Excess electrons in ice: a density functional theory study.
Bhattacharya, Somesh Kr; Inam, Fakharul; Scandolo, Sandro
2014-02-21
We present a density functional theory study of the localization of excess electrons in the bulk and on the surface of crystalline and amorphous water ice. We analyze the initial stages of electron solvation in crystalline and amorphous ice. In the case of crystalline ice we find that excess electrons favor surface states over bulk states, even when the latter are localized at defect sites. In contrast, in amorphous ice excess electrons find it equally favorable to localize in bulk and in surface states which we attribute to the preexisting precursor states in the disordered structure. In all cases excess electrons are found to occupy the vacuum regions of the molecular network. The electron localization in the bulk of amorphous ice is assisted by its distorted hydrogen bonding network as opposed to the crystalline phase. Although qualitative, our results provide a simple interpretation of the large differences observed in the dynamics and localization of excess electrons in crystalline and amorphous ice films on metals.
NASA Astrophysics Data System (ADS)
Ukpong, A. M.; Chetty, N.
2012-05-01
The van der Waals interaction-corrected density functional theory is used in this study to investigate the formation, energetic stability, and inter-layer cohesion in bilayer hexagonal boronitrene. The effect of inter-layer separation on the electronic structure is systematically investigated. The formation and energetic stability of intrinsic defects are also investigated at the equilibrium inter-layer separation. It is found that nonstoichiometric defects, and their complexes, that induce excess nitrogen or excess boron, in each case, are relatively more stable in the atmosphere that corresponds to the excess atomic species. The modifications of the electronic structure due to formation of complexes are also investigated. It is shown that van der Waals density functional theory gives an improved description of the cohesive properties but not the electronic structure in bilayer boronitrene compared to other functionals. We identify energetically favourable topological defects that retain the energy gap in the electronic structure, and discuss their implications for band gap engineering in low-n layer boronitrene insulators. The relative strengths and weaknesses of the functionals in predicting the properties of bilayer boronitrene are also discussed.
Solvation of excess electrons trapped in charge pockets on molecular surfaces
NASA Astrophysics Data System (ADS)
Jalbout, Abraham F.
This work considers the ability of hydrogen fluoride (HF) to solvate excess electrons located on cyclic hydrocarbon surfaces. The principle applied involves the formation of systems in which excess electrons can be stabilized not only on concentrated molecular surface charge pockets but also by HF. Recent studies have shown that OH groups can form stable hydrogen-bonded networks on one side of a hydrocarbon surface (i.e. cyclohexane sheets), at the same time, the hydrogen atoms on the opposite side of this surface form a pocket of positive charge can attract the excess electron. This density can be further stabilized by the addition of an HF molecule that can form an 'anion with an internally solvated electron' (AISE) state. These systems are shown to be stable with respect to vertical electron detachment (VDE).
Zhao, Yan-hui; Zhao, Yang-guo; Guo, Liang
2016-03-15
The feasibility of treating pretreated excess sludge and capacity of supplying continuous power of microbial fuel cells (MFCs) were investigated. Two-chamber microbial fuel cells were started up and operated by using thermal pretreated excess sludge as the substrate. Potential fluctuations were achieved by changing the cathode electron acceptor. During the changes of electron acceptor, the operational stability of MFCs was assessed. The results indicated that the MFCs started successfully with oxygen as the cathode electron acceptor and reached 0.24 V after 148 hours. When the cathode electron acceptor was replaced by potassium ferricyanide, MFCs could obtain the maximum output voltage and maximum power density of 0.66 V and 4.21 W · m⁻³, respectively. When the cathode electron acceptor was changed from oxygen to potassium ferricyanide or the MFCs were closed circuit, the output power of MFCs recovered rapidly. In addition, changes of electron acceptor showed no effect on the removal of COD and ammonia nitrogen. Their removal efficiencies approached to 70% and 80%, respectively. This study concluded that MFC could treat the pretreated excess sludge and produce electricity simultaneously with a high power density. The MFC could also achieve discontinuous electricity supply during operation.
Calculation of characteristics of compressed gaseous xenon gamma-ray detectors
NASA Astrophysics Data System (ADS)
Komarov, V. B.; Dmitrenko, V. V.; Ulin, S. E.; Uteshev, Z. M.
1992-12-01
Energy resolution and pulse distribution of a compressed gaseous xenon cylindrical detector were calculated. The analytical calculation took into account gamma-ray energy, fluctuation of electron-ion pairs, electron distribution, recombination, and H excess. The calculation was performed for a xenon density less than 0.6 g/cm and H excess less than 2 percent.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gibert, Ivan, E-mail: gibert1993@mail.ru; Kiseleva, Svetlana, E-mail: kisielieva1946@mail.ru; Popova, Natalya, E-mail: natalya-popova-44@mail.ru
The investigation of excess dislocation density accumulation in the deformed polycrystalline austenitic steel was carried out using transmission electron microscopy (TEM). The distributions of the excess dislocation density in the grains of the deformed austenitic steel with different bending types were obtained and plotted. It was established that in the austenitic polycrystalline steel at the deformation degrees ε = 14 and 25 % the distributions of the excess dislocation density are multimodal. In both cases the grain with compound bending is more stressed. The values of the average excess dislocation density in the grains with the compound and simple bendingmore » are less at ε = 25 % than that at ε = 14 %. This is explained by a significant relaxation of the internal stresses in steel with the increase of the deformation degree from 14 % to 25 %. The increase of the number of twinning systems and the material volume fraction covered by twinning leads to the internal stress relaxation and consequently to the increase of the excess dislocation density. The presence of microtwins in the deformed material has an influence on the distribution of the excess dislocation density. In the deformed polycrystalline austenitic steel the number of grains with compound bending is increased with the increase of the plastic deformation degree.« less
Hydration of excess electrons trapped in charge pockets on molecular surfaces
NASA Astrophysics Data System (ADS)
Jalbout, Abraham F.; Del Castillo, R.; Adamowicz, Ludwik
2007-01-01
In this work we strive to design a novel electron trap located on a molecular surface. The process of electron trapping involves hydration of the trapped electron. Previous calculations on surface electron trapping revealed that clusters of OH groups can form stable hydrogen-bonded networks on one side of a hydrocarbon surface (i.e. cyclohexane sheets), while the hydrogen atoms on the opposite side of the surface form pockets of positive charge that can attract extra negative charge. The excess electron density on such surfaces can be further stabilized by interactions with water molecules. Our calculations show that these anionic systems are stable with respect to vertical electron detachment (VDE).
Nishimoto, Yoshio; Yokogawa, Daisuke; Yoshikawa, Hirofumi; Awaga, Kunio; Irle, Stephan
2014-06-25
Theoretical investigations are presented on the molecular and electronic structure changes that occur as α-Keggin-type polyoxometalate (POM(3-)) clusters [PM12O40](3-) (M = Mo, W) are converted toward their super-reduced POM(27-) state during the discharging process in lithium-based molecular cluster batteries. Density functional theory was employed in geometry optimization, and first-principles molecular dynamics simulations were used to explore local minima on the potential energy surface of neutral POM clusters adorned with randomly placed Li atoms as electron donors around the cluster surface. On the basis of structural, electron density, and molecular orbital studies, we present evidence that the super-reduction is accompanied by metal-metal bond formation, beginning from the 12th to 14th excess electron transferred to the cluster. Afterward, the number of metal-metal bonds increases nearly linearly with the number of additionally transferred excess electrons. In α-Keggin-type POMs, metal triangles are a prominently emerging structural feature. The origin of the metal triangle formation during super-reduction stems from the formation of characteristic three-center two-electron bonds in triangular metal atom sites, created under preservation of the POM skeleton via "squeezing out" of oxygen atoms bridging two metal atoms when the underlying metal atoms form covalent bonds. The driving force for this unusual geometrical and electronic structure change is a local Jahn-Teller distortion at individual transition-metal octahedral sites, where the triply degenerate t2 d orbitals become partially filled during reduction and gain energy by distortion of the octahedron in such a way that metal-metal bonds are formed. The bonding orbitals show strong contributions from mixing with metal-oxygen antibonding orbitals, thereby "shuffling away" excess electrons from the cluster center to the outside of the cage. The high density of negatively charged yet largely separated oxygen atoms on the surface of the super-reduced POM(27-) polyanion allows the huge Coulombic repulsion due to the presence of the excess electrons to be counterbalanced by the presence of Li countercations, which partially penetrate into the outer oxygen shell. This "semiporous molecular capacitor" structure is likely the reason for the effective electron uptake in POMs.
Borgoo, Alex; Teale, Andrew M; Tozer, David J
2012-01-21
Correlated electron densities, experimental ionisation potentials, and experimental electron affinities are used to investigate the homogeneity of the exchange-correlation and non-interacting kinetic energy functionals of Kohn-Sham density functional theory under density scaling. Results are presented for atoms and small molecules, paying attention to the influence of the integer discontinuity and the choice of the electron affinity. For the exchange-correlation functional, effective homogeneities are highly system-dependent on either side of the integer discontinuity. By contrast, the average homogeneity-associated with the potential that averages over the discontinuity-is generally close to 4/3 when the discontinuity is computed using positive affinities for systems that do bind an excess electron and negative affinities for those that do not. The proximity to 4/3 becomes increasingly pronounced with increasing atomic number. Evaluating the discontinuity using a zero affinity in systems that do not bind an excess electron instead leads to effective homogeneities on the electron abundant side that are close to 4/3. For the non-interacting kinetic energy functional, the effective homogeneities are less system-dependent and the effect of the integer discontinuity is less pronounced. Average values are uniformly below 5/3. The study provides information that may aid the development of improved exchange-correlation and non-interacting kinetic energy functionals. © 2012 American Institute of Physics
Continuum and atomistic description of excess electrons in TiO2
NASA Astrophysics Data System (ADS)
Maggio, Emanuele; Martsinovich, Natalia; Troisi, Alessandro
2016-02-01
The modelling of an excess electron in a semiconductor in a prototypical dye sensitised solar cell is carried out using two complementary approaches: atomistic simulation of the TiO2 nanoparticle surface is complemented by a dielectric continuum model of the solvent-semiconductor interface. The two methods are employed to characterise the bound (excitonic) states formed by the interaction of the electron in the semiconductor with a positive charge opposite the interface. Density-functional theory (DFT) calculations show that the excess electron in TiO2 in the presence of a counterion is not fully localised but extends laterally over a large region, larger than system sizes accessible to DFT calculations. The numerical description of the excess electron at the semiconductor-electrolyte interface based on the continuum model shows that the exciton is also delocalised over a large area: the exciton radius can have values from tens to hundreds of Ångströms, depending on the nature of the semiconductor (characterised by the dielectric constant and the electron effective mass in our model).
Free electron laser-driven ultrafast rearrangement of the electronic structure in Ti
Principi, E.; Giangrisostomi, E.; Cucini, R.; Bencivenga, F.; Battistoni, A.; Gessini, A.; Mincigrucci, R.; Saito, M.; Di Fonzo, S.; D'Amico, F.; Di Cicco, A.; Gunnella, R.; Filipponi, A.; Giglia, A.; Nannarone, S.; Masciovecchio, C.
2015-01-01
High-energy density extreme ultraviolet radiation delivered by the FERMI seeded free-electron laser has been used to create an exotic nonequilibrium state of matter in a titanium sample characterized by a highly excited electron subsystem at temperatures in excess of 10 eV and a cold solid-density ion lattice. The obtained transient state has been investigated through ultrafast absorption spectroscopy across the Ti M2,3-edge revealing a drastic rearrangement of the sample electronic structure around the Fermi level occurring on a time scale of about 100 fs. PMID:26798835
DAMPE electron-positron excess in leptophilic Z' model
NASA Astrophysics Data System (ADS)
Ghorbani, Karim; Ghorbani, Parsa Hossein
2018-05-01
Recently the DArk Matter Particle Explorer (DAMPE) has reported an excess in the electron-positron flux of the cosmic rays which is interpreted as a dark matter particle with the mass about 1.5 TeV. We come up with a leptophilic Z' scenario including a Dirac fermion dark matter candidate which beside explaining the observed DAMPE excess, is able to pass various experimental/observational constraints including the relic density value from the WMAP/Planck, the invisible Higgs decay bound at the LHC, the LEP bounds in electron-positron scattering, the muon anomalous magnetic moment constraint, Fermi-LAT data, and finally the direct detection experiment limits from the XENON1t/LUX. By computing the electron-positron flux produced from a dark matter with the mass about 1.5 TeV we show that the model predicts the peak observed by the DAMPE.
Excess electrons in methanol clusters: Beyond the one-electron picture
NASA Astrophysics Data System (ADS)
Pohl, Gábor; Mones, Letif; Turi, László
2016-10-01
We performed a series of comparative quantum chemical calculations on various size negatively charged methanol clusters, ("separators=" CH 3 OH ) n - . The clusters are examined in their optimized geometries (n = 2-4), and in geometries taken from mixed quantum-classical molecular dynamics simulations at finite temperature (n = 2-128). These latter structures model potential electron binding sites in methanol clusters and in bulk methanol. In particular, we compute the vertical detachment energy (VDE) of an excess electron from increasing size methanol cluster anions using quantum chemical computations at various levels of theory including a one-electron pseudopotential model, several density functional theory (DFT) based methods, MP2 and coupled-cluster CCSD(T) calculations. The results suggest that at least four methanol molecules are needed to bind an excess electron on a hydrogen bonded methanol chain in a dipole bound state. Larger methanol clusters are able to form stronger interactions with an excess electron. The two simulated excess electron binding motifs in methanol clusters, interior and surface states, correlate well with distinct, experimentally found VDE tendencies with size. Interior states in a solvent cavity are stabilized significantly stronger than electron states on cluster surfaces. Although we find that all the examined quantum chemistry methods more or less overestimate the strength of the experimental excess electron stabilization, MP2, LC-BLYP, and BHandHLYP methods with diffuse basis sets provide a significantly better estimate of the VDE than traditional DFT methods (BLYP, B3LYP, X3LYP, PBE0). A comparison to the better performing many electron methods indicates that the examined one-electron pseudopotential can be reasonably used in simulations for systems of larger size.
Excess electrons in methanol clusters: Beyond the one-electron picture.
Pohl, Gábor; Mones, Letif; Turi, László
2016-10-28
We performed a series of comparative quantum chemical calculations on various size negatively charged methanol clusters, CH 3 OH n - . The clusters are examined in their optimized geometries (n = 2-4), and in geometries taken from mixed quantum-classical molecular dynamics simulations at finite temperature (n = 2-128). These latter structures model potential electron binding sites in methanol clusters and in bulk methanol. In particular, we compute the vertical detachment energy (VDE) of an excess electron from increasing size methanol cluster anions using quantum chemical computations at various levels of theory including a one-electron pseudopotential model, several density functional theory (DFT) based methods, MP2 and coupled-cluster CCSD(T) calculations. The results suggest that at least four methanol molecules are needed to bind an excess electron on a hydrogen bonded methanol chain in a dipole bound state. Larger methanol clusters are able to form stronger interactions with an excess electron. The two simulated excess electron binding motifs in methanol clusters, interior and surface states, correlate well with distinct, experimentally found VDE tendencies with size. Interior states in a solvent cavity are stabilized significantly stronger than electron states on cluster surfaces. Although we find that all the examined quantum chemistry methods more or less overestimate the strength of the experimental excess electron stabilization, MP2, LC-BLYP, and BHandHLYP methods with diffuse basis sets provide a significantly better estimate of the VDE than traditional DFT methods (BLYP, B3LYP, X3LYP, PBE0). A comparison to the better performing many electron methods indicates that the examined one-electron pseudopotential can be reasonably used in simulations for systems of larger size.
Electronic properties of excess Cr at Fe site in FeCr{sub 0.02}Se alloy
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kumar, Sandeep, E-mail: sandeepk.iitb@gmail.com; Singh, Prabhakar P.
2015-06-24
We have studied the effect of substitution of transition-metal chromium (Cr) in excess on Fe sub-lattice in the electronic structure of iron-selenide alloys, FeCr{sub 0.02}Se. In our calculations, we used Korringa-Kohn-Rostoker coherent potential approximation method in the atomic sphere approximation (KKR-ASA-CPA). We obtained different band structure of this alloy with respect to the parent FeSe and this may be reason of changing their superconducting properties. We did unpolarized calculations for FeCr{sub 0.02}Se alloy in terms of density of states (DOS) and Fermi surfaces. The local density approximation (LDA) is used in terms of exchange correlation potential.
Solar corona electron density distribution
NASA Astrophysics Data System (ADS)
Esposito, P. B.; Edenhofer, P.; Lueneburg, E.
1980-07-01
The paper discusses the three and one-half months of single-frequency time delay data which were acquired from the Helios 2 spacecraft around the time of its solar occultation. The excess time delay due to integrated effect of free electrons along the signal's ray path could be separated and modeled following the determination of the spacecraft trajectory. An average solar corona and equatorial electron density profile during solar minimum were deduced from the time delay measurements acquired within 5-60 solar radii of the sun. As a point of reference at 10 solar radii from the sun, an average electron density was 4500 el/cu cm. However, an asymmetry was found in the electron density as the ray path moved from the west to east solar limb. This may be related to the fact that during entry into occultation the heliographic latitude of the ray path was about 6 deg, while during exit it was 7 deg. The Helios density model is compared with similar models deduced from different experimental techniques.
Dynamics and reactivity of trapped electrons on supported ice crystallites.
Stähler, Julia; Gahl, Cornelius; Wolf, Martin
2012-01-17
The solvation dynamics and reactivity of localized excess electrons in aqueous environments have attracted great attention in many areas of physics, chemistry, and biology. This manifold attraction results from the importance of water as a solvent in nature as well as from the key role of low-energy electrons in many chemical reactions. One prominent example is the electron-induced dissociation of chlorofluorocarbons (CFCs). Low-energy electrons are also critical in the radiation chemistry that occurs in nuclear reactors. Excess electrons in an aqueous environment are localized and stabilized by the local rearrangement of the surrounding water dipoles. Such solvated or hydrated electrons are known to play an important role in systems such as biochemical reactions and atmospheric chemistry. Despite numerous studies over many years, little is known about the microscopic details of these electron-induced chemical processes, and interest in the fundamental processes involved in the reactivity of trapped electrons continues. In this Account, we present a surface science study of the dynamics and reactivity of such localized low-energy electrons at D(2)O crystallites that are supported by a Ru(001) single crystal metal surface. This approach enables us to investigate the generation and relaxation dynamics as well as dissociative electron attachment (DEA) reaction of excess electrons under well-defined conditions. They are generated by photoexcitation in the metal template and transferred to trapping sites at the vacuum interface of crystalline D(2)O islands. In these traps, the electrons are effectively decoupled from the electronic states of the metal template, leading to extraordinarily long excited state lifetimes on the order of minutes. Using these long-lived, low-energy electrons, we study the DEA to CFCl(3) that is coadsorbed at very low concentrations (∼10(12) cm(-2)). Using rate equations and direct measurement of the change of surface dipole moment, we estimated the electron surface density for DEA, yielding cross sections that are orders of magnitude higher than the electron density measured in the gas phase.
NASA Astrophysics Data System (ADS)
Morita, Kazuki; Yasuoka, Kenji
2018-03-01
Anatase TiO2 nanocrystals have received considerable attention owing to their promising applications in photocatalysis, photovoltaics, and fuel cells. Although experimental evidence has shown that the performance of nanocrystals can be significantly improved through reduction, the mechanistic basis of this enhancement remains unclear. To shed a light on the chemistry of reduced anatase TiO2 nanocrystals, density functional theory were used to investigate the properties of defects and excess electrons. We demonstrated that oxygen vacancies are stable both on the surface and at the sub-surface of the nanocrystal, while titanium interstitials prefer sub-surface sites. Different defect locations possessed different excess electron structures, which contributed to deep and shallow states in the band gap of the nanocrystals. Furthermore, valence band tailing was observed, resulting in band gap narrowing. The theoretical results presented here deepen our understanding, and show the potential of defects to considerably change the macroscopic properties of anatase TiO2 nanocrystals.
Carroll, Gerard M; Schimpf, Alina M; Tsui, Emily Y; Gamelin, Daniel R
2015-09-02
Electronically doped colloidal semiconductor nanocrystals offer valuable opportunities to probe the new physical and chemical properties imparted by their excess charge carriers. Photodoping is a powerful approach to introducing and controlling free carrier densities within free-standing colloidal semiconductor nanocrystals. Photoreduced (n-type) colloidal ZnO nanocrystals possessing delocalized conduction-band (CB) electrons can be formed by photochemical oxidation of EtOH. Previous studies of this chemistry have demonstrated photochemical electron accumulation, in some cases reaching as many as >100 electrons per ZnO nanocrystal, but in every case examined to date this chemistry maximizes at a well-defined average electron density of ⟨Nmax⟩ ≈ (1.4 ± 0.4) × 10(20) cm(-3). The origins of this maximum have never been identified. Here, we use a solvated redox indicator for in situ determination of reduced ZnO nanocrystal redox potentials. The Fermi levels of various photodoped ZnO nanocrystals possessing on average just one excess CB electron show quantum-confinement effects, as expected, but are >600 meV lower than those of the same ZnO nanocrystals reduced chemically using Cp*2Co, reflecting important differences between their charge-compensating cations. Upon photochemical electron accumulation, the Fermi levels become independent of nanocrystal volume at ⟨N⟩ above ∼2 × 10(19) cm(-3), and maximize at ⟨Nmax⟩ ≈ (1.6 ± 0.3) × 10(20) cm(-3). This maximum is proposed to arise from Fermi-level pinning by the two-electron/two-proton hydrogenation of acetaldehyde, which reverses the EtOH photooxidation reaction.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Turi, László, E-mail: turi@chem.elte.hu
2016-04-21
We evaluate the applicability of a hierarchy of quantum models in characterizing the binding energy of excess electrons to water clusters. In particular, we calculate the vertical detachment energy of an excess electron from water cluster anions with methods that include one-electron pseudopotential calculations, density functional theory (DFT) based calculations, and ab initio quantum chemistry using MP2 and eom-EA-CCSD levels of theory. The examined clusters range from the smallest cluster size (n = 2) up to nearly nanosize clusters with n = 1000 molecules. The examined cluster configurations are extracted from mixed quantum-classical molecular dynamics trajectories of cluster anions withmore » n = 1000 water molecules using two different one-electron pseudopotenial models. We find that while MP2 calculations with large diffuse basis set provide a reasonable description for the hydrated electron system, DFT methods should be used with precaution and only after careful benchmarking. Strictly tested one-electron psudopotentials can still be considered as reasonable alternatives to DFT methods, especially in large systems. The results of quantum chemistry calculations performed on configurations, that represent possible excess electron binding motifs in the clusters, appear to be consistent with the results using a cavity structure preferring one-electron pseudopotential for the hydrated electron, while they are in sharp disagreement with the structural predictions of a non-cavity model.« less
NASA Astrophysics Data System (ADS)
Turi, László
2016-04-01
We evaluate the applicability of a hierarchy of quantum models in characterizing the binding energy of excess electrons to water clusters. In particular, we calculate the vertical detachment energy of an excess electron from water cluster anions with methods that include one-electron pseudopotential calculations, density functional theory (DFT) based calculations, and ab initio quantum chemistry using MP2 and eom-EA-CCSD levels of theory. The examined clusters range from the smallest cluster size (n = 2) up to nearly nanosize clusters with n = 1000 molecules. The examined cluster configurations are extracted from mixed quantum-classical molecular dynamics trajectories of cluster anions with n = 1000 water molecules using two different one-electron pseudopotenial models. We find that while MP2 calculations with large diffuse basis set provide a reasonable description for the hydrated electron system, DFT methods should be used with precaution and only after careful benchmarking. Strictly tested one-electron psudopotentials can still be considered as reasonable alternatives to DFT methods, especially in large systems. The results of quantum chemistry calculations performed on configurations, that represent possible excess electron binding motifs in the clusters, appear to be consistent with the results using a cavity structure preferring one-electron pseudopotential for the hydrated electron, while they are in sharp disagreement with the structural predictions of a non-cavity model.
Excess electron is trapped in a large single molecular cage C60F60.
Wang, Yin-Feng; Li, Zhi-Ru; Wu, Di; Sun, Chia-Chung; Gu, Feng-Long
2010-01-15
A new kind of solvated electron systems, sphere-shaped e(-)@C60F60 (I(h)) and capsule-shaped e(-)@C60F60 (D6h), in contrast to the endohedral complex M@C60, is represented at the B3LYP/6-31G(d) + dBF (diffusive basis functions) density functional theory. It is proven, by examining the singly occupied molecular orbital (SOMO) and the spin density map of e(-)@C60F60, that the excess electron is indeed encapsulated inside the C60F60 cage. The shape of the electron cloud in SOMO matches with the shape of C60F60 cage. These cage-like single molecular solvated electrons have considerably large vertical electron detachment energies VDE of 4.95 (I(h)) and 4.67 eV (D6h) at B3LYP/6-31+G(3df) + dBF level compared to the VDE of 3.2 eV for an electron in bulk water (Coe et al., Int Rev Phys Chem 2001, 20, 33) and that of 3.66 eV for e(-)@C20F20 (Irikura, J Phys Chem A 2008, 112, 983), which shows their higher stability. The VDE of the sphere-shaped e(-)@C60F60 (I(h)) is greater than that of the capsule-shaped e(-)@C60F60 (D6h), indicating that the excess electron prefers to reside in the cage with the higher symmetry to form the more stable solvated electron. It is also noticed that the cage size [7.994 (I(h)), 5.714 and 9.978 A (D6h) in diameter] is much larger than that (2.826 A) of (H2O)20- dodecahedral cluster (Khan, Chem Phys Lett 2005, 401, 85). Copyright 2009 Wiley Periodicals, Inc.
NASA Astrophysics Data System (ADS)
Malan, Frederick P.; Singleton, Eric; van Rooyen, Petrus H.; Conradie, Jeanet; Landman, Marilé
2017-11-01
The synthesis, density functional theory (DFT) conformational study and structure analysis of novel two-legged piano stool Ni N-heterocyclic carbene (NHC) complexes and square planar Ni bis-N-heterocyclic carbene complexes, all containing either bromido- or thiophenolato ligands, are described. [CpNi(SPh)(NHC)] complexes were obtained from the neutral 18-electron [CpNiBr(NHC)] complexes by substitution of a bromido ligand with SPh, using NEt3 as a base to abstract the proton of HSPh. The 16-electron biscarbene complexes [Ni(SPh)2{NHC}2] were isolated when an excess of HSPh was added to the reaction mixture. Biscarbene complexes of the type [NiBr2(NHC)2] were obtained in the reaction of NiCp2 with a slight excess of the specific imidazolium bromide salt. The molecular and electronic structures of the mono- and bis-N-heterocyclic carbene complexes have been analysed using single crystal diffraction and density functional theory (DFT) calculations, to give insight into their structural properties.
High energy electron acceleration with PW-class laser system
NASA Astrophysics Data System (ADS)
Nakanii, N.; Kondo, K.; Mori, Y.; Miura, E.; Yabuuchi, T.; Tsuji, K.; Suzuki, S.; Asaka, T.; Yanagida, K.; Hanaki, H.; Kobayashi, T.; Makino, K.; Yamane, T.; Miyamoto, S.; Horikawa, K.; Kimura, K.; Takeda, K.; Fukumochi, S.; Kashihara, M.; Tanimoto, T.; Nakamura, H.; Ishikura, T.; Tampo, M.; Kodama, R.; Kitagawa, Y.; Mima, K.; Tanaka, K. A.
2008-06-01
We performed electron acceleration experiment with PW-class laser and a plasma tube, which was created by imploding a hollow polystyrene cylinder. In this experiment, electron energies in excess of 600 MeV have been observed. Moreover, the spectra of a comparatively high-density plasma ˜1019 cm-3 had a bump around 10 MeV. Additionally, we performed the absolute sensitivity calibration of imaging plate for 1 GeV electrons from the injector Linac of Spring-8 in order to evaluate absolute number of GeV-class electrons in the laser acceleration experiment.
Inert Higgs Doublet Dark Matter in Type-II Seesaw
NASA Astrophysics Data System (ADS)
Chen, Chuan-Hung; Nomura, Takaaki
2016-04-01
Weakly interacting massive particle (WIMP) as a dark matter (DM) candidate is further inspired by recent AMS-02 data, which confirm the excess of positron fraction observed earlier by PAMELA and Fermi-LAT experiments. Additionally, the excess of positron+electron flux is still significant in the measurement of Fermi-LAT. For solving the problem of massive neutrinos and observed excess of cosmic-ray by DM annihilation, we study the model with an inert Higgs doublet (IHD) in the framework of type-II seesaw mechanism by imposing a Z2 symmetry on the IHD, where the lightest particle of IHD is the DM candidate while the neutrino masses origin from the Higgs triplet in type-II seesaw model. We calculate the cosmic-ray production in our model and find that if leptonic triplet decays are dominant, the observed excess of positron/electron flux could be explained well in normal ordered neutrino mass spectrum, when the constraints of DM relic density and comic-ray antiproton spectrum are taken into account.
NASA Astrophysics Data System (ADS)
Bonamente, Massimiliano; Nevalainen, Jukka
2011-09-01
We present spatially resolved spectroscopy of the galaxy cluster AS1101, also known as Sèrsic 159-03, with Chandra, XMM-Newton, and ROSAT, and investigate the presence of soft X-ray excess emission above the contribution from the hot intracluster medium. In earlier papers we reported an extremely bright soft excess component that reached 100% of the thermal radiation in the R2 ROSAT band (0.2-0.4 keV), using the H I column density measurement by Dickey and Lockman. In this paper we use the newer Leiden-Argentine-Bonn survey measurements of the H I column density toward AS1101, significantly lower than the previous value, and show that the soft excess emission in AS1101 is now at the level of 10%-20% of the hot gas emission, in line with those of a large sample of clusters analyzed by Bonamente et al. in 2002. The ROSAT soft excess emission is detected regardless of calibration uncertainties between Chandra and XMM-Newton. This new analysis of AS1101 indicates that the 1/4 keV band emission is compatible with the presence of warm-hot intergalactic medium (WHIM) filaments connected to the cluster and extending outward into the intergalactic medium; the temperatures we find in this study are typically lower than those of the WHIM probed in other X-ray studies. We also show that the soft excess emission is compatible with a non-thermal origin as the inverse Compton scattering of relativistic electrons off the cosmic microwave background, with pressure less than 1% of the thermal electrons.
Alcohol Electronic Screening and Brief Intervention: A Community Guide Systematic Review
Tansil, Kristin A.; Esser, Marissa B.; Sandhu, Paramjit; Reynolds, Jeffrey A.; Elder, Randy W.; Williamson, Rebecca S.; Chattopadhyay, Sajal K.; Bohm, Michele K.; Brewer, Robert D.; McKnight-Eily, Lela R.; Hungerford, Daniel W.; Toomey, Traci L.; Hingson, Ralph W.; Fielding, Jonathan E.
2016-01-01
Context Excessive drinking is responsible for 1 in 10 deaths among working-age adults in the U.S. annually. Alcohol screening and brief intervention (ASBI) is an effective, but underutilized, intervention for reducing excessive drinking among adults. Electronic screening and brief intervention (e-SBI) uses electronic devices to deliver key elements of ASBI, and has the potential to expand population reach. Evidence acquisition Using Community Guide methods, a systematic review of the scientific literature on the effectiveness of e-SBI for reducing excessive alcohol consumption and related harms was conducted. The search covered studies published from 1967 to October 2011. A total of 31 studies with 36 study arms met quality criteria, and were included in the review. Analyses were conducted in 2012. Evidence synthesis Twenty-four studies (28 study arms) provided results for excessive drinkers only and seven studies (eight study arms) reported results for all drinkers. Nearly all studies found that e-SBI reduced excessive alcohol consumption and related harms: nine study arms reported a median 23.9% reduction in binge drinking intensity (maximum drinks/binge episode) and nine study arms reported a median 16.5% reduction in binge drinking frequency. Reductions in drinking measures were sustained for up to 12 months. Conclusion According to Community Guide rules of evidence, e-SBI is an effective method for reducing excessive alcohol consumption and related harms among intervention participants. Implementation of e-SBI could complement population-level strategies previously recommended by the Community Preventive Services Task Force for reducing excessive drinking (e.g., increasing alcohol taxes and regulating alcohol outlet density). PMID:27745678
Alcohol Electronic Screening and Brief Intervention: A Community Guide Systematic Review.
Tansil, Kristin A; Esser, Marissa B; Sandhu, Paramjit; Reynolds, Jeffrey A; Elder, Randy W; Williamson, Rebecca S; Chattopadhyay, Sajal K; Bohm, Michele K; Brewer, Robert D; McKnight-Eily, Lela R; Hungerford, Daniel W; Toomey, Traci L; Hingson, Ralph W; Fielding, Jonathan E
2016-11-01
Excessive drinking is responsible for one in ten deaths among working-age adults in the U.S. annually. Alcohol screening and brief intervention is an effective but underutilized intervention for reducing excessive drinking among adults. Electronic screening and brief intervention (e-SBI) uses electronic devices to deliver key elements of alcohol screening and brief intervention, with the potential to expand population reach. Using Community Guide methods, a systematic review of the scientific literature on the effectiveness of e-SBI for reducing excessive alcohol consumption and related harms was conducted. The search covered studies published from 1967 to October 2011. A total of 31 studies with 36 study arms met quality criteria and were included in the review. Analyses were conducted in 2012. Twenty-four studies (28 study arms) provided results for excessive drinkers only and seven studies (eight study arms) reported results for all drinkers. Nearly all studies found that e-SBI reduced excessive alcohol consumption and related harms: nine study arms reported a median 23.9% reduction in binge-drinking intensity (maximum drinks/binge episode) and nine study arms reported a median 16.5% reduction in binge-drinking frequency. Reductions in drinking measures were sustained for up to 12 months. According to Community Guide rules of evidence, e-SBI is an effective method for reducing excessive alcohol consumption and related harms among intervention participants. Implementation of e-SBI could complement population-level strategies previously recommended by the Community Preventive Services Task Force for reducing excessive drinking (e.g., increasing alcohol taxes and regulating alcohol outlet density). Published by Elsevier Inc.
NASA Technical Reports Server (NTRS)
Minow, Joseph I.
2014-01-01
(1) High energy (>100keV) electrons penetrate spacecraft walls and accumulate in dielectrics or isolated conductors; (2) Threat environment is energetic electrons with sufficient flux to charge circuit boards, cable insulation, and ungrounded metal faster than charge can dissipate; (3) Accumulating charge density generates electric fields in excess of material breakdown strenght resulting in electrostatic discharge; and (4) System impact is material damage, discharge currents inside of spacecraft Faraday cage on or near critical circuitry, and RF noise.
NASA Astrophysics Data System (ADS)
Klaa, K.; Labidi, S.; Masrour, R.; Jabar, A.; Labidi, M.; Amara, A.; Drici, A.; Hlil, E. K.; Ellouze, M.
2018-06-01
Structural, electronic, magnetic and thermodynamic main features for Ni1-xTixO ternary alloys in rock-salt structure with Ti content in the range ? were studied using the full potential Linearized augmented plane wave (FP-LAPW) method within density functional theory. The exchange-correlation potential was calculated by the generalized gradient approximation. The analysis of the electronic density of states curves allowed the computation of the magnetic moments which are considered to lie along (010) axes. The thermodynamic stability of this alloy was investigated by calculating the excess enthalpy of mixing ? as well as the phase diagram. In addition, the Monte Carlo simulations have been exploited to calculate the transition temperature and magnetic coercive field in the alloy.
Electron Excess Doping and Effective Schottky Barrier Reduction on the MoS2/h-BN Heterostructure.
Joo, Min-Kyu; Moon, Byoung Hee; Ji, Hyunjin; Han, Gang Hee; Kim, Hyun; Lee, Gwanmu; Lim, Seong Chu; Suh, Dongseok; Lee, Young Hee
2016-10-12
Layered hexagonal boron nitride (h-BN) thin film is a dielectric that surpasses carrier mobility by reducing charge scattering with silicon oxide in diverse electronics formed with graphene and transition metal dichalcogenides. However, the h-BN effect on electron doping concentration and Schottky barrier is little known. Here, we report that use of h-BN thin film as a substrate for monolayer MoS 2 can induce ∼6.5 × 10 11 cm -2 electron doping at room temperature which was determined using theoretical flat band model and interface trap density. The saturated excess electron concentration of MoS 2 on h-BN was found to be ∼5 × 10 13 cm -2 at high temperature and was significantly reduced at low temperature. Further, the inserted h-BN enables us to reduce the Coulombic charge scattering in MoS 2 /h-BN and lower the effective Schottky barrier height by a factor of 3, which gives rise to four times enhanced the field-effect carrier mobility and an emergence of metal-insulator transition at a much lower charge density of ∼1.0 × 10 12 cm -2 (T = 25 K). The reduced effective Schottky barrier height in MoS 2 /h-BN is attributed to the decreased effective work function of MoS 2 arisen from h-BN induced n-doping and the reduced effective metal work function due to dipole moments originated from fixed charges in SiO 2 .
NASA Astrophysics Data System (ADS)
Palit, S.; Basak, T.; Mondal, S. K.; Pal, S.; Chakrabarti, S. K.
2013-03-01
X-ray photons emitted during solar flares cause ionization in the lower ionosphere (~ 60 to 100 km) in excess of what is expected from a quiet sun. Very Low Frequency (VLF) radio wave signals reflected from the D region are affected by this excess ionization. In this paper, we reproduce the deviation in VLF signal strength during solar flares by numerical modeling. We use GEANT4 Monte Carlo simulation code to compute the rate of ionization due to a M-class and a X-class flare. The output of the simulation is then used in a simplified ionospheric chemistry model to calculate the time variation of electron density at different altitudes in the lower ionosphere. The resulting electron density variation profile is then self-consistently used in the LWPC code to obtain the time variation of the VLF signal change. We did the modeling of the VLF signal along the NWC (Australia) to IERC/ICSP (India) propagation path and compared the results with observations. The agreement is found to be very satisfactory.
Molecules for organic electronics studied one by one.
Meyer, Jörg; Wadewitz, Anja; Lokamani; Toher, Cormac; Gresser, Roland; Leo, Karl; Riede, Moritz; Moresco, Francesca; Cuniberti, Gianaurelio
2011-08-28
The electronic and geometrical structure of single difluoro-bora-1,3,5,7-tetraphenyl-aza-dipyrromethene (aza-BODIPY) molecules adsorbed on the Au(111) surface is investigated by low temperature scanning tunneling microscopy and spectroscopy in conjunction with ab initio density functional theory simulations of the density of states and of the interaction with the substrate. Our DFT calculations indicate that the aza-bodipy molecule forms a chemical bond with the Au(111) substrate, with distortion of the molecular geometry and significant charge transfer between the molecule and the substrate. Nevertheless, most likely due to the low corrugation of the Au(111) surface, diffusion of the molecule is observed for applied bias in excess of 1 V.
NASA Astrophysics Data System (ADS)
Michalak, Ł.; Canali, C. M.; Pederson, M. R.; Paulsson, M.; Benza, V. G.
2010-01-01
We consider tunneling transport through a Mn12 molecular magnet using spin density functional theory. A tractable methodology for constructing many-body wave functions from Kohn-Sham orbitals allows for the determination of spin-dependent matrix elements for use in transport calculations. The tunneling conductance at finite bias is characterized by peaks representing transitions between spin multiplets, separated by an energy on the order of the magnetic anisotropy. The energy splitting of the spin multiplets and the spatial part of their many-body wave functions, describing the orbital degrees of freedom of the excess charge, strongly affect the electronic transport, and can lead to negative differential conductance.
Michalak, Ł; Canali, C M; Pederson, M R; Paulsson, M; Benza, V G
2010-01-08
We consider tunneling transport through a Mn12 molecular magnet using spin density functional theory. A tractable methodology for constructing many-body wave functions from Kohn-Sham orbitals allows for the determination of spin-dependent matrix elements for use in transport calculations. The tunneling conductance at finite bias is characterized by peaks representing transitions between spin multiplets, separated by an energy on the order of the magnetic anisotropy. The energy splitting of the spin multiplets and the spatial part of their many-body wave functions, describing the orbital degrees of freedom of the excess charge, strongly affect the electronic transport, and can lead to negative differential conductance.
A mechanism for deep chromospheric heating during solar flares
NASA Technical Reports Server (NTRS)
Machado, M. E.; Emslie, A. G.; Mauas, P. J.
1986-01-01
The role of the negative hydrogen ion, H(-), in the energy balance of the deep solar chromosphere is reexamined and it is found, in contrast with earlier authors, that H(-) is a source of heating at these levels. The response of this region to an ionizing flux of flare-associated UV radiation (1500 to 1900 A) is then addressed: it is found that the excess ionization of Si to Si(+) increases the local electron number density considerably, since most species are largely neutral at deep chromospheric levels. This in turn increases the electron-hydrogen atom association rate, the H(-) abundance, and the rate of absorption of photospheric radiation by this ion. It is found that the excess absorption by this process may lead to a substantial temperature enhancement at temperature minimum levels during flares.
NASA Astrophysics Data System (ADS)
Gerbi, Andrea; Buzio, Renato; Kawale, Shrikant; Bellingeri, Emilio; Martinelli, Alberto; Bernini, Cristina; Tresca, Cesare; Capone, Massimo; Profeta, Gianni; Ferdeghini, Carlo
2017-12-01
We investigate with scanning tunneling microscopy/spectroscopy (STM/STS) and density functional theory (DFT) calculations the surface structures and the electronic properties of Fe1+y Te thin films grown by pulsed laser deposition. Contrary to the regular arrangement of antiferromagnetic nanostripes previously reported on cleaved single-crystal samples, the surface of Fe1+y Te thin films displays a peculiar distribution of spatially inhomogeneous nanostripes. Both STM and DFT calculations show the bias-dependent nature of such features and support the interpretation of spin-polarized tunneling between the FeTe surface and an unintentionally magnetized tip. In addition, the spatial inhomogeneity is interpreted as a purely electronic effect related to changes in hybridization and Fe-Fe bond length driven by local variations in the concentration of excess interstitial Fe cations. Unexpectedly, the surface density of states measured by STS strongly evolves with temperature in close proximity to the antiferromagnetic-paramagnetic first-order transition, and reveals a large pseudogap of 180-250 meV at about 50-65 K. We believe that in this temperature range a phase transition takes place, and the system orders and locks into particular combinations of orbitals and spins because of the interplay between excess interstitial magnetic Fe and strongly correlated d-electrons.
NASA Astrophysics Data System (ADS)
Yan, Jia-Yi; Ehteshami, Hossein; Korzhavyi, Pavel A.; Borgenstam, Annika
2017-07-01
The energetics and atomic structures of Σ 3 [1 1 ¯0 ] (111 ) grain boundary (GB) of body-centered cubic (bcc) Ti-Mo and Ti-V alloys are investigated using density-functional-theory calculations and virtual crystal approximation. The electron density in bcc structure and the atomic displacements and excess energy of the GB are correlated to bcc-ω phase stability. Model calculations based on pairwise interplanar interactions successfully reproduce the chemical part of GB energy. The chemical GB energy can be expressed as a sum of excess pairwise interactions between bcc (111) layers, which are obtained from Gaussian elimination of the total energies of a number of periodic structures. The energy associated with the relaxation near the GB is solved by numerical minimization using the derivatives of the excess interactions. Anharmonic interlayer interactions are necessary for obtaining accurate relaxation energy and excess GB volume from model calculations. The effect of GB on vibrational spectrum is also investigated. Segregation energies of B and Y to a substitutional site on the GB plane are calculated. Preliminary results suggest that Y tends to segregate, while B tends to antisegregate.
Inert dark matter in type-II seesaw
NASA Astrophysics Data System (ADS)
Chen, Chuan-Hung; Nomura, Takaaki
2014-09-01
Weakly interacting massive particle (WIMP) as a dark matter (DM) candidate is further inspired by recent AMS-02 data, which confirm the excess of positron fraction observed earlier by PAMELA and Fermi-LAT experiments. Additionally, the excess of positron+electron flux is still significant in the measurement of Fermi-LAT. For solving the problems of massive neutrinos and observed excess of cosmic-ray, we study the model with an inert Higgs doublet (IHD) in the framework of type-II seesaw model by imposing a Z 2 symmetry on the IHD, where the lightest particle of IHD is the DM candidate and the neutrino masses originate from the Yukawa couplings of Higgs triplet and leptons. We calculate the cosmic-ray production in our model by using three kinds of neutrino mass spectra, which are classified by normal ordering, inverted ordering and quasi-degeneracy. We find that when the constraints of DM relic density and comic-ray antiproton spectrum are taken into account, the observed excess of positron/electron flux could be explained well in normal ordered neutrino mass spectrum. Moreover, excess of comic-ray neutrinos is implied in our model. We find that our results on < σv> are satisfied with and close to the upper limit of IceCube analysis. More data from comic-ray neutrinos could test our model.
Rettig, L.; Cortés, R.; Chu, J. -H.; ...
2016-01-25
Non-equilibrium conditions may lead to novel properties of materials with broken symmetry ground states not accessible in equilibrium as vividly demonstrated by non-linearly driven mid-infrared active phonon excitation. Potential energy surfaces of electronically excited states also allow to direct nuclear motion, but relaxation of the excess energy typically excites fluctuations leading to a reduced or even vanishing order parameter as characterized by an electronic energy gap. Here, using femtosecond time-and angle-resolved photoemission spectroscopy, we demonstrate a tendency towards transient stabilization of a charge density wave after near-infrared excitation, counteracting the suppression of order in the non-equilibrium state. Analysis of themore » dynamic electronic structure reveals a remaining energy gap in a highly excited transient state. In conclusion, our observation can be explained by a competition between fluctuations in the electronically excited state, which tend to reduce order, and transiently enhanced Fermi surface nesting stabilizing the order.« less
Variable energy, high flux, ground-state atomic oxygen source
NASA Technical Reports Server (NTRS)
Chutjian, Ara (Inventor); Orient, Otto J. (Inventor)
1987-01-01
A variable energy, high flux atomic oxygen source is described which is comprised of a means for producing a high density beam of molecules which will emit O(-) ions when bombarded with electrons; a means of producing a high current stream of electrons at a low energy level passing through the high density beam of molecules to produce a combined stream of electrons and O(-) ions; means for accelerating the combined stream to a desired energy level; means for producing an intense magnetic field to confine the electrons and O(-) ions; means for directing a multiple pass laser beam through the combined stream to strip off the excess electrons from a plurality of the O(-) ions to produce ground-state O atoms within the combined stream; electrostatic deflection means for deflecting the path of the O(-) ions and the electrons in the combined stream; and, means for stopping the O(-) ions and the electrons and for allowing only the ground-state O atoms to continue as the source of the atoms of interest. The method and apparatus are also adaptable for producing other ground-state atoms and/or molecules.
Optimal atomic structure of amorphous silicon obtained from density functional theory calculations
NASA Astrophysics Data System (ADS)
Pedersen, Andreas; Pizzagalli, Laurent; Jónsson, Hannes
2017-06-01
Atomic structure of amorphous silicon consistent with several reported experimental measurements has been obtained from annealing simulations using electron density functional theory calculations and a systematic removal of weakly bound atoms. The excess energy and density with respect to the crystal are well reproduced in addition to radial distribution function, angular distribution functions, and vibrational density of states. No atom in the optimal configuration is locally in a crystalline environment as deduced by ring analysis and common neighbor analysis, but coordination defects are present at a level of 1%-2%. The simulated samples provide structural models of this archetypal disordered covalent material without preconceived notion of the atomic ordering or fitting to experimental data.
Observation of hole accumulation in Ge/Si core/shell nanowires using off-axis electron holography.
Li, Luying; Smith, David J; Dailey, Eric; Madras, Prashanth; Drucker, Jeff; McCartney, Martha R
2011-02-09
Hole accumulation in Ge/Si core/shell nanowires (NWs) has been observed and quantified using off-axis electron holography and other electron microscopy techniques. The epitaxial [110]-oriented Ge/Si core/shell NWs were grown on Si (111) substrates by chemical vapor deposition through the vapor-liquid-solid growth mechanism. High-angle annular-dark-field scanning transmission electron microscopy images and off-axis electron holograms were obtained from specific NWs. The excess phase shifts measured by electron holography across the NWs indicated the presence of holes inside the Ge cores. Calculations based on a simplified coaxial cylindrical model gave hole densities of (0.4 ± 0.2) /nm(3) in the core regions.
Quasi 2D Ultrahigh Carrier Density in a Complex Oxide Broken Gap Heterojunction
DOE Office of Scientific and Technical Information (OSTI.GOV)
Xu, Peng; Droubay, Timothy C.; Jeong, Jong S.
2016-01-21
Two-dimensional (2D) ultra-high carrier densities at complex oxide interfaces are of considerable current research interest for novel plasmonic and high charge-gain devices. However, the highest 2D electron density obtained in oxide heterostructures is thus far limited to 3×1014 cm-2 (½ electron/unit cell/interface) at GdTiO3/SrTiO3 interfaces, and is typically an order of magnitude lower at LaAlO3/SrTiO3 interfaces. Here we show that carrier densities much higher than 3×1014 cm-2 can be achieved via band engineering. Transport measurements for 3 nm SrTiO3/t u.c. NdTiO3/3 nm SrTiO3/LSAT (001) show that charge transfer significantly in excess of the value expected from the polar discontinuity modelmore » occurs for higher t values. The carrier density remains unchanged, and equivalent to ½ electron/unit cell/interface for t < 6 unit cells. However, above a critical NdTiO3 thickness of 6 u.c., electrons from the valence band of NdTiO3 spill over into the SrTiO3 conduction band as a natural consequence of the band alignment. An atomistic model consistent with first-principle calculations and experimental results is proposed for the charge transfer mechanisms. These results may provide an exceptional route to the realization of the room-temperature oxide electronics.« less
NASA Astrophysics Data System (ADS)
Kurban, Mustafa; Erkoç, Şakir
2017-04-01
Surface and core formation, thermal and electronic properties of ternary cubic CdZnTe clusters are investigated by using classical molecular dynamics (MD) simulations and density functional theory (DFT) calculations. In this work, MD simulations of the CdZnTe clusters are performed by means of LAMMPS by using bond order potential (BOP). MD simulations are carried out at different temperatures to study the segregation phenomena of Cd, Zn and Te atoms, and deviation of clusters and heat capacity. After that, using optimized geometries obtained, excess charge on atoms, dipole moments, highest occupied molecular orbitals, lowest unoccupied molecular orbitals, HOMO-LUMO gaps (Eg) , total energies, spin density and the density of states (DOS) have been calculated with DFT. Simulation results such as heat capacity and segregation formation are compared with experimental bulk and theoretical results.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Vörös, Márton; Brawand, Nicholas P.; Galli, Giulia
Lead chalcogenide (PbX) nanoparticles are promising materials for solar energy conversion. However, the presence of trap states in their electronic gap limits their usability, and developing a universal strategy to remove trap states is a persistent challenge. Using calculations based on density functional theory, we show that hydrogen acts as an amphoteric impurity on PbX nanoparticle surfaces; hydrogen atoms may passivate defects arising from ligand imbalance or off-stoichiometric surface terminations irrespective of whether they originate from cation or anion excess. In addition, we show, using constrained density functional theory calculations, that hydrogen treatment of defective nanoparticles is also beneficial formore » charge transport in films. We also find that hydrogen adsorption on stoichiometric nanoparticles leads to electronic doping, preferentially n-type. Lastly, our findings suggest that postsynthesis hydrogen treatment of lead chalcogenide nanoparticle films is a viable approach to reduce electronic trap states or to dope well-passivated films.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Meng, Da; Zheng, Bin; Lin, Guang
2014-08-29
We have developed efficient numerical algorithms for the solution of 3D steady-state Poisson-Nernst-Planck equations (PNP) with excess chemical potentials described by the classical density functional theory (cDFT). The coupled PNP equations are discretized by finite difference scheme and solved iteratively by Gummel method with relaxation. The Nernst-Planck equations are transformed into Laplace equations through the Slotboom transformation. Algebraic multigrid method is then applied to efficiently solve the Poisson equation and the transformed Nernst-Planck equations. A novel strategy for calculating excess chemical potentials through fast Fourier transforms is proposed which reduces computational complexity from O(N2) to O(NlogN) where N is themore » number of grid points. Integrals involving Dirac delta function are evaluated directly by coordinate transformation which yields more accurate result compared to applying numerical quadrature to an approximated delta function. Numerical results for ion and electron transport in solid electrolyte for Li ion batteries are shown to be in good agreement with the experimental data and the results from previous studies.« less
NASA Astrophysics Data System (ADS)
Palit, S.; Basak, T.; Mondal, S. K.; Pal, S.; Chakrabarti, S. K.
2013-09-01
X-ray photons emitted during solar flares cause ionization in the lower ionosphere (~60 to 100 km) in excess of what is expected to occur due to a quiet sun. Very low frequency (VLF) radio wave signals reflected from the D-region of the ionosphere are affected by this excess ionization. In this paper, we reproduce the deviation in VLF signal strength during solar flares by numerical modeling. We use GEANT4 Monte Carlo simulation code to compute the rate of ionization due to a M-class flare and a X-class flare. The output of the simulation is then used in a simplified ionospheric chemistry model to calculate the time variation of electron density at different altitudes in the D-region of the ionosphere. The resulting electron density variation profile is then self-consistently used in the LWPC code to obtain the time variation of the change in VLF signal. We did the modeling of the VLF signal along the NWC (Australia) to IERC/ICSP (India) propagation path and compared the results with observations. The agreement is found to be very satisfactory.
Hydrogen treatment as a detergent of electronic trap states in lead chalcogenide nanoparticles
Vörös, Márton; Brawand, Nicholas P.; Galli, Giulia
2016-11-15
Lead chalcogenide (PbX) nanoparticles are promising materials for solar energy conversion. However, the presence of trap states in their electronic gap limits their usability, and developing a universal strategy to remove trap states is a persistent challenge. Using calculations based on density functional theory, we show that hydrogen acts as an amphoteric impurity on PbX nanoparticle surfaces; hydrogen atoms may passivate defects arising from ligand imbalance or off-stoichiometric surface terminations irrespective of whether they originate from cation or anion excess. In addition, we show, using constrained density functional theory calculations, that hydrogen treatment of defective nanoparticles is also beneficial formore » charge transport in films. We also find that hydrogen adsorption on stoichiometric nanoparticles leads to electronic doping, preferentially n-type. Lastly, our findings suggest that postsynthesis hydrogen treatment of lead chalcogenide nanoparticle films is a viable approach to reduce electronic trap states or to dope well-passivated films.« less
A tale of two theories: How the adiabatic response and ULF waves affect relativistic electrons
NASA Astrophysics Data System (ADS)
Green, J. C.; Kivelson, M. G.
2001-11-01
Using data from the Comprehensive Energetic Particle and Pitch Angle Distribution (CEPPAD)-High Sensitivity Telescope (HIST) instrument on the Polar spacecraft and ground magnetometer data from the 210 meridian magnetometer chain, we test the ULF wave drift resonance theory proposed to explain relativistic electron phase space density enhancements. We begin by investigating changes in electron flux due to the ``Dst effect.'' The Dst effect refers to the adiabatic response of relativistic electrons to changes in the magnetic field characterized by the Dst index. The Dst effect, assuming no loss or addition of new electrons, produces reversible order of magnitude changes in relativistic electrons flux measured at fixed energy, but it cannot account for the flux enhancement that occurs in the recovery phase of most storms. Liouville's theorem states that phase space density expressed in terms of constant adiabatic invariants is unaffected by adiabatic field changes and thus is insensitive to the Dst effect. It is therefore useful to express flux measurements in terms of phase space densities at constant first, second and third adiabatic invariants. The phase space density is determined from the CEPPAD-HIST electron detector that measures differential directional flux of electrons from 0.7 to 9 MeV and the Tsyganenko 96 field model. The analysis is done for January to June 1997. The ULF wave drift resonance theory that we test proposes that relativistic electrons are accelerated by an m=2 toroidal or poloidal mode wave whose frequency equals the drift frequency of the electron. The theory is tested by comparing the relativistic electron phase space densities to wave power determined at three ground stations with L* values of 4.0, 5.7 and 6.2. Comparison of the wave data to the phase space densities shows that five out of nine storm events are consistent with the ULF wave drift resonance mechanism, three out of nine give ambiguous support to the model, and one event has high ULF wave power at the drift frequency of the electrons but no corresponding phase space density enhancement suggesting that ULF wave power alone is not sufficient to cause an electron response. Two explanations of the anomalous event are investigated including excessive loss of electrons to the magnetopause and wave duration.
Insulating ferromagnetic oxide films: the controlling role of oxygen vacancy ordering
DOE Office of Scientific and Technical Information (OSTI.GOV)
Salafranca Laforga, Juan I; Salafranca, Juan; Biskup, Nevenko
2014-01-01
The origin of ferromagnetism in strained epitaxial LaCoO3 films has been a long-standing mystery. Here, we combine atomically resolved Z-contrast imaging, electron-energy-loss spectroscopy, and density-functional calculations to demonstrate that, in epitaxial LaCoO3 films, oxygen-vacancy superstructures release strain, control the film s electronic properties, and produce the observed ferromagnetism via the excess electrons in the Co d states. Although oxygen vacancies typically dope a material n-type, we find that ordered vacancies induce Peierls-like minigaps which, combined with strain relaxation, trigger a nonlinear rupture of the energy bands, resulting in insulating behavior.
Insulating Ferromagnetic LaCoO3-δ Films: A Phase Induced by Ordering of Oxygen Vacancies
NASA Astrophysics Data System (ADS)
Biškup, Neven; Salafranca, Juan; Mehta, Virat; Oxley, Mark P.; Suzuki, Yuri; Pennycook, Stephen J.; Pantelides, Sokrates T.; Varela, Maria
2014-02-01
The origin of ferromagnetism in strained epitaxial LaCoO3 films has been a long-standing mystery. Here, we combine atomically resolved Z-contrast imaging, electron-energy-loss spectroscopy, and density-functional calculations to demonstrate that, in epitaxial LaCoO3 films, oxygen-vacancy superstructures release strain, control the film's electronic properties, and produce the observed ferromagnetism via the excess electrons in the Co d states. Although oxygen vacancies typically dope a material n-type, we find that ordered vacancies induce Peierls-like minigaps which, combined with strain relaxation, trigger a nonlinear rupture of the energy bands, resulting in insulating behavior.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Yang, Zhichao, E-mail: zcyang.phys@gmail.com; Zhang, Yuewei; Krishnamoorthy, Sriram
We report on a tunneling hot electron transistor amplifier with common-emitter current gain greater than 10 at a collector current density in excess of 40 kA/cm{sup 2}. The use of a wide-bandgap GaN/AlN (111 nm/2.5 nm) emitter was found to greatly improve injection efficiency of the emitter and reduce cold electron leakage. With an ultra-thin (8 nm) base, 93% of the injected hot electrons were collected, enabling a common-emitter current gain up to 14.5. This work improves understanding of the quasi-ballistic hot electron transport and may impact the development of high speed devices based on unipolar hot electron transport.
Communication: Improved ab initio molecular dynamics by minimally biasing with experimental data
NASA Astrophysics Data System (ADS)
White, Andrew D.; Knight, Chris; Hocky, Glen M.; Voth, Gregory A.
2017-01-01
Accounting for electrons and nuclei simultaneously is a powerful capability of ab initio molecular dynamics (AIMD). However, AIMD is often unable to accurately reproduce properties of systems such as water due to inaccuracies in the underlying electronic density functionals. This shortcoming is often addressed by added empirical corrections and/or increasing the simulation temperature. We present here a maximum-entropy approach to directly incorporate limited experimental data via a minimal bias. Biased AIMD simulations of water and an excess proton in water are shown to give significantly improved properties both for observables which were biased to match experimental data and for unbiased observables. This approach also yields new physical insight into inaccuracies in the underlying density functional theory as utilized in the unbiased AIMD.
Communication: Improved ab initio molecular dynamics by minimally biasing with experimental data.
White, Andrew D; Knight, Chris; Hocky, Glen M; Voth, Gregory A
2017-01-28
Accounting for electrons and nuclei simultaneously is a powerful capability of ab initio molecular dynamics (AIMD). However, AIMD is often unable to accurately reproduce properties of systems such as water due to inaccuracies in the underlying electronic density functionals. This shortcoming is often addressed by added empirical corrections and/or increasing the simulation temperature. We present here a maximum-entropy approach to directly incorporate limited experimental data via a minimal bias. Biased AIMD simulations of water and an excess proton in water are shown to give significantly improved properties both for observables which were biased to match experimental data and for unbiased observables. This approach also yields new physical insight into inaccuracies in the underlying density functional theory as utilized in the unbiased AIMD.
NASA Astrophysics Data System (ADS)
López-Coto, R.; Hahn, J.; BenZvi, S.; Dingus, B.; Hinton, J.; Nisa, M. U.; Parsons, R. D.; Greus, F. Salesa; Zhang, H.; Zhou, H.
2018-11-01
The positron excess measured by PAMELA and AMS can only be explained if there is one or several sources injecting them. Moreover, at the highest energies, it requires the presence of nearby ( ∼ hundreds of parsecs) and middle age (maximum of ∼ hundreds of kyr) sources. Pulsars, as factories of electrons and positrons, are one of the proposed candidates to explain the origin of this excess. To calculate the contribution of these sources to the electron and positron flux at the Earth, we developed EDGE (Electron Diffusion and Gamma rays to the Earth), a code to treat the propagation of electrons and compute their diffusion from a central source with a flexible injection spectrum. Using this code, we can derive the source's gamma-ray spectrum, spatial extension, the all-electron density in space, the electron and positron flux reaching the Earth and the positron fraction measured at the Earth. We present in this paper the foundations of the code and study how different parameters affect the gamma-ray spectrum of a source and the electron flux measured at the Earth. We also studied the effect of several approximations usually performed in these studies. This code has been used to derive the results of the positron flux measured at the Earth in [1].
Jin, Xiao; Chang, Chun; Zhao, Weifeng; Huang, Shujuan; Gu, Xiaobing; Zhang, Qin; Li, Feng; Zhang, Yubao; Li, Qinghua
2018-05-09
The electron-blocking layer (EBL) is important to balance the charge carrier transfer and achieve highly efficient quantum dot light-emitting diodes (QLEDs). Here, we report the utilization of a soluble tert-butyldimethylsilyl chloride-modified poly( p-phenylene benzobisoxazole) (TBS-PBO) as an EBL for simultaneous good charge carrier transfer balance while maintaining a high current density. We show that the versatile TBS-PBO blocks excess electron injection into the quantum dots (QDs), thus leading to better charge carrier transfer balance. It also restricts the undesired QD-to-EBL electron-transfer process, which preserves the superior emission capabilities of the emitter. As a consequence, the TBS-PBO device delivers an external quantum efficiency (EQE) maximum of 16.7% along with a remarkable current density as high as 139 mA/cm 2 with a brightness of 5484 cd/m 2 . The current density of our device is higher than those of insulator EBL-based devices because of the higher conductivity of the TBS-PBO versus insulator EBL, thus helping achieve high luminance values ranging from 1414 to 20 000 cd/cm 2 with current densities ranging from 44 to 648 mA/cm 2 and EQE > 14%. We believe that these unconventional features of the present TBS-PBO-based QLEDs will expand the wide use of TBS-PBO as buffer layers in other advanced QLED applications.
Hot LO-phonon limited electron transport in ZnO/MgZnO channels
NASA Astrophysics Data System (ADS)
Šermukšnis, E.; Liberis, J.; Matulionis, A.; Avrutin, V.; Toporkov, M.; Özgür, Ü.; Morkoç, H.
2018-05-01
High-field electron transport in two-dimensional channels at ZnO/MgZnO heterointerfaces has been investigated experimentally. Pulsed current-voltage (I-V) and microwave noise measurements used voltage pulse widths down to 30 ns and electric fields up to 100 kV/cm. The samples investigated featured electron densities in the range of 4.2-6.5 × 1012 cm-2, and room temperature mobilities of 142-185 cm2/V s. The pulsed nature of the applied field ensured negligible, if any, change in the electron density, thereby allowing velocity extraction from current with confidence. The highest extracted electron drift velocity of ˜0.5 × 107 cm/s is somewhat smaller than that estimated for bulk ZnO; this difference is explained in the framework of longitudinal optical phonon accumulation (hot-phonon effect). The microwave noise data allowed us to rule out the effect of excess acoustic phonon temperature caused by Joule heating. Real-space transfer of hot electrons into the wider bandgap MgZnO layer was observed to be a limiting factor in samples with a high Mg content (48%), due to phase segregation and the associated local lowering of the potential barrier.
[C ii] 158 μm line detection of the warm ionized medium in the Scutum-Crux spiral arm tangency
NASA Astrophysics Data System (ADS)
Velusamy, T.; Langer, W. D.; Pineda, J. L.; Goldsmith, P. F.
2012-05-01
Context. The Herschel HIFI GOT C+ Galactic plane [C ii] spectral survey has detected strong emission at the spiral arm tangencies. Aims: We use the unique viewing geometry of the Scutum-Crux (S-C) tangency nearl = 30° to detect the warm ionized medium (WIM) component traced by [CII] and to study the effects of spiral density waves on Interstellar Medium (ISM) gas. Methods: We compare [C ii] velocity features with ancillary H i, 12CO and 13CO data near tangent velocities at each longitude to separate the cold neutral medium and the warm neutral + ionized components in the S-C tangency, then we identify [C ii] emission at the highest velocities without any contribution from 12CO clouds, as WIM. Results: We present the GOT C+ results for the S-C tangency. We interpret the diffuse and extended excess [C ii] emission at and above the tangent velocities as arising in the electron-dominated warm ionized gas in the WIM. We derive an electron density in the range of 0.2-0.9 cm-3 at each longitude, a factor of several higher than the average value from Hα and pulsar dispersion. Conclusions: We interpret the excess [C ii] in S-C tangency as shock compression of the WIM induced by the spiral density waves. Herschel is an ESA space observatory with science instruments provided by European-led Principal Investigator consortia and with important participation from NASA.
Electrical response of Pt/Ru/PbZr0.52Ti0.48O3/Pt capacitor as function of lead precursor excess
NASA Astrophysics Data System (ADS)
Gueye, Ibrahima; Le Rhun, Gwenael; Renault, Olivier; Defay, Emmanuel; Barrett, Nicholas
2017-11-01
We investigated the influence of the surface microstructure and chemistry of sol-gel grown PbZr0.52Ti0.48O3 (PZT) on the electrical performance of PZT-based metal-insulator-metal (MIM) capacitors as a function of Pb precursor excess. Using surface-sensitive, quantitative X-ray photoelectron spectroscopy and scanning electron microscopy, we confirm the presence of ZrOx surface phase. Low Pb excess gives rise to a discontinuous layer of ZrOx on a (100) textured PZT film with a wide band gap reducing the capacitance of PZT-based MIMs whereas the breakdown field is enhanced. At high Pb excess, the nanostructures disappear while the PZT grain size increases and the film texture becomes (111). Concomitantly, the capacitance density is enhanced by 8.7%, and both the loss tangent and breakdown field are reduced by 20 and 25%, respectively. The role of the low permittivity, dielectric interface layer on capacitance and breakdown is discussed.
Kinetic mechanism for reversible structural transition in MoTe2 induced by excess charge carriers
NASA Astrophysics Data System (ADS)
Rubel, O.
2018-06-01
Kinetic of a reversible structural transition between insulating (2H) and metallic (1T ') phases in a monolayer MoTe2 due to an electrostatic doping is studied using first-principle calculations. The driving force for the structural transition is the energy gained by transferring excess electrons from the bottom of the conduction band to lower energy gapless states in the metallic phase as have been noticed in earlier studies. The corresponding structural transformation involves dissociation of Mo-Te bonds (one per formula unit), which results in a kinetic energy barrier of 0.83 eV. The transformation involves a consecutive movement of atoms similar to a domain wall motion. The presence of excess charge carriers modifies not only the total energy of the initial and final states, but also lowers an energy of the transition state. An experimentally observed hysteresis in the switching process can be attributed to changes in the kinetic energy barrier due to its dependence on the excess carrier density.
Field-induced structural control of COx molecules adsorbed on graphene
NASA Astrophysics Data System (ADS)
Matsubara, Manaho; Okada, Susumu
2018-05-01
Using the density functional theory combined with both the van der Waals correction and the effective screening medium method, we investigate the energetics and electronic structures of CO and CO2 molecules adsorbed on graphene surfaces in the field-effect-transistor structure with respect to the external electric field by the excess electrons/holes. The binding energies of CO and CO2 molecules to graphene monotonically increase with increasing hole and electron concentrations. The increase occurs regardless of the molecular conformations to graphene and the counter electrode, indicating that the carrier injection substantially enhances the molecular adsorption on graphene. Injected carriers also modulate the stable molecular conformation, which is metastable in the absence of an electric field.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Yang, Zhichao, E-mail: zcyang.phys@gmail.com; Zhang, Yuewei; Nath, Digbijoy N.
We report on Gallium Nitride-based tunneling hot electron transistor amplifier with common-emitter current gain greater than 1. Small signal current gain up to 5 and dc current gain of 1.3 were attained in common-emitter configuration with collector current density in excess of 50 kA/cm{sup 2}. The use of a combination of 1 nm GaN/3 nm AlN layers as an emitter tunneling barrier was found to improve the energy collimation of the injected electrons. These results represent demonstration of unipolar vertical transistors in the III-nitride system that can potentially lead to higher frequency and power microwave devices.
Electronic properties of graphene and effect of doping on the same
DOE Office of Scientific and Technical Information (OSTI.GOV)
Nag, Abhinav, E-mail: abhinavn76@gmail.com; Kumar, Jagdish, E-mail: jagdishphysicist@gmail.com; Sastri, O. S. K. S., E-mail: sastri.osks@gmail.com
2015-05-15
The electronic structure of pure and doped two dimensional crystalline material graphene have been computed and analyzed. Density functional theory has been employed to perform calculations. The electronic exchange and correlations are considered using local density approximation (LDA). The doped material is studied within virtual crystal approximation (VCA) upto 0.15e excess as well as deficient charge per unit cell. Full Potential Linear Augmented Plane Wave basis as implemented in ELK code has been used to perform the calculations. To ensures the monolayer of graphene, distance after which energy is almost constant when interlayer seperation is varied, is taken as separatingmore » distance between the layers. The obtained density of states and band structure is analyzed. Results show that there is zero band gap in undoped graphene and conduction and valence band meets at fermi level at symmetry point K. PDOS graph shows that near the fermi level the main contribution is due to 2p{sub z} electrons. By using VCA, calculations for doped graphene are done and the results for doped graphene are compared with undoped graphene. We found that by electron or hole doping, the point where conduction and valence bands meet can shift below or above the fermi level. The shift in bands seems almost as per rigid band model upto doping concentration studied.« less
Formation of Surface and Quantum-Well States in Ultra Thin Pt Films on the Au(111) Surface
Silkin, Igor V.; Koroteev, Yury M.; Echenique, Pedro M.; Chulkov, Evgueni V.
2017-01-01
The electronic structure of the Pt/Au(111) heterostructures with a number of Pt monolayers n ranging from one to three is studied in the density-functional-theory framework. The calculations demonstrate that the deposition of the Pt atomic thin films on gold substrate results in strong modifications of the electronic structure at the surface. In particular, the Au(111) s-p-type Shockley surface state becomes completely unoccupied at deposition of any number of Pt monolayers. The Pt adlayer generates numerous quantum-well states in various energy gaps of Au(111) with strong spatial confinement at the surface. As a result, strong enhancement in the local density of state at the surface Pt atomic layer in comparison with clean Pt surface is obtained. The excess in the density of states has maximal magnitude in the case of one monolayer Pt adlayer and gradually reduces with increasing number of Pt atomic layers. The spin–orbit coupling produces strong modification of the energy dispersion of the electronic states generated by the Pt adlayer and gives rise to certain quantum states with a characteristic Dirac-cone shape. PMID:29232833
Simulation study of the sub-terawatt laser wakefield acceleration operated in self-modulated regime
NASA Astrophysics Data System (ADS)
Hsieh, C.-Y.; Lin, M.-W.; Chen, S.-H.
2018-02-01
Laser wakefield acceleration (LWFA) can be accomplished by introducing a sub-terawatt (TW) laser pulse into a thin, high-density gas target. In this way, the self-focusing effect and the self-modulation that happened on the laser pulse produce a greatly enhanced laser peak intensity that can drive a nonlinear plasma wave to accelerate electrons. A particle-in-cell model is developed to study sub-TW LWFA when a 0.6-TW laser pulse interacts with a dense hydrogen plasma. Gas targets having a Gaussian density profile or a flat-top distribution are defined for investigating the properties of sub-TW LWFA when conducting with a gas jet or a gas cell. In addition to using 800-nm laser pulses, simulations are performed with 1030-nm laser pulses, as they represent a viable approach to realize the sub-TW LWFA driven by high-frequency, diode-pumped laser systems. The peak density which allows the laser peak power PL˜2 Pc r of self-focusing critical power is favourable for conducting sub-TW LWFA. Otherwise, an excessively high peak density can induce an undesired filament effect which rapidly disintegrates the laser field envelope and violates the process of plasma wave excitation. The plateau region of a flat-top density distribution allows the self-focusing and the self-modulation of the laser pulse to develop, from which well-established plasma bubbles can be produced to accelerate electrons. The process of electron injection is complicated in such high-density plasma conditions; however, increasing the length of the plateau region represents a straightforward method to realize the injection and acceleration of electrons within the first bubble, such that an improved LWFA performance can be accomplished.
Excess electrons in reduced rutile and anatase TiO2
NASA Astrophysics Data System (ADS)
Yin, Wen-Jin; Wen, Bo; Zhou, Chuanyao; Selloni, Annabella; Liu, Li-Min
2018-05-01
As a prototypical photocatalyst, TiO2 is a material of scientific and technological interest. In photocatalysis and other applications, TiO2 is often reduced, behaving as an n-type semiconductor with unique physico-chemical properties. In this review, we summarize recent advances in the understanding of the fundamental properties and applications of excess electrons in reduced, undoped TiO2. We discuss the characteristics of excess electrons in the bulk and at the surface of rutile and anatase TiO2 focusing on their localization, spatial distribution, energy levels, and dynamical properties. We examine specific features of the electronic states for photoexcited TiO2, for intrinsic oxygen vacancy and Ti interstitial defects, and for surface hydroxyls. We discuss similarities and differences in the behaviors of excess electrons in the rutile and anatase phases. Finally, we consider the effect of excess electrons on the reactivity, focusing on the interaction between excess electrons and adsorbates.
Search for tachyons associated with extensive air showers in the ground level cosmic radiation
NASA Technical Reports Server (NTRS)
Masjed, H. F.; Ashton, F.
1985-01-01
Events detected in a shielded plastic scintillation counter occurring in the 26 microsec preceding the arrival of an extensive air shower at ground level with local electron density or = 20 m to the -2 power and the 240 microsec after its arrival have been studied. No significant excess of events (tachyons) arriving in the early time domain have been observed in a sample of 11,585 air shower triggers.
Time-resolved compression of a capsule with a cone to high density for fast-ignition laser fusion
Theobald, W.; Solodov, A. A.; Stoeckl, C.; ...
2014-12-12
The advent of high-intensity lasers enables us to recreate and study the behaviour of matter under the extreme densities and pressures that exist in many astrophysical objects. It may also enable us to develop a power source based on laser-driven nuclear fusion. Achieving such conditions usually requires a target that is highly uniform and spherically symmetric. Here we show that it is possible to generate high densities in a so-called fast-ignition target that consists of a thin shell whose spherical symmetry is interrupted by the inclusion of a metal cone. Using picosecond-time-resolved X-ray radiography, we show that we can achievemore » areal densities in excess of 300 mg cm -2 with a nanosecond-duration compression pulse -- the highest areal density ever reported for a cone-in-shell target. Such densities are high enough to stop MeV electrons, which is necessary for igniting the fuel with a subsequent picosecond pulse focused into the resulting plasma.« less
Time-resolved compression of a capsule with a cone to high density for fast-ignition laser fusion.
Theobald, W; Solodov, A A; Stoeckl, C; Anderson, K S; Beg, F N; Epstein, R; Fiksel, G; Giraldez, E M; Glebov, V Yu; Habara, H; Ivancic, S; Jarrott, L C; Marshall, F J; McKiernan, G; McLean, H S; Mileham, C; Nilson, P M; Patel, P K; Pérez, F; Sangster, T C; Santos, J J; Sawada, H; Shvydky, A; Stephens, R B; Wei, M S
2014-12-12
The advent of high-intensity lasers enables us to recreate and study the behaviour of matter under the extreme densities and pressures that exist in many astrophysical objects. It may also enable us to develop a power source based on laser-driven nuclear fusion. Achieving such conditions usually requires a target that is highly uniform and spherically symmetric. Here we show that it is possible to generate high densities in a so-called fast-ignition target that consists of a thin shell whose spherical symmetry is interrupted by the inclusion of a metal cone. Using picosecond-time-resolved X-ray radiography, we show that we can achieve areal densities in excess of 300 mg cm(-2) with a nanosecond-duration compression pulse--the highest areal density ever reported for a cone-in-shell target. Such densities are high enough to stop MeV electrons, which is necessary for igniting the fuel with a subsequent picosecond pulse focused into the resulting plasma.
p -Carborane Conjugation in Radical Anions of Cage–Cage and Cage–Phenyl Compounds
Cook, Andrew R.; Valášek, Michal; Funston, Alison M.; ...
2017-12-14
Optical electron transfer (intervalence) transitions in radical anions of p-carborane oligomers attest to delocalization of electrons between two p-carboranes cages or a p-carborane and a phenyl ring. Oligomers of the 12 vertex p-carborane (C 2B 10H 12) cage, [12], with up to 3 cages were synthesized, as well as p-carboranes with one or two trimethylsilylphenyl groups, [6], attached to the carbon termini. Pulse radiolysis in tetrahydrofuran produced radical anions, determined redox potentials by equilibria and measured their absorption spectra. Density functional theory computations provided critical insight into the optical electron transfer bands and electron delocalization. One case, [6–12–6], showed bothmore » Robin–Day class II and III transitions. The class III transition resulted from a fully delocalized excess electron across both benzene rings and the central p-carborane, with an electronic coupling H ab = 0.46 eV between the cage and either benzene. This unprecedented finding shows that p-carborane bridges are not simply electron withdrawing insulators. In other cases with more than ~1/2 of the excess electron localized on a [12], large cage distortions were triggered, producing a partially open cage with a nido-like structure. This resulted in class II transitions with similar Hab but massive reorganization energies. The computations also predicted delocalization in radical cations, but complexities in cation formation allowed only tentative experimental support of the predictions. Thus, the results with anions provide clear evidence for carborane conjugation that might be exploited in molecular wire materials, which are classically composed of all π-conjugated molecules.« less
p -Carborane Conjugation in Radical Anions of Cage–Cage and Cage–Phenyl Compounds
DOE Office of Scientific and Technical Information (OSTI.GOV)
Cook, Andrew R.; Valášek, Michal; Funston, Alison M.
Optical electron transfer (intervalence) transitions in radical anions of p-carborane oligomers attest to delocalization of electrons between two p-carboranes cages or a p-carborane and a phenyl ring. Oligomers of the 12 vertex p-carborane (C 2B 10H 12) cage, [12], with up to 3 cages were synthesized, as well as p-carboranes with one or two trimethylsilylphenyl groups, [6], attached to the carbon termini. Pulse radiolysis in tetrahydrofuran produced radical anions, determined redox potentials by equilibria and measured their absorption spectra. Density functional theory computations provided critical insight into the optical electron transfer bands and electron delocalization. One case, [6–12–6], showed bothmore » Robin–Day class II and III transitions. The class III transition resulted from a fully delocalized excess electron across both benzene rings and the central p-carborane, with an electronic coupling H ab = 0.46 eV between the cage and either benzene. This unprecedented finding shows that p-carborane bridges are not simply electron withdrawing insulators. In other cases with more than ~1/2 of the excess electron localized on a [12], large cage distortions were triggered, producing a partially open cage with a nido-like structure. This resulted in class II transitions with similar Hab but massive reorganization energies. The computations also predicted delocalization in radical cations, but complexities in cation formation allowed only tentative experimental support of the predictions. Thus, the results with anions provide clear evidence for carborane conjugation that might be exploited in molecular wire materials, which are classically composed of all π-conjugated molecules.« less
Hydrogen treatment as a detergent of electronic trap states in lead chalcogenide nanoparticles
NASA Astrophysics Data System (ADS)
Voros, Marton; Brawand, Nicholas; Galli, Giulia
Lead chalcogenide (PbX) nanoparticles are promising materials for solar energy conversion. However, the presence of trap states in their electronic gap limits their usability, and developing a universal strategy to remove trap states is a persistent challenge. Using calculations based on density functional theory, we show that hydrogen acts as an amphoteric impurity on PbX nanoparticle surfaces; hydrogen atoms may passivate defects arising from ligand imbalance or off-stoichiometric surface terminations, irrespective of whether they originate from cation or anion excess. In addition, we show, using constrained density functional theory calculations, that hydrogen treatment of defective nanoparticles is also beneficial for charge transport in films. We also find that hydrogen adsorption on stoichiometric nanoparticles leads to electronic doping, preferentially n-type. Our findings suggest that post-synthesis hydrogen treatment of lead chalcogenide nanoparticle films is a viable approach to reduce electronic trap states or to dope well-passivated films. Work supported by the Center for Advanced Solar Photophysics, an Energy Frontier Research Center funded by the US Department of Energy (DOE), Office of Science, Office of Basic Energy Sciences (NB) and U.S. DOE under Contract No. DE-AC02-06CH11357 (MV).
Experimentally Determined Plasma Parameters in a 30 cm Ion Engine
NASA Technical Reports Server (NTRS)
Sengupta, Anita; Goebel, Dan; Fitzgerald, Dennis; Owens, Al; Tynan, George; Dorner, Russ
2004-01-01
Single planar Langmuir probes and fiber optic probes are used to concurrently measure the plasma properties and neutral density variation in a 30cm diameter ion engine discharge chamber, from the immediate vicinity of the keeper to the near grid plasma region. The fiber optic probe consists of a collimated optical fiber recessed into a double bore ceramic tube fitted with a stainless steel light-limiting window. The optical fiber probe is used to measure the emission intensity of excited neutral xenon for a small volume of plasma, at various radial and axial locations. The single Langmuir probes, are used to generate current-voltage characteristics at a total of 140 spatial locations inside the discharge chamber. Assuming a maxwellian distribution for the electron population, the Langmuir probe traces provide spatially resolved measurements of plasma potential, electron temperature, and plasma density. Data reduction for the NSTAR TH8 and TH15 throttle points indicates an electron temperature range of 1 to 7.9 eV and an electron density range of 4e10 to le13 cm(sup -3), throughout the discharge chamber, consistent with the results in the literature. Plasma potential estimates, computed from the first derivative of the probe characteristic, indicate potential from 0.5V to 11V above the discharge voltage along the thruster centerline. These values are believed to be excessively high due to the sampling of the primary electron population along the thruster centerline. Relative neutral density profiles are also obtained with a fiber optic probe sampling photon flux from the 823.1 nm excited to ground state transition. Plasma parameter measurements and neutral density profiles will be presented as a function of probe location and engine discharge conditions. A discussion of the measured electron energy distribution function will also be presented, with regards to variation from pure maxwellian. It has been found that there is a distinct primary population found along the thruster centerline, which causes estimates of electron temperature, electron density, and plasma potential, to err on the high side, due this energetic population. Computation of the energy distribution fimction of the plasma clearly indicates the presence of primaries, whose presence become less obvious with radial distance from the main discharge plume.
Park, Jozeph; Kim, Yang Soo; Ok, Kyung-Chul; Park, Yun Chang; Kim, Hyun You; Park, Jin-Seong; Kim, Hyun-Suk
2016-01-01
High-mobility zinc oxynitride (ZnON) semiconductors were grown by RF sputtering using a Zn metal target in a plasma mixture of Ar, N2, and O2 gas. The RF power and the O2 to N2 gas flow rates were systematically adjusted to prepare a set of ZnON films with different relative anion contents. The carrier density was found to be greatly affected by the anion composition, while the electron mobility is determined by a fairly complex mechanism. First-principles calculations indicate that excess vacant nitrogen sites (VN) in N-rich ZnON disrupt the local electron conduction paths, which may be restored by having oxygen anions inserted therein. The latter are anticipated to enhance the electron mobility, and the exact process parameters that induce such a phenomenon can only be found experimentally. Contour plots of the Hall mobility and carrier density with respect to the RF power and O2 to N2 gas flow rate ratio indicate the existence of an optimum region where maximum electron mobility is obtained. Using ZnON films grown under the optimum conditions, the fabrication of high-performance devices with field-effect mobility values exceeding 120 cm2/Vs is demonstrated based on simple reactive RF sputtering methods. PMID:27098656
NASA Technical Reports Server (NTRS)
Bosomworth, D. R.; Moles, W. H.
1969-01-01
A memory and display device has been developed by combing a fast phosphor layer with a cathodochromic layer in a cathode ray tube. Images are stored as patterns of electron beam induced optical density in the cathodo-chromic material. The stored information is recovered by exciting the backing, fast phosphor layer with a constant current electron beam and detecting the emitted radiation which is modulated by absorption in the cathodochromic layer. The storage can be accomplished in one or more TV frames (1/30 sec each). More than 500 TV line resolution and close to 2:1 contrast ratio are possible. The information storage time in a dark environment is approximately 24 hours. A reconstituted (readout) electronic video signal can be generated continuously for times in excess of 10 minutes or periodically for several hours.
Solvation and Evolution Dynamics of an Excess Electron in Supercritical CO2
NASA Astrophysics Data System (ADS)
Wang, Zhiping; Liu, Jinxiang; Zhang, Meng; Cukier, Robert I.; Bu, Yuxiang
2012-05-01
We present an ab initio molecular dynamics simulation of the dynamics of an excess electron solvated in supercritical CO2. The excess electron can exist in three types of states: CO2-core localized, dual-core localized, and diffuse states. All these states undergo continuous state conversions via a combination of long lasting breathing oscillations and core switching, as also characterized by highly cooperative oscillations of the excess electron volume and vertical detachment energy. All of these oscillations exhibit a strong correlation with the electron-impacted bending vibration of the core CO2, and the core-switching is controlled by thermal fluctuations.
Direct Measurements of Pore Fluid Density by Vibrating Tube Densimetry
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gruszkiewicz, Miroslaw S.; Rother, Gernot; Wesolowski, David J.
2012-02-27
The densities of pore-confined fluids were measured for the first time by means of a vibrating tube method. Isotherms of total adsorption capacity were measured directly making the method complementary to the conventional gravimetric or volumetric/piezometric adsorption techniques, which yield the excess adsorption (the Gibbsian surface excess). A custom-made high-pressure, high-temperature vibrating tube densimeter (VTD) was used to measure the densities of subcritical and supercritical propane (between 35 °C and 97 °C) and supercritical carbon dioxide (between 32 C and 50°C) saturating hydrophobic silica aerogel (0.2 g/cm 3, 90% porosity) synthesized inside Hastelloy U-tubes. Additionally, excess adsorption isotherms for supercriticalmore » CO 2 and the same porous solid were measured gravimetrically using a precise magnetically-coupled microbalance. Pore fluid densities and total adsorption isotherms increased monotonically with increasing density of the bulk fluid, in contrast to excess adsorption isotherms, which reached a maximum at a subcritical density of the bulk fluid, and then decreased towards zero or negative values at supercritical densities. Compression of the confined fluid significantly beyond the density of the bulk liquid at the same temperature was observed at subcritical temperatures. The features of the isotherms of confined fluid density are interpreted to elucidate the observed behavior of excess adsorption. The maxima of excess adsorption were found to occur below the critical density of the bulk fluid at the conditions corresponding to the beginning of the plateau of total adsorption, marking the end of the transition of pore fluid to a denser, liquid-like pore phase. The results for propane and carbon dioxide showed similarity in the sense of the principle of corresponding states. No measurable effect of pore confinement on the liquid-vapor critical point was found. Quantitative agreement was obtained between excess adsorption isotherms determined from VTD total adsorption results and those measured gravimetrically at the same temperature, confirming the validity of the vibrating tube measurements. Vibrating tube densimetry was demonstrated as a novel experimental approach capable of providing the average density of pore-confined fluids.« less
Gu, Bin; Smyth, Maeve; Kohanoff, Jorge
2014-11-28
Using first-principles molecular dynamics simulations, we have investigated the notion that amino acids can play a protective role when DNA is exposed to excess electrons produced by ionizing radiation. In this study we focus on the interaction of glycine with the DNA nucleobase thymine. We studied thymine-glycine dimers and a condensed phase model consisting of one thymine molecule solvated in amorphous glycine. Our results show that the amino acid acts as a protective agent for the nucleobase in two ways. If the excess electron is initially captured by the thymine, then a proton is transferred in a barrier-less way from a neighboring hydrogen-bonded glycine. This stabilizes the excess electron by reducing the net partial charge on the thymine. In the second mechanism the excess electron is captured by a glycine, which acts as a electron scavenger that prevents electron localization in DNA. Both these mechanisms introduce obstacles to further reactions of the excess electron within a DNA strand, e.g. by raising the free energy barrier associated with strand breaks.
Ab initio study of the mechanism of bottom-up synthesis of graphene nanoribbons
NASA Astrophysics Data System (ADS)
Xiao, Zhongcan; Ma, Chuanxu; Zhang, Honghai; Liang, Liangbo; Huang, Jingsong; Lu, Wenchang; Hong, Kunlun; Li, An-Ping; Bernholc, Jerry
Graphene nanoribbons (GNRs) can be fabricated with atomic precision by using molecular precursors deposited on a metal substrate, and potentially form the basis for future molecular-scale electronics. The precursor molecules are first annealed to form a polymer, and further annealing at a higher temperature leads to the formation of a GNR. We systematically study the reaction pathways of this cyclodehydrogenation process, using density functional theory and the nudged elastic band method. We find that the Au substrate reduces the reaction barriers for key steps in the cyclodehydrogenation process: cyclization, hydrogen migration and desorption. Furthermore, our calculations explain recent experiments showing that an STM-tip can induce local polymer-to-GNR transition, which can be used to fabricate atomically precise heterojunctions: at a negative bias, the STM tip injects excess holes into the polymer HOMO state, lowering the energy barrier in agreement with Woodward-Hoffmann rules. At a positive bias, when excess electrons are injected into the LUMO state, the energy barrier is not significantly lowered and the transition is not observed.
Luo, Jun-Wei; Franceschetti, Alberto; Zunger, Alex
2008-10-01
Direct carrier multiplication (DCM) occurs when a highly excited electron-hole pair decays by transferring its excess energy to the electrons rather than to the lattice, possibly exciting additional electron-hole pairs. Atomistic electronic structure calculations have shown that DCM can be induced by electron-hole Coulomb interactions, in an impact-ionization-like process whose rate is proportional to the density of biexciton states rho XX. Here we introduce a DCM "figure of merit" R2(E) which is proportional to the ratio between the biexciton density of states rhoXX and the single-exciton density of states rhoX, restricted to single-exciton and biexciton states that are coupled by Coulomb interactions. Using R2(E), we consider GaAs, InAs, InP, GaSb, InSb, CdSe, Ge, Si, and PbSe nanocrystals of different sizes. Although DCM can be affected by both quantum-confinement effects (reflecting the underly electronic structure of the confined dot-interior states) and surface effects, here we are interested to isolate the former. To this end the nanocrystal energy levels are obtained from the corresponding bulk band structure via the truncated crystal approximation. We find that PbSe, Si, GaAs, CdSe, and InP nanocrystals have larger DCM figure of merit than the other nanocrystals. Our calculations suggest that high DCM efficiency requires high degeneracy of the corresponding bulk band-edge states. Interestingly, by considering band structure effects we find that as the dot size increases the DCM critical energy E0 (the energy at which R2(E) becomes >or=1) is reduced, suggesting improved DCM. However, whether the normalized E0/epsilong increases or decreases as the dot size increases depends on dot material.
Can amorphization take place in nanoscale interconnects?
Kumar, S; Joshi, K L; van Duin, A C T; Haque, M A
2012-03-09
The trend of miniaturization has highlighted the problems of heat dissipation and electromigration in nanoelectronic device interconnects, but not amorphization. While amorphization is known to be a high pressure and/or temperature phenomenon, we argue that defect density is the key factor, while temperature and pressure are only the means. For nanoscale interconnects carrying modest current density, large vacancy concentrations may be generated without the necessity of high temperature or pressure due to the large fraction of grain boundaries and triple points. To investigate this hypothesis, we performed in situ transmission electron microscope (TEM) experiments on 200 nm thick (80 nm average grain size) aluminum specimens. Electron diffraction patterns indicate partial amorphization at modest current density of about 10(5) A cm(-2), which is too low to trigger electromigration. Since amorphization results in drastic decrease in mechanical ductility as well as electrical and thermal conductivity, further increase in current density to about 7 × 10(5) A cm(-2) resulted in brittle fracture failure. Our molecular dynamics (MD) simulations predict the formation of amorphous regions in response to large mechanical stresses (due to nanoscale grain size) and excess vacancies at the cathode side of the thin films. The findings of this study suggest that amorphization can precede electromigration and thereby play a vital role in the reliability of micro/nanoelectronic devices.
Comparing TID simulations using 3-D ray tracing and mirror reflection
NASA Astrophysics Data System (ADS)
Huang, X.; Reinisch, B. W.; Sales, G. S.; Paznukhov, V. V.; Galkin, I. A.
2016-04-01
Measuring the time variations of Doppler frequencies and angles of arrival (AoA) of ionospherically reflected HF waves has been proposed as a means of detecting the occurrence of traveling ionospheric disturbances (TIDs). Simulations are made using ray tracing through the International Reference Ionosphere (IRI) electron density model in an effort to reproduce measured signatures. The TID is represented by a wavelike perturbation of the 3-D electron density traveling horizontally in the ionosphere with an amplitude that varies sinusoidally with time. By judiciously selecting the TID parameters the ray tracing simulation reproduces the observed Doppler frequencies and AoAs. Ray tracing in a 3-D realistic ionosphere is, however, excessively time consuming considering the involved homing procedures. It is shown that a carefully selected reflecting corrugated mirror can reproduce the time variations of the AoA and Doppler frequency. The results from the ray tracing through the IRI model ionosphere and the mirror model reflections are compared to assess the applicability of the mirror-reflection model.
Kojima, Tsuyoshi; Van Deusen, Mark; Jerome, W. Gray; Garrett, C. Gaelyn; Sivasankar, M. Preeti; Novaleski, Carolyn K.; Rousseau, Bernard
2014-01-01
Because the vocal folds undergo repeated trauma during continuous cycles of vibration, the epithelium is routinely susceptible to damage during phonation. Excessive and prolonged vibration exposure is considered a significant predisposing factor in the development of vocal fold pathology. The purpose of the present study was to quantify the extent of epithelial surface damage following increased time and magnitude doses of vibration exposure using an in vivo rabbit phonation model. Forty-five New Zealand white breeder rabbits were randomized to nine groups and received varying phonation time-doses (30, 60, or 120 minutes) and magnitude-doses (control, modal intensity phonation, or raised intensity phonation) of vibration exposure. Scanning electron microscopy and transmission electron microscopy was used to quantify the degree of epithelial surface damage. Results revealed a significant reduction in microprojection density, microprojection height, and depth of the epithelial surface with increasing time and phonation magnitudes doses, signifying increased epithelial surface damage risk with excessive and prolonged vibration exposure. Destruction to the epithelial cell surface may provide significant insight into the disruption of cell function following prolonged vibration exposure. One important goal achieved in the present study was the quantification of epithelial surface damage using objective imaging criteria. These data provide an important foundation for future studies of long-term tissue recovery from excessive and prolonged vibration exposure. PMID:24626217
The Effect of Excess Electron and hole on CO2 Adsorption and Activation on Rutile (110) surface
Yin, Wen-Jin; Wen, Bo; Bandaru, Sateesh; Krack, Matthias; Lau, MW; Liu, Li-Min
2016-01-01
CO2 capture and conversion into useful chemical fuel attracts great attention from many different fields. In the reduction process, excess electron is of key importance as it participates in the reaction, thus it is essential to know whether the excess electrons or holes affect the CO2 conversion. Here, the first-principles calculations were carried out to explore the role of excess electron on adsorption and activation of CO2 on rutile (110) surface. The calculated results demonstrate that CO2 can be activated as CO2 anions or CO2 cation when the system contains excess electrons and holes. The electronic structure of the activated CO2 is greatly changed, and the lowest unoccupied molecular orbital of CO2 can be even lower than the conduction band minimum of TiO2, which greatly facilities the CO2 reduction. Meanwhile, the dissociation process of CO2 undergoes an activated CO2− anion in bend configuration rather than the linear, while the long crossing distance of proton transfer greatly hinders the photocatalytic reduction of CO2 on the rutile (110) surface. These results show the importance of the excess electrons on the CO2 reduction process. PMID:26984417
Fluctuations in the electron system of a superconductor exposed to a photon flux
de Visser, P. J.; Baselmans, J. J. A.; Bueno, J.; Llombart, N.; Klapwijk, T. M.
2014-01-01
In a superconductor, in which electrons are paired, the density of unpaired electrons should become zero when approaching zero temperature. Therefore, radiation detectors based on breaking of pairs promise supreme sensitivity, which we demonstrate using an aluminium superconducting microwave resonator. Here we show that the resonator also enables the study of the response of the electron system of the superconductor to pair-breaking photons, microwave photons and varying temperatures. A large range in radiation power (at 1.54 THz) can be chosen by carefully filtering the radiation from a blackbody source. We identify two regimes. At high radiation power, fluctuations in the electron system caused by the random arrival rate of the photons are resolved, giving a straightforward measure of the optical efficiency (48±8%) and showing an unprecedented detector sensitivity. At low radiation power, fluctuations are dominated by excess quasiparticles, the number of which is measured through their recombination lifetime. PMID:24496036
NASA Astrophysics Data System (ADS)
Santos, J. J.; Bailly-Grandvaux, M.; Ehret, M.; Arefiev, A. V.; Batani, D.; Beg, F. N.; Calisti, A.; Ferri, S.; Florido, R.; Forestier-Colleoni, P.; Fujioka, S.; Gigosos, M. A.; Giuffrida, L.; Gremillet, L.; Honrubia, J. J.; Kojima, S.; Korneev, Ph.; Law, K. F. F.; Marquès, J.-R.; Morace, A.; Mossé, C.; Peyrusse, O.; Rose, S.; Roth, M.; Sakata, S.; Schaumann, G.; Suzuki-Vidal, F.; Tikhonchuk, V. T.; Toncian, T.; Woolsey, N.; Zhang, Z.
2018-05-01
Powerful nanosecond laser-plasma processes are explored to generate discharge currents of a few 100 kA in coil targets, yielding magnetostatic fields (B-fields) in excess of 0.5 kT. The quasi-static currents are provided from hot electron ejection from the laser-irradiated surface. According to our model, which describes the evolution of the discharge current, the major control parameter is the laser irradiance Ilasλlas2 . The space-time evolution of the B-fields is experimentally characterized by high-frequency bandwidth B-dot probes and proton-deflectometry measurements. The magnetic pulses, of ns-scale, are long enough to magnetize secondary targets through resistive diffusion. We applied it in experiments of laser-generated relativistic electron transport through solid dielectric targets, yielding an unprecedented 5-fold enhancement of the energy-density flux at 60 μm depth, compared to unmagnetized transport conditions. These studies pave the ground for magnetized high-energy density physics investigations, related to laser-generated secondary sources of radiation and/or high-energy particles and their transport, to high-gain fusion energy schemes, and to laboratory astrophysics.
Mobility in excess of 106 cm2/V s in InAs quantum wells grown on lattice mismatched InP substrates
NASA Astrophysics Data System (ADS)
Hatke, A. T.; Wang, T.; Thomas, C.; Gardner, G. C.; Manfra, M. J.
2017-10-01
We investigate the transport properties of a two-dimensional electron gas residing in strained composite quantum wells of In0.75Ga0.25As/InAs/In0.75Ga0.25As cladded with In0.75Al0.25As barriers grown metamorphically on insulating InP substrates. By optimizing the widths of the In0.75Ga0.25As layers, the In0.75Al0.25As barrier, and the InAs quantum well, we demonstrate mobility in excess of 1 ×106 cm2/V s. Mobility vs. density data indicate that scattering is dominated by a residual three dimensional distribution of charged impurities. We extract the effective Rashba parameter and spin-orbit length for these composite quantum wells.
Geometrical Description of fractional quantum Hall quasiparticles
NASA Astrophysics Data System (ADS)
Park, Yeje; Yang, Bo; Haldane, F. D. M.
2012-02-01
We examine a description of fractional quantum Hall quasiparticles and quasiholes suggested by a recent geometrical approach (F. D. M. Haldane, Phys. Rev. Lett. 108, 116801 (2011)) to FQH systems, where the local excess electric charge density in the incompressible state is given by a topologically-quantized ``guiding-center spin'' times the Gaussian curvature of a ``guiding-center metric tensor'' that characterizes the local shape of the correlation hole around electrons in the fluid. We use a phenomenological energy function with two ingredients: the shear distortion energy of area-preserving distortions of the fluid, and a local (short-range) approximation to the Coulomb energy of the fluctuation of charge density associated with the Gaussian curvature. Quasiparticles and quasiholes of the 1/3 Laughlin state are modeled as ``punctures'' in the incompressible fluid which then relax by geometric distortion which generates Gaussian curvature, giving rise to the charge-density profile around the topological excitation.
Excess electron localization in solvated DNA bases.
Smyth, Maeve; Kohanoff, Jorge
2011-06-10
We present a first-principles molecular dynamics study of an excess electron in condensed phase models of solvated DNA bases. Calculations on increasingly large microsolvated clusters taken from liquid phase simulations show that adiabatic electron affinities increase systematically upon solvation, as for optimized gas-phase geometries. Dynamical simulations after vertical attachment indicate that the excess electron, which is initially found delocalized, localizes around the nucleobases within a 15 fs time scale. This transition requires small rearrangements in the geometry of the bases.
Excess Electron Localization in Solvated DNA Bases
DOE Office of Scientific and Technical Information (OSTI.GOV)
Smyth, Maeve; Kohanoff, Jorge
2011-06-10
We present a first-principles molecular dynamics study of an excess electron in condensed phase models of solvated DNA bases. Calculations on increasingly large microsolvated clusters taken from liquid phase simulations show that adiabatic electron affinities increase systematically upon solvation, as for optimized gas-phase geometries. Dynamical simulations after vertical attachment indicate that the excess electron, which is initially found delocalized, localizes around the nucleobases within a 15 fs time scale. This transition requires small rearrangements in the geometry of the bases.
2011-11-05
45 2. Ground Common vs. Low Density and Excess (FTE) vs. Carcass ( FTA ...47 a. Ground Common vs. Low Density ............................. 47 b. Excess (FTE) vs. Carcass ( FTA ...48 Figure 16. Excess (FTE) and Carcass ( FTA ) Dollar Amounts and Percentages . 49 Figure 17. MRP
Takahashi, Hideaki; Omi, Atsushi; Morita, Akihiro; Matubayasi, Nobuyuki
2012-06-07
We present a simple and exact numerical approach to compute the free energy contribution δμ in solvation due to the electron density polarization and fluctuation of a quantum-mechanical solute in the quantum-mechanical/molecular-mechanical (QM/MM) simulation combined with the theory of the energy representation (QM/MM-ER). Since the electron density fluctuation is responsible for the many-body QM-MM interactions, the standard version of the energy representation method cannot be applied directly. Instead of decomposing the QM-MM polarization energy into the pairwise additive and non-additive contributions, we take sum of the polarization energies in the QM-MM interaction and adopt it as a new energy coordinate for the method of energy representation. Then, it is demonstrated that the free energy δμ can be exactly formulated in terms of the energy distribution functions for the solution and reference systems with respect to this energy coordinate. The benchmark tests were performed to examine the numerical efficiency of the method with respect to the changes in the individual properties of the solvent and the solute. Explicitly, we computed the solvation free energy of a QM water molecule in ambient and supercritical water, and also the free-energy change associated with the isomerization reaction of glycine from neutral to zwitterionic structure in aqueous solution. In all the systems examined, it was demonstrated that the computed free energy δμ agrees with the experimental value, irrespective of the choice of the reference electron density of the QM solute. The present method was also applied to a prototype reaction of adenosine 5'-triphosphate hydrolysis where the effect of the electron density fluctuation is substantial due to the excess charge. It was demonstrated that the experimental free energy of the reaction has been accurately reproduced with the present approach.
Materials, properties, and applications of nitrogen-doped organic semiconductors
NASA Astrophysics Data System (ADS)
Chan, Calvin Kar-Fai
As organic semiconducting materials draw increasing attention for many promising applications, including efficient organic light-emitting diodes (OLEDs), large-area organic photovoltaic (OPV) cells, and flexible organic thin-film transistors (OTFTs), chemical doping of organic materials is emerging as an important technique for overcoming performance deficiencies and material limitations of intrinsic organic films. Although p-doping has been amply demonstrated, molecular n-type doping has been difficult to study because of the inherent instability of easily oxidized n-dopants. In this work, the facile use of two low ionization energy (IE) small molecules that are suitable for n-doping a wide range of organic electronic materials is demonstrated. Cobaltocene (CoCp2) and its derivative, decamethylcobaltocene ( CoCp*2 ), were found to have fairly low IEs for organic compounds. Co-deposition of the n-dopants with different host molecules results in pronounced shifts of the Fermi-level towards unoccupied molecular states, indicating a significant increase in electron concentration. The Fermi-level shifts, measured with ultra-violet photoemission spectroscopy (UPS), are correlated with excess carrier densities using a model based on Fermi-Dirac (F-D) statistics and a Gaussian distributed density of states. The calculated electron densities suggest full dopant ionization at low concentrations, and diminished efficiency at high donor concentrations. The concentration of incorporated dopants is examined by chemical composition analysis of doped films using X-ray photoemission spectroscopy (XPS). Atomic concentration depth profiling determined by Rutherford backscattering (RBS) suggests that the incorporation of CoCp2 and CoCp*2 is well-controlled and the dopants are minimally diffusive. Organic films n-doped using CoCp2 and CoCp*2 show several orders of magnitude increase in current density resulting from both enhanced electron injection and increased electron conductivity in the bulk. Increases in the bulk conductivity suggest both improved electron mobility and higher electron concentrations. These findings are applied with previous work on p-doping to fabricate organic p-i-n homojunction devices that exhibit strong rectification and large built-in potentials. Heterojunction OPVs using undoped CuPc and n-doped C60 display significant increases in open-circuit voltage (Voc), short-circuit current (Isc), fill-factor (FF), and efficiency.
Nazir, Safdar; Behtash, Maziar; Cheng, Jianli; Luo, Jian; Yang, Kesong
2016-01-28
The two-dimensional electron gas (2DEG) formed at the n-type (LaO)(+1)/(TiO2)(0) interface in the polar/nonpolar LaAlO3/SrTiO3 (LAO/STO) heterostructure (HS) has emerged as a prominent research area because of its great potential for nanoelectronic applications. Due to its practical implementation in devices, desired physical properties such as high charge carrier density and mobility are vital. In this respect, 4d and 5d transition metal doping near the interfacial region is expected to tailor electronic properties of the LAO/STO HS system effectively. Herein, we studied Nb and Ta-doping effects on the energetics, electronic structure, interfacial charge carrier density, magnetic moment, and the charge confinements of the 2DEG at the n-type (LaO)(+1)/(TiO2)(0) interface of LAO/STO HS using first-principles density functional theory calculations. We found that the substitutional doping of Nb(Ta) at Ti [Nb(Ta)@Ti] and Al [Nb(Ta)@Al] sites is energetically more favorable than that at La [Nb(Ta)@La] and Sr [Nb(Ta)@Sr] sites, and under appropriate thermodynamic conditions, the changes in the interfacial energy of HS systems upon Nb(Ta)@Ti and Nb(Ta)@Al doping are negative, implying that the formation of these structures is energetically favored. Our calculations also showed that Nb(Ta)@Ti and Nb(Ta)@Al doping significantly improve the interfacial charge carrier density with respect to that of the undoped system, which is because the Nb(Ta) dopant introduces excess free electrons into the system, and these free electrons reside mainly on the Nb(Ta) ions and interfacial Ti ions. Hence, along with the Ti 3d orbitals, the Nb 4d and Ta 5d orbitals also contribute to the interfacial metallic states; accordingly, the magnetic moments on the interfacial Ti ions increase significantly. As expected, the Nb@Al and Ta@Al doped LAO/STO HS systems show higher interfacial charge carrier density than the undoped and other doped systems. In contrast, Nb@Ti and Ta@Ti doped systems may show higher charge carrier mobility because of the lower electron effective mass.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zeier, Wolfgang G.; Anand, Shashwat; Huang, Lihong
The 18-electron rule is a widely used criterion in the search for new half-Heusler thermoelectric materials. However, several 19-electron compounds such as NbCoSb have been found to be stable and exhibit thermoelectric properties rivaling state-of-the art materials. Using synchrotron X-ray diffraction and density functional theory calculations, we show that samples with nominal (19-electron) composition NbCoSb actually contain a half-Heusler phase with composition Nb0.84CoSb. The large amount of stable Nb vacancies reduces the overall electron count, which brings the stoichiometry of the compound close to an 18-electron count, and stabilizes the material. Excess electrons beyond 18 electrons provide heavy doping neededmore » to make these good thermoelectric materials. This work demonstrates that considering possible defect chemistry and allowing small variation of electron counting leads to extra degrees of freedom for tailoring thermoelectric properties and exploring new compounds. Here we discuss the 18-electron rule as a guide to find defect-free half-Heusler semiconductors. Other electron counts such as 19-electron NbCoSb can also be expected to be stable as n-type metals, perhaps with cation vacancy defects to reduce the electron count.« less
Overview of the electric propulsion plasma diagnostics suite for the VASIMR VX-200 testbed
NASA Astrophysics Data System (ADS)
Olsen, Christopher; Longmier, Benjamin; Ballenger, Maxwell; Squire, Jared; Glover, Tim; Carter, Mark; Bering, Edgar; Giambusso, Matthew
2012-10-01
Descriptions of the various plasma diagnostics and data analysis methods are given for instruments used in high power (> 100 kW) electric propulsion testing. These include planar Langmuir probes, an articulating retarding potential analyzer, a double Langmuir probe, a multi-axis magnetometer, a high frequency electric field probe, microwave interferometer, and momentum flux targets. These diagnostics have been used to measure the efficiencies of the thruster, plasma source, ion cyclotron resonance booster, and magnetic nozzle as well as used to explore physical phenomena in the plume such as ion/electron detachment, plasma turbulence, and magnetic field line stretching. Typical plume parameters range up to 10^13 cm-3 electron density, 1 kG applied magnetic fields, ion energies in excess of 150 eV, and cold electrons (2 -- 5 eV) with a spatial measurement range over 2 m.
Murai, Masahito; Takeuchi, Yutaro; Yamauchi, Kanae; Kuninobu, Yoichiro; Takai, Kazuhiko
2016-04-18
Mechanistic insight into the construction of quaternary silicon chiral centers by rhodium-catalyzed synthesis of spiro-9-silabifluorenes through dehydrogenative silylation is reported. The C2 -symmetric bisphosphine ligand, BINAP, was effective in controlling enantioselectivity, and axially chiral spiro-9-silabifluorenes were obtained in excellent yields with high enantiomeric excess. Monitoring of the reaction revealed the presence of a monohydrosilane intermediate as a mixture of two constitutional isomers. The reaction proceeded through two consecutive dehydrogenative silylations, and the absolute configuration was determined in the first silylative cyclization. Competitive reactions with electron-rich and electron-deficient dihydrosilanes indicated that the rate of silylative cyclization increased with decreasing electron density on the silicon atom of the starting dihydrosilane. Further investigation disclosed a rare interconversion between the two constitutional isomers of the monohydrosilane intermediate with retention of the absolute configuration. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Formation and structure of a current sheet in pulsed-power driven magnetic reconnection experiments
NASA Astrophysics Data System (ADS)
Hare, J. D.; Lebedev, S. V.; Suttle, L. G.; Loureiro, N. F.; Ciardi, A.; Burdiak, G. C.; Chittenden, J. P.; Clayson, T.; Eardley, S. J.; Garcia, C.; Halliday, J. W. D.; Niasse, N.; Robinson, T.; Smith, R. A.; Stuart, N.; Suzuki-Vidal, F.; Swadling, G. F.; Ma, J.; Wu, J.
2017-10-01
We describe magnetic reconnection experiments using a new, pulsed-power driven experimental platform in which the inflows are super-sonic but sub-Alfvénic. The intrinsically magnetised plasma flows are long lasting, producing a well-defined reconnection layer that persists over many hydrodynamic time scales. The layer is diagnosed using a suite of high resolution laser based diagnostics, which provide measurements of the electron density, reconnecting magnetic field, inflow and outflow velocities, and the electron and ion temperatures. Using these measurements, we observe a balance between the power flow into and out of the layer, and we find that the heating rates for the electrons and ions are significantly in excess of the classical predictions. The formation of plasmoids is observed in laser interferometry and optical self-emission, and the magnetic O-point structure of these plasmoids is confirmed using magnetic probes.
Wheeler, Steven E.; Houk, K. N.
2009-01-01
The prevailing views of substituent effects in the sandwich configuration of the benzene dimer are flawed. For example, in the polar/π model of Cozzi and co-workers (J. Am. Chem. Soc. 1992, 114, 5729), electron-withdrawing substituents enhance binding in the benzene dimer by withdrawing electron density from the π-cloud of the substituted ring, reducing the repulsive electrostatic interaction with the non-substituted benzene. Conversely, electron-donating substituents donate excess electrons into the π-system and diminish the π-stacking interaction. We present computed interaction energies for the sandwich configuration of the benzene dimer and 24 substituted dimers, as well as sandwich complexes of substituted benzenes with perfluorobenzene. While the computed interaction energies correlate well with σm values for the substituents, interaction energies for related model systems demonstrate that this trend is independent of the substituted ring. Instead, the observed trends are consistent with direct electrostatic and dispersive interactions of the substituents with the unsubstituted ring. PMID:18652453
NASA Astrophysics Data System (ADS)
Shaterzadeh-Yazdi, Zahra; Sanders, Barry C.; DiLabio, Gino A.
2018-04-01
Recent work has suggested that coupled silicon dangling bonds sharing an excess electron may serve as building blocks for quantum-cellular-automata cells and quantum computing schemes when constructed on hydrogen-terminated silicon surfaces. In this work, we employ ab initio density-functional theory to examine the details associated with the coupling between two dangling bonds sharing one excess electron and arranged in various configurations on models of phosphorous-doped hydrogen-terminated silicon (100) surfaces. Our results show that the coupling strength depends strongly on the relative orientation of the dangling bonds on the surface and on the separation between them. The orientation of dangling bonds is determined by the anisotropy of the silicon (100) surface, so this feature of the surface is a significant contributing factor to variations in the strength of coupling between dangling bonds. The results demonstrate that simple models for approximating tunneling, such as the Wentzel-Kramer-Brillouin method, which do not incorporate the details of surface structure, are incapable of providing reasonable estimates of tunneling rates between dangling bonds. The results provide guidance to efforts related to the development of dangling-bond based computing elements.
Gu, Jiande; Wang, Jing; Leszczynski, Jerzy
2014-01-30
Computational chemistry approach was applied to explore the nature of electron attachment to cytosine-rich DNA single strands. An oligomer dinucleoside phosphate deoxycytidylyl-3',5'-deoxycytidine (dCpdC) was selected as a model system for investigations by density functional theory. Electron distribution patterns for the radical anions of dCpdC in aqueous solution were explored. The excess electron may reside on the nucleobase at the 5' position (dC(•-)pdC) or at the 3' position (dCpdC(•-)). From comparison with electron attachment to the cytosine related DNA fragments, the electron affinity for the formation of the cytosine-centered radical anion in DNA is estimated to be around 2.2 eV. Electron attachment to cytosine sites in DNA single strands might cause perturbations of local structural characteristics. Visible absorption spectroscopy may be applied to validate computational results and determine experimentally the existence of the base-centered radical anion. The time-dependent DFT study shows the absorption around 550-600 nm for the cytosine-centered radical anions of DNA oligomers. This indicates that if such species are detected experimentally they would be characterized by a distinctive color.
Pshenichnyuk, Stanislav A; Elkin, Yury N; Kulesh, Nadezda I; Lazneva, Eleonora F; Komolov, Alexei S
2015-07-14
The antioxidant isoflavone retusin efficiently attaches low-energy electrons in vacuo, generating fragment species via dissociative electron attachment (DEA), as has been shown by DEA spectroscopy. According to in silico results obtained by means of density functional theory, retusin is able to attach solvated electrons and could be decomposed under reductive conditions in vivo, for instance, near the mitochondrial electron transport chain, analogous to gas-phase DEA. The most intense decay channels of retusin temporary negative ions were found to be associated with the elimination of H atoms and H2 molecules. Doubly dehydrogenated fragment anions were predicted to possess a quinone structure. It is thought that molecular hydrogen, known for its selective antioxidant properties, can be efficiently generated via electron attachment to retusin in mitochondria and may be responsible for its antioxidant activity. The second abundant species, i.e., quinone bearing an excess negative charge, can serve as an electron carrier and can return the captured electron back to the respiration cycle. The number of OH substituents and their relative positions are crucial for the present molecular mechanism, which can explain the radical scavenging activity of polyphenolic compounds.
Nebular and Stellar Dust Extinction Across the Disk of Emission-line Galaxies on Kiloparsec Scales
NASA Astrophysics Data System (ADS)
Hemmati, Shoubaneh; Mobasher, Bahram; Darvish, Behnam; Nayyeri, Hooshang; Sobral, David; Miller, Sarah
2015-11-01
We investigate the resolved kiloparsec-scale stellar and nebular dust distribution in eight star-forming galaxies at z ∼ 0.4 in the Great Observatories Origins Deep Survey fields. This is to get a better understanding of the effect of dust attenuation on measurements of physical properties and its variation with redshift. Constructing the observed spectral energy distributions (SEDs) per pixel, based on seven bands of photometric data from Hubble Space Telescope/Advanced Camera for Surveys and WFC3, we performed pixel-by-pixel SED fits to population synthesis models and estimated the small-scale distribution of stellar dust extinction. We use Hα/Hβ nebular emission line ratios from Keck/DEIMOS high-resolution spectra at each spatial resolution element to measure the amount of attenuation faced by ionized gas at different radii from the centers of galaxies. We find a good agreement between the integrated and median of resolved color excess measurements in our galaxies. The ratio of integrated nebular to stellar dust extinction is always greater than unity, but does not show any trend with stellar mass or star formation rate (SFR). We find that inclination plays an important role in the variation of the nebular to stellar excess ratio. The stellar color excess profiles are found to have higher values at the center compared to outer parts of the disk. However, for lower mass galaxies, a similar trend is not found for the nebular color excess. We find that the nebular color excess increases with stellar mass surface density. This explains the absence of radial trend in the nebular color excess in lower mass galaxies which lack a large radial variation of stellar mass surface density. Using standard conversions of SFR surface density to gas mass surface density, and the relation between dust mass surface density and color excess, we find no significant variation in the dust-to-gas ratio in regions with high gas mass surface densities over the scales probed in this study.
NASA Astrophysics Data System (ADS)
Regazzoni, V.; Acerbi, F.; Cozzi, G.; Ferri, A.; Fiorini, C.; Paternoster, G.; Piemonte, C.; Rucatti, D.; Zappalà, G.; Zorzi, N.; Gola, A.
2017-07-01
Fondazione Bruno Kessler (FBK) (Trento, Italy) has recently introduced High Density (HD) and Ultra High-Density (UHD) SiPMs, featuring very small micro-cell pitch. The high cell density is a very important factor to improve the linearity of the SiPM in high-dynamic-range applications, such as the scintillation light readout in high-energy gamma-ray spectroscopy and in prompt gamma imaging for proton therapy. The energy resolution at high energies is a trade-off between the excess noise factor caused by the non-linearity of the SiPM and the photon detection efficiency of the detector. To study these effects, we developed a new setup that simulates the LYSO light emission in response to gamma photons up to 30 MeV, using a pulsed light source. We measured the non-linearity and energy resolution vs. energy of the FBK RGB-HD e RGB-UHD SiPM technologies. We considered five different cell sizes, ranging from 10 μm up to 25 μm. With the UHD technology we were able to observe a remarkable reduction of the SiPM non-linearity, less than 5% at 5 MeV with 10 μm cells, which should be compared to a non-linearity of 50% with 25 μm-cell HD-SiPMs. With the same setup, we also measured the different components of the energy resolution (intrinsic, statistical, detector and electronic noise) vs. cell size, over-voltage and energy and we separated the different sources of excess noise factor.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Rother, Gernot; Vlcek, Lukas; Gruszkiewicz, Miroslaw
2014-01-01
Adsorption of supercritical CO2 in nanoporous silica aerogel was investigated by a combination of experiments and molecular-level computer modeling. High-pressure gravimetric and vibrating tube densimetry techniques were used to measure the mean pore fluid density and excess sorption at 35 C and 50 C and pressures of 0-200 bar. Densification of the pore fluid was observed at bulk fluid densities below 0.7 g/cm3. Far above the bulk fluid density, near-zero sorption or weak depletion effects were measured, while broad excess sorption maxima form in the vicinity of the bulk critical density region. The CO2 sorption properties are very similar formore » two aerogels with different bulk densities of 0.1 g/cm3 and 0.2 g/cm3, respectively. The spatial distribution of the confined supercritical fluid was analyzed in terms of sorption- and bulk-phase densities by means of the Adsorbed Phase Model (APM), which used data from gravimetric sorption and small-angle neutron scattering experiments. To gain more detailed insight into supercritical fluid sorption, large-scale lattice gas GCMC simulations were utilized and tuned to resemble the experimental excess sorption data. The computed three-dimensional pore fluid density distributions show that the observed maximum of the excess sorption near the critical density originates from large density fluctuations pinned to the pore walls. At this maximum, the size of these fluctuations is comparable to the prevailing pore sizes.« less
Doan, Stephanie C; Schwartz, Benjamin J
2013-04-25
We examine the ultrafast relaxation dynamics of excess electrons injected into liquid acetonitrile using air- and water-free techniques and compare our results to previous work on this system [Xia, C. et al. J. Chem. Phys. 2002, 117, 8855]. Excess electrons in liquid acetonitrile take on two forms: a "traditional" solvated electron that absorbs in the near-IR, and a solvated molecular dimer anion that absorbs weakly in the visible. We find that excess electrons initially produced via charge-transfer-to-solvent excitation of iodide prefer to localize as solvated electrons, but that there is a subsequent equilibration to form the dimer anion on an ~80 ps time scale. The spectral signature of this interconversion between the two forms of the excess electron is a clear isosbestic point. The presence of the isosbestic point makes it possible to fully deconvolute the spectra of the two species. We find that solvated molecular anion absorbs quite weakly, with a maximum extinction coefficient of ~2000 M(-1)cm(-1). With the extinction coefficient of the dimer anion in hand, we are also able to determine the equilibrium constant for the two forms of excess electron, and find that the molecular anion is favored by a factor of ~4. We also find that relatively little geminate recombination takes place, and that the geminate recombination that does take place is essentially complete within the first 20 ps. Finally, we show that the presence of small amounts of water in the acetonitrile can have a fairly large effect on the observed spectral dynamics, explaining the differences between our results and those in previously published work.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zhang, L.; Ding, B. J.; Li, M. H.
2013-06-15
A triple Langmuir probe is mounted on the top of the Lower Hybrid (LH) antenna to measure the electron density near the LH grills in Experimental Advanced Superconducting Tokamak. In this work, the LH power density ranges from 2.3 MWm{sup −2} to 10.3 MWm{sup −2} and the rate of puffing gas varies from 1.7 × 10{sup 20} el/s to 14 × 10{sup 20} el/s. The relation between the edge density (from 0.3 × n{sub e-cutoff} to 20 × n{sub e-cutoff}, where n{sub e-cutoff} is the cutoff density, n{sub e-cutoff} = 0.74 × 10{sup 17} m{sup −3} for 2.45 GHz lowermore » hybrid current drive) near the LH grill and the LH power reflection coefficients is investigated. The factors, including the gap between the LH grills and the last closed magnetic flux surface, line-averaged density, LH power, edge safety factor, and gas puffing, are analyzed. The experiments show that injection of LH power is beneficial for increasing edge density. Gas puffing is beneficial for increasing grill density but excess gas puffing is unfavorable for coupling and current drive.« less
On the nature of the solvated electron in ice Ih.
de Koning, Maurice; Fazzio, Adalberto; da Silva, Antônio José Roque; Antonelli, Alex
2016-02-14
The water-solvated excess electron (EE) is a key chemical agent whose hallmark signature, its asymmetric optical absorption spectrum, continues to be a topic of debate. While nearly all investigation has focused on the liquid-water solvent, the fact that the crystalline-water solvated EE shows a very similar visible absorption pattern has remained largely unexplored. Here, we present spin-polarized density-functional theory calculations subject to periodic boundary conditions of the interplay between an EE and a number of intrinsic lattice defects in ice Ih. Our results show that the optical absorption signatures in the presence of three unsaturated hydrogen bonds (HB) are very similar to those observed experimentally. Its low-energy side can be attributed to transitions between the EE ground state and a single localized excited level, in a picture that is different from that for the liquid solvent, where this portion has been associated with hydrogen-like s → p excitations. The blue tail, on the other hand, relates to transitions between the EE ground state and delocalized excited states, which is in line with the bound-to-continuum transition interpretations for the EE in liquid water. Finally, we find that, depending on the number of dangling HBs participating in the EE trap, its charge density may spontaneously break the spin degeneracy through exchange interactions with the surrounding electrons, displaying the many-electron quantum nature of the EE problem in ice Ih.
Li, Nan; Zheng, Yun; Jiang, Xuemei; Zhang, Ran; Pei, Kemei; Chen, Wenxing
2017-10-12
Complex wastewater with massive components is now a serious environmental issue facing humanity. Selective removal of low-concentration contaminants in mixed constituents holds great promise for increasing water supplies. Bioenzymes like horseradish peroxidase exhibit oxidizing power and selectivity. Here, we manufactured its mimic through immobilizing non-heme oxamate anionic cobalt(III) complex ([Co III (opba)] - , opba = o-phenylenebis(oxamate)) onto pyridine (Py) modified multiwalled carbon nanotubes ([Co III (opba)] - -Py-MWCNTs, MWCNTs = multiwalled carbon nanotubes), where MWCNTs captured substrates and Py functioned as the fifth ligand. We chose typical azo dye (C.I. Acid Red 1) and antibiotic (ciprofloxacin) as model substrates. Without •OH, this catalyst could detoxify target micropollutants efficiently at pH from 8 to 11. It also remained efficient in repetitive tests, and the final products were non-poisonous OH-containing acids. Combined with radical scavenger tests and electron paramagnetic resonance result, we speculated that high-valent cobalt-oxo active species and oxygen atom transfer reaction dominated in the reaction pathway. According to density functional theory calculations, the electron spin density distribution order showed that electron-withdrawing ligand was beneficial for inward pulling the excess electron and lowering the corresponding energy levels, achieving an electrophilic-attack enhancement of the catalyst. With target removal property and recyclability, this catalyst is prospective in water detoxication.
D'Avino, Gabriele; Muccioli, Luca; Olivier, Yoann; Beljonne, David
2016-02-04
We address charge separation and recombination in polymer/fullerene solar cells with a multiscale modeling built from accurate atomistic inputs and accounting for disorder, interface electrostatics and genuine quantum effects on equal footings. Our results show that bound localized charge transfer states at the interface coexist with a large majority of thermally accessible delocalized space-separated states that can be also reached by direct photoexcitation, thanks to their strong hybridization with singlet polymer excitons. These findings reconcile the recent experimental reports of ultrafast exciton separation ("hot" process) with the evidence that high quantum yields do not require excess electronic or vibrational energy ("cold" process), and show that delocalization, by shifting the density of charge transfer states toward larger effective electron-hole radii, may reduce energy losses through charge recombination.
Ion sheath dynamics in a plasma for plasma-based ion implantation
DOE Office of Scientific and Technical Information (OSTI.GOV)
Yatsuzuka, M.; Miki, S.; Azuma, K.
1999-07-01
Spatial and temporal growth and collapse of ion sheath around an electrode of a negative high-voltage pulse (voltage: {minus}10 kV, pulse duration: 10 {micro}s) have been studied in a plasma for plasma-based ion implantation. A spherical electrode of 1.9 cm in a diameter is immersed in a nitrogen plasma with the plasma density range of 10{sup 9} to 10{sup 10} cm{sup {minus}3}, the electron temperature of 1.4 eV and the gas pressure of 8x10{sup {minus}4} Torr. The transient sheath dynamics was observed by the measurement of electron saturation current to a Langmuir probe, where a depletion of electron saturation currentmore » indicates the arrival time of sheath edge at the probe position. The expanding speed of sheath edge is higher than the ion acoustic speed until the sheath length reaches the steady-state extent determined by Child-Langmuir law. In the region beyond the steady-state extent, the rarefying disturbance produced by sheath expansion continues to propagate into the plasma at the ion acoustic peed. After the pulse voltage is returned to zero (more exactly, the floating potential), the electron current begins to recover. When the pulse fall time is shorter than the plasma transit time, the electron saturation current overshoots the steady-state saturation current at once, resulting in an excess of plasma density which propagates like a tidal wave into the plasma at the ion acoustic speed.« less
Aguirre, Matías E; Municoy, S; Grela, M A; Colussi, A J
2017-02-08
The unique properties of semiconductor quantum dots (QDs) have found application in the conversion of solar to chemical energy. How the relative rates of the redox processes that control QD photon efficiencies depend on the particle radius (r) and photon energy (E λ ), however, is not fully understood. Here, we address these issues and report the quantum yields (Φs) of interfacial charge transfer and electron doping in ZnO QDs capped with ethylene glycol (EG) as a function of r and E λ in the presence and absence of methyl viologen (MV 2+ ) as an electron acceptor, respectively. We found that Φs for the oxidation of EG are independent of E λ and photon fluence (φ λ ), but markedly increase with r. The independence of Φs on φ λ ensures that QDs are never populated by more than one electron-hole pair, thereby excluding Auger-type terminations. We show that these findings are consistent with the operation of an interfacial redox process that involves thermalized carriers in the Marcus inverted region. In the absence of MV 2+ , QDs accumulate electrons up to limiting volumetric densities ρ e,∞ that depend sigmoidally on excess photon energy E* = E λ - E BG (r), where E BG (r) is the r-dependent bandgap energy. The maximum electron densities: ρ ev,∞ ∼ 4 × 10 20 cm -3 , are reached at E* > 0.5 eV, independent of the particle radius.
Bai, Yang; Zhou, Zhong-Jun; Wang, Jia-Jun; Li, Ying; Wu, Di; Chen, Wei; Li, Zhi-Ru; Sun, Chia-Chung
2013-04-04
Using the strong electron hole cage C20F19 acceptor, the NH2...M/M3O (M = Li, Na, and K) complicated donors with excess electron, and the unusual σ chain (CH2)4 bridge, we construct a new kind of electride molecular salt e(-)@C20F19-(CH2)4-NH2...M(+)/M3O(+) (M = Li, Na, and K) with excess electron anion inside the hole cage (to be encapsulated excess electron-hole pair) serving as a new A-B-D strategy for enhancing nonlinear optical (NLO) response. An interesting push-pull mechanism of excess electron generation and its long-range transfer is exhibited. The excess electron is pushed out from the (super)alkali atom M/M3O by the lone pair of NH2 in the donor and further pulled inside the hole cage C20F19 acceptor through the efficient long σ chain (CH2)4 bridge. Owing to the long-range electron transfer, the new designed electride molecular salts with the excess electron-hole pair exhibit large NLO response. For the e(-)@C20F19-(CH2)4-NH2...Na(+), its large first hyperpolarizability (β0) reaches up to 9.5 × 10(6) au, which is about 2.4 × 10(4) times the 400 au for the relative e(-)@C20F20...Na(+) without the extended chain (CH2)4-NH2. It is shown that the new strategy is considerably efficient in enhancing the NLO response for the salts. In addition, the effects of different bridges and alkali atomic number on β0 are also exhibited. Further, three modulating factors are found for enhancing NLO response. They are the σ chain bridge, bridge-end group with lone pair, and (super)alkali atom. The new knowledge may be significant for designing new NLO materials and electronic devices with electrons inside the cages. They may also be the basis of establishing potential organic chemistry with electron-hole pair.
Studies of the chemistry of the nightside ionosphere of Venus
NASA Technical Reports Server (NTRS)
Fox, J. L.
1991-01-01
A combination of numerical modeling and analysis of the Pioneer Venus UADS data base is studied, specifically data from the orbiter ion mass spectrometer (OIMS), orbiter neutral mass spectrometer (ONMS), and orbiter electron temperature probe (OETP). A one dimensional model of the Venus nightside ionosphere was set up in which downward fluxes of atomic ions are introduced at the upper boundary to simulate transport of ions from the dayside. The model shows that the densities of mass-28 ions, CO(+) + N(2+), resulting from an influx of atomic ions from the dayside are quite small, due to the high ionization potentials of CO and N2 that make chemical production difficult. A look at the data reveals that the actual densities of mass-28 ions are quite variable, from values near 10 to more than 10(exp 4) cm(exp -3). The excess mass-28 ions are assumed to be produced by electron precipitation and that the presence of high densities of mass-28 ions is a signature of auroral precipitation. A discussion of the atomic oxygen green line in the nightglow of Venus, which is produced mainly by dissociative recombination of O(2+), is presented. Original calculations of production rates of excited states for models based on Pioneer Venus data are also presented.
Ignition threshold for non-Maxwellian plasmas
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hay, Michael J., E-mail: hay@princeton.edu; Fisch, Nathaniel J.; Princeton Plasma Physics Laboratory, Princeton, New Jersey 08543
2015-11-15
An optically thin p-{sup 11}B plasma loses more energy to bremsstrahlung than it gains from fusion reactions, unless the ion temperature can be elevated above the electron temperature. In thermal plasmas, the temperature differences required are possible in small Coulomb logarithm regimes, characterized by high density and low temperature. Ignition could be reached more easily if the fusion reactivity can be improved with nonthermal ion distributions. To establish an upper bound for the potential utility of a nonthermal distribution, we consider a monoenergetic beam with particle energy selected to maximize the beam-thermal reactivity. Comparing deuterium-tritium (DT) and p-{sup 11}B, themore » minimum Lawson criteria and minimum ρR required for inertial confinement fusion (ICF) volume ignition are calculated with and without the nonthermal feature. It turns out that channeling fusion alpha energy to maintain such a beam facilitates ignition at lower densities and ρR, improves reactivity at constant pressure, and could be used to remove helium ash. On the other hand, the reactivity gains that could be realized in DT plasmas are significant, the excess electron density in p-{sup 11}B plasmas increases the recirculated power cost to maintain a nonthermal feature and thereby constrains its utility to ash removal.« less
Methane chemistry involved in a low-pressure electron cyclotron wave resonant plasma discharge
NASA Astrophysics Data System (ADS)
Morrison, N. A.; William, C.; Milne, W. I.
2003-12-01
Radio frequency (rf) generated methane plasmas are commonly employed in the deposition of hydrogenated amorphous carbon (a-C:H) thin films. However, very little is known about the rf discharge chemistry and how it relates to the deposition process. Consequently, we have characterized a low-pressure methane plasma and compared the results with those obtained theoretically by considering the steady-state kinetics of the chemical processes present in a low-pressure plasma reactor, in order to elucidate the dominant reaction channels responsible for the generation of the active precursors required for film growth. Mass spectrometry measurements of the gas phase indicated little variation in the plasma chemistry with increasing electron temperature. This was later attributed to the partial saturation of the electron-impact dissociation and ionization rate constants at electron temperatures in excess of ˜4 eV. The ion densities in the plasma were also found to be strongly dependent upon the parent neutral concentration in the gas phase, indicating that direct electron-impact reactions exerted greater influence on the plasma chemistry than secondary ion-neutral reactions.
Analysis of the Brunel model and resulting hot electron spectra
NASA Astrophysics Data System (ADS)
Mulser, P.; Weng, S. M.; Liseykina, Tatyana
2012-04-01
Among the various attempts to model collisionless absorption of intense and superintense ultrashort laser pulses, the so-called Brunel mechanism plays an eminent role. A detailed analysis reveals essential aspects of collisionless absorption: Splitting of the electron energy spectrum into two groups under p-polarization, prompt generation of fast electrons during one laser cycle or a fraction of it, insensitivity of absorption with respect to target density well above nc, robustness, simplicity, and logical coherence. Such positive aspects contrast with a non-Maxwellian tail of the hot electrons, too low energy cut off, excessively high fraction of fast electrons, and inefficient absorption at moderate angles of single beam incidence and intensities. Brunel's pioneering idea has been the recognition of the role of the space charges induced by the electron motion perpendicular to the target surface that make irreversibility possible. By setting the electrostatic fields inside the overdense target equal to zero, anharmonic resonance and mixing of layers leading to Maxwellianization are excluded. To what extent the real electron spectra and their scaling on laser intensity are the product of the interplay between Brunel's mechanism and anharmonic resonance is still an open question.
2010-01-01
a vacuum controller. A vacuum of < 1 µ torr was achieved with a combination of a turbo pump and a scroll pump system. The sample probing is...the polymer was reprecipitated in heptane non-solvent. The filtered polymer was washed with heptane and was finally dried in vacuum at 100ºC for three...solution was added to a large excess of methanol to precipitate the polymer. After soxhlet extraction with methanol and vacuum drying, the polymer was
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kehagias, Th.; Dimitrakopulos, G. P.; Koukoula, T.
2013-10-28
Transmission electron microscopy has been employed to analyze the direct nucleation and growth, by plasma-assisted molecular beam epitaxy, of high quality InN (0001) In-face thin films on (111) Si substrates. Critical steps of the heteroepitaxial growth process are InN nucleation at low substrate temperature under excessively high N-flux conditions and subsequent growth of the main InN epilayer at the optimum conditions, namely, substrate temperature 400–450 °C and In/N flux ratio close to 1. InN nucleation occurs in the form of a very high density of three dimensional (3D) islands, which coalesce very fast into a low surface roughness InN film.more » The reduced reactivity of Si at low temperature and its fast coverage by InN limit the amount of unintentional Si nitridation by the excessively high nitrogen flux and good bonding/adhesion of the InN film directly on the Si substrate is achieved. The subsequent overgrowth of the main InN epilayer, in a layer-by-layer growth mode that enhances the lateral growth of InN, reduces significantly the crystal mosaicity and the density of threading dislocations is about an order of magnitude less compared to InN films grown using an AlN/GaN intermediate nucleation/buffer layer on Si. The InN films exhibit the In-face polarity and very smooth atomically stepped surfaces.« less
Sneutrino Higgs models explain lepton non-universality in eejj, eνjj excesses
Berger, Joshua; Dror, Jeff Asaf; Ng, Wee Hao
2015-09-23
Recent searches for first-generation leptoquarks and heavy right-handed W R bosons have seen excesses in final states with electrons and jets. A bizarre property of these excesses is that they appear to violate lepton universality. With these results in mind, we study the phenomenology of supersymmetric models in which the Higgs arises as the sneutrino in an electron supermultiplet. Since the electron is singled out in this approach, one can naturally account for the lepton flavor structure of the excesses. In this work, we show that in such a framework, one can significantly alleviate the tension between the Standard Modelmore » and the data and yet evade current constraints from other searches. Finally we point out that correlated excesses are expected to be seen in future multilepton searches.« less
Charge delocalization characteristics of regioregular high mobility polymers
Coughlin, J. E.; Zhugayevych, A.; Wang, M.; ...
2017-01-01
Controlling the regioregularity among the structural units of narrow bandgap conjugated polymer backbones has led to improvements in optoelectronic properties, for example in the mobilities observed in field effect transistor devices. To investigate how the regioregularity affects quantities relevant to hole transport, regioregular and regiorandom oligomers representative of polymeric structures were studied using density functional theory. Several structural and electronic characteristics of the oligomers were compared, including chain planarity, cation spin density, excess charges on molecular units and internal reorganizational energy. The main difference between the regioregular and regiorandom oligomers is found to be the conjugated backbone planarity, while themore » reorganizational energies calculated are quite similar across the molecular family. Lastly, this work constitutes the first step on understanding the complex interplay of atomistic changes and an oligomer backbone structure toward modeling the charge transport properties.« less
NASA Astrophysics Data System (ADS)
Langhorn, J.; Bi, Y. J.; Abell, J. S.
1996-02-01
Platinum group metal additions made to thick films of YBCO have induced significant improvements in the superconducting properties, in particular critical current densities ( Jc). Values in excess of 7 × 10 3 A cm -2 at 77 K and zero applied field have been measured. Optical and transmission electron microscopy have shown a homogeneous distribution of sub-micron sized, and larger highly anisotropic 211, believed to result from a reaction between Pt and YBCO to create nucleation sites for 211 precipitates. Indirect supporting thermal analysis evidence for this reaction is presented. An increased density of dislocations associated with the {123}/{211} interface suggests that refined 211 precipitates may act as heterogeneous nucleation sites for flux pinning defects. Similar effects have been observed for additions of other platinum group metals (Rh, Pd).
NASA Astrophysics Data System (ADS)
Borah, Debasish; Dasgupta, Arnab; Adhikari, Rathin
2015-10-01
We attempt to simultaneously explain the recently observed 3.55 keV x-ray line in the analysis of XMM-Newton telescope data and the Galactic Center gamma ray excess observed by the Fermi Gamma Ray Space Telescope within an Abelian gauge extension of the standard model. We consider a two component dark matter scenario with tree level mass difference 3.55 keV such that the heavier one can decay into the lighter one and a photon with energy 3.55 keV. The lighter dark matter candidate is protected from decaying into the standard model particles by a remnant Z2 symmetry into which the Abelian gauge symmetry gets spontaneously broken. If the mass of the dark matter particle is chosen to be within 31-40 GeV, then this model can also explain the Galactic Center gamma ray excess if the dark matter annihilation into b b ¯ pairs has a cross section of ⟨σ v ⟩≃(1.4 -2.0 )×1 0-26 cm3/s . We constrain the model from the requirement of producing correct dark matter relic density, 3.55 keV x-ray line flux, and Galactic Center gamma ray excess. We also impose the bounds coming from dark matter direct detection experiments as well as collider limits on additional gauge boson mass and gauge coupling. We also briefly discuss how this model can give rise to subelectron volt neutrino masses at tree level as well as the one-loop level while keeping the dark matter mass at a few tens of giga-electron volts. We also constrain the model parameters from the requirement of keeping the one-loop mass difference between two dark matter particles below a kilo-electron volt. We find that the constraints from light neutrino mass and kilo-electron volt mass splitting between two dark matter components show more preference for opposite C P eigenvalues of the two fermion singlet dark matter candidates in the model.
Nithya, G; Thanuja, B; Kanagam, Charles C
2013-01-01
Density (ρ), ultrasonic velocity (u), adiabatic compressibility (β), apparent molar volume (Ø), acoustic impedance (Z), intermolecular free length (L(f)), relative association (RA) of binary mixtures of 2'-chloro-4-methoxy-3-nitro benzil (abbreviated as 2CBe) in ethanol, acetonitrile, chloroform, dioxane and benzene were measured at different concentrations at 298 K. Several useful parameters such as excess density, excess ultrasonic velocity, excess adiabatic compressibility, excess apparent molar volume, excess acoustic impedance and excess intermolecular free length have been calculated. These parameters are used to explain the nature of intermolecular interactions taking place in the binary mixture. The above study is useful in understanding the solute--solvent interactions occurring in different concentrations at room temperature. Copyright © 2012 Elsevier B.V. All rights reserved.
NEBULAR AND STELLAR DUST EXTINCTION ACROSS THE DISK OF EMISSION-LINE GALAXIES ON KILOPARSEC SCALES
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hemmati, Shoubaneh; Mobasher, Bahram; Darvish, Behnam
We investigate the resolved kiloparsec-scale stellar and nebular dust distribution in eight star-forming galaxies at z ∼ 0.4 in the Great Observatories Origins Deep Survey fields. This is to get a better understanding of the effect of dust attenuation on measurements of physical properties and its variation with redshift. Constructing the observed spectral energy distributions (SEDs) per pixel, based on seven bands of photometric data from Hubble Space Telescope/Advanced Camera for Surveys and WFC3, we performed pixel-by-pixel SED fits to population synthesis models and estimated the small-scale distribution of stellar dust extinction. We use Hα/Hβ nebular emission line ratios from Keck/DEIMOS high-resolutionmore » spectra at each spatial resolution element to measure the amount of attenuation faced by ionized gas at different radii from the centers of galaxies. We find a good agreement between the integrated and median of resolved color excess measurements in our galaxies. The ratio of integrated nebular to stellar dust extinction is always greater than unity, but does not show any trend with stellar mass or star formation rate (SFR). We find that inclination plays an important role in the variation of the nebular to stellar excess ratio. The stellar color excess profiles are found to have higher values at the center compared to outer parts of the disk. However, for lower mass galaxies, a similar trend is not found for the nebular color excess. We find that the nebular color excess increases with stellar mass surface density. This explains the absence of radial trend in the nebular color excess in lower mass galaxies which lack a large radial variation of stellar mass surface density. Using standard conversions of SFR surface density to gas mass surface density, and the relation between dust mass surface density and color excess, we find no significant variation in the dust-to-gas ratio in regions with high gas mass surface densities over the scales probed in this study.« less
NASA Astrophysics Data System (ADS)
Rosati, Roberto; Dolcini, Fabrizio; Rossi, Fausto
2015-12-01
A recent study [Rosati, Dolcini, and Rossi, Appl. Phys. Lett. 106, 243101 (2015), 10.1063/1.4922739] has predicted that, while in semiconducting single-walled carbon nanotubes (SWNTs) an electronic wave packet experiences the typical spatial diffusion of conventional materials, in metallic SWNTs, its shape remains essentially unaltered up to micrometer distances at room temperature, even in the presence of the electron-phonon coupling. Here, by utilizing a Lindblad-based density-matrix approach enabling us to account for both dissipation and decoherence effects, we test such a prediction by analyzing various aspects that were so far unexplored. In particular, accounting for initial nonequilibrium excitations, characterized by an excess energy E0, and including both intra- and interband phonon scattering, we show that for realistically high values of E0 the electronic diffusion is extremely small and nearly independent of its energetic distribution, in spite of a significant energy-dissipation and decoherence dynamics. Furthermore, we demonstrate that the effect is robust with respect to the variation of the chemical potential. Our results thus suggest that metallic SWNTs are a promising platform to realize quantum channels for the nondispersive transmission of electronic wave packets.
Oh, Soong Ju; Berry, Nathaniel E; Choi, Ji-Hyuk; Gaulding, E Ashley; Paik, Taejong; Hong, Sung-Hoon; Murray, Christopher B; Kagan, Cherie R
2013-03-26
We investigate the effects of stoichiometric imbalance on the electronic properties of lead chalcogenide nanocrystal films by introducing excess lead (Pb) or selenium (Se) through thermal evaporation. Hall-effect and capacitance-voltage measurements show that the carrier type, concentration, and Fermi level in nanocrystal solids may be precisely controlled through their stoichiometry. By manipulating only the stoichiometry of the nanocrystal solids, we engineer the characteristics of electronic and optoelectronic devices. Lead chalcogenide nanocrystal field-effect transistors (FETs) are fabricated at room temperature to form ambipolar, unipolar n-type, and unipolar p-type semiconducting channels as-prepared and with excess Pb and Se, respectively. Introducing excess Pb forms nanocrystal FETs with electron mobilities of 10 cm(2)/(V s), which is an order of magnitude higher than previously reported in lead chalcogenide nanocrystal devices. Adding excess Se to semiconductor nanocrystal solids in PbSe Schottky solar cells enhances the power conversion efficiency.
High mobility back-gated InAs/GaSb double quantum well grown on GaSb substrate
DOE Office of Scientific and Technical Information (OSTI.GOV)
Nguyen, Binh-Minh, E-mail: mbnguyen@hrl.com, E-mail: MSokolich@hrl.com; Yi, Wei; Noah, Ramsey
2015-01-19
We report a backgated InAs/GaSb double quantum well device grown on GaSb substrate. The use of the native substrate allows for high materials quality with electron mobility in excess of 500 000 cm{sup 2}/Vs at sheet charge density of 8 × 10{sup 11} cm{sup −2} and approaching 100 000 cm{sup 2}/Vs near the charge neutrality point. Lattice matching between the quantum well structure and the substrate eliminates the need for a thick buffer, enabling large back gate capacitance and efficient coupling with the conduction channels in the quantum wells. As a result, quantum Hall effects are observed in both electron and hole regimes across the hybridizationmore » gap.« less
An electron beam ion trap and source for re-acceleration of rare-isotope ion beams at TRIUMF
NASA Astrophysics Data System (ADS)
Blessenohl, M. A.; Dobrodey, S.; Warnecke, C.; Rosner, M. K.; Graham, L.; Paul, S.; Baumann, T. M.; Hockenbery, Z.; Hubele, R.; Pfeifer, T.; Ames, F.; Dilling, J.; Crespo López-Urrutia, J. R.
2018-05-01
Electron beam driven ionization can produce highly charged ions (HCIs) in a few well-defined charge states. Ideal conditions for this are maximally focused electron beams and an extremely clean vacuum environment. A cryogenic electron beam ion trap fulfills these prerequisites and delivers very pure HCI beams. The Canadian rare isotope facility with electron beam ion source-electron beam ion sources developed at the Max-Planck-Institut für Kernphysik (MPIK) reaches already for a 5 keV electron beam and a current of 1 A with a density in excess of 5000 A/cm2 by means of a 6 T axial magnetic field. Within the trap, the beam quickly generates a dense HCI population, tightly confined by a space-charge potential of the order of 1 keV times the ionic charge state. Emitting HCI bunches of ≈107 ions at up to 100 Hz repetition rate, the device will charge-breed rare-isotope beams with the mass-over-charge ratio required for re-acceleration at the Advanced Rare IsotopE Laboratory (ARIEL) facility at TRIUMF. We present here its design and results from commissioning runs at MPIK, including X-ray diagnostics of the electron beam and charge-breeding process, as well as ion injection and HCI-extraction measurements.
Gómez, Luis F; Lucumí, Diego I; Parra, Diana C; Lobelo, Felipe
2008-01-01
Determining the association between the degree of urbanisation and excessive television-viewing and video-game use amongst children aged 5 to 12 years old. Data from the Colombian National Nutritional Survey 2005 was used in the analysis. Television viewing and video-game use was determined through parental reports for 13,090 children and classified as being excessive (e' 2 hours/day) or suitable (<2 hours/day). Five levels of urbanisation were determined using criteria from the National Planning Department and the population size of the rural or urban settings included in the survey. Multiple logistical regression analysis was conducted while taking potential confounders into account. There was a gradual increase in the probability of TV or videogames being used for 2 hours or more as the degree of urbanisation increased. This association was statistically significant for urbanisation level 3 and higher (urbanisation level 2, OR=1,33: 0,89-1,99 95 %CI; urbanisation level 3, 1,35=OR: 1,00-1,80 95 %CI; urbanisation level 4, 1,61=OR: 1,16-2,23 95 %CI and urbanisation level 5, 1,7=OR: 1,17-2,46 95 %CI). Colombian children living in areas of high-to-moderate urbanisation and population density are at a higher risk of excessive exposure to electronic media entertainment. Due to its multiple health implications (in particular obesity and cardio-metabolic health), such sedentary behaviour should be monitored and its determinants in the Colombian paediatric population must be understand for making effective public health interventions.
Song, Jinsuk; Kim, Mahn Won
2010-03-11
Understanding the differential adsorption of ions at the interface of an electrolyte solution is very important because it is closely related, not only to the fundamental aspects of biological systems, but also to many industrial applications. We have measured the excess interfacial negative charge density at air-electrolyte solution interfaces by using resonant second harmonic generation of oppositely charged probe molecules. The excess charge density increased with the square root of the bulk electrolyte concentration. A new adsorption model that includes the electrostatic interaction between adsorbed molecules is proposed to explain the measured adsorption isotherm, and it is in good agreement with the experimental results.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Harvey, R. W.; Chan, V. S.; Chiu, S. C.
2000-11-01
Runaway electrons are calculated to be produced during the rapid plasma cooling resulting from ''killer pellet'' injection experiments, in general agreement with observations in the DIII-D [J. L. Luxon , Plasma Physics and Controlled Nuclear Fusion Research 1986 (International Atomic Energy Agency, Vienna, 1987), Vol. I, p. 159] tokamak. The time-dependent dynamics of the kinetic runaway distributions are obtained with the CQL3D [R. W. Harvey and M. G. McCoy, ''The CQL3D Code,'' in Proceedings of the IAEA Technical Committee Meeting on Numerical Modeling, Montreal, 1992 (International Atomic Energy Agency, Vienna, 1992), p. 489] collisional Fokker--Planck code, including the effect ofmore » small and large angle collisions and stochastic magnetic field transport losses. The background density, temperature, and Z{sub eff} are evolved according to the KPRAD [D. G. Whyte and T. E. Evans , in Proceedings of the 24th European Conference on Controlled Fusion and Plasma Physics, Berchtesgaden, Germany (European Physical Society, Petit-Lancy, 1997), Vol. 21A, p. 1137] deposition and radiation model of pellet--plasma interactions. Three distinct runway mechanisms are apparent: (1) prompt ''hot-tail runaways'' due to the residual hot electron tail remaining from the pre-cooling phase, (2) ''knock-on'' runaways produced by large-angle Coulomb collisions on existing high energy electrons, and (3) Dreicer ''drizzle'' runaway electrons due to diffusion of electrons up to the critical velocity for electron runaway. For electron densities below {approx}1x10{sup 15}cm{sup -3}, the hot-tail runaways dominate the early time evolution, and provide the seed population for late time knock-on runaway avalanche. For small enough stochastic magnetic field transport losses, the knock-on production of electrons balances the losses at late times. For losses due to radial magnetic field perturbations in excess of {approx}0.1% of the background field, i.e., {delta}B{sub r}/B{>=}0.001, the losses prevent late-time electron runaway.« less
Effect of plasma-induced surface charging on catalytic processes: application to CO2 activation
NASA Astrophysics Data System (ADS)
Bal, Kristof M.; Huygh, Stijn; Bogaerts, Annemie; Neyts, Erik C.
2018-02-01
Understanding the nature and effect of the multitude of plasma-surface interactions in plasma catalysis is a crucial requirement for further process development and improvement. A particularly intriguing and rather unique property of a plasma-catalytic setup is the ability of the plasma to modify the electronic structure, and hence chemical properties, of the catalyst through charging, i.e. the absorption of excess electrons. In this work, we develop a quantum chemical model based on density functional theory to study excess negative surface charges in a heterogeneous catalyst exposed to a plasma. This method is specifically applied to investigate plasma-catalytic CO2 activation on supported M/Al2O3 (M = Ti, Ni, Cu) single atom catalysts. We find that (1) the presence of a negative surface charge dramatically improves the reductive power of the catalyst, strongly promoting the splitting of CO2 to CO and oxygen, and (2) the relative activity of the investigated transition metals is also changed upon charging, suggesting that controlled surface charging is a powerful additional parameter to tune catalyst activity and selectivity. These results strongly point to plasma-induced surface charging of the catalyst as an important factor contributing to the plasma-catalyst synergistic effects frequently reported for plasma catalysis.
Influences of optical-spectrum errors on excess relative intensity noise in a fiber-optic gyroscope
NASA Astrophysics Data System (ADS)
Zheng, Yue; Zhang, Chunxi; Li, Lijing
2018-03-01
The excess relative intensity noise (RIN) generated from broadband sources degrades the angular-random-walk performance of a fiber-optic gyroscope dramatically. Many methods have been proposed and managed to suppress the excess RIN. However, the properties of the excess RIN under the influences of different optical errors in the fiber-optic gyroscope have not been systematically investigated. Therefore, it is difficult for the existing RIN-suppression methods to achieve the optimal results in practice. In this work, the influences of different optical-spectrum errors on the power spectral density of the excess RIN are theoretically analyzed. In particular, the properties of the excess RIN affected by the raised-cosine-type ripples in the optical spectrum are elaborately investigated. Experimental measurements of the excess RIN corresponding to different optical-spectrum errors are in good agreement with our theoretical analysis, demonstrating its validity. This work provides a comprehensive understanding of the properties of the excess RIN under the influences of different optical-spectrum errors. Potentially, it can be utilized to optimize the configurations of the existing RIN-suppression methods by accurately evaluating the power spectral density of the excess RIN.
Dislocation loop formation by swift heavy ion irradiation of metals.
Khara, Galvin S; Murphy, Samuel T; Duffy, Dorothy M
2017-07-19
A coupled two-temperature, molecular dynamics methodology is used to simulate the structural evolution of bcc metals (Fe and W) and fcc metals (Cu and Ni) following irradiation by swift heavy ions. Electronic temperature dependent electronic specific heat capacities and electron-phonon coupling strengths are used to capture the full effects of the variation in the electronic density of states. Tungsten is found to be significantly more resistant to damage than iron, due both to the higher melting temperature and the higher thermal conductivity. Very interesting defect structures, quite different from defects formed in cascades, are found to be created by swift heavy ion irradiation in the bcc metals. Isolated vacancies form a halo around elongated interstitial dislocation loops that are oriented along the ion path. Such configurations are formed by rapid recrystallization of the molten cylindrical region that is created by the energetic ion. Vacancies are created at the recrystallization front, resulting in excess atoms at the core which form interstitial dislocation loops on completion of crystallization. These unique defect structures could, potentially, be used to create metal films with superior mechanical properties and interesting nanostructures.
Dislocation loop formation by swift heavy ion irradiation of metals
NASA Astrophysics Data System (ADS)
Khara, Galvin S.; Murphy, Samuel T.; Duffy, Dorothy M.
2017-07-01
A coupled two-temperature, molecular dynamics methodology is used to simulate the structural evolution of bcc metals (Fe and W) and fcc metals (Cu and Ni) following irradiation by swift heavy ions. Electronic temperature dependent electronic specific heat capacities and electron-phonon coupling strengths are used to capture the full effects of the variation in the electronic density of states. Tungsten is found to be significantly more resistant to damage than iron, due both to the higher melting temperature and the higher thermal conductivity. Very interesting defect structures, quite different from defects formed in cascades, are found to be created by swift heavy ion irradiation in the bcc metals. Isolated vacancies form a halo around elongated interstitial dislocation loops that are oriented along the ion path. Such configurations are formed by rapid recrystallization of the molten cylindrical region that is created by the energetic ion. Vacancies are created at the recrystallization front, resulting in excess atoms at the core which form interstitial dislocation loops on completion of crystallization. These unique defect structures could, potentially, be used to create metal films with superior mechanical properties and interesting nanostructures.
NASA Astrophysics Data System (ADS)
Kubas, Adam; Hoffmann, Felix; Heck, Alexander; Oberhofer, Harald; Elstner, Marcus; Blumberger, Jochen
2014-03-01
We introduce a database (HAB11) of electronic coupling matrix elements (Hab) for electron transfer in 11 π-conjugated organic homo-dimer cations. High-level ab inito calculations at the multireference configuration interaction MRCI+Q level of theory, n-electron valence state perturbation theory NEVPT2, and (spin-component scaled) approximate coupled cluster model (SCS)-CC2 are reported for this database to assess the performance of three DFT methods of decreasing computational cost, including constrained density functional theory (CDFT), fragment-orbital DFT (FODFT), and self-consistent charge density functional tight-binding (FODFTB). We find that the CDFT approach in combination with a modified PBE functional containing 50% Hartree-Fock exchange gives best results for absolute Hab values (mean relative unsigned error = 5.3%) and exponential distance decay constants β (4.3%). CDFT in combination with pure PBE overestimates couplings by 38.7% due to a too diffuse excess charge distribution, whereas the economic FODFT and highly cost-effective FODFTB methods underestimate couplings by 37.6% and 42.4%, respectively, due to neglect of interaction between donor and acceptor. The errors are systematic, however, and can be significantly reduced by applying a uniform scaling factor for each method. Applications to dimers outside the database, specifically rotated thiophene dimers and larger acenes up to pentacene, suggests that the same scaling procedure significantly improves the FODFT and FODFTB results for larger π-conjugated systems relevant to organic semiconductors and DNA.
The evolution of energetic particles and the emitted radiation in solar flares. Ph.D. Thesis
NASA Technical Reports Server (NTRS)
Lu, Edward Tsang
1989-01-01
The evolution of accelerated particle distributions in a magnetized plasma and the resulting radiation are calculated, and the results are applied to solar flares. To study the radiation on timescales of order the particle lifetimes, the evolution of the particle distribution is determined by the use of the Fokker-Planck equation including Coulomb collisions and magnetic mirroring. Analytic solution to the equations are obtained for limiting cases such as homogeneous injection in a homogeneous plasma, and for small pitch angle. These analytic solutions are then used to place constraints on flare parameters such as density, loop length, and the injection timescale for very short implusive solar flares. For general particle distributions in arbitrary magnetic field and background density, the equation is solved numerically. The relative timing of microwaves and X-rays during individual flares is investigated. A number of possible sources for excessive microwave flux are discussed including a flattening in the electron spectrum above hard X-ray energies, thermal synchrotron emission, and trapping of electron by converging magnetic fields. Over shorter timescales, the Fokker-Planck equation is solved numerically to calculate the temporal evolution of microwaves and X-rays from nonthermal thick target models. It is shown that magnetic trapping will not account for the observed correlation of microwaves of approximately 0.15 seconds behind X-rays in flares with rapid time variation, and thus higher energy electrons must be accelerated later than lower energy electrons.
On the sizes and observable effects of dust particles in polar mesospheric winter echoes
NASA Astrophysics Data System (ADS)
Havnes, O.; Kassa, M.
2009-05-01
In the present paper, recent radar and heating experiments on the polar mesospheric winter echoes (PMWE) are analyzed with the radar overshoot model. The PMWE dust particles that influence the radar backscatter most likely have sizes around 3 nm. For dust to influence the electrons in the PMWE layers, it must be charged; therefore, we have discussed the charging of nanometer-sized particles and found that the photodetachment effect, where photons of energy less than the work function of the dust material can remove excess electrons, probably is dominant at sunlit conditions. For moderate and low electron densities, very few of the dust smaller than ˜3 nm will be charged. We suggest that the normal requirement that disturbed magnetospheric conditions with ionizing precipitation must be present to create observable PMWE is needed mainly to create sufficiently high electron densities to overcome the photodetachment effect and charge the PMWE dust particles. We have also suggested other possible effects of the photodetachment on the occurrence rate of the PMWE. We attribute the lack of PMWE-like radar scattering layers in the lower mesosphere during the summer not only to a lower level of turbulence than in winter but also to that dust particles are removed from these layers due to the upward wind draught in the summer mesospheric circulation system. It is likely that this last effect will completely shut off the PMWE-like radar layers in the lower parts of the mesosphere.
North-south components of the annual asymmetry in the ionosphere
NASA Astrophysics Data System (ADS)
Gulyaeva, T. L.; Arikan, F.; Hernandez-Pajares, M.; Veselovsky, I. S.
2014-07-01
A retrospective study of the asymmetry in the ionosphere during the solstices is made using the different geospace parameters in the North and South magnetic hemispheres. Data of total electron content (TEC) and global electron content (GEC) produced from global ionospheric maps, GIM-TEC for 1999-2013, the ionospheric electron content (IEC) measured by TOPEX-Jason 1 and 2 satellites for 2001-2012, the F2 layer critical frequency and peak height measured on board ISIS 1, ISIS 2, and IK19 satellites during 1969-1982, and the earthquakes M5+ occurrences for 1999-2013 are analyzed. Annual asymmetry is observed with GEC and IEC for the years of observation with asymmetry index, AI, showing January > July excess from 0.02 to 0.25. The coincident pattern of January-to-July asymmetry ratio of TEC and IEC colocated along the magnetic longitude sector of 270° ± 5°E in the Pacific Ocean is obtained varying with local time and magnetic latitude. The sea/land differences in the F2 layer peak electron density, NmF2, and the peak height, hmF2, gathered with topside sounding data exhibit tilted ionosphere along the seashores with denser electron population at greater peak heights over the sea. The topside peak electron density NmF2, TEC, IEC, and the hemisphere part of GEC are dominant in the South hemisphere which resembles the pattern for seismic activity with dominant earthquake occurrence in the South magnetic hemisphere. Though the study is made for the hemispheric and annual asymmetry during solstices in the ionosphere, the conclusions seem valid for other aspects of seismic-ionospheric associations with tectonic plate boundaries representing zones of enhanced risk for space weather.
On energetic prerequisites of attracting electrons
NASA Astrophysics Data System (ADS)
Sundholm, Dage
2014-06-01
The internal reorganization energy and the zero-point vibrational energy (ZPE) of fractionally charged molecules embedded in molecular materials are discussed. The theory for isolated open quantum systems is taken as the starting point. It is shown that for isolated molecules the internal reorganization-energy function and its slope, i.e., the chemical potential of an open molecular system are monotonically decreasing functions with respect to increasing amount of negative excess charge (q) in the range of q = [0, 1]. Calculations of the ZPE for fractionally charged molecules show that the ZPE may have a minimum for fractional occupation. The calculations show that the internal reorganization energy and changes in the ZPE are of the same order of magnitude with different behavior as a function of the excess charge. The sum of the contributions might favor molecules with fractional occupation of the molecular units and partial delocalization of the excess electrons in solid-state materials also when considering Coulomb repulsion between the excess electrons. The fractional electrons are then coherently distributed on many molecules of the solid-state material forming a condensate of attracting electrons, which is crucial for the superconducting state.
On energetic prerequisites of attracting electrons.
Sundholm, Dage
2014-06-21
The internal reorganization energy and the zero-point vibrational energy (ZPE) of fractionally charged molecules embedded in molecular materials are discussed. The theory for isolated open quantum systems is taken as the starting point. It is shown that for isolated molecules the internal reorganization-energy function and its slope, i.e., the chemical potential of an open molecular system are monotonically decreasing functions with respect to increasing amount of negative excess charge (q) in the range of q = [0, 1]. Calculations of the ZPE for fractionally charged molecules show that the ZPE may have a minimum for fractional occupation. The calculations show that the internal reorganization energy and changes in the ZPE are of the same order of magnitude with different behavior as a function of the excess charge. The sum of the contributions might favor molecules with fractional occupation of the molecular units and partial delocalization of the excess electrons in solid-state materials also when considering Coulomb repulsion between the excess electrons. The fractional electrons are then coherently distributed on many molecules of the solid-state material forming a condensate of attracting electrons, which is crucial for the superconducting state.
Precipitation of silicon from splat-cooled Al-Si alloys
NASA Technical Reports Server (NTRS)
Matyja, H.; Russell, K. C.; Grant, N. J.; Giessen, B. C.
1975-01-01
Splat cooled Al-Si solid solutions with 1 to 11 at.% Si were prepared and their precipitation kinetics were studied by transmission electron microscopy. The time required for appearance of particles visible at a magnification of 35,000 times was determined at temperatures between 248 K and 573 K. The resulting Arrhenius plots yielded activation energies ranging from 55 to 40 plus or minus 2kJ/mol over the composition range. Precipitate densities were higher and denuded zones of 100 to 150 nm were narrower than in comparable solid quenched samples. The activation energies are explained in terms of excess point defect concentrations.
Controlling the Local Electronic Properties of Si(553)-Au through Hydrogen Doping
NASA Astrophysics Data System (ADS)
Hogan, C.; Speiser, E.; Chandola, S.; Suchkova, S.; Aulbach, J.; Schäfer, J.; Meyer, S.; Claessen, R.; Esser, N.
2018-04-01
We propose a quantitative and reversible method for tuning the charge localization of Au-stabilized stepped Si surfaces by site-specific hydrogenation. This is demonstrated for Si(553)-Au as a model system by combining density functional theory simulations and reflectance anisotropy spectroscopy experiments. We find that controlled H passivation is a two-step process: step-edge adsorption drives excess charge into the conducting metal chain "reservoir" and renders it insulating, while surplus H recovers metallic behavior. Our approach illustrates a route towards microscopic manipulation of the local surface charge distribution and establishes a reversible switch of site-specific chemical reactivity and magnetic properties on vicinal surfaces.
Thermal analysis of the in-vessel components of the ITER plasma-position reflectometry.
Quental, P B; Policarpo, H; Luís, R; Varela, P
2016-11-01
The ITER plasma position reflectometry system measures the edge electron density profile of the plasma, providing real-time supplementary contribution to the magnetic measurements of the plasma-wall distance. Some of the system components will be in direct sight of the plasma and therefore subject to plasma and stray radiation, which may cause excessive temperatures and stresses. In this work, thermal finite element analysis of the antenna and adjacent waveguides is conducted with ANSYS V17 (ANSYS® Academic Research, Release 17.0, 2016). Results allow the identification of critical temperature points, and solutions are proposed to improve the thermal behavior of the system.
Thermal analysis of the in-vessel components of the ITER plasma-position reflectometry
DOE Office of Scientific and Technical Information (OSTI.GOV)
Quental, P. B., E-mail: pquental@ipfn.tecnico.ulisboa.pt; Policarpo, H.; Luís, R.
The ITER plasma position reflectometry system measures the edge electron density profile of the plasma, providing real-time supplementary contribution to the magnetic measurements of the plasma-wall distance. Some of the system components will be in direct sight of the plasma and therefore subject to plasma and stray radiation, which may cause excessive temperatures and stresses. In this work, thermal finite element analysis of the antenna and adjacent waveguides is conducted with ANSYS V17 (ANSYS® Academic Research, Release 17.0, 2016). Results allow the identification of critical temperature points, and solutions are proposed to improve the thermal behavior of the system.
Modeling viscosity and diffusion of plasma mixtures across coupling regimes
NASA Astrophysics Data System (ADS)
Arnault, Philippe
2014-10-01
Viscosity and diffusion of plasma for pure elements and multicomponent mixtures are modeled from the high-temperature low-density weakly coupled regime to the low-temperature high-density strongly coupled regime. Thanks to an atom in jellium modeling, the effect of electron screening on the ion-ion interaction is incorporated through a self-consistent definition of the ionization. This defines an effective One Component Plasma, or an effective Binary Ionic Mixture, that is representative of the strength of the interaction. For the viscosity and the interdiffusion of mixtures, approximate kinetic expressions are supplemented by mixing laws applied to the excess viscosity and self-diffusion of pure elements. The comparisons with classical and quantum molecular dynamics results reveal deviations in the range 20--40% on average with almost no predictions further than a factor of 2 over many decades of variation. Applications in the inertial confinement fusion context could help in predicting the growth of hydrodynamic instabilities.
Ii, Toru; Gi, Keii; Umezawa, Toshiyuki; Asai, Tomohiko; Inomoto, Michiaki; Ono, Yasushi
2012-08-01
We have developed a novel and economical neutral-beam injection system by employing a washer-gun plasma source. It provides a low-cost and maintenance-free ion beam, thus eliminating the need for the filaments and water-cooling systems employed conventionally. In our primary experiments, the washer gun produced a source plasma with an electron temperature of approximately 5 eV and an electron density of 5 × 10(17) m(-3), i.e., conditions suitable for ion-beam extraction. The dependence of the extracted beam current on the acceleration voltage is consistent with space-charge current limitation, because the observed current density is almost proportional to the 3/2 power of the acceleration voltage below approximately 8 kV. By optimizing plasma formation, we successfully achieved beam extraction of up to 40 A at 15 kV and a pulse length in excess of 0.25 ms. Its low-voltage and high-current pulsed-beam properties enable us to apply this high-power neutral beam injection into a high-beta compact torus plasma characterized by a low magnetic field.
Progress in Direct-Drive Inertial Confinement Fusion
DOE Office of Scientific and Technical Information (OSTI.GOV)
McCrory, R.L.; Meyerhofer, D.D.; Betti, R.
Significant progress in direct-drive inertial confinement fusion (ICF) research has been made since the completion of the 60-beam, 30-kJ UV OMEGA Laser System [T. R. Boehly, Opt. Commun. 133, 495 (1997)] in 1995. A theory of ignition requirements, applicable to any ICF concept, has been developed. Detailed understanding of laser-plasma coupling, electron thermal transport, and hot-electron preheating has lead to the measurement of neutron-averaged areal densities of ~200 mg/cm^2 in cryogenic target implosions. These correspond to an estimated peak fuel density in excess of 100 g/cm^3 and are in good agreement with hydrodynamic simulations. The implosions were performed using anmore » 18-kJ drive pulse designed to put the converging fuel on an adiabat of two. The polar-drive concept will allow direct-drive-ignition research on the National Ignition Facility while it is configured for indirect drive. Advanced ICF ignition concepts—fast ignition [Tabak et al., Phys. Plasmas 1, 1626 (1994)] and shock ignition [R. Betti et al., Phys. Rev. Lett. 98, 155001 (2007)]—have the potential to significantly reduce ignition driver energies and/or provide higher target gain.« less
Progress in direct-drive inertial confinement fusion
DOE Office of Scientific and Technical Information (OSTI.GOV)
McCrory, R. L.; Meyerhofer, D. D.; Betti, R.
Significant progress in direct-drive inertial confinement fusion (ICF) research has been made since the completion of the 60-beam, 30-kJ{sub UV} OMEGA Laser System [Boehly, Opt. Commun. 133, 495 (1997)] in 1995. A theory of ignition requirements, applicable to any ICF concept, has been developed. Detailed understanding of laser-plasma coupling, electron thermal transport, and hot-electron preheating has lead to the measurement of neutron-averaged areal densities of {approx}200 mg/cm{sup 2} in cryogenic target implosions. These correspond to an estimated peak fuel density in excess of 100 g/cm{sup 3} and are in good agreement with hydrodynamic simulations. The implosions were performed using anmore » 18-kJ drive pulse designed to put the converging fuel on an adiabat of two. The polar-drive concept will allow direct-drive-ignition research on the National Ignition Facility while it is configured for indirect drive. Advanced ICF ignition concepts - fast ignition [Tabak et al., Phys. Plasmas 1, 1626 (1994)] and shock ignition [Betti et al., Phys. Rev. Lett. 98, 155001 (2007)] - have the potential to significantly reduce ignition driver energies and/or provide higher target gain.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gajdos, Fruzsina; Oberhofer, Harald; Dupuis, Michel
2013-03-21
Phenyl-C61-butyric Acid Methyl Ester (PCBM) is one of the most popular semiconductors in organic photovoltaic cells, but the electron transport mechanism in the microcrystalline domains of this material as well as its preferred packing structure remains unclear. Here we use density functional theory to calculate electronic coupling matrix elements, reorganization energies and activation energies for available experimental and model crystal structures. We find that the picture of an excess electron hopping from one fullerene to another does not apply for any of the crystalline phases, rendering traditional rate equations inappropriate. We also find that the cohesive energy increases in themore » order body-centred-cubic < hexagonal < simple cubic < monoclinic < triclinic, independently on the type of dispersion correction used. Our results indicate that the electron-ion dynamics needs to be solved explicitly in order to obtain a realistic description of charge transfer in this material. M.D. was supported by the U.S. Department of Energy (DOE), Office of Basic Energy Sciences (BES), Division of Chemical Sciences, Geosciences and Biosciences. PNNL is a multiprogram national laboratory operated for DOE by Battelle.« less
Community Alcohol Outlet Density and Underage Drinking
Chen, Meng-Jinn; Grube, Joel W.; Gruenewald, Paul J.
2009-01-01
Aim This study examined how community alcohol outlet density may be associated with drinking among youths. Methods Longitudinal data were collected from 1091 adolescents (aged 14–16 at baseline) recruited from 50 zip codes in California with varying levels of alcohol outlet density and median household income. Hierarchical linear models were used to examine the associations between zip code alcohol outlet density and frequency rates of general alcohol use and excessive drinking, taking into account zip code median household income and individual-level variables (age, gender, race/ethnicity, personal income, mobility, and perceived drinking by parents and peers). Findings When all other factors were controlled, higher initial levels of drinking and excessive drinking were observed among youths residing in zip codes with higher alcohol outlet densities. Growth in drinking and excessive drinking was on average more rapid in zip codes with lower alcohol outlet densities. The relation of zip code alcohol outlet density with drinking appeared to be mitigated by having friends with access to a car. Conclusion Alcohol outlet density may play a significant role in initiation of underage drinking during early teen ages, especially when youths have limited mobility. Youth who reside in areas with low alcohol outlet density may overcome geographic constraints through social networks that increase their mobility and the ability to seek alcohol and drinking opportunities beyond the local community. PMID:20078485
Nonintrusive Measurements for High-Speed, Supersonic, and Hypersonic Flows
NASA Astrophysics Data System (ADS)
Bonnet, J. P.; Grésillon, D.; Taran, J. P.
The need to develop new diagnostics for turbulent flows at supersonic and hypersonic regimes is discussed. New experimental results can be obtained in supersonic flows by using the collective light scattering method. Typical results obtained by this method in a supersonic mixing layer are illustrated. The collective light scattering method is a directional densitometer (with a new type of spectral analysis of density fluctuations), a nonparticle anemometer, a Mach-meter (or thermometer), and a directional remote microphone. Various other optical techniques that can be applied for point, line-of-sight, or imaging measurements are reviewed. For point measurements, light-scattering methods such as Raman, Rayleigh, or electron beam fluorescence are discussed, but only briefly, since they are of little use, especially when enthalpy is very high and flow naturally bright. Emphasis is placed instead on nonlinear laser spectroscopy such as coherent anti-Stokes Raman scattering, which has recently been successful in determining temperature and density in high-enthalpy shocks. A description of diode laser absorption spectroscopy follows. A high data-rate instrument now routinely gives the static temperature and the velocity of the stream in the hot shot facility F4 of ONERA, at stagnation enthalpies in excess of 15 MJ/kg. Finally, electron beam fluorescence imaging in the same facility has made it possible to perform measurements of velocity across the external boundary layer into the flow core using a high-energy-pulsed electron gun.
NASA Astrophysics Data System (ADS)
Ali, Anwar; Ansari, Sana; Uzair, Sahar; Tasneem, Shadma; Nabi, Firdosa
2015-11-01
Densities ρ and ultrasonic speeds u for pure diethylene glycol, 1-butanol, 2-butanol, and 1,4-butanediol and for their binary mixtures over the entire composition range were measured at 298.15 K, 303.15 K, 308.15 K, and 313.15 K. Using these data, the excess molar volumes, VE_m, deviations in isentropic compressibilities, {\\varDelta }ks, apparent molar volumes, V_{φi} , partial molar volumes, overline{V}_{m,i} , and excess partial molar volumes, overline{V}_{m,i}^E , have been calculated over the entire composition range, and also the excess partial molar volumes of the components at infinite dilution, overline{V}_{m,i}^{E,infty } have been calculated. The excess functions have been correlated using the Redlich-Kister equation at different temperatures. The variations of these derived parameters with composition and temperature are presented graphically.
Electron pairing without superconductivity
NASA Astrophysics Data System (ADS)
Levy, Jeremy
Strontium titanate (SrTiO3) is the first and best known superconducting semiconductor. It exhibits an extremely low carrier density threshold for superconductivity, and possesses a phase diagram similar to that of high-temperature superconductors--two factors that suggest an unconventional pairing mechanism. Despite sustained interest for 50 years, direct experimental insight into the nature of electron pairing in SrTiO3 has remained elusive. Here we perform transport experiments with nanowire-based single-electron transistors at the interface between SrTiO3 and a thin layer of lanthanum aluminate, LaAlO3. Electrostatic gating reveals a series of two-electron conductance resonances--paired electron states--that bifurcate above a critical pairing field Bp of about 1-4 tesla, an order of magnitude larger than the superconducting critical magnetic field. For magnetic fields below Bp, these resonances are insensitive to the applied magnetic field; for fields in excess of Bp, the resonances exhibit a linear Zeeman-like energy splitting. Electron pairing is stable at temperatures as high as 900 millikelvin, well above the superconducting transition temperature (about 300 millikelvin). These experiments demonstrate the existence of a robust electronic phase in which electrons pair without forming a superconducting state. Key experimental signatures are captured by a model involving an attractive Hubbard interaction that describes real-space electron pairing as a precursor to superconductivity. Support from AFOSR, ONR, ARO, NSF, DOE and NSSEFF is gratefully acknowledged.
Esteve, J; Trebbia, J-B; Schumm, T; Aspect, A; Westbrook, C I; Bouchoule, I
2006-04-07
We report in situ measurements of density fluctuations in a quasi-one-dimensional 87Rb Bose gas at thermal equilibrium in an elongated harmonic trap. We observe an excess of fluctuations compared to the shot-noise level expected for uncorrelated atoms. At low atomic density, the measured excess is in good agreement with the expected "bunching" for an ideal Bose gas. At high density, the measured fluctuations are strongly reduced compared to the ideal gas case. We attribute this reduction to repulsive interatomic interactions. The data are compared with a calculation for an interacting Bose gas in the quasicondensate regime.
NASA Technical Reports Server (NTRS)
Zdziarski, Andrzej A.; Coppi, Paolo S.
1991-01-01
In the present study of the formation of steep soft X-ray excesses that are superposed on flatter, hard X-ray power-law spectra in nonthermal electron-positron pair cascade sources, the soft excess in pair-cascade AGN models appears as a steep power law superposed on the tail of the UV bump and the flat nonthermal (hard X-ray) power law. The model-parameter space in which an excess in soft X-rays is visible is ascertained, and the time-variability of soft excesses in pair cascade models is examined. It is established that the parameter space in which soft excesses appear encompasses the range of preferred input parameters for a recently development Compton reflection model of UV and X-ray emission from the central engine of an AGN.
Low-frequency 1/f noise in graphene devices
NASA Astrophysics Data System (ADS)
Balandin, Alexander A.
2013-08-01
Low-frequency noise with a spectral density that depends inversely on frequency has been observed in a wide variety of systems including current fluctuations in resistors, intensity fluctuations in music and signals in human cognition. In electronics, the phenomenon, which is known as 1/f noise, flicker noise or excess noise, hampers the operation of numerous devices and circuits, and can be a significant impediment to the development of practical applications from new materials. Graphene offers unique opportunities for studying 1/f noise because of its two-dimensional structure and widely tunable two-dimensional carrier concentration. The creation of practical graphene-based devices will also depend on our ability to understand and control the low-frequency noise in this material system. Here, the characteristic features of 1/f noise in graphene and few-layer graphene are reviewed, and the implications of such noise for the development of graphene-based electronics including high-frequency devices and sensors are examined.
Low-frequency 1/f noise in graphene devices.
Balandin, Alexander A
2013-08-01
Low-frequency noise with a spectral density that depends inversely on frequency has been observed in a wide variety of systems including current fluctuations in resistors, intensity fluctuations in music and signals in human cognition. In electronics, the phenomenon, which is known as 1/f noise, flicker noise or excess noise, hampers the operation of numerous devices and circuits, and can be a significant impediment to the development of practical applications from new materials. Graphene offers unique opportunities for studying 1/f noise because of its two-dimensional structure and widely tunable two-dimensional carrier concentration. The creation of practical graphene-based devices will also depend on our ability to understand and control the low-frequency noise in this material system. Here, the characteristic features of 1/f noise in graphene and few-layer graphene are reviewed, and the implications of such noise for the development of graphene-based electronics including high-frequency devices and sensors are examined.
Jacobson, C M; Borchardt, M T; Den Hartog, D J; Falkowski, A F; Morton, L A; Thomas, M A
2016-11-01
The Thomson scattering diagnostic on the Madison Symmetric Torus (MST) records excessive levels of stray Nd:YAG laser light. Stray light saturates the 1064 nm spectral channel in all polychromators, which prevents absolute electron density measurements via Rayleigh scattering calibration. Furthermore, stray light contaminates adjacent spectral channels for r/a ≥ 0.75, which renders the diagnostic unable to make electron temperature measurements at these radii. In situ measurements of stray light levels during a vacuum vessel vent are used to identify stray light sources and strategies for reduction of stray light levels. Numerical modeling using Zemax OpticStudio supports these measurements. The model of the vacuum vessel and diagnostic includes synthetic collection optics to enable direct comparison of measured and simulated stray light levels. Modeling produces qualitatively similar stray light distributions to MST measurements, and quantifies the mitigation effects of stray light mitigation strategies prior to implementation.
NASA Astrophysics Data System (ADS)
Jacobson, C. M.; Borchardt, M. T.; Den Hartog, D. J.; Falkowski, A. F.; Morton, L. A.; Thomas, M. A.
2016-11-01
The Thomson scattering diagnostic on the Madison Symmetric Torus (MST) records excessive levels of stray Nd:YAG laser light. Stray light saturates the 1064 nm spectral channel in all polychromators, which prevents absolute electron density measurements via Rayleigh scattering calibration. Furthermore, stray light contaminates adjacent spectral channels for r/a ≥ 0.75, which renders the diagnostic unable to make electron temperature measurements at these radii. In situ measurements of stray light levels during a vacuum vessel vent are used to identify stray light sources and strategies for reduction of stray light levels. Numerical modeling using Zemax OpticStudio supports these measurements. The model of the vacuum vessel and diagnostic includes synthetic collection optics to enable direct comparison of measured and simulated stray light levels. Modeling produces qualitatively similar stray light distributions to MST measurements, and quantifies the mitigation effects of stray light mitigation strategies prior to implementation.
Kanbur, Yasin; Irimia-Vladu, Mihai; Głowacki, Eric D.; Voss, Gundula; Baumgartner, Melanie; Schwabegger, Günther; Leonat, Lucia; Ullah, Mujeeb; Sarica, Hizir; Erten-Ela, Sule; Schwödiauer, Reinhard; Sitter, Helmut; Küçükyavuz, Zuhal; Bauer, Siegfried; Sariciftci, Niyazi Serdar
2012-01-01
We report on the fabrication and performance of vacuum-processed organic field effect transistors utilizing evaporated low-density polyethylene (LD-PE) as a dielectric layer. With C60 as the organic semiconductor, we demonstrate low operating voltage transistors with field effect mobilities in excess of 4 cm2/Vs. Devices with pentacene showed a mobility of 0.16 cm2/Vs. Devices using tyrian Purple as semiconductor show low-voltage ambipolar operation with equal electron and hole mobilities of ∼0.3 cm2/Vs. These devices demonstrate low hysteresis and operational stability over at least several months. Grazing-angle infrared spectroscopy of evaporated thin films shows that the structure of the polyethylene is similar to solution-cast films. We report also on the morphological and dielectric properties of these films. Our experiments demonstrate that polyethylene is a stable dielectric supporting both hole and electron channels. PMID:23483783
Kato, Tsuguhiko; Yorifuji, Takashi; Yamakawa, Michiyo; Inoue, Sachiko
2018-01-31
Cross-sectional studies have shown associations between adolescent sleep problems and the use of electronic devices, such as mobile phones, but longitudinal studies remain scarce. We explored any association between delayed bedtimes at six years old and the excessive use of electronic devices at 12 years of age. Texting was a prime focus. We analysed 9607 adolescents who owned mobile phones in 2013 using the Japanese Longitudinal Survey of Newborns in the 21st Century, which started in 2001. The outcomes were daily excessive use of a mobile phone, television (TV) and video games. Delayed bedtime at the age of six years was associated with excessive texting at weekends. The adjusted odds ratios and 95% confidence intervals obtained from logistic regression analyses were 1.88 (1.14-3.10) for the 10-11 pm group and 1.98 (1.08-3.63) for the after 11 pm group, compared with the before 9 pm group. Later bedtimes were also associated with increased risks of excessive TV viewing and video game use. Our study indicated that six-year-olds who regularly stayed up late at night used electronic devices more frequently, or for longer, at the age of 12. Parents need to be more aware of links between sleep issues and electronic devices. ©2018 Foundation Acta Paediatrica. Published by John Wiley & Sons Ltd.
NASA Astrophysics Data System (ADS)
Peters, William K.; Tiwari, Vivek; Jonas, David M.
2017-11-01
The nonadiabatic states and dynamics are investigated for a linear vibronic coupling Hamiltonian with a static electronic splitting and weak off-diagonal Jahn-Teller coupling through a single vibration with a vibrational-electronic resonance. With a transformation of the electronic basis, this Hamiltonian is also applicable to the anti-correlated vibration in a symmetric homodimer with marginally strong constant off-diagonal coupling, where the non-adiabatic states and dynamics model electronic excitation energy transfer or self-exchange electron transfer. For parameters modeling a free-base naphthalocyanine, the nonadiabatic couplings are deeply quantum mechanical and depend on wavepacket width; scalar couplings are as important as the derivative couplings that are usually interpreted to depend on vibrational velocity in semiclassical curve crossing or surface hopping theories. A colored visualization scheme that fully characterizes the non-adiabatic states using the exact factorization is developed. The nonadiabatic states in this nested funnel have nodeless vibrational factors with strongly avoided zeroes in their vibrational probability densities. Vibronic dynamics are visualized through the vibrational coordinate dependent density of the time-dependent dipole moment in free induction decay. Vibrational motion is amplified by the nonadiabatic couplings, with asymmetric and anisotropic motions that depend upon the excitation polarization in the molecular frame and can be reversed by a change in polarization. This generates a vibrational quantum beat anisotropy in excess of 2/5. The amplitude of vibrational motion can be larger than that on the uncoupled potentials, and the electronic population transfer is maximized within one vibrational period. Most of these dynamics are missed by the adiabatic approximation, and some electronic and vibrational motions are completely suppressed by the Condon approximation of a coordinate-independent transition dipole between adiabatic states. For all initial conditions investigated, the initial nonadiabatic electronic motion is driven towards the lower adiabatic state, and criteria for this directed motion are discussed.
Peters, William K; Tiwari, Vivek; Jonas, David M
2017-11-21
The nonadiabatic states and dynamics are investigated for a linear vibronic coupling Hamiltonian with a static electronic splitting and weak off-diagonal Jahn-Teller coupling through a single vibration with a vibrational-electronic resonance. With a transformation of the electronic basis, this Hamiltonian is also applicable to the anti-correlated vibration in a symmetric homodimer with marginally strong constant off-diagonal coupling, where the non-adiabatic states and dynamics model electronic excitation energy transfer or self-exchange electron transfer. For parameters modeling a free-base naphthalocyanine, the nonadiabatic couplings are deeply quantum mechanical and depend on wavepacket width; scalar couplings are as important as the derivative couplings that are usually interpreted to depend on vibrational velocity in semiclassical curve crossing or surface hopping theories. A colored visualization scheme that fully characterizes the non-adiabatic states using the exact factorization is developed. The nonadiabatic states in this nested funnel have nodeless vibrational factors with strongly avoided zeroes in their vibrational probability densities. Vibronic dynamics are visualized through the vibrational coordinate dependent density of the time-dependent dipole moment in free induction decay. Vibrational motion is amplified by the nonadiabatic couplings, with asymmetric and anisotropic motions that depend upon the excitation polarization in the molecular frame and can be reversed by a change in polarization. This generates a vibrational quantum beat anisotropy in excess of 2/5. The amplitude of vibrational motion can be larger than that on the uncoupled potentials, and the electronic population transfer is maximized within one vibrational period. Most of these dynamics are missed by the adiabatic approximation, and some electronic and vibrational motions are completely suppressed by the Condon approximation of a coordinate-independent transition dipole between adiabatic states. For all initial conditions investigated, the initial nonadiabatic electronic motion is driven towards the lower adiabatic state, and criteria for this directed motion are discussed.
Statistical density modification using local pattern matching
Terwilliger, Thomas C.
2007-01-23
A computer implemented method modifies an experimental electron density map. A set of selected known experimental and model electron density maps is provided and standard templates of electron density are created from the selected experimental and model electron density maps by clustering and averaging values of electron density in a spherical region about each point in a grid that defines each selected known experimental and model electron density maps. Histograms are also created from the selected experimental and model electron density maps that relate the value of electron density at the center of each of the spherical regions to a correlation coefficient of a density surrounding each corresponding grid point in each one of the standard templates. The standard templates and the histograms are applied to grid points on the experimental electron density map to form new estimates of electron density at each grid point in the experimental electron density map.
NASA Astrophysics Data System (ADS)
Thanuja, B.; Kanakam, C.; Nithya, G.
2013-12-01
Density ( ρ) and ultrasonic velocity ( U), for binary mixtures of 2-chloro-4'-methoxy benzoin with ethanol, chloroform, acetonitrile, benzene and 1,4-dioxane of different compositions have been measured at 298 K and explanation of solute solvent interactions and effect of polarity of the solvent on type of interactions are presented in this paper. From the above data, adiabatic compressibility ( β), intermolecular free length ( L f ) and relative association ( R A ) have been calculated. Other useful parameters such as excess density, excess velocity, excess intermolecular freelength and excess adiabatic compressibility have also been calculated. These parameters have been used to study the nature and extent of intermolecular interactions between component molecules in present binary mixtures.
Stoichiometry effect on the irradiation response in the microstructure of zirconium carbides
DOE Office of Scientific and Technical Information (OSTI.GOV)
Young Yang; Wei-Yang Lo; Clayton Dickerson
2014-11-01
Zone-refined ultra high pure ZrC with five C/Zr ratios ranging from 0.84 to 1.17 was irradiated using a 2 MeV proton beam at 1125 C. The stoichiometry effect on the irradiation response of ZrC microstructure was examined using transmission electron microscopy following the irradiation. The irradiated microstructures generally feature a high density of perfect dislocation loops particularly at away from the graphite precipitates, and the C/Zr ratio shows a notable effect on the size and density of dislocation loops. The dislocation loops are identified as interstitial type perfect loops, and it was indirectly proved that the dislocation loop core likelymore » consists of carbon atoms. Graphite precipitates that form with excess carbon in the super-stoichiometric ZrC are detrimental, and the dramatic increases in the size of and density of dislocation loops in the vicinity of graphite precipitates in ZrC phase were observed. Irradiationinduced faceted voids were only observed in ZrC0.95, which is attributed to the pre-existing dislocation lines as biased sinks for vacancies.« less
On energetic prerequisites of attracting electrons
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sundholm, Dage
The internal reorganization energy and the zero-point vibrational energy (ZPE) of fractionally charged molecules embedded in molecular materials are discussed. The theory for isolated open quantum systems is taken as the starting point. It is shown that for isolated molecules the internal reorganization-energy function and its slope, i.e., the chemical potential of an open molecular system are monotonically decreasing functions with respect to increasing amount of negative excess charge (q) in the range of q = [0, 1]. Calculations of the ZPE for fractionally charged molecules show that the ZPE may have a minimum for fractional occupation. The calculations showmore » that the internal reorganization energy and changes in the ZPE are of the same order of magnitude with different behavior as a function of the excess charge. The sum of the contributions might favor molecules with fractional occupation of the molecular units and partial delocalization of the excess electrons in solid-state materials also when considering Coulomb repulsion between the excess electrons. The fractional electrons are then coherently distributed on many molecules of the solid-state material forming a condensate of attracting electrons, which is crucial for the superconducting state.« less
Savitch, Leonid V; Ivanov, Alexander G; Krol, Marianna; Sprott, David P; Oquist, Gunnar; Huner, Norman P A
2010-09-01
Second year needles of Lodgepole pine (Pinus contorta L.) were exposed for 6 weeks to either simulated control summer ['summer'; 25 °C/250 photon flux denisty (PFD)], autumn ('autumn'; 15°C/250 PFD) or winter conditions ('winter'; 5 °C/250 PFD). We report that the proportion of linear electron transport utilized in carbon assimilation (ETR(CO2)) was 40% lower in both 'autumn' and 'winter' pine when compared with the 'summer' pine. In contrast, the proportion of excess photosynthetic linear electron transport (ETR(excess)) not used for carbon assimilation within the total ETR(Jf) increased by 30% in both 'autumn' and 'winter' pine. In 'autumn' pine acclimated to 15°C, the increased amounts of 'excess' electrons were directed equally to 21 kPa O2-dependent and 2 kPa O2-dependent alternative electron transport pathways and the fractions of excitation light energy utilized by PSII photochemistry (Φ(PSII)), thermally dissipated through Φ(NPQ) and dissipated by additional quenching mechanism(s) (Φ(f,D)) were similar to those in 'summer' pine. In contrast, in 'winter' needles acclimated to 5 °C, 60% of photosynthetically generated 'excess' electrons were utilized through the 2 kPa O2-dependent electron sink and only 15% by the photorespiratory (21 kPa O2) electron pathway. Needles exposed to 'winter' conditions led to a 3-fold lower Φ(PSII), only a marginal increase in Φ(NPQ) and a 2-fold higher Φ(f,D), which was O2 dependent compared with the 'summer' and 'autumn' pine. Our results demonstrate that the employment of a variety of alternative pathways for utilization of photosynthetically generated electrons by Lodgepole pine depends on the acclimation temperature. Furthermore, dissipation of excess light energy through constitutive non-photochemical quenching mechanisms is O2 dependent.
Ji, Jiayuan; Zhao, Lingling; Tao, Lu; Lin, Shangchao
2017-06-29
In CO 2 geological storage, the interfacial tension (IFT) between supercritical CO 2 and brine is critical for the storage capacitance design to prevent CO 2 leakage. IFT relies not only on the interfacial molecule properties but also on the environmental conditions at different storage sites. In this paper, supercritical CO 2 -NaCl solution systems are modeled at 343-373 K and 6-35 MPa under the salinity of 1.89 mol/L using molecular dynamics simulations. After computing and comparing the molecular density profile across the interface, the atomic radial distribution function, the molecular orientation distribution, the molecular Gibbs surface excess (derived from the molecular density profile), and the CO 2 -hydrate number density under the above environmental conditions, we confirm that only the molecular Gibbs surface excess of CO 2 molecules and the CO 2 -hydrate number density correlate strongly with the temperature- and pressure-dependent IFTs. We also compute the populations of two distinct CO 2 -hydrate structures (T-type and H-type) and attribute the observed dependence of IFTs to the dominance of the more stable, surfactant-like T-type CO 2 -hydrates at the interface. On the basis of these new molecular mechanisms behind IFT variations, this study could guide the rational design of suitable injecting environmental pressure and temperature conditions. We believe that the above two molecular-level metrics (Gibbs surface excess and hydrate number density) are of great fundamental importance for understanding the supercritical CO 2 -water interface and engineering applications in geological CO 2 storage.
NASA Astrophysics Data System (ADS)
Troć, R.; Gajek, Z.; Pikul, A.
2012-12-01
Single-crystalline UGe2 was investigated by means of magnetic susceptibility, magnetization, electrical resistivity, magnetoresistivity, and specific-heat measurements, all carried out in wide temperature and magnetic-field ranges. An analysis of the obtained data points out the dual behavior of the 5f electrons in this compound, i.e., possessing simultaneously local and itinerant characters in two substates. The magnetic and thermal characteristics of the compound were modeled using the effective crystal field (CF) in the intermediate coupling scheme and initial parameters obtained in the angular overlap model. Various configurations of the localized 5fn (n = 1, 2, and 3) electrons on the uranium ion have been probed. The best results were obtained for the 5f2 (U4+) configuration. The CF parameters obtained in the paramagnetic region allowed us to reproduce satisfactorily the experimental findings in the whole temperature range including also the magnitude of the ordered magnetic moment of uranium at low temperature. The electrical resistivity data after subtraction of the phonon contribution reveal the presence of a Kondo-like interaction in UGe2 supporting the idea of partial localization of the 5f electrons in UGe2. On the other hand, magnetoresistivity and an excess of specific heat originated from the hybridized (itinerant) part of 5f states, apparent around the characteristic temperature T*, give a distinct signature for the presence of the coupled charge-density wave and spin-density wave fluctuations over all the ferromagnetic region with a maximum at T*, postulated earlier in the literature.
Excess density compensation of island herpetofaunal assemblages
Rodda, G.H.; Dean-Bradley, K.
2002-01-01
Aim Some species reach extraordinary densities on islands. Island assemblages have fewer species, however, and it is possible that island species differ from their mainland counterparts in average mass. Island assemblages could be partitioned differently (fewer species or smaller individuals) from mainland sites without differing in aggregate biomass (density compensation). Our objective was to determine the generality of excess density compensation in island herpetofaunal assemblages.Location Our bounded removal plot data were obtained from Pacific Island sites (Guam, Saipan and Rota), the West Indies (British Virgin Islands), and the Indian Ocean (Ile aux Aigrettes off Mauritius). The literature values were taken from several locales. Other island locations included Barro Colorado Island, Bonaire, Borneo, Philippine Islands, Seychelle Islands, Barrow Island (Australia), North Brother Island (New Zealand), Dominica and Puerto Rico. Mainland sites included Costa Rica, Ivory Coast, Cameroon, Australia, Thailand, Peru, Brazil, Panama and the USA.Method We added our thirty-nine bounded total removal plots from sixteen island habitats to fifteen literature records to obtain seventy-five venues with estimable density and biomass of arboreal or terrestrial herpetofaunal assemblages. These biomass estimates were evaluated geographically and in relation to sampling method, insularity, latitude, disturbance regime, seasonality, community richness, vegetative structure and climate. Direct data on trophic interactions (food availability, parasitism and predation pressure) were generally unavailable. Sampling problems were frequent for arboreal, cryptic and evasive species.Results and main conclusions We found strong evidence that herpetofaunal assemblages on small islands (mostly lizards) exhibit a much greater aggregate density of biomass (kg ha−1) than those of larger islands or mainland assemblages (small islands show excess density compensation). High aggregate biomass density was more strongly associated with the degree of species impoverishment on islands than it was on island area or insularity per se. High aggregate biomass density was not strongly associated with latitude, precipitation, canopy height or a variety of other physical characteristics of the study sites. The association between high aggregate biomass density and species-poor islands is consistent with the effects of a reduced suite of predators on depauperate islands, but other features may also contribute to excess density compensation.
Barik, Subrat Kumar; Dorcet, Vincent; Roisnel, Thierry; Halet, Jean-François; Ghosh, Sundargopal
2015-08-28
Reaction of [(η(5)-C5Me5)CoCl]2 with a two-fold excess of [LiBH4·thf] followed by heating with an excess of Se powder produces the dicobaltaselenaborane species [{(η(5)-C5Me5)Co}2B2H2Se2], , in good yield. The geometry of resembles a nido pentagonal [Co2B2Se2] bipyramid with a missing equatorial vertex. It can alternatively be seen as an open cage triple-decker cluster. Isolation of permits its reaction with [Fe2(CO)9] to give heterometallic diselenametallaborane [{(η(5)-C5Me5)Co}Fe(CO)3B2H2Se2], . The geometry of is similar to that of with one of the [(η(5)-C5Me5)Co] groups replaced by the isolobal, two-electron fragment [Fe(CO)3]. Both new compounds have been characterized by mass spectrometry, and by (1)H, (11)B and (13)C NMR spectroscopy. The structural architectures have been unequivocally established by crystallographic analysis. In addition, density functional theory calculations were performed to investigate the bonding and electronic properties. The large HOMO-LUMO gaps computed for both clusters are consistent with their thermodynamic stability. Natural bond order calculations predict the absence of metal-metal bonding interaction.
Liu, Xing; Wang, Xuefeng; Wang, Qiang; Andrews, Lester
2013-06-28
Reactions of laser-ablated V, Nb and Ta atoms with SO2 in excess argon during condensation gave new absorptions in the M=O stretching region, which were assigned to metal sulfide oxides SMO2 and anions SMO2(-) (M = V, Nb, Ta). The metal oxide complex OV(η(2)-SO) was also identified through the V=O and the characteristic side-on coordinated S-O stretching modes. The assignments of major vibrational modes were confirmed by appropriate S(18)O2 and (34)SO2 isotopic shifts, and density functional frequency calculations. DFT calculations were employed to study the behavior of reactions of Group V bare metal atoms with SO2, and a representative profile was derived which not only showed the preferred coordinating fashion of metal atoms but also tracked the path of S-O bond activation. The η(2)-O,O' bridge coordinated complexes are preferred with energy decreases of ca. 50 kcal mol(-1) for all three metals, which facilitate the activation of two S-O bonds in succession and finally direct the reaction to the most stable molecules SMO2 (M = V, Nb, Ta) along the potential energy surface (PES). Finally the SMO2 molecules capture electrons to give anions SMO2(-) with about 3.6 eV electron affinities based on DFT calculations.
CIRCULAR POLARIZATION OF PULSAR WIND NEBULAE AND THE COSMIC-RAY POSITRON EXCESS
DOE Office of Scientific and Technical Information (OSTI.GOV)
Linden, Tim, E-mail: trlinden@uchicago.edu
2015-02-01
Recent observations by the PAMELA and AMS-02 telescopes have uncovered an anomalous rise in the positron fraction at energies above 10 GeV. One possible explanation for this excess is the production of primary electron/positron pairs through electromagnetic cascades in pulsar magnetospheres. This process results in a high multiplicity of electron/positron pairs within the wind-termination shock of pulsar wind nebulae (PWNe). A consequence of this scenario is that no circular polarization should be observed within PWNe, since the contributions from electrons and positrons exactly cancel. Here we note that current radio instruments are capable of setting meaningful limits on the circular polarizationmore » of synchrotron radiation in PWNe, which observationally test the model for pulsar production of the local positron excess. The observation of a PWN with detectable circular polarization would cast strong doubt on pulsar interpretations of the positron excess, while observations setting strong limits on the circular polarization of PWNe would lend credence to these models. Finally, we indicate which PWNe are likely to provide the best targets for observational tests of the AMS-02 excess.« less
Lesnicki, Dominika; Sulpizi, Marialore
2018-06-13
What happens when extra vibrational energy is added to water? Using nonequilibrium molecular dynamics simulations, also including the full electronic structure, and novel descriptors, based on projected vibrational density of states, we are able to follow the flow of excess vibrational energy from the excited stretching and bending modes. We find that the energy relaxation, mostly mediated by a stretching-stretching coupling in the first solvation shell, is highly heterogeneous and strongly depends on the local environment, where a strong hydrogen bond network can transport energy with a time scale of 200 fs, whereas a weaker network can slow down the transport by a factor 2-3.
Dynamics of an excess hole in the 1-methyl-1-butyl-pyrrolidinium dicyanamide ionic-liquid
NASA Astrophysics Data System (ADS)
Wu, Fei; Xu, Changhui; Margulis, Claudio J.
2018-05-01
In a set of recent publications [C. J. Margulis et al., J. Am. Chem. Soc. 133, 20186 (2011); C. H. Xu et al., J. Am. Chem. Soc. 135, 17528 (2013); C. H. Xu and C. J. Margulis, J. Phys. Chem. B 119, 532 (2015); and K. B. Dhungana et al., J. Phys. Chem. B 121, 8809 (2017)], we explored for selected ionic liquids the early stages of excess charge localization and reactivity relevant both to electrochemical and radiation chemistry processes. In particular, Xu and Margulis [J. Phys. Chem. B 119, 532 (2015)] explored the dynamics of an excess electron in 1-methyl-1-butyl-pyrrolidinium dicyanamide. When electrons are produced from an ionic liquid, the more elusive hole species are also generated. Depending on the nature of cations and anions and the relative alignment of their electronic states in the condensed phase, the very early hole species can nominally be neutral radicals—if the electron is generated from anions—or doubly charged radical cations if their origin is from cations. However, in reality early excess charge localization is more complex and often involves more than one ion. The dynamics and the transient spectroscopy of the hole are the main objects of this study. We find that in the case of 1-methyl-1-butyl-pyrrolidinium dicyanamide, it is the anions that can most easily lose an electron becoming radical species, and that hole localization is mostly on anionic nitrogen. We also find that the driving force for localization of an excess hole appears to be smaller than that for an excess electron in 1-methyl-1-butyl-pyrrolidinium dicyanamide. The early transient hole species can absorb light in the visible, ultraviolet, and near infrared regions, and we are able to identify the type of states being connected by these transitions.
NASA Astrophysics Data System (ADS)
Suthar, Shyam Sunder; Purohit, Suresh
2018-05-01
Properties of diesel and biodiesel (produced from corn oil) are used. Densities and viscosities of binary mixture of diesel with biodiesel (produced from corn oil) have been computed by using liquid binary mixture law over the entire range of compositions at T=298.15K and atmospheric pressure. From the computed values of density and viscosities, viscosity deviation (Δη), the excess molar volume (VE) and excess Gibbs energy of activation of viscous flow (ΔG#E) have been calculated. The results of excess volume, excess Gibbs energy of activation of viscous flow and viscosity deviation have been fitted to Redlich -Kister models to estimate the binary coefficients. The results are communicated in terms of the molecular interactions and the best suited composition has been found.
Thanuja, B; Nithya, G; Kanagam, Charles C
2012-11-01
Density (ρ), ultrasonic velocity (U), for the binary mixtures of 4-methoxy benzoin (4MB) with ethanol, chloroform, acetonitrile, benzene, and di-oxane were measured at 298K. The solute-solvent interactions and the effect of the polarity of the solvent on the type of intermolecular interactions are discussed here. From the above data, adiabatic compressibility (β), intermolecular free length (L(f)), acoustic impedance (Z), apparent molar volume (Ø), relative association (RA) have been calculated. Other useful parameters such as excess density, excess velocity and excess adiabatic compressibility have also been calculated. These parameters were used to study the nature and extent of intermolecular interactions between component molecules in the binary mixtures. Copyright © 2012 Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Yazdani, Ahmad; Hamreh, Sajad
2018-03-01
The electronic structure of the nanocrystallines and quasi-two-dimensional systems strongly impressed by the thermodynamic- behavior mainly due to excess of hidden surface free energy. Therefore, the stability of crystalline structure’s change could be related to band-offset of bond rupturing of atomic displacements. whereas for the electronic-structure of "Bi" it seams the competition of L.S and bond exchange should be effectively dominated. Besides all of the characters behave spatial like strong sensitive oxidation here it is supposed that strong correlated electronic structure in the absence of oxygen is resulted on direction of redistribution of surface chemical bond formation before any reconstructive structure. Where • The metallic direction of electronic structure “0 1 1” is changed to “1 1 1” semiconductor direction. • the effect of L.S is more evident on the local density of state while it is not observable around the fermi level. • Strong effect of spin-orbit interaction on splitting of the valance to nearly conduction band around the fermi level is more evident.
Prediction of the electron redundant SinNn fullerenes
NASA Astrophysics Data System (ADS)
Yang, Huihui; Song, Yan; Zhang, Yan; Chen, Hongshan
2018-05-01
The stabilities and electronic structures of SimAln-mNn and SinNn (n = 16, 20, m = 12 and n = 24, m = 16) fullerene-like cages have been investigated using density functional method B3LYP and the second-order perturbation theory MP2. The results show that the SimAln-mNn and SinNn fullerenes are more stable than the AlN counterparts. Comparing with the corresponding AlnNn cages, one silicon atom in each Si2N2 square protrudes and the excess electrons reside as lone pair electrons at the outside of the protrudent Si atoms. Analyses on the electronic structures suggest that the Sisbnd N bonds are covalent bonding with strong polarity. The ELF (electron localization function) shows large electron pair probability between Si and N atoms. The orbital interactions between Si and N are stronger than that between Al and N atoms; the overlap integral is 0.40 per Sisbnd N bond in SinNn and 0.34 per Alsbnd N bond in AlnNn. The AIM (atoms in molecule) charges on the Al atoms in AlnNn and SimAln-mNn are 2.37 and 2.40. The charges on the in-plane and protrudent Si atoms are about 2.88 and 1.50 respectively. Considering the large local dipole moments around the protrudent Si atoms, the electrostatic interactions are also favorable to the SiN cages.
Annealing effect on microstructural recovery in 316L and A533B
NASA Astrophysics Data System (ADS)
Hashimoto, N.; Goto, S.; Inoue, S.; Suzuki, E.
2017-11-01
An austenitic model alloy (316L) and a low alloy steel (A533B) were exposed to constant or fluctuating temperature after electron irradiation to a cumulative damage level of 1 displacement per atom. 316L model alloy was exposed to LWR operating temperature during electron irradiation, and were exposed to a higher temperature at a high heating and cooling rates. The annealing experiment after irradiation to 316L resulted in the change in irradiation-induced microstructure; both the size and the number density of Frank loop and black dots were decreased, while the volume fraction of void was increased. In the case of A533B, the aging experiment after electron irradiation resulted in the shrinkage or the disappearance of black dots and the growth of dislocation loops. It is suggested that during annealing and/or aging at a high temperature the excess vacancies could be provided and flew into each defect feature, resulting in that interstitial type feature could be diminished, while vacancy type increased in volume fraction if exists.
Prevalence of headache in adolescents and association with use of computer and videogames.
Xavier, Michelle Katherine Andrade; Pitangui, Ana Carolina Rodarti; Silva, Georgia Rodrigues Reis; Oliveira, Valéria Mayaly Alves de; Beltrão, Natália Barros; Araújo, Rodrigo Cappato de
2015-11-01
The aim of this study was to determine the prevalence of headache in adolescents and its association with excessive use of electronic devices and games. The sample comprised 954 adolescents of both sexes (14 to 19 years) who answered a questionnaire about use of computers and electronic games, presence of headache and physical activity. The binary and multinomial logistic regression, with significance level of 5% was used for inferential analysis. The prevalence of headache was 80.6%. The excessive use of electronics devices proved to be a risk factor (OR = 1.21) for headache. Subjects aged between 14 and 16 years were less likely to report headache (OR = 0.64). Regarding classification, 17.9% of adolescents had tension-type headache, 19.3% had migraine and 43.4% other types of headache. The adolescents aged form 14 to 16 years had lower chance (OR ≤ 0.68) to report the tension-type headache and other types of headache. The excessive use of digital equipment, electronic games and attending the third year of high school proved to be risk factors for migraine-type development (OR ≥ 1.84). There was a high prevalence of headache in adolescents and high-time use of electronic devices. We observed an association between excessive use of electronic devices and the presence of headache, and this habit is considered a risk factor, especially for the development of migraine-type.
Decaying fermionic dark matter search with CALET
NASA Astrophysics Data System (ADS)
Bhattacharyya, S.; Motz, H.; Torii, S.; Asaoka, Y.
2017-08-01
The ISS-based CALET (CALorimetric Electron Telescope) detector can play an important role in indirect search for Dark Matter (DM), measuring the electron+positron flux in the TeV region for the first time directly. With its fine energy resolution of approximately 2% and good proton rejection ratio (1:105) it has the potential to search for fine structures in the Cosmic Ray (CR) electron spectrum. In this context we discuss the ability of CALET to discern between signals originating from astrophysical sources and DM decay. We fit a parametrization of the local interstellar electron and positron spectra to current measurements, with either a pulsar or 3-body decay of fermionic DM as the extra source causing the positron excess. The expected CALET data for scenarios in which DM decay explains the excess are calculated and analyzed. The signal from this particular 3-body DM decay which can explain the recent measurements from the AMS-02 experiment is shown to be distinguishable from a single pulsar source causing the positron excess by 5 years of observation with CALET, based on the shape of the spectrum. We also study the constraints from diffuse γ-ray data on this DM-only explanation of the positron excess and show that especially for the possibly remaining parameter space a clearly identifiable signature in the CR electron spectrum exists.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bhattacharyya, S.; Torii, S.; Motz, H.
The ISS-based CALET (CALorimetric Electron Telescope) detector can play an important role in indirect search for Dark Matter (DM), measuring the electron+positron flux in the TeV region for the first time directly. With its fine energy resolution of approximately 2% and good proton rejection ratio (1:10{sup 5}) it has the potential to search for fine structures in the Cosmic Ray (CR) electron spectrum. In this context we discuss the ability of CALET to discern between signals originating from astrophysical sources and DM decay. We fit a parametrization of the local interstellar electron and positron spectra to current measurements, with eithermore » a pulsar or 3-body decay of fermionic DM as the extra source causing the positron excess. The expected CALET data for scenarios in which DM decay explains the excess are calculated and analyzed. The signal from this particular 3-body DM decay which can explain the recent measurements from the AMS−02 experiment is shown to be distinguishable from a single pulsar source causing the positron excess by 5 years of observation with CALET, based on the shape of the spectrum. We also study the constraints from diffuse γ-ray data on this DM-only explanation of the positron excess and show that especially for the possibly remaining parameter space a clearly identifiable signature in the CR electron spectrum exists.« less
The Cosmic Ray Electron Excess
NASA Technical Reports Server (NTRS)
Chang, J.; Adams, J. H.; Ahn, H. S.; Bashindzhagyan, G. L.; Christl, M.; Ganel, O.; Guzik, T. G.; Isbert, J.; Kim, K. C.; Kuznetsov, E. N.;
2008-01-01
This slide presentation reviews the possible sources for the apparent excess of Cosmic Ray Electrons. The presentation reviews the Advanced Thin Ionization Calorimeter (ATIC) instrument, the various parts, how cosmic ray electrons are measured, and shows graphs that review the results of the ATIC instrument measurement. A review of Cosmic Ray Electrons models is explored, along with the source candidates. Scenarios for the excess are reviewed: Supernova remnants (SNR) Pulsar Wind nebulae, or Microquasars. Each of these has some problem that mitigates the argument. The last possibility discussed is Dark Matter. The Anti-Matter Exploration and Light-nuclei Astrophysics (PAMELA) mission is to search for evidence of annihilations of dark matter particles, to search for anti-nuclei, to test cosmic-ray propagation models, and to measure electron and positron spectra. There are slides explaining the results of Pamela and how to compare these with those of the ATIC experiment. Dark matter annihilation is then reviewed, which represent two types of dark matter: Neutralinos, and kaluza-Kline (KK) particles, which are next explained. The future astrophysical measurements, those from GLAST LAT, the Alpha Magnetic Spectrometer (AMS), and HEPCAT are reviewed, in light of assisting in finding an explanation for the observed excess. Also the Compact Muon Solenoid (CMS) experiment at the Large Hadron Collider (LHC) could help by revealing if there are extra dimensions.
Kuntsche, Emmanuel N
2004-03-01
To determine what kind of violence-related behavior or opinion is directly related to excessive media use among adolescents in Switzerland. A national representative sample of 4222 schoolchildren (7th- and 8th-graders; mean age 13.9 years) answered questions on the frequency of television-viewing, electronic game-playing, feeling unsafe at school, bullying others, hitting others, and fighting with others, as part of the Health Behaviour in School-Aged Children (HBSC) international collaborative study protocol. The Chi-square tests and multiple logistic regression analyses were applied to high-risk groups of adolescents. For the total sample, all bivariate relationships between television-viewing/electronic game-playing and each violence-related variable are significant. In the multivariate comparison, physical violence among boys ceases to be significant. For girls, only television-viewing is linked to indirect violence. Against the hypothesis, females' electronic game-playing only had a bearing on hitting others. Experimental designs are needed that take into account gender, different forms of media, and violence to answer the question of whether excessive media use leads to violent behavior. With the exception of excessive electronic game-playing among girls, this study found that electronic media are not thought to lead directly to real-life violence but to hostility and indirect violence.
Whole-Cell Analysis of Low-Density Lipoprotein Uptake by Macrophages Using STEM Tomography
Baudoin, Jean-Pierre; Jerome, W. Gray; Kübel, Christian; de Jonge, Niels
2013-01-01
Nanoparticles of heavy materials such as gold can be used as markers in quantitative electron microscopic studies of protein distributions in cells with nanometer spatial resolution. Studying nanoparticles within the context of cells is also relevant for nanotoxicological research. Here, we report a method to quantify the locations and the number of nanoparticles, and of clusters of nanoparticles inside whole eukaryotic cells in three dimensions using scanning transmission electron microscopy (STEM) tomography. Whole-mount fixed cellular samples were prepared, avoiding sectioning or slicing. The level of membrane staining was kept much lower than is common practice in transmission electron microscopy (TEM), such that the nanoparticles could be detected throughout the entire cellular thickness. Tilt-series were recorded with a limited tilt-range of 80° thereby preventing excessive beam broadening occurring at higher tilt angles. The 3D locations of the nanoparticles were nevertheless determined with high precision using computation. The obtained information differed from that obtained with conventional TEM tomography data since the nanoparticles were highlighted while only faint contrast was obtained on the cellular material. Similar as in fluorescence microscopy, a particular set of labels can be studied. This method was applied to study the fate of sequentially up-taken low-density lipoprotein (LDL) conjugated to gold nanoparticles in macrophages. Analysis of a 3D reconstruction revealed that newly up-taken LDL-gold was delivered to lysosomes containing previously up-taken LDL-gold thereby forming onion-like clusters. PMID:23383042
Wooldridge, Scott A
2016-05-23
Here, I contribute new insight into why excess seawater nutrients are an increasingly identified feature at reef locations that have low resistance to thermal stress. Specifically, I link this unfavourable synergism to the development of enlarged (suboptimal) zooxanthellae densities that paradoxically limit the capacity of the host coral to build tissue energy reserves needed to combat periods of stress. I explain how both theoretical predictions and field observations support the existence of species-specific 'optimal' zooxanthellae densities ~1.0-3.0×10 6 cellscm- 2 . For the central Great Barrier Reef (GBR), excess seawater nutrients that permit enlarged zooxanthellae densities beyond this optimum range are linked with seawater chlorophyll a>0.45μg·L -1 ; a eutrophication threshold previously shown to correlate with a significant loss in species for hard corals and phototrophic octocorals on the central GBR, and herein shown to correlate with enhanced bleaching sensitivity during the 1998 and 2002 mass bleaching events. Copyright © 2016 Elsevier Ltd. All rights reserved.
Gomez, E; Buckingham, D W; Brindle, J; Lanzafame, F; Irvine, D S; Aitken, R J
1996-01-01
A method has been developed for quantifying the residual cytoplasm present in the midpiece of human spermatozoa, based upon the imaging of NADH oxidoreductase activity. This procedure used NADH and nitroblue tetrazolium as electron donor and acceptor, respectively, and resulted in the discrete staining of the entire midpiece area, including the residual cytoplasm. Image analysis techniques were then used to generate binary images of the midpiece, from which objective measurements of this cellular domain could be undertaken. Such data were found to be highly correlated with biochemical markers of the cytoplasmic space, such as creatine kinase (CK) and glucose-6-phosphate dehydrogenase (G-6-PDH), in sperm populations depleted of detectable leukocyte contamination. Morphometric analysis of the sperm midpiece was also found to reflect semen quality in that it predicted the proportion of the ejaculate that would be recovered from the high-density region of Percoll gradients and was negatively correlated with the movement and morphology of the spermatozoa in semen. Variation in the retention of excess residual cytoplasm was also associated with differences in the functional competence of washed sperm preparations, both within and between ejaculates. Thus, within-ejaculate comparisons of high- and low-density sperm subpopulations revealed a relative disruption of sperm function in the low-density fraction. This disruption was associated with the presence of excess residual cytoplasm in the midpiece, high concentrations of cytoplasmic enzymes, and the enhanced-generation reactive oxygen species (ROS). Functional differences between individual high-density Percoll preparations were also negatively correlated with the area of the midpiece and the corresponding capacity of the spermatozoa to generate ROS. These findings suggest that one of the factors involved in the etiology of defective sperm function is the incomplete extrusion of germ cell cytoplasm during spermiogenesis as a consequence of which the spermatozoa experience a loss of function associated with the induction of oxidative stress.
Kesting, Julie R; Olsen, Lars; Staerk, Dan; Tejesvi, Mysore V; Kini, Kukkundoor R; Prakash, Harishchandra S; Jaroszewski, Jerzy W
2011-10-28
The endophytic fungus Pestalotiopsis virgatula, derived from the plant Terminalia chebula and previously found to produce a large excess of a single metabolite when grown in the minimal M1D medium, was induced to produce a variety of unusual metabolites by growing in potato dextrose broth medium. Analysis of the fermentation medium extract was performed using an HPLC-PDA-MS-SPE-NMR hyphenated system, which led to the identification of a total of eight metabolites (1-8), six of which are new. Most of the metabolites are structurally related and are derivatives of benzo[c]oxepin, rare among natural products. This includes dispiro derivatives 7 and 8 (pestalospiranes A and B), having a novel 1,9,11,18-tetraoxadispiro[6.2.6.2]octadecane skeleton. Relative and absolute configurations of the latter were determined by a combination of NOESY spectroscopy and electronic circular dichroism spectroscopy supported by time-dependent density-functional theory calculations (B3LYP/TZVP level). This work demonstrates that a largely complete structure elucidation of numerous metabolites present in a raw fermentation medium extract can be performed by the HPLC-SPE-NMR technique using only a small amount of the extract, even with unstable metabolites that are difficult to isolate by traditional methods.
NASA Astrophysics Data System (ADS)
Schmitter, E. D.
2014-11-01
On the 4 November 2012 at 3:04:27 UT a strong lightning in the midst of the North Sea affected the propagation conditions of VLF/LF transmitter radio signals from NRK (Iceland, 37.5 kHz) and GBZ (UK, 19.58 kHz) received at 5246° N 8° E (NW Germany). The amplitude and phase dips show a recovery time of 6-12 min pointing to a LOng Recovery Early VLF (LORE) event. Clear assignment of the causative return stroke in space and time was possible with data from the WWLLN (Worldwide Lightning Location Network). Based on a return stroke current model the electric field is calculated and an excess electron density distribution which decays over time in the lower ionosphere is derived. Ionization, attachment and recombination processes are modeled in detail. Entering the electron density distribution in VLF/LF radio wave propagation calculations using the LWPC (Long Wavelength Propagation Capability) code allows to model the VLF/LF amplitude and phase behavior by adjusting the return stroke current moment. The results endorse and quantify the conception of lower ionosphere EMP heating by strong - but not necessarily extremely strong - return strokes of both polarities.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zhou, M.; Andrews, L.
2000-05-04
Laser-ablated iron, cobalt, and nickel atoms, cations, and electrons have been reacted with NO molecules during condensation in excess neon and argon. The end-on bonded Fe(NO){sub 1-3}, Co(NO){sub 1-3}, and Ni(NO){sub 1-2} nitrosyls and side-bonded Fe-({eta}{sup 2}-NO), Co-({eta}{sup 2}-NO), and Ni-({eta}{sup 2}-NO) species are formed during sample deposition or on annealing. The FeNO{sup +}, CoNO{sup +}, and NiNO{sup +} mononitrosyl cations are also produced via metal cation reactions with NO. Evidence is also presented for the Ni(NO){sub 1,2}{sup {minus}} and Co(NO){sub 1,2}{sup {minus}} anions. The product absorptions are identified by isotopic substitution ({sup 15}N{sup 16}O, {sup 15}N{sup 18}O, and mixtures),more » electron trapping with added CCl{sub 4}, and density functional calculations of isotopic frequencies. This work provides the first vibrational spectroscopic characterization of Fe, Co, and Ni nitrosyl cations and anions.« less
On the Energy Spectra of GeV/TeV Cosmic Ray Leptons
DOE Office of Scientific and Technical Information (OSTI.GOV)
Stawarz, Lukasz; /KIPAC, Menlo Park /Jagiellonian U., Astron. Observ.; Petrosian, Vahe
2011-08-19
Recent observations of cosmic ray electrons from several instruments have revealed various degrees of deviation in the measured electron energy distribution from a simple power-law, in a form of an excess around 0.1 to 1 TeV energies. An even more prominent deviation and excess has been observed in the fraction of cosmic ray positrons around 10 and 100 GeV energies. These observations have received considerable attention and many theoretical models have been proposed to explain them. The models rely on either dark matter annihilation/decay or specific nearby astrophysical sources, and involve several additional assumptions regarding the dark matter distribution ormore » particle acceleration. In this paper we show that the observed excesses in the electron spectrum may be easily reproduced without invoking any unusual sources other than the general diffuse Galactic components of cosmic rays. The model presented here assumes a power-law injection of electrons (and protons) by supernova remnants, and evaluates their expected energy spectrum based on a simple kinetic equation describing the propagation of charged particles in the interstellar medium. The primary physical effect involved is the Klein-Nishina suppression of the electron cooling rate around TeV energies. With a very reasonable choice of the model parameters characterizing the local interstellar medium, we can reproduce the most recent observations by Fermi and HESS experiments. Interestingly, in our model the injection spectral index of cosmic ray electrons becomes comparable to, or even equal to that of cosmic ray protons. The Klein-Nishina effect may also affect the propagation of the secondary e{sup {+-}} pairs, and therefore modify the cosmic ray positron-to-electron ratio. We have explored this possibility by considering two mechanisms for production of e{sup {+-}} pairs within the Galaxy. The first is due to the decay of {pi}{sup {+-}}'s produced by interaction of cosmic ray nuclei with ambient protons. The second source discussed here is due to the annihilation of the diffuse Galactic {gamma}-rays on the stellar photon field. We find that high positron fraction increasing with energy, as claimed by the PAMELA experiment, cannot be explained in our model with the conservative set of the model parameters. We are able, however, to reproduce the PAMELA (as well as Fermi and HESS) results assuming high values of the starlight and interstellar gas densities, which would be more appropriate for vicinities of supernova remnants. A possible solution to this problem may be that cosmic rays undergo most of their interactions near their sources due to the efficient trapping in the far upstream of supernova shocks by self-generated, cosmic ray-driven turbulence.« less
ON THE ENERGY SPECTRA OF GeV/TeV COSMIC RAY LEPTONS
DOE Office of Scientific and Technical Information (OSTI.GOV)
Stawarz, Lukasz; Petrosian, Vahe; Blandford, Roger D., E-mail: stawarz@slac.stanford.ed
2010-02-10
Recent observations of cosmic ray (CR) electrons from several instruments have revealed various degrees of deviation in the measured electron energy distribution from a simple power law, in the form of an excess around 0.1-1 TeV energies. An even more prominent deviation and excess has been observed in the fraction of CR positrons around 10 and 100 GeV energies. These observations have received considerable attention and many theoretical models have been proposed to explain them. The models rely on either dark matter annihilation/decay or specific nearby astrophysical sources, and involve several additional assumptions regarding dark matter distribution or particle acceleration.more » In this paper, we show that the observed excesses in the electron spectrum may be easily re-produced without invoking any unusual sources other than the general diffuse Galactic components of CRs. The model presented here assumes a power-law injection of electrons (and protons) by supernova remnants (SNRs), and evaluates their expected energy spectrum based on a simple kinetic equation describing the propagation of charged particles in the interstellar medium (ISM). The primary physical effect involved is the Klein-Nishina suppression of the electron cooling rate around TeV energies. With a very reasonable choice of the model parameters characterizing the local ISM, we can reproduce the most recent observations by the Fermi and HESS experiments. Interestingly, in our model the injection spectral index of CR electrons becomes comparable to, or even equal to that of CR protons. The Klein-Nishina effect may also affect the propagation of the secondary e {sup +}- pairs, and therefore modify the CR positron-to-electron ratio. We have explored this possibility by considering two mechanisms for production of e {sup +}- pairs within the Galaxy. The first is due to the decay of pi{sup +}-'s produced by interaction of CR nuclei with ambient protons. The second source discussed here is due to the annihilation of the diffuse Galactic gamma-rays on the stellar photon field. We find that high positron fraction increasing with energy, as claimed by the PAMELA experiment, cannot be explained in our model with the conservative set of the model parameters. We are able, however, to reproduce the PAMELA (as well as the Fermi and HESS) results assuming high values of the starlight and interstellar gas densities, which would be more appropriate for vicinities of SNRs. A possible solution to this problem may be that CRs undergo most of their interactions near their sources due to the efficient trapping in the far upstream of supernova shocks by self-generated, CR-driven turbulence.« less
Ecophysiological responses to excess iron in lowland and upland rice cultivars.
Müller, Caroline; Silveira, Solange Ferreira da Silveira; Daloso, Danilo de Menezes; Mendes, Giselle Camargo; Merchant, Andrew; Kuki, Kacilda Naomi; Oliva, Marco Antonio; Loureiro, Marcelo Ehlers; Almeida, Andréa Miyasaka
2017-12-01
Iron (Fe) is an essential nutrient for plants but under high concentrations, such as that found naturally in clay and waterlogged soils, its toxic effect can limit production. This study aimed to investigate the stress tolerance responses exhibited by different rice cultivars. Both lowland and upland cultivars were grown under excess Fe and hypoxic conditions. Lowland cultivars showed higher Fe accumulation in roots compared with upland cultivars suggesting the use of different strategies to tolerate excess Fe. The upland Canastra cultivar displayed a mechanism to limit iron translocation from roots to the shoots, minimizing leaf oxidative stress induced by excess Fe. Conversely, the cultivar Curinga invested in the increase of R1/A, as an alternative drain of electrons. However, the higher iron accumulation in the leaves, was not necessarily related to high toxicity. Nutrient uptake and/or utilization mechanisms in rice plants are in accordance with their needs, which may be defined in relation to crop environments. Alterations in the biochemical parameters of photosynthesis suggest that photosynthesis in rice under excess Fe is primarily limited by biochemical processes rather than by diffusional limitations, particularly in the upland cultivars. The electron transport rate, carboxylation efficiency and electron excess dissipation by photorespiration demonstrate to be good indicators of iron tolerance. Altogether, these chemical and molecular patterns suggests that rice plants grown under excess Fe exhibit gene expression reprogramming in response to the Fe excess per se and in response to changes in photosynthesis and nutrient levels to maintain growth under stress. Copyright © 2017 Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Sreekanth, K.; Sravana Kumar, D.; Kondaiah, M.; Krishna Rao, D.
2011-02-01
Densities and viscosities of mixtures of isopropanol, isobutanol and isoamylalcohol with equimolar mixture of ethanol and N, N-dimethylacetamide have been measured at 308.15 K over the entire composition range. Deviations in viscosity, excess molar volume and excess Gibb’s free energy of activation of viscous flow have been calculated from the experimental values of densities and viscosities. Excess properties have been fitted to the Redlich-Kister type polynomial equation and the corresponding standard deviations have been calculated. The experimental data of viscosity have been used to test the applicability of empirical relations of Grunberg-Nissan, Hind-McLaughlin, Katti-Chaudhary and Heric-Brewer for the systems studied. Molecular interactions in the liquid mixtures have been investigated in the light of variation of deviation and of excess values in evaluated properties.
Room Temperature Sulfur Battery Cathode Design and Processing Techniques
NASA Astrophysics Data System (ADS)
Carter, Rachel
As the population grows and energy demand increases, climate change threatens causing energy storage research to focus on fulfilling the requirements of two major energy sectors with next generation batteries: (1) portable energy and (2) stationary storage.1 Where portable energy can decrease transportation-related harmful emissions and enable advanced next-generation technologies,1 and stationary storage can facilitate widespread deployment of renewable energy sources, alleviating the demand on fossil fuels and lowering emissions. Portable energy can enable zero-emission transportation and can deploy portable power in advanced electronics across fields including medical and defense. Currently fully battery powered cars are limited in driving distance, which is dictated by the energy density and weight of the state-of-the-art Li-ion battery, and similarly advancement of portable electronics is significantly hindered by heavy batteries with short charge lives. In attempt to enable advanced portable energy, significant research is aiming to improve the conventional Li-ion batteries and explore beyond Li-ion battery chemistries with the primary goal of demonstrating higher energy density to enable lighter weight cells with longer battery life. Further, with the inherent intermittency challenges of our most prominent renewable energy sources, wind and solar, discovery of batteries capable of cost effectively and reliably balancing the generation of the renewable energy sources with the real-time energy demand is required for grid scale viability. Stationary storage will provide load leveling to renewable resources by storing excess energy at peak generation and delivering stored excess during periods of lower generation. This application demands highly abundant, low-cost active materials and long-term cycle stability, since infrastructure costs (combined with the renewable) must compete with burning natural gas. Development of a battery with these characteristics will require exploration of chemistries beyond the Li-ion battery for a system consisting of low cost active materials and promising device performance. (Abstract shortened by ProQuest.).
Food Irradiation Using Electron Beams and X-Rays
NASA Astrophysics Data System (ADS)
Miller, Bruce
2003-04-01
In this presentation we will discuss the technology of food irradiation using electron accelerators. Food irradiation has generally come to describe the use of ionizing radiation to decrease the population of, or prevent the growth of, undesirable biological organisms in food. The many beneficial applications include insect disinfestation, sprouting inhibition, delayed ripening, and the enhanced safety and sterilization of fresh and frozen meat products, seafood, and eggs. With special regard to food safety, bacteria such as Salmonella enteridis, Listeria monocytogenes, Campylobacter jejuni and Escherichia coli serotype O157:H7 are the primary causes of food poisoning in industrialized countries. Ionizing doses in the range of only 1-5 kilogray (kGy) can virtually eliminate these organisms from food, without affecting the food's sensory and nutritional qualities, and without inducing radioactivity. The key elements of an accelerator-based irradiation facility include the accelerator system, a scanning system, and a material handling system that moves the product through the beam in a precisely controlled manner. Extensive radiation shielding is necessary to reduce the external dose to acceptable levels, and a safety system is necessary to prevent accidental exposure of personnel during accelerator operation. Parameters that affect the dose distribution must be continuously monitored and controlled with process control software. The choice of electron beam vs x-ray depends on the areal density (density times thickness) of the product and the anticipated mass throughput. To eliminate nuclear activation concerns, the maximum kinetic energy of the accelerator is limited by regulation to 10 MeV for electron beams, and 5 MeV for x-rays. From penetration considerations, the largest areal density that can be treated by double-sided electron irradiation at 10 MeV is about 8.8 g/cm2. Products having greater areal densities must be processed using more penetrating x-rays. The mass throughput (dM/dt in kg/s) of an accelerator-based system is proportional to the average beam power (P in kW), and inversely proportional to the minimum required dose (Dm in kGy, with 1 kGy = 1 kJ/kg). The constant of proportionality is the mass throughput efficiency. Throughput efficiencies of 0.4 or better are typical of electron beam installations, but are only 0.025-0.035 for x-ray installations, primarily because of the inefficiency of bremsstrahlung generation at 5 MeV (about 8an axially-coupled, standing-wave, L-band linac with an average power in excess of 100 kW to achieve reasonable throughput rates with x-ray processing. Various design aspects of this new machine will be presented.
Mittal, Jeetain; Errington, Jeffrey R; Truskett, Thomas M
2007-08-30
Static measures such as density and entropy, which are intimately connected to structure, have featured prominently in modern thinking about the dynamics of the liquid state. Here, we explore the connections between self-diffusivity, density, and excess entropy for two of the most widely used model "simple" liquids, the equilibrium Lennard-Jones and square-well fluids, in both bulk and confined environments. We find that the self-diffusivity data of the Lennard-Jones fluid can be approximately collapsed onto a single curve (i) versus effective packing fraction and (ii) in appropriately reduced form versus excess entropy, as suggested by two well-known scaling laws. Similar data collapse does not occur for the square-well fluid, a fact that can be understood on the basis of the nontrivial effects that temperature has on its static structure. Nonetheless, we show that the implications of confinement for the self-diffusivity of both of these model fluids, over a broad range of equilibrium conditions, can be predicted on the basis of knowledge of the bulk fluid behavior and either the effective packing fraction or the excess entropy of the confined fluid. Excess entropy is perhaps the most preferable route due to its superior predictive ability and because it is a standard, unambiguous thermodynamic quantity that can be readily predicted via classical density functional theories of inhomogeneous fluids.
Study of intermolecular interactions in binary mixtures of ethanol in methanol
NASA Astrophysics Data System (ADS)
Maharolkar, Aruna P.; Khirade, P. W.; Murugkar, A. G.
2016-05-01
Present paper deals with study of physicochemical properties like viscosity, density and refractive index for the binary mixtures of ethanol and methanol over the entire concentration range were measured at 298.15 K. The experimental data further used to determine the excess properties viz. excess molar volume, excess viscosity, excess molar refraction. The values of excess properties further fitted with Redlich-Kister (R-K Fit) equation to calculate the binary coefficients and standard deviation. The resulting excess parameters are used to indicate the presence of intermolecular interactions and strength of intermolecular interactions between the molecules in the binary mixtures. Excess parameters indicate structure making factor in the mixture predominates in the system.
NASA Astrophysics Data System (ADS)
Bidzinski, Piotr; Miczek, Marcin; Adamowicz, Boguslawa; Mizue, Chihoko; Hashizume, Tamotsu
2011-04-01
The influence of interface state density and bulk carrier lifetime on the dependencies of photocapacitance versus wide range of gate bias (-0.1 to -3 V) and light intensity (109 to 1020 photon cm-2 s-1) was studied for metal/insulator/n-GaN UV light photodetector by means of numerical simulations. The light detection limit and photocapacitance saturation were analyzed in terms of the interface charge and interface Fermi level for electrons and holes and effective interface recombination velocity. It was proven that the excess carrier recombination through interface states is the main reason of photocapacitance signal quenching. It was found that the photodetector can work in various modes (on-off or quantitative light measurement) adjusted by the gate bias. A comparison between experimental data and theoretical capacitance-light intensity characteristics was made. A new method for the determination of the interface state density distribution from capacitance-voltage-light intensity measurements was also proposed.
High Efficiency, High Density Terrestrial Panel. [for solar cell modules
NASA Technical Reports Server (NTRS)
Wohlgemuth, J.; Wihl, M.; Rosenfield, T.
1979-01-01
Terrestrial panels were fabricated using rectangular cells. Packing densities in excess of 90% with panel conversion efficiencies greater than 13% were obtained. Higher density panels can be produced on a cost competitive basis with the standard salami panels.
Hubble Space Telescope Observations of Variations in Ganymede's Oxygen Atmosphere and Aurora
NASA Astrophysics Data System (ADS)
Molyneux, P. M.; Nichols, J. D.; Bannister, N. P.; Bunce, E. J.; Clarke, J. T.; Cowley, S. W. H.; Gérard, J.-C.; Grodent, D.; Milan, S. E.; Paty, C.
2018-05-01
We present high-sensitivity Hubble Space Telescope (HST) Cosmic Origins Spectrograph and HST Space Telescope Imaging Spectrograph measurements of atmospheric OI 130.4-nm and OI] 135.6-nm emissions at Ganymede, which exhibit significant spatial and temporal variability. These observations represent the first observations of Ganymede using HST Cosmic Origins Spectrograph and of both the leading and trailing hemispheres within a single HST campaign, minimizing the potential influence of long-term changes in the Jovian plasma sheet or in Ganymede's atmosphere on the comparison of the two hemispheres. The mean disk-averaged OI] 135.6-nm/OI 130.4-nm observed intensity ratio was 2.72 ± 0.57 on the leading hemisphere and 1.42 ± 0.16 on the trailing hemisphere. The observed leading hemisphere ratios are consistent with an O2 atmosphere, but we show that an atomic oxygen component of 10% is required to produce the observed trailing hemisphere ratios. The excess 130.4-nm emission on the trailing hemisphere relative to that expected for an O2 atmosphere was 11 R. The O column density required to produce this excess is determined based on previous estimates of the electron density and temperature at Ganymede and exceeds the limit for an optically thin atmosphere. The implication that the O atmosphere is optically thick may be investigated in future by observing Ganymede as it moves into eclipse or by determining the ratio of the individual components within the 130.4-nm triplet.
Meisel, Z.; George, S.; Ahn, S.; ...
2015-10-16
We present the mass excesses of 52-57Sc, obtained from recent time-of-flight nuclear mass measurements at the National Superconducting Cyclotron Laboratory at Michigan State University. The masses of 56Sc and 57Sc were determined for the first time with atomic mass excesses of -24.85(59)((+0)(-54)) MeV and -21.0(1.3) MeV, respectively, where the asymmetric uncertainty for 56Sc was included due to possible contamination from a long-lived isomer. The 56Sc mass indicates a small odd-even mass staggering in the A = 56 mass chain towards the neutron drip line, significantly deviating from trends predicted by the global FRDM mass model and favoring trends predicted bymore » the UNEDF0 and UNEDF1 density functional calculations. Together with new shell-model calculations of the electron-capture strength function of 56Sc, our results strongly reduce uncertainties in model calculations of the heating and cooling at the 56Ti electron-capture layer in the outer crust of accreting neutron stars. We find that, in contrast to previous studies, neither strong neutrino cooling nor strong heating occurs in this layer. We conclude that Urca cooling in the outer crusts of accreting neutron stars that exhibit superbursts or high temperature steady-state burning, which are predicted to be rich in A approximate to 56 nuclei, is considerably weaker than predicted. Urca cooling must instead be dominated by electron capture on the small amounts of adjacent odd-A nuclei contained in the superburst and high temperature steady-state burning ashes. This may explain the absence of strong crust Urca cooling inferred from the observed cooling light curve of the transiently accreting x-ray source MAXI J0556-332.« less
NASA Astrophysics Data System (ADS)
Meisel, Z.; George, S.; Ahn, S.; Bazin, D.; Brown, B. A.; Browne, J.; Carpino, J. F.; Chung, H.; Cole, A. L.; Cyburt, R. H.; Estradé, A.; Famiano, M.; Gade, A.; Langer, C.; Matoš, M.; Mittig, W.; Montes, F.; Morrissey, D. J.; Pereira, J.; Schatz, H.; Schatz, J.; Scott, M.; Shapira, D.; Smith, K.; Stevens, J.; Tan, W.; Tarasov, O.; Towers, S.; Wimmer, K.; Winkelbauer, J. R.; Yurkon, J.; Zegers, R. G. T.
2015-10-01
We present the mass excesses of 52-57Sc, obtained from recent time-of-flight nuclear mass measurements at the National Superconducting Cyclotron Laboratory at Michigan State University. The masses of 56Sc and 57Sc were determined for the first time with atomic mass excesses of -24.85 (59 )(-54+0) MeV and -21.0 (1.3 ) MeV , respectively, where the asymmetric uncertainty for 56Sc was included due to possible contamination from a long-lived isomer. The 56Sc mass indicates a small odd-even mass staggering in the A =56 mass chain towards the neutron drip line, significantly deviating from trends predicted by the global FRDM mass model and favoring trends predicted by the UNEDF0 and UNEDF1 density functional calculations. Together with new shell-model calculations of the electron-capture strength function of 56Sc, our results strongly reduce uncertainties in model calculations of the heating and cooling at the 56Ti electron-capture layer in the outer crust of accreting neutron stars. We find that, in contrast to previous studies, neither strong neutrino cooling nor strong heating occurs in this layer. We conclude that Urca cooling in the outer crusts of accreting neutron stars that exhibit superbursts or high temperature steady-state burning, which are predicted to be rich in A ≈56 nuclei, is considerably weaker than predicted. Urca cooling must instead be dominated by electron capture on the small amounts of adjacent odd-A nuclei contained in the superburst and high temperature steady-state burning ashes. This may explain the absence of strong crust Urca cooling inferred from the observed cooling light curve of the transiently accreting x-ray source MAXI J0556-332.
The nature of excess electrons in anatase and rutile from hybrid DFT and RPA.
Spreafico, Clelia; VandeVondele, Joost
2014-12-21
The behavior of excess electrons in undoped and defect free bulk anatase and rutile TiO2 has been investigated by state-of-the-art electronic structure methods including hybrid density functional theory (DFT) and the random phase approximation (RPA). Consistent with experiment, charge trapping and polaron formation is observed in both anatase and rutile. The difference in the anisotropic shape of the polarons is characterized, confirming for anatase the large polaron picture. For anatase, where polaron formation energies are small, charge trapping is observed also with standard hybrid functionals, provided the simulation cell is sufficiently large (864 atoms) to accommodate the lattice relaxation. Even though hybrid orbitals are required as a starting point for RPA in this system, the obtained polaron formation energies are relatively insensitive to the amount of Hartree-Fock exchange employed. The difference in trapping energy between rutile and anatase can be obtained accurately with both hybrid functionals and RPA. Computed activation energies for polaron hopping and delocalization clearly show that anatase and rutile might have different charge transport mechanisms. In rutile, only hopping is likely, whereas in anatase hopping and delocalization are competing. Delocalization will result in conduction-band-like and thus enhanced transport. Anisotropic conduction, in agreement with experimental data, is observed, and results from the tendency to delocalize in the [001] direction in rutile and the (001) plane in anatase. For future work, our calculations serve as a benchmark and suggest RPA on top on hybrid orbitals (PBE0 with 30% Hartree-Fock exchange), as a suitable method to study the rich chemistry and physics of TiO2.
Parry, A O; Rascón, C; Willis, G; Evans, R
2014-09-03
We study the density-density correlation function G(r, r') in the interfacial region of a fluid (or Ising-like magnet) with short-ranged interactions using square gradient density functional theory. Adopting a simple double parabola approximation for the bulk free-energy density, we first show that the parallel Fourier transform G(z, z'; q) and local structure factor S(z; q) separate into bulk and excess contributions. We attempt to account for both contributions by deriving an interfacial Hamiltonian, characterised by a wavevector dependent surface tension σ(q), and then reconstructing density correlations from correlations in the interface position. We show that the standard crossing criterion identification of the interface, as a surface of fixed density (or magnetization), does not explain the separation of G(z, z'; q) and the form of the excess contribution. We propose an alternative definition of the interface position based on the properties of correlations between points that 'float' with the surface and show that this describes the full q and z dependence of the excess contributions to both G and S. However, neither the 'crossing-criterion' nor the new 'floating interface' definition of σ(q) are quantities directly measurable from the total structure factor S(tot)(q) which contains additional q dependence arising from the non-local relation between fluctuations in the interfacial position and local density. Since it is the total structure factor that is measured experimentally or in simulations, our results have repercussions for earlier attempts to extract and interpret σ(q).
Multicomponent density functional theory embedding formulation.
Culpitt, Tanner; Brorsen, Kurt R; Pak, Michael V; Hammes-Schiffer, Sharon
2016-07-28
Multicomponent density functional theory (DFT) methods have been developed to treat two types of particles, such as electrons and nuclei, quantum mechanically at the same level. In the nuclear-electronic orbital (NEO) approach, all electrons and select nuclei, typically key protons, are treated quantum mechanically. For multicomponent DFT methods developed within the NEO framework, electron-proton correlation functionals based on explicitly correlated wavefunctions have been designed and used in conjunction with well-established electronic exchange-correlation functionals. Herein a general theory for multicomponent embedded DFT is developed to enable the accurate treatment of larger systems. In the general theory, the total electronic density is separated into two subsystem densities, denoted as regular and special, and different electron-proton correlation functionals are used for these two electronic densities. In the specific implementation, the special electron density is defined in terms of spatially localized Kohn-Sham electronic orbitals, and electron-proton correlation is included only for the special electron density. The electron-proton correlation functional depends on only the special electron density and the proton density, whereas the electronic exchange-correlation functional depends on the total electronic density. This scheme includes the essential electron-proton correlation, which is a relatively local effect, as well as the electronic exchange-correlation for the entire system. This multicomponent DFT-in-DFT embedding theory is applied to the HCN and FHF(-) molecules in conjunction with two different electron-proton correlation functionals and three different electronic exchange-correlation functionals. The results illustrate that this approach provides qualitatively accurate nuclear densities in a computationally tractable manner. The general theory is also easily extended to other types of partitioning schemes for multicomponent systems.
Multicomponent density functional theory embedding formulation
DOE Office of Scientific and Technical Information (OSTI.GOV)
Culpitt, Tanner; Brorsen, Kurt R.; Pak, Michael V.
Multicomponent density functional theory (DFT) methods have been developed to treat two types of particles, such as electrons and nuclei, quantum mechanically at the same level. In the nuclear-electronic orbital (NEO) approach, all electrons and select nuclei, typically key protons, are treated quantum mechanically. For multicomponent DFT methods developed within the NEO framework, electron-proton correlation functionals based on explicitly correlated wavefunctions have been designed and used in conjunction with well-established electronic exchange-correlation functionals. Herein a general theory for multicomponent embedded DFT is developed to enable the accurate treatment of larger systems. In the general theory, the total electronic density ismore » separated into two subsystem densities, denoted as regular and special, and different electron-proton correlation functionals are used for these two electronic densities. In the specific implementation, the special electron density is defined in terms of spatially localized Kohn-Sham electronic orbitals, and electron-proton correlation is included only for the special electron density. The electron-proton correlation functional depends on only the special electron density and the proton density, whereas the electronic exchange-correlation functional depends on the total electronic density. This scheme includes the essential electron-proton correlation, which is a relatively local effect, as well as the electronic exchange-correlation for the entire system. This multicomponent DFT-in-DFT embedding theory is applied to the HCN and FHF{sup −} molecules in conjunction with two different electron-proton correlation functionals and three different electronic exchange-correlation functionals. The results illustrate that this approach provides qualitatively accurate nuclear densities in a computationally tractable manner. The general theory is also easily extended to other types of partitioning schemes for multicomponent systems.« less
Normal and abnormal evolution of argon metastable density in high-density plasmas
DOE Office of Scientific and Technical Information (OSTI.GOV)
Seo, B. H.; Kim, J. H., E-mail: jhkim86@kriss.re.kr; You, S. J., E-mail: sjyou@cnu.ac.kr
2015-05-15
A controversial problem on the evolution of Ar metastable density as a function of electron density (increasing trend versus decreasing trend) was resolved by discovering the anomalous evolution of the argon metastable density with increasing electron density (discharge power), including both trends of the metastable density [Daltrini et al., Appl. Phys. Lett. 92, 061504 (2008)]. Later, by virtue of an adequate physical explanation based on a simple global model, both evolutions of the metastable density were comprehensively understood as part of the abnormal evolution occurring at low- and high-density regimes, respectively, and thus the physics behind the metastable evolution hasmore » seemed to be clearly disclosed. In this study, however, a remarkable result for the metastable density behavior with increasing electron density was observed: even in the same electron density regime, there are both normal and abnormal evolutions of metastable-state density with electron density depending on the measurement position: The metastable density increases with increasing electron density at a position far from the inductively coupled plasma antenna but decreases at a position close to the antenna. The effect of electron temperature, which is spatially nonuniform in the plasma, on the electron population and depopulation processes of Argon metastable atoms with increasing electron density is a clue to understanding the results. The calculated results of the global model, including multistep ionization for the argon metastable state and measured electron temperature, are in a good agreement with the experimental results.« less
Currents between tethered electrodes in a magnetized laboratory plasma
NASA Technical Reports Server (NTRS)
Stenzel, R. L.; Urrutia, J. M.
1989-01-01
Laboratory experiments on important plasma physics issues of electrodynamic tethers were performed. These included current propagation, formation of wave wings, limits of current collection, nonlinear effects and instabilities, charging phenomena, and characteristics of transmission lines in plasmas. The experiments were conducted in a large afterglow plasma. The current system was established with a small electron-emitting hot cathode tethered to an electron-collecting anode, both movable across the magnetic field and energized by potential difference up to V approx.=100 T(sub e). The total current density in space and time was obtained from complete measurements of the perturbed magnetic field. The fast spacecraft motion was reproduced in the laboratory by moving the tethered electrodes in small increments, applying delayed current pulses, and reconstructing the net field by a linear superposition of locally emitted wavelets. With this technique, the small-amplitude dc current pattern is shown to form whistler wings at each electrode instead of the generally accepted Alfven wings. For the beam electrode, the whistler wing separates from the field-aligned beam which carries no net current. Large amplitude return currents to a stationary anode generate current-driven microinstabilities, parallel electric fields, ion depletions, current disruptions and time-varying electrode charging. At appropriately high potentials and neutral densities, excess neutrals are ionized near the anode. The anode sheath emits high-frequency electron transit-time oscillations at the sheath-plasma resonance. The beam generates Langmuir turbulence, ion sound turbulence, electron heating, space charge fields, and Hall currents. An insulated, perfectly conducting transmission line embedded in the plasma becomes lossy due to excitation of whistler waves and magnetic field diffusion effects. The implications of the laboratory observations on electrodynamic tethers in space are discussed.
NASA Technical Reports Server (NTRS)
Taylor, B.; Brissette, R.; Humphrey, A.; Morris, J.; Luger, J.; Swift, W.
1978-01-01
The HEAO-B Gas Control System consists of a high pressure gas storage supply together with distribution and regulation assemblies and their associated electronics for management of gas required for HEAO-B X-ray counter experiments. The Gas Control System replenishes a gas mixture (82 percent argon, 12.3 percent carbon dioxide, 5.7 percent xenon) in the counter volumes which is lost by: diffusion through controlled leakage plugs, diffusion through counter windows, and consumption resulting from periodic purges. The gas density in each counter volume is maintained constant to within 0.25 percent by comparison with a sealed reference volume. The system is fully redundant, capable of operating at atmospheric pressure as well as in a vacuum, contains interlocks which shut down gas flow in the event of either leakage or excessive pressure, and is able to shut down counter high voltage if counter pressure is abnormally low. The system is electronically controlled by ground command and self-sustaining in orbit for a period of at least one year.
Electronic excitations in shocked nitromethane
DOE Office of Scientific and Technical Information (OSTI.GOV)
Reed, Evan J.; Joannopoulos, J. D.; Fried, Laurence E.
2000-12-15
The nature of electronic excitations in crystalline solid nitromethane under conditions of shock loading and static compression are examined. Density-functional theory calculations are used to determine the crystal bandgap under hydrostatic stress, uniaxial strain, and shear strain. Bandgap lowering under uniaxial strain due to molecular defects and vacancies is considered. Ab initio molecular-dynamics simulations are done of all possible nearest-neighbor collisions at a shock front, and of crystal shearing along a sterically hindered slip plane. In all cases, the bandgap is not lowered enough to produce a significant population of excited states in the crystal. The nearly free rotation ofmore » the nitromethane methyl group and localized nature of the highest occupied molecular orbital and lowest unoccupied molecular orbital states play a role in this result. Dynamical effects have a more significant effect on the bandgap than static effects, but relative molecule velocities in excess of 6 km/s are required to produce a significant thermal population of excited states.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Jacobson, C. M., E-mail: cjacobson@wisc.edu; Borchardt, M. T.; Den Hartog, D. J.
The Thomson scattering diagnostic on the Madison Symmetric Torus (MST) records excessive levels of stray Nd:YAG laser light. Stray light saturates the 1064 nm spectral channel in all polychromators, which prevents absolute electron density measurements via Rayleigh scattering calibration. Furthermore, stray light contaminates adjacent spectral channels for r/a ≥ 0.75, which renders the diagnostic unable to make electron temperature measurements at these radii. In situ measurements of stray light levels during a vacuum vessel vent are used to identify stray light sources and strategies for reduction of stray light levels. Numerical modeling using Zemax OpticStudio supports these measurements. The modelmore » of the vacuum vessel and diagnostic includes synthetic collection optics to enable direct comparison of measured and simulated stray light levels. Modeling produces qualitatively similar stray light distributions to MST measurements, and quantifies the mitigation effects of stray light mitigation strategies prior to implementation.« less
Lateral carrier diffusion in InGaAs/GaAs coupled quantum dot-quantum well system
NASA Astrophysics Data System (ADS)
Pieczarka, M.; Syperek, M.; Biegańska, D.; Gilfert, C.; Pavelescu, E. M.; Reithmaier, J. P.; Misiewicz, J.; Sek, G.
2017-05-01
The lateral carrier diffusion process is investigated in coupled InGaAs/GaAs quantum dot-quantum well (QD-QW) structures by means of spatially resolved photoluminescence spectroscopy at low temperature. Under non-resonant photo-excitation above the GaAs bandgap, the lateral carrier transport reflected in the distorted electron-hole pair emission profiles is found to be mainly governed by high energy carriers created within the 3D density of states of GaAs. In contrast, for the case of resonant excitation tuned to the QW-like ground state of the QD-QW system, the emission profiles remain unaffected by the excess kinetic energy of carriers and local phonon heating within the pump spot. The lateral diffusion lengths are determined and present certain dependency on the coupling strength between QW and QDs. While for a strongly coupled structure the diffusion length is found to be around 0.8 μm and monotonically increases up to 1.4 μm with the excitation power density, in weakly coupled structures, it is determined to ca. 1.6 μm and remained virtually independent of the pumping power density.
Defect Control of the WC Hardmetal by Mixing Recycled WC Nano Powder and Tungsten Powder
NASA Astrophysics Data System (ADS)
Hur, Man Gyu; Shin, Mi Kyung; Kim, Deug Joong; Yoon, Dae Ho
2018-03-01
Tungsten metal powder was added to recycled WC nano powder to control the macro and micro defects of WC hardmetal. The macro and micro defects caused by the excess carbon in the recycled WC powder were markedly removed after the addition of tungsten metal powder ranging from 2 to 6 wt%. The density and hardness of the WC hardmetals also increased due to the removal of defects after adding the tungsten metal powder. The density and hardness of WC hardmetals with the addition of W metal powder ranged from 8 to 12 wt% increased linearly as the W metal powder content increased due to the formation of a new (Co- and W-rich WC) composition. The surface morphology of the WC hardmetals was observed via field emission scanning electron microscopy, and a quantitative elemental analysis was conducted via X-ray fluorescence spectrometry and energy dispersive X-ray analysis. The density and hardness of the WC hardmetals were respectively measured using an analytical balance and a Vikers hardness tester. The effect on the defects in the recycled WC hardmetals through the addition of the tungsten metal powder was discussed in detail.
NASA Astrophysics Data System (ADS)
Smiljanić, Jelena D.; Kijevčanin, Mirjana Lj.; Djordjević, Bojan D.; Grozdanić, Dušan K.; Šerbanović, Slobodan P.
2008-04-01
Densities ρ of the 1-butanol + chloroform + benzene ternary mixture and the 1-butanol + chloroform and 1-butanol + benzene binaries have been measured at six temperatures (288.15, 293.15, 298.15, 303.15, 308.15, and 313.15) K and atmospheric pressure, using an oscillating U-tube densimeter. From these densities, excess molar volumes ( V E) were calculated and fitted to the Redlich Kister equation for all binary mixtures and to the Nagata and Tamura equation for the ternary system. The Radojković et al. equation has been used to predict excess molar volumes of the ternary mixtures. Also, V E data of the binary systems were correlated by the van der Waals (vdW1) and Twu Coon Bluck Tilton (TCBT) mixing rules coupled with the Peng Robinson Stryjek Vera (PRSV) equation of state. The prediction and correlation of V E data for the ternary system were performed by the same models.
Polymorphism in the nitrate salt of the [Mn(acetylacetonate)2(H2O)2]+ ion.
Biju, A R; Rajasekharan, M V
2010-06-01
The crystallization of [Mn(acac)(2)(H(2)O)(2)](+) from solutions containing excess nitrate leads to the formation of four polymorphs. All polymorphs contain two different types of complex ions, one containing essentially coplanar acac ligands and the other in which the two acac ligands together assume a chair conformation. Molecular modelling using DFT (density-functional theory) calculations shows that the coplanar conformation is the electronically stable one. The hydrogen bonding between the trans-water molecules and the nitrate ion produces a one-dimensional chain of 12-membered rings, which are further organized into a two-dimensional network via a lattice water molecule. Lattice-energy calculations have been carried out to compare the stabilities of the four polymorphs.
Chen, Kaixiang; Zhao, Xiaolong; Mesli, Abdelmadjid; He, Yongning; Dan, Yaping
2018-04-24
Photoconductors have extraordinarily high gain in quantum efficiency, but the origin of the gain has remained in dispute for decades. In this work, we employ photo Hall effect to reveal the gain mechanisms by probing the dynamics of photogenerated charge carriers in silicon nanowire photoconductors. The results reveal that a large number of photogenerated minority electrons are localized in the surface depletion region and surface trap states. The same number of excess hole counterparts is left in the nanowire conduction channel, resulting in the fact that excess holes outnumber the excess electrons in the nanowire conduction channel by orders of magnitude. The accumulation of the excess holes broadens the conduction channel by narrowing down the depletion region, which leads to the experimentally observed high photo gain.
NASA Astrophysics Data System (ADS)
Nithiyanantham, S.; Palaniappan, L.
2011-03-01
Ultrasonic velocity (U), density (ρ) and viscosity (η) measurements have been carried out in three ternary mixtures of glucose with amylase in aqueous medium at 298.15 K. The experimental data have been used to calculate some derived parameters such as acoustical impedance (Z), relative association (RA), Rao's constant (R), Wada's constant (W), relaxation time (τ), relaxation amplitude (α/f2), relaxation strength (r), and some excess thermodynamical properties like excess adiabatic compressibility (βE), excess free length (LfE) excess free volume (VfE), excess internal pressure (πiE) and excess acoustical impedance (ZE). The above parameters have been evaluated and discussed in light of molecular interactions in the mixture.
Microwave dielectric study of polar liquids at 298 K
NASA Astrophysics Data System (ADS)
Maharolkar, Aruna P.; Murugkar, A.; Khirade, P. W.
2018-05-01
Present paper deals with study of microwave dielectric properties like dielectric constant, viscosity, density and refractive index for the binary mixtures of Dimethylsulphoxide (DMSO) and Methanol over the entire concentration range were measured at 298K. The experimental data further used to determine the excess properties viz. excess static dielectric constant, excess molar volume, excess viscosity& derived properties viz. molar refraction&Bruggman factor. The values of excess properties further fitted with Redlich-Kister (R-K Fit) equation to calculate the binary coefficients and standard deviation. The resulting excess parameters are used to indicate the presence of intermolecular interactions and strength of intermolecular interactions between the molecules in the binary mixtures. Excess parameters indicate structure breaking factor in the mixture predominates in the system.
Gas diffusion electrodes improve hydrogen gas mass transfer for a hydrogen oxidizing bioanode
Rodenas, Pau; Zhu, Fangqi; Sleutels, Tom; Saakes, Michel; Buisman, Cees
2017-01-01
Abstract Background Bioelectrochemical systems (BESs) are capable of recovery of metals at a cathode through oxidation of organic substrate at an anode. Recently, also hydrogen gas was used as an electron donor for recovery of copper in BESs. Oxidation of hydrogen gas produced a current density of 0.8 A m‐2 and combined with Cu2+ reduction at the cathode, produced 0.25 W m‐2. The main factor limiting current production was the mass transfer of hydrogen to the biofilm due to the low solubility of hydrogen in the anolyte. Here, the mass transfer of hydrogen gas to the bioanode was improved by use of a gas diffusion electrode (GDE). Results With the GDE, hydrogen was oxidized to produce a current density of 2.9 A m‐2 at an anode potential of –0.2 V. Addition of bicarbonate to the influent led to production of acetate, in addition to current. At a bicarbonate concentration of 50 mmol L‐1, current density increased to 10.7 A m‐2 at an anode potential of –0.2 V. This increase in current density could be due to oxidation of formed acetate in addition to oxidation of hydrogen, or enhanced growth of hydrogen oxidizing bacteria due to the availability of acetate as carbon source. The effect of mass transfer was further assessed through enhanced mixing and in combination with the addition of bicarbonate (50 mmol L‐1) current density increased further to 17.1 A m‐2. Conclusion Hydrogen gas may offer opportunities as electron donor for bioanodes, with acetate as potential intermediate, at locations where excess hydrogen and no organics are available. © 2017 The Authors. Journal of Chemical Technology & Biotechnology published by John Wiley & Sons Ltd on behalf of Society of Chemical Industry. PMID:29200586
NASA Astrophysics Data System (ADS)
Iloukhani, H.; Khanlarzadeh, K.; Rakhshi, M.
2011-03-01
Densities, viscosities, and refractive indices of binary mixtures of n-butyl acetate (1) +1-chlorobutane (2), +1-chloropentane (2), +1-chlorohexane (2), +1-chloroheptane (2), and +1-chlorooctane (2) were measured at 298.15 K for the liquid region and at ambient pressure for the whole composition range. The excess molar volumes V E were calculated from experimental densities. McAllister's three-body interaction, and Hind and Grunberg-Nissan models are used for correlating the viscosity of binary mixtures. The experimental data of binaries are analyzed to discuss the nature and strength of intermolecular interactions in these mixtures.
Note: Deep UV-pump THz-probe spectroscopy of the excess electron in water.
Berger, Arian; Savolainen, Janne; Shalit, Andrey; Hamm, Peter
2017-06-28
In the work of Savolainen et al. [Nat. Chem. 6, 697 (2014)], we studied the excess (hydrated) electron in water with the help of transient THz spectroscopy, which is a sensitive probe of its delocalization length. In that work, we used laser pulses at 800 nm, 400 nm, and 267 nm for photoionization. While the detachment mechanism for 400 nm and 267 nm is complicated and requires a concerted nuclear rearrangement, we provided evidence that 800 nm pumping excites the excess electron directly and vertically into the conduction band, despite a highly nonlinear field-ionization process. In the present note, we extend that work to 200 nm pumping, which provides a much cleaner way to reach the conduction band. We show that the detachment pathways upon 200 nm and 800 nm pumping are in essence the same, as indicated by the same initial size of the electron wavefunction and the same time scales for the collapse of the wavefunction and geminate recombination.
History of the "Detector Materials Engineering" Crystal Growth Process for Bulk Hg1- x Cd x Te
NASA Astrophysics Data System (ADS)
Higgins, W. M.; Nelson, D. A.; Roy, R. G.; Murosako, R. P.; Lancaster, R. A.; Tower, J.; Norton, P.
2013-11-01
This paper reviews the history and technology of a bulk Hg1- x Cd x Te crystal growth process that was developed in the early 1980s at Honeywell Electro-Optics Division (presently BAE Systems, Electronic Solutions). The crystal growth process name, DME, was an acronym for the department name: Detector Materials Engineering. This was an accelerated crucible rotation technique (ACRT) vertical traveling heater method growth process. Crystal growth occurred in the pseudobinary Hg1- x Cd x Te system. ACRT mixing allowed the lower-density, higher- x-value Hg1- x Cd x Te growth nutrient in the upper region of the ampoule to replenish the depleted melt and allowed the growth of constant- x-value, higher-density Hg1- x Cd x Te. The material grown by this research and production growth process yielded single crystals that had improved purity, compositional uniformity, precipitate density, and reproducibility in comparison with solid-state recrystallization and other bulk Hg1- x Cd x Te growth techniques. Radial and longitudinal nonuniformities in x-value for Hg1- x Cd x Te were reduced to <0.0008/cm. The net electrically active background impurities did not exceed 1 × 1014 cm-3. Electron mobilities in excess of 1.5 × 106 cm2/V-s were observed at 77 K. Structural defects of less than 104 cm-2 were measured. Te precipitates were not observed. As a result of these material improvements, long-wavelength infrared (LWIR) photoconductive devices fabricated from DME material had highly desired performance characteristics.
Electron temperatures within magnetic clouds between 2 and 4 AU: Voyager 2 observations
NASA Astrophysics Data System (ADS)
Sittler, E. C.; Burlaga, L. F.
1998-08-01
We have performed an analysis of Voyager 2 plasma electron observations within magnetic clouds between 2 and 4 AU identified by Burlaga and Behannon [1982]. The analysis has been confined to three of the magnetic clouds identified by Burlaga and Behannon that had high-quality data. The general properties of the plasma electrons within a magnetic cloud are that (1) the moment electron temperature anticorrelates with the electron density within the cloud, (2) the ratio Te/Tp tends to be >1, and (3) on average, Te/Tp~7.0. All three results are consistent with previous electron observations within magnetic clouds. Detailed analyses of the core and halo populations within the magnetic clouds show no evidence of either an anticorrelation between the core temperature TC and the electron density Ne or an anticorrelation between the halo temperature TH and the electron density. Within the magnetic clouds the halo component can contribute more than 50% of the electron pressure. The anticorrelation of Te relative to Ne can be traced to the density of the halo component relative to the density of the core component. The core electrons dominate the electron density. When the density goes up, the halo electrons contribute less to the electron pressure, so we get a lower Te. When the electron density goes down, the halo electrons contribute more to the electron pressure, and Te goes up. We find a relation between the electron pressure and density of the form Pe=αNeγ with γ~0.5.
Effect of zinc on nectar secretion of Hibiscus rosa -sinensis L.
Sawidis, Thomas; Papadopoulou, Alexandra; Voulgaropoulou, Maria
2014-05-01
Zinc toxicity in secretory cells caused a range of effects, mainly depending on metal concentration. Low concentrations activated nectary function increasing nectar secretion but secretion was greatly inhibited or stopped entirely by ongoing concentration. Water loss rate of zinc treated flower parts was significantly reduced whereas green sepals were dehydrated more rapidly in comparison to colored petals. The content of zinc, calcium, magnesium and manganese increased mainly in sepals under excess of zinc, but in the secreted nectar this metal was not evident. Morphological changes were observed in mucilage cells concerning the mucilage structure and appearance. The parenchymatic, subglandular cells displayed an early vacuolarization and cytoplasm condensation. Secretory hairs appeared to be thinner, the apical cell folded inwards and plasmolytic shrinkage became severe in all cells. The waxy cuticula showed an increased electron density. A plasmalemma detachment from the external cell walls was observed creating a gap between cell wall and plasmalemma. ER cisterns of all treated nectary hairs dominated the cytoplasm and electron dense deposits were seen within its profiles. A great number of other organelles were also present, showing electron dense deposits in their membranes as well. The vacuome was drastically reduced in all cells, except in the subglandular ones and electron dense membrane remnants were observed.
Zubrowska-Sudol, M
2018-04-01
The goal of the study was to evaluate the possibility of carbon source recovery from excess sludge by mechanical disintegration for biological denitrification. The total efficiency of denitrification, unit demand for organic compounds for denitrification, unit volume of disintegrated sludge and unit cost of nitrogen removal as a function of energy density used for excess sludge disintegration (70, 140 and 210 kJ/L) were analyzed. In the study a full-scale disc disintegrator was used (motor power: 30 kWh, motor speed: 2,950 rpm). It was shown that the amounts of organic compounds released from the activated sludge flocs at all tested levels of energy density are high enough to be used to intensify the removal of nitrogen compounds from wastewater. It was also documented that the energy density provided during process of disintegration was an important factor determining the characteristics of organic compounds obtained under the disintegration for their use in order to intensify the process of denitrification. The highest value of total efficiency of denitrification (50.5 ± 3.1 mg N/L) was obtained for carbon source recovery from excess sludge at 70 kJ/L, but the lowest unit cost of nitrogen removal occurred for 140 kJ/L (0.0019 ± 0.0011 EUR/g N).
Cosmological implication of a new measurement of the submillimeter background radiation
NASA Technical Reports Server (NTRS)
Hayakawa, Satio; Matsumoto, Toshio; Matsuo, Hiroshi; Murakami, Hiroshi; Sato, Shinji
1987-01-01
A new submillimeter measurement of the cosmic background radiation (T. Matsumoto et al., 1988) reveals excess brightness between 1000 and 300 microns. The excess corresponds to about 10 percent of the undistorted blackbody radiation. The observed excess is consistent with thermal emission from dust with a relative density of 0.0001-0.00001, if the dust is heated at a redshift z of about 10-40.
Janthanomsuk, Panyawut; Verduyn, Cornelis; Chauvatcharin, Somchai
2015-11-01
Fed-batch, pH auxostat cultivation of the docosahexaenoic acid (DHA)-producing microorganism Aurantiochytrium B072 was performed to obtain high cell density and record high productivity of both total fatty acid (TFA) and DHA. Using glucose feeding by carbon excess (C-excess) and by C-limitation at various feeding rates (70%, 50% or 20% of C-excess), high biomass density was obtained and DHA/TFA content (w/w) was improved from 30% to 37% with a 50% glucose feed rate when compared with C-excess. To understand the biochemistry behind these improvements, lipogenic enzyme assays and in silico metabolic flux calculations were used and revealed that enzyme activity and C-fluxes to TFA were reduced with C-limited feeding but that the carbon flux to the polyketide synthase pathway increased relative to the fatty acid synthase pathway. As a result, a new strategy to improve the DHA to TFA content while maintaining relatively high DHA productivity is proposed. Copyright © 2015 Elsevier Ltd. All rights reserved.
Role of neutrons and protons in entropy, spin cut off parameters, and moments of inertia
NASA Astrophysics Data System (ADS)
Razavi, R.
2013-07-01
The nuclear level densities, spin cut off parameters, and entropies have been extracted in 116-119Sn and 162,163Dy nuclei using superconducting theory, which includes nuclear pairing interaction. The results agree well with the recent data obtained from experimental level densities by the Oslo group for these nuclei. Also, the entropy excess ratio proposed by Razavi [R. Razavi, A.N. Behkami, S. Mohammadi, and M. Gholami, Phys. Rev. CPRVCAN0556-281310.1103/PhysRevC.86.047303 86, 047303 (2012)] for a proton and neutron as a function of nuclear temperature have been evaluated and are compared with the spin cut off excess ratio. The role of the neutron (proton) system is well determined by the entropy excess ratio as well as the spin cut off excess ratio. The moment of inertia for even-odd and even-even nuclei are also compared. The moment of inertia carried by a single hole is smaller than the single particle moment of inertia.
Hydration shell parameters of aqueous alcohols: THz excess absorption and packing density.
Matvejev, V; Zizi, M; Stiens, J
2012-12-06
Solvation in water requires minimizing the perturbations in its hydrogen bonded network. Hence solutes distort water molecular motions in a surrounding domain, forming a molecule-specific hydration shell. The properties of those hydration shells impact the structure and function of the solubilized molecules, both at the single molecule and at higher order levels. The size of the hydration shell and the picoseconds time-scale water dynamics retardation are revealed by terahertz (THz) absorption coefficient measurements. Room-temperature absorption coefficient at f = 0.28 [THz] is measured as a function of alcohol concentration in aqueous methanol, ethanol, 1,2-propanol, and 1-butanol solutions. Highly diluted alcohol measurements and enhanced overall measurement accuracy are achieved with a THz absorption measurement technique of nL-volume liquids in a capillary tube. In the absorption analysis, bulk and interfacial molecular domains of water and alcohol are considered. THz ideal and excess absorption coefficients are defined in accordance with thermodynamics mixing formulations. The parameter extraction method is developed based on a THz excess absorption model and hydrated solute molecule packing density representation. First, the hydration shell size is deduced from the hydrated solute packing densities at two specific THz excess absorption nonlinearity points: at infinite alcohol dilution (IAD) and at the THz excess absorption extremum (EAE). Consequently, interfacial water and alcohol molecular domain absorptions are deduced from the THz excess absorption model. The hydration shell sizes obtained at the THz excess absorption extremum are in excellent agreement with other reports. The hydration shells of methanol, ethanol, 1- and 2-propanol consist of 13.97, 22.94, 22.99, and 31.10 water molecules, respectively. The hydration shell water absorption is on average 0.774 ± 0.028 times the bulk water absorption. The hydration shell parameters might shed light on hydration dynamics of biomolecules.
Fingerprint-Based Structure Retrieval Using Electron Density
Yin, Shuangye; Dokholyan, Nikolay V.
2010-01-01
We present a computational approach that can quickly search a large protein structural database to identify structures that fit a given electron density, such as determined by cryo-electron microscopy. We use geometric invariants (fingerprints) constructed using 3D Zernike moments to describe the electron density, and reduce the problem of fitting of the structure to the electron density to simple fingerprint comparison. Using this approach, we are able to screen the entire Protein Data Bank and identify structures that fit two experimental electron densities determined by cryo-electron microscopy. PMID:21287628
Fingerprint-based structure retrieval using electron density.
Yin, Shuangye; Dokholyan, Nikolay V
2011-03-01
We present a computational approach that can quickly search a large protein structural database to identify structures that fit a given electron density, such as determined by cryo-electron microscopy. We use geometric invariants (fingerprints) constructed using 3D Zernike moments to describe the electron density, and reduce the problem of fitting of the structure to the electron density to simple fingerprint comparison. Using this approach, we are able to screen the entire Protein Data Bank and identify structures that fit two experimental electron densities determined by cryo-electron microscopy. Copyright © 2010 Wiley-Liss, Inc.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ruiz Ruiz, J.; White, A. E.; Ren, Y.
2015-12-15
Theory and experiments have shown that electron temperature gradient (ETG) turbulence on the electron gyro-scale, k{sub ⊥}ρ{sub e} ≲ 1, can be responsible for anomalous electron thermal transport in NSTX. Electron scale (high-k) turbulence is diagnosed in NSTX with a high-k microwave scattering system [D. R. Smith et al., Rev. Sci. Instrum. 79, 123501 (2008)]. Here we report on stabilization effects of the electron density gradient on electron-scale density fluctuations in a set of neutral beam injection heated H-mode plasmas. We found that the absence of high-k density fluctuations from measurements is correlated with large equilibrium density gradient, which ismore » shown to be consistent with linear stabilization of ETG modes due to the density gradient using the analytical ETG linear threshold in F. Jenko et al. [Phys. Plasmas 8, 4096 (2001)] and linear gyrokinetic simulations with GS2 [M. Kotschenreuther et al., Comput. Phys. Commun. 88, 128 (1995)]. We also found that the observed power of electron-scale turbulence (when it exists) is anti-correlated with the equilibrium density gradient, suggesting density gradient as a nonlinear stabilizing mechanism. Higher density gradients give rise to lower values of the plasma frame frequency, calculated based on the Doppler shift of the measured density fluctuations. Linear gyrokinetic simulations show that higher values of the electron density gradient reduce the value of the real frequency, in agreement with experimental observation. Nonlinear electron-scale gyrokinetic simulations show that high electron density gradient reduces electron heat flux and stiffness, and increases the ETG nonlinear threshold, consistent with experimental observations.« less
Superconducting fluctuations and characteristic time scales in amorphous WSi
NASA Astrophysics Data System (ADS)
Zhang, Xiaofu; Lita, Adriana E.; Sidorova, Mariia; Verma, Varun B.; Wang, Qiang; Nam, Sae Woo; Semenov, Alexei; Schilling, Andreas
2018-05-01
We study magnitudes and temperature dependencies of the electron-electron and electron-phonon interaction times which play the dominant role in the formation and relaxation of photon-induced hotspots in two-dimensional amorphous WSi films. The time constants are obtained through magnetoconductance measurements in a perpendicular magnetic field in the superconducting fluctuation regime and through time-resolved photoresponse to optical pulses. The excess magnetoconductivity is interpreted in terms of the weak-localization effect and superconducting fluctuations. Aslamazov-Larkin and Maki-Thompson superconducting fluctuations alone fail to reproduce the magnetic field dependence in the relatively high magnetic field range when the temperature is rather close to Tc because the suppression of the electronic density of states due to the formation of short-lifetime Cooper pairs needs to be considered. The time scale τi of inelastic scattering is ascribed to a combination of electron-electron (τe -e) and electron-phonon (τe -p h) interaction times, and a characteristic electron-fluctuation time (τe -f l) , which makes it possible to extract their magnitudes and temperature dependencies from the measured τi. The ratio of phonon-electron (τp h -e) and electron-phonon interaction times is obtained via measurements of the optical photoresponse of WSi microbridges. Relatively large τe -p h/τp h -e and τe -p h/τe -e ratios ensure that in WSi the photon energy is more efficiently confined in the electron subsystem than in other materials commonly used in the technology of superconducting nanowire single-photon detectors (SNSPDs). We discuss the impact of interaction times on the hotspot dynamics and compare relevant metrics of SNSPDs from different materials.
NASA Astrophysics Data System (ADS)
Basak, Tamal; Chakrabarti, Sandip Kumar
Excess solar X-ray radiation during solar flares causes an enhancement of ionization in the ionospheric D-region and hence affects sub-ionospherically propagating VLF signal amplitude and phase. VLF signal amplitude perturbation (DeltaA) and amplitude time delay (Deltat) (vis- ´a-vis corresponding X-ray light curve as measured by GOES-15) of NWC/19.8 kHz signal have been computed for solar flares which is detected by us during Jan-Sep 2011. The signal is recorded by SoftPAL facility of IERC/ICSP, Sitapur (22(°) 27'N, 87(°) 45'E), West Bengal, India. In first part of the work, using the well known LWPC technique, we simulated the flare induced excess lower ionospheric electron density by amplitude perturbation method. Unperturbed D-region electron density is also obtained from simulation and compared with IRI-model results. Using these simulation results and time delay as key parameters, we calculate the effective electron recombination coefficient (alpha_{eff}) at solar flare peak region. Our results match with the same obtained by other established models. In the second part, we dealt with the solar zenith angle effect on D-region during flares. We relate this VLF data with the solar X-ray data. We find that the peak of the VLF amplitude occurs later than the time of the X-ray peak for each flare. We investigate this so-called time delay (Deltat). For the C-class flares we find that there is a direct correspondence between Deltat of a solar flare and the average solar zenith angle Z over the signal propagation path at flare occurrence time. Now for deeper analysis, we compute the Deltat for different local diurnal time slots DT. We find that while the time delay is anti-correlated with the flare peak energy flux phi_{max} independent of these time slots, the goodness of fit, as measured by reduced-chi(2) , actually worsens as the day progresses. The variation of the Z dependence of reduced-chi(2) seems to follow the variation of standard deviation of Z along the T_x-R_x propagation path. In other words, for the flares having almost constant Z over the path a tighter anti-correlation between Deltat and phi_{max} was observed.
NASA Astrophysics Data System (ADS)
Basak, Tamal; Chakrabarti, Sandip K.
2013-12-01
Excess solar X-ray radiation during solar flares causes an enhancement of ionization in the ionospheric D-region and hence affects sub-ionospherically propagating VLF signal amplitude and phase. VLF signal amplitude perturbation (Δ A) and amplitude time delay (Δ t) (vis-á-vis corresponding X-ray light curve as measured by GOES-15) of NWC/19.8 kHz signal have been computed for solar flares which is detected by us during Jan-Sep 2011. The signal is recorded by SoftPAL facility of IERC/ICSP, Sitapur (22∘ 27'N, 87∘ 45'E), West Bengal, India. In first part of the work, using the well known LWPC technique, we simulated the flare induced excess lower ionospheric electron density by amplitude perturbation method. Unperturbed D-region electron density is also obtained from simulation and compared with IRI-model results. Using these simulation results and time delay as key parameters, we calculate the effective electron recombination coefficient ( α eff ) at solar flare peak region. Our results match with the same obtained by other established models. In the second part, we dealt with the solar zenith angle effect on D-region during flares. We relate this VLF data with the solar X-ray data. We find that the peak of the VLF amplitude occurs later than the time of the X-ray peak for each flare. We investigate this so-called time delay (Δ t). For the C-class flares we find that there is a direct correspondence between Δ t of a solar flare and the average solar zenith angle Z over the signal propagation path at flare occurrence time. Now for deeper analysis, we compute the Δ t for different local diurnal time slots DT. We find that while the time delay is anti-correlated with the flare peak energy flux ϕ max independent of these time slots, the goodness of fit, as measured by reduced- χ 2, actually worsens as the day progresses. The variation of the Z dependence of reduced- χ 2 seems to follow the variation of standard deviation of Z along the T x - R x propagation path. In other words, for the flares having almost constant Z over the path a tighter anti-correlation between Δ t and ϕ max was observed.
Driever, Steven M; Baker, Neil R
2011-05-01
Electron flux from water via photosystem II (PSII) and PSI to oxygen (water-water cycle) may provide a mechanism for dissipation of excess excitation energy in leaves when CO(2) assimilation is restricted. Mass spectrometry was used to measure O(2) uptake and evolution together with CO(2) uptake in leaves of French bean and maize at CO(2) concentrations saturating for photosynthesis and the CO(2) compensation point. In French bean at high CO(2) and low O(2) concentrations no significant water-water cycle activity was observed. At the CO(2) compensation point and 3% O(2) a low rate of water-water cycle activity was observed, which accounted for 30% of the linear electron flux from water. In maize leaves negligible water-water cycle activity was detected at the compensation point. During induction of photosynthesis in maize linear electron flux was considerably greater than CO(2) assimilation, but no significant water-water cycle activity was detected. Miscanthus × giganteus grown at chilling temperature also exhibited rates of linear electron transport considerably in excess of CO(2) assimilation; however, no significant water-water cycle activity was detected. Clearly the water-water cycle can operate in leaves under some conditions, but it does not act as a major sink for excess excitation energy when CO(2) assimilation is restricted. © 2011 Blackwell Publishing Ltd.
Xu, Lei; Chen, Qian; Liao, Lei; Liu, Xingqiang; Chang, Ting-Chang; Chang, Kuan-Chang; Tsai, Tsung-Ming; Jiang, Changzhong; Wang, Jinlan; Li, Jinchai
2016-03-02
Hydrogenation is one of the effective methods for improving the performance of ZnO thin film transistors (TFTs), which originate from the fact that hydrogen (H) acts as a defect passivator and a shallow n-type dopant in ZnO materials. However, passivation accompanied by an excessive H doping of the channel region of a ZnO TFT is undesirable because high carrier density leads to negative threshold voltages. Herein, we report that Mg/H codoping could overcome the trade-off between performance and reliability in the ZnO TFTs. The theoretical calculation suggests that the incorporation of Mg in hydrogenated ZnO decrease the formation energy of interstitial H and increase formation energy of O-vacancy (VO). The experimental results demonstrate that the existence of the diluted Mg in hydrogenated ZnO TFTs could be sufficient to boost up mobility from 10 to 32.2 cm(2)/(V s) at a low carrier density (∼2.0 × 10(18) cm(-3)), which can be attributed to the decreased electron effective mass by surface band bending. The all results verified that the Mg/H codoping can significantly passivate the VO to improve device reliability and enhance mobility. Thus, this finding clearly points the way to realize high-performance metal oxide TFTs for low-cost, large-volume, flexible electronics.
Electronic energy density in chemical reaction systems
NASA Astrophysics Data System (ADS)
Tachibana, Akitomo
2001-08-01
The energy of chemical reaction is visualized in real space using the electronic energy density nE(r⃗) associated with the electron density n(r⃗). The electronic energy density nE(r⃗) is decomposed into the kinetic energy density nT(r⃗), the external potential energy density nV(r⃗), and the interelectron potential energy density nW(r⃗). Using the electronic energy density nE(r⃗) we can pick up any point in a chemical reaction system and find how the electronic energy E is assigned to the selected point. We can then integrate the electronic energy density nE(r⃗) in any region R surrounding the point and find out the regional electronic energy ER to the global E. The kinetic energy density nT(r⃗) is used to identify the intrinsic shape of the reactants, the electronic transition state, and the reaction products along the course of the chemical reaction coordinate. The intrinsic shape is identified with the electronic interface S that discriminates the region RD of the electronic drop from the region RA of the electronic atmosphere in the density distribution of the electron gas. If the R spans the whole space, then the integral gives the total E. The regional electronic energy ER in thermodynamic ensemble is realized in electrochemistry as the intrinsic Volta electric potential φR and the intrinsic Herring-Nichols work function ΦR. We have picked up first a hydrogen-like atom for which we have analytical exact expressions of the relativistic kinetic energy density nTM(r⃗) and its nonrelativistic version nT(r⃗). These expressions are valid for any excited bound states as well as the ground state. Second, we have selected the following five reaction systems and show the figures of the nT(r⃗) as well as the other energy densities along the intrinsic reaction coordinates: a protonation reaction to He, addition reactions of HF to C2H4 and C2H2, hydrogen abstraction reactions of NH3+ from HF and NH3. Valence electrons possess their unique delocalized drop region remote from those heavily localized drop regions adhered to core electrons. The kinetic energy density nT(r⃗) and the tension density τ⃗S(r⃗) can vividly demonstrate the formation of the chemical bond. Various basic chemical concepts in these chemical reaction systems have been clearly visualized in real three-dimensional space.
Fasih, Aisha; Fonge, Humphrey; Cai, Zhongli; Leyton, Jeffrey V; Tikhomirov, Ilia; Done, Susan J; Reilly, Raymond M
2012-08-01
Increased expression of epidermal growth factor receptors (EGFR) in breast cancer (BC) is often associated with trastuzumab (Herceptin)-resistant forms of the disease and represents an attractive target for novel therapies. Nimotuzumab is a humanized IgG(1) monoclonal antibody that is in clinical trials for treatment of EGFR-overexpressing malignancies. We show here that nimotuzumab derivatized with benzylisothiocyanate diethylenetriaminepentaacetic acid for labelling with the subcellular range Auger electron-emitter, (111)In and modified with nuclear translocation sequence (NLS) peptides ((111)In-NLS-Bn-DTPA-nimotuzumab) was bound, internalized and transported to the nucleus of EGFR-positive BC cells. Emission of Auger electrons in close proximity to the nucleus caused multiple DNA double-strand breaks which diminished the clonogenic survival (CS) of MDA-MB-468 cells that have high EGFR density (2.4 × 10(6) receptors/cell) to less than 3 %. (111)In-Bn-DTPA-nimotuzumab without NLS peptide modification was sevenfold less effective for killing MDA-MB-468 cells. (111)In-Bn-DTPA-nimotuzumab with/without NLS peptide modification were equivalently cytotoxic to MDA-MB-231 and TrR1 BC cells that have moderate EGFR density (5.4 × 10(5) or 4.2 × 10(5) receptors/cell, respectively) reducing their CS by twofold. MDA-MB-231 cells have intrinsic trastuzumab resistance due to low HER2 density, whereas TrR1 cells have acquired resistance despite HER2 overexpression. Biodistribution and microSPECT/CT imaging revealed that (111)In-NLS-Bn-DTPA-nimotuzumab exhibited more rapid elimination from the blood and lower tumour uptake than (111)In-Bn-DTPA-nimotuzumab. Tumour uptake of the radioimmunoconjugates in mice with MDA-MB-468 xenografts was high (8-16 % injected dose/g) and was blocked by administration of an excess of unlabelled nimotuzumab, demonstrating EGFR specificity. We conclude that (111)In-Bn-DTPA-nimotuzumab with/without NLS peptide modification are promising Auger electron-emitting radioimmunotherapeutic agents for EGFR-positive BC, but (111)In-Bn-DTPA-nimotuzumab may be preferred due to its higher tumour uptake in vivo.
Real-time decay of a highly excited charge carrier in the one-dimensional Holstein model
NASA Astrophysics Data System (ADS)
Dorfner, F.; Vidmar, L.; Brockt, C.; Jeckelmann, E.; Heidrich-Meisner, F.
2015-03-01
We study the real-time dynamics of a highly excited charge carrier coupled to quantum phonons via a Holstein-type electron-phonon coupling. This is a prototypical example for the nonequilibrium dynamics in an interacting many-body system where excess energy is transferred from electronic to phononic degrees of freedom. We use diagonalization in a limited functional space (LFS) to study the nonequilibrium dynamics on a finite one-dimensional chain. This method agrees with exact diagonalization and the time-evolving block-decimation method, in both the relaxation regime and the long-time stationary state, and among these three methods it is the most efficient and versatile one for this problem. We perform a comprehensive analysis of the time evolution by calculating the electron, phonon and electron-phonon coupling energies, and the electronic momentum distribution function. The numerical results are compared to analytical solutions for short times, for a small hopping amplitude and for a weak electron-phonon coupling. In the latter case, the relaxation dynamics obtained from the Boltzmann equation agrees very well with the LFS data. We also study the time dependence of the eigenstates of the single-site reduced density matrix, which defines the so-called optimal phonon modes. We discuss their structure in nonequilibrium and the distribution of their weights. Our analysis shows that the structure of optimal phonon modes contains very useful information for the interpretation of the numerical data.
41 CFR 101-42.1102-6 - Noncertified and certified electronic products.
Code of Federal Regulations, 2011 CFR
2011-07-01
... certified electronic products. 101-42.1102-6 Section 101-42.1102-6 Public Contracts and Property Management... certified electronic products. (a) Utilization requirements.(1) Excess electronic items for which radiation... shall identify noncertified electronic products and shall contain a statement that the items may not be...
41 CFR 101-42.1102-6 - Noncertified and certified electronic products.
Code of Federal Regulations, 2014 CFR
2014-07-01
... certified electronic products. 101-42.1102-6 Section 101-42.1102-6 Public Contracts and Property Management... certified electronic products. (a) Utilization requirements.(1) Excess electronic items for which radiation... shall identify noncertified electronic products and shall contain a statement that the items may not be...
41 CFR 101-42.1102-6 - Noncertified and certified electronic products.
Code of Federal Regulations, 2010 CFR
2010-07-01
... certified electronic products. 101-42.1102-6 Section 101-42.1102-6 Public Contracts and Property Management... certified electronic products. (a) Utilization requirements.(1) Excess electronic items for which radiation... shall identify noncertified electronic products and shall contain a statement that the items may not be...
41 CFR 101-42.1102-6 - Noncertified and certified electronic products.
Code of Federal Regulations, 2012 CFR
2012-07-01
... certified electronic products. 101-42.1102-6 Section 101-42.1102-6 Public Contracts and Property Management... certified electronic products. (a) Utilization requirements.(1) Excess electronic items for which radiation... shall identify noncertified electronic products and shall contain a statement that the items may not be...
2016-11-01
a few nanoseconds. The challenge remains to diagnose plasmas via the free electron density in this short window of time and often in a small volume ...Free Electron Density in Laser-Produced Plasmas by Anthony R Valenzuela Approved for public release; distribution is...US Army Research Laboratory Shack-Hartmann Electron Densitometer (SHED): An Optical System for Diagnosing Free Electron Density in Laser
Zhang, Changzhe; Bu, Yuxiang
2016-09-14
Diffuse functions have been proved to be especially crucial for the accurate characterization of excess electrons which are usually bound weakly in intermolecular zones far away from the nuclei. To examine the effects of diffuse functions on the nature of the cavity-shaped excess electrons in water cluster surroundings, both the HOMO and LUMO distributions, vertical detachment energies (VDEs) and visible absorption spectra of two selected (H2O)24(-) isomers are investigated in the present work. Two main types of diffuse functions are considered in calculations including the Pople-style atom-centered diffuse functions and the ghost-atom-based floating diffuse functions. It is found that augmentation of atom-centered diffuse functions contributes to a better description of the HOMO (corresponding to the VDE convergence), in agreement with previous studies, but also leads to unreasonable diffuse characters of the LUMO with significant red-shifts in the visible spectra, which is against the conventional point of view that the more the diffuse functions, the better the results. The issue of designing extra floating functions for excess electrons has also been systematically discussed, which indicates that the floating diffuse functions are necessary not only for reducing the computational cost but also for improving both the HOMO and LUMO accuracy. Thus, the basis sets with a combination of partial atom-centered diffuse functions and floating diffuse functions are recommended for a reliable description of the weakly bound electrons. This work presents an efficient way for characterizing the electronic properties of weakly bound electrons accurately by balancing the addition of atom-centered diffuse functions and floating diffuse functions and also by balancing the computational cost and accuracy of the calculated results, and thus is very useful in the relevant calculations of various solvated electron systems and weakly bound anionic systems.
The impact of hot charge carrier mobility on photocurrent losses in polymer-based solar cells
Philippa, Bronson; Stolterfoht, Martin; Burn, Paul L.; Juška, Gytis; Meredith, Paul; White, Ronald D.; Pivrikas, Almantas
2014-01-01
A typical signature of charge extraction in disordered organic systems is dispersive transport, which implies a distribution of charge carrier mobilities that negatively impact on device performance. Dispersive transport has been commonly understood to originate from a time-dependent mobility of hot charge carriers that reduces as excess energy is lost during relaxation in the density of states. In contrast, we show via photon energy, electric field and film thickness independence of carrier mobilities that the dispersive photocurrent in organic solar cells originates not from the loss of excess energy during hot carrier thermalization, but rather from the loss of carrier density to trap states during transport. Our results emphasize that further efforts should be directed to minimizing the density of trap states, rather than controlling energetic relaxation of hot carriers within the density of states. PMID:25047086
The Na i and Sr ii Resonance Lines in Solar Prominences
NASA Astrophysics Data System (ADS)
Stellmacher, G.; Wiehr, E.
2017-07-01
We estimate the electron density, ne, and its spatial variation in quiescent prominences from the observed emission ratio of the resonance lines Na i 5890 Å (D2) and Sr ii 4078 Å. For a bright prominence (τ_{α}≈25) we obtain a mean ne≈2×10^{10} cm^{-3}; for a faint one (τ _{α }≈4) ne≈4×10^{10} cm^{-3} on two consecutive days with moderate internal fluctuation and no systematic variation with height above the solar limb. The thermal and non-thermal contributions to the line broadening, T_{kin} and V_{nth}, required to deduce ne from the emission ratio Na i/Sr ii cannot be unambiguously determined from observed widths of lines from atoms of different mass. The reduced widths, ΔλD/λ0, of Sr ii 4078 Å show an excess over those from Na D2 and Hδ 4101 Å, assuming the same T_{kin} and V_{nth}. We attribute this excess broadening to higher non-thermal broadening induced by interaction of ions with the prominence magnetic field. This is suggested by the finding of higher macro-shifts of Sr ii 4078 Å as compared to those from Na D2.
Prediction of nanofluids properties: the density and the heat capacity
NASA Astrophysics Data System (ADS)
Zhelezny, V. P.; Motovoy, I. V.; Ustyuzhanin, E. E.
2017-11-01
The results given in this report show that the additives of Al2O3 nanoparticles lead to increase the density and decrease the heat capacity of isopropanol. Based on the experimental data the excess molar volume and the excess molar heat capacity were calculated. The report suggests new method for predicting the molar volume and molar heat capacity of nanofluids. It is established that the values of the excess thermodynamic functions are determined by the properties and the volume of the structurally oriented layers of the base fluid molecules near the surface of nanoparticles. The heat capacity of the structurally oriented layers of the base fluid is less than the heat capacity of the base fluid for given parameters due to the greater regulation of its structure. It is shown that information on the geometric dimensions of the structured layers of the base fluid near nanoparticles can be obtained from data on the nanofluids density and at ambient temperature - by the dynamic light scattering method. For calculations of the nanofluids heat capacity over a wide range of temperatures a new correlation based on the extended scaling is proposed.
NASA Astrophysics Data System (ADS)
Li, M.; Yuan, T.; Xu, Y. X.; Luo, S. N.
2018-05-01
When an intense picosecond laser pulse is loaded upon a dense plasma, a high energy density plasma bunch, including electron bunch and ion bunch, can be generated in the target. We simulate this process through one-dimensional particle-in-cell simulation and find that the electron bunch generation is mainly due to a local high energy density electron sphere originated in the plasma skin layer. Once generated the sphere rapidly expands to compress the surrounding electrons and induce high density electron layer, coupled with that, hot electrons are efficiently triggered in the local sphere and traveling in the whole target. Under the compressions of light pressure, forward-running and backward-running hot electrons, a high energy density electron bunch generates. The bunch energy density is as high as TJ/m3 order of magnitude in our conditions, which is significant in laser driven dynamic high pressure generation and may find applications in high energy density physics.
The 1.5 Ms Observing Campaign on IRAS 13224-3809: X-ray Spectral Analysis I.
NASA Astrophysics Data System (ADS)
Jiang, J.; Parker, M. L.; Fabian, A. C.; Alston, W. N.; Buisson, D. J. K.; Cackett, E. M.; Chiang, C.-Y.; Dauser, T.; Gallo, L. C.; García, J. A.; Harrison, F. A.; Lohfink, A. M.; De Marco, B.; Kara, E.; Miller, J. M.; Miniutti, G.; Pinto, C.; Walton, D. J.; Wilkins, D. R.
2018-03-01
We present a detailed spectral analysis of the recent 1.5 Ms XMM-Newton observing campaign on the narrow line Seyfert 1 galaxy IRAS 13224-3809, taken simultaneously with 500 ks of NuSTAR data. The X-ray lightcurve shows three flux peaks, registering at about 100 times the minimum flux seen during the campaign, and rapid variability with a time scale of kiloseconds. The spectra are well fit with a primary powerlaw continuum, two relativistic-blurred reflection components from the inner accretion disk with very high iron abundance, and a simple blackbody-shaped model for the remaining soft excess. The spectral variability is dominated by the power law continuum from a corona region within a few gravitational radii from the black hole. Additionally, blueshifted Ne X, Mg XII, Si XIV and S XVI absorption lines are identified in the stacked low-flux spectrum, confirming the presence of a highly ionized outflow with velocity up to v = 0.263 and 0.229 c. We fit the absorption features with xstar models and find a relatively constant velocity outflow through the whole observation. Finally, we replace the bbody and supersolar abundance reflection models by fitting the soft excess successfully with the extended reflection model relxillD, which allows for higher densities than the standard relxill model. This returns a disk electron density ne > 1018.7 cm-3 and lowers the iron abundance from Z_Fe=24^{+3}_{-4}Z_⊙ with ne ≡ 1015 cm-3 to Z_Fe=6.6^{+0.8}_{-2.1}Z_⊙.
The 1.5 Ms observing campaign on IRAS 13224-3809 - I. X-ray spectral analysis
NASA Astrophysics Data System (ADS)
Jiang, J.; Parker, M. L.; Fabian, A. C.; Alston, W. N.; Buisson, D. J. K.; Cackett, E. M.; Chiang, C.-Y.; Dauser, T.; Gallo, L. C.; García, J. A.; Harrison, F. A.; Lohfink, A. M.; De Marco, B.; Kara, E.; Miller, J. M.; Miniutti, G.; Pinto, C.; Walton, D. J.; Wilkins, D. R.
2018-07-01
We present a detailed spectral analysis of the recent 1.5 Ms XMM-Newton observing campaign on the narrow-line Seyfert 1 galaxy IRAS 13224-3809, taken simultaneously with 500 ks of NuSTAR data. The X-ray light curve shows three flux peaks, registering at about 100 times the minimum flux seen during the campaign, and rapid variability with a time-scale of kiloseconds. The spectra are well fit with a primary power-law continuum, two relativistic-blurred reflection components from the inner accretion disc with very high iron abundance, and a simple blackbody-shaped model for the remaining soft excess. The spectral variability is dominated by the power-law continuum from a corona region within a few gravitational radii from the black hole. Additionally, blueshifted Ne X, Mg XII, Si XIV, and S XVI absorption lines are identified in the stacked low-flux spectrum, confirming the presence of a highly ionized outflow with velocity up to v = 0.267 and 0.225 c. We fit the absorption features with xstar models and find a relatively constant velocity outflow through the whole observation. Finally, we replace the bbody and supersolar abundance reflection models by fitting the soft excess successfully with the extended reflection model relxillD, which allows for higher densities than the standard relxill model. This returns a disc electron density ne > 1018.7 cm-3 and lowers the iron abundance from Z_Fe = 24^{+3}_{-4} Z_{⊙} with ne ≡ 1015 cm-3 to Z_Fe = 6.6^{+0.8}_{-2.1} Z_{⊙}.
USDA-ARS?s Scientific Manuscript database
Production density in excess of a critical threshold can result in a negative relationship between stocking density and fish production. This study was conducted to evaluate production characteristics of juvenile cobia Rachycentron canadum, reared to market size in production-scale recirculating aq...
Sumi, Tomonari; Maruyama, Yutaka; Mitsutake, Ayori; Koga, Kenichiro
2016-06-14
In the conventional classical density functional theory (DFT) for simple fluids, an ideal gas is usually chosen as the reference system because there is a one-to-one correspondence between the external field and the density distribution function, and the exact intrinsic free-energy functional is available for the ideal gas. In this case, the second-order density functional Taylor series expansion of the excess intrinsic free-energy functional provides the hypernetted-chain (HNC) approximation. Recently, it has been shown that the HNC approximation significantly overestimates the solvation free energy (SFE) for an infinitely dilute Lennard-Jones (LJ) solution, especially when the solute particles are several times larger than the solvent particles [T. Miyata and J. Thapa, Chem. Phys. Lett. 604, 122 (2014)]. In the present study, we propose a reference-modified density functional theory as a systematic approach to improve the SFE functional as well as the pair distribution functions. The second-order density functional Taylor series expansion for the excess part of the intrinsic free-energy functional in which a hard-sphere fluid is introduced as the reference system instead of an ideal gas is applied to the LJ pure and infinitely dilute solution systems and is proved to remarkably improve the drawbacks of the HNC approximation. Furthermore, the third-order density functional expansion approximation in which a factorization approximation is applied to the triplet direct correlation function is examined for the LJ systems. We also show that the third-order contribution can yield further refinements for both the pair distribution function and the excess chemical potential for the pure LJ liquids.
Dynamics of distribution and density of phreatophytes and other arid-land plant communities
NASA Technical Reports Server (NTRS)
Turner, R. M. (Principal Investigator)
1973-01-01
The author has identified the following significant results. Six ERTS-1 images of the Tucson area, Arizona were analyzed to detect seasonal flushes of plant growth. Paired MSS-6 and MSS-5 bulk images were analyzed, using a ratioing technique, on the Electronic Satellite Image Analysis Console at Stanford Research Institute. Because of unique phenology, desert areas, covered only briefly by dense growths of ephemeral plants, are readily discerned. Grassland, evergreen forest, and riparian communities are also uniquely defined by their phenologies. Relatively sterile areas with little or no plant growth are easily discerned as are areas with varying degrees of plant productivity. The ratioing procedure detects plant coverage in excess of a threshold lying between 25% and 50%. The method is flexible and other coverage thresholds can be used.
Middle Atmosphere Program. Handbook for MAP, volume 19
NASA Technical Reports Server (NTRS)
Goldberg, R. A. (Editor)
1986-01-01
This MAP handbook is concerned with rocket techniques and instrumentation as they are currently employed in the middle atmosphere. It is composed of nine chapters, written by experts on rocket experiments. The emphasis is on measurement techniques rather than results, although results are incorporated wherever they provide examples which illustrate the measurement features. The chapters first cover techniques relating to measurements of neutral dynamics and chemistry, then measurements of the various intermittent and excessive radiation sources which effect the middle atmospheric environment, and finally measurements of the plasma environment including electric fields. The weighting toward plasma related parameters is not accidental, but reflects both the historical headstart given by early development of radio wave and probe techniques to measure electron density, and by the relatively limited number of techniques available for neutral atmospheric measurements.
Results of the Mariner 6 and 7 Mars occultation experiments
NASA Technical Reports Server (NTRS)
Hogan, J. S.; Stewart, R. W.; Rasool, S. I.; Russell, L. H.
1972-01-01
Final profiles of temperature, pressure, and electron density on Mars were obtained for the Mariner 6 and 7 entry and exit cases, and results are presented for both the lower atmosphere and ionosphere. The results of an analysis of the systematic and formal errors introduced at each stage of the data-reduction process are also included. At all four occulation points, the lapse rate of temperature was subdadiabatic up to altitudes in excess of 20 km. A pronounced temperature inversion was present above the surface at the Mariner 6 exit point. All four profiles exhibit a sharp, superadiabatic drop in temperature at high altitudes, with temperatures falling below the frost point of CO2. These results give a strong indication of frozen CO2 in the middle atmosphere of Mars.
NASA Astrophysics Data System (ADS)
Adamová, D.; Agakichiev, G.; Antończyk, D.; Appelshäuser, H.; Belaga, V.; Bielcikova, J.; Braun-Munzinger, P.; Busch, O.; Cherlin, A.; Damjanović, S.; Dietel, T.; Dietrich, L.; Drees, A.; Dubitzky, W.; Esumi, S. I.; Filimonov, K.; Fomenko, K.; Fraenkel, Z.; Garabatos, C.; Glässel, P.; Holeczek, J.; Kushpil, V.; Maas, A.; Marín, A.; Milošević, J.; Milov, A.; Miśkowiec, D.; Panebrattsev, Yu.; Petchenova, O.; Petráček, V.; Pfeiffer, A.; Rak, J.; Ravinovich, I.; Rehak, P.; Sako, H.; Schmitz, W.; Sedykh, S.; Shimansky, S.; Stachel, J.; Šumbera, M.; Tilsner, H.; Tserruya, I.; Wessels, J. P.; Wienold, T.; Wurm, J. P.; Xie, W.; Yurevich, S.; Yurevich, V.; Ceres Collaboration
2008-09-01
We present a measurement of e+e- pair production in central Pbsbnd Au collisions at 158 A GeV / c. As reported earlier, a significant excess of the e+e- pair yield over the expectation from hadron decays is observed. The improved mass resolution of the present data set, recorded with the upgraded CERES experiment at the CERN-SPS, allows for a comparison of the data with different theoretical approaches. The data clearly favor a substantial in-medium broadening of the ρ spectral function over a density-dependent shift of the ρ pole mass. The in-medium broadening model implies that baryon induced interactions are the key mechanism to the observed modifications of the ρ meson at SPS energy.
NASA Astrophysics Data System (ADS)
Ceres Collaboration; Adamová, D.; Agakichiev, G.; Antończyk, D.; Appelshäuser, H.; Belaga, V.; Bielcikova, J.; Braun-Munzinger, P.; Busch, O.; Cherlin, A.; Damjanović, S.; Dietel, T.; Dietrich, L.; Drees, A.; Dubitzky, W.; Esumi, S. I.; Filimonov, K.; Fomenko, K.; Fraenkel, Z.; Garabatos, C.; Glässel, P.; Holeczek, J.; Kushpil, V.; Maas, A.; Marín, A.; Milošević, J.; Milov, A.; Miśkowiec, D.; Panebrattsev, Yu.; Petchenova, O.; Petráček, V.; Pfeiffer, A.; Rak, J.; Ravinovich, I.; Rehak, P.; Sako, H.; Schmitz, W.; Sedykh, S.; Shimansky, S.; Stachel, J.; Šumbera, M.; Tilsner, H.; Tserruya, I.; Wessels, J. P.; Wienold, T.; Wurm, J. P.; Xie, W.; Yurevich, S.; Yurevich, V.
2008-09-01
We present a measurement of ee pair production in central PbAu collisions at 158A GeV/c. As reported earlier, a significant excess of the ee pair yield over the expectation from hadron decays is observed. The improved mass resolution of the present data set, recorded with the upgraded CERES experiment at the CERN-SPS, allows for a comparison of the data with different theoretical approaches. The data clearly favor a substantial in-medium broadening of the ρ spectral function over a density-dependent shift of the ρ pole mass. The in-medium broadening model implies that baryon induced interactions are the key mechanism to the observed modifications of the ρ meson at SPS energy.
Infrared spectra of MF2, MF2+, MF4-, MF3, and M2F6 molecules (M = Sc, Y, La) in solid argon.
Wang, Xuefeng; Andrews, Lester
2010-02-18
Reactions of laser-ablated Sc, Y and La atoms with F(2) in excess argon gave new absorptions in the M-F stretching region, which are assigned to metal fluoride neutral species MF(2) and MF(3) and ions MF(2)(+) and MF(4)(-). Dibridged MF(3) dimers, M(2)F(6), were also identified through terminal M-F and bridge M-F-M stretching modes. Density functional theory (DFT) calculations substantiated the experimental assignments. Mulliken and natural charge distributions indicate significant electron transfer from metal d orbitals to F ligands that increase from Sc to La, suggesting that strong participation of La 5d orbital hybridization drives the F-La-F bond angle below 120 degrees.
Flavor structure of the cosmic-ray electron/positron excesses at DAMPE
NASA Astrophysics Data System (ADS)
Ge, Shao-Feng; He, Hong-Jian; Wang, Yu-Chen
2018-06-01
The Dark Matter Particle Explorer (DAMPE) satellite detector announced its first result for measuring the cosmic-ray electron/positron (CRE) energy spectrum up to 4.6 TeV, including a tentative peak-like event excess at (1.3-1.5) TeV. In this work, we uncover a significant hidden excess in the DAMPE CRE spectrum over the energy range (0.6-1.1) TeV, which has a non-peak-like structure. We propose a new mechanism to explain this excess by a set of 1.5 TeV μ± events with subsequent decays into e± plus neutrinos. For explaining this new excess together with the peak excess around 1.4 TeV, we demonstrate that the flavor structure of the original lepton final-state produced by dark matter (DM) annihilations (or other mechanism) should have a composition ratio Ne : (Nμ + 1/6 Nτ) = 1 : y, with y ≃ 2.6- 10.8. For lepton portal DM models, this puts nontrivial constraint on the lepton-DM-mediator couplings λe : (λμ4 + 1/6 λτ4) 1/4 = 1 : y1/4 with a narrow range y1/4 ≃ 1.3- 1.8.
NASA Astrophysics Data System (ADS)
Li, Wen-Hsien; Karna, Sunil K.; Hsu, Han; Li, Chi-Yen; Lee, Chi-Hung; Sankar, Raman; Cheng Chou, Fang
2015-06-01
The general picture established so far for the links between superconductivity and magnetic ordering in iron chalcogenide Fe1+y(Te1-xSex) is that the substitution of Se for Te directly drives the system from the antiferromagnetic end into the superconducting regime. Here, we report on the observation of a ferromagnetic component that developed together with the superconducting transition in Fe-excess Fe1.12Te1-xSex crystals using neutron and x-ray diffractions, resistivity, magnetic susceptibility and magnetization measurements. The superconducting transition is accompanied by a negative thermal expansion of the crystalline unit cell and an electronic charge redistribution, where a small portion of the electronic charge flows from around the Fe sites toward the Te/Se sites. First-principles calculations show consistent results, revealing that the excess Fe ions play a more significant role in affecting the magnetic property in the superconducting state than in the normal state and the occurrence of an electronic charge redistribution through the superconducting transition.
Pressure-induced ferroelectric to paraelectric transition in LiTaO 3 and (Li,Mg)TaO 3
Yamanaka, Takamitsu; Nakamoto, Yuki; Takei, Fumihiko; ...
2016-02-16
X-ray powder diffraction and Raman scattering of LiTaO 3 (LT) and (Li,Mg)TaO 3 (LMT) have been measured under pressure up to 46 GPa. Above 30 GPa, the ferroelectric rhombohedral phase (R3c, Z – 6) of LiTaO 3 transforms to a paraelectric orthorhombic phase (Pnma with Z – 4) with a large hysteresis. Rietveld profile fitting analysis shows that the Li-O bond is compressed and approaches that of Ta-O with pressure. The cation distribution analysis of the orthorhombic perovskite structure shows that Li and Ta are located in the octahedral 8-fold coordination sites. Difference Fourier |F obs(hkl)| - |F cal(hkl)| mapsmore » of LiTaO 3 and (Li,Mg)TaO 3 indicate polarization in the c axis direction and a more distinct electron density distribution around the Ta position for (Li,Mg)TaO 3 compared to LiTaO 3. The observed effective charges indicate that for (Li,Mg)TaO 3 without vacancies Ta 5+ becomes less ionized as a function of Mg substitution. Considering both site occupancy and effective charge analysis, Ta 5+ is reduced to Ta 4.13+. Mg 2+ and O 2- change to Mg 1.643+ and O 1.732 -, respectively. The space- and time-averaged structures of the dynamical vibration of atoms can be elucidated from the electron density analysis by difference Fourier and temperature factors T(hkl) in the structure refinement. The refinement of the temperature factor is consistent with the cation distribution assuming full stoichiometry. The residual electron density induced from the excess electron in (Li,Mg)TaO 3 indicates more electrons around the Ta site, as confirmed by the effective charge analysis. Raman spectra of LiTaO 3 and (Li,Mg)TaO 3 show notable changes over the measured pressure range. Raman peaks centered at 250 cm –1 and 350 cm –1 at ambient pressure merge above 8 GPa, which we associate with the diminishing of difference in distances between Li-O and Ta-O bonds with pressure in both materials. Finally, Raman spectra show significant changes at 28 GPa and 33 GPa for LT and LMT, respectively, due to the structural transition from R3c to Pnma consistent with the x-ray diffraction results.« less
NASA Astrophysics Data System (ADS)
Kuzuhara, Akio
2013-09-01
In order to investigate in detail the internal structure changes in virgin black human hair keratin fibers resulting from bleaching treatments, the structure of cross-sections at various depths of black human hair, which had been impossible due to high melanin grande content, was directly analyzed using Raman spectroscopy. The gauche-gauche-gauche (GGG) content of the sbnd SSsbnd groups existing from the cuticle region to the center of cortex region of the virgin black human hair remarkably decreased, while the gauche-gauche-trans and trans-gauche-trans contents were not changed by performing the excessive bleaching treatment. In particular, it was found that not only the β-sheet and/or random coil content, but also the α-helix content existing throughout the cortex region of virgin black human hair decreased. In addition, the transmission electron microscope observation shows that the proteins in the cell membrane complex, the cuticle and cortex of the virgin black human hair were remarkably eluted by performing the excessive bleaching treatment. From these experiments, the author concluded that the sbnd SSsbnd groups, which have a GGG conformation were decomposed and finally converted to cysteic acid, and the α-helix structure of some of the proteins existing in the keratin was changed to the random coil structure, or eluted from the cortex region, thereby leading to the reduction in the protein density of the virgin human hair after the excessive bleaching treatment.
NASA Astrophysics Data System (ADS)
Dahire, S. L.; Morey, Y. C.; Agrawal, P. S.
2015-12-01
Density (ρ), viscosity (η), and ultrasonic velocity ( U) of binary mixtures of aliphatic solvents like dimethylformamide (DMF) and dimethylsulfoxide (DMSO) with aromatic solvents viz. chlorobenzene (CB), bromobenzene (BB), and nitrobenzene (NB) have been determined at 313 K. These parameters were used to calculate the adiabatic compressibility (β), intermolecular free length ( L f), molar volume ( V m), and acoustic impedance ( Z). From the experimental data excess molar volume ( V m E ), excess intermolecular free length ( L f E )), excess adiabatic compressibility (βE), and excess acoustic impedance ( Z E) have been computed. The excess values were correlated using Redlich-Kister polynomial equation to obtain their coefficients and standard deviations (σ).
Thermophysical properties of N, N-dimethylacetamide mixtures with n-butanol
NASA Astrophysics Data System (ADS)
Maharolkar, Aruna P.; Murugkar, A. G.; Khirade, P. W.; Mehrotra, S. C.
2017-09-01
The refraction, dielectric, viscosity, density, data of the binary mixtures of N, N-dimethylacetamide (DMA) with n-butanol at 308.15 and 313.15 K. The measured parameters used to obtain derived properties like Bruggeman factor, molar refraction and excess static dielectric constant, excess inverse relaxation time, excess molar volume and excess viscosity, excess molar refraction. The variation in magnitude with composition and temperature of these quantities has been used to discuss the type, strength and nature of binary interactions. Results confirm that there are strong hydrogen-bond interactions between unlike molecules of DMA+ n-butanol mixtures and that 1: 1 complexes are formed and strength of intermolecular interaction increases with temperature.
NASA Astrophysics Data System (ADS)
Ramanaiah, S.; Rao, C. Narasimha; Nagaraja, P.; Venkateswarlu, P.
2015-11-01
Exces volumes, VE, and excess isentropic compressibilities, κSE, have been reported as a function of composition for binary liquid mixtures of trichloroethylene with ethyl acetate, n-propyl acetate, and n-butyl acetate at 303.15 K. Isentropic compressibilities are calculated using measured sound speeds and density data for pure components and for binary mixtures. Excess volumes and excess isentropic compressibilities are found to be negative for the three systems studied over the entire composition range at 303.15 K, whereas these values become more negative with an increase of carbon chain length. The results are discussed in terms of intermolecular interactions between unlike molecules.
Ferreira, Lizé-Mari; Eaby, Alan; Dillen, Jan
2017-12-15
The topology of the Coulomb potential density has been studied within the context of the theory of Atoms in Molecules and has been compared with the topologies of the electron density, the virial energy density and the Ehrenfest force density. The Coulomb potential density is found to be mainly structurally homeomorphic with the electron density. The Coulomb potential density reproduces the non-nuclear attractor which is observed experimentally in the molecular graph of the electron density of a Mg dimer, thus, for the first time ever providing an alternative and energetic foundation for the existence of this critical point. © 2017 Wiley Periodicals, Inc. © 2017 Wiley Periodicals, Inc.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Rother, Gernot; Ilton, Eugene S.; Wallacher, Dirk
2013-01-02
Geologic storage of CO 2 requires that the caprock sealing the storage rock is highly impermeable to CO 2. Swelling clays, which are important components of caprocks, may interact with CO 2 leading to volume change and potentially impacting the seal quality. The interactions of supercritical (sc) CO 2 with Na saturated montmorillonite clay containing a subsingle layer of water in the interlayer region have been studied by sorption and neutron diffraction techniques. The excess sorption isotherms show maxima at bulk CO2 densities of ≈0.15 g/cm 3, followed by an approximately linear decrease of excess sorption to zero and negativemore » values with increasing CO 2 bulk density. Neutron diffraction experiments on the same clay sample measured interlayer spacing and composition. The results show that limited amounts of CO 2 are sorbed into the interlayer region, leading to depression of the interlayer peak intensity and an increase of the d(001) spacing by ca. 0.5 Å. The density of CO 2 in the clay pores is relatively stable over a wide range of CO 2 pressures at a given temperature, indicating the formation of a clay-CO 2 phase. Finally, at the excess sorption maximum, increasing CO 2 sorption with decreasing temperature is observed while the high-pressure sorption properties exhibit weak temperature dependence.« less
Jahandar, Muhammad; Khan, Nasir; Lee, Hang Ken; Lee, Sang Kyu; Shin, Won Suk; Lee, Jong-Cheol; Song, Chang Eun; Moon, Sang-Jin
2017-10-18
The reduction of charge carrier recombination and intrinsic defect density in organic-inorganic halide perovskite absorber materials is a prerequisite to achieving high-performance perovskite solar cells with good efficiency and stability. Here, we fabricated inverted planar perovskite solar cells by incorporation of a small amount of excess organic/inorganic halide (methylammonium iodide (CH 3 NH 3 I; MAI), formamidinium iodide (CH(NH 2 ) 2 I; FAI), and cesium iodide (CsI)) in CH 3 NH 3 PbI 3 perovskite film. Larger crystalline grains and enhanced crystallinity in CH 3 NH 3 PbI 3 perovskite films with excess organic/inorganic halide reduce the charge carrier recombination and defect density, leading to enhanced device efficiency (MAI+: 14.49 ± 0.30%, FAI+: 16.22 ± 0.38% and CsI+: 17.52 ± 0.56%) compared to the efficiency of a control MAPbI 3 device (MAI: 12.63 ± 0.64%) and device stability. Especially, the incorporation of a small amount of excess CsI in MAPbI 3 perovskite film leads to a highly reproducible fill factor of over 83%, increased open-circuit voltage (from 0.946 to 1.042 V), and short-circuit current density (from 18.43 to 20.89 mA/cm 2 ).
NASA Astrophysics Data System (ADS)
Han, Ki-Lim; Ok, Kyung-Chul; Cho, Hyeon-Su; Oh, Saeroonter; Park, Jin-Seong
2017-08-01
We investigate the influence of the multi-layered buffer consisting of SiO2/SiNx/SiO2 on amorphous InGaZnO (a-IGZO) thin-film transistors (TFTs). The multi-layered buffer inhibits permeation of water from flexible plastic substrates and prevents degradation of overlying organic layers. The a-IGZO TFTs with a multi-layered buffer suffer less positive bias temperature stress instability compared to the device with a single SiO2 buffer layer after annealing at 250 °C. Hydrogen from the SiNx layer diffuses into the active layer and reduces electron trapping at loosely bound oxygen defects near the SiO2/a-IGZO interface. Quantitative analysis shows that a hydrogen density of 1.85 × 1021 cm-3 is beneficial to reliability. However, the multi-layered buffer device annealed at 350 °C resulted in conductive characteristics due to the excess carrier concentration from the higher hydrogen density of 2.12 × 1021 cm-3.
Physical and Chemical Properties of Coal Bottom Ash (CBA) from Tanjung Bin Power Plant
NASA Astrophysics Data System (ADS)
Izzati Raihan Ramzi, Nurul; Shahidan, Shahiron; Zulkhairi Maarof, Mohamad; Ali, Noorwirdawati
2016-11-01
The objective of this study is to determine the physical and chemical characteristics of Coal Bottom Ash (CBA) obtained from Tanjung Bin Power Plant Station and compare them with the characteristics of natural river sand (as a replacement of fine aggregates). Bottom ash is the by-product of coal combustion during the electricity generating process. However, excess bottom ash production due to the high production of electricity in Malaysia has caused several environmental problems. Therefore, several tests have been conducted in order to determine the physical and chemical properties of bottom ash such as specific gravity, density, particle size distribution, Scanning Electron Microscopic (SEM) and X- Ray Fluorescence (XRF) in the attempt to produce sustainable material from waste. The results indicated that the natural fine aggregate and coal bottom ash have very different physical and chemical properties. Bottom ash was classified as Class C ash. The porous structure, angular and rough texture of bottom ash affected its specific gravity and particle density. From the tests, it was found that bottom ash is recommended to be used in concrete as a replacement for fine aggregates.
Method for removing atomic-model bias in macromolecular crystallography
Terwilliger, Thomas C [Santa Fe, NM
2006-08-01
Structure factor bias in an electron density map for an unknown crystallographic structure is minimized by using information in a first electron density map to elicit expected structure factor information. Observed structure factor amplitudes are combined with a starting set of crystallographic phases to form a first set of structure factors. A first electron density map is then derived and features of the first electron density map are identified to obtain expected distributions of electron density. Crystallographic phase probability distributions are established for possible crystallographic phases of reflection k, and the process is repeated as k is indexed through all of the plurality of reflections. An updated electron density map is derived from the crystallographic phase probability distributions for each one of the reflections. The entire process is then iterated to obtain a final set of crystallographic phases with minimum bias from known electron density maps.
Device and method for electron beam heating of a high density plasma
Thode, Lester E.
1981-01-01
A device and method for relativistic electron beam heating of a high density plasma in a small localized region. A relativistic electron beam generator produces a high voltage electron beam which propagates along a vacuum drift tube and is modulated to initiate electron bunching within the beam. The beam is then directed through a low density gas chamber which provides isolation between the vacuum modulator and the relativistic electron beam target. The relativistic beam is then applied to a high density target plasma which typically comprises DT, DD, hydrogen boron or similar thermonuclear gas at a density of 10.sup.17 to 10.sup.20 electrons per cubic centimeter. The target plasma is ionized prior to application of the electron beam by means of a laser or other preionization source. Utilizing a relativistic electron beam with an individual particle energy exceeding 3 MeV, classical scattering by relativistic electrons passing through isolation foils is negligible. As a result, relativistic streaming instabilities are initiated within the high density target plasma causing the relativistic electron beam to efficiently deposit its energy into a small localized region within the high density plasma target.
1985-01-01
We used electron microscopy, acid hydrolase cytochemistry, and biochemistry to analyze the uptake and metabolism of colloidal gold- and [3H]cholesteryl linoleate-labeled human low density lipoprotein (LDL) by cultured rat granulosa cells. The initial interaction of gold- LDL conjugates with granulosa cells occurred at binding sites diffusely distributed over the plasma membrane. After incubation with ligand in the cold, 99.9% of the conjugates were at the cell surface but less than 4% lay over coated pits. Uptake was specific since it was decreased 93-95% by excess unconjugated LDL and heparin, but only 34- 38% by excess unconjugated human high density lipoprotein. LDL uptake was related to granulosa cell differentiation; well-luteinized cells bound 2-3 times as much gold-LDL as did poorly luteinized cells. Ligand internalization was initiated by warming and involved coated pits, coated vesicles, pale multivesicular bodies (MVBs), dense MVBs, and lysosomes. A key event in this process was the translocation of gold- LDL conjugates from the cell periphery to the Golgi zone. This step was carried out by the pale MVB, a prelysosomal compartment that behaves like an endosome. Granulosa cells exposed to LDL labeled with gold and [3H]cholesteryl linoleate converted [3H]sterol to [3H]progestin in a time-dependent manner. This conversion was paralleled by increased gold- labeling of lysosomes and blocked by chloroquine, an inhibitor of lysosomal activity. In brief, granulosa cells deliver LDL to lysosomes by a receptor-mediated mechanism for the hydrolysis of cholesteryl esters. The resulting cholesterol is, in turn, transferred to other cellular compartments, where conversion to steroid occurs. These events comprise the pathway used by steroid-secreting cells to obtain the LDL- cholesterol vital for steroidogenesis. PMID:3920223
Handling Density Conversion in TPS.
Isobe, Tomonori; Mori, Yutaro; Takei, Hideyuki; Sato, Eisuke; Tadano, Kiichi; Kobayashi, Daisuke; Tomita, Tetsuya; Sakae, Takeji
2016-01-01
Conversion from CT value to density is essential to a radiation treatment planning system. Generally CT value is converted to the electron density in photon therapy. In the energy range of therapeutic photon, interactions between photons and materials are dominated with Compton scattering which the cross-section depends on the electron density. The dose distribution is obtained by calculating TERMA and kernel using electron density where TERMA is the energy transferred from primary photons and kernel is a volume considering spread electrons. Recently, a new method was introduced which uses the physical density. This method is expected to be faster and more accurate than that using the electron density. As for particle therapy, dose can be calculated with CT-to-stopping power conversion since the stopping power depends on the electron density. CT-to-stopping power conversion table is also called as CT-to-water-equivalent range and is an essential concept for the particle therapy.
Lefebvre, Jacques; Ding, Jianfu; Li, Zhao; Finnie, Paul; Lopinski, Gregory; Malenfant, Patrick R L
2017-10-17
Semiconducting single-walled carbon nanotubes (sc-SWCNTs) are emerging as a promising material for high-performance, high-density devices as well as low-cost, large-area macroelectronics produced via additive manufacturing methods such as roll-to-roll printing. Proof-of-concept demonstrations have indicated the potential of sc-SWCNTs for digital electronics, radiofrequency circuits, radiation hard memory, improved sensors, and flexible, stretchable, conformable electronics. Advances toward commercial applications bring numerous opportunities in SWCNT materials development and characterization as well as fabrication processes and printing technologies. Commercialization in electronics will require large quantities of sc-SWCNTs, and the challenge for materials science is the development of scalable synthesis, purification, and enrichment methods. While a few synthesis routes have shown promising results in making near-monochiral SWCNTs, gram quantities are available only for small-diameter sc-SWCNTs, which underperform in transistors. Most synthesis routes yield mixtures of SWCNTs, typically 30% metallic and 70% semiconducting, necessitating the extraction of sc-SWCNTs from their metallic counterparts in high purity using scalable postsynthetic methods. Numerous routes to obtain high-purity sc-SWCNTs from raw soot have been developed, including density-gradient ultracentrifugation, chromatography, aqueous two-phase extraction, and selective DNA or polymer wrapping. By these methods (termed sorting or enrichment), >99% sc-SWCNT content can be achieved. Currently, all of these approaches have drawbacks and limitations with respect to electronics applications, such as excessive dilution, expensive consumables, and high ionic impurity content. Excess amount of dispersant is a common challenge that hinders direct inclusion of sc-SWCNTs into electronic devices. At present, conjugated polymer extraction may represent the most practical route to sc-SWCNTs. By the use of polymers with a π-conjugated backbone, sc-SWCNTs with >99.9% purity can be dispersed in organic solvents via a simple sonication and centrifugation process. With 1000 times less excipient and the flexibility to accommodate a broad range of solvents via diverse polymer constructs, inks are readily deployable in solution-based fabrication processes such as aerosol spray, inkjet, and gravure. Further gains in sc-SWCNT purity, among other attributes, are possible with a better understanding of the structure-property relationships that govern conjugated polymer extraction. This Account covers three interlinked topics in SWCNT electronics: metrology, enrichment, and SWCNT transistors fabricated via solution processes. First, we describe how spectroscopic techniques such as optical absorption, fluorescence, and Raman spectroscopy are applied for sc-SWCNT purity assessment. Stringent requirements for sc-SWCNTs in electronics are pushing the techniques to new levels while serving as an important driver toward the development of quantitative metrology. Next, we highlight recent progress in understanding the sc-SWCNT enrichment process using conjugated polymers, with special consideration given to the effect of doping on the mechanism. Finally, developments in sc-SWCNT-based electronics are described, with emphasis on the performance of transistors utilizing random networks of sc-SWCNTs as the semiconducting channel material. Challenges and advances associated with using polymer-based dielectrics in the unique context of sc-SWCNT transistors are presented. Such transistor packages have enabled the realization of fully printed transistors as well as transparent and even stretchable transistors as a result of the unique and excellent electrical and mechanical properties of sc-SWCNTs.
NASA Astrophysics Data System (ADS)
Roy, Mahendra Nath; Das, Rajesh Kumar; Chanda, Riju
2010-03-01
Densities and viscosities were measured for the binary mixtures of cyclohexylamine and cyclohexanone with butyl acetate, butanone, butylamine, tert-butylamine, and 2-butoxyethanol at 298.15 K over the entire composition range. From density data, the values of the excess molar volume ( V E) have been calculated. The experimental viscosity data were correlated by means of the equation of Grunberg-Nissan. The density and viscosity data have been analyzed in terms of some semiempirical viscosity models. The results are discussed in terms of molecular interactions and structural effects. The excess molar volume is found to be either negative or positive depending on the molecular interactions and the nature of the liquid mixtures and is discussed in terms of molecular interactions and structural changes.
The defect chemistry of UO2 ± x from atomistic simulations
NASA Astrophysics Data System (ADS)
Cooper, M. W. D.; Murphy, S. T.; Andersson, D. A.
2018-06-01
Control of the defect chemistry in UO2 ± x is important for manipulating nuclear fuel properties and fuel performance. For example, the uranium vacancy concentration is critical for fission gas release and sintering, while all oxygen and uranium defects are known to strongly influence thermal conductivity. Here the point defect concentrations in thermal equilibrium are predicted using defect energies from density functional theory (DFT) and vibrational entropies calculated using empirical potentials. Electrons and holes have been treated in a similar fashion to other charged defects allowing for structural relaxation around the localized electronic defects. Predictions are made for the defect concentrations and non-stoichiometry of UO2 ± x as a function of oxygen partial pressure and temperature. If vibrational entropy is omitted, oxygen interstitials are predicted to be the dominant mechanism of excess oxygen accommodation over only a small temperature range (1265 K-1350 K), in contrast to experimental observation. Conversely, if vibrational entropy is included oxygen interstitials dominate from 1165 K to 1680 K (Busker potential) or from 1275 K to 1630 K (CRG potential). Below these temperature ranges, excess oxygen is predicted to be accommodated by uranium vacancies, while above them the system is hypo-stoichiometric with oxygen deficiency accommodated by oxygen vacancies. Our results are discussed in the context of oxygen clustering, formation of U4O9, and issues for fuel behavior. In particular, the variation of the uranium vacancy concentrations as a function of temperature and oxygen partial pressure will underpin future studies into fission gas diffusivity and broaden the understanding of UO2 ± x sintering.
Fishman, Yelena; Zlotkin, Eliahu; Sher, Daniel
2008-01-01
Background Algal-cnidarian symbiosis is one of the main factors contributing to the success of cnidarians, and is crucial for the maintenance of coral reefs. While loss of the symbionts (such as in coral bleaching) may cause the death of the cnidarian host, over-proliferation of the algae may also harm the host. Thus, there is a need for the host to regulate the population density of its symbionts. In the green hydra, Chlorohydra viridissima, the density of symbiotic algae may be controlled through host modulation of the algal cell cycle. Alternatively, Chlorohydra may actively expel their endosymbionts, although this phenomenon has only been observed under experimentally contrived stress conditions. Principal Findings We show, using light and electron microscopy, that Chlorohydra actively expel endosymbiotic algal cells during predatory feeding on Artemia. This expulsion occurs as part of the apocrine mode of secretion from the endodermal digestive cells, but may also occur via an independent exocytotic mechanism. Significance Our results demonstrate, for the first time, active expulsion of endosymbiotic algae from cnidarians under natural conditions. We suggest this phenomenon may represent a mechanism whereby cnidarians can expel excess symbiotic algae when an alternative form of nutrition is available in the form of prey. PMID:18596972
Finite-Larmor-radius effects on z-pinch stability
NASA Astrophysics Data System (ADS)
Scheffel, Jan; Faghihi, Mostafa
1989-06-01
The effect of finite Larmor radius (FLR) on the stability of m = 1 small-axial-wavelength kinks in a z-pinch with purely poloidal magnetic field is investigated. We use the incompressible FLR MHD model; a collisionless fluid model that consistently includes the relevant FLR terms due to ion gyroviscosity, Hall effect and electron diamagnetism. With FLR terms absent, the Kadomtsev criterion of ideal MHD, 2r dp/dr + m2B2/μ0 ≥ 0 predicts instability for internal modes unless the current density is singular at the centre of the pinch. The same result is obtained in the present model, with FLR terms absent. When the FLR terms are included, a normal-mode analysis of the linearized equations yields the following results. Marginally unstable (ideal) modes are stabilized by gyroviscosity. The Hall term has a damping (but not absolutely stabilizing) effect - in agreement with earlier work. On specifying a constant current and particle density equilibrium, the effect of electron diamagnetism vanishes. For a z-pinch with parameters relevant to the EXTRAP experiment, the m = 1 modes are then fully stabilized over the crosssection for wavelengths λ/a ≤ 1, where a denotes the pinch radius. As a general z-pinch result a critical line-density limit Nmax = 5 × 1018 m-1 is found, above which gyroviscous stabilization near the plasma boundary becomes insufficient. This limit corresponds to about five Larmor radii along the pinch radius. The result holds for wavelengths close to, or smaller than, the pinch radius and for realistic equilibrium profiles. This limit is far below the required limit for a reactor with contained alpha particles, which is in excess of 1020 m-1.
X-Ray Sum Frequency Diffraction for Direct Imaging of Ultrafast Electron Dynamics
NASA Astrophysics Data System (ADS)
Rouxel, Jérémy R.; Kowalewski, Markus; Bennett, Kochise; Mukamel, Shaul
2018-06-01
X-ray diffraction from molecules in the ground state produces an image of their charge density, and time-resolved x-ray diffraction can thus monitor the motion of the nuclei. However, the density change of excited valence electrons upon optical excitation can barely be monitored with regular diffraction techniques due to the overwhelming background contribution of the core electrons. We present a nonlinear x-ray technique made possible by novel free electron laser sources, which provides a spatial electron density image of valence electron excitations. The technique, sum frequency generation carried out with a visible pump and a broadband x-ray diffraction pulse, yields snapshots of the transition charge densities, which represent the electron density variations upon optical excitation. The technique is illustrated by ab initio simulations of transition charge density imaging for the optically induced electronic dynamics in a donor or acceptor substituted stilbene.
Anomalous evolution of Ar metastable density with electron density in high density Ar discharge
DOE Office of Scientific and Technical Information (OSTI.GOV)
Park, Min; Chang, Hong-Young; You, Shin-Jae
2011-10-15
Recently, an anomalous evolution of argon metastable density with plasma discharge power (electron density) was reported [A. M. Daltrini, S. A. Moshkalev, T. J. Morgan, R. B. Piejak, and W. G. Graham, Appl. Phys. Lett. 92, 061504 (2008)]. Although the importance of the metastable atom and its density has been reported in a lot of literature, however, a basic physics behind the anomalous evolution of metastable density has not been clearly understood yet. In this study, we investigated a simple global model to elucidate the underlying physics of the anomalous evolution of argon metastable density with the electron density. Onmore » the basis of the proposed simple model, we reproduced the anomalous evolution of the metastable density and disclosed the detailed physics for the anomalous result. Drastic changes of dominant mechanisms for the population and depopulation processes of Ar metastable atoms with electron density, which take place even in relatively low electron density regime, is the clue to understand the result.« less
MAVEN observations of dayside peak electron densities in the ionosphere of Mars
NASA Astrophysics Data System (ADS)
Vogt, Marissa F.; Withers, Paul; Fallows, Kathryn; Andersson, Laila; Girazian, Zachary; Mahaffy, Paul R.; Benna, Mehdi; Elrod, Meredith K.; Connerney, John E. P.; Espley, Jared R.; Eparvier, Frank G.; Jakosky, Bruce M.
2017-01-01
The peak electron density in the dayside Martian ionosphere is a valuable diagnostic of the state of the ionosphere. Its dependence on factors like the solar zenith angle, ionizing solar irradiance, neutral scale height, and electron temperature has been well studied. The Mars Atmosphere and Volatile EvolutioN spacecraft's September 2015 "deep dip" orbits, in which the orbital periapsis was lowered to 125 km, provided the first opportunity since Viking to sample in situ a complete dayside electron density profile including the main peak. Here we present peak electron density measurements from 37 deep dip orbits and describe conditions at the altitude of the main peak, including the electron temperature and composition of the ionosphere and neutral atmosphere. We find that the dependence of the peak electron density and the altitude of the main peak on solar zenith angle are well described by analytical photochemical theory. Additionally, we find that the electron temperatures at the main peak display a dependence on solar zenith angle that is consistent with the observed variability in the peak electron density. Several peak density measurements were made in regions of large crustal magnetic field, but there is no clear evidence that the crustal magnetic field strength influences the peak electron density, peak altitude, or electron temperature. Finally, we find that the fractional abundance of O2+ and CO2+ at the peak altitude is variable but that the two species together consistently represent 95% of the total ion density.
Lifetime of excess electrons in Cu–Zn–Sn–Se powders
DOE Office of Scientific and Technical Information (OSTI.GOV)
Novikov, G. F., E-mail: ngf@icp.ac.ru; Gapanovich, M. V.; Gremenok, V. F.
2017-01-15
The method of time-resolved microwave photoconductivity at a frequency of 36 GHz in the range of temperatures of 200–300 K is used to study the kinetics of the annihilation of charge carriers in Cu–Zn–Sn–Se powders obtained by the solid-phase method of synthesis in cells. The lifetime of excess electrons at room temperature is found to be shorter than 5 ns. The activation energy for the process of recombination amounted to E{sub a} ~ 0.054 eV.
Correlation between Na/K ratio and electron densities in blood samples of breast cancer patients.
Topdağı, Ömer; Toker, Ozan; Bakırdere, Sezgin; Bursalıoğlu, Ertuğrul Osman; Öz, Ersoy; Eyecioğlu, Önder; Demir, Mustafa; İçelli, Orhan
2018-05-31
The main purpose of this study was to investigate the relationship between the electron densities and Na/K ratio which has important role in breast cancer disease. Determinations of sodium and potassium concentrations in blood samples performed with inductive coupled plasma-atomic emission spectrometry. Electron density values of blood samples were determined via ZXCOM. Statistical analyses were performed for electron densities and Na/K ratio including Kolmogorov-Smirnov normality tests, Spearman's rank correlation test and Mann-Whitney U test. It was found that the electron densities significantly differ between control and breast cancer groups. In addition, statistically significant positive correlation was found between the electron density and Na/K ratios in breast cancer group.
Device and method for electron beam heating of a high density plasma
Thode, L.E.
A device and method for relativistic electron beam heating of a high density plasma in a small localized region are described. A relativistic electron beam generator produces a high voltage electron beam which propagates along a vacuum drift tube and is modulated to initiate electron bunching within the beam. The beam is then directed through a low density gas chamber which provides isolation between the vacuum modulator and the relativistic electron beam target. The relativistic beam is then applied to a high density target plasma which typically comprises DT, DD, hydrogen boron or similar thermonuclear gas at a density of 10/sup 17/ to 10/sup 20/.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zhang, Yiman; Pelliccione, Christopher J.; Brady, Alexander B.
Here, we report an extensive study on fundamental properties that determine the functional electrochemistry of ZnFe 2O 4 spinel (theoretical capacity of 1000 mAh/g). For the first time, the reduction mechanism is followed through a combination of in situ X-ray diffraction data, synchrotron based powder diffraction, and ex-situ extended X-ray absorption fine structure allowing complete visualization of reduction products irrespective of their crystallinity. The first 0.5 electron equivalents (ee) do not significantly change the starting crystal structure. Subsequent lithiation results in migration of Zn 2+ ions from 8a tetrahedral sites into vacant 16c sites. Density functional theory shows that Limore » + ions insert into 16c site initially and then 8a site with further lithiation. Fe metal is formed over the next eight ee of reduction with no evidence of concurrent Zn 2+ reduction to Zn metal. Despite the expected formation of LiZn alloy from the electron count, we find no evidence for this phase under the tested conditions. Additionally, upon oxidation to 3 V, we observe an FeO phase with no evidence of Fe 2O 3. Electrochemistry data show higher electron equivalent transfer than can be accounted for solely based on ZnFe 2O 4 reduction indicating excess capacity ascribed to carbon reduction or surface electrolyte interphase formation.« less
Zhang, Yiman; Pelliccione, Christopher J.; Brady, Alexander B.; ...
2017-04-24
Here, we report an extensive study on fundamental properties that determine the functional electrochemistry of ZnFe 2O 4 spinel (theoretical capacity of 1000 mAh/g). For the first time, the reduction mechanism is followed through a combination of in situ X-ray diffraction data, synchrotron based powder diffraction, and ex-situ extended X-ray absorption fine structure allowing complete visualization of reduction products irrespective of their crystallinity. The first 0.5 electron equivalents (ee) do not significantly change the starting crystal structure. Subsequent lithiation results in migration of Zn 2+ ions from 8a tetrahedral sites into vacant 16c sites. Density functional theory shows that Limore » + ions insert into 16c site initially and then 8a site with further lithiation. Fe metal is formed over the next eight ee of reduction with no evidence of concurrent Zn 2+ reduction to Zn metal. Despite the expected formation of LiZn alloy from the electron count, we find no evidence for this phase under the tested conditions. Additionally, upon oxidation to 3 V, we observe an FeO phase with no evidence of Fe 2O 3. Electrochemistry data show higher electron equivalent transfer than can be accounted for solely based on ZnFe 2O 4 reduction indicating excess capacity ascribed to carbon reduction or surface electrolyte interphase formation.« less
Andrews, Lester; Cho, Han-Gook; Fang, Zongtang; Vasiliu, Monica; Dixon, David A
2018-05-07
Laser ablation of tungsten metal provides W atoms which react with phosphine and arsine during condensation in excess argon and neon, leading to major new infrared (IR) absorptions. Annealing, UV irradiation, and deuterium substitution experiments coupled with electronic structure calculations at the density functional theory level led to the assignment of the observed IR absorptions to the E≡WH 3 and HE═WH 2 molecules for E = P and As. The potential energy surfaces for hydrogen transfer from PH 3 to the W were calculated at the coupled-cluster CCSD(T)/complete basis set level. Additional weak bands in the phosphide and arsenide W-H stretching region are assigned to the molecules with loss of H from W, E≡WH 2 . The electronic structure calculations show that the E≡WH 3 molecules have a W-E triple bond, the HE═WH 2 molecules have a W-E double bond, and the H 2 E-WH molecules have a W-E single bond. The formation of multiple E-W bonds leads to increasing stability for the isomers.
Liu, Gang; Ling, Qi-Dan; Teo, Eric Yeow Hwee; Zhu, Chun-Xiang; Chan, D Siu-Hung; Neoh, Koon-Gee; Kang, En-Tang
2009-07-28
By varying the carbon nanotube (CNT) content in poly(N-vinylcarbazole) (PVK) composite thin films, the electrical conductance behavior of an indium-tin oxide/PVK-CNT/aluminum (ITO/PVK-CNT/Al) sandwich structure can be tuned in a controlled manner. Distinctly different electrical conductance behaviors, such as (i) insulator behavior, (ii) bistable electrical conductance switching effects (write-once read-many-times (WORM) memory effect and rewritable memory effect), and (iii) conductor behavior, are discernible from the current density-voltage characteristics of the composite films. The turn-on voltage of the two bistable conductance switching devices decreases and the ON/OFF state current ratio of the WORM device increases with the increase in CNT content of the composite film. Both the WORM and rewritable devices are stable under a constant voltage stress or a continuous pulse voltage stress, with an ON/OFF state current ratio in excess of 10(3). The conductance switching effects of the composite films have been attributed to electron trapping in the CNTs of the electron-donating/hole-transporting PVK matrix.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Rao, P. N., E-mail: pnrao@rrcat.gov.in; Rai, S. K.; Srivastava, A. K.
2016-06-28
Microstructure and composition analysis of periodic multilayer structure consisting of a low electron density contrast (EDC) material combination by grazing incidence hard X-ray reflectivity (GIXR), resonant soft X-ray reflectivity (RSXR), and transmission electron microscopy (TEM) are presented. Measurements of reflectivity at different energies allow combining the sensitivity of GIXR data to microstructural parameters like layer thicknesses and interfacing roughness, with the layer composition sensitivity of RSXR. These aspects are shown with an example of 10-period C/B{sub 4}C multilayer. TEM observation reveals that interfaces C on B{sub 4}C and B{sub 4}C on C are symmetric. Although GIXR provides limited structural informationmore » when EDC between layers is low, measurements using a scattering technique like GIXR with a microscopic technique like TEM improve the microstructural information of low EDC combination. The optical constants of buried layers have been derived by RSXR. The derived optical constants from the measured RSXR data suggested the presence of excess carbon into the boron carbide layer.« less
NASA Technical Reports Server (NTRS)
Dunning, J. W., Jr.; Lancashire, R. B.; Manista, E. J.
1976-01-01
Measurements have been conducted of the effect of the convection of ions and electrons on the discharge characteristics in a large scale laser. The results are presented for one particular distribution of ballast resistance. Values of electric field, current density, input power density, ratio of electric field to neutral gas density (E/N), and electron number density were calculated on the basis of measurements of the discharge properties. In a number of graphs, the E/N ratio, current density, power density, and electron density are plotted as a function of row number (downstream position) with total discharge current and gas velocity as parameters. From the dependence of the current distribution on the total current, it appears that the electron production in the first two rows significantly affects the current flowing in the succeeding rows.
Modeling of a sensitive time-of-flight flash LiDAR system
NASA Astrophysics Data System (ADS)
Fathipour, V.; Wheaton, S.; Johnson, W. E.; Mohseni, H.
2016-09-01
used for monitoring and profiling structures, range, velocity, vibration, and air turbulence. Remote sensing in the IR region has several advantages over the visible region, including higher transmitter energy while maintaining eye-safety requirements. Electron-injection detectors are a new class of detectors with high internal avalanche-free amplification together with an excess-noise-factor of unity. They have a cutoff wavelength of 1700 nm. Furthermore, they have an extremely low jitter. The detector operates in linear-mode and requires only bias voltage of a few volts. This together with the feedback stabilized gain mechanism, makes formation of large-format high pixel density electron-injection FPAs less challenging compared to other detector technologies such as avalanche photodetectors. These characteristics make electron-injection detectors an ideal choice for flash LiDAR application with mm scale resolution at longer ranges. Based on our experimentally measured device characteristics, a detailed theoretical LiDAR model was developed. In this model we compare the performance of the electron-injection detector with commercially available linear-mode InGaAs APD from (Hamamatsu G8931-20) as well as a p-i-n diode (Hamamatsu 11193 p-i-n). Flash LiDAR images obtained by our model, show the electron-injection detector array (of 100 x 100 element) achieves better resolution with higher signal-to-noise compared with both the InGaAs APD and the p-i-n array (of 100 x 100 element).
Dielectric and physiochemical study of binary mixture of nitrobenzene with toluene
NASA Astrophysics Data System (ADS)
Mohod, Ajay G.; Deshmukh, S. D.; Pattebahadur, K. L.; Undre, P. B.; Patil, S. S.; Khirade, P. W.
2018-05-01
This paper presents the study of binary mixture of Nitrobenzene (NB) with Toluene (TOL) for eleven different concentrations at room temperature. The determined Dielectric Constant (ɛ0) Density (ρ) and Refractive index (nD) values of binary mixture are used to calculate the excess properties i.e. Excess Dielectric Constant (ɛ0E), Excess Molar Volume (VmE), Excess Refractive Index (nDE) and Excess Molar Refraction (RmE) of mixture over the entire composition range and fitted to the Redlich-Kister equation. The Kirkwood Correlation Factor (geff) and other parameters were used to discuss the information about the orientation of dipoles and the solute-solvent interaction of binary mixture at molecular level over the entire range of concentration.
Thode, Lester E.
1981-01-01
A device and method for relativistic electron beam heating of a high-density plasma in a small localized region. A relativistic electron beam generator or accelerator produces a high-voltage electron beam which propagates along a vacuum drift tube and is modulated to initiate electron bunching within the beam. The beam is then directed through a low-density gas chamber which provides isolation between the vacuum modulator and the relativistic electron beam target. The relativistic beam is then applied to a high-density target plasma which typically comprises DT, DD, or similar thermonuclear gas at a density of 10.sup.17 to 10.sup.20 electrons per cubic centimeter. The target gas is ionized prior to application of the relativistic electron beam by means of a laser or other preionization source to form a plasma. Utilizing a relativistic electron beam with an individual particle energy exceeding 3 MeV, classical scattering by relativistic electrons passing through isolation foils is negligible. As a result, relativistic streaming instabilities are initiated within the high-density target plasma causing the relativistic electron beam to efficiently deposit its energy into a small localized region of the high-density plasma target.
NASA Technical Reports Server (NTRS)
Berman, A. L.; Wackley, J. A.; Hietzke, W. H.
1982-01-01
The relationship between solar wind induced signal phase fluctuation and solar wind columnar electron density has been the subject of intensive analysis during the last two decades. In this article, a sizeable volume of 2.3-GHz signal phase fluctuation and columnar electron density measurements separately and concurrently inferred from Viking spacecraft signals are compared as a function of solar geometry. These data demonstrate that signal phase fluctuation and columnar electron density are proportional over a very wide span of solar elongation angle. A radially dependent electron density model which provides a good fit to the columnar electron density measurements and, when appropriately scaled, to the signal phase fluctuation measurements, is given. This model is also in good agreement with K-coronameter observations at 2 solar radii (2r0), with pulsar time delay measurements at 10r0, and with spacecraft in situ electron density measurements at 1 AU.
Electron (charge) density studies of cellulose models
USDA-ARS?s Scientific Manuscript database
Introductory material first describes electron density approaches and demonstrates visualization of electron lone pairs and bonding as concentrations of electron density. Then it focuses on the application of Bader’s Quantum Theory of Atoms-in-Molecules (AIM) to cellulose models. The purpose of the ...
NASA Astrophysics Data System (ADS)
Vogt, Marissa F.; Withers, Paul; Fallows, Kathryn; Flynn, Casey L.; Andrews, David J.; Duru, Firdevs; Morgan, David D.
2016-10-01
Radio occultation electron densities measurements from the Mariner 9 and Viking spacecraft, which orbited Mars in the 1970s, have recently become available in a digital format. These data are highly complementary to the radio occultation electron density profiles from Mars Global Surveyor, which were restricted in solar zenith angle and altitude. We have compiled data from the Mariner 9, Viking, and Mars Global Surveyor radio occultation experiments for comparison to electron density measurements made by Mars Advanced Radar for Subsurface and Ionosphere Sounding (MARSIS), the topside radar sounder on Mars Express, and MARSIS-based empirical density models. We find that the electron densities measured by radio occultation are in generally good agreement with the MARSIS data and model, especially near the altitude of the peak electron density but that the MARSIS data and model display a larger plasma scale height than the radio occultation profiles at altitudes between the peak density and 200 km. Consequently, the MARSIS-measured and model electron densities are consistently larger than radio occultation densities at altitudes 200-300 km. Finally, we have analyzed transitions in the topside ionosphere, at the boundary between the photochemically controlled and transport-controlled regions, and identified the average transition altitude, or altitude at which a change in scale height occurs. The average transition altitude is 200 km in the Mariner 9 and Viking radio occultation profiles and in profiles of the median MARSIS radar sounding electron densities.
NASA Astrophysics Data System (ADS)
Ruffert, M.; Janka, H.-T.; Schaefer, G.
1996-07-01
We investigate the dynamics and evolution of coalescing neutron stars. The three-dimensional Newtonian equations of hydrodynamics are integrated by the "Piecewise Parabolic Method" on an equidistant Cartesian grid with a resolution of 64^3^ or 128^3^. Although the code is purely Newtonian, we do include the emission of gravitational waves and their backreaction on the hydrodynamic flow. The properties of neutron star matter are described by the physical equation of state of Lattimer & Swesty (1991). In addition to the fundamental hydrodynamic quantities, density, momentum, and energy, we follow the time evolution of the electron density in the stellar gas. Energy loss by all types of neutrinos and changes of the electron fraction due to the emission of electron neutrinos and antineutrinos are taken into account by an elaborate "neutrino leakage scheme". We simulate the coalescence of two identical, cool neutron stars with a baryonic mass of =~1.6Msun_ and a radius of =~15km and with an initial center-to-center distance of 42km. The initial distributions of density and electron concentration are given from a model of a cold neutron star in hydrostatic equilibrium, the temperature in our initial models is increased such that the thermal energy is about 3% of the degeneracy energy for given density and electron fraction (central temperature about 8MeV). We investigate three cases which differ by the initial velocity distribution in the neutron stars, representing different cases of the neutron star spins relative to the direction of the orbital angular momentum vector. The orbit decays due to gravitational-wave emission, and after half a revolution the stars are so close that dynamical instability sets in. Within about 1ms they merge into a rapidly spinning (P_spin_=~1ms), high-density body (ρ=~10^14^g/cm^3^) with a surrounding thick disk of material with densities ρ=~10^10^-10^12^g/cm^3^ and orbital velocities of 0.3-0.5c. In this work we evaluate the models in detail with respect to the gravitational wave emission using the quadrupole approximation. In a forthcoming paper we will concentrate on the neutrino emission and implications for gamma-ray bursters. The peak emission of gravitational waves is short but powerful. A maximum luminosity in excess of 10^55^erg/s is reached for about 1ms. The amplitudes of the gravitational waves are close to 3x10^-23^ at a distance of 1Gpc, and the typical frequencies are between 1KHz and 2KHz, near the dynamical frequency of the orbital motion of the merging and coalescing neutron stars. In contrast to the diverging gravitational wave amplitude of two coalescing point-masses, our models show decreasing amplitudes of the waves because of the finite extension of the neutron stars and the nearly spherical shape of the merged object toward the end of the simulations. The structure and temporal development of the gravitational wave signal and energy spectrum show systematic trends with the amount of angular momentum in the system and depend on the details of the hydrodynamic mass motions.
Holland, J Nathaniel; DeAngelis, Donald L; Schultz, Stewart T
2004-09-07
Interspecific mutualisms are often vulnerable to instability because low benefit : cost ratios can rapidly lead to extinction or to the conversion of mutualism to parasite-host or predator-prey interactions. We hypothesize that the evolutionary stability of mutualism can depend on how benefits and costs to one mutualist vary with the population density of its partner, and that stability can be maintained if a mutualist can influence demographic rates and regulate the population density of its partner. We test this hypothesis in a model of mutualism with key features of senita cactus (Pachycereus schottii)-senita moth (Upiga virescens) interactions, in which benefits of pollination and costs of larval seed consumption to plant fitness depend on pollinator density. We show that plants can maximize their fitness by allocating resources to the production of excess flowers at the expense of fruit. Fruit abortion resulting from excess flower production reduces pre-adult survival of the pollinating seed-consumer, and maintains its density beneath a threshold that would destabilize the mutualism. Such a strategy of excess flower production and fruit abortion is convergent and evolutionarily stable against invasion by cheater plants that produce few flowers and abort few to no fruit. This novel mechanism of achieving evolutionarily stable mutualism, namely interspecific population regulation, is qualitatively different from other mechanisms invoking partner choice or selective rewards, and may be a general process that helps to preserve mutualistic interactions in nature.
Tunneling modulation of a quantum-well transistor laser
NASA Astrophysics Data System (ADS)
Feng, M.; Qiu, J.; Wang, C. Y.; Holonyak, N.
2016-11-01
Different than the Bardeen and Brattain transistor (1947) with the current gain depending on the ratio of the base carrier spontaneous recombination lifetime to the emitter-collector transit time, the Feng and Holonyak transistor laser current gain depends upon the base electron-hole (e-h) stimulated recombination, the base dielectric relaxation transport, and the collector stimulated tunneling. For the n-p-n transistor laser tunneling operation, the electron-hole pairs are generated at the collector junction under the influence of intra-cavity photon-assisted tunneling, with electrons drifting to the collector and holes drifting to the base. The excess charge in the base lowers the emitter junction energy barrier, allowing emitter electron injection into the base and satisfying charge neutrality via base dielectric relaxation transport (˜femtoseconds). The excess electrons near the collector junction undergo stimulated recombination at the base quantum-well or transport to the collector, thus supporting tunneling current amplification and optical modulation of the transistor laser.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Rufai, O. R., E-mail: rrufai@csir.co.za; Bharuthram, R., E-mail: rbharuthram@uwc.ac.za; Singh, S. V., E-mail: satyavir@iigs.iigm.res.in
2015-10-15
The effect of excess superthermal electrons is investigated on finite amplitude nonlinear ion-acoustic waves in a magnetized auroral plasma. The plasma model consists of a cold ion fluid, Boltzmann distribution of cool electrons, and kappa distributed hot electron species. The model predicts the evolution of negative potential solitons and supersolitons at subsonic Mach numbers region, whereas, in the case of Cairn's nonthermal distribution model for the hot electron species studied earlier, they can exist both in the subsonic and supersonic Mach number regimes. For the dayside auroral parameters, the model generates the super-acoustic electric field amplitude, speed, width, and pulsemore » duration of about 18 mV/m, 25.4 km/s, 663 m, and 26 ms, respectively, which is in the range of the Viking spacecraft measurements.« less
NASA Technical Reports Server (NTRS)
Bowin, C.
1982-01-01
A negative free-air gravity anomaly which occurs in the central part of the Philippine Sea was examined to determine the distribution and nature of possible regional mass excesses or deficiencies. Geoid anomalies from GEOS-3 observation were positive. A negative residual geoid anomaly consistent with the area of negative free-air gravity anomalies were found. Theoretical gravity-topography and geoid-topography admittance functions indicated that high density mantle at about 60 km dept could account for the magnitudes of the gravity and residual geoid anomaly and the 1 km residual water depth anomaly in the Philippine Sea. The negative residual depth anomaly may be compensated for by excess density in the uppermost mantle, but the residual geoid and regional free-air gravity anomalies and a slow surface wave velocity structure might result from low-density warm upper mantle material lying beneath the zone of high-density uppermost mantle. From a horizontal disk approximation, the depth of the low-density warm mantle was estimated to be on the order of 200 km.
The electrons and ion characteristics of Saturn's plasma disk inside the Enceladus orbit
NASA Astrophysics Data System (ADS)
Morooka, Michiko; Wahlund, Jan-Erik; Ye, Sheng-Yi; Kurth, William; Persoon, Ann; Holmberg, Mika
2017-04-01
Cassini observations revealed that Saturn's icy moon Enceladus and surrounding E ring are the significant plasma source of the magnetosphere. However, the observations sometimes show the electron density enhancement even inside the Enceladus orbiting distance, 4RS. Further plasma contribution from the inner rings, the G and the F rings and main A ring are the natural candidate as an additional plasma source. The Cassini/RPWS Langmuir Probe (LP) measurement provides the characteristics of the electrons and ions independently in a cold dense plasma. The observations near the center of the E ring showed that the ion density being larger than the electron density, indicating that there is additional particle as a negative charge carrier. Those are the small nm and μm sized dust grains that are negatively charged by the electron attachments. The faint F and G rings, located at R=2RS and 3RS, consist of small grains and similar electron/ion density discrepancies can be expected. We will show different types of the LP observations when Cassini traveled the equator region of the plasma disk down to 3RS. One with the electron density increasing inside 4RS, and another with the electron density decreasing inside 4RS. During the orbit 016 (2005 doy-284/285), the electron density continued to increase toward the planet. On the other hand, the ion currents, the LP measured currents from the negative bias voltage, turn to decreasing inside 4RS, implying the density decrease of the ions. By comparing the observed LP ion current characteristics and the modeled values using the obtained electron density, we found that the characteristic ion mass can be several times larger than the water ions (AMU=18) that we expected in this region. During the orbit 015 (2005 doy-266/267), on the other hand, the LP observed sharp electron density drop near 3RS. The dust signals from the RPWS antenna showed the density enhancement of the μm sized grains coincide the electron density drop and we have estimated that the characteristic ion mass can exceed AMU=100. Throughout the whole Cassini observation near the equator inside 4RS, we didn't find the case with the ion densities larger than the electron densities as were found near the E ring and the Enceladus plume. We suggest that Saturn's plasmadisk inside the Enceladus orbit is dynamic in ion characteristics where the water molecules coagulate and grow into a small icy dust grains. In the presentation we discuss the relationship between the electron/ion density and the density of the nm and μm sized grains.
Liquid phase sintering of silicon carbide
Cutler, R.A.; Virkar, A.V.; Hurford, A.C.
1989-05-09
Liquid phase sintering is used to densify silicon carbide based ceramics using a compound comprising a rare earth oxide and aluminum oxide to form liquids at temperatures in excess of 1,600 C. The resulting sintered ceramic body has a density greater than 95% of its theoretical density and hardness in excess of 23 GPa. Boron and carbon are not needed to promote densification and silicon carbide powder with an average particle size of greater than one micron can be densified via the liquid phase process. The sintered ceramic bodies made by the present invention are fine grained and have secondary phases resulting from the liquid phase. 4 figs.
Liquid phase sintering of silicon carbide
Cutler, Raymond A.; Virkar, Anil V.; Hurford, Andrew C.
1989-01-01
Liquid phase sintering is used to densify silicon carbide based ceramics using a compound comprising a rare earth oxide and aluminum oxide to form liquids at temperatures in excess of 1600.degree. C. The resulting sintered ceramic body has a density greater than 95% of its theoretical density and hardness in excess of 23 GPa. Boron and carbon are not needed to promote densification and silicon carbide powder with an average particle size of greater than one micron can be densified via the liquid phase process. The sintered ceramic bodies made by the present invention are fine grained and have secondary phases resulting from the liquid phase.
Dependence of the quasiparticle recombination rate on the superconducting gap and TC
NASA Astrophysics Data System (ADS)
Carr, G. L.; Xi, Xiaoxiang; Hwang, J.; Tashiro, H.; Reitze, D. H.; Tanner, D. B.
2010-03-01
The relaxation of excess quasiparticles in a BCS superconductor is known to depend on quantities such as the quasiparticle & phonon density of states, and their coupling (Kaplan et al, Phys. Rev. B 14 4854, 1976). Disorder or an applied field can disrupt superconductivity, as evidenced by a reduced TC. We consider some simple modifications to the quasiparticle density of states consistent with a suppressed energy gap and TC, leading to changes in the intrinsic and effective (measured) rates for excess quasiparticles to recombine into pairs. We review some results for disordered MoGe and discuss the magnetic-field dependence of the recombination process.
Temperature of maximum density and excess thermodynamics of aqueous mixtures of methanol
DOE Office of Scientific and Technical Information (OSTI.GOV)
González-Salgado, D.; Zemánková, K.; Noya, E. G.
In this work, we present a study of representative excess thermodynamic properties of aqueous mixtures of methanol over the complete concentration range, based on extensive computer simulation calculations. In addition to test various existing united atom model potentials, we have developed a new force-field which accurately reproduces the excess thermodynamics of this system. Moreover, we have paid particular attention to the behavior of the temperature of maximum density (TMD) in dilute methanol mixtures. The presence of a temperature of maximum density is one of the essential anomalies exhibited by water. This anomalous behavior is modified in a non-monotonous fashion bymore » the presence of fully miscible solutes that partly disrupt the hydrogen bond network of water, such as methanol (and other short chain alcohols). In order to obtain a better insight into the phenomenology of the changes in the TMD of water induced by small amounts of methanol, we have performed a new series of experimental measurements and computer simulations using various force fields. We observe that none of the force-fields tested capture the non-monotonous concentration dependence of the TMD for highly diluted methanol solutions.« less
Fujiwara, Y; Hirano, Y; Kiyama, S; Nakamiya, A; Koguchi, H; Sakakita, H
2014-02-01
The self-focusing phenomenon has been observed in a high current density and low energy ion beam. In order to study the mechanism of this phenomenon, a special designed double probe to measure the electron density and temperature is installed into the chamber where the high current density ion beam is injected. Electron density profile is successfully measured without the influence of the ion beam components. Estimated electron temperature and density are ∼0.9 eV and ∼8 × 10(8) cm(-3) at the center of ion beam cross section, respectively. It was found that a large amount of electrons are spontaneously accumulated in the ion beam line in the case of self-forcing state.
Multi-thermal observations of newly formed loops in a dynamic flare
NASA Technical Reports Server (NTRS)
Svestka, Zdenek F.; Fontenla, Juan M.; Machado, Marcos E.; Martin, Sara F.; Neidig, Donald F.
1987-01-01
The dynamic flare of November 6, 1980 (max at about 15:26 UT) developed a rich system of growing loops which could be followed in H-alpha for 1.5 hr. Throughout the flare, these loops, near the limb, were seen in emission against the disk. Theoretical computations of deviations from LTE populations for a hydrogen atom reveal that this requires electron densities in the loops close to, or in excess of 10 to the 12th/cu cm. From measured widths of higher Balmer lines the density at the tops of the loops was found to be 4 x 10 to the 12th/cu cm if no nonthermal motions were present, or 5 x 10 to the 11th/cu cm for a turbulent velocity of about 12 km/s. It is now general knowledge that flare loops are initially observed in X-rays and become visible in H-alpha only after cooling. For such a high density, a loop would cool through radiation from 10 to the 7th to 10 to the 4th K within a few minutes so that the dense H-alpha loops should have heights very close to the heights of the X-ray loops. This, however, contradicts the observations obtained by the HXIS and FCS instruments on board SMM which show the X-ray loops at much higher altitudes than the loops in H-alpha. Therefore, it is suggested that the density must have been significantly lower when the loops were formed, and that the flare loops were apparently both shrinking and increasing in density while cooling.
Thode, Lester E.
1981-01-01
A device and method for relativistic electron beam heating of a high-density plasma in a small localized region. A relativistic electron beam generator or accelerator produces a high-voltage electron beam which propagates along a vacuum drift tube and is modulated to initiate electron bunching within the beam. The beam is then directed through a low-density gas chamber which provides isolation between the vacuum modulator and the relativistic electron beam target. The relativistic beam is then applied to a high-density target plasma which typically comprises DT, DD, hydrogen boron or similar thermonuclear gas at a density of 10.sup.17 to 10.sup.20 electrons per cubic centimeter. The target gas is ionized prior to application of the electron beam by means of a laser or other preionization source to form a plasma. Utilizing a relativistic electron beam with an individual particle energy exceeding 3 MeV, classical scattering by relativistic electrons passing through isolation foils is negligible. As a result, relativistic streaming instabilities are initiated within the high-density target plasma causing the relativistic electron beam to efficiently deposit its energy and momentum into a small localized region of the high-density plasma target. Fast liners disposed in the high-density target plasma are explosively or ablatively driven to implosion by a heated annular plasma surrounding the fast liner which is generated by an annular relativistic electron beam. An azimuthal magnetic field produced by axial current flow in the annular plasma, causes the energy in the heated annular plasma to converge on the fast liner.
NASA Astrophysics Data System (ADS)
Yakovlenko, Sergei I.
2000-06-01
One of the mechanisms of the inversion breaking in copper vapour lasers caused by a high prepulse electron density is considered. Inversion breaking occurs at a critical electron density Ne cr. If the prepulse electron density exceeds Ne cr, the electron temperature Te cr cannot reach, during a plasma heating pulse, the temperature of ~2eV required for lasing. A simple estimate of Ne cr is made.
Galaxy evolution and large-scale structure in the far-infrared. I - IRAS pointed observations
NASA Astrophysics Data System (ADS)
Lonsdale, Carol J.; Hacking, Perry B.
1989-04-01
Redshifts for 66 galaxies were obtained from a sample of 93 60-micron sources detected serendipitously in 22 IRAS deep pointed observations, covering a total area of 18.4 sq deg. The flux density limit of this survey is 150 mJy, 4 times fainter than the IRAS Point Source Catalog (PSC). The luminosity function is similar in shape with those previously published for samples selected from the PSC, with a median redshift of 0.048 for the fainter sample, but shifted to higher space densities. There is evidence that some of the excess number counts in the deeper sample can be explained in terms of a large-scale density enhancement beyond the Pavo-Indus supercluster. In addition, the faintest counts in the new sample confirm the result of Hacking et al. (1989) that faint IRAS 60-micron source counts lie significantly in excess of an extrapolation of the PSC counts assuming no luminosity or density evolution.
Galaxy evolution and large-scale structure in the far-infrared. I. IRAS pointed observations
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lonsdale, C.J.; Hacking, P.B.
1989-04-01
Redshifts for 66 galaxies were obtained from a sample of 93 60-micron sources detected serendipitously in 22 IRAS deep pointed observations, covering a total area of 18.4 sq deg. The flux density limit of this survey is 150 mJy, 4 times fainter than the IRAS Point Source Catalog (PSC). The luminosity function is similar in shape with those previously published for samples selected from the PSC, with a median redshift of 0.048 for the fainter sample, but shifted to higher space densities. There is evidence that some of the excess number counts in the deeper sample can be explained inmore » terms of a large-scale density enhancement beyond the Pavo-Indus supercluster. In addition, the faintest counts in the new sample confirm the result of Hacking et al. (1989) that faint IRAS 60-micron source counts lie significantly in excess of an extrapolation of the PSC counts assuming no luminosity or density evolution. 81 refs.« less
Galaxy evolution and large-scale structure in the far-infrared. I - IRAS pointed observations
NASA Technical Reports Server (NTRS)
Lonsdale, Carol J.; Hacking, Perry B.
1989-01-01
Redshifts for 66 galaxies were obtained from a sample of 93 60-micron sources detected serendipitously in 22 IRAS deep pointed observations, covering a total area of 18.4 sq deg. The flux density limit of this survey is 150 mJy, 4 times fainter than the IRAS Point Source Catalog (PSC). The luminosity function is similar in shape with those previously published for samples selected from the PSC, with a median redshift of 0.048 for the fainter sample, but shifted to higher space densities. There is evidence that some of the excess number counts in the deeper sample can be explained in terms of a large-scale density enhancement beyond the Pavo-Indus supercluster. In addition, the faintest counts in the new sample confirm the result of Hacking et al. (1989) that faint IRAS 60-micron source counts lie significantly in excess of an extrapolation of the PSC counts assuming no luminosity or density evolution.
NASA Astrophysics Data System (ADS)
Higuchi, Saki; Kato, Daiki; Awaji, Daisuke; Kim, Kang
2018-03-01
We present a study using molecular dynamics simulations based on the Fermi-Jagla potential model, which is the continuous version of the mono-atomic core-softened Jagla model [J. Y. Abraham, S. V. Buldyrev, and N. Giovambattista, J. Phys. Chem. B 115, 14229 (2011)]. This model shows the water-like liquid-liquid phase transition between high-density and low-density liquids at the liquid-liquid critical point. In particular, the slope of the coexistence line becomes weakly negative, which is expected to represent one of the anomalies of liquid polyamorphism. In this study, we examined the density, dynamic, and thermodynamic anomalies in the vicinity of the liquid-liquid critical point. The boundaries of density, self-diffusion, shear viscosity, and excess entropy anomalies were characterized. Furthermore, these anomalies are connected according to Rosenfeld's scaling relationship between the excess entropy and the transport coefficients such as diffusion and viscosity. The results demonstrate the hierarchical and nested structures regarding the thermodynamic and dynamic anomalies of the Fermi-Jagla model.
NASA Astrophysics Data System (ADS)
Abazajian, Kevork N.; Keeley, Ryan E.
2016-04-01
We incorporate Milky Way dark matter halo profile uncertainties, as well as an accounting of diffuse gamma-ray emission uncertainties in dark matter annihilation models for the Galactic Center Extended gamma-ray excess (GCE) detected by the Fermi Gamma Ray Space Telescope. The range of particle annihilation rate and masses expand when including these unknowns. However, two of the most precise empirical determinations of the Milky Way halo's local density and density profile leave the signal region to be in considerable tension with dark matter annihilation searches from combined dwarf galaxy analyses for single-channel dark matter annihilation models. The GCE and dwarf tension can be alleviated if: one, the halo is very highly concentrated or strongly contracted; two, the dark matter annihilation signal differentiates between dwarfs and the GC; or, three, local stellar density measures are found to be significantly lower, like that from recent stellar counts, increasing the local dark matter density.
Hydrogen-related defects in hydrogenated amorphous semiconductors
NASA Astrophysics Data System (ADS)
Jin, Shu; Ley, Lothar
1991-07-01
One of the key steps in the formation of glow-discharge-deposited (GD) a-Si:H or a-Ge:H films by plasma deposition from the gas phase is the elimination of excess hydrogen from the growth surface which is necessary for the cross linking of the Si or Ge network and the reduction of the defect density associated with the hydrogen-rich surface layer. The high defect density (~1018 cm-3) in a growing surface layer can, depending on preparation conditions, be either reduced (to ~1016 cm-3) or be trapped in the bulk upon subsequent growth, as evidenced by a great deal of data. However, little is known about its origin and implication. We have investigated the change in electronic structure related with this process using UHV-evaporated a-Ge as a model system, subjected to thermal hydrogenation, plasma hydrogenation, and various annealing cycles. The density of occupied states in the pseudogap of the a-Ge(:H) surface (probing depth ~50 Å) was determined with total-yield photoelectron spectroscopy. In this way, effects of thermal annealing, hydrogenation, and ion bombarding on the near-surface defect density could be studied. We identify in room-temperature (RT) hydrogenated a-Ge:H another defect at about Ev+0.45 eV in addition to the dangling-bond defect. This defect exists at the initial stage of hydrogen incorporation, decreases upon ~250 °C annealing, and is restored upon RT rehydrogenation. Therefore we suspect that this defect is hydrogen induced and concomitant with the formation of unexpected bondings [both multiply bonded XHx (X=Si or Ge and x=2 and 3) and polyhydride (XH2)n configurations] favored at RT hydrogenation. As a possible candidate we suggest the Ge-H-Ge three-center bond in which one electron is placed in a nonbonding orbital that gives rise to the paramagnetic state in the gap of a-Ge:H observed here. This defect also accounts for the large defect density at the growing surface in the optimized plasma chemical-vapor-deposition process, where the special bonding configurations mentioned above are the predominant species. The formation and annealing of this defect will be discussed.
A hybrid approach to simulation of electron transfer in complex molecular systems
Kubař, Tomáš; Elstner, Marcus
2013-01-01
Electron transfer (ET) reactions in biomolecular systems represent an important class of processes at the interface of physics, chemistry and biology. The theoretical description of these reactions constitutes a huge challenge because extensive systems require a quantum-mechanical treatment and a broad range of time scales are involved. Thus, only small model systems may be investigated with the modern density functional theory techniques combined with non-adiabatic dynamics algorithms. On the other hand, model calculations based on Marcus's seminal theory describe the ET involving several assumptions that may not always be met. We review a multi-scale method that combines a non-adiabatic propagation scheme and a linear scaling quantum-chemical method with a molecular mechanics force field in such a way that an unbiased description of the dynamics of excess electron is achieved and the number of degrees of freedom is reduced effectively at the same time. ET reactions taking nanoseconds in systems with hundreds of quantum atoms can be simulated, bridging the gap between non-adiabatic ab initio simulations and model approaches such as the Marcus theory. A major recent application is hole transfer in DNA, which represents an archetypal ET reaction in a polarizable medium. Ongoing work focuses on hole transfer in proteins, peptides and organic semi-conductors. PMID:23883952
Sub-Doppler infrared spectroscopy of propargyl radical (H{sub 2}CCCH) in a slit supersonic expansion
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chang, Chih-Hsuan; Nesbitt, David J.
The acetylenic CH stretch mode (ν{sub 1}) of propargyl (H{sub 2}CCCH) radical has been studied at sub-Doppler resolution (∼60 MHz) via infrared laser absorption spectroscopy in a supersonic slit-jet discharge expansion, where low rotational temperatures (T{sub rot} = 13.5(4) K) and lack of spectral congestion permit improved determination of band origin and rotational constants for the excited state. For the lowest J states primarily populated in the slit jet cooled expansion, fine structure due to the unpaired electron spin is resolved completely, which permits accurate analysis of electron spin-rotation interactions in the vibrationally excited states (ε{sub aa} = − 518.1(1.8),more » ε{sub bb} = − 13.0(3), ε{sub cc} = − 1.8(3) MHz). In addition, hyperfine broadening in substantial excess of the sub-Doppler experimental linewidths is observed due to nuclear spin–electron spin contributions at the methylenic (—CH{sub 2}) and acetylenic (—CH) positions, which permits detailed modeling of the fine/hyperfine structure line contours. The results are consistent with a delocalized radical spin density extending over both methylenic and acetylenic C atoms, in excellent agreement with simple resonance structures as well as ab initio theoretical calculations.« less
Vertical and Lateral Electron Content in the Martian Ionosphere
NASA Astrophysics Data System (ADS)
Paetzold, M. P.; Peter, K.; Bird, M. K.; Häusler, B.; Tellmann, S.
2016-12-01
The radio-science experiment MaRS (Mars Express Radio Science) on the Mars Express spacecraft sounds the neutral atmosphere and ionosphere of Mars since 2004. Approximately 800 vertical profiles of the ionospheric electron density have been acquired until today. The vertical electron content (TEC) is easily computed from the vertical electron density profile by integrating along the altitude. The TEC is typically a fraction of a TEC unit (1E16 m^-2) and depends on the solar zenith angle. The magnitude of the TEC is however fully dominated by the electron density contained in the main layer M2. The contributions by the M1 layer below M2 or the topside is marginal. MaRS is using two radio frequencies for the sounding of the ionosphere. The directly observed differential Doppler from the two received frequencies is a measure of the lateral electron content that means along the ray path and perpendicular to the vertical electron density profile. Combining both the vertical electron density profile, the vertical TEC and the directly observed lateral TEC describes the lateral electron density distribution in the ionosphere.
NASA Astrophysics Data System (ADS)
Rajesh, P. K.; Nanan, Balan; Liu, Jann-Yenq; Lin, Charles C. H.; Chang, S. Y.; Chen, Chia-Hung
This study investigates the mid-latitude electron density enhancement (MEDE) using global ionospheric map (GIM) total electron content (TEC) measurements and FORMOSAT-3/COSMIC (F3/C) electron density profiles. Diurnal, seasonal, latitudinal, and solar activity variations in the occurrence and strength of MEDE are examined using global GIM TEC data in the years 2002 and 2009. The results show that MEDE occurrence is pronounced during 2200-0400 LT, the feature also appears during day. The strength of MEDE maximizes around 0400 LT, and is very weak during daytime. The occurrence and strength show significant longitude dependence, and vary with season and solar activity. Concurrent F3/C electron density profiles also reveal enhancement of the peak electron density and total electron content. Further studies are carried out by examining the role of neutral wind in re-organizing the plasma using SAMI2 and HWM93 models. The results indicate that meridional neutral wind could cause the plasma to converge over mid-latitudes, and thus support in maintaining the enhancement.
Digital direct electron imaging of energy-filtered electron backscatter diffraction patterns
NASA Astrophysics Data System (ADS)
Vespucci, S.; Winkelmann, A.; Naresh-Kumar, G.; Mingard, K. P.; Maneuski, D.; Edwards, P. R.; Day, A. P.; O'Shea, V.; Trager-Cowan, C.
2015-11-01
Electron backscatter diffraction is a scanning electron microscopy technique used to obtain crystallographic information on materials. It allows the nondestructive mapping of crystal structure, texture, and strain with a lateral and depth resolution on the order of tens of nanometers. Electron backscatter diffraction patterns (EBSPs) are presently acquired using a detector comprising a scintillator coupled to a digital camera, and the crystallographic information obtainable is limited by the conversion of electrons to photons and then back to electrons again. In this article we will report the direct acquisition of energy-filtered EBSPs using a digital complementary metal-oxide-semiconductor hybrid pixel detector, Timepix. We show results from a range of samples with different mass and density, namely diamond, silicon, and GaN. Direct electron detection allows the acquisition of EBSPs at lower (≤5 keV) electron beam energies. This results in a reduction in the depth and lateral extension of the volume of the specimen contributing to the pattern and will lead to a significant improvement in lateral and depth resolution. Direct electron detection together with energy filtering (electrons having energy below a specific value are excluded) also leads to an improvement in spatial resolution but in addition provides an unprecedented increase in the detail in the acquired EBSPs. An increase in contrast and higher-order diffraction features are observed. In addition, excess-deficiency effects appear to be suppressed on energy filtering. This allows the fundamental physics of pattern formation to be interrogated and will enable a step change in the use of electron backscatter diffraction (EBSD) for crystal phase identification and the mapping of strain. The enhancement in the contrast in high-pass energy-filtered EBSD patterns is found to be stronger for lighter, less dense materials. The improved contrast for such materials will enable the application of the EBSD technique to be expanded to materials for which conventional EBSD analysis is not presently practicable.
Analysis of Total Electron Content and Electron Density Profile during Different Geomagnetic Storms
NASA Astrophysics Data System (ADS)
Chapagain, N. P.; Rana, B.; Adhikari, B.
2017-12-01
Total Electron content (TEC) and electron density are the key parameters in the mitigation of ionospheric effects on radio communication system. Detail study of the TEC and electron density variations has been carried out during geomagnetic storms, with longitude and latitude, for four different locations: (13˚N -17˚N, 88˚E -98˚E), (30˚N-50˚N, 120˚W -95˚W), (29˚S-26˚S, 167˚W-163˚W,) and (60˚S-45˚S, 120˚W-105˚W) using the Gravity Recovery and Climate Experiment (GRACE) satellite observations. In order to find the geomagnetic activity, the solar wind parameters such as north-south component of inter planetary magnetic field (Bz), plasma drift velocity (Vsw), flow pressure (nPa), AE, Dst and Kp indices were obtained from Operating Mission as Nodes on the Internet (OMNI) web system. The data for geomagnetic indices have been correlated with the TEC and electron density for four different events of geomagnetic storms on 6 April 2008, 27 March 2008, 4 September 2008, and 11 October 2008. The result illustrates that the observed TEC and electron density profile significantly vary with longitudes and latitudes. This study illustrates that the values of TEC and the vertical electron density profile are influenced by the solar wind parameters associated with solar activities. The peak values of electron density and TEC increase as the geomagnetic storms become stronger. Similarly, the electron density profile varies with altitudes, which peaks around the altitude range of about 250- 350 km, depending on the strength of geomagnetic storms. The results clearly show that the peak electron density shifted to higher altitude (from about 250 km to 350 km) as the geomagnetic disturbances becomes stronger.
Profiles of Ionospheric Storm-enhanced Density during the 17 March 2015 Great Storm
NASA Astrophysics Data System (ADS)
Liu, J.; Wang, W.; Burns, A. G.; Yue, X.; Zhang, S.; Zhang, Y.
2015-12-01
Ionospheric F2 region peak densities (NmF2) are expected to show a positive phase correlation with total electron content (TEC), and electron density is expected to have an anti-correlation with electron temperature near the ionospheric F2 peak. However, we show that, during the 17 March 2015 great storm, TEC and F2 region electron density peak height (hmF2) over Millstone Hill increased, but the F2 region electron density peak (NmF2) decreased significantly during the storm-enhanced density (SED) phase of the storm compared with the quiet-time ionosphere. This SED occurred where there was a negative ionospheric storm near the F2 peak and below it. The weak ionosphere below the F2 peak resulted in much reduced downward heat conduction for the electrons, trapping the heat in the topside. This, in turn, increased the topside scale height, so that, even though electron densities at the F2 peak were depleted, TEC increased in the SED. The depletion in NmF2 was probably caused by an increase in the density of the molecular neutrals, resulting in enhanced recombination. In addition, the storm-time topside ionospheric electron density profile was much closer to diffusive equilibrium than non-storm time profile because of less daytime plasma flow from the ionosphere to the plasmasphere.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ren, S; Tianjin University, Tianjin; Hara, W
Purpose: MRI has a number of advantages over CT as a primary modality for radiation treatment planning (RTP). However, one key bottleneck problem still remains, which is the lack of electron density information in MRI. In the work, a reliable method to map electron density is developed by leveraging the differential contrast of multi-parametric MRI. Methods: We propose a probabilistic Bayesian approach for electron density mapping based on T1 and T2-weighted MRI, using multiple patients as atlases. For each voxel, we compute two conditional probabilities: (1) electron density given its image intensity on T1 and T2-weighted MR images, and (2)more » electron density given its geometric location in a reference anatomy. The two sources of information (image intensity and spatial location) are combined into a unifying posterior probability density function using the Bayesian formalism. The mean value of the posterior probability density function provides the estimated electron density. Results: We evaluated the method on 10 head and neck patients and performed leave-one-out cross validation (9 patients as atlases and remaining 1 as test). The proposed method significantly reduced the errors in electron density estimation, with a mean absolute HU error of 138, compared with 193 for the T1-weighted intensity approach and 261 without density correction. For bone detection (HU>200), the proposed method had an accuracy of 84% and a sensitivity of 73% at specificity of 90% (AUC = 87%). In comparison, the AUC for bone detection is 73% and 50% using the intensity approach and without density correction, respectively. Conclusion: The proposed unifying method provides accurate electron density estimation and bone detection based on multi-parametric MRI of the head with highly heterogeneous anatomy. This could allow for accurate dose calculation and reference image generation for patient setup in MRI-based radiation treatment planning.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Finzel, Kati, E-mail: kati.finzel@liu.se
The local conditions for the Pauli potential that are necessary in order to yield self-consistent electron densities from orbital-free calculations are investigated for approximations that are expressed with the help of a local position variable. It is shown that those local conditions also apply when the Pauli potential is given in terms of the electron density. An explicit formula for the Ne atom is given, preserving the local conditions during the iterative procedure. The resulting orbital-free electron density exhibits proper shell structure behavior and is in close agreement with the Kohn-Sham electron density. This study demonstrates that it is possiblemore » to obtain self-consistent orbital-free electron densities with proper atomic shell structure from simple one-point approximations for the Pauli potential at local density level.« less
NASA Astrophysics Data System (ADS)
Ishisaka, K.; Okada, T.; Tsuruda, K.; Hayakawa, H.; Mukai, T.; Matsumoto, H.
2001-04-01
The spacecraft potential has been used to derive the electron number density surrounding the spacecraft in the magnetosphere and solar wind. We have investigated the correlation between the spacecraft potential of the Geotail spacecraft and the electron number density derived from the plasma waves in the solar wind and almost all the regions of the magnetosphere, except for the high-density plasmasphere, and obtained an empirical formula to show their relation. The new formula is effective in the range of spacecraft potential from a few volts up to 90 V, corresponding to the electron number density from 0.001 to 50 cm-3. We compared the electron number density obtained by the empirical formula with the density obtained by the plasma wave and plasma particle measurements. On occasions the density determined by plasma wave measurements in the lobe region is different from that calculated by the empirical formula. Using the difference in the densities measured by two methods, we discuss whether or not the lower cutoff frequency of the plasma waves, such as continuum radiation, indicates the local electron density near the spacecraft. Then we applied the new relation to the spacecraft potential measured by the Geotail spacecraft during the period from October 1993 to December 1995, and obtained the electron spatial distribution in the solar wind and magnetosphere, including the distant tail region. Higher electron number density is clearly observed on the dawnside than on the duskside of the magnetosphere in the distant tail beyond 100RE.
[Study on the distribution of plasma parameters in electrodeless lamp using emission spectrometry].
Wang, Chang-Quan; Zhang, Gui-Xin; Wang, Xin-Xin; Shao, Ming-Song; Dong, Jin-Yang; Wang, Zan-Ji
2011-09-01
Electrodeless lamp in pear shape was ignited using inductively coupled discharge setup and Ar-Hg mixtures as working gas. The changes in electronic temperature and density with axial and radial positions at 5 s of igniting were studied by means of emission spectrometry. The changes in electronic temperature were obtained according to the Ar line intensity ratio of 425.9 nm/ 750.4 nm. And the variations in electronic density were analyzed using 750.4 nm line intensity. It was found that plasma electronic temperature and density is various at different axial or radial positions. The electronic temperatures first increase, then decrease, and then increase quickly, and finally decline. While the electronic density firstly increase quickly, the decrease, and then rise slowly and finally decline again with axial distance increasing. With radial distance increasing, electronic temperature increases to a stable area, then continues to rise, while electronic density decreases.
Superlattice barrier varactors
NASA Technical Reports Server (NTRS)
Raman, C.; Sun, J. P.; Chen, W. L.; Munns, G.; East, J.; Haddad, G.
1992-01-01
SBV (Single Barrier Varactor) diodes have been proposed as alternatives to Schottky barrier diodes for harmonic multiplier applications. However, these show a higher current than expected. The excess current is due to X valley transport in the barrier. We present experimental results showing that the use of a superlattice barrier and doping spikes in the GaAs depletion regions on either side of the barrier can reduce the excess current and improve the control of the capacitance vs. voltage characteristic. The experimental results consist of data taken from two types of device structures. The first test structure was used to study the performance of AlAs/GaAs superlattice barriers. The wafer was fabricated into 90 micron diameter mesa diodes and the resulting current vs. voltage characteristics were measured. A 10 period superlattice structure with a total thickness of approximately 400 A worked well as an electron barrier. The structure had a current density of about one A/sq cm at one volt at room temperature. The capacitance variation of these structures was small because of the design of the GaAs cladding layers. The second test structure was used to study cladding layer designs. These wafers were InGaAs and InAlAs layers lattice matched to an InP substrate. The layers have n(+) doping spikes near the barrier to increase the zero bias capacitance and control the shape of the capacitance vs. voltage characteristic. These structures have a capacitance ratio of 5:1 and an abrupt change from maximum to minimum capacitance. The measurements were made at 80 K. Based on the information obtained from these two structures, we have designed a structure that combines the low current density barrier with the improved cladding layers. The capacitance and current-voltage characteristics from this structure are presented.
Wild, Robert A; Carmina, Enrico; Diamanti-Kandarakis, Evanthia; Dokras, Anuja; Escobar-Morreale, Hector F; Futterweit, Walter; Lobo, Rogerio; Norman, Robert J; Talbott, Evelyn; Dumesic, Daniel A
2010-05-01
Women with polycystic ovary syndrome (PCOS) often have cardiovascular disease (CVD) risk factors. The Androgen Excess and Polycystic Ovary Syndrome (AE-PCOS) Society created a panel to provide evidence-based reviews of studies assessing PCOS-CVD risk relationships and to develop guidelines for preventing CVD. An expert panel in PCOS and CVD reviewed literature and presented recommendations. Only studies comparing PCOS with control patients were included. All electronic databases were searched; reviews included individual studies/databases, systematic reviews, abstracts, and expert data. Articles were excluded if other hyperandrogenic disorders were not excluded, PCOS diagnosis was unclear, controls were not described, or methodology precluded evaluation. Inclusion/exclusion criteria were confirmed by at least two reviewers and arbitrated by a third. Systematic reviews of CVD risk factors were compiled and submitted for approval to the AE-PCOS Society Board. Women with PCOS with obesity, cigarette smoking, dyslipidemia, hypertension, impaired glucose tolerance, and subclinical vascular disease are at risk, whereas those with metabolic syndrome and/or type 2 diabetes mellitus are at high risk for CVD. Body mass index, waist circumference, serum lipid/glucose, and blood pressure determinations are recommended for all women with PCOS, as is oral glucose tolerance testing in those with obesity, advanced age, personal history of gestational diabetes, or family history of type 2 diabetes mellitus. Mood disorder assessment is suggested in all PCOS patients. Lifestyle management is recommended for primary CVD prevention, targeting low-density and non-high-density lipoprotein cholesterol and adding insulin-sensitizing and other drugs if dyslipidemia or other risk factors persist.
NASA Astrophysics Data System (ADS)
Mezey, Paul G.
2017-11-01
Two strongly related theorems on non-degenerate ground state electron densities serve as the basis of "Molecular Informatics". The Hohenberg-Kohn theorem is a statement on global molecular information, ensuring that the complete electron density contains the complete molecular information. However, the Holographic Electron Density Theorem states more: the local information present in each and every positive volume density fragment is already complete: the information in the fragment is equivalent to the complete molecular information. In other words, the complete molecular information provided by the Hohenberg-Kohn Theorem is already provided, in full, by any positive volume, otherwise arbitrarily small electron density fragment. In this contribution some of the consequences of the Holographic Electron Density Theorem are discussed within the framework of the "Nuclear Charge Space" and the Universal Molecule Model. In the Nuclear Charge Space" the nuclear charges are regarded as continuous variables, and in the more general Universal Molecule Model some other quantized parameteres are also allowed to become "de-quantized and then re-quantized, leading to interrelations among real molecules through abstract molecules. Here the specific role of the Holographic Electron Density Theorem is discussed within the above context.
NASA Astrophysics Data System (ADS)
Yasumoto, M.; Ohta, M.; Kawamura, Y.; Hatayama, A.
2014-02-01
Numerical simulations become useful for the developing RF-ICP (Radio Frequency Inductively Coupled Plasma) negative ion sources. We are developing and parallelizing a two-dimensional three velocity electromagnetic Particle-In-Cell code. The result shows rapid increase in the electron density during the density ramp-up phase. A radial electric field due to the space charge is produced with increase in the electron density and the electron transport in the radial direction is suppressed. As a result, electrons stay for a long period in the region where the inductive electric field is strong, and this leads efficient electron acceleration and a rapid increasing of the electron density.
Search for cosmic ray sources using muons detected by the MACRO experiment
NASA Astrophysics Data System (ADS)
Ambrosio, M.; Antolini, R.; Auriemma, G.; Bakari, D.; Baldini, A.; Barbarino, G. C.; Barish, B. C.; Battistoni, G.; Becherini, Y.; Bellotti, R.; Bemporad, C.; Bernardini, P.; Bilokon, H.; Bloise, C.; Bower, C.; Brigida, M.; Bussino, S.; Cafagna, F.; Calicchio, M.; Campana, D.; Carboni, M.; Caruso, R.; Cecchini, S.; Cei, F.; Chiarella, V.; Choudhary, B. C.; Coutu, S.; Cozzi, M.; de Cataldo, G.; Dekhissi, H.; de Marzo, C.; de Mitri, I.; Derkaoui, J.; de Vincenzi, M.; di Credico, A.; Erriquez, O.; Favuzzi, C.; Forti, C.; Fusco, P.; Giacomelli, G.; Giannini, G.; Giglietto, N.; Giorgini, M.; Grassi, M.; Grillo, A.; Guarino, F.; Gustavino, C.; Habig, A.; Hanson, K.; Heinz, R.; Iarocci, E.; Katsavounidis, E.; Katsavounidis, I.; Kearns, E.; Kim, H.; Kyriazopoulou, S.; Lamanna, E.; Lane, C.; Levin, D. S.; Lipari, P.; Longley, N. P.; Longo, M. J.; Loparco, F.; Maaroufi, F.; Mancarella, G.; Mandrioli, G.; Margiotta, A.; Marini, A.; Martello, D.; Marzari-Chiesa, A.; Mazziotta, M. N.; Michael, D. G.; Monacelli, P.; Montaruli, T.; Monteno, M.; Mufson, S.; Musser, J.; Nicolò, D.; Nolty, R.; Orth, C.; Osteria, G.; Palamara, O.; Patera, V.; Patrizii, L.; Pazzi, R.; Peck, C. W.; Perrone, L.; Petrera, S.; Pistilli, P.; Popa, V.; Rainò, A.; Reynoldson, J.; Ronga, F.; Rrhioua, A.; Satriano, C.; Scapparone, E.; Scholberg, K.; Sciubba, A.; Serra, P.; Sioli, M.; Sirri, G.; Sitta, M.; Spinelli, P.; Spinetti, M.; Spurio, M.; Steinberg, R.; Stone, J. L.; Sulak, L. R.; Surdo, A.; Tarlè, G.; Togo, V.; Vakili, M.; Walter, C. W.; Webb, R.
2003-03-01
The MACRO underground detector at Gran Sasso Laboratory recorded 60 million secondary cosmic ray muons from February 1989 until December 2000. Different techniques were used to analyze this sample in search for density excesses from astrophysical point-like sources. No evidence for DC excesses for any source in an all-sky survey is reported. In addition, searches for muon excess correlated with the known binary periods of Cygnus X-3 and Hercules X-1, and searches for statistically significant bursting episodes from known γ-ray sources are also proved negative.
Gedanken densities and exact constraints in density functional theory.
Perdew, John P; Ruzsinszky, Adrienn; Sun, Jianwei; Burke, Kieron
2014-05-14
Approximations to the exact density functional for the exchange-correlation energy of a many-electron ground state can be constructed by satisfying constraints that are universal, i.e., valid for all electron densities. Gedanken densities are designed for the purpose of this construction, but need not be realistic. The uniform electron gas is an old gedanken density. Here, we propose a spherical two-electron gedanken density in which the dimensionless density gradient can be an arbitrary positive constant wherever the density is non-zero. The Lieb-Oxford lower bound on the exchange energy can be satisfied within a generalized gradient approximation (GGA) by bounding its enhancement factor or simplest GGA exchange-energy density. This enhancement-factor bound is well known to be sufficient, but our gedanken density shows that it is also necessary. The conventional exact exchange-energy density satisfies no such local bound, but energy densities are not unique, and the simplest GGA exchange-energy density is not an approximation to it. We further derive a strongly and optimally tightened bound on the exchange enhancement factor of a two-electron density, which is satisfied by the local density approximation but is violated by all published GGA's or meta-GGA's. Finally, some consequences of the non-uniform density-scaling behavior for the asymptotics of the exchange enhancement factor of a GGA or meta-GGA are given.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sarapata, A.; Chabior, M.; Zanette, I.
2014-10-15
Many scientific research areas rely on accurate electron density characterization of various materials. For instance in X-ray optics and radiation therapy, there is a need for a fast and reliable technique to quantitatively characterize samples for electron density. We present how a precise measurement of electron density can be performed using an X-ray phase-contrast grating interferometer in a radiographic mode of a homogenous sample in a controlled geometry. A batch of various plastic materials was characterized quantitatively and compared with calculated results. We found that the measured electron densities closely match theoretical values. The technique yields comparable results between amore » monochromatic and a polychromatic X-ray source. Measured electron densities can be further used to design dedicated X-ray phase contrast phantoms and the additional information on small angle scattering should be taken into account in order to exclude unsuitable materials.« less
Ion Densities in the Nightside Ionosphere of Mars: Effects of Electron Impact Ionization
NASA Astrophysics Data System (ADS)
Girazian, Z.; Mahaffy, P.; Lillis, R. J.; Benna, M.; Elrod, M.; Fowler, C. M.; Mitchell, D. L.
2017-11-01
We use observations from the Mars Atmosphere and Volatile EvolutioN (MAVEN) mission to show how superthermal electron fluxes and crustal magnetic fields affect ion densities in the nightside ionosphere of Mars. We find that due to electron impact ionization, high electron fluxes significantly increase the CO2+, O+, and O2+ densities below 200 km but only modestly increase the NO+ density. High electron fluxes also produce distinct peaks in the CO2+, O+, and O2+ altitude profiles. We also find that superthermal electron fluxes are smaller near strong crustal magnetic fields. Consequently, nightside ion densities are also smaller near strong crustal fields because they decay without being replenished by electron impact ionization. Furthermore, the NO+/O2+ ratio is enhanced near strong crustal fields because, in the absence of electron impact ionization, O2+ is converted into NO+ and not replenished. Our results show that electron impact ionization is a significant source of CO2+, O+, and O2+ in the nightside ionosphere of Mars.
NASA Astrophysics Data System (ADS)
Pan, Changji; Jiang, Lan; Wang, Qingsong; Sun, Jingya; Wang, Guoyan; Lu, Yongfeng
2018-05-01
The femtosecond (fs) laser is a powerful tool to study ultrafast plasma dynamics, especially electron relaxation in strong ionization of dielectrics. Herein, temporal-spatial evolution of femtosecond laser induced plasma in fused silica was investigated using a two-color pump-probe technique (i.e., 400 nm and 800 nm, respectively). We demonstrated that when ionized electron density is lower than the critical density, free electron relaxation time is inversely proportional to electron density, which can be explained by the electron-ion scattering regime. In addition, electron density evolution within plasma was analyzed in an early stage (first 800 fs) of the laser-material interaction.
Ionospheric E-region electron density and neutral atmosphere variations
NASA Technical Reports Server (NTRS)
Stick, T. L.
1976-01-01
Electron density deviations from a basic variation with the solar zenith angle were investigated. A model study was conducted in which the effects of changes in neutral and relative densities of atomic and molecular oxygen on calculated electron densities were compared with incoherent scatter measurements in the height range 100-117 km at Arecibo, Puerto Rico. The feasibility of determining tides in the neutral atmosphere from electron density profiles was studied. It was determined that variations in phase between the density and temperature variation and the comparable magnitudes of their components make it appear improbable that the useful information on tidal modes can be obtained in this way.
NASA Astrophysics Data System (ADS)
Hashemzadeh, M.
2018-01-01
Self-focusing and defocusing of Gaussian laser beams in collisional inhomogeneous plasmas are investigated in the presence of various laser intensities and linear density and temperature ramps. Considering the ponderomotive force and using the momentum transfer and energy equations, the nonlinear electron density is derived. Taking into account the paraxial approximation and nonlinear electron density, a nonlinear differential equation, governing the focusing and defocusing of the laser beam, is obtained. Results show that in the absence of ramps the laser beam is focused between a minimum and a maximum value of laser intensity. For a certain value of laser intensity and initial electron density, the self-focusing process occurs in a temperature range which reaches its maximum at turning point temperature. However, the laser beam is converged in a narrow range for various amounts of initial electron density. It is indicated that the σ2 parameter and its sign can affect the self-focusing process for different values of laser intensity, initial temperature, and initial density. Finally, it is found that although the electron density ramp-down diverges the laser beam, electron density ramp-up improves the self-focusing process.
Estimates of electronic coupling for excess electron transfer in DNA
NASA Astrophysics Data System (ADS)
Voityuk, Alexander A.
2005-07-01
Electronic coupling Vda is one of the key parameters that determine the rate of charge transfer through DNA. While there have been several computational studies of Vda for hole transfer, estimates of electronic couplings for excess electron transfer (ET) in DNA remain unavailable. In the paper, an efficient strategy is established for calculating the ET matrix elements between base pairs in a π stack. Two approaches are considered. First, we employ the diabatic-state (DS) method in which donor and acceptor are represented with radical anions of the canonical base pairs adenine-thymine (AT) and guanine-cytosine (GC). In this approach, similar values of Vda are obtained with the standard 6-31G* and extended 6-31++G** basis sets. Second, the electronic couplings are derived from lowest unoccupied molecular orbitals (LUMOs) of neutral systems by using the generalized Mulliken-Hush or fragment charge methods. Because the radical-anion states of AT and GC are well reproduced by LUMOs of the neutral base pairs calculated without diffuse functions, the estimated values of Vda are in good agreement with the couplings obtained for radical-anion states using the DS method. However, when the calculation of a neutral stack is carried out with diffuse functions, LUMOs of the system exhibit the dipole-bound character and cannot be used for estimating electronic couplings. Our calculations suggest that the ET matrix elements Vda for models containing intrastrand thymine and cytosine bases are essentially larger than the couplings in complexes with interstrand pyrimidine bases. The matrix elements for excess electron transfer are found to be considerably smaller than the corresponding values for hole transfer and to be very responsive to structural changes in a DNA stack.
Jones, Barbara E; Haroldsen, Candace; Madaras-Kelly, Karl; Goetz, Matthew B; Ying, Jian; Sauer, Brian; Jones, Makoto M; Leecaster, Molly; Greene, Tom; Fridkin, Scott K; Neuhauser, Melinda M; Samore, Matthew H
2018-07-01
Electronic health records provide the opportunity to assess system-wide quality measures. Veterans Affairs Pharmacy Benefits Management Center for Medication Safety uses medication use evaluation (MUE) through manual review of the electronic health records. To compare an electronic MUE approach versus human/manual review for extraction of antibiotic use (choice and duration) and severity metrics. Retrospective. Hospitalizations for uncomplicated pneumonia occurring during 2013 at 30 Veterans Affairs facilities. We compared summary statistics, individual hospitalization-level agreement, facility-level consistency, and patterns of variation between electronic and manual MUE for initial severity, antibiotic choice, daily clinical stability, and antibiotic duration. Among 2004 hospitalizations, electronic and manual abstraction methods showed high individual hospitalization-level agreement for initial severity measures (agreement=86%-98%, κ=0.5-0.82), antibiotic choice (agreement=89%-100%, κ=0.70-0.94), and facility-level consistency for empiric antibiotic choice (anti-MRSA r=0.97, P<0.001; antipseudomonal r=0.95, P<0.001) and therapy duration (r=0.77, P<0.001) but lower facility-level consistency for days to clinical stability (r=0.52, P=0.006) or excessive duration of therapy (r=0.55, P=0.005). Both methods identified widespread facility-level variation in antibiotic choice, but we found additional variation in manual estimation of excessive antibiotic duration and initial illness severity. Electronic and manual MUE agreed well for illness severity, antibiotic choice, and duration of therapy in pneumonia at both the individual and facility levels. Manual MUE showed additional reviewer-level variation in estimation of initial illness severity and excessive antibiotic use. Electronic MUE allows for reliable, scalable tracking of national patterns of antimicrobial use, enabling the examination of system-wide interventions to improve quality.
Molecular Electron Density Theory: A Modern View of Reactivity in Organic Chemistry.
Domingo, Luis R
2016-09-30
A new theory for the study of the reactivity in Organic Chemistry, named Molecular Electron Density Theory (MEDT), is proposed herein. MEDT is based on the idea that while the electron density distribution at the ground state is responsible for physical and chemical molecular properties, as proposed by the Density Functional Theory (DFT), the capability for changes in electron density is responsible for molecular reactivity. Within MEDT, the reactivity in Organic Chemistry is studied through a rigorous quantum chemical analysis of the changes of the electron density as well as the energies associated with these changes along the reaction path in order to understand experimental outcomes. Studies performed using MEDT allow establishing a modern rationalisation and to gain insight into molecular mechanisms and reactivity in Organic Chemistry.
Federal Register 2010, 2011, 2012, 2013, 2014
2011-05-16
... general, to provide the public the option of submitting information or transacting business electronically... Office of Procurement and Property Management; Guidelines for the Transfer of Excess Computers or Other... Property Management, USDA. ACTION: Proposed rule. SUMMARY: The Office of Procurement and Property...
USDA-ARS?s Scientific Manuscript database
Trees, even in the same orchard or nursery, can have considerably different structures and foliage densities. Conventional chemical applications often spray the entire field at a constant rate without considering field variations, resulting in excessive chemical waste and spray drift. To address thi...
NASA Astrophysics Data System (ADS)
Mit'kin, A. S.; Pogorelov, V. A.; Chub, E. G.
2015-08-01
We consider the method of constructing the suboptimal filter on the basis of approximating the a posteriori probability density of the multidimensional Markov process by the Pearson distributions. The proposed method can efficiently be used for approximating asymmetric, excessive, and finite densities.
NASA Astrophysics Data System (ADS)
Sun, Jianwei; Perdew, John P.; Yang, Zenghui; Peng, Haowei
2016-05-01
The uniform electron gas and the hydrogen atom play fundamental roles in condensed matter physics and quantum chemistry. The former has an infinite number of electrons uniformly distributed over the neutralizing positively charged background, and the latter only one electron bound to the proton. The uniform electron gas was used to derive the local spin density approximation to the exchange-correlation functional that undergirds the development of the Kohn-Sham density functional theory. We show here that the ground-state exchange-correlation energies of the hydrogen atom and many other 1- and 2-electron systems are modeled surprisingly well by a different local spin density approximation (LSDA0). LSDA0 is constructed to satisfy exact constraints but agrees surprisingly well with the exact results for a uniform two-electron density in a finite, curved three-dimensional space. We also apply LSDA0 to excited or noded 1-electron densities, where it works less well. Furthermore, we show that the localization of the exact exchange hole for a 1- or 2-electron ground state can be measured by the ratio of the exact exchange energy to its optimal lower bound.
NASA Astrophysics Data System (ADS)
Inada, Yuki; Kamiya, Tomoki; Matsuoka, Shigeyasu; Kumada, Akiko; Ikeda, Hisatoshi; Hidaka, Kunihiko
2018-01-01
Two-dimensional electron density imaging over free burning SF6 arcs and SF6 gas-blast arcs was conducted at current zero using highly sensitive Shack-Hartmann type laser wavefront sensors in order to experimentally characterise electron density distributions for the success and failure of arc interruption in the thermal reignition phase. The experimental results under an interruption probability of 50% showed that free burning SF6 arcs with axially asymmetric electron density profiles were interrupted with a success rate of 88%. On the other hand, the current interruption of SF6 gas-blast arcs was reproducibly achieved under locally reduced electron densities and the interruption success rate was 100%.
NASA Astrophysics Data System (ADS)
Kube, R.; Garcia, O. E.; Theodorsen, A.; Brunner, D.; Kuang, A. Q.; LaBombard, B.; Terry, J. L.
2018-06-01
The Alcator C-Mod mirror Langmuir probe system has been used to sample data time series of fluctuating plasma parameters in the outboard mid-plane far scrape-off layer. We present a statistical analysis of one second long time series of electron density, temperature, radial electric drift velocity and the corresponding particle and electron heat fluxes. These are sampled during stationary plasma conditions in an ohmically heated, lower single null diverted discharge. The electron density and temperature are strongly correlated and feature fluctuation statistics similar to the ion saturation current. Both electron density and temperature time series are dominated by intermittent, large-amplitude burst with an exponential distribution of both burst amplitudes and waiting times between them. The characteristic time scale of the large-amplitude bursts is approximately 15 μ {{s}}. Large-amplitude velocity fluctuations feature a slightly faster characteristic time scale and appear at a faster rate than electron density and temperature fluctuations. Describing these time series as a superposition of uncorrelated exponential pulses, we find that probability distribution functions, power spectral densities as well as auto-correlation functions of the data time series agree well with predictions from the stochastic model. The electron particle and heat fluxes present large-amplitude fluctuations. For this low-density plasma, the radial electron heat flux is dominated by convection, that is, correlations of fluctuations in the electron density and radial velocity. Hot and dense blobs contribute only a minute fraction of the total fluctuation driven heat flux.
DOE Office of Scientific and Technical Information (OSTI.GOV)
McNeill, Jason Douglas
Electronic states of a thin layer of material on a surface possess unique physical and chemical properties. Some of these properties arise from the reduced dimensionality of the thin layer with respect to the bulk or the properties of the electric field where two materials of differing dielectric constants meet at an interface. Other properties are related to the nature of the surface chemical bond. Here, the properties of excess electrons in thin layers of Xenon, Krypton, and alkali metals are investigated, and the bound state energies and effective masses of the excess electrons are determined using two-photon photoemission. Formore » Xenon, the dependence of bound state energy, effective mass, and lifetime on layer thickness from one to nine layers is examined. Not all quantities were measured at each coverage. The two photon photoemission spectra of thin layers of Xenon on a Ag(111) substrate exhibit a number of sharp, well-defined peaks. The binding energy of the excess electronic states of Xenon layers exhibited a pronounced dependence on coverage. A discrete energy shift was observed for each additional atomic layer. At low coverage, a series of states resembling a Rydberg series is observed. This series is similar to the image state series observed on clean metal surfaces. Deviations from image state energies can be described in terms of the dielectric constant of the overlayer material and its effect on the image potential. For thicker layers of Xe (beyond the first few atomic layers), the coverage dependence of the features begins to resemble that of quantum well states. Quantum well states are related to bulk band states. However, the finite thickness of the layer restricts the perpendicular wavevector to a discrete set of values. Therefore, the spectrum of quantum well states contains a series of peaks which correspond to the various allowed values of the perpendicular wavevector. Analysis of the quantum well spectrum yields electronic band structure information. In this case, the quantum well states examined are derived from the Xenon conduction band. Measurements of the energies as a function of coverage yield the dispersion along the axis perpendicular to the surface while angle-resolved two-photon photoemission measurements yield information about dispersion along the surface parallel. The relative importance of the image potential and the overlayer band structure also depends on the quantum number and energy of the state. Some members of the image series may have an energy which is in an energy gap of the layer material, therefore such states may tend to remain physically outside the layer and retain much of their image character even at higher coverages. This is the case for the n = 1 image state of the Xe/Ag(111) system. The energies of image states which are excluded from the layer have a complex dependence on the thickness of the layer and its dielectric constant. The population decay kinetics of excited electronic states of the layer were also determined. Lifetimes are reported for the first three excited states for 1-6 atomic layers of Xe on Ag(111). As the image states evolve into quantum well states with increasing coverage, the lifetimes undergo an oscillation which marks a change in the spatial extent of the state. For example, the n = 2 quantum well state decreases substantially at 3-5 layers as the electron probability density in the layer increases. The lifetime data are modeled by extending the two-band nearly-free-electron approximation to account for the insulating Xe layer.« less
MAVEN Observations of Dayside Peak Electron Densities in the Ionosphere of Mars
NASA Astrophysics Data System (ADS)
Vogt, M. F.; Withers, P.; Andersson, L.; Mahaffy, P. R.; Benna, M.; Elrod, M. K.; Connerney, J. E. P.; Espley, J. R.; Eparvier, F. G.; Jakosky, B. M.
2016-12-01
The peak electron density in the dayside Martian ionosphere is a valuable diagnostic of the state of the ionosphere. Its dependence on factors like the solar zenith angle, ionizing solar irradiance, neutral scale height, and electron temperature has been well studied. The MAVEN spacecraft's September 2015 "deep dip" orbits, in which the orbital periapsis is lowered to 120 km, provided our first opportunity since Viking to sample in situ a complete dayside electron density profiles including the main peak, and the first observations with contemporaneous comprehensive measurements of the local plasma and magnetic field properties. We have analyzed the peak electron density measurements from the MAVEN deep dip orbits and will discuss their variability with various ionospheric properties, including the proximity to regions of large crustal magnetic fields, and external drivers. We will also present observations of the electron temperature and atmospheric neutral and ion composition at the altitude of the peak electron density.
Use of Total Electron Content data to analyze ionosphere electron density gradients
NASA Astrophysics Data System (ADS)
Nava, B.; Radicella, S. M.; Leitinger, R.; Coisson, P.
In presence of electron density gradients the thin shell approximation for the ionosphere used together with a simple mapping function to convert slant Total Electron Content TEC to vertical TEC could lead to TEC conversion errors Therefore these mapping function errors can be used to identify the effects of the electron density gradients in the ionosphere In the present work high precision GPS derived slant TEC data have been used to investigate the effects of the electron density gradients in the middle and low latitude ionosphere under geomagnetic quiet and disturbed conditions In particular the data corresponding to the geographic area of the American sector for the days 5-7 April 2000 have been used to perform a complete analysis of mapping function errors based on the coinciding pierce point technique The results clearly illustrate the electron density gradient effects according to the locations considered and to the actual levels of disturbance of the ionosphere
Surface modification of mixed-phase hydrogenated TiO2 and corresponding photocatalytic response
NASA Astrophysics Data System (ADS)
Samsudin, Emy Marlina; Hamid, Sharifah Bee Abd; Juan, Joon Ching; Basirun, Wan Jefrey; Kandjani, Ahmad Esmaielzadeh
2015-12-01
Preparation of highly photo-activated TiO2 is achievable by hydrogenation at constant temperature and pressure, with controlled hydrogenation duration. The formation of surface disorders and Ti3+ is responsible for the color change from white unhydrogenated TiO2 to bluish-gray hydrogenated TiO2. This color change, together with increased oxygen vacancies and Ti3+ enhanced the solar light absorption from UV to infra-red region. Interestingly, no band gap narrowing is observed. The photocatalytic activity in the UV and visible region is controlled by Ti3+ and oxygen vacancies respectively. Both Ti3+ and oxygen vacancies increases the electron density on the catalyst surface thus facilitates rad OH radicals formation. The lifespan of surface photo-excited electrons and holes are also sustained thus prevents charge carrier recombination. However, excessive amount of oxygen vacancies deteriorates the photocatalytic activity as it serves as charge traps. Hydrogenation of TiO2 also promotes the growth of active {0 0 1} facets and facilitates the photocatalytic activity by higher concentration of surface OH radicals. However, the growth of {0 0 1} facets is small and insignificant toward the overall photo-kinetics. This work also shows that larger role is played by Ti3+ and oxygen vacancies rather than the surface disorders created during the hydrogenation process. It also demonstrates the ability of hydrogenated TiO2 to absorb wider range of photons even though at a similar band gap as unhydrogenated TiO2. In addition, the photocatalytic activity is shown to be decreased for extended hydrogenation duration due to excessive catalyst growth and loss in the total surface area. Thus, a balance in the physico-chemical properties of hydrogenated TiO2 is crucial to enhance the photocatalytic activity by simply controlling the hydrogenation duration.
NASA Astrophysics Data System (ADS)
Deosarkar, S. D.; Ghatbandhe, A. S.
2014-01-01
Molecular interactions and structural fittings in binary ethylene glycol + ethanol (EGE, x EG = 0.4111-0.0418) and ethylene glycol + water (EGW, x EG = 0.1771-0.0133) mixtures were studied through the measurement of densities (ρ), viscosities (η), and refractive indices ( n D ) at 303.15 K. Excess viscosities (η E ), molar volumes ( V m ), excess molar volumes ( V {/m E }), and molar retractions ( R M ) of the both binary systems were computed from measured properties. The measured and computed properties have been used to understand the molecular interactions in unlike solvents and structural fittings in these binary mixtures.
Babu, Jeetu S; Mondal, Chandana; Sengupta, Surajit; Karmakar, Smarajit
2016-01-28
The conditions which determine whether a material behaves in a brittle or ductile fashion on mechanical loading are still elusive and comprise a topic of active research among materials physicists and engineers. In this study, we present the results of in silico mechanical deformation experiments from two very different model solids in two and three dimensions. The first consists of particles interacting with isotropic potentials and the other has strongly direction dependent interactions. We show that in both cases, the excess vibrational density of states is one of the fundamental quantities which characterizes the ductility of the material. Our results can be checked using careful experiments on colloidal solids.
Study of a high performance evaporative heat transfer surface
NASA Technical Reports Server (NTRS)
Saaski, E. W.; Hamasaki, R. H.
1977-01-01
An evaporative surface is described for heat pipes and other two-phase heat transfer applications that consists of a hybrid composition of V-grooves and capillary wicking. Characteristics of the surface include both a high heat transfer coefficient and high heat flux capability relative to conventional open-faced screw thread surfaces. With a groove density of 12.6 cm/1 and ammonia working fluid, heat transfer coefficients in the range of 1 to 2 W/sq cm have been measured along with maximum heat flux densities in excess of 20 W/sq cm. A peak heat transfer coefficient in excess of 2.3 W/sq cm was measured with a 37.8 cm/1 hybrid surface.
Liao, Wei; Hua, Xue-Ming; Zhang, Wang; Li, Fang
2014-05-01
In the present paper, the authors calculated the plasma's peak electron temperatures under different heat source separation distance in laser- pulse GMAW hybrid welding based on Boltzmann spectrometry. Plasma's peak electron densities under the corresponding conditions were also calculated by using the Stark width of the plasma spectrum. Combined with high-speed photography, the effect of heat source separation distance on electron temperature and electron density was studied. The results show that with the increase in heat source separation distance, the electron temperatures and electron densities of laser plasma did not changed significantly. However, the electron temperatures of are plasma decreased, and the electron densities of are plasma first increased and then decreased.
A model explaining neutrino masses and the DAMPE cosmic ray electron excess
NASA Astrophysics Data System (ADS)
Fan, Yi-Zhong; Huang, Wei-Chih; Spinrath, Martin; Tsai, Yue-Lin Sming; Yuan, Qiang
2018-06-01
We propose a flavored U(1)eμ neutrino mass and dark matter (DM) model to explain the recent DArk Matter Particle Explorer (DAMPE) data, which feature an excess on the cosmic ray electron plus positron flux around 1.4 TeV. Only the first two lepton generations of the Standard Model are charged under the new U(1)eμ gauge symmetry. A vector-like fermion ψ, which is our DM candidate, annihilates into e± and μ± via the new gauge boson Z‧ exchange and accounts for the DAMPE excess. We have found that the data favors a ψ mass around 1.5 TeV and a Z‧ mass around 2.6 TeV, which can potentially be probed by the next generation lepton colliders and DM direct detection experiments.
Direct Measure of the Dense Methane Phase in Gas Shale Organic Porosity by Neutron Scattering
Eberle, Aaron P. R.; King, Hubert E.; Ravikovitch, Peter I.; ...
2016-08-30
Here, we report the first direct measurements of methane density in shale gas using small-angle neutron scattering. At a constant pressure, the density of methane in the inorganic pores is similar to the gas bulk density of the system conditions. Conversely, the methane density is 2.1 ± 0.2 times greater in the organic mesopores. Furthermore, classical density functional theory calculations show that this excess density in the organic pores persists to elevated temperatures, typical of shale gas reservoir conditions, providing new insight into the hydrocarbon storage mechanisms within these reservoirs.
Holland, J. Nathaniel; DeAngelis, Donald L.; Schultz, Stewart T.
2004-01-01
Interspecific mutualisms are often vulnerable to instability because low benefit : cost ratios can rapidly lead to extinction or to the conversion of mutualism to parasite–host or predator–prey interactions. We hypothesize that the evolutionary stability of mutualism can depend on how benefits and costs to one mutualist vary with the population density of its partner, and that stability can be maintained if a mutualist can influence demographic rates and regulate the population density of its partner. We test this hypothesis in a model of mutualism with key features of senita cactus (Pachycereus schottii) – senita moth (Upiga virescens) interactions, in which benefits of pollination and costs of larval seed consumption to plant fitness depend on pollinator density. We show that plants can maximize their fitness by allocating resources to the production of excess flowers at the expense of fruit. Fruit abortion resulting from excess flower production reduces pre–adult survival of the pollinating seed–consumer, and maintains its density beneath a threshold that would destabilize the mutualism. Such a strategy of excess flower production and fruit abortion is convergent and evolutionarily stable against invasion by cheater plants that produce few flowers and abort few to no fruit. This novel mechanism of achieving evolutionarily stable mutualism, namely interspecific population regulation, is qualitatively different from other mechanisms invoking partner choice or selective rewards, and may be a general process that helps to preserve mutualistic interactions in nature.
Petrus, Michiel L; Hu, Yinghong; Moia, Davide; Calado, Philip; Leguy, Aurélien M A; Barnes, Piers R F; Docampo, Pablo
2016-09-22
We investigated the influence of moisture on methylammonium lead iodide perovskite (MAPbI 3 ) films and solar cells derived from non-stoichiometric precursor mixtures. We followed both the structural changes under controlled air humidity through in situ X-ray diffraction, and the electronic behavior of devices prepared from these films. A small PbI 2 excess in the films improved the stability of the perovskite compared to stoichiometric samples. We assign this to excess PbI 2 layers at the perovskite grain boundaries or to the termination of the perovskite crystals with Pb and I. In contrast, the MAI-excess films composed of smaller perovskite crystals showed increased electronic disorder and reduced device performance owing to poor charge collection. Upon exposure to moisture followed by dehydration (so-called solvent annealing), these films recrystallized to form larger, highly oriented crystals with fewer electronic defects and a remarkable improvement in photocurrent and photovoltaic efficiency. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Marozava, Sviatlana; Vargas-López, Raquel; Tian, Ye; Merl-Pham, Juliane; Braster, Martin; Meckenstock, Rainer U; Smidt, Hauke; Röling, Wilfred F M; Westerhoff, Hans V
2018-06-19
Desulfitobacterium hafniense Y51 has been widely used in investigations of perchloroethylene (PCE) biodegradation, but limited information exists on its other physiological capabilities. We investigated how D. hafniense Y51 confronts the debilitating limitations of not having enough electron donor (lactate), or electron acceptor (fumarate) during cultivation in chemostats. The residual concentrations of the substrates supplied in excess were much lower than expected. Transcriptomics, proteomics, and fluxomics were integrated to investigate how this phenomenon was regulated. Through diverse regulation at both transcriptional and translational levels, strain Y51 turned to fermenting the excess lactate and disproportionating the excess fumarate under fumarate- and lactate-limiting conditions, respectively. Genes and proteins related to the utilization of a variety of alternative electron donors and acceptors absent from the medium were induced, apparently involving the Wood-Ljungdahl pathway. Through this metabolic flexibility, D. hafniense Y51 may be able to switch between different metabolic capabilities under limiting conditions. This article is protected by copyright. All rights reserved. © 2018 Society for Applied Microbiology and John Wiley & Sons Ltd.
Spatial-temporal excess mortality patterns of the 1918–1919 influenza pandemic in Spain
2014-01-01
Background The impact of socio-demographic factors and baseline health on the mortality burden of seasonal and pandemic influenza remains debated. Here we analyzed the spatial-temporal mortality patterns of the 1918 influenza pandemic in Spain, one of the countries of Europe that experienced the highest mortality burden. Methods We analyzed monthly death rates from respiratory diseases and all-causes across 49 provinces of Spain, including the Canary and Balearic Islands, during the period January-1915 to June-1919. We estimated the influenza-related excess death rates and risk of death relative to baseline mortality by pandemic wave and province. We then explored the association between pandemic excess mortality rates and health and socio-demographic factors, which included population size and age structure, population density, infant mortality rates, baseline death rates, and urbanization. Results Our analysis revealed high geographic heterogeneity in pandemic mortality impact. We identified 3 pandemic waves of varying timing and intensity covering the period from Jan-1918 to Jun-1919, with the highest pandemic-related excess mortality rates occurring during the months of October-November 1918 across all Spanish provinces. Cumulative excess mortality rates followed a south–north gradient after controlling for demographic factors, with the North experiencing highest excess mortality rates. A model that included latitude, population density, and the proportion of children living in provinces explained about 40% of the geographic variability in cumulative excess death rates during 1918–19, but different factors explained mortality variation in each wave. Conclusions A substantial fraction of the variability in excess mortality rates across Spanish provinces remained unexplained, which suggests that other unidentified factors such as comorbidities, climate and background immunity may have affected the 1918–19 pandemic mortality rates. Further archeo-epidemiological research should concentrate on identifying settings with combined availability of local historical mortality records and information on the prevalence of underlying risk factors, or patient-level clinical data, to further clarify the drivers of 1918 pandemic influenza mortality. PMID:24996457
Molecular simulation of excess isotherm and excess enthalpy change in gas-phase adsorption.
Do, D D; Do, H D; Nicholson, D
2009-01-29
We present a new approach to calculating excess isotherm and differential enthalpy of adsorption on surfaces or in confined spaces by the Monte Carlo molecular simulation method. The approach is very general and, most importantly, is unambiguous in its application to any configuration of solid structure (crystalline, graphite layer or disordered porous glass), to any type of fluid (simple or complex molecule), and to any operating conditions (subcritical or supercritical). The behavior of the adsorbed phase is studied using the partial molar energy of the simulation box. However, to characterize adsorption for comparison with experimental data, the isotherm is best described by the excess amount, and the enthalpy of adsorption is defined as the change in the total enthalpy of the simulation box with the change in the excess amount, keeping the total number (gas + adsorbed phases) constant. The excess quantities (capacity and energy) require a choice of a reference gaseous phase, which is defined as the adsorptive gas phase occupying the accessible volume and having a density equal to the bulk gas density. The accessible volume is defined as the mean volume space accessible to the center of mass of the adsorbate under consideration. With this choice, the excess isotherm passes through a maximum but always remains positive. This is in stark contrast to the literature where helium void volume is used (which is always greater than the accessible volume) and the resulting excess can be negative. Our definition of enthalpy change is equivalent to the difference between the partial molar enthalpy of the gas phase and the partial molar enthalpy of the adsorbed phase. There is no need to assume ideal gas or negligible molar volume of the adsorbed phase as is traditionally done in the literature. We illustrate this new approach with adsorption of argon, nitrogen, and carbon dioxide under subcritical and supercritical conditions.
NASA Astrophysics Data System (ADS)
Abe, Takumi; Moen, J. I.
The ICI-2 (Investigation of Cusp Irregularities-2) sounding rocket campaign was conducted in Svalbard, Norway on December 2008. The scientific objective of ICI-2 is to investigate genera-tion mechanism(s) of coherent HF radar backscatter targets. Strong coherent HF backscatter echoes are well-known phenomena in the polar ionospheric cusp, and are thought to result from field-aligned plasma irregularities with decameter scale length. However, the generation mech-anism of backscatter targets has not yet been understood, and even the altitude profile of HF cusp backscatter is unknown. The ICI-2 rocket was launched at 10:35:10 UT at Ny-˚lesund, A and reached an apogee of 330 km at about 5 minutes after the launch. All onboard systems functioned flawlessly. A comprehensive measurement of the electron density, low energy elec-tron flux, medium energy particle flux, AC and DC electric fields was conducted to exploit the potential role of the gradient drift instability versus the other suggested mechanisms. We present a result obtained from a Fixed-Biased Probe (FBP) which was aimed at measuring fine-scale (< 1 m) electron density perturbation. Our analysis of the FBP data during the rocket's flight indicates that the rocket traversed HF backscatter regions where the electron density perturbation is relatively large. The power spectrum analysis of the electron density shows that the amplitude increases not only in the decameter wavelength but also in the broad range of frequency. Characteristic features of the electron density perturbation are summarized as follows: 1) A strong perturbation of the electron density was observed by the FBP when the ICI-2 rocket passed through a front side of the poleward moving 630 nm emission region which was identified by the all-sky imager. This means that the electron density perturbation and the 630 nm emission are observed to coexist in the same region. 2) The absolute value of the electron density becomes larger in the disturbed region than in the surrounding region. The electron density gradient in the boundary with the outer region is larger in the equatorward side than in the poleward side. 3) The amplitude of the electron density perturbation is remarkably large in the equatorward edge rather than the poleward boundaries. 4) The FBP identified the electron density perturbation at three different altitudes during the rocket flight. This indicates that the perturbation likely exists not only within the narrow limits but in a larger extent in the vertical direction.
Studies of a plasma with a hot dense core in LAPD
NASA Astrophysics Data System (ADS)
van Compernolle, Bart; Gekelman, Walter; Pribyl, Patrick; Cooper, Chris
2009-11-01
Recently, considerable effort in the LArge Plasma Device at UCLA (LAPD) has gone into the study of large cathodes which would enable higher discharge currents and higher densities. The new cathode is made out of Lanthanum HexaBoride (LaB6). LaB6 has a low work function and has higher emissivity than Barium oxide coated cathodes. The operating temperature of LaB6 cathodes lies above 1600 degrees Celsius. Tests of this cathode in the Enormous Toroidal Plasma Device (ETPD) showed that densities in excess of 2 10^13 cm-3 and electron temperatures of 12 eV are feasible. Small LaB6 cathodes (3mm - 2cm) have been used before in LAPD in several experiments on heat transport and on magnetized flux ropes. The cathode presented in this paper has a 8 cm diameter, and can be positioned at different radial locations. The cathode will be pulsed into the standard background plasma (ne= 2 10^12 cm-3, .25 <=Te<=6 eV, dia = 60 cm, L = 18 m) creating a plasma with a hot dense core. We present the characterization of the core plasma at different conditions. Studies of the heat transport and density spreading at the interface between the core plasma and background plasma will be done by use of a variety of probes (Langmuir, magnetic, Mach, emissive) as well as fast photography.
Tao, Jianmin; Ye, Lin -Hui; Duan, Yuhua
2017-11-20
The primary goal of Kohn–Sham density functional theory is to evaluate the exchange-correlation contribution to electronic properties. However, the accuracy of a density functional can be affected by the electron density. Here we apply the nonempirical Tao–Mo (TM) semilocal functional to study the influence of the electron density on the exchange and correlation energies of atoms and ions, and compare the results with the commonly used nonempirical semilocal functionals local spin-density approximation (LSDA), Perdew–Burke–Ernzerhof (PBE), Tao–Perdew–Staroverov–Scuseria (TPSS), and hybrid functional PBE0. We find that the spin-restricted Hartree–Fock density yields the exchange and correlation energies in good agreement with the Optimizedmore » Effective Potential method, particularly for spherical atoms and ions. However, the errors of these semilocal and hybrid functionals become larger for self-consistent densities. We further find that the quality of the electron density have greater effect on the exchange-correlation energies of kinetic energy density-dependent meta-GGA functionals TPSS and TM than on those of the LSDA and GGA, and therefore, should have greater influence on the performance of meta-GGA functionals. Lastly, we show that the influence of the density quality on PBE0 is slightly reduced, compared to that of PBE, due to the exact mixing.« less
NASA Astrophysics Data System (ADS)
Tao, Jianmin; Ye, Lin-Hui; Duan, Yuhua
2017-12-01
The primary goal of Kohn-Sham density functional theory is to evaluate the exchange-correlation contribution to electronic properties. However, the accuracy of a density functional can be affected by the electron density. Here we apply the nonempirical Tao-Mo (TM) semilocal functional to study the influence of the electron density on the exchange and correlation energies of atoms and ions, and compare the results with the commonly used nonempirical semilocal functionals local spin-density approximation (LSDA), Perdew-Burke-Ernzerhof (PBE), Tao-Perdew-Staroverov-Scuseria (TPSS), and hybrid functional PBE0. We find that the spin-restricted Hartree-Fock density yields the exchange and correlation energies in good agreement with the Optimized Effective Potential method, particularly for spherical atoms and ions. However, the errors of these semilocal and hybrid functionals become larger for self-consistent densities. We further find that the quality of the electron density have greater effect on the exchange-correlation energies of kinetic energy density-dependent meta-GGA functionals TPSS and TM than on those of the LSDA and GGA, and therefore, should have greater influence on the performance of meta-GGA functionals. Finally, we show that the influence of the density quality on PBE0 is slightly reduced, compared to that of PBE, due to the exact mixing.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Tao, Jianmin; Ye, Lin -Hui; Duan, Yuhua
The primary goal of Kohn–Sham density functional theory is to evaluate the exchange-correlation contribution to electronic properties. However, the accuracy of a density functional can be affected by the electron density. Here we apply the nonempirical Tao–Mo (TM) semilocal functional to study the influence of the electron density on the exchange and correlation energies of atoms and ions, and compare the results with the commonly used nonempirical semilocal functionals local spin-density approximation (LSDA), Perdew–Burke–Ernzerhof (PBE), Tao–Perdew–Staroverov–Scuseria (TPSS), and hybrid functional PBE0. We find that the spin-restricted Hartree–Fock density yields the exchange and correlation energies in good agreement with the Optimizedmore » Effective Potential method, particularly for spherical atoms and ions. However, the errors of these semilocal and hybrid functionals become larger for self-consistent densities. We further find that the quality of the electron density have greater effect on the exchange-correlation energies of kinetic energy density-dependent meta-GGA functionals TPSS and TM than on those of the LSDA and GGA, and therefore, should have greater influence on the performance of meta-GGA functionals. Lastly, we show that the influence of the density quality on PBE0 is slightly reduced, compared to that of PBE, due to the exact mixing.« less
NASA Astrophysics Data System (ADS)
Adnan, Muhammad; Qamar, Anisa; Mahmood, Shahzad; Kourakis, Ioannis
2017-03-01
The dynamical characteristics of large amplitude ion-acoustic waves are investigated in a magnetized plasma comprising ions presenting space asymmetry in the equation of state and non-Maxwellian electrons. The anisotropic ion pressure is defined using the double adiabatic Chew-Golberger-Low theory. An excess in the superthermal component of the electron population is assumed, in agreement with long-tailed (energetic electron) distribution observations in space plasmas; this is modeled via a kappa-type distribution function. Large electrostatic excitations are assumed to propagate in a direction oblique to the external magnetic field. In the linear (small amplitude) regime, two electrostatic modes are shown to exist. The properties of arbitrary amplitude (nonlinear) obliquely propagating ion-acoustic solitary excitations are thus investigated via a pseudomechanical energy balance analogy, by adopting a Sagdeev potential approach. The combined effect of the ion pressure anisotropy and excess superthermal electrons is shown to alter the parameter region where solitary waves can exist. An excess in the suprathermal particles is thus shown to be associated with solitary waves, which are narrower, faster, and of larger amplitude. Ion pressure anisotropy, on the other hand, affects the amplitude of the solitary waves, which become weaker (in strength), wider (in spatial extension), and thus slower in comparison with the cold ion case.
The water-water cycle as alternative photon and electron sinks.
Asada, K
2000-10-29
The water-water cycle in chloroplasts is the photoreduction of dioxygen to water in photosystem I (PS I) by the electrons generated in photosystem II (PS II) from water. In the water-water cycle, the rate of photoreduction of dioxygen in PS I is several orders of magnitude lower than those of the disproportionation of superoxide catalysed by superoxide dismutase, the reduction of hydrogen peroxide to water catalysed by ascorbate peroxidase, and the reduction of the resulting oxidized forms of ascorbate by reduced ferredoxin or catalysed by either dehydroascorbate reductase or monodehydroascorbate reductase. The water-water cycle therefore effectively shortens the lifetimes of photoproduced superoxide and hydrogen peroxide to suppress the production of hydroxyl radicals, their interactions with the target molecules in chloroplasts, and resulting photoinhibition. When leaves are exposed to photon intensities of sunlight in excess of that required to support the fixation of CO2, the intersystem electron carriers are over-reduced, resulting in photoinhibition. Under such conditions, the water-water cycle not only scavenges active oxygens, but also safely dissipates excess photon energy and electrons, in addition to downregulation of PS II and photorespiration. The dual functions of the water-water cycle for protection from photoinhibition under photon excess stress are discussed, along with its functional evolution.
Water oxidation by a nickel-glycine catalyst.
Wang, Dong; Ghirlanda, Giovanna; Allen, James P
2014-07-23
The utilization of solar energy requires an efficient means for its storage as chemical energy. In bioinspired artificial photosynthesis, light energy can be used to drive water oxidation, but catalysts that produce molecular oxygen from water are needed to avoid excessive driving potentials. In this paper, we demonstrate the utility of a novel complex utilizing earth-abundant Ni in combination with glycine as an efficient catalyst with a modest overpotential of 0.475 ± 0.005 V at a current density of 1 mA/cm(2) at pH 11. Catalysis requires the presence of the amine moiety with the glycine most likely coordinating the Ni in a 4:1 molar ratio. The production of molecular oxygen at a high potential is verified by measurement of the change in oxygen concentration, yielding a Faradaic efficiency of 60 ± 5%. The catalytic species is most likely a heterogeneous Ni-hydroxide formed by electrochemical oxidation. This Ni species can achieve a current density of 4 mA/cm(2) that persists for at least 10 h. Based upon the observed pH dependence of the current amplitude and oxidation/reduction peaks, the catalytic mechanism is an electron-proton coupled process.
On the c-Si/SiO2 interface recombination parameters from photo-conductance decay measurements
NASA Astrophysics Data System (ADS)
Bonilla, Ruy S.; Wilshaw, Peter R.
2017-04-01
The recombination of electric charge carriers at semiconductor surfaces continues to be a limiting factor in achieving high performance optoelectronic devices, including solar cells, laser diodes, and photodetectors. The theoretical model and a solution algorithm for surface recombination have been previously reported. However, their successful application to experimental data for a wide range of both minority excess carrier concentrations and dielectric fixed charge densities has not previously been shown. Here, a parametrisation for the semiconductor-dielectric interface charge Q i t is used in a Shockley-Read-Hall extended formalism to describe recombination at the c-Si/SiO2 interface, and estimate the physical parameters relating to the interface trap density D i t , and the electron and hole capture cross-sections σ n and σ p . This approach gives an excellent description of the experimental data without the need to invoke a surface damage region in the c-Si/SiO2 system. Band-gap tail states have been observed to limit strongly the effectiveness of field effect passivation. This approach provides a methodology to determine interface recombination parameters in any semiconductor-insulator system using macro scale measuring techniques.
Molecular Orbital Principles of Oxygen-Redox Battery Electrodes.
Okubo, Masashi; Yamada, Atsuo
2017-10-25
Lithium-ion batteries are key energy-storage devices for a sustainable society. The most widely used positive electrode materials are LiMO 2 (M: transition metal), in which a redox reaction of M occurs in association with Li + (de)intercalation. Recent developments of Li-excess transition-metal oxides, which deliver a large capacity of more than 200 mAh/g using an extra redox reaction of oxygen, introduce new possibilities for designing higher energy density lithium-ion batteries. For better engineering using this fascinating new chemistry, it is necessary to achieve a full understanding of the reaction mechanism by gaining knowledge on the chemical state of oxygen. In this review, a summary of the recent advances in oxygen-redox battery electrodes is provided, followed by a systematic demonstration of the overall electronic structures based on molecular orbitals with a focus on the local coordination environment around oxygen. We show that a π-type molecular orbital plays an important role in stabilizing the oxidized oxygen that emerges upon the charging process. Molecular orbital principles are convenient for an atomic-level understanding of how reversible oxygen-redox reactions occur in bulk, providing a solid foundation toward improved oxygen-redox positive electrode materials for high energy-density batteries.
The role of nitrogen doping in ALD Ta2O5 and its influence on multilevel cell switching in RRAM
NASA Astrophysics Data System (ADS)
Sedghi, N.; Li, H.; Brunell, I. F.; Dawson, K.; Potter, R. J.; Guo, Y.; Gibbon, J. T.; Dhanak, V. R.; Zhang, W. D.; Zhang, J. F.; Robertson, J.; Hall, S.; Chalker, P. R.
2017-03-01
The role of nitrogen doping on the stability and memory window of resistive state switching in N-doped Ta2O5 deposited by atomic layer deposition is elucidated. Nitrogen incorporation increases the stability of resistive memory states which is attributed to neutralization of electronic defect levels associated with oxygen vacancies. The density functional simulations with the screened exchange hybrid functional approximation show that the incorporation of nitrogen dopant atoms in the oxide network removes the O vacancy midgap defect states, thus nullifying excess defects and eliminating alternative conductive paths. By effectively reducing the density of vacancy-induced defect states through N doping, 3-bit multilevel cell switching is demonstrated, consisting of eight distinctive resistive memory states achieved by either controlling the set current compliance or the maximum voltage during reset. Nitrogen doping has a threefold effect: widening the switching memory window to accommodate the more intermediate states, improving the stability of states, and providing a gradual reset for multi-level cell switching during reset. The N-doped Ta2O5 devices have relatively small set and reset voltages (< 1 V) with reduced variability due to doping.
Wu, Tzi-Yi; Chen, Bor-Kuan; Hao, Lin; Lin, Yuan-Chung; Wang, H. Paul; Kuo, Chung-Wen; Sun, I-Wen
2011-01-01
This work includes specific basic characterization of synthesized glycine-based Ionic Liquid (IL) [QuatGly-OEt][EtOSO3] by NMR, elementary analysis and water content. Thermophysical properties such as density, ρ, viscosity, η, refractive index, n, and conductivity, κ, for the binary mixture of [QuatGly-OEt][EtOSO3] with poly(ethylene glycol) (PEG) [Mw = 200] are measured over the whole composition range. The temperature dependence of density and dynamic viscosity for neat [QuatGly-OEt][EtOSO3] and its binary mixture can be described by an empirical polynomial equation and by the Vogel-Tammann-Fucher (VTF) equation, respectively. The thermal expansion coefficient of the ILs is ascertained using the experimental density results, and the excess volume expansivity is evaluated. The negative values of excess molar volume for the mixture indicate the ion-dipole interactions and packing between IL and PEG oligomer. The results of binary excess property (VmE ) and deviations (Δη, Δxn, ΔΨn, ΔxR, and ΔΨR) are discussed in terms of molecular interactions and molecular structures in the binary mixture. PMID:22272102
NASA Astrophysics Data System (ADS)
Hasan, E.; Dimitrova, M.; Havlicek, J.; Mitošinková, K.; Stöckel, J.; Varju, J.; Popov, Tsv K.; Komm, M.; Dejarnac, R.; Hacek, P.; Panek, R.; the COMPASS Team
2018-02-01
This paper presents the results from swept probe measurements in the divertor region of the COMPASS tokamak in D-shaped, L-mode discharges, with toroidal magnetic field BT = 1.15 T, plasma current Ip = 180 kA and line-average electron densities varying from 2 to 8×1019 m-3. Using neutral beam injection heating, the electron energy distribution function is studied before and during the application of the beam. The current-voltage characteristics data are processed using the first-derivative probe technique. This technique allows one to evaluate the plasma potential and the real electron energy distribution function (respectively, the electron temperatures and densities). At the low average electron density of 2×1019 m-3, the electron energy distribution function is bi-Maxwellian with a low-energy electron population with temperatures 4-6 eV and a high-energy electron group 12-25 eV. As the line-average electron density is increased, the electron temperatures decrease. At line-average electron densities above 7×1019 m-3, the electron energy distribution function is found to be Maxwellian with a temperature of 6-8.5 eV. The effect of the neutral beam injection heating power in the divertor region is also studied.
Excess molar volumes of mixtures of hexane + natural oils from 298.15 to 313.15 K
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gonzalez, C.; Resa, J.M.; Ruiz, A.
1997-03-01
Excess molar volume data for mixtures containing hexane with three edible oils: olive, corn, and pip of grape have been determined from density measurements at various temperatures between 298.15 and 313.15 K using a vibrating tube densimeter. Results have been correlated by the Redlich-Kister equation. Systems showed negative deviations from ideality in the whole composition range.
NASA Astrophysics Data System (ADS)
Paul, M. Danish John; Shruthi, N.; Anantharaj, R.
2018-04-01
The derived thermodynamic properties like excess molar volume, partial molar volume, excess partial molar volume and apparent volume of binary mixture of acetic acid + n-butanolandacetic acid + water has been investigated using measured density of mixtures at temperatures from 293.15 K to 343.15.
Varbo, Anette; Benn, Marianne; Smith, George Davey; Timpson, Nicholas J; Tybjaerg-Hansen, Anne; Nordestgaard, Børge G
2015-02-13
Obesity leads to increased ischemic heart disease (IHD) risk, but the risk is thought to be mediated through intermediate variables and may not be caused by increased weight per se. To test the hypothesis that the increased IHD risk because of obesity is mediated through lipoproteins, blood pressure, glucose, and C-reactive protein. Approximately 90 000 participants from Copenhagen were included in a Mendelian randomization design with mediation analyses. Associations were examined using conventional measurements of body mass index and intermediate variables and using genetic variants associated with these. During ≤22 years of follow-up 13 945 participants developed IHD. The increased IHD risk caused by obesity was partly mediated through elevated levels of nonfasting remnant cholesterol and low-density lipoprotein cholesterol, through elevated blood pressure, and possibly also through elevated nonfasting glucose levels; however, reduced high-density lipoprotein cholesterol and elevated C-reactive protein levels were not mediators in genetic analyses. The 3 intermediate variables that explained the highest excess risk of IHD from genetically determined obesity were low-density lipoprotein cholesterol with 8%, systolic blood pressure with 7%, and remnant cholesterol with 7% excess risk of IHD. Corresponding observational excess risks using conventional body mass index were 21%, 11%, and 20%, respectively. The increased IHD risk because of obesity was partly mediated through elevated levels of nonfasting remnant and low-density lipoprotein cholesterol and through elevated blood pressure. Our results suggest that there may be benefit to gain by reducing levels of these risk factors in obese individuals not able to achieve sustained weight loss. © 2014 American Heart Association, Inc.
Effect of protons on the redox chemistry of colloidal zinc oxide nanocrystals.
Valdez, Carolyn N; Braten, Miles; Soria, Ashley; Gamelin, Daniel R; Mayer, James M
2013-06-12
Electron transfer (ET) reactions of colloidal 3-5 nm diameter ZnO nanocrystals (NCs) with molecular reagents are explored in aprotic solvents. Addition of an excess of the one-electron reductant Cp*2Co (Cp* = pentamethylcyclopentadienyl) gives NCs that are reduced by up to 1-3 electrons per NC. Protons can be added stoichiometrically to the NCs by either a photoreduction/oxidation sequence or by addition of acid. The added protons facilitate the reduction of the ZnO NCs. In the presence of acid, NC reduction by Cp*2Co can be increased to over 15 electrons per NC. The weaker reductant Cp*2Cr transfers electrons only to ZnO NCs in the presence of protons. Cp*2M(+) counterions are much less effective than protons at stabilizing reduced NCs. With excess Cp*2Co or Cp*2Cr, the extent of reduction increases roughly linearly with the number of protons added. Some of the challenges in understanding these results are discussed.
Device and method for imploding a microsphere with a fast liner
Thode, Lester E.
1981-01-01
A device and method for relativistic electron beam heating of a high-density plasma in a small localized region. A relativistic electron beam generator or accelerator produces a high-voltage electron beam which propagates along a vacuum drift tube and is modulated to initiate electron bunching within the beam. The beam is then directed through a low-density gas chamber which provides isolation between the vacuum modulator and the relativistic electron beam target. The relativistic beam is then applied to a high-density target plasma which typically comprises DT, DD, hydrogen boron or similar thermonuclear gas at a density of 10.sup.17 to 10.sup.20 electrons per cubic centimeter. The target gas is ionized prior to application of the electron beam by means of a laser or other preionization source to form a plasma. Utilizing a relativistic electron beam with an individual particle energy exceeding 3 MeV, classical scattering by relativistic electrons passing through isolation foils is negligible. As a result, relativistic streaming instabilities are initiated within the high-density target plasma causing the relativistic electron beam to efficiently deposit its energy and momentum into a small localized region of the high-density plasma target. Fast liners disposed in the high-density target plasma are explosively or ablatively driven to implosion by a heated annular plasma surrounding the fast liner generated by an annular relativistic electron beam. An azimuthal magnetic field produced by axial current flow in the annular plasma, causes the energy in the heated annular plasma to converge on the fast liner to drive the fast liner to implode a microsphere.
NASA Astrophysics Data System (ADS)
Zhang, Zhiyuan; Jiang, Wanrun; Wang, Bo; Wang, Zhigang
2017-06-01
We introduce the orbital-resolved electron density projected integral (EDPI) along the H-bond in the real space to quantitatively investigate the specific contribution from the molecular orbitals (MOs) aspect in (H2O)2. Calculation results show that, the electronic occupied orbital (HOMO-4) of (H2O)2 accounts for about surprisingly 40% of the electron density at the bond critical point. Moreover, the electronic density difference analysis visualizes the electron accumulating effect of the orbital interaction within the H-bond between water molecules, supporting its covalent-like character. Our work expands the understanding of H-bond with specific contributions from certain MOs.
2D microwave imaging reflectometer electronics.
Spear, A G; Domier, C W; Hu, X; Muscatello, C M; Ren, X; Tobias, B J; Luhmann, N C
2014-11-01
A 2D microwave imaging reflectometer system has been developed to visualize electron density fluctuations on the DIII-D tokamak. Simultaneously illuminated at four probe frequencies, large aperture optics image reflections from four density-dependent cutoff surfaces in the plasma over an extended region of the DIII-D plasma. Localized density fluctuations in the vicinity of the plasma cutoff surfaces modulate the plasma reflections, yielding a 2D image of electron density fluctuations. Details are presented of the receiver down conversion electronics that generate the in-phase (I) and quadrature (Q) reflectometer signals from which 2D density fluctuation data are obtained. Also presented are details on the control system and backplane used to manage the electronics as well as an introduction to the computer based control program.
Ekerfelt, Henrik; Hansson, Martin; Gallardo González, Isabel; Davoine, Xavier; Lundh, Olle
2017-09-25
One challenge in the development of laser wakefield accelerators is to demonstrate sufficient control and reproducibility of the parameters of the generated bunches of accelerated electrons. Here we report on a numerical study, where we demonstrate that trapping using density down-ramps allows for tuning of several electron bunch parameters by varying the properties of the density down-ramp. We show that the electron bunch length is determined by the difference in density before and after the ramp. Furthermore, the transverse emittance of the bunch is controlled by the steepness of the ramp. Finally, the amount of trapped charge depends both on the density difference and on the steepness of the ramp. We emphasize that both parameters of the density ramp are feasible to vary experimentally. We therefore conclude that this tunable electron accelerator makes it suitable for a wide range of applications, from those requiring short pulse length and low emittance, such as the free-electron lasers, to those requiring high-charge, large-emittance bunches to maximize betatron X-ray generation.
Electron density studies of methyl cellobioside
USDA-ARS?s Scientific Manuscript database
Experimental X-ray diffraction crystallography determines the variations in electron density that result from the periodic array of atoms in a crystal. Normally, the positions and type of atom are determined from the electron density based on an approximation that the atoms are spherical. However, t...
Using public health and community partnerships to reduce density of alcohol outlets.
Jernigan, David H; Sparks, Michael; Yang, Evelyn; Schwartz, Randy
2013-04-11
Excessive alcohol use causes approximately 80,000 deaths in the United States each year. The Guide to Community Preventive Services recommends reducing the density of alcohol outlets - the number of physical locations in which alcoholic beverages are available for purchase either per area or per population - through the use of regulatory authority as an effective strategy for reducing excessive alcohol consumption and related harms. We briefly review the research on density of alcohol outlets and public health and describe the powers localities have to influence alcohol outlet density. We summarize Regulating Alcohol Outlet Density: An Action Guide, which describes steps that local communities can take to reduce outlet density and the key competencies and resources of state and local health departments. These include expertise in public health surveillance and evaluation methods, identification and tracking of outcome measures, geographic information systems (GIS) mapping, community planning and development of multisector efforts, and education of community leaders and policy makers. We illustrate the potential for partnerships between public health agencies and local communities by presenting a contemporary case study from Omaha, Nebraska. Public health agencies have a vital and necessary role to play in efforts to reduce alcohol outlet density. They are often unaware of the potential of this strategy and have strong potential partners in the thousands of community coalitions nationwide that are focused on reducing alcohol-related problems.
Using Public Health and Community Partnerships to Reduce Density of Alcohol Outlets
Sparks, Michael; Yang, Evelyn; Schwartz, Randy
2013-01-01
Excessive alcohol use causes approximately 80,000 deaths in the United States each year. The Guide to Community Preventive Services recommends reducing the density of alcohol outlets — the number of physical locations in which alcoholic beverages are available for purchase either per area or per population — through the use of regulatory authority as an effective strategy for reducing excessive alcohol consumption and related harms. We briefly review the research on density of alcohol outlets and public health and describe the powers localities have to influence alcohol outlet density. We summarize Regulating Alcohol Outlet Density: An Action Guide, which describes steps that local communities can take to reduce outlet density and the key competencies and resources of state and local health departments. These include expertise in public health surveillance and evaluation methods, identification and tracking of outcome measures, geographic information systems (GIS) mapping, community planning and development of multisector efforts, and education of community leaders and policy makers. We illustrate the potential for partnerships between public health agencies and local communities by presenting a contemporary case study from Omaha, Nebraska. Public health agencies have a vital and necessary role to play in efforts to reduce alcohol outlet density. They are often unaware of the potential of this strategy and have strong potential partners in the thousands of community coalitions nationwide that are focused on reducing alcohol-related problems. PMID:23578401
Thermal imaging diagnostics of high-current electron beams.
Pushkarev, A; Kholodnaya, G; Sazonov, R; Ponomarev, D
2012-10-01
The thermal imaging diagnostics of measuring pulsed electron beam energy density is presented. It provides control of the electron energy spectrum and a measure of the density distribution of the electron beam cross section, the spatial distribution of electrons with energies in the selected range, and the total energy of the electron beam. The diagnostics is based on the thermal imager registration of the imaging electron beam thermal print in a material with low bulk density and low thermal conductivity. Testing of the thermal imaging diagnostics has been conducted on a pulsed electron accelerator TEU-500. The energy of the electrons was 300-500 keV, the density of the electron current was 0.1-0.4 kA/cm(2), the duration of the pulse (at half-height) was 60 ns, and the energy in the pulse was up to 100 J. To register the thermal print, a thermal imager Fluke-Ti10 was used. Testing showed that the sensitivity of a typical thermal imager provides the registration of a pulsed electron beam heat pattern within one pulse with energy density over 0.1 J/cm(2) (or with current density over 10 A/cm(2), pulse duration of 60 ns and electron energy of 400 keV) with the spatial resolution of 0.9-1 mm. In contrast to the method of using radiosensitive (dosimetric) materials, thermal imaging diagnostics does not require either expensive consumables, or plenty of processing time.
NASA Technical Reports Server (NTRS)
Guirguis, Kamal; Price, Daniel S.
1990-01-01
Hand-held power tool shaves excess metal from inside circumference of welded duct. Removes excess metal deposited by penetration of tungsten/inert-gas weld or by spatter from electron-beam weld. Produces smooth transition across joint. Easier to use and not prone to overshaving. Also cuts faster, removing 35 in. (89 cm) of weld bead per hour.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Raymund, T.D.
Recently, several tomographic techniques for ionospheric electron density imaging have been proposed. These techniques reconstruct a vertical slice image of electron density using total electron content data. The data are measured between a low orbit beacon satellite and fixed receivers located along the projected orbital path of the satellite. By using such tomographic techniques, it may be possible to inexpensively (relative to incoherent scatter techniques) image the ionospheric electron density in a vertical plane several times per day. The satellite and receiver geometry used to measure the total electron content data causes the data to be incomplete; that is, themore » measured data do not contain enough information to completely specify the ionospheric electron density distribution in the region between the satellite and the receivers. A new algorithm is proposed which allows the incorporation of other complementary measurements, such as those from ionosondes, and also includes ways to include a priori information about the unknown electron density distribution in the reconstruction process. The algorithm makes use of two-dimensional basis functions. Illustrative application of this algorithm is made to simulated cases with good results. The technique is also applied to real total electron content (TEC) records collected in Scandinavia in conjunction with the EISCAT incoherent scatter radar. The tomographic reconstructions are compared with the incoherent scatter electron density images of the same region of the ionosphere.« less
Comparison of liquid-state anomalies in Stillinger-Weber models of water, silicon, and germanium
NASA Astrophysics Data System (ADS)
Dhabal, Debdas; Chakravarty, Charusita; Molinero, Valeria; Kashyap, Hemant K.
2016-12-01
We use molecular dynamics simulations to compare and contrast the liquid-state anomalies in the Stillinger-Weber models of monatomic water (mW), silicon (Si), and germanium (Ge) over a fairly wide range of temperatures and densities. The relationships between structure, entropy, and mobility, as well as the extent of the regions of anomalous behavior, are discussed as a function of the degree of tetrahedrality. We map out the cascade of density, structural, pair entropy, excess entropy, viscosity, and diffusivity anomalies for these three liquids. Among the three liquids studied here, only mW displays anomalies in the thermal conductivity, and this anomaly is evident only at very low temperatures. Diffusivity and viscosity, on the other hand, show pronounced anomalous regions for the three liquids. The temperature of maximum density of the three liquids shows re-entrant behavior consistent with either singularity-free or liquid-liquid critical point scenarios proposed to explain thermodynamic anomalies. The order-map, which shows the evolution of translational versus tetrahedral order in liquids, is different for Ge than for Si and mW. We find that although the monatomic water reproduces several thermodynamic and dynamic properties of rigid-body water models (e.g., SPC/E, TIP4P/2005), its sequence of anomalies follows, the same as Si and Ge, the silica-like hierarchy: the region of dynamic (diffusivity and viscosity) anomalies encloses the region of structural anomalies, which in turn encloses the region of density anomaly. The hierarchy of the anomalies based on excess entropy and Rosenfeld scaling, on the other hand, reverses the order of the structural and dynamic anomalies, i.e., predicts that the three Stillinger-Weber liquids follow a water-like hierarchy of anomalies. We investigate the scaling of diffusivity, viscosity, and thermal conductivity with the excess entropy of the liquid and find that for dynamical properties that present anomalies there is no universal scaling of the reduced property with excess entropy for the whole range of temperatures and densities. Instead, Rosenfeld's scaling holds for all the three liquids at high densities and high temperatures, although deviations from simple exponential dependence are observed for diffusivity and viscosity at lower temperatures and intermediate densities. The slope of the scaling of transport properties obtained for Ge is comparable to that obtained for simple liquids, suggesting that this low tetrahedrality liquid, although it stabilizes a diamond crystal, is already close to simple liquid behavior for certain properties.
Comparison of liquid-state anomalies in Stillinger-Weber models of water, silicon, and germanium.
Dhabal, Debdas; Chakravarty, Charusita; Molinero, Valeria; Kashyap, Hemant K
2016-12-07
We use molecular dynamics simulations to compare and contrast the liquid-state anomalies in the Stillinger-Weber models of monatomic water (mW), silicon (Si), and germanium (Ge) over a fairly wide range of temperatures and densities. The relationships between structure, entropy, and mobility, as well as the extent of the regions of anomalous behavior, are discussed as a function of the degree of tetrahedrality. We map out the cascade of density, structural, pair entropy, excess entropy, viscosity, and diffusivity anomalies for these three liquids. Among the three liquids studied here, only mW displays anomalies in the thermal conductivity, and this anomaly is evident only at very low temperatures. Diffusivity and viscosity, on the other hand, show pronounced anomalous regions for the three liquids. The temperature of maximum density of the three liquids shows re-entrant behavior consistent with either singularity-free or liquid-liquid critical point scenarios proposed to explain thermodynamic anomalies. The order-map, which shows the evolution of translational versus tetrahedral order in liquids, is different for Ge than for Si and mW. We find that although the monatomic water reproduces several thermodynamic and dynamic properties of rigid-body water models (e.g., SPC/E, TIP4P/2005), its sequence of anomalies follows, the same as Si and Ge, the silica-like hierarchy: the region of dynamic (diffusivity and viscosity) anomalies encloses the region of structural anomalies, which in turn encloses the region of density anomaly. The hierarchy of the anomalies based on excess entropy and Rosenfeld scaling, on the other hand, reverses the order of the structural and dynamic anomalies, i.e., predicts that the three Stillinger-Weber liquids follow a water-like hierarchy of anomalies. We investigate the scaling of diffusivity, viscosity, and thermal conductivity with the excess entropy of the liquid and find that for dynamical properties that present anomalies there is no universal scaling of the reduced property with excess entropy for the whole range of temperatures and densities. Instead, Rosenfeld's scaling holds for all the three liquids at high densities and high temperatures, although deviations from simple exponential dependence are observed for diffusivity and viscosity at lower temperatures and intermediate densities. The slope of the scaling of transport properties obtained for Ge is comparable to that obtained for simple liquids, suggesting that this low tetrahedrality liquid, although it stabilizes a diamond crystal, is already close to simple liquid behavior for certain properties.
Influence of propellant choice on MPD arcjet cathode surface current density distribution
NASA Astrophysics Data System (ADS)
Sheshadri, T. S.
1989-10-01
The radial current density on an MPD arcjet cathode surface is theoretically investigated for five propellants. It is found that excessive current concentration at the upstream end of the cathode occurs in the case of hydrogen. This undesirable effect is traced to the higher electrical conductivity of hydrogen plasma.
Plugged In: Electronics Use in Youth and Young Adults with Autism Spectrum Disorder
ERIC Educational Resources Information Center
MacMullin, Jennifer A.; Lunsky, Yona; Weiss, Jonathan A.
2016-01-01
Although electronic technology currently plays an integral role for most youth, there are growing concerns of its excessive and compulsive use. This study documents patterns and impact of electronics use in individuals with autism spectrum disorder compared to typically developing peers. Participants included 172 parents of typically developing…
Infrared spectroscopy of hydrated naphthalene cluster anions.
Knurr, Benjamin J; Adams, Christopher L; Weber, J Mathias
2012-09-14
We present infrared spectra of mass-selected C(10)H(8)(-)·(H(2)O)(n)·Ar(m) cluster anions (n = 1-6) obtained by Ar predissociation spectroscopy. The experimental spectra are compared with predicted spectra from density functional theory calculations. The OH groups of the water ligands are involved in H-bonds to other water molecules or to the π system of the naphthalene anion, which accommodates the excess electron. The interactions in the water network are generally found to be more important than those between water molecules and the ion. For 2 ≤ n ≤ 4 the water molecules form single layer water networks on one side of the naphthalene anion, while for n = 5 and 6, cage and multilayer structures become more energetically favorable. For cluster sizes with more than 3 water molecules, multiple conformers are likely to be responsible for the experimental spectra.
Spectroscopic studies of the physical origin of environmental aging effects on doped graphene
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chang, J.-K.; Department of Electrical Engineering, Graduate Institute of Photonics and Optoelectronics, National Taiwan University, Taipei 10617, Taiwan; Hsu, C.-C.
The environmental aging effect of doped graphene is investigated as a function of the organic doping species, humidity, and the number of graphene layers adjacent to the dopant by studies of the Raman spectroscopy, x-ray and ultraviolet photoelectron spectroscopy, scanning electron microscopy, infrared spectroscopy, and electrical transport measurements. It is found that higher humidity and structural defects induce faster degradation in doped graphene. Detailed analysis of the spectroscopic data suggest that the physical origin of the aging effect is associated with the continuing reaction of H{sub 2}O molecules with the hygroscopic organic dopants, which leads to formation of excess chemicalmore » bonds, reduction in the doped graphene carrier density, and proliferation of damages from the graphene grain boundaries. These environmental aging effects are further shown to be significantly mitigated by added graphene layers.« less
Effect of urea and glycerol on the adsorption of ribonuclease A at the air-water interface.
Hüsecken, Anne K; Evers, Florian; Czeslik, Claus; Tolan, Metin
2010-08-17
This study reports on the influence of nonionic cosolvents on the interfacial structure of ribonuclease A (RNase) adsorbed at the air-water interface. We applied X-ray reflectometry to obtain detailed volume fraction profiles of the adsorbed layers and to follow the effect of glycerol and urea on the adsorbate structure as a function of cosolvent concentration. Under all conditions studied, the adsorbed RNase layer maintains its compact shape, and the adsorbed RNase molecules adopt a flat-on orientation at the interface. Both kosmotropic glycerol and chaotropic urea exert profound effects on the adsorbate: The surface excess decreases linearly with glycerol content and is also reduced at low urea concentration. However, at high urea concentration, parts of the adsorbed layer are dehydrated and become exposed to air. The electron density and volume fraction profiles of the adsorbed protein provide clear evidence that these effects are ruled by different mechanisms.
Nano-indentation used to study pyramidal slip in GaN single crystals
NASA Astrophysics Data System (ADS)
Krimsky, E.; Jones, K. A.; Tompkins, R. P.; Rotella, P.; Ligda, J.; Schuster, B. E.
2018-02-01
The nucleation and structure of dislocations created by the nano-indentation of GaN samples with dislocation densities ≈103, 106 or 109 ⊥/cm2 were studied in the interest of learning how dislocations can be created to relieve the mismatch strain in ternary nitride films grown on (0001) oriented binary nitride substrates. Using transmission electron microscopy and stress analyses to assist in interpreting the nano-indentation data, we determined that the pop-ins in the indenter load vs. penetration depth curves are created by an avalanche process at stresses well above the typical yield stress. The process begins by the homogeneous formation of a basal plane screw dislocation that triggers the formation of pyramidal and other basal plane dislocations that relieve the excess stored elastic energy. It appears that pyramidal slip can occur on either the {1122} or {0111} planes, as there is little resistance to the cross slip of screw dislocations.
NASA Astrophysics Data System (ADS)
Reitsma, G.; Boschman, L.; Deuzeman, M. J.; González-Magaña, O.; Hoekstra, S.; Cazaux, S.; Hoekstra, R.; Schlathölter, T.
2014-08-01
We have investigated the response of superhydrogenated gas-phase coronene cations upon soft x-ray absorption. Carbon (1s)⟶π⋆ transitions were resonantly excited at hν =285 eV. The resulting core hole is then filled in an Auger decay process, with the excess energy being released in the form of an Auger electron. Predominantly highly excited dications are thus formed, which cool down by hydrogen emission. In superhydrogenated systems, the additional H atoms act as a buffer, quenching loss of native H atoms and molecular fragmentation. Dissociation and transition state energies for several H loss channels were computed by means of density functional theory. Using these energies as input into an Arrhenius-type cascade model, very good agreement with the experimental data is found. The results have important implications for the survival of polyaromatic hydrocarbons in the interstellar medium and reflect key aspects of graphene hydrogenation.
Silicon crystallization in nanodot arrays organized by block copolymer lithography
NASA Astrophysics Data System (ADS)
Perego, Michele; Andreozzi, Andrea; Seguini, Gabriele; Schamm-Chardon, Sylvie; Castro, Celia; BenAssayag, Gerard
2014-12-01
Asymmetric polystyrene- b-polymethylmethacrylate (PS- b-PMMA) block copolymers are used to fabricate nanoporous PS templates with different pore diameter depending on the specific substrate neutralization protocol. The resulting polymeric templates are used as masks for the subsequent deposition of a thin ( h = 5 nm) amorphous Si layer by electron beam evaporation. After removal of the polymeric film and of the silicon excess, well-defined hexagonally packed amorphous Si nanodots are formed on the substrate. Their average diameter ( d < 20 nm), density (1.2 × 1011 cm-2), and lateral distribution closely mimic the original nanoporous template. Upon capping with SiO2 and high temperature annealing (1050 °C, N2), each amorphous Si nanodot rearranges in agglomerates of Si nanocrystals ( d < 4 nm). The average diameter and shape of these Si nanocrystals strongly depend on the size of the initial Si nanodot.
Production of dense plasmas in a hypocycloidal pinch apparatus
NASA Technical Reports Server (NTRS)
Lee, J. H.; Mcfarland, D. R.; Hohl, F.
1977-01-01
A high-power pinch apparatus consisting of disk electrodes was developed, and diagnostic measurements to study its mechanism of dense plasma production have been made. The collapse fronts of the current sheets are well organized, and dense plasma foci are produced on the axis with radial stability in excess of 5 microsec. A plasma density greater than 10 to the 18th power per cu cm is determined with Stark broadening and CO2 laser absorption. Essentially complete absorption of a high-energy CO2 laser beam has been observed. A plasma temperature of approximately 1 keV is measured with differential transmission of soft X-rays through thin foils. The advantages of this apparatus over the coaxial plasma focus are improvements in (1) plasma volume, (2) stability, (3) containment time, (4) access to additional heating by laser or electron beams, and (5) the possibility of scaling up to a multiple array for high-power operation.
Dense plasma focus production in a hypocycloidal pinch
NASA Technical Reports Server (NTRS)
Lee, J. H.; Mcfarland, D. R.; Hohl, F.
1975-01-01
A type of high-power pinch apparatus consisting of disk electrodes was developed, and diagnostic measurements to study its mechanism of dense plasma production were made. The collapse fronts of the current sheets are well organized, and dense plasma focuses are produced on the axis with radial stability in excess of 5 microns. A plasma density greater than 10 to the 18th power/cubic cm was determined with Stark broadening and CO2 laser absorption. A plasma temperature of approximately 1 keV was measured with differential transmission of soft X-rays through thin foils. Essentially complete absorption of a high-energy CO2 laser beam was observed. The advantages of this apparatus over the coaxial plasma focus are in (1) the plasma volume, (2) the stability, (3) the containment time, (4) the easy access to additional heating by laser or electron beams, and (5) the possibility of scaling up to a multiple array for high-power operation.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Verheest, Frank, E-mail: frank.verheest@ugent.be; School of Chemistry and Physics, University of KwaZulu-Natal, Durban 4000; Hellberg, Manfred A., E-mail: hellberg@ukzn.ac.za
The propagation of arbitrary amplitude electron-acoustic solitons and double layers is investigated in a plasma containing cold positive ions, cool adiabatic and hot isothermal electrons, with the retention of full inertial effects for all species. For analytical tractability, the resulting Sagdeev pseudopotential is expressed in terms of the hot electron density, rather than the electrostatic potential. The existence domains for Mach numbers and hot electron densities clearly show that both rarefactive and compressive solitons can exist. Soliton limitations come from the cool electron sonic point, followed by the hot electron sonic point, until a range of rarefactive double layers occurs.more » Increasing the relative cool electron density further yields a switch to compressive double layers, which ends when the model assumptions break down. These qualitative results are but little influenced by variations in compositional parameters. A comparison with a Boltzmann distribution for the hot electrons shows that only the cool electron sonic point limit remains, giving higher maximum Mach numbers but similar densities, and a restricted range in relative hot electron density before the model assumptions are exceeded. The Boltzmann distribution can reproduce neither the double layer solutions nor the switch in rarefactive/compressive character or negative/positive polarity.« less
Valdivia, M P; Stutman, D; Stoeckl, C; Mileham, C; Begishev, I A; Theobald, W; Bromage, J; Regan, S P; Klein, S R; Muñoz-Cordovez, G; Vescovi, M; Valenzuela-Villaseca, V; Veloso, F
2016-11-01
Talbot-Lau X-ray deflectometry (TXD) has been developed as an electron density diagnostic for High Energy Density (HED) plasmas. The technique can deliver x-ray refraction, attenuation, elemental composition, and scatter information from a single Moiré image. An 8 keV Talbot-Lau interferometer was deployed using laser and x-pinch backlighters. Grating survival and electron density mapping were demonstrated for 25-29 J, 8-30 ps laser pulses using copper foil targets. Moiré pattern formation and grating survival were also observed using a copper x-pinch driven at 400 kA, ∼1 kA/ns. These results demonstrate the potential of TXD as an electron density diagnostic for HED plasmas.
Valdivia, M. P.; Stutman, D.; Stoeckl, C.; ...
2016-04-21
Talbot-Lau X-ray Deflectometry has been developed as an electron density diagnostic for High Energy Density plasmas. The technique can deliver x-ray refraction, attenuation, elemental composition, and scatter information from a single Moiré image. An 8 keV Talbot-Lau interferometer was deployed using laser and x-pinch backlighters. Grating survival and electron density mapping was demonstrated for 25-29 J, 8-30 ps laser pulses using copper foil targets. Moire pattern formation and grating survival was also observed using a copper x-pinch driven at 400 kA, ~1 kA/ns. Lastly, these results demonstrate the potential of TXD as an electron density diagnostic for HED plasmas.
Keyvani, Zahra Alimohammadi; Shahbazian, Shant; Zahedi, Mansour
2016-10-18
The equivalence of the molecular graphs emerging from the comparative analysis of the optimized and the promolecule electron densities in two hundred and twenty five unsubstituted hydrocarbons was recently demonstrated [Keyvani et al. Chem. Eur. J. 2016, 22, 5003]. Thus, the molecular graph of an optimized molecular electron density is not shaped by the formation of the C-H and C-C bonds. In the present study, to trace the fingerprint of the C-H and C-C bonds in the electron densities of the same set of hydrocarbons, the amount of electron density and its Laplacian at the (3, -1) critical points associated with these bonds are derived from both optimized and promolecule densities, and compared in a newly proposed comparative analysis. The analysis not only conforms to the qualitative picture of the electron density build up between two atoms upon formation of a bond in between, but also quantifies the resulting accumulation of the electron density at the (3, -1) critical points. The comparative analysis also reveals a unified mode of density accumulation in the case of 2318 studied C-H bonds, but various modes of density accumulation are observed in the case of 1509 studied C-C bonds and they are classified into four groups. The four emerging groups do not always conform to the traditional classification based on the bond orders. Furthermore, four C-C bonds described as exotic bonds in previous studies, for example the inverted C-C bond in 1,1,1-propellane, are naturally distinguished from the analysis. © 2016 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.
Ion microprobe magnesium isotope analysis of plagioclase and hibonite from ordinary chondrites
NASA Technical Reports Server (NTRS)
Hinton, R. W.; Bischoff, A.
1984-01-01
Ion and electron microprobes were used to examine Mg-26 excesses from Al-26 decay in four Al-rich objects from the type 3 ordinary hibonite clast in the Dhajala chondrite. The initial Al-26/Al-27 ratio was actually significantly lower than Al-rich inclusions in carbonaceous chondrites. Also, no Mg-26 excesses were found in three plagioclase-bearing chondrules that were also examined. The Mg-26 excesses in the hibonite chondrites indicated a common origin for chondrites with the excesses. The implied Al-26 content in a proposed parent body could not, however, be confirmed as a widespread heat source in the early solar system.
The optical/ultraviolet excess of isolated neutron stars in the resonant cyclotron scattering model
NASA Astrophysics Data System (ADS)
Tong, Hao; Xu, Ren-Xin; Song, Li-Ming
2011-12-01
X-ray dim isolated neutron stars are peculiar pulsar-like objects, characterized by their Planck-like spectrum. In studying their spectral energy distributions, optical/ultraviolet (UV) excess is a long standing problem. Recently Kaplan et al. measured the optical/UV excess for all seven sources, which is understandable in the resonant cyclotron scattering (RCS) model previously addressed. The RCS model calculations show that the RCS process can account for the observed optical/UV excess for most sources. The flat spectrum of RX J2143.0+0654 may be due to contributions from the bremsstrahlung emission of the electron system in addition to the RCS process.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Stash, A.I.; Tsirelson, V.G.
2005-03-01
Methods for calculating some properties of molecules and crystals from the electron density reconstructed from a precise X-ray diffraction experiment using the multipole model are considered. These properties include, on the one hand, the characteristics of the electron density and the inner-crystal electrostatic field and, on the other hand, the local electronic energies (kinetic, potential, total), the exchange energy density, the electron-pair localization function, the localized-orbital locator, the effective crystal potential, and others. It is shown that the integration of these characteristics over pseudoatomic volumes bounded by the surfaces of the zero flux of the electron density gradient makes itmore » possible to characterize directly from an experiment the properties of molecules and crystals in terms of the atomic contributions. The computer program WinXPRO2004, realizing these possibilities, is briefly described.« less
Topology of the electron density of d0 transition metal compounds at subatomic resolution.
Batke, Kilian; Eickerling, Georg
2013-11-14
Accurate X-ray diffraction experiments allow for a reconstruction of the electron density distribution of solids and molecules in a crystal. The basis for the reconstruction of the electron density is in many cases a multipolar expansion of the X-ray scattering factors in terms of spherical harmonics, a so-called multipolar model. This commonly used ansatz splits the total electron density of each pseudoatom in the crystal into (i) a spherical core, (ii) a spherical valence, and (iii) a nonspherical valence contribution. Previous studies, for example, on diamond and α-silicon have already shown that this approximation is no longer valid when ultrahigh-resolution diffraction data is taken into account. We report here the results of an analysis of the calculated electron density distribution in the d(0) transition metal compounds [TMCH3](2+) (TM = Sc, Y, and La) at subatomic resolution. By a detailed molecular orbital analysis, it is demonstrated that due to the radial nodal structure of the 3d, 4d, and 5d orbitals involved in the TM-C bond formation a significant polarization of the electron density in the inner electronic shells of the TM atoms is observed. We further show that these polarizations have to be taken into account by an extended multipolar model in order to recover accurate electron density distributions from high-resolution structure factors calculated for the title compounds.
A quasilinear kinetic model for solar wind electrons and protons instabilities
NASA Astrophysics Data System (ADS)
Sarfraz, M.; Yoon, P. H.
2017-12-01
In situ measurements confirm the anisotropic behavior in temperatures of solar wind species. These anisotropies associated with charge particles are observed to be relaxed. In collionless limit, kinetic instabilities play a significant role to reshape particles distribution. The linear analysis results are encapsulated in inverse relationship between anisotropy and plasma beta based observations fittings techniques, simulations methods, or solution of linearized Vlasov equation. Here amacroscopic quasilinear technique is adopted to confirm inverse relationship through solutions of set of self-consistent kinetic equations. Firstly, for a homogeneous and non-collisional medium, quasilinear kinetic model is employed to display asymptotic variations of core and halo electrons temperatures and saturations of wave energy densities for electromagnetic electron cyclotron (EMEC) instability sourced by, T⊥}>T{∥ . It is shown that, in (β ∥ , T⊥}/T{∥ ) phase space, the saturations stages of anisotropies associated with core and halo electrons lined up on their respective marginal stability curves. Secondly, for case of electrons firehose instability ignited by excessive parallel temperature i.e T⊥}>T{∥ , both electrons and protons are allowed to dynamically evolve in time. It is also observed that, the trajectories of protons and electrons at saturation stages in phase space of anisotropy and plasma beta correspond to proton cyclotron and firehose marginal stability curves, respectively. Next, the outstanding issue that most of observed proton data resides in nearly isotropic state in phase space is interpreted. Here, in quasilinear frame-work of inhomogeneous solar wind system, a set of self-consistent quasilinear equations is formulated to show a dynamical variations of temperatures with spatial distributions. On choice of different initial parameters, it is shown that, interplay of electron and proton instabilities provides an counter-balancing force to slow down the protons away from marginal stability states. As we are dealing both, protons and electrons for radially expanding solar wind plasma, our present approach may eventually be incorporated in global-kinetic models of the solar wind species.
Use of total electron content data to analyze ionosphere electron density gradients
NASA Astrophysics Data System (ADS)
Nava, B.; Radicella, S. M.; Leitinger, R.; Coïsson, P.
In the presence of electron density gradients the thin shell approximation for the ionosphere, used together with a simple mapping function to convert slant total electron content (TEC) to vertical TEC, could lead to TEC conversion errors. These "mapping function errors" can therefore be used to detect the electron density gradients in the ionosphere. In the present work GPS derived slant TEC data have been used to investigate the effects of the electron density gradients in the middle and low latitude ionosphere under geomagnetic quiet and disturbed conditions. In particular the data corresponding to the geographic area of the American Sector for the days 5-7 April 2000 have been used to perform a complete analysis of mapping function errors based on the "coinciding pierce point technique". The results clearly illustrate the electron density gradient effects according to the locations considered and to the actual levels of disturbance of the ionosphere. In addition, the possibility to assess an ionospheric shell height able to minimize the mapping function errors has been verified.
NASA Astrophysics Data System (ADS)
Liu, Gang-Hu; Liu, Yong-Xin; Bai, Li-Shui; Zhao, Kai; Wang, You-Nian
2018-02-01
The dependence of the electron density and the emission intensity on external parameters during the transitions of the electron power absorption mode is experimentally studied in asymmetric electropositive (neon) and electronegative (CF4) capacitively coupled radio-frequency plasmas. The spatio-temporal distribution of the emission intensity is measured with phase resolved optical emission spectroscopy and the electron density at the discharge center is measured by utilizing a floating hairpin probe. In neon discharge, the emission intensity increases almost linearly with the rf voltage at all driving frequencies covered here, while the variation of the electron density with the rf voltage behaves differently at different driving frequencies. In particular, the electron density increases linearly with the rf voltage at high driving frequencies, while at low driving frequencies the electron density increases slowly at the low-voltage side and, however, grows rapidly, when the rf voltage is higher than a certain value, indicating a transition from α to γ mode. The rf voltage, at which the mode transition occurs, increases with the decrease of the driving frequency/the working pressure. By contrast, in CF4 discharge, three different electron power absorption modes can be observed and the electron density and emission intensity do not exhibit a simple dependence on the rf voltage. In particular, the electron density exhibits a minimum at a certain rf voltage when the electron power absorption mode is switching from drift-ambipolar to the α/γ mode. A minimum can also be found in the emission intensity at a higher rf voltage when a discharge is switching into the γ mode.
NASA Astrophysics Data System (ADS)
White, A. E.
2009-11-01
Multi-field fluctuation measurements provide opportunities for rigorous comparison between experiment and nonlinear gyrokinetic turbulence simulations. A unique set of diagnostics on DIII-D allows for simultaneous study of local, long-wavelength (0 < kθρs< 0.5) electron temperature and density fluctuations in the core plasma (0.4 < ρ< 0.8). Previous experiments in L-mode indicate that normalized electron temperature fluctuation levels (40 < f < 400,kHz) increase with radius from ˜0.4% at ρ= 0.5 to ˜2% at ρ=0.8, similar to simultaneously measured density fluctuations. Electron cyclotron heating (ECH) is used to increase Te, which increases electron temperature fluctuation levels and electron heat transport in the experiments. In contrast, long wavelength density fluctuation levels change very little. The different responses are consistent with increased TEM drive relative to ITG-mode drive. A new capability at DIII-D is the measurement of phase angle between electron temperature and density fluctuations using coupled correlation electron cyclotron emission radiometer and reflectometer diagnostics. Linear and nonlinear GYRO runs have been used to design validation experiments that focus on measurements of the phase angle. GYRO shows that if Te and ∇Te increase 50% in a beam-heated L-mode plasma (ρ=0.5), then the phase angle between electron temperature and density fluctuations decreases 30%-50% and electron temperature fluctuation levels increase a factor of two more than density fluctuations. Comparisons between these predictions and experimental results will be presented.
Phosphorus and carrier density of heavily n-type doped germanium
DOE Office of Scientific and Technical Information (OSTI.GOV)
Takinai, K.; Wada, K.
2016-05-14
The threshold current density of n-type, tensile-strained Ge lasers strongly depends on the electron density. Although optical net gain analyses indicate that the optimum electron density should be on the order of 1 × 10{sup 20} cm{sup −3} to get the lowest threshold, it is not a simple task to increase the electron density beyond the mid range of 10{sup 19} cm{sup −3}. The present paper analyzes the phenomenon where electron density is not proportional to phosphorus donor density, i.e., “saturation” phenomenon, by applying the so-called amphoteric defect model. The analyses indicate that the saturation phenomenon can be well explained by the charge compensationmore » between the phosphorus donors (P{sup +}) and doubly negative charged Ge vacancies (V{sup 2−}).« less
NASA Technical Reports Server (NTRS)
Berman, A. L.; Wackley, J. A.; Rockwell, S. T.; Kwan, M.
1977-01-01
The common form for radial dependence of electron density in the extended corona is given. By assuming proportionality between Doppler noise and integrated signal path electron density, Viking Doppler noise can be used to solve for a numerical value of X.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hedegård, Erik Donovan, E-mail: erik.hedegard@phys.chem.ethz.ch; Knecht, Stefan; Reiher, Markus, E-mail: markus.reiher@phys.chem.ethz.ch
2015-06-14
We present a new hybrid multiconfigurational method based on the concept of range-separation that combines the density matrix renormalization group approach with density functional theory. This new method is designed for the simultaneous description of dynamical and static electron-correlation effects in multiconfigurational electronic structure problems.
Sepehrband, Farshid; Clark, Kristi A.; Ullmann, Jeremy F.P.; Kurniawan, Nyoman D.; Leanage, Gayeshika; Reutens, David C.; Yang, Zhengyi
2015-01-01
We examined whether quantitative density measures of cerebral tissue consistent with histology can be obtained from diffusion magnetic resonance imaging (MRI). By incorporating prior knowledge of myelin and cell membrane densities, absolute tissue density values were estimated from relative intra-cellular and intra-neurite density values obtained from diffusion MRI. The NODDI (neurite orientation distribution and density imaging) technique, which can be applied clinically, was used. Myelin density estimates were compared with the results of electron and light microscopy in ex vivo mouse brain and with published density estimates in a healthy human brain. In ex vivo mouse brain, estimated myelin densities in different sub-regions of the mouse corpus callosum were almost identical to values obtained from electron microscopy (Diffusion MRI: 42±6%, 36±4% and 43±5%; electron microscopy: 41±10%, 36±8% and 44±12% in genu, body and splenium, respectively). In the human brain, good agreement was observed between estimated fiber density measurements and previously reported values based on electron microscopy. Estimated density values were unaffected by crossing fibers. PMID:26096639
Self-injection of electrons in a laser-wakefield accelerator by using longitudinal density ripple
DOE Office of Scientific and Technical Information (OSTI.GOV)
Dahiya, Deepak; Sharma, A. K.; Sajal, Vivek
By introducing a longitudinal density ripple (periodic modulation in background plasma density), we demonstrate self-injection of electrons in a laser-wakefield accelerator. The wakefield driven plasma wave, in presence of density ripple excites two side band waves of same frequency but different wave numbers. One of these side bands, having smaller phase velocity compared to wakefield driven plasma wave, preaccelerates the background plasma electrons. Significant number of these preaccelerated electrons get trapped in the laser-wakefield and further accelerated to higher energies.
Density functional theory and an experimentally-designed energy functional of electron density.
Miranda, David A; Bueno, Paulo R
2016-09-21
We herein demonstrate that capacitance spectroscopy (CS) experimentally allows access to the energy associated with the quantum mechanical ground state of many-electron systems. Priorly, electrochemical capacitance, C [small mu, Greek, macron] [ρ], was previously understood from conceptual and computational density functional theory (DFT) calculations. Thus, we herein propose a quantum mechanical experiment-based variational method for electron charging processes based on an experimentally-designed functional of the ground state electron density. In this methodology, the electron state density, ρ, and an energy functional of the electron density, E [small mu, Greek, macron] [ρ], can be obtained from CS data. CS allows the derivative of the electrochemical potential with respect to the electron density, (δ[small mu, Greek, macron][ρ]/δρ), to be obtained as a unique functional of the energetically minimised system, i.e., β/C [small mu, Greek, macron] [ρ], where β is a constant (associated with the size of the system) and C [small mu, Greek, macron] [ρ] is an experimentally observable quantity. Thus the ground state energy (at a given fixed external potential) can be obtained simply as E [small mu, Greek, macron] [ρ], from the experimental measurement of C [small mu, Greek, macron] [ρ]. An experimental data-set was interpreted to demonstrate the potential of this quantum mechanical experiment-based variational principle.
NASA Astrophysics Data System (ADS)
Reddy, A.; Sonwalkar, V. S.; Huba, J. D.
2018-02-01
Knowledge of field-aligned electron and ion distributions is necessary for understanding the physical processes causing variations in field-aligned electron and ion densities. Using whistler mode sounding by Radio Plasma Imager/Imager for Magnetopause-to-Aurora Global Exploration (RPI/IMAGE), we determined the evolution of dayside electron and ion densities along L ˜ 2 and L ˜ 3 (90-4,000 km) during a 7 day (21-27 November 2005) geomagnetically quiet to moderately active period. Over this period the O+/H+ transition height was ˜880 ± 60 km and ˜1000 ± 100 km, respectively, at L ˜ 2 and L ˜ 3. The electron density varied in a complex manner; it was different at L ˜ 2 and L ˜ 3 and below and above the O+/H+ transition height. The measured electron and ion densities are consistent with those from Challenging Minisatellite Payload (CHAMP) and Defense Meteorological Satellite Program (DMSP) and other past measurements, but they deviated from bottomside sounding and International Reference Ionosphere (IRI) 2012 empirical model results. Using SAMI2 (Naval Research Laboratory (NRL) ionosphere model) with reasonably adjusted values of inputs (neutral densities, winds, electric fields, and photoelectron heating), we simulated the evolution of O+/H+ transition height and field-aligned electron and ion densities so that a fair agreement was obtained between the simulation results and observations. Simulation studies indicated that reduced neutral densities (H and/or O) with time limited O+-H charge exchange process. This reduction in neutral densities combined with changes in neutral winds and plasma temperature led to the observed variations in the electron and ion densities. The observation/simulation method presented here can be extended to investigate the role of neutral densities and composition, disturbed winds, and prompt penetration electric fields in the storm time ionosphere/plasmasphere dynamics.
Characterization of an F-center in an alkali halide cluster
NASA Astrophysics Data System (ADS)
Bader, R. F. W.; Platts, J. A.
1997-11-01
The removal of a fluorine atom from its central position in a cubiclike Li14F13+ cluster creates an F-center vacancy that may or may not be occupied by the remaining odd electron. The topology exhibited by the electron density in Li14F12+, the F-center cluster, enables one to make a clear distinction between the two possible forms that the odd electron can assume. If it possesses a separate identity, then a local maximum in the electron density will be found within the vacancy and the F-center will behave quantum mechanically as an open system, bounded by a surface of local zero flux in the gradient vector field of the electron density. If, however, the density of the odd electron is primarily delocalized onto the neighboring ions, then a cage critical point, a local minimum in the density, will be found at the center of the vacancy. Without an associated local maximum, the vacancy has no boundary and is undefined. Self-consistent field (SCF) calculations with geometry optimization of the Li14F13+ cluster and of the doublet state of Li14F12+ show that the creation of the central vacancy has only a minor effect upon the geometry of the cluster, the result of a local maximum in the electron density being formed within the vacancy. Thus the F-center is the physical manifestation of a non-nuclear attractor in the electron density. It is consequently a proper open system with a definable set of properties, the most characteristic being its low kinetic energy per electron. In addition to determining the properties of the F-center, the effect of its formation on the energies, volumes, populations, both electron and spin, and electron localizations of the ions in the cluster are determined.
NASA Astrophysics Data System (ADS)
Dolimont, Adrien; Rivière-Lorphèvre, Edouard; Ducobu, François; Backaert, Stéphane
2018-05-01
Additive manufacturing is growing faster and faster. This leads us to study the functionalization of the parts that are produced by these processes. Electron Beam melting (EBM) is one of these technologies. It is a powder based additive manufacturing (AM) method. With this process, it is possible to manufacture high-density metal parts with complex topology. One of the big problems with these technologies is the surface finish. To improve the quality of the surface, some finishing operations are needed. In this study, the focus is set on chemical polishing. The goal is to determine how the chemical etching impacts the dimensional accuracy and the surface roughness of EBM parts. To this end, an experimental campaign was carried out on the most widely used material in EBM, Ti6Al4V. Different exposure times were tested. The impact of these times on surface quality was evaluated. To help predicting the excess thickness to be provided, the dimensional impact of chemical polishing on EBM parts was estimated. 15 parts were measured before and after chemical machining. The improvement of surface quality was also evaluated after each treatment.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bochkareva, N. I.; Ivanov, A. M.; Klochkov, A. V.
2015-06-15
It is shown that the emission efficiency and the 1/f noise level in light-emitting diodes with InGaN/GaN quantum wells correlate with how the differential resistance of a diode varies with increasing current. Analysis of the results shows that hopping transport via defect states across the n-type part of the space-charge region results in limitation of the current by the tunneling resistance at intermediate currents and shunting of the n-type barrier at high currents. The increase in the average number of tunneling electrons suppresses the 1/f current noise at intermediate currents. The strong growth in the density of current noise atmore » high currents, S{sub J} ∝ J{sup 3}, is attributed to a decrease in the average number of tunneling electrons as the n-type barrier decreases in height and width with increasing forward bias. The tunneling-recombination leakage current along extended defects grows faster than the tunneling injection current, which leads to emission efficiency droop.« less
Lattice model for water-solute mixtures.
Furlan, A P; Almarza, N G; Barbosa, M C
2016-10-14
A lattice model for the study of mixtures of associating liquids is proposed. Solvent and solute are modeled by adapting the associating lattice gas (ALG) model. The nature of interaction of solute/solvent is controlled by tuning the energy interactions between the patches of ALG model. We have studied three set of parameters, resulting in, hydrophilic, inert, and hydrophobic interactions. Extensive Monte Carlo simulations were carried out, and the behavior of pure components and the excess properties of the mixtures have been studied. The pure components, water (solvent) and solute, have quite similar phase diagrams, presenting gas, low density liquid, and high density liquid phases. In the case of solute, the regions of coexistence are substantially reduced when compared with both the water and the standard ALG models. A numerical procedure has been developed in order to attain series of results at constant pressure from simulations of the lattice gas model in the grand canonical ensemble. The excess properties of the mixtures, volume and enthalpy as the function of the solute fraction, have been studied for different interaction parameters of the model. Our model is able to reproduce qualitatively well the excess volume and enthalpy for different aqueous solutions. For the hydrophilic case, we show that the model is able to reproduce the excess volume and enthalpy of mixtures of small alcohols and amines. The inert case reproduces the behavior of large alcohols such as propanol, butanol, and pentanol. For the last case (hydrophobic), the excess properties reproduce the behavior of ionic liquids in aqueous solution.
Galactic bulge preferred over dark matter for the Galactic centre gamma-ray excess
NASA Astrophysics Data System (ADS)
Macias, Oscar; Gordon, Chris; Crocker, Roland M.; Coleman, Brendan; Paterson, Dylan; Horiuchi, Shunsaku; Pohl, Martin
2018-05-01
An anomalous gamma-ray excess emission has been found in the Fermi Large Area Telescope data1 covering the centre of the Galaxy2,3. Several theories have been proposed for this `Galactic centre excess'. They include self-annihilation of dark-matter particles4, an unresolved population of millisecond pulsars5, an unresolved population of young pulsars6, or a series of burst events7. Here, we report on an analysis that exploits hydrodynamical modelling to register the position of interstellar gas associated with diffuse Galactic gamma-ray emission. We find evidence that the Galactic centre excess gamma rays are statistically better described by the stellar over-density in the Galactic bulge and the nuclear stellar bulge, rather than a spherical excess. Given its non-spherical nature, we argue that the Galactic centre excess is not a dark-matter phenomenon but rather associated with the stellar population of the Galactic bulge and the nuclear bulge.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Garofano, V.; Stafford, L., E-mail: luc.stafford@umontreal.ca, E-mail: kremena.makasheva@laplace.univ-tlse.fr; Despax, B.
2015-11-02
Optical emission spectroscopy was used to analyze the very-low-frequency cyclic evolution of the electron energy and density caused by repetitive formation and loss of dust nanoparticles in argon plasmas with pulsed injection of hexamethyldisiloxane (HMDSO, [CH{sub 3}]{sub 6}Si{sub 2}O). After elaborating a Boltzmann diagram for Ar high-lying levels and a collisional-radiative model for Ar 2p (Paschen notation) states, temperatures characterizing the low- and high-energy parts of the electron population were calculated. Relative electron densities were also estimated from relative line emission intensities. Both temperatures increase when the dust occupation increases, and then decrease when dust is lost. The opposite trendmore » was observed for the electron density. Such cyclic behaviors of the electron energy and electron density in the HMDSO-containing plasmas are in good agreement with the evolution processes in dusty plasmas, in which the formation of negative ions followed by an electron attachment on the surfaces of the nanoparticles is a critical phenomenon driving dust growth.« less
NASA Astrophysics Data System (ADS)
Li, J.; Tan, L. Z.; Zou, K.; Stabile, A. A.; Seiwell, D. J.; Watanabe, K.; Taniguchi, T.; Louie, Steven G.; Zhu, J.
2016-10-01
In a two-dimensional electron gas, the electron-electron interaction generally becomes stronger at lower carrier densities and renormalizes the Fermi-liquid parameters, such as the effective mass of carriers. We combine experiment and theory to study the effective masses of electrons and holes me* and mh* in bilayer graphene in the low carrier density regime on the order of 1 ×1011c m-2 . Measurements use temperature-dependent low-field Shubnikov-de Haas oscillations observed in high-mobility hexagonal boron nitride supported samples. We find that while me* follows a tight-binding description in the whole density range, mh* starts to drop rapidly below the tight-binding description at a carrier density of n =6 ×1011c m-2 and exhibits a strong suppression of 30% when n reaches 2 ×1011c m-2 . Contributions from the electron-electron interaction alone, evaluated using several different approximations, cannot explain the experimental trend. Instead, the effect of the potential fluctuation and the resulting electron-hole puddles play a crucial role. Calculations including both the electron-electron interaction and disorder effects explain the experimental data qualitatively and quantitatively. This Rapid Communication reveals an unusual disorder effect unique to two-dimensional semimetallic systems.
Delgado, Anca G; Fajardo-Williams, Devyn; Popat, Sudeep C; Torres, César I; Krajmalnik-Brown, Rosa
2014-03-01
The discovery of Dehalococcoides mccartyi reducing perchloroethene and trichloroethene (TCE) to ethene was a key landmark for bioremediation applications at contaminated sites. D. mccartyi-containing cultures are typically grown in batch-fed reactors. On the other hand, continuous cultivation of these microorganisms has been described only at long hydraulic retention times (HRTs). We report the cultivation of a representative D. mccartyi-containing culture in continuous stirred-tank reactors (CSTRs) at a short, 3-d HRT, using TCE as the electron acceptor. We successfully operated 3-d HRT CSTRs for up to 120 days and observed sustained dechlorination of TCE at influent concentrations of 1 and 2 mM TCE to ≥ 97 % ethene, coupled to the production of 10(12) D. mccartyi cells Lculture (-1). These outcomes were possible in part by using a medium with low bicarbonate concentrations (5 mM) to minimize the excessive proliferation of microorganisms that use bicarbonate as an electron acceptor and compete with D. mccartyi for H2. The maximum conversion rates for the CSTR-produced culture were 0.13 ± 0.016, 0.06 ± 0.018, and 0.02 ± 0.007 mmol Cl(-) Lculture (-1) h(-1), respectively, for TCE, cis-dichloroethene, and vinyl chloride. The CSTR operation described here provides the fastest laboratory cultivation rate of high-cell density Dehalococcoides cultures reported in the literature to date. This cultivation method provides a fundamental scientific platform for potential future operations of such a system at larger scales.
Generalization of the Kohn-Sham system that can represent arbitrary one-electron density matrices
Hubertus J. J. van Dam
2016-04-27
Density functional theory is currently the most widely applied method in electronic structure theory. The Kohn-Sham method, based on a fictitious system of noninteracting particles, is the workhorse of the theory. The particular form of the Kohn-Sham wave function admits only idempotent one-electron density matrices whereas wave functions of correlated electrons in post-Hartree-Fock methods invariably have fractional occupation numbers. Here we show that by generalizing the orbital concept and introducing a suitable dot product as well as a probability density, a noninteracting system can be chosen that can represent the one-electron density matrix of any system, even one with fractionalmore » occupation numbers. This fictitious system ensures that the exact electron density is accessible within density functional theory. It can also serve as the basis for reduced density matrix functional theory. Moreover, to aid the analysis of the results the orbitals may be assigned energies from a mean-field Hamiltonian. This produces energy levels that are akin to Hartree-Fock orbital energies such that conventional analyses based on Koopmans' theorem are available. Lastly, this system is convenient in formalisms that depend on creation and annihilation operators as they are trivially applied to single-determinant wave functions.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ren, Shangjie; Department of Radiation Oncology, Stanford University School of Medicine, Palo Alto, California; Hara, Wendy
Purpose: To develop a reliable method to estimate electron density based on anatomic magnetic resonance imaging (MRI) of the brain. Methods and Materials: We proposed a unifying multi-atlas approach for electron density estimation based on standard T1- and T2-weighted MRI. First, a composite atlas was constructed through a voxelwise matching process using multiple atlases, with the goal of mitigating effects of inherent anatomic variations between patients. Next we computed for each voxel 2 kinds of conditional probabilities: (1) electron density given its image intensity on T1- and T2-weighted MR images; and (2) electron density given its spatial location in a referencemore » anatomy, obtained by deformable image registration. These were combined into a unifying posterior probability density function using the Bayesian formalism, which provided the optimal estimates for electron density. We evaluated the method on 10 patients using leave-one-patient-out cross-validation. Receiver operating characteristic analyses for detecting different tissue types were performed. Results: The proposed method significantly reduced the errors in electron density estimation, with a mean absolute Hounsfield unit error of 119, compared with 140 and 144 (P<.0001) using conventional T1-weighted intensity and geometry-based approaches, respectively. For detection of bony anatomy, the proposed method achieved an 89% area under the curve, 86% sensitivity, 88% specificity, and 90% accuracy, which improved upon intensity and geometry-based approaches (area under the curve: 79% and 80%, respectively). Conclusion: The proposed multi-atlas approach provides robust electron density estimation and bone detection based on anatomic MRI. If validated on a larger population, our work could enable the use of MRI as a primary modality for radiation treatment planning.« less
Experimental charge density analysis of a gallium(I) N-heterocyclic carbene analogue.
Overgaard, Jacob; Jones, Cameron; Dange, Deepak; Platts, James A
2011-09-05
The experimental electron density of the only known example of a four-membered Ga(I) N-heterocyclic carbene analogue has been determined by multipole modeling of 90 K X-ray diffraction data and compared to theoretical data. In order to obtain a satisfactory model, it is necessary to modify the radial dependency of the core electrons of Ga using two separate scaling parameters for s,p- and d-electrons. Evidence for significant lone-pair density on Ga is found in the electron density and derived properties despite the partial positive charge of this atom. Static deformation density and molecular electrostatic potential clearly show a directional lone pair on Ga, whereas the Laplacian of the total electron density does not; this feature is, however, present in the Laplacian of the valence-only density. The Ga center also acts as an acceptor in four intramolecular C-H···Ga contacts, whose nature is probed by density properties. Substantial covalent character is apparent in the Ga-N bonds, but no sign of donation from filled N p-orbitals to empty Ga p-orbitals is found, whereas π-delocalization over the organic ligand is evident. This study highlights the utility of experimental charge density analysis as a technique to investigate the unusual bonding and electronic characteristics of low oxidation state/low coordinate p-block complexes.
NASA Astrophysics Data System (ADS)
Nalle, Pallavi B.; Deshmukh, S. S.; Dorik, R. G.; Jadhav, K. M.
2016-12-01
The ultrasonic velocity (U), density (ρ), and viscosity (η) of an ethanolic extract of drug Piper nigrum with MgCl2 (metal ions) have been measured as a function of the number of moles n = (0.7009, 1.4018, 2.1027, 2.8036 and 3.5045) at 303.15, 308.15, 313.15 and 318.15 K temperature. Various thermoacoustic and their excess values such as adiabatic compressibilities (β), intermolecular free lengths (Lf), excess adiabatic compressibility (βE), excess intermolecular free length (?) have been computed using values of ultrasonic velocity (U), density (ρ), and viscosity (η). The excess values of ultrasonic velocity, specific acoustic impedance are positive, whereas isentropic compressibility and intermolecular free lengths are negative over the entire composition range of MgCl2 + P. nigrum which indicates the presence of specific interactions between unlike molecules. Molecular association is reflected by ultrasonic investigation. This may be interpreted due to the of complex formation. The chemical interaction may involve the association due to the solute-solvent and ion-solvent interaction and due to the formation of charge-transfer complexes, which is useful to understand the mechanism of their metabolism in living systems. The results obtained from these studies are helpful for pharmacological applications of drugs, transport of drugs across biological membranes.
NASA Astrophysics Data System (ADS)
Xiang, Qian-Fei; Bi, Xiao-Jun; Lin, Su-Jie; Yin, Peng-Fei
2017-10-01
The cosmic-ray (CR) e± excess observed by AMS-02 can be explained by dark matter (DM) annihilation. However, the DM explanation requires a large annihilation cross section which is strongly disfavored by other observations, such as the Fermi-LAT gamma-ray observation of dwarf galaxies and the Planck observation of the cosmic microwave background (CMB). Moreover, the DM annihilation cross section required by the CR e± excess is also too large to generate the correct DM relic density with thermal production. In this work we use the Breit-Wigner mechanism with a velocity dependent DM annihilation cross section to reconcile these tensions. If DM particles accounting for the CR e± excess with v ∼ O (10-3) are very close to a resonance in the physical pole case, their annihilation cross section in the Galaxy reaches a maximal value. On the other hand, the annihilation cross section would be suppressed for DM particles with smaller relative velocities in dwarf galaxies and at recombination, which may affect the gamma-ray and CMB observations, respectively. We find a proper parameter region that can simultaneously explain the AMS-02 results and the thermal relic density, while satisfying the Fermi-LAT and Planck constraints.
Teaching Chemistry with Electron Density Models.
ERIC Educational Resources Information Center
Shusterman, Gwendolyn P.; Shusterman, Alan J.
1997-01-01
Describes a method for teaching electronic structure and its relevance to chemical phenomena that relies on computer-generated three-dimensional models of electron density distributions. Discusses the quantum mechanical background needed and presents ways of using models of electronic ground states to teach electronic structure, bonding concepts,…
NASA Astrophysics Data System (ADS)
Orlov, V. G.; Sergeev, G. S.
2018-05-01
With the aim to reveal the origin of instabilities in the electron subsystem of unconventional superconductors, such as stripes or nematic symmetry breaking, electron band structure calculations were performed for a number of bismuth chalcogenides, bismuth oxide, iron pnictides, as well as for Bi2Sr2CaCu2O8, YBa2Cu3O7 and La2CuO4. It was found that bond critical points in the electron density distribution ρ(r) of all the studied compounds were characterized by positive sign of electron density Laplacian evidencing on depletion of electron charge from the area of bond critical points. A correlation was found between the Tc and the value of electron density Laplacian in the strongest bond critical points of superconductors and related substances.
NASA Technical Reports Server (NTRS)
Davidson, J. K.; Houck, W. H.
1971-01-01
Electronic circuit for monitoring excessive ripple voltage on dc power lines senses voltage variations from few millivolts to maximum of 10 volts rms. Instrument is used wherever power supply fluctuations might endanger system operations or damage equipment. Device is inexpensive and easily packaged in small chassis.
Uncovering the nonadiabatic response of geosynchronous electrons to geomagnetic disturbance
Gannon, Jennifer; Elkington, Scot R.; Onsager, Terrance G.
2012-01-01
We describe an energy spectrum method for scaling electron integral flux, which is measured at a constant energy, to phase space density at a constant value of the first adiabatic invariant which removes much of the variation due to reversible adiabatic effects. Applying this method to nearly a solar cycle (1995 - 2006) of geosynchronous electron integral flux (E>2.0MeV) from the GOES satellites, we see that much of the diurnal variation in electron phase space density at constant energy can be removed by the transformation to phase space density at constant μ (4000 MeV/G). This allows us a clearer picture of underlying non-adiabatic electron population changes due to geomagnetic activity. Using scaled phase space density, we calculate the percentage of geomagnetic storms resulting in an increase, decrease or no change in geosynchronous electrons as 38%, 7%, and 55%, respectively. We also show examples of changes in the electron population that may be different than the unscaled fluxes alone suggest. These examples include sudden electron enhancements during storms which appear during the peak of negative Dst for μ-scaled phase space density, contrary to the slow increase seen during the recovery phase for unscaled phase space density for the same event.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Liu, Jia; Liu, Yong-Xin; Liu, Gang-Hu
2015-04-14
The effect of driving frequency on the electron density is investigated in low-pressure capacitively coupled oxygen plasmas by utilizing a floating hairpin probe. The power absorbed by the plasma is investigated and it is found that the power lost in the matching network can reach 50% or higher under certain conditions. The effect of driving frequency on the electron density is studied from two aspects, i.e., constant absorbed power and electrode voltage. In the former case, the electron density increases with the driving frequency increasing from 13.56 to 40.68 MHz and slightly changes depending on the gas pressures with the frequencymore » further increasing to 100 MHz. In the latter case, the electron density rapidly increases when the driving frequency increases from 13.56 to 40.68 MHz, and then decreases with the frequency further increasing to 100 MHz. The electron series resonance is observed at 40.68 MHz and can be attributed to the higher electron density. And the standing wave effect also plays an important role in increasing electron density at 100 MHz and 2.6 Pa.« less
NASA Astrophysics Data System (ADS)
Shaikh, M. M.; Notarpietro, R.; Nava, B.
2014-02-01
'Onion-peeling' is a very common technique used to invert Radio Occultation (RO) data in the ionosphere. Because of the implicit assumption of spherical symmetry for the electron density (N(e)) distribution in the ionosphere, the standard Onion-peeling algorithm could give erroneous concentration values in the retrieved electron density profile. In particular, this happens when strong horizontal ionospheric electron density gradients are present, like for example in the Equatorial Ionization Anomaly (EIA) region during high solar activity periods. In this work, using simulated RO Total Electron Content (TEC) data computed by means of the NeQuick2 ionospheric electron density model and ideal RO geometries, we tried to formulate and evaluate an asymmetry level index for quasi-horizontal TEC observations. The asymmetry index is based on the electron density variation that a signal may experience along its path (satellite to satellite link) in a RO event and is strictly dependent on the occultation geometry (e.g. azimuth of the occultation plane). A very good correlation has been found between the asymmetry index and errors related to the inversion products, in particular those concerning the peak electron density NmF2 estimate and the Vertical TEC (VTEC) evaluation.
Orbital order and effective mass enhancement in t2 g two-dimensional electron gases
NASA Astrophysics Data System (ADS)
Tolsma, John; Principi, Alessandro; Polini, Marco; MacDonald, Allan
2015-03-01
It is now possible to prepare d-electron two-dimensional electron gas systems that are confined near oxide heterojunctions and contain t2 g electrons with a density much smaller than one electron per metal atom. I will discuss a generic model that captures all qualitative features of electron-electron interaction physics in t2 g two-dimensional electron gas systems, and the use of a GW approximation to explore t2 g quasiparticle properties in this new context. t2 g electron gases contain a high density isotropic light mass xy component and low-density xz and yz anisotropic components with light and heavy masses in orthogonal directions. The high density light mass band screens interactions within the heavy bands. As a result the wave vector dependence of the self-energy is reduced and the effective mass is increased. When the density in the heavy bands is low, the difference in anisotropy between the two heavy bands favors orbital order. When orbital order does not occur, interactions still reshape the heavy-band Fermi surfaces. I will discuss these results in the context of recently reported magnetotransport experiments.
Effects of meteoric smoke particles on the D region ion chemistry
NASA Astrophysics Data System (ADS)
Baumann, Carsten; Rapp, Markus; Anttila, Milla; Kero, Antti; Verronen, Pekka T.
2015-12-01
This study focuses on meteor smoke particle (MSP) induced effects on the D region ion chemistry. Hereby, MSPs, represented with an 11 bin size distribution, have been included as an active component into the Sodankyä Ion and Neutral Chemistry model. By doing that, we model the diurnal variation of the negatively and positively charged MSPs as well as ions and the electron density under quiet ionospheric conditions. Two distinct points in time are studied in more detail, i.e., one for sunlit conditions (Solar zenith angle is 72°) and one for dark conditions (Solar zenith angle is 103°). We find nightly decrease of free electrons and negative ions, the positive ion density is enhanced at altitudes above 80 km and reduced below. During sunlit conditions the electron density is enhanced between 60 and 70 km altitude, while there is a reduction in negative and positive ions densities. In general, the MSP influence on the ion chemistry is caused by changes in the electron density. On the one hand, these changes occur due to nightly electron scavenging by MSPs resulting in a reduced electron-ion recombination. As a consequence positive ion density increase, especially water cluster ions are highly affected. On the other hand, the electron density is slightly increased during daytime by a MSP-related production due to solar radiation. Thus, more electrons attach to neutrals and short-lived negative ions increase in number density. The direct attachment of ions to MSPs is a minor process, but important for long living ions.
Salehi, Samie; Saljooghi, Amir Shokooh; Izadyar, Mohammad
2016-10-01
Elemental iron is essential for cellular growth and homeostasis but it is potentially toxic to the cells and tissues. Excess iron can contribute in tumor initiation and tumor growth. Obviously, in iron overload issues using an iron chelator in order to reduce iron concentration seems to be vital. This study presents the density functional theory calculations of the electronic structure and equilibrium constant for iron-deferasirox (Fe-DFX) complexes in the gas phase, water and DMSO. A comprehensive study was performed to investigate the Deferasirox-iron complexes in chelation therapy. Calculation was performed in CAMB3LYP/6-31G(d,p) to get the optimized structures for iron complexes in high and low spin states. Natural bond orbital and quantum theory of atoms in molecules analyses was carried out with B3LYP/6-311G(d,p) to understand the nature of complex bond character and electronic transition in complexes. Electrostatic potential effects on the complexes were evaluated using the CHelpG calculations. The results indicated that higher affinity for Fe(III) is not strictly a function of bond length but also the degree of Fe-X (X=O,N) covalent bonding. Based on the quantum reactivity parameters which have been investigated here, it is possible reasonable design of the new chelators to improve the chelator abilities. Copyright © 2016 Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Sonwalkar, V. S.; Reddy, A.
2017-12-01
Variation in field-aligned electron and ion densities as a function of geomagnetic activity are important parameters in the physics of the thermosphere-ionosphere-magnetosphere coupling. Using whistler mode sounding from IMAGE, we report variations in field-aligned electron density and O+/H+ transition height (HT) during two periods (16-23 Aug 2005; 24 Sep-06 Oct 2005) when geomagnetic conditions were quiet (maximum Kp in the past 24 hours, Kpmax,24 ≤ 2) to moderately active (2 < Kpmax,24 <4). The measurements were obtained in the L=1.7 to 3.3 range (90- 4000 km, 13 or 15 MLT). Our results show that, under similar geomagnetic activity, at similar L-shells but with different geographic longitudes and MLTs, the O+/H+ transition height varied within ±12% of 1100 km at L 2 and within ±8% of 1350 km at L 3. The electron densities along flux tubes varied within 30% and 20%, respectively, below (including F2 peak) and above HT. With increasing L shell: (a) O+/H+ transition height increased; (b) electron density variations below HT including F2 peak showed no trend; (c) electron density above HT decreased. For flux tubes at similar longitudes, L-shells, and MLT's, relative to quiet time, during moderate geomagnetic activity: (1) O+/H+ transition height was roughly same; (2) electron density variations below HT showed no trend; (3) electron density above HT increased ( 10-40 %). The measured electron density is in agreement with in situ measurements from CHAMP (350 km) and DMSP (850 km) and past space borne (e. g., ISIS) measurements but the F2 peak density is a factor of 2 lower relative to that measured by ground ionosondes and that predicted by IRI-2012 empirical model. The measured transition height is consistent with OGO 4, Explorer 31, and C/NOFS measurements but is lower than that from IRI-2012. The observed variations in electron density at F2 peak are consistent with past work and are attributed to solar, geomagnetic, and meteorological causes [e. g. Risibeth and Mendillo, 2001; Forbes et al., 2000]. To the best of our knowledge, variations in field-aligned electron density above transition height at mid-latitudes during quiet to moderately active periods have not been reported in the past. Further investigation using physics based models (e. g., SAMI3) is required to explain the observed variations.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Valdivia, M. P., E-mail: mpvaldivia@pha.jhu.edu; Stutman, D.; Stoeckl, C.
2016-11-15
Talbot-Lau X-ray deflectometry (TXD) has been developed as an electron density diagnostic for High Energy Density (HED) plasmas. The technique can deliver x-ray refraction, attenuation, elemental composition, and scatter information from a single Moiré image. An 8 keV Talbot-Lau interferometer was deployed using laser and x-pinch backlighters. Grating survival and electron density mapping were demonstrated for 25–29 J, 8–30 ps laser pulses using copper foil targets. Moiré pattern formation and grating survival were also observed using a copper x-pinch driven at 400 kA, ∼1 kA/ns. These results demonstrate the potential of TXD as an electron density diagnostic for HED plasmas.
Electron density measurements in STPX plasmas
NASA Astrophysics Data System (ADS)
Clark, Jerry; Williams, R.; Titus, J. B.; Mezonlin, E. D.; Akpovo, C.; Thomas, E.
2017-10-01
Diagnostics have been installed to measure the electron density of Spheromak Turbulent Physics Experiment (STPX) plasmas at Florida A. & M. University. An insertable probe, provided by Auburn University, consisting of a combination of a triple-tipped Langmuir probe and a radial array consisting of three ion saturation current / floating potential rings has been installed to measure instantaneous plasma density, temperature and plasma potential. As the ramp-up of the experimental program commences, initial electron density measurements from the triple-probe show that the electron density is on the order of 1019 particles/m3. For a passive measurement, a CO2 interferometer system has been designed and installed for measuring line-averaged densities and to corroborate the Langmuir measurements. We describe the design, calibration, and performance of these diagnostic systems on large volume STPX plasmas.
NASA Astrophysics Data System (ADS)
Detweiler, L. G.; Glocer, A.; Benson, R. F.; Fung, S. F.
2016-12-01
In order to investigate and understand the role that different drivers play on the electron density altitude profile in the topside ionosphere of the polar regions, we used satellite radio-sounding data collected during the 1960s, 1970s, and 1980s to construct a series of graphs of electron density as a function of altitude and solar zenith angle. These data were gathered by the swept-frequency topside sounders from four of the satellites from the International Satellites for Ionospheric Studies (ISIS) program: Alouette 1 and 2, and ISIS 1 and 2, and were obtained from the NASA Space Physics Data Facility. In order to control for phenomenon known to effect electron density, we restricted our data set to data collected during a specific DST range (between -10 and 40 nT), and roughly constant solar radio flux values (between 40 and 90 W*m-2*Hz-1). To look at the effect of electron precipitation, we examine two separate cases, one above an invariant latitude of 60°, which includes precipitation, and one above 75°, which excludes precipitation. Under these restrictions we gathered a total of 407,500 altitude, solar zenith angle, and electron density data pairs. We then sorted these data pairs into bins of altitude and solar zenith angle, and present graphs of the medians of these binned data. We then fit our binned data to an exponential function representing hydrostatic equilibrium in the ionosphere presented in Kitamura et. al [2011]. We present graphs which show how well this best fit equation fits our data. Our results clearly show the strong dependence of electron density with respect to solar zenith angle, and demonstrates that electron precipitation can also influence the electron density profile, particularly on the nightside. We also examine how seasonal effects, via differences in the neutral thermosphere, can affect the electron density profiles. This study provides a climatological picture of what drives the topside electron density profile in the polar regions, and could be useful in future studies for model validation.
Deutsch, Maxime; Gillon, Béatrice; Claiser, Nicolas; Gillet, Jean-Michel; Lecomte, Claude; Souhassou, Mohamed
2014-05-01
Since the 1980s it has been possible to probe crystallized matter, thanks to X-ray or neutron scattering techniques, to obtain an accurate charge density or spin distribution at the atomic scale. Despite the description of the same physical quantity (electron density) and tremendous development of sources, detectors, data treatment software etc., these different techniques evolved separately with one model per experiment. However, a breakthrough was recently made by the development of a common model in order to combine information coming from all these different experiments. Here we report the first experimental determination of spin-resolved electron density obtained by a combined treatment of X-ray, neutron and polarized neutron diffraction data. These experimental spin up and spin down densities compare very well with density functional theory (DFT) calculations and also confirm a theoretical prediction made in 1985 which claims that majority spin electrons should have a more contracted distribution around the nucleus than minority spin electrons. Topological analysis of the resulting experimental spin-resolved electron density is also briefly discussed.
Energy Budget of Forming Clumps in Numerical Simulations of Collapsing Clouds
NASA Astrophysics Data System (ADS)
Camacho, Vianey; Vázquez-Semadeni, Enrique; Ballesteros-Paredes, Javier; Gómez, Gilberto C.; Fall, S. Michael; Mata-Chávez, M. Dolores
2016-12-01
We analyze the physical properties and energy balance of density enhancements in two SPH simulations of the formation, evolution, and collapse of giant molecular clouds. In the simulations, no feedback is included, so all motions are due either to the initial decaying turbulence or to gravitational contraction. We define clumps as connected regions above a series of density thresholds. The resulting full set of clumps follows the generalized energy equipartition relation, {σ }v/{R}1/2\\propto {{{Σ }}}1/2, where {σ }v is the velocity dispersion, R is the “radius,” and Σ is the column density. We interpret this as a natural consequence of gravitational contraction at all scales rather than virial equilibrium. Nevertheless, clumps with low Σ tend to show a large scatter around equipartition. In more than half of the cases, this scatter is dominated by external turbulent compressions that assemble the clumps rather than by small-scale random motions that would disperse them. The other half does actually disperse. Moreover, clump sub-samples selected by means of different criteria exhibit different scalings. Sub-samples with narrow Σ ranges follow Larson-like relations, although characterized by their respective values of Σ. Finally, we find that (I) clumps lying in filaments tend to appear sub-virial, (II) high-density cores (n≥slant {10}5 cm3) that exhibit moderate kinetic energy excesses often contain sink (“stellar”) particles and the excess disappears when the stellar mass is taken into account in the energy balance, and (III) cores with kinetic energy excess but no stellar particles are truly in a state of dispersal.
Dovetail Rotor Construction For Permanent-Magnet Motors
NASA Technical Reports Server (NTRS)
Kintz, Lawrence J., Jr.; Puskas, William J.
1988-01-01
New way of mounting magnets in permanent-magnet, electronically commutated, brushless dc motors. Magnets wedge shaped, tapering toward center of rotor. Oppositely tapered pole pieces, electron-beam welded to rotor hub, retain magnets against centrifugal force generated by spinning rotor. To avoid excessively long electron-beam welds, pole pieces assembled in segments rather than single long bars.
Just Five More Minutes Please: Electronic Media Use, Sleep and Behaviour in Young Children
ERIC Educational Resources Information Center
Séguin, Daniel; Klimek, Victoria
2016-01-01
This study explored the relationship between electronic media use, sleep and behaviour in preschool-aged children between the ages of three and five years. The primary hypothesis of this study was that excessive electronic media use (>2 hours a day) would positively correlate with sleep patterns (in particular, disturbances) and negative…
Defects responsible for abnormal n-type conductivity in Ag-excess doped PbTe thermoelectrics
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ryu, Byungki, E-mail: byungkiryu@keri.re.kr; Lee, Jae Ki; Lee, Ji Eun
Density functional calculations have been performed to investigate the role of Ag defects in PbTe thermoelectric materials. Ag-defects can be either donor, acceptor, or isovalent neutral defect. When Ag is heavily doped in PbTe, the neutral (Ag-Ag) dimer defect at Pb-site is formed and the environment changes to the Pb-rich/Te-poor condition. Under Pb-rich condition, the ionized Ag-interstitial defect (Ag{sub I}{sup +}) becomes the major donor. The formation energy of Ag{sub I}{sup +} is smaller than other native and Ag-related defects. Also it is found that Ag{sub I}{sup +} is an effective dopant. There is no additional impurity state near themore » band gap and the conduction band minimum. The charge state of Ag{sub I}{sup +} defect is maintained even when the Fermi level is located above the conduction band minimum. The diffusion constant of Ag{sub I}{sup +} is calculated based on the temperature dependent Fermi level, formation energy, and migration energy. When T > 550 K, the diffusion length of Ag within a few minutes is comparable to the grain size of the polycrystalline PbTe, implying that Ag is dissolved into PbTe and this donor defect is distributed over the whole lattice in Ag-excess doped polycrystalline PbTe. The predicted solubility of Ag{sub I}{sup +} well explains the increased electron carrier concentration and electrical conductivity reported in Ag-excess doped polycrystalline PbTe at T = 450–750 K [Pei et al., Adv. Energy Mater. 1, 291 (2011)]. In addition, we suggest that this abnormal doping behavior is also found for Au-doped PbTe.« less
Aray, Yosslen; Paredes, Ricardo; Álvarez, Luis Javier; Martiz, Alejandro
2017-06-14
The electron density localization in insulator and semiconductor elemental cubic materials with diamond structure, carbon, silicon, germanium, and tin, and good metallic conductors with face centered cubic structure such as α-Co, Ni, Cu, Rh, Pd, Ag, Ir, Pt, and Au, was studied using a localized electrons detector defined in the local moment representation. Our results clearly show an opposite pattern of the electron density localization for the cubic ceramic and transition metal materials. It was found that, for the elemental ceramic materials, the zone of low electron localization is very small and is mainly localized on the atomic basin edges. On the contrary, for the transition metals, there are low-valued localized electrons detector isocontours defining a zone of highly delocalized electrons that extends throughout the material. We have found that the best conductors are those in which the electron density at this low-value zone is the lowest.
Does variable-density thinning increase wind damage in conifer stands on the Olympic Peninsula?
S.D. Roberts; C.A. Harrington; K.R. Buermeyer
2007-01-01
Silvicultural treatments designed to enhance stand structural diversity may result in increased wind damage. The ability to avoid conditions that might lead to excessive wind damage would benefit forest managers. We analyzed wind damage following implementation of a variable-density thinning at four sites on the Olympic National Forest in northwest Washington. The...
Susceptibility of volcanic ash-influenced soil in northern Idaho to mechanical compaction
Deborah S. Page-Dumroese
1993-01-01
Timber harvesting and mechanical site preparation can reduce site productivity if they excessively disturb or compact the soil. Volcanic ash-influenced soils with low undisturbed bulk densities and rock content are particularly susceptible. This study evaluates the effects of harvesting and site preparation on changes in the bulk density of ash-influenced forest soils...
NASA Astrophysics Data System (ADS)
Espinho, S.; Hofmann, S.; Palomares, J. M.; Nijdam, S.
2017-10-01
The aim of this work is to study the properties of Ar-O2 microwave driven surfatron plasmas as a function of the Ar/O2 ratio in the gas mixture. The key parameters are the plasma electron density and electron temperature, which are estimated with Thomson scattering (TS) for O2 contents up to 50% of the total gas flow. A sharp drop in the electron density from {10}20 {{{m}}}-3 to approximately {10}18 {{{m}}}-3 is estimated as the O2 content in the gas mixture is increased up to 15%. For percentages of O2 lower than 10%, the electron temperature is estimated to be about 2-3 times higher than in the case of a pure argon discharge in the same conditions ({T}{{e}}≈ 1 eV) and gradually decreases as the O2 percentage is raised to 50%. However, for O2 percentages above 30%, the scattering spectra become Raman dominated, resulting in large uncertainties in the estimated electron densities and temperatures. The influence of photo-detached electrons from negative ions caused by the typical TS laser fluences is also likely to contribute to the uncertainty in the measured electron densities for high O2 percentages. Moreover, the detection limit of the system is reached for percentages of O2 higher than 25%. Additionally, both the electron density and temperature of microwave discharges with large Ar/O2 ratios are more sensitive to gas pressure variations.
NASA Astrophysics Data System (ADS)
Leherte, L.; Allen, F. H.; Vercauteren, D. P.
1995-04-01
A computational method is described for mapping the volume within the DNA double helix accessible to a groove-binding antibiotic, netropsin. Topological critical point analysis is used to locate maxima in electron density maps reconstructed from crystallographically determined atomic coordinates. The peaks obtained in this way are represented as ellipsoids with axes related to local curvature of the electron density function. Combining the ellipsoids produces a single electron density function which can be probed to estimate effective volumes of the interacting species. Close complementarity between host and ligand in this example shows the method to be a good representation of the electron density function at various resolutions; while at the atomic level the ellipsoid method gives results which are in close agreement with those from the conventional, spherical, van der Waals approach.
NASA Astrophysics Data System (ADS)
Leherte, Laurence; Allen, Frank H.
1994-06-01
A computational method is described for mapping the volume within the DNA double helix accessible to the groove-binding antibiotic netropsin. Topological critical point analysis is used to locate maxima in electron density maps reconstructed from crystallographically determined atomic coordinates. The peaks obtained in this way are represented as ellipsoids with axes related to local curvature of the electron density function. Combining the ellipsoids produces a single electron density function which can be probed to estimate effective volumes of the interacting species. Close complementarity between host and ligand in this example shows the method to give a good representation of the electron density function at various resolutions. At the atomic level, the ellipsoid method gives results which are in close agreement with those from the conventional spherical van der Waals approach.
NASA Astrophysics Data System (ADS)
Brinkworth, C. S.; Hoard, D. W.; Wachter, S.; Howell, S. B.; Ciardi, David R.; Szkody, P.; Harrison, T. E.; van Belle, G. T.; Esin, A. A.
2007-04-01
We present Spitzer photometry of six short-period polars, EF Eri, V347 Pav, VV Pup, V834 Cen, GG Leo, and MR Ser. We have combined the Spitzer IRAC (3.6-8.0 μm) data with the 2MASS JHKs photometry to construct the SEDs of these systems from the near- to mid-IR (1.235-8 μm). We find that five out of the six polars have flux densities in the mid-IR that are substantially in excess of the values expected from the stellar components alone. We have modeled the observed SEDs with a combination of contributions from the white dwarf, secondary star, and either cyclotron emission or a cool, circumbinary dust disk to fill in the long-wavelength excess. We find that a circumbinary dust disk is the most likely cause of the 8 μm excess in all cases, but we have been unable to rule out the specific (but unlikely) case of completely optically thin cyclotron emission as the source of the observed 8 μm flux density. While both model components can generate enough flux at 8 μm, neither dust nor cyclotron emission alone can match the excess above the stellar components at all wavelengths. A model combining both cyclotron and dust contributions, possibly with some accretion-generated flux in the near-IR, is probably required, but our observed SEDs are not sufficiently well sampled to constrain such a complicated model. If the 8 μm flux density is caused by the presence of a circumbinary dust disk, then our estimates of the masses of these disks are many orders of magnitude below the mass required to affect CV evolution.
Protoclusters with evolved populations around radio galaxies at z ~ 2.5
NASA Astrophysics Data System (ADS)
Kajisawa, Masaru; Kodama, Tadayuki; Tanaka, Ichi; Yamada, Toru; Bower, Richard
2006-09-01
We report the discovery of protocluster candidates around high-redshift radio galaxies at z ~ 2.5 on the basis of clear statistical excess of colour-selected galaxies around them seen in the deep near-infrared imaging data obtained with CISCO on the Subaru Telescope. We have observed six targets, all at similar redshifts at z ~ 2.5, and our data reach J = 23.5, H = 22.6 and K = 21.8 (5σ) and cover a 1.6 × 1.6 arcmin2 field centred on each radio galaxy. We apply colour cuts in JHK bands in order to exclusively search for galaxies located at high redshifts, z > 2. Over the magnitude range of 19.5 < K < 21.5, we see a significant excess of red galaxies with J - K > 2.3 by a factor of 2 around the combined radio galaxies fields compared to those found in the general field of the Great Observatories Origins Deep Survey-South (GOODS-S). The excess of galaxies around the radio galaxies fields becomes more than a factor of 3 around 19.5 < K < 20.5 when the two-colour cuts are applied with JHK bands. Such overdensity of the colour-selected galaxies suggests that those fields tend to host high-density regions at high redshifts, although there seems to be the variety of the density of the colour-selected galaxies in each field. In particular, two radio galaxies fields out of the six observed fields show very strong density excess and these are likely to be protoclusters associated with the radio galaxies which would evolve into rich clusters of galaxies dominated by old passively evolving galaxies.
Electronic structure and electron momentum densities of Ag2CrO4
NASA Astrophysics Data System (ADS)
Meena, Seema Kumari; Ahuja, B. L.
2018-05-01
We present the first-ever experimental electron momentum density of Ag2CrO4 using 661.65 keV γ-rays from 20 Ci 137Cs source. To validate our experimental data, we have also deduced theoretical Compton profiles, energy bands and density of states using linear combination of atomic orbitals (LCAO) method in the framework of density functional theory. It is seen that the DFT-LDA gives a better agreement with experimental data than free atom model. The energy bands and density of states are also discussed.
Optical characterization of wide-gap detector-grade semiconductors
NASA Astrophysics Data System (ADS)
Elshazly, Ezzat S.
Wide bandgap semiconductors are being widely investigated because they have the potential to satisfy the stringent material requirements of high resolution, room temperature gamma-ray spectrometers. In particular, Cadmium Zinc Telluride (Cd1-xZnxTe, x˜0.1) and Thallium Bromide (TlBr), due to their combination of high resistivity, high atomic number and good electron mobility, have became very promising candidates for use in X- and gamma-ray detectors operating at room temperature. In this study, carrier trapping times were measured in CZT and TlBr as a function of temperature and material quality. Carrier lifetimes and tellurium inclusion densities were measured in detector-grade Cadmium Zinc Telluride (CZT) crystals grown by the High Pressure Bridgman method and Modified Bridgman method. Excess carriers were produced in the material using a pulsed YAG laser with a 1064nm wavelength and 7ns pulse width. Infrared microscopy was used to measure the tellurium defect densities in CZT crystals. The electronic decay was optically measured at room temperature. Spatial mapping of lifetimes and defect densities in CZT was performed to determine the relationship between defect density and electronic decay. A significant and strong correlation was found between the volume fraction of tellurium inclusions and the carrier trapping time. Carrier trapping times and tellurium inclusions were measured in CZT in the temperature range from 300K to 110K and the results were analyzed using a theoretical trapping model. Spatial mapping of carrier trapping times and defect densities in CZT was performed to determine the relationship between defect density and electronic decay. While a strong correlation between trapping time and defect density of tellurium inclusions was observed, there was no significant change in the trap energy. Carrier trapping times were measured in detector grade thallium bromide (TlBr) and compared with the results for cadmium zinc telluride (CZT) in a temperature range from 300K to 110K. The experimental data was analyzed using a trapping model. In CZT, because the majority carrier concentration is close to the intrinsic carrier concentration, the trapping time increases exponentially as the temperature decreases below about 160K. While, in TlBr, the majority carrier concentration is many orders of magnitude greater than the intrinsic carrier concentration and the trapping time followed a 1T temperature dependence over the range of temperatures studied. The results of the model suggest that a moderately deep compensation center, located approximately 200 meV from the middle of the bandgap, could be used to significantly increase the room temperature trapping time in TlBr. The results of this model demonstrate that the room temperature trapping time in TlBr can, in principle, approach 0.1ms through the introduction of a moderately deep compensation level but without decreasing the overall trap concentration. This strategy is not possible in CZT, because the band gap is too small to use a moderately deep compensation level while still maintaining high material resistivity. Carrier trapping times were measured in three polycrystalline TlBr samples produced by melting commercial TlBr beads in a sealed quartz ampoule for two hours at three different temperatures near the melting point. The trapping time decreased with increasing melting temperature, presumably due to the thermal generation of a trap state.
Liquid drop model for charged spherical metal clusters
DOE Office of Scientific and Technical Information (OSTI.GOV)
Seidl, M.; Brack, M.
1996-02-01
The average ground-state energy of a charged spherical metal cluster with {ital N} atoms and {ital z} excessive valence electrons, i.e., with net charge {ital Q}={minus}{ital ez} and radius {ital R}={ital r}{sub {ital sN}}{sup 1/3}, is presented in the liquid drop model (LDM) expansion {ital E}({ital N},{ital z})={ital a}{sub v}{ital N}+{ital a}{sub s}{ital N}{sup 2/3}+{ital a}{sub c}{ital N}{sup 1/3}+{ital a}{sub 0}({ital z})+{ital a}{sub {minus}1}({ital z}){ital N}{sup {minus}1/3}+{ital O}({ital N}{sup {minus}2/3}). We derive analytical expressions for the leading LDM coefficients {ital a}{sub v}, {ital a}{sub s}, {ital a}{sub c}, and, in particular, for the charge dependence of the further LDM coefficientsmore » {ital a}{sub 0} and {ital a}{sub {minus}1}, using the jellium model and density functional theory in the local density approximation. We obtain for the ionization energy {ital I}({ital R})={ital W}+{alpha}({ital e}{sup 2}/{ital R})+{ital O}({ital R}{sup {minus}2}), with the bulk work function {ital W}=[{Phi}(+{infinity}){minus}{Phi}(0)]{minus}{ital e}{sub b}, given first by Mahan and Schaich in terms of the electrostatic potential {Phi} and the bulk energy per electron {ital e}{sub b}, and a new analytical expression for the dimensionless coefficient {alpha}. We demonstrate that within classical theory {alpha}=1/2 but, in agreement with experimental information, {alpha} tends to {approximately}0.4 if quantum-mechanical contributions are included. In order to test and confirm our analytical expressions, we discuss the numerical results of semiclassical density variational calculations in the extended Thomas{endash}Fermi model. Copyright {copyright} 1996 Academic Press, Inc.« less
High-latitude electron density observations from the IMAGE radio plasma imager
NASA Astrophysics Data System (ADS)
Henize, Vance Karl
2003-11-01
Before the IMAGE mission, electron densities in the high latitude, high altitude region of the magnetosphere were measured exclusively by in situ means. The Radio Plasma Imager instrument onboard IMAGE is capable of remotely observing electron densities between 0.01 and 100,000 e-/cm-3 from distances of several Earth radii or more. This allows a global view of the high latitude region that has a far greater accuracy than was previously possible. Soundings of the terrestrial magnetic cusp provide the first remote observations of the dynamics and poleward density profile of this feature continuously over a 60- minute interval. During steady quiet-time solar wind and interplanetary magnetic field conditions, the cusp is shown to be stable in both position and density structure with only slight variations in both. Peak electron densities within the cusp during this time are found to be somewhat higher than predicted. New procedures for deriving electron densities from radio sounding measurements are developed. The addition of curve fitting algorithms significantly increases the amount of useable data. Incorporating forward modeling techniques greatly reduces the computational time over traditional inversion methods. These methods are described in detail. A large number high latitude observations of ducted right-hand extraordinary mode waves made over the course of one year of the IMAGE mission are used to create a three dimensional model of the electron density profile of the terrestrial polar cap region. The dependence of electron density in the polar cap on average geocentric distance (d) is found to vary as d-6.6. This is a significantly steeper gradient than cited in earlier works such as Persoon et al., although the introduction of an asymptotic term provides for basic agreement in the limited region of their joint validity. Latitudinal and longitudinal variations are found to be insignificant. Both the mean profile power law index of the electron density profile and, to a stronger degree, its variance show dependence with the DST index.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Franco-Pérez, Marco, E-mail: francopj@mcmaster.ca, E-mail: ayers@mcmaster.ca, E-mail: jlgm@xanum.uam.mx, E-mail: avela@cinvestav.mx; Departamento de Química, Universidad Autónoma Metropolitana-Iztapalapa, Av. San Rafael Atlixco 186, México, D.F. 09340; Ayers, Paul W., E-mail: francopj@mcmaster.ca, E-mail: ayers@mcmaster.ca, E-mail: jlgm@xanum.uam.mx, E-mail: avela@cinvestav.mx
2015-12-28
We explore the local and nonlocal response functions of the grand canonical potential density functional at nonzero temperature. In analogy to the zero-temperature treatment, local (e.g., the average electron density and the local softness) and nonlocal (e.g., the softness kernel) intrinsic response functions are defined as partial derivatives of the grand canonical potential with respect to its thermodynamic variables (i.e., the chemical potential of the electron reservoir and the external potential generated by the atomic nuclei). To define the local and nonlocal response functions of the electron density (e.g., the Fukui function, the linear density response function, and the dualmore » descriptor), we differentiate with respect to the average electron number and the external potential. The well-known mathematical relationships between the intrinsic response functions and the electron-density responses are generalized to nonzero temperature, and we prove that in the zero-temperature limit, our results recover well-known identities from the density functional theory of chemical reactivity. Specific working equations and numerical results are provided for the 3-state ensemble model.« less
Franco-Pérez, Marco; Ayers, Paul W; Gázquez, José L; Vela, Alberto
2015-12-28
We explore the local and nonlocal response functions of the grand canonical potential density functional at nonzero temperature. In analogy to the zero-temperature treatment, local (e.g., the average electron density and the local softness) and nonlocal (e.g., the softness kernel) intrinsic response functions are defined as partial derivatives of the grand canonical potential with respect to its thermodynamic variables (i.e., the chemical potential of the electron reservoir and the external potential generated by the atomic nuclei). To define the local and nonlocal response functions of the electron density (e.g., the Fukui function, the linear density response function, and the dual descriptor), we differentiate with respect to the average electron number and the external potential. The well-known mathematical relationships between the intrinsic response functions and the electron-density responses are generalized to nonzero temperature, and we prove that in the zero-temperature limit, our results recover well-known identities from the density functional theory of chemical reactivity. Specific working equations and numerical results are provided for the 3-state ensemble model.
LPWA using supersonic gas jet with tailored density profile
NASA Astrophysics Data System (ADS)
Kononenko, O.; Bohlen, S.; Dale, J.; D'Arcy, R.; Dinter, M.; Erbe, J. H.; Indorf, G.; di Lucchio, L.; Goldberg, L.; Gruse, J. N.; Karstensen, S.; Libov, V.; Ludwig, K.; Martinez de La Ossa, A.; Marutzky, F.; Niroula, A.; Osterhoff, J.; Quast, M.; Schaper, L.; Schwinkendorf, J.-P.; Streeter, M.; Tauscher, G.; Weichert, S.; Palmer, C.; Horbatiuk, Taras
2016-10-01
Laser driven plasma wakefield accelerators have been explored as a potential compact, reproducible source of relativistic electron bunches, utilising an electric field of many GV/m. Control over injection of electrons into the wakefield is of crucial importance in producing stable, mono-energetic electron bunches. Density tailoring of the target, to control the acceleration process, can also be used to improve the quality of the bunch. By using gas jets to provide tailored targets it is possible to provide good access for plasma diagnostics while also producing sharp density gradients for density down-ramp injection. OpenFOAM hydrodynamic simulations were used to investigate the possibility of producing tailored density targets in a supersonic gas jet. Particle-in-cell simulations of the resulting density profiles modelled the effect of the tailored density on the properties of the accelerated electron bunch. Here, we present the simulation results together with preliminary experimental measurements of electron and x-ray properties from LPWA experiments using gas jet targets and a 25 TW, 25 fs Ti:Sa laser system at DESY.
Ionization balance in Titan's nightside ionosphere
NASA Astrophysics Data System (ADS)
Vigren, E.; Galand, M.; Yelle, R. V.; Wellbrock, A.; Coates, A. J.; Snowden, D.; Cui, J.; Lavvas, P.; Edberg, N. J. T.; Shebanits, O.; Wahlund, J.-E.; Vuitton, V.; Mandt, K.
2015-03-01
Based on a multi-instrumental Cassini dataset we make model versus observation comparisons of plasma number densities, nP = (nenI)1/2 (ne and nI being the electron number density and total positive ion number density, respectively) and short-lived ion number densities (N+, CH2+, CH3+, CH4+) in the southern hemisphere of Titan's nightside ionosphere over altitudes ranging from 1100 and 1200 km and from 1100 to 1350 km, respectively. The nP model assumes photochemical equilibrium, ion-electron pair production driven by magnetospheric electron precipitation and dissociative recombination as the principal plasma neutralization process. The model to derive short-lived-ion number densities assumes photochemical equilibrium for the short-lived ions, primary ion production by electron-impact ionization of N2 and CH4 and removal of the short-lived ions through reactions with CH4. It is shown that the models reasonably reproduce the observations, both with regards to nP and the number densities of the short-lived ions. This is contrasted by the difficulties in accurately reproducing ion and electron number densities in Titan's sunlit ionosphere.
Spectral structure of electron antineutrinos from nuclear reactors.
Dwyer, D A; Langford, T J
2015-01-09
Recent measurements of the positron energy spectrum obtained from inverse beta decay interactions of reactor electron antineutrinos show an excess in the 4 to 6 MeV region relative to current predictions. First-principles calculations of fission and beta decay processes within a typical pressurized water reactor core identify prominent fission daughter isotopes as a possible origin for this excess. These calculations also predict percent-level substructures in the antineutrino spectrum due to Coulomb effects in beta decay. Precise measurement of these substructures can elucidate the nuclear processes occurring within reactors. These substructures can be a systematic issue for measurements utilizing the detailed spectral shape.
A theoretical-electron-density databank using a model of real and virtual spherical atoms.
Nassour, Ayoub; Domagala, Slawomir; Guillot, Benoit; Leduc, Theo; Lecomte, Claude; Jelsch, Christian
2017-08-01
A database describing the electron density of common chemical groups using combinations of real and virtual spherical atoms is proposed, as an alternative to the multipolar atom modelling of the molecular charge density. Theoretical structure factors were computed from periodic density functional theory calculations on 38 crystal structures of small molecules and the charge density was subsequently refined using a density model based on real spherical atoms and additional dummy charges on the covalent bonds and on electron lone-pair sites. The electron-density parameters of real and dummy atoms present in a similar chemical environment were averaged on all the molecules studied to build a database of transferable spherical atoms. Compared with the now-popular databases of transferable multipolar parameters, the spherical charge modelling needs fewer parameters to describe the molecular electron density and can be more easily incorporated in molecular modelling software for the computation of electrostatic properties. The construction method of the database is described. In order to analyse to what extent this modelling method can be used to derive meaningful molecular properties, it has been applied to the urea molecule and to biotin/streptavidin, a protein/ligand complex.
Enhanced metabolite generation
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chidambaram, Devicharan
The present invention relates to the enhanced production of metabolites by a process whereby a carbon source is oxidized with a fermentative microbe in a compartment having a portal. An electron acceptor is added to the compartment to assist the microbe in the removal of excess electrons. The electron acceptor accepts electrons from the microbe after oxidation of the carbon source. Other transfers of electrons can take place to enhance the production of the metabolite, such as acids, biofuels or brewed beverages.
Measurement of electron density using reactance cutoff probe
DOE Office of Scientific and Technical Information (OSTI.GOV)
You, K. H.; Seo, B. H.; Kim, J. H.
2016-05-15
This paper proposes a new measurement method of electron density using the reactance spectrum of the plasma in the cutoff probe system instead of the transmission spectrum. The highly accurate reactance spectrum of the plasma-cutoff probe system, as expected from previous circuit simulations [Kim et al., Appl. Phys. Lett. 99, 131502 (2011)], was measured using the full two-port error correction and automatic port extension methods of the network analyzer. The electron density can be obtained from the analysis of the measured reactance spectrum, based on circuit modeling. According to the circuit simulation results, the reactance cutoff probe can measure themore » electron density more precisely than the previous cutoff probe at low densities or at higher pressure. The obtained results for the electron density are presented and discussed for a wide range of experimental conditions, and this method is compared with previous methods (a cutoff probe using the transmission spectrum and a single Langmuir probe).« less
NASA Astrophysics Data System (ADS)
Leblanc, J. P. F.; Carbotte, J. P.; Nicol, E. J.
2012-02-01
Motivated by recent tunneling and angle-resolved photoemission (ARPES) work [1,2], we explore the combined effect of electron-electron and electron-phonon couplings on the renormalized energy dispersion, the spectral function, and the density of states of doped graphene. We find that the plasmarons seen in ARPES are also observable in the density of states and appear as structures with quadratic dependence on energy about the minima. Further, we illustrate how knowledge of the slopes of both the density of states and the renormalized dispersion near the Fermi level can allow for the separation of momentum and frequency dependent renormalizations to the Fermi velocity. This analysis should allow for the isolation of the renormalization due to the electron-phonon interaction from that of the electron-electron interaction. [4pt] [1] Brar et al. Phys. Rev. Lett. 104, 036805 (2010) [2] Bostwick et al. Science 328, p.999 (2010)
NASA Astrophysics Data System (ADS)
Mukundan, Vrinda; Bhardwaj, Anil
2018-01-01
A one dimensional photochemical model for the dayside ionosphere of Titan has been developed for calculating the density profiles of ions and electrons under steady state photochemical equilibrium condition. We concentrated on the T40 flyby of Cassini orbiter and used the in-situ measurements from instruments onboard Cassini as input to the model. An energy deposition model is employed for calculating the attenuated photon flux and photoelectron flux at different altitudes in Titan's ionosphere. We used the Analytical Yield Spectrum approach for calculating the photoelectron fluxes. Volume production rates of major primary ions, like, N2+, N+ , CH4+, CH3+, etc due to photon and photoelectron impact are calculated and used as input to the model. The modeled profiles are compared with the Cassini Ion Neutral Mass Spectrometer (INMS) and Langmuir Probe (LP) measurements. The calculated electron density is higher than the observation by a factor of 2 to 3 around the peak. We studied the impact of different model parameters, viz. photoelectron flux, ion production rates, electron temperature, dissociative recombination rate coefficients, neutral densities of minor species, and solar flux on the calculated electron density to understand the possible reasons for this discrepancy. Recent studies have shown that there is an overestimation in the modeled photoelectron flux and N2+ ion production rates which may contribute towards this disagreement. But decreasing the photoelectron flux (by a factor of 3) and N2+ ion production rate (by a factor of 2) decreases the electron density only by 10 to 20%. Reduction in the measured electron temperature by a factor of 5 provides a good agreement between the modeled and observed electron density. The change in HCN and NH3 densities affects the calculated densities of the major ions (HCNH+ , C2H5+, and CH5+); however the overall impact on electron density is not appreciable ( < 20%). Even though increasing the dissociative recombination rate coefficients of the ions C2H5+ and CH5+ by a factor of 10 reduces the difference between modeled and observed densities of the major ions, the modeled electron density is still higher than the observation by ∼ 60% at the peak. We suggest that there might be some unidentified chemical reactions that may account for the additional loss of plasma in Titan's ionosphere.
NASA Astrophysics Data System (ADS)
Kamburov, D.; Baldwin, K. W.; West, K. W.; Lyon, S.; Pfeiffer, L. N.; Pinczuk, A.
2017-06-01
We compare micro-photoluminescence (μPL) as a measure of the electron density in a clean, two-dimensional (2D) system confined in a GaAs quantum well (QW) to the standard magneto-transport technique. Our study explores the PL shape evolution across a number of molecular beam epitaxy-grown samples with different QW widths and 2D electron densities and notes its correspondence with the density obtained in magneto-transport measurements on these samples. We also measure the 2D density in a top-gated quantum well sample using both PL and transport and find that the two techniques agree to within a few percent over a wide range of gate voltages. We find that the PL measurements are sensitive to gate-induced 2D density changes on the order of 109 electrons/cm2. The spatial resolution of the PL density measurement in our experiments is 40 μm, which is already substantially better than the millimeter-scale resolution now possible in spatial density mapping using magneto-transport. Our results establish that μPL can be used as a reliable high spatial resolution technique for future contactless measurements of density variations in a 2D electron system.
NASA Astrophysics Data System (ADS)
Uslu, Salih; Yarar, Zeki
2017-02-01
The epitaxial growth of quantum wells composed of high quality allows the production and application to their device of new structures in low dimensions. The potential profile at the junction is determined by free carriers and by the level of doping. Therefore, the shape of potential is obtained by the electron density. Energy level determines the number of electrons that can be occupied at every level. Energy levels and electron density values of each level must be calculated self consistently. Starting with V(z) test potential, wave functions and electron densities for each energy levels can be calculated to solve Schrödinger equation. If Poisson's equation is solved with the calculated electron density, the electrostatic potential can be obtained. The new V(z) potential can be calculated with using electrostatic potential found beforehand. Thus, the obtained values are calculated self consistently to a certain error criterion. In this study, the energy levels formed in the interfacial potential, electron density in each level and the wave function dependence of material parameters were investigated self consistently.
NASA Astrophysics Data System (ADS)
Arthur, N. A.; Foster, J. E.; Barnat, E. V.
2018-05-01
Two-dimensional electron density measurements are made in a magnetic ring cusp discharge using laser collisional induced fluorescence. The magnet rings are isolated from the anode structure such that they can be biased independently in order to modulate electron flows through the magnetic cusps. Electron density images are captured as a function of bias voltage in order to assess the effects of current flow through the cusp on the spatial extent of the cusp. We anticipated that for a fixed current density being funneled through the magnetic cusp, the leak width would necessarily increase. Unexpectedly, the leak width, as measured by LCIF images, does not increase. This suggests that the current density is not constant, and that possibly either electrons are being heated or additional ionization events are occurring within the cusp. Spatially resolving electron temperature would be needed to determine if electrons are being heated within the cusp. We also observe breakdown of the anode magnetosheath and formation of anode spots at high bias voltage.
Detection of an electron beam in a high density plasma via an electrostatic probe
NASA Astrophysics Data System (ADS)
Majeski, Stephen; Yoo, Jongsoo; Zweben, Stewart; Yamada, Masaaki
2018-07-01
An electron beam is detected by a 1D floating potential probe array in a relatively high density (1012–1013 cm‑3) and low temperature (∼5 eV) plasma of the Magnetic Reconnection Experiment. Clear perturbations in the floating potential profile by the electron beam are observed. Based on the floating potential profile and a current balance equation to the probe array tips, the effective width of the electron beam is determined, from which we determine the radial and toroidal beam current density profiles. After the profile of the electron beam is specified from the measured beam current, we demonstrate the consistency of the current balance equation and the location of the perturbation is also in agreement with field line mapping. No significant broadening of the electron beam is observed after the beam propagates for tens of centimeters through the high density plasma. These results prove that the field line mapping is, in principle, possible in high density plasmas.
Detection of an electron beam in a high density plasma via an electrostatic probe
DOE Office of Scientific and Technical Information (OSTI.GOV)
Majeski, Stephen; Yoo, Jongsoo; Zweben, Stewart
Here, an electron beam is detected by a 1D floating potential probe array in a relatively high density (10 12–10 13 cm -3) and low temperature (~5 eV) plasma of the Magnetic Reconnection Experiment. Clear perturbations in the floating potential profile by the electron beam are observed. Based on the floating potential profile and a current balance equation to the probe array tips, the effective width of the electron beam is determined, from which we determine the radial and toroidal beam current density profiles. After the profile of the electron beam is specified from the measured beam current, we demonstratemore » the consistency of the current balance equation and the location of the perturbation is also in agreement with field line mapping. No significant broadening of the electron beam is observed after the beam propagates for tens of centimeters through the high density plasma. These results prove that the field line mapping is, in principle, possible in high density plasmas.« less
Density Functionals of Chemical Bonding
Putz, Mihai V.
2008-01-01
The behavior of electrons in general many-electronic systems throughout the density functionals of energy is reviewed. The basic physico-chemical concepts of density functional theory are employed to highlight the energy role in chemical structure while its extended influence in electronic localization function helps in chemical bonding understanding. In this context the energy functionals accompanied by electronic localization functions may provide a comprehensive description of the global-local levels electronic structures in general and of chemical bonds in special. Becke-Edgecombe and author’s Markovian electronic localization functions are discussed at atomic, molecular and solid state levels. Then, the analytical survey of the main workable kinetic, exchange, and correlation density functionals within local and gradient density approximations is undertaken. The hierarchy of various energy functionals is formulated by employing both the parabolic and statistical correlation degree of them with the electronegativity and chemical hardness indices by means of quantitative structure-property relationship (QSPR) analysis for basic atomic and molecular systems. PMID:19325846
DOE Office of Scientific and Technical Information (OSTI.GOV)
Shi, Ming W.; Stewart, Scott G.; Sobolev, Alexandre N.
The trans-epoxysuccinyl amide group as a biologically active moiety in cysteine protease inhibitors such as loxistatin acid E64c has been used as a benchmark system for theoretical studies of environmental effects on the electron density of small active ingredients in relation to their biological activity. Here, the synthesis and the electronic properties of the smallest possible active site model compound are reported to close the gap between the unknown experimental electron density of trans-epoxysuccinyl amides and the well-known function of related drugs. Intramolecular substituent effects are separated from intermolecular crystal packing effects on the electron density, which allows us tomore » predict the conditions under which an experimental electron density investigation on trans-epoxysuccinyl amides will be possible. In this context, the special importance of the carboxylic acid function in the model compound for both crystal packing and biological activity is revealed through the novel tool of model energy analysis.« less
Detection of an electron beam in a high density plasma via an electrostatic probe
Majeski, Stephen; Yoo, Jongsoo; Zweben, Stewart; ...
2018-05-08
Here, an electron beam is detected by a 1D floating potential probe array in a relatively high density (10 12–10 13 cm -3) and low temperature (~5 eV) plasma of the Magnetic Reconnection Experiment. Clear perturbations in the floating potential profile by the electron beam are observed. Based on the floating potential profile and a current balance equation to the probe array tips, the effective width of the electron beam is determined, from which we determine the radial and toroidal beam current density profiles. After the profile of the electron beam is specified from the measured beam current, we demonstratemore » the consistency of the current balance equation and the location of the perturbation is also in agreement with field line mapping. No significant broadening of the electron beam is observed after the beam propagates for tens of centimeters through the high density plasma. These results prove that the field line mapping is, in principle, possible in high density plasmas.« less
Constraining dark matter by the 511 keV line
NASA Astrophysics Data System (ADS)
Chan, Man Ho; Leung, Chung Hei
2018-06-01
In the past few decades, observations indicated that an unexplained high production rate of positrons (the strong 511 keV line) exists in the Milky Way center. By using the fact that a large amount of high density gas used to exist near the Milky Way center million years ago, we model the rate of positrons produced due to dark matter annihilation. We consider the effect of adiabatic contraction of dark matter density due to the supermassive black hole at the Milky Way center and perform a detailed calculation to constrain the possible annihilation channel and dark matter mass range. We find that only three annihilation channels (μ+μ-, 4e and 4μ) can provide the required positron production rate and satisfy the stringent constraint of gamma-ray observations. In particular, the constrained mass range for the μ+μ- channel is m ≈ 80 - 100 GeV, which is close to the mass range obtained for the dark matter interpretation of the GeV gamma-ray and positron excess. In other words, the proposed scenario can simultaneously provide the required positron production rate to explain the 511 keV emission, the positron excess and the GeV gamma-ray excess in our Milky Way, and it is compatible with the density spike due to adiabatic growth model of the supermassive black hole.
Triiodothyronine, beta-adrenergic receptors, agonist responses, and exercise capacity.
Martin, W H
1993-07-01
Although thyroid hormone excess results in increased beta-adrenergic receptor density or agonist responses in some cells of experimental animals, the role of these effects in contributing to clinical manifestations of hyperthyroidism in human subjects is unclear. To shed further light on this issue, we characterized the effect of 2 weeks of excess triiodothyronine administration on cardiac and metabolic responses to graded-dose isoproterenol infusion, skeletal muscle beta-adrenergic receptor density, and physiologic determinants of exercise capacity in young healthy subjects. The slope of the heart rate response to isoproterenol was 36% greater (p < 0.05) after triiodothyronine administration. In addition, beta-adrenergic receptor density was increased (p < 0.01) in all types of skeletal muscle fibers. Maximal oxygen uptake during treadmill exercise declined 5% (p < 0.001) after triiodothyronine administration because of a decrease in the arteriovenous oxygen difference (p < 0.05). The plasma lactate response to submaximal exercise was 25% greater (p < 0.01) in the hyperthyroid state. These effects were paralleled by a decrement in skeletal muscle oxidative capacity and a decrease in cross-sectional area of type 2A skeletal myocytes. Thus, thyroid hormone excess enhances cardiac beta-adrenergic sensitivity under in vivo conditions in human subjects. Nevertheless, exercise capacity is diminished in the hyperthyroid state, an effect that may be related to reduced skeletal muscle oxidative capacity and type 2A fiber atrophy.
A Non-Neutral Plasma Device: Electron Beam Penning Trap
NASA Astrophysics Data System (ADS)
Zhuang, Ge; Liu, Wan-dong; Zheng, Jian; Fu, Cheng-jiang; Bai, Bo; Chi, Ji; Zhao, Kai; Xie, Jin-lin; Liang, Xiao-ping; Yu, Chang-xuan
1999-12-01
An electron beam Penning trap (EBPT) non- neutral plasma system, built to investigate the formation of a dense electron core with the density beyond Brillouin limit and possible application to fusion research, has been described. The density in the center of the EBPT has been verified to be up to 10 times of Brillouin density limit.
The 1973 solar occultation of the Crab Nebula pulsar
NASA Technical Reports Server (NTRS)
Weisberg, J. M.
1975-01-01
The mean electron density of the solar corona was determined by measuring the dispersion of radiofrequency pulses from pulsar NP 0532 during the June 1973 solar occultation. Trends continued which were noticed in 1971 as solar activity declined. Model fitting results suggest that the corona continued to become even more concentrated toward the equator in 1973 than in 1971. The number density of electrons in most regions decreased. The best model of the distribution of corona electrons is suggested to be one with zero density at the poles. K-corona isophotes and contours of equal path-integrated density are presented for several models. Electron density versus date and position in the corona are tabulated. It is seen that there is no simple relationship between the onset of major solar activity and density or scattering enhancements.
Mass spectrometer with electron source for reducing space charge effects in sample beam
Houk, Robert S.; Praphairaksit, Narong
2003-10-14
A mass spectrometer includes an ion source which generates a beam including positive ions, a sampling interface which extracts a portion of the beam from the ion source to form a sample beam that travels along a path and has an excess of positive ions over at least part of the path, thereby causing space charge effects to occur in the sample beam due to the excess of positive ions in the sample beam, an electron source which adds electrons to the sample beam to reduce space charge repulsion between the positive ions in the sample beam, thereby reducing the space charge effects in the sample beam and producing a sample beam having reduced space charge effects, and a mass analyzer which analyzes the sample beam having reduced space charge effects.
Valdivia, Maria Pia; Stutman, Dan; Stoeckl, Christian; Mileham, Chad; Begishev, Ildar A; Bromage, Jake; Regan, Sean P
2018-01-10
Talbot-Lau x-ray interferometry uses incoherent x-ray sources to measure refraction index changes in matter. These measurements can provide accurate electron density mapping through phase retrieval. An adaptation of the interferometer has been developed in order to meet the specific requirements of high-energy density experiments. This adaptation is known as a moiré deflectometer, which allows for single-shot capabilities in the form of interferometric fringe patterns. The moiré x-ray deflectometry technique requires a set of object and reference images in order to provide electron density maps, which can be costly in the high-energy density environment. In particular, synthetic reference phase images obtained ex situ through a phase-scan procedure, can provide a feasible solution. To test this procedure, an object phase map was retrieved from a single-shot moiré image obtained from a plasma-produced x-ray source. A reference phase map was then obtained from phase-stepping measurements using a continuous x-ray tube source in a small laboratory setting. The two phase maps were used to retrieve an electron density map. A comparison of the moiré and phase-stepping phase-retrieval methods was performed to evaluate single-exposure plasma electron density mapping for high-energy density and other transient plasma experiments. It was found that a combination of phase-retrieval methods can deliver accurate refraction angle mapping. Once x-ray backlighter quality is optimized, the ex situ method is expected to deliver electron density mapping with improved resolution. The steps necessary for improved diagnostic performance are discussed.
Testing relativistic electron acceleration mechanisms
NASA Astrophysics Data System (ADS)
Green, Janet Carol
2002-09-01
This dissertation tests models of relativistic electron acceleration in the earth's outer radiation belt. The models fall into two categories: external and internal. External acceleration models transport and accelerate electrons from a source region in the outer magnetosphere to the inner magnetosphere. Internal acceleration models accelerate a population of electrons already present in the inner magnetosphere. In this dissertation, we test one specific external acceleration mechanism, perform a general test that differentiates between internal and external acceleration models, and test one promising internal acceleration model. We test the models using Polar-HIST data that we transform into electron phase space density (PSD) as a function of adiabatic invariants. We test the ultra low frequency (ULF) wave enhanced radial diffusion external acceleration mechanism by looking for a causal relationship between increased wave power and increased electron PSD at three L* values. One event with increased wave power at two L* values and no subsequent PSD increase does not support the model suggesting that ULF wave power alone is not sufficient to cause an electron response. Excessive loss of electrons and the duration of wave power do not explain the lack of a PSD enhancement at low L*. We differentiate between internal and external acceleration mechanisms by examining the radial profile of electron PSD. We observe PSD profiles that depend on local time. Nightside profiles are highly dependent on the magnetic field model used to calculate PSD as a function of adiabatic invariants and are not reliable. Dayside PSD profiles are more robust and consistent with internal acceleration of electrons. We test one internal acceleration model, the whistler/electromagnetic ion cyclotron wave model, by comparing observed pitch angle distributions to those predicted by the model using a superposed epoch analysis. The observations show pitch angle distributions corresponding to electrons with energy >=4.0 MeV becoming more peaked at 90° during the storm recovery phase. The observation is consistent with but does not confirm the model. Our tests indicate that relativistic electrons are accelerated by an internal source acceleration mechanism but we do not identify a unique mechanism.
Fission track astrology of three Apollo 14 gas-rich breccias
NASA Technical Reports Server (NTRS)
Graf, H.; Shirck, J.; Sun, S.; Walker, R.
1973-01-01
The three Apollo 14 breccias 14301, 14313, and 14318 all show fission xenon due to the decay of Pu-244. To investigate possible in situ production of the fission gas, an analysis was made of the U-distribution in these three breccias. The major amount of the U lies in glass clasts and in matrix material and no more than 25% occurs in distinct high-U minerals. The U-distribution of each breccia is discussed in detail. Whitlockite grains in breccias 14301 and 14318 found with the U-mapping were etched and analyzed for fission tracks. The excess track densities are much smaller than indicated by the Xe-excess. Because of a preirradiation history documented by very high track densities in feldspar grains, however, it is impossible to attribute the excess tracks to the decay of Pu-244. A modified track method has been developed for measuring average U-concentrations in samples containing a heterogeneous distribution of U in the form of small high-U minerals. The method is briefly discussed, and results for the rocks 14301, 14313, 14318, 68815, 15595, and the soil 64421 are given.
Precision Electron Density Measurements in the SSX MHD Wind Tunnel
NASA Astrophysics Data System (ADS)
Suen-Lewis, Emma M.; Barbano, Luke J.; Shrock, Jaron E.; Kaur, Manjit; Schaffner, David A.; Brown, Michael R.
2017-10-01
We characterize fluctuations of the line averaged electron density of Taylor states produced by the magnetized coaxial plasma gun of the SSX device using a 632.8 nm HeNe laser interferometer. The analysis method uses the electron density dependence of the refractive index of the plasma to determine the electron density of the Taylor states. Typical magnetic field and density values in the SSX device approach about B ≅ 0.3 T and n = 0 . 4 ×1016 cm-3 . Analysis is improved from previous density measurement methods by developing a post-processing method to remove relative phase error between interferometer outputs and to account for approximately linear phase drift due to low-frequency mechanical vibrations of the interferometer. Precision density measurements coupled with local measurements of the magnetic field will allow us to characterize the wave composition of SSX plasma via density vs. magnetic field correlation analysis, and compare the wave composition of SSX plasma with that of the solar wind. Preliminary results indicate that density and magnetic field appear negatively correlated. Work supported by DOE ARPA-E ALPHA program.
NASA Astrophysics Data System (ADS)
Fathipour, Vala; Bonakdar, Alireza; Mohseni, Hooman
2016-08-01
Short-wave infrared (SWIR) photon detection has become an essential technology in the modern world. Sensitive SWIR detector arrays with high pixel density, low noise levels and high signal-to-noise-ratios are highly desirable for a variety of applications including biophotonics, light detection and ranging, optical tomography, and astronomical imaging. As such many efforts in infrared detector research are directed towards improving the performance of the photon detectors operating in this wavelength range. We review the history, principle of operation, present status and possible future developments of a sensitive SWIR detector technology, which has demonstrated to be one of the most promising paths to high pixel density focal plane arrays for low flux applications. The so-called electron-injection (EI) detector was demonstrated for the first time (in 2007). It offers an overall system-level sensitivity enhancement compared to the p-i-n diode due to a stable internal avalanche-free gain. The amplification method is inherently low noise, and devices exhibit an excess noise of unity. The detector operates in linear-mode and requires only bias voltage of a few volts. The stable detector characteristics, makes formation of high yield large-format, and high pixel density focal plane arrays less challenging compared to other detector technologies such as avalanche photodetectors. Detector is based on the mature InP material system (InP/InAlAs/GaAsSb/InGaAs), and has a cutoff wavelength of 1700 nm. It takes advantage of a unique three-dimensional geometry and combines the efficiency of a large absorbing volume with the sensitivity of a low-dimensional switch (injector) to sense and amplify signals. Current devices provide high-speed response ~ 5 ns rise time, and low jitter ~ 12 ps at room temperature. The internal dark current density is ~ 1 μA/cm2 at room temperature decreasing to 0.1 nA/cm2 at 160 K. EI detectors have been designed, fabricated, and tested during two generations of development and optimization cycles. We review our imager results using the first-generation detectors. In the second-generation devices, the dark current is reduced by two orders of magnitude, and bandwidth is improved by 4 orders of magnitude. The dark current density of the EI detector is shown to outperform the state-of-the-art technology, the