrate that CsSWEET genes play important roles in the response to abiotic and biotic stresses in tea plants and provide insights into the characteristics of SWEET genes in tea plants, which could serve as the basis for further functional identification of such genes.

  7. Older Thinopyrum intermedium (Poaceae) plants exhibit superior photosynthetic tolerance to cold stress and greater increases in two photosynthetic enzymes under freezing stress compared with young plants.

    PubMed

    Jaikumar, Nikhil S; Snapp, Sieglinde S; Sharkey, Thomas D

    2016-08-01

    Effects of plant age on resource acquisition and stress tolerance processes is a largely unstudied subject in herbaceous perennials. In a field experiment, we compared rates of photosynthesis (A), ribulose-1,5-bisphosphate (RuBP) carboxylation capacity (V Cmax), maximum electron transport rate (J max), and triose phosphate utilization (TPU), as well as concentrations of Rubisco and sucrose-phosphate synthase (SPS) in 5-year-old and 2-year-old intermediate wheatgrass (Thinopyrum intermedium) under both optimal growing conditions and cold stress in early spring and autumn. This species is a relative of wheat undergoing domestication. An additional experiment compared photosynthetic rates in different cohorts at mid-season and under colder conditions. We hypothesized that photosynthetic capacity in older plants would be lower under favorable conditions but higher under cold stress. Our hypothesis was generally supported. Under cold stress, 5-year-old plants exhibited higher A, TPU, and temperature-adjusted V Cmax than younger plants, as well as 50% more SPS and 37% more Rubisco. In contrast, at mid-season, photosynthetic capacities in older plants were lower than in younger plants in one experiment, and similar in the other, independent of differences in water status. Both cohorts increased A, temperature-adjusted TPU and J max, [Rubisco], and [SPS] under cold stress, but changes were greater in older plants. Photosynthetic differences were largest at 1.2 ºC in very early spring, where older plants had 200% higher A and maintained up to 17% of their peak photosynthetic capacity. We find evidence of increased cold tolerance in older cohorts of wheatgrass, consistent with a growing body of research in woody perennials. © The Author 2016. Published by Oxford University Press on behalf of the Society for Experimental Biology.

  8. 40 CFR 180.368 - Metolachlor; tolerances for residues.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... Soybean, hay 8.0 Soybean, seed 0.20 Tomato 0.10 Vegetable, foliage of legume, subgroup 7A, except soybean 15.0 Vegetable, legume, group 6 0.30 (2) Tolerances are established for residues of S-metolachlor... Turnip, greens 1.8 Vegetable, foliage of legume, except soybean, subgroup 7A 15.0 Vegetable, fruiting...

  9. Control of flowering time and cold response by a NAC-domain protein in Arabidopsis.

    PubMed

    Yoo, So Yeon; Kim, Yunhee; Kim, Soo Young; Lee, Jong Seob; Ahn, Ji Hoon

    2007-07-25

    Plants must integrate complex signals from environmental and endogenous cues to fine-tune the timing of flowering. Low temperature is one of the most common environmental stresses that affect flowering time; however, molecular mechanisms underlying the cold temperature regulation of flowering time are not fully understood. We report the identification of a novel regulator, LONG VEGETATIVE PHASE 1 (LOV1), that controls flowering time and cold response. An Arabidopsis mutant, longvegetative phase 1-1D (lov1-1D) showing the late-flowering phenotype, was isolated by activation tagging screening. Subsequent analyses demonstrated that the phenotype of the mutant resulted from the overexpression of a NAC-domain protein gene (At2g02450). Both gain- and loss-of-function alleles of LOV1 affected flowering time predominantly under long-day but not short-day conditions, suggesting that LOV1 may act within the photoperiod pathway. The expression of CONSTANS (CO), a floral promoter, was affected by LOV1 level, suggesting that LOV1 controls flowering time by negatively regulating CO expression. The epistatic relationship between CO and LOV1 was consistent with this proposed regulatory pathway. Physiological analyses to elucidate upstream signalling pathways revealed that LOV1 regulates the cold response in plants. Loss of LOV1 function resulted in hypersensitivity to cold temperature, whereas a gain-of-function allele conferred cold tolerance. The freezing tolerance was accompanied by upregulation of cold response genes, COLD-REGULATED 15A (COR15A) and COLD INDUCED 1 (KIN1) without affecting expression of the C-repeat-binding factor/dehydration responsive element-binding factor 1 (CBF/DREB1) family of genes. Our study shows that LOV1 functions as a floral repressor that negatively regulates CO expression under long-day conditions and acts as a common regulator of two intersecting pathways that regulate flowering time and the cold response, respectively. Our results suggest an overlapping pathway for controlling cold stress response and flowering time in plants.

  10. Expression responses of five cold tolerant related genes to two temperature dropping treatments in sea cucumber Apostichopus japonicus

    NASA Astrophysics Data System (ADS)

    Li, Chengze; Chang, Yaqing; Pang, Zhenguo; Ding, Jun; Ji, Nanjing

    2015-03-01

    Environmental conditions, including ambient temperature, play important roles in survival, growth development, and reproduction of the Japanese sea cucumber, Apostichopus japonicus. Low temperatures result in slowed growth and skin ulceration disease. In a previous study, we investigated the effect of low temperature on gene expression profiles in A. japonicus by suppression subtractive hybridization (SSH). Genes encoding Ferritin, Lysozyme, Hsp70, gp96, and AjToll were selected from a subtracted cDNA library of A. japonicus under acute cold stress. The transcriptional expression profiles of these genes were investigated in different tissues (coelomocyte, respiratory tree, intestine, longitudinal muscle) after exposure to acute and mild temperature dropping treatments. The results show that (1) the five cold-tolerance-related genes were found in all four tissues and the highest mRNA levels were observed in coelomocyte and respiratory tree; (2) under the temperature dropping treatments, three types of transcriptional regulation patterns were observed: primary suppression followed by up-regulation at -2°C, suppressed expression throughout the two treatments, and more rarely an initial stimulation followed by suppression; and (3) gene expression suppression was more severe under acute temperature dropping than under mild temperature dropping treatment. The five cold-tolerance-related genes that were distributed mainly in coelomocyte and respiratory tissues were generally down-regulated by low temperature stress but an inverse up-regulation event was found at the extreme temperature (-2°C).

  11. Ectopic Overexpression of SsCBF1, a CRT/DRE-Binding Factor from the Nightshade Plant Solanum lycopersicoides, Confers Freezing and Salt Tolerance in Transgenic Arabidopsis

    PubMed Central

    Zhang, Lili; Li, Zhenjun; Li, Jingfu; Wang, Aoxue

    2013-01-01

    The C-repeat (CRT)/dehydration-responsive element (DRE) binding factor (CBF/DREB1) transcription factors play a key role in cold response. However, the detailed roles of many plant CBFs are far from fully understood. A CBF gene (SsCBF1) was isolated from the cold-hardy plant Solanum lycopersicoides. A subcellular localization study using GFP fusion protein indicated that SsCBF1 is localized in the nucleus. We delimited the SsCBF1 transcriptional activation domain to the C-terminal segment comprising amino acid residues 193–228 (SsCBF1193–228). The expression of SsCBF1 could be dramatically induced by cold, drought and high salinity. Transactivation assays in tobacco leaves revealed that SsCBF1 could specifically bind to the CRT cis-elements in vivo to activate the expression of downstream reporter genes. The ectopic overexpression of SsCBF1 conferred increased freezing and high-salinity tolerance and late flowering phenotype to transgenic Arabidopsis. RNA-sequencing data exhibited that a set of cold and salt stress responsive genes were up-regulated in transgenic Arabidopsis. Our results suggest that SsCBF1 behaves as a typical CBF to contribute to plant freezing tolerance. Increased resistance to high-salinity and late flowering phenotype derived from SsCBF1 OE lines lend more credence to the hypothesis that plant CBFs participate in diverse physiological and biochemical processes related to adverse conditions. PMID:23755095

  12. Homeostasis of the temperature sensitivity of respiration over a range of growth temperatures indicated by a modified Arrhenius model.

    PubMed

    Noguchi, Ko; Yamori, Wataru; Hikosaka, Kouki; Terashima, Ichiro

    2015-07-01

    The temperature dependence of plant respiratory rate (R) changes in response to growth temperature. Here, we used a modified Arrhenius model incorporating the temperature dependence of activation energy (Eo ), and compared the temperature dependence of R between cold-sensitive and cold-tolerant species. We analyzed the temperature dependences of leaf CO2 efflux rate of plants cultivated at low (LT) or high temperature (HT). In plants grown at HT (HT plants), Eo at low measurement temperature varied among species, but Eo at growth temperature in HT plants did not vary and was comparable to that in plants grown at LT (LT plants), suggesting that the limiting process was similar at the respective growth temperatures. In LT plants, the integrated value of loge R, a measure of respiratory capacity, in cold-sensitive species was lower than that in cold-tolerant species. When plants were transferred from HT to LT, the respiratory capacity changed promptly after the transfer compared with the other parameters. These results suggest that a similar process limits R at different growth temperatures, and that the lower capacity of the respiratory system in cold-sensitive species may explain their low growth rate at LT. © 2015 The Authors. New Phytologist © 2015 New Phytologist Trust.

  13. Increase of cold tolerance in cotton plant (Gossypium hirsutum L.) by mepiquat chloride

    NASA Technical Reports Server (NTRS)

    Gausman, H. W.; Escobar, D. E.; Rodriguez, R. R. (Principal Investigator); Huang, S. Y.; Rittig, F. R.

    1982-01-01

    Three mepiquat chloride (MC) concentrations - 40, 70, and 100 g a.i./ha - were used to spray cotton (Gossypium hirsutum L., cultival McNair 220) plants to determine whether or not MC would increase their cold tolerance. Seven to ten days after the spray, the plants were exposed to three different cold treatments. No important difference in cold damage was noticed between the control and the MC-treated plants when they were exposed repeatedly to 4.5 C. No plants died when exposed to 0.5 C for 12 h; however, 90% of the 1st and 2nd leaves of the control plants were damaged. This was three times more damage than those leaves of plants treated with 70 and 100 g a.i./ha MC concentrations; 60% f the control and 10-20% of the MC-treated plants died when the plants were subjected to a cold hardening process with 15.5 C day (12 h) and 1.7 C night (12 h) for 10 days, and then, held at -2.2 C for 24 hours. The electrolyte leakage and reflectance measurement data showed that the cell membranes of the MC-treated plants sustained much less damage than those of the control. Freezing injury was easily assessed by reflectance measurements at the 1.65 micrometer wavelength.

  14. Divergent Regulation of CBF Regulon on Cold Tolerance and Plant Phenotype in Cassava Overexpressing Arabidopsis CBF3 Gene.

    PubMed

    An, Dong; Ma, Qiuxiang; Yan, Wei; Zhou, Wenzhi; Liu, Guanghua; Zhang, Peng

    2016-01-01

    Cassava is a tropical origin plant that is sensitive to chilling stress. In order to understand the CBF cold response pathway, a well-recognized regulatory mechanism in temperate plants, in cassava, overexpression of an Arabidopsis CBF3 gene is studied. This gene renders cassava increasingly tolerant to cold and drought stresses but is associated with retarded plant growth, leaf curling, reduced storage root yield, and reduced anthocyanin accumulation in a transcript abundance-dependent manner. Physiological analysis revealed that the transgenic cassava increased proline accumulation, reduced malondialdehyde production, and electrolyte leakage under cold stress. These transgenic lines also showed high relative water content when faced with drought. The expression of partial CBF-targeted genes in response to cold displayed temporal and spatial variations in the wild-type and transgenic plants: highly inducible in leaves and less altered in apical buds. In addition, anthocyanin accumulation was inhibited by downregulating the expression of genes involved in its biosynthesis and by interplaying between the CBF3 and the endogenous transcription factors. Thus, the heterologous CBF3 modulates the expression of stress-related genes and carries out a series of physiological adjustments under stressful conditions, showing a varied regulation pattern of CBF regulon from that of cassava CBFs.

  15. Transcriptome Profiling of Two Asparagus Bean (Vigna unguiculata subsp. sesquipedalis) Cultivars Differing in Chilling Tolerance under Cold Stress.

    PubMed

    Tan, Huaqiang; Huang, Haitao; Tie, Manman; Tang, Yi; Lai, Yunsong; Li, Huanxiu

    2016-01-01

    Cowpea (V. unguiculata L. Walp.) is an important tropical grain legume. Asparagus bean (V. unguiculata ssp. sesquipedialis) is a distinctive subspecies of cowpea, which is considered one of the top ten Asian vegetables. It can be adapted to a wide range of environmental stimuli such as drought and heat. Nevertheless, it is an extremely cold-sensitive tropical species. Improvement of chilling tolerance in asparagus bean may significantly increase its production and prolong its supply. However, gene regulation and signaling pathways related to cold response in this crop remain unknown. Using Illumina sequencing technology, modification of global gene expression in response to chilling stress in two asparagus bean cultivars-"Dubai bean" and "Ningjiang-3", which are tolerant and sensitive to chilling, respectively-were investigated. More than 1.8 million clean reads were obtained from each sample. After de novo assembly, 88,869 unigenes were finally generated with a mean length of 635 bp. Of these unigenes, 41,925 (47.18%) had functional annotations when aligned to public protein databases. Further, we identified 3,510 differentially expressed genes (DEGs) in Dubai bean, including 2,103 up-regulated genes and 1,407 down-regulated genes. While in Ningjiang-3, we found 2,868 DEGs, 1,786 of which were increasing and the others were decreasing. 1,744 DEGs were commonly regulated in two cultivars, suggesting that some genes play fundamental roles in asparagus bean during cold stress. Functional classification of the DEGs in two cultivars using Mercator pipeline indicated that RNA, protein, signaling, stress and hormone metabolism were five major groups. In RNA group, analysis of TFs in DREB subfamily showed that ICE1-CBF3-COR cold responsive cascade may also exist in asparagus bean. Our study is the first to provide the transcriptome sequence resource for asparagus bean, which will accelerate breeding cold resistant asparagus bean varieties through genetic engineering, and advance our knowledge of the genes involved in the complex regulatory networks of this plant under cold stress.

  16. Analysis of cold worked holes for structural life extension

    NASA Technical Reports Server (NTRS)

    Wieland, David H.; Cutshall, Jon T.; Burnside, O. Hal; Cardinal, Joseph W.

    1994-01-01

    Cold working holes for improved fatigue life of fastener holes are widely used on aircraft. This paper presents methods used by the authors to determine the percent of cold working to be applied and to analyze fatigue crack growth of cold worked fastener holes. An elastic, perfectly-plastic analysis of a thick-walled tube is used to determine the stress field during the cold working process and the residual stress field after the process is completed. The results of the elastic/plastic analysis are used to determine the amount of cold working to apply to a hole. The residual stress field is then used to perform damage tolerance analysis of a crack growing out of a cold worked fastener hole. This analysis method is easily implemented in existing crack growth computer codes so that the cold worked holes can be used to extend the structural life of aircraft. Analytical results are compared to test data where appropriate.

  17. Isolation and expression profiling of GhNAC transcription factor genes in cotton (Gossypium hirsutum L.) during leaf senescence and in response to stresses.

    PubMed

    Shah, Syed Tariq; Pang, Chaoyou; Fan, Shuli; Song, Meizhen; Arain, Saima; Yu, Shuxun

    2013-12-01

    NAC (NAM, ATAF, and CUC) is a plant-specific transcription factor family with diverse roles in plant development and stress regulation. In this report, stress-responsive NAC genes (GhNAC8-GhNAC17) isolated from cotton (Gossypium hirsutum L.) were characterised in the context of leaf senescence and stress tolerance. The characterisation of NAC genes during leaf senescence has not yet been reported for cotton. Based on the sequence characterisation, these GhNACs could be classified into three groups belonging to three known NAC sub-families. Their predicted amino acid sequences exhibited similarities to NAC genes from other plant species. Senescent leaves were the sites of maximum expression for all GhNAC genes except GhNAC10 and GhNAC13, which showed maximum expression in fibres, collected from 25 days post anthesis (DPA) plants. The ten GhNAC genes displayed differential expression patterns and levels during natural and induced leaf senescence. Quantitative RT-PCR and promoter analyses suggest that these genes are induced by ABA, ethylene, drought, salinity, cold, heat, and other hormonal treatments. These results support a role for cotton GhNAC genes in transcriptional regulation of leaf senescence, stress tolerance and other developmental stages of cotton. © 2013.

  18. The potential drivers in forming avian biodiversity hotspots in the East Himalaya Mountains of Southwest China.

    PubMed

    Lei, Fumin; Qu, Yanhua; Song, Gang; Alström, Per; Fjeldså, Jon

    2015-03-01

    Little has been published to describe or interpret Asian biodiversity hotspots, including those in the East Himalayan Mountains of Southwest China (HMSC), thus making necessary a review of the current knowledge. The Pliocene and Pleistocene geological and glacial histories of the Asian continent differ from those of Europe and North America, suggesting different mechanisms of speciation and extinction, and, thus, different responses to climate changes during the Quaternary glaciations. This short review summarizes potential drivers in shaping and maintaining high species richness and endemism of birds in the HMSC. The geographical location at the junction of different biogeographical realms, the wide range of habitats and climates along the extensive elevational range, the complex topography and the distinct geological history of this region have probably contributed to the evolution of an exceptionally species-rich and endemic-rich, specialized montane avian fauna. The Mountain systems in the HMSC may have provided refugia where species survived during the glacial periods and barriers for preventing species dispersal after the glacial periods. More studies are required to further test this refugia hypothesis by comparing more cold-tolerent and warm-tolerent species. © 2014 International Society of Zoological Sciences, Institute of Zoology/Chinese Academy of Sciences and Wiley Publishing Asia Pty Ltd.

  19. A novel cold-adapted and highly salt-tolerant esterase from Alkalibacterium sp. SL3 from the sediment of a soda lake

    PubMed Central

    Wang, Guozeng; Wang, Qiaohuang; Lin, Xianju; Bun Ng, Tzi; Yan, Renxiang; Lin, Juan; Ye, Xiuyun

    2016-01-01

    A novel esterase gene (estSL3) was cloned from the Alkalibacterium sp. SL3, which was isolated from the sediment of soda lake Dabusu. The 636-bp full-length gene encodes a polypeptide of 211 amino acid residues that is closely related with putative GDSL family lipases from Alkalibacterium and Enterococcus. The gene was successfully expressed in E. coli, and the recombinant protein (rEstSL3) was purified to electrophoretic homogeneity and characterized. rEstSL3 exhibited the highest activity towards pNP-acetate and had no activity towards pNP-esters with acyl chains longer than C8. The enzyme was highly cold-adapted, showing an apparent temperature optimum of 30 °C and remaining approximately 70% of the activity at 0 °C. It was active and stable over the pH range from 7 to 10, and highly salt-tolerant up to 5 M NaCl. Moreover, rEstSL3 was strongly resistant to most tested metal ions, chemical reagents, detergents and organic solvents. Amino acid composition analysis indicated that EstSL3 had fewer proline residues, hydrogen bonds and salt bridges than mesophilic and thermophilic counterparts, but more acidic amino acids and less hydrophobic amino acids when compared with other salt-tolerant esterases. The cold active, salt-tolerant and chemical-resistant properties make it a promising enzyme for basic research and industrial applications. PMID:26915906

  20. Overexpression of pigeonpea stress-induced cold and drought regulatory gene (CcCDR) confers drought, salt, and cold tolerance in Arabidopsis

    PubMed Central

    Tamirisa, Srinath; Vudem, Dashavantha Reddy; Khareedu, Venkateswara Rao

    2014-01-01

    A potent cold and drought regulatory protein-encoding gene (CcCDR) was isolated from the subtractive cDNA library of pigeonpea plants subjected to drought stress. CcCDR was induced by different abiotic stress conditions in pigeonpea. Overexpression of CcCDR in Arabidopsis thaliana imparted enhanced tolerance against major abiotic stresses, namely drought, salinity, and low temperature, as evidenced by increased biomass, root length, and chlorophyll content. Transgenic plants also showed increased levels of antioxidant enzymes, proline, and reducing sugars under stress conditions. Furthermore, CcCDR-transgenic plants showed enhanced relative water content, osmotic potential, and cell membrane stability, as well as hypersensitivity to abscisic acid (ABA) as compared with control plants. Localization studies confirmed that CcCDR could enter the nucleus, as revealed by intense fluorescence, indicating its possible interaction with various nuclear proteins. Microarray analysis revealed that 1780 genes were up-regulated in CcCDR-transgenics compared with wild-type plants. Real-time PCR analysis on selected stress-responsive genes, involved in ABA-dependent and -independent signalling networks, revealed higher expression levels in transgenic plants, suggesting that CcCDR acts upstream of these genes. The overall results demonstrate the explicit role of CcCDR in conferring multiple abiotic stress tolerance at the whole-plant level. The multifunctional CcCDR seems promising as a prime candidate gene for enhancing abiotic stress tolerance in diverse plants. PMID:24868035

  1. Disruption of the Arabidopsis Defense Regulator Genes SAG101, EDS1, and PAD4 Confers Enhanced Freezing Tolerance

    PubMed Central

    Chen, Qin-Fang; Xu, Le; Tan, Wei-Juan; Chen, Liang; Qi, Hua; Xie, Li-Juan; Chen, Mo-Xian; Liu, Bin-Yi; Yu, Lu-Jun; Yao, Nan; Zhang, Jian-Hua; Shu, Wensheng; Xiao, Shi

    2017-01-01

    In Arabidopsis, three lipase-like regulators, SAG101, EDS1, and PAD4, act downstream of resistance protein-associated defense signaling. Although the roles of SAG101, EDS1, and PAD4 in biotic stress have been extensively studied, little is known about their functions in plant responses to abiotic stresses. Here, we show that SAG101, EDS1, and PAD4 are involved in the regulation of freezing tolerance in Arabidopsis. With or without cold acclimation, the sag101, eds1, and pad4 single mutants, as well as their double mutants exhibited similarly enhanced tolerance to freezing temperatures. Upon cold exposure, the sag101, eds1, and pad4 mutants showed increased transcript levels of C-REPEAT/DRE BINDING FACTORs and their regulons, compared with wild type. Moreover, freezing-induced cell death and accumulation of hydrogen peroxide were ameliorated in sag101, eds1, and pad4 mutants. The sag101, eds1, and pad4 mutants had much lower salicylic acid (SA) and diacylglycerol (DAG) contents than wild type and exogenous application of SA and DAG compromised the freezing tolerance of the mutants. Furthermore, SA suppressed the cold-induced expression of DGATs and DGKs in wild-type leaves. These findings indicate that SAG101, EDS1, and PAD4 are involved in freezing response in Arabidopsis, at least in part, by modulating the homeostasis of SA and DAG. PMID:26149542

  2. Cold tolerance and invasive potential of the redbay ambrosia beetle (Xyleborus glabratus) in the eastern United States

    Treesearch

    John P. Formby; John C. Rodgers; Frank H. Koch; Natraj Krishnan; Donald A. Duerr; John J. Riggins

    2017-01-01

    Native Lauraceae (e.g. sassafras, redbay) in the southeastern USA are being severely impacted by laurel wilt disease, which is caused by the pathogen Raffaelea lauricola T. C. Harr., Fraedrich and Aghayeva, and its symbiotic vector, the redbay ambrosia beetle (Xyleborus glabratus Eichhoff). Cold temperatures are currently the...

  3. [Cold-induced urticaria].

    PubMed

    Delorme, N; Drouet, M; Thibaudeau, A; Verret, J L

    2002-09-01

    Cold urticaria is characterized by the development of urticaria, usually superficial and/or angioedematous reaction after cold contact. It was found predominantly in young women. The diagnosis is based on the history and ice cube test. Patients with a negative ice cube test may have represented systemic cold urticaria (atypical acquired cold urticaria) induced by general body cooling. The pathogenesis is poorly understood. Cold urticaria can be classified into acquired and familial disorders, with an autosomal dominant inheritance. Idiopathic cold urticaria is most common type but the research of a cryopathy is necessary. Therapy is often difficult. It is essential that the patient be warned of the dangers of swimming in cold water because systemic hypotension can occur. H1 antihistamines can be used for treatment of cold urticaria but the clinical responses are highly variable. The combination with an H2 antagonists is more effective. Doxepin may be useful in the treatment. Leukotriene receptor antagonists may be a novel, promising drug entity. In patients who do not respond to previous treatments, induction of cold tolerance may be tried.

  4. Damage Tolerant Design for Cold-Section Turbine Engine Disks

    DTIC Science & Technology

    1981-06-01

    Ti-6Al-4V Disks ......... .. 59 28. FIOO 2nd-Stage Fan Disk Designs ........ ................ .. 61 29. Fan Disk Tangential Stress Profile... 61 30. Life-Limiting Features of Damage-Tolerant Disk .......... ... 62 31. Disk Life Limits .... ...................... 62 32. Life Test...Stress Rati• Model ..... .......... .. 113 61 . Thick-Section Center-Notched Specimen ....... ............. .. 116 62. Bolthole Specimen

  5. 40 CFR 180.215 - Naled; tolerances for residues.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... PROGRAMS TOLERANCES AND EXEMPTIONS FOR PESTICIDE CHEMICAL RESIDUES IN FOOD Specific Tolerances § 180.215... commodities, except those otherwise listed in this section, from use of the pesticide for area pest (mosquito and fly) control. (b) Section 18 emergency exemptions. [Reserved] (c) Tolerances with regional...

  6. 40 CFR 180.215 - Naled; tolerances for residues.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... PROGRAMS TOLERANCES AND EXEMPTIONS FOR PESTICIDE CHEMICAL RESIDUES IN FOOD Specific Tolerances § 180.215... commodities, except those otherwise listed in this section, from use of the pesticide for area pest (mosquito and fly) control. (b) Section 18 emergency exemptions. [Reserved] (c) Tolerances with regional...

  7. 40 CFR 180.215 - Naled; tolerances for residues.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... PROGRAMS TOLERANCES AND EXEMPTIONS FOR PESTICIDE CHEMICAL RESIDUES IN FOOD Specific Tolerances § 180.215... commodities, except those otherwise listed in this section, from use of the pesticide for area pest (mosquito and fly) control. (b) Section 18 emergency exemptions. [Reserved] (c) Tolerances with regional...

  8. 40 CFR 180.368 - Metolachlor; tolerances for residues.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... Soybean, hay 8.0 Soybean, seed 0.20 Tomato 0.10 Vegetable, foliage of legume, subgroup 7A, except soybean 15.0 Vegetable, legume, group 6 0.30 (2) Tolerances are established for the combined residues (free... Sunflower, meal 1.0 Tomato, paste 0.30 Vegetable, foliage of legume, except soybean, subgroup 7A 15.0...

  9. Overexpression of WsSGTL1 Gene of Withania somnifera Enhances Salt Tolerance, Heat Tolerance and Cold Acclimation Ability in Transgenic Arabidopsis Plants

    PubMed Central

    Mishra, Manoj K.; Chaturvedi, Pankaj; Singh, Ruchi; Singh, Gaurav; Sharma, Lokendra K.; Pandey, Vibha; Kumari, Nishi; Misra, Pratibha

    2013-01-01

    Background Sterol glycosyltrnasferases (SGT) are enzymes that glycosylate sterols which play important role in plant adaptation to stress and are medicinally important in plants like Withania somnifera. The present study aims to find the role of WsSGTL1 which is a sterol glycosyltransferase from W. somnifera, in plant’s adaptation to abiotic stress. Methodology The WsSGTL1 gene was transformed in Arabidopsis thaliana through Agrobacterium mediated transformation, using the binary vector pBI121, by floral dip method. The phenotypic and physiological parameters like germination, root length, shoot weight, relative electrolyte conductivity, MDA content, SOD levels, relative electrolyte leakage and chlorophyll measurements were compared between transgenic and wild type Arabidopsis plants under different abiotic stresses - salt, heat and cold. Biochemical analysis was done by HPLC-TLC and radiolabelled enzyme assay. The promoter of the WsSGTL1 gene was cloned by using Genome Walker kit (Clontech, USA) and the 3D structures were predicted by using Discovery Studio Ver. 2.5. Results The WsSGTL1 transgenic plants were confirmed to be single copy by Southern and homozygous by segregation analysis. As compared to WT, the transgenic plants showed better germination, salt tolerance, heat and cold tolerance. The level of the transgene WsSGTL1 was elevated in heat, cold and salt stress along with other marker genes such as HSP70, HSP90, RD29, SOS3 and LEA4-5. Biochemical analysis showed the formation of sterol glycosides and increase in enzyme activity. When the promoter of WsSGTL1 gene was cloned from W. somnifera and sequenced, it contained stress responsive elements. Bioinformatics analysis of the 3D structure of the WsSGTL1 protein showed functional similarity with sterol glycosyltransferase AtSGT of A. thaliana. Conclusions Transformation of WsSGTL1 gene in A. thaliana conferred abiotic stress tolerance. The promoter of the gene in W.somnifera was found to have stress responsive elements. The 3D structure showed functional similarity with sterol glycosyltransferases. PMID:23646175

  10. Leaf transcriptome analysis of a subtropical evergreen broadleaf plant, wild oil-tea camellia (Camellia oleifera), revealing candidate genes for cold acclimation.

    PubMed

    Chen, Jiaming; Yang, Xiaoqiang; Huang, Xiaomao; Duan, Shihua; Long, Chuan; Chen, Jiakuan; Rong, Jun

    2017-02-28

    Cold tolerance is a key determinant of the geographical distribution range of a plant species and crop production. Cold acclimation can enhance freezing-tolerance of plant species through a period of exposure to low nonfreezing temperatures. As a subtropical evergreen broadleaf plant, oil-tea camellia demonstrates a relatively strong tolerance to freezing temperatures. Moreover, wild oil-tea camellia is an essential genetic resource for the breeding of cultivated oil-tea camellia, one of the four major woody oil crops in the world. The aims of our study are to identify variations in transcriptomes of wild oil-tea camellia from different latitudes and elevations, and discover candidate genes for cold acclimation. Leaf transcriptomes were obtained of wild oil-tea camellia from different elevations in Lu and Jinggang Mountains, China. Huge amounts of simple sequence repeats (SSRs), single-nucleotide polymorphisms (SNPs) and insertion/deletions (InDels) were identified. Based on SNPs, phylogenetic analysis was performed to detect genetic structure. Wild oil-tea camellia samples were genetically differentiated mainly between latitudes (between Lu and Jinggang Mountains) and then among elevations (within Lu or Jinggang Mountain). Gene expression patterns of wild oil-tea camellia samples were compared among different air temperatures, and differentially expressed genes (DEGs) were discovered. When air temperatures were below 10 °C, gene expression patterns changed dramatically and majority of the DEGs were up-regulated at low temperatures. More DEGs concerned with cold acclimation were detected at 2 °C than at 5 °C, and a putative C-repeat binding factor (CBF) gene was significantly up-regulated only at 2 °C, suggesting a stronger cold stress at 2 °C. We developed a new method for identifying significant functional groups of DEGs. Among the DEGs, transmembrane transporter genes were found to be predominant and many of them encoded transmembrane sugar transporters. Our study provides one of the largest transcriptome dataset in the genus Camellia. Wild oil-tea camellia populations were genetically differentiated between latitudes. It may undergo cold acclimation when air temperatures are below 10 °C. Candidate genes for cold acclimation may be predominantly involved in transmembrane transporter activities.

  11. 21 CFR 1250.84 - Water in galleys and medical care spaces.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... care spaces. (a) Potable water, hot and cold, shall be available in the galley and pantry except that... least 170 °F before discharge from the heater. (c) Potable water, hot and cold, shall be available in...

  12. Genome Wide Transcriptional Profile Analysis of Vitis amurensis and Vitis vinifera in Response to Cold Stress

    PubMed Central

    Xin, Haiping; Zhu, Wei; Wang, Lina; Xiang, Yue; Fang, Linchuan; Li, Jitao; Sun, Xiaoming; Wang, Nian; Londo, Jason P.; Li, Shaohua

    2013-01-01

    Grape is one of the most important fruit crops worldwide. The suitable geographical locations and productivity of grapes are largely limited by temperature. Vitis amurensis is a wild grapevine species with remarkable cold-tolerance, exceeding that of Vitis vinifera, the dominant cultivated species of grapevine. However, the molecular mechanisms that contribute to the enhanced freezing tolerance of V. amurensis remain unknown. Here we used deep sequencing data from restriction endonuclease-generated cDNA fragments to evaluate the whole genome wide modification of transcriptome of V. amurensis under cold treatment. Vitis vinifera cv. Muscat of Hamburg was used as control to help investigate the distinctive features of V. amruensis in responding to cold stress. Approximately 9 million tags were sequenced from non-cold treatment (NCT) and cold treatment (CT) cDNA libraries in each species of grapevine sampled from shoot apices. Alignment of tags into V. vinifera cv. Pinot noir (PN40024) annotated genome identified over 15,000 transcripts in each library in V. amruensis and more than 16,000 in Muscat of Hamburg. Comparative analysis between NCT and CT libraries indicate that V. amurensis has fewer differential expressed genes (DEGs, 1314 transcripts) than Muscat of Hamburg (2307 transcripts) when exposed to cold stress. Common DEGs (408 transcripts) suggest that some genes provide fundamental roles during cold stress in grapes. The most robust DEGs (more than 20-fold change) also demonstrated significant differences between two kinds of grapevine, indicating that cold stress may trigger species specific pathways in V. amurensis. Functional categories of DEGs indicated that the proportion of up-regulated transcripts related to metabolism, transport, signal transduction and transcription were more abundant in V. amurensis. Several highly expressed transcripts that were found uniquely accumulated in V. amurensis are discussed in detail. This subset of unique candidate transcripts may contribute to the excellent cold-hardiness of V. amurensis. PMID:23516547

  13. Potential Effects of Climate Change on the Distribution of Cold-Tolerant Evergreen Broadleaved Woody Plants in the Korean Peninsula.

    PubMed

    Koo, Kyung Ah; Kong, Woo-Seok; Nibbelink, Nathan P; Hopkinson, Charles S; Lee, Joon Ho

    2015-01-01

    Climate change has caused shifts in species' ranges and extinctions of high-latitude and altitude species. Most cold-tolerant evergreen broadleaved woody plants (shortened to cold-evergreens below) are rare species occurring in a few sites in the alpine and subalpine zones in the Korean Peninsula. The aim of this research is to 1) identify climate factors controlling the range of cold-evergreens in the Korean Peninsula; and 2) predict the climate change effects on the range of cold-evergreens. We used multimodel inference based on combinations of climate variables to develop distribution models of cold-evergreens at a physiognomic-level. Presence/absence data of 12 species at 204 sites and 6 climatic factors, selected from among 23 candidate variables, were used for modeling. Model uncertainty was estimated by mapping a total variance calculated by adding the weighted average of within-model variation to the between-model variation. The range of cold-evergreens and model performance were validated by true skill statistics, the receiver operating characteristic curve and the kappa statistic. Climate change effects on the cold-evergreens were predicted according to the RCP 4.5 and RCP 8.5 scenarios. Multimodel inference approach excellently projected the spatial distribution of cold-evergreens (AUC = 0.95, kappa = 0.62 and TSS = 0.77). Temperature was a dominant factor in model-average estimates, while precipitation was minor. The climatic suitability increased from the southwest, lowland areas, to the northeast, high mountains. The range of cold-evergreens declined under climate change. Mountain-tops in the south and most of the area in the north remained suitable in 2050 and 2070 under the RCP 4.5 projection and 2050 under the RCP 8.5 projection. Only high-elevations in the northeastern Peninsula remained suitable under the RCP 8.5 projection. A northward and upper-elevational range shift indicates change in species composition at the alpine and subalpine ecosystems in the Korean Peninsula.

  14. Potential Effects of Climate Change on the Distribution of Cold-Tolerant Evergreen Broadleaved Woody Plants in the Korean Peninsula

    PubMed Central

    Koo, Kyung Ah; Kong, Woo-Seok; Nibbelink, Nathan P.; Hopkinson, Charles S.; Lee, Joon Ho

    2015-01-01

    Climate change has caused shifts in species’ ranges and extinctions of high-latitude and altitude species. Most cold-tolerant evergreen broadleaved woody plants (shortened to cold-evergreens below) are rare species occurring in a few sites in the alpine and subalpine zones in the Korean Peninsula. The aim of this research is to 1) identify climate factors controlling the range of cold-evergreens in the Korean Peninsula; and 2) predict the climate change effects on the range of cold-evergreens. We used multimodel inference based on combinations of climate variables to develop distribution models of cold-evergreens at a physiognomic-level. Presence/absence data of 12 species at 204 sites and 6 climatic factors, selected from among 23 candidate variables, were used for modeling. Model uncertainty was estimated by mapping a total variance calculated by adding the weighted average of within-model variation to the between-model variation. The range of cold-evergreens and model performance were validated by true skill statistics, the receiver operating characteristic curve and the kappa statistic. Climate change effects on the cold-evergreens were predicted according to the RCP 4.5 and RCP 8.5 scenarios. Multimodel inference approach excellently projected the spatial distribution of cold-evergreens (AUC = 0.95, kappa = 0.62 and TSS = 0.77). Temperature was a dominant factor in model-average estimates, while precipitation was minor. The climatic suitability increased from the southwest, lowland areas, to the northeast, high mountains. The range of cold-evergreens declined under climate change. Mountain-tops in the south and most of the area in the north remained suitable in 2050 and 2070 under the RCP 4.5 projection and 2050 under the RCP 8.5 projection. Only high-elevations in the northeastern Peninsula remained suitable under the RCP 8.5 projection. A northward and upper-elevational range shift indicates change in species composition at the alpine and subalpine ecosystems in the Korean Peninsula. PMID:26262755

  15. Freeze Tolerance of Seed-Producing Turf Bermudagrasses.

    PubMed

    Anderson, Jeffrey A.; Taliaferro, Charles M.

    2002-01-01

    Bermudagrass, Cynodon dactylon (L.) Pers., suffers periodic severe winter-kill throughout much of its area of use in the contiguous USA. A research goal is to increase freeze tolerance in cultivars to lessen the risk of such damage. An identified research need is for Cynodon germplasm resources to be characterized for freeze tolerance and hybridization potential. Accordingly, the objective of this research was to characterize the relative freeze tolerance of selected fertile bermudagrass plants. Nine tetraploid (2n = 4x = 36) C. dactylon and two triploid (2n = 3x = 27) hybrid (C. dactylon x C. transvaalensis Burtt Davy) clonal plants (standards) were evaluated in two experiments. Plants were propagated clonally and established in Cone-tainers (Ray Leach Cone-tainer Nursery, Canby, OR) for about 10 wk. Acclimation took place for 4 wk in controlled environment chambers at 8/2 degrees C (day/night) temperatures with a 10-h photoperiod. Following acclimation, Cone-tainers were placed into a freeze chamber and cooled rapidly to -2 degrees C, induced to freeze with ice chips, then held overnight at -2 degrees C. The freeze chamber was then programmed to cool linearly at 1 degrees C per hour. For each cultivar, three Cone-tainers were removed at each test temperature. Following thawing, Cone-tainers were transferred to a greenhouse and regrowth was evaluated visually. Nonlinear regression was used to estimate T(mid), which corresponded to the midpoint of the sigmoidal response curve of survival vs temperature. Within experiment one, Tifgreen (T(mid) = -7.2 degrees C) was significantly less cold hardy than Quickstand (-9.0 degrees C), A-12204 (-9.2 degrees C), Midiron (-9.9 degrees C), and A-12195 (-10.5 degrees C). A-12195 was significantly hardier than all genotypes except Midiron. In the second experiment, Arizona Common (-6.6 degrees C), Tifgreen (-7.1 degrees C), and A-12205 (-7.1 degrees C) were less hardy than A-9959 (-8.7 degrees C), A-12156 (-8.9 degrees C), A-12198 (-9.5 degrees C), and Midiron (-10.0 degrees C). Midiron was hardier than all genotypes except A-12198. The range of test temperatures chosen did not allow estimate of a T(mid) value for Zebra, but nearly 50% of the plants were killed at -6.0 degrees C.

  16. Can the exceptional chilling tolerance of C4 photosynthesis found in Miscanthus × giganteus be exceeded? Screening of a novel Miscanthus Japanese germplasm collection.

    PubMed

    Głowacka, Katarzyna; Jørgensen, Uffe; Kjeldsen, Jens B; Kørup, Kirsten; Spitz, Idan; Sacks, Erik J; Long, Stephen P

    2015-05-01

    A clone of the hybrid perennial C4 grass Miscanthus × giganteus (Mxg) is known for achieving exceptionally high rates of leaf CO2 uptake during chilling. This is a requisite of success in the early spring, as is the ability of the leaves to survive occasional frosts. The aim of this study was to search for genotypes with greater potential than Mxg for photosynthesis and frost survival under these conditions. A total of 864 accessions representing 164 local populations of M. sacchariflorus (Msa), M. sinensis (Msi) and M. tinctorius (Mti) collected across Japan were studied. Accessions whose leaves survived a natural late frost in the field were screened for high maximum photosystem II efficiency (Fv/Fm) following chilling weather, as an indicator of their capacity for light-limited photosynthesis. Those showing the highest Fv/Fm were transferred to a high-light-controlled environment and maintained at chilling temperatures, where they were further screened for their capacities for high-light-limited and light-saturated leaf uptake of CO2 (ΦCO2,max and Asat, respectively). For the first time, relatives of Mxg with significantly superior capacities for photosynthesis at chilling temperatures were identified. Msa accession '73/2' developed leaves in the spring that survived night-time frost, and during growth under chilling maintained a statistically significant 79 % higher ΦCO2,max, as a measure of light-limited photosynthesis, and a 70 % higher Asat, as a measure of light-saturated photosynthesis. A second Msa accession, '73/3' also showed significantly higher rates of leaf uptake of CO2. As remarkable as Mxg has proved in its chilling tolerance of C4 photosynthesis, this study shows that there is still value and potential in searching for yet more superior tolerance. Msa accession '73/2' shows rates of light-limited and light-saturated photosynthesis at chilling temperatures that are comparable with those of the most cold-tolerant C3 species. This adds further proof to the thesis that C4 photosynthesis is not inherently limited to warm climates. © The Author 2015. Published by Oxford University Press on behalf of the Annals of Botany Company. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  17. Tolerance of an Antarctic Bacterium to Multiple Environmental Stressors.

    PubMed

    Sengupta, Dipanwita; Sangu, Kavya; Shivaji, Sisinthy; Chattopadhyay, Madhab K

    2015-10-01

    A population of cold-tolerant Antarctic bacteria was screened for their ability to tolerate other environmental stress factors. Besides low temperature, they were predominantly found to be tolerant to alkali. Attempt was also made to postulate a genetic basis of their multistress-tolerance. Transposon mutagenesis of an isolate Pseudomonas syringae Lz4W was performed, and mutants with delayed growth at low temperature were further screened for sensitivity to some other stress factors. A number of multistress-sensitive mutants were isolated. The mutated gene in one of the mutants sensitive to low temperature, acid and alkali was found to encode citrate synthase. Possible role of citrate synthase in conferring multistress-tolerance was postulated.

  18. Terrestrial analogs of possible Martian habitats

    NASA Astrophysics Data System (ADS)

    Friedmann, E. I.

    Four environmental factors are responsible for the apparent absence of life on or near the surface of Mars: radiation, reactive oxidants, aridity and low temperature. The three latter factors are also present in terrestrial environments that approximate, although do not reach, the intensity of Martian conditions. Nor do they occur together in the same environments, yet they allow studying the response of microorganisms separately to each of these environmental factors. 1. Most laboratory experiments on radiation "resistance" deal with the ability of microorganisms to repair (in a radiation-free environment) previously suffered radiation damage. Little is known on the response to continuous high radiation environments. 2. Mars-like soils with reactive oxidants have recently (2004) been discovered in the most arid regions of the Atacama Desert. 3. Extreme aridity (absence of liquid water) has been studied in the Negev, Gobi and other deserts. In these habitats the sole primary producer worldwide is the cyanobacterium Chroococcidiopsis. This organism tolerates total desiccation for decades and upon wetting it resumes full activity within a few minutes. However, it utilizes only liquid water, not water vapor from the atmosphere. Both heterotrophic and photosynthetic bacteria (primary producers) reach their limit of existence in the extreme arid core of the Atacama Desert, possibly the driest place on Earth. 4. Extreme cold, per se, is not harmful to life: organisms in frozen state can be preserved for very long times. On Earth, "psychrophiles" (cold adapted microorganisms) live in oceans and lakes, in thermally stable aquatic environments with temperature optima around +5o C, and are unable to tolerate temperatures above +15o C. Extreme cold conditions occur only in non-aquatic (terrestrial) environments. Here the limiting factor is not low temperature, but rather the lack of high temperature necessary to drive metabolic processes. Microorganisms of these habitats are not well-adapted psychrophiles but psychrotolerant mesophiles with temperature optima around +20o C. In the thermally unstable environment of cryptoendolithic microorganisms inside rocks of the Antarctic cold desert the yearly temperature fluctuates from -45o C to (exceptionally) +22o C. In the thermally stable permafrost (frozen soil) the temperature is ca. -10o C in Siberia and -20o C to -30o C in Antarctica. The above environments will be discussed to some detail accompanied by slides of landscapes, close-ups and micrographs. The relevance of information from terrestrial analogs to biology of Mars will be critically discussed.

  19. Selection of Reference Genes for Normalization of MicroRNA Expression by RT-qPCR in Sugarcane Buds under Cold Stress

    PubMed Central

    Yang, Yuting; Zhang, Xu; Chen, Yun; Guo, Jinlong; Ling, Hui; Gao, Shiwu; Su, Yachun; Que, Youxiong; Xu, Liping

    2016-01-01

    Sugarcane, accounting for 80% of world's sugar, originates in the tropics but is cultivated mainly in the subtropics. Therefore, chilling injury frequently occurs and results in serious losses. Recent studies in various plant species have established microRNAs as key elements in the post-transcriptional regulation of response to biotic and abiotic stresses including cold stress. Though, its accuracy is largely influenced by the use of reference gene for normalization, quantitative PCR is undoubtedly a popular method used for identification of microRNAs. For identifying the most suitable reference genes for normalizing miRNAs expression in sugarcane under cold stress, 13 candidates among 17 were investigated using four algorithms: geNorm, NormFinder, deltaCt, and Bestkeeper, and four candidates were excluded because of unsatisfactory efficiency and specificity. Verification was carried out using cold-related genes miR319 and miR393 in cold-tolerant and sensitive cultivars. The results suggested that miR171/18S rRNA and miR171/miR5059 were the best reference gene sets for normalization for miRNA RT-qPCR, followed by the single miR171 and 18S rRNA. These results can aid research on miRNA responses during sugarcane stress, and the development of sugarcane tolerant to cold stress. This study is the first report concerning the reference gene selection of miRNA RT-qPCR in sugarcane. PMID:26904058

  20. RAN1 is involved in plant cold resistance and development in rice (Oryza sativa).

    PubMed

    Xu, Peipei; Cai, Weiming

    2014-07-01

    Of the diverse abiotic stresses, low temperature is one of the major limiting factors that lead to a series of morphological, physiological, biochemical, and molecular changes in plants. Ran, an evolutionarily conserved small G-protein family, has been shown to be essential for the nuclear translocation of proteins. It also mediates the regulation of cell cycle progression in mammalian cells. However, little is known about Ran function in rice (Oryza sativa). We report here that Ran gene OsRAN1 is essential for the molecular improvement of rice for cold tolerance. Ran also affects plant morphogenesis in transgenic Arabidopsis thaliana. OsRAN1 is ubiquitously expressed in rice tissues with the highest expression in the spike. The levels of mRNA encoding OsRAN1 were greatly increased by cold and indoleacetic acid treatment rather than by addition of salt and polyethylene glycol. Further, OsRAN1 overexpression in Arabidopsis increased tiller number, and altered root development. OsRAN1 overexpression in rice improves cold tolerance. The levels of cellular free Pro and sugar levels were highly increased in transgenic plants under cold stress. Under cold stress, OsRAN1 maintained cell division and cell cycle progression, and also promoted the formation of an intact nuclear envelope. The results suggest that OsRAN1 protein plays an important role in the regulation of cellular mitosis and the auxin signalling pathway. © The Author 2014. Published by Oxford University Press on behalf of the Society for Experimental Biology.

  1. Lipid profiles of detergent resistant fractions of the plasma membrane in oat and rye in association with cold acclimation and freezing tolerance.

    PubMed

    Takahashi, Daisuke; Imai, Hiroyuki; Kawamura, Yukio; Uemura, Matsuo

    2016-04-01

    Cold acclimation (CA) results in alteration of the plasma membrane (PM) lipid composition in plants, which plays a crucial role in the acquisition of freezing tolerance via membrane stabilization. Recent studies have indicated that PM structure is consistent with the fluid mosaic model but is laterally non-homogenous and contains microdomains enriched in sterols, sphingolipids and specific proteins. In plant cells, the function of these microdomains in relation to CA and freezing tolerance is not yet fully understood. The present study aimed to investigate the lipid compositions of detergent resistant fractions of the PM (DRM) which are considered to represent microdomains. They were prepared from leaves of low-freezing tolerant oat and high-freezing tolerant rye. The DRMs contained higher proportions of sterols, sphingolipids and saturated phospholipids than the PM. In particular, one of the sterol lipid classes, acylated sterylglycoside, was the predominant sterol in oat DRM while rye DRM contained free sterol as the major sterol. Oat and rye showed different patterns (or changes) of sterols and 2-hydroxy fatty acids of sphingolipids of DRM lipids during CA. Taken together, these results suggest that CA-induced changes of lipid classes and molecular species in DRMs are associated with changes in the thermodynamic properties and physiological functions of microdomains during CA and hence, influence plant freezing tolerance. Copyright © 2016 Elsevier Inc. All rights reserved.

  2. Ambient temperature enhanced freezing tolerance of Chrysanthemum dichrum CdICE1 Arabidopsis via miR398.

    PubMed

    Chen, Yu; Jiang, Jiafu; Song, Aiping; Chen, Sumei; Shan, Hong; Luo, Huolin; Gu, Chunsun; Sun, Jing; Zhu, Lu; Fang, Weimin; Chen, Fadi

    2013-12-19

    ICE (Inducer of CBF Expression) family genes play an important role in the regulation of cold tolerance pathways. In an earlier study, we isolated the gene CdICE1 from Chrysanthemum dichrum and demonstrated that freezing tolerance was enhanced by CdICE1 overexpression. Therefore, we sought to determine the mechanism by which ICE1 family genes participate in freezing tolerance. Using EMSA (Electrophoretic Mobility Shift Assay) and yeast one-hybrid assays, we confirmed that CdICE1 binds specifically to the MYC element in the CdDREBa promoter and activates transcription. In addition, overexpression of CdICE1 enhanced Arabidopsis freezing tolerance after transition from 23°C to 4°C or 16°C. We found that after acclimation to 4°C, CdICE1, like Arabidopsis AtICE1, promoted expression of CBFs (CRT/DRE Binding Factor) and their genes downstream involved in freezing tolerance, including COR15a (Cold-Regulated 15a), COR6.6, and RD29a (Responsive to Dessication 29a). Interestingly, we observed that CdICE1-overexpressing plants experienced significant reduction in miR398. In addition, its target genes CSD1 (Copper/zinc Superoxide Dismutase 1) and CSD2 showed inducible expression under acclimation at 16°C, indicating that the miR398-CSD pathway was involved in the induction of freezing tolerance. Our data indicate that CdICE1-mediated freezing tolerance occurs via different pathways, involving either CBF or miR398, under acclimation at two different temperatures.

  3. Ambient temperature enhanced freezing tolerance of Chrysanthemum dichrum CdICE1 Arabidopsis via miR398

    PubMed Central

    2013-01-01

    Background ICE (Inducer of CBF Expression) family genes play an important role in the regulation of cold tolerance pathways. In an earlier study, we isolated the gene CdICE1 from Chrysanthemum dichrum and demonstrated that freezing tolerance was enhanced by CdICE1 overexpression. Therefore, we sought to determine the mechanism by which ICE1 family genes participate in freezing tolerance. Results Using EMSA (Electrophoretic Mobility Shift Assay) and yeast one-hybrid assays, we confirmed that CdICE1 binds specifically to the MYC element in the CdDREBa promoter and activates transcription. In addition, overexpression of CdICE1 enhanced Arabidopsis freezing tolerance after transition from 23°C to 4°C or 16°C. We found that after acclimation to 4°C, CdICE1, like Arabidopsis AtICE1, promoted expression of CBFs (CRT/DRE Binding Factor) and their genes downstream involved in freezing tolerance, including COR15a (Cold-Regulated 15a), COR6.6, and RD29a (Responsive to Dessication 29a). Interestingly, we observed that CdICE1-overexpressing plants experienced significant reduction in miR398. In addition, its target genes CSD1 (Copper/zinc Superoxide Dismutase 1) and CSD2 showed inducible expression under acclimation at 16°C, indicating that the miR398-CSD pathway was involved in the induction of freezing tolerance. Conclusions Our data indicate that CdICE1-mediated freezing tolerance occurs via different pathways, involving either CBF or miR398, under acclimation at two different temperatures. PMID:24350981

  4. Global Expressions Landscape of NAC Transcription Factor Family and Their Responses to Abiotic Stresses in Citrullus lanatus

    PubMed Central

    Lv, Xiaolong; Lan, Shanrong; Guy, Kateta Malangisha; Yang, Jinghua; Zhang, Mingfang; Hu, Zhongyuan

    2016-01-01

    Watermelon (Citrullus lanatus) is one xerophyte that has relative higher tolerance to drought and salt stresses as well as more sensitivity to cold stress, compared with most model plants. These characteristics facilitate it a potential model crop for researches on salt, drought or cold tolerance. In this study, a genome-wide comprehensive analysis of the ClNAC transcription factor (TF) family was carried out for the first time, to investigate their transcriptional profiles and potential functions in response to these abiotic stresses. The expression profiling analysis reveals that several NAC TFs are highly responsive to abiotic stresses and development, for instance, subfamily IV NACs may play roles in maintaining water status under drought or salt conditions, as well as water and metabolites conduction and translocation toward fruit. In contrast, rapid and negative responses of most of the ClNACs to low-temperature adversity may be related to the sensitivity to cold stress. Crosstalks among these abiotic stresses and hormone (abscisic acid and jasmonic acid) pathways were also discussed based on the expression of ClNAC genes. Our results will provide useful insights for the functional mining of NAC family in watermelon, as well as into the mechanisms underlying abiotic tolerance in other cash crops. PMID:27491393

  5. Global Expressions Landscape of NAC Transcription Factor Family and Their Responses to Abiotic Stresses in Citrullus lanatus.

    PubMed

    Lv, Xiaolong; Lan, Shanrong; Guy, Kateta Malangisha; Yang, Jinghua; Zhang, Mingfang; Hu, Zhongyuan

    2016-08-05

    Watermelon (Citrullus lanatus) is one xerophyte that has relative higher tolerance to drought and salt stresses as well as more sensitivity to cold stress, compared with most model plants. These characteristics facilitate it a potential model crop for researches on salt, drought or cold tolerance. In this study, a genome-wide comprehensive analysis of the ClNAC transcription factor (TF) family was carried out for the first time, to investigate their transcriptional profiles and potential functions in response to these abiotic stresses. The expression profiling analysis reveals that several NAC TFs are highly responsive to abiotic stresses and development, for instance, subfamily IV NACs may play roles in maintaining water status under drought or salt conditions, as well as water and metabolites conduction and translocation toward fruit. In contrast, rapid and negative responses of most of the ClNACs to low-temperature adversity may be related to the sensitivity to cold stress. Crosstalks among these abiotic stresses and hormone (abscisic acid and jasmonic acid) pathways were also discussed based on the expression of ClNAC genes. Our results will provide useful insights for the functional mining of NAC family in watermelon, as well as into the mechanisms underlying abiotic tolerance in other cash crops.

  6. Temperature-dependent development, cold tolerance, and potential distribution of Cricotopus lebetis (Diptera: Chironomidae), a tip miner of Hydrilla verticillata (Hydrocharitaceae).

    PubMed

    Stratman, Karen N; Overholt, William A; Cuda, James P; Mukherjee, A; Diaz, R; Netherland, Michael D; Wilson, Patrick C

    2014-10-15

    A chironomid midge, Cricotopus lebetis (Sublette) (Diptera: Chironomidae), was discovered attacking the apical meristems of Hydrilla verticillata (L.f. Royle) in Crystal River, Citrus Co., Florida in 1992. The larvae mine the stems of H. verticillata and cause basal branching and stunting of the plant. Temperature-dependent development, cold tolerance, and the potential distribution of the midge were investigated. The results of the temperature-dependent development study showed that optimal temperatures for larval development were between 20 and 30°C, and these data were used to construct a map of the potential number of generations per year of C. lebetis in Florida. Data from the cold tolerance study, in conjunction with historical weather data, were used to generate a predicted distribution of C. lebetis in the United States. A distribution was also predicted using an ecological niche modeling approach by characterizing the climate at locations where C. lebetis is known to occur and then finding other locations with similar climate. The distributions predicted using the two modeling approaches were not significantly different and suggested that much of the southeastern United States was climatically suitable for C. lebetis. © The Author 2014. Published by Oxford University Press on behalf of the Entomological Society of America.

  7. Osmotic and elastic adjustments in cold desert shrubs differing in rooting depth: coping with drought and subzero temperatures

    Treesearch

    Fabian G. Scholz; Sandra J. Bucci; Nadia Arias; Frederick C. Meinzer; Guillermo Goldstein

    2012-01-01

    Physiological adjustments to enhance tolerance or avoidance of summer drought and winter freezing were studied in shallow- to deep-rooted Patagonian cold desert shrubs. We measured leaf water potential, osmotic potential, tissue elasticity, stem hydraulic characteristics, and stomatal conductance across species throughout the year, and assessed tissue damage by subzero...

  8. Abscisic acid enhances cold tolerance in honeybee larvae

    PubMed Central

    Sturla, Laura; Guida, Lucrezia; Vigliarolo, Tiziana; Maggi, Matías; Eguaras, Martín; Zocchi, Elena; Lamattina, Lorenzo

    2017-01-01

    The natural composition of nutrients present in food is a key factor determining the immune function and stress responses in the honeybee (Apis mellifera). We previously demonstrated that a supplement of abscisic acid (ABA), a natural component of nectar, pollen, and honey, increases honeybee colony survival overwinter. Here we further explored the role of ABA in in vitro-reared larvae exposed to low temperatures. Four-day-old larvae (L4) exposed to 25°C for 3 days showed lower survival rates and delayed development compared to individuals growing at a standard temperature (34°C). Cold-stressed larvae maintained higher levels of ABA for longer than do larvae reared at 34°C, suggesting a biological significance for ABA. Larvae fed with an ABA-supplemented diet completely prevent the low survival rate due to cold stress and accelerate adult emergence. ABA modulates the expression of genes involved in metabolic adjustments and stress responses: Hexamerin 70b, Insulin Receptor Substrate, Vitellogenin, and Heat Shock Proteins 70. AmLANCL2, the honeybee ABA receptor, is also regulated by cold stress and ABA. These results support a role for ABA increasing the tolerance of honeybee larvae to low temperatures through priming effects. PMID:28381619

  9. Abscisic acid enhances cold tolerance in honeybee larvae.

    PubMed

    Ramirez, Leonor; Negri, Pedro; Sturla, Laura; Guida, Lucrezia; Vigliarolo, Tiziana; Maggi, Matías; Eguaras, Martín; Zocchi, Elena; Lamattina, Lorenzo

    2017-04-12

    The natural composition of nutrients present in food is a key factor determining the immune function and stress responses in the honeybee ( Apis mellifera ). We previously demonstrated that a supplement of abscisic acid (ABA), a natural component of nectar, pollen, and honey, increases honeybee colony survival overwinter. Here we further explored the role of ABA in in vitro -reared larvae exposed to low temperatures. Four-day-old larvae (L4) exposed to 25°C for 3 days showed lower survival rates and delayed development compared to individuals growing at a standard temperature (34°C). Cold-stressed larvae maintained higher levels of ABA for longer than do larvae reared at 34°C, suggesting a biological significance for ABA. Larvae fed with an ABA-supplemented diet completely prevent the low survival rate due to cold stress and accelerate adult emergence. ABA modulates the expression of genes involved in metabolic adjustments and stress responses: Hexamerin 70b, Insulin Receptor Substrate, Vitellogenin , and Heat Shock Proteins 70. AmLANCL2, the honeybee ABA receptor, is also regulated by cold stress and ABA. These results support a role for ABA increasing the tolerance of honeybee larvae to low temperatures through priming effects. © 2017 The Author(s).

  10. Distinct Bacterial Communities Associated with Massive and Branching Scleractinian Corals and Potential Linkages to Coral Susceptibility to Thermal or Cold Stress

    PubMed Central

    Liang, Jiayuan; Yu, Kefu; Wang, Yinghui; Huang, Xueyong; Huang, Wen; Qin, Zhenjun; Pan, Ziliang; Yao, Qiucui; Wang, Wenhuan; Wu, Zhengchao

    2017-01-01

    It is well known that different coral species have different tolerances to thermal or cold stress, which is presumed to be related to the density of Symbiodinium. However, the intrinsic factors between stress-tolerant characteristics and coral-associated bacteria are rarely studied. In this study, 16 massive coral and 9 branching coral colonies from 6 families, 10 genera, and 18 species were collected at the same time and location (Xinyi Reef) in the South China Sea to investigate the bacterial communities. The results of an alpha diversity analysis showed that bacterial diversities associated with massive corals were generally higher than those with branching corals at different taxonomic levels (phylum, class, order, and so on). In addition, hierarchical clustering tree and PCoA analyses showed that coral species were clustered into two large groups according to the similarity of bacterial communities. Group I consisted of massive Goniastrea, Plesiastrea, Leptastrea, Platygyra, Echinopora, Porites, and Leptoria, and group II consisted of branching Acropora and Pocillopora. These findings suggested that both massive corals and branching corals have their own preference for the choice of associated bacteria, which may be involved in observed differences in thermal/cold tolerances. Further analysis found that 55 bacterial phyla, including 43 formally described phyla and 12 candidate phyla, were detected in these coral species. Among them, 52 phyla were recovered from the massive coral group, and 46 phyla were recovered from the branching coral group. Formally described coral pathogens have not been detected in these coral species, suggesting that they are less likely to be threatened by disease in this geographic area. This study highlights a clear relationship between the high complexity of bacterial community associated with coral, skeletal morphology of coral and potentially tolerances to thermal or cold stress. PMID:28642738

  11. Relationship between cold pressor pain-sensitivity and sleep quality in opioid-dependent males on methadone treatment

    PubMed Central

    Lee, Chee Siong; Tan, Soo Choon; Mohamad, Nasir; Lee, Yeong Yeh; Ismail, Rusli

    2015-01-01

    Aim. Poor sleep quality due to pain has been reported among opioid-dependent male patients on methadone maintenance therapy (MMT) but objective pain data are lacking. This study aimed to investigate the rate of pain-sensitivity using cold pressor test (CPT) and the relationship between pain-sensitivity and sleep quality in this population. Methods. A total of 168 male participants were included into the study. Objective pain-tolerance was evaluated at 0 h and at 24 h after the first CPT. Malay version of the Pittsburgh Sleep Quality Index (PSQI) and the subjective opiate withdrawal scale (SOWS) questionnaires were administered to evaluate the quality of sleep and withdrawal symptoms, respectively. Results. The mean age of study participants was 37.22 (SD 6.20) years old. Mean daily methadone dose was 76.64 (SD 37.63) mg/day, mean global PSQI score was 5.47 (SD 2.74) and mean averaged SOWS score was 5.43 (SD 6.91). The averaged pain-tolerance time ranged from 7 to 300 s with a mean time of 32.16 (SE 2.72) s, slightly below the cut-off score of 37.53 s. More specifically, 78.6% (n = 132) of participants were identified as pain-sensitive (averaged pain-tolerance time ≤37.53 s), and 36 (21.4%) participants were pain-tolerant (averaged pain-tolerance time >37.53 s). The pain-sensitive group reported poorer sleep quality with mean (SD) PSQI of 5.78 (2.80) compared with the pain-tolerant group with mean (SD) PSQI of 4.31 (2.18) (p = 0.005). With analysis of covariance, pain-sensitive group was found to have higher global PSQI scores (adjusted mean 5.76, 95% CI 5.29; 6.22) than pain-tolerant participants (adjusted mean 4.42, 95% CI 3.52; 5.32) (p = 0.010). Conclusions. Majority of opioid-dependent male patients on methadone treatment are pain-sensitive with CPT. Poor sleep quality is associated with cold pressor pain-sensitivity. Pain and sleep complaints in this male population should not be overlooked. PMID:25870765

  12. Influence of simulated snow cover on the cold tolerance and freezing injury of yellow-cedar seedlings

    Treesearch

    Paul G. Schaberg; Paul E. Hennon; David V. D' amore; Gary J.  Hawley

    2008-01-01

    It has been hypothesized that yellow-cedar [Chamaecyparis nootkatensis (D. Don) Spach] decline may result from root freezing injury following climate change-induced reductions in protective snow cover. To test this hypothesis, we measured the freezing tolerance and injury expression of yellow-cedar seedlings in three treatments that differed in the...

  13. Cold in the common garden: comparative low-temperature tolerance of boreal and temperate conifer foliage

    Treesearch

    G. Richard Strimbeck; Trygve D. Kjellsen; Paul G. Schaberg; Paula F. Murakami

    2007-01-01

    Because they maintain green foliage throughout the winter season, evergreen conifers may face special physiological challenges in a warming world. We assessed the midwinter low-temperature (LT) tolerance of foliage from eight temperate and boreal species in each of the genera Abies, Picea, and Pinus growing in an arboretum in...

  14. Cold tolerance of the Australian spur-throated locust, Austracris guttulosa.

    PubMed

    Woodman, James D

    2012-03-01

    The cold tolerance of overwintering adult Spur-throated locusts, Austracris guttulosa, was examined using measures of supercooling point relative to gender, environmental acclimation and feeding state as well as mortality for a range of sub-zero temperature exposure treatments. Freezing was lethal and supercooling points ranged from -6 to -12.8°C, but were statistically independent of fresh mass, body water content, acclimation, and/or gut content in fed and starved individuals. A significant interaction effect of gender and feeding status showed that the larger bodied females had decreased supercooling capacity with increased food material in the digestive tract. Post-freezing dissections revealed differences in the amount of freshly consumed and retained food material in the digestive tract between fed and starved individuals of each gender, which could explain this effect based on inoculation of ice crystallisation by food particles. Above supercooling temperatures, neither gender nor the rate of cooling had a significant effect on mortality. When cooled from 25°C at 0.1 or 0.5°Cmin(-1) to a range of experimental minimum temperatures held for 3h, survival was ~74% to -7°C, but declined sharply to ~37% when cooled to -8°C or lower. Although the laboratory experiments reported here suggest that A. guttulosa is not freeze tolerant and unable to rapidly cold harden, exposure to typical cold and frosty nights that very rarely reach below -8°C as a night minimum in the field would be unlikely to cause mortality in the vast majority of overwintering aggregations. Crown Copyright © 2012. Published by Elsevier Ltd. All rights reserved.

  15. SGD1, a key enzyme in tocopherol biosynthesis, is essential for plant development and cold tolerance in rice.

    PubMed

    Wang, Di; Wang, Yunlong; Long, Wuhua; Niu, Mei; Zhao, Zhigang; Teng, Xuan; Zhu, Xiaopin; Zhu, Jianping; Hao, Yuanyuan; Wang, Yongfei; Liu, Yi; Jiang, Ling; Wang, Yihua; Wan, Jianmin

    2017-07-01

    Tocopherols, a group of Vitamin E compounds, are essential components of the human diet. In contrast to well documented roles in animals, the functions of tocopherols in plants are less understood. In this study, we characterized two allelic rice dwarf mutant lines designated sgd1-1 and sgd1-2 (small grain and dwarf1). Histological observations showed that the dwarf phenotypes were mainly due to cell elongation defects. A map-based cloning strategy and subsequent complementation test showed that SGD1 encodes homogentisate phytyltransferase (HPT), a key enzyme in tocopherol biosynthesis. Mutation of SGD1 resulted in tocopherol deficiency in both sgd1mutants. No oxidant damage was detected in the sgd1 mutants. Further analysis showed that sgd1-2 was hypersensitive to cold stress. Our results indicate that SGD1 is essential for plant development and cold tolerance in rice. Copyright © 2017 Elsevier B.V. All rights reserved.

  16. The Effects of Interactive and Passive Distraction on Cold Pressor Pain in Preschool-aged Children

    PubMed Central

    Dahlquist, Lynnda M.; Wohlheiter, Karen

    2011-01-01

    Objective Using a mixed model design, this study examined the effects of interactive versus passive distraction on healthy preschool-aged children’s cold pressor pain tolerance. Methods Sixty-one children aged 3–5 years were randomly assigned to one of the following: interactive distraction, passive distraction, or no distraction control. Participants underwent a baseline cold pressor trial followed by interactive distraction trial, passive distraction trial, or second baseline trial. One or two additional trials followed. Children originally assigned to distraction received the alternate distraction intervention. Controls participated in both interactive and passive distraction trials in counterbalanced order. Results Participants showed significantly higher pain tolerance during both interactive and passive distraction relative to baseline. The two distraction conditions did not differ. Conclusions Interactive and passive video game distraction appear to be effective for preschool-aged children during laboratory pain exposure. Future studies should examine whether more extensive training would enhance effects of interactive video game distraction. PMID:21278378

  17. Can quinoa, a salt-tolerant Andean crop species, be used for phytoremediation of chromium-polluted soil?

    NASA Astrophysics Data System (ADS)

    Ruiz, Karina B.; Cicatelli, Angela; Guarino, Francesco; Jacobsen, Sven-Erik; Biondi, Stefania; Castiglione, Stefano

    2017-04-01

    Quinoa (Chenopodium quinoa Willd), an ancient Andean halophytic seed crop, exhibits exceptional resistance to salinity, drought, and cold. Consistent with the notion that such a resilient plant is likely to tolerate toxic levels of heavy metals as well and could, therefore, be employed for the clean-up of polluted soil (via phytoextraction or phytostabilization), the species' ability to take up, translocate, and tolerate chromium (CrIII) was investigated in a greenhouse pot experiment. A cultivar adapted to European conditions (cv. Titicaca) was grown on soil spiked with 500 mg kg-1 DW of Cr(NO3)3•9H2O, combined (or not) with 150 mM NaCl, or on soil grown with 150 mM NaCl alone. Plants were grown up to maturity (four months after sowing), and then plant biomass and concentrations of Na, Cr, and other elements (e.g., Fe and P) were evaluated in the plant organs. Soil Cr content (total and available fractions) was analysed at the start of the experiment, one week after the last addition of Cr and/or NaCl, and at the end of the trial. No visible toxic effects were observed under the different culture conditions. Results revealed that Cr was mainly accumulated in roots, while Na+ was translocated to the aerial parts. In order to compare plant stress responses under the different treatments (Cr, NaCl, Cr+NaCl), expression levels of several stress-related genes, together with those of a potential Cr transporter, were determined by quantitative real-time RT-PCR.

  18. [Efficacy of nebulizer therapy with acetylcystein in outpatients with chronic obstructive lung disease].

    PubMed

    Stepanishcheva, L A; Ignatova, G L; Blinova, E V

    2005-01-01

    Chronic obstructive lung disease (COLD) is a widespread illness with constantly growing mortality. Mucolytic therapy plays a significant role in treatment of patients with COLD. The paper contains the results of nebulization with acetyl-cystein as part of rehabilitation program in outpatients with stable clinical course of I-II stage of COLD. The results demonstrated significant clinical improvement, as well as positive changes in external respiration parameters (1 sforced expiratory volume), increase of physical activity tolerance, and disappearance of acute inflammation phase reactants in saliva.

  19. Ion and water balance in Gryllus crickets during the first twelve hours of cold exposure.

    PubMed

    Des Marteaux, Lauren E; Sinclair, Brent J

    2016-06-01

    Insects lose ion and water balance during chilling, but the mechanisms underlying this phenomenon are based on patterns of ion and water balance observed in the later stages of cold exposure (12 or more hours). Here we quantified the distribution of ions and water in the hemolymph, muscle, and gut in adult Gryllus field crickets during the first 12h of cold exposure to test mechanistic hypotheses about why homeostasis is lost in the cold, and how chill-tolerant insects might maintain homeostasis to lower temperatures. Unlike in later chill coma, hemolymph [Na(+)] and Na(+) content in the first few hours of chilling actually increased. Patterns of Na(+) balance suggest that Na(+) migrates from the tissues to the gut lumen via the hemolymph. Imbalance of [K(+)] progressed gradually over 12h and could not explain chill coma onset (a finding consistent with recent studies), nor did it predict survival or injury following 48h of chilling. Gryllus veletis avoided shifts in muscle and hemolymph ion content better than Gryllus pennsylvanicus (which is less chill-tolerant), however neither species defended water, [Na(+)], or [K(+)] balance during the first 12h of chilling. Gryllus veletis better maintained balance of Na(+) content and may therefore have greater tissue resistance to ion leak during cold exposure, which could partially explain faster chill coma recovery for that species. Copyright © 2016 Elsevier Ltd. All rights reserved.

  20. Production of hybrids, amphiploids and backcross progenies between a cold-tolerant wild species, Erucastrum abyssinicum and crop brassicas.

    PubMed

    Rao, G U; Lakshmikumaran, M; Shivanna, K R

    1996-05-01

    Three intergeneric hybrids were produced between a cold-tolerant wild species, Erucastrum abyssinicum and three cultivated species of Brassica, B. juncea, B. carinata and B. oleracea, through ovary culture. The hybrids were characterized by morphology, cytology and DNA analysis. Amphiploidy was induced in all the F1 hybrids through colchicine treatment. Stable amphiploids and backcross progenies were obtained from two of the crosses, E. abyssinicum x B. juncea and E. abyssinicum x B. carinata. The amphiploid, E. abyssinicum x B. juncea was successfully used as a bridge species to produce hybrids with B. napus, B. campestris and B. nigra. These hybrids and backcross progenies provide useful genetic variability for the improvement of crop brassicas.

  1. Effects of ethylene on photosystem II and antioxidant enzyme activity in Bermuda grass under low temperature.

    PubMed

    Hu, Zhengrong; Fan, Jibiao; Chen, Ke; Amombo, Erick; Chen, Liang; Fu, Jinmin

    2016-04-01

    The phytohormone ethylene has been reported to mediate plant response to cold stress. However, it is still debated whether the effect of ethylene on plant response to cold stress is negative or positive. The objective of the present study was to explore the role of ethylene in the cold resistance of Bermuda grass (Cynodon dactylon (L).Pers.). Under control (warm) condition, there was no obvious effect of the ethylene precursor 1-aminocyclopropane-1-carboxylic acid (ACC) or the antagonist Ag(+) of ethylene signaling on electrolyte leakage (EL) and malondialdehyde (MDA) content. Under cold stress conditions, ACC-treated plant leaves had a greater level of EL and MDA than the untreated leaves. However, the EL and MDA values were lower in the Ag(+) regime versus the untreated. In addition, after 3 days of cold treatment, ACC remarkably reduced the content of soluble protein and also altered antioxidant enzyme activity. Under control (warm) condition, there was no significant effect of ACC on the performance of photosystem II (PS II) as monitored by chlorophyll α fluorescence transients. However, under cold stress, ACC inhibited the performance of PS II. Under cold condition, ACC remarkably reduced the performance index for energy conservation from excitation to the reduction of intersystem electron acceptors (PI(ABS)), the maximum quantum yield of primary photochemistry (φP0), the quantum yield of electron transport flux from Q(A) to Q(B) (φE0), and the efficiency/probability of electron transport (ΨE0). Simultaneously, ACC increased the values of specific energy fluxes for absorption (ABS/RC) and dissipation (DI0/RC) after 3 days of cold treatment. Additionally, under cold condition, exogenous ACC altered the expressions of several related genes implicated in the induction of cold tolerance (LEA, SOD, POD-1 and CBF1, EIN3-1, and EIN3-2). The present study thus suggests that ethylene affects the cold tolerance of Bermuda grass by impacting the antioxidant system, photosystem II, as well as the CBF transcriptional regulatory cascade.

  2. 40 CFR 180.481 - Prosulfuron; tolerances for residues.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ..., group 16, except rice, fodder 0.01 Grain, cereal, forage, fodder, and straw, group 16, except rice, forage 0.10 Grain, cereal, forage, fodder, and straw, group 16, except rice, hay 0.20 Grain, cereal, forage, fodder, and straw, group 16, except rice, straw 0.02 Grain, cereal, group 15, except rice 0.01 (b...

  3. 40 CFR 180.481 - Prosulfuron; tolerances for residues.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ..., group 16, except rice, fodder 0.01 Grain, cereal, forage, fodder, and straw, group 16, except rice, forage 0.10 Grain, cereal, forage, fodder, and straw, group 16, except rice, hay 0.20 Grain, cereal, forage, fodder, and straw, group 16, except rice, straw 0.02 Grain, cereal, group 15, except rice 0.01 (b...

  4. Comparing the Robustness of High-Frequency Traveling-Wave Tube Slow-Wave Circuits

    NASA Technical Reports Server (NTRS)

    Chevalier, Christine T.; Wilson, Jeffrey D.; Kory, Carol L.

    2007-01-01

    A three-dimensional electromagnetic field simulation software package was used to compute the cold-test parameters, phase velocity, on-axis interaction impedance, and attenuation, for several high-frequency traveling-wave tube slow-wave circuit geometries. This research effort determined the effects of variations in circuit dimensions on cold-test performance. The parameter variations were based on the tolerances of conventional micromachining techniques.

  5. Identification of quantitative trait loci (QTL) controlling cold tolerance in chickpea recombinant RIL population (CRIL2) from Cicer arietinum L. x Cicer reticulatum

    USDA-ARS?s Scientific Manuscript database

    Published yields for chickpea (Cicer arietinum L.) are higher when the crop is planted in the fall rather than in the spring seasons (Singh et al 1989, Singh et al 1997). Because of its lack of cold hardiness alleles to survive freezing temperatures, chickpea is planted in the spring in temperate re...

  6. Cold tolerance of mountain pine beetle among novel eastern pines: A potential for trade-offs in an invaded range?

    Treesearch

    Derek W. Rosenberger; Brian H. Aukema; Robert C. Venette

    2017-01-01

    Novel hosts may have unforeseen impacts on herbivore life history traits. The mountain pine beetle (Dendroctonus ponderosae Hopkins) is a tree-killing bark beetle native to western North America but constrained by cold temperatures in the northern limits of its distribution. In recent years, this insect has spread north and east of its historical...

  7. Midwinter dehardening of montane red spruce during a natural thaw

    Treesearch

    G.R. Strimbeck; P.G. Schaberg; D.H. DeHayes; J.B. Shane; G.J. Hawley

    1995-01-01

    We documented 3 to 14°C of dehardening in current-year foliage of 10 mature, montane red spruce (Picea rubens Sarg.) trees during a natural thaw from 12 to 21 January 1995. Mean cold tolerance was about -47°C before the onset of thaw conditions, and individuals ranged from -38 to -52°C. After 3 days of thaw, mean cold...

  8. Responses of Picea mariana to elevated CO2 concentration during growth, cold hardening and dehardening: phenology, cold tolerance, photosynthesis and growth.

    PubMed

    Bigras, F J; Bertrand, A

    2006-07-01

    Seedlings from a northern and a southern provenance of black spruce (Picea mariana Mill. BSP) from eastern Canada were exposed to 37 or 71 Pa of carbon dioxide (CO2) during growth, cold hardening and dehardening in a greenhouse. Bud phenology, cold tolerance and photosynthetic efficiency were assessed during the growing and over-wintering periods. Bud set occurred earlier in elevated [CO2] than in ambient [CO2], but it was later in the southern provenance than in the northern provenance. An increase in seedling cold tolerance in early fall was related to early bud set in elevated [CO2]. Maximal photosystem II (PSII) photochemical efficiency (F(v)/F(m)), effective quantum yield (phi(PSII)), photochemical quenching (q(P)), light-saturated photosynthesis (Amax), apparent quantum efficiency (alpha'), light-saturated rate of carboxylation (Vcmax) and electron transport (Jmax) decreased during hardening and recovered during dehardening. Although Amax and alpha' were higher in elevated [CO2] when measured at the growth [CO2], down-regulation of photosynthesis occurred in elevated [CO2] as shown by lower F(v)/F(m), phi(PSII), Vcmax and Jmax. Elevated [CO2] reduced gene expression of the small subunit of Rubisco and also decreased chlorophyll a/chlorophyll b ratio and nitrogen concentration in needles, confirming our observation of down-regulation of photosynthesis. Elevated [CO2] increased the CO2 diffusion gradient and decreased photorespiration, which may have contributed to enhance Amax despite down-regulation of photosynthesis. Total seedling dry mass was higher in elevated [CO2] than in ambient [CO2] at the end of the growing season. However, because of earlier bud formation and cold hardening, and down-regulation of photosynthesis during fall and winter in elevated [CO2], the treatment difference in dry mass increment was less by the end of the winter than during the growing season. Differences in photosynthetic rate observed during fall, winter and spring account for the inter-annual variations in carbon assimilation of black spruce seedlings: our results demonstrate that these variations need to be considered in carbon budget studies.

  9. Nuclear and chloroplast diversity and phenotypic distribution of rice (Oryza sativa L.) germplasm from the democratic people’s republic of Korea (DPRK; North Korea)

    PubMed Central

    2014-01-01

    Background Rice accounts for 43% of staple food production in the Democratic People’s Republic of Korea (DPRK). The most widely planted rice varieties were developed from a limited number of ancestral lines that were repeatedly used as parents in breeding programs. However, detailed pedigrees are not publicly available and little is known about the genetic, phenotypic, and geographical variation of DPRK varieties. Results We evaluated 80 O. sativa accessions from the DPRK, consisting of 67 improved varieties and 13 landraces. Based on nuclear SSR analysis, we divide the varieties into two genetic groups: Group 1 corresponds to the temperate japonica subpopulation and represents 78.75% of the accessions, while Group 2 shares recent ancestry with indica varieties. Interestingly, members of Group 1 are less diverse than Group 2 at the nuclear level, but are more diverse at the chloroplast level. All Group 2 varieties share a single Japonica maternal-haplotype, while Group 1 varieties trace maternal ancestry to both Japonica and Indica. Phenotypically, members of Group 1 have shorter grains than Group 2, and varieties from breeding programs have thicker and wider grains than landraces. Improved varieties in Group 1 also show similar and/or better levels of cold tolerance for most traits, except for spikelet number per panicle. Finally, geographic analysis demonstrates that the majority of genetic variation is located within regions that have the most intensive rice cultivation, including the Western territories near the capital city Pyungyang. This is consistent with the conscious and highly centralized role of human selection in determining local dispersion patterns of rice in the DPRK. Conclusions Diversity studies of DPRK rice germplasm revealed two genetic groups. The most widely planted group has a narrow genetic base and would benefit from the introduction of new genetic variation from cold tolerant landraces, wild accessions, and/or cultivated gene pools to enhance yield potential and performance. PMID:25006358

  10. Registration of four post-flowering drought tolerant grain sorghum lines with early season cold tolerance

    USDA-ARS?s Scientific Manuscript database

    Four sorghum (Sorghum bicolor L.) germplasm lines— PSLS-SGCTB01 (Reg. No.), PSLS-SGCTR02 (Reg. No.), PSLS-SGCTB03 (Reg. No.) and PSLS-SGCTB04 (Reg. No.) — were developed by the USDA-ARS in Lubbock TX, in 2017. The primary purpose for the release of these lines is to provide an alternative germplasm ...

  11. Laughter, Humor and Pain Perception in Children: A Pilot Study

    PubMed Central

    Hilber, Sherry Dunay; Mintzer, Lisa Libman; Castaneda, Marleen; Glover, Dorie; Zeltzer, Lonnie

    2009-01-01

    Although there are many clinical programs designed to bring humor into pediatric hospitals, there has been very little research with children or adolescents concerning the specific utility of humor for children undergoing stressful or painful procedures. Rx Laughter™, a non-profit organization interested in the use of humor for healing, collaborated with UCLA to collect preliminary data on a sample of 18 children aged 7–16 years. Participants watched humorous video-tapes before, during and after a standardized pain task that involved placing a hand in cold water. Pain appraisal (ratings of pain severity) and pain tolerance (submersion time) were recorded and examined in relation to humor indicators (number of laughs/smiles during each video and child ratings of how funny the video was). Whereas humor indicators were not significantly associated with pain appraisal or tolerance, the group demonstrated significantly greater pain tolerance while viewing funny videos than when viewing the videos immediately before or after the cold-water task. The results suggest that humorous distraction is useful to help children and adolescents tolerate painful procedures. Further study is indicated to explore the specific mechanism of this benefit. PMID:18955244

  12. Prediction of pain in orthodontic patients based on preoperative pain assessment

    PubMed Central

    Zheng, Baoyu; Ren, Manman; Lin, Feiou; Yao, Linjie

    2016-01-01

    Aim To investigate whether pretreatment assessment of experimental pain can predict the level of pain after archwire placement. Methods One hundred and twenty-one general university students seeking orthodontic treatment were enrolled in this study. A cold pressor test was performed to estimate the pain tolerance of subjects before treatment. Self-reported pain intensity was calculated using a 10 cm visual analog scale during the 7 days after treatment. The relationship between pain tolerance and orthodontic pain was analyzed using Spearman’s correlation analysis. Results The maximum mean level of pain intensity occurred at 24 hours after bonding (53.31±16.13) and fell to normal levels at day 7. Spearman’s correlation analysis found a moderate positive association between preoperative pain tolerance and self-reported pain after archwire placement (P<0.01). There was no significant difference in pain intensity between male and female patients at any time point (P>0.05). Conclusion A simple and noninvasive preoperative sensory test (the cold pressor test) was useful in predicting the risk of developing unbearable pain in patients after archwire placement. Self-reported pain after archwire placement decreased as individual pain tolerance increased. PMID:27042019

  13. Climate variability and the energetic pathways of evolution: the origin of endothermy in mammals and birds.

    PubMed

    Portner, Hans O

    2004-01-01

    Large-scale climate oscillations in earth's history have influenced the directions of evolution, last but not least, through mass extinction events. This analysis tries to identify some unifying forces behind the course of evolution that favored an increase in organismic complexity and performance, paralleled by an increase in energy turnover, and finally led to endothermy. The analysis builds on the recent concept of oxygen-limited thermal tolerance and on the hypothesis that unifying principles exist in the temperature-dependent biochemical design of the eukaryotic cell in animals. The comparison of extant water-breathing and air-breathing animal species from various climates provides a cause-and-effect understanding of the trade-offs and constraints in thermal adaptation and their energetic consequences. It is hypothesized that the high costs of functional adaptation to fluctuating temperatures, especially in the cold (cold eurythermy), cause an increase in energy turnover and, at the same time, mobility and agility. These costs are associated with elevated mitochondrial capacities at minimized levels of activation enthalpies for proton leakage. Cold eurythermy is seen as a precondition for the survival of evolutionary crises elicited by repeated cooling events during extreme climate fluctuations. The costs of cold eurythermy appear as the single most important reason why metazoan evolution led to life forms with high energy turnover. They also explain why dinosaurs were able to live in subpolar climates. Finally, they give insight into the pathways, benefits, and trade-offs involved in the evolution of constant, elevated body temperature maintained by endothermy. Eurythermy, which encompasses cold tolerance, is thus hypothesized to be the "missing link" between ectothermy and endothermy. Body temperatures between 32 degrees and 42 degrees C in mammals and birds then result from trade-offs between the limiting capacities of ventilation and circulation and the evolutionary trend to maximize performance at the warm end of the thermal tolerance window.

  14. Individual Shrink Wrapping of Zucchini Fruit Improves Postharvest Chilling Tolerance Associated with a Reduction in Ethylene Production and Oxidative Stress Metabolites.

    PubMed

    Megías, Zoraida; Martínez, Cecilia; Manzano, Susana; García, Alicia; Rebolloso-Fuentes, María Del Mar; Garrido, Dolores; Valenzuela, Juan Luis; Jamilena, Manuel

    2015-01-01

    We have studied the effect of individual shrink wrapping (ISW) on the postharvest performance of refrigerated fruit from two zucchini cultivars that differ in their sensitivity to cold storage: Sinatra (more sensitive) and Natura (more tolerant). The fruit was individually shrink wrapped before storing at 4°C for 0, 7 and 14 days. Quality parameters, ethylene and CO2 productions, ethylene gene expression, and oxidative stress metabolites were assessed in shrink wrapped and non-wrapped fruit after conditioning the fruit for 6 hours at 20°C. ISW decreased significantly the postharvest deterioration of chilled zucchini in both cultivars. Weight loss was reduced to less than 1%, pitting symptoms were completely absent in ISW fruit at 7 days, and were less than 25% those of control fruits at 14 days of cold storage, and firmness loss was significantly reduced in the cultivar Sinatra. These enhancements in quality of ISW fruit were associated with a significant reduction in cold-induced ethylene production, in the respiration rate, and in the level of oxidative stress metabolites such as hydrogen peroxide and malonyldialdehyde (MDA). A detailed expression analysis of ethylene biosynthesis, perception and signaling genes demonstrated a downregulation of CpACS1 and CpACO1 genes in response to ISW, two genes that are upregulated by cold storage. However, the expression patterns of six other ethylene biosynthesis genes (CpACS2 to CpACS7) and five ethylene signal transduction pathway genes (CpCTR1, CpETR1, CpERS1, CpEIN3.1 and CpEN3.2), suggest that they do not play a major role in response to cold storage and ISW packaging. In conclusion, ISW zucchini packaging resulted in improved tolerance to chilling concomitantly with a reduction in oxidative stress, respiration rate and ethylene production, as well as in the expression of ethylene biosynthesis genes, but not of those involved in ethylene perception and sensitivity.

  15. Individual Shrink Wrapping of Zucchini Fruit Improves Postharvest Chilling Tolerance Associated with a Reduction in Ethylene Production and Oxidative Stress Metabolites

    PubMed Central

    Megías, Zoraida; Martínez, Cecilia; Manzano, Susana; García, Alicia; Rebolloso-Fuentes, María del Mar; Garrido, Dolores; Valenzuela, Juan Luis; Jamilena, Manuel

    2015-01-01

    We have studied the effect of individual shrink wrapping (ISW) on the postharvest performance of refrigerated fruit from two zucchini cultivars that differ in their sensitivity to cold storage: Sinatra (more sensitive) and Natura (more tolerant). The fruit was individually shrink wrapped before storing at 4°C for 0, 7 and 14 days. Quality parameters, ethylene and CO2 productions, ethylene gene expression, and oxidative stress metabolites were assessed in shrink wrapped and non-wrapped fruit after conditioning the fruit for 6 hours at 20°C. ISW decreased significantly the postharvest deterioration of chilled zucchini in both cultivars. Weight loss was reduced to less than 1%, pitting symptoms were completely absent in ISW fruit at 7 days, and were less than 25% those of control fruits at 14 days of cold storage, and firmness loss was significantly reduced in the cultivar Sinatra. These enhancements in quality of ISW fruit were associated with a significant reduction in cold-induced ethylene production, in the respiration rate, and in the level of oxidative stress metabolites such as hydrogen peroxide and malonyldialdehyde (MDA). A detailed expression analysis of ethylene biosynthesis, perception and signaling genes demonstrated a downregulation of CpACS1 and CpACO1 genes in response to ISW, two genes that are upregulated by cold storage. However, the expression patterns of six other ethylene biosynthesis genes (CpACS2 to CpACS7) and five ethylene signal transduction pathway genes (CpCTR1, CpETR1, CpERS1, CpEIN3.1 and CpEN3.2), suggest that they do not play a major role in response to cold storage and ISW packaging. In conclusion, ISW zucchini packaging resulted in improved tolerance to chilling concomitantly with a reduction in oxidative stress, respiration rate and ethylene production, as well as in the expression of ethylene biosynthesis genes, but not of those involved in ethylene perception and sensitivity. PMID:26177024

  16. Mechanisms of food processing and storage-related stress tolerance in Clostridium botulinum.

    PubMed

    Dahlsten, Elias; Lindström, Miia; Korkeala, Hannu

    2015-05-01

    Vegetative cultures of Clostridium botulinum produce the extremely potent botulinum neurotoxin, and may jeopardize the safety of foods unless sufficient measures to prevent growth are applied. Minimal food processing relies on combinations of mild treatments, primarily to avoid deterioration of the sensory qualities of the food. Tolerance of C. botulinum to minimal food processing is well characterized. However, data on effects of successive treatments on robustness towards further processing is lacking. Developments in genetic manipulation tools and the availability of annotated genomes have allowed identification of genetic mechanisms involved in stress tolerance of C. botulinum. Most studies focused on low temperature, and the importance of various regulatory mechanisms in cold tolerance of C. botulinum has been demonstrated. Furthermore, novel roles in cold tolerance were shown for metabolic pathways under the control of these regulators. A role for secondary oxidative stress in tolerance to extreme temperatures has been proposed. Additionally, genetic mechanisms related to tolerance to heat, low pH, and high salinity have been characterized. Data on genetic stress-related mechanisms of psychrotrophic Group II C. botulinum strains are scarce; these mechanisms are of interest for food safety research and should thus be investigated. This minireview encompasses the importance of C. botulinum as a food safety hazard and its central physiological characteristics related to food-processing and storage-related stress. Special attention is given to recent findings considering genetic mechanisms C. botulinum utilizes in detecting and countering these adverse conditions. Copyright © 2014 Institut Pasteur. Published by Elsevier Masson SAS. All rights reserved.

  17. 40 CFR 180.587 - Famoxadone; tolerance for residues.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ..., liver 0.05 Spinach 50 Tomato 1.0 Vegetable, cucurbit, group 9 0.30 Vegetable, fruiting, group 8, except tomato 4.0 Vegetable, leafy, except Brassica, group 4, except spinach 25 1 There are no U.S...

  18. Overexpression of OsCYP19-4 increases tolerance to cold stress and enhances grain yield in rice (Oryza sativa).

    PubMed

    Yoon, Dae Hwa; Lee, Sang Sook; Park, Hyun Ji; Lyu, Jae Il; Chong, Won Seog; Liu, Jang Ryol; Kim, Beom-Gi; Ahn, Jun Cheul; Cho, Hye Sun

    2016-01-01

    AtCYP19-4 (also known as CYP5) was previously identified as interacting in vitro with GNOM, a member of a large family of ARF guanine nucleotide exchange factors that is required for proper polar localization of the auxin efflux carrier PIN1. The present study demonstrated that OsCYP19-4, a gene encoding a putative homologue of AtCYP19-4, was up-regulated by several stresses and showed over 10-fold up-regulation in response to cold. The study further demonstrated that the promoter of OsCYP19-4 was activated in response to cold stress. An OsCYP19-4-GFP fusion protein was targeted to the outside of the plasma membrane via the endoplasmic reticulum as determined using brefeldin A, a vesicle trafficking inhibitor. An in vitro assay with a synthetic substrate oligomer confirmed that OsCYP19-4 had peptidyl-prolyl cis-trans isomerase activity, as was previously reported for AtCYP19-4. Rice plants overexpressing OsCYP19-4 showed cold-resistance phenotypes with significantly increased tiller and spike numbers, and consequently enhanced grain weight, compared with wild-type plants. Based on these results, the authors suggest that OsCYP19-4 is required for developmental acclimation to environmental stresses, especially cold. Furthermore, the results point to the potential of manipulating OsCYP19-4 expression to enhance cold tolerance or to increase biomass. © The Author 2015. Published by Oxford University Press on behalf of the Society for Experimental Biology.

  19. The evolution of high summit metabolism and cold tolerance in birds and its impact on present-day distributions.

    PubMed

    Swanson, David L; Garland, Theodore

    2009-01-01

    Summit metabolic rate (M(sum), maximum cold-induced metabolic rate) is positively correlated with cold tolerance in birds, suggesting that high M(sum) is important for residency in cold climates. However, the phylogenetic distribution of high M(sum) among birds and the impact of its evolution on current distributions are not well understood. Two potential adaptive hypotheses might explain the phylogenetic distribution of high M(sum) among birds. The cold adaptation hypothesis contends that species wintering in cold climates should have higher M(sum) than species wintering in warmer climates. The flight adaptation hypothesis suggests that volant birds might be capable of generating high M(sum) as a byproduct of their muscular capacity for flight; thus, variation in M(sum) should be associated with capacity for sustained flight, one indicator of which is migration. We collected M(sum) data from the literature for 44 bird species and conducted both conventional and phylogenetically informed statistical analyses to examine the predictors of M(sum) variation. Significant phylogenetic signal was present for log body mass, log mass-adjusted M(sum), and average temperature in the winter range. In multiple regression models, log body mass, winter temperature, and clade were significant predictors of log M(sum). These results are consistent with a role for climate in determining M(sum) in birds, but also indicate that phylogenetic signal remains even after accounting for associations indicative of adaptation to winter temperature. Migratory strategy was never a significant predictor of log M(sum) in multiple regressions, a result that is not consistent with the flight adaptation hypothesis.

  20. 40 CFR 180.628 - Chlorantraniliprole; tolerances for residues.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... Vegetable, cucurbit, group 9 0.25 Vegetable, foliage of legume, except soybean, subgroup 7A, forage 30 Vegetable, foliage of legume, except soybean, subgroup 7A, hay 90 Vegetable, fruiting, group 8 0.70 Vegetable, leafy, except brassica, group 4 13 Vegetable, legume, group 6, except soybeans 2.0 Vegetable...

  1. 40 CFR 180.628 - Chlorantraniliprole; tolerances for residues.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... Vegetable, cucurbit, group 9 0.25 Vegetable, foliage of legume, except soybean, subgroup 7A, forage 30 Vegetable, foliage of legume, except soybean, subgroup 7A, hay 90 Vegetable, fruiting, group 8 0.70 Vegetable, leafy, except brassica, group 4 13 Vegetable, legume, group 6, except soybeans 2.0 Vegetable...

  2. Changes in chemical components in the freshwater apple snail, Pomacea canaliculata (Gastropoda: Ampullariidae), in relation to the development of its cold hardiness.

    PubMed

    Matsukura, Keiichiro; Tsumuki, Hisaaki; Izumi, Yohei; Wada, Takashi

    2008-04-01

    The apple snail, Pomacea canaliculata, is an invasive freshwater snail. It increases its cold hardiness before winter. However, the physiological mechanism of cold hardiness in molluscs is poorly understood, especially in freshwater molluscs. In this study, we examined the changes in low molecular weight compounds, glycogen and lipids, in the body of P. canaliculata in association with the development of cold hardiness. When snails without cold hardiness were experimentally cold-acclimated, the amount of glycerol, glutamine, and carnosine increased, while glycogen and phenylalanine decreased. Overwintering cold-tolerant snails collected from a drained paddy field in November also showed increased glycerol in their bodies with decreasing glycogen concentration, compared to summer snails collected from a submerged field. Water content also decreased during the cold acclimation, although the water loss was minimal. These results indicate that the freshwater snail, P. canaliculata enhances cold hardiness by accumulation of some kinds of low molecular weight compounds in its body as some insects do. However, the actual function of each low molecular compound is still unknown.

  3. Changes in ABA and gene expression in cold-acclimated sugar maple.

    PubMed

    Bertrand, A; Robitaille, G; Castonguay, Y; Nadeau, P; Boutin, R

    1997-01-01

    To determine if cold acclimation of sugar maple (Acer saccharum Marsh.) is associated with specific changes in gene expression under natural hardening conditions, we compared bud and root translatable mRNAs of potted maple seedlings after cold acclimation under natural conditions and following spring dehardening. Cold-hardened roots and buds were sampled in January when tissues reached their maximum hardiness. Freezing tolerance, expressed as the lethal temperature for 50% of the tissues (LT(50)), was estimated at -17 degrees C for roots, and at lower than -36 degrees C for buds. Approximately ten transcripts were specifically synthesized in cold-acclimated buds, or were more abundant in cold-acclimated buds than in unhardened buds. Cold hardening was also associated with changes in translation. At least five translation products were more abundant in cold-acclimated buds and roots compared with unhardened tissues. Abscisic acid (ABA) concentration increased approximately tenfold in the xylem sap following winter acclimation, and the maximum concentration was reached just before maximal acclimation. We discuss the potential involvement of ABA in the observed modification of gene expression during cold hardening.

  4. SlCOR413IM1: A novel cold-regulation gene from tomato, enhances drought stress tolerance in tobacco.

    PubMed

    Ma, Xiaocui; Wang, Guodong; Zhao, Weiyang; Yang, Minmin; Ma, Nana; Kong, Fanying; Dong, Xinchun; Meng, Qingwei

    2017-09-01

    Drought stress adversely affects plant growth, development, and productivity. Genes functioning in plant response to drought stress are essential for drought tolerance. In this study, SlCOR413IM1, a cold-regulated gene isolated from Solanum lycopersium, was transferred to Nicotiana tabacum to investigate its function under drought stress. The subcellular localisation of SlCOR413IM1-GFP fusion protein in Arabidopsis protoplasts suggested that SlCOR413IM1 is a chloroplast protein. Expression analyses revealed that SlCOR413IM1 responded to drought and cold stresses. Under drought stress, transgenic plants maintained the high maximum photochemical efficiency, net photosynthetic rate (Pn) and D1 protein content of photosystem II (PSII). Compared with wild-type (WT) plants, transgenic plants showed higher superoxide dismutase (SOD) and ascorbate peroxidase (APX) activities and proline and soluble sugar content, which reduced reactive oxygen species (ROS) generation. However, the high SOD and APX activities in transgenic plants were independent of their transcription levels. Moreover, the transgenic plants exhibited better seed germination, water status and survival, as well as lower malondialdehyde (MDA) content and relative electrical conductivity (REC) than WT plants under drought stress. Taken together, these data demonstrated that overexpression of SlCOR413IM1 enhanced drought stress tolerance in transgenic tobacco. Copyright © 2017. Published by Elsevier GmbH.

  5. Characterization of two novel cold-inducible K3 dehydrin genes from alfalfa (Medicago sativa spp. sativa L.).

    PubMed

    Dubé, Marie-Pier; Castonguay, Yves; Cloutier, Jean; Michaud, Josée; Bertrand, Annick

    2013-03-01

    Dehydrin defines a complex family of intrinsically disordered proteins with potential adaptive value with regard to freeze-induced cell dehydration. Search within an expressed sequence tags library from cDNAs of cold-acclimated crowns of alfalfa (Medicago sativa spp. sativa L.) identified transcripts putatively encoding K(3)-type dehydrins. Analysis of full-length coding sequences unveiled two highly homologous sequence variants, K(3)-A and K(3)-B. An increase in the frequency of genotypes yielding positive genomic amplification of the K(3)-dehydrin variants in response to selection for superior tolerance to freezing and the induction of their expression at low temperature strongly support a link with cold adaptation. The presence of multiple allelic forms within single genotypes and independent segregation indicate that the two K(3) dehydrin variants are encoded by distinct genes located at unlinked loci. The co-inheritance of the K(3)-A dehydrin with a Y(2)K(4) dehydrin restriction fragment length polymorphism with a demonstrated impact on freezing tolerance suggests the presence of a genome domain where these functionally related genes are located. These results provide additional evidence that dehydrin play important roles with regard to tolerance to subfreezing temperatures. They also underscore the value of recurrent selection to help identify variants within a large multigene family in allopolyploid species like alfalfa.

  6. The Vitis vinifera C-repeat binding protein 4 (VvCBF4) transcriptional factor enhances freezing tolerance in wine grape

    PubMed Central

    Tillett, Richard L.; Wheatley, Matthew D.; Tattersall, Elizabeth A.R.; Schlauch, Karen A.; Cramer, Grant R.; Cushman, John C.

    2014-01-01

    Summary Chilling and freezing can reduce significantly vine survival and fruit set in Vitis vinifera wine grape. To overcome such production losses, a recently identified grapevine C-repeat binding factor (CBF) gene, VvCBF4, was overexpressed in grape vine cv. “Freedom” and found to improve freezing survival and reduced freezing-induced electrolyte leakage by up to 2°C in non-cold-acclimated vines. In addition, overexpression of this transgene caused a reduced growth phenotype similar to that observed for CBF overexpression in Arabidopsis and other species. Both freezing tolerance and reduced growth phenotypes were manifested in a transgene dose-dependent manner. To understand the mechanistic basis of VvCBF4 transgene action, one transgenic line (9–12) was genotyped using microarray-based mRNA expression profiling. Forty-seven and 12 genes were identified in unstressed transgenic shoots with either a greater than 1.5-fold increase or decrease in mRNA abundance, respectively. Comparison of mRNA changes with characterized CBF regulons in woody and herbaceous species revealed partial overlaps suggesting that CBF-mediated cold acclimation responses are widely conserved. Putative VvCBF4-regulon targets included genes with functions in cell wall structure, lipid metabolism, epicuticular wax formation, and stress-responses suggesting that the observed cold tolerance and dwarf phenotypes are the result of a complex network of diverse functional determinants. PMID:21914113

  7. Cloning and characterization of a new cold-adapted and thermo-tolerant ι-carrageenase from marine bacterium Flavobacterium sp. YS-80-122.

    PubMed

    Li, Shangyong; Hao, Jianhua; Sun, Mi

    2017-09-01

    ι-Carrageenases play a role in marine ι-carrageenan degradation, and their enzymatic hydrolysates are thought to be excellent antioxidants. In this study, we identified a new ι-carrageenase, encoded by cgiF, in psychrophilic bacterium Flavobacterium sp. YS-80-122. The deduced ι-carrageenase, CgiF, belongs to glycoside hydrolase family 82 and shows less than 40% amino acid identity with characterized ι-carrageenases. The activity of recombinant CgiF peaked at 30°C (1,207.8U/mg). Notably, CgiF is a cold-adapted ι-carrageenase, which showed 36.5% and 57% of the maximum activity at 10°C and 15°C, respectively. In addition, it is a thermo-tolerant enzyme that recovered 58.2% of its initial activity after heat shock. Furthermore, although the activity of CgiF was enhanced by NaCl, the enzyme is active in absence of NaCl. This study also shows that CgiF is an endo-type ι-carrageenase that hydrolyzes β-1,4-linkages of ι-carrageenan, yielding neo-ι-carratetraose as the main product. Its cold-adaptation, thermo-tolerance, NaCl independence and high neo-ι-carratetraose yield make CgiF an excellent candidate for industrial applications in production of ι-carrageen oligosaccharides from seaweed polysaccharides. Copyright © 2017. Published by Elsevier B.V.

  8. Alterations in pain response are partially reversed by methylphenidate (Ritalin) in adults with attention deficit hyperactivity disorder (ADHD).

    PubMed

    Treister, Roi; Eisenberg, Elon; Demeter, Naor; Pud, Dorit

    2015-01-01

    Attention deficit hyperactivity disorder (ADHD) is characterized by dysregulation of sensory processing and neurobiology of dopamine. Although cumulative evidence suggests that dopamine is involved in pain processing, pain perception in ADHD subjects and the effect of dopamine agonists such as methylphenidate (MP, Ritalin) on it have rarely been studied. The aims of this study were to (1) psychophysically assess sensitivity to pain in ADHD subjects as compared to controls and (2) examine the effects of MP on pain response in ADHD subjects. Thirty subjects with ADHD and 30 age- and gender-matched controls participated in a preliminary trial. Pain threshold, intensity, and tolerance in response to cold pain stimulation were measured for both groups (ADHD with no treatment). In addition, the ADHD group was reassessed following a single dose of MP treatment. The ADHD subjects "without MP" in comparison with controls displayed significantly shorter cold pain threshold (2.8 ± 2.1 vs. 5.8 ± 2.5 seconds, respectively, P < 0.001) and cold tolerance (21.8 ± 22.3 vs. 62.8 ± 59.8 seconds, respectively P < 0.001). No differences in pain intensities between the groups were found. Following MP treatment, both cold threshold and tolerance in the ADHD subjects increased significantly compared to those with no treatment (3.6 ± 2.5 seconds, P = 0.011, and 46.4 ± 53.3 seconds, P < 0.001, respectively). These results suggest that adults with ADHD are more sensitive to pain compared with controls and that MP may exert antinociceptive properties in these subjects. Randomized, controlled trials are warranted to verify these findings. © 2013 World Institute of Pain.

  9. De Novo Assembly and Transcriptome Analysis of Bulb Onion (Allium cepa L.) during Cold Acclimation Using Contrasting Genotypes

    PubMed Central

    Natarajan, Sathishkumar; Park, Jong-In; Chung, Mi-Young; Nou, Ill-Sup

    2016-01-01

    Bulb onion (Allium cepa) is the second most widely cultivated and consumed vegetable crop in the world. During winter, cold injury can limit the production of bulb onion. Genomic resources available for bulb onion are still very limited. To date, no studies on heritably durable cold and freezing tolerance have been carried out in bulb onion genotypes. We applied high-throughput sequencing technology to cold (2°C), freezing (-5 and -15°C), and control (25°C)-treated samples of cold tolerant (CT) and cold susceptible (CS) genotypes of A. cepa lines. A total of 452 million paired-end reads were de novo assembled into 54,047 genes with an average length of 1,331 bp. Based on similarity searches, these genes were aligned with entries in the public non-redundant (nr) database, as well as KEGG and COG database. Differentially expressed genes (DEGs) were identified using log10 values with the FPKM method. Among 5,167DEGs, 491 genes were differentially expressed at freezing temperature compared to the control temperature in both CT and CS libraries. The DEG results were validated with qRT-PCR. We performed GO and KEGG pathway enrichment analyses of all DEGs and iPath interactive analysis found 31 pathways including those related to metabolism of carbohydrate, nucleotide, energy, cofactors and vitamins, other amino acids and xenobiotics biodegradation. Furthermore, a large number of molecular markers were identified from the assembled genes, including simple sequence repeats (SSRs) 4,437 and SNP substitutions of transition and transversion types of CT and CS. Our study is the first to provide a transcriptome sequence resource for Allium spp. with regard to cold and freezing stress. We identified a large set of genes and determined their DEG profiles under cold and freezing conditions using two different genotypes. These data represent a valuable resource for genetic and genomic studies of Allium spp. PMID:27627679

  10. De Novo Assembly and Transcriptome Analysis of Bulb Onion (Allium cepa L.) during Cold Acclimation Using Contrasting Genotypes.

    PubMed

    Han, Jeongsukhyeon; Thamilarasan, Senthil Kumar; Natarajan, Sathishkumar; Park, Jong-In; Chung, Mi-Young; Nou, Ill-Sup

    2016-01-01

    Bulb onion (Allium cepa) is the second most widely cultivated and consumed vegetable crop in the world. During winter, cold injury can limit the production of bulb onion. Genomic resources available for bulb onion are still very limited. To date, no studies on heritably durable cold and freezing tolerance have been carried out in bulb onion genotypes. We applied high-throughput sequencing technology to cold (2°C), freezing (-5 and -15°C), and control (25°C)-treated samples of cold tolerant (CT) and cold susceptible (CS) genotypes of A. cepa lines. A total of 452 million paired-end reads were de novo assembled into 54,047 genes with an average length of 1,331 bp. Based on similarity searches, these genes were aligned with entries in the public non-redundant (nr) database, as well as KEGG and COG database. Differentially expressed genes (DEGs) were identified using log10 values with the FPKM method. Among 5,167DEGs, 491 genes were differentially expressed at freezing temperature compared to the control temperature in both CT and CS libraries. The DEG results were validated with qRT-PCR. We performed GO and KEGG pathway enrichment analyses of all DEGs and iPath interactive analysis found 31 pathways including those related to metabolism of carbohydrate, nucleotide, energy, cofactors and vitamins, other amino acids and xenobiotics biodegradation. Furthermore, a large number of molecular markers were identified from the assembled genes, including simple sequence repeats (SSRs) 4,437 and SNP substitutions of transition and transversion types of CT and CS. Our study is the first to provide a transcriptome sequence resource for Allium spp. with regard to cold and freezing stress. We identified a large set of genes and determined their DEG profiles under cold and freezing conditions using two different genotypes. These data represent a valuable resource for genetic and genomic studies of Allium spp.

  11. Insights into the Molecular Events That Regulate Heat-Induced Chilling Tolerance in Citrus Fruits.

    PubMed

    Lafuente, María T; Establés-Ortíz, Beatriz; González-Candelas, Luis

    2017-01-01

    Low non-freezing temperature may cause chilling injury (CI), which is responsible for external quality deterioration in many chilling-sensitive horticultural crops. Exposure of chilling-sensitive citrus cultivars to non-lethal high-temperature conditioning may increase their chilling tolerance. Very little information is available about the molecular events involved in such tolerance. In this work, the molecular events associated with the low temperature tolerance induced by heating Fortune mandarin, which is very sensitive to chilling, for 3 days at 37°C prior to cold storage is presented. A transcriptomic analysis reveals that heat-conditioning has an important impact favoring the repression of genes in cold-stored fruit, and that long-term heat-induced chilling tolerance is an active process that requires activation of transcription factors involved in transcription initiation and of the WRKY family. The analysis also shows that chilling favors degradation processes, which affect lipids and proteins, and that the protective effect of the heat-conditioning treatment is more likely to be related to the repression of the genes involved in lipid degradation than to the modification of fatty acids unsaturation, which affects membrane permeability. Another major factor associated with the beneficial effect of the heat treatment on reducing CI is the regulation of stress-related proteins. Many of the genes that encoded such proteins are involved in secondary metabolism and in oxidative stress-related processes.

  12. Ectopic overexpression of a novel Glycine soja stress-induced plasma membrane intrinsic protein increases sensitivity to salt and dehydration in transgenic Arabidopsis thaliana plants.

    PubMed

    Wang, Xi; Cai, Hua; Li, Yong; Zhu, Yanming; Ji, Wei; Bai, Xi; Zhu, Dan; Sun, Xiaoli

    2015-01-01

    Plasma membrane intrinsic proteins (PIPs) belong to the aquaporin family and facilitate water movement across plasma membranes. Existing data indicate that PIP genes are associated with the abilities of plants to tolerate certain stress conditions. A review of our Glycine soja expressed sequence tag (EST) dataset revealed that abiotic stress stimulated expression of a PIP, herein designated as GsPIP2;1 (GenBank_Accn: FJ825766). To understand the roles of this PIP in stress tolerance, we generated a coding sequence for GsPIP2;1 by in silico elongation and cloned the cDNA by 5'-RACE. Semiquantitative RT-PCR showed that GsPIP2;1 expression was stimulated in G. soja leaves by cold, salt, or dehydration stress, whereas the same stresses suppressed GsPIP2;1 expression in the roots. Transgenic Arabidopsis thaliana plants overexpressing GsPIP2;1 grew normally under unstressed and cold conditions, but exhibited depressed tolerance to salt and dehydration stresses. Moreover, greater changes in water potential were detected in the transgenic A. thaliana shoots, implying that GsPIP2;1 may negatively impact stress tolerance by regulating water potential. These results, deviating from those obtained in previous reports, provide new insights into the relationship between PIPs and abiotic stress tolerance in plants.

  13. Is the OJIP Test a Reliable Indicator of Winter Hardiness and Freezing Tolerance of Common Wheat and Triticale under Variable Winter Environments?

    PubMed Central

    Rapacz, Marcin; Sasal, Monika; Kalaji, Hazem M.; Kościelniak, Janusz

    2015-01-01

    OJIP analysis, which explores changes in photosystem II (PSII) photochemical performance, has been used as a measure of plant susceptibility to stress. However, in the case of freezing tolerance and winter hardiness, which are highly environmentally variable, the use of this method can give ambiguous results depending on the species as well as the sampling year and time. To clarify this issue, we performed chlorophyll fluorescence measurements over three subsequent winters (2010/11, 2011/12 and 2012/13) on 220 accessions of common winter wheat and 139 accessions of winter triticale. After freezing, leaves were collected from cold-acclimated plants in the laboratory and field-grown plants. Observations of field survival in seven locations across Poland and measurements of freezing tolerance of the studied plants were also recorded. Our results confirm that the OJIP test is a reliable indicator of winter hardiness and freezing tolerance of common wheat and triticale under unstable winter environments. Regardless of species, the testing conditions giving the most reliable results were identical, and the reliability of the test could be easily checked by analysis of some relationships between OJIP-test parameters. We also found that triticale is more winter hardy and freezing tolerant than wheat. In addition, the two species were characterized by different patterns of photosynthetic apparatus acclimation to cold. PMID:26230839

  14. Is the OJIP Test a Reliable Indicator of Winter Hardiness and Freezing Tolerance of Common Wheat and Triticale under Variable Winter Environments?

    PubMed

    Rapacz, Marcin; Sasal, Monika; Kalaji, Hazem M; Kościelniak, Janusz

    2015-01-01

    OJIP analysis, which explores changes in photosystem II (PSII) photochemical performance, has been used as a measure of plant susceptibility to stress. However, in the case of freezing tolerance and winter hardiness, which are highly environmentally variable, the use of this method can give ambiguous results depending on the species as well as the sampling year and time. To clarify this issue, we performed chlorophyll fluorescence measurements over three subsequent winters (2010/11, 2011/12 and 2012/13) on 220 accessions of common winter wheat and 139 accessions of winter triticale. After freezing, leaves were collected from cold-acclimated plants in the laboratory and field-grown plants. Observations of field survival in seven locations across Poland and measurements of freezing tolerance of the studied plants were also recorded. Our results confirm that the OJIP test is a reliable indicator of winter hardiness and freezing tolerance of common wheat and triticale under unstable winter environments. Regardless of species, the testing conditions giving the most reliable results were identical, and the reliability of the test could be easily checked by analysis of some relationships between OJIP-test parameters. We also found that triticale is more winter hardy and freezing tolerant than wheat. In addition, the two species were characterized by different patterns of photosynthetic apparatus acclimation to cold.

  15. Cloning and functional characterization of SAD genes in potato.

    PubMed

    Li, Fei; Bian, Chun Song; Xu, Jian Fei; Pang, Wan Fu; Liu, Jie; Duan, Shao Guang; Lei, Zun-Guo; Jiwan, Palta; Jin, Li-Ping

    2015-01-01

    Stearoyl-acyl carrier protein desaturase (SAD), locating in the plastid stroma, is an important fatty acid biosynthetic enzyme in higher plants. SAD catalyzes desaturation of stearoyl-ACP to oleyl-ACP and plays a key role in determining the homeostasis between saturated fatty acids and unsaturated fatty acids, which is an important player in cold acclimation in plants. Here, four new full-length cDNA of SADs (ScoSAD, SaSAD, ScaSAD and StSAD) were cloned from four Solanum species, Solanum commersonii, S. acaule, S. cardiophyllum and S. tuberosum, respectively. The ORF of the four SADs were 1182 bp in length, encoding 393 amino acids. A sequence alignment indicated 13 amino acids varied among the SADs of three wild species. Further analysis showed that the freezing tolerance and cold acclimation capacity of S. commersonii are similar to S. acaule and their SAD amino acid sequences were identical but differed from that of S. cardiophyllum, which is sensitive to freezing. Furthermore, the sequence alignments between StSAD and ScoSAD indicated that only 7 different amino acids at residues were found in SAD of S. tuberosum (Zhongshu8) against the protein sequence of ScoSAD. A phylogenetic analysis showed the three wild potato species had the closest genetic relationship with the SAD of S. lycopersicum and Nicotiana tomentosiformis but not S. tuberosum. The SAD gene from S. commersonii (ScoSAD) was cloned into multiple sites of the pBI121 plant binary vector and transformed into the cultivated potato variety Zhongshu 8. A freeze tolerance analysis showed overexpression of the ScoSAD gene in transgenic plants significantly enhanced freeze tolerance in cv. Zhongshu 8 and increased their linoleic acid content, suggesting that linoleic acid likely plays a key role in improving freeze tolerance in potato plants. This study provided some new insights into how SAD regulates in the freezing tolerance and cold acclimation in potato.

  16. Cold Tolerance of Plants Used for Cold-Regions Revegetation

    DTIC Science & Technology

    1990-10-01

    water Mitochondrial 02 uptake Sweet potatot Decreased translocation, which can result in the desiccation of Chlorogenic acid Sweet potato Increased...Amino acids Bean Increased of toxic substances between the ice and the soil surface. Protein Bean Decreased Also, frozen soil and plant stems can prevent...warmer aerial plant parts. Oxalic acid Oxalis sp. Increased Chlorophyll Bean Decreased Frost heaving has been a concern in forestry and Organic acids

  17. Reestablishment of ion homeostasis during chill-coma recovery in the cricket Gryllus pennsylvanicus

    PubMed Central

    MacMillan, Heath A.; Williams, Caroline M.; Staples, James F.; Sinclair, Brent J.

    2012-01-01

    The time required to recover from cold-induced paralysis (chill-coma) is a common measure of insect cold tolerance used to test central questions in thermal biology and predict the effects of climate change on insect populations. The onset of chill-coma in the fall field cricket (Gryllus pennsylvanicus, Orthoptera: Gryllidae) is accompanied by a progressive drift of Na+ and water from the hemolymph to the gut, but the physiological mechanisms underlying recovery from chill-coma are not understood for any insect. Using a combination of gravimetric methods and atomic absorption spectroscopy, we demonstrate that recovery from chill-coma involves a reestablishment of hemolymph ion content and volume driven by removal of Na+ and water from the gut. Recovery is associated with a transient elevation of metabolic rate, the time span of which increases with increasing cold exposure duration and closely matches the duration of complete osmotic recovery. Thus, complete recovery from chill-coma is metabolically costly and encompasses a longer period than is required for the recovery of muscle potentials and movement. These findings provide evidence that physiological mechanisms of hemolymph ion content and volume regulation, such as ion-motive ATPase activity, are instrumental in chill-coma recovery and may underlie natural variation in insect cold tolerance. PMID:23184963

  18. A moderate decrease in temperature induces COR15a expression through the CBF signaling cascade and enhances freezing tolerance.

    PubMed

    Wang, Yi; Hua, Jian

    2009-10-01

    Temperature has a profound effect on plant growth and development. However, the molecular mechanisms underlying this regulation are not well understood. In particular, how moderate temperature variations are perceived and transduced inside the plant cells remains obscure. In this study, we analyzed transcriptional responses to a moderate decrease in temperature (cooling) in Arabidopsis thaliana. The cooling response involves a weaker and more transient induction of cold-induced genes, such as COR15a, than cold response. This induction probably accounts for the increase in freezing tolerance by cooling acclimation. Cooling also induces some defense response genes, and their induction, but not that of COR15a, requires the salicylic acid signaling pathway. Analysis of the regulation of COR15a reveals that cooling induction is mediated through the same C repeat/dehydration-responsive (CRT/DRE) element as cold induction. Furthermore, we identified a role for CBF1 and CBF4 in transducing signals of moderate decreases in temperature. It appears that variants of the CBF signaling cascade are utilized in cold and cooling responses, and a moderate decrease in temperature may invoke an adaptive response to prepare plants to cope with a more drastic decrease in temperature.

  19. Use of artificially-induced freezing temperatures to identify freeze tolerance in above-ground buds of Saccharum and Erianthus accessions

    USDA-ARS?s Scientific Manuscript database

    Sugarcane is a crop which is primarily grown between 30oN and 30oS latitude in tropical environments. Small areas of production in sub-tropical regions exist, and there is an increasing desire to produce the crop in colder environments. Cold-tolerant sugarcane is important both to the sub-tropical s...

  20. Tolerance to multiple climate stressors: a case study of Douglas-fir drought and cold hardiness

    Treesearch

    Sheel Bansal; Connie Harrington; Brad St. Clair

    2016-01-01

    1. Drought and freeze events are two of the most common forms of climate extremes which result in tree damage or death, and the frequency and intensity of both stressors may increase with climate change. Few studies have examined natural covariation in stress tolerance traits to cope with multiple stressors among wild plant populations. 2. We assessed the...

  1. 40 CFR 180.574 - Fluazinam; tolerances for residues.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... Onion, bulb, subgroup 3-07A 0.20 Pea and bean, dried shelled, except soybean, subgroup 6C, except pea 0.02 Pea and bean, succulent shelled, subgroup 6B, except pea 0.04 Peanut 0.02 Potato 0.02 Turnip...

  2. Comparative proteomic and metabolomic analyses reveal mechanisms of improved cold stress tolerance in bermudagrass (Cynodon dactylon (L.) Pers.) by exogenous calcium.

    PubMed

    Shi, Haitao; Ye, Tiantian; Zhong, Bao; Liu, Xun; Chan, Zhulong

    2014-11-01

    As an important second messenger, calcium is involved in plant cold stress response, including chilling (<20 °C) and freezing (<0 °C). In this study, exogenous application of calcium chloride (CaCl2 ) improved both chilling and freezing stress tolerances, while ethylene glycol-bis-(β-aminoethyl) ether-N,N,N,N-tetraacetic acid (EGTA) reversed CaCl2 effects in bermudagrass (Cynodon dactylon (L.) Pers.). Physiological analyses showed that CaCl2 treatment alleviated the reactive oxygen species (ROS) burst and cell damage triggered by chilling stress, via activating antioxidant enzymes, non-enzymatic glutathione antioxidant pool, while EGTA treatment had the opposite effects. Additionally, comparative proteomic analysis identified 51 differentially expressed proteins that were enriched in redox, tricarboxylicacid cycle, glycolysis, photosynthesis, oxidative pentose phosphate pathway, and amino acid metabolisms. Consistently, 42 metabolites including amino acids, organic acids, sugars, and sugar alcohols were regulated by CaCl2 treatment under control and cold stress conditions, further confirming the common modulation of CaCl2 treatment in carbon metabolites and amino acid metabolism. Taken together, this study reported first evidence of the essential and protective roles of endogenous and exogenous calcium in bermudagrass response to cold stress, partially via activation of the antioxidants and modulation of several differentially expressed proteins and metabolic homeostasis in the process of cold acclimation. © 2014 Institute of Botany, Chinese Academy of Sciences.

  3. Complex phytohormone responses during the cold acclimation of two wheat cultivars differing in cold tolerance, winter Samanta and spring Sandra.

    PubMed

    Kosová, Klára; Prášil, Ilja Tom; Vítámvás, Pavel; Dobrev, Petre; Motyka, Václav; Floková, Kristýna; Novák, Ondřej; Turečková, Veronika; Rolčik, Jakub; Pešek, Bedřich; Trávničková, Alena; Gaudinová, Alena; Galiba, Gabor; Janda, Tibor; Vlasáková, Eva; Prášilová, Pavla; Vanková, Radomíra

    2012-04-15

    Hormonal changes accompanying the cold stress (4°C) response that are related to the level of frost tolerance (FT; measured as LT50) and the content of the most abundant dehydrin, WCS120, were compared in the leaves and crowns of the winter wheat (Triticum aestivum L.) cv. Samanta and the spring wheat cv. Sandra. The characteristic feature of the alarm phase (1 day) response was a rapid elevation of abscisic acid (ABA) and an increase of protective proteins (dehydrin WCS120). This response was faster and stronger in winter wheat, where it coincided with the downregulation of bioactive cytokinins and auxin as well as enhanced deactivation of gibberellins, indicating rapid suppression of growth. Next, the ethylene precursor aminocyclopropane carboxylic acid was quickly upregulated. After 3-7 days of cold exposure, plant adaptation to the low temperature was correlated with a decrease in ABA and elevation of growth-promoting hormones (cytokinins, auxin and gibberellins). The content of other stress hormones, i.e., salicylic acid and jasmonic acid, also began to increase. After prolonged cold exposure (21 days), a resistance phase occurred. The winter cultivar exhibited substantially enhanced FT, which was associated with a decline in bioactive cytokinins and auxin. The inability of the spring cultivar to further increase its FT was correlated with maintenance of a relatively higher cytokinin and auxin content, which was achieved during the acclimation period. Copyright © 2012 Elsevier GmbH. All rights reserved.

  4. Improvement of Arabidopsis Biomass and Cold, Drought and Salinity Stress Tolerance by Modified Circadian Clock-Associated PSEUDO-RESPONSE REGULATORs.

    PubMed

    Nakamichi, Norihito; Takao, Saori; Kudo, Toru; Kiba, Takatoshi; Wang, Yin; Kinoshita, Toshinori; Sakakibara, Hitoshi

    2016-05-01

    Plant circadian clocks control the timing of a variety of genetic, metabolic and physiological processes. Recent studies revealed a possible molecular mechanism for circadian clock regulation. Arabidopsis thaliana (Arabidopsis) PSEUDO-RESPONSE REGULATOR (PRR) genes, including TIMING OF CAB EXPRESSION 1 (TOC1), encode clock-associated transcriptional repressors that act redundantly. Disruption of multiple PRR genes results in drastic phenotypes, including increased biomass and abiotic stress tolerance, whereas PRR single mutants show subtle phenotypic differences due to genetic redundancy. In this study, we demonstrate that constitutive expression of engineered PRR5 (PRR5-VP), which functions as a transcriptional activator, can increase biomass and abiotic stress tolerance, similar to prr multiple mutants. Concomitant analyses of relative growth rate, flowering time and photosynthetic activity suggested that increased biomass of PRR5-VP plants is mostly due to late flowering, rather than to alterations in photosynthetic activity or growth rate. In addition, genome-wide gene expression profiling revealed that genes related to cold stress and water deprivation responses were up-regulated in PRR5-VP plants. PRR5-VP plants were more resistant to cold, drought and salinity stress than the wild type, whereas ft tsf and gi, well-known late flowering and increased biomass mutants, were not. These findings suggest that attenuation of PRR function by a single transformation of PRR-VP is a valuable method for increasing biomass as well as abiotic stress tolerance in Arabidopsis. Because the PRR gene family is conserved in vascular plants, PRR-VP may regulate biomass and stress responses in many plants, but especially in long-day annual plants. © The Author 2016. Published by Oxford University Press on behalf of Japanese Society of Plant Physiologists. All rights reserved. For permissions, please email: journals.permissions@oup.com.

  5. Human nutrition in cold and high terrestrial altitudes

    NASA Astrophysics Data System (ADS)

    Srivastava, K. K.; Kumar, Ratan

    1992-03-01

    The calorie and nutritional requirements for a man working in an alien hostile environment of cold regions and high altitude are described and compared to those of normal requirements. Carbohydrates, fats and vitamins fulfilling the caloric and nutritional requirements are generally available in adequate amounts except under conditions of appetite loss. However, the proteins and amino acids should be provided in such a way as to meet the altered behavioral and metabolic requirements. Work in extreme cold requires fulfilling enhanced calorie needs. In high mountainous regions, cold combined with hypoxia produced loss of appetite and necessitated designing of special foods.

  6. 7 CFR 51.307 - Application of tolerances.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... STANDARDS) United States Standards for Grades of Apples Application of Tolerances § 51.307 Application of... least one apple which is seriously damaged by insects or affected by decay or internal breakdown may be... have more than 3 times the tolerance specified, except that at least three defective apples may be...

  7. 7 CFR 51.307 - Application of tolerances.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... STANDARDS) United States Standards for Grades of Apples Application of Tolerances § 51.307 Application of... least one apple which is seriously damaged by insects or affected by decay or internal breakdown may be... have more than 3 times the tolerance specified, except that at least three defective apples may be...

  8. 7 CFR 51.307 - Application of tolerances.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... STANDARDS) United States Standards for Grades of Apples Application of Tolerances § 51.307 Application of... least one apple which is seriously damaged by insects or affected by decay or internal breakdown may be... have more than 3 times the tolerance specified, except that at least three defective apples may be...

  9. 40 CFR 180.491 - Propylene oxide; tolerances for residues.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ...) PESTICIDE PROGRAMS TOLERANCES AND EXEMPTIONS FOR PESTICIDE CHEMICAL RESIDUES IN FOOD Specific Tolerances... commodities: Commodity Parts per million Basil, dried leaves 6000 Cacao bean, dried bean 20.0 Cacao bean... basil 1500 Nutmeat, processed, except peanuts 10.0 Onion, dried 6000 Plum, prune, dried 2.0 (b) Section...

  10. 40 CFR 180.574 - Fluazinam; tolerances for residues.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... Ginseng 4.5 Lettuce, head 0.02 Lettuce, leaf 2.0 Onion, bulb, subgroup 3-07A 0.20 Pea and bean, dried shelled, except soybean, subgroup 6C, except pea 0.02 Pea and bean, succulent shelled, subgroup 6B, except...

  11. 40 CFR 180.640 - Pyridalyl; tolerances for residues.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ..., in or on the following raw agricultural commodities:) Commodity Parts per million Brassica, head and..., leafy, except Brassica, group 4 20 (b) Section 18 emergency exemptions. [Reserved] (c) Tolerances with...

  12. Co-expression of NCED and ALO improves vitamin C level and tolerance to drought and chilling in transgenic tobacco and stylo plants.

    PubMed

    Bao, Gegen; Zhuo, Chunliu; Qian, Chunmei; Xiao, Ting; Guo, Zhenfei; Lu, Shaoyun

    2016-01-01

    Abscisic acid (ABA) regulates plant adaptive responses to various environmental stresses, while L-ascorbic acid (AsA) that is also named vitamin C is an important antioxidant and involves in plant stress tolerance and the immune system in domestic animals. Transgenic tobacco (Nicotiana tabacum L.) and stylo [Stylosanthes guianensis (Aublet) Swartz], a forage legume, plants co-expressing stylo 9-cis-epoxycarotenoid dioxygenase (SgNCED1) and yeast D-arabinono-1,4-lactone oxidase (ALO) genes were generated in this study, and tolerance to drought and chilling was analysed in comparison with transgenic tobacco overexpressing SgNCED1 or ALO and the wild-type plants. Compared to the SgNCED1 or ALO transgenic plants, in which only ABA or AsA levels were increased, both ABA and AsA levels were increased in transgenic tobacco and stylo plants co-expressing SgNCED1 and ALO genes. Compared to the wild type, an enhanced drought tolerance was observed in SgNCED1 transgenic tobacco plants with induced expression of drought-responsive genes, but not in ALO plants, while an enhanced chilling tolerance was observed in ALO transgenic tobaccos with induced expression of cold-responsive genes, but not in SgNCED1 plants. Co-expression of SgNCED1 and ALO genes resulted in elevated tolerance to both drought and chilling in transgenic tobacco and stylo plants with induced expression of both drought and cold-responsive genes. Our result suggests that co-expression of SgNCED1 and ALO genes is an effective way for use in forage plant improvement for increased tolerance to drought and chilling and nutrition quality. © 2015 Society for Experimental Biology, Association of Applied Biologists and John Wiley & Sons Ltd.

  13. Stress tolerance of soil fungal communities from native Atlantic forests, reforestations, and a sand mining degraded area.

    PubMed

    Ferreira, Paulo C; Pupin, Breno; Rangel, Drauzio E N

    2018-06-01

    Microorganisms are essential to the functionality of the soil, particularly in organic matter decomposition and nutrient cycling, which regulate plant productivity and shape the soil structure. However, biotic and abiotic stresses greatly disrupt soil fungal communities and, thereby, disturb the ecosystem. This study quantified seasonal tolerances to UV-B radiation and heat of fungal communities, which could be cultured, found in soil from two native Atlantic forest fragments called F1 and F2, five reforested areas (RA) planted in 1994, 1997, 2004, 2007, and 2009 with native species of the Atlantic forest, and one sand mining degraded soil (SMDS). The cold activity of the soil fungal communities (FC) from the eight different areas was also studied. Higher tolerance to UV-B radiation and heat was found in the FC from the SMDS and the 2009RA, where the incidence of heat and UV radiation from sun was more intense, which caused selection for fungal taxa that were more UV-B and heat tolerant in those areas. Conversely, the FC from the native forests and older reforested sites were very susceptible to heat and UV-B radiation. The cold activity of the soil FC from different areas of the study showed an erratic pattern of responses among the sampling sites. Little difference in tolerance to UV-B radiation and heat was found among the FC of soil samples collected in different seasons; in general soil FC collected in winter were less tolerant to UV-B radiation, but not for heat. In conclusion, FC from SMDS soil that receive intense heat and UV radiation, as well as with low nutrient availability, were more tolerant to both UV-B radiation and heat. Copyright © 2017 British Mycological Society. Published by Elsevier Ltd. All rights reserved.

  14. Low Temperature-Induced Decrease in trans-Δ3-Hexadecenoic Acid Content Is Correlated with Freezing Tolerance in Cereals 1

    PubMed Central

    Huner, Norman P. A.; Williams, John P.; Maissan, Ellen E.; Myscich, Elizabeth G.; Krol, Marianna; Laroche, Andre; Singh, Jasbir

    1989-01-01

    The effect of growth at 5°C on the trans-Δ3-hexadecenoic acid content of phosphatidyl(d)glycerol was examined in a total of eight cultivars of rye (Secale cereale L.) and what (Triticum aestivum L.) of varying freezing tolerance. In these monocots, low temperature growth caused decreases in the trans-Δ3-hexadecenoic acid content of between 0 and 74% with concomitant increases in the palmitic acid content of phosphatidyl(d)glycerol. These trends were observed for whole leaf extracts as well as isolated thylakoids. The low growth temperature-induced decrease in the trans-Δ3-hexadecenoic acid content was shown to be a linear function (r2 = 0.954) of freezing tolerance in these cultivars. Of the six cold tolerant dicotyledonous species examined, only Brassica and Arabidopsis thaliana L. cv Columbia exhibited a 42% and 65% decrease, respectively, in trans-Δ3-hexadecenoic acid content. Thus, the relationship between the change in trans-Δ3-hexadecenoic acid content of phosphatidyl(d)glycerol and freezing tolerance cannot be considered a general one for all cold tolerant plant species. However, species which exhibited a low growth temperature-induced decrease in trans-Δ3-hexadecenoic acid also exhibited a concomitant shift in the in vitro organization of the light harvesting complex II from a predominantly oligomeric form to the monomeric form. We conclude that the proposed role of phosphatidyl(d)glycerol in modulating the organization of light harvesting complex II as a function of growth temperature manifests itself to varying degrees in different plant species. A possible physiological role for this phenomenon with respect to low temperature acclimation and freezing tolerance in cereals is discussed. PMID:16666505

  15. Low Temperature-Induced Decrease in trans-Delta-Hexadecenoic Acid Content Is Correlated with Freezing Tolerance in Cereals.

    PubMed

    Huner, N P; Williams, J P; Maissan, E E; Myscich, E G; Krol, M; Laroche, A; Singh, J

    1989-01-01

    The effect of growth at 5 degrees C on the trans-Delta(3)-hexadecenoic acid content of phosphatidyl(d)glycerol was examined in a total of eight cultivars of rye (Secale cereale L.) and what (Triticum aestivum L.) of varying freezing tolerance. In these monocots, low temperature growth caused decreases in the trans-Delta(3)-hexadecenoic acid content of between 0 and 74% with concomitant increases in the palmitic acid content of phosphatidyl(d)glycerol. These trends were observed for whole leaf extracts as well as isolated thylakoids. The low growth temperature-induced decrease in the trans-Delta(3)-hexadecenoic acid content was shown to be a linear function (r(2) = 0.954) of freezing tolerance in these cultivars. Of the six cold tolerant dicotyledonous species examined, only Brassica and Arabidopsis thaliana L. cv Columbia exhibited a 42% and 65% decrease, respectively, in trans-Delta(3)-hexadecenoic acid content. Thus, the relationship between the change in trans-Delta(3)-hexadecenoic acid content of phosphatidyl(d)glycerol and freezing tolerance cannot be considered a general one for all cold tolerant plant species. However, species which exhibited a low growth temperature-induced decrease in trans-Delta(3)-hexadecenoic acid also exhibited a concomitant shift in the in vitro organization of the light harvesting complex II from a predominantly oligomeric form to the monomeric form. We conclude that the proposed role of phosphatidyl(d)glycerol in modulating the organization of light harvesting complex II as a function of growth temperature manifests itself to varying degrees in different plant species. A possible physiological role for this phenomenon with respect to low temperature acclimation and freezing tolerance in cereals is discussed.

  16. School and Family Life

    MedlinePlus

    ... With Your Preteen Cough and Cold Medicine Abuse Cyberbullying Date Rape Depressants: What Parents Need to Know ... Tempers Teaching Your Child Tolerance Teens Talk About Bullying (Video) Teens Talk About Stress (Video) Telling a ...

  17. Shoot winter injury and nut cold tolerance: Possible limitations for American chestnut restoration in cold environments? In: Sniezko, Richard A.; Yanchuk, Alvin D.; Kliejunas, John T.; Palmieri, Katharine M.; Alexander, Janice M.; Frankel, Susan J., tech

    Treesearch

    Thomas M. Saielli; Paul G. Schaberg; Gary J. Hawley; Joshua M. Halman; Kendra M. Gurney

    2012-01-01

    Approximately 100 years ago, American chestnut (Castanea dentata (Marsh.) Borkh.) was rapidly removed as an overstory tree by the fungal pathogen Cryphonectria parasitica (the causal agent of chestnut blight). Currently, the most effective method of restoration involves the hybridization of American chestnut with the...

  18. Additional freeze hardiness in wheat acquired by exposure to -3 degreesC is associated with extensive physiological, morphological, and molecular changes.

    PubMed

    Herman, Eliot M; Rotter, Kelsi; Premakumar, Ramaswamy; Elwinger, G; Bae, Hanhong; Bae, Rino; Ehler-King, Linda; Chen, Sixue; Livingston, David P

    2006-01-01

    Cold-acclimated plants acquire an additional 3-5 degrees C increase in freezing tolerance when exposed to -3 degrees C for 12-18 h before a freezing test (LT50) is applied. The -3 degrees C treatment replicates soil freezing that can occur in the days or weeks leading to overwintering by freezing-tolerant plants. This additional freezing tolerance is called subzero acclimation (SZA) to differentiate it from cold acclimation (CA) that is acquired at above-freezing temperatures. Using wheat as a model, results have been obtained indicating that SZA is accompanied by changes in physiology, cellular structure, the transcriptome, and the proteome. Using a variety of assays, including DNA arrays, reverse transcription-polymerase chain reaction (RT-PCR), 2D gels with mass spectroscopic identification of proteins, and electron microscopy, changes were observed to occur as a consequence of SZA and the acquisition of added freezing tolerance. In contrast to CA, SZA induced the movement of intracellular water to the extracellular space. Many unknown and stress-related genes were upregulated by SZA including some with obvious roles in SZA. Many genes related to photosynthesis and plastids were downregulated. Changes resulting from SZA often appeared to be a loss of rather than an appearance of new proteins. From a cytological perspective, SZA resulted in alterations of organelle structure including the Golgi. The results indicate that the enhanced freezing tolerance of SZA is correlated with a wide diversity of changes, indicating that the additional freezing tolerance is the result of complex biological processes.

  19. Genome-Wide Investigation of MicroRNAs and Their Targets in Response to Freezing Stress in Medicago sativa L., Based on High-Throughput Sequencing

    PubMed Central

    Shu, Yongjun; Liu, Ying; Li, Wei; Song, Lili; Zhang, Jun; Guo, Changhong

    2016-01-01

    Winter damage, especially in northern climates, is a major limitation of the utilization of perennial forages such as alfalfa. Therefore, improving freezing tolerance is imperative in alfalfa genetic breeding. However, freezing tolerance is a complex trait that is determined by many genes. To understand the complex regulation mechanisms of freezing tolerance in alfalfa, we performed small RNA sequencing analysis under cold (4°) and freezing (−8°) stress. The sequencing results revealed that 173 known, and 24 novel miRNAs were expressed, and that the expression of 35 miRNAs was affected by cold and/or freezing stress. Meanwhile, 105 target genes cleaved by these miRNAs were characterized by degradome sequencing. These targets were associated with biological regulation, cellular processes, metabolic processes, and response to stress. Interestingly, most of them were characterized as transcription factors (TFs), including auxin response factors, SBP, NAC, AP2/ERF, and GRF, which play important roles in plant abiotic responses. In addition, important miRNAs and mRNAs involved in nodulation were also identified, for example, the relationship between miR169 and the TF CCAAT (also named as NF-YA/HAP2), which suggested that nodulation has an important function in freezing tolerance in alfalfa. Our results provide valuable information to help determine the molecular mechanisms of freezing tolerance in alfalfa, which will aid the application of these miRNAs and their targets in the improvement of freezing tolerance in alfalfa and related plants. PMID:26801649

  20. Seasonal differences in freezing tolerance of yellow-cedar and western hemlock trees at a site affected by yellow-cedar decline

    Treesearch

    Paul G. Schaberg; Paul E. Hennon; Amore, David V. D; Gary J. Hawley; Catherine H. Borer; Catherine H. Borer

    2005-01-01

    To assess whether inadequate cold hardiness could be a contributor to yellow-cedar (Chamaecyparis nootkatensis (D. Don) Spach) decline, we measured the freezing tolerance of foliage from yellow-cedar trees in closed-canopy (nondeclining) and open-canopy (declining at elevations below 130 m) stands at three sites along an elevational gradient in the heart of the decline...

  1. Growth performance of loblolly shortleaf, and pitch X loblolly pine hybrid growing along the western margin of commercial pine range

    Treesearch

    K.C. Dipesh; Rodney E. Will; Thomas C Hennessey; Thomas B. Lynch; Robert Heinemann; Randal Holeman

    2015-01-01

    Expansion of the commercial pine range is one of the opportunities to improve forest production and counterbalance the loss of forest land to other uses. The potential genotypes for the purpose are fast-growing loblolly pine (Pinus taeda L.), the slower growing, but more drought tolerant shortleaf pine (P. echinata Mill.), and the more cold tolerant pitch x loblolly...

  2. Stress pre-conditioning with temperature, UV and gamma radiation induces tolerance against phosphine toxicity.

    PubMed

    Alzahrani, Saad M; Ebert, Paul R

    2018-01-01

    Phosphine is the only general use fumigant for the protection of stored grain, though its long-term utility is threatened by the emergence of highly phosphine-resistant pests. Given this precarious situation, it is essential to identify factors, such as stress preconditioning, that interfere with the efficacy of phosphine fumigation. We used Caenorhabditis elegans as a model organism to test the effect of pre-exposure to heat and cold shock, UV and gamma irradiation on phosphine potency. Heat shock significantly increased tolerance to phosphine by 3-fold in wild-type nematodes, a process that was dependent on the master regulator of the heat shock response, HSF-1. Heat shock did not, however, increase the resistance of a strain carrying the phosphine resistance mutation, dld-1(wr4), and cold shock did not alter the response to phosphine of either strain. Pretreatment with the LD50 of UV (18 J cm-2) did not alter phosphine tolerance in wild-type nematodes, but the LD50 (33 J cm-2) of the phosphine resistant strain (dld-1(wr4)) doubled the level of resistance. In addition, exposure to a mild dose of gamma radiation (200 Gy) elevated the phosphine tolerance by ~2-fold in both strains.

  3. 40 CFR 180.666 - Fluxapyroxad; tolerances for residues.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ..., meat 0.01 Cattle, meat byproducts 0.03 Corn, field, grain 0.01 Corn, oil 0.03 Corn, pop, grain 0.01 Corn, sweet, kernels plus cobs with husks removed 0.15 Cotton, gin byproducts 0.01 Cotton, undelinted...; except corn, pop, grain; except corn, kernels plus cobs with husks removed; except rice; except wheat 3.0...

  4. Cold adaptation shapes the robustness of metabolic networks in Drosophila melanogaster

    PubMed Central

    Williams, CM; Watanabe, M; Guarracino, MR; Ferraro, MB; Edison, AS; Morgan, TJ; Boroujerdi, AFB; Hahn, DA

    2015-01-01

    When ectotherms are exposed to low temperatures, they enter a cold-induced coma (chill coma) that prevents resource acquisition, mating, oviposition, and escape from predation. There is substantial variation in time taken to recover from chill coma both within and among species, and this variation is correlated with habitat temperatures such that insects from cold environments recover more quickly. This suggests an adaptive response, but the mechanisms underlying variation in recovery times are unknown, making it difficult to decisively test adaptive hypotheses. We use replicated lines of Drosophila melanogaster selected in the laboratory for fast (hardy) or slow (susceptible) chill-coma recovery times to investigate modifications to metabolic profiles associated with cold adaptation. We measured metabolite concentrations of flies before, during, and after cold exposure using NMR spectroscopy to test the hypotheses that hardy flies maintain metabolic homeostasis better during cold exposure and recovery, and that their metabolic networks are more robust to cold-induced perturbations. The metabolites of cold-hardy flies were less cold responsive and their metabolic networks during cold exposure were more robust, supporting our hypotheses. Metabolites involved in membrane lipid synthesis, tryptophan metabolism, oxidative stress, energy balance, and proline metabolism were altered by selection on cold tolerance. We discuss the potential significance of these alterations. PMID:25308124

  5. Cold adaptation increases rates of nutrient flow and metabolic plasticity during cold exposure in Drosophila melanogaster

    PubMed Central

    McCue, Marshall D.; Sunny, Nishanth E.; Szejner-Sigal, Andre; Morgan, Theodore J.; Allison, David B.; Hahn, Daniel A.

    2016-01-01

    Metabolic flexibility is an important component of adaptation to stressful environments, including thermal stress and latitudinal adaptation. A long history of population genetic studies suggest that selection on core metabolic enzymes may shape life histories by altering metabolic flux. However, the direct relationship between selection on thermal stress hardiness and metabolic flux has not previously been tested. We investigated flexibility of nutrient catabolism during cold stress in Drosophila melanogaster artificially selected for fast or slow recovery from chill coma (i.e. cold-hardy or -susceptible), specifically testing the hypothesis that stress adaptation increases metabolic turnover. Using 13C-labelled glucose, we first showed that cold-hardy flies more rapidly incorporate ingested carbon into amino acids and newly synthesized glucose, permitting rapid synthesis of proline, a compound shown elsewhere to improve survival of cold stress. Second, using glucose and leucine tracers we showed that cold-hardy flies had higher oxidation rates than cold-susceptible flies before cold exposure, similar oxidation rates during cold exposure, and returned to higher oxidation rates during recovery. Additionally, cold-hardy flies transferred compounds among body pools more rapidly during cold exposure and recovery. Increased metabolic turnover may allow cold-adapted flies to better prepare for, resist and repair/tolerate cold damage. This work illustrates for the first time differences in nutrient fluxes associated with cold adaptation, suggesting that metabolic costs associated with cold hardiness could invoke resource-based trade-offs that shape life histories. PMID:27605506

  6. 40 CFR 86.515-78 - EPA urban dynamometer driving schedule.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... I(b) (b) The speed tolerance at any given time on the dynamometer driving schedule prescribed in... than the tolerances (such as may occur during gear changes) are acceptable provided they occur for less... requirements of § 86.532 the speed tolerance shall be as specified above, except that the upper and lower...

  7. 40 CFR 180.491 - Propylene oxide; tolerances for residues.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ...) PESTICIDE PROGRAMS TOLERANCES AND EXEMPTIONS FOR PESTICIDE CHEMICAL RESIDUES IN FOOD Specific Tolerances... Basil, dried leaves 6000 Cacao bean, cocoa powder 20.0 Cacao bean, dried bean 20.0 Fig 3.0 Garlic, dried 6000 Grape, raisin 4.0 Herbs and spices, group 19, dried, except basil 1500 Nut, pine 10.0 Nut, tree...

  8. 40 CFR 180.491 - Propylene oxide; tolerances for residues.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ...) PESTICIDE PROGRAMS TOLERANCES AND EXEMPTIONS FOR PESTICIDE CHEMICAL RESIDUES IN FOOD Specific Tolerances...: Commodity Parts per million Basil, dried leaves 6000 Cacao bean, dried bean 20.0 Cacao bean, cocoa powder 20.0 Fig 3.0 Garlic, dried 6000 Grape, raisin 4.0 Herbs and spices, group 19, dried, except basil 1500...

  9. 40 CFR 180.491 - Propylene oxide; tolerances for residues.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ...) PESTICIDE PROGRAMS TOLERANCES AND EXEMPTIONS FOR PESTICIDE CHEMICAL RESIDUES IN FOOD Specific Tolerances... Basil, dried leaves 6000 Cacao bean, cocoa powder 20.0 Cacao bean, dried bean 20.0 Fig 3.0 Garlic, dried 6000 Grape, raisin 4.0 Herbs and spices, group 19, dried, except basil 1500 Nut, pine 10.0 Nut, tree...

  10. 40 CFR 180.491 - Propylene oxide; tolerances for residues.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ...) PESTICIDE PROGRAMS TOLERANCES AND EXEMPTIONS FOR PESTICIDE CHEMICAL RESIDUES IN FOOD Specific Tolerances... Basil, dried leaves 6000 Cacao bean, cocoa powder 20.0 Cacao bean, dried bean 20.0 Fig 3.0 Garlic, dried 6000 Grape, raisin 4.0 Herbs and spices, group 19, dried, except basil 1500 Nut, pine 10.0 Nut, tree...

  11. 75 FR 46847 - Halosulfuron-methyl; Pesticide Tolerances

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-08-04

    ... the existing tolerance on bean, snap, succulent at 0.05 parts per million (ppm) in that it is superseded by this action establishing a tolerance at 0.05 ppm on pea and bean, succulent shelled, subgroup... and bean, succulent shelled, subgroup 6B; pea and bean, dried shelled, except soybean, subgroup 6C...

  12. The Vitis vinifera C-repeat binding protein 4 (VvCBF4) transcriptional factor enhances freezing tolerance in wine grape.

    PubMed

    Tillett, Richard L; Wheatley, Matthew D; Tattersall, Elizabeth A R; Schlauch, Karen A; Cramer, Grant R; Cushman, John C

    2012-01-01

    Chilling and freezing can reduce significantly vine survival and fruit set in Vitis vinifera wine grape. To overcome such production losses, a recently identified grapevine C-repeat binding factor (CBF) gene, VvCBF4, was overexpressed in grape vine cv. 'Freedom' and found to improve freezing survival and reduced freezing-induced electrolyte leakage by up to 2 °C in non-cold-acclimated vines. In addition, overexpression of this transgene caused a reduced growth phenotype similar to that observed for CBF overexpression in Arabidopsis and other species. Both freezing tolerance and reduced growth phenotypes were manifested in a transgene dose-dependent manner. To understand the mechanistic basis of VvCBF4 transgene action, one transgenic line (9-12) was genotyped using microarray-based mRNA expression profiling. Forty-seven and 12 genes were identified in unstressed transgenic shoots with either a >1.5-fold increase or decrease in mRNA abundance, respectively. Comparison of mRNA changes with characterized CBF regulons in woody and herbaceous species revealed partial overlaps, suggesting that CBF-mediated cold acclimation responses are widely conserved. Putative VvCBF4-regulon targets included genes with functions in cell wall structure, lipid metabolism, epicuticular wax formation and stress-responses suggesting that the observed cold tolerance and dwarf phenotypes are the result of a complex network of diverse functional determinants. © 2011 The Authors. Plant Biotechnology Journal © 2011 Society for Experimental Biology, Association of Applied Biologists and Blackwell Publishing Ltd.

  13. Characterization of Metarhizium species and varieties based on molecular analysis, heat tolerance and cold activity

    USGS Publications Warehouse

    Fernandes, E.K.K.; Keyser, C.A.; Chong, J.P.; Rangel, D.E.N.; Miller, M.P.; Roberts, D.W.

    2010-01-01

    Aims: The genetic relationships and conidial tolerances to high and low temperatures were determined for isolates of several Metarhizium species and varieties. Methods and Results: Molecular-based techniques [AFLP and rDNA (ITS1, ITS2 and 5??8S) gene sequencing] were used to characterize morphologically identified Metarhizium spp. isolates from a wide range of sources. Conidial suspensions of isolates were exposed to wet heat (45 ?? 0??2??C) and plated on potato dextrose agar plus yeast extract (PDAY) medium. After 8-h exposure, the isolates divided clearly into two groups: (i) all isolates of Metarhizium anisopliae var. anisopliae (Ma-an) and Metarhizium from the flavoviride complex (Mf) had virtually zero conidial relative germination (RG), (ii) Metarhizium anisopliae var. acridum (Ma-ac) isolates demonstrated high heat tolerance (c. 70-100% RG). Conidial suspensions also were plated on PDAY and incubated at 5??C for 15 days, during which time RGs for Ma-an and Ma-ac isolates were virtually zero, whereas the two Mf were highly cold active (100% RG). Conclusions: Heat and cold exposures can be used as rapid tools to tentatively identify some important Metarhizium species and varieties. Significance and Impact of the Study: Identification of Metarhizium spp. currently relies primarily on DNA-based methods; we suggest a simple temperature-based screen to quickly obtain tentative identification of isolates as to species or species complexes. ?? 2009 The Society for Applied Microbiology.

  14. Ectopic Expression of Pumpkin NAC Transcription Factor CmNAC1 Improves Multiple Abiotic Stress Tolerance in Arabidopsis

    PubMed Central

    Cao, Haishun; Wang, Li; Nawaz, Muhammad A.; Niu, Mengliang; Sun, Jingyu; Xie, Junjun; Kong, Qiusheng; Huang, Yuan; Cheng, Fei; Bie, Zhilong

    2017-01-01

    Drought, cold and salinity are the major environmental stresses that limit agricultural productivity. NAC transcription factors regulate the stress response in plants. Pumpkin (Cucurbita moschata) is an important cucurbit vegetable crop and it has strong resistance to abiotic stress; however, the biological functions of stress-related NAC genes in this crop are largely unknown. This study reports the function of CmNAC1, a stress-responsive pumpkin NAC domain protein. The CmNAC1-GFP fusion protein was transiently expressed in tobacco leaves for subcellular localization analysis, and we found that CmNAC1 is localized in the nucleus. Transactivation assay in yeast cells revealed that CmNAC1 functions as a transcription activator, and its transactivation domain is located in the C-terminus. CmNAC1 was ubiquitously expressed in different organs, and its transcript was induced by salinity, cold, dehydration, H2O2, and abscisic acid (ABA) treatment. Furthermore, the ectopic expression (EE) of CmNAC1 in Arabidopsis led to ABA hypersensitivity and enhanced tolerance to salinity, drought and cold stress. In addition, five ABA-responsive elements were enriched in CmNAC1 promoter. The CmNAC1-EE plants exhibited different root architecture, leaf morphology, and significantly high concentration of ABA compared with WT Arabidopsis under normal conditions. Our results indicated that CmNAC1 is a critical factor in ABA signaling pathways and it can be utilized in transgenic breeding to improve the abiotic stress tolerance of crops. PMID:29234347

  15. Role of Melatonin in Cell-Wall Disassembly and Chilling Tolerance in Cold-Stored Peach Fruit.

    PubMed

    Cao, Shifeng; Bian, Kun; Shi, Liyu; Chung, Hsiao-Hang; Chen, Wei; Yang, Zhenfeng

    2018-06-06

    Melatonin reportedly increases chilling tolerance in postharvest peach fruit during cold storage, but information on its effects on cell-wall disassembly in chilling-injured peaches is limited. In this study, we investigated the role of cell-wall depolymerization in chilling-tolerance induction in melatonin-treated peaches. Treatment with 100 μM melatonin alleviated chilling symptoms (mealiness) characterized by a decrease in fruit firmness and increase in juice extractability in treated peaches during storage. The loss of neutral sugars, such as arabinose and galactose, in both the 1,2-cyclohexylenedinitrilotetraacetic acid (CDTA)- and Na 2 CO 3 -soluble fractions was observed at 7 days in treated peaches, but the contents increased after 28 days of storage. Atomic-force-microscopy (AFM) analysis revealed that the polysaccharide widths in the CDTA- and Na 2 CO 3 -soluble fractions in the treated fruit were mainly distributed in a shorter range, as compared with those in the control fruit. In addition, the expression profiles of a series of cell-wall-related genes showed that melatonin treatment maintained the balance between transcripts of PpPME and PpPG, which accompany the up-regulation of several other genes involved in cell-wall disassembly. Taken together, our results suggested that the reduced mealiness by melatonin was probably associated with its positive regulation of numerous cell-wall-modifying enzymes and proteins; thus, the depolymerization of the cell-wall polysaccharides in the peaches treated with melatonin was maintained, and the treated fruit could soften gradually during cold storage.

  16. GsLRPK, a novel cold-activated leucine-rich repeat receptor-like protein kinase from Glycine soja, is a positive regulator to cold stress tolerance.

    PubMed

    Yang, Liang; Wu, Kangcheng; Gao, Peng; Liu, Xiaojuan; Li, Guangpu; Wu, Zujian

    2014-02-01

    Plant LRR-RLKs serve as protein interaction platforms, and as regulatory modules of protein activation. Here, we report the isolation of a novel plant-specific LRR-RLK from Glycine soja (termed GsLRPK) by differential screening. GsLRPK expression was cold-inducible and shows Ser/Thr protein kinase activity. Subcellular localization studies using GFP fusion protein indicated that GsLRPK is localized in the plasma membrane. Real-time PCR analysis indicated that temperature, salt, drought, and ABA treatment can alter GsLRPK gene transcription in G. soja. However, just protein induced by cold stress not by salinity and ABA treatment in tobacco was found to possess kinase activity. Furthermore, we found that overexpression of GsLRPK in yeast and Arabidopsis can enhance resistance to cold stress and increase the expression of a number of cold responsive gene markers. Copyright © 2013 Elsevier Ireland Ltd. All rights reserved.

  17. Ethylene Signaling Negatively Regulates Freezing Tolerance by Repressing Expression of CBF and Type-A ARR Genes in Arabidopsis[W][OA

    PubMed Central

    Shi, Yiting; Tian, Shouwei; Hou, Lingyan; Huang, Xiaozhen; Zhang, Xiaoyan; Guo, Hongwei; Yang, Shuhua

    2012-01-01

    The phytohormone ethylene regulates multiple aspects of plant growth and development and responses to environmental stress. However, the exact role of ethylene in freezing stress remains unclear. Here, we report that ethylene negatively regulates plant responses to freezing stress in Arabidopsis thaliana. Freezing tolerance was decreased in ethylene overproducer1 and by the application of the ethylene precursor 1-aminocyclopropane-1-carboxylic acid but increased by the addition of the ethylene biosynthesis inhibitor aminoethoxyvinyl glycine or the perception antagonist Ag+. Furthermore, ethylene-insensitive mutants, including etr1-1, ein4-1, ein2-5, ein3-1, and ein3 eil1, displayed enhanced freezing tolerance. By contrast, the constitutive ethylene response mutant ctr1-1 and EIN3-overexpressing plants exhibited reduced freezing tolerance. Genetic and biochemical analyses revealed that EIN3 negatively regulates the expression of CBFs and type-A Arabidopsis response regulator5 (ARR5), ARR7, and ARR15 by binding to specific elements in their promoters. Overexpression of these ARR genes enhanced the freezing tolerance of plants. Thus, our study demonstrates that ethylene negatively regulates cold signaling at least partially through the direct transcriptional control of cold-regulated CBFs and type-A ARR genes by EIN3. Our study also provides evidence that type-A ARRs function as key nodes to integrate ethylene and cytokinin signaling in regulation of plant responses to environmental stress. PMID:22706288

  18. 40 CFR 180.641 - Spirotetramat; tolerances for residues.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... growing, except strawberry, subgroup 13-07H 0.30 Black sapote 0.60 Brassica, head and stem, subgroup 5A 2... strawberry. (2) Tolerances are also established for residues of the insecticide spirotetramat, including its...

  19. 40 CFR 180.485 - Cyproconazole; tolerances for residues.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... Aspirated grain fractions 2.5 Cattle, fat 0.01 Cattle, meat byproducts (except liver) 0.01 Coffee bean... use on coffee bean. (2) A tolerance is established for the combined free and conjugated residues of...

  20. 40 CFR 180.485 - Cyproconazole; tolerances for residues.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... Aspirated grain fractions 2.5 Cattle, fat 0.01 Cattle, meat byproducts (except liver) 0.01 Coffee bean... use on coffee bean. (2) A tolerance is established for the combined free and conjugated residues of...

Top