Sample records for exceptional orthogonal polynomials

  1. Dirac(-Pauli), Fokker-Planck equations and exceptional Laguerre polynomials

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ho, Choon-Lin, E-mail: hcl@mail.tku.edu.tw

    2011-04-15

    Research Highlights: > Physical examples involving exceptional orthogonal polynomials. > Exceptional polynomials as deformations of classical orthogonal polynomials. > Exceptional polynomials from Darboux-Crum transformation. - Abstract: An interesting discovery in the last two years in the field of mathematical physics has been the exceptional X{sub l} Laguerre and Jacobi polynomials. Unlike the well-known classical orthogonal polynomials which start with constant terms, these new polynomials have lowest degree l = 1, 2, and ..., and yet they form complete set with respect to some positive-definite measure. While the mathematical properties of these new X{sub l} polynomials deserve further analysis, it ismore » also of interest to see if they play any role in physical systems. In this paper we indicate some physical models in which these new polynomials appear as the main part of the eigenfunctions. The systems we consider include the Dirac equations coupled minimally and non-minimally with some external fields, and the Fokker-Planck equations. The systems presented here have enlarged the number of exactly solvable physical systems known so far.« less

  2. Quantum models with energy-dependent potentials solvable in terms of exceptional orthogonal polynomials

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Schulze-Halberg, Axel, E-mail: axgeschu@iun.edu; Department of Physics, Indiana University Northwest, 3400 Broadway, Gary IN 46408; Roy, Pinaki, E-mail: pinaki@isical.ac.in

    We construct energy-dependent potentials for which the Schrödinger equations admit solutions in terms of exceptional orthogonal polynomials. Our method of construction is based on certain point transformations, applied to the equations of exceptional Hermite, Jacobi and Laguerre polynomials. We present several examples of boundary-value problems with energy-dependent potentials that admit a discrete spectrum and the corresponding normalizable solutions in closed form.

  3. Darboux partners of pseudoscalar Dirac potentials associated with exceptional orthogonal polynomials

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Schulze-Halberg, Axel, E-mail: xbataxel@gmail.com; Department of Physics, Indiana University Northwest, 3400 Broadway, Gary, IN 46408; Roy, Barnana, E-mail: barnana@isical.ac.in

    2014-10-15

    We introduce a method for constructing Darboux (or supersymmetric) pairs of pseudoscalar and scalar Dirac potentials that are associated with exceptional orthogonal polynomials. Properties of the transformed potentials and regularity conditions are discussed. As an application, we consider a pseudoscalar Dirac potential related to the Schrödinger model for the rationally extended radial oscillator. The pseudoscalar partner potentials are constructed under the first- and second-order Darboux transformations.

  4. New families of superintegrable systems from Hermite and Laguerre exceptional orthogonal polynomials

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Marquette, Ian; Quesne, Christiane

    2013-04-15

    In recent years, many exceptional orthogonal polynomials (EOP) were introduced and used to construct new families of 1D exactly solvable quantum potentials, some of which are shape invariant. In this paper, we construct from Hermite and Laguerre EOP and their related quantum systems new 2D superintegrable Hamiltonians with higher-order integrals of motion and the polynomial algebras generated by their integrals of motion. We obtain the finite-dimensional unitary representations of the polynomial algebras and the corresponding energy spectrum. We also point out a new type of degeneracies of the energy levels of these systems that is associated with holes in sequencesmore » of EOP.« less

  5. Multi-indexed Meixner and little q-Jacobi (Laguerre) polynomials

    NASA Astrophysics Data System (ADS)

    Odake, Satoru; Sasaki, Ryu

    2017-04-01

    As the fourth stage of the project multi-indexed orthogonal polynomials, we present the multi-indexed Meixner and little q-Jacobi (Laguerre) polynomials in the framework of ‘discrete quantum mechanics’ with real shifts defined on the semi-infinite lattice in one dimension. They are obtained, in a similar way to the multi-indexed Laguerre and Jacobi polynomials reported earlier, from the quantum mechanical systems corresponding to the original orthogonal polynomials by multiple application of the discrete analogue of the Darboux transformations or the Crum-Krein-Adler deletion of virtual state vectors. The virtual state vectors are the solutions of the matrix Schrödinger equation on all the lattice points having negative energies and infinite norm. This is in good contrast to the (q-)Racah systems defined on a finite lattice, in which the ‘virtual state’ vectors satisfy the matrix Schrödinger equation except for one of the two boundary points.

  6. Connection between quantum systems involving the fourth Painlevé transcendent and k-step rational extensions of the harmonic oscillator related to Hermite exceptional orthogonal polynomial

    NASA Astrophysics Data System (ADS)

    Marquette, Ian; Quesne, Christiane

    2016-05-01

    The purpose of this communication is to point out the connection between a 1D quantum Hamiltonian involving the fourth Painlevé transcendent PIV, obtained in the context of second-order supersymmetric quantum mechanics and third-order ladder operators, with a hierarchy of families of quantum systems called k-step rational extensions of the harmonic oscillator and related with multi-indexed Xm1,m2,…,mk Hermite exceptional orthogonal polynomials of type III. The connection between these exactly solvable models is established at the level of the equivalence of the Hamiltonians using rational solutions of the fourth Painlevé equation in terms of generalized Hermite and Okamoto polynomials. We also relate the different ladder operators obtained by various combinations of supersymmetric constructions involving Darboux-Crum and Krein-Adler supercharges, their zero modes and the corresponding energies. These results will demonstrate and clarify the relation observed for a particular case in previous papers.

  7. Multi-indexed (q-)Racah polynomials

    NASA Astrophysics Data System (ADS)

    Odake, Satoru; Sasaki, Ryu

    2012-09-01

    As the second stage of the project multi-indexed orthogonal polynomials, we present, in the framework of ‘discrete quantum mechanics’ with real shifts in one dimension, the multi-indexed (q-)Racah polynomials. They are obtained from the (q-)Racah polynomials by the multiple application of the discrete analogue of the Darboux transformations or the Crum-Krein-Adler deletion of ‘virtual state’ vectors, in a similar way to the multi-indexed Laguerre and Jacobi polynomials reported earlier. The virtual state vectors are the ‘solutions’ of the matrix Schrödinger equation with negative ‘eigenvalues’, except for one of the two boundary points.

  8. Equivalences of the multi-indexed orthogonal polynomials

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Odake, Satoru

    2014-01-15

    Multi-indexed orthogonal polynomials describe eigenfunctions of exactly solvable shape-invariant quantum mechanical systems in one dimension obtained by the method of virtual states deletion. Multi-indexed orthogonal polynomials are labeled by a set of degrees of polynomial parts of virtual state wavefunctions. For multi-indexed orthogonal polynomials of Laguerre, Jacobi, Wilson, and Askey-Wilson types, two different index sets may give equivalent multi-indexed orthogonal polynomials. We clarify these equivalences. Multi-indexed orthogonal polynomials with both type I and II indices are proportional to those of type I indices only (or type II indices only) with shifted parameters.

  9. Comparative assessment of orthogonal polynomials for wavefront reconstruction over the square aperture.

    PubMed

    Ye, Jingfei; Gao, Zhishan; Wang, Shuai; Cheng, Jinlong; Wang, Wei; Sun, Wenqing

    2014-10-01

    Four orthogonal polynomials for reconstructing a wavefront over a square aperture based on the modal method are currently available, namely, the 2D Chebyshev polynomials, 2D Legendre polynomials, Zernike square polynomials and Numerical polynomials. They are all orthogonal over the full unit square domain. 2D Chebyshev polynomials are defined by the product of Chebyshev polynomials in x and y variables, as are 2D Legendre polynomials. Zernike square polynomials are derived by the Gram-Schmidt orthogonalization process, where the integration region across the full unit square is circumscribed outside the unit circle. Numerical polynomials are obtained by numerical calculation. The presented study is to compare these four orthogonal polynomials by theoretical analysis and numerical experiments from the aspects of reconstruction accuracy, remaining errors, and robustness. Results show that the Numerical orthogonal polynomial is superior to the other three polynomials because of its high accuracy and robustness even in the case of a wavefront with incomplete data.

  10. Legendre modified moments for Euler's constant

    NASA Astrophysics Data System (ADS)

    Prévost, Marc

    2008-10-01

    Polynomial moments are often used for the computation of Gauss quadrature to stabilize the numerical calculation of the orthogonal polynomials, see [W. Gautschi, Computational aspects of orthogonal polynomials, in: P. Nevai (Ed.), Orthogonal Polynomials-Theory and Practice, NATO ASI Series, Series C: Mathematical and Physical Sciences, vol. 294. Kluwer, Dordrecht, 1990, pp. 181-216 [6]; W. Gautschi, On the sensitivity of orthogonal polynomials to perturbations in the moments, Numer. Math. 48(4) (1986) 369-382 [5]; W. Gautschi, On generating orthogonal polynomials, SIAM J. Sci. Statist. Comput. 3(3) (1982) 289-317 [4

  11. Direct calculation of modal parameters from matrix orthogonal polynomials

    NASA Astrophysics Data System (ADS)

    El-Kafafy, Mahmoud; Guillaume, Patrick

    2011-10-01

    The object of this paper is to introduce a new technique to derive the global modal parameter (i.e. system poles) directly from estimated matrix orthogonal polynomials. This contribution generalized the results given in Rolain et al. (1994) [5] and Rolain et al. (1995) [6] for scalar orthogonal polynomials to multivariable (matrix) orthogonal polynomials for multiple input multiple output (MIMO) system. Using orthogonal polynomials improves the numerical properties of the estimation process. However, the derivation of the modal parameters from the orthogonal polynomials is in general ill-conditioned if not handled properly. The transformation of the coefficients from orthogonal polynomials basis to power polynomials basis is known to be an ill-conditioned transformation. In this paper a new approach is proposed to compute the system poles directly from the multivariable orthogonal polynomials. High order models can be used without any numerical problems. The proposed method will be compared with existing methods (Van Der Auweraer and Leuridan (1987) [4] Chen and Xu (2003) [7]). For this comparative study, simulated as well as experimental data will be used.

  12. Stochastic Modeling of Flow-Structure Interactions using Generalized Polynomial Chaos

    DTIC Science & Technology

    2001-09-11

    Some basic hypergeometric polynomials that generalize Jacobi polynomials . Memoirs Amer. Math. Soc...scheme, which is represented as a tree structure in figure 1 (following [24]), classifies the hypergeometric orthogonal polynomials and indicates the...2F0(1) 2F0(0) Figure 1: The Askey scheme of orthogonal polynomials The orthogonal polynomials associated with the generalized polynomial chaos,

  13. Algebraic calculations for spectrum of superintegrable system from exceptional orthogonal polynomials

    NASA Astrophysics Data System (ADS)

    Hoque, Md. Fazlul; Marquette, Ian; Post, Sarah; Zhang, Yao-Zhong

    2018-04-01

    We introduce an extended Kepler-Coulomb quantum model in spherical coordinates. The Schrödinger equation of this Hamiltonian is solved in these coordinates and it is shown that the wave functions of the system can be expressed in terms of Laguerre, Legendre and exceptional Jacobi polynomials (of hypergeometric type). We construct ladder and shift operators based on the corresponding wave functions and obtain their recurrence formulas. These recurrence relations are used to construct higher-order, algebraically independent integrals of motion to prove superintegrability of the Hamiltonian. The integrals form a higher rank polynomial algebra. By constructing the structure functions of the associated deformed oscillator algebras we derive the degeneracy of energy spectrum of the superintegrable system.

  14. Chain mapping approach of Hamiltonian for FMO complex using associated, generalized and exceptional Jacobi polynomials

    NASA Astrophysics Data System (ADS)

    Mahdian, M.; Arjmandi, M. B.; Marahem, F.

    2016-06-01

    The excitation energy transfer (EET) in photosynthesis complex has been widely investigated in recent years. However, one of the main problems is simulation of this complex under realistic condition. In this paper by using the associated, generalized and exceptional Jacobi polynomials, firstly, we introduce the spectral density of Fenna-Matthews-Olson (FMO) complex. Afterward, we obtain a map that transforms the Hamiltonian of FMO complex as an open quantum system to a one-dimensional chain of oscillatory modes with only nearest neighbor interaction in which the system is coupled only to first mode of chain. The frequency and coupling strength of each mode can be analytically obtained from recurrence coefficient of mentioned orthogonal polynomials.

  15. Coherent orthogonal polynomials

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Celeghini, E., E-mail: celeghini@fi.infn.it; Olmo, M.A. del, E-mail: olmo@fta.uva.es

    2013-08-15

    We discuss a fundamental characteristic of orthogonal polynomials, like the existence of a Lie algebra behind them, which can be added to their other relevant aspects. At the basis of the complete framework for orthogonal polynomials we include thus–in addition to differential equations, recurrence relations, Hilbert spaces and square integrable functions–Lie algebra theory. We start here from the square integrable functions on the open connected subset of the real line whose bases are related to orthogonal polynomials. All these one-dimensional continuous spaces allow, besides the standard uncountable basis (|x〉), for an alternative countable basis (|n〉). The matrix elements that relatemore » these two bases are essentially the orthogonal polynomials: Hermite polynomials for the line and Laguerre and Legendre polynomials for the half-line and the line interval, respectively. Differential recurrence relations of orthogonal polynomials allow us to realize that they determine an infinite-dimensional irreducible representation of a non-compact Lie algebra, whose second order Casimir C gives rise to the second order differential equation that defines the corresponding family of orthogonal polynomials. Thus, the Weyl–Heisenberg algebra h(1) with C=0 for Hermite polynomials and su(1,1) with C=−1/4 for Laguerre and Legendre polynomials are obtained. Starting from the orthogonal polynomials the Lie algebra is extended both to the whole space of the L{sup 2} functions and to the corresponding Universal Enveloping Algebra and transformation group. Generalized coherent states from each vector in the space L{sup 2} and, in particular, generalized coherent polynomials are thus obtained. -- Highlights: •Fundamental characteristic of orthogonal polynomials (OP): existence of a Lie algebra. •Differential recurrence relations of OP determine a unitary representation of a non-compact Lie group. •2nd order Casimir originates a 2nd order differential equation that defines the corresponding OP family. •Generalized coherent polynomials are obtained from OP.« less

  16. On Certain Wronskians of Multiple Orthogonal Polynomials

    NASA Astrophysics Data System (ADS)

    Zhang, Lun; Filipuk, Galina

    2014-11-01

    We consider determinants of Wronskian type whose entries are multiple orthogonal polynomials associated with a path connecting two multi-indices. By assuming that the weight functions form an algebraic Chebyshev (AT) system, we show that the polynomials represented by the Wronskians keep a constant sign in some cases, while in some other cases oscillatory behavior appears, which generalizes classical results for orthogonal polynomials due to Karlin and Szegő. There are two applications of our results. The first application arises from the observation that the m-th moment of the average characteristic polynomials for multiple orthogonal polynomial ensembles can be expressed as a Wronskian of the type II multiple orthogonal polynomials. Hence, it is straightforward to obtain the distinct behavior of the moments for odd and even m in a special multiple orthogonal ensemble - the AT ensemble. As the second application, we derive some Turán type inequalities for m! ultiple Hermite and multiple Laguerre polynomials (of two kinds). Finally, we study numerically the geometric configuration of zeros for the Wronskians of these multiple orthogonal polynomials. We observe that the zeros have regular configurations in the complex plane, which might be of independent interest.

  17. The Gibbs Phenomenon for Series of Orthogonal Polynomials

    ERIC Educational Resources Information Center

    Fay, T. H.; Kloppers, P. Hendrik

    2006-01-01

    This note considers the four classes of orthogonal polynomials--Chebyshev, Hermite, Laguerre, Legendre--and investigates the Gibbs phenomenon at a jump discontinuity for the corresponding orthogonal polynomial series expansions. The perhaps unexpected thing is that the Gibbs constant that arises for each class of polynomials appears to be the same…

  18. Determinants with orthogonal polynomial entries

    NASA Astrophysics Data System (ADS)

    Ismail, Mourad E. H.

    2005-06-01

    We use moment representations of orthogonal polynomials to evaluate the corresponding Hankel determinants formed by the orthogonal polynomials. We also study the Hankel determinants which start with pn on the top left-hand corner. As examples we evaluate the Hankel determinants whose entries are q-ultraspherical or Al-Salam-Chihara polynomials.

  19. On multiple orthogonal polynomials for discrete Meixner measures

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sorokin, Vladimir N

    2010-12-07

    The paper examines two examples of multiple orthogonal polynomials generalizing orthogonal polynomials of a discrete variable, meaning thereby the Meixner polynomials. One example is bound up with a discrete Nikishin system, and the other leads to essentially new effects. The limit distribution of the zeros of polynomials is obtained in terms of logarithmic equilibrium potentials and in terms of algebraic curves. Bibliography: 9 titles.

  20. A note on the zeros of Freud-Sobolev orthogonal polynomials

    NASA Astrophysics Data System (ADS)

    Moreno-Balcazar, Juan J.

    2007-10-01

    We prove that the zeros of a certain family of Sobolev orthogonal polynomials involving the Freud weight function e-x4 on are real, simple, and interlace with the zeros of the Freud polynomials, i.e., those polynomials orthogonal with respect to the weight function e-x4. Some numerical examples are shown.

  1. Gaussian quadrature for multiple orthogonal polynomials

    NASA Astrophysics Data System (ADS)

    Coussement, Jonathan; van Assche, Walter

    2005-06-01

    We study multiple orthogonal polynomials of type I and type II, which have orthogonality conditions with respect to r measures. These polynomials are connected by their recurrence relation of order r+1. First we show a relation with the eigenvalue problem of a banded lower Hessenberg matrix Ln, containing the recurrence coefficients. As a consequence, we easily find that the multiple orthogonal polynomials of type I and type II satisfy a generalized Christoffel-Darboux identity. Furthermore, we explain the notion of multiple Gaussian quadrature (for proper multi-indices), which is an extension of the theory of Gaussian quadrature for orthogonal polynomials and was introduced by Borges. In particular, we show that the quadrature points and quadrature weights can be expressed in terms of the eigenvalue problem of Ln.

  2. Riemann-Liouville Fractional Calculus of Certain Finite Class of Classical Orthogonal Polynomials

    NASA Astrophysics Data System (ADS)

    Malik, Pradeep; Swaminathan, A.

    2010-11-01

    In this work we consider certain class of classical orthogonal polynomials defined on the positive real line. These polynomials have their weight function related to the probability density function of F distribution and are finite in number up to orthogonality. We generalize these polynomials for fractional order by considering the Riemann-Liouville type operator on these polynomials. Various properties like explicit representation in terms of hypergeometric functions, differential equations, recurrence relations are derived.

  3. Umbral orthogonal polynomials

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lopez-Sendino, J. E.; del Olmo, M. A.

    2010-12-23

    We present an umbral operator version of the classical orthogonal polynomials. We obtain three families which are the umbral counterpart of the Jacobi, Laguerre and Hermite polynomials in the classical case.

  4. A Set of Orthogonal Polynomials That Generalize the Racah Coefficients or 6 - j Symbols.

    DTIC Science & Technology

    1978-03-01

    Generalized Hypergeometric Functions, Cambridge Univ. Press, Cambridge, 1966. [11] D. Stanton, Some basic hypergeometric polynomials arising from... Some bas ic hypergeometr ic an a logues of the classical orthogonal polynomials and applications , to appear. [3] C. de Boor and G. H. Golub , The...Report #1833 A SET OF ORTHOGONAL POLYNOMIALS THAT GENERALIZE THE RACAR COEFFICIENTS OR 6 — j SYMBOLS Richard Askey and James Wilson •

  5. Disconjugacy, regularity of multi-indexed rationally extended potentials, and Laguerre exceptional polynomials

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Grandati, Y.; Quesne, C.

    2013-07-15

    The power of the disconjugacy properties of second-order differential equations of Schrödinger type to check the regularity of rationally extended quantum potentials connected with exceptional orthogonal polynomials is illustrated by re-examining the extensions of the isotonic oscillator (or radial oscillator) potential derived in kth-order supersymmetric quantum mechanics or multistep Darboux-Bäcklund transformation method. The function arising in the potential denominator is proved to be a polynomial with a nonvanishing constant term, whose value is calculated by induction over k. The sign of this term being the same as that of the already known highest degree term, the potential denominator has themore » same sign at both extremities of the definition interval, a property that is shared by the seed eigenfunction used in the potential construction. By virtue of disconjugacy, such a property implies the nodeless character of both the eigenfunction and the resulting potential.« less

  6. Recurrence relations for orthogonal polynomials for PDEs in polar and cylindrical geometries.

    PubMed

    Richardson, Megan; Lambers, James V

    2016-01-01

    This paper introduces two families of orthogonal polynomials on the interval (-1,1), with weight function [Formula: see text]. The first family satisfies the boundary condition [Formula: see text], and the second one satisfies the boundary conditions [Formula: see text]. These boundary conditions arise naturally from PDEs defined on a disk with Dirichlet boundary conditions and the requirement of regularity in Cartesian coordinates. The families of orthogonal polynomials are obtained by orthogonalizing short linear combinations of Legendre polynomials that satisfy the same boundary conditions. Then, the three-term recurrence relations are derived. Finally, it is shown that from these recurrence relations, one can efficiently compute the corresponding recurrences for generalized Jacobi polynomials that satisfy the same boundary conditions.

  7. Laguerre-Freud Equations for the Recurrence Coefficients of Some Discrete Semi-Classical Orthogonal Polynomials of Class Two

    NASA Astrophysics Data System (ADS)

    Hounga, C.; Hounkonnou, M. N.; Ronveaux, A.

    2006-10-01

    In this paper, we give Laguerre-Freud equations for the recurrence coefficients of discrete semi-classical orthogonal polynomials of class two, when the polynomials in the Pearson equation are of the same degree. The case of generalized Charlier polynomials is also presented.

  8. Zeros and logarithmic asymptotics of Sobolev orthogonal polynomials for exponential weights

    NASA Astrophysics Data System (ADS)

    Díaz Mendoza, C.; Orive, R.; Pijeira Cabrera, H.

    2009-12-01

    We obtain the (contracted) weak zero asymptotics for orthogonal polynomials with respect to Sobolev inner products with exponential weights in the real semiaxis, of the form , with [gamma]>0, which include as particular cases the counterparts of the so-called Freud (i.e., when [phi] has a polynomial growth at infinity) and Erdös (when [phi] grows faster than any polynomial at infinity) weights. In addition, the boundness of the distance of the zeros of these Sobolev orthogonal polynomials to the convex hull of the support and, as a consequence, a result on logarithmic asymptotics are derived.

  9. Asymptotically extremal polynomials with respect to varying weights and application to Sobolev orthogonality

    NASA Astrophysics Data System (ADS)

    Díaz Mendoza, C.; Orive, R.; Pijeira Cabrera, H.

    2008-10-01

    We study the asymptotic behavior of the zeros of a sequence of polynomials whose weighted norms, with respect to a sequence of weight functions, have the same nth root asymptotic behavior as the weighted norms of certain extremal polynomials. This result is applied to obtain the (contracted) weak zero distribution for orthogonal polynomials with respect to a Sobolev inner product with exponential weights of the form e-[phi](x), giving a unified treatment for the so-called Freud (i.e., when [phi] has polynomial growth at infinity) and Erdös (when [phi] grows faster than any polynomial at infinity) cases. In addition, we provide a new proof for the bound of the distance of the zeros to the convex hull of the support for these Sobolev orthogonal polynomials.

  10. A Riemann-Hilbert approach to asymptotic questions for orthogonal polynomials

    NASA Astrophysics Data System (ADS)

    Deift, P.; Kriecherbauer, T.; McLaughlin, K. T.-R.; Venakides, S.; Zhou, X.

    2001-08-01

    A few years ago the authors introduced a new approach to study asymptotic questions for orthogonal polynomials. In this paper we give an overview of our method and review the results which have been obtained in Deift et al. (Internat. Math. Res. Notices (1997) 759, Comm. Pure Appl. Math. 52 (1999) 1491, 1335), Deift (Orthogonal Polynomials and Random Matrices: A Riemann-Hilbert Approach, Courant Lecture Notes, Vol. 3, New York University, 1999), Kriecherbauer and McLaughlin (Internat. Math. Res. Notices (1999) 299) and Baik et al. (J. Amer. Math. Soc. 12 (1999) 1119). We mainly consider orthogonal polynomials with respect to weights on the real line which are either (1) Freud-type weights d[alpha](x)=e-Q(x) dx (Q polynomial or Q(x)=x[beta], [beta]>0), or (2) varying weights d[alpha]n(x)=e-nV(x) dx (V analytic, limx-->[infinity] V(x)/logx=[infinity]). We obtain Plancherel-Rotach-type asymptotics in the entire complex plane as well as asymptotic formulae with error estimates for the leading coefficients, for the recurrence coefficients, and for the zeros of the orthogonal polynomials. Our proof starts from an observation of Fokas et al. (Comm. Math. Phys. 142 (1991) 313) that the orthogonal polynomials can be determined as solutions of certain matrix valued Riemann-Hilbert problems. We analyze the Riemann-Hilbert problems by a steepest descent type method introduced by Deift and Zhou (Ann. Math. 137 (1993) 295) and further developed in Deift and Zhou (Comm. Pure Appl. Math. 48 (1995) 277) and Deift et al. (Proc. Nat. Acad. Sci. USA 95 (1998) 450). A crucial step in our analysis is the use of the well-known equilibrium measure which describes the asymptotic distribution of the zeros of the orthogonal polynomials.

  11. Least-Squares Adaptive Control Using Chebyshev Orthogonal Polynomials

    NASA Technical Reports Server (NTRS)

    Nguyen, Nhan T.; Burken, John; Ishihara, Abraham

    2011-01-01

    This paper presents a new adaptive control approach using Chebyshev orthogonal polynomials as basis functions in a least-squares functional approximation. The use of orthogonal basis functions improves the function approximation significantly and enables better convergence of parameter estimates. Flight control simulations demonstrate the effectiveness of the proposed adaptive control approach.

  12. Quadratures with multiple nodes, power orthogonality, and moment-preserving spline approximation

    NASA Astrophysics Data System (ADS)

    Milovanovic, Gradimir V.

    2001-01-01

    Quadrature formulas with multiple nodes, power orthogonality, and some applications of such quadratures to moment-preserving approximation by defective splines are considered. An account on power orthogonality (s- and [sigma]-orthogonal polynomials) and generalized Gaussian quadratures with multiple nodes, including stable algorithms for numerical construction of the corresponding polynomials and Cotes numbers, are given. In particular, the important case of Chebyshev weight is analyzed. Finally, some applications in moment-preserving approximation of functions by defective splines are discussed.

  13. A study of the orthogonal polynomials associated with the quantum harmonic oscillator on constant curvature spaces

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Vignat, C.; Lamberti, P. W.

    2009-10-15

    Recently, Carinena, et al. [Ann. Phys. 322, 434 (2007)] introduced a new family of orthogonal polynomials that appear in the wave functions of the quantum harmonic oscillator in two-dimensional constant curvature spaces. They are a generalization of the Hermite polynomials and will be called curved Hermite polynomials in the following. We show that these polynomials are naturally related to the relativistic Hermite polynomials introduced by Aldaya et al. [Phys. Lett. A 156, 381 (1991)], and thus are Jacobi polynomials. Moreover, we exhibit a natural bijection between the solutions of the quantum harmonic oscillator on negative curvature spaces and on positivemore » curvature spaces. At last, we show a maximum entropy property for the ground states of these oscillators.« less

  14. A Generalized Sampling and Preconditioning Scheme for Sparse Approximation of Polynomial Chaos Expansions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jakeman, John D.; Narayan, Akil; Zhou, Tao

    We propose an algorithm for recovering sparse orthogonal polynomial expansions via collocation. A standard sampling approach for recovering sparse polynomials uses Monte Carlo sampling, from the density of orthogonality, which results in poor function recovery when the polynomial degree is high. Our proposed approach aims to mitigate this limitation by sampling with respect to the weighted equilibrium measure of the parametric domain and subsequently solves a preconditionedmore » $$\\ell^1$$-minimization problem, where the weights of the diagonal preconditioning matrix are given by evaluations of the Christoffel function. Our algorithm can be applied to a wide class of orthogonal polynomial families on bounded and unbounded domains, including all classical families. We present theoretical analysis to motivate the algorithm and numerical results that show our method is superior to standard Monte Carlo methods in many situations of interest. In conclusion, numerical examples are also provided to demonstrate that our proposed algorithm leads to comparable or improved accuracy even when compared with Legendre- and Hermite-specific algorithms.« less

  15. A Generalized Sampling and Preconditioning Scheme for Sparse Approximation of Polynomial Chaos Expansions

    DOE PAGES

    Jakeman, John D.; Narayan, Akil; Zhou, Tao

    2017-06-22

    We propose an algorithm for recovering sparse orthogonal polynomial expansions via collocation. A standard sampling approach for recovering sparse polynomials uses Monte Carlo sampling, from the density of orthogonality, which results in poor function recovery when the polynomial degree is high. Our proposed approach aims to mitigate this limitation by sampling with respect to the weighted equilibrium measure of the parametric domain and subsequently solves a preconditionedmore » $$\\ell^1$$-minimization problem, where the weights of the diagonal preconditioning matrix are given by evaluations of the Christoffel function. Our algorithm can be applied to a wide class of orthogonal polynomial families on bounded and unbounded domains, including all classical families. We present theoretical analysis to motivate the algorithm and numerical results that show our method is superior to standard Monte Carlo methods in many situations of interest. In conclusion, numerical examples are also provided to demonstrate that our proposed algorithm leads to comparable or improved accuracy even when compared with Legendre- and Hermite-specific algorithms.« less

  16. Generalized Freud's equation and level densities with polynomial potential

    NASA Astrophysics Data System (ADS)

    Boobna, Akshat; Ghosh, Saugata

    2013-08-01

    We study orthogonal polynomials with weight $\\exp[-NV(x)]$, where $V(x)=\\sum_{k=1}^{d}a_{2k}x^{2k}/2k$ is a polynomial of order 2d. We derive the generalised Freud's equations for $d=3$, 4 and 5 and using this obtain $R_{\\mu}=h_{\\mu}/h_{\\mu -1}$, where $h_{\\mu}$ is the normalization constant for the corresponding orthogonal polynomials. Moments of the density functions, expressed in terms of $R_{\\mu}$, are obtained using Freud's equation and using this, explicit results of level densities as $N\\rightarrow\\infty$ are derived.

  17. Asymptotic analysis of the density of states in random matrix models associated with a slowly decaying weight

    NASA Astrophysics Data System (ADS)

    Kuijlaars, A. B. J.

    2001-08-01

    The asymptotic behavior of polynomials that are orthogonal with respect to a slowly decaying weight is very different from the asymptotic behavior of polynomials that are orthogonal with respect to a Freud-type weight. While the latter has been extensively studied, much less is known about the former. Following an earlier investigation into the zero behavior, we study here the asymptotics of the density of states in a unitary ensemble of random matrices with a slowly decaying weight. This measure is also naturally connected with the orthogonal polynomials. It is shown that, after suitable rescaling, the weak limit is the same as the weak limit of the rescaled zeros.

  18. Orthogonal Polynomials Associated with Complementary Chain Sequences

    NASA Astrophysics Data System (ADS)

    Behera, Kiran Kumar; Sri Ranga, A.; Swaminathan, A.

    2016-07-01

    Using the minimal parameter sequence of a given chain sequence, we introduce the concept of complementary chain sequences, which we view as perturbations of chain sequences. Using the relation between these complementary chain sequences and the corresponding Verblunsky coefficients, the para-orthogonal polynomials and the associated Szegő polynomials are analyzed. Two illustrations, one involving Gaussian hypergeometric functions and the other involving Carathéodory functions are also provided. A connection between these two illustrations by means of complementary chain sequences is also observed.

  19. Orthonormal aberration polynomials for anamorphic optical imaging systems with circular pupils.

    PubMed

    Mahajan, Virendra N

    2012-06-20

    In a recent paper, we considered the classical aberrations of an anamorphic optical imaging system with a rectangular pupil, representing the terms of a power series expansion of its aberration function. These aberrations are inherently separable in the Cartesian coordinates (x,y) of a point on the pupil. Accordingly, there is x-defocus and x-coma, y-defocus and y-coma, and so on. We showed that the aberration polynomials orthonormal over the pupil and representing balanced aberrations for such a system are represented by the products of two Legendre polynomials, one for each of the two Cartesian coordinates of the pupil point; for example, L(l)(x)L(m)(y), where l and m are positive integers (including zero) and L(l)(x), for example, represents an orthonormal Legendre polynomial of degree l in x. The compound two-dimensional (2D) Legendre polynomials, like the classical aberrations, are thus also inherently separable in the Cartesian coordinates of the pupil point. Moreover, for every orthonormal polynomial L(l)(x)L(m)(y), there is a corresponding orthonormal polynomial L(l)(y)L(m)(x) obtained by interchanging x and y. These polynomials are different from the corresponding orthogonal polynomials for a system with rotational symmetry but a rectangular pupil. In this paper, we show that the orthonormal aberration polynomials for an anamorphic system with a circular pupil, obtained by the Gram-Schmidt orthogonalization of the 2D Legendre polynomials, are not separable in the two coordinates. Moreover, for a given polynomial in x and y, there is no corresponding polynomial obtained by interchanging x and y. For example, there are polynomials representing x-defocus, balanced x-coma, and balanced x-spherical aberration, but no corresponding y-aberration polynomials. The missing y-aberration terms are contained in other polynomials. We emphasize that the Zernike circle polynomials, although orthogonal over a circular pupil, are not suitable for an anamorphic system as they do not represent balanced aberrations for such a system.

  20. Wavefront analysis from its slope data

    NASA Astrophysics Data System (ADS)

    Mahajan, Virendra N.; Acosta, Eva

    2017-08-01

    In the aberration analysis of a wavefront over a certain domain, the polynomials that are orthogonal over and represent balanced wave aberrations for this domain are used. For example, Zernike circle polynomials are used for the analysis of a circular wavefront. Similarly, the annular polynomials are used to analyze the annular wavefronts for systems with annular pupils, as in a rotationally symmetric two-mirror system, such as the Hubble space telescope. However, when the data available for analysis are the slopes of a wavefront, as, for example, in a Shack- Hartmann sensor, we can integrate the slope data to obtain the wavefront data, and then use the orthogonal polynomials to obtain the aberration coefficients. An alternative is to find vector functions that are orthogonal to the gradients of the wavefront polynomials, and obtain the aberration coefficients directly as the inner products of these functions with the slope data. In this paper, we show that an infinite number of vector functions can be obtained in this manner. We show further that the vector functions that are irrotational are unique and propagate minimum uncorrelated additive random noise from the slope data to the aberration coefficients.

  1. Modeling Uncertainty in Steady State Diffusion Problems via Generalized Polynomial Chaos

    DTIC Science & Technology

    2002-07-25

    Some basic hypergeometric polynomials that generalize Jacobi polynomials . Memoirs Amer. Math. Soc., AMS... orthogonal polynomial functionals from the Askey scheme, as a generalization of the original polynomial chaos idea of Wiener (1938). A Galerkin projection...1) by generalized polynomial chaos expansion, where the uncertainties can be introduced through κ, f , or g, or some combinations. It is worth

  2. On Generalized Continuous D Semi-Classical Hermite and Chebychev Orthogonal Polynomials of Class One

    NASA Astrophysics Data System (ADS)

    Azatassou, E.; Hounkonnou, M. N.

    2002-10-01

    In this contribution, starting from the system of equations for recurrence coefficients generated by continuous D semi-classical Laguerre-Freud equations of class 1, we deduce the β constant recurrence relation coefficient γn leading to the generalized D semi-classical Hermite and Chebychev orthogonal polynomials of class 1. Various interesting cases are pointed out.

  3. Quantitative Boltzmann-Gibbs Principles via Orthogonal Polynomial Duality

    NASA Astrophysics Data System (ADS)

    Ayala, Mario; Carinci, Gioia; Redig, Frank

    2018-06-01

    We study fluctuation fields of orthogonal polynomials in the context of particle systems with duality. We thereby obtain a systematic orthogonal decomposition of the fluctuation fields of local functions, where the order of every term can be quantified. This implies a quantitative generalization of the Boltzmann-Gibbs principle. In the context of independent random walkers, we complete this program, including also fluctuation fields in non-stationary context (local equilibrium). For other interacting particle systems with duality such as the symmetric exclusion process, similar results can be obtained, under precise conditions on the n particle dynamics.

  4. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jakeman, John D.; Narayan, Akil; Zhou, Tao

    We propose an algorithm for recovering sparse orthogonal polynomial expansions via collocation. A standard sampling approach for recovering sparse polynomials uses Monte Carlo sampling, from the density of orthogonality, which results in poor function recovery when the polynomial degree is high. Our proposed approach aims to mitigate this limitation by sampling with respect to the weighted equilibrium measure of the parametric domain and subsequently solves a preconditionedmore » $$\\ell^1$$-minimization problem, where the weights of the diagonal preconditioning matrix are given by evaluations of the Christoffel function. Our algorithm can be applied to a wide class of orthogonal polynomial families on bounded and unbounded domains, including all classical families. We present theoretical analysis to motivate the algorithm and numerical results that show our method is superior to standard Monte Carlo methods in many situations of interest. In conclusion, numerical examples are also provided to demonstrate that our proposed algorithm leads to comparable or improved accuracy even when compared with Legendre- and Hermite-specific algorithms.« less

  5. Asymptotic formulae for the zeros of orthogonal polynomials

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Badkov, V M

    2012-09-30

    Let p{sub n}(t) be an algebraic polynomial that is orthonormal with weight p(t) on the interval [-1, 1]. When p(t) is a perturbation (in certain limits) of the Chebyshev weight of the first kind, the zeros of the polynomial p{sub n}( cos {tau}) and the differences between pairs of (not necessarily consecutive) zeros are shown to satisfy asymptotic formulae as n{yields}{infinity}, which hold uniformly with respect to the indices of the zeros. Similar results are also obtained for perturbations of the Chebyshev weight of the second kind. First, some preliminary results on the asymptotic behaviour of the difference between twomore » zeros of an orthogonal trigonometric polynomial, which are needed, are established. Bibliography: 15 titles.« less

  6. Approximation of eigenvalues of some differential equations by zeros of orthogonal polynomials

    NASA Astrophysics Data System (ADS)

    Volkmer, Hans

    2008-04-01

    Sequences of polynomials, orthogonal with respect to signed measures, are associated with a class of differential equations including the Mathieu, Lame and Whittaker-Hill equation. It is shown that the zeros of pn form sequences which converge to the eigenvalues of the corresponding differential equations. Moreover, interlacing properties of the zeros of pn are found. Applications to the numerical treatment of eigenvalue problems are given.

  7. A recursive algorithm for Zernike polynomials

    NASA Technical Reports Server (NTRS)

    Davenport, J. W.

    1982-01-01

    The analysis of a function defined on a rotationally symmetric system, with either a circular or annular pupil is discussed. In order to numerically analyze such systems it is typical to expand the given function in terms of a class of orthogonal polynomials. Because of their particular properties, the Zernike polynomials are especially suited for numerical calculations. Developed is a recursive algorithm that can be used to generate the Zernike polynomials up to a given order. The algorithm is recursively defined over J where R(J,N) is the Zernike polynomial of degree N obtained by orthogonalizing the sequence R(J), R(J+2), ..., R(J+2N) over (epsilon, 1). The terms in the preceding row - the (J-1) row - up to the N+1 term is needed for generating the (J,N)th term. Thus, the algorith generates an upper left-triangular table. This algorithm was placed in the computer with the necessary support program also included.

  8. Orthogonal basis with a conicoid first mode for shape specification of optical surfaces.

    PubMed

    Ferreira, Chelo; López, José L; Navarro, Rafael; Sinusía, Ester Pérez

    2016-03-07

    A rigorous and powerful theoretical framework is proposed to obtain systems of orthogonal functions (or shape modes) to represent optical surfaces. The method is general so it can be applied to different initial shapes and different polynomials. Here we present results for surfaces with circular apertures when the first basis function (mode) is a conicoid. The system for aspheres with rotational symmetry is obtained applying an appropriate change of variables to Legendre polynomials, whereas the system for general freeform case is obtained applying a similar procedure to spherical harmonics. Numerical comparisons with standard systems, such as Forbes and Zernike polynomials, are performed and discussed.

  9. Orthogonal sets of data windows constructed from trigonometric polynomials

    NASA Technical Reports Server (NTRS)

    Greenhall, C. A.

    1989-01-01

    Suboptimal, easily computable substitutes for the discrete prolate-spheroidal windows used by Thomson for spectral estimation are given. Trigonometric coefficients and energy leakages of the window polynomials are tabulated.

  10. Method of Characteristics Calculations and Computer Code for Materials with Arbitrary Equations of State and Using Orthogonal Polynomial Least Square Surface Fits

    NASA Technical Reports Server (NTRS)

    Chang, T. S.

    1974-01-01

    A numerical scheme using the method of characteristics to calculate the flow properties and pressures behind decaying shock waves for materials under hypervelocity impact is developed. Time-consuming double interpolation subroutines are replaced by a technique based on orthogonal polynomial least square surface fits. Typical calculated results are given and compared with the double interpolation results. The complete computer program is included.

  11. Deformed oscillator algebra approach of some quantum superintegrable Lissajous systems on the sphere and of their rational extensions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Marquette, Ian, E-mail: i.marquette@uq.edu.au; Quesne, Christiane, E-mail: cquesne@ulb.ac.be

    2015-06-15

    We extend the construction of 2D superintegrable Hamiltonians with separation of variables in spherical coordinates using combinations of shift, ladder, and supercharge operators to models involving rational extensions of the two-parameter Lissajous systems on the sphere. These new families of superintegrable systems with integrals of arbitrary order are connected with Jacobi exceptional orthogonal polynomials of type I (or II) and supersymmetric quantum mechanics. Moreover, we present an algebraic derivation of the degenerate energy spectrum for the one- and two-parameter Lissajous systems and the rationally extended models. These results are based on finitely generated polynomial algebras, Casimir operators, realizations as deformedmore » oscillator algebras, and finite-dimensional unitary representations. Such results have only been established so far for 2D superintegrable systems separable in Cartesian coordinates, which are related to a class of polynomial algebras that display a simpler structure. We also point out how the structure function of these deformed oscillator algebras is directly related with the generalized Heisenberg algebras spanned by the nonpolynomial integrals.« less

  12. Orthonormal aberration polynomials for anamorphic optical imaging systems with rectangular pupils.

    PubMed

    Mahajan, Virendra N

    2010-12-20

    The classical aberrations of an anamorphic optical imaging system, representing the terms of a power-series expansion of its aberration function, are separable in the Cartesian coordinates of a point on its pupil. We discuss the balancing of a classical aberration of a certain order with one or more such aberrations of lower order to minimize its variance across a rectangular pupil of such a system. We show that the balanced aberrations are the products of two Legendre polynomials, one for each of the two Cartesian coordinates of the pupil point. The compound Legendre polynomials are orthogonal across a rectangular pupil and, like the classical aberrations, are inherently separable in the Cartesian coordinates of the pupil point. They are different from the balanced aberrations and the corresponding orthogonal polynomials for a system with rotational symmetry but a rectangular pupil.

  13. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Marquette, Ian, E-mail: i.marquette@uq.edu.au; Quesne, Christiane, E-mail: cquesne@ulb.ac.be

    The purpose of this communication is to point out the connection between a 1D quantum Hamiltonian involving the fourth Painlevé transcendent P{sub IV}, obtained in the context of second-order supersymmetric quantum mechanics and third-order ladder operators, with a hierarchy of families of quantum systems called k-step rational extensions of the harmonic oscillator and related with multi-indexed X{sub m{sub 1,m{sub 2,…,m{sub k}}}} Hermite exceptional orthogonal polynomials of type III. The connection between these exactly solvable models is established at the level of the equivalence of the Hamiltonians using rational solutions of the fourth Painlevé equation in terms of generalized Hermite andmore » Okamoto polynomials. We also relate the different ladder operators obtained by various combinations of supersymmetric constructions involving Darboux-Crum and Krein-Adler supercharges, their zero modes and the corresponding energies. These results will demonstrate and clarify the relation observed for a particular case in previous papers.« less

  14. From sequences to polynomials and back, via operator orderings

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Amdeberhan, Tewodros, E-mail: tamdeber@tulane.edu; Dixit, Atul, E-mail: adixit@tulane.edu; Moll, Victor H., E-mail: vhm@tulane.edu

    2013-12-15

    Bender and Dunne [“Polynomials and operator orderings,” J. Math. Phys. 29, 1727–1731 (1988)] showed that linear combinations of words q{sup k}p{sup n}q{sup n−k}, where p and q are subject to the relation qp − pq = ı, may be expressed as a polynomial in the symbol z=1/2 (qp+pq). Relations between such polynomials and linear combinations of the transformed coefficients are explored. In particular, examples yielding orthogonal polynomials are provided.

  15. Exact mapping between system-reservoir quantum models and semi-infinite discrete chains using orthogonal polynomials

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chin, Alex W.; Rivas, Angel; Huelga, Susana F.

    2010-09-15

    By using the properties of orthogonal polynomials, we present an exact unitary transformation that maps the Hamiltonian of a quantum system coupled linearly to a continuum of bosonic or fermionic modes to a Hamiltonian that describes a one-dimensional chain with only nearest-neighbor interactions. This analytical transformation predicts a simple set of relations between the parameters of the chain and the recurrence coefficients of the orthogonal polynomials used in the transformation and allows the chain parameters to be computed using numerically stable algorithms that have been developed to compute recurrence coefficients. We then prove some general properties of this chain systemmore » for a wide range of spectral functions and give examples drawn from physical systems where exact analytic expressions for the chain properties can be obtained. Crucially, the short-range interactions of the effective chain system permit these open-quantum systems to be efficiently simulated by the density matrix renormalization group methods.« less

  16. Modeling the High Speed Research Cycle 2B Longitudinal Aerodynamic Database Using Multivariate Orthogonal Functions

    NASA Technical Reports Server (NTRS)

    Morelli, E. A.; Proffitt, M. S.

    1999-01-01

    The data for longitudinal non-dimensional, aerodynamic coefficients in the High Speed Research Cycle 2B aerodynamic database were modeled using polynomial expressions identified with an orthogonal function modeling technique. The discrepancy between the tabular aerodynamic data and the polynomial models was tested and shown to be less than 15 percent for drag, lift, and pitching moment coefficients over the entire flight envelope. Most of this discrepancy was traced to smoothing local measurement noise and to the omission of mass case 5 data in the modeling process. A simulation check case showed that the polynomial models provided a compact and accurate representation of the nonlinear aerodynamic dependencies contained in the HSR Cycle 2B tabular aerodynamic database.

  17. A Stochastic Mixed Finite Element Heterogeneous Multiscale Method for Flow in Porous Media

    DTIC Science & Technology

    2010-08-01

    applicable for flow in porous media has drawn significant interest in the last few years. Several techniques like generalized polynomial chaos expansions (gPC...represents the stochastic solution as a polynomial approxima- tion. This interpolant is constructed via independent function calls to the de- terministic...of orthogonal polynomials [34,38] or sparse grid approximations [39–41]. It is well known that the global polynomial interpolation cannot resolve lo

  18. Coupling coefficients for tensor product representations of quantum SU(2)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Groenevelt, Wolter, E-mail: w.g.m.groenevelt@tudelft.nl

    2014-10-15

    We study tensor products of infinite dimensional irreducible {sup *}-representations (not corepresentations) of the SU(2) quantum group. We obtain (generalized) eigenvectors of certain self-adjoint elements using spectral analysis of Jacobi operators associated to well-known q-hypergeometric orthogonal polynomials. We also compute coupling coefficients between different eigenvectors corresponding to the same eigenvalue. Since the continuous spectrum has multiplicity two, the corresponding coupling coefficients can be considered as 2 × 2-matrix-valued orthogonal functions. We compute explicitly the matrix elements of these functions. The coupling coefficients can be considered as q-analogs of Bessel functions. As a results we obtain several q-integral identities involving q-hypergeometricmore » orthogonal polynomials and q-Bessel-type functions.« less

  19. Random matrices with external source and the asymptotic behaviour of multiple orthogonal polynomials

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Aptekarev, Alexander I; Lysov, Vladimir G; Tulyakov, Dmitrii N

    2011-02-28

    Ensembles of random Hermitian matrices with a distribution measure defined by an anharmonic potential perturbed by an external source are considered. The limiting characteristics of the eigenvalue distribution of the matrices in these ensembles are related to the asymptotic behaviour of a certain system of multiple orthogonal polynomials. Strong asymptotic formulae are derived for this system. As a consequence, for matrices in this ensemble the limit mean eigenvalue density is found, and a variational principle is proposed to characterize this density. Bibliography: 35 titles.

  20. Introduction to Real Orthogonal Polynomials

    DTIC Science & Technology

    1992-06-01

    uses Green’s functions. As motivation , consider the Dirichlet problem for the unit circle in the plane, which involves finding a harmonic function u(r...xv ; a, b ; q) - TO [q-N ab+’q ; q, xq b. Orthogoy RMotion O0 (bq :q)x p.(q* ; a, b ; q) pg(q’ ; a, b ; q) (q "q), (aq)x (q ; q), (I -abq) (bq ; q... motivation and justi- fication for continued study of the intrinsic structure of orthogonal polynomials. 99 LIST OF REFERENCES 1. Deyer, W. M., ed., CRC

  1. A 3D Ginibre Point Field

    NASA Astrophysics Data System (ADS)

    Kargin, Vladislav

    2018-06-01

    We introduce a family of three-dimensional random point fields using the concept of the quaternion determinant. The kernel of each field is an n-dimensional orthogonal projection on a linear space of quaternionic polynomials. We find explicit formulas for the basis of the orthogonal quaternion polynomials and for the kernel of the projection. For number of particles n → ∞, we calculate the scaling limits of the point field in the bulk and at the center of coordinates. We compare our construction with the previously introduced Fermi-sphere point field process.

  2. Operational method of solution of linear non-integer ordinary and partial differential equations.

    PubMed

    Zhukovsky, K V

    2016-01-01

    We propose operational method with recourse to generalized forms of orthogonal polynomials for solution of a variety of differential equations of mathematical physics. Operational definitions of generalized families of orthogonal polynomials are used in this context. Integral transforms and the operational exponent together with some special functions are also employed in the solutions. The examples of solution of physical problems, related to such problems as the heat propagation in various models, evolutional processes, Black-Scholes-like equations etc. are demonstrated by the operational technique.

  3. Cylinder surface test with Chebyshev polynomial fitting method

    NASA Astrophysics Data System (ADS)

    Yu, Kui-bang; Guo, Pei-ji; Chen, Xi

    2017-10-01

    Zernike polynomials fitting method is often applied in the test of optical components and systems, used to represent the wavefront and surface error in circular domain. Zernike polynomials are not orthogonal in rectangular region which results in its unsuitable for the test of optical element with rectangular aperture such as cylinder surface. Applying the Chebyshev polynomials which are orthogonal among the rectangular area as an substitution to the fitting method, can solve the problem. Corresponding to a cylinder surface with diameter of 50 mm and F number of 1/7, a measuring system has been designed in Zemax based on Fizeau Interferometry. The expressions of the two-dimensional Chebyshev polynomials has been given and its relationship with the aberration has been presented. Furthermore, Chebyshev polynomials are used as base items to analyze the rectangular aperture test data. The coefficient of different items are obtained from the test data through the method of least squares. Comparing the Chebyshev spectrum in different misalignment, it show that each misalignment is independence and has a certain relationship with the certain Chebyshev terms. The simulation results show that, through the Legendre polynomials fitting method, it will be a great improvement in the efficient of the detection and adjustment of the cylinder surface test.

  4. Orthogonal fast spherical Bessel transform on uniform grid

    NASA Astrophysics Data System (ADS)

    Serov, Vladislav V.

    2017-07-01

    We propose an algorithm for the orthogonal fast discrete spherical Bessel transform on a uniform grid. Our approach is based upon the spherical Bessel transform factorization into the two subsequent orthogonal transforms, namely the fast Fourier transform and the orthogonal transform founded on the derivatives of the discrete Legendre orthogonal polynomials. The method utility is illustrated by its implementation for the problem of a two-atomic molecule in a time-dependent external field simulating the one utilized in the attosecond streaking technique.

  5. Orthonormal vector polynomials in a unit circle, Part I: Basis set derived from gradients of Zernike polynomials.

    PubMed

    Zhao, Chunyu; Burge, James H

    2007-12-24

    Zernike polynomials provide a well known, orthogonal set of scalar functions over a circular domain, and are commonly used to represent wavefront phase or surface irregularity. A related set of orthogonal functions is given here which represent vector quantities, such as mapping distortion or wavefront gradient. These functions are generated from gradients of Zernike polynomials, made orthonormal using the Gram- Schmidt technique. This set provides a complete basis for representing vector fields that can be defined as a gradient of some scalar function. It is then efficient to transform from the coefficients of the vector functions to the scalar Zernike polynomials that represent the function whose gradient was fit. These new vector functions have immediate application for fitting data from a Shack-Hartmann wavefront sensor or for fitting mapping distortion for optical testing. A subsequent paper gives an additional set of vector functions consisting only of rotational terms with zero divergence. The two sets together provide a complete basis that can represent all vector distributions in a circular domain.

  6. A Christoffel function weighted least squares algorithm for collocation approximations

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Narayan, Akil; Jakeman, John D.; Zhou, Tao

    Here, we propose, theoretically investigate, and numerically validate an algorithm for the Monte Carlo solution of least-squares polynomial approximation problems in a collocation framework. Our investigation is motivated by applications in the collocation approximation of parametric functions, which frequently entails construction of surrogates via orthogonal polynomials. A standard Monte Carlo approach would draw samples according to the density defining the orthogonal polynomial family. Our proposed algorithm instead samples with respect to the (weighted) pluripotential equilibrium measure of the domain, and subsequently solves a weighted least-squares problem, with weights given by evaluations of the Christoffel function. We present theoretical analysis tomore » motivate the algorithm, and numerical results that show our method is superior to standard Monte Carlo methods in many situations of interest.« less

  7. A Christoffel function weighted least squares algorithm for collocation approximations

    DOE PAGES

    Narayan, Akil; Jakeman, John D.; Zhou, Tao

    2016-11-28

    Here, we propose, theoretically investigate, and numerically validate an algorithm for the Monte Carlo solution of least-squares polynomial approximation problems in a collocation framework. Our investigation is motivated by applications in the collocation approximation of parametric functions, which frequently entails construction of surrogates via orthogonal polynomials. A standard Monte Carlo approach would draw samples according to the density defining the orthogonal polynomial family. Our proposed algorithm instead samples with respect to the (weighted) pluripotential equilibrium measure of the domain, and subsequently solves a weighted least-squares problem, with weights given by evaluations of the Christoffel function. We present theoretical analysis tomore » motivate the algorithm, and numerical results that show our method is superior to standard Monte Carlo methods in many situations of interest.« less

  8. STATLIB: NSWC Library of Statistical Programs and Subroutines

    DTIC Science & Technology

    1989-08-01

    Uncorrelated Weighted Polynomial Regression 41 .WEPORC Correlated Weighted Polynomial Regression 45 MROP Multiple Regression Using Orthogonal Polynomials ...could not and should not be con- NSWC TR 89-97 verted to the new general purpose computer (the current CDC 995). Some were designed tu compute...personal computers. They are referred to as SPSSPC+, BMDPC, and SASPC and in general are less comprehensive than their mainframe counterparts. The basic

  9. Higher order derivatives of R-Jacobi polynomials

    NASA Astrophysics Data System (ADS)

    Das, Sourav; Swaminathan, A.

    2016-06-01

    In this work, the R-Jacobi polynomials defined on the nonnegative real axis related to F-distribution are considered. Using their Sturm-Liouville system higher order derivatives are constructed. Orthogonality property of these higher ordered R-Jacobi polynomials are obtained besides their normal form, self-adjoint form and hypergeometric representation. Interesting results on the Interpolation formula and Gaussian quadrature formulae are obtained with numerical examples.

  10. Crossover ensembles of random matrices and skew-orthogonal polynomials

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kumar, Santosh, E-mail: skumar.physics@gmail.com; Pandey, Akhilesh, E-mail: ap0700@mail.jnu.ac.in

    2011-08-15

    Highlights: > We study crossover ensembles of Jacobi family of random matrices. > We consider correlations for orthogonal-unitary and symplectic-unitary crossovers. > We use the method of skew-orthogonal polynomials and quaternion determinants. > We prove universality of spectral correlations in crossover ensembles. > We discuss applications to quantum conductance and communication theory problems. - Abstract: In a recent paper (S. Kumar, A. Pandey, Phys. Rev. E, 79, 2009, p. 026211) we considered Jacobi family (including Laguerre and Gaussian cases) of random matrix ensembles and reported exact solutions of crossover problems involving time-reversal symmetry breaking. In the present paper we givemore » details of the work. We start with Dyson's Brownian motion description of random matrix ensembles and obtain universal hierarchic relations among the unfolded correlation functions. For arbitrary dimensions we derive the joint probability density (jpd) of eigenvalues for all transitions leading to unitary ensembles as equilibrium ensembles. We focus on the orthogonal-unitary and symplectic-unitary crossovers and give generic expressions for jpd of eigenvalues, two-point kernels and n-level correlation functions. This involves generalization of the theory of skew-orthogonal polynomials to crossover ensembles. We also consider crossovers in the circular ensembles to show the generality of our method. In the large dimensionality limit, correlations in spectra with arbitrary initial density are shown to be universal when expressed in terms of a rescaled symmetry breaking parameter. Applications of our crossover results to communication theory and quantum conductance problems are also briefly discussed.« less

  11. Luigi Gatteschi's work on asymptotics of special functions and their zeros

    NASA Astrophysics Data System (ADS)

    Gautschi, Walter; Giordano, Carla

    2008-12-01

    A good portion of Gatteschi's research publications-about 65%-is devoted to asymptotics of special functions and their zeros. Most prominently among the special functions studied figure classical orthogonal polynomials, notably Jacobi polynomials and their special cases, Laguerre polynomials, and Hermite polynomials by implication. Other important classes of special functions dealt with are Bessel functions of the first and second kind, Airy functions, and confluent hypergeometric functions, both in Tricomi's and Whittaker's form. This work is reviewed here, and organized along methodological lines.

  12. Non-Abelian integrable hierarchies: matrix biorthogonal polynomials and perturbations

    NASA Astrophysics Data System (ADS)

    Ariznabarreta, Gerardo; García-Ardila, Juan C.; Mañas, Manuel; Marcellán, Francisco

    2018-05-01

    In this paper, Geronimus–Uvarov perturbations for matrix orthogonal polynomials on the real line are studied and then applied to the analysis of non-Abelian integrable hierarchies. The orthogonality is understood in full generality, i.e. in terms of a nondegenerate continuous sesquilinear form, determined by a quasidefinite matrix of bivariate generalized functions with a well-defined support. We derive Christoffel-type formulas that give the perturbed matrix biorthogonal polynomials and their norms in terms of the original ones. The keystone for this finding is the Gauss–Borel factorization of the Gram matrix. Geronimus–Uvarov transformations are considered in the context of the 2D non-Abelian Toda lattice and noncommutative KP hierarchies. The interplay between transformations and integrable flows is discussed. Miwa shifts, τ-ratio matrix functions and Sato formulas are given. Bilinear identities, involving Geronimus–Uvarov transformations, first for the Baker functions, then secondly for the biorthogonal polynomials and its second kind functions, and finally for the τ-ratio matrix functions, are found.

  13. Optimal approximation of harmonic growth clusters by orthogonal polynomials

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Teodorescu, Razvan

    2008-01-01

    Interface dynamics in two-dimensional systems with a maximal number of conservation laws gives an accurate theoreticaI model for many physical processes, from the hydrodynamics of immiscible, viscous flows (zero surface-tension limit of Hele-Shaw flows), to the granular dynamics of hard spheres, and even diffusion-limited aggregation. Although a complete solution for the continuum case exists, efficient approximations of the boundary evolution are very useful due to their practical applications. In this article, the approximation scheme based on orthogonal polynomials with a deformed Gaussian kernel is discussed, as well as relations to potential theory.

  14. Staircase tableaux, the asymmetric exclusion process, and Askey-Wilson polynomials

    PubMed Central

    Corteel, Sylvie; Williams, Lauren K.

    2010-01-01

    We introduce some combinatorial objects called staircase tableaux, which have cardinality 4nn !, and connect them to both the asymmetric exclusion process (ASEP) and Askey-Wilson polynomials. The ASEP is a model from statistical mechanics introduced in the late 1960s, which describes a system of interacting particles hopping left and right on a one-dimensional lattice of n sites with open boundaries. It has been cited as a model for traffic flow and translation in protein synthesis. In its most general form, particles may enter and exit at the left with probabilities α and γ, and they may exit and enter at the right with probabilities β and δ. In the bulk, the probability of hopping left is q times the probability of hopping right. Our first result is a formula for the stationary distribution of the ASEP with all parameters general, in terms of staircase tableaux. Our second result is a formula for the moments of (the weight function of) Askey-Wilson polynomials, also in terms of staircase tableaux. Since the 1980s there has been a great deal of work giving combinatorial formulas for moments of classical orthogonal polynomials (e.g. Hermite, Charlier, Laguerre); among these polynomials, the Askey-Wilson polynomials are the most important, because they are at the top of the hierarchy of classical orthogonal polynomials. PMID:20348417

  15. Staircase tableaux, the asymmetric exclusion process, and Askey-Wilson polynomials.

    PubMed

    Corteel, Sylvie; Williams, Lauren K

    2010-04-13

    We introduce some combinatorial objects called staircase tableaux, which have cardinality 4(n)n!, and connect them to both the asymmetric exclusion process (ASEP) and Askey-Wilson polynomials. The ASEP is a model from statistical mechanics introduced in the late 1960s, which describes a system of interacting particles hopping left and right on a one-dimensional lattice of n sites with open boundaries. It has been cited as a model for traffic flow and translation in protein synthesis. In its most general form, particles may enter and exit at the left with probabilities alpha and gamma, and they may exit and enter at the right with probabilities beta and delta. In the bulk, the probability of hopping left is q times the probability of hopping right. Our first result is a formula for the stationary distribution of the ASEP with all parameters general, in terms of staircase tableaux. Our second result is a formula for the moments of (the weight function of) Askey-Wilson polynomials, also in terms of staircase tableaux. Since the 1980s there has been a great deal of work giving combinatorial formulas for moments of classical orthogonal polynomials (e.g. Hermite, Charlier, Laguerre); among these polynomials, the Askey-Wilson polynomials are the most important, because they are at the top of the hierarchy of classical orthogonal polynomials.

  16. Compressive sampling of polynomial chaos expansions: Convergence analysis and sampling strategies

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hampton, Jerrad; Doostan, Alireza, E-mail: alireza.doostan@colorado.edu

    2015-01-01

    Sampling orthogonal polynomial bases via Monte Carlo is of interest for uncertainty quantification of models with random inputs, using Polynomial Chaos (PC) expansions. It is known that bounding a probabilistic parameter, referred to as coherence, yields a bound on the number of samples necessary to identify coefficients in a sparse PC expansion via solution to an ℓ{sub 1}-minimization problem. Utilizing results for orthogonal polynomials, we bound the coherence parameter for polynomials of Hermite and Legendre type under their respective natural sampling distribution. In both polynomial bases we identify an importance sampling distribution which yields a bound with weaker dependence onmore » the order of the approximation. For more general orthonormal bases, we propose the coherence-optimal sampling: a Markov Chain Monte Carlo sampling, which directly uses the basis functions under consideration to achieve a statistical optimality among all sampling schemes with identical support. We demonstrate these different sampling strategies numerically in both high-order and high-dimensional, manufactured PC expansions. In addition, the quality of each sampling method is compared in the identification of solutions to two differential equations, one with a high-dimensional random input and the other with a high-order PC expansion. In both cases, the coherence-optimal sampling scheme leads to similar or considerably improved accuracy.« less

  17. The s-Ordered Fock Space Projectors Gained by the General Ordering Theorem

    NASA Astrophysics Data System (ADS)

    Farid, Shähandeh; Mohammad, Reza Bazrafkan; Mahmoud, Ashrafi

    2012-09-01

    Employing the general ordering theorem (GOT), operational methods and incomplete 2-D Hermite polynomials, we derive the t-ordered expansion of Fock space projectors. Using the result, the general ordered form of the coherent state projectors is obtained. This indeed gives a new integration formula regarding incomplete 2-D Hermite polynomials. In addition, the orthogonality relation of the incomplete 2-D Hermite polynomials is derived to resolve Dattoli's failure.

  18. Zernike Basis to Cartesian Transformations

    NASA Astrophysics Data System (ADS)

    Mathar, R. J.

    2009-12-01

    The radial polynomials of the 2D (circular) and 3D (spherical) Zernike functions are tabulated as powers of the radial distance. The reciprocal tabulation of powers of the radial distance in series of radial polynomials is also given, based on projections that take advantage of the orthogonality of the polynomials over the unit interval. They play a role in the expansion of products of the polynomials into sums, which is demonstrated by some examples. Multiplication of the polynomials by the angular bases (azimuth, polar angle) defines the Zernike functions, for which we derive transformations to and from the Cartesian coordinate system centered at the middle of the circle or sphere.

  19. A Unified Methodology for Computing Accurate Quaternion Color Moments and Moment Invariants.

    PubMed

    Karakasis, Evangelos G; Papakostas, George A; Koulouriotis, Dimitrios E; Tourassis, Vassilios D

    2014-02-01

    In this paper, a general framework for computing accurate quaternion color moments and their corresponding invariants is proposed. The proposed unified scheme arose by studying the characteristics of different orthogonal polynomials. These polynomials are used as kernels in order to form moments, the invariants of which can easily be derived. The resulted scheme permits the usage of any polynomial-like kernel in a unified and consistent way. The resulted moments and moment invariants demonstrate robustness to noisy conditions and high discriminative power. Additionally, in the case of continuous moments, accurate computations take place to avoid approximation errors. Based on this general methodology, the quaternion Tchebichef, Krawtchouk, Dual Hahn, Legendre, orthogonal Fourier-Mellin, pseudo Zernike and Zernike color moments, and their corresponding invariants are introduced. A selected paradigm presents the reconstruction capability of each moment family, whereas proper classification scenarios evaluate the performance of color moment invariants.

  20. Wind Tunnel Database Development using Modern Experiment Design and Multivariate Orthogonal Functions

    NASA Technical Reports Server (NTRS)

    Morelli, Eugene A.; DeLoach, Richard

    2003-01-01

    A wind tunnel experiment for characterizing the aerodynamic and propulsion forces and moments acting on a research model airplane is described. The model airplane called the Free-flying Airplane for Sub-scale Experimental Research (FASER), is a modified off-the-shelf radio-controlled model airplane, with 7 ft wingspan, a tractor propeller driven by an electric motor, and aerobatic capability. FASER was tested in the NASA Langley 12-foot Low-Speed Wind Tunnel, using a combination of traditional sweeps and modern experiment design. Power level was included as an independent variable in the wind tunnel test, to allow characterization of power effects on aerodynamic forces and moments. A modeling technique that employs multivariate orthogonal functions was used to develop accurate analytic models for the aerodynamic and propulsion force and moment coefficient dependencies from the wind tunnel data. Efficient methods for generating orthogonal modeling functions, expanding the orthogonal modeling functions in terms of ordinary polynomial functions, and analytical orthogonal blocking were developed and discussed. The resulting models comprise a set of smooth, differentiable functions for the non-dimensional aerodynamic force and moment coefficients in terms of ordinary polynomials in the independent variables, suitable for nonlinear aircraft simulation.

  1. A Ramanujan-type measure for the Askey-Wilson polynomials

    NASA Technical Reports Server (NTRS)

    Atakishiyev, Natig M.

    1995-01-01

    A Ramanujan-type representation for the Askey-Wilson q-beta integral, admitting the transformation q to q(exp -1), is obtained. Orthogonality of the Askey-Wilson polynomials with respect to a measure, entering into this representation, is proved. A simple way of evaluating the Askey-Wilson q-beta integral is also given.

  2. On Convergence Aspects of Spheroidal Monogenics

    NASA Astrophysics Data System (ADS)

    Georgiev, S.; Morais, J.

    2011-09-01

    Orthogonal polynomials have found wide applications in mathematical physics, numerical analysis, and other fields. Accordingly there is an enormous amount of variety of such polynomials and relations that describe their properties. The paper's main results are the discussion of approximation properties for monogenic functions over prolate spheroids in R3 in terms of orthogonal monogenic polynomials and their interdependences. Certain results are stated without proof for now. The motivation for the present study stems from the fact that these polynomials play an important role in the calculation of the Bergman kernel and Green's monogenic functions in a spheroid. Once these functions are known, it is possible to solve both basic boundary value and conformal mapping problems. Interestingly, most of the used methods have a n-dimensional counterpart and can be extended to arbitrary ellipsoids. But such a procedure would make the further study of the underlying ellipsoidal monogenics somewhat laborious, and for this reason we shall not discuss these general cases here. To the best of our knowledge, this does not appear to have been done in literature before.

  3. Planned Comparisons as Better Alternatives to ANOVA Omnibus Tests.

    ERIC Educational Resources Information Center

    Benton, Roberta L.

    Analyses of data are presented to illustrate the advantages of using a priori or planned comparisons rather than omnibus analysis of variance (ANOVA) tests followed by post hoc or posteriori testing. The two types of planned comparisons considered are planned orthogonal non-trend coding contrasts and orthogonal polynomial or trend contrast coding.…

  4. New separated polynomial solutions to the Zernike system on the unit disk and interbasis expansion.

    PubMed

    Pogosyan, George S; Wolf, Kurt Bernardo; Yakhno, Alexander

    2017-10-01

    The differential equation proposed by Frits Zernike to obtain a basis of polynomial orthogonal solutions on the unit disk to classify wavefront aberrations in circular pupils is shown to have a set of new orthonormal solution bases involving Legendre and Gegenbauer polynomials in nonorthogonal coordinates, close to Cartesian ones. We find the overlaps between the original Zernike basis and a representative of the new set, which turn out to be Clebsch-Gordan coefficients.

  5. CKP Hierarchy, Bosonic Tau Function and Bosonization Formulae

    NASA Astrophysics Data System (ADS)

    van de Leur, Johan W.; Orlov, Alexander Yu.; Shiota, Takahiro

    2012-06-01

    We develop the theory of CKP hierarchy introduced in the papers of Kyoto school [Date E., Jimbo M., Kashiwara M., Miwa T., J. Phys. Soc. Japan 50 (1981), 3806-3812] (see also [Kac V.G., van de Leur J.W., Adv. Ser. Math. Phys., Vol. 7, World Sci. Publ., Teaneck, NJ, 1989, 369-406]). We present appropriate bosonization formulae. We show that in the context of the CKP theory certain orthogonal polynomials appear. These polynomials are polynomial both in even and odd (in Grassmannian sense) variables.

  6. Solution of the mean spherical approximation for polydisperse multi-Yukawa hard-sphere fluid mixture using orthogonal polynomial expansions

    NASA Astrophysics Data System (ADS)

    Kalyuzhnyi, Yurij V.; Cummings, Peter T.

    2006-03-01

    The Blum-Høye [J. Stat. Phys. 19 317 (1978)] solution of the mean spherical approximation for a multicomponent multi-Yukawa hard-sphere fluid is extended to a polydisperse multi-Yukawa hard-sphere fluid. Our extension is based on the application of the orthogonal polynomial expansion method of Lado [Phys. Rev. E 54, 4411 (1996)]. Closed form analytical expressions for the structural and thermodynamic properties of the model are presented. They are given in terms of the parameters that follow directly from the solution. By way of illustration the method of solution is applied to describe the thermodynamic properties of the one- and two-Yukawa versions of the model.

  7. Interbasis expansions in the Zernike system

    NASA Astrophysics Data System (ADS)

    Atakishiyev, Natig M.; Pogosyan, George S.; Wolf, Kurt Bernardo; Yakhno, Alexander

    2017-10-01

    The differential equation with free boundary conditions on the unit disk that was proposed by Frits Zernike in 1934 to find Jacobi polynomial solutions (indicated as I) serves to define a classical system and a quantum system which have been found to be superintegrable. We have determined two new orthogonal polynomial solutions (indicated as II and III) that are separable and involve Legendre and Gegenbauer polynomials. Here we report on their three interbasis expansion coefficients: between the I-II and I-III bases, they are given by F32(⋯|1 ) polynomials that are also special su(2) Clebsch-Gordan coefficients and Hahn polynomials. Between the II-III bases, we find an expansion expressed by F43(⋯|1 ) 's and Racah polynomials that are related to the Wigner 6j coefficients.

  8. Parametric correlation functions to model the structure of permanent environmental (co)variances in milk yield random regression models.

    PubMed

    Bignardi, A B; El Faro, L; Cardoso, V L; Machado, P F; Albuquerque, L G

    2009-09-01

    The objective of the present study was to estimate milk yield genetic parameters applying random regression models and parametric correlation functions combined with a variance function to model animal permanent environmental effects. A total of 152,145 test-day milk yields from 7,317 first lactations of Holstein cows belonging to herds located in the southeastern region of Brazil were analyzed. Test-day milk yields were divided into 44 weekly classes of days in milk. Contemporary groups were defined by herd-test-day comprising a total of 2,539 classes. The model included direct additive genetic, permanent environmental, and residual random effects. The following fixed effects were considered: contemporary group, age of cow at calving (linear and quadratic regressions), and the population average lactation curve modeled by fourth-order orthogonal Legendre polynomial. Additive genetic effects were modeled by random regression on orthogonal Legendre polynomials of days in milk, whereas permanent environmental effects were estimated using a stationary or nonstationary parametric correlation function combined with a variance function of different orders. The structure of residual variances was modeled using a step function containing 6 variance classes. The genetic parameter estimates obtained with the model using a stationary correlation function associated with a variance function to model permanent environmental effects were similar to those obtained with models employing orthogonal Legendre polynomials for the same effect. A model using a sixth-order polynomial for additive effects and a stationary parametric correlation function associated with a seventh-order variance function to model permanent environmental effects would be sufficient for data fitting.

  9. Random regression models using Legendre orthogonal polynomials to evaluate the milk production of Alpine goats.

    PubMed

    Silva, F G; Torres, R A; Brito, L F; Euclydes, R F; Melo, A L P; Souza, N O; Ribeiro, J I; Rodrigues, M T

    2013-12-11

    The objective of this study was to identify the best random regression model using Legendre orthogonal polynomials to evaluate Alpine goats genetically and to estimate the parameters for test day milk yield. On the test day, we analyzed 20,710 records of milk yield of 667 goats from the Goat Sector of the Universidade Federal de Viçosa. The evaluated models had combinations of distinct fitting orders for polynomials (2-5), random genetic (1-7), and permanent environmental (1-7) fixed curves and a number of classes for residual variance (2, 4, 5, and 6). WOMBAT software was used for all genetic analyses. A random regression model using the best Legendre orthogonal polynomial for genetic evaluation of milk yield on the test day of Alpine goats considered a fixed curve of order 4, curve of genetic additive effects of order 2, curve of permanent environmental effects of order 7, and a minimum of 5 classes of residual variance because it was the most economical model among those that were equivalent to the complete model by the likelihood ratio test. Phenotypic variance and heritability were higher at the end of the lactation period, indicating that the length of lactation has more genetic components in relation to the production peak and persistence. It is very important that the evaluation utilizes the best combination of fixed, genetic additive and permanent environmental regressions, and number of classes of heterogeneous residual variance for genetic evaluation using random regression models, thereby enhancing the precision and accuracy of the estimates of parameters and prediction of genetic values.

  10. Processing short-term and long-term information with a combination of polynomial approximation techniques and time-delay neural networks.

    PubMed

    Fuchs, Erich; Gruber, Christian; Reitmaier, Tobias; Sick, Bernhard

    2009-09-01

    Neural networks are often used to process temporal information, i.e., any kind of information related to time series. In many cases, time series contain short-term and long-term trends or behavior. This paper presents a new approach to capture temporal information with various reference periods simultaneously. A least squares approximation of the time series with orthogonal polynomials will be used to describe short-term trends contained in a signal (average, increase, curvature, etc.). Long-term behavior will be modeled with the tapped delay lines of a time-delay neural network (TDNN). This network takes the coefficients of the orthogonal expansion of the approximating polynomial as inputs such considering short-term and long-term information efficiently. The advantages of the method will be demonstrated by means of artificial data and two real-world application examples, the prediction of the user number in a computer network and online tool wear classification in turning.

  11. An Efficient Spectral Method for Ordinary Differential Equations with Rational Function Coefficients

    NASA Technical Reports Server (NTRS)

    Coutsias, Evangelos A.; Torres, David; Hagstrom, Thomas

    1994-01-01

    We present some relations that allow the efficient approximate inversion of linear differential operators with rational function coefficients. We employ expansions in terms of a large class of orthogonal polynomial families, including all the classical orthogonal polynomials. These families obey a simple three-term recurrence relation for differentiation, which implies that on an appropriately restricted domain the differentiation operator has a unique banded inverse. The inverse is an integration operator for the family, and it is simply the tridiagonal coefficient matrix for the recurrence. Since in these families convolution operators (i.e. matrix representations of multiplication by a function) are banded for polynomials, we are able to obtain a banded representation for linear differential operators with rational coefficients. This leads to a method of solution of initial or boundary value problems that, besides having an operation count that scales linearly with the order of truncation N, is computationally well conditioned. Among the applications considered is the use of rational maps for the resolution of sharp interior layers.

  12. Extending Romanovski polynomials in quantum mechanics

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Quesne, C.

    2013-12-15

    Some extensions of the (third-class) Romanovski polynomials (also called Romanovski/pseudo-Jacobi polynomials), which appear in bound-state wavefunctions of rationally extended Scarf II and Rosen-Morse I potentials, are considered. For the former potentials, the generalized polynomials satisfy a finite orthogonality relation, while for the latter an infinite set of relations among polynomials with degree-dependent parameters is obtained. Both types of relations are counterparts of those known for conventional polynomials. In the absence of any direct information on the zeros of the Romanovski polynomials present in denominators, the regularity of the constructed potentials is checked by taking advantage of the disconjugacy properties ofmore » second-order differential equations of Schrödinger type. It is also shown that on going from Scarf I to Scarf II or from Rosen-Morse II to Rosen-Morse I potentials, the variety of rational extensions is narrowed down from types I, II, and III to type III only.« less

  13. Supersymmetric quantum mechanics: Engineered hierarchies of integrable potentials and related orthogonal polynomials

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Balondo Iyela, Daddy; Centre for Cosmology, Particle Physics and Phenomenology; Département de Physique, Université de Kinshasa

    2013-09-15

    Within the context of supersymmetric quantum mechanics and its related hierarchies of integrable quantum Hamiltonians and potentials, a general programme is outlined and applied to its first two simplest illustrations. Going beyond the usual restriction of shape invariance for intertwined potentials, it is suggested to require a similar relation for Hamiltonians in the hierarchy separated by an arbitrary number of levels, N. By requiring further that these two Hamiltonians be in fact identical up to an overall shift in energy, a periodic structure is installed in the hierarchy which should allow for its resolution. Specific classes of orthogonal polynomials characteristicmore » of such periodic hierarchies are thereby generated, while the methods of supersymmetric quantum mechanics then lead to generalised Rodrigues formulae and recursion relations for such polynomials. The approach also offers the practical prospect of quantum modelling through the engineering of quantum potentials from experimental energy spectra. In this paper, these ideas are presented and solved explicitly for the cases N= 1 and N= 2. The latter case is related to the generalised Laguerre polynomials, for which indeed new results are thereby obtained. In the context of dressing chains and deformed polynomial Heisenberg algebras, some partial results for N⩾ 3 also exist in the literature, which should be relevant to a complete study of the N⩾ 3 general periodic hierarchies.« less

  14. Perturbations of Jacobi polynomials and piecewise hypergeometric orthogonal systems

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Neretin, Yu A

    2006-12-31

    A family of non-complete orthogonal systems of functions on the ray [0,{infinity}] depending on three real parameters {alpha}, {beta}, {theta} is constructed. The elements of this system are piecewise hypergeometric functions with singularity at x=1. For {theta}=0 these functions vanish on [1,{infinity}) and the system is reduced to the Jacobi polynomials P{sub n}{sup {alpha}}{sup ,{beta}} on the interval [0,1]. In the general case the functions constructed can be regarded as an interpretation of the expressions P{sub n+{theta}}{sup {alpha}}{sup ,{beta}}. They are eigenfunctions of an exotic Sturm-Liouville boundary-value problem for the hypergeometric differential operator. The spectral measure for this problem ismore » found.« less

  15. Orthogonal polynomials, Laguerre Fock space, and quasi-classical asymptotics

    NASA Astrophysics Data System (ADS)

    Engliš, Miroslav; Ali, S. Twareque

    2015-07-01

    Continuing our earlier investigation of the Hermite case [S. T. Ali and M. Engliš, J. Math. Phys. 55, 042102 (2014)], we study an unorthodox variant of the Berezin-Toeplitz quantization scheme associated with Laguerre polynomials. In particular, we describe a "Laguerre analogue" of the classical Fock (Segal-Bargmann) space and the relevant semi-classical asymptotics of its Toeplitz operators; the former actually turns out to coincide with the Hilbert space appearing in the construction of the well-known Barut-Girardello coherent states. Further extension to the case of Legendre polynomials is likewise discussed.

  16. Entropy of orthogonal polynomials with Freud weights and information entropies of the harmonic oscillator potential

    NASA Astrophysics Data System (ADS)

    Van Assche, W.; Yáñez, R. J.; Dehesa, J. S.

    1995-08-01

    The information entropy of the harmonic oscillator potential V(x)=1/2λx2 in both position and momentum spaces can be expressed in terms of the so-called ``entropy of Hermite polynomials,'' i.e., the quantity Sn(H):= -∫-∞+∞H2n(x)log H2n(x) e-x2dx. These polynomials are instances of the polynomials orthogonal with respect to the Freud weights w(x)=exp(-||x||m), m≳0. Here, a very precise and general result of the entropy of Freud polynomials recently established by Aptekarev et al. [J. Math. Phys. 35, 4423-4428 (1994)], specialized to the Hermite kernel (case m=2), leads to an important refined asymptotic expression for the information entropies of very excited states (i.e., for large n) in both position and momentum spaces, to be denoted by Sρ and Sγ, respectively. Briefly, it is shown that, for large values of n, Sρ+1/2logλ≂log(π√2n/e)+o(1) and Sγ-1/2log λ≂log(π√2n/e)+o(1), so that Sρ+Sγ≂log(2π2n/e2)+o(1) in agreement with the generalized indetermination relation of Byalinicki-Birula and Mycielski [Commun. Math. Phys. 44, 129-132 (1975)]. Finally, the rate of convergence of these two information entropies is numerically analyzed. In addition, using a Rakhmanov result, we describe a totally new proof of the leading term of the entropy of Freud polynomials which, naturally, is just a weak version of the aforementioned general result.

  17. Mathematical construction and perturbation analysis of Zernike discrete orthogonal points.

    PubMed

    Shi, Zhenguang; Sui, Yongxin; Liu, Zhenyu; Peng, Ji; Yang, Huaijiang

    2012-06-20

    Zernike functions are orthogonal within the unit circle, but they are not over the discrete points such as CCD arrays or finite element grids. This will result in reconstruction errors for loss of orthogonality. By using roots of Legendre polynomials, a set of points within the unit circle can be constructed so that Zernike functions over the set are discretely orthogonal. Besides that, the location tolerances of the points are studied by perturbation analysis, and the requirements of the positioning precision are not very strict. Computer simulations show that this approach provides a very accurate wavefront reconstruction with the proposed sampling set.

  18. A hidden analytic structure of the Rabi model

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Moroz, Alexander, E-mail: wavescattering@yahoo.com

    2014-01-15

    The Rabi model describes the simplest interaction between a cavity mode with a frequency ω{sub c} and a two-level system with a resonance frequency ω{sub 0}. It is shown here that the spectrum of the Rabi model coincides with the support of the discrete Stieltjes integral measure in the orthogonality relations of recently introduced orthogonal polynomials. The exactly solvable limit of the Rabi model corresponding to Δ=ω{sub 0}/(2ω{sub c})=0, which describes a displaced harmonic oscillator, is characterized by the discrete Charlier polynomials in normalized energy ϵ, which are orthogonal on an equidistant lattice. A non-zero value of Δ leads tomore » non-classical discrete orthogonal polynomials ϕ{sub k}(ϵ) and induces a deformation of the underlying equidistant lattice. The results provide a basis for a novel analytic method of solving the Rabi model. The number of ca. 1350 calculable energy levels per parity subspace obtained in double precision (cca 16 digits) by an elementary stepping algorithm is up to two orders of magnitude higher than is possible to obtain by Braak’s solution. Any first n eigenvalues of the Rabi model arranged in increasing order can be determined as zeros of ϕ{sub N}(ϵ) of at least the degree N=n+n{sub t}. The value of n{sub t}>0, which is slowly increasing with n, depends on the required precision. For instance, n{sub t}≃26 for n=1000 and dimensionless interaction constant κ=0.2, if double precision is required. Given that the sequence of the lth zeros x{sub nl}’s of ϕ{sub n}(ϵ)’s defines a monotonically decreasing discrete flow with increasing n, the Rabi model is indistinguishable from an algebraically solvable model in any finite precision. Although we can rigorously prove our results only for dimensionless interaction constant κ<1, numerics and exactly solvable example suggest that the main conclusions remain to be valid also for κ≥1. -- Highlights: •A significantly simplified analytic solution of the Rabi model. •The spectrum is the lattice of discrete orthogonal polynomials. •Up to 1350 levels in double precision can be obtained for a given parity. •Omission of any level can be easily detected.« less

  19. Meixner Class of Non-commutative Generalized Stochastic Processes with Freely Independent Values II. The Generating Function

    NASA Astrophysics Data System (ADS)

    Bożejko, Marek; Lytvynov, Eugene

    2011-03-01

    Let T be an underlying space with a non-atomic measure σ on it. In [ Comm. Math. Phys. 292, 99-129 (2009)] the Meixner class of non-commutative generalized stochastic processes with freely independent values, {ω=(ω(t))_{tin T}} , was characterized through the continuity of the corresponding orthogonal polynomials. In this paper, we derive a generating function for these orthogonal polynomials. The first question we have to answer is: What should serve as a generating function for a system of polynomials of infinitely many non-commuting variables? We construct a class of operator-valued functions {Z=(Z(t))_{tin T}} such that Z( t) commutes with ω( s) for any {s,tin T}. Then a generating function can be understood as {G(Z,ω)=sum_{n=0}^infty int_{T^n}P^{(n)}(ω(t_1),dots,ω(t_n))Z(t_1)dots Z(t_n)} {σ(dt_1) dots σ(dt_n)} , where {P^{(n)}(ω(t_1),dots,ω(t_n))} is (the kernel of the) n th orthogonal polynomial. We derive an explicit form of G( Z, ω), which has a resolvent form and resembles the generating function in the classical case, albeit it involves integrals of non-commuting operators. We finally discuss a related problem of the action of the annihilation operators {partial_t,t in T} . In contrast to the classical case, we prove that the operators ∂ t related to the free Gaussian and Poisson processes have a property of globality. This result is genuinely infinite-dimensional, since in one dimension one loses the notion of globality.

  20. Calculation of Radar Probability of Detection in K-Distributed Sea Clutter and Noise

    DTIC Science & Technology

    2011-04-01

    Laguerre polynomials are generated from a recurrence relation, and the nodes and weights are calculated from the eigenvalues and eigenvectors of a...B.P. Flannery, Numerical Recipes in Fortran, Second Edition, Cambridge University Press (1992). 12. W. Gautschi, Orthogonal Polynomials (in Matlab...the integration, with the nodes and weights calculated using matrix methods, so that a general purpose numerical integration routine is not required

  1. Fibonacci chain polynomials: Identities from self-similarity

    NASA Technical Reports Server (NTRS)

    Lang, Wolfdieter

    1995-01-01

    Fibonacci chains are special diatomic, harmonic chains with uniform nearest neighbor interaction and two kinds of atoms (mass-ratio r) arranged according to the self-similar binary Fibonacci sequence ABAABABA..., which is obtained by repeated substitution of A yields AB and B yields A. The implications of the self-similarity of this sequence for the associated orthogonal polynomial systems which govern these Fibonacci chains with fixed mass-ratio r are studied.

  2. A family of Nikishin systems with periodic recurrence coefficients

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Delvaux, Steven; Lopez, Abey; Lopez, Guillermo L

    2013-01-31

    Suppose we have a Nikishin system of p measures with the kth generating measure of the Nikishin system supported on an interval {Delta}{sub k} subset of R with {Delta}{sub k} Intersection {Delta}{sub k+1} = Empty-Set for all k. It is well known that the corresponding staircase sequence of multiple orthogonal polynomials satisfies a (p+2)-term recurrence relation whose recurrence coefficients, under appropriate assumptions on the generating measures, have periodic limits of period p. (The limit values depend only on the positions of the intervals {Delta}{sub k}.) Taking these periodic limit values as the coefficients of a new (p+2)-term recurrence relation, wemore » construct a canonical sequence of monic polynomials {l_brace}P{sub n}{r_brace}{sub n=0}{sup {infinity}}, the so-called Chebyshev-Nikishin polynomials. We show that the polynomials P{sub n} themselves form a sequence of multiple orthogonal polynomials with respect to some Nikishin system of measures, with the kth generating measure being absolutely continuous on {Delta}{sub k}. In this way we generalize a result of the third author and Rocha [22] for the case p=2. The proof uses the connection with block Toeplitz matrices, and with a certain Riemann surface of genus zero. We also obtain strong asymptotics and an exact Widom-type formula for functions of the second kind of the Nikishin system for {l_brace}P{sub n}{r_brace}{sub n=0}{sup {infinity}}. Bibliography: 27 titles.« less

  3. Contragenic functions on spheroidal domains

    NASA Astrophysics Data System (ADS)

    García-Ancona, Raybel; Morais, Joao; Porter, R. Michael

    2018-05-01

    We construct bases of polynomials for the spaces of square-integrable harmonic functions which are orthogonal to the monogenic and antimonogenic $\\mathbb{R}^3$-valued functions defined in a prolate or oblate spheroid.

  4. Orthogonality of spherical harmonic coefficients

    NASA Astrophysics Data System (ADS)

    McLeod, M. G.

    1980-08-01

    Orthogonality relations are obtained for the spherical harmonic coefficients of functions defined on the surface of a sphere. Following a brief discussion of the orthogonality of Fourier series coefficients, consideration is given to the values averaged over all orientations of the coordinate system of the spherical harmonic coefficients of a function defined on the surface of a sphere that can be expressed in terms of Legendre polynomials for the special case where the function is the sum of two delta functions located at two different points on the sphere, and for the case of an essentially arbitrary function. It is noted that the orthogonality relations derived have found applications in statistical studies of the geomagnetic field.

  5. Diffraction Theory for Polygonal Apertures

    DTIC Science & Technology

    1988-07-01

    and utilized oblate spheroidal vector wave functions, and Nomura and Katsura (1955), who employed an expansion of the hypergeometric polynomial ...21 2 - 1 4, 2 - 1 3 4k3 - 3k 8 3 - 4 factor relates directly to the orthogonality relations for the Chebyshev polynomials given below. I T(Q TieQdk...convergence. 3.1.2.2 Gaussian Illuminated Corner In the sample calculation just discussed we discovered some of the basic characteristics of the GBE

  6. Lifting q-difference operators for Askey-Wilson polynomials and their weight function

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Atakishiyeva, M. K.; Atakishiyev, N. M., E-mail: natig_atakishiyev@hotmail.com

    2011-06-15

    We determine an explicit form of a q-difference operator that transforms the continuous q-Hermite polynomials H{sub n}(x | q) of Rogers into the Askey-Wilson polynomials p{sub n}(x; a, b, c, d | q) on the top level in the Askey q-scheme. This operator represents a special convolution-type product of four one-parameter q-difference operators of the form {epsilon}{sub q}(c{sub q}D{sub q}) (where c{sub q} are some constants), defined as Exton's q-exponential function {epsilon}{sub q}(z) in terms of the Askey-Wilson divided q-difference operator D{sub q}. We also determine another q-difference operator that lifts the orthogonality weight function for the continuous q-Hermite polynomialsH{submore » n}(x | q) up to the weight function, associated with the Askey-Wilson polynomials p{sub n}(x; a, b, c, d | q).« less

  7. Combining freeform optics and curved detectors for wide field imaging: a polynomial approach over squared aperture.

    PubMed

    Muslimov, Eduard; Hugot, Emmanuel; Jahn, Wilfried; Vives, Sebastien; Ferrari, Marc; Chambion, Bertrand; Henry, David; Gaschet, Christophe

    2017-06-26

    In the recent years a significant progress was achieved in the field of design and fabrication of optical systems based on freeform optical surfaces. They provide a possibility to build fast, wide-angle and high-resolution systems, which are very compact and free of obscuration. However, the field of freeform surfaces design techniques still remains underexplored. In the present paper we use the mathematical apparatus of orthogonal polynomials defined over a square aperture, which was developed before for the tasks of wavefront reconstruction, to describe shape of a mirror surface. Two cases, namely Legendre polynomials and generalization of the Zernike polynomials on a square, are considered. The potential advantages of these polynomials sets are demonstrated on example of a three-mirror unobscured telescope with F/# = 2.5 and FoV = 7.2x7.2°. In addition, we discuss possibility of use of curved detectors in such a design.

  8. Application of neural networks with orthogonal activation functions in control of dynamical systems

    NASA Astrophysics Data System (ADS)

    Nikolić, Saša S.; Antić, Dragan S.; Milojković, Marko T.; Milovanović, Miroslav B.; Perić, Staniša Lj.; Mitić, Darko B.

    2016-04-01

    In this article, we present a new method for the synthesis of almost and quasi-orthogonal polynomials of arbitrary order. Filters designed on the bases of these functions are generators of generalised quasi-orthogonal signals for which we derived and presented necessary mathematical background. Based on theoretical results, we designed and practically implemented generalised first-order (k = 1) quasi-orthogonal filter and proved its quasi-orthogonality via performed experiments. Designed filters can be applied in many scientific areas. In this article, generated functions were successfully implemented in Nonlinear Auto Regressive eXogenous (NARX) neural network as activation functions. One practical application of the designed orthogonal neural network is demonstrated through the example of control of the complex technical non-linear system - laboratory magnetic levitation system. Obtained results were compared with neural networks with standard activation functions and orthogonal functions of trigonometric shape. The proposed network demonstrated superiority over existing solutions in the sense of system performances.

  9. On universal knot polynomials

    NASA Astrophysics Data System (ADS)

    Mironov, A.; Mkrtchyan, R.; Morozov, A.

    2016-02-01

    We present a universal knot polynomials for 2- and 3-strand torus knots in adjoint representation, by universalization of appropriate Rosso-Jones formula. According to universality, these polynomials coincide with adjoined colored HOMFLY and Kauffman polynomials at SL and SO/Sp lines on Vogel's plane, respectively and give their exceptional group's counterparts on exceptional line. We demonstrate that [m,n]=[n,m] topological invariance, when applicable, take place on the entire Vogel's plane. We also suggest the universal form of invariant of figure eight knot in adjoint representation, and suggest existence of such universalization for any knot in adjoint and its descendant representations. Properties of universal polynomials and applications of these results are discussed.

  10. Orthogonal polynomials for refinable linear functionals

    NASA Astrophysics Data System (ADS)

    Laurie, Dirk; de Villiers, Johan

    2006-12-01

    A refinable linear functional is one that can be expressed as a convex combination and defined by a finite number of mask coefficients of certain stretched and shifted replicas of itself. The notion generalizes an integral weighted by a refinable function. The key to calculating a Gaussian quadrature formula for such a functional is to find the three-term recursion coefficients for the polynomials orthogonal with respect to that functional. We show how to obtain the recursion coefficients by using only the mask coefficients, and without the aid of modified moments. Our result implies the existence of the corresponding refinable functional whenever the mask coefficients are nonnegative, even when the same mask does not define a refinable function. The algorithm requires O(n^2) rational operations and, thus, can in principle deliver exact results. Numerical evidence suggests that it is also effective in floating-point arithmetic.

  11. Quadrature rules with multiple nodes for evaluating integrals with strong singularities

    NASA Astrophysics Data System (ADS)

    Milovanovic, Gradimir V.; Spalevic, Miodrag M.

    2006-05-01

    We present a method based on the Chakalov-Popoviciu quadrature formula of Lobatto type, a rather general case of quadrature with multiple nodes, for approximating integrals defined by Cauchy principal values or by Hadamard finite parts. As a starting point we use the results obtained by L. Gori and E. Santi (cf. On the evaluation of Hilbert transforms by means of a particular class of Turan quadrature rules, Numer. Algorithms 10 (1995), 27-39; Quadrature rules based on s-orthogonal polynomials for evaluating integrals with strong singularities, Oberwolfach Proceedings: Applications and Computation of Orthogonal Polynomials, ISNM 131, Birkhauser, Basel, 1999, pp. 109-119). We generalize their results by using some of our numerical procedures for stable calculation of the quadrature formula with multiple nodes of Gaussian type and proposed methods for estimating the remainder term in such type of quadrature formulae. Numerical examples, illustrations and comparisons are also shown.

  12. Trade off between variable and fixed size normalization in orthogonal polynomials based iris recognition system.

    PubMed

    Krishnamoorthi, R; Anna Poorani, G

    2016-01-01

    Iris normalization is an important stage in any iris biometric, as it has a propensity to trim down the consequences of iris distortion. To indemnify the variation in size of the iris owing to the action of stretching or enlarging the pupil in iris acquisition process and camera to eyeball distance, two normalization schemes has been proposed in this work. In the first method, the iris region of interest is normalized by converting the iris into the variable size rectangular model in order to avoid the under samples near the limbus border. In the second method, the iris region of interest is normalized by converting the iris region into a fixed size rectangular model in order to avoid the dimensional discrepancies between the eye images. The performance of the proposed normalization methods is evaluated with orthogonal polynomials based iris recognition in terms of FAR, FRR, GAR, CRR and EER.

  13. Complex Analysis and Related Topics. Proceedings of the Conference held in Amsterdam on 27 - 29 January 1993

    DTIC Science & Technology

    1993-01-29

    Bessel functions and Jacobi functions (cf. [2]). References [1] R. Askey & J. Wilson, Some basic hypergeometric orthogonal polynomials that gen- eralize...1; 1] can be treated as a part of general theory of T-systems (see [81 for that theory and [7] for some aspects of the Chebyshev polynomials theory...waves in elastic media. It has been known for some time that these multiplicities sometimes occur for topological reasons and are present generically , see

  14. Stitching interferometry of a full cylinder without using overlap areas

    NASA Astrophysics Data System (ADS)

    Peng, Junzheng; Chen, Dingfu; Yu, Yingjie

    2017-08-01

    Traditional stitching interferometry requires finding out the overlap correspondence and computing the discrepancies in the overlap regions, which makes it complex and time-consuming to obtain the 360° form map of a cylinder. In this paper, we develop a cylinder stitching model based on a new set of orthogonal polynomials, termed Legendre Fourier (LF) polynomials. With these polynomials, individual subaperture data can be expanded as a composition of the inherent form of a partial cylinder surface and additional misalignment parameters. Then the 360° form map can be acquired by simultaneously fitting all subaperture data with the LF polynomials. A metal shaft was measured to experimentally verify the proposed method. In contrast to traditional stitching interferometry, our technique does not require overlapping of adjacent subapertures, thus significantly reducing the measurement time and making the stitching algorithm simple.

  15. Polynomial solution of quantum Grassmann matrices

    NASA Astrophysics Data System (ADS)

    Tierz, Miguel

    2017-05-01

    We study a model of quantum mechanical fermions with matrix-like index structure (with indices N and L) and quartic interactions, recently introduced by Anninos and Silva. We compute the partition function exactly with q-deformed orthogonal polynomials (Stieltjes-Wigert polynomials), for different values of L and arbitrary N. From the explicit evaluation of the thermal partition function, the energy levels and degeneracies are determined. For a given L, the number of states of different energy is quadratic in N, which implies an exponential degeneracy of the energy levels. We also show that at high-temperature we have a Gaussian matrix model, which implies a symmetry that swaps N and L, together with a Wick rotation of the spectral parameter. In this limit, we also write the partition function, for generic L and N, in terms of a single generalized Hermite polynomial.

  16. Orthogonal Gaussian process models

    DOE PAGES

    Plumlee, Matthew; Joseph, V. Roshan

    2017-01-01

    Gaussian processes models are widely adopted for nonparameteric/semi-parametric modeling. Identifiability issues occur when the mean model contains polynomials with unknown coefficients. Though resulting prediction is unaffected, this leads to poor estimation of the coefficients in the mean model, and thus the estimated mean model loses interpretability. This paper introduces a new Gaussian process model whose stochastic part is orthogonal to the mean part to address this issue. As a result, this paper also discusses applications to multi-fidelity simulations using data examples.

  17. Orthogonal Gaussian process models

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Plumlee, Matthew; Joseph, V. Roshan

    Gaussian processes models are widely adopted for nonparameteric/semi-parametric modeling. Identifiability issues occur when the mean model contains polynomials with unknown coefficients. Though resulting prediction is unaffected, this leads to poor estimation of the coefficients in the mean model, and thus the estimated mean model loses interpretability. This paper introduces a new Gaussian process model whose stochastic part is orthogonal to the mean part to address this issue. As a result, this paper also discusses applications to multi-fidelity simulations using data examples.

  18. Radar orthogonality and radar length in Finsler and metric spacetime geometry

    NASA Astrophysics Data System (ADS)

    Pfeifer, Christian

    2014-09-01

    The radar experiment connects the geometry of spacetime with an observers measurement of spatial length. We investigate the radar experiment on Finsler spacetimes which leads to a general definition of radar orthogonality and radar length. The directions radar orthogonal to an observer form the spatial equal time surface an observer experiences and the radar length is the physical length the observer associates to spatial objects. We demonstrate these concepts on a forth order polynomial Finsler spacetime geometry which may emerge from area metric or premetric linear electrodynamics or in quantum gravity phenomenology. In an explicit generalization of Minkowski spacetime geometry we derive the deviation from the Euclidean spatial length measure in an observers rest frame explicitly.

  19. Pseudo spectral collocation with Maxwell polynomials for kinetic equations with energy diffusion

    NASA Astrophysics Data System (ADS)

    Sánchez-Vizuet, Tonatiuh; Cerfon, Antoine J.

    2018-02-01

    We study the approximation and stability properties of a recently popularized discretization strategy for the speed variable in kinetic equations, based on pseudo-spectral collocation on a grid defined by the zeros of a non-standard family of orthogonal polynomials called Maxwell polynomials. Taking a one-dimensional equation describing energy diffusion due to Fokker-Planck collisions with a Maxwell-Boltzmann background distribution as the test bench for the performance of the scheme, we find that Maxwell based discretizations outperform other commonly used schemes in most situations, often by orders of magnitude. This provides a strong motivation for their use in high-dimensional gyrokinetic simulations. However, we also show that Maxwell based schemes are subject to a non-modal time stepping instability in their most straightforward implementation, so that special care must be given to the discrete representation of the linear operators in order to benefit from the advantages provided by Maxwell polynomials.

  20. Efficient algorithms for construction of recurrence relations for the expansion and connection coefficients in series of Al-Salam Carlitz I polynomials

    NASA Astrophysics Data System (ADS)

    Doha, E. H.; Ahmed, H. M.

    2005-12-01

    Two formulae expressing explicitly the derivatives and moments of Al-Salam-Carlitz I polynomials of any degree and for any order in terms of Al-Salam-Carlitz I themselves are proved. Two other formulae for the expansion coefficients of general-order derivatives Dpqf(x), and for the moments xellDpqf(x), of an arbitrary function f(x) in terms of its original expansion coefficients are also obtained. Application of these formulae for solving q-difference equations with varying coefficients, by reducing them to recurrence relations in the expansion coefficients of the solution, is explained. An algebraic symbolic approach (using Mathematica) in order to build and solve recursively for the connection coefficients between Al-Salam-Carlitz I polynomials and any system of basic hypergeometric orthogonal polynomials, belonging to the q-Hahn class, is described.

  1. Genetic modelling of test day records in dairy sheep using orthogonal Legendre polynomials.

    PubMed

    Kominakis, A; Volanis, M; Rogdakis, E

    2001-03-01

    Test day milk yields of three lactations in Sfakia sheep were analyzed fitting a random regression (RR) model, regressing on orthogonal polynomials of the stage of the lactation period, i.e. days in milk. Univariate (UV) and multivariate (MV) analyses were also performed for four stages of the lactation period, represented by average days in milk, i.e. 15, 45, 70 and 105 days, to compare estimates obtained from RR models with estimates from UV and MV analyses. The total number of test day records were 790, 1314 and 1041 obtained from 214, 342 and 303 ewes in the first, second and third lactation, respectively. Error variances and covariances between regression coefficients were estimated by restricted maximum likelihood. Models were compared using likelihood ratio tests (LRTs). Log likelihoods were not significantly reduced when the rank of the orthogonal Legendre polynomials (LPs) of lactation stage was reduced from 4 to 2 and homogenous variances for lactation stages within lactations were considered. Mean weighted heritability estimates with RR models were 0.19, 0.09 and 0.08 for first, second and third lactation, respectively. The respective estimates obtained from UV analyses were 0.14, 0.12 and 0.08, respectively. Mean permanent environmental variance, as a proportion of the total, was high at all stages and lactations ranging from 0.54 to 0.71. Within lactations, genetic and permanent environmental correlations between lactation stages were in the range from 0.36 to 0.99 and 0.76 to 0.99, respectively. Genetic parameters for additive genetic and permanent environmental effects obtained from RR models were different from those obtained from UV and MV analyses.

  2. Orthogonal polynomial projectors for the Projector Augmented Wave (PAW) formalism.

    NASA Astrophysics Data System (ADS)

    Holzwarth, N. A. W.; Matthews, G. E.; Tackett, A. R.; Dunning, R. B.

    1998-03-01

    The PAW method for density functional electronic structure calculations developed by Blöchl(Phys. Rev. B 50), 17953 (1994) and also used by our group(Phys. Rev. B 55), 2005 (1997) has numerical advantages of a pseudopotential technique while retaining the physics of an all-electron formalism. We describe a new method for generating the necessary set of atom-centered projector and basis functions, based on choosing the projector functions from a set of orthogonal polynomials multiplied by a localizing weight factor. Numerical benefits of the new scheme result from having direct control of the shape of the projector functions and from the use of a simple repulsive local potential term to eliminate ``ghost state" problems, which can haunt calculations of this kind. We demonstrate the method by calculating the cohesive energies of CaF2 and Mo and the density of states of CaMoO4 which shows detailed agreement with LAPW results over a 66 eV range of energy including upper core, valence, and conduction band states.

  3. Application of derivative spectrophotometry under orthogonal polynomial at unequal intervals: determination of metronidazole and nystatin in their pharmaceutical mixture.

    PubMed

    Korany, Mohamed A; Abdine, Heba H; Ragab, Marwa A A; Aboras, Sara I

    2015-05-15

    This paper discusses a general method for the use of orthogonal polynomials for unequal intervals (OPUI) to eliminate interferences in two-component spectrophotometric analysis. In this paper, a new approach was developed by using first derivative D1 curve instead of absorbance curve to be convoluted using OPUI method for the determination of metronidazole (MTR) and nystatin (NYS) in their mixture. After applying derivative treatment of the absorption data many maxima and minima points appeared giving characteristic shape for each drug allowing the selection of different number of points for the OPUI method for each drug. This allows the specific and selective determination of each drug in presence of the other and in presence of any matrix interference. The method is particularly useful when the two absorption spectra have considerable overlap. The results obtained are encouraging and suggest that the method can be widely applied to similar problems. Copyright © 2015 Elsevier B.V. All rights reserved.

  4. Hamiltonian dynamics of a quantum of space: hidden symmetries and spectrum of the volume operator, and discrete orthogonal polynomials

    NASA Astrophysics Data System (ADS)

    Aquilanti, Vincenzo; Marinelli, Dimitri; Marzuoli, Annalisa

    2013-05-01

    The action of the quantum mechanical volume operator, introduced in connection with a symmetric representation of the three-body problem and recently recognized to play a fundamental role in discretized quantum gravity models, can be given as a second-order difference equation which, by a complex phase change, we turn into a discrete Schrödinger-like equation. The introduction of discrete potential-like functions reveals the surprising crucial role here of hidden symmetries, first discovered by Regge for the quantum mechanical 6j symbols; insight is provided into the underlying geometric features. The spectrum and wavefunctions of the volume operator are discussed from the viewpoint of the Hamiltonian evolution of an elementary ‘quantum of space’, and a transparent asymptotic picture of the semiclassical and classical regimes emerges. The definition of coordinates adapted to the Regge symmetry is exploited for the construction of a novel set of discrete orthogonal polynomials, characterizing the oscillatory components of torsion-like modes.

  5. AKLSQF - LEAST SQUARES CURVE FITTING

    NASA Technical Reports Server (NTRS)

    Kantak, A. V.

    1994-01-01

    The Least Squares Curve Fitting program, AKLSQF, computes the polynomial which will least square fit uniformly spaced data easily and efficiently. The program allows the user to specify the tolerable least squares error in the fitting or allows the user to specify the polynomial degree. In both cases AKLSQF returns the polynomial and the actual least squares fit error incurred in the operation. The data may be supplied to the routine either by direct keyboard entry or via a file. AKLSQF produces the least squares polynomial in two steps. First, the data points are least squares fitted using the orthogonal factorial polynomials. The result is then reduced to a regular polynomial using Sterling numbers of the first kind. If an error tolerance is specified, the program starts with a polynomial of degree 1 and computes the least squares fit error. The degree of the polynomial used for fitting is then increased successively until the error criterion specified by the user is met. At every step the polynomial as well as the least squares fitting error is printed to the screen. In general, the program can produce a curve fitting up to a 100 degree polynomial. All computations in the program are carried out under Double Precision format for real numbers and under long integer format for integers to provide the maximum accuracy possible. AKLSQF was written for an IBM PC X/AT or compatible using Microsoft's Quick Basic compiler. It has been implemented under DOS 3.2.1 using 23K of RAM. AKLSQF was developed in 1989.

  6. On a q-extension of the linear harmonic oscillator with the continuous orthogonality property on ℝ

    NASA Astrophysics Data System (ADS)

    Alvarez-Nodarse, R.; Atakishiyeva, M. K.; Atakishiyev, N. M.

    2005-11-01

    We discuss a q-analogue of the linear harmonic oscillator in quantum mechanics based on a q-extension of the classical Hermite polynomials H n ( x) recently introduced by us in R. Alvarez-Nodarse et al.: Boletin de la Sociedad Matematica Mexicana (3) 8 (2002) 127. The wave functions in this q-model of the quantum harmonic oscillator possess the continuous orthogonality property on the whole real line ℝ with respect to a positive weight function. A detailed description of the corresponding q-system is carried out.

  7. Direct solution for thermal stresses in a nose cap under an arbitrary axisymmetric temperature distribution

    NASA Technical Reports Server (NTRS)

    Davis, Randall C.

    1988-01-01

    The design of a nose cap for a hypersonic vehicle is an iterative process requiring a rapid, easy to use and accurate stress analysis. The objective of this paper is to develop such a stress analysis technique from a direct solution of the thermal stress equations for a spherical shell. The nose cap structure is treated as a thin spherical shell with an axisymmetric temperature distribution. The governing differential equations are solved by expressing the stress solution to the thermoelastic equations in terms of a series of derivatives of the Legendre polynomials. The process of finding the coefficients for the series solution in terms of the temperature distribution is generalized by expressing the temperature along the shell and through the thickness as a polynomial in the spherical angle coordinate. Under this generalization the orthogonality property of the Legendre polynomials leads to a sequence of integrals involving powers of the spherical shell coordinate times the derivative of the Legendre polynomials. The coefficients of the temperature polynomial appear outside of these integrals. Thus, the integrals are evaluated only once and their values tabulated for use with any arbitrary polynomial temperature distribution.

  8. Quantum solvability of a general ordered position dependent mass system: Mathews-Lakshmanan oscillator

    NASA Astrophysics Data System (ADS)

    Karthiga, S.; Chithiika Ruby, V.; Senthilvelan, M.; Lakshmanan, M.

    2017-10-01

    In position dependent mass (PDM) problems, the quantum dynamics of the associated systems have been understood well in the literature for particular orderings. However, no efforts seem to have been made to solve such PDM problems for general orderings to obtain a global picture. In this connection, we here consider the general ordered quantum Hamiltonian of an interesting position dependent mass problem, namely, the Mathews-Lakshmanan oscillator, and try to solve the quantum problem for all possible orderings including Hermitian and non-Hermitian ones. The other interesting point in our study is that for all possible orderings, although the Schrödinger equation of this Mathews-Lakshmanan oscillator is uniquely reduced to the associated Legendre differential equation, their eigenfunctions cannot be represented in terms of the associated Legendre polynomials with integral degree and order. Rather the eigenfunctions are represented in terms of associated Legendre polynomials with non-integral degree and order. We here explore such polynomials and represent the discrete and continuum states of the system. We also exploit the connection between associated Legendre polynomials with non-integral degree with other orthogonal polynomials such as Jacobi and Gegenbauer polynomials.

  9. The symmetric = ω -semi-classical orthogonal polynomials of class one

    NASA Astrophysics Data System (ADS)

    Maroni, P.; Mejri, M.

    2008-12-01

    We give the system of Laguerre-Freud equations associated with the = ω -semi-classical functionals of class one, where = ω is the divided difference operator. This system is solved in the symmetric case. There are essentially two canonical cases. The corresponding integral representations are given.

  10. Matrix of moments of the Legendre polynomials and its application to problems of electrostatics

    NASA Astrophysics Data System (ADS)

    Savchenko, A. O.

    2017-01-01

    In this work, properties of the matrix of moments of the Legendre polynomials are presented and proven. In particular, the explicit form of the elements of the matrix inverse to the matrix of moments is found and theorems of the linear combination and orthogonality are proven. On the basis of these properties, the total charge and the dipole moment of a conducting ball in a nonuniform electric field, the charge distribution over the surface of the conducting ball, its multipole moments, and the force acting on a conducting ball situated on the axis of a nonuniform axisymmetric electric field are determined. All assertions are formulated in theorems, the proofs of which are based on the properties of the matrix of moments of the Legendre polynomials.

  11. Control design and robustness analysis of a ball and plate system by using polynomial chaos

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Colón, Diego; Balthazar, José M.; Reis, Célia A. dos

    2014-12-10

    In this paper, we present a mathematical model of a ball and plate system, a control law and analyze its robustness properties by using the polynomial chaos method. The ball rolls without slipping. There is an auxiliary robot vision system that determines the bodies' positions and velocities, and is used for control purposes. The actuators are to orthogonal DC motors, that changes the plate's angles with the ground. The model is a extension of the ball and beam system and is highly nonlinear. The system is decoupled in two independent equations for coordinates x and y. Finally, the resulting nonlinearmore » closed loop systems are analyzed by the polynomial chaos methodology, which considers that some system parameters are random variables, and generates statistical data that can be used in the robustness analysis.« less

  12. Control design and robustness analysis of a ball and plate system by using polynomial chaos

    NASA Astrophysics Data System (ADS)

    Colón, Diego; Balthazar, José M.; dos Reis, Célia A.; Bueno, Átila M.; Diniz, Ivando S.; de S. R. F. Rosa, Suelia

    2014-12-01

    In this paper, we present a mathematical model of a ball and plate system, a control law and analyze its robustness properties by using the polynomial chaos method. The ball rolls without slipping. There is an auxiliary robot vision system that determines the bodies' positions and velocities, and is used for control purposes. The actuators are to orthogonal DC motors, that changes the plate's angles with the ground. The model is a extension of the ball and beam system and is highly nonlinear. The system is decoupled in two independent equations for coordinates x and y. Finally, the resulting nonlinear closed loop systems are analyzed by the polynomial chaos methodology, which considers that some system parameters are random variables, and generates statistical data that can be used in the robustness analysis.

  13. Quantum Hurwitz numbers and Macdonald polynomials

    NASA Astrophysics Data System (ADS)

    Harnad, J.

    2016-11-01

    Parametric families in the center Z(C[Sn]) of the group algebra of the symmetric group are obtained by identifying the indeterminates in the generating function for Macdonald polynomials as commuting Jucys-Murphy elements. Their eigenvalues provide coefficients in the double Schur function expansion of 2D Toda τ-functions of hypergeometric type. Expressing these in the basis of products of power sum symmetric functions, the coefficients may be interpreted geometrically as parametric families of quantum Hurwitz numbers, enumerating weighted branched coverings of the Riemann sphere. Combinatorially, they give quantum weighted sums over paths in the Cayley graph of Sn generated by transpositions. Dual pairs of bases for the algebra of symmetric functions with respect to the scalar product in which the Macdonald polynomials are orthogonal provide both the geometrical and combinatorial significance of these quantum weighted enumerative invariants.

  14. Dynamic Bidirectional Reflectance Distribution Functions: Measurement and Representation

    DTIC Science & Technology

    2008-02-01

    be included in the harmonic fits. Other sets of orthogonal functions such as Zernike polynomials have also been used to characterize BRDF and could...reflectance spectra of 3D objects,” Proc. SPIE 4663, 370–378 2001. 13J. R. Shell II, C. Salvagio, and J. R. Schott, “A novel BRDF measurement technique

  15. Sobolev-orthogonal systems of functions associated with an orthogonal system

    NASA Astrophysics Data System (ADS)

    Sharapudinov, I. I.

    2018-02-01

    For every system of functions \\{\\varphi_k(x)\\} which is orthonormal on (a,b) with weight ρ(x) and every positive integer r we construct a new associated system of functions \\{\\varphir,k(x)\\}k=0^∞ which is orthonormal with respect to a Sobolev-type inner product of the form \\displaystyle < f,g >=\\sumν=0r-1f(ν)(a)g(ν)(a)+\\intab f(r)(t)g(r)(t)ρ(t) dt. We study the convergence of Fourier series in the systems \\{\\varphir,k(x)\\}k=0^∞. In the important particular cases of such systems generated by the Haar functions and the Chebyshev polynomials T_n(x)=\\cos(n\\arccos x), we obtain explicit representations for the \\varphir,k(x) that can be used to study their asymptotic properties as k\\to∞ and the approximation properties of Fourier sums in the system \\{\\varphir,k(x)\\}k=0^∞. Special attention is paid to the study of approximation properties of Fourier series in systems of type \\{\\varphir,k(x)\\}k=0^∞ generated by Haar functions and Chebyshev polynomials.

  16. Solution of some types of differential equations: operational calculus and inverse differential operators.

    PubMed

    Zhukovsky, K

    2014-01-01

    We present a general method of operational nature to analyze and obtain solutions for a variety of equations of mathematical physics and related mathematical problems. We construct inverse differential operators and produce operational identities, involving inverse derivatives and families of generalised orthogonal polynomials, such as Hermite and Laguerre polynomial families. We develop the methodology of inverse and exponential operators, employing them for the study of partial differential equations. Advantages of the operational technique, combined with the use of integral transforms, generating functions with exponentials and their integrals, for solving a wide class of partial derivative equations, related to heat, wave, and transport problems, are demonstrated.

  17. Parametric symmetries in exactly solvable real and PT symmetric complex potentials

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yadav, Rajesh Kumar, E-mail: rajeshastrophysics@gmail.com; Khare, Avinash, E-mail: khare@physics.unipune.ac.in; Bagchi, Bijan, E-mail: bbagchi123@gmail.com

    In this paper, we discuss the parametric symmetries in different exactly solvable systems characterized by real or complex PT symmetric potentials. We focus our attention on the conventional potentials such as the generalized Pöschl Teller (GPT), Scarf-I, and PT symmetric Scarf-II which are invariant under certain parametric transformations. The resulting set of potentials is shown to yield a completely different behavior of the bound state solutions. Further, the supersymmetric partner potentials acquire different forms under such parametric transformations leading to new sets of exactly solvable real and PT symmetric complex potentials. These potentials are also observed to be shape invariantmore » (SI) in nature. We subsequently take up a study of the newly discovered rationally extended SI potentials, corresponding to the above mentioned conventional potentials, whose bound state solutions are associated with the exceptional orthogonal polynomials (EOPs). We discuss the transformations of the corresponding Casimir operator employing the properties of the so(2, 1) algebra.« less

  18. Spectral/ hp element methods: Recent developments, applications, and perspectives

    NASA Astrophysics Data System (ADS)

    Xu, Hui; Cantwell, Chris D.; Monteserin, Carlos; Eskilsson, Claes; Engsig-Karup, Allan P.; Sherwin, Spencer J.

    2018-02-01

    The spectral/ hp element method combines the geometric flexibility of the classical h-type finite element technique with the desirable numerical properties of spectral methods, employing high-degree piecewise polynomial basis functions on coarse finite element-type meshes. The spatial approximation is based upon orthogonal polynomials, such as Legendre or Chebychev polynomials, modified to accommodate a C 0 - continuous expansion. Computationally and theoretically, by increasing the polynomial order p, high-precision solutions and fast convergence can be obtained and, in particular, under certain regularity assumptions an exponential reduction in approximation error between numerical and exact solutions can be achieved. This method has now been applied in many simulation studies of both fundamental and practical engineering flows. This paper briefly describes the formulation of the spectral/ hp element method and provides an overview of its application to computational fluid dynamics. In particular, it focuses on the use of the spectral/ hp element method in transitional flows and ocean engineering. Finally, some of the major challenges to be overcome in order to use the spectral/ hp element method in more complex science and engineering applications are discussed.

  19. Cylinder stitching interferometry: with and without overlap regions

    NASA Astrophysics Data System (ADS)

    Peng, Junzheng; Chen, Dingfu; Yu, Yingjie

    2017-06-01

    Since the cylinder surface is closed and periodic in the azimuthal direction, existing stitching methods cannot be used to yield the 360° form map. To address this problem, this paper presents two methods for stitching interferometry of cylinder: one requires overlap regions, and the other does not need the overlap regions. For the former, we use the first order approximation of cylindrical coordinate transformation to build the stitching model. With it, the relative parameters between the adjacent sub-apertures can be calculated by the stitching model. For the latter, a set of orthogonal polynomials, termed Legendre Fourier (LF) polynomials, was developed. With these polynomials, individual sub-aperture data can be expanded as composition of inherent form of partial cylinder surface and additional misalignment parameters. Then the 360° form map can be acquired by simultaneously fitting all sub-aperture data with LF polynomials. Finally the two proposed methods are compared under various conditions. The merits and drawbacks of each stitching method are consequently revealed to provide suggestion in acquisition of 360° form map for a precision cylinder.

  20. Wavefront aberrations of x-ray dynamical diffraction beams.

    PubMed

    Liao, Keliang; Hong, Youli; Sheng, Weifan

    2014-10-01

    The effects of dynamical diffraction in x-ray diffractive optics with large numerical aperture render the wavefront aberrations difficult to describe using the aberration polynomials, yet knowledge of them plays an important role in a vast variety of scientific problems ranging from optical testing to adaptive optics. Although the diffraction theory of optical aberrations was established decades ago, its application in the area of x-ray dynamical diffraction theory (DDT) is still lacking. Here, we conduct a theoretical study on the aberration properties of x-ray dynamical diffraction beams. By treating the modulus of the complex envelope as the amplitude weight function in the orthogonalization procedure, we generalize the nonrecursive matrix method for the determination of orthonormal aberration polynomials, wherein Zernike DDT and Legendre DDT polynomials are proposed. As an example, we investigate the aberration evolution inside a tilted multilayer Laue lens. The corresponding Legendre DDT polynomials are obtained numerically, which represent balanced aberrations yielding minimum variance of the classical aberrations of an anamorphic optical system. The balancing of classical aberrations and their standard deviations are discussed. We also present the Strehl ratio of the primary and secondary balanced aberrations.

  1. Tensor calculus in polar coordinates using Jacobi polynomials

    NASA Astrophysics Data System (ADS)

    Vasil, Geoffrey M.; Burns, Keaton J.; Lecoanet, Daniel; Olver, Sheehan; Brown, Benjamin P.; Oishi, Jeffrey S.

    2016-11-01

    Spectral methods are an efficient way to solve partial differential equations on domains possessing certain symmetries. The utility of a method depends strongly on the choice of spectral basis. In this paper we describe a set of bases built out of Jacobi polynomials, and associated operators for solving scalar, vector, and tensor partial differential equations in polar coordinates on a unit disk. By construction, the bases satisfy regularity conditions at r = 0 for any tensorial field. The coordinate singularity in a disk is a prototypical case for many coordinate singularities. The work presented here extends to other geometries. The operators represent covariant derivatives, multiplication by azimuthally symmetric functions, and the tensorial relationship between fields. These arise naturally from relations between classical orthogonal polynomials, and form a Heisenberg algebra. Other past work uses more specific polynomial bases for solving equations in polar coordinates. The main innovation in this paper is to use a larger set of possible bases to achieve maximum bandedness of linear operations. We provide a series of applications of the methods, illustrating their ease-of-use and accuracy.

  2. The recurrence coefficients of semi-classical Laguerre polynomials and the fourth Painlevé equation

    NASA Astrophysics Data System (ADS)

    Filipuk, Galina; Van Assche, Walter; Zhang, Lun

    2012-05-01

    We show that the coefficients of the three-term recurrence relation for orthogonal polynomials with respect to a semi-classical extension of the Laguerre weight satisfy the fourth Painlevé equation when viewed as functions of one of the parameters in the weight. We compare different approaches to derive this result, namely, the ladder operators approach, the isomonodromy deformations approach and combining the Toda system for the recurrence coefficients with a discrete equation. We also discuss a relation between the recurrence coefficients for the Freud weight and the semi-classical Laguerre weight and show how it arises from the Bäcklund transformation of the fourth Painlevé equation.

  3. A frequency domain global parameter estimation method for multiple reference frequency response measurements

    NASA Astrophysics Data System (ADS)

    Shih, C. Y.; Tsuei, Y. G.; Allemang, R. J.; Brown, D. L.

    1988-10-01

    A method of using the matrix Auto-Regressive Moving Average (ARMA) model in the Laplace domain for multiple-reference global parameter identification is presented. This method is particularly applicable to the area of modal analysis where high modal density exists. The method is also applicable when multiple reference frequency response functions are used to characterise linear systems. In order to facilitate the mathematical solution, the Forsythe orthogonal polynomial is used to reduce the ill-conditioning of the formulated equations and to decouple the normal matrix into two reduced matrix blocks. A Complex Mode Indicator Function (CMIF) is introduced, which can be used to determine the proper order of the rational polynomials.

  4. Gegenbauer-solvable quantum chain model

    NASA Astrophysics Data System (ADS)

    Znojil, Miloslav

    2010-11-01

    An N-level quantum model is proposed in which the energies are represented by an N-plet of zeros of a suitable classical orthogonal polynomial. The family of Gegenbauer polynomials G(n,a,x) is selected for illustrative purposes. The main obstacle lies in the non-Hermiticity (aka crypto-Hermiticity) of Hamiltonians H≠H†. We managed to (i) start from elementary secular equation G(N,a,En)=0, (ii) keep our H, in the nearest-neighbor-interaction spirit, tridiagonal, (iii) render it Hermitian in an ad hoc, nonunique Hilbert space endowed with metric Θ≠I, (iv) construct eligible metrics in closed forms ordered by increasing nondiagonality, and (v) interpret the model as a smeared N-site lattice.

  5. Wilson polynomials/functions and intertwining operators for the generic quantum superintegrable system on the 2-sphere

    NASA Astrophysics Data System (ADS)

    Miller, W., Jr.; Li, Q.

    2015-04-01

    The Wilson and Racah polynomials can be characterized as basis functions for irreducible representations of the quadratic symmetry algebra of the quantum superintegrable system on the 2-sphere, HΨ = EΨ, with generic 3-parameter potential. Clearly, the polynomials are expansion coefficients for one eigenbasis of a symmetry operator L2 of H in terms of an eigenbasis of another symmetry operator L1, but the exact relationship appears not to have been made explicit. We work out the details of the expansion to show, explicitly, how the polynomials arise and how the principal properties of these functions: the measure, 3-term recurrence relation, 2nd order difference equation, duality of these relations, permutation symmetry, intertwining operators and an alternate derivation of Wilson functions - follow from the symmetry of this quantum system. This paper is an exercise to show that quantum mechancal concepts and recurrence relations for Gausian hypergeometrc functions alone suffice to explain these properties; we make no assumptions about the structure of Wilson polynomial/functions, but derive them from quantum principles. There is active interest in the relation between multivariable Wilson polynomials and the quantum superintegrable system on the n-sphere with generic potential, and these results should aid in the generalization. Contracting function space realizations of irreducible representations of this quadratic algebra to the other superintegrable systems one can obtain the full Askey scheme of orthogonal hypergeometric polynomials. All of these contractions of superintegrable systems with potential are uniquely induced by Wigner Lie algebra contractions of so(3, C) and e(2,C). All of the polynomials produced are interpretable as quantum expansion coefficients. It is important to extend this process to higher dimensions.

  6. Wavefront reconstruction for multi-lateral shearing interferometry using difference Zernike polynomials fitting

    NASA Astrophysics Data System (ADS)

    Liu, Ke; Wang, Jiannian; Wang, Hai; Li, Yanqiu

    2018-07-01

    For the multi-lateral shearing interferometers (multi-LSIs), the measurement accuracy can be enhanced by estimating the wavefront under test with the multidirectional phase information encoded in the shearing interferogram. Usually the multi-LSIs reconstruct the test wavefront from the phase derivatives in multiple directions using the discrete Fourier transforms (DFT) method, which is only suitable to small shear ratios and relatively sensitive to noise. To improve the accuracy of multi-LSIs, wavefront reconstruction from the multidirectional phase differences using the difference Zernike polynomials fitting (DZPF) method is proposed in this paper. For the DZPF method applied in the quadriwave LSI, difference Zernike polynomials in only two orthogonal shear directions are required to represent the phase differences in multiple shear directions. In this way, the test wavefront can be reconstructed from the phase differences in multiple shear directions using a noise-variance weighted least-squares method with almost no extra computational burden, compared with the usual recovery from the phase differences in two orthogonal directions. Numerical simulation results show that the DZPF method can maintain high reconstruction accuracy in a wider range of shear ratios and has much better anti-noise performance than the DFT method. A null test experiment of the quadriwave LSI has been conducted and the experimental results show that the measurement accuracy of the quadriwave LSI can be improved from 0.0054 λ rms to 0.0029 λ rms (λ = 632.8 nm) by substituting the DFT method with the proposed DZPF method in the wavefront reconstruction process.

  7. A model-based 3D phase unwrapping algorithm using Gegenbauer polynomials.

    PubMed

    Langley, Jason; Zhao, Qun

    2009-09-07

    The application of a two-dimensional (2D) phase unwrapping algorithm to a three-dimensional (3D) phase map may result in an unwrapped phase map that is discontinuous in the direction normal to the unwrapped plane. This work investigates the problem of phase unwrapping for 3D phase maps. The phase map is modeled as a product of three one-dimensional Gegenbauer polynomials. The orthogonality of Gegenbauer polynomials and their derivatives on the interval [-1, 1] are exploited to calculate the expansion coefficients. The algorithm was implemented using two well-known Gegenbauer polynomials: Chebyshev polynomials of the first kind and Legendre polynomials. Both implementations of the phase unwrapping algorithm were tested on 3D datasets acquired from a magnetic resonance imaging (MRI) scanner. The first dataset was acquired from a homogeneous spherical phantom. The second dataset was acquired using the same spherical phantom but magnetic field inhomogeneities were introduced by an external coil placed adjacent to the phantom, which provided an additional burden to the phase unwrapping algorithm. Then Gaussian noise was added to generate a low signal-to-noise ratio dataset. The third dataset was acquired from the brain of a human volunteer. The results showed that Chebyshev implementation and the Legendre implementation of the phase unwrapping algorithm give similar results on the 3D datasets. Both implementations of the phase unwrapping algorithm compare well to PRELUDE 3D, 3D phase unwrapping software well recognized for functional MRI.

  8. Hypergeometric type operators and their supersymmetric partners

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cotfas, Nicolae; Cotfas, Liviu Adrian

    2011-05-15

    The generalization of the factorization method performed by Mielnik [J. Math. Phys. 25, 3387 (1984)] opened new ways to generate exactly solvable potentials in quantum mechanics. We present an application of Mielnik's method to hypergeometric type operators. It is based on some solvable Riccati equations and leads to a unitary description of the quantum systems exactly solvable in terms of orthogonal polynomials or associated special functions.

  9. Regression Simulation of Turbine Engine Performance - Accuracy Improvement (TASK IV)

    DTIC Science & Technology

    1978-09-30

    33 21 Generalized Form of the Regression Equation for the Optimized Polynomial Exponent M ethod...altitude, Mach number and power setting combinations were generated during the ARES evaluation. The orthogonal Latin Square selection procedure...pattern. In data generation , the low (L), mid (M), and high (H) values of a variable are not always the same. At some of the corner points where

  10. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Znojil, Miloslav

    An N-level quantum model is proposed in which the energies are represented by an N-plet of zeros of a suitable classical orthogonal polynomial. The family of Gegenbauer polynomials G(n,a,x) is selected for illustrative purposes. The main obstacle lies in the non-Hermiticity (aka crypto-Hermiticity) of Hamiltonians H{ne}H{sup {dagger}.} We managed to (i) start from elementary secular equation G(N,a,E{sub n})=0, (ii) keep our H, in the nearest-neighbor-interaction spirit, tridiagonal, (iii) render it Hermitian in an ad hoc, nonunique Hilbert space endowed with metric {Theta}{ne}I, (iv) construct eligible metrics in closed forms ordered by increasing nondiagonality, and (v) interpret the model as amore » smeared N-site lattice.« less

  11. Squeezed states and Hermite polynomials in a complex variable

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ali, S. Twareque, E-mail: twareque.ali@concordia.ca; Górska, K., E-mail: katarzyna.gorska@ifj.edu.pl; Horzela, A., E-mail: andrzej.horzela@ifj.edu.pl

    2014-01-15

    Following the lines of the recent paper of J.-P. Gazeau and F. H. Szafraniec [J. Phys. A: Math. Theor. 44, 495201 (2011)], we construct here three types of coherent states, related to the Hermite polynomials in a complex variable which are orthogonal with respect to a non-rotationally invariant measure. We investigate relations between these coherent states and obtain the relationship between them and the squeezed states of quantum optics. We also obtain a second realization of the canonical coherent states in the Bargmann space of analytic functions, in terms of a squeezed basis. All this is done in the flavormore » of the classical approach of V. Bargmann [Commun. Pure Appl. Math. 14, 187 (1961)].« less

  12. Spectral likelihood expansions for Bayesian inference

    NASA Astrophysics Data System (ADS)

    Nagel, Joseph B.; Sudret, Bruno

    2016-03-01

    A spectral approach to Bayesian inference is presented. It pursues the emulation of the posterior probability density. The starting point is a series expansion of the likelihood function in terms of orthogonal polynomials. From this spectral likelihood expansion all statistical quantities of interest can be calculated semi-analytically. The posterior is formally represented as the product of a reference density and a linear combination of polynomial basis functions. Both the model evidence and the posterior moments are related to the expansion coefficients. This formulation avoids Markov chain Monte Carlo simulation and allows one to make use of linear least squares instead. The pros and cons of spectral Bayesian inference are discussed and demonstrated on the basis of simple applications from classical statistics and inverse modeling.

  13. The Cauchy Two-Matrix Model, C-Toda Lattice and CKP Hierarchy

    NASA Astrophysics Data System (ADS)

    Li, Chunxia; Li, Shi-Hao

    2018-06-01

    This paper mainly talks about the Cauchy two-matrix model and its corresponding integrable hierarchy with the help of orthogonal polynomial theory and Toda-type equations. Starting from the symmetric reduction in Cauchy biorthogonal polynomials, we derive the Toda equation of CKP type (or the C-Toda lattice) as well as its Lax pair by introducing time flows. Then, matrix integral solutions to the C-Toda lattice are extended to give solutions to the CKP hierarchy which reveals the time-dependent partition function of the Cauchy two-matrix model is nothing but the τ -function of the CKP hierarchy. At last, the connection between the Cauchy two-matrix model and Bures ensemble is established from the point of view of integrable systems.

  14. A comparison between space-time video descriptors

    NASA Astrophysics Data System (ADS)

    Costantini, Luca; Capodiferro, Licia; Neri, Alessandro

    2013-02-01

    The description of space-time patches is a fundamental task in many applications such as video retrieval or classification. Each space-time patch can be described by using a set of orthogonal functions that represent a subspace, for example a sphere or a cylinder, within the patch. In this work, our aim is to investigate the differences between the spherical descriptors and the cylindrical descriptors. In order to compute the descriptors, the 3D spherical and cylindrical Zernike polynomials are employed. This is important because both the functions are based on the same family of polynomials, and only the symmetry is different. Our experimental results show that the cylindrical descriptor outperforms the spherical descriptor. However, the performances of the two descriptors are similar.

  15. The algebra of two dimensional generalized Chebyshev-Koornwinder oscillator

    NASA Astrophysics Data System (ADS)

    Borzov, V. V.; Damaskinsky, E. V.

    2014-10-01

    In the previous works of Borzov and Damaskinsky ["Chebyshev-Koornwinder oscillator," Theor. Math. Phys. 175(3), 765-772 (2013)] and ["Ladder operators for Chebyshev-Koornwinder oscillator," in Proceedings of the Days on Diffraction, 2013], the authors have defined the oscillator-like system that is associated with the two variable Chebyshev-Koornwinder polynomials. We call this system the generalized Chebyshev-Koornwinder oscillator. In this paper, we study the properties of infinite-dimensional Lie algebra that is analogous to the Heisenberg algebra for the Chebyshev-Koornwinder oscillator. We construct the exact irreducible representation of this algebra in a Hilbert space H of functions that are defined on a region which is bounded by the Steiner hypocycloid. The functions are square-integrable with respect to the orthogonality measure for the Chebyshev-Koornwinder polynomials and these polynomials form an orthonormalized basis in the space H. The generalized oscillator which is studied in the work can be considered as the simplest nontrivial example of multiboson quantum system that is composed of three interacting oscillators.

  16. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Borzov, V. V., E-mail: borzov.vadim@yandex.ru; Damaskinsky, E. V., E-mail: evd@pdmi.ras.ru

    In the previous works of Borzov and Damaskinsky [“Chebyshev-Koornwinder oscillator,” Theor. Math. Phys. 175(3), 765–772 (2013)] and [“Ladder operators for Chebyshev-Koornwinder oscillator,” in Proceedings of the Days on Diffraction, 2013], the authors have defined the oscillator-like system that is associated with the two variable Chebyshev-Koornwinder polynomials. We call this system the generalized Chebyshev-Koornwinder oscillator. In this paper, we study the properties of infinite-dimensional Lie algebra that is analogous to the Heisenberg algebra for the Chebyshev-Koornwinder oscillator. We construct the exact irreducible representation of this algebra in a Hilbert space H of functions that are defined on a region which ismore » bounded by the Steiner hypocycloid. The functions are square-integrable with respect to the orthogonality measure for the Chebyshev-Koornwinder polynomials and these polynomials form an orthonormalized basis in the space H. The generalized oscillator which is studied in the work can be considered as the simplest nontrivial example of multiboson quantum system that is composed of three interacting oscillators.« less

  17. Random regression models using different functions to model milk flow in dairy cows.

    PubMed

    Laureano, M M M; Bignardi, A B; El Faro, L; Cardoso, V L; Tonhati, H; Albuquerque, L G

    2014-09-12

    We analyzed 75,555 test-day milk flow records from 2175 primiparous Holstein cows that calved between 1997 and 2005. Milk flow was obtained by dividing the mean milk yield (kg) of the 3 daily milking by the total milking time (min) and was expressed as kg/min. Milk flow was grouped into 43 weekly classes. The analyses were performed using a single-trait Random Regression Models that included direct additive genetic, permanent environmental, and residual random effects. In addition, the contemporary group and linear and quadratic effects of cow age at calving were included as fixed effects. Fourth-order orthogonal Legendre polynomial of days in milk was used to model the mean trend in milk flow. The additive genetic and permanent environmental covariance functions were estimated using random regression Legendre polynomials and B-spline functions of days in milk. The model using a third-order Legendre polynomial for additive genetic effects and a sixth-order polynomial for permanent environmental effects, which contained 7 residual classes, proved to be the most adequate to describe variations in milk flow, and was also the most parsimonious. The heritability in milk flow estimated by the most parsimonious model was of moderate to high magnitude.

  18. Genetic parameters for test-day yield of milk, fat and protein in buffaloes estimated by random regression models.

    PubMed

    Aspilcueta-Borquis, Rúsbel R; Araujo Neto, Francisco R; Baldi, Fernando; Santos, Daniel J A; Albuquerque, Lucia G; Tonhati, Humberto

    2012-08-01

    The test-day yields of milk, fat and protein were analysed from 1433 first lactations of buffaloes of the Murrah breed, daughters of 113 sires from 12 herds in the state of São Paulo, Brazil, born between 1985 and 2007. For the test-day yields, 10 monthly classes of lactation days were considered. The contemporary groups were defined as the herd-year-month of the test day. Random additive genetic, permanent environmental and residual effects were included in the model. The fixed effects considered were the contemporary group, number of milkings (1 or 2 milkings), linear and quadratic effects of the covariable cow age at calving and the mean lactation curve of the population (modelled by third-order Legendre orthogonal polynomials). The random additive genetic and permanent environmental effects were estimated by means of regression on third- to sixth-order Legendre orthogonal polynomials. The residual variances were modelled with a homogenous structure and various heterogeneous classes. According to the likelihood-ratio test, the best model for milk and fat production was that with four residual variance classes, while a third-order Legendre polynomial was best for the additive genetic effect for milk and fat yield, a fourth-order polynomial was best for the permanent environmental effect for milk production and a fifth-order polynomial was best for fat production. For protein yield, the best model was that with three residual variance classes and third- and fourth-order Legendre polynomials were best for the additive genetic and permanent environmental effects, respectively. The heritability estimates for the characteristics analysed were moderate, varying from 0·16±0·05 to 0·29±0·05 for milk yield, 0·20±0·05 to 0·30±0·08 for fat yield and 0·18±0·06 to 0·27±0·08 for protein yield. The estimates of the genetic correlations between the tests varied from 0·18±0·120 to 0·99±0·002; from 0·44±0·080 to 0·99±0·004; and from 0·41±0·080 to 0·99±0·004, for milk, fat and protein production, respectively, indicating that whatever the selection criterion used, indirect genetic gains can be expected throughout the lactation curve.

  19. Bayesian B-spline mapping for dynamic quantitative traits.

    PubMed

    Xing, Jun; Li, Jiahan; Yang, Runqing; Zhou, Xiaojing; Xu, Shizhong

    2012-04-01

    Owing to their ability and flexibility to describe individual gene expression at different time points, random regression (RR) analyses have become a popular procedure for the genetic analysis of dynamic traits whose phenotypes are collected over time. Specifically, when modelling the dynamic patterns of gene expressions in the RR framework, B-splines have been proved successful as an alternative to orthogonal polynomials. In the so-called Bayesian B-spline quantitative trait locus (QTL) mapping, B-splines are used to characterize the patterns of QTL effects and individual-specific time-dependent environmental errors over time, and the Bayesian shrinkage estimation method is employed to estimate model parameters. Extensive simulations demonstrate that (1) in terms of statistical power, Bayesian B-spline mapping outperforms the interval mapping based on the maximum likelihood; (2) for the simulated dataset with complicated growth curve simulated by B-splines, Legendre polynomial-based Bayesian mapping is not capable of identifying the designed QTLs accurately, even when higher-order Legendre polynomials are considered and (3) for the simulated dataset using Legendre polynomials, the Bayesian B-spline mapping can find the same QTLs as those identified by Legendre polynomial analysis. All simulation results support the necessity and flexibility of B-spline in Bayesian mapping of dynamic traits. The proposed method is also applied to a real dataset, where QTLs controlling the growth trajectory of stem diameters in Populus are located.

  20. Determination of the paraxial focal length using Zernike polynomials over different apertures

    NASA Astrophysics Data System (ADS)

    Binkele, Tobias; Hilbig, David; Henning, Thomas; Fleischmann, Friedrich

    2017-02-01

    The paraxial focal length is still the most important parameter in the design of a lens. As presented at the SPIE Optics + Photonics 2016, the measured focal length is a function of the aperture. The paraxial focal length can be found when the aperture approaches zero. In this work, we investigate the dependency of the Zernike polynomials on the aperture size with respect to 3D space. By this, conventional wavefront measurement systems that apply Zernike polynomial fitting (e.g. Shack-Hartmann-Sensor) can be used to determine the paraxial focal length, too. Since the Zernike polynomials are orthogonal over a unit circle, the aperture used in the measurement has to be normalized. By shrinking the aperture and keeping up with the normalization, the Zernike coefficients change. The relation between these changes and the paraxial focal length are investigated. The dependency of the focal length on the aperture size is derived analytically and evaluated by simulation and measurement of a strong focusing lens. The measurements are performed using experimental ray tracing and a Shack-Hartmann-Sensor. Using experimental ray tracing for the measurements, the aperture can be chosen easily. Regarding the measurements with the Shack-Hartmann- Sensor, the aperture size is fixed. Thus, the Zernike polynomials have to be adapted to use different aperture sizes by the proposed method. By doing this, the paraxial focal length can be determined from the measurements in both cases.

  1. Unitary-matrix models as exactly solvable string theories

    NASA Technical Reports Server (NTRS)

    Periwal, Vipul; Shevitz, Danny

    1990-01-01

    Exact differential equations are presently found for the scaling functions of models of unitary matrices which are solved in a double-scaling limit, using orthogonal polynomials on a circle. For the case of the simplest, k = 1 model, the Painleve II equation with constant 0 is obtained; possible nonperturbative phase transitions exist for these models. Equations are presented for k = 2 and 3, and discussed with a view to asymptotic behavior.

  2. Inverse Scattering for Electron Density Profile Determination. Volume I.

    DTIC Science & Technology

    1981-09-24

    Ant. Prop., AP-24, 906-7, 1976. 39. T. Kailath, A. Vierra, and M. Morf, "Inverses of Toeplitz Operators, Innovations, and Orthogonal Polynomials ...aspect of these results is the tremendous amount of new insight into the basic physics of inverse scattering (and, indeed, into fundamental field...inhomogeneous media in general and on scattering by the ionosphere in particular were identified. These results have important implications for other

  3. Simulating Nonequilibrium Radiation via Orthogonal Polynomial Refinement

    DTIC Science & Technology

    2015-01-07

    measured by the preprocessing time, computer memory space, and average query time. In many search procedures for the number of points np of a data set, a...analytic expression for the radiative flux density is possible by the commonly accepted local thermal equilibrium ( LTE ) approximation. A semi...Vol. 227, pp. 9463-9476, 2008. 10. Galvez, M., Ray-Tracing model for radiation transport in three-dimensional LTE system, App. Physics, Vol. 38

  4. Very high order discontinuous Galerkin method in elliptic problems

    NASA Astrophysics Data System (ADS)

    Jaśkowiec, Jan

    2017-09-01

    The paper deals with high-order discontinuous Galerkin (DG) method with the approximation order that exceeds 20 and reaches 100 and even 1000 with respect to one-dimensional case. To achieve such a high order solution, the DG method with finite difference method has to be applied. The basis functions of this method are high-order orthogonal Legendre or Chebyshev polynomials. These polynomials are defined in one-dimensional space (1D), but they can be easily adapted to two-dimensional space (2D) by cross products. There are no nodes in the elements and the degrees of freedom are coefficients of linear combination of basis functions. In this sort of analysis the reference elements are needed, so the transformations of the reference element into the real one are needed as well as the transformations connected with the mesh skeleton. Due to orthogonality of the basis functions, the obtained matrices are sparse even for finite elements with more than thousands degrees of freedom. In consequence, the truncation errors are limited and very high-order analysis can be performed. The paper is illustrated with a set of benchmark examples of 1D and 2D for the elliptic problems. The example presents the great effectiveness of the method that can shorten the length of calculation over hundreds times.

  5. The Karlin-McGregor formula for a variant of a discrete version of Walsh's spider

    NASA Astrophysics Data System (ADS)

    Grünbaum, F. Alberto

    2009-10-01

    We consider a variant of a discrete space version of Walsh's spider, see Walsh (1978 Temps Locaux, Asterisque vol 52-53 (Paris: Soc. Math. de France)) as well as Evans and Sowers (2003 Ann. Probab. 31 486-527 and its references). This process can be seen as an instance of a quasi-birth-and-death process, a class of random walks for which the classical theory of Karlin and McGregor can be nicely adapted as in Dette, Reuther, Studden and Zygmunt (2006 SIAM J. Matrix Anal. Appl. 29 117-42), Grünbaum (2007 Probability, Geometry and Integrable Systems ed Pinsky and Birnir vol 55 (Berkeley, CA: MSRI publication) pp. 241-60, see also arXiv math PR/0703375), Grünbaum (2007 Dagstuhl Seminar Proc. 07461 on Numerical Methods in Structured Markov Chains ed Bini), Grünbaum (2008 Proceedings of IWOTA) and Grünbaum and de la Iglesia (2008 SIAM J. Matrix Anal. Appl. 30 741-63). We give here a weight matrix that makes the corresponding matrix-valued orthogonal polynomials orthogonal to each other. We also determine the polynomials themselves and thus obtain all the ingredients to apply a matrix-valued version of the Karlin-McGregor formula. Dedicated to Jack Schwartz, who passed away on March 2, 2009.

  6. Very high order discontinuous Galerkin method in elliptic problems

    NASA Astrophysics Data System (ADS)

    Jaśkowiec, Jan

    2018-07-01

    The paper deals with high-order discontinuous Galerkin (DG) method with the approximation order that exceeds 20 and reaches 100 and even 1000 with respect to one-dimensional case. To achieve such a high order solution, the DG method with finite difference method has to be applied. The basis functions of this method are high-order orthogonal Legendre or Chebyshev polynomials. These polynomials are defined in one-dimensional space (1D), but they can be easily adapted to two-dimensional space (2D) by cross products. There are no nodes in the elements and the degrees of freedom are coefficients of linear combination of basis functions. In this sort of analysis the reference elements are needed, so the transformations of the reference element into the real one are needed as well as the transformations connected with the mesh skeleton. Due to orthogonality of the basis functions, the obtained matrices are sparse even for finite elements with more than thousands degrees of freedom. In consequence, the truncation errors are limited and very high-order analysis can be performed. The paper is illustrated with a set of benchmark examples of 1D and 2D for the elliptic problems. The example presents the great effectiveness of the method that can shorten the length of calculation over hundreds times.

  7. Functionals of Gegenbauer polynomials and D-dimensional hydrogenic momentum expectation values

    NASA Astrophysics Data System (ADS)

    Van Assche, W.; Yáñez, R. J.; González-Férez, R.; Dehesa, Jesús S.

    2000-09-01

    The system of Gegenbauer or ultraspherical polynomials {Cnλ(x);n=0,1,…} is a classical family of polynomials orthogonal with respect to the weight function ωλ(x)=(1-x2)λ-1/2 on the support interval [-1,+1]. Integral functionals of Gegenbauer polynomials with integrand f(x)[Cnλ(x)]2ωλ(x), where f(x) is an arbitrary function which does not depend on n or λ, are considered in this paper. First, a general recursion formula for these functionals is obtained. Then, the explicit expression for some specific functionals of this type is found in a closed and compact form; namely, for the functionals with f(x) equal to (1-x)α(1+x)β, log(1-x2), and (1+x)log(1+x), which appear in numerous physico-mathematical problems. Finally, these functionals are used in the explicit evaluation of the momentum expectation values and of the D-dimensional hydrogenic atom with nuclear charge Z⩾1. The power expectation values are given by means of a terminating 5F4 hypergeometric function with unit argument, which is a considerable improvement with respect to Hey's expression (the only one existing up to now) which requires a double sum.

  8. Theoretical study on the dispersion curves of Lamb waves in piezoelectric-semiconductor sandwich plates GaAs-FGPM-AlAs: Legendre polynomial series expansion

    NASA Astrophysics Data System (ADS)

    Othmani, Cherif; Takali, Farid; Njeh, Anouar

    2017-06-01

    In this paper, the propagation of the Lamb waves in the GaAs-FGPM-AlAs sandwich plate is studied. Based on the orthogonal function, Legendre polynomial series expansion is applied along the thickness direction to obtain the Lamb dispersion curves. The convergence and accuracy of this polynomial method are discussed. In addition, the influences of the volume fraction p and thickness hFGPM of the FGPM middle layer on the Lamb dispersion curves are developed. The numerical results also show differences between the characteristics of Lamb dispersion curves in the sandwich plate for various gradient coefficients of the FGPM middle layer. In fact, if the volume fraction p increases the phase velocity will increases and the number of modes will decreases at a given frequency range. All the developments performed in this paper were implemented in Matlab software. The corresponding results presented in this work may have important applications in several industry areas and developing novel acoustic devices such as sensors, electromechanical transducers, actuators and filters.

  9. Mixed kernel function support vector regression for global sensitivity analysis

    NASA Astrophysics Data System (ADS)

    Cheng, Kai; Lu, Zhenzhou; Wei, Yuhao; Shi, Yan; Zhou, Yicheng

    2017-11-01

    Global sensitivity analysis (GSA) plays an important role in exploring the respective effects of input variables on an assigned output response. Amongst the wide sensitivity analyses in literature, the Sobol indices have attracted much attention since they can provide accurate information for most models. In this paper, a mixed kernel function (MKF) based support vector regression (SVR) model is employed to evaluate the Sobol indices at low computational cost. By the proposed derivation, the estimation of the Sobol indices can be obtained by post-processing the coefficients of the SVR meta-model. The MKF is constituted by the orthogonal polynomials kernel function and Gaussian radial basis kernel function, thus the MKF possesses both the global characteristic advantage of the polynomials kernel function and the local characteristic advantage of the Gaussian radial basis kernel function. The proposed approach is suitable for high-dimensional and non-linear problems. Performance of the proposed approach is validated by various analytical functions and compared with the popular polynomial chaos expansion (PCE). Results demonstrate that the proposed approach is an efficient method for global sensitivity analysis.

  10. Large-N and Bethe Ansatz

    NASA Astrophysics Data System (ADS)

    Jurčo, Branislav

    We describe an integrable model, related to the Gaudin magnet, and its relation to the matrix model of Brézin, Itzykson, Parisi and Zuber. Relation is based on Bethe ansatz for the integrable model and its interpretation using orthogonal polynomials and saddle point approximation. Large-N limit of the matrix model corresponds to the thermodynamic limit of the integrable system. In this limit (functional) Bethe ansatz is the same as the generating function for correlators of the matrix models.

  11. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gorbachev, D V; Ivanov, V I

    Gauss and Markov quadrature formulae with nodes at zeros of eigenfunctions of a Sturm-Liouville problem, which are exact for entire functions of exponential type, are established. They generalize quadrature formulae involving zeros of Bessel functions, which were first designed by Frappier and Olivier. Bessel quadratures correspond to the Fourier-Hankel integral transform. Some other examples, connected with the Jacobi integral transform, Fourier series in Jacobi orthogonal polynomials and the general Sturm-Liouville problem with regular weight are also given. Bibliography: 39 titles.

  12. Covariance functions for body weight from birth to maturity in Nellore cows.

    PubMed

    Boligon, A A; Mercadante, M E Z; Forni, S; Lôbo, R B; Albuquerque, L G

    2010-03-01

    The objective of this study was to estimate (co)variance functions using random regression models on Legendre polynomials for the analysis of repeated measures of BW from birth to adult age. A total of 82,064 records from 8,145 females were analyzed. Different models were compared. The models included additive direct and maternal effects, and animal and maternal permanent environmental effects as random terms. Contemporary group and dam age at calving (linear and quadratic effect) were included as fixed effects, and orthogonal Legendre polynomials of animal age (cubic regression) were considered as random covariables. Eight models with polynomials of third to sixth order were used to describe additive direct and maternal effects, and animal and maternal permanent environmental effects. Residual effects were modeled using 1 (i.e., assuming homogeneity of variances across all ages) or 5 age classes. The model with 5 classes was the best to describe the trajectory of residuals along the growth curve. The model including fourth- and sixth-order polynomials for additive direct and animal permanent environmental effects, respectively, and third-order polynomials for maternal genetic and maternal permanent environmental effects were the best. Estimates of (co)variance obtained with the multi-trait and random regression models were similar. Direct heritability estimates obtained with the random regression models followed a trend similar to that obtained with the multi-trait model. The largest estimates of maternal heritability were those of BW taken close to 240 d of age. In general, estimates of correlation between BW from birth to 8 yr of age decreased with increasing distance between ages.

  13. Existence of entire solutions of some non-linear differential-difference equations.

    PubMed

    Chen, Minfeng; Gao, Zongsheng; Du, Yunfei

    2017-01-01

    In this paper, we investigate the admissible entire solutions of finite order of the differential-difference equations [Formula: see text] and [Formula: see text], where [Formula: see text], [Formula: see text] are two non-zero polynomials, [Formula: see text] is a polynomial and [Formula: see text]. In addition, we investigate the non-existence of entire solutions of finite order of the differential-difference equation [Formula: see text], where [Formula: see text], [Formula: see text] are two non-constant polynomials, [Formula: see text], m , n are positive integers and satisfy [Formula: see text] except for [Formula: see text], [Formula: see text].

  14. Analytical Solution for the Free Vibration Analysis of Delaminated Timoshenko Beams

    PubMed Central

    Abedi, Maryam

    2014-01-01

    This work presents a method to find the exact solutions for the free vibration analysis of a delaminated beam based on the Timoshenko type with different boundary conditions. The solutions are obtained by the method of Lagrange multipliers in which the free vibration problem is posed as a constrained variational problem. The Legendre orthogonal polynomials are used as the beam eigenfunctions. Natural frequencies and mode shapes of various Timoshenko beams are presented to demonstrate the efficiency of the methodology. PMID:24574879

  15. Koopman Mode Decomposition Methods in Dynamic Stall: Reduced Order Modeling and Control

    DTIC Science & Technology

    2015-11-10

    the flow phenomena by separating them into individual modes. The technique of Proper Orthogonal Decomposition (POD), see [ Holmes : 1998] is a popular...sampled values h(k), k = 0,…,2M-1, of the exponential sum 1. Solve the following linear system where 2. Compute all zeros zj  D, j = 1,…,M...of the Prony polynomial i.e., calculate all eigenvalues of the associated companion matrix and form fj = log zj for j = 1,…,M, where log is the

  16. Current problems in applied mathematics and mathematical physics

    NASA Astrophysics Data System (ADS)

    Samarskii, A. A.

    Papers are presented on such topics as mathematical models in immunology, mathematical problems of medical computer tomography, classical orthogonal polynomials depending on a discrete variable, and boundary layer methods for singular perturbation problems in partial derivatives. Consideration is also given to the computer simulation of supernova explosion, nonstationary internal waves in a stratified fluid, the description of turbulent flows by unsteady solutions of the Navier-Stokes equations, and the reduced Galerkin method for external diffraction problems using the spline approximation of fields.

  17. On Riemann boundary value problems for null solutions of the two dimensional Helmholtz equation

    NASA Astrophysics Data System (ADS)

    Bory Reyes, Juan; Abreu Blaya, Ricardo; Rodríguez Dagnino, Ramón Martin; Kats, Boris Aleksandrovich

    2018-01-01

    The Riemann boundary value problem (RBVP to shorten notation) in the complex plane, for different classes of functions and curves, is still widely used in mathematical physics and engineering. For instance, in elasticity theory, hydro and aerodynamics, shell theory, quantum mechanics, theory of orthogonal polynomials, and so on. In this paper, we present an appropriate hyperholomorphic approach to the RBVP associated to the two dimensional Helmholtz equation in R^2 . Our analysis is based on a suitable operator calculus.

  18. Quantum superintegrable Zernike system

    NASA Astrophysics Data System (ADS)

    Pogosyan, George S.; Salto-Alegre, Cristina; Wolf, Kurt Bernardo; Yakhno, Alexander

    2017-07-01

    We consider the differential equation that Zernike proposed to classify aberrations of wavefronts in a circular pupil, whose value at the boundary can be nonzero. On this account, the quantum Zernike system, where that differential equation is seen as a Schrödinger equation with a potential, is special in that it has a potential and a boundary condition that are not standard in quantum mechanics. We project the disk on a half-sphere and there we find that, in addition to polar coordinates, this system separates into two additional coordinate systems (non-orthogonal on the pupil disk), which lead to Schrödinger-type equations with Pöschl-Teller potentials, whose eigen-solutions involve Legendre, Gegenbauer, and Jacobi polynomials. This provides new expressions for separated polynomial solutions of the original Zernike system that are real. The operators which provide the separation constants are found to participate in a superintegrable cubic Higgs algebra.

  19. Gaussian quadrature and lattice discretization of the Fermi-Dirac distribution for graphene.

    PubMed

    Oettinger, D; Mendoza, M; Herrmann, H J

    2013-07-01

    We construct a lattice kinetic scheme to study electronic flow in graphene. For this purpose, we first derive a basis of orthogonal polynomials, using as the weight function the ultrarelativistic Fermi-Dirac distribution at rest. Later, we use these polynomials to expand the respective distribution in a moving frame, for both cases, undoped and doped graphene. In order to discretize the Boltzmann equation and make feasible the numerical implementation, we reduce the number of discrete points in momentum space to 18 by applying a Gaussian quadrature, finding that the family of representative wave (2+1)-vectors, which satisfies the quadrature, reconstructs a honeycomb lattice. The procedure and discrete model are validated by solving the Riemann problem, finding excellent agreement with other numerical models. In addition, we have extended the Riemann problem to the case of different dopings, finding that by increasing the chemical potential the electronic fluid behaves as if it increases its effective viscosity.

  20. Hierarchical Type Stability Criteria for Delayed Neural Networks via Canonical Bessel-Legendre Inequalities.

    PubMed

    Zhang, Xian-Ming; Han, Qing-Long; Zeng, Zhigang

    2018-05-01

    This paper is concerned with global asymptotic stability of delayed neural networks. Notice that a Bessel-Legendre inequality plays a key role in deriving less conservative stability criteria for delayed neural networks. However, this inequality is in the form of Legendre polynomials and the integral interval is fixed on . As a result, the application scope of the Bessel-Legendre inequality is limited. This paper aims to develop the Bessel-Legendre inequality method so that less conservative stability criteria are expected. First, by introducing a canonical orthogonal polynomial sequel, a canonical Bessel-Legendre inequality and its affine version are established, which are not explicitly in the form of Legendre polynomials. Moreover, the integral interval is shifted to a general one . Second, by introducing a proper augmented Lyapunov-Krasovskii functional, which is tailored for the canonical Bessel-Legendre inequality, some sufficient conditions on global asymptotic stability are formulated for neural networks with constant delays and neural networks with time-varying delays, respectively. These conditions are proven to have a hierarchical feature: the higher level of hierarchy, the less conservatism of the stability criterion. Finally, three numerical examples are given to illustrate the efficiency of the proposed stability criteria.

  1. Study of a vibrating plate: comparison between experimental (ESPI) and analytical results

    NASA Astrophysics Data System (ADS)

    Romero, G.; Alvarez, L.; Alanís, E.; Nallim, L.; Grossi, R.

    2003-07-01

    Real-time electronic speckle pattern interferometry (ESPI) was used for tuning and visualization of natural frequencies of a trapezoidal plate. The plate was excited to resonant vibration by a sinusoidal acoustical source, which provided a continuous range of audio frequencies. Fringe patterns produced during the time-average recording of the vibrating plate—corresponding to several resonant frequencies—were registered. From these interferograms, calculations of vibrational amplitudes by means of zero-order Bessel functions were performed in some particular cases. The system was also studied analytically. The analytical approach developed is based on the Rayleigh-Ritz method and on the use of non-orthogonal right triangular co-ordinates. The deflection of the plate is approximated by a set of beam characteristic orthogonal polynomials generated by using the Gram-Schmidt procedure. A high degree of correlation between computational analysis and experimental results was observed.

  2. Stochastic uncertainty analysis for unconfined flow systems

    USGS Publications Warehouse

    Liu, Gaisheng; Zhang, Dongxiao; Lu, Zhiming

    2006-01-01

    A new stochastic approach proposed by Zhang and Lu (2004), called the Karhunen‐Loeve decomposition‐based moment equation (KLME), has been extended to solving nonlinear, unconfined flow problems in randomly heterogeneous aquifers. This approach is on the basis of an innovative combination of Karhunen‐Loeve decomposition, polynomial expansion, and perturbation methods. The random log‐transformed hydraulic conductivity field (lnKS) is first expanded into a series in terms of orthogonal Gaussian standard random variables with their coefficients obtained as the eigenvalues and eigenfunctions of the covariance function of lnKS. Next, head h is decomposed as a perturbation expansion series Σh(m), where h(m) represents the mth‐order head term with respect to the standard deviation of lnKS. Then h(m) is further expanded into a polynomial series of m products of orthogonal Gaussian standard random variables whose coefficients hi1,i2,...,im(m) are deterministic and solved sequentially from low to high expansion orders using MODFLOW‐2000. Finally, the statistics of head and flux are computed using simple algebraic operations on hi1,i2,...,im(m). A series of numerical test results in 2‐D and 3‐D unconfined flow systems indicated that the KLME approach is effective in estimating the mean and (co)variance of both heads and fluxes and requires much less computational effort as compared to the traditional Monte Carlo simulation technique.

  3. Mathematics of Computed Tomography

    NASA Astrophysics Data System (ADS)

    Hawkins, William Grant

    A review of the applications of the Radon transform is presented, with emphasis on emission computed tomography and transmission computed tomography. The theory of the 2D and 3D Radon transforms, and the effects of attenuation for emission computed tomography are presented. The algebraic iterative methods, their importance and limitations are reviewed. Analytic solutions of the 2D problem the convolution and frequency filtering methods based on linear shift invariant theory, and the solution of the circular harmonic decomposition by integral transform theory--are reviewed. The relation between the invisible kernels, the inverse circular harmonic transform, and the consistency conditions are demonstrated. The discussion and review are extended to the 3D problem-convolution, frequency filtering, spherical harmonic transform solutions, and consistency conditions. The Cormack algorithm based on reconstruction with Zernike polynomials is reviewed. An analogous algorithm and set of reconstruction polynomials is developed for the spherical harmonic transform. The relations between the consistency conditions, boundary conditions and orthogonal basis functions for the 2D projection harmonics are delineated and extended to the 3D case. The equivalence of the inverse circular harmonic transform, the inverse Radon transform, and the inverse Cormack transform is presented. The use of the number of nodes of a projection harmonic as a filter is discussed. Numerical methods for the efficient implementation of angular harmonic algorithms based on orthogonal functions and stable recursion are presented. The derivation of a lower bound for the signal-to-noise ratio of the Cormack algorithm is derived.

  4. Investigation of advanced UQ for CRUD prediction with VIPRE.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Eldred, Michael Scott

    2011-09-01

    This document summarizes the results from a level 3 milestone study within the CASL VUQ effort. It demonstrates the application of 'advanced UQ,' in particular dimension-adaptive p-refinement for polynomial chaos and stochastic collocation. The study calculates statistics for several quantities of interest that are indicators for the formation of CRUD (Chalk River unidentified deposit), which can lead to CIPS (CRUD induced power shift). Stochastic expansion methods are attractive methods for uncertainty quantification due to their fast convergence properties. For smooth functions (i.e., analytic, infinitely-differentiable) in L{sup 2} (i.e., possessing finite variance), exponential convergence rates can be obtained under order refinementmore » for integrated statistical quantities of interest such as mean, variance, and probability. Two stochastic expansion methods are of interest: nonintrusive polynomial chaos expansion (PCE), which computes coefficients for a known basis of multivariate orthogonal polynomials, and stochastic collocation (SC), which forms multivariate interpolation polynomials for known coefficients. Within the DAKOTA project, recent research in stochastic expansion methods has focused on automated polynomial order refinement ('p-refinement') of expansions to support scalability to higher dimensional random input spaces [4, 3]. By preferentially refining only in the most important dimensions of the input space, the applicability of these methods can be extended from O(10{sup 0})-O(10{sup 1}) random variables to O(10{sup 2}) and beyond, depending on the degree of anisotropy (i.e., the extent to which randominput variables have differing degrees of influence on the statistical quantities of interest (QOIs)). Thus, the purpose of this study is to investigate the application of these adaptive stochastic expansion methods to the analysis of CRUD using the VIPRE simulation tools for two different plant models of differing random dimension, anisotropy, and smoothness.« less

  5. Application of overlay modeling and control with Zernike polynomials in an HVM environment

    NASA Astrophysics Data System (ADS)

    Ju, JaeWuk; Kim, MinGyu; Lee, JuHan; Nabeth, Jeremy; Jeon, Sanghuck; Heo, Hoyoung; Robinson, John C.; Pierson, Bill

    2016-03-01

    Shrinking technology nodes and smaller process margins require improved photolithography overlay control. Generally, overlay measurement results are modeled with Cartesian polynomial functions for both intra-field and inter-field models and the model coefficients are sent to an advanced process control (APC) system operating in an XY Cartesian basis. Dampened overlay corrections, typically via exponentially or linearly weighted moving average in time, are then retrieved from the APC system to apply on the scanner in XY Cartesian form for subsequent lot exposure. The goal of the above method is to process lots with corrections that target the least possible overlay misregistration in steady state as well as in change point situations. In this study, we model overlay errors on product using Zernike polynomials with same fitting capability as the process of reference (POR) to represent the wafer-level terms, and use the standard Cartesian polynomials to represent the field-level terms. APC calculations for wafer-level correction are performed in Zernike basis while field-level calculations use standard XY Cartesian basis. Finally, weighted wafer-level correction terms are converted to XY Cartesian space in order to be applied on the scanner, along with field-level corrections, for future wafer exposures. Since Zernike polynomials have the property of being orthogonal in the unit disk we are able to reduce the amount of collinearity between terms and improve overlay stability. Our real time Zernike modeling and feedback evaluation was performed on a 20-lot dataset in a high volume manufacturing (HVM) environment. The measured on-product results were compared to POR and showed a 7% reduction in overlay variation including a 22% terms variation. This led to an on-product raw overlay Mean + 3Sigma X&Y improvement of 5% and resulted in 0.1% yield improvement.

  6. On Statistics of Bi-Orthogonal Eigenvectors in Real and Complex Ginibre Ensembles: Combining Partial Schur Decomposition with Supersymmetry

    NASA Astrophysics Data System (ADS)

    Fyodorov, Yan V.

    2018-06-01

    We suggest a method of studying the joint probability density (JPD) of an eigenvalue and the associated `non-orthogonality overlap factor' (also known as the `eigenvalue condition number') of the left and right eigenvectors for non-selfadjoint Gaussian random matrices of size {N× N} . First we derive the general finite N expression for the JPD of a real eigenvalue {λ} and the associated non-orthogonality factor in the real Ginibre ensemble, and then analyze its `bulk' and `edge' scaling limits. The ensuing distribution is maximally heavy-tailed, so that all integer moments beyond normalization are divergent. A similar calculation for a complex eigenvalue z and the associated non-orthogonality factor in the complex Ginibre ensemble is presented as well and yields a distribution with the finite first moment. Its `bulk' scaling limit yields a distribution whose first moment reproduces the well-known result of Chalker and Mehlig (Phys Rev Lett 81(16):3367-3370, 1998), and we provide the `edge' scaling distribution for this case as well. Our method involves evaluating the ensemble average of products and ratios of integer and half-integer powers of characteristic polynomials for Ginibre matrices, which we perform in the framework of a supersymmetry approach. Our paper complements recent studies by Bourgade and Dubach (The distribution of overlaps between eigenvectors of Ginibre matrices, 2018. arXiv:1801.01219).

  7. Random regression models using Legendre polynomials or linear splines for test-day milk yield of dairy Gyr (Bos indicus) cattle.

    PubMed

    Pereira, R J; Bignardi, A B; El Faro, L; Verneque, R S; Vercesi Filho, A E; Albuquerque, L G

    2013-01-01

    Studies investigating the use of random regression models for genetic evaluation of milk production in Zebu cattle are scarce. In this study, 59,744 test-day milk yield records from 7,810 first lactations of purebred dairy Gyr (Bos indicus) and crossbred (dairy Gyr × Holstein) cows were used to compare random regression models in which additive genetic and permanent environmental effects were modeled using orthogonal Legendre polynomials or linear spline functions. Residual variances were modeled considering 1, 5, or 10 classes of days in milk. Five classes fitted the changes in residual variances over the lactation adequately and were used for model comparison. The model that fitted linear spline functions with 6 knots provided the lowest sum of residual variances across lactation. On the other hand, according to the deviance information criterion (DIC) and bayesian information criterion (BIC), a model using third-order and fourth-order Legendre polynomials for additive genetic and permanent environmental effects, respectively, provided the best fit. However, the high rank correlation (0.998) between this model and that applying third-order Legendre polynomials for additive genetic and permanent environmental effects, indicates that, in practice, the same bulls would be selected by both models. The last model, which is less parameterized, is a parsimonious option for fitting dairy Gyr breed test-day milk yield records. Copyright © 2013 American Dairy Science Association. Published by Elsevier Inc. All rights reserved.

  8. Right Limits and Reflectionless Measures for CMV Matrices

    NASA Astrophysics Data System (ADS)

    Breuer, Jonathan; Ryckman, Eric; Zinchenko, Maxim

    2009-11-01

    We study CMV matrices by focusing on their right-limit sets. We prove a CMV version of a recent result of Remling dealing with the implications of the existence of absolutely continuous spectrum, and we study some of its consequences. We further demonstrate the usefulness of right limits in the study of weak asymptotic convergence of spectral measures and ratio asymptotics for orthogonal polynomials by extending and refining earlier results of Khrushchev. To demonstrate the analogy with the Jacobi case, we recover corresponding previous results of Simon using the same approach.

  9. A High Frequency Analysis of Electromagnetic Plane Wave Scattering by a Fully Illuminated Perfectly Conducting Semi-Infinite Cone.

    DTIC Science & Technology

    1986-01-01

    mn, 5] sin OdOd (B.39) 98 V Due to the orthogonality of the Legendre polynomials (shown in Appendix D), there is only a value when v = v’. This yields... some of his unpublished results. These results were for the special case of axial incidence on the semi- infinite cone, and were useful in verifying my... general solution. I express gratitude to Mr.(Ph.D. Candidate) Ming Cheng Liang for our many hours of discussion, and to my office mate Mr.(Ph.D

  10. A Fast Hermite Transform★

    PubMed Central

    Leibon, Gregory; Rockmore, Daniel N.; Park, Wooram; Taintor, Robert; Chirikjian, Gregory S.

    2008-01-01

    We present algorithms for fast and stable approximation of the Hermite transform of a compactly supported function on the real line, attainable via an application of a fast algebraic algorithm for computing sums associated with a three-term relation. Trade-offs between approximation in bandlimit (in the Hermite sense) and size of the support region are addressed. Numerical experiments are presented that show the feasibility and utility of our approach. Generalizations to any family of orthogonal polynomials are outlined. Applications to various problems in tomographic reconstruction, including the determination of protein structure, are discussed. PMID:20027202

  11. On Using Homogeneous Polynomials To Design Anisotropic Yield Functions With Tension/Compression Symmetry/Assymetry

    NASA Astrophysics Data System (ADS)

    Soare, S.; Yoon, J. W.; Cazacu, O.

    2007-05-01

    With few exceptions, non-quadratic homogeneous polynomials have received little attention as possible candidates for yield functions. One reason might be that not every such polynomial is a convex function. In this paper we show that homogeneous polynomials can be used to develop powerful anisotropic yield criteria, and that imposing simple constraints on the identification process leads, aposteriori, to the desired convexity property. It is shown that combinations of such polynomials allow for modeling yielding properties of metallic materials with any crystal structure, i.e. both cubic and hexagonal which display strength differential effects. Extensions of the proposed criteria to 3D stress states are also presented. We apply these criteria to the description of the aluminum alloy AA2090T3. We prove that a sixth order orthotropic homogeneous polynomial is capable of a satisfactory description of this alloy. Next, applications to the deep drawing of a cylindrical cup are presented. The newly proposed criteria were implemented as UMAT subroutines into the commercial FE code ABAQUS. We were able to predict six ears on the AA2090T3 cup's profile. Finally, we show that a tension/compression asymmetry in yielding can have an important effect on the earing profile.

  12. A bispectral q-hypergeometric basis for a class of quantum integrable models

    NASA Astrophysics Data System (ADS)

    Baseilhac, Pascal; Martin, Xavier

    2018-01-01

    For the class of quantum integrable models generated from the q-Onsager algebra, a basis of bispectral multivariable q-orthogonal polynomials is exhibited. In the first part, it is shown that the multivariable Askey-Wilson polynomials with N variables and N + 3 parameters introduced by Gasper and Rahman [Dev. Math. 13, 209 (2005)] generate a family of infinite dimensional modules for the q-Onsager algebra, whose fundamental generators are realized in terms of the multivariable q-difference and difference operators proposed by Iliev [Trans. Am. Math. Soc. 363, 1577 (2011)]. Raising and lowering operators extending those of Sahi [SIGMA 3, 002 (2007)] are also constructed. In the second part, finite dimensional modules are constructed and studied for a certain class of parameters and if the N variables belong to a discrete support. In this case, the bispectral property finds a natural interpretation within the framework of tridiagonal pairs. In the third part, eigenfunctions of the q-Dolan-Grady hierarchy are considered in the polynomial basis. In particular, invariant subspaces are identified for certain conditions generalizing Nepomechie's relations. In the fourth part, the analysis is extended to the special case q = 1. This framework provides a q-hypergeometric formulation of quantum integrable models such as the open XXZ spin chain with generic integrable boundary conditions (q ≠ 1).

  13. Application of Statistic Experimental Design to Assess the Effect of Gammairradiation Pre-Treatment on the Drying Characteristics and Qualities of Wheat

    NASA Astrophysics Data System (ADS)

    Yu, Yong; Wang, Jun

    Wheat, pretreated by 60Co gamma irradiation, was dried by hot-air with irradiation dosage 0-3 kGy, drying temperature 40-60 °C, and initial moisture contents 19-25% (drying basis). The drying characteristics and dried qualities of wheat were evaluated based on drying time, average dehydration rate, wet gluten content (WGC), moisture content of wet gluten (MCWG)and titratable acidity (TA). A quadratic rotation-orthogonal composite experimental design, with three variables (at five levels) and five response functions, and analysis method were employed to study the effect of three variables on the individual response functions. The five response functions (drying time, average dehydration rate, WGC, MCWG, TA) correlated with these variables by second order polynomials consisting of linear, quadratic and interaction terms. A high correlation coefficient indicated the suitability of the second order polynomial to predict these response functions. The linear, interaction and quadratic effects of three variables on the five response functions were all studied.

  14. SO(N) restricted Schur polynomials

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kemp, Garreth, E-mail: garreth.kemp@students.wits.ac.za

    2015-02-15

    We focus on the 1/4-BPS sector of free super Yang-Mills theory with an SO(N) gauge group. This theory has an AdS/CFT (an equivalence between a conformal field theory in d-1 dimensions and type II string theory defined on an AdS space in d-dimensions) dual in the form of type IIB string theory with AdS{sub 5}×RP{sup 5} geometry. With the aim of studying excited giant graviton dynamics, we construct an orthogonal basis for this sector of the gauge theory in this work. First, we demonstrate that the counting of states, as given by the partition function, and the counting of restrictedmore » Schur polynomials match by restricting to a particular class of Young diagram labels. We then give an explicit construction of these gauge invariant operators and evaluate their two-point function exactly. This paves the way to studying the spectral problem of these operators and their D-brane duals.« less

  15. Efficient Global Aerodynamic Modeling from Flight Data

    NASA Technical Reports Server (NTRS)

    Morelli, Eugene A.

    2012-01-01

    A method for identifying global aerodynamic models from flight data in an efficient manner is explained and demonstrated. A novel experiment design technique was used to obtain dynamic flight data over a range of flight conditions with a single flight maneuver. Multivariate polynomials and polynomial splines were used with orthogonalization techniques and statistical modeling metrics to synthesize global nonlinear aerodynamic models directly and completely from flight data alone. Simulation data and flight data from a subscale twin-engine jet transport aircraft were used to demonstrate the techniques. Results showed that global multivariate nonlinear aerodynamic dependencies could be accurately identified using flight data from a single maneuver. Flight-derived global aerodynamic model structures, model parameter estimates, and associated uncertainties were provided for all six nondimensional force and moment coefficients for the test aircraft. These models were combined with a propulsion model identified from engine ground test data to produce a high-fidelity nonlinear flight simulation very efficiently. Prediction testing using a multi-axis maneuver showed that the identified global model accurately predicted aircraft responses.

  16. User Selection Criteria of Airspace Designs in Flexible Airspace Management

    NASA Technical Reports Server (NTRS)

    Lee, Hwasoo E.; Lee, Paul U.; Jung, Jaewoo; Lai, Chok Fung

    2011-01-01

    A method for identifying global aerodynamic models from flight data in an efficient manner is explained and demonstrated. A novel experiment design technique was used to obtain dynamic flight data over a range of flight conditions with a single flight maneuver. Multivariate polynomials and polynomial splines were used with orthogonalization techniques and statistical modeling metrics to synthesize global nonlinear aerodynamic models directly and completely from flight data alone. Simulation data and flight data from a subscale twin-engine jet transport aircraft were used to demonstrate the techniques. Results showed that global multivariate nonlinear aerodynamic dependencies could be accurately identified using flight data from a single maneuver. Flight-derived global aerodynamic model structures, model parameter estimates, and associated uncertainties were provided for all six nondimensional force and moment coefficients for the test aircraft. These models were combined with a propulsion model identified from engine ground test data to produce a high-fidelity nonlinear flight simulation very efficiently. Prediction testing using a multi-axis maneuver showed that the identified global model accurately predicted aircraft responses.

  17. Ligand Electron Density Shape Recognition Using 3D Zernike Descriptors

    NASA Astrophysics Data System (ADS)

    Gunasekaran, Prasad; Grandison, Scott; Cowtan, Kevin; Mak, Lora; Lawson, David M.; Morris, Richard J.

    We present a novel approach to crystallographic ligand density interpretation based on Zernike shape descriptors. Electron density for a bound ligand is expanded in an orthogonal polynomial series (3D Zernike polynomials) and the coefficients from this expansion are employed to construct rotation-invariant descriptors. These descriptors can be compared highly efficiently against large databases of descriptors computed from other molecules. In this manuscript we describe this process and show initial results from an electron density interpretation study on a dataset containing over a hundred OMIT maps. We could identify the correct ligand as the first hit in about 30 % of the cases, within the top five in a further 30 % of the cases, and giving rise to an 80 % probability of getting the correct ligand within the top ten matches. In all but a few examples, the top hit was highly similar to the correct ligand in both shape and chemistry. Further extensions and intrinsic limitations of the method are discussed.

  18. Genetic analysis of body weights of individually fed beef bulls in South Africa using random regression models.

    PubMed

    Selapa, N W; Nephawe, K A; Maiwashe, A; Norris, D

    2012-02-08

    The aim of this study was to estimate genetic parameters for body weights of individually fed beef bulls measured at centralized testing stations in South Africa using random regression models. Weekly body weights of Bonsmara bulls (N = 2919) tested between 1999 and 2003 were available for the analyses. The model included a fixed regression of the body weights on fourth-order orthogonal Legendre polynomials of the actual days on test (7, 14, 21, 28, 35, 42, 49, 56, 63, 70, 77, and 84) for starting age and contemporary group effects. Random regressions on fourth-order orthogonal Legendre polynomials of the actual days on test were included for additive genetic effects and additional uncorrelated random effects of the weaning-herd-year and the permanent environment of the animal. Residual effects were assumed to be independently distributed with heterogeneous variance for each test day. Variance ratios for additive genetic, permanent environment and weaning-herd-year for weekly body weights at different test days ranged from 0.26 to 0.29, 0.37 to 0.44 and 0.26 to 0.34, respectively. The weaning-herd-year was found to have a significant effect on the variation of body weights of bulls despite a 28-day adjustment period. Genetic correlations amongst body weights at different test days were high, ranging from 0.89 to 1.00. Heritability estimates were comparable to literature using multivariate models. Therefore, random regression model could be applied in the genetic evaluation of body weight of individually fed beef bulls in South Africa.

  19. A Generalized Framework for Reduced-Order Modeling of a Wind Turbine Wake

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hamilton, Nicholas; Viggiano, Bianca; Calaf, Marc

    A reduced-order model for a wind turbine wake is sought from large eddy simulation data. Fluctuating velocity fields are combined in the correlation tensor to form the kernel of the proper orthogonal decomposition (POD). Proper orthogonal decomposition modes resulting from the decomposition represent the spatially coherent turbulence structures in the wind turbine wake; eigenvalues delineate the relative amount of turbulent kinetic energy associated with each mode. Back-projecting the POD modes onto the velocity snapshots produces dynamic coefficients that express the amplitude of each mode in time. A reduced-order model of the wind turbine wake (wakeROM) is defined through a seriesmore » of polynomial parameters that quantify mode interaction and the evolution of each POD mode coefficients. The resulting system of ordinary differential equations models the wind turbine wake composed only of the large-scale turbulent dynamics identified by the POD. Tikhonov regularization is used to recalibrate the dynamical system by adding additional constraints to the minimization seeking polynomial parameters, reducing error in the modeled mode coefficients. The wakeROM is periodically reinitialized with new initial conditions found by relating the incoming turbulent velocity to the POD mode coefficients through a series of open-loop transfer functions. The wakeROM reproduces mode coefficients to within 25.2%, quantified through the normalized root-mean-square error. A high-level view of the modeling approach is provided as a platform to discuss promising research directions, alternate processes that could benefit stability and efficiency, and desired extensions of the wakeROM.« less

  20. Polynomial filter estimation of range and range rate for terminal rendezvous

    NASA Technical Reports Server (NTRS)

    Philips, R.

    1970-01-01

    A study was made of a polynomial filter for computing range rate information from CSM VHF range data. The filter's performance during the terminal phase of the rendezvous is discussed. Two modifications of the filter were also made and tested. A manual terminal rendezvous was simulated and desired accuracies were achieved for vehicles on an intercept trajectory, except for short periods following each braking maneuver when the estimated range rate was initially in error by the magnitude of the burn.

  1. Random regression analyses using B-spline functions to model growth of Nellore cattle.

    PubMed

    Boligon, A A; Mercadante, M E Z; Lôbo, R B; Baldi, F; Albuquerque, L G

    2012-02-01

    The objective of this study was to estimate (co)variance components using random regression on B-spline functions to weight records obtained from birth to adulthood. A total of 82 064 weight records of 8145 females obtained from the data bank of the Nellore Breeding Program (PMGRN/Nellore Brazil) which started in 1987, were used. The models included direct additive and maternal genetic effects and animal and maternal permanent environmental effects as random. Contemporary group and dam age at calving (linear and quadratic effect) were included as fixed effects, and orthogonal Legendre polynomials of age (cubic regression) were considered as random covariate. The random effects were modeled using B-spline functions considering linear, quadratic and cubic polynomials for each individual segment. Residual variances were grouped in five age classes. Direct additive genetic and animal permanent environmental effects were modeled using up to seven knots (six segments). A single segment with two knots at the end points of the curve was used for the estimation of maternal genetic and maternal permanent environmental effects. A total of 15 models were studied, with the number of parameters ranging from 17 to 81. The models that used B-splines were compared with multi-trait analyses with nine weight traits and to a random regression model that used orthogonal Legendre polynomials. A model fitting quadratic B-splines, with four knots or three segments for direct additive genetic effect and animal permanent environmental effect and two knots for maternal additive genetic effect and maternal permanent environmental effect, was the most appropriate and parsimonious model to describe the covariance structure of the data. Selection for higher weight, such as at young ages, should be performed taking into account an increase in mature cow weight. Particularly, this is important in most of Nellore beef cattle production systems, where the cow herd is maintained on range conditions. There is limited modification of the growth curve of Nellore cattle with respect to the aim of selecting them for rapid growth at young ages while maintaining constant adult weight.

  2. Robust design of multiple trailing edge flaps for helicopter vibration reduction: A multi-objective bat algorithm approach

    NASA Astrophysics Data System (ADS)

    Mallick, Rajnish; Ganguli, Ranjan; Seetharama Bhat, M.

    2015-09-01

    The objective of this study is to determine an optimal trailing edge flap configuration and flap location to achieve minimum hub vibration levels and flap actuation power simultaneously. An aeroelastic analysis of a soft in-plane four-bladed rotor is performed in conjunction with optimal control. A second-order polynomial response surface based on an orthogonal array (OA) with 3-level design describes both the objectives adequately. Two new orthogonal arrays called MGB2P-OA and MGB4P-OA are proposed to generate nonlinear response surfaces with all interaction terms for two and four parameters, respectively. A multi-objective bat algorithm (MOBA) approach is used to obtain the optimal design point for the mutually conflicting objectives. MOBA is a recently developed nature-inspired metaheuristic optimization algorithm that is based on the echolocation behaviour of bats. It is found that MOBA inspired Pareto optimal trailing edge flap design reduces vibration levels by 73% and flap actuation power by 27% in comparison with the baseline design.

  3. WFIRST: Principal Components Analysis of H4RG-10 Near-IR Detector Data Cubes

    NASA Astrophysics Data System (ADS)

    Rauscher, Bernard

    2018-01-01

    The Wide Field Infrared Survey Telescope’s (WFIRST) Wide Field Instrument (WFI) incorporates an array of eighteen Teledyne H4RG-10 near-IR detector arrays. Because WFIRST’s science investigations require controlling systematic uncertainties to state-of-the-art levels, we conducted principal components analysis (PCA) of some H4RG-10 test data obtained in the NASA Goddard Space Flight Center Detector Characterization Laboratory (DCL). The PCA indicates that the Legendre polynomials provide a nearly orthogonal representation of up-the-ramp sampled illuminated data cubes, and suggests other representations that may provide an even more compact representation of the data in some circumstances. We hypothesize that by using orthogonal representations, such as those described here, it may be possible to control systematic errors better than has been achieved before for NASA missions. We believe that these findings are probably applicable to other H4RG, H2RG, and H1RG based systems.

  4. On Using Homogeneous Polynomials To Design Anisotropic Yield Functions With Tension/Compression Symmetry/Assymetry

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Soare, S.; Cazacu, O.; Yoon, J. W.

    With few exceptions, non-quadratic homogeneous polynomials have received little attention as possible candidates for yield functions. One reason might be that not every such polynomial is a convex function. In this paper we show that homogeneous polynomials can be used to develop powerful anisotropic yield criteria, and that imposing simple constraints on the identification process leads, aposteriori, to the desired convexity property. It is shown that combinations of such polynomials allow for modeling yielding properties of metallic materials with any crystal structure, i.e. both cubic and hexagonal which display strength differential effects. Extensions of the proposed criteria to 3D stressmore » states are also presented. We apply these criteria to the description of the aluminum alloy AA2090T3. We prove that a sixth order orthotropic homogeneous polynomial is capable of a satisfactory description of this alloy. Next, applications to the deep drawing of a cylindrical cup are presented. The newly proposed criteria were implemented as UMAT subroutines into the commercial FE code ABAQUS. We were able to predict six ears on the AA2090T3 cup's profile. Finally, we show that a tension/compression asymmetry in yielding can have an important effect on the earing profile.« less

  5. Use of dirichlet distributions and orthogonal projection techniques for the fluctuation analysis of steady-state multivariate birth-death systems

    NASA Astrophysics Data System (ADS)

    Palombi, Filippo; Toti, Simona

    2015-05-01

    Approximate weak solutions of the Fokker-Planck equation represent a useful tool to analyze the equilibrium fluctuations of birth-death systems, as they provide a quantitative knowledge lying in between numerical simulations and exact analytic arguments. In this paper, we adapt the general mathematical formalism known as the Ritz-Galerkin method for partial differential equations to the Fokker-Planck equation with time-independent polynomial drift and diffusion coefficients on the simplex. Then, we show how the method works in two examples, namely the binary and multi-state voter models with zealots.

  6. Method for obtaining electron energy-density functions from Langmuir-probe data using a card-programmable calculator

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Longhurst, G.R.

    This paper presents a method for obtaining electron energy density functions from Langmuir probe data taken in cool, dense plasmas where thin-sheath criteria apply and where magnetic effects are not severe. Noise is filtered out by using regression of orthogonal polynomials. The method requires only a programmable calculator (TI-59 or equivalent) to implement and can be used for the most general, nonequilibrium electron energy distribution plasmas. Data from a mercury ion source analyzed using this method are presented and compared with results for the same data using standard numerical techniques.

  7. An adaptive least-squares global sensitivity method and application to a plasma-coupled combustion prediction with parametric correlation

    NASA Astrophysics Data System (ADS)

    Tang, Kunkun; Massa, Luca; Wang, Jonathan; Freund, Jonathan B.

    2018-05-01

    We introduce an efficient non-intrusive surrogate-based methodology for global sensitivity analysis and uncertainty quantification. Modified covariance-based sensitivity indices (mCov-SI) are defined for outputs that reflect correlated effects. The overall approach is applied to simulations of a complex plasma-coupled combustion system with disparate uncertain parameters in sub-models for chemical kinetics and a laser-induced breakdown ignition seed. The surrogate is based on an Analysis of Variance (ANOVA) expansion, such as widely used in statistics, with orthogonal polynomials representing the ANOVA subspaces and a polynomial dimensional decomposition (PDD) representing its multi-dimensional components. The coefficients of the PDD expansion are obtained using a least-squares regression, which both avoids the direct computation of high-dimensional integrals and affords an attractive flexibility in choosing sampling points. This facilitates importance sampling using a Bayesian calibrated posterior distribution, which is fast and thus particularly advantageous in common practical cases, such as our large-scale demonstration, for which the asymptotic convergence properties of polynomial expansions cannot be realized due to computation expense. Effort, instead, is focused on efficient finite-resolution sampling. Standard covariance-based sensitivity indices (Cov-SI) are employed to account for correlation of the uncertain parameters. Magnitude of Cov-SI is unfortunately unbounded, which can produce extremely large indices that limit their utility. Alternatively, mCov-SI are then proposed in order to bound this magnitude ∈ [ 0 , 1 ]. The polynomial expansion is coupled with an adaptive ANOVA strategy to provide an accurate surrogate as the union of several low-dimensional spaces, avoiding the typical computational cost of a high-dimensional expansion. It is also adaptively simplified according to the relative contribution of the different polynomials to the total variance. The approach is demonstrated for a laser-induced turbulent combustion simulation model, which includes parameters with correlated effects.

  8. Tensor spherical harmonics theories on the exact nature of the elastic fields of a spherically anisotropic multi-inhomogeneous inclusion

    NASA Astrophysics Data System (ADS)

    Shodja, H. M.; Khorshidi, A.

    2013-04-01

    Eshelby's theories on the nature of the disturbance strains due to polynomial eigenstrains inside an isotropic ellipsoidal inclusion, and the form of homogenizing eigenstrains corresponding to remote polynomial loadings in the equivalent inclusion method (EIM) are not valid for spherically anisotropic inclusions and inhomogeneities. Materials with spherically anisotropic behavior are frequently encountered in nature, for example, some graphite particles or polyethylene spherulites. Moreover, multi-inclusions/inhomogeneities/inhomogeneous inclusions have abundant engineering and scientific applications and their exact theoretical treatment would be of great value. The present work is devoted to the development of a mathematical framework for the exact treatment of a spherical multi-inhomogeneous inclusion with spherically anisotropic constituents embedded in an unbounded isotropic matrix. The formulations herein are based on tensor spherical harmonics having orthogonality and completeness properties. For polynomial eigenstrain field and remote applied loading, several theorems on the exact closed-form expressions of the elastic fields associated with the matrix and all the phases of the inhomogeneous inclusion are stated and proved. Several classes of impotent eigenstrain fields associated to a generally anisotropic inclusion as well as isotropic and spherically anisotropic multi-inclusions are also introduced. The presented theories are useful for obtaining highly accurate solutions of desired accuracy when the constituent phases of the multi-inhomogeneous inclusion are made of functionally graded materials (FGMs).

  9. Statistical modelling of growth using a mixed model with orthogonal polynomials.

    PubMed

    Suchocki, T; Szyda, J

    2011-02-01

    In statistical modelling, the effects of single-nucleotide polymorphisms (SNPs) are often regarded as time-independent. However, for traits recorded repeatedly, it is very interesting to investigate the behaviour of gene effects over time. In the analysis, simulated data from the 13th QTL-MAS Workshop (Wageningen, The Netherlands, April 2009) was used and the major goal was the modelling of genetic effects as time-dependent. For this purpose, a mixed model which describes each effect using the third-order Legendre orthogonal polynomials, in order to account for the correlation between consecutive measurements, is fitted. In this model, SNPs are modelled as fixed, while the environment is modelled as random effects. The maximum likelihood estimates of model parameters are obtained by the expectation-maximisation (EM) algorithm and the significance of the additive SNP effects is based on the likelihood ratio test, with p-values corrected for multiple testing. For each significant SNP, the percentage of the total variance contributed by this SNP is calculated. Moreover, by using a model which simultaneously incorporates effects of all of the SNPs, the prediction of future yields is conducted. As a result, 179 from the total of 453 SNPs covering 16 out of 18 true quantitative trait loci (QTL) were selected. The correlation between predicted and true breeding values was 0.73 for the data set with all SNPs and 0.84 for the data set with selected SNPs. In conclusion, we showed that a longitudinal approach allows for estimating changes of the variance contributed by each SNP over time and demonstrated that, for prediction, the pre-selection of SNPs plays an important role.

  10. Data Processing Algorithm for Diagnostics of Combustion Using Diode Laser Absorption Spectrometry.

    PubMed

    Mironenko, Vladimir R; Kuritsyn, Yuril A; Liger, Vladimir V; Bolshov, Mikhail A

    2018-02-01

    A new algorithm for the evaluation of the integral line intensity for inferring the correct value for the temperature of a hot zone in the diagnostic of combustion by absorption spectroscopy with diode lasers is proposed. The algorithm is based not on the fitting of the baseline (BL) but on the expansion of the experimental and simulated spectra in a series of orthogonal polynomials, subtracting of the first three components of the expansion from both the experimental and simulated spectra, and fitting the spectra thus modified. The algorithm is tested in the numerical experiment by the simulation of the absorption spectra using a spectroscopic database, the addition of white noise, and the parabolic BL. Such constructed absorption spectra are treated as experimental in further calculations. The theoretical absorption spectra were simulated with the parameters (temperature, total pressure, concentration of water vapor) close to the parameters used for simulation of the experimental data. Then, spectra were expanded in the series of orthogonal polynomials and first components were subtracted from both spectra. The value of the correct integral line intensities and hence the correct temperature evaluation were obtained by fitting of the thus modified experimental and simulated spectra. The dependence of the mean and standard deviation of the evaluation of the integral line intensity on the linewidth and the number of subtracted components (first two or three) were examined. The proposed algorithm provides a correct estimation of temperature with standard deviation better than 60 K (for T = 1000 K) for the line half-width up to 0.6 cm -1 . The proposed algorithm allows for obtaining the parameters of a hot zone without the fitting of usually unknown BL.

  11. Method of orthogonally splitting imaging pose measurement

    NASA Astrophysics Data System (ADS)

    Zhao, Na; Sun, Changku; Wang, Peng; Yang, Qian; Liu, Xintong

    2018-01-01

    In order to meet the aviation's and machinery manufacturing's pose measurement need of high precision, fast speed and wide measurement range, and to resolve the contradiction between measurement range and resolution of vision sensor, this paper proposes an orthogonally splitting imaging pose measurement method. This paper designs and realizes an orthogonally splitting imaging vision sensor and establishes a pose measurement system. The vision sensor consists of one imaging lens, a beam splitter prism, cylindrical lenses and dual linear CCD. Dual linear CCD respectively acquire one dimensional image coordinate data of the target point, and two data can restore the two dimensional image coordinates of the target point. According to the characteristics of imaging system, this paper establishes the nonlinear distortion model to correct distortion. Based on cross ratio invariability, polynomial equation is established and solved by the least square fitting method. After completing distortion correction, this paper establishes the measurement mathematical model of vision sensor, and determines intrinsic parameters to calibrate. An array of feature points for calibration is built by placing a planar target in any different positions for a few times. An terative optimization method is presented to solve the parameters of model. The experimental results show that the field angle is 52 °, the focus distance is 27.40 mm, image resolution is 5185×5117 pixels, displacement measurement error is less than 0.1mm, and rotation angle measurement error is less than 0.15°. The method of orthogonally splitting imaging pose measurement can satisfy the pose measurement requirement of high precision, fast speed and wide measurement range.

  12. Quantum mechanics without potential function

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Alhaidari, A. D., E-mail: haidari@sctp.org.sa; Ismail, M. E. H.

    2015-07-15

    In the standard formulation of quantum mechanics, one starts by proposing a potential function that models the physical system. The potential is then inserted into the Schrödinger equation, which is solved for the wavefunction, bound states energy spectrum, and/or scattering phase shift. In this work, however, we propose an alternative formulation in which the potential function does not appear. The aim is to obtain a set of analytically realizable systems, which is larger than in the standard formulation and may or may not be associated with any given or previously known potential functions. We start with the wavefunction, which ismore » written as a bounded infinite sum of elements of a complete basis with polynomial coefficients that are orthogonal on an appropriate domain in the energy space. Using the asymptotic properties of these polynomials, we obtain the scattering phase shift, bound states, and resonances. This formulation enables one to handle not only the well-known quantum systems but also previously untreated ones. Illustrative examples are given for two- and three-parameter systems.« less

  13. A robust nonparametric framework for reconstruction of stochastic differential equation models

    NASA Astrophysics Data System (ADS)

    Rajabzadeh, Yalda; Rezaie, Amir Hossein; Amindavar, Hamidreza

    2016-05-01

    In this paper, we employ a nonparametric framework to robustly estimate the functional forms of drift and diffusion terms from discrete stationary time series. The proposed method significantly improves the accuracy of the parameter estimation. In this framework, drift and diffusion coefficients are modeled through orthogonal Legendre polynomials. We employ the least squares regression approach along with the Euler-Maruyama approximation method to learn coefficients of stochastic model. Next, a numerical discrete construction of mean squared prediction error (MSPE) is established to calculate the order of Legendre polynomials in drift and diffusion terms. We show numerically that the new method is robust against the variation in sample size and sampling rate. The performance of our method in comparison with the kernel-based regression (KBR) method is demonstrated through simulation and real data. In case of real dataset, we test our method for discriminating healthy electroencephalogram (EEG) signals from epilepsy ones. We also demonstrate the efficiency of the method through prediction in the financial data. In both simulation and real data, our algorithm outperforms the KBR method.

  14. Algebraic reasoning for the enhancement of data-driven building reconstructions

    NASA Astrophysics Data System (ADS)

    Meidow, Jochen; Hammer, Horst

    2016-04-01

    Data-driven approaches for the reconstruction of buildings feature the flexibility needed to capture objects of arbitrary shape. To recognize man-made structures, geometric relations such as orthogonality or parallelism have to be detected. These constraints are typically formulated as sets of multivariate polynomials. For the enforcement of the constraints within an adjustment process, a set of independent and consistent geometric constraints has to be determined. Gröbner bases are an ideal tool to identify such sets exactly. A complete workflow for geometric reasoning is presented to obtain boundary representations of solids based on given point clouds. The constraints are formulated in homogeneous coordinates, which results in simple polynomials suitable for the successful derivation of Gröbner bases for algebraic reasoning. Strategies for the reduction of the algebraical complexity are presented. To enforce the constraints, an adjustment model is introduced, which is able to cope with homogeneous coordinates along with their singular covariance matrices. The feasibility and the potential of the approach are demonstrated by the analysis of a real data set.

  15. Long-term stable active mount for reflective optics

    NASA Astrophysics Data System (ADS)

    Reinlein, C.; Brady, A.; Damm, C.; Mohaupt, M.; Kamm, A.; Lange, N.; Goy, M.

    2016-07-01

    We report on the development of an active mount with an orthogonal actuator matrix offering a stable shape optimization for gratings or mirrors. We introduce the actuator distribution and calculate the accessible Zernike polynomials from their actuator influence function. Experimental tests show the capability of the device to compensate for aberrations of grating substrates as we report measurements of a 110x105 mm2 and 220x210 mm2 device With these devices, we evaluate the position depending aberrations, long-term stability shape results, and temperature-induced shape variations. Therewith we will discuss potential applications in space telescopes and Earth-based facilities where long-term stability is mandatory.

  16. Algorithm for solving the linear Cauchy problem for large systems of ordinary differential equations with the use of parallel computations

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Moryakov, A. V., E-mail: sailor@orc.ru

    2016-12-15

    An algorithm for solving the linear Cauchy problem for large systems of ordinary differential equations is presented. The algorithm for systems of first-order differential equations is implemented in the EDELWEISS code with the possibility of parallel computations on supercomputers employing the MPI (Message Passing Interface) standard for the data exchange between parallel processes. The solution is represented by a series of orthogonal polynomials on the interval [0, 1]. The algorithm is characterized by simplicity and the possibility to solve nonlinear problems with a correction of the operator in accordance with the solution obtained in the previous iterative process.

  17. Application of the discrete generalized multigroup method to ultra-fine energy mesh in infinite medium calculations

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gibson, N. A.; Forget, B.

    2012-07-01

    The Discrete Generalized Multigroup (DGM) method uses discrete Legendre orthogonal polynomials to expand the energy dependence of the multigroup neutron transport equation. This allows a solution on a fine energy mesh to be approximated for a cost comparable to a solution on a coarse energy mesh. The DGM method is applied to an ultra-fine energy mesh (14,767 groups) to avoid using self-shielding methodologies without introducing the cost usually associated with such energy discretization. Results show DGM to converge to the reference ultra-fine solution after a small number of recondensation steps for multiple infinite medium compositions. (authors)

  18. Artificial neural network for the determination of Hubble Space Telescope aberration from stellar images

    NASA Technical Reports Server (NTRS)

    Barrett, Todd K.; Sandler, David G.

    1993-01-01

    An artificial-neural-network method, first developed for the measurement and control of atmospheric phase distortion, using stellar images, was used to estimate the optical aberration of the Hubble Space Telescope. A total of 26 estimates of distortion was obtained from 23 stellar images acquired at several secondary-mirror axial positions. The results were expressed as coefficients of eight orthogonal Zernike polynomials: focus through third-order spherical. For all modes other than spherical the measured aberration was small. The average spherical aberration of the estimates was -0.299 micron rms, which is in good agreement with predictions obtained when iterative phase-retrieval algorithms were used.

  19. Exactly and quasi-exactly solvable 'discrete' quantum mechanics.

    PubMed

    Sasaki, Ryu

    2011-03-28

    A brief introduction to discrete quantum mechanics is given together with the main results on various exactly solvable systems. Namely, the intertwining relations, shape invariance, Heisenberg operator solutions, annihilation/creation operators and dynamical symmetry algebras, including the q-oscillator algebra and the Askey-Wilson algebra. A simple recipe to construct exactly and quasi-exactly solvable (QES) Hamiltonians in one-dimensional 'discrete' quantum mechanics is presented. It reproduces all the known Hamiltonians whose eigenfunctions consist of the Askey scheme of hypergeometric orthogonal polynomials of a continuous or a discrete variable. Several new exactly and QES Hamiltonians are constructed. The sinusoidal coordinate plays an essential role.

  20. State Transition Matrix for Perturbed Orbital Motion Using Modified Chebyshev Picard Iteration

    NASA Astrophysics Data System (ADS)

    Read, Julie L.; Younes, Ahmad Bani; Macomber, Brent; Turner, James; Junkins, John L.

    2015-06-01

    The Modified Chebyshev Picard Iteration (MCPI) method has recently proven to be highly efficient for a given accuracy compared to several commonly adopted numerical integration methods, as a means to solve for perturbed orbital motion. This method utilizes Picard iteration, which generates a sequence of path approximations, and Chebyshev Polynomials, which are orthogonal and also enable both efficient and accurate function approximation. The nodes consistent with discrete Chebyshev orthogonality are generated using cosine sampling; this strategy also reduces the Runge effect and as a consequence of orthogonality, there is no matrix inversion required to find the basis function coefficients. The MCPI algorithms considered herein are parallel-structured so that they are immediately well-suited for massively parallel implementation with additional speedup. MCPI has a wide range of applications beyond ephemeris propagation, including the propagation of the State Transition Matrix (STM) for perturbed two-body motion. A solution is achieved for a spherical harmonic series representation of earth gravity (EGM2008), although the methodology is suitable for application to any gravity model. Included in this representation the normalized, Associated Legendre Functions are given and verified numerically. Modifications of the classical algorithm techniques, such as rewriting the STM equations in a second-order cascade formulation, gives rise to additional speedup. Timing results for the baseline formulation and this second-order formulation are given.

  1. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Liu Ke; Li Yanqiu; Wang Hai

    Characterization of measurement accuracy of the phase-shifting point diffraction interferometer (PS/PDI) is usually performed by two-pinhole null test. In this procedure, the geometrical coma and detector tilt astigmatism systematic errors are almost one or two magnitude higher than the desired accuracy of PS/PDI. These errors must be accurately removed from the null test result to achieve high accuracy. Published calibration methods, which can remove the geometrical coma error successfully, have some limitations in calibrating the astigmatism error. In this paper, we propose a method to simultaneously calibrate the geometrical coma and detector tilt astigmatism errors in PS/PDI null test. Basedmore » on the measurement results obtained from two pinhole pairs in orthogonal directions, the method utilizes the orthogonal and rotational symmetry properties of Zernike polynomials over unit circle to calculate the systematic errors introduced in null test of PS/PDI. The experiment using PS/PDI operated at visible light is performed to verify the method. The results show that the method is effective in isolating the systematic errors of PS/PDI and the measurement accuracy of the calibrated PS/PDI is 0.0088{lambda} rms ({lambda}= 632.8 nm).« less

  2. Mutually orthogonal Latin squares from the inner products of vectors in mutually unbiased bases

    NASA Astrophysics Data System (ADS)

    Hall, Joanne L.; Rao, Asha

    2010-04-01

    Mutually unbiased bases (MUBs) are important in quantum information theory. While constructions of complete sets of d + 1 MUBs in {\\bb C}^d are known when d is a prime power, it is unknown if such complete sets exist in non-prime power dimensions. It has been conjectured that complete sets of MUBs only exist in {\\bb C}^d if a maximal set of mutually orthogonal Latin squares (MOLS) of side length d also exists. There are several constructions (Roy and Scott 2007 J. Math. Phys. 48 072110; Paterek, Dakić and Brukner 2009 Phys. Rev. A 79 012109) of complete sets of MUBs from specific types of MOLS, which use Galois fields to construct the vectors of the MUBs. In this paper, two known constructions of MUBs (Alltop 1980 IEEE Trans. Inf. Theory 26 350-354 Wootters and Fields 1989 Ann. Phys. 191 363-381), both of which use polynomials over a Galois field, are used to construct complete sets of MOLS in the odd prime case. The MOLS come from the inner products of pairs of vectors in the MUBs.

  3. Normal modes of the shallow water system on the cubed sphere

    NASA Astrophysics Data System (ADS)

    Kang, H. G.; Cheong, H. B.; Lee, C. H.

    2017-12-01

    Spherical harmonics expressed as the Rossby-Haurwitz waves are the normal modes of non-divergent barotropic model. Among the normal modes in the numerical models, the most unstable mode will contaminate the numerical results, and therefore the investigation of normal mode for a given grid system and a discretiztaion method is important. The cubed-sphere grid which consists of six identical faces has been widely adopted in many atmospheric models. This grid system is non-orthogonal grid so that calculation of the normal mode is quiet challenge problem. In the present study, the normal modes of the shallow water system on the cubed sphere discretized by the spectral element method employing the Gauss-Lobatto Lagrange interpolating polynomials as orthogonal basis functions is investigated. The algebraic equations for the shallow water equation on the cubed sphere are derived, and the huge global matrix is constructed. The linear system representing the eigenvalue-eigenvector relations is solved by numerical libraries. The normal mode calculated for the several horizontal resolution and lamb parameters will be discussed and compared to the normal mode from the spherical harmonics spectral method.

  4. Breeding value accuracy estimates for growth traits using random regression and multi-trait models in Nelore cattle.

    PubMed

    Boligon, A A; Baldi, F; Mercadante, M E Z; Lobo, R B; Pereira, R J; Albuquerque, L G

    2011-06-28

    We quantified the potential increase in accuracy of expected breeding value for weights of Nelore cattle, from birth to mature age, using multi-trait and random regression models on Legendre polynomials and B-spline functions. A total of 87,712 weight records from 8144 females were used, recorded every three months from birth to mature age from the Nelore Brazil Program. For random regression analyses, all female weight records from birth to eight years of age (data set I) were considered. From this general data set, a subset was created (data set II), which included only nine weight records: at birth, weaning, 365 and 550 days of age, and 2, 3, 4, 5, and 6 years of age. Data set II was analyzed using random regression and multi-trait models. The model of analysis included the contemporary group as fixed effects and age of dam as a linear and quadratic covariable. In the random regression analyses, average growth trends were modeled using a cubic regression on orthogonal polynomials of age. Residual variances were modeled by a step function with five classes. Legendre polynomials of fourth and sixth order were utilized to model the direct genetic and animal permanent environmental effects, respectively, while third-order Legendre polynomials were considered for maternal genetic and maternal permanent environmental effects. Quadratic polynomials were applied to model all random effects in random regression models on B-spline functions. Direct genetic and animal permanent environmental effects were modeled using three segments or five coefficients, and genetic maternal and maternal permanent environmental effects were modeled with one segment or three coefficients in the random regression models on B-spline functions. For both data sets (I and II), animals ranked differently according to expected breeding value obtained by random regression or multi-trait models. With random regression models, the highest gains in accuracy were obtained at ages with a low number of weight records. The results indicate that random regression models provide more accurate expected breeding values than the traditionally finite multi-trait models. Thus, higher genetic responses are expected for beef cattle growth traits by replacing a multi-trait model with random regression models for genetic evaluation. B-spline functions could be applied as an alternative to Legendre polynomials to model covariance functions for weights from birth to mature age.

  5. Gravity Gradient Tensor of Arbitrary 3D Polyhedral Bodies with up to Third-Order Polynomial Horizontal and Vertical Mass Contrasts

    NASA Astrophysics Data System (ADS)

    Ren, Zhengyong; Zhong, Yiyuan; Chen, Chaojian; Tang, Jingtian; Kalscheuer, Thomas; Maurer, Hansruedi; Li, Yang

    2018-03-01

    During the last 20 years, geophysicists have developed great interest in using gravity gradient tensor signals to study bodies of anomalous density in the Earth. Deriving exact solutions of the gravity gradient tensor signals has become a dominating task in exploration geophysics or geodetic fields. In this study, we developed a compact and simple framework to derive exact solutions of gravity gradient tensor measurements for polyhedral bodies, in which the density contrast is represented by a general polynomial function. The polynomial mass contrast can continuously vary in both horizontal and vertical directions. In our framework, the original three-dimensional volume integral of gravity gradient tensor signals is transformed into a set of one-dimensional line integrals along edges of the polyhedral body by sequentially invoking the volume and surface gradient (divergence) theorems. In terms of an orthogonal local coordinate system defined on these edges, exact solutions are derived for these line integrals. We successfully derived a set of unified exact solutions of gravity gradient tensors for constant, linear, quadratic and cubic polynomial orders. The exact solutions for constant and linear cases cover all previously published vertex-type exact solutions of the gravity gradient tensor for a polygonal body, though the associated algorithms may differ in numerical stability. In addition, to our best knowledge, it is the first time that exact solutions of gravity gradient tensor signals are derived for a polyhedral body with a polynomial mass contrast of order higher than one (that is quadratic and cubic orders). Three synthetic models (a prismatic body with depth-dependent density contrasts, an irregular polyhedron with linear density contrast and a tetrahedral body with horizontally and vertically varying density contrasts) are used to verify the correctness and the efficiency of our newly developed closed-form solutions. Excellent agreements are obtained between our solutions and other published exact solutions. In addition, stability tests are performed to demonstrate that our exact solutions can safely be used to detect shallow subsurface targets.

  6. Exploring the use of random regression models with legendre polynomials to analyze measures of volume of ejaculate in Holstein bulls.

    PubMed

    Carabaño, M J; Díaz, C; Ugarte, C; Serrano, M

    2007-02-01

    Artificial insemination centers routinely collect records of quantity and quality of semen of bulls throughout the animals' productive period. The goal of this paper was to explore the use of random regression models with orthogonal polynomials to analyze repeated measures of semen production of Spanish Holstein bulls. A total of 8,773 records of volume of first ejaculate (VFE) collected between 12 and 30 mo of age from 213 Spanish Holstein bulls was analyzed under alternative random regression models. Legendre polynomial functions of increasing order (0 to 6) were fitted to the average trajectory, additive genetic and permanent environmental effects. Age at collection and days in production were used as time variables. Heterogeneous and homogeneous residual variances were alternatively assumed. Analyses were carried out within a Bayesian framework. The logarithm of the marginal density and the cross-validation predictive ability of the data were used as model comparison criteria. Based on both criteria, age at collection as a time variable and heterogeneous residuals models are recommended to analyze changes of VFE over time. Both criteria indicated that fitting random curves for genetic and permanent environmental components as well as for the average trajector improved the quality of models. Furthermore, models with a higher order polynomial for the permanent environmental (5 to 6) than for the genetic components (4 to 5) and the average trajectory (2 to 3) tended to perform best. High-order polynomials were needed to accommodate the highly oscillating nature of the phenotypic values. Heritability and repeatability estimates, disregarding the extremes of the studied period, ranged from 0.15 to 0.35 and from 0.20 to 0.50, respectively, indicating that selection for VFE may be effective at any stage. Small differences among models were observed. Apart from the extremes, estimated correlations between ages decreased steadily from 0.9 and 0.4 for measures 1 mo apart to 0.4 and 0.2 for most distant measures for additive genetic and phenotypic components, respectively. Further investigation to account for environmental factors that may be responsible for the oscillating observations of VFE is needed.

  7. Model reconstruction using POD method for gray-box fault detection

    NASA Technical Reports Server (NTRS)

    Park, H. G.; Zak, M.

    2003-01-01

    This paper describes using Proper Orthogonal Decomposition (POD) method to create low-order dynamical models for the Model Filter component of Beacon-based Exception Analysis for Multi-missions (BEAM).

  8. A Clifford analysis approach to superspace

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bie, H. de; Sommen, F.

    A new framework for studying superspace is given, based on methods from Clifford analysis. This leads to the introduction of both orthogonal and symplectic Clifford algebra generators, allowing for an easy and canonical introduction of a super-Dirac operator, a super-Laplace operator and the like. This framework is then used to define a super-Hodge coderivative, which, together with the exterior derivative, factorizes the Laplace operator. Finally both the cohomology of the exterior derivative and the homology of the Hodge operator on the level of polynomial-valued super-differential forms are studied. This leads to some interesting graphical representations and provides a better insightmore » in the definition of the Berezin-integral.« less

  9. The Ritz - Sublaminate Generalized Unified Formulation approach for piezoelectric composite plates

    NASA Astrophysics Data System (ADS)

    D'Ottavio, Michele; Dozio, Lorenzo; Vescovini, Riccardo; Polit, Olivier

    2018-01-01

    This paper extends to composite plates including piezoelectric plies the variable kinematics plate modeling approach called Sublaminate Generalized Unified Formulation (SGUF). Two-dimensional plate equations are obtained upon defining a priori the through-thickness distribution of the displacement field and electric potential. According to SGUF, independent approximations can be adopted for the four components of these generalized displacements: an Equivalent Single Layer (ESL) or Layer-Wise (LW) description over an arbitrary group of plies constituting the composite plate (the sublaminate) and the polynomial order employed in each sublaminate. The solution of the two-dimensional equations is sought in weak form by means of a Ritz method. In this work, boundary functions are used in conjunction with the domain approximation expressed by an orthogonal basis spanned by Legendre polynomials. The proposed computational tool is capable to represent electroded surfaces with equipotentiality conditions. Free-vibration problems as well as static problems involving actuator and sensor configurations are addressed. Two case studies are presented, which demonstrate the high accuracy of the proposed Ritz-SGUF approach. A model assessment is proposed for showcasing to which extent the SGUF approach allows a reduction of the number of unknowns with a controlled impact on the accuracy of the result.

  10. Polynomial order selection in random regression models via penalizing adaptively the likelihood.

    PubMed

    Corrales, J D; Munilla, S; Cantet, R J C

    2015-08-01

    Orthogonal Legendre polynomials (LP) are used to model the shape of additive genetic and permanent environmental effects in random regression models (RRM). Frequently, the Akaike (AIC) and the Bayesian (BIC) information criteria are employed to select LP order. However, it has been theoretically shown that neither AIC nor BIC is simultaneously optimal in terms of consistency and efficiency. Thus, the goal was to introduce a method, 'penalizing adaptively the likelihood' (PAL), as a criterion to select LP order in RRM. Four simulated data sets and real data (60,513 records, 6675 Colombian Holstein cows) were employed. Nested models were fitted to the data, and AIC, BIC and PAL were calculated for all of them. Results showed that PAL and BIC identified with probability of one the true LP order for the additive genetic and permanent environmental effects, but AIC tended to favour over parameterized models. Conversely, when the true model was unknown, PAL selected the best model with higher probability than AIC. In the latter case, BIC never favoured the best model. To summarize, PAL selected a correct model order regardless of whether the 'true' model was within the set of candidates. © 2015 Blackwell Verlag GmbH.

  11. New Families of Skewed Higher-Order Kernel Estimators to Solve the BSS/ICA Problem for Multimodal Sources Mixtures.

    PubMed

    Jabbar, Ahmed Najah

    2018-04-13

    This letter suggests two new types of asymmetrical higher-order kernels (HOK) that are generated using the orthogonal polynomials Laguerre (positive or right skew) and Bessel (negative or left skew). These skewed HOK are implemented in the blind source separation/independent component analysis (BSS/ICA) algorithm. The tests for these proposed HOK are accomplished using three scenarios to simulate a real environment using actual sound sources, an environment of mixtures of multimodal fast-changing probability density function (pdf) sources that represent a challenge to the symmetrical HOK, and an environment of an adverse case (near gaussian). The separation is performed by minimizing the mutual information (MI) among the mixed sources. The performance of the skewed kernels is compared to the performance of the standard kernels such as Epanechnikov, bisquare, trisquare, and gaussian and the performance of the symmetrical HOK generated using the polynomials Chebyshev1, Chebyshev2, Gegenbauer, Jacobi, and Legendre to the tenth order. The gaussian HOK are generated using the Hermite polynomial and the Wand and Schucany procedure. The comparison among the 96 kernels is based on the average intersymbol interference ratio (AISIR) and the time needed to complete the separation. In terms of AISIR, the skewed kernels' performance is better than that of the standard kernels and rivals most of the symmetrical kernels' performance. The importance of these new skewed HOK is manifested in the environment of the multimodal pdf mixtures. In such an environment, the skewed HOK come in first place compared with the symmetrical HOK. These new families can substitute for symmetrical HOKs in such applications.

  12. Random regression models on Legendre polynomials to estimate genetic parameters for weights from birth to adult age in Canchim cattle.

    PubMed

    Baldi, F; Albuquerque, L G; Alencar, M M

    2010-08-01

    The objective of this work was to estimate covariance functions for direct and maternal genetic effects, animal and maternal permanent environmental effects, and subsequently, to derive relevant genetic parameters for growth traits in Canchim cattle. Data comprised 49,011 weight records on 2435 females from birth to adult age. The model of analysis included fixed effects of contemporary groups (year and month of birth and at weighing) and age of dam as quadratic covariable. Mean trends were taken into account by a cubic regression on orthogonal polynomials of animal age. Residual variances were allowed to vary and were modelled by a step function with 1, 4 or 11 classes based on animal's age. The model fitting four classes of residual variances was the best. A total of 12 random regression models from second to seventh order were used to model direct and maternal genetic effects, animal and maternal permanent environmental effects. The model with direct and maternal genetic effects, animal and maternal permanent environmental effects fitted by quadric, cubic, quintic and linear Legendre polynomials, respectively, was the most adequate to describe the covariance structure of the data. Estimates of direct and maternal heritability obtained by multi-trait (seven traits) and random regression models were very similar. Selection for higher weight at any age, especially after weaning, will produce an increase in mature cow weight. The possibility to modify the growth curve in Canchim cattle to obtain animals with rapid growth at early ages and moderate to low mature cow weight is limited.

  13. A Variational Nodal Approach to 2D/1D Pin Resolved Neutron Transport for Pressurized Water Reactors

    DOE PAGES

    Zhang, Tengfei; Lewis, E. E.; Smith, M. A.; ...

    2017-04-18

    A two-dimensional/one-dimensional (2D/1D) variational nodal approach is presented for pressurized water reactor core calculations without fuel-moderator homogenization. A 2D/1D approximation to the within-group neutron transport equation is derived and converted to an even-parity form. The corresponding nodal functional is presented and discretized to obtain response matrix equations. Within the nodes, finite elements in the x-y plane and orthogonal functions in z are used to approximate the spatial flux distribution. On the radial interfaces, orthogonal polynomials are employed; on the axial interfaces, piecewise constants corresponding to the finite elements eliminate the interface homogenization that has been a challenge for method ofmore » characteristics (MOC)-based 2D/1D approximations. The angular discretization utilizes an even-parity integral method within the nodes, and low-order spherical harmonics (P N) on the axial interfaces. The x-y surfaces are treated with high-order P N combined with quasi-reflected interface conditions. Furthermore, the method is applied to the C5G7 benchmark problems and compared to Monte Carlo reference calculations.« less

  14. Shape optimization techniques for musical instrument design

    NASA Astrophysics Data System (ADS)

    Henrique, Luis; Antunes, Jose; Carvalho, Joao S.

    2002-11-01

    The design of musical instruments is still mostly based on empirical knowledge and costly experimentation. One interesting improvement is the shape optimization of resonating components, given a number of constraints (allowed parameter ranges, shape smoothness, etc.), so that vibrations occur at specified modal frequencies. Each admissible geometrical configuration generates an error between computed eigenfrequencies and the target set. Typically, error surfaces present many local minima, corresponding to suboptimal designs. This difficulty can be overcome using global optimization techniques, such as simulated annealing. However these methods are greedy, concerning the number of function evaluations required. Thus, the computational effort can be unacceptable if complex problems, such as bell optimization, are tackled. Those issues are addressed in this paper, and a method for improving optimization procedures is proposed. Instead of using the local geometric parameters as searched variables, the system geometry is modeled in terms of truncated series of orthogonal space-funcitons, and optimization is performed on their amplitude coefficients. Fourier series and orthogonal polynomials are typical such functions. This technique reduces considerably the number of searched variables, and has a potential for significant computational savings in complex problems. It is illustrated by optimizing the shapes of both current and uncommon marimba bars.

  15. A Variational Nodal Approach to 2D/1D Pin Resolved Neutron Transport for Pressurized Water Reactors

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhang, Tengfei; Lewis, E. E.; Smith, M. A.

    A two-dimensional/one-dimensional (2D/1D) variational nodal approach is presented for pressurized water reactor core calculations without fuel-moderator homogenization. A 2D/1D approximation to the within-group neutron transport equation is derived and converted to an even-parity form. The corresponding nodal functional is presented and discretized to obtain response matrix equations. Within the nodes, finite elements in the x-y plane and orthogonal functions in z are used to approximate the spatial flux distribution. On the radial interfaces, orthogonal polynomials are employed; on the axial interfaces, piecewise constants corresponding to the finite elements eliminate the interface homogenization that has been a challenge for method ofmore » characteristics (MOC)-based 2D/1D approximations. The angular discretization utilizes an even-parity integral method within the nodes, and low-order spherical harmonics (P N) on the axial interfaces. The x-y surfaces are treated with high-order P N combined with quasi-reflected interface conditions. Furthermore, the method is applied to the C5G7 benchmark problems and compared to Monte Carlo reference calculations.« less

  16. Polynomial Fitting of DT-MRI Fiber Tracts Allows Accurate Estimation of Muscle Architectural Parameters

    PubMed Central

    Damon, Bruce M.; Heemskerk, Anneriet M.; Ding, Zhaohua

    2012-01-01

    Fiber curvature is a functionally significant muscle structural property, but its estimation from diffusion-tensor MRI fiber tracking data may be confounded by noise. The purpose of this study was to investigate the use of polynomial fitting of fiber tracts for improving the accuracy and precision of fiber curvature (κ) measurements. Simulated image datasets were created in order to provide data with known values for κ and pennation angle (θ). Simulations were designed to test the effects of increasing inherent fiber curvature (3.8, 7.9, 11.8, and 15.3 m−1), signal-to-noise ratio (50, 75, 100, and 150), and voxel geometry (13.8 and 27.0 mm3 voxel volume with isotropic resolution; 13.5 mm3 volume with an aspect ratio of 4.0) on κ and θ measurements. In the originally reconstructed tracts, θ was estimated accurately under most curvature and all imaging conditions studied; however, the estimates of κ were imprecise and inaccurate. Fitting the tracts to 2nd order polynomial functions provided accurate and precise estimates of κ for all conditions except very high curvature (κ=15.3 m−1), while preserving the accuracy of the θ estimates. Similarly, polynomial fitting of in vivo fiber tracking data reduced the κ values of fitted tracts from those of unfitted tracts and did not change the θ values. Polynomial fitting of fiber tracts allows accurate estimation of physiologically reasonable values of κ, while preserving the accuracy of θ estimation. PMID:22503094

  17. Flat bases of invariant polynomials and P-matrices of E{sub 7} and E{sub 8}

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Talamini, Vittorino

    2010-02-15

    Let G be a compact group of linear transformations of a Euclidean space V. The G-invariant C{sup {infinity}} functions can be expressed as C{sup {infinity}} functions of a finite basic set of G-invariant homogeneous polynomials, sometimes called an integrity basis. The mathematical description of the orbit space V/G depends on the integrity basis too: it is realized through polynomial equations and inequalities expressing rank and positive semidefiniteness conditions of the P-matrix, a real symmetric matrix determined by the integrity basis. The choice of the basic set of G-invariant homogeneous polynomials forming an integrity basis is not unique, so it ismore » not unique the mathematical description of the orbit space too. If G is an irreducible finite reflection group, Saito et al. [Commun. Algebra 8, 373 (1980)] characterized some special basic sets of G-invariant homogeneous polynomials that they called flat. They also found explicitly the flat basic sets of invariant homogeneous polynomials of all the irreducible finite reflection groups except of the two largest groups E{sub 7} and E{sub 8}. In this paper the flat basic sets of invariant homogeneous polynomials of E{sub 7} and E{sub 8} and the corresponding P-matrices are determined explicitly. Using the results here reported one is able to determine easily the P-matrices corresponding to any other integrity basis of E{sub 7} or E{sub 8}. From the P-matrices one may then write down the equations and inequalities defining the orbit spaces of E{sub 7} and E{sub 8} relatively to a flat basis or to any other integrity basis. The results here obtained may be employed concretely to study analytically the symmetry breaking in all theories where the symmetry group is one of the finite reflection groups E{sub 7} and E{sub 8} or one of the Lie groups E{sub 7} and E{sub 8} in their adjoint representations.« less

  18. A nonclassical Radau collocation method for solving the Lane-Emden equations of the polytropic index 4.75 ≤ α < 5

    NASA Astrophysics Data System (ADS)

    Tirani, M. D.; Maleki, M.; Kajani, M. T.

    2014-11-01

    A numerical method for solving the Lane-Emden equations of the polytropic index α when 4.75 ≤ α ≤ 5 is introduced. The method is based upon nonclassical Gauss-Radau collocation points and Freud type weights. Nonclassical orthogonal polynomials, nonclassical Radau points and weighted interpolation are introduced and are utilized in the interval [0,1]. A smooth, strictly monotonic transformation is used to map the infinite domain x ∈ [0,∞) onto a half-open interval t ∈ [0,1). The resulting problem on the finite interval is then transcribed to a system of nonlinear algebraic equations using collocation. The method is easy to implement and yields very accurate results.

  19. Subquantum information and computation

    NASA Astrophysics Data System (ADS)

    Valentini, Antony

    2002-08-01

    It is argued that immense physical resources -- for nonlocal communication, espionage, and exponentially-fast computation -- are hidden from us by quantum noise, and that this noise is not fundamental but merely a property of an equilibrium state in which the universe happens to be at the present time. It is suggested that `non-quantum' or nonequilibrium matter might exist today in the form of relic particles from the early universe. We describe how such matter could be detected and put to practical use. Nonequilibrium matter could be used to send instantaneous signals, to violate the uncertainty principle, to distinguish non-orthogonal quantum states without disturbing them, to eavesdrop on quantum key distribution, and to outpace quantum computation (solving NP-complete problems in polynomial time).

  20. Simple, Effective Computation of Principal Eigen-Vectors and Their Eigenvalues and Application to High-Resolution Estimation of Frequencies

    DTIC Science & Technology

    1985-10-01

    written 3 as follows: m 4 cg ° + C + + - c =0n-1u-1 n C + c 2 g 1 +. . c 0 clg o Cngn-1 cn+ 1 (10a) cng° + Cn+11 + + C 2n-lgn_1 + C 2 n 0 or in...matrix form, C " I = 0 (10b) A non-zero solution is possible if the determinant of C is zero. From the theory of Prony’s method [133 g (k1 = % n + kn... g , ki + go = 0 II) hence the polynomial coefficient vector g is also orthogonal to the vector (1 X i ki 2 .Xik)T where %i’s are the

  1. Quantum statistics of Raman scattering model with Stokes mode generation

    NASA Technical Reports Server (NTRS)

    Tanatar, Bilal; Shumovsky, Alexander S.

    1994-01-01

    The model describing three coupled quantum oscillators with decay of Rayleigh mode into the Stokes and vibration (phonon) modes is examined. Due to the Manley-Rowe relations the problem of exact eigenvalues and eigenstates is reduced to the calculation of new orthogonal polynomials defined both by the difference and differential equations. The quantum statistical properties are examined in the case when initially: the Stokes mode is in the vacuum state; the Rayleigh mode is in the number state; and the vibration mode is in the number of or squeezed states. The collapses and revivals are obtained for different initial conditions as well as the change in time the sub-Poisson distribution by the super-Poisson distribution and vice versa.

  2. Polynomial approximation of functions of matrices and its application to the solution of a general system of linear equations

    NASA Technical Reports Server (NTRS)

    Tal-Ezer, Hillel

    1987-01-01

    During the process of solving a mathematical model numerically, there is often a need to operate on a vector v by an operator which can be expressed as f(A) while A is NxN matrix (ex: exp(A), sin(A), A sup -1). Except for very simple matrices, it is impractical to construct the matrix f(A) explicitly. Usually an approximation to it is used. In the present research, an algorithm is developed which uses a polynomial approximation to f(A). It is reduced to a problem of approximating f(z) by a polynomial in z while z belongs to the domain D in the complex plane which includes all the eigenvalues of A. This problem of approximation is approached by interpolating the function f(z) in a certain set of points which is known to have some maximal properties. The approximation thus achieved is almost best. Implementing the algorithm to some practical problem is described. Since a solution to a linear system Ax = b is x= A sup -1 b, an iterative solution to it can be regarded as a polynomial approximation to f(A) = A sup -1. Implementing the algorithm in this case is also described.

  3. Estimation of genetic parameters for milk yield in Murrah buffaloes by Bayesian inference.

    PubMed

    Breda, F C; Albuquerque, L G; Euclydes, R F; Bignardi, A B; Baldi, F; Torres, R A; Barbosa, L; Tonhati, H

    2010-02-01

    Random regression models were used to estimate genetic parameters for test-day milk yield in Murrah buffaloes using Bayesian inference. Data comprised 17,935 test-day milk records from 1,433 buffaloes. Twelve models were tested using different combinations of third-, fourth-, fifth-, sixth-, and seventh-order orthogonal polynomials of weeks of lactation for additive genetic and permanent environmental effects. All models included the fixed effects of contemporary group, number of daily milkings and age of cow at calving as covariate (linear and quadratic effect). In addition, residual variances were considered to be heterogeneous with 6 classes of variance. Models were selected based on the residual mean square error, weighted average of residual variance estimates, and estimates of variance components, heritabilities, correlations, eigenvalues, and eigenfunctions. Results indicated that changes in the order of fit for additive genetic and permanent environmental random effects influenced the estimation of genetic parameters. Heritability estimates ranged from 0.19 to 0.31. Genetic correlation estimates were close to unity between adjacent test-day records, but decreased gradually as the interval between test-days increased. Results from mean squared error and weighted averages of residual variance estimates suggested that a model considering sixth- and seventh-order Legendre polynomials for additive and permanent environmental effects, respectively, and 6 classes for residual variances, provided the best fit. Nevertheless, this model presented the largest degree of complexity. A more parsimonious model, with fourth- and sixth-order polynomials, respectively, for these same effects, yielded very similar genetic parameter estimates. Therefore, this last model is recommended for routine applications. Copyright 2010 American Dairy Science Association. Published by Elsevier Inc. All rights reserved.

  4. Robustness analysis of an air heating plant and control law by using polynomial chaos

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Colón, Diego; Ferreira, Murillo A. S.; Bueno, Átila M.

    2014-12-10

    This paper presents a robustness analysis of an air heating plant with a multivariable closed-loop control law by using the polynomial chaos methodology (MPC). The plant consists of a PVC tube with a fan in the air input (that forces the air through the tube) and a mass flux sensor in the output. A heating resistance warms the air as it flows inside the tube, and a thermo-couple sensor measures the air temperature. The plant has thus two inputs (the fan's rotation intensity and heat generated by the resistance, both measured in percent of the maximum value) and two outputsmore » (air temperature and air mass flux, also in percent of the maximal value). The mathematical model is obtained by System Identification techniques. The mass flux sensor, which is nonlinear, is linearized and the delays in the transfer functions are properly approximated by non-minimum phase transfer functions. The resulting model is transformed to a state-space model, which is used for control design purposes. The multivariable robust control design techniques used is the LQG/LTR, and the controllers are validated in simulation software and in the real plant. Finally, the MPC is applied by considering some of the system's parameters as random variables (one at a time, and the system's stochastic differential equations are solved by expanding the solution (a stochastic process) in an orthogonal basis of polynomial functions of the basic random variables. This method transforms the stochastic equations in a set of deterministic differential equations, which can be solved by traditional numerical methods (That is the MPC). Statistical data for the system (like expected values and variances) are then calculated. The effects of randomness in the parameters are evaluated in the open-loop and closed-loop pole's positions.« less

  5. New template family for the detection of gravitational waves from comparable-mass black hole binaries

    NASA Astrophysics Data System (ADS)

    Porter, Edward K.

    2007-11-01

    In order to improve the phasing of the comparable-mass waveform as we approach the last stable orbit for a system, various resummation methods have been used to improve the standard post-Newtonian waveforms. In this work we present a new family of templates for the detection of gravitational waves from the inspiral of two comparable-mass black hole binaries. These new adiabatic templates are based on reexpressing the derivative of the binding energy and the gravitational wave flux functions in terms of shifted Chebyshev polynomials. The Chebyshev polynomials are a useful tool in numerical methods as they display the fastest convergence of any of the orthogonal polynomials. In this case they are also particularly useful as they eliminate one of the features that plagues the post-Newtonian expansion. The Chebyshev binding energy now has information at all post-Newtonian orders, compared to the post-Newtonian templates which only have information at full integer orders. In this work, we compare both the post-Newtonian and Chebyshev templates against a fiducially exact waveform. This waveform is constructed from a hybrid method of using the test-mass results combined with the mass dependent parts of the post-Newtonian expansions for the binding energy and flux functions. Our results show that the Chebyshev templates achieve extremely high fitting factors at all post-Newtonian orders and provide excellent parameter extraction. We also show that this new template family has a faster Cauchy convergence, gives a better prediction of the position of the last stable orbit and in general recovers higher Signal-to-Noise ratios than the post-Newtonian templates.

  6. A variational formulation for vibro-acoustic analysis of a panel backed by an irregularly-bounded cavity

    NASA Astrophysics Data System (ADS)

    Xie, Xiang; Zheng, Hui; Qu, Yegao

    2016-07-01

    A weak form variational based method is developed to study the vibro-acoustic responses of coupled structural-acoustic system consisting of an irregular acoustic cavity with general wall impedance and a flexible panel subjected to arbitrary edge-supporting conditions. The structural and acoustical models of the coupled system are formulated on the basis of a modified variational method combined with multi-segment partitioning strategy. Meanwhile, the continuity constraints on the sub-segment interfaces are further incorporated into the system stiffness matrix by means of least-squares weighted residual method. Orthogonal polynomials, such as Chebyshev polynomials of the first kind, are employed as the wholly admissible unknown displacement and sound pressure field variables functions for separate components without meshing, and hence mapping the irregular physical domain into a square spectral domain is necessary. The effects of weighted parameter together with the number of truncated polynomial terms and divided partitions on the accuracy of present theoretical solutions are investigated. It is observed that applying this methodology, accurate and efficient predictions can be obtained for various types of coupled panel-cavity problems; and in weak or strong coupling cases for a panel surrounded by a light or heavy fluid, the inherent principle of velocity continuity on the panel-cavity contacting interface can all be handled satisfactorily. Key parametric studies concerning the influences of the geometrical properties as well as impedance boundary are performed. Finally, by performing the vibro-acoustic analyses of 3D car-like coupled miniature, we demonstrate that the present method seems to be an excellent way to obtain accurate mid-frequency solution with an acceptable CPU time.

  7. Random regression analyses using B-splines to model growth of Australian Angus cattle

    PubMed Central

    Meyer, Karin

    2005-01-01

    Regression on the basis function of B-splines has been advocated as an alternative to orthogonal polynomials in random regression analyses. Basic theory of splines in mixed model analyses is reviewed, and estimates from analyses of weights of Australian Angus cattle from birth to 820 days of age are presented. Data comprised 84 533 records on 20 731 animals in 43 herds, with a high proportion of animals with 4 or more weights recorded. Changes in weights with age were modelled through B-splines of age at recording. A total of thirteen analyses, considering different combinations of linear, quadratic and cubic B-splines and up to six knots, were carried out. Results showed good agreement for all ages with many records, but fluctuated where data were sparse. On the whole, analyses using B-splines appeared more robust against "end-of-range" problems and yielded more consistent and accurate estimates of the first eigenfunctions than previous, polynomial analyses. A model fitting quadratic B-splines, with knots at 0, 200, 400, 600 and 821 days and a total of 91 covariance components, appeared to be a good compromise between detailedness of the model, number of parameters to be estimated, plausibility of results, and fit, measured as residual mean square error. PMID:16093011

  8. RBCs as microlenses: wavefront analysis and applications

    NASA Astrophysics Data System (ADS)

    Merola, Francesco; Barroso, Álvaro; Miccio, Lisa; Memmolo, Pasquale; Mugnano, Martina; Ferraro, Pietro; Denz, Cornelia

    2017-06-01

    Developing the recently discovered concept of RBCs as microlenses, we demonstrate further applications in wavefront analysis and diagnostics. Correlation between RBC's morphology and its behavior as a refractive optical element has been established. In fact, any deviation from the healthy RBC morphology can be seen as additional aberration in the optical wavefront passing through the cell. By this concept, accurate localization of focal spots of RBCs can become very useful in blood disorders identification. Moreover, By modelling RBC as bio-lenses through Zernike polynomials it is possible to identify a series of orthogonal parameters able to recognise RBC shapes. The main improvement concerns the possibility to combine such parameters because of their independence conversely to standard image-based analysis where morphological factors are dependent each-others. We investigate the three-dimensional positioning of such focal spots over time for samples with two different osmolarity conditions, i.e. discocytes and spherocytes. Finally, Zernike polynomials wavefront analysis allows us to study the optical behavior of RBCs under an optically-induced mechanical stress. Detailed wavefront analysis provides comprehensive information about the aberrations induced by the deformation obtained using optical tweezers. This could open new routes for analyzing cell elasticity by examining optical parameters instead of direct but with low resolution strain analysis, thanks to the high sensitivity of the interferometric tool.

  9. Analysis of actuator delay and its effect on uncertainty quantification for real-time hybrid simulation

    NASA Astrophysics Data System (ADS)

    Chen, Cheng; Xu, Weijie; Guo, Tong; Chen, Kai

    2017-10-01

    Uncertainties in structure properties can result in different responses in hybrid simulations. Quantification of the effect of these uncertainties would enable researchers to estimate the variances of structural responses observed from experiments. This poses challenges for real-time hybrid simulation (RTHS) due to the existence of actuator delay. Polynomial chaos expansion (PCE) projects the model outputs on a basis of orthogonal stochastic polynomials to account for influences of model uncertainties. In this paper, PCE is utilized to evaluate effect of actuator delay on the maximum displacement from real-time hybrid simulation of a single degree of freedom (SDOF) structure when accounting for uncertainties in structural properties. The PCE is first applied for RTHS without delay to determine the order of PCE, the number of sample points as well as the method for coefficients calculation. The PCE is then applied to RTHS with actuator delay. The mean, variance and Sobol indices are compared and discussed to evaluate the effects of actuator delay on uncertainty quantification for RTHS. Results show that the mean and the variance of the maximum displacement increase linearly and exponentially with respect to actuator delay, respectively. Sensitivity analysis through Sobol indices also indicates the influence of the single random variable decreases while the coupling effect increases with the increase of actuator delay.

  10. Modelling and simulation of a moving interface problem: freeze drying of black tea extract

    NASA Astrophysics Data System (ADS)

    Aydin, Ebubekir Sıddık; Yucel, Ozgun; Sadikoglu, Hasan

    2017-06-01

    The moving interface separates the material that is subjected to the freeze drying process as dried and frozen. Therefore, the accurate modeling the moving interface reduces the process time and energy consumption by improving the heat and mass transfer predictions during the process. To describe the dynamic behavior of the drying stages of the freeze-drying, a case study of brewed black tea extract in storage trays including moving interface was modeled that the heat and mass transfer equations were solved using orthogonal collocation method based on Jacobian polynomial approximation. Transport parameters and physical properties describing the freeze drying of black tea extract were evaluated by fitting the experimental data using Levenberg-Marquardt algorithm. Experimental results showed good agreement with the theoretical predictions.

  11. Stable multi-domain spectral penalty methods for fractional partial differential equations

    NASA Astrophysics Data System (ADS)

    Xu, Qinwu; Hesthaven, Jan S.

    2014-01-01

    We propose stable multi-domain spectral penalty methods suitable for solving fractional partial differential equations with fractional derivatives of any order. First, a high order discretization is proposed to approximate fractional derivatives of any order on any given grids based on orthogonal polynomials. The approximation order is analyzed and verified through numerical examples. Based on the discrete fractional derivative, we introduce stable multi-domain spectral penalty methods for solving fractional advection and diffusion equations. The equations are discretized in each sub-domain separately and the global schemes are obtained by weakly imposed boundary and interface conditions through a penalty term. Stability of the schemes are analyzed and numerical examples based on both uniform and nonuniform grids are considered to highlight the flexibility and high accuracy of the proposed schemes.

  12. Reduced-order modeling with sparse polynomial chaos expansion and dimension reduction for evaluating the impact of CO2 and brine leakage on groundwater

    NASA Astrophysics Data System (ADS)

    Liu, Y.; Zheng, L.; Pau, G. S. H.

    2016-12-01

    A careful assessment of the risk associated with geologic CO2 storage is critical to the deployment of large-scale storage projects. While numerical modeling is an indispensable tool for risk assessment, there has been increasing need in considering and addressing uncertainties in the numerical models. However, uncertainty analyses have been significantly hindered by the computational complexity of the model. As a remedy, reduced-order models (ROM), which serve as computationally efficient surrogates for high-fidelity models (HFM), have been employed. The ROM is constructed at the expense of an initial set of HFM simulations, and afterwards can be relied upon to predict the model output values at minimal cost. The ROM presented here is part of National Risk Assessment Program (NRAP) and intends to predict the water quality change in groundwater in response to hypothetical CO2 and brine leakage. The HFM based on which the ROM is derived is a multiphase flow and reactive transport model, with 3-D heterogeneous flow field and complex chemical reactions including aqueous complexation, mineral dissolution/precipitation, adsorption/desorption via surface complexation and cation exchange. Reduced-order modeling techniques based on polynomial basis expansion, such as polynomial chaos expansion (PCE), are widely used in the literature. However, the accuracy of such ROMs can be affected by the sparse structure of the coefficients of the expansion. Failing to identify vanishing polynomial coefficients introduces unnecessary sampling errors, the accumulation of which deteriorates the accuracy of the ROMs. To address this issue, we treat the PCE as a sparse Bayesian learning (SBL) problem, and the sparsity is obtained by detecting and including only the non-zero PCE coefficients one at a time by iteratively selecting the most contributing coefficients. The computational complexity due to predicting the entire 3-D concentration fields is further mitigated by a dimension reduction procedure-proper orthogonal decomposition (POD). Our numerical results show that utilizing the sparse structure and POD significantly enhances the accuracy and efficiency of the ROMs, laying the basis for further analyses that necessitate a large number of model simulations.

  13. Stochastic spectral projection of electrochemical thermal model for lithium-ion cell state estimation

    NASA Astrophysics Data System (ADS)

    Tagade, Piyush; Hariharan, Krishnan S.; Kolake, Subramanya Mayya; Song, Taewon; Oh, Dukjin

    2017-03-01

    A novel approach for integrating a pseudo-two dimensional electrochemical thermal (P2D-ECT) model and data assimilation algorithm is presented for lithium-ion cell state estimation. This approach refrains from making any simplifications in the P2D-ECT model while making it amenable for online state estimation. Though deterministic, uncertainty in the initial states induces stochasticity in the P2D-ECT model. This stochasticity is resolved by spectrally projecting the stochastic P2D-ECT model on a set of orthogonal multivariate Hermite polynomials. Volume averaging in the stochastic dimensions is proposed for efficient numerical solution of the resultant model. A state estimation framework is developed using a transformation of the orthogonal basis to assimilate the measurables with this system of equations. Effectiveness of the proposed method is first demonstrated by assimilating the cell voltage and temperature data generated using a synthetic test bed. This validated method is used with the experimentally observed cell voltage and temperature data for state estimation at different operating conditions and drive cycle protocols. The results show increased prediction accuracy when the data is assimilated every 30s. High accuracy of the estimated states is exploited to infer temperature dependent behavior of the lithium-ion cell.

  14. Capacity of noncoherent MFSK channels

    NASA Technical Reports Server (NTRS)

    Bar-David, I.; Butman, S. A.; Klass, M. J.; Levitt, B. K.; Lyon, R. F.

    1974-01-01

    Performance limits theoretically achievable over noncoherent channels perturbed by additive Gaussian noise in hard decision, optimal, and soft decision receivers are computed as functions of the number of orthogonal signals and the predetection signal-to-noise ratio. Equations are derived for orthogonal signal capacity, the ultimate MFSK capacity, and the convolutional coding and decoding limit. It is shown that performance improves as the signal-to-noise ratio increases, provided the bandwidth can be increased, that the optimum number of signals is not infinite (except for the optimal receiver), and that the optimum number decreases as the signal-to-noise ratio decreases, but is never less than 7 for even the hard decision receiver.

  15. TU-CD-207-11: Patient-Driven Automatic Exposure Control for Dedicated Breast CT

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hernandez, A; Gazi, P; Department of Radiology, UC Davis Medical Center, Sacramento, CA

    Purpose: To implement automatic exposure control (AEC) in dedicated breast CT (bCT) on a patient-specific basis using only the pre-scan scout views. Methods: Using a large cohort (N=153) of bCT data sets, the breast effective diameter (D) and width in orthogonal planes (Wa,Wb) were calculated from the reconstructed bCT image and pre-scan scout views, respectively. D, Wa, and Wb were measured at the breast center-of-mass (COM), making use of the known geometry of our bCT system. These data were then fit to a second-order polynomial “D=F(Wa,Wb)” in a least squares sense in order to provide a functional form for determiningmore » the breast diameter. The coefficient of determination (R{sup 2}) and mean percent error between the measured breast diameter and fit breast diameter were used to evaluate the overall robustness of the polynomial fit. Lastly, previously-reported bCT technique factors derived from Monte Carlo simulations were used to determine the tube current required for each breast diameter in order to match two-view mammographic dose levels. Results: F(Wa,Wb) provided fitted breast diameters in agreement with the measured breast diameters resulting in R{sup 2} values ranging from 0.908 to 0.929 and mean percent errors ranging from 3.2% to 3.7%. For all 153 bCT data sets used in this study, the fitted breast diameters ranged from 7.9 cm to 15.7 cm corresponding to tube current values ranging from 0.6 mA to 4.9 mA in order to deliver the same dose as two-view mammography in a 50% glandular breast with a 80 kV x-ray beam and 16.6 second scan time. Conclusion: The present work provides a robust framework for AEC in dedicated bCT using only the width measurements derived from the two orthogonal pre-scan scout views. Future work will investigate how these automatically chosen exposure levels affect the quality of the reconstructed image.« less

  16. Coordination-Assisted Bioorthogonal Chemistry: Orthogonal Tetrazine Ligation with Vinylboronic Acid and a Strained Alkene.

    PubMed

    Eising, Selma; Xin, Bo-Tao; Kleinpenning, Fleur; Heming, Juriaan; Florea, Bogdan; Overkleeft, Herman; Bonger, Kimberly Michelle

    2018-05-28

    Bioorthogonal chemistry can be used for the selective modification of biomolecules without interfering with any other functionality present. Recent developments in the field provided orthogonal bioorthogonal reactions for modification of multiple biomolecules simultaneously. During our research, we have observed exceptional high reaction rates in the bioorthogonal inverse electron-demand Diels-Alder (iEDDA) reaction between non-strained vinylboronic acids (VBAs) and dipyridyl-s-tetrazines relative to that of tetrazines bearing a methyl or phenyl substituent. As VBAs are mild Lewis acids, we hypothesize that coordination of the pyridyl nitrogen to the boronic acid promotes the tetrazine ligation. Here, we explore the molecular basis and scope of the VBA-tetrazine ligation in more detail and benefit from its unique reactivity in the simultaneous orthogonal tetrazine labelling of two proteins modified with VBA and norbornene, a widely used strained alkene. We further show that the two orthogonal iEDDA reactions can be carried out in living cells by labelling of the proteasome using a non-selective probe equipped with a VBA and a subunit-selective one bearing a norbornene. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  17. On a sparse pressure-flow rate condensation of rigid circulation models

    PubMed Central

    Schiavazzi, D. E.; Hsia, T. Y.; Marsden, A. L.

    2015-01-01

    Cardiovascular simulation has shown potential value in clinical decision-making, providing a framework to assess changes in hemodynamics produced by physiological and surgical alterations. State-of-the-art predictions are provided by deterministic multiscale numerical approaches coupling 3D finite element Navier Stokes simulations to lumped parameter circulation models governed by ODEs. Development of next-generation stochastic multiscale models whose parameters can be learned from available clinical data under uncertainty constitutes a research challenge made more difficult by the high computational cost typically associated with the solution of these models. We present a methodology for constructing reduced representations that condense the behavior of 3D anatomical models using outlet pressure-flow polynomial surrogates, based on multiscale model solutions spanning several heart cycles. Relevance vector machine regression is compared with maximum likelihood estimation, showing that sparse pressure/flow rate approximations offer superior performance in producing working surrogate models to be included in lumped circulation networks. Sensitivities of outlets flow rates are also quantified through a Sobol’ decomposition of their total variance encoded in the orthogonal polynomial expansion. Finally, we show that augmented lumped parameter models including the proposed surrogates accurately reproduce the response of multiscale models they were derived from. In particular, results are presented for models of the coronary circulation with closed loop boundary conditions and the abdominal aorta with open loop boundary conditions. PMID:26671219

  18. Random Regression Models Using Legendre Polynomials to Estimate Genetic Parameters for Test-day Milk Protein Yields in Iranian Holstein Dairy Cattle.

    PubMed

    Naserkheil, Masoumeh; Miraie-Ashtiani, Seyed Reza; Nejati-Javaremi, Ardeshir; Son, Jihyun; Lee, Deukhwan

    2016-12-01

    The objective of this study was to estimate the genetic parameters of milk protein yields in Iranian Holstein dairy cattle. A total of 1,112,082 test-day milk protein yield records of 167,269 first lactation Holstein cows, calved from 1990 to 2010, were analyzed. Estimates of the variance components, heritability, and genetic correlations for milk protein yields were obtained using a random regression test-day model. Milking times, herd, age of recording, year, and month of recording were included as fixed effects in the model. Additive genetic and permanent environmental random effects for the lactation curve were taken into account by applying orthogonal Legendre polynomials of the fourth order in the model. The lowest and highest additive genetic variances were estimated at the beginning and end of lactation, respectively. Permanent environmental variance was higher at both extremes. Residual variance was lowest at the middle of the lactation and contrarily, heritability increased during this period. Maximum heritability was found during the 12th lactation stage (0.213±0.007). Genetic, permanent, and phenotypic correlations among test-days decreased as the interval between consecutive test-days increased. A relatively large data set was used in this study; therefore, the estimated (co)variance components for random regression coefficients could be used for national genetic evaluation of dairy cattle in Iran.

  19. Random Regression Models Using Legendre Polynomials to Estimate Genetic Parameters for Test-day Milk Protein Yields in Iranian Holstein Dairy Cattle

    PubMed Central

    Naserkheil, Masoumeh; Miraie-Ashtiani, Seyed Reza; Nejati-Javaremi, Ardeshir; Son, Jihyun; Lee, Deukhwan

    2016-01-01

    The objective of this study was to estimate the genetic parameters of milk protein yields in Iranian Holstein dairy cattle. A total of 1,112,082 test-day milk protein yield records of 167,269 first lactation Holstein cows, calved from 1990 to 2010, were analyzed. Estimates of the variance components, heritability, and genetic correlations for milk protein yields were obtained using a random regression test-day model. Milking times, herd, age of recording, year, and month of recording were included as fixed effects in the model. Additive genetic and permanent environmental random effects for the lactation curve were taken into account by applying orthogonal Legendre polynomials of the fourth order in the model. The lowest and highest additive genetic variances were estimated at the beginning and end of lactation, respectively. Permanent environmental variance was higher at both extremes. Residual variance was lowest at the middle of the lactation and contrarily, heritability increased during this period. Maximum heritability was found during the 12th lactation stage (0.213±0.007). Genetic, permanent, and phenotypic correlations among test-days decreased as the interval between consecutive test-days increased. A relatively large data set was used in this study; therefore, the estimated (co)variance components for random regression coefficients could be used for national genetic evaluation of dairy cattle in Iran. PMID:26954192

  20. Characterization of bone collagen organization defects in murine hypophosphatasia using a Zernike model of optical aberrations

    NASA Astrophysics Data System (ADS)

    Tehrani, Kayvan Forouhesh; Pendleton, Emily G.; Leitmann, Bobby; Barrow, Ruth; Mortensen, Luke J.

    2018-02-01

    Bone growth and strength is severely impacted by Hypophosphatasia (HPP). It is a genetic disease that affects the mineralization of the bone. We hypothesize that it impacts overall organization, density, and porosity of collagen fibers. Lower density of fibers and higher porosity cause less absorption and scattering of light, and therefore a different regime of transport mean free path. To find a cure for this disease, a metric for the evaluation of bone is required. Here we present an evaluation method based on our Phase Accumulation Ray Tracing (PART) method. This method uses second harmonic generation (SHG) in bone collagen fiber to model bone indices of refraction, which is used to calculate phase retardation on the propagation path of light in bone. The calculated phase is then expanded using Zernike polynomials up to 15th order, to make a quantitative analysis of tissue anomalies. Because the Zernike modes are a complete set of orthogonal polynomials, we can compare low and high order modes in HPP, compare them with healthy wild type mice, to identify the differences between their geometry and structure. Larger coefficients of low order modes show more uniform fiber density and less porosity, whereas the opposite is shown with larger coefficients of higher order modes. Our analyses show significant difference between Zernike modes in different types of bone evidenced by Principal Components Analysis (PCA).

  1. Hermite Functional Link Neural Network for Solving the Van der Pol-Duffing Oscillator Equation.

    PubMed

    Mall, Susmita; Chakraverty, S

    2016-08-01

    Hermite polynomial-based functional link artificial neural network (FLANN) is proposed here to solve the Van der Pol-Duffing oscillator equation. A single-layer hermite neural network (HeNN) model is used, where a hidden layer is replaced by expansion block of input pattern using Hermite orthogonal polynomials. A feedforward neural network model with the unsupervised error backpropagation principle is used for modifying the network parameters and minimizing the computed error function. The Van der Pol-Duffing and Duffing oscillator equations may not be solved exactly. Here, approximate solutions of these types of equations have been obtained by applying the HeNN model for the first time. Three mathematical example problems and two real-life application problems of Van der Pol-Duffing oscillator equation, extracting the features of early mechanical failure signal and weak signal detection problems, are solved using the proposed HeNN method. HeNN approximate solutions have been compared with results obtained by the well known Runge-Kutta method. Computed results are depicted in term of graphs. After training the HeNN model, we may use it as a black box to get numerical results at any arbitrary point in the domain. Thus, the proposed HeNN method is efficient. The results reveal that this method is reliable and can be applied to other nonlinear problems too.

  2. Quantum and electromagnetic propagation with the conjugate symmetric Lanczos method.

    PubMed

    Acevedo, Ramiro; Lombardini, Richard; Turner, Matthew A; Kinsey, James L; Johnson, Bruce R

    2008-02-14

    The conjugate symmetric Lanczos (CSL) method is introduced for the solution of the time-dependent Schrodinger equation. This remarkably simple and efficient time-domain algorithm is a low-order polynomial expansion of the quantum propagator for time-independent Hamiltonians and derives from the time-reversal symmetry of the Schrodinger equation. The CSL algorithm gives forward solutions by simply complex conjugating backward polynomial expansion coefficients. Interestingly, the expansion coefficients are the same for each uniform time step, a fact that is only spoiled by basis incompleteness and finite precision. This is true for the Krylov basis and, with further investigation, is also found to be true for the Lanczos basis, important for efficient orthogonal projection-based algorithms. The CSL method errors roughly track those of the short iterative Lanczos method while requiring fewer matrix-vector products than the Chebyshev method. With the CSL method, only a few vectors need to be stored at a time, there is no need to estimate the Hamiltonian spectral range, and only matrix-vector and vector-vector products are required. Applications using localized wavelet bases are made to harmonic oscillator and anharmonic Morse oscillator systems as well as electrodynamic pulse propagation using the Hamiltonian form of Maxwell's equations. For gold with a Drude dielectric function, the latter is non-Hermitian, requiring consideration of corrections to the CSL algorithm.

  3. Reference hypernetted chain theory for ferrofluid bilayer: Distribution functions compared with Monte Carlo

    NASA Astrophysics Data System (ADS)

    Polyakov, Evgeny A.; Vorontsov-Velyaminov, Pavel N.

    2014-08-01

    Properties of ferrofluid bilayer (modeled as a system of two planar layers separated by a distance h and each layer carrying a soft sphere dipolar liquid) are calculated in the framework of inhomogeneous Ornstein-Zernike equations with reference hypernetted chain closure (RHNC). The bridge functions are taken from a soft sphere (1/r12) reference system in the pressure-consistent closure approximation. In order to make the RHNC problem tractable, the angular dependence of the correlation functions is expanded into special orthogonal polynomials according to Lado. The resulting equations are solved using the Newton-GRMES algorithm as implemented in the public-domain solver NITSOL. Orientational densities and pair distribution functions of dipoles are compared with Monte Carlo simulation results. A numerical algorithm for the Fourier-Hankel transform of any positive integer order on a uniform grid is presented.

  4. A robust sub-pixel edge detection method of infrared image based on tremor-based retinal receptive field model

    NASA Astrophysics Data System (ADS)

    Gao, Kun; Yang, Hu; Chen, Xiaomei; Ni, Guoqiang

    2008-03-01

    Because of complex thermal objects in an infrared image, the prevalent image edge detection operators are often suitable for a certain scene and extract too wide edges sometimes. From a biological point of view, the image edge detection operators work reliably when assuming a convolution-based receptive field architecture. A DoG (Difference-of- Gaussians) model filter based on ON-center retinal ganglion cell receptive field architecture with artificial eye tremors introduced is proposed for the image contour detection. Aiming at the blurred edges of an infrared image, the subsequent orthogonal polynomial interpolation and sub-pixel level edge detection in rough edge pixel neighborhood is adopted to locate the foregoing rough edges in sub-pixel level. Numerical simulations show that this method can locate the target edge accurately and robustly.

  5. Open Quantum Random Walks on the Half-Line: The Karlin-McGregor Formula, Path Counting and Foster's Theorem

    NASA Astrophysics Data System (ADS)

    Jacq, Thomas S.; Lardizabal, Carlos F.

    2017-11-01

    In this work we consider open quantum random walks on the non-negative integers. By considering orthogonal matrix polynomials we are able to describe transition probability expressions for classes of walks via a matrix version of the Karlin-McGregor formula. We focus on absorbing boundary conditions and, for simpler classes of examples, we consider path counting and the corresponding combinatorial tools. A non-commutative version of the gambler's ruin is studied by obtaining the probability of reaching a certain fortune and the mean time to reach a fortune or ruin in terms of generating functions. In the case of the Hadamard coin, a counting technique for boundary restricted paths in a lattice is also presented. We discuss an open quantum version of Foster's Theorem for the expected return time together with applications.

  6. An exact variational method to calculate vibrational energies of five atom molecules beyond the normal mode approach

    DOE PAGES

    Yu, Hua-Gen

    2002-01-01

    We present a full dimensional variational algorithm to calculate vibrational energies of penta-atomic molecules. The quantum mechanical Hamiltonian of the system for J=0 is derived in a set of orthogonal polyspherical coordinates in the body-fixed frame without any dynamical approximation. Moreover, the vibrational Hamiltonian has been obtained in an explicitly Hermitian form. Variational calculations are performed in a direct product discrete variable representation basis set. The sine functions are used for the radial coordinates, whereas the Legendre polynomials are employed for the polar angles. For the azimuthal angles, the symmetrically adapted Fourier–Chebyshev basis functions are utilized. The eigenvalue problem ismore » solved by a Lanczos iterative diagonalization algorithm. The preliminary application to methane is given. Ultimately, we made a comparison with previous results.« less

  7. Entropy and complexity analysis of hydrogenic Rydberg atoms

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lopez-Rosa, S.; Departamento de Fisica Aplicada II, Universidad de Sevilla, 41012-Sevilla; Toranzo, I. V.

    The internal disorder of hydrogenic Rydberg atoms as contained in their position and momentum probability densities is examined by means of the following information-theoretic spreading quantities: the radial and logarithmic expectation values, the Shannon entropy, and the Fisher information. As well, the complexity measures of Cramer-Rao, Fisher-Shannon, and Lopez Ruiz-Mancini-Calvet types are investigated in both reciprocal spaces. The leading term of these quantities is rigorously calculated by use of the asymptotic properties of the concomitant entropic functionals of the Laguerre and Gegenbauer orthogonal polynomials which control the wavefunctions of the Rydberg states in both position and momentum spaces. The associatedmore » generalized Heisenberg-like, logarithmic and entropic uncertainty relations are also given. Finally, application to linear (l= 0), circular (l=n- 1), and quasicircular (l=n- 2) states is explicitly done.« less

  8. Analysis of longitudinal "time series" data in toxicology.

    PubMed

    Cox, C; Cory-Slechta, D A

    1987-02-01

    Studies focusing on chronic toxicity or on the time course of toxicant effect often involve repeated measurements or longitudinal observations of endpoints of interest. Experimental design considerations frequently necessitate between-group comparisons of the resulting trends. Typically, procedures such as the repeated-measures analysis of variance have been used for statistical analysis, even though the required assumptions may not be satisfied in some circumstances. This paper describes an alternative analytical approach which summarizes curvilinear trends by fitting cubic orthogonal polynomials to individual profiles of effect. The resulting regression coefficients serve as quantitative descriptors which can be subjected to group significance testing. Randomization tests based on medians are proposed to provide a comparison of treatment and control groups. Examples from the behavioral toxicology literature are considered, and the results are compared to more traditional approaches, such as repeated-measures analysis of variance.

  9. On mixed derivatives type high dimensional multi-term fractional partial differential equations approximate solutions

    NASA Astrophysics Data System (ADS)

    Talib, Imran; Belgacem, Fethi Bin Muhammad; Asif, Naseer Ahmad; Khalil, Hammad

    2017-01-01

    In this research article, we derive and analyze an efficient spectral method based on the operational matrices of three dimensional orthogonal Jacobi polynomials to solve numerically the mixed partial derivatives type multi-terms high dimensions generalized class of fractional order partial differential equations. We transform the considered fractional order problem to an easily solvable algebraic equations with the aid of the operational matrices. Being easily solvable, the associated algebraic system leads to finding the solution of the problem. Some test problems are considered to confirm the accuracy and validity of the proposed numerical method. The convergence of the method is ensured by comparing our Matlab software simulations based obtained results with the exact solutions in the literature, yielding negligible errors. Moreover, comparative results discussed in the literature are extended and improved in this study.

  10. Transport coefficients in ultrarelativistic kinetic theory

    NASA Astrophysics Data System (ADS)

    Ambruş, Victor E.

    2018-02-01

    A spatially periodic longitudinal wave is considered in relativistic dissipative hydrodynamics. At sufficiently small wave amplitudes, an analytic solution is obtained in the linearized limit of the macroscopic conservation equations within the first- and second-order relativistic hydrodynamics formulations. A kinetic solver is used to obtain the numerical solution of the relativistic Boltzmann equation for massless particles in the Anderson-Witting approximation for the collision term. It is found that, at small values of the Anderson-Witting relaxation time τ , the transport coefficients emerging from the relativistic Boltzmann equation agree with those predicted through the Chapman-Enskog procedure, while the relaxation times of the heat flux and shear pressure are equal to τ . These claims are further strengthened by considering a moment-type approximation based on orthogonal polynomials under which the Chapman-Enskog results for the transport coefficients are exactly recovered.

  11. New non-naturally reductive Einstein metrics on exceptional simple Lie groups

    NASA Astrophysics Data System (ADS)

    Chen, Huibin; Chen, Zhiqi; Deng, Shaoqiang

    2018-01-01

    In this article, we construct several non-naturally reductive Einstein metrics on exceptional simple Lie groups, which are found through the decomposition arising from generalized Wallach spaces. Using the decomposition corresponding to the two involutions, we calculate the non-zero coefficients in the formulas of the components of Ricci tensor with respect to the given metrics. The Einstein metrics are obtained as solutions of a system of polynomial equations, which we manipulate by symbolic computations using Gröbner bases. In particular, we discuss the concrete numbers of non-naturally reductive Einstein metrics for each case up to isometry and homothety.

  12. Separation of parallel encoded complex-valued slices (SPECS) from a single complex-valued aliased coil image.

    PubMed

    Rowe, Daniel B; Bruce, Iain P; Nencka, Andrew S; Hyde, James S; Kociuba, Mary C

    2016-04-01

    Achieving a reduction in scan time with minimal inter-slice signal leakage is one of the significant obstacles in parallel MR imaging. In fMRI, multiband-imaging techniques accelerate data acquisition by simultaneously magnetizing the spatial frequency spectrum of multiple slices. The SPECS model eliminates the consequential inter-slice signal leakage from the slice unaliasing, while maintaining an optimal reduction in scan time and activation statistics in fMRI studies. When the combined k-space array is inverse Fourier reconstructed, the resulting aliased image is separated into the un-aliased slices through a least squares estimator. Without the additional spatial information from a phased array of receiver coils, slice separation in SPECS is accomplished with acquired aliased images in shifted FOV aliasing pattern, and a bootstrapping approach of incorporating reference calibration images in an orthogonal Hadamard pattern. The aliased slices are effectively separated with minimal expense to the spatial and temporal resolution. Functional activation is observed in the motor cortex, as the number of aliased slices is increased, in a bilateral finger tapping fMRI experiment. The SPECS model incorporates calibration reference images together with coefficients of orthogonal polynomials into an un-aliasing estimator to achieve separated images, with virtually no residual artifacts and functional activation detection in separated images. Copyright © 2015 Elsevier Inc. All rights reserved.

  13. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhu, Xiaojun; Lei, Guangtsai; Pan, Guangwen

    In this paper, the continuous operator is discretized into matrix forms by Galerkin`s procedure, using periodic Battle-Lemarie wavelets as basis/testing functions. The polynomial decomposition of wavelets is applied to the evaluation of matrix elements, which makes the computational effort of the matrix elements no more expensive than that of method of moments (MoM) with conventional piecewise basis/testing functions. A new algorithm is developed employing the fast wavelet transform (FWT). Owing to localization, cancellation, and orthogonal properties of wavelets, very sparse matrices have been obtained, which are then solved by the LSQR iterative method. This algorithm is also adaptive in thatmore » one can add at will finer wavelet bases in the regions where fields vary rapidly, without any damage to the system orthogonality of the wavelet basis functions. To demonstrate the effectiveness of the new algorithm, we applied it to the evaluation of frequency-dependent resistance and inductance matrices of multiple lossy transmission lines. Numerical results agree with previously published data and laboratory measurements. The valid frequency range of the boundary integral equation results has been extended two to three decades in comparison with the traditional MoM approach. The new algorithm has been integrated into the computer aided design tool, MagiCAD, which is used for the design and simulation of high-speed digital systems and multichip modules Pan et al. 29 refs., 7 figs., 6 tabs.« less

  14. Random regression analyses using B-splines functions to model growth from birth to adult age in Canchim cattle.

    PubMed

    Baldi, F; Alencar, M M; Albuquerque, L G

    2010-12-01

    The objective of this work was to estimate covariance functions using random regression models on B-splines functions of animal age, for weights from birth to adult age in Canchim cattle. Data comprised 49,011 records on 2435 females. The model of analysis included fixed effects of contemporary groups, age of dam as quadratic covariable and the population mean trend taken into account by a cubic regression on orthogonal polynomials of animal age. Residual variances were modelled through a step function with four classes. The direct and maternal additive genetic effects, and animal and maternal permanent environmental effects were included as random effects in the model. A total of seventeen analyses, considering linear, quadratic and cubic B-splines functions and up to seven knots, were carried out. B-spline functions of the same order were considered for all random effects. Random regression models on B-splines functions were compared to a random regression model on Legendre polynomials and with a multitrait model. Results from different models of analyses were compared using the REML form of the Akaike Information criterion and Schwarz' Bayesian Information criterion. In addition, the variance components and genetic parameters estimated for each random regression model were also used as criteria to choose the most adequate model to describe the covariance structure of the data. A model fitting quadratic B-splines, with four knots or three segments for direct additive genetic effect and animal permanent environmental effect and two knots for maternal additive genetic effect and maternal permanent environmental effect, was the most adequate to describe the covariance structure of the data. Random regression models using B-spline functions as base functions fitted the data better than Legendre polynomials, especially at mature ages, but higher number of parameters need to be estimated with B-splines functions. © 2010 Blackwell Verlag GmbH.

  15. Random regression models using different functions to model test-day milk yield of Brazilian Holstein cows.

    PubMed

    Bignardi, A B; El Faro, L; Torres Júnior, R A A; Cardoso, V L; Machado, P F; Albuquerque, L G

    2011-10-31

    We analyzed 152,145 test-day records from 7317 first lactations of Holstein cows recorded from 1995 to 2003. Our objective was to model variations in test-day milk yield during the first lactation of Holstein cows by random regression model (RRM), using various functions in order to obtain adequate and parsimonious models for the estimation of genetic parameters. Test-day milk yields were grouped into weekly classes of days in milk, ranging from 1 to 44 weeks. The contemporary groups were defined as herd-test-day. The analyses were performed using a single-trait RRM, including the direct additive, permanent environmental and residual random effects. In addition, contemporary group and linear and quadratic effects of the age of cow at calving were included as fixed effects. The mean trend of milk yield was modeled with a fourth-order orthogonal Legendre polynomial. The additive genetic and permanent environmental covariance functions were estimated by random regression on two parametric functions, Ali and Schaeffer and Wilmink, and on B-spline functions of days in milk. The covariance components and the genetic parameters were estimated by the restricted maximum likelihood method. Results from RRM parametric and B-spline functions were compared to RRM on Legendre polynomials and with a multi-trait analysis, using the same data set. Heritability estimates presented similar trends during mid-lactation (13 to 31 weeks) and between week 37 and the end of lactation, for all RRM. Heritabilities obtained by multi-trait analysis were of a lower magnitude than those estimated by RRM. The RRMs with a higher number of parameters were more useful to describe the genetic variation of test-day milk yield throughout the lactation. RRM using B-spline and Legendre polynomials as base functions appears to be the most adequate to describe the covariance structure of the data.

  16. Structural deformation measurement via efficient tensor polynomial calibrated electro-active glass targets

    NASA Astrophysics Data System (ADS)

    Gugg, Christoph; Harker, Matthew; O'Leary, Paul

    2013-03-01

    This paper describes the physical setup and mathematical modelling of a device for the measurement of structural deformations over large scales, e.g., a mining shaft. Image processing techniques are used to determine the deformation by measuring the position of a target relative to a reference laser beam. A particular novelty is the incorporation of electro-active glass; the polymer dispersion liquid crystal shutters enable the simultaneous calibration of any number of consecutive measurement units without manual intervention, i.e., the process is fully automatic. It is necessary to compensate for optical distortion if high accuracy is to be achieved in a compact hardware design where lenses with short focal lengths are used. Wide-angle lenses exhibit significant distortion, which are typically characterized using Zernike polynomials. Radial distortion models assume that the lens is rotationally symmetric; such models are insufficient in the application at hand. This paper presents a new coordinate mapping procedure based on a tensor product of discrete orthogonal polynomials. Both lens distortion and the projection are compensated by a single linear transformation. Once calibrated, to acquire the measurement data, it is necessary to localize a single laser spot in the image. For this purpose, complete interpolation and rectification of the image is not required; hence, we have developed a new hierarchical approach based on a quad-tree subdivision. Cross-validation tests verify the validity, demonstrating that the proposed method accurately models both the optical distortion as well as the projection. The achievable accuracy is e <= +/-0.01 [mm] in a field of view of 150 [mm] x 150 [mm] at a distance of the laser source of 120 [m]. Finally, a Kolmogorov Smirnov test shows that the error distribution in localizing a laser spot is Gaussian. Consequently, due to the linearity of the proposed method, this also applies for the algorithm's output. Therefore, first-order covariance propagation provides an accurate estimate of the measurement uncertainty, which is essential for any measurement device.

  17. Viabilty of atomistic potentials for thermodynamic properties of carbon dioxide at low temperatures.

    PubMed

    Kuznetsova, Tatyana; Kvamme, Bjørn

    2001-11-30

    Investigation into volumetric and energetic properties of several atomistic models mimicking carbon dioxide geometry and quadrupole momentum covered the liquid-vapor coexistence curve. Thermodynamic integration over a polynomial and an exponential-polynomial path was used to calculate free energy. Computational results showed that model using GROMOS Lennard-Jones parameters was unsuitable for bulk CO(2) simulations. On the other hand, model with potential fitted to reproduce only correct density-pressure relationship in the supercritical region proved to yield correct enthalpy of vaporization and free energy of liquid CO(2) in the low-temperature region. Except for molar volume at the upper part of the vapor-liquid equilibrium line, the bulk properties of exp-6-1 parametrization of ab initio CO(2) potential were in a close agreement with the experimental results. Copyright 2001 John Wiley & Sons, Inc. J Comput Chem 22: 1772-1781, 2001

  18. On Stable Wall Boundary Conditions for the Hermite Discretization of the Linearised Boltzmann Equation

    NASA Astrophysics Data System (ADS)

    Sarna, Neeraj; Torrilhon, Manuel

    2018-01-01

    We define certain criteria, using the characteristic decomposition of the boundary conditions and energy estimates, which a set of stable boundary conditions for a linear initial boundary value problem, involving a symmetric hyperbolic system, must satisfy. We first use these stability criteria to show the instability of the Maxwell boundary conditions proposed by Grad (Commun Pure Appl Math 2(4):331-407, 1949). We then recognise a special block structure of the moment equations which arises due to the recursion relations and the orthogonality of the Hermite polynomials; the block structure will help us in formulating stable boundary conditions for an arbitrary order Hermite discretization of the Boltzmann equation. The formulation of stable boundary conditions relies upon an Onsager matrix which will be constructed such that the newly proposed boundary conditions stay close to the Maxwell boundary conditions at least in the lower order moments.

  19. Linear-algebraic bath transformation for simulating complex open quantum systems

    DOE PAGES

    Huh, Joonsuk; Mostame, Sarah; Fujita, Takatoshi; ...

    2014-12-02

    In studying open quantum systems, the environment is often approximated as a collection of non-interacting harmonic oscillators, a configuration also known as the star-bath model. It is also well known that the star-bath can be transformed into a nearest-neighbor interacting chain of oscillators. The chain-bath model has been widely used in renormalization group approaches. The transformation can be obtained by recursion relations or orthogonal polynomials. Based on a simple linear algebraic approach, we propose a bath partition strategy to reduce the system-bath coupling strength. As a result, the non-interacting star-bath is transformed into a set of weakly coupled multiple parallelmore » chains. Furthermore, the transformed bath model allows complex problems to be practically implemented on quantum simulators, and it can also be employed in various numerical simulations of open quantum dynamics.« less

  20. On-line estimation of nonlinear physical systems

    USGS Publications Warehouse

    Christakos, G.

    1988-01-01

    Recursive algorithms for estimating states of nonlinear physical systems are presented. Orthogonality properties are rediscovered and the associated polynomials are used to linearize state and observation models of the underlying random processes. This requires some key hypotheses regarding the structure of these processes, which may then take account of a wide range of applications. The latter include streamflow forecasting, flood estimation, environmental protection, earthquake engineering, and mine planning. The proposed estimation algorithm may be compared favorably to Taylor series-type filters, nonlinear filters which approximate the probability density by Edgeworth or Gram-Charlier series, as well as to conventional statistical linearization-type estimators. Moreover, the method has several advantages over nonrecursive estimators like disjunctive kriging. To link theory with practice, some numerical results for a simulated system are presented, in which responses from the proposed and extended Kalman algorithms are compared. ?? 1988 International Association for Mathematical Geology.

  1. Quench of non-Markovian coherence in the deep sub-Ohmic spin–boson model: A unitary equilibration scheme

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yao, Yao, E-mail: yaoyao@fudan.edu.cn

    The deep sub-Ohmic spin–boson model shows a longstanding non-Markovian coherence at low temperature. Motivating to quench this robust coherence, the thermal effect is unitarily incorporated into the time evolution of the model, which is calculated by the adaptive time-dependent density matrix renormalization group algorithm combined with the orthogonal polynomials theory. Via introducing a unitary heating operator to the bosonic bath, the bath is heated up so that a majority portion of the bosonic excited states is occupied. It is found in this situation the coherence of the spin is quickly quenched even in the coherent regime, in which the non-Markovianmore » feature dominates. With this finding we come up with a novel way to implement the unitary equilibration, the essential term of the eigenstate-thermalization hypothesis, through a short-time evolution of the model.« less

  2. Design of measuring system for wire diameter based on sub-pixel edge detection algorithm

    NASA Astrophysics Data System (ADS)

    Chen, Yudong; Zhou, Wang

    2016-09-01

    Light projection method is often used in measuring system for wire diameter, which is relatively simpler structure and lower cost, and the measuring accuracy is limited by the pixel size of CCD. Using a CCD with small pixel size can improve the measuring accuracy, but will increase the cost and difficulty of making. In this paper, through the comparative analysis of a variety of sub-pixel edge detection algorithms, polynomial fitting method is applied for data processing in measuring system for wire diameter, to improve the measuring accuracy and enhance the ability of anti-noise. In the design of system structure, light projection method with orthogonal structure is used for the detection optical part, which can effectively reduce the error caused by line jitter in the measuring process. For the electrical part, ARM Cortex-M4 microprocessor is used as the core of the circuit module, which can not only drive double channel linear CCD but also complete the sampling, processing and storage of the CCD video signal. In addition, ARM microprocessor can complete the high speed operation of the whole measuring system for wire diameter in the case of no additional chip. The experimental results show that sub-pixel edge detection algorithm based on polynomial fitting can make up for the lack of single pixel size and improve the precision of measuring system for wire diameter significantly, without increasing hardware complexity of the entire system.

  3. Chiral zero energy modes in two-dimensional disordered Dirac semimetals

    NASA Astrophysics Data System (ADS)

    Liu, Lei; Yu, Yan; Wu, Hai-Bin; Zhang, Yan-Yang; Liu, Jian-Jun; Li, Shu-Shen

    2018-04-01

    The vacancy-induced chiral zero energy modes (CZEMs) of chiral-unitary-class (AIII) and chiral-symplectic-class (CII) two-dimensional (2 D ) disordered Dirac semimetals realized on a square bipartite lattice are investigated numerically by using the Kubo-Greenwood formula with the kernel polynomial method. The results show that, for both systems, the CZEMs exhibit the critical delocalization. The CZEM conductivity remains a robust constant (i.e., σ CZEM≈1.05 e2/h ), which is insensitive to the sample sizes, the vacancy concentrations, and the numbers of moments of Chebyshev polynomials, i.e., the dephasing strength. For both kinds of chiral systems, the CZEM conductivities are almost identical. However, they are not equal to that of graphene (i.e., 4 e2/π h ), which belongs to the chiral orthogonal class (BDI) semimetal on a 2 D hexagonal bipartite lattice. In addition, for the case that the vacancy concentrations are different in the two sublattices, the CZEM conductivity vanishes, and thus both systems exhibit localization at the Dirac point. Moreover, a band gap and a mobility gap open around zero energy. The widths of the energy gaps and mobility gaps are increasing with larger vacancy concentration difference. The width of the mobility gap is greater than that of the band gap, and a δ -function-like peak of density of states emerges at the Dirac point within the band gap, implying the existence of numerous localized states.

  4. A Generalized Polynomial Chaos-Based Approach to Analyze the Impacts of Process Deviations on MEMS Beams.

    PubMed

    Gao, Lili; Zhou, Zai-Fa; Huang, Qing-An

    2017-11-08

    A microstructure beam is one of the fundamental elements in MEMS devices like cantilever sensors, RF/optical switches, varactors, resonators, etc. It is still difficult to precisely predict the performance of MEMS beams with the current available simulators due to the inevitable process deviations. Feasible numerical methods are required and can be used to improve the yield and profits of the MEMS devices. In this work, process deviations are considered to be stochastic variables, and a newly-developed numerical method, i.e., generalized polynomial chaos (GPC), is applied for the simulation of the MEMS beam. The doubly-clamped polybeam has been utilized to verify the accuracy of GPC, compared with our Monte Carlo (MC) approaches. Performance predictions have been made on the residual stress by achieving its distributions in GaAs Monolithic Microwave Integrated Circuit (MMIC)-based MEMS beams. The results show that errors are within 1% for the results of GPC approximations compared with the MC simulations. Appropriate choices of the 4-order GPC expansions with orthogonal terms have also succeeded in reducing the MC simulation labor. The mean value of the residual stress, concluded from experimental tests, shares an error about 1.1% with that of the 4-order GPC method. It takes a probability around 54.3% for the 4-order GPC approximation to attain the mean test value of the residual stress. The corresponding yield occupies over 90 percent around the mean within the twofold standard deviations.

  5. A Generalized Polynomial Chaos-Based Approach to Analyze the Impacts of Process Deviations on MEMS Beams

    PubMed Central

    Gao, Lili

    2017-01-01

    A microstructure beam is one of the fundamental elements in MEMS devices like cantilever sensors, RF/optical switches, varactors, resonators, etc. It is still difficult to precisely predict the performance of MEMS beams with the current available simulators due to the inevitable process deviations. Feasible numerical methods are required and can be used to improve the yield and profits of the MEMS devices. In this work, process deviations are considered to be stochastic variables, and a newly-developed numerical method, i.e., generalized polynomial chaos (GPC), is applied for the simulation of the MEMS beam. The doubly-clamped polybeam has been utilized to verify the accuracy of GPC, compared with our Monte Carlo (MC) approaches. Performance predictions have been made on the residual stress by achieving its distributions in GaAs Monolithic Microwave Integrated Circuit (MMIC)-based MEMS beams. The results show that errors are within 1% for the results of GPC approximations compared with the MC simulations. Appropriate choices of the 4-order GPC expansions with orthogonal terms have also succeeded in reducing the MC simulation labor. The mean value of the residual stress, concluded from experimental tests, shares an error about 1.1% with that of the 4-order GPC method. It takes a probability around 54.3% for the 4-order GPC approximation to attain the mean test value of the residual stress. The corresponding yield occupies over 90 percent around the mean within the twofold standard deviations. PMID:29117096

  6. Investigations of interference between electromagnetic transponders and wireless MOSFET dosimeters: a phantom study.

    PubMed

    Su, Zhong; Zhang, Lisha; Ramakrishnan, V; Hagan, Michael; Anscher, Mitchell

    2011-05-01

    To evaluate both the Calypso Systems' (Calypso Medical Technologies, Inc., Seattle, WA) localization accuracy in the presence of wireless metal-oxide-semiconductor field-effect transistor (MOSFET) dosimeters of dose verification system (DVS, Sicel Technologies, Inc., Morrisville, NC) and the dosimeters' reading accuracy in the presence of wireless electromagnetic transponders inside a phantom. A custom-made, solid-water phantom was fabricated with space for transponders and dosimeters. Two inserts were machined with positioning grooves precisely matching the dimensions of the transponders and dosimeters and were arranged in orthogonal and parallel orientations, respectively. To test the transponder localization accuracy with/without presence of dosimeters (hypothesis 1), multivariate analyses were performed on transponder-derived localization data with and without dosimeters at each preset distance to detect statistically significant localization differences between the control and test sets. To test dosimeter dose-reading accuracy with/without presence of transponders (hypothesis 2), an approach of alternating the transponder presence in seven identical fraction dose (100 cGy) deliveries and measurements was implemented. Two-way analysis of variance was performed to examine statistically significant dose-reading differences between the two groups and the different fractions. A relative-dose analysis method was also used to evaluate transponder impact on dose-reading accuracy after dose-fading effect was removed by a second-order polynomial fit. Multivariate analysis indicated that hypothesis 1 was false; there was a statistically significant difference between the localization data from the control and test sets. However, the upper and lower bounds of the 95% confidence intervals of the localized positional differences between the control and test sets were less than 0.1 mm, which was significantly smaller than the minimum clinical localization resolution of 0.5 mm. For hypothesis 2, analysis of variance indicated that there was no statistically significant difference between the dosimeter readings with and without the presence of transponders. Both orthogonal and parallel configurations had difference of polynomial-fit dose to measured dose values within 1.75%. The phantom study indicated that the Calypso System's localization accuracy was not affected clinically due to the presence of DVS wireless MOSFET dosimeters and the dosimeter-measured doses were not affected by the presence of transponders. Thus, the same patients could be implanted with both transponders and dosimeters to benefit from improved accuracy of radiotherapy treatments offered by conjunctional use of the two systems.

  7. Prediction of textural attributes using color values of banana (Musa sapientum) during ripening.

    PubMed

    Jaiswal, Pranita; Jha, Shyam Narayan; Kaur, Poonam Preet; Bhardwaj, Rishi; Singh, Ashish Kumar; Wadhawan, Vishakha

    2014-06-01

    Banana is an important sub-tropical fruit in international trade. It undergoes significant textural and color transformations during ripening process, which in turn influence the eating quality of the fruit. In present study, color ('L', 'a' and 'b' value) and textural attributes of bananas (peel, fruit and pulp firmness; pulp toughness; stickiness) were studied simultaneously using Hunter Color Lab and Texture Analyser, respectively, during ripening period of 10 days at ambient atmosphere. There was significant effect of ripening period on all the considered textural characteristics and color properties of bananas except color value 'b'. In general, textural descriptors (peel, fruit and pulp firmness; and pulp toughness) decreased during ripening except stickiness, while color values viz 'a' and 'b' increased with ripening barring 'L' value. Among various textural attributes, peel toughness and pulp firmness showed highest correlation (r) with 'a' value of banana peel. In order to predict textural properties using color values of banana, five types of equations (linear/polynomial/exponential/logarithmic/power) were fitted. Among them, polynomial equation was found to be the best fit (highest coefficient of determination, R(2)) for prediction of texture using color properties for bananas. The pulp firmness, peel toughness and pulp toughness showed R(2) above 0.84 with indicating its potentiality of the fitted equations for prediction of textural profile of bananas non-destructively using 'a' value.

  8. Quantum and semiclassical spin networks: from atomic and molecular physics to quantum computing and gravity

    NASA Astrophysics Data System (ADS)

    Aquilanti, Vincenzo; Bitencourt, Ana Carla P.; Ferreira, Cristiane da S.; Marzuoli, Annalisa; Ragni, Mirco

    2008-11-01

    The mathematical apparatus of quantum-mechanical angular momentum (re)coupling, developed originally to describe spectroscopic phenomena in atomic, molecular, optical and nuclear physics, is embedded in modern algebraic settings which emphasize the underlying combinatorial aspects. SU(2) recoupling theory, involving Wigner's 3nj symbols, as well as the related problems of their calculations, general properties, asymptotic limits for large entries, nowadays plays a prominent role also in quantum gravity and quantum computing applications. We refer to the ingredients of this theory—and of its extension to other Lie and quantum groups—by using the collective term of 'spin networks'. Recent progress is recorded about the already established connections with the mathematical theory of discrete orthogonal polynomials (the so-called Askey scheme), providing powerful tools based on asymptotic expansions, which correspond on the physical side to various levels of semi-classical limits. These results are useful not only in theoretical molecular physics but also in motivating algorithms for the computationally demanding problems of molecular dynamics and chemical reaction theory, where large angular momenta are typically involved. As for quantum chemistry, applications of these techniques include selection and classification of complete orthogonal basis sets in atomic and molecular problems, either in configuration space (Sturmian orbitals) or in momentum space. In this paper, we list and discuss some aspects of these developments—such as for instance the hyperquantization algorithm—as well as a few applications to quantum gravity and topology, thus providing evidence of a unifying background structure.

  9. Constrained Chebyshev approximations to some elementary functions suitable for evaluation with floating point arithmetic

    NASA Technical Reports Server (NTRS)

    Manos, P.; Turner, L. R.

    1972-01-01

    Approximations which can be evaluated with precision using floating-point arithmetic are presented. The particular set of approximations thus far developed are for the function TAN and the functions of USASI FORTRAN excepting SQRT and EXPONENTIATION. These approximations are, furthermore, specialized to particular forms which are especially suited to a computer with a small memory, in that all of the approximations can share one general purpose subroutine for the evaluation of a polynomial in the square of the working argument.

  10. Chebyshev polynomial filtered subspace iteration in the discontinuous Galerkin method for large-scale electronic structure calculations

    DOE PAGES

    Banerjee, Amartya S.; Lin, Lin; Hu, Wei; ...

    2016-10-21

    The Discontinuous Galerkin (DG) electronic structure method employs an adaptive local basis (ALB) set to solve the Kohn-Sham equations of density functional theory in a discontinuous Galerkin framework. The adaptive local basis is generated on-the-fly to capture the local material physics and can systematically attain chemical accuracy with only a few tens of degrees of freedom per atom. A central issue for large-scale calculations, however, is the computation of the electron density (and subsequently, ground state properties) from the discretized Hamiltonian in an efficient and scalable manner. We show in this work how Chebyshev polynomial filtered subspace iteration (CheFSI) canmore » be used to address this issue and push the envelope in large-scale materials simulations in a discontinuous Galerkin framework. We describe how the subspace filtering steps can be performed in an efficient and scalable manner using a two-dimensional parallelization scheme, thanks to the orthogonality of the DG basis set and block-sparse structure of the DG Hamiltonian matrix. The on-the-fly nature of the ALB functions requires additional care in carrying out the subspace iterations. We demonstrate the parallel scalability of the DG-CheFSI approach in calculations of large-scale twodimensional graphene sheets and bulk three-dimensional lithium-ion electrolyte systems. In conclusion, employing 55 296 computational cores, the time per self-consistent field iteration for a sample of the bulk 3D electrolyte containing 8586 atoms is 90 s, and the time for a graphene sheet containing 11 520 atoms is 75 s.« less

  11. Modular and Orthogonal Synthesis of Hybrid Polymers and Networks

    PubMed Central

    Liu, Shuang; Dicker, Kevin T.; Jia, Xinqiao

    2015-01-01

    Biomaterials scientists strive to develop polymeric materials with distinct chemical make-up, complex molecular architectures, robust mechanical properties and defined biological functions by drawing inspirations from biological systems. Salient features of biological designs include (1) repetitive presentation of basic motifs; and (2) efficient integration of diverse building blocks. Thus, an appealing approach to biomaterials synthesis is to combine synthetic and natural building blocks in a modular fashion employing novel chemical methods. Over the past decade, orthogonal chemistries have become powerful enabling tools for the modular synthesis of advanced biomaterials. These reactions require building blocks with complementary functionalities, occur under mild conditions in the presence of biological molecules and living cells and proceed with high yield and exceptional selectivity. These chemistries have facilitated the construction of complex polymers and networks in a step-growth fashion, allowing facile modulation of materials properties by simple variations of the building blocks. In this review, we first summarize features of several types of orthogonal chemistries. We then discuss recent progress in the synthesis of step growth linear polymers, dendrimers and networks that find application in drug delivery, 3D cell culture and tissue engineering. Overall, orthogonal reactions and modulular synthesis have not only minimized the steps needed for the desired chemical transformations but also maximized the diversity and functionality of the final products. The modular nature of the design, combined with the potential synergistic effect of the hybrid system, will likely result in novel hydrogel matrices with robust structures and defined functions. PMID:25572255

  12. Computation of aerodynamic interference effects on oscillating airfoils with controls in ventilated subsonic wind tunnels

    NASA Technical Reports Server (NTRS)

    Fromme, J. A.; Golberg, M. A.

    1979-01-01

    Lift interference effects are discussed based on Bland's (1968) integral equation. A mathematical existence theory is utilized for which convergence of the numerical method has been proved for general (square-integrable) downwashes. Airloads are computed using orthogonal airfoil polynomial pairs in conjunction with a collocation method which is numerically equivalent to Galerkin's method and complex least squares. Convergence exhibits exponentially decreasing error with the number n of collocation points for smooth downwashes, whereas errors are proportional to 1/n for discontinuous downwashes. The latter can be reduced to 1/n to the m+1 power with mth-order Richardson extrapolation (by using m = 2, hundredfold error reductions were obtained with only a 13% increase of computer time). Numerical results are presented showing acoustic resonance, as well as the effect of Mach number, ventilation, height-to-chord ratio, and mode shape on wind-tunnel interference. Excellent agreement with experiment is obtained in steady flow, and good agreement is obtained for unsteady flow.

  13. Plates and shells containing a surface crack under general loading conditions

    NASA Technical Reports Server (NTRS)

    Joseph, Paul F.; Erdogan, Fazil

    1986-01-01

    The severity of the underlying assumptions of the line-spring model (LSM) are such that verification with three-dimensional solutions is necessary. Such comparisons show that the model is quite accurate, and therefore, its use in extensive parameter studies is justified. Investigations into the endpoint behavior of the line-spring model have led to important conclusions about the ability of the model to predict stresses in front of the crack tip. An important application of the LSM was to solve the contact plate bending problem. Here the flexibility of the model to allow for any crack shape is exploited. The use of displacement quantities as unknowns in the formulation of the problem leads to strongly singular integral equations, rather than singular integral equations which result from using displacement derivatives. The collocation method of solving the integral equations was found to be better and more convenient than the quadrature technique. Orthogonal polynomials should be used as fitting functions when using the LSM as opposed to simpler functions such as power series.

  14. Gas-liquid countercurrent integration process for continuous biodiesel production using a microporous solid base KF/CaO as catalyst.

    PubMed

    Hu, Shengyang; Wen, Libai; Wang, Yun; Zheng, Xinsheng; Han, Heyou

    2012-11-01

    A continuous-flow integration process was developed for biodiesel production using rapeseed oil as feedstock, based on the countercurrent contact reaction between gas and liquid, separation of glycerol on-line and cyclic utilization of methanol. Orthogonal experimental design and response surface methodology were adopted to optimize technological parameters. A second-order polynomial model for the biodiesel yield was established and validated experimentally. The high determination coefficient (R(2)=98.98%) and the low probability value (Pr<0.0001) proved that the model matched the experimental data, and had a high predictive ability. The optimal technological parameters were: 81.5°C reaction temperature, 51.7cm fill height of catalyst KF/CaO and 105.98kPa system pressure. Under these conditions, the average yield of triplicate experiments was 93.7%, indicating the continuous-flow process has good potential in the manufacture of biodiesel. Copyright © 2012 Elsevier Ltd. All rights reserved.

  15. PHYSICS OF NON-GAUSSIAN FIELDS AND THE COSMOLOGICAL GENUS STATISTIC

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    James, J. Berian, E-mail: berian@berkeley.edu

    2012-05-20

    We report a technique to calculate the impact of distinct physical processes inducing non-Gaussianity on the cosmological density field. A natural decomposition of the cosmic genus statistic into an orthogonal polynomial sequence allows complete expression of the scale-dependent evolution of the topology of large-scale structure, in which effects including galaxy bias, nonlinear gravitational evolution, and primordial non-Gaussianity may be delineated. The relationship of this decomposition to previous methods for analyzing the genus statistic is briefly considered and the following applications are made: (1) the expression of certain systematics affecting topological measurements, (2) the quantification of broad deformations from Gaussianity thatmore » appear in the genus statistic as measured in the Horizon Run simulation, and (3) the study of the evolution of the genus curve for simulations with primordial non-Gaussianity. These advances improve the treatment of flux-limited galaxy catalogs for use with this measurement and further the use of the genus statistic as a tool for exploring non-Gaussianity.« less

  16. Phase retrieval in annulus sector domain by non-iterative methods

    NASA Astrophysics Data System (ADS)

    Wang, Xiao; Mao, Heng; Zhao, Da-zun

    2008-03-01

    Phase retrieval could be achieved by solving the intensity transport equation (ITE) under the paraxial approximation. For the case of uniform illumination, Neumann boundary condition is involved and it makes the solving process more complicated. The primary mirror is usually designed segmented in the telescope with large aperture, and the shape of a segmented piece is often like an annulus sector. Accordingly, It is necessary to analyze the phase retrieval in the annulus sector domain. Two non-iterative methods are considered for recovering the phase. The matrix method is based on the decomposition of the solution into a series of orthogonalized polynomials, while the frequency filtering method depends on the inverse computation process of ITE. By the simulation, it is found that both methods can eliminate the effect of Neumann boundary condition, save a lot of computation time and recover the distorted phase well. The wavefront error (WFE) RMS can be less than 0.05 wavelength, even when some noise is added.

  17. A complex guided spectral transform Lanczos method for studying quantum resonance states

    DOE PAGES

    Yu, Hua-Gen

    2014-12-28

    A complex guided spectral transform Lanczos (cGSTL) algorithm is proposed to compute both bound and resonance states including energies, widths and wavefunctions. The algorithm comprises of two layers of complex-symmetric Lanczos iterations. A short inner layer iteration produces a set of complex formally orthogonal Lanczos (cFOL) polynomials. They are used to span the guided spectral transform function determined by a retarded Green operator. An outer layer iteration is then carried out with the transform function to compute the eigen-pairs of the system. The guided spectral transform function is designed to have the same wavefunctions as the eigenstates of the originalmore » Hamiltonian in the spectral range of interest. Therefore the energies and/or widths of bound or resonance states can be easily computed with their wavefunctions or by using a root-searching method from the guided spectral transform surface. The new cGSTL algorithm is applied to bound and resonance states of HO₂, and compared to previous calculations.« less

  18. The Difference Calculus and The NEgative Binomial Distribution

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bowman, Kimiko o; Shenton, LR

    2007-01-01

    In a previous paper we state the dominant term in the third central moment of the maximum likelihood estimator k of the parameter k in the negative binomial probability function where the probability generating function is (p + 1 - pt){sup -k}. A partial sum of the series {Sigma}1/(k + x){sup 3} is involved, where x is a negative binomial random variate. In expectation this sum can only be found numerically using the computer. Here we give a simple definite integral in (0,1) for the generalized case. This means that now we do have a valid expression for {radical}{beta}{sub 11}(k)more » and {radical}{beta}{sub 11}(p). In addition we use the finite difference operator {Delta}, and E = 1 + {Delta} to set up formulas for low order moments. Other examples of the operators are quoted relating to the orthogonal set of polynomials associated with the negative binomial probability function used as a weight function.« less

  19. Polarization holograms in a bifunctional amorphous polymer exhibiting equal values of photoinduced linear and circular birefringences.

    PubMed

    Provenzano, Clementina; Pagliusi, Pasquale; Cipparrone, Gabriella; Royes, Jorge; Piñol, Milagros; Oriol, Luis

    2014-10-09

    Light-controlled molecular alignment is a flexible and useful strategy introducing novelty in the fields of mechanics, self-organized structuring, mass transport, optics, and photonics and addressing the development of smart optical devices. Azobenzene-containing polymers are well-known photocontrollable materials with large and reversible photoinduced optical anisotropies. The vectorial holography applied to these materials enables peculiar optical devices whose properties strongly depend on the relative values of the photoinduced birefringences. Here is reported a polarization holographic recording based on the interference of two waves with orthogonal linear polarization on a bifunctional amorphous polymer that, exceptionally, exhibits equal values of linear and circular birefringence. The peculiar photoresponse of the material coupled with the holographic technique demonstrates an optical device capable of decomposing the light into a set of orthogonally polarized linear components. The holographic structures are theoretically described by the Jones matrices method and experimentally investigated.

  20. Poly-Frobenius-Euler polynomials

    NASA Astrophysics Data System (ADS)

    Kurt, Burak

    2017-07-01

    Hamahata [3] defined poly-Euler polynomials and the generalized poly-Euler polynomials. He proved some relations and closed formulas for the poly-Euler polynomials. By this motivation, we define poly-Frobenius-Euler polynomials. We give some relations for this polynomials. Also, we prove the relationships between poly-Frobenius-Euler polynomials and Stirling numbers of the second kind.

  1. Investigations of interference between electromagnetic transponders and wireless MOSFET dosimeters: A phantom study

    PubMed Central

    Su, Zhong; Zhang, Lisha; Ramakrishnan, V.; Hagan, Michael; Anscher, Mitchell

    2011-01-01

    Purpose: To evaluate both the Calypso Systems’ (Calypso Medical Technologies, Inc., Seattle, WA) localization accuracy in the presence of wireless metal–oxide–semiconductor field-effect transistor (MOSFET) dosimeters of dose verification system (DVS, Sicel Technologies, Inc., Morrisville, NC) and the dosimeters’ reading accuracy in the presence of wireless electromagnetic transponders inside a phantom.Methods: A custom-made, solid-water phantom was fabricated with space for transponders and dosimeters. Two inserts were machined with positioning grooves precisely matching the dimensions of the transponders and dosimeters and were arranged in orthogonal and parallel orientations, respectively. To test the transponder localization accuracy with∕without presence of dosimeters (hypothesis 1), multivariate analyses were performed on transponder-derived localization data with and without dosimeters at each preset distance to detect statistically significant localization differences between the control and test sets. To test dosimeter dose-reading accuracy with∕without presence of transponders (hypothesis 2), an approach of alternating the transponder presence in seven identical fraction dose (100 cGy) deliveries and measurements was implemented. Two-way analysis of variance was performed to examine statistically significant dose-reading differences between the two groups and the different fractions. A relative-dose analysis method was also used to evaluate transponder impact on dose-reading accuracy after dose-fading effect was removed by a second-order polynomial fit.Results: Multivariate analysis indicated that hypothesis 1 was false; there was a statistically significant difference between the localization data from the control and test sets. However, the upper and lower bounds of the 95% confidence intervals of the localized positional differences between the control and test sets were less than 0.1 mm, which was significantly smaller than the minimum clinical localization resolution of 0.5 mm. For hypothesis 2, analysis of variance indicated that there was no statistically significant difference between the dosimeter readings with and without the presence of transponders. Both orthogonal and parallel configurations had difference of polynomial-fit dose to measured dose values within 1.75%.Conclusions: The phantom study indicated that the Calypso System’s localization accuracy was not affected clinically due to the presence of DVS wireless MOSFET dosimeters and the dosimeter-measured doses were not affected by the presence of transponders. Thus, the same patients could be implanted with both transponders and dosimeters to benefit from improved accuracy of radiotherapy treatments offered by conjunctional use of the two systems. PMID:21776780

  2. Uncertainty Quantification given Discontinuous Climate Model Response and a Limited Number of Model Runs

    NASA Astrophysics Data System (ADS)

    Sargsyan, K.; Safta, C.; Debusschere, B.; Najm, H.

    2010-12-01

    Uncertainty quantification in complex climate models is challenged by the sparsity of available climate model predictions due to the high computational cost of model runs. Another feature that prevents classical uncertainty analysis from being readily applicable is bifurcative behavior in climate model response with respect to certain input parameters. A typical example is the Atlantic Meridional Overturning Circulation. The predicted maximum overturning stream function exhibits discontinuity across a curve in the space of two uncertain parameters, namely climate sensitivity and CO2 forcing. We outline a methodology for uncertainty quantification given discontinuous model response and a limited number of model runs. Our approach is two-fold. First we detect the discontinuity with Bayesian inference, thus obtaining a probabilistic representation of the discontinuity curve shape and location for arbitrarily distributed input parameter values. Then, we construct spectral representations of uncertainty, using Polynomial Chaos (PC) expansions on either side of the discontinuity curve, leading to an averaged-PC representation of the forward model that allows efficient uncertainty quantification. The approach is enabled by a Rosenblatt transformation that maps each side of the discontinuity to regular domains where desirable orthogonality properties for the spectral bases hold. We obtain PC modes by either orthogonal projection or Bayesian inference, and argue for a hybrid approach that targets a balance between the accuracy provided by the orthogonal projection and the flexibility provided by the Bayesian inference - where the latter allows obtaining reasonable expansions without extra forward model runs. The model output, and its associated uncertainty at specific design points, are then computed by taking an ensemble average over PC expansions corresponding to possible realizations of the discontinuity curve. The methodology is tested on synthetic examples of discontinuous model data with adjustable sharpness and structure. This work was supported by the Sandia National Laboratories Seniors’ Council LDRD (Laboratory Directed Research and Development) program. Sandia National Laboratories is a multi-program laboratory operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin Company, for the U.S. Department of Energy’s National Nuclear Security Administration under contract DE-AC04-94AL85000.

  3. Use of a polar ionic liquid as second column for the comprehensive two-dimensional GC separation of PCBs.

    PubMed

    Zapadlo, Michal; Krupcík, Ján; Májek, Pavel; Armstrong, Daniel W; Sandra, Pat

    2010-09-10

    The orthogonality of three columns coupled in two series was studied for the congener specific comprehensive two-dimensional GC separation of polychlorinated biphenyls (PCBs). A non-polar capillary column coated with poly(5%-phenyl-95%-methyl)siloxane was used as the first ((1)D) column in both series. A polar capillary column coated with 70% cyanopropyl-polysilphenylene-siloxane or a capillary column coated with the ionic liquid 1,12-di(tripropylphosphonium)dodecane bis(trifluoromethane-sulfonyl)imide were used as the second ((2)D) columns. Nine multi-congener standard PCB solutions containing subsets of all native 209 PCBs, a mixture of 209 PCBs as well as Aroclor 1242 and 1260 formulations were used to study the orthogonality of both column series. Retention times of the corresponding PCB congeners on (1)D and (2)D columns were used to construct retention time dependences (apex plots) for assessing orthogonality of both columns coupled in series. For a visual assessment of the peak density of PCBs congeners on a retention plane, 2D images were compared. The degree of orthogonality of both column series was, along the visual assessment of distribution of PCBs on the retention plane, evaluated also by Pearson's correlation coefficient, which was found by correlation of retention times t(R,i,2D) and t(R,i,1D) of corresponding PCB congeners on both column series. It was demonstrated that the apolar+ionic liquid column series is almost orthogonal both for the 2D separation of PCBs present in Aroclor 1242 and 1260 formulations as well as for the separation of all of 209 PCBs. All toxic, dioxin-like PCBs, with the exception of PCB 118 that overlaps with PCB 106, were resolved by the apolar/ionic liquid series while on the apolar/polar column series three toxic PCBs overlapped (105+127, 81+148 and 118+106). Copyright 2010 Elsevier B.V. All rights reserved.

  4. Evaluating Sense Codon Reassignment with a Simple Fluorescence Screen.

    PubMed

    Biddle, Wil; Schmitt, Margaret A; Fisk, John D

    2015-12-22

    Understanding the interactions that drive the fidelity of the genetic code and the limits to which modifications can be made without breaking the translational system has practical implications for understanding the molecular mechanisms of evolution as well as expanding the set of encodable amino acids, particularly those with chemistries not provided by Nature. Because 61 sense codons encode 20 amino acids, reassigning the meaning of sense codons provides an avenue for biosynthetic modification of proteins, furthering both fundamental and applied biochemical research. We developed a simple screen that exploits the absolute requirement for fluorescence of an active site tyrosine in green fluorescent protein (GFP) to probe the pliability of the degeneracy of the genetic code. Our screen monitors the restoration of the fluorophore of GFP by incorporation of a tyrosine in response to a sense codon typically assigned another meaning in the genetic code. We evaluated sense codon reassignment at four of the 21 sense codons read through wobble interactions in Escherichia coli using the Methanocaldococcus jannaschii orthogonal tRNA/aminoacyl tRNA synthetase pair originally developed and commonly used for amber stop codon suppression. By changing only the anticodon of the orthogonal tRNA, we achieved sense codon reassignment efficiencies between 1% (Phe UUU) and 6% (Lys AAG). Each of the orthogonal tRNAs preferentially decoded the codon traditionally read via a wobble interaction in E. coli with the exception of the orthogonal tRNA with an AUG anticodon, which incorporated tyrosine in response to both the His CAU and His CAC codons with approximately equal frequencies. We applied our screen in a high-throughput manner to evaluate a 10(9)-member combined tRNA/aminoacyl tRNA synthetase library to identify improved sense codon reassigning variants for the Lys AAG codon. A single rapid screen with the ability to broadly evaluate reassignable codons will facilitate identification and improvement of the combinations of sense codons and orthogonal pairs that display efficient reassignment.

  5. Spectral-element Method for 3D Marine Controlled-source EM Modeling

    NASA Astrophysics Data System (ADS)

    Liu, L.; Yin, C.; Zhang, B., Sr.; Liu, Y.; Qiu, C.; Huang, X.; Zhu, J.

    2017-12-01

    As one of the predrill reservoir appraisal methods, marine controlled-source EM (MCSEM) has been widely used in mapping oil reservoirs to reduce risk of deep water exploration. With the technical development of MCSEM, the need for improved forward modeling tools has become evident. We introduce in this paper spectral element method (SEM) for 3D MCSEM modeling. It combines the flexibility of finite-element and high accuracy of spectral method. We use Galerkin weighted residual method to discretize the vector Helmholtz equation, where the curl-conforming Gauss-Lobatto-Chebyshev (GLC) polynomials are chosen as vector basis functions. As a kind of high-order complete orthogonal polynomials, the GLC have the characteristic of exponential convergence. This helps derive the matrix elements analytically and improves the modeling accuracy. Numerical 1D models using SEM with different orders show that SEM method delivers accurate results. With increasing SEM orders, the modeling accuracy improves largely. Further we compare our SEM with finite-difference (FD) method for a 3D reservoir model (Figure 1). The results show that SEM method is more effective than FD method. Only when the mesh is fine enough, can FD achieve the same accuracy of SEM. Therefore, to obtain the same precision, SEM greatly reduces the degrees of freedom and cost. Numerical experiments with different models (not shown here) demonstrate that SEM is an efficient and effective tool for MSCEM modeling that has significant advantages over traditional numerical methods.This research is supported by Key Program of National Natural Science Foundation of China (41530320), China Natural Science Foundation for Young Scientists (41404093), and Key National Research Project of China (2016YFC0303100, 2017YFC0601900).

  6. Approximating exponential and logarithmic functions using polynomial interpolation

    NASA Astrophysics Data System (ADS)

    Gordon, Sheldon P.; Yang, Yajun

    2017-04-01

    This article takes a closer look at the problem of approximating the exponential and logarithmic functions using polynomials. Either as an alternative to or a precursor to Taylor polynomial approximations at the precalculus level, interpolating polynomials are considered. A measure of error is given and the behaviour of the error function is analysed. The results of interpolating polynomials are compared with those of Taylor polynomials.

  7. Structural vibration and acoustic radiation of coupled propeller-shafting and submarine hull system due to propeller forces

    NASA Astrophysics Data System (ADS)

    Qu, Yegao; Su, Jinpeng; Hua, Hongxing; Meng, Guang

    2017-08-01

    This paper investigates the structural and acoustic responses of a coupled propeller-shafting and submarine pressure hull system under different propeller force excitations. The entire system, which consists of a rigid propeller, a main shaft, two bearings and an orthogonally stiffened pressure hull, is submerged in a heavy fluid. The shaft is elastically connected to the pressure hull by a radial bearing and a thrust bearing. The theoretical model of the structural system is formulated based on a modified variational method, in which the propeller, the main shaft and the bearings are treated as a lumped mass, an elastic beam and spatially distributed spring-damper systems, respectively. The rings and stringers in the pressure hull are modeled as discrete structural elements. The acoustic field generated by the hull is calculated using a spectral Kirchhoff-Helmholtz integral formulation. A strongly coupled structure-acoustic interaction analysis is employed to achieve reasonable solutions for the coupled system. The displacement of the pressure hull and the sound pressure of the fluid are expanded in the form of a double mixed series using Fourier series and Chebyshev orthogonal polynomials, providing a flexible way for the present method to account for the individual contributions of circumferential wave modes to the vibration and acoustic responses of the pressure hull in an analytical manner. The contributions of different circumferential wave modes of the pressure hull to the structural and acoustic responses of the coupled system under axial, transversal and vertical propeller forces are investigated. Computed results are compared with those solutions obtained from the coupled finite element/boundary element method. Effects of the ring and the bearing stiffness on the acoustic responses of the coupled system are discussed.

  8. Due Date Assignment in a Dynamic Job Shop with the Orthogonal Kernel Least Squares Algorithm

    NASA Astrophysics Data System (ADS)

    Yang, D. H.; Hu, L.; Qian, Y.

    2017-06-01

    Meeting due dates is a key goal in the manufacturing industries. This paper proposes a method for due date assignment (DDA) by using the Orthogonal Kernel Least Squares Algorithm (OKLSA). A simulation model is built to imitate the production process of a highly dynamic job shop. Several factors describing job characteristics and system state are extracted as attributes to predict job flow-times. A number of experiments under conditions of varying dispatching rules and 90% shop utilization level have been carried out to evaluate the effectiveness of OKLSA applied for DDA. The prediction performance of OKLSA is compared with those of five conventional DDA models and back-propagation neural network (BPNN). The experimental results indicate that OKLSA is statistically superior to other DDA models in terms of mean absolute lateness and root mean squares lateness in most cases. The only exception occurs when the shortest processing time rule is used for dispatching jobs, the difference between OKLSA and BPNN is not statistically significant.

  9. Solutions of interval type-2 fuzzy polynomials using a new ranking method

    NASA Astrophysics Data System (ADS)

    Rahman, Nurhakimah Ab.; Abdullah, Lazim; Ghani, Ahmad Termimi Ab.; Ahmad, Noor'Ani

    2015-10-01

    A few years ago, a ranking method have been introduced in the fuzzy polynomial equations. Concept of the ranking method is proposed to find actual roots of fuzzy polynomials (if exists). Fuzzy polynomials are transformed to system of crisp polynomials, performed by using ranking method based on three parameters namely, Value, Ambiguity and Fuzziness. However, it was found that solutions based on these three parameters are quite inefficient to produce answers. Therefore in this study a new ranking method have been developed with the aim to overcome the inherent weakness. The new ranking method which have four parameters are then applied in the interval type-2 fuzzy polynomials, covering the interval type-2 of fuzzy polynomial equation, dual fuzzy polynomial equations and system of fuzzy polynomials. The efficiency of the new ranking method then numerically considered in the triangular fuzzy numbers and the trapezoidal fuzzy numbers. Finally, the approximate solutions produced from the numerical examples indicate that the new ranking method successfully produced actual roots for the interval type-2 fuzzy polynomials.

  10. New class of photonic quantum error correction codes

    NASA Astrophysics Data System (ADS)

    Silveri, Matti; Michael, Marios; Brierley, R. T.; Salmilehto, Juha; Albert, Victor V.; Jiang, Liang; Girvin, S. M.

    We present a new class of quantum error correction codes for applications in quantum memories, communication and scalable computation. These codes are constructed from a finite superposition of Fock states and can exactly correct errors that are polynomial up to a specified degree in creation and destruction operators. Equivalently, they can perform approximate quantum error correction to any given order in time step for the continuous-time dissipative evolution under these errors. The codes are related to two-mode photonic codes but offer the advantage of requiring only a single photon mode to correct loss (amplitude damping), as well as the ability to correct other errors, e.g. dephasing. Our codes are also similar in spirit to photonic ''cat codes'' but have several advantages including smaller mean occupation number and exact rather than approximate orthogonality of the code words. We analyze how the rate of uncorrectable errors scales with the code complexity and discuss the unitary control for the recovery process. These codes are realizable with current superconducting qubit technology and can increase the fidelity of photonic quantum communication and memories.

  11. Orthogonal Polynomials on the Unit Circle with Fibonacci Verblunsky Coefficients, II. Applications

    NASA Astrophysics Data System (ADS)

    Damanik, David; Munger, Paul; Yessen, William N.

    2013-10-01

    We consider CMV matrices with Verblunsky coefficients determined in an appropriate way by the Fibonacci sequence and present two applications of the spectral theory of such matrices to problems in mathematical physics. In our first application we estimate the spreading rates of quantum walks on the line with time-independent coins following the Fibonacci sequence. The estimates we obtain are explicit in terms of the parameters of the system. In our second application, we establish a connection between the classical nearest neighbor Ising model on the one-dimensional lattice in the complex magnetic field regime, and CMV operators. In particular, given a sequence of nearest-neighbor interaction couplings, we construct a sequence of Verblunsky coefficients, such that the support of the Lee-Yang zeros of the partition function for the Ising model in the thermodynamic limit coincides with the essential spectrum of the CMV matrix with the constructed Verblunsky coefficients. Under certain technical conditions, we also show that the zeros distribution measure coincides with the density of states measure for the CMV matrix.

  12. A Computational Algorithm for Functional Clustering of Proteome Dynamics During Development

    PubMed Central

    Wang, Yaqun; Wang, Ningtao; Hao, Han; Guo, Yunqian; Zhen, Yan; Shi, Jisen; Wu, Rongling

    2014-01-01

    Phenotypic traits, such as seed development, are a consequence of complex biochemical interactions among genes, proteins and metabolites, but the underlying mechanisms that operate in a coordinated and sequential manner remain elusive. Here, we address this issue by developing a computational algorithm to monitor proteome changes during the course of trait development. The algorithm is built within the mixture-model framework in which each mixture component is modeled by a specific group of proteins that display a similar temporal pattern of expression in trait development. A nonparametric approach based on Legendre orthogonal polynomials was used to fit dynamic changes of protein expression, increasing the power and flexibility of protein clustering. By analyzing a dataset of proteomic dynamics during early embryogenesis of the Chinese fir, the algorithm has successfully identified several distinct types of proteins that coordinate with each other to determine seed development in this forest tree commercially and environmentally important to China. The algorithm will find its immediate applications for the characterization of mechanistic underpinnings for any other biological processes in which protein abundance plays a key role. PMID:24955031

  13. Transport of phase space densities through tetrahedral meshes using discrete flow mapping

    NASA Astrophysics Data System (ADS)

    Bajars, Janis; Chappell, David J.; Søndergaard, Niels; Tanner, Gregor

    2017-01-01

    Discrete flow mapping was recently introduced as an efficient ray based method determining wave energy distributions in complex built up structures. Wave energy densities are transported along ray trajectories through polygonal mesh elements using a finite dimensional approximation of a ray transfer operator. In this way the method can be viewed as a smoothed ray tracing method defined over meshed surfaces. Many applications require the resolution of wave energy distributions in three-dimensional domains, such as in room acoustics, underwater acoustics and for electromagnetic cavity problems. In this work we extend discrete flow mapping to three-dimensional domains by propagating wave energy densities through tetrahedral meshes. The geometric simplicity of the tetrahedral mesh elements is utilised to efficiently compute the ray transfer operator using a mixture of analytic and spectrally accurate numerical integration. The important issue of how to choose a suitable basis approximation in phase space whilst maintaining a reasonable computational cost is addressed via low order local approximations on tetrahedral faces in the position coordinate and high order orthogonal polynomial expansions in momentum space.

  14. A Generic Nonlinear Aerodynamic Model for Aircraft

    NASA Technical Reports Server (NTRS)

    Grauer, Jared A.; Morelli, Eugene A.

    2014-01-01

    A generic model of the aerodynamic coefficients was developed using wind tunnel databases for eight different aircraft and multivariate orthogonal functions. For each database and each coefficient, models were determined using polynomials expanded about the state and control variables, and an othgonalization procedure. A predicted squared-error criterion was used to automatically select the model terms. Modeling terms picked in at least half of the analyses, which totalled 45 terms, were retained to form the generic nonlinear aerodynamic (GNA) model. Least squares was then used to estimate the model parameters and associated uncertainty that best fit the GNA model to each database. Nonlinear flight simulations were used to demonstrate that the GNA model produces accurate trim solutions, local behavior (modal frequencies and damping ratios), and global dynamic behavior (91% accurate state histories and 80% accurate aerodynamic coefficient histories) under large-amplitude excitation. This compact aerodynamics model can be used to decrease on-board memory storage requirements, quickly change conceptual aircraft models, provide smooth analytical functions for control and optimization applications, and facilitate real-time parametric system identification.

  15. Estimating Dynamical Systems: Derivative Estimation Hints From Sir Ronald A. Fisher.

    PubMed

    Deboeck, Pascal R

    2010-08-06

    The fitting of dynamical systems to psychological data offers the promise of addressing new and innovative questions about how people change over time. One method of fitting dynamical systems is to estimate the derivatives of a time series and then examine the relationships between derivatives using a differential equation model. One common approach for estimating derivatives, Local Linear Approximation (LLA), produces estimates with correlated errors. Depending on the specific differential equation model used, such correlated errors can lead to severely biased estimates of differential equation model parameters. This article shows that the fitting of dynamical systems can be improved by estimating derivatives in a manner similar to that used to fit orthogonal polynomials. Two applications using simulated data compare the proposed method and a generalized form of LLA when used to estimate derivatives and when used to estimate differential equation model parameters. A third application estimates the frequency of oscillation in observations of the monthly deaths from bronchitis, emphysema, and asthma in the United Kingdom. These data are publicly available in the statistical program R, and functions in R for the method presented are provided.

  16. On the "Optimal" Choice of Trial Functions for Modelling Potential Fields

    NASA Astrophysics Data System (ADS)

    Michel, Volker

    2015-04-01

    There are many trial functions (e.g. on the sphere) available which can be used for the modelling of a potential field. Among them are orthogonal polynomials such as spherical harmonics and radial basis functions such as spline or wavelet basis functions. Their pros and cons have been widely discussed in the last decades. We present an algorithm, the Regularized Functional Matching Pursuit (RFMP), which is able to choose trial functions of different kinds in order to combine them to a stable approximation of a potential field. One main advantage of the RFMP is that the constructed approximation inherits the advantages of the different basis systems. By including spherical harmonics, coarse global structures can be represented in a sparse way. However, the additional use of spline basis functions allows a stable handling of scattered data grids. Furthermore, the inclusion of wavelets and scaling functions yields a multiscale analysis of the potential. In addition, ill-posed inverse problems (like a downward continuation or the inverse gravimetric problem) can be regularized with the algorithm. We show some numerical examples to demonstrate the possibilities which the RFMP provides.

  17. Random matrix models, double-time Painlevé equations, and wireless relaying

    NASA Astrophysics Data System (ADS)

    Chen, Yang; Haq, Nazmus S.; McKay, Matthew R.

    2013-06-01

    This paper gives an in-depth study of a multiple-antenna wireless communication scenario in which a weak signal received at an intermediate relay station is amplified and then forwarded to the final destination. The key quantity determining system performance is the statistical properties of the signal-to-noise ratio (SNR) γ at the destination. Under certain assumptions on the encoding structure, recent work has characterized the SNR distribution through its moment generating function, in terms of a certain Hankel determinant generated via a deformed Laguerre weight. Here, we employ two different methods to describe the Hankel determinant. First, we make use of ladder operators satisfied by orthogonal polynomials to give an exact characterization in terms of a "double-time" Painlevé differential equation, which reduces to Painlevé V under certain limits. Second, we employ Dyson's Coulomb fluid method to derive a closed form approximation for the Hankel determinant. The two characterizations are used to derive closed-form expressions for the cumulants of γ, and to compute performance quantities of engineering interest.

  18. Practical somewhat-secure quantum somewhat-homomorphic encryption with coherent states

    NASA Astrophysics Data System (ADS)

    Tan, Si-Hui; Ouyang, Yingkai; Rohde, Peter P.

    2018-04-01

    We present a scheme for implementing homomorphic encryption on coherent states encoded using phase-shift keys. The encryption operations require only rotations in phase space, which commute with computations in the code space performed via passive linear optics, and with generalized nonlinear phase operations that are polynomials of the photon-number operator in the code space. This encoding scheme can thus be applied to any computation with coherent-state inputs, and the computation proceeds via a combination of passive linear optics and generalized nonlinear phase operations. An example of such a computation is matrix multiplication, whereby a vector representing coherent-state amplitudes is multiplied by a matrix representing a linear optics network, yielding a new vector of coherent-state amplitudes. By finding an orthogonal partitioning of the support of our encoded states, we quantify the security of our scheme via the indistinguishability of the encrypted code words. While we focus on coherent-state encodings, we expect that this phase-key encoding technique could apply to any continuous-variable computation scheme where the phase-shift operator commutes with the computation.

  19. Simple Proof of Jury Test for Complex Polynomials

    NASA Astrophysics Data System (ADS)

    Choo, Younseok; Kim, Dongmin

    Recently some attempts have been made in the literature to give simple proofs of Jury test for real polynomials. This letter presents a similar result for complex polynomials. A simple proof of Jury test for complex polynomials is provided based on the Rouché's Theorem and a single-parameter characterization of Schur stability property for complex polynomials.

  20. On the connection coefficients and recurrence relations arising from expansions in series of Laguerre polynomials

    NASA Astrophysics Data System (ADS)

    Doha, E. H.

    2003-05-01

    A formula expressing the Laguerre coefficients of a general-order derivative of an infinitely differentiable function in terms of its original coefficients is proved, and a formula expressing explicitly the derivatives of Laguerre polynomials of any degree and for any order as a linear combination of suitable Laguerre polynomials is deduced. A formula for the Laguerre coefficients of the moments of one single Laguerre polynomial of certain degree is given. Formulae for the Laguerre coefficients of the moments of a general-order derivative of an infinitely differentiable function in terms of its Laguerre coefficients are also obtained. A simple approach in order to build and solve recursively for the connection coefficients between Jacobi-Laguerre and Hermite-Laguerre polynomials is described. An explicit formula for these coefficients between Jacobi and Laguerre polynomials is given, of which the ultra-spherical polynomials of the first and second kinds and Legendre polynomials are important special cases. An analytical formula for the connection coefficients between Hermite and Laguerre polynomials is also obtained.

  1. Approximating Multilinear Monomial Coefficients and Maximum Multilinear Monomials in Multivariate Polynomials

    NASA Astrophysics Data System (ADS)

    Chen, Zhixiang; Fu, Bin

    This paper is our third step towards developing a theory of testing monomials in multivariate polynomials and concentrates on two problems: (1) How to compute the coefficients of multilinear monomials; and (2) how to find a maximum multilinear monomial when the input is a ΠΣΠ polynomial. We first prove that the first problem is #P-hard and then devise a O *(3 n s(n)) upper bound for this problem for any polynomial represented by an arithmetic circuit of size s(n). Later, this upper bound is improved to O *(2 n ) for ΠΣΠ polynomials. We then design fully polynomial-time randomized approximation schemes for this problem for ΠΣ polynomials. On the negative side, we prove that, even for ΠΣΠ polynomials with terms of degree ≤ 2, the first problem cannot be approximated at all for any approximation factor ≥ 1, nor "weakly approximated" in a much relaxed setting, unless P=NP. For the second problem, we first give a polynomial time λ-approximation algorithm for ΠΣΠ polynomials with terms of degrees no more a constant λ ≥ 2. On the inapproximability side, we give a n (1 - ɛ)/2 lower bound, for any ɛ> 0, on the approximation factor for ΠΣΠ polynomials. When the degrees of the terms in these polynomials are constrained as ≤ 2, we prove a 1.0476 lower bound, assuming Pnot=NP; and a higher 1.0604 lower bound, assuming the Unique Games Conjecture.

  2. Orthonormal vector general polynomials derived from the Cartesian gradient of the orthonormal Zernike-based polynomials.

    PubMed

    Mafusire, Cosmas; Krüger, Tjaart P J

    2018-06-01

    The concept of orthonormal vector circle polynomials is revisited by deriving a set from the Cartesian gradient of Zernike polynomials in a unit circle using a matrix-based approach. The heart of this model is a closed-form matrix equation of the gradient of Zernike circle polynomials expressed as a linear combination of lower-order Zernike circle polynomials related through a gradient matrix. This is a sparse matrix whose elements are two-dimensional standard basis transverse Euclidean vectors. Using the outer product form of the Cholesky decomposition, the gradient matrix is used to calculate a new matrix, which we used to express the Cartesian gradient of the Zernike circle polynomials as a linear combination of orthonormal vector circle polynomials. Since this new matrix is singular, the orthonormal vector polynomials are recovered by reducing the matrix to its row echelon form using the Gauss-Jordan elimination method. We extend the model to derive orthonormal vector general polynomials, which are orthonormal in a general pupil by performing a similarity transformation on the gradient matrix to give its equivalent in the general pupil. The outer form of the Gram-Schmidt procedure and the Gauss-Jordan elimination method are then applied to the general pupil to generate the orthonormal vector general polynomials from the gradient of the orthonormal Zernike-based polynomials. The performance of the model is demonstrated with a simulated wavefront in a square pupil inscribed in a unit circle.

  3. Discrete-time state estimation for stochastic polynomial systems over polynomial observations

    NASA Astrophysics Data System (ADS)

    Hernandez-Gonzalez, M.; Basin, M.; Stepanov, O.

    2018-07-01

    This paper presents a solution to the mean-square state estimation problem for stochastic nonlinear polynomial systems over polynomial observations confused with additive white Gaussian noises. The solution is given in two steps: (a) computing the time-update equations and (b) computing the measurement-update equations for the state estimate and error covariance matrix. A closed form of this filter is obtained by expressing conditional expectations of polynomial terms as functions of the state estimate and error covariance. As a particular case, the mean-square filtering equations are derived for a third-degree polynomial system with second-degree polynomial measurements. Numerical simulations show effectiveness of the proposed filter compared to the extended Kalman filter.

  4. Nodal Statistics for the Van Vleck Polynomials

    NASA Astrophysics Data System (ADS)

    Bourget, Alain

    The Van Vleck polynomials naturally arise from the generalized Lamé equation as the polynomials of degree for which Eq. (1) has a polynomial solution of some degree k. In this paper, we compute the limiting distribution, as well as the limiting mean level spacings distribution of the zeros of any Van Vleck polynomial as N --> ∞.

  5. High-order regularization in lattice-Boltzmann equations

    NASA Astrophysics Data System (ADS)

    Mattila, Keijo K.; Philippi, Paulo C.; Hegele, Luiz A.

    2017-04-01

    A lattice-Boltzmann equation (LBE) is the discrete counterpart of a continuous kinetic model. It can be derived using a Hermite polynomial expansion for the velocity distribution function. Since LBEs are characterized by discrete, finite representations of the microscopic velocity space, the expansion must be truncated and the appropriate order of truncation depends on the hydrodynamic problem under investigation. Here we consider a particular truncation where the non-equilibrium distribution is expanded on a par with the equilibrium distribution, except that the diffusive parts of high-order non-equilibrium moments are filtered, i.e., only the corresponding advective parts are retained after a given rank. The decomposition of moments into diffusive and advective parts is based directly on analytical relations between Hermite polynomial tensors. The resulting, refined regularization procedure leads to recurrence relations where high-order non-equilibrium moments are expressed in terms of low-order ones. The procedure is appealing in the sense that stability can be enhanced without local variation of transport parameters, like viscosity, or without tuning the simulation parameters based on embedded optimization steps. The improved stability properties are here demonstrated using the perturbed double periodic shear layer flow and the Sod shock tube problem as benchmark cases.

  6. Independence polynomial and matching polynomial of the Koch network

    NASA Astrophysics Data System (ADS)

    Liao, Yunhua; Xie, Xiaoliang

    2015-11-01

    The lattice gas model and the monomer-dimer model are two classical models in statistical mechanics. It is well known that the partition functions of these two models are associated with the independence polynomial and the matching polynomial in graph theory, respectively. Both polynomials have been shown to belong to the “#P-complete” class, which indicate the problems are computationally “intractable”. We consider these two polynomials of the Koch networks which are scale-free with small-world effects. Explicit recurrences are derived, and explicit formulae are presented for the number of independent sets of a certain type.

  7. Stabilisation of discrete-time polynomial fuzzy systems via a polynomial lyapunov approach

    NASA Astrophysics Data System (ADS)

    Nasiri, Alireza; Nguang, Sing Kiong; Swain, Akshya; Almakhles, Dhafer

    2018-02-01

    This paper deals with the problem of designing a controller for a class of discrete-time nonlinear systems which is represented by discrete-time polynomial fuzzy model. Most of the existing control design methods for discrete-time fuzzy polynomial systems cannot guarantee their Lyapunov function to be a radially unbounded polynomial function, hence the global stability cannot be assured. The proposed control design in this paper guarantees a radially unbounded polynomial Lyapunov functions which ensures global stability. In the proposed design, state feedback structure is considered and non-convexity problem is solved by incorporating an integrator into the controller. Sufficient conditions of stability are derived in terms of polynomial matrix inequalities which are solved via SOSTOOLS in MATLAB. A numerical example is presented to illustrate the effectiveness of the proposed controller.

  8. Hadamard Factorization of Stable Polynomials

    NASA Astrophysics Data System (ADS)

    Loredo-Villalobos, Carlos Arturo; Aguirre-Hernández, Baltazar

    2011-11-01

    The stable (Hurwitz) polynomials are important in the study of differential equations systems and control theory (see [7] and [19]). A property of these polynomials is related to Hadamard product. Consider two polynomials p,q ∈ R[x]:p(x) = anxn+an-1xn-1+...+a1x+a0q(x) = bmx m+bm-1xm-1+...+b1x+b0the Hadamard product (p × q) is defined as (p×q)(x) = akbkxk+ak-1bk-1xk-1+...+a1b1x+a0b0where k = min(m,n). Some results (see [16]) shows that if p,q ∈R[x] are stable polynomials then (p×q) is stable, also, i.e. the Hadamard product is closed; however, the reciprocal is not always true, that is, not all stable polynomial has a factorization into two stable polynomials the same degree n, if n> 4 (see [15]).In this work we will give some conditions to Hadamard factorization existence for stable polynomials.

  9. On the construction of recurrence relations for the expansion and connection coefficients in series of Jacobi polynomials

    NASA Astrophysics Data System (ADS)

    Doha, E. H.

    2004-01-01

    Formulae expressing explicitly the Jacobi coefficients of a general-order derivative (integral) of an infinitely differentiable function in terms of its original expansion coefficients, and formulae for the derivatives (integrals) of Jacobi polynomials in terms of Jacobi polynomials themselves are stated. A formula for the Jacobi coefficients of the moments of one single Jacobi polynomial of certain degree is proved. Another formula for the Jacobi coefficients of the moments of a general-order derivative of an infinitely differentiable function in terms of its original expanded coefficients is also given. A simple approach in order to construct and solve recursively for the connection coefficients between Jacobi-Jacobi polynomials is described. Explicit formulae for these coefficients between ultraspherical and Jacobi polynomials are deduced, of which the Chebyshev polynomials of the first and second kinds and Legendre polynomials are important special cases. Two analytical formulae for the connection coefficients between Laguerre-Jacobi and Hermite-Jacobi are developed.

  10. Stable Numerical Approach for Fractional Delay Differential Equations

    NASA Astrophysics Data System (ADS)

    Singh, Harendra; Pandey, Rajesh K.; Baleanu, D.

    2017-12-01

    In this paper, we present a new stable numerical approach based on the operational matrix of integration of Jacobi polynomials for solving fractional delay differential equations (FDDEs). The operational matrix approach converts the FDDE into a system of linear equations, and hence the numerical solution is obtained by solving the linear system. The error analysis of the proposed method is also established. Further, a comparative study of the approximate solutions is provided for the test examples of the FDDE by varying the values of the parameters in the Jacobi polynomials. As in special case, the Jacobi polynomials reduce to the well-known polynomials such as (1) Legendre polynomial, (2) Chebyshev polynomial of second kind, (3) Chebyshev polynomial of third and (4) Chebyshev polynomial of fourth kind respectively. Maximum absolute error and root mean square error are calculated for the illustrated examples and presented in form of tables for the comparison purpose. Numerical stability of the presented method with respect to all four kind of polynomials are discussed. Further, the obtained numerical results are compared with some known methods from the literature and it is observed that obtained results from the proposed method is better than these methods.

  11. Percolation critical polynomial as a graph invariant

    DOE PAGES

    Scullard, Christian R.

    2012-10-18

    Every lattice for which the bond percolation critical probability can be found exactly possesses a critical polynomial, with the root in [0; 1] providing the threshold. Recent work has demonstrated that this polynomial may be generalized through a definition that can be applied on any periodic lattice. The polynomial depends on the lattice and on its decomposition into identical finite subgraphs, but once these are specified, the polynomial is essentially unique. On lattices for which the exact percolation threshold is unknown, the polynomials provide approximations for the critical probability with the estimates appearing to converge to the exact answer withmore » increasing subgraph size. In this paper, I show how the critical polynomial can be viewed as a graph invariant like the Tutte polynomial. In particular, the critical polynomial is computed on a finite graph and may be found using the deletion-contraction algorithm. This allows calculation on a computer, and I present such results for the kagome lattice using subgraphs of up to 36 bonds. For one of these, I find the prediction p c = 0:52440572:::, which differs from the numerical value, p c = 0:52440503(5), by only 6:9 X 10 -7.« less

  12. Polynomial solutions of the Monge-Ampère equation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Aminov, Yu A

    2014-11-30

    The question of the existence of polynomial solutions to the Monge-Ampère equation z{sub xx}z{sub yy}−z{sub xy}{sup 2}=f(x,y) is considered in the case when f(x,y) is a polynomial. It is proved that if f is a polynomial of the second degree, which is positive for all values of its arguments and has a positive squared part, then no polynomial solution exists. On the other hand, a solution which is not polynomial but is analytic in the whole of the x, y-plane is produced. Necessary and sufficient conditions for the existence of polynomial solutions of degree up to 4 are found and methods for the construction ofmore » such solutions are indicated. An approximation theorem is proved. Bibliography: 10 titles.« less

  13. Solving the interval type-2 fuzzy polynomial equation using the ranking method

    NASA Astrophysics Data System (ADS)

    Rahman, Nurhakimah Ab.; Abdullah, Lazim

    2014-07-01

    Polynomial equations with trapezoidal and triangular fuzzy numbers have attracted some interest among researchers in mathematics, engineering and social sciences. There are some methods that have been developed in order to solve these equations. In this study we are interested in introducing the interval type-2 fuzzy polynomial equation and solving it using the ranking method of fuzzy numbers. The ranking method concept was firstly proposed to find real roots of fuzzy polynomial equation. Therefore, the ranking method is applied to find real roots of the interval type-2 fuzzy polynomial equation. We transform the interval type-2 fuzzy polynomial equation to a system of crisp interval type-2 fuzzy polynomial equation. This transformation is performed using the ranking method of fuzzy numbers based on three parameters, namely value, ambiguity and fuzziness. Finally, we illustrate our approach by numerical example.

  14. Parallel multigrid smoothing: polynomial versus Gauss-Seidel

    NASA Astrophysics Data System (ADS)

    Adams, Mark; Brezina, Marian; Hu, Jonathan; Tuminaro, Ray

    2003-07-01

    Gauss-Seidel is often the smoother of choice within multigrid applications. In the context of unstructured meshes, however, maintaining good parallel efficiency is difficult with multiplicative iterative methods such as Gauss-Seidel. This leads us to consider alternative smoothers. We discuss the computational advantages of polynomial smoothers within parallel multigrid algorithms for positive definite symmetric systems. Two particular polynomials are considered: Chebyshev and a multilevel specific polynomial. The advantages of polynomial smoothing over traditional smoothers such as Gauss-Seidel are illustrated on several applications: Poisson's equation, thin-body elasticity, and eddy current approximations to Maxwell's equations. While parallelizing the Gauss-Seidel method typically involves a compromise between a scalable convergence rate and maintaining high flop rates, polynomial smoothers achieve parallel scalable multigrid convergence rates without sacrificing flop rates. We show that, although parallel computers are the main motivation, polynomial smoothers are often surprisingly competitive with Gauss-Seidel smoothers on serial machines.

  15. Multiple zeros of polynomials

    NASA Technical Reports Server (NTRS)

    Wood, C. A.

    1974-01-01

    For polynomials of higher degree, iterative numerical methods must be used. Four iterative methods are presented for approximating the zeros of a polynomial using a digital computer. Newton's method and Muller's method are two well known iterative methods which are presented. They extract the zeros of a polynomial by generating a sequence of approximations converging to each zero. However, both of these methods are very unstable when used on a polynomial which has multiple zeros. That is, either they fail to converge to some or all of the zeros, or they converge to very bad approximations of the polynomial's zeros. This material introduces two new methods, the greatest common divisor (G.C.D.) method and the repeated greatest common divisor (repeated G.C.D.) method, which are superior methods for numerically approximating the zeros of a polynomial having multiple zeros. These methods were programmed in FORTRAN 4 and comparisons in time and accuracy are given.

  16. Asymmetry of bifurcated features in radio pulsar profiles

    NASA Astrophysics Data System (ADS)

    Dyks, J.; Rudak, B.

    2012-03-01

    High-quality integrated radio profiles of some pulsars contain bifurcated, highly symmetric emission components (BECs). They are observed when our line of sight traverses through a split-fan shaped emission beam. It is shown that for oblique cuts through such a beam, the features appear asymmetric at nearly all frequencies, except for a single 'frequency of symmetry'νsym, at which both peaks in the BEC have the same height. Around νsym, the ratio of flux in the two peaks of a BEC evolves in a way resembling the multifrequency behaviour of J1012+5307. Because of the inherent asymmetry resulting from the oblique traverse of the sightline, each minimum in double notches can be modelled independently. Such a composed model reproduces the double notches of B1929+10 if the fitted function is the microscopic beam of curvature radiation in the orthogonal polarization mode. These results confirm our view that some of the double components in radio pulsar profiles directly reveal the microscopic nature of the emitted radiation beam as the microbeam of the curvature radiation polarized orthogonally to the trajectory of electrons.

  17. Approximating Exponential and Logarithmic Functions Using Polynomial Interpolation

    ERIC Educational Resources Information Center

    Gordon, Sheldon P.; Yang, Yajun

    2017-01-01

    This article takes a closer look at the problem of approximating the exponential and logarithmic functions using polynomials. Either as an alternative to or a precursor to Taylor polynomial approximations at the precalculus level, interpolating polynomials are considered. A measure of error is given and the behaviour of the error function is…

  18. Interpolation and Polynomial Curve Fitting

    ERIC Educational Resources Information Center

    Yang, Yajun; Gordon, Sheldon P.

    2014-01-01

    Two points determine a line. Three noncollinear points determine a quadratic function. Four points that do not lie on a lower-degree polynomial curve determine a cubic function. In general, n + 1 points uniquely determine a polynomial of degree n, presuming that they do not fall onto a polynomial of lower degree. The process of finding such a…

  19. Optimal Chebyshev polynomials on ellipses in the complex plane

    NASA Technical Reports Server (NTRS)

    Fischer, Bernd; Freund, Roland

    1989-01-01

    The design of iterative schemes for sparse matrix computations often leads to constrained polynomial approximation problems on sets in the complex plane. For the case of ellipses, we introduce a new class of complex polynomials which are in general very good approximations to the best polynomials and even optimal in most cases.

  20. Objective evaluation of linear and nonlinear tomosynthetic reconstruction algorithms

    NASA Astrophysics Data System (ADS)

    Webber, Richard L.; Hemler, Paul F.; Lavery, John E.

    2000-04-01

    This investigation objectively tests five different tomosynthetic reconstruction methods involving three different digital sensors, each used in a different radiologic application: chest, breast, and pelvis, respectively. The common task was to simulate a specific representative projection for each application by summation of appropriately shifted tomosynthetically generated slices produced by using the five algorithms. These algorithms were, respectively, (1) conventional back projection, (2) iteratively deconvoluted back projection, (3) a nonlinear algorithm similar to back projection, except that the minimum value from all of the component projections for each pixel is computed instead of the average value, (4) a similar algorithm wherein the maximum value was computed instead of the minimum value, and (5) the same type of algorithm except that the median value was computed. Using these five algorithms, we obtained data from each sensor-tissue combination, yielding three factorially distributed series of contiguous tomosynthetic slices. The respective slice stacks then were aligned orthogonally and averaged to yield an approximation of a single orthogonal projection radiograph of the complete (unsliced) tissue thickness. Resulting images were histogram equalized, and actual projection control images were subtracted from their tomosynthetically synthesized counterparts. Standard deviations of the resulting histograms were recorded as inverse figures of merit (FOMs). Visual rankings of image differences by five human observers of a subset (breast data only) also were performed to determine whether their subjective observations correlated with homologous FOMs. Nonparametric statistical analysis of these data demonstrated significant differences (P > 0.05) between reconstruction algorithms. The nonlinear minimization reconstruction method nearly always outperformed the other methods tested. Observer rankings were similar to those measured objectively.

  1. A FAST POLYNOMIAL TRANSFORM PROGRAM WITH A MODULARIZED STRUCTURE

    NASA Technical Reports Server (NTRS)

    Truong, T. K.

    1994-01-01

    This program utilizes a fast polynomial transformation (FPT) algorithm applicable to two-dimensional mathematical convolutions. Two-dimensional convolution has many applications, particularly in image processing. Two-dimensional cyclic convolutions can be converted to a one-dimensional convolution in a polynomial ring. Traditional FPT methods decompose the one-dimensional cyclic polynomial into polynomial convolutions of different lengths. This program will decompose a cyclic polynomial into polynomial convolutions of the same length. Thus, only FPTs and Fast Fourier Transforms of the same length are required. This modular approach can save computational resources. To further enhance its appeal, the program is written in the transportable 'C' language. The steps in the algorithm are: 1) formulate the modulus reduction equations, 2) calculate the polynomial transforms, 3) multiply the transforms using a generalized fast Fourier transformation, 4) compute the inverse polynomial transforms, and 5) reconstruct the final matrices using the Chinese remainder theorem. Input to this program is comprised of the row and column dimensions and the initial two matrices. The matrices are printed out at all steps, ending with the final reconstruction. This program is written in 'C' for batch execution and has been implemented on the IBM PC series of computers under DOS with a central memory requirement of approximately 18K of 8 bit bytes. This program was developed in 1986.

  2. Hydrodynamics-based functional forms of activity metabolism: a case for the power-law polynomial function in animal swimming energetics.

    PubMed

    Papadopoulos, Anthony

    2009-01-01

    The first-degree power-law polynomial function is frequently used to describe activity metabolism for steady swimming animals. This function has been used in hydrodynamics-based metabolic studies to evaluate important parameters of energetic costs, such as the standard metabolic rate and the drag power indices. In theory, however, the power-law polynomial function of any degree greater than one can be used to describe activity metabolism for steady swimming animals. In fact, activity metabolism has been described by the conventional exponential function and the cubic polynomial function, although only the power-law polynomial function models drag power since it conforms to hydrodynamic laws. Consequently, the first-degree power-law polynomial function yields incorrect parameter values of energetic costs if activity metabolism is governed by the power-law polynomial function of any degree greater than one. This issue is important in bioenergetics because correct comparisons of energetic costs among different steady swimming animals cannot be made unless the degree of the power-law polynomial function derives from activity metabolism. In other words, a hydrodynamics-based functional form of activity metabolism is a power-law polynomial function of any degree greater than or equal to one. Therefore, the degree of the power-law polynomial function should be treated as a parameter, not as a constant. This new treatment not only conforms to hydrodynamic laws, but also ensures correct comparisons of energetic costs among different steady swimming animals. Furthermore, the exponential power-law function, which is a new hydrodynamics-based functional form of activity metabolism, is a special case of the power-law polynomial function. Hence, the link between the hydrodynamics of steady swimming and the exponential-based metabolic model is defined.

  3. Multiple-trait random regression models for the estimation of genetic parameters for milk, fat, and protein yield in buffaloes.

    PubMed

    Borquis, Rusbel Raul Aspilcueta; Neto, Francisco Ribeiro de Araujo; Baldi, Fernando; Hurtado-Lugo, Naudin; de Camargo, Gregório M F; Muñoz-Berrocal, Milthon; Tonhati, Humberto

    2013-09-01

    In this study, genetic parameters for test-day milk, fat, and protein yield were estimated for the first lactation. The data analyzed consisted of 1,433 first lactations of Murrah buffaloes, daughters of 113 sires from 12 herds in the state of São Paulo, Brazil, with calvings from 1985 to 2007. Ten-month classes of lactation days were considered for the test-day yields. The (co)variance components for the 3 traits were estimated using the regression analyses by Bayesian inference applying an animal model by Gibbs sampling. The contemporary groups were defined as herd-year-month of the test day. In the model, the random effects were additive genetic, permanent environment, and residual. The fixed effects were contemporary group and number of milkings (1 or 2), the linear and quadratic effects of the covariable age of the buffalo at calving, as well as the mean lactation curve of the population, which was modeled by orthogonal Legendre polynomials of fourth order. The random effects for the traits studied were modeled by Legendre polynomials of third and fourth order for additive genetic and permanent environment, respectively, the residual variances were modeled considering 4 residual classes. The heritability estimates for the traits were moderate (from 0.21-0.38), with higher estimates in the intermediate lactation phase. The genetic correlation estimates within and among the traits varied from 0.05 to 0.99. The results indicate that the selection for any trait test day will result in an indirect genetic gain for milk, fat, and protein yield in all periods of the lactation curve. The accuracy associated with estimated breeding values obtained using multi-trait random regression was slightly higher (around 8%) compared with single-trait random regression. This difference may be because to the greater amount of information available per animal. Copyright © 2013 American Dairy Science Association. Published by Elsevier Inc. All rights reserved.

  4. Legendre polynomial modeling for vibrations of guided Lamb waves modes in [001]c, [011]c and [111]c polarized (1-x)Pb(Mg1/3Nb2/3)O3-xPbTiO3 (x = 0.29 and 0.33) piezoelectric plates: Physical phenomenon of multiple intertwining of An and Sn modes

    NASA Astrophysics Data System (ADS)

    Othmani, Cherif; Takali, Farid; Njeh, Anouar

    2017-12-01

    Guided wave devices have recently become one of the most important applications in the industry because such waves are directly related to applications in sensor technology, chemical sensing, agricultural science, fields of bio-sensing and surface acoustic wave (SAW) devices that are used in electronic filters and signal processing. On that account, this numerical investigation aims to study the propagation behavior of guided Lamb waves in a (1-x)Pb(Mg1/3Nb2/3)O3- x PbTiO3 [PMN- x PT] ( x=0.29 or 0.33) piezoelectric single crystal plate. In fact, the PMN- xPT ( x=0.29 or 0.33) piezoelectric crystals are being polarized along [001]c, [011]c and [111]c of the cubic reference directions so that the macroscopic symmetries are tetragonal 4 mm, orthogonal mm2 and rhombohedral 3 m, respectively. Both open- and short-circuit conditions are considered. Here, the Legendre polynomial method is proposed to solve the guided Lamb waves equations. The validity of the proposed method is illustrated by comparison with the ordinary differential equation (ODE). The convergence of this method is discussed. Consequently, the converged results are obtained with very low truncation order M . This constitutes a major advantage of the present method when compared with the other matrix methods. There is cross-crossings among multiple modes for both symmetric ( Sn) and the anti-symmetric ( An) guided Lamb waves propagation. A displacement field has been illustrated to judge whether Sn and An modes cross with each other. Moreover, electric displacement, stress field and electric potential for the open-circuit case were presented for both S0 and A0 Lamb modes.

  5. Stochastic Estimation via Polynomial Chaos

    DTIC Science & Technology

    2015-10-01

    AFRL-RW-EG-TR-2015-108 Stochastic Estimation via Polynomial Chaos Douglas V. Nance Air Force Research...COVERED (From - To) 20-04-2015 – 07-08-2015 4. TITLE AND SUBTITLE 5a. CONTRACT NUMBER Stochastic Estimation via Polynomial Chaos ...This expository report discusses fundamental aspects of the polynomial chaos method for representing the properties of second order stochastic

  6. Vehicle Sprung Mass Estimation for Rough Terrain

    DTIC Science & Technology

    2011-03-01

    distributions are greater than zero. The multivariate polynomials are functions of the Legendre polynomials (Poularikas (1999...developed methods based on polynomial chaos theory and on the maximum likelihood approach to estimate the most likely value of the vehicle sprung...mass. The polynomial chaos estimator is compared to benchmark algorithms including recursive least squares, recursive total least squares, extended

  7. Degenerate r-Stirling Numbers and r-Bell Polynomials

    NASA Astrophysics Data System (ADS)

    Kim, T.; Yao, Y.; Kim, D. S.; Jang, G.-W.

    2018-01-01

    The purpose of this paper is to exploit umbral calculus in order to derive some properties, recurrence relations, and identities related to the degenerate r-Stirling numbers of the second kind and the degenerate r-Bell polynomials. Especially, we will express the degenerate r-Bell polynomials as linear combinations of many well-known families of special polynomials.

  8. From Chebyshev to Bernstein: A Tour of Polynomials Small and Large

    ERIC Educational Resources Information Center

    Boelkins, Matthew; Miller, Jennifer; Vugteveen, Benjamin

    2006-01-01

    Consider the family of monic polynomials of degree n having zeros at -1 and +1 and all their other real zeros in between these two values. This article explores the size of these polynomials using the supremum of the absolute value on [-1, 1], showing that scaled Chebyshev and Bernstein polynomials give the extremes.

  9. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Livine, Etera R.

    We introduce the set of framed (convex) polyhedra with N faces as the symplectic quotient C{sup 2N}//SU(2). A framed polyhedron is then parametrized by N spinors living in C{sup 2} satisfying suitable closure constraints and defines a usual convex polyhedron plus extra U(1) phases attached to each face. We show that there is a natural action of the unitary group U(N) on this phase space, which changes the shape of faces and allows to map any (framed) polyhedron onto any other with the same total (boundary) area. This identifies the space of framed polyhedra to the Grassmannian space U(N)/ (SU(2)×U(N−2)).more » We show how to write averages of geometrical observables (polynomials in the faces' area and the angles between them) over the ensemble of polyhedra (distributed uniformly with respect to the Haar measure on U(N)) as polynomial integrals over the unitary group and we provide a few methods to compute these integrals systematically. We also use the Itzykson-Zuber formula from matrix models as the generating function for these averages and correlations. In the quantum case, a canonical quantization of the framed polyhedron phase space leads to the Hilbert space of SU(2) intertwiners (or, in other words, SU(2)-invariant states in tensor products of irreducible representations). The total boundary area as well as the individual face areas are quantized as half-integers (spins), and the Hilbert spaces for fixed total area form irreducible representations of U(N). We define semi-classical coherent intertwiner states peaked on classical framed polyhedra and transforming consistently under U(N) transformations. And we show how the U(N) character formula for unitary transformations is to be considered as an extension of the Itzykson-Zuber to the quantum level and generates the traces of all polynomial observables over the Hilbert space of intertwiners. We finally apply the same formalism to two dimensions and show that classical (convex) polygons can be described in a similar fashion trading the unitary group for the orthogonal group. We conclude with a discussion of the possible (deformation) dynamics that one can define on the space of polygons or polyhedra. This work is a priori useful in the context of discrete geometry but it should hopefully also be relevant to (loop) quantum gravity in 2+1 and 3+1 dimensions when the quantum geometry is defined in terms of gluing of (quantized) polygons and polyhedra.« less

  10. Probabilistic risk assessment for CO2 storage in geological formations: robust design and support for decision making under uncertainty

    NASA Astrophysics Data System (ADS)

    Oladyshkin, Sergey; Class, Holger; Helmig, Rainer; Nowak, Wolfgang

    2010-05-01

    CO2 storage in geological formations is currently being discussed intensively as a technology for mitigating CO2 emissions. However, any large-scale application requires a thorough analysis of the potential risks. Current numerical simulation models are too expensive for probabilistic risk analysis and for stochastic approaches based on brute-force repeated simulation. Even single deterministic simulations may require parallel high-performance computing. The multiphase flow processes involved are too non-linear for quasi-linear error propagation and other simplified stochastic tools. As an alternative approach, we propose a massive stochastic model reduction based on the probabilistic collocation method. The model response is projected onto a orthogonal basis of higher-order polynomials to approximate dependence on uncertain parameters (porosity, permeability etc.) and design parameters (injection rate, depth etc.). This allows for a non-linear propagation of model uncertainty affecting the predicted risk, ensures fast computation and provides a powerful tool for combining design variables and uncertain variables into one approach based on an integrative response surface. Thus, the design task of finding optimal injection regimes explicitly includes uncertainty, which leads to robust designs of the non-linear system that minimize failure probability and provide valuable support for risk-informed management decisions. We validate our proposed stochastic approach by Monte Carlo simulation using a common 3D benchmark problem (Class et al. Computational Geosciences 13, 2009). A reasonable compromise between computational efforts and precision was reached already with second-order polynomials. In our case study, the proposed approach yields a significant computational speedup by a factor of 100 compared to Monte Carlo simulation. We demonstrate that, due to the non-linearity of the flow and transport processes during CO2 injection, including uncertainty in the analysis leads to a systematic and significant shift of predicted leakage rates towards higher values compared with deterministic simulations, affecting both risk estimates and the design of injection scenarios. This implies that, neglecting uncertainty can be a strong simplification for modeling CO2 injection, and the consequences can be stronger than when neglecting several physical phenomena (e.g. phase transition, convective mixing, capillary forces etc.). The authors would like to thank the German Research Foundation (DFG) for financial support of the project within the Cluster of Excellence in Simulation Technology (EXC 310/1) at the University of Stuttgart. Keywords: polynomial chaos; CO2 storage; multiphase flow; porous media; risk assessment; uncertainty; integrative response surfaces

  11. Soliton excitations and interactions for the three-coupled fourth-order nonlinear Schrödinger equations in the alpha helical proteins

    NASA Astrophysics Data System (ADS)

    Sun, Wen-Rong; Tian, Bo; Wang, Yu-Feng; Zhen, Hui-Ling

    2015-06-01

    Three-coupled fourth-order nonlinear Schrödinger equations describe the dynamics of alpha helical proteins with the interspine coupling at the higher order. Through symbolic computation and binary Bell-polynomial approach, bilinear forms and N-soliton solutions for such equations are constructed. Key point lies in the introduction of auxiliary functions in the Bell-polynomial expression. Asymptotic analysis is applied to investigate the elastic interaction between the two solitons: two solitons keep their original amplitudes, energies and velocities invariant after the interaction except for the phase shifts. Soliton amplitudes are related to the energy distributed in the solitons of the three spines. Overtaking interaction, head-on interaction and bound-state solitons of two solitons are given. Bound states of three bright solitons arise when all of them propagate in parallel. Elastic interaction between the bound-state solitons and one bright soliton is shown. Increase of the lattice parameter can lead to the increase of the soliton velocity, that is, the interaction period becomes shorter. The solitons propagating along the neighbouring spines are found to interact elastically. Those solitons, exhibited in this paper, might be viewed as a possible carrier of bio-energy transport in the protein molecules.

  12. Design and Use of a Learning Object for Finding Complex Polynomial Roots

    ERIC Educational Resources Information Center

    Benitez, Julio; Gimenez, Marcos H.; Hueso, Jose L.; Martinez, Eulalia; Riera, Jaime

    2013-01-01

    Complex numbers are essential in many fields of engineering, but students often fail to have a natural insight of them. We present a learning object for the study of complex polynomials that graphically shows that any complex polynomials has a root and, furthermore, is useful to find the approximate roots of a complex polynomial. Moreover, we…

  13. Extending a Property of Cubic Polynomials to Higher-Degree Polynomials

    ERIC Educational Resources Information Center

    Miller, David A.; Moseley, James

    2012-01-01

    In this paper, the authors examine a property that holds for all cubic polynomials given two zeros. This property is discovered after reviewing a variety of ways to determine the equation of a cubic polynomial given specific conditions through algebra and calculus. At the end of the article, they will connect the property to a very famous method…

  14. Computing Galois Groups of Eisenstein Polynomials Over P-adic Fields

    NASA Astrophysics Data System (ADS)

    Milstead, Jonathan

    The most efficient algorithms for computing Galois groups of polynomials over global fields are based on Stauduhar's relative resolvent method. These methods are not directly generalizable to the local field case, since they require a field that contains the global field in which all roots of the polynomial can be approximated. We present splitting field-independent methods for computing the Galois group of an Eisenstein polynomial over a p-adic field. Our approach is to combine information from different disciplines. We primarily, make use of the ramification polygon of the polynomial, which is the Newton polygon of a related polynomial. This allows us to quickly calculate several invariants that serve to reduce the number of possible Galois groups. Algorithms by Greve and Pauli very efficiently return the Galois group of polynomials where the ramification polygon consists of one segment as well as information about the subfields of the stem field. Second, we look at the factorization of linear absolute resolvents to further narrow the pool of possible groups.

  15. On polynomial preconditioning for indefinite Hermitian matrices

    NASA Technical Reports Server (NTRS)

    Freund, Roland W.

    1989-01-01

    The minimal residual method is studied combined with polynomial preconditioning for solving large linear systems (Ax = b) with indefinite Hermitian coefficient matrices (A). The standard approach for choosing the polynomial preconditioners leads to preconditioned systems which are positive definite. Here, a different strategy is studied which leaves the preconditioned coefficient matrix indefinite. More precisely, the polynomial preconditioner is designed to cluster the positive, resp. negative eigenvalues of A around 1, resp. around some negative constant. In particular, it is shown that such indefinite polynomial preconditioners can be obtained as the optimal solutions of a certain two parameter family of Chebyshev approximation problems. Some basic results are established for these approximation problems and a Remez type algorithm is sketched for their numerical solution. The problem of selecting the parameters such that the resulting indefinite polynomial preconditioners speeds up the convergence of minimal residual method optimally is also addressed. An approach is proposed based on the concept of asymptotic convergence factors. Finally, some numerical examples of indefinite polynomial preconditioners are given.

  16. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Genest, Vincent X.; Vinet, Luc; Zhedanov, Alexei

    The algebra H of the dual -1 Hahn polynomials is derived and shown to arise in the Clebsch-Gordan problem of sl{sub -1}(2). The dual -1 Hahn polynomials are the bispectral polynomials of a discrete argument obtained from the q{yields}-1 limit of the dual q-Hahn polynomials. The Hopf algebra sl{sub -1}(2) has four generators including an involution, it is also a q{yields}-1 limit of the quantum algebra sl{sub q}(2) and furthermore, the dynamical algebra of the parabose oscillator. The algebra H, a two-parameter generalization of u(2) with an involution as additional generator, is first derived from the recurrence relation of themore » -1 Hahn polynomials. It is then shown that H can be realized in terms of the generators of two added sl{sub -1}(2) algebras, so that the Clebsch-Gordan coefficients of sl{sub -1}(2) are dual -1 Hahn polynomials. An irreducible representation of H involving five-diagonal matrices and connected to the difference equation of the dual -1 Hahn polynomials is constructed.« less

  17. Active Subspaces of Airfoil Shape Parameterizations

    NASA Astrophysics Data System (ADS)

    Grey, Zachary J.; Constantine, Paul G.

    2018-05-01

    Design and optimization benefit from understanding the dependence of a quantity of interest (e.g., a design objective or constraint function) on the design variables. A low-dimensional active subspace, when present, identifies important directions in the space of design variables; perturbing a design along the active subspace associated with a particular quantity of interest changes that quantity more, on average, than perturbing the design orthogonally to the active subspace. This low-dimensional structure provides insights that characterize the dependence of quantities of interest on design variables. Airfoil design in a transonic flow field with a parameterized geometry is a popular test problem for design methodologies. We examine two particular airfoil shape parameterizations, PARSEC and CST, and study the active subspaces present in two common design quantities of interest, transonic lift and drag coefficients, under each shape parameterization. We mathematically relate the two parameterizations with a common polynomial series. The active subspaces enable low-dimensional approximations of lift and drag that relate to physical airfoil properties. In particular, we obtain and interpret a two-dimensional approximation of both transonic lift and drag, and we show how these approximation inform a multi-objective design problem.

  18. Discrete Painlevé equations for a class of PVI τ-functions given as U(N) averages

    NASA Astrophysics Data System (ADS)

    Forrester, P. J.; Witte, N. S.

    2005-09-01

    In a recent work, difference equations (Laguerre-Freud equations) for the bi-orthogonal polynomials and related quantities corresponding to the weight on the unit circle w(z)=\\prod^m_{j=1}(z-z_j(t))^{\\rho_j} were derived. It is shown here that in the case m = 3, these difference equations, when applied to the calculation of the underlying U(N) average, reduce to a coupled system identifiable with that obtained by Adler and van Moerbeke, using the methods of the Toeplitz lattice and Virasoro constraints. Moreover, it is shown that this coupled system can be reduced to yield the discrete fifth Painlevé equation dPV as it occurs in the theory of the sixth Painlevé system. Methods based on affine Weyl group symmetries of Bäcklund transformations have previously yielded the dPV equation, but with different parameters for the same problem. We find an explicit mapping between the two forms. Applications of our results are made to give recurrences for the gap probabilities and moments in the circular unitary ensemble of random matrices, and to the diagonal spin-spin correlation function of the square lattice Ising model.

  19. Some comparisons of complexity in dictionary-based and linear computational models.

    PubMed

    Gnecco, Giorgio; Kůrková, Věra; Sanguineti, Marcello

    2011-03-01

    Neural networks provide a more flexible approximation of functions than traditional linear regression. In the latter, one can only adjust the coefficients in linear combinations of fixed sets of functions, such as orthogonal polynomials or Hermite functions, while for neural networks, one may also adjust the parameters of the functions which are being combined. However, some useful properties of linear approximators (such as uniqueness, homogeneity, and continuity of best approximation operators) are not satisfied by neural networks. Moreover, optimization of parameters in neural networks becomes more difficult than in linear regression. Experimental results suggest that these drawbacks of neural networks are offset by substantially lower model complexity, allowing accuracy of approximation even in high-dimensional cases. We give some theoretical results comparing requirements on model complexity for two types of approximators, the traditional linear ones and so called variable-basis types, which include neural networks, radial, and kernel models. We compare upper bounds on worst-case errors in variable-basis approximation with lower bounds on such errors for any linear approximator. Using methods from nonlinear approximation and integral representations tailored to computational units, we describe some cases where neural networks outperform any linear approximator. Copyright © 2010 Elsevier Ltd. All rights reserved.

  20. Egg quality of quails fed low methionine diet supplemented with betaine

    NASA Astrophysics Data System (ADS)

    Ratriyanto, A.; Indreswari, R.; Dewanti, R.; Wahyuningsih, S.

    2018-03-01

    This experiment investigated the effect of betaine supplementation to low methionine diet on egg quality of quails. A total of 340 laying quails (Coturnix coturnix japonica) was divided into 4 dietary treatments with 5 replicates of 17 quails each. The experiment was assigned in a completely randomized design. The four dietary treatments were the low methionine diet (0.3% methionine) without betaine supplementation and the low methionine diet supplemented with 0.07, 0.14, and 0.21% betaine. The experimental diets were applied for 8 weeks and the egg quality traits were measured at the age of 16 and 20 weeks. The data were subjected to analysis of variance, and when the treatment indicated significant effect, it was continued to orthogonal polynomial test to determine the optimum level of betaine. Increasing dietary levels of betaine increased the fat content of the egg with the linear regression of y = 11.0949 + 4.1914x (R2 = 0.18). However, supplementation of betaine did not affect protein content, yolk, albumen, and eggshell percentage. It can be concluded that betaine supplementation up to 0.21% to low methionine diet only had little effect in improving the quality traits of quail eggs.

  1. Aeroelastic Uncertainty Quantification Studies Using the S4T Wind Tunnel Model

    NASA Technical Reports Server (NTRS)

    Nikbay, Melike; Heeg, Jennifer

    2017-01-01

    This paper originates from the joint efforts of an aeroelastic study team in the Applied Vehicle Technology Panel from NATO Science and Technology Organization, with the Task Group number AVT-191, titled "Application of Sensitivity Analysis and Uncertainty Quantification to Military Vehicle Design." We present aeroelastic uncertainty quantification studies using the SemiSpan Supersonic Transport wind tunnel model at the NASA Langley Research Center. The aeroelastic study team decided treat both structural and aerodynamic input parameters as uncertain and represent them as samples drawn from statistical distributions, propagating them through aeroelastic analysis frameworks. Uncertainty quantification processes require many function evaluations to asses the impact of variations in numerous parameters on the vehicle characteristics, rapidly increasing the computational time requirement relative to that required to assess a system deterministically. The increased computational time is particularly prohibitive if high-fidelity analyses are employed. As a remedy, the Istanbul Technical University team employed an Euler solver in an aeroelastic analysis framework, and implemented reduced order modeling with Polynomial Chaos Expansion and Proper Orthogonal Decomposition to perform the uncertainty propagation. The NASA team chose to reduce the prohibitive computational time by employing linear solution processes. The NASA team also focused on determining input sample distributions.

  2. Rational Solutions of the Painlevé-II Equation Revisited

    NASA Astrophysics Data System (ADS)

    Miller, Peter D.; Sheng, Yue

    2017-08-01

    The rational solutions of the Painlevé-II equation appear in several applications and are known to have many remarkable algebraic and analytic properties. They also have several different representations, useful in different ways for establishing these properties. In particular, Riemann-Hilbert representations have proven to be useful for extracting the asymptotic behavior of the rational solutions in the limit of large degree (equivalently the large-parameter limit). We review the elementary properties of the rational Painlevé-II functions, and then we describe three different Riemann-Hilbert representations of them that have appeared in the literature: a representation by means of the isomonodromy theory of the Flaschka-Newell Lax pair, a second representation by means of the isomonodromy theory of the Jimbo-Miwa Lax pair, and a third representation found by Bertola and Bothner related to pseudo-orthogonal polynomials. We prove that the Flaschka-Newell and Bertola-Bothner Riemann-Hilbert representations of the rational Painlevé-II functions are explicitly connected to each other. Finally, we review recent results describing the asymptotic behavior of the rational Painlevé-II functions obtained from these Riemann-Hilbert representations by means of the steepest descent method.

  3. Exact correlators on the Wilson loop in N=4 SYM: localization, defect CFT, and integrability

    NASA Astrophysics Data System (ADS)

    Giombi, Simone; Komatsu, Shota

    2018-05-01

    We compute a set of correlation functions of operator insertions on the 1 /8 BPS Wilson loop in N=4 SYM by employing supersymmetric localization, OPE and the Gram-Schmidt orthogonalization. These correlators exhibit a simple determinant structure, are position-independent and form a topological subsector, but depend nontrivially on the 't Hooft coupling and the rank of the gauge group. When applied to the 1 /2 BPS circular (or straight) Wilson loop, our results provide an infinite family of exact defect CFT data, including the structure constants of protected defect primaries of arbitrary length inserted on the loop. At strong coupling, we show precise agreement with a direct calculation using perturbation theory around the AdS2 string worldsheet. We also explain the connection of our results to the "generalized Bremsstrahlung functions" previously computed from integrability techniques, reproducing the known results in the planar limit as well as obtaining their finite N generalization. Furthermore, we show that the correlators at large N can be recast as simple integrals of products of polynomials (known as Q-functions) that appear in the Quantum Spectral Curve approach. This suggests an interesting interplay between localization, defect CFT and integrability.

  4. Asymptotics for the Fredholm determinant of the sine kernel on a union of intervals

    NASA Astrophysics Data System (ADS)

    Widom, Harold

    1995-07-01

    In the bulk scaling limit of the Gaussian Unitary Ensemble of hermitian matrices the probability that an interval of length s contains no eigenvalues is the Fredholm determinant of the sine kernel{sin (x - y)}/{π (x - y)} over this interval. A formal asymptotic expansion for the determinant as s tends to infinity was obtained by Dyson. In this paper we replace a single interval of length s by sJ, where J is a union of m intervals and present a proof of the asymptotics up to second order. The logarithmic derivative with respect to s of the determinant equals a constant (expressible in terms of hyperelliptic integrals) times s, plus a bounded oscillatory function of s (zero if m=1, periodic if m=2, and in general expressible in terms of the solution of a Jacobi inversion problem), plus o(1). Also determined are the asymptotics of the trace of the resolvent operator, which is the ratio in the same model of the probability that the set contains exactly one eigenvalue to the probability that it contains none. The proofs use ideas from orthogonal polynomial theory.

  5. On the extreme value statistics of normal random matrices and 2D Coulomb gases: Universality and finite N corrections

    NASA Astrophysics Data System (ADS)

    Ebrahimi, R.; Zohren, S.

    2018-03-01

    In this paper we extend the orthogonal polynomials approach for extreme value calculations of Hermitian random matrices, developed by Nadal and Majumdar (J. Stat. Mech. P04001 arXiv:1102.0738), to normal random matrices and 2D Coulomb gases in general. Firstly, we show that this approach provides an alternative derivation of results in the literature. More precisely, we show convergence of the rescaled eigenvalue with largest modulus of a normal Gaussian ensemble to a Gumbel distribution, as well as universality for an arbitrary radially symmetric potential. Secondly, it is shown that this approach can be generalised to obtain convergence of the eigenvalue with smallest modulus and its universality for ring distributions. Most interestingly, the here presented techniques are used to compute all slowly varying finite N correction of the above distributions, which is important for practical applications, given the slow convergence. Another interesting aspect of this work is the fact that we can use standard techniques from Hermitian random matrices to obtain the extreme value statistics of non-Hermitian random matrices resembling the large N expansion used in context of the double scaling limit of Hermitian matrix models in string theory.

  6. On-Ground Processing of Yaogan-24 Remote Sensing Satellite Attitude Data and Verification Using Geometric Field Calibration

    PubMed Central

    Wang, Mi; Fan, Chengcheng; Yang, Bo; Jin, Shuying; Pan, Jun

    2016-01-01

    Satellite attitude accuracy is an important factor affecting the geometric processing accuracy of high-resolution optical satellite imagery. To address the problem whereby the accuracy of the Yaogan-24 remote sensing satellite’s on-board attitude data processing is not high enough and thus cannot meet its image geometry processing requirements, we developed an approach involving on-ground attitude data processing and digital orthophoto (DOM) and the digital elevation model (DEM) verification of a geometric calibration field. The approach focuses on three modules: on-ground processing based on bidirectional filter, overall weighted smoothing and fitting, and evaluation in the geometric calibration field. Our experimental results demonstrate that the proposed on-ground processing method is both robust and feasible, which ensures the reliability of the observation data quality, convergence and stability of the parameter estimation model. In addition, both the Euler angle and quaternion could be used to build a mathematical fitting model, while the orthogonal polynomial fitting model is more suitable for modeling the attitude parameter. Furthermore, compared to the image geometric processing results based on on-board attitude data, the image uncontrolled and relative geometric positioning result accuracy can be increased by about 50%. PMID:27483287

  7. Optimal updating magnitude in adaptive flat-distribution sampling

    NASA Astrophysics Data System (ADS)

    Zhang, Cheng; Drake, Justin A.; Ma, Jianpeng; Pettitt, B. Montgomery

    2017-11-01

    We present a study on the optimization of the updating magnitude for a class of free energy methods based on flat-distribution sampling, including the Wang-Landau (WL) algorithm and metadynamics. These methods rely on adaptive construction of a bias potential that offsets the potential of mean force by histogram-based updates. The convergence of the bias potential can be improved by decreasing the updating magnitude with an optimal schedule. We show that while the asymptotically optimal schedule for the single-bin updating scheme (commonly used in the WL algorithm) is given by the known inverse-time formula, that for the Gaussian updating scheme (commonly used in metadynamics) is often more complex. We further show that the single-bin updating scheme is optimal for very long simulations, and it can be generalized to a class of bandpass updating schemes that are similarly optimal. These bandpass updating schemes target only a few long-range distribution modes and their optimal schedule is also given by the inverse-time formula. Constructed from orthogonal polynomials, the bandpass updating schemes generalize the WL and Langfeld-Lucini-Rago algorithms as an automatic parameter tuning scheme for umbrella sampling.

  8. Optimal updating magnitude in adaptive flat-distribution sampling.

    PubMed

    Zhang, Cheng; Drake, Justin A; Ma, Jianpeng; Pettitt, B Montgomery

    2017-11-07

    We present a study on the optimization of the updating magnitude for a class of free energy methods based on flat-distribution sampling, including the Wang-Landau (WL) algorithm and metadynamics. These methods rely on adaptive construction of a bias potential that offsets the potential of mean force by histogram-based updates. The convergence of the bias potential can be improved by decreasing the updating magnitude with an optimal schedule. We show that while the asymptotically optimal schedule for the single-bin updating scheme (commonly used in the WL algorithm) is given by the known inverse-time formula, that for the Gaussian updating scheme (commonly used in metadynamics) is often more complex. We further show that the single-bin updating scheme is optimal for very long simulations, and it can be generalized to a class of bandpass updating schemes that are similarly optimal. These bandpass updating schemes target only a few long-range distribution modes and their optimal schedule is also given by the inverse-time formula. Constructed from orthogonal polynomials, the bandpass updating schemes generalize the WL and Langfeld-Lucini-Rago algorithms as an automatic parameter tuning scheme for umbrella sampling.

  9. Stabilization of numerical interchange in spectral-element magnetohydrodynamics

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sovinec, C. R.

    In this study, auxiliary numerical projections of the divergence of flow velocity and vorticity parallel to magnetic field are developed and tested for the purpose of suppressing unphysical interchange instability in magnetohydrodynamic simulations. The numerical instability arises with equal-order C 0 finite- and spectral-element expansions of the flow velocity, magnetic field, and pressure and is sensitive to behavior at the limit of resolution. The auxiliary projections are motivated by physical field-line bending, and coercive responses to the projections are added to the flow-velocity equation. Their incomplete expansions are limited to the highest-order orthogonal polynomial in at least one coordinate ofmore » the spectral elements. Cylindrical eigenmode computations show that the projections induce convergence from the stable side with first-order ideal-MHD equations during h-refinement and p-refinement. Hyperbolic and parabolic projections and responses are compared, together with different methods for avoiding magnetic divergence error. Lastly, the projections are also shown to be effective in linear and nonlinear time-dependent computations with the NIMROD code [C. R. Sovinec, et al., J. Comput. Phys. 195 (2004) 355-386], provided that the projections introduce numerical dissipation.« less

  10. Stabilization of numerical interchange in spectral-element magnetohydrodynamics

    DOE PAGES

    Sovinec, C. R.

    2016-05-10

    In this study, auxiliary numerical projections of the divergence of flow velocity and vorticity parallel to magnetic field are developed and tested for the purpose of suppressing unphysical interchange instability in magnetohydrodynamic simulations. The numerical instability arises with equal-order C 0 finite- and spectral-element expansions of the flow velocity, magnetic field, and pressure and is sensitive to behavior at the limit of resolution. The auxiliary projections are motivated by physical field-line bending, and coercive responses to the projections are added to the flow-velocity equation. Their incomplete expansions are limited to the highest-order orthogonal polynomial in at least one coordinate ofmore » the spectral elements. Cylindrical eigenmode computations show that the projections induce convergence from the stable side with first-order ideal-MHD equations during h-refinement and p-refinement. Hyperbolic and parabolic projections and responses are compared, together with different methods for avoiding magnetic divergence error. Lastly, the projections are also shown to be effective in linear and nonlinear time-dependent computations with the NIMROD code [C. R. Sovinec, et al., J. Comput. Phys. 195 (2004) 355-386], provided that the projections introduce numerical dissipation.« less

  11. [Glossary of terms used by radiologists in image processing].

    PubMed

    Rolland, Y; Collorec, R; Bruno, A; Ramée, A; Morcet, N; Haigron, P

    1995-01-01

    We give the definition of 166 words used in image processing. Adaptivity, aliazing, analog-digital converter, analysis, approximation, arc, artifact, artificial intelligence, attribute, autocorrelation, bandwidth, boundary, brightness, calibration, class, classification, classify, centre, cluster, coding, color, compression, contrast, connectivity, convolution, correlation, data base, decision, decomposition, deconvolution, deduction, descriptor, detection, digitization, dilation, discontinuity, discretization, discrimination, disparity, display, distance, distorsion, distribution dynamic, edge, energy, enhancement, entropy, erosion, estimation, event, extrapolation, feature, file, filter, filter floaters, fitting, Fourier transform, frequency, fusion, fuzzy, Gaussian, gradient, graph, gray level, group, growing, histogram, Hough transform, Houndsfield, image, impulse response, inertia, intensity, interpolation, interpretation, invariance, isotropy, iterative, JPEG, knowledge base, label, laplacian, learning, least squares, likelihood, matching, Markov field, mask, matching, mathematical morphology, merge (to), MIP, median, minimization, model, moiré, moment, MPEG, neural network, neuron, node, noise, norm, normal, operator, optical system, optimization, orthogonal, parametric, pattern recognition, periodicity, photometry, pixel, polygon, polynomial, prediction, pulsation, pyramidal, quantization, raster, reconstruction, recursive, region, rendering, representation space, resolution, restoration, robustness, ROC, thinning, transform, sampling, saturation, scene analysis, segmentation, separable function, sequential, smoothing, spline, split (to), shape, threshold, tree, signal, speckle, spectrum, spline, stationarity, statistical, stochastic, structuring element, support, syntaxic, synthesis, texture, truncation, variance, vision, voxel, windowing.

  12. Combinatorial theory of Macdonald polynomials I: proof of Haglund's formula.

    PubMed

    Haglund, J; Haiman, M; Loehr, N

    2005-02-22

    Haglund recently proposed a combinatorial interpretation of the modified Macdonald polynomials H(mu). We give a combinatorial proof of this conjecture, which establishes the existence and integrality of H(mu). As corollaries, we obtain the cocharge formula of Lascoux and Schutzenberger for Hall-Littlewood polynomials, a formula of Sahi and Knop for Jack's symmetric functions, a generalization of this result to the integral Macdonald polynomials J(mu), a formula for H(mu) in terms of Lascoux-Leclerc-Thibon polynomials, and combinatorial expressions for the Kostka-Macdonald coefficients K(lambda,mu) when mu is a two-column shape.

  13. Experimental validation of a quasi-steady theory for the flow through the glottis

    NASA Astrophysics Data System (ADS)

    Vilain, C. E.; Pelorson, X.; Fraysse, C.; Deverge, M.; Hirschberg, A.; Willems, J.

    2004-09-01

    In this paper a theoretical description of the flow through the glottis based on a quasi-steady boundary layer theory is presented. The Thwaites method is used to solve the von Kármán equations within the boundary layers. In practice this makes the theory much easier to use compared to Pohlhausen's polynomial approximations. This theoretical description is evaluated on the basis of systematic comparison with experimental data obtained under steady flow or unsteady (oscillating) flow without and with moving vocal folds. Results tend to show that the theory reasonably explains the measured data except when unsteady or viscous terms become predominant. This happens particularly during the collision of the vocal folds.

  14. Conformal Galilei algebras, symmetric polynomials and singular vectors

    NASA Astrophysics Data System (ADS)

    Křižka, Libor; Somberg, Petr

    2018-01-01

    We classify and explicitly describe homomorphisms of Verma modules for conformal Galilei algebras cga_ℓ (d,C) with d=1 for any integer value ℓ \\in N. The homomorphisms are uniquely determined by singular vectors as solutions of certain differential operators of flag type and identified with specific polynomials arising as coefficients in the expansion of a parametric family of symmetric polynomials into power sum symmetric polynomials.

  15. Identities associated with Milne-Thomson type polynomials and special numbers.

    PubMed

    Simsek, Yilmaz; Cakic, Nenad

    2018-01-01

    The purpose of this paper is to give identities and relations including the Milne-Thomson polynomials, the Hermite polynomials, the Bernoulli numbers, the Euler numbers, the Stirling numbers, the central factorial numbers, and the Cauchy numbers. By using fermionic and bosonic p -adic integrals, we derive some new relations and formulas related to these numbers and polynomials, and also the combinatorial sums.

  16. Approximating smooth functions using algebraic-trigonometric polynomials

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sharapudinov, Idris I

    2011-01-14

    The problem under consideration is that of approximating classes of smooth functions by algebraic-trigonometric polynomials of the form p{sub n}(t)+{tau}{sub m}(t), where p{sub n}(t) is an algebraic polynomial of degree n and {tau}{sub m}(t)=a{sub 0}+{Sigma}{sub k=1}{sup m}a{sub k} cos k{pi}t + b{sub k} sin k{pi}t is a trigonometric polynomial of order m. The precise order of approximation by such polynomials in the classes W{sup r}{sub {infinity}(}M) and an upper bound for similar approximations in the class W{sup r}{sub p}(M) with 4/3

  17. Parameter reduction in nonlinear state-space identification of hysteresis

    NASA Astrophysics Data System (ADS)

    Fakhrizadeh Esfahani, Alireza; Dreesen, Philippe; Tiels, Koen; Noël, Jean-Philippe; Schoukens, Johan

    2018-05-01

    Recent work on black-box polynomial nonlinear state-space modeling for hysteresis identification has provided promising results, but struggles with a large number of parameters due to the use of multivariate polynomials. This drawback is tackled in the current paper by applying a decoupling approach that results in a more parsimonious representation involving univariate polynomials. This work is carried out numerically on input-output data generated by a Bouc-Wen hysteretic model and follows up on earlier work of the authors. The current article discusses the polynomial decoupling approach and explores the selection of the number of univariate polynomials with the polynomial degree. We have found that the presented decoupling approach is able to reduce the number of parameters of the full nonlinear model up to about 50%, while maintaining a comparable output error level.

  18. Electrocardiogram ST-Segment Morphology Delineation Method Using Orthogonal Transformations

    PubMed Central

    2016-01-01

    Differentiation between ischaemic and non-ischaemic transient ST segment events of long term ambulatory electrocardiograms is a persisting weakness in present ischaemia detection systems. Traditional ST segment level measuring is not a sufficiently precise technique due to the single point of measurement and severe noise which is often present. We developed a robust noise resistant orthogonal-transformation based delineation method, which allows tracing the shape of transient ST segment morphology changes from the entire ST segment in terms of diagnostic and morphologic feature-vector time series, and also allows further analysis. For these purposes, we developed a new Legendre Polynomials based Transformation (LPT) of ST segment. Its basis functions have similar shapes to typical transient changes of ST segment morphology categories during myocardial ischaemia (level, slope and scooping), thus providing direct insight into the types of time domain morphology changes through the LPT feature-vector space. We also generated new Karhunen and Lo ève Transformation (KLT) ST segment basis functions using a robust covariance matrix constructed from the ST segment pattern vectors derived from the Long Term ST Database (LTST DB). As for the delineation of significant transient ischaemic and non-ischaemic ST segment episodes, we present a study on the representation of transient ST segment morphology categories, and an evaluation study on the classification power of the KLT- and LPT-based feature vectors to classify between ischaemic and non-ischaemic ST segment episodes of the LTST DB. Classification accuracy using the KLT and LPT feature vectors was 90% and 82%, respectively, when using the k-Nearest Neighbors (k = 3) classifier and 10-fold cross-validation. New sets of feature-vector time series for both transformations were derived for the records of the LTST DB which is freely available on the PhysioNet website and were contributed to the LTST DB. The KLT and LPT present new possibilities for human-expert diagnostics, and for automated ischaemia detection. PMID:26863140

  19. On the efficiency of treating singularities in triatomic variational vibrational computations. The vibrational states of H(+)3 up to dissociation.

    PubMed

    Szidarovszky, Tamás; Császár, Attila G; Czakó, Gábor

    2010-08-01

    Several techniques of varying efficiency are investigated, which treat all singularities present in the triatomic vibrational kinetic energy operator given in orthogonal internal coordinates of the two distances-one angle type. The strategies are based on the use of a direct-product basis built from one-dimensional discrete variable representation (DVR) bases corresponding to the two distances and orthogonal Legendre polynomials, or the corresponding Legendre-DVR basis, corresponding to the angle. The use of Legendre functions ensures the efficient treatment of the angular singularity. Matrix elements of the singular radial operators are calculated employing DVRs using the quadrature approximation as well as special DVRs satisfying the boundary conditions and thus allowing for the use of exact DVR expressions. Potential optimized (PO) radial DVRs, based on one-dimensional Hamiltonians with potentials obtained by fixing or relaxing the two non-active coordinates, are also studied. The numerical calculations employed Hermite-DVR, spherical-oscillator-DVR, and Bessel-DVR bases as the primitive radial functions. A new analytical formula is given for the determination of the matrix elements of the singular radial operator using the Bessel-DVR basis. The usually claimed failure of the quadrature approximation in certain singular integrals is revisited in one and three dimensions. It is shown that as long as no potential optimization is carried out the quadrature approximation works almost as well as the exact DVR expressions. If wave functions with finite amplitude at the boundary are to be computed, the basis sets need to meet the required boundary conditions. The present numerical results also confirm that PO-DVRs should be constructed employing relaxed potentials and PO-DVRs can be useful for optimizing quadrature points for calculations applying large coordinate intervals and describing large-amplitude motions. The utility and efficiency of the different algorithms is demonstrated by the computation of converged near-dissociation vibrational energy levels for the H molecular ion.

  20. Modified Chebyshev Picard Iteration for Efficient Numerical Integration of Ordinary Differential Equations

    NASA Astrophysics Data System (ADS)

    Macomber, B.; Woollands, R. M.; Probe, A.; Younes, A.; Bai, X.; Junkins, J.

    2013-09-01

    Modified Chebyshev Picard Iteration (MCPI) is an iterative numerical method for approximating solutions of linear or non-linear Ordinary Differential Equations (ODEs) to obtain time histories of system state trajectories. Unlike other step-by-step differential equation solvers, the Runge-Kutta family of numerical integrators for example, MCPI approximates long arcs of the state trajectory with an iterative path approximation approach, and is ideally suited to parallel computation. Orthogonal Chebyshev Polynomials are used as basis functions during each path iteration; the integrations of the Picard iteration are then done analytically. Due to the orthogonality of the Chebyshev basis functions, the least square approximations are computed without matrix inversion; the coefficients are computed robustly from discrete inner products. As a consequence of discrete sampling and weighting adopted for the inner product definition, Runge phenomena errors are minimized near the ends of the approximation intervals. The MCPI algorithm utilizes a vector-matrix framework for computational efficiency. Additionally, all Chebyshev coefficients and integrand function evaluations are independent, meaning they can be simultaneously computed in parallel for further decreased computational cost. Over an order of magnitude speedup from traditional methods is achieved in serial processing, and an additional order of magnitude is achievable in parallel architectures. This paper presents a new MCPI library, a modular toolset designed to allow MCPI to be easily applied to a wide variety of ODE systems. Library users will not have to concern themselves with the underlying mathematics behind the MCPI method. Inputs are the boundary conditions of the dynamical system, the integrand function governing system behavior, and the desired time interval of integration, and the output is a time history of the system states over the interval of interest. Examples from the field of astrodynamics are presented to compare the output from the MCPI library to current state-of-practice numerical integration methods. It is shown that MCPI is capable of out-performing the state-of-practice in terms of computational cost and accuracy.

  1. A New and General Formulation of the Parametric HFGMC Micromechanical Method for Three-Dimensional Multi-Phase Composites

    NASA Technical Reports Server (NTRS)

    Haj-Ali, Rami; Aboudi, Jacob

    2012-01-01

    The recent two-dimensional (2-D) parametric formulation of the high fidelity generalized method of cells (HFGMC) reported by the authors is generalized for the micromechanical analysis of three-dimensional (3-D) multiphase composites with periodic microstructure. Arbitrary hexahedral subcell geometry is developed to discretize a triply periodic repeating unit-cell (RUC). Linear parametric-geometric mapping is employed to transform the arbitrary hexahedral subcell shapes from the physical space to an auxiliary orthogonal shape, where a complete quadratic displacement expansion is performed. Previously in the 2-D case, additional three equations are needed in the form of average moments of equilibrium as a result of the inclusion of the bilinear terms. However, the present 3-D parametric HFGMC formulation eliminates the need for such additional equations. This is achieved by expressing the coefficients of the full quadratic polynomial expansion of the subcell in terms of the side or face average-displacement vectors. The 2-D parametric and orthogonal HFGMC are special cases of the present 3-D formulation. The continuity of displacements and tractions, as well as the equilibrium equations, are imposed in the average (integral) sense as in the original HFGMC formulation. Each of the six sides (faces) of a subcell has an independent average displacement micro-variable vector which forms an energy-conjugate pair with the transformed average-traction vector. This allows generating symmetric stiffness matrices along with internal resisting vectors for the subcells which enhances the computational efficiency. The established new parametric 3-D HFGMC equations are formulated and solution implementations are addressed. Several applications for triply periodic 3-D composites are presented to demonstrate the general capability and varsity of the present parametric HFGMC method for refined micromechanical analysis by generating the spatial distributions of local stress fields. These applications include triply periodic composites with inclusions in the form of a cavity, spherical inclusion, ellipsoidal inclusion, discontinuous aligned short fiber. A 3-D repeating unit-cell for foam material composite is simulated.

  2. Constructing general partial differential equations using polynomial and neural networks.

    PubMed

    Zjavka, Ladislav; Pedrycz, Witold

    2016-01-01

    Sum fraction terms can approximate multi-variable functions on the basis of discrete observations, replacing a partial differential equation definition with polynomial elementary data relation descriptions. Artificial neural networks commonly transform the weighted sum of inputs to describe overall similarity relationships of trained and new testing input patterns. Differential polynomial neural networks form a new class of neural networks, which construct and solve an unknown general partial differential equation of a function of interest with selected substitution relative terms using non-linear multi-variable composite polynomials. The layers of the network generate simple and composite relative substitution terms whose convergent series combinations can describe partial dependent derivative changes of the input variables. This regression is based on trained generalized partial derivative data relations, decomposed into a multi-layer polynomial network structure. The sigmoidal function, commonly used as a nonlinear activation of artificial neurons, may transform some polynomial items together with the parameters with the aim to improve the polynomial derivative term series ability to approximate complicated periodic functions, as simple low order polynomials are not able to fully make up for the complete cycles. The similarity analysis facilitates substitutions for differential equations or can form dimensional units from data samples to describe real-world problems. Copyright © 2015 Elsevier Ltd. All rights reserved.

  3. Learning polynomial feedforward neural networks by genetic programming and backpropagation.

    PubMed

    Nikolaev, N Y; Iba, H

    2003-01-01

    This paper presents an approach to learning polynomial feedforward neural networks (PFNNs). The approach suggests, first, finding the polynomial network structure by means of a population-based search technique relying on the genetic programming paradigm, and second, further adjustment of the best discovered network weights by an especially derived backpropagation algorithm for higher order networks with polynomial activation functions. These two stages of the PFNN learning process enable us to identify networks with good training as well as generalization performance. Empirical results show that this approach finds PFNN which outperform considerably some previous constructive polynomial network algorithms on processing benchmark time series.

  4. Quasi-kernel polynomials and convergence results for quasi-minimal residual iterations

    NASA Technical Reports Server (NTRS)

    Freund, Roland W.

    1992-01-01

    Recently, Freund and Nachtigal have proposed a novel polynominal-based iteration, the quasi-minimal residual algorithm (QMR), for solving general nonsingular non-Hermitian linear systems. Motivated by the QMR method, we have introduced the general concept of quasi-kernel polynomials, and we have shown that the QMR algorithm is based on a particular instance of quasi-kernel polynomials. In this paper, we continue our study of quasi-kernel polynomials. In particular, we derive bounds for the norms of quasi-kernel polynomials. These results are then applied to obtain convergence theorems both for the QMR method and for a transpose-free variant of QMR, the TFQMR algorithm.

  5. Chaos, Fractals, and Polynomials.

    ERIC Educational Resources Information Center

    Tylee, J. Louis; Tylee, Thomas B.

    1996-01-01

    Discusses chaos theory; linear algebraic equations and the numerical solution of polynomials, including the use of the Newton-Raphson technique to find polynomial roots; fractals; search region and coordinate systems; convergence; and generating color fractals on a computer. (LRW)

  6. Universal Racah matrices and adjoint knot polynomials: Arborescent knots

    NASA Astrophysics Data System (ADS)

    Mironov, A.; Morozov, A.

    2016-04-01

    By now it is well established that the quantum dimensions of descendants of the adjoint representation can be described in a universal form, independent of a particular family of simple Lie algebras. The Rosso-Jones formula then implies a universal description of the adjoint knot polynomials for torus knots, which in particular unifies the HOMFLY (SUN) and Kauffman (SON) polynomials. For E8 the adjoint representation is also fundamental. We suggest to extend the universality from the dimensions to the Racah matrices and this immediately produces a unified description of the adjoint knot polynomials for all arborescent (double-fat) knots, including twist, 2-bridge and pretzel. Technically we develop together the universality and the "eigenvalue conjecture", which expresses the Racah and mixing matrices through the eigenvalues of the quantum R-matrix, and for dealing with the adjoint polynomials one has to extend it to the previously unknown 6 × 6 case. The adjoint polynomials do not distinguish between mutants and therefore are not very efficient in knot theory, however, universal polynomials in higher representations can probably be better in this respect.

  7. Imaging characteristics of Zernike and annular polynomial aberrations.

    PubMed

    Mahajan, Virendra N; Díaz, José Antonio

    2013-04-01

    The general equations for the point-spread function (PSF) and optical transfer function (OTF) are given for any pupil shape, and they are applied to optical imaging systems with circular and annular pupils. The symmetry properties of the PSF, the real and imaginary parts of the OTF, and the modulation transfer function (MTF) of a system with a circular pupil aberrated by a Zernike circle polynomial aberration are derived. The interferograms and PSFs are illustrated for some typical polynomial aberrations with a sigma value of one wave, and 3D PSFs and MTFs are shown for 0.1 wave. The Strehl ratio is also calculated for polynomial aberrations with a sigma value of 0.1 wave, and shown to be well estimated from the sigma value. The numerical results are compared with the corresponding results in the literature. Because of the same angular dependence of the corresponding annular and circle polynomial aberrations, the symmetry properties of systems with annular pupils aberrated by an annular polynomial aberration are the same as those for a circular pupil aberrated by a corresponding circle polynomial aberration. They are also illustrated with numerical examples.

  8. Applications of polynomial optimization in financial risk investment

    NASA Astrophysics Data System (ADS)

    Zeng, Meilan; Fu, Hongwei

    2017-09-01

    Recently, polynomial optimization has many important applications in optimization, financial economics and eigenvalues of tensor, etc. This paper studies the applications of polynomial optimization in financial risk investment. We consider the standard mean-variance risk measurement model and the mean-variance risk measurement model with transaction costs. We use Lasserre's hierarchy of semidefinite programming (SDP) relaxations to solve the specific cases. The results show that polynomial optimization is effective for some financial optimization problems.

  9. DIFFERENTIAL CROSS SECTION ANALYSIS IN KAON PHOTOPRODUCTION USING ASSOCIATED LEGENDRE POLYNOMIALS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    P. T. P. HUTAURUK, D. G. IRELAND, G. ROSNER

    2009-04-01

    Angular distributions of differential cross sections from the latest CLAS data sets,6 for the reaction γ + p→K+ + Λ have been analyzed using associated Legendre polynomials. This analysis is based upon theoretical calculations in Ref. 1 where all sixteen observables in kaon photoproduction can be classified into four Legendre classes. Each observable can be described by an expansion of associated Legendre polynomial functions. One of the questions to be addressed is how many associated Legendre polynomials are required to describe the data. In this preliminary analysis, we used data models with different numbers of associated Legendre polynomials. We thenmore » compared these models by calculating posterior probabilities of the models. We found that the CLAS data set needs no more than four associated Legendre polynomials to describe the differential cross section data. In addition, we also show the extracted coefficients of the best model.« less

  10. Tutte polynomial in functional magnetic resonance imaging

    NASA Astrophysics Data System (ADS)

    García-Castillón, Marlly V.

    2015-09-01

    Methods of graph theory are applied to the processing of functional magnetic resonance images. Specifically the Tutte polynomial is used to analyze such kind of images. Functional Magnetic Resonance Imaging provide us connectivity networks in the brain which are represented by graphs and the Tutte polynomial will be applied. The problem of computing the Tutte polynomial for a given graph is #P-hard even for planar graphs. For a practical application the maple packages "GraphTheory" and "SpecialGraphs" will be used. We will consider certain diagram which is depicting functional connectivity, specifically between frontal and posterior areas, in autism during an inferential text comprehension task. The Tutte polynomial for the resulting neural networks will be computed and some numerical invariants for such network will be obtained. Our results show that the Tutte polynomial is a powerful tool to analyze and characterize the networks obtained from functional magnetic resonance imaging.

  11. On the coefficients of integrated expansions and integrals of ultraspherical polynomials and their applications for solving differential equations

    NASA Astrophysics Data System (ADS)

    Doha, E. H.

    2002-02-01

    An analytical formula expressing the ultraspherical coefficients of an expansion for an infinitely differentiable function that has been integrated an arbitrary number of times in terms of the coefficients of the original expansion of the function is stated in a more compact form and proved in a simpler way than the formula suggested by Phillips and Karageorghis (27 (1990) 823). A new formula expressing explicitly the integrals of ultraspherical polynomials of any degree that has been integrated an arbitrary number of times of ultraspherical polynomials is given. The tensor product of ultraspherical polynomials is used to approximate a function of more than one variable. Formulae expressing the coefficients of differentiated expansions of double and triple ultraspherical polynomials in terms of the original expansion are stated and proved. Some applications of how to use ultraspherical polynomials for solving ordinary and partial differential equations are described.

  12. Performance Comparison of Orthogonal and Quasi-orthogonal Codes in Quasi-Synchronous Cellular CDMA Communication

    NASA Astrophysics Data System (ADS)

    Jos, Sujit; Kumar, Preetam; Chakrabarti, Saswat

    Orthogonal and quasi-orthogonal codes are integral part of any DS-CDMA based cellular systems. Orthogonal codes are ideal for use in perfectly synchronous scenario like downlink cellular communication. Quasi-orthogonal codes are preferred over orthogonal codes in the uplink communication where perfect synchronization cannot be achieved. In this paper, we attempt to compare orthogonal and quasi-orthogonal codes in presence of timing synchronization error. This will give insight into the synchronization demands in DS-CDMA systems employing the two classes of sequences. The synchronization error considered is smaller than chip duration. Monte-Carlo simulations have been carried out to verify the analytical and numerical results.

  13. Quadratically Convergent Method for Simultaneously Approaching the Roots of Polynomial Solutions of a Class of Differential Equations

    NASA Astrophysics Data System (ADS)

    Recchioni, Maria Cristina

    2001-12-01

    This paper investigates the application of the method introduced by L. Pasquini (1989) for simultaneously approaching the zeros of polynomial solutions to a class of second-order linear homogeneous ordinary differential equations with polynomial coefficients to a particular case in which these polynomial solutions have zeros symmetrically arranged with respect to the origin. The method is based on a family of nonlinear equations which is associated with a given class of differential equations. The roots of the nonlinear equations are related to the roots of the polynomial solutions of differential equations considered. Newton's method is applied to find the roots of these nonlinear equations. In (Pasquini, 1994) the nonsingularity of the roots of these nonlinear equations is studied. In this paper, following the lines in (Pasquini, 1994), the nonsingularity of the roots of these nonlinear equations is studied. More favourable results than the ones in (Pasquini, 1994) are proven in the particular case of polynomial solutions with symmetrical zeros. The method is applied to approximate the roots of Hermite-Sobolev type polynomials and Freud polynomials. A lower bound for the smallest positive root of Hermite-Sobolev type polynomials is given via the nonlinear equation. The quadratic convergence of the method is proven. A comparison with a classical method that uses the Jacobi matrices is carried out. We show that the algorithm derived by the proposed method is sometimes preferable to the classical QR type algorithms for computing the eigenvalues of the Jacobi matrices even if these matrices are real and symmetric.

  14. On a Family of Multivariate Modified Humbert Polynomials

    PubMed Central

    Aktaş, Rabia; Erkuş-Duman, Esra

    2013-01-01

    This paper attempts to present a multivariable extension of generalized Humbert polynomials. The results obtained here include various families of multilinear and multilateral generating functions, miscellaneous properties, and also some special cases for these multivariable polynomials. PMID:23935411

  15. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lue Xing; Sun Kun; Wang Pan

    In the framework of Bell-polynomial manipulations, under investigation hereby are three single-field bilinearizable equations: the (1+1)-dimensional shallow water wave model, Boiti-Leon-Manna-Pempinelli model, and (2+1)-dimensional Sawada-Kotera model. Based on the concept of scale invariance, a direct and unifying Bell-polynomial scheme is employed to achieve the Baecklund transformations and Lax pairs associated with those three soliton equations. Note that the Bell-polynomial expressions and Bell-polynomial-typed Baecklund transformations for those three soliton equations can be, respectively, cast into the bilinear equations and bilinear Baecklund transformations with symbolic computation. Consequently, it is also shown that the Bell-polynomial-typed Baecklund transformations can be linearized into the correspondingmore » Lax pairs.« less

  16. An O(log sup 2 N) parallel algorithm for computing the eigenvalues of a symmetric tridiagonal matrix

    NASA Technical Reports Server (NTRS)

    Swarztrauber, Paul N.

    1989-01-01

    An O(log sup 2 N) parallel algorithm is presented for computing the eigenvalues of a symmetric tridiagonal matrix using a parallel algorithm for computing the zeros of the characteristic polynomial. The method is based on a quadratic recurrence in which the characteristic polynomial is constructed on a binary tree from polynomials whose degree doubles at each level. Intervals that contain exactly one zero are determined by the zeros of polynomials at the previous level which ensures that different processors compute different zeros. The exact behavior of the polynomials at the interval endpoints is used to eliminate the usual problems induced by finite precision arithmetic.

  17. Discrete Tchebycheff orthonormal polynomials and applications

    NASA Technical Reports Server (NTRS)

    Lear, W. M.

    1980-01-01

    Discrete Tchebycheff orthonormal polynomials offer a convenient way to make least squares polynomial fits of uniformly spaced discrete data. Computer programs to do so are simple and fast, and appear to be less affected by computer roundoff error, for the higher order fits, than conventional least squares programs. They are useful for any application of polynomial least squares fits: approximation of mathematical functions, noise analysis of radar data, and real time smoothing of noisy data, to name a few.

  18. Compositions of orthogonal glutamyl-tRNA and aminoacyl-tRNA synthetase pairs and uses thereof

    DOEpatents

    Anderson, J Christopher [San Francisco, CA; Schultz, Peter G [La Jolla, CA; Santoro, Stephen [Cambridge, MA

    2009-05-05

    Compositions and methods of producing components of protein biosynthetic machinery that include glutamyl orthogonal tRNAs, glutamyl orthogonal aminoacyl-tRNA synthetases, and orthogonal pairs of glutamyl tRNAs/synthetases are provided. Methods for identifying these orthogonal pairs are also provided along with methods of producing proteins using these orthogonal pairs.

  19. Polynomial time blackbox identity testers for depth-3 circuits : the field doesn't matter.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Seshadhri, Comandur; Saxena, Nitin

    Let C be a depth-3 circuit with n variables, degree d and top fanin k (called {Sigma}{Pi}{Sigma}(k, d, n) circuits) over base field F. It is a major open problem to design a deterministic polynomial time blackbox algorithm that tests if C is identically zero. Klivans & Spielman (STOC 2001) observed that the problem is open even when k is a constant. This case has been subjected to a serious study over the past few years, starting from the work of Dvir & Shpilka (STOC 2005). We give the first polynomial time blackbox algorithm for this problem. Our algorithm runsmore » in time poly(n)d{sup k}, regardless of the base field. The only field for which polynomial time algorithms were previously known is F = Q (Kayal & Saraf, FOCS 2009, and Saxena & Seshadhri, FOCS 2010). This is the first blackbox algorithm for depth-3 circuits that does not use the rank based approaches of Karnin & Shpilka (CCC 2008). We prove an important tool for the study of depth-3 identities. We design a blackbox polynomial time transformation that reduces the number of variables in a {Sigma}{Pi}{Sigma}(k, d, n) circuit to k variables, but preserves the identity structure. Polynomial identity testing (PIT) is a major open problem in theoretical computer science. The input is an arithmetic circuit that computes a polynomial p(x{sub 1}, x{sub 2},..., x{sub n}) over a base field F. We wish to check if p is the zero polynomial, or in other words, is identically zero. We may be provided with an explicit circuit, or may only have blackbox access. In the latter case, we can only evaluate the polynomial p at various domain points. The main goal is to devise a deterministic blackbox polynomial time algorithm for PIT.« less

  20. An adaptive ANOVA-based PCKF for high-dimensional nonlinear inverse modeling

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Li, Weixuan, E-mail: weixuan.li@usc.edu; Lin, Guang, E-mail: guang.lin@pnnl.gov; Zhang, Dongxiao, E-mail: dxz@pku.edu.cn

    2014-02-01

    The probabilistic collocation-based Kalman filter (PCKF) is a recently developed approach for solving inverse problems. It resembles the ensemble Kalman filter (EnKF) in every aspect—except that it represents and propagates model uncertainty by polynomial chaos expansion (PCE) instead of an ensemble of model realizations. Previous studies have shown PCKF is a more efficient alternative to EnKF for many data assimilation problems. However, the accuracy and efficiency of PCKF depends on an appropriate truncation of the PCE series. Having more polynomial chaos basis functions in the expansion helps to capture uncertainty more accurately but increases computational cost. Selection of basis functionsmore » is particularly important for high-dimensional stochastic problems because the number of polynomial chaos basis functions required to represent model uncertainty grows dramatically as the number of input parameters (random dimensions) increases. In classic PCKF algorithms, the PCE basis functions are pre-set based on users' experience. Also, for sequential data assimilation problems, the basis functions kept in PCE expression remain unchanged in different Kalman filter loops, which could limit the accuracy and computational efficiency of classic PCKF algorithms. To address this issue, we present a new algorithm that adaptively selects PCE basis functions for different problems and automatically adjusts the number of basis functions in different Kalman filter loops. The algorithm is based on adaptive functional ANOVA (analysis of variance) decomposition, which approximates a high-dimensional function with the summation of a set of low-dimensional functions. Thus, instead of expanding the original model into PCE, we implement the PCE expansion on these low-dimensional functions, which is much less costly. We also propose a new adaptive criterion for ANOVA that is more suited for solving inverse problems. The new algorithm was tested with different examples and demonstrated great effectiveness in comparison with non-adaptive PCKF and EnKF algorithms.« less

  1. An Adaptive ANOVA-based PCKF for High-Dimensional Nonlinear Inverse Modeling

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    LI, Weixuan; Lin, Guang; Zhang, Dongxiao

    2014-02-01

    The probabilistic collocation-based Kalman filter (PCKF) is a recently developed approach for solving inverse problems. It resembles the ensemble Kalman filter (EnKF) in every aspect—except that it represents and propagates model uncertainty by polynomial chaos expansion (PCE) instead of an ensemble of model realizations. Previous studies have shown PCKF is a more efficient alternative to EnKF for many data assimilation problems. However, the accuracy and efficiency of PCKF depends on an appropriate truncation of the PCE series. Having more polynomial chaos bases in the expansion helps to capture uncertainty more accurately but increases computational cost. Bases selection is particularly importantmore » for high-dimensional stochastic problems because the number of polynomial chaos bases required to represent model uncertainty grows dramatically as the number of input parameters (random dimensions) increases. In classic PCKF algorithms, the PCE bases are pre-set based on users’ experience. Also, for sequential data assimilation problems, the bases kept in PCE expression remain unchanged in different Kalman filter loops, which could limit the accuracy and computational efficiency of classic PCKF algorithms. To address this issue, we present a new algorithm that adaptively selects PCE bases for different problems and automatically adjusts the number of bases in different Kalman filter loops. The algorithm is based on adaptive functional ANOVA (analysis of variance) decomposition, which approximates a high-dimensional function with the summation of a set of low-dimensional functions. Thus, instead of expanding the original model into PCE, we implement the PCE expansion on these low-dimensional functions, which is much less costly. We also propose a new adaptive criterion for ANOVA that is more suited for solving inverse problems. The new algorithm is tested with different examples and demonstrated great effectiveness in comparison with non-adaptive PCKF and EnKF algorithms.« less

  2. Analysis on the misalignment errors between Hartmann-Shack sensor and 45-element deformable mirror

    NASA Astrophysics Data System (ADS)

    Liu, Lihui; Zhang, Yi; Tao, Jianjun; Cao, Fen; Long, Yin; Tian, Pingchuan; Chen, Shangwu

    2017-02-01

    Aiming at 45-element adaptive optics system, the model of 45-element deformable mirror is truly built by COMSOL Multiphysics, and every actuator's influence function is acquired by finite element method. The process of this system correcting optical aberration is simulated by making use of procedure, and aiming for Strehl ratio of corrected diffraction facula, in the condition of existing different translation and rotation error between Hartmann-Shack sensor and deformable mirror, the system's correction ability for 3-20 Zernike polynomial wave aberration is analyzed. The computed result shows: the system's correction ability for 3-9 Zernike polynomial wave aberration is higher than that of 10-20 Zernike polynomial wave aberration. The correction ability for 3-20 Zernike polynomial wave aberration does not change with misalignment error changing. With rotation error between Hartmann-Shack sensor and deformable mirror increasing, the correction ability for 3-20 Zernike polynomial wave aberration gradually goes down, and with translation error increasing, the correction ability for 3-9 Zernike polynomial wave aberration gradually goes down, but the correction ability for 10-20 Zernike polynomial wave aberration behave up-and-down depression.

  3. Stability analysis of fuzzy parametric uncertain systems.

    PubMed

    Bhiwani, R J; Patre, B M

    2011-10-01

    In this paper, the determination of stability margin, gain and phase margin aspects of fuzzy parametric uncertain systems are dealt. The stability analysis of uncertain linear systems with coefficients described by fuzzy functions is studied. A complexity reduced technique for determining the stability margin for FPUS is proposed. The method suggested is dependent on the order of the characteristic polynomial. In order to find the stability margin of interval polynomials of order less than 5, it is not always necessary to determine and check all four Kharitonov's polynomials. It has been shown that, for determining stability margin of FPUS of order five, four, and three we require only 3, 2, and 1 Kharitonov's polynomials respectively. Only for sixth and higher order polynomials, a complete set of Kharitonov's polynomials are needed to determine the stability margin. Thus for lower order systems, the calculations are reduced to a large extent. This idea has been extended to determine the stability margin of fuzzy interval polynomials. It is also shown that the gain and phase margin of FPUS can be determined analytically without using graphical techniques. Copyright © 2011 ISA. Published by Elsevier Ltd. All rights reserved.

  4. Recurrences and explicit formulae for the expansion and connection coefficients in series of Bessel polynomials

    NASA Astrophysics Data System (ADS)

    Doha, E. H.; Ahmed, H. M.

    2004-08-01

    A formula expressing explicitly the derivatives of Bessel polynomials of any degree and for any order in terms of the Bessel polynomials themselves is proved. Another explicit formula, which expresses the Bessel expansion coefficients of a general-order derivative of an infinitely differentiable function in terms of its original Bessel coefficients, is also given. A formula for the Bessel coefficients of the moments of one single Bessel polynomial of certain degree is proved. A formula for the Bessel coefficients of the moments of a general-order derivative of an infinitely differentiable function in terms of its Bessel coefficients is also obtained. Application of these formulae for solving ordinary differential equations with varying coefficients, by reducing them to recurrence relations in the expansion coefficients of the solution, is explained. An algebraic symbolic approach (using Mathematica) in order to build and solve recursively for the connection coefficients between Bessel-Bessel polynomials is described. An explicit formula for these coefficients between Jacobi and Bessel polynomials is given, of which the ultraspherical polynomial and its consequences are important special cases. Two analytical formulae for the connection coefficients between Laguerre-Bessel and Hermite-Bessel are also developed.

  5. Shoreline erosion rates along barrier islands of the north central gulf of Mexico

    NASA Astrophysics Data System (ADS)

    Shabica, Stephen V.; Dolan, Robert; May, Suzette; May, Paul

    1983-09-01

    Rates of shoreline change and overwash penetration distances were calculated for barrier islands along the Louisiana, Mississippi, and Alabama coasts with the orthogonal grid mapping system (OGMS). Average rates of shoreline change are exceptionally high in Louisiana, being of the order -4.7 to -7.4 m yr-1. Mississippi and Alabama recession rates are lower and range from -2.0 to -3.1 m yr-1 over the period of record. Erosion rates along the shorelines of these islands have remained relatively constant over the period of study with five exceptions in coastal Louisiana and the Chandeleur-Breton Islands Arc, and two exceptions along the Mississippi-Alabama barrier islands where they have accelerated. Mean overwash penetration is greatest along Dauphin Island, Alabama, and Cat Island, Mississippi: 207.6 and 197.9 m, respectively. The Chandeleur-Brenton Islands Arc range from 88.1 m at the central barrier to 180.4 along the flanks. The Mississippi islands range from 105.2 m on Ship Island to 200.5 m along central Horn Island. Mean overwash penetration along the Louisiana barriers is highly variable: 46.3 to 211.4 m.

  6. On the coefficients of differentiated expansions of ultraspherical polynomials

    NASA Technical Reports Server (NTRS)

    Karageorghis, Andreas; Phillips, Timothy N.

    1989-01-01

    A formula expressing the coefficients of an expression of ultraspherical polynomials which has been differentiated an arbitrary number of times in terms of the coefficients of the original expansion is proved. The particular examples of Chebyshev and Legendre polynomials are considered.

  7. On Polynomial Solutions of Linear Differential Equations with Polynomial Coefficients

    ERIC Educational Resources Information Center

    Si, Do Tan

    1977-01-01

    Demonstrates a method for solving linear differential equations with polynomial coefficients based on the fact that the operators z and D + d/dz are known to be Hermitian conjugates with respect to the Bargman and Louck-Galbraith scalar products. (MLH)

  8. Algorithms for computing solvents of unilateral second-order matrix polynomials over prime finite fields using lambda-matrices

    NASA Astrophysics Data System (ADS)

    Burtyka, Filipp

    2018-01-01

    The paper considers algorithms for finding diagonalizable and non-diagonalizable roots (so called solvents) of monic arbitrary unilateral second-order matrix polynomial over prime finite field. These algorithms are based on polynomial matrices (lambda-matrices). This is an extension of existing general methods for computing solvents of matrix polynomials over field of complex numbers. We analyze how techniques for complex numbers can be adapted for finite field and estimate asymptotic complexity of the obtained algorithms.

  9. On the Analytical and Numerical Properties of the Truncated Laplace Transform I

    DTIC Science & Technology

    2014-09-05

    contains generalizations and conclusions. 2 2 Preliminaries 2.1 The Legendre Polynomials In this subsection we summarize some of the properties of the the...standard Legendre Polynomi - als, and restate these properties for shifted and normalized forms of the Legendre Polynomials . We define the Shifted... Legendre Polynomial of degree k = 0, 1, ..., which we will be denoting by P ∗k , by the formula P ∗k (x) = Pk(2x− 1), (5) where Pk is the Legendre

  10. Development of Fast Deterministic Physically Accurate Solvers for Kinetic Collision Integral for Applications of Near Space Flight and Control Devices

    DTIC Science & Technology

    2015-08-31

    following functions were used: where are the Legendre polynomials of degree . It is assumed that the coefficient standing with has the form...enforce relaxation rates of high order moments, higher order polynomial basis functions are used. The use of high order polynomials results in strong...enforced while only polynomials up to second degree were used in the representation of the collision frequency. It can be seen that the new model

  11. Effects of Air Drag and Lunar Third-Body Perturbations on Motion Near a Reference KAM Torus

    DTIC Science & Technology

    2011-03-01

    body m 1) mass of satellite; 2) order of associated Legendre polynomial n 1) mean motion; 2) degree of associated Legendre polynomial n3 mean motion...physical momentum pi ith physical momentum Pmn associated Legendre polynomial of order m and degree n q̇ physical coordinate derivatives vector, [q̇1...are constants specifying the shape of the gravitational field; and Pmn are associated Legendre polynomials . When m = n = 0, the geopotential function

  12. Polynomial compensation, inversion, and approximation of discrete time linear systems

    NASA Technical Reports Server (NTRS)

    Baram, Yoram

    1987-01-01

    The least-squares transformation of a discrete-time multivariable linear system into a desired one by convolving the first with a polynomial system yields optimal polynomial solutions to the problems of system compensation, inversion, and approximation. The polynomial coefficients are obtained from the solution to a so-called normal linear matrix equation, whose coefficients are shown to be the weighting patterns of certain linear systems. These, in turn, can be used in the recursive solution of the normal equation.

  13. Polynomial fuzzy observer designs: a sum-of-squares approach.

    PubMed

    Tanaka, Kazuo; Ohtake, Hiroshi; Seo, Toshiaki; Tanaka, Motoyasu; Wang, Hua O

    2012-10-01

    This paper presents a sum-of-squares (SOS) approach to polynomial fuzzy observer designs for three classes of polynomial fuzzy systems. The proposed SOS-based framework provides a number of innovations and improvements over the existing linear matrix inequality (LMI)-based approaches to Takagi-Sugeno (T-S) fuzzy controller and observer designs. First, we briefly summarize previous results with respect to a polynomial fuzzy system that is a more general representation of the well-known T-S fuzzy system. Next, we propose polynomial fuzzy observers to estimate states in three classes of polynomial fuzzy systems and derive SOS conditions to design polynomial fuzzy controllers and observers. A remarkable feature of the SOS design conditions for the first two classes (Classes I and II) is that they realize the so-called separation principle, i.e., the polynomial fuzzy controller and observer for each class can be separately designed without lack of guaranteeing the stability of the overall control system in addition to converging state-estimation error (via the observer) to zero. Although, for the last class (Class III), the separation principle does not hold, we propose an algorithm to design polynomial fuzzy controller and observer satisfying the stability of the overall control system in addition to converging state-estimation error (via the observer) to zero. All the design conditions in the proposed approach can be represented in terms of SOS and are symbolically and numerically solved via the recently developed SOSTOOLS and a semidefinite-program solver, respectively. To illustrate the validity and applicability of the proposed approach, three design examples are provided. The examples demonstrate the advantages of the SOS-based approaches for the existing LMI approaches to T-S fuzzy observer designs.

  14. Frequency domain system identification methods - Matrix fraction description approach

    NASA Technical Reports Server (NTRS)

    Horta, Luca G.; Juang, Jer-Nan

    1993-01-01

    This paper presents the use of matrix fraction descriptions for least-squares curve fitting of the frequency spectra to compute two matrix polynomials. The matrix polynomials are intermediate step to obtain a linearized representation of the experimental transfer function. Two approaches are presented: first, the matrix polynomials are identified using an estimated transfer function; second, the matrix polynomials are identified directly from the cross/auto spectra of the input and output signals. A set of Markov parameters are computed from the polynomials and subsequently realization theory is used to recover a minimum order state space model. Unevenly spaced frequency response functions may be used. Results from a simple numerical example and an experiment are discussed to highlight some of the important aspect of the algorithm.

  15. A simplified procedure for correcting both errors and erasures of a Reed-Solomon code using the Euclidean algorithm

    NASA Technical Reports Server (NTRS)

    Truong, T. K.; Hsu, I. S.; Eastman, W. L.; Reed, I. S.

    1987-01-01

    It is well known that the Euclidean algorithm or its equivalent, continued fractions, can be used to find the error locator polynomial and the error evaluator polynomial in Berlekamp's key equation needed to decode a Reed-Solomon (RS) code. A simplified procedure is developed and proved to correct erasures as well as errors by replacing the initial condition of the Euclidean algorithm by the erasure locator polynomial and the Forney syndrome polynomial. By this means, the errata locator polynomial and the errata evaluator polynomial can be obtained, simultaneously and simply, by the Euclidean algorithm only. With this improved technique the complexity of time domain RS decoders for correcting both errors and erasures is reduced substantially from previous approaches. As a consequence, decoders for correcting both errors and erasures of RS codes can be made more modular, regular, simple, and naturally suitable for both VLSI and software implementation. An example illustrating this modified decoding procedure is given for a (15, 9) RS code.

  16. Non-stationary component extraction in noisy multicomponent signal using polynomial chirping Fourier transform.

    PubMed

    Lu, Wenlong; Xie, Junwei; Wang, Heming; Sheng, Chuan

    2016-01-01

    Inspired by track-before-detection technology in radar, a novel time-frequency transform, namely polynomial chirping Fourier transform (PCFT), is exploited to extract components from noisy multicomponent signal. The PCFT combines advantages of Fourier transform and polynomial chirplet transform to accumulate component energy along a polynomial chirping curve in the time-frequency plane. The particle swarm optimization algorithm is employed to search optimal polynomial parameters with which the PCFT will achieve a most concentrated energy ridge in the time-frequency plane for the target component. The component can be well separated in the polynomial chirping Fourier domain with a narrow-band filter and then reconstructed by inverse PCFT. Furthermore, an iterative procedure, involving parameter estimation, PCFT, filtering and recovery, is introduced to extract components from a noisy multicomponent signal successively. The Simulations and experiments show that the proposed method has better performance in component extraction from noisy multicomponent signal as well as provides more time-frequency details about the analyzed signal than conventional methods.

  17. Minimum Sobolev norm interpolation of scattered derivative data

    NASA Astrophysics Data System (ADS)

    Chandrasekaran, S.; Gorman, C. H.; Mhaskar, H. N.

    2018-07-01

    We study the problem of reconstructing a function on a manifold satisfying some mild conditions, given data of the values and some derivatives of the function at arbitrary points on the manifold. While the problem of finding a polynomial of two variables with total degree ≤n given the values of the polynomial and some of its derivatives at exactly the same number of points as the dimension of the polynomial space is sometimes impossible, we show that such a problem always has a solution in a very general situation if the degree of the polynomials is sufficiently large. We give estimates on how large the degree should be, and give explicit constructions for such a polynomial even in a far more general case. As the number of sampling points at which the data is available increases, our polynomials converge to the target function on the set where the sampling points are dense. Numerical examples in single and double precision show that this method is stable, efficient, and of high-order.

  18. Structural and thermodynamic analysis of the hetero-association of theophylline with aromatic drug molecules

    NASA Astrophysics Data System (ADS)

    Andrejuk, D. D.; Hernandez Santiago, A. A.; Khomich, V. V.; Voronov, V. K.; Davies, D. B.; Evstigneev, M. P.

    2008-10-01

    The hetero-association of theophylline (THP) with other biologically-active aromatic molecules ( e.g. the anti-cancer drugs daunomycin and novantrone, the antibiotic norfloxacin, the vitamin flavin-mononucleotide and two mutagens ethidium bromide and proflavine) has been studied by NMR in aqueous-salt solution (0.1 M Na-phosphate buffer, p D 7.1). It was found that THP shows an essentially similar hetero-association ability as caffeine (CAF) towards aromatic drugs, except for novantrone (NOV), which has much less affinity to THP than CAF as a result of energetically unfavourable orthogonal orientation of the chromophores of THP and NOV in the hetero-complex.

  19. Numerical results on the transcendence of constants involving pi, e, and Euler's constant

    NASA Technical Reports Server (NTRS)

    Bailey, David H.

    1988-01-01

    The existence of simple polynomial equations (integer relations) for the constants e/pi, e + pi, log pi, gamma (Euler's constant), e exp gamma, gamma/e, gamma/pi, and log gamma is investigated by means of numerical computations. The recursive form of the Ferguson-Fourcade algorithm (Ferguson and Fourcade, 1979; Ferguson, 1986 and 1987) is implemented on the Cray-2 supercomputer at NASA Ames, applying multiprecision techniques similar to those described by Bailey (1988) except that FFTs are used instead of dual-prime-modulus transforms for multiplication. It is shown that none of the constants has an integer relation of degree eight or less with coefficients of Euclidean norm 10 to the 9th or less.

  20. Modeling State-Space Aeroelastic Systems Using a Simple Matrix Polynomial Approach for the Unsteady Aerodynamics

    NASA Technical Reports Server (NTRS)

    Pototzky, Anthony S.

    2008-01-01

    A simple matrix polynomial approach is introduced for approximating unsteady aerodynamics in the s-plane and ultimately, after combining matrix polynomial coefficients with matrices defining the structure, a matrix polynomial of the flutter equations of motion (EOM) is formed. A technique of recasting the matrix-polynomial form of the flutter EOM into a first order form is also presented that can be used to determine the eigenvalues near the origin and everywhere on the complex plane. An aeroservoelastic (ASE) EOM have been generalized to include the gust terms on the right-hand side. The reasons for developing the new matrix polynomial approach are also presented, which are the following: first, the "workhorse" methods such as the NASTRAN flutter analysis lack the capability to consistently find roots near the origin, along the real axis or accurately find roots farther away from the imaginary axis of the complex plane; and, second, the existing s-plane methods, such as the Roger s s-plane approximation method as implemented in ISAC, do not always give suitable fits of some tabular data of the unsteady aerodynamics. A method available in MATLAB is introduced that will accurately fit generalized aerodynamic force (GAF) coefficients in a tabular data form into the coefficients of a matrix polynomial form. The root-locus results from the NASTRAN pknl flutter analysis, the ISAC-Roger's s-plane method and the present matrix polynomial method are presented and compared for accuracy and for the number and locations of roots.

  1. Two charges on a plane in a magnetic field: hidden algebra, (particular) integrability, polynomial eigenfunctions

    NASA Astrophysics Data System (ADS)

    Turbiner, A. V.; Escobar-Ruiz, M. A.

    2013-07-01

    The quantum mechanics of two Coulomb charges on a plane (e1, m1) and (e2, m2) subject to a constant magnetic field B perpendicular to the plane is considered. Four integrals of motion are explicitly indicated. It is shown that for two physically important particular cases, namely that of two particles of equal Larmor frequencies, {e_c} \\propto \\frac{e_1}{m_1}-\\frac{e_2}{m_2}=0 (e.g. two electrons) and one of a neutral system (e.g. the electron-positron pair, hydrogen atom) at rest (the center-of-mass momentum is zero) some outstanding properties occur. They are the most visible in double polar coordinates in CMS (R, ϕ) and relative (ρ, φ) coordinate systems: (i) eigenfunctions are factorizable, all factors except one with the explicit ρ-dependence are found analytically, they have definite relative angular momentum, (ii) dynamics in the ρ-direction is the same for both systems, it corresponds to a funnel-type potential and it has hidden sl(2) algebra, at some discrete values of dimensionless magnetic fields b ⩽ 1, (iii) particular integral(s) occur, (iv) the hidden sl(2) algebra emerges in finite-dimensional representation, thus, the system becomes quasi-exactly-solvable and (v) a finite number of polynomial eigenfunctions in ρ appear. Nine families of eigenfunctions are presented explicitly.

  2. Genetic evaluation of weekly body weight in Japanese quail using random regression models.

    PubMed

    Karami, K; Zerehdaran, S; Tahmoorespur, M; Barzanooni, B; Lotfi, E

    2017-02-01

    1. A total of 11 826 records from 2489 quails, hatched between 2012 and 2013, were used to estimate genetic parameters for BW (body weight) of Japanese quail using random regression models. Weekly BW was measured from hatch until 49 d of age. WOMBAT software (University of New England, Australia) was used for estimating genetic and phenotypic parameters. 2. Nineteen models were evaluated to identify the best orders of Legendre polynomials. A model with Legendre polynomial of order 3 for additive genetic effect, order 3 for permanent environmental effects and order 1 for maternal permanent environmental effects was chosen as the best model. 3. According to the best model, phenotypic and genetic variances were higher at the end of the rearing period. Although direct heritability for BW reduced from 0.18 at hatch to 0.12 at 7 d of age, it gradually increased to 0.42 at 49 d of age. It indicates that BW at older ages is more controlled by genetic components in Japanese quail. 4. Phenotypic and genetic correlations between adjacent periods except hatching weight were more closely correlated than remote periods. The present results suggested that BW at earlier ages, especially at hatch, are different traits compared to BW at older ages. Therefore, BW at earlier ages could not be used as a selection criterion for improving BW at slaughter age.

  3. CS-AMPPred: An Updated SVM Model for Antimicrobial Activity Prediction in Cysteine-Stabilized Peptides

    PubMed Central

    Porto, William F.; Pires, Állan S.; Franco, Octavio L.

    2012-01-01

    The antimicrobial peptides (AMP) have been proposed as an alternative to control resistant pathogens. However, due to multifunctional properties of several AMP classes, until now there has been no way to perform efficient AMP identification, except through in vitro and in vivo tests. Nevertheless, an indication of activity can be provided by prediction methods. In order to contribute to the AMP prediction field, the CS-AMPPred (Cysteine-Stabilized Antimicrobial Peptides Predictor) is presented here, consisting of an updated version of the Support Vector Machine (SVM) model for antimicrobial activity prediction in cysteine-stabilized peptides. The CS-AMPPred is based on five sequence descriptors: indexes of (i) α-helix and (ii) loop formation; and averages of (iii) net charge, (iv) hydrophobicity and (v) flexibility. CS-AMPPred was based on 310 cysteine-stabilized AMPs and 310 sequences extracted from PDB. The polynomial kernel achieves the best accuracy on 5-fold cross validation (85.81%), while the radial and linear kernels achieve 84.19%. Testing in a blind data set, the polynomial and radial kernels achieve an accuracy of 90.00%, while the linear model achieves 89.33%. The three models reach higher accuracies than previously described methods. A standalone version of CS-AMPPred is available for download at and runs on any Linux machine. PMID:23240023

  4. Numerical Polynomial Homotopy Continuation Method and String Vacua

    DOE PAGES

    Mehta, Dhagash

    2011-01-01

    Finding vmore » acua for the four-dimensional effective theories for supergravity which descend from flux compactifications and analyzing them according to their stability is one of the central problems in string phenomenology. Except for some simple toy models, it is, however, difficult to find all the vacua analytically. Recently developed algorithmic methods based on symbolic computer algebra can be of great help in the more realistic models. However, they suffer from serious algorithmic complexities and are limited to small system sizes. In this paper, we review a numerical method called the numerical polynomial homotopy continuation (NPHC) method, first used in the areas of lattice field theories, which by construction finds all of the vacua of a given potential that is known to have only isolated solutions. The NPHC method is known to suffer from no major algorithmic complexities and is embarrassingly parallelizable , and hence its applicability goes way beyond the existing symbolic methods. We first solve a simple toy model as a warm-up example to demonstrate the NPHC method at work. We then show that all the vacua of a more complicated model of a compactified M theory model, which has an S U ( 3 ) structure, can be obtained by using a desktop machine in just about an hour, a feat which was reported to be prohibitively difficult by the existing symbolic methods. Finally, we compare the various technicalities between the two methods.« less

  5. Numerical solutions for Helmholtz equations using Bernoulli polynomials

    NASA Astrophysics Data System (ADS)

    Bicer, Kubra Erdem; Yalcinbas, Salih

    2017-07-01

    This paper reports a new numerical method based on Bernoulli polynomials for the solution of Helmholtz equations. The method uses matrix forms of Bernoulli polynomials and their derivatives by means of collocation points. Aim of this paper is to solve Helmholtz equations using this matrix relations.

  6. Translation of Bernstein Coefficients Under an Affine Mapping of the Unit Interval

    NASA Technical Reports Server (NTRS)

    Alford, John A., II

    2012-01-01

    We derive an expression connecting the coefficients of a polynomial expanded in the Bernstein basis to the coefficients of an equivalent expansion of the polynomial under an affine mapping of the domain. The expression may be useful in the calculation of bounds for multi-variate polynomials.

  7. On polynomial selection for the general number field sieve

    NASA Astrophysics Data System (ADS)

    Kleinjung, Thorsten

    2006-12-01

    The general number field sieve (GNFS) is the asymptotically fastest algorithm for factoring large integers. Its runtime depends on a good choice of a polynomial pair. In this article we present an improvement of the polynomial selection method of Montgomery and Murphy which has been used in recent GNFS records.

  8. Graphical Solution of Polynomial Equations

    ERIC Educational Resources Information Center

    Grishin, Anatole

    2009-01-01

    Graphing utilities, such as the ubiquitous graphing calculator, are often used in finding the approximate real roots of polynomial equations. In this paper the author offers a simple graphing technique that allows one to find all solutions of a polynomial equation (1) of arbitrary degree; (2) with real or complex coefficients; and (3) possessing…

  9. Evaluation of more general integrals involving universal associated Legendre polynomials

    NASA Astrophysics Data System (ADS)

    You, Yuan; Chen, Chang-Yuan; Tahir, Farida; Dong, Shi-Hai

    2017-05-01

    We find that the solution of the polar angular differential equation can be written as the universal associated Legendre polynomials. We present a popular integral formula which includes universal associated Legendre polynomials and we also evaluate some important integrals involving the product of two universal associated Legendre polynomials Pl' m'(x ) , Pk' n'(x ) and x2 a(1-x2 ) -p -1, xb(1±x2 ) -p, and xc(1-x2 ) -p(1±x ) -1, where l'≠k' and m'≠n'. Their selection rules are also mentioned.

  10. Neck curve polynomials in neck rupture model

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kurniadi, Rizal; Perkasa, Yudha S.; Waris, Abdul

    2012-06-06

    The Neck Rupture Model is a model that explains the scission process which has smallest radius in liquid drop at certain position. Old fashion of rupture position is determined randomly so that has been called as Random Neck Rupture Model (RNRM). The neck curve polynomials have been employed in the Neck Rupture Model for calculation the fission yield of neutron induced fission reaction of {sup 280}X{sub 90} with changing of order of polynomials as well as temperature. The neck curve polynomials approximation shows the important effects in shaping of fission yield curve.

  11. More on rotations as spin matrix polynomials

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Curtright, Thomas L.

    2015-09-15

    Any nonsingular function of spin j matrices always reduces to a matrix polynomial of order 2j. The challenge is to find a convenient form for the coefficients of the matrix polynomial. The theory of biorthogonal systems is a useful framework to meet this challenge. Central factorial numbers play a key role in the theoretical development. Explicit polynomial coefficients for rotations expressed either as exponentials or as rational Cayley transforms are considered here. Structural features of the results are discussed and compared, and large j limits of the coefficients are examined.

  12. Robust stability of fractional order polynomials with complicated uncertainty structure

    PubMed Central

    Şenol, Bilal; Pekař, Libor

    2017-01-01

    The main aim of this article is to present a graphical approach to robust stability analysis for families of fractional order (quasi-)polynomials with complicated uncertainty structure. More specifically, the work emphasizes the multilinear, polynomial and general structures of uncertainty and, moreover, the retarded quasi-polynomials with parametric uncertainty are studied. Since the families with these complex uncertainty structures suffer from the lack of analytical tools, their robust stability is investigated by numerical calculation and depiction of the value sets and subsequent application of the zero exclusion condition. PMID:28662173

  13. Application of polynomial su(1, 1) algebra to Pöschl-Teller potentials

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhang, Hong-Biao, E-mail: zhanghb017@nenu.edu.cn; Lu, Lu

    2013-12-15

    Two novel polynomial su(1, 1) algebras for the physical systems with the first and second Pöschl-Teller (PT) potentials are constructed, and their specific representations are presented. Meanwhile, these polynomial su(1, 1) algebras are used as an algebraic technique to solve eigenvalues and eigenfunctions of the Hamiltonians associated with the first and second PT potentials. The algebraic approach explores an appropriate new pair of raising and lowing operators K-circumflex{sub ±} of polynomial su(1, 1) algebra as a pair of shift operators of our Hamiltonians. In addition, two usual su(1, 1) algebras associated with the first and second PT potentials are derivedmore » naturally from the polynomial su(1, 1) algebras built by us.« less

  14. Polynomials to model the growth of young bulls in performance tests.

    PubMed

    Scalez, D C B; Fragomeni, B O; Passafaro, T L; Pereira, I G; Toral, F L B

    2014-03-01

    The use of polynomial functions to describe the average growth trajectory and covariance functions of Nellore and MA (21/32 Charolais+11/32 Nellore) young bulls in performance tests was studied. The average growth trajectories and additive genetic and permanent environmental covariance functions were fit with Legendre (linear through quintic) and quadratic B-spline (with two to four intervals) polynomials. In general, the Legendre and quadratic B-spline models that included more covariance parameters provided a better fit with the data. When comparing models with the same number of parameters, the quadratic B-spline provided a better fit than the Legendre polynomials. The quadratic B-spline with four intervals provided the best fit for the Nellore and MA groups. The fitting of random regression models with different types of polynomials (Legendre polynomials or B-spline) affected neither the genetic parameters estimates nor the ranking of the Nellore young bulls. However, fitting different type of polynomials affected the genetic parameters estimates and the ranking of the MA young bulls. Parsimonious Legendre or quadratic B-spline models could be used for genetic evaluation of body weight of Nellore young bulls in performance tests, whereas these parsimonious models were less efficient for animals of the MA genetic group owing to limited data at the extreme ages.

  15. Generating the patterns of variation with GeoGebra: the case of polynomial approximations

    NASA Astrophysics Data System (ADS)

    Attorps, Iiris; Björk, Kjell; Radic, Mirko

    2016-01-01

    In this paper, we report a teaching experiment regarding the theory of polynomial approximations at the university mathematics teaching in Sweden. The experiment was designed by applying Variation theory and by using the free dynamic mathematics software GeoGebra. The aim of this study was to investigate if the technology-assisted teaching of Taylor polynomials compared with traditional way of work at the university level can support the teaching and learning of mathematical concepts and ideas. An engineering student group (n = 19) was taught Taylor polynomials with the assistance of GeoGebra while a control group (n = 18) was taught in a traditional way. The data were gathered by video recording of the lectures, by doing a post-test concerning Taylor polynomials in both groups and by giving one question regarding Taylor polynomials at the final exam for the course in Real Analysis in one variable. In the analysis of the lectures, we found Variation theory combined with GeoGebra to be a potentially powerful tool for revealing some critical aspects of Taylor Polynomials. Furthermore, the research results indicated that applying Variation theory, when planning the technology-assisted teaching, supported and enriched students' learning opportunities in the study group compared with the control group.

  16. Compositions of orthogonal lysyl-tRNA and aminoacyl-tRNA synthetase pairs and uses thereof

    DOEpatents

    Anderson, J Christopher [San Francisco, CA; Wu, Ning [Brookline, MA; Santoro, Stephen [Cambridge, MA; Schultz, Peter G [La Jolla, CA

    2009-12-29

    Compositions and methods of producing components of protein biosynthetic machinery that include orthogonal lysyl-tRNAs, orthogonal lysyl-aminoacyl-tRNA synthetases, and orthogonal pairs of lysyl-tRNAs/synthetases, which incorporate homoglutamines into proteins are provided in response to a four base codon. Methods for identifying these orthogonal pairs are also provided along with methods of producing proteins with homoglutamines using these orthogonal pairs.

  17. Compositions of orthogonal lysyl-tRNA and aminoacyl-tRNA synthetase pairs and uses thereof

    DOEpatents

    Anderson, J Christopher [San Francisco, CA; Wu, Ning [Brookline, MA; Santoro, Stephen [Cambridge, MA; Schultz, Peter G [La Jolla, CA

    2011-10-04

    Compositions and methods of producing components of protein biosynthetic machinery that include orthogonal lysyl-tRNAs, orthogonal lysyl-aminoacyl-tRNA synthetases, and orthogonal pairs of lysyl-tRNAs/synthetases, which incorporate homoglutamines into proteins are provided in response to a four base codon. Methods for identifying these orthogonal pairs are also provided along with methods of producing proteins with homoglutamines using these orthogonal pairs.

  18. Compositions of orthogonal lysyl-tRNA and aminoacyl-tRNA synthetase pairs and uses thereof

    DOEpatents

    Anderson, J Christopher [San Francisco, CA; Wu, Ning [Brookline, MA; Santoro, Stephen [Cambridge, MA; Schultz, Peter G [La Jolla, CA

    2009-08-18

    Compositions and methods of producing components of protein biosynthetic machinery that include orthogonal lysyl-tRNAs, orthogonal lysyl-aminoacyl-tRNA synthetases, and orthogonal pairs of lysyl-tRNAs/synthetases, which incorporate homoglutamines into proteins are provided in response to a four base codon. Methods for identifying these orthogonal pairs are also provided along with methods of producing proteins with homoglutamines using these orthogonal pairs.

  19. A general U-block model-based design procedure for nonlinear polynomial control systems

    NASA Astrophysics Data System (ADS)

    Zhu, Q. M.; Zhao, D. Y.; Zhang, Jianhua

    2016-10-01

    The proposition of U-model concept (in terms of 'providing concise and applicable solutions for complex problems') and a corresponding basic U-control design algorithm was originated in the first author's PhD thesis. The term of U-model appeared (not rigorously defined) for the first time in the first author's other journal paper, which established a framework for using linear polynomial control system design approaches to design nonlinear polynomial control systems (in brief, linear polynomial approaches → nonlinear polynomial plants). This paper represents the next milestone work - using linear state-space approaches to design nonlinear polynomial control systems (in brief, linear state-space approaches → nonlinear polynomial plants). The overall aim of the study is to establish a framework, defined as the U-block model, which provides a generic prototype for using linear state-space-based approaches to design the control systems with smooth nonlinear plants/processes described by polynomial models. For analysing the feasibility and effectiveness, sliding mode control design approach is selected as an exemplary case study. Numerical simulation studies provide a user-friendly step-by-step procedure for the readers/users with interest in their ad hoc applications. In formality, this is the first paper to present the U-model-oriented control system design in a formal way and to study the associated properties and theorems. The previous publications, in the main, have been algorithm-based studies and simulation demonstrations. In some sense, this paper can be treated as a landmark for the U-model-based research from intuitive/heuristic stage to rigour/formal/comprehensive studies.

  20. Two-dimensional orthonormal trend surfaces for prospecting

    NASA Astrophysics Data System (ADS)

    Sarma, D. D.; Selvaraj, J. B.

    Orthonormal polynomials have distinct advantages over conventional polynomials: the equations for evaluating trend coefficients are not ill-conditioned and the convergence power of this method is greater compared to the least-squares approximation and therefore the approach by orthonormal functions provides a powerful alternative to the least-squares method. In this paper, orthonormal polynomials in two dimensions are obtained using the Gram-Schmidt method for a polynomial series of the type: Z = 1 + x + y + x2 + xy + y2 + … + yn, where x and y are the locational coordinates and Z is the value of the variable under consideration. Trend-surface analysis, which has wide applications in prospecting, has been carried out using the orthonormal polynomial approach for two sample sets of data from India concerned with gold accumulation from the Kolar Gold Field, and gravity data. A comparison of the orthonormal polynomial trend surfaces with those obtained by the classical least-squares method has been made for the two data sets. In both the situations, the orthonormal polynomial surfaces gave an improved fit to the data. A flowchart and a FORTRAN-IV computer program for deriving orthonormal polynomials of any order and for using them to fit trend surfaces is included. The program has provision for logarithmic transformation of the Z variable. If log-transformation is performed the predicted Z values are reconverted to the original units and the trend-surface map generated for use. The illustration of gold assay data related to the Champion lode system of Kolar Gold Fields, for which a 9th-degree orthonormal trend surface was fit, could be used for further prospecting the area.

  1. Animating Nested Taylor Polynomials to Approximate a Function

    ERIC Educational Resources Information Center

    Mazzone, Eric F.; Piper, Bruce R.

    2010-01-01

    The way that Taylor polynomials approximate functions can be demonstrated by moving the center point while keeping the degree fixed. These animations are particularly nice when the Taylor polynomials do not intersect and form a nested family. We prove a result that shows when this nesting occurs. The animations can be shown in class or…

  2. Polynomial Conjoint Analysis of Similarities: A Model for Constructing Polynomial Conjoint Measurement Algorithms.

    ERIC Educational Resources Information Center

    Young, Forrest W.

    A model permitting construction of algorithms for the polynomial conjoint analysis of similarities is presented. This model, which is based on concepts used in nonmetric scaling, permits one to obtain the best approximate solution. The concepts used to construct nonmetric scaling algorithms are reviewed. Finally, examples of algorithmic models for…

  3. Dual exponential polynomials and linear differential equations

    NASA Astrophysics Data System (ADS)

    Wen, Zhi-Tao; Gundersen, Gary G.; Heittokangas, Janne

    2018-01-01

    We study linear differential equations with exponential polynomial coefficients, where exactly one coefficient is of order greater than all the others. The main result shows that a nontrivial exponential polynomial solution of such an equation has a certain dual relationship with the maximum order coefficient. Several examples illustrate our results and exhibit possibilities that can occur.

  4. Polynomial Graphs and Symmetry

    ERIC Educational Resources Information Center

    Goehle, Geoff; Kobayashi, Mitsuo

    2013-01-01

    Most quadratic functions are not even, but every parabola has symmetry with respect to some vertical line. Similarly, every cubic has rotational symmetry with respect to some point, though most cubics are not odd. We show that every polynomial has at most one point of symmetry and give conditions under which the polynomial has rotational or…

  5. Why the Faulhaber Polynomials Are Sums of Even or Odd Powers of (n + 1/2)

    ERIC Educational Resources Information Center

    Hersh, Reuben

    2012-01-01

    By extending Faulhaber's polynomial to negative values of n, the sum of the p'th powers of the first n integers is seen to be an even or odd polynomial in (n + 1/2) and therefore expressible in terms of the sum of the first n integers.

  6. Self-Replicating Quadratics

    ERIC Educational Resources Information Center

    Withers, Christopher S.; Nadarajah, Saralees

    2012-01-01

    We show that there are exactly four quadratic polynomials, Q(x) = x [superscript 2] + ax + b, such that (x[superscript 2] + ax + b) (x[superscript 2] - ax + b) = (x[superscript 4] + ax[superscript 2] + b). For n = 1, 2, ..., these quadratic polynomials can be written as the product of N = 2[superscript n] quadratic polynomials in x[superscript…

  7. Polynomial expansions of single-mode motions around equilibrium points in the circular restricted three-body problem

    NASA Astrophysics Data System (ADS)

    Lei, Hanlun; Xu, Bo; Circi, Christian

    2018-05-01

    In this work, the single-mode motions around the collinear and triangular libration points in the circular restricted three-body problem are studied. To describe these motions, we adopt an invariant manifold approach, which states that a suitable pair of independent variables are taken as modal coordinates and the remaining state variables are expressed as polynomial series of them. Based on the invariant manifold approach, the general procedure on constructing polynomial expansions up to a certain order is outlined. Taking the Earth-Moon system as the example dynamical model, we construct the polynomial expansions up to the tenth order for the single-mode motions around collinear libration points, and up to order eight and six for the planar and vertical-periodic motions around triangular libration point, respectively. The application of the polynomial expansions constructed lies in that they can be used to determine the initial states for the single-mode motions around equilibrium points. To check the validity, the accuracy of initial states determined by the polynomial expansions is evaluated.

  8. Orbifold E-functions of dual invertible polynomials

    NASA Astrophysics Data System (ADS)

    Ebeling, Wolfgang; Gusein-Zade, Sabir M.; Takahashi, Atsushi

    2016-08-01

    An invertible polynomial is a weighted homogeneous polynomial with the number of monomials coinciding with the number of variables and such that the weights of the variables and the quasi-degree are well defined. In the framework of the search for mirror symmetric orbifold Landau-Ginzburg models, P. Berglund and M. Henningson considered a pair (f , G) consisting of an invertible polynomial f and an abelian group G of its symmetries together with a dual pair (f ˜ , G ˜) . We consider the so-called orbifold E-function of such a pair (f , G) which is a generating function for the exponents of the monodromy action on an orbifold version of the mixed Hodge structure on the Milnor fibre of f. We prove that the orbifold E-functions of Berglund-Henningson dual pairs coincide up to a sign depending on the number of variables and a simple change of variables. The proof is based on a relation between monomials (say, elements of a monomial basis of the Milnor algebra of an invertible polynomial) and elements of the whole symmetry group of the dual polynomial.

  9. Anderson metal-insulator transitions with classical magnetic impurities

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jung, Daniel; Kettemann, Stefan

    We study the effects of classical magnetic impurities on the Anderson metal-insulator transition (AMIT) numerically. In particular we find that while a finite concentration of Ising impurities lowers the critical value of the site-diagonal disorder amplitude W{sub c}, in the presence of Heisenberg impurities, W{sub c} is first increased with increasing exchange coupling strength J due to time-reversal symmetry breaking. The resulting scaling with J is compared to analytical predictions by Wegner [1]. The results are obtained numerically, based on a finite-size scaling procedure for the typical density of states [2], which is the geometric average of the local densitymore » of states. The latter can efficiently be calculated using the kernel polynomial method [3]. Although still suffering from methodical shortcomings, our method proves to deliver results close to established results for the orthogonal symmetry class [4]. We extend previous approaches [5] by combining the KPM with a finite-size scaling analysis. We also discuss the relevance of our findings for systems like phosphor-doped silicon (Si:P), which are known to exhibit a quantum phase transition from metal to insulator driven by the interplay of both interaction and disorder, accompanied by the presence of a finite concentration of magnetic moments [6].« less

  10. Analytic properties for the honeycomb lattice Green function at the origin

    NASA Astrophysics Data System (ADS)

    Joyce, G. S.

    2018-05-01

    The analytic properties of the honeycomb lattice Green function are investigated, where is a complex variable which lies in a plane. This double integral defines a single-valued analytic function provided that a cut is made along the real axis from w  =  ‑3 to . In order to analyse the behaviour of along the edges of the cut it is convenient to define the limit function where . It is shown that and can be evaluated exactly for all in terms of various hypergeometric functions, where the argument function is always real-valued and rational. The second-order linear Fuchsian differential equation satisfied by is also used to derive series expansions for and which are valid in the neighbourhood of the regular singular points and . Integral representations are established for and , where with . In particular, it is proved that where J 0(z) and Y 0(z) denote Bessel functions of the first and second kind, respectively. The results derived in the paper are utilized to evaluate the associated logarithmic integral where w lies in the cut plane. A new set of orthogonal polynomials which are connected with the honeycomb lattice Green function are also briefly discussed. Finally, a link between and the theory of Pearson random walks in a plane is established.

  11. Local polynomial estimation of heteroscedasticity in a multivariate linear regression model and its applications in economics.

    PubMed

    Su, Liyun; Zhao, Yanyong; Yan, Tianshun; Li, Fenglan

    2012-01-01

    Multivariate local polynomial fitting is applied to the multivariate linear heteroscedastic regression model. Firstly, the local polynomial fitting is applied to estimate heteroscedastic function, then the coefficients of regression model are obtained by using generalized least squares method. One noteworthy feature of our approach is that we avoid the testing for heteroscedasticity by improving the traditional two-stage method. Due to non-parametric technique of local polynomial estimation, it is unnecessary to know the form of heteroscedastic function. Therefore, we can improve the estimation precision, when the heteroscedastic function is unknown. Furthermore, we verify that the regression coefficients is asymptotic normal based on numerical simulations and normal Q-Q plots of residuals. Finally, the simulation results and the local polynomial estimation of real data indicate that our approach is surely effective in finite-sample situations.

  12. Symmetric polynomials in information theory: Entropy and subentropy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jozsa, Richard; Mitchison, Graeme

    2015-06-15

    Entropy and other fundamental quantities of information theory are customarily expressed and manipulated as functions of probabilities. Here we study the entropy H and subentropy Q as functions of the elementary symmetric polynomials in the probabilities and reveal a series of remarkable properties. Derivatives of all orders are shown to satisfy a complete monotonicity property. H and Q themselves become multivariate Bernstein functions and we derive the density functions of their Levy-Khintchine representations. We also show that H and Q are Pick functions in each symmetric polynomial variable separately. Furthermore, we see that H and the intrinsically quantum informational quantitymore » Q become surprisingly closely related in functional form, suggesting a special significance for the symmetric polynomials in quantum information theory. Using the symmetric polynomials, we also derive a series of further properties of H and Q.« less

  13. Recursive approach to the moment-based phase unwrapping method.

    PubMed

    Langley, Jason A; Brice, Robert G; Zhao, Qun

    2010-06-01

    The moment-based phase unwrapping algorithm approximates the phase map as a product of Gegenbauer polynomials, but the weight function for the Gegenbauer polynomials generates artificial singularities along the edge of the phase map. A method is presented to remove the singularities inherent to the moment-based phase unwrapping algorithm by approximating the phase map as a product of two one-dimensional Legendre polynomials and applying a recursive property of derivatives of Legendre polynomials. The proposed phase unwrapping algorithm is tested on simulated and experimental data sets. The results are then compared to those of PRELUDE 2D, a widely used phase unwrapping algorithm, and a Chebyshev-polynomial-based phase unwrapping algorithm. It was found that the proposed phase unwrapping algorithm provides results that are comparable to those obtained by using PRELUDE 2D and the Chebyshev phase unwrapping algorithm.

  14. A new sampling scheme for developing metamodels with the zeros of Chebyshev polynomials

    NASA Astrophysics Data System (ADS)

    Wu, Jinglai; Luo, Zhen; Zhang, Nong; Zhang, Yunqing

    2015-09-01

    The accuracy of metamodelling is determined by both the sampling and approximation. This article proposes a new sampling method based on the zeros of Chebyshev polynomials to capture the sampling information effectively. First, the zeros of one-dimensional Chebyshev polynomials are applied to construct Chebyshev tensor product (CTP) sampling, and the CTP is then used to construct high-order multi-dimensional metamodels using the 'hypercube' polynomials. Secondly, the CTP sampling is further enhanced to develop Chebyshev collocation method (CCM) sampling, to construct the 'simplex' polynomials. The samples of CCM are randomly and directly chosen from the CTP samples. Two widely studied sampling methods, namely the Smolyak sparse grid and Hammersley, are used to demonstrate the effectiveness of the proposed sampling method. Several numerical examples are utilized to validate the approximation accuracy of the proposed metamodel under different dimensions.

  15. A solver for General Unilateral Polynomial Matrix Equation with Second-Order Matrices Over Prime Finite Fields

    NASA Astrophysics Data System (ADS)

    Burtyka, Filipp

    2018-03-01

    The paper firstly considers the problem of finding solvents for arbitrary unilateral polynomial matrix equations with second-order matrices over prime finite fields from the practical point of view: we implement the solver for this problem. The solver’s algorithm has two step: the first is finding solvents, having Jordan Normal Form (JNF), the second is finding solvents among the rest matrices. The first step reduces to the finding roots of usual polynomials over finite fields, the second is essentially exhaustive search. The first step’s algorithms essentially use the polynomial matrices theory. We estimate the practical duration of computations using our software implementation (for example that one can’t construct unilateral matrix polynomial over finite field, having any predefined number of solvents) and answer some theoretically-valued questions.

  16. Polynomial reduction and evaluation of tree- and loop-level CHY amplitudes

    DOE PAGES

    Zlotnikov, Michael

    2016-08-24

    We develop a polynomial reduction procedure that transforms any gauge fixed CHY amplitude integrand for n scattering particles into a σ-moduli multivariate polynomial of what we call the standard form. We show that a standard form polynomial must have a specific ladder type monomial structure, which has finite size at any n, with highest multivariate degree given by (n – 3)(n – 4)/2. This set of monomials spans a complete basis for polynomials with rational coefficients in kinematic data on the support of scattering equations. Subsequently, at tree and one-loop level, we employ the global residue theorem to derive amore » prescription that evaluates any CHY amplitude by means of collecting simple residues at infinity only. Furthermore, the prescription is then applied explicitly to some tree and one-loop amplitude examples.« less

  17. Methods and compositions for the production of orthogonal tRNA-aminoacyl tRNA synthetase pairs

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Schultz, Peter G.; Wang, Lei; Anderson, John Christopher

    2015-10-20

    This invention provides compositions and methods for generating components of protein biosynthetic machinery including orthogonal tRNAs, orthogonal aminoacyl-tRNA synthetases, and orthogonal pairs of tRNAs/synthetases. Methods for identifying orthogonal pairs are also provided. These components can be used to incorporate unnatural amino acids into proteins in vivo.

  18. Methods and composition for the production of orthogonal tRNA-aminoacyltRNA synthetase pairs

    DOEpatents

    Schultz, Peter G.; Wang, Lei; Anderson, John Christopher; Chin, Jason; Liu, David R.; Magliery, Thomas J.; Meggers, Eric L.; Mehl, Ryan Aaron; Pastrnak, Miro; Santoro, Stephen William; Zhang, Zhiwen

    2010-05-11

    This invention provides compositions and methods for generating components of protein biosynthetic machinery including orthogonal tRNAs, orthogonal aminoacyl-tRNA synthetases, and orthogonal pairs of tRNAs/synthetases. Methods for identifying orthogonal pairs are also provided. These components can be used to incorporate unnatural amino acids into proteins in vivo.

  19. Methods and composition for the production of orthogonal tRNA-aminoacyltRNA synthetase pairs

    DOEpatents

    Schultz, Peter G [La Jolla, CA; Wang, Lei [San Diego, CA; Anderson, John Christopher [San Diego, CA; Chin, Jason [Cambridge, GB; Liu, David R [Lexington, MA; Magliery, Thomas J [North Haven, CT; Meggers, Eric L [Philadelphia, PA; Mehl, Ryan Aaron [Lancaster, PA; Pastrnak, Miro [San Diego, CA; Santoro, Steven William [Cambridge, MA; Zhang, Zhiwen [San Diego, CA

    2012-05-22

    This invention provides compositions and methods for generating components of protein biosynthetic machinery including orthogonal tRNAs, orthogonal aminoacyl-tRNA synthetases, and orthogonal pairs of tRNAs/synthetases. Methods for identifying orthogonal pairs are also provided. These components can be used to incorporate unnatural amino acids into proteins in vivo.

  20. Methods and compositions for the production of orthogonal tRNA-aminoacyl tRNA synthetase pairs

    DOEpatents

    Schultz, Peter; Wang, Lei; Anderson, John Christopher; Chin, Jason; Liu, David R.; Magliery, Thomas J.; Meggers, Eric L.; Mehl, Ryan Aaron; Pastrnak, Miro; Santoro, Stephen William; Zhang, Zhiwen

    2006-08-01

    This invention provides compositions and methods for generating components of protein biosynthetic machinery including orthogonal tRNAs, orthogonal aminoacyl-tRNA synthetases, and orthogonal pairs of tRNAs/synthetases. Methods for identifying orthogonal pairs are also provided. These components can be used to incorporate unnatural amino acids into proteins in vivo.

  1. Methods and composition for the production of orthogonal tRNA-aminoacyl tRNA synthetase pairs

    DOEpatents

    Schultz, Peter G [La Jolla, CA; Wang, Lei [San Diego, CA; Anderson, John Christopher [San Diego, CA; Chin, Jason W [San Diego, CA; Liu, David R [Lexington, MA; Magliery, Thomas J [North Haven, CT; Meggers, Eric L [Philadelphia, PA; Mehl, Ryan Aaron [San Diego, CA; Pastrnak, Miro [San Diego, CA; Santoro, Stephen William [San Diego, CA; Zhang, Zhiwen [San Diego, CA

    2012-05-08

    This invention provides compositions and methods for generating components of protein biosynthetic machinery including orthogonal tRNAs, orthogonal aminoacyl-tRNA synthetases, and orthogonal pairs of tRNAs/synthetases. Methods for identifying orthogonal pairs are also provided. These components can be used to incorporate unnatural amino acids into proteins in vivo.

  2. Methods and compositions for the production of orthogonal tRNA-aminoacyl-tRNA synthetase pairs

    DOEpatents

    Schultz, Peter G [La Jolla, CA; Wang, Lei [San Diego, CA; Anderson, John Christopher [San Diego, CA; Chin, Jason W [San Diego, CA; Liu, David R [Lexington, MA; Magliery, Thomas J [North Haven, CT; Meggers, Eric L [Philadelphia, PA; Mehl, Ryan Aaron [San Diego, CA; Pastrnak, Miro [San Diego, CA; Santoro, Stephen William [San Diego, CA; Zhang, Zhiwen [San Diego, CA

    2011-09-06

    This invention provides compositions and methods for generating components of protein biosynthetic machinery including orthogonal tRNAs, orthogonal aminoacyl-tRNA synthetases, and orthogonal pairs of tRNAs/synthetases. Methods for identifying orthogonal pairs are also provided. These components can be used to incorporate unnatural amino acids into proteins in vivo.

  3. Methods and composition for the production of orthogonal tRNA-aminoacyltRNA synthetase pairs

    DOEpatents

    Schultz, Peter G [La Jolla, CA; Wang, Lei [San Diego, CA; Anderson, John Christopher [San Diego, CA; Chin, Jason [Cambridge, GB; Liu, David R [Lexington, MA; Magliery, Thomas J [North Haven, CT; Meggers, Eric L [Philadelphia, PA; Mehl, Ryan Aaron [Lancaster, PA; Pastrnak, Miro [San Diego, CA; Santoro, Steven William [Cambridge, MA; Zhang, Zhiwen [San Diego, CA

    2008-04-08

    This invention provides compositions and methods for generating components of protein biosynthetic machinery including orthogonal tRNAs, orthogonal aminoacyl-tRNA synthetases, and orthogonal pairs of tRNAs/synthetases. Methods for identifying orthogonal pairs are also provided. These components can be used to incorporate unnatural amino acids into proteins in vivo.

  4. Gabor-based kernel PCA with fractional power polynomial models for face recognition.

    PubMed

    Liu, Chengjun

    2004-05-01

    This paper presents a novel Gabor-based kernel Principal Component Analysis (PCA) method by integrating the Gabor wavelet representation of face images and the kernel PCA method for face recognition. Gabor wavelets first derive desirable facial features characterized by spatial frequency, spatial locality, and orientation selectivity to cope with the variations due to illumination and facial expression changes. The kernel PCA method is then extended to include fractional power polynomial models for enhanced face recognition performance. A fractional power polynomial, however, does not necessarily define a kernel function, as it might not define a positive semidefinite Gram matrix. Note that the sigmoid kernels, one of the three classes of widely used kernel functions (polynomial kernels, Gaussian kernels, and sigmoid kernels), do not actually define a positive semidefinite Gram matrix either. Nevertheless, the sigmoid kernels have been successfully used in practice, such as in building support vector machines. In order to derive real kernel PCA features, we apply only those kernel PCA eigenvectors that are associated with positive eigenvalues. The feasibility of the Gabor-based kernel PCA method with fractional power polynomial models has been successfully tested on both frontal and pose-angled face recognition, using two data sets from the FERET database and the CMU PIE database, respectively. The FERET data set contains 600 frontal face images of 200 subjects, while the PIE data set consists of 680 images across five poses (left and right profiles, left and right half profiles, and frontal view) with two different facial expressions (neutral and smiling) of 68 subjects. The effectiveness of the Gabor-based kernel PCA method with fractional power polynomial models is shown in terms of both absolute performance indices and comparative performance against the PCA method, the kernel PCA method with polynomial kernels, the kernel PCA method with fractional power polynomial models, the Gabor wavelet-based PCA method, and the Gabor wavelet-based kernel PCA method with polynomial kernels.

  5. A polynomial based model for cell fate prediction in human diseases.

    PubMed

    Ma, Lichun; Zheng, Jie

    2017-12-21

    Cell fate regulation directly affects tissue homeostasis and human health. Research on cell fate decision sheds light on key regulators, facilitates understanding the mechanisms, and suggests novel strategies to treat human diseases that are related to abnormal cell development. In this study, we proposed a polynomial based model to predict cell fate. This model was derived from Taylor series. As a case study, gene expression data of pancreatic cells were adopted to test and verify the model. As numerous features (genes) are available, we employed two kinds of feature selection methods, i.e. correlation based and apoptosis pathway based. Then polynomials of different degrees were used to refine the cell fate prediction function. 10-fold cross-validation was carried out to evaluate the performance of our model. In addition, we analyzed the stability of the resultant cell fate prediction model by evaluating the ranges of the parameters, as well as assessing the variances of the predicted values at randomly selected points. Results show that, within both the two considered gene selection methods, the prediction accuracies of polynomials of different degrees show little differences. Interestingly, the linear polynomial (degree 1 polynomial) is more stable than others. When comparing the linear polynomials based on the two gene selection methods, it shows that although the accuracy of the linear polynomial that uses correlation analysis outcomes is a little higher (achieves 86.62%), the one within genes of the apoptosis pathway is much more stable. Considering both the prediction accuracy and the stability of polynomial models of different degrees, the linear model is a preferred choice for cell fate prediction with gene expression data of pancreatic cells. The presented cell fate prediction model can be extended to other cells, which may be important for basic research as well as clinical study of cell development related diseases.

  6. FIT: Computer Program that Interactively Determines Polynomial Equations for Data which are a Function of Two Independent Variables

    NASA Technical Reports Server (NTRS)

    Arbuckle, P. D.; Sliwa, S. M.; Roy, M. L.; Tiffany, S. H.

    1985-01-01

    A computer program for interactively developing least-squares polynomial equations to fit user-supplied data is described. The program is characterized by the ability to compute the polynomial equations of a surface fit through data that are a function of two independent variables. The program utilizes the Langley Research Center graphics packages to display polynomial equation curves and data points, facilitating a qualitative evaluation of the effectiveness of the fit. An explanation of the fundamental principles and features of the program, as well as sample input and corresponding output, are included.

  7. First Instances of Generalized Expo-Rational Finite Elements on Triangulations

    NASA Astrophysics Data System (ADS)

    Dechevsky, Lubomir T.; Zanaty, Peter; Laksa˚, Arne; Bang, Børre

    2011-12-01

    In this communication we consider a construction of simplicial finite elements on triangulated two-dimensional polygonal domains. This construction is, in some sense, dual to the construction of generalized expo-rational B-splines (GERBS). The main result is in the obtaining of new polynomial simplicial patches of the first several lowest possible total polynomial degrees which exhibit Hermite interpolatory properties. The derivation of these results is based on the theory of piecewise polynomial GERBS called Euler Beta-function B-splines. We also provide 3-dimensional visualization of the graphs of the new polynomial simplicial patches and their control polygons.

  8. The Translated Dowling Polynomials and Numbers.

    PubMed

    Mangontarum, Mahid M; Macodi-Ringia, Amila P; Abdulcarim, Normalah S

    2014-01-01

    More properties for the translated Whitney numbers of the second kind such as horizontal generating function, explicit formula, and exponential generating function are proposed. Using the translated Whitney numbers of the second kind, we will define the translated Dowling polynomials and numbers. Basic properties such as exponential generating functions and explicit formula for the translated Dowling polynomials and numbers are obtained. Convexity, integral representation, and other interesting identities are also investigated and presented. We show that the properties obtained are generalizations of some of the known results involving the classical Bell polynomials and numbers. Lastly, we established the Hankel transform of the translated Dowling numbers.

  9. Bi-orthogonal Symbol Mapping and Detection in Optical CDMA Communication System

    NASA Astrophysics Data System (ADS)

    Liu, Maw-Yang

    2017-12-01

    In this paper, the bi-orthogonal symbol mapping and detection scheme is investigated in time-spreading wavelength-hopping optical CDMA communication system. The carrier-hopping prime code is exploited as signature sequence, whose put-of-phase autocorrelation is zero. Based on the orthogonality of carrier-hopping prime code, the equal weight orthogonal signaling scheme can be constructed, and the proposed scheme using bi-orthogonal symbol mapping and detection can be developed. The transmitted binary data bits are mapped into corresponding bi-orthogonal symbols, where the orthogonal matrix code and its complement are utilized. In the receiver, the received bi-orthogonal data symbol is fed into the maximum likelihood decoder for detection. Under such symbol mapping and detection, the proposed scheme can greatly enlarge the Euclidean distance; hence, the system performance can be drastically improved.

  10. Accurate Estimation of Solvation Free Energy Using Polynomial Fitting Techniques

    PubMed Central

    Shyu, Conrad; Ytreberg, F. Marty

    2010-01-01

    This report details an approach to improve the accuracy of free energy difference estimates using thermodynamic integration data (slope of the free energy with respect to the switching variable λ) and its application to calculating solvation free energy. The central idea is to utilize polynomial fitting schemes to approximate the thermodynamic integration data to improve the accuracy of the free energy difference estimates. Previously, we introduced the use of polynomial regression technique to fit thermodynamic integration data (Shyu and Ytreberg, J Comput Chem 30: 2297–2304, 2009). In this report we introduce polynomial and spline interpolation techniques. Two systems with analytically solvable relative free energies are used to test the accuracy of the interpolation approach. We also use both interpolation and regression methods to determine a small molecule solvation free energy. Our simulations show that, using such polynomial techniques and non-equidistant λ values, the solvation free energy can be estimated with high accuracy without using soft-core scaling and separate simulations for Lennard-Jones and partial charges. The results from our study suggest these polynomial techniques, especially with use of non-equidistant λ values, improve the accuracy for ΔF estimates without demanding additional simulations. We also provide general guidelines for use of polynomial fitting to estimate free energy. To allow researchers to immediately utilize these methods, free software and documentation is provided via http://www.phys.uidaho.edu/ytreberg/software. PMID:20623657

  11. Site-specific incorporation of redox active amino acids into proteins

    DOEpatents

    Alfonta, Lital [San Diego, CA; Schultz, Peter G [La Jolla, CA; Zhang, Zhiwen [Austin, TX

    2011-08-30

    Compositions and methods of producing components of protein biosynthetic machinery that include orthogonal tRNAs, orthogonal aminoacyl-tRNA synthetases, and orthogonal pairs of tRNAs/synthetases, which incorporate redox active amino acids into proteins are provided. Methods for identifying these orthogonal pairs are also provided along with methods of producing proteins with redox active amino acids using these orthogonal pairs.

  12. Site-specific incorporation of redox active amino acids into proteins

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Alfonta, Lital; Schultz, Peter G.; Zhang, Zhiwen

    Compositions and methods of producing components of protein biosynthetic machinery that include orthogonal tRNAs, orthogonal aminoacyl-tRNA synthetases, and orthogonal pairs of tRNAs/synthetases, which incorporate redox active amino acids into proteins are provided. Methods for identifying these orthogonal pairs are also provided along with methods of producing proteins with redox active amino acids using these orthogonal pairs.

  13. Site specific incorporation of keto amino acids into proteins

    DOEpatents

    Schultz, Peter G [La Jolla, CA; Wang, Lei [San Diego, CA

    2011-03-22

    Compositions and methods of producing components of protein biosynthetic machinery that include orthogonal tRNAs, orthogonal aminoacyl-tRNA synthetases, and orthogonal pairs of tRNAs/synthetases, which incorporate keto amino acids into proteins are provided. Methods for identifying these orthogonal pairs are also provided along with methods of producing proteins with keto amino acids using these orthogonal pairs.

  14. Site-specific incorporation of redox active amino acids into proteins

    DOEpatents

    Alfonta, Lital [San Diego, CA; Schultz, Peter G [La Jolla, CA; Zhang, Zhiwen [San Diego, CA

    2012-02-14

    Compositions and methods of producing components of protein biosynthetic machinery that include orthogonal tRNAs, orthogonal aminoacyl-tRNA synthetases, and orthogonal pairs of tRNAs/synthetases, which incorporate redox active amino acids into proteins are provided. Methods for identifying these orthogonal pairs are also provided along with methods of producing proteins with redox active amino acids using these orthogonal pairs.

  15. Site specific incorporation of keto amino acids into proteins

    DOEpatents

    Schultz, Peter G [La Jolla, CA; Wang, Lei [San Diego, CA

    2008-10-07

    Compositions and methods of producing components of protein biosynthetic machinery that include orthogonal tRNAs, orthogonal aminoacyl-tRNA synthetases, and orthogonal pairs of tRNAs/synthetases, which incorporate keto amino acids into proteins are provided. Methods for identifying these orthogonal pairs are also provided along with methods of producing proteins with keto amino acids using these orthogonal pairs.

  16. Site-specific incorporation of redox active amino acids into proteins

    DOEpatents

    Alfonta; Lital , Schultz; Peter G. , Zhang; Zhiwen

    2010-10-12

    Compositions and methods of producing components of protein biosynthetic machinery that include orthogonal tRNAs, orthogonal aminoacyl-tRNA synthetases, and orthogonal pairs of tRNAs/synthetases, which incorporate redox active amino acids into proteins are provided. Methods for identifying these orthogonal pairs are also provided along with methods of producing proteins with redox active amino acids using these orthogonal pairs.

  17. Site specific incorporation of keto amino acids into proteins

    DOEpatents

    Schultz, Peter G [La Jolla, CA; Wang, Lei [San Diego, CA

    2011-12-06

    Compositions and methods of producing components of protein biosynthetic machinery that include orthogonal tRNAs, orthogonal aminoacyl-tRNA synthetases, and orthogonal pairs of tRNAs/synthetases, which incorporate keto amino acids into proteins are provided. Methods for identifying these orthogonal pairs are also provided along with methods of producing proteins with keto amino acids using these orthogonal pairs.

  18. Site-specific incorporation of redox active amino acids into proteins

    DOEpatents

    Alfonta, Lital [San Diego, CA; Schultz, Peter G [La Jolla, CA; Zhang, Zhiwen [San Diego, CA

    2009-02-24

    Compositions and methods of producing components of protein biosynthetic machinery that include orthogonal tRNAs, orthogonal aminoacyl-tRNA synthetases, and orthogonal pairs of tRNAs/synthetases, which incorporate redox active amino acids into proteins are provided. Methods for identifying these orthogonal pairs are also provided along with methods of producing proteins with redox active amino acids using these orthogonal pairs.

  19. Site specific incorporation of keto amino acids into proteins

    DOEpatents

    Schultz, Peter G [La Jolla, CA; Wang, Lei [San Diego, CA

    2012-02-14

    Compositions and methods of producing components of protein biosynthetic machinery that include orthogonal tRNAs, orthogonal aminoacyl-tRNA synthetases, and orthogonal pairs of tRNAs/synthetases, which incorporate keto amino acids into proteins are provided. Methods for identifying these orthogonal pairs are also provided along with methods of producing proteins with keto amino acids using these orthogonal pairs.

  20. Wilson-Racah quantum system

    NASA Astrophysics Data System (ADS)

    Alhaidari, A. D.; Taiwo, T. J.

    2017-02-01

    Using a recent formulation of quantum mechanics without a potential function, we present a four-parameter system associated with the Wilson and Racah polynomials. The continuum scattering states are written in terms of the Wilson polynomials whose asymptotics give the scattering amplitude and phase shift. On the other hand, the finite number of discrete bound states are associated with the Racah polynomials.

  1. On the Waring problem for polynomial rings

    PubMed Central

    Fröberg, Ralf; Ottaviani, Giorgio; Shapiro, Boris

    2012-01-01

    In this note we discuss an analog of the classical Waring problem for . Namely, we show that a general homogeneous polynomial of degree divisible by k≥2 can be represented as a sum of at most kn k-th powers of homogeneous polynomials in . Noticeably, kn coincides with the number obtained by naive dimension count. PMID:22460787

  2. A DDDAS Framework for Volcanic Ash Propagation and Hazard Analysis

    DTIC Science & Technology

    2012-01-01

    probability distribution for the input variables (for example, Hermite polynomials for normally distributed parameters, or Legendre for uniformly...parameters and windfields will drive our simulations. We will use uncertainty quantification methodology – polynomial chaos quadrature in combination...quantification methodology ? polynomial chaos quadrature in combination with data integration to complete the DDDAS loop. 15. SUBJECT TERMS 16. SECURITY

  3. On computation of Gröbner bases for linear difference systems

    NASA Astrophysics Data System (ADS)

    Gerdt, Vladimir P.

    2006-04-01

    In this paper, we present an algorithm for computing Gröbner bases of linear ideals in a difference polynomial ring over a ground difference field. The input difference polynomials generating the ideal are also assumed to be linear. The algorithm is an adaptation to difference ideals of our polynomial algorithm based on Janet-like reductions.

  4. Moving-Boundary Problems Associated with Lyopreservation

    NASA Astrophysics Data System (ADS)

    Gruber, Christopher Andrew

    The work presented in this Dissertation is motivated by research into the preservation of biological specimens by way of vitrification, a technique known as lyopreservation. The operative principle behind lyopreservation is that a glassy material forms as a solution of sugar and water is desiccated. The microstructure of this glass impedes transport within the material, thereby slowing metabolism and effectively halting the aging processes in a biospecimen. This Dissertation is divided into two segments. The first concerns the nature of diffusive transport within a glassy state. Experimental studies suggest that diffusion within a glass is anomalously slow. Scaled Brownian motion (SBM) is proposed as a mathematical model which captures the qualitative features of anomalously slow diffusion while minimizing computational expense. This model is applied to several moving-boundary problems and the results are compared to a more well-established model, fractional anomalous diffusion (FAD). The virtues of SBM are based on the model's relative mathematical simplicity: the governing equation under FAD dynamics involves a fractional derivative operator, which precludes the use of analytical methods in almost all circumstances and also entails great computational expense. In some geometries, SBM allows similarity solutions, though computational methods are generally required. The use of SBM as an approximation to FAD when a system is "nearly classical'' is also explored. The second portion of this Dissertation concerns spin-drying, which is an experimental approach to biopreservation in a laboratory setting. A biospecimen is adhered to a glass wafer and this substrate is covered with sugar solution and rapidly spun on a turntable while water is evaporated from the film surface. The mathematical model for the spin-drying process includes diffusion, viscous fluid flow, and evaporation, among other contributions to the dynamics. Lubrication theory is applied to the model and an expansion in orthogonal polynomials is applied. The resulting system of equations is solved computationally. The influence of various experimental parameters upon the system dynamics is investigated, particularly the role of the spin rate. A convergence study of the solution verifies that the polynomial expansion method yields accurate results.

  5. Piecewise polynomial representations of genomic tracks.

    PubMed

    Tarabichi, Maxime; Detours, Vincent; Konopka, Tomasz

    2012-01-01

    Genomic data from micro-array and sequencing projects consist of associations of measured values to chromosomal coordinates. These associations can be thought of as functions in one dimension and can thus be stored, analyzed, and interpreted as piecewise-polynomial curves. We present a general framework for building piecewise polynomial representations of genome-scale signals and illustrate some of its applications via examples. We show that piecewise constant segmentation, a typical step in copy-number analyses, can be carried out within this framework for both array and (DNA) sequencing data offering advantages over existing methods in each case. Higher-order polynomial curves can be used, for example, to detect trends and/or discontinuities in transcription levels from RNA-seq data. We give a concrete application of piecewise linear functions to diagnose and quantify alignment quality at exon borders (splice sites). Our software (source and object code) for building piecewise polynomial models is available at http://sourceforge.net/projects/locsmoc/.

  6. Where are the roots of the Bethe Ansatz equations?

    NASA Astrophysics Data System (ADS)

    Vieira, R. S.; Lima-Santos, A.

    2015-10-01

    Changing the variables in the Bethe Ansatz Equations (BAE) for the XXZ six-vertex model we had obtained a coupled system of polynomial equations. This provided a direct link between the BAE deduced from the Algebraic Bethe Ansatz (ABA) and the BAE arising from the Coordinate Bethe Ansatz (CBA). For two magnon states this polynomial system could be decoupled and the solutions given in terms of the roots of some self-inversive polynomials. From theorems concerning the distribution of the roots of self-inversive polynomials we made a thorough analysis of the two magnon states, which allowed us to find the location and multiplicity of the Bethe roots in the complex plane, to discuss the completeness and singularities of Bethe's equations, the ill-founded string-hypothesis concerning the location of their roots, as well as to find an interesting connection between the BAE with Salem's polynomials.

  7. Optimal control and Galois theory

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zelikin, M I; Kiselev, D D; Lokutsievskiy, L V

    2013-11-30

    An important role is played in the solution of a class of optimal control problems by a certain special polynomial of degree 2(n−1) with integer coefficients. The linear independence of a family of k roots of this polynomial over the field Q implies the existence of a solution of the original problem with optimal control in the form of an irrational winding of a k-dimensional Clifford torus, which is passed in finite time. In the paper, we prove that for n≤15 one can take an arbitrary positive integer not exceeding [n/2] for k. The apparatus developed in the paper is applied to the systems ofmore » Chebyshev-Hermite polynomials and generalized Chebyshev-Laguerre polynomials. It is proved that for such polynomials of degree 2m every subsystem of [(m+1)/2] roots with pairwise distinct squares is linearly independent over the field Q. Bibliography: 11 titles.« less

  8. New Formulae for the High-Order Derivatives of Some Jacobi Polynomials: An Application to Some High-Order Boundary Value Problems

    PubMed Central

    Abd-Elhameed, W. M.

    2014-01-01

    This paper is concerned with deriving some new formulae expressing explicitly the high-order derivatives of Jacobi polynomials whose parameters difference is one or two of any degree and of any order in terms of their corresponding Jacobi polynomials. The derivatives formulae for Chebyshev polynomials of third and fourth kinds of any degree and of any order in terms of their corresponding Chebyshev polynomials are deduced as special cases. Some new reduction formulae for summing some terminating hypergeometric functions of unit argument are also deduced. As an application, and with the aid of the new introduced derivatives formulae, an algorithm for solving special sixth-order boundary value problems are implemented with the aid of applying Galerkin method. A numerical example is presented hoping to ascertain the validity and the applicability of the proposed algorithms. PMID:25386599

  9. Inequalities for a polynomial and its derivative

    NASA Astrophysics Data System (ADS)

    Chanam, Barchand; Dewan, K. K.

    2007-12-01

    Let , 1[less-than-or-equals, slant][mu][less-than-or-equals, slant]n, be a polynomial of degree n such that p(z)[not equal to]0 in z0, then for 0

  10. Quantization of gauge fields, graph polynomials and graph homology

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kreimer, Dirk, E-mail: kreimer@physik.hu-berlin.de; Sars, Matthias; Suijlekom, Walter D. van

    2013-09-15

    We review quantization of gauge fields using algebraic properties of 3-regular graphs. We derive the Feynman integrand at n loops for a non-abelian gauge theory quantized in a covariant gauge from scalar integrands for connected 3-regular graphs, obtained from the two Symanzik polynomials. The transition to the full gauge theory amplitude is obtained by the use of a third, new, graph polynomial, the corolla polynomial. This implies effectively a covariant quantization without ghosts, where all the relevant signs of the ghost sector are incorporated in a double complex furnished by the corolla polynomial–we call it cycle homology–and by graph homology.more » -- Highlights: •We derive gauge theory Feynman from scalar field theory with 3-valent vertices. •We clarify the role of graph homology and cycle homology. •We use parametric renormalization and the new corolla polynomial.« less

  11. An algorithmic approach to solving polynomial equations associated with quantum circuits

    NASA Astrophysics Data System (ADS)

    Gerdt, V. P.; Zinin, M. V.

    2009-12-01

    In this paper we present two algorithms for reducing systems of multivariate polynomial equations over the finite field F 2 to the canonical triangular form called lexicographical Gröbner basis. This triangular form is the most appropriate for finding solutions of the system. On the other hand, the system of polynomials over F 2 whose variables also take values in F 2 (Boolean polynomials) completely describes the unitary matrix generated by a quantum circuit. In particular, the matrix itself can be computed by counting the number of solutions (roots) of the associated polynomial system. Thereby, efficient construction of the lexicographical Gröbner bases over F 2 associated with quantum circuits gives a method for computing their circuit matrices that is alternative to the direct numerical method based on linear algebra. We compare our implementation of both algorithms with some other software packages available for computing Gröbner bases over F 2.

  12. Recurrence approach and higher order polynomial algebras for superintegrable monopole systems

    NASA Astrophysics Data System (ADS)

    Hoque, Md Fazlul; Marquette, Ian; Zhang, Yao-Zhong

    2018-05-01

    We revisit the MIC-harmonic oscillator in flat space with monopole interaction and derive the polynomial algebra satisfied by the integrals of motion and its energy spectrum using the ad hoc recurrence approach. We introduce a superintegrable monopole system in a generalized Taub-Newman-Unti-Tamburino (NUT) space. The Schrödinger equation of this model is solved in spherical coordinates in the framework of Stäckel transformation. It is shown that wave functions of the quantum system can be expressed in terms of the product of Laguerre and Jacobi polynomials. We construct ladder and shift operators based on the corresponding wave functions and obtain the recurrence formulas. By applying these recurrence relations, we construct higher order algebraically independent integrals of motion. We show that the integrals form a polynomial algebra. We construct the structure functions of the polynomial algebra and obtain the degenerate energy spectra of the model.

  13. Polynomial interpolation and sums of powers of integers

    NASA Astrophysics Data System (ADS)

    Cereceda, José Luis

    2017-02-01

    In this note, we revisit the problem of polynomial interpolation and explicitly construct two polynomials in n of degree k + 1, Pk(n) and Qk(n), such that Pk(n) = Qk(n) = fk(n) for n = 1, 2,… , k, where fk(1), fk(2),… , fk(k) are k arbitrarily chosen (real or complex) values. Then, we focus on the case that fk(n) is given by the sum of powers of the first n positive integers Sk(n) = 1k + 2k + ṡṡṡ + nk, and show that Sk(n) admits the polynomial representations Sk(n) = Pk(n) and Sk(n) = Qk(n) for all n = 1, 2,… , and k ≥ 1, where the first representation involves the Eulerian numbers, and the second one the Stirling numbers of the second kind. Finally, we consider yet another polynomial formula for Sk(n) alternative to the well-known formula of Bernoulli.

  14. Polynomial elimination theory and non-linear stability analysis for the Euler equations

    NASA Technical Reports Server (NTRS)

    Kennon, S. R.; Dulikravich, G. S.; Jespersen, D. C.

    1986-01-01

    Numerical methods are presented that exploit the polynomial properties of discretizations of the Euler equations. It is noted that most finite difference or finite volume discretizations of the steady-state Euler equations produce a polynomial system of equations to be solved. These equations are solved using classical polynomial elimination theory, with some innovative modifications. This paper also presents some preliminary results of a new non-linear stability analysis technique. This technique is applicable to determining the stability of polynomial iterative schemes. Results are presented for applying the elimination technique to a one-dimensional test case. For this test case, the exact solution is computed in three iterations. The non-linear stability analysis is applied to determine the optimal time step for solving Burgers' equation using the MacCormack scheme. The estimated optimal time step is very close to the time step that arises from a linear stability analysis.

  15. Assessment of Hybrid High-Order methods on curved meshes and comparison with discontinuous Galerkin methods

    NASA Astrophysics Data System (ADS)

    Botti, Lorenzo; Di Pietro, Daniele A.

    2018-10-01

    We propose and validate a novel extension of Hybrid High-Order (HHO) methods to meshes featuring curved elements. HHO methods are based on discrete unknowns that are broken polynomials on the mesh and its skeleton. We propose here the use of physical frame polynomials over mesh elements and reference frame polynomials over mesh faces. With this choice, the degree of face unknowns must be suitably selected in order to recover on curved meshes the same convergence rates as on straight meshes. We provide an estimate of the optimal face polynomial degree depending on the element polynomial degree and on the so-called effective mapping order. The estimate is numerically validated through specifically crafted numerical tests. All test cases are conducted considering two- and three-dimensional pure diffusion problems, and include comparisons with discontinuous Galerkin discretizations. The extension to agglomerated meshes with curved boundaries is also considered.

  16. Design of polynomial fuzzy observer-controller for nonlinear systems with state delay: sum of squares approach

    NASA Astrophysics Data System (ADS)

    Gassara, H.; El Hajjaji, A.; Chaabane, M.

    2017-07-01

    This paper investigates the problem of observer-based control for two classes of polynomial fuzzy systems with time-varying delay. The first class concerns a special case where the polynomial matrices do not depend on the estimated state variables. The second one is the general case where the polynomial matrices could depend on unmeasurable system states that will be estimated. For the last case, two design procedures are proposed. The first one gives the polynomial fuzzy controller and observer gains in two steps. In the second procedure, the designed gains are obtained using a single-step approach to overcome the drawback of a two-step procedure. The obtained conditions are presented in terms of sum of squares (SOS) which can be solved via the SOSTOOLS and a semi-definite program solver. Illustrative examples show the validity and applicability of the proposed results.

  17. Using Tutte polynomials to analyze the structure of the benzodiazepines

    NASA Astrophysics Data System (ADS)

    Cadavid Muñoz, Juan José

    2014-05-01

    Graph theory in general and Tutte polynomials in particular, are implemented for analyzing the chemical structure of the benzodiazepines. Similarity analysis are used with the Tutte polynomials for finding other molecules that are similar to the benzodiazepines and therefore that might show similar psycho-active actions for medical purpose, in order to evade the drawbacks associated to the benzodiazepines based medicine. For each type of benzodiazepines, Tutte polynomials are computed and some numeric characteristics are obtained, such as the number of spanning trees and the number of spanning forests. Computations are done using the computer algebra Maple's GraphTheory package. The obtained analytical results are of great importance in pharmaceutical engineering. As a future research line, the usage of the chemistry computational program named Spartan, will be used to extent and compare it with the obtained results from the Tutte polynomials of benzodiazepines.

  18. Multicarrier orthogonal spread-spectrum (MOSS) data communications

    DOEpatents

    Smith, Stephen F [London, TN; Dress, William B [Camas, WA

    2008-01-01

    Systems and methods are described for multicarrier orthogonal spread-spectrum (MOSS) data communication. A method includes individually spread-spectrum modulating at least two of a set of orthogonal frequency division multiplexed carriers, wherein the resulting individually spread-spectrum modulated at least two of a set of orthogonal frequency division multiplexed carriers are substantially mutually orthogonal with respect to both frequency division multiplexing and spread-spectrum modulation.

  19. Gram-Schmidt algorithms for covariance propagation

    NASA Technical Reports Server (NTRS)

    Thornton, C. L.; Bierman, G. J.

    1977-01-01

    This paper addresses the time propagation of triangular covariance factors. Attention is focused on the square-root free factorization, P = UD(transpose of U), where U is unit upper triangular and D is diagonal. An efficient and reliable algorithm for U-D propagation is derived which employs Gram-Schmidt orthogonalization. Partitioning the state vector to distinguish bias and coloured process noise parameters increase mapping efficiency. Cost comparisons of the U-D, Schmidt square-root covariance and conventional covariance propagation methods are made using weighted arithmetic operation counts. The U-D time update is shown to be less costly than the Schmidt method; and, except in unusual circumstances, it is within 20% of the cost of conventional propagation.

  20. Gram-Schmidt algorithms for covariance propagation

    NASA Technical Reports Server (NTRS)

    Thornton, C. L.; Bierman, G. J.

    1975-01-01

    This paper addresses the time propagation of triangular covariance factors. Attention is focused on the square-root free factorization, P = UDU/T/, where U is unit upper triangular and D is diagonal. An efficient and reliable algorithm for U-D propagation is derived which employs Gram-Schmidt orthogonalization. Partitioning the state vector to distinguish bias and colored process noise parameters increases mapping efficiency. Cost comparisons of the U-D, Schmidt square-root covariance and conventional covariance propagation methods are made using weighted arithmetic operation counts. The U-D time update is shown to be less costly than the Schmidt method; and, except in unusual circumstances, it is within 20% of the cost of conventional propagation.

Top