Science.gov

Sample records for exchange bias coupling

  1. Interface mixing and its impact on exchange coupling in exchange biased systems

    NASA Astrophysics Data System (ADS)

    Manna, P. K.; Skoropata, E.; Ting, Y.-W.; Lin, K.-W.; Freeland, J. W.; van Lierop, J.

    2016-12-01

    Exchange bias and interlayer exchange coupling are interface driven phenomena. Since an ideal interface is very challenging to achieve, a clear understanding of the chemical and magnetic natures of interfaces is pivotal to identify their influence on the magnetism. We have chosen Ni80Fe20/CoO(t CoO)/Co trilayers as a model system, and identified non-stoichiometric Ni-ferrite and Co-ferrite at the surface and interface, respectively. These ferrites, being ferrimagnets typically, should influence the exchange coupling. However, in our trilayers the interface ferrites were found not to be ferro- or ferri-magnetic; thus having no observable influence on the exchange coupling. Our analysis also revealed that (i) interlayer exchange coupling was present between Ni80Fe20 and Co even though the interlayer thickness was significantly larger than expected for this phenomenon to happen, and (ii) the majority of the CoO layer (except some portion near the interface) did not contribute to the observed exchange bias. We also identified that the interlayer exchange coupling and the exchange bias properties were not interdependent.

  2. Interface mixing and its impact on exchange coupling in exchange biased systems.

    PubMed

    Manna, P K; Skoropata, E; Ting, Y-W; Lin, K-W; Freeland, J W; van Lierop, J

    2016-12-07

    Exchange bias and interlayer exchange coupling are interface driven phenomena. Since an ideal interface is very challenging to achieve, a clear understanding of the chemical and magnetic natures of interfaces is pivotal to identify their influence on the magnetism. We have chosen Ni80Fe20/CoO(t CoO)/Co trilayers as a model system, and identified non-stoichiometric Ni-ferrite and Co-ferrite at the surface and interface, respectively. These ferrites, being ferrimagnets typically, should influence the exchange coupling. However, in our trilayers the interface ferrites were found not to be ferro- or ferri-magnetic; thus having no observable influence on the exchange coupling. Our analysis also revealed that (i) interlayer exchange coupling was present between Ni80Fe20 and Co even though the interlayer thickness was significantly larger than expected for this phenomenon to happen, and (ii) the majority of the CoO layer (except some portion near the interface) did not contribute to the observed exchange bias. We also identified that the interlayer exchange coupling and the exchange bias properties were not interdependent.

  3. Exchange biasing single molecule magnets: coupling of TbPc2 to antiferromagnetic layers.

    PubMed

    Lodi Rizzini, A; Krull, C; Balashov, T; Mugarza, A; Nistor, C; Yakhou, F; Sessi, V; Klyatskaya, S; Ruben, M; Stepanow, S; Gambardella, P

    2012-11-14

    We investigate the possibility to induce exchange bias between single molecule magnets (SMM) and metallic or oxide antiferromagnetic substrates. Element-resolved X-ray magnetic circular dichroism measurements reveal, respectively, the presence and absence of unidirectional exchange anisotropy for TbPc(2) SMM deposited on antiferromagnetic Mn and CoO layers. TbPc(2) deposited on Mn thin films present magnetic hysteresis and a negative horizontal shift of the Tb magnetization loop after field cooling, consistent with the observation of pinned spins in the Mn layer coupled parallel to the Tb magnetic moment. Conversely, molecules deposited on CoO substrates present paramagnetic magnetization loops with no indication of exchange bias. These experiments demonstrate the ability of SMM to polarize the pinned uncompensated spins of an antiferromagnet during field-cooling and realize metal-organic exchange-biased heterostructures using antiferromagnetic pinning layers.

  4. Influence of ion bombardment induced patterning of exchange bias in pinned artificial ferrimagnets on the interlayer exchange coupling

    SciTech Connect

    Hoeink, V.; Schmalhorst, J.; Reiss, G.; Weis, T.; Lengemann, D.; Engel, D.; Ehresmann, A.

    2008-06-15

    Artificial ferrimagnets have many applications as, e.g., pinned reference electrodes in magnetic tunnel junctions. It is known that the application of ion bombardment (IB) induced patterning of the exchange bias coupling of a single layer reference electrode in magnetic tunnel junctions with He ions is possible. For applications as, e.g., special types of magnetic logic, a combination of the IB induced patterning of the exchange bias coupling and the implementation of an artificial ferrimagnet as reference electrode is desirable. Here, investigations for a pinned artificial ferrimagnet with a Ru interlayer, which is frequently used in magnetic tunnel junctions, are presented. It is shown that in this kind of samples the exchange bias can be increased or rotated by IB induced magnetic patterning with 10 keV He ions without a destruction of the antiferromagnetic interlayer exchange coupling. An IrMn/Py/Co/Cu/Co stack turned out to be more sensitive to the influence of IB than the Ru based artificial ferrimagnet.

  5. Role of interface coupling inhomogeneity in domain evolution in exchange bias

    PubMed Central

    Benassi, Andrea; Marioni, Miguel A.; Passerone, Daniele; Hug, Hans J.

    2014-01-01

    Models of exchange-bias in thin films have been able to describe various aspects of this technologically relevant effect. Through appropriate choices of free parameters the modelled hysteresis loops adequately match experiment, and typical domain structures can be simulated. However, the use of these parameters, notably the coupling strength between the systems' ferromagnetic (F) and antiferromagnetic (AF) layers, obscures conclusions about their influence on the magnetization reversal processes. Here we develop a 2D phase-field model of the magnetization process in exchange-biased CoO/(Co/Pt)×n that incorporates the 10 nm-resolved measured local biasing characteristics of the antiferromagnet. Just three interrelated parameters set to measured physical quantities of the ferromagnet and the measured density of uncompensated spins thus suffice to match the experiment in microscopic and macroscopic detail. We use the model to study changes in bias and coercivity caused by different distributions of pinned uncompensated spins of the antiferromagnet, in application-relevant situations where domain wall motion dominates the ferromagnetic reversal. We show the excess coercivity can arise solely from inhomogeneity in the density of biasing- and anti-biasing pinned uncompensated spins in the antiferromagnet. Counter to conventional wisdom, irreversible processes in the latter are not essential. PMID:24676050

  6. Exchange-bias-like coupling in a Cu-diluted-Fe/Tb multilayer

    NASA Astrophysics Data System (ADS)

    Mukherjee, Saumya; Kreuzpaintner, Wolfgang; Stahn, Jochen; Zheng, Jian-Guo; Bauer, Andreas; Böni, Peter; Paul, Amitesh

    2015-03-01

    Transition metal-rare earth (TM-RE) Fe/Tb-multilayer systems have been known to show exchange-bias-like shifts in the form of double hysteresis loop (DHL) along and opposite to the field cooling axis. Planar domain walls, with opposite handedness at the interfaces, are held responsible for such DHL. Here, we report on the formation of nanoparticulated Fe layers in the Cu-matrix within a Fe-Cu/Tb multilayer and their eventual low-temperature characteristics. AC susceptibility measurements indicate that these diluted magnetic clusters have a superspin-glass-type of freezing behavior. Eventually, this Fe-cluster/Tb interlayer interaction, which is conjectured to be mediated by the pinned moments within the individual clusters, has helped in increasing the exchange bias field in the system to a high value of ≈1.3 kOe, which gradually vanishes around 50 K. Polarized neutron reflectivity confirms a very strong antiferromagnetic (AF) coupling between the individual layers. The magnitude of the magnetic moment of each of the individual Tb or Fe-Cu layer remains similar, but due to the strong AF-coupling at the interfaces, the entire ferrimagnetic Fe-Cu/Tb entity flips its direction at a compensation field of around 3.7 kOe. This study shows that magnetic dilution can be an effective way to manipulate the possible domain walls or the clusters in TM and thereby the exchange bias in TM-RE systems.

  7. Monte Carlo investigation of how interfacial magnetic couplings affect blocking temperature distributions in exchange bias bilayers

    NASA Astrophysics Data System (ADS)

    Lhoutellier, G.; Ledue, D.; Patte, R.; Baltz, V.

    2016-11-01

    Exchange bias in ferromagnetic (F)/antiferromagnetic (AF) bilayers is a function of both the bulk properties of the AF layer and the interfacial properties determining the effective interfacial couplings between the F and AF layers. The distinction between bulk and interface can be clearly revealed in blocking temperature distributions, where AF grain volume distribution results in a high-temperature peak while disordered interfacial magnetic phases produce a low-temperature contribution. However, the coupling conditions producing such bimodal blocking temperature distributions remain to be specified. In this article, we use a granular model which accounts for the disordered interfacial phases by considering small magnetic grains (SGs) with weaker anisotropy and coupling with the F grains at the F/AF interface. The SG are included in the AF material. The coupling conditions producing bimodal blocking temperature distributions were determined. Then, using Monte Carlo simulations, these conditions were validated and the effect of interfacial F-SG coupling on distributions was investigated. We next determined how the ratio between F-SG and F-AF couplings could be used to estimate the surface coverage of the disordered interfacial phases from experimental data.

  8. Positive exchange bias observed in Pt-inserted Cr{sub 2}O{sub 3}/Co exchange coupled bilayers

    SciTech Connect

    Nozaki, T. Oida, M.; Ashida, T.; Shimomura, N.; Sahashi, M.; Shibata, T.

    2014-11-24

    We investigated the effect of Pt insertion on a Cr{sub 2}O{sub 3}/Co exchange coupling system. The perpendicular exchange bias μ{sub 0}H{sub ex} decreased with increasing Pt insertion layer thickness, and we observed positive μ{sub 0}H{sub ex} for samples with relatively thick Pt insertion layers. We also examined the cooling field μ{sub 0}H{sub fc} dependence of μ{sub 0}H{sub ex} for the samples. At small μ{sub 0}H{sub fc}, all samples exhibited negative μ{sub 0}H{sub ex}. With increasing μ{sub 0}H{sub fc}, a shift of μ{sub 0}H{sub ex} from negative to positive was observed. In the past, similar behaviors were observed for FeF{sub 2}/Fe systems exhibiting positive μ{sub 0}H{sub ex}. In addition, the μ{sub 0}H{sub fc} dependence of μ{sub 0}H{sub ex} was well fitted by an equation taking into account the Zeeman energy at the surface of an antiferromagnet as well as an antiferromagnetic exchange coupling. The results strongly suggest that (1) Cr{sub 2}O{sub 3} surface spin is affected by the external magnetic field and (2) the coupling at the Cr{sub 2}O{sub 3}/Pt/Co interface is antiferromagnetic.

  9. Microscopic nature of ferro- and antiferromagnetic interface coupling of uncompensated magnetic moments in exchange bias systems.

    PubMed

    Gruyters, M; Schmitz, D

    2008-02-22

    Exchange bias in layered CoO/Fe structures is investigated by x-ray resonant magnetic reflectivity (XRMR) measurements. Element-specific hysteresis loops are obtained from x-ray magnetic circular dichroism effects in the XRMR spectra. Evidence is provided for the existence of different types of uncompensated moments in the antiferromagnetic material. Explanations are given for the microscopic nature of these moments and the complex exchange interactions that determine the magnetization reversal in exchange bias systems.

  10. Ultrathin Limit of Exchange Bias Coupling at Oxide Multiferroic/Ferromagnetic Interfaces

    DTIC Science & Technology

    2013-07-12

    control of exchange bias was also shown for an all oxide heterostructure consisting of BFO and La 0.7 Sr 0.3 MnO 3 (LSMO), [ 22 , 23 ] where epitaxial...drastically. This is generally interpreted by considering a strain-induced distortion of MnO 6 octahedra based on the Jahn-Teller distortion theory. [ 39

  11. Exchange-bias-like coupling in a ferrimagnetic Fe/Tb multilayer

    NASA Astrophysics Data System (ADS)

    Paul, Amitesh; Mukherjee, Saumya; Kreuzpaintner, Wolfgang; Böni, Peter

    2014-04-01

    Field cooling of a transition metal-rare earth (TM-RE) Fe/Tb-multilayer system is shown to form a double hysteresis loop with exchange-bias-like shifts along and opposite to the field cooling axis below the ordering temperature of the RE. The measurement of the polarized neutron reflectivity at various applied fields confirms an antiferromagnetic alignment between the individual layers of Fe and Tb associated with a significant value of the magnetic moment for the Tb layers, even at room temperature. We attribute the shifts of the hysteresis loops to the formation of 2π-domain walls by the interface moments that are pinned by the magnetically hard Tb layers forming bidomainlike states in this layered artificial ferrimagnetic system. We conclude that the exchange bias in Fe/Tb-multilayers, the RE layers being on either sides of the TM layers, is caused by the formation of 2π-domain walls in the Fe layers thus excluding an explanation in terms of π-domain walls, which are believed to be responsible for the exchange bias in other RE-TM bilayer systems.

  12. Exchange-biased magnetic vortices.

    SciTech Connect

    Hoffmann, A.; Sort, J.; Buchanan, K. S.; Nogues, J.; Inst. Catalana de Recerca i Estudis Avancats; Univ. Autonoma de Barcelona

    2008-07-01

    This paper reviews our work on the interplay between exchange bias due to the coupling of a ferromagnet to an antiferromagnet and the formation of magnetic vortices, which occur due to the patterning of a ferromagnet. Depending on the thermal and magnetic history, a variety of different effects can be observed. Thermal annealing in a saturating magnetic field establishes a spatially homogeneous exchange bias with a uniform unidirectional anisotropy. This results in an angular dependence of the magnetization reversal mode, which can be either via magnetization rotation or vortex nucleation and annihilation. In contrast, thermal annealing in a field smaller than the vortex annihilation field imprints the ferromagnetic vortex configuration in the antiferromagnet with high fidelity resulting in unusual asymmetric hysteresis loops. Furthermore, we discuss how the interfacial nature of the exchange bias can modify the vortex magnetization along the thickness of the ferromagnet.

  13. Off-easy-plane antiferromagnetic spin canting in coupled FePt/NiO bilayer structure with perpendicular exchange bias

    NASA Astrophysics Data System (ADS)

    Gao, Tenghua; Itokawa, Nobuhide; Wang, Jian; Yu, Youxing; Harumoto, Takashi; Nakamura, Yoshio; Shi, Ji

    2016-08-01

    We report on the investigation of perpendicular exchange bias in FePt (001 ) /NiO (1 ¯1 ¯1 ) orthogonal exchange couple with FePt partially L 10 ordered. From initial magnetization curve measurement and magnetic domain imaging, we find that, for the as-grown bilayer structure, the FePt layer experiences a small-angle magnetization rotation when it is magnetized near to saturation in film normal direction. After field cooling, the bilayer structure shows a significant enhancement of perpendicular magnetic anisotropy, indicating the field mediated coupling between the spins across the FePt/NiO interface. According to Koon's theoretical calculation on the basis of lowest energy ferromagnetic/antiferromagnetic coupling configuration for compensated spins at antiferromagnetic side, we consider slightly slanted Ni spins at the interface off the (1 ¯1 ¯1 ) easy plane can stabilize the spin coupling between FePt and NiO and result in the observed exchange bias in this paper. This consideration was further confirmed by stripe domain width calculation.

  14. The Electrically Controlled Exchange Bias

    NASA Astrophysics Data System (ADS)

    Harper, Jacob

    Controlling magnetism via voltage in the virtual absence of electric current is the key to reduce power consumption while enhancing processing speed, integration density and functionality in comparison with present-day information technology. Almost all spintronic devices rely on tailored interface magnetism. Controlling magnetism at thin-film interfaces, preferably by purely electrical means, is therefore a key challenge to better spintronics. However, there is no direct interaction between magnetization and electric fields, thus making voltage control of magnetism in general a scientific challenge. The significance of controlled interface magnetism started with the exchange-bias effect. Exchange bias is a coupling phenomenon at magnetic interfaces that manifests itself prominently in the shift of the ferromagnetic hysteresis loop along the magnetic-field axis. Various attempts on controlling exchange bias via voltage utilizing different scientific principles have been intensively studied recently. The majority of present research is emphasizing on various complex oxides. Our approach can be considered as a paradigm shift away from complex oxides. We focus on a magnetoelectric antiferromagnetic simple oxide Cr2O3. From a combination of experimental and theoretical efforts, we show that the (0001) surface of magnetoelectric Cr2O3 has a roughness-insensitive, electrically switchable magnetization. Using a ferromagnetic Pd/Co multilayer deposited on the (0001) surface of a Cr2O3 single crystal, we achieve reversible, room-temperature isothermal switching of the exchange-bias between positive and negative values by reversing the electric field while maintaining a permanent magnetic field. This is a significant scientific breakthrough providing a new route towards potentially revolutionizing information technology. In addition, a second path of electrically controlled exchange bias is introduced by exploiting the piezoelectric property of BaTiO3. An exchange-bias Co

  15. Origin of the exchange bias training effects in magnetically coupled soft/hard synthetic bilayers at low temperature

    NASA Astrophysics Data System (ADS)

    Yalçın, Orhan; Ünlüer, Şahin; Kazan, Sinan; Şahingöz, Recep

    2015-02-01

    Hysteresis loops of the nanoscale magnetic layer Co90Fe10 and Ni81Fe19 and bilayer Co90Fe10/Ni81Fe19 and Ni81Fe19/Co90Fe10 films were measured as a function of external dc magnetic field and the thickness dependence of these films were plotted as a function of temperature. Time evolution of the minor/middle/major hysteresis loops of 5/5 nm-thick Ni81Fe19/Co90Fe10 monolayer have been observed at 10 K. The spin valve, exchange bias training and Barkhausen effects for magnetic layer and bilayer films have been analysed at various temperatures, thicknesses and different orientations according to the substrate. The exchange-bias training effects have been observed only in positive magnetization region. Origin of the exchange-bias training effects and asymmetric hysteresis loops are related to the relaxation mechanism of a pinning layer in magnetically coupled soft/hard bilayers.

  16. Full Electric Control of Exchange Bias

    NASA Astrophysics Data System (ADS)

    Wu, S. M.; Cybart, Shane A.; Yi, D.; Parker, James M.; Ramesh, R.; Dynes, R. C.

    2013-02-01

    We report the creation of a multiferroic field effect device with a BiFeO3 (BFO) (antiferromagnetic-ferroelectric) gate dielectric and a La0.7Sr0.3MnO3 (LSMO) (ferromagnetic) conducting channel that exhibits direct, bipolar electrical control of exchange bias. We show that exchange bias is reversibly switched between two stable states with opposite exchange bias polarities upon ferroelectric poling of the BFO. No field cooling, temperature cycling, or additional applied magnetic or electric field beyond the initial BFO polarization is needed for this bipolar modulation effect. Based on these results and the current understanding of exchange bias, we propose a model to explain the control of exchange bias. In this model the coupled antiferromagnetic-ferroelectric order in BFO along with the modulation of interfacial exchange interactions due to ionic displacement of Fe3+ in BFO relative to Mn3+/4+ in LSMO cause bipolar modulation.

  17. Full Electric Field Control of Exchange Bias

    NASA Astrophysics Data System (ADS)

    Wu, Stephen

    2014-03-01

    Exchange bias is the shift of a magnetic hysteresis curve due to interfacial magnetic coupling between a ferromagnet (FM) and an antiferromagnet (AFM). This ubiquitous effect has long been used in the electronics industry to bias the magnetization of FM layers in magnetic devices. Its continued understanding is of critical importance to advance the development of future high-density magnetic storage media and other novel magnetic devices. However, due to the technological limitations of manipulating and observing an atomically thin interface, exchange bias is not well understood. In this talk we present a multiferroic field effect device with BiFeO3 (BFO) (antiferromagnetic-ferroelectric) as the gate dielectric and La0.7Sr0.3MnO3 (LSMO) (ferromagnetic) as the conducting channel, which exhibits the direct, bipolar electric control of exchange bias. Here the magnetic states at the AFM/FM interface can be directly manipulated with electric fields and the results can be observed as a change in exchange bias polarity and magnitude. Control of exchange bias at this level has significant implications because it represents a form of electric field control of magnetism and may potentially offer a route toward the eventual full electric field control of magnetization. In this device, exchange bias is reversibly switched between two stable states with opposite exchange bias polarities upon ferroelectric poling of the BFO. No field cooling, temperature cycling, or additional applied magnetic or electric field beyond BFO poling is needed for this bipolar modulation effect. Detailed temperature dependent measurements and a model will be presented which will attribute this effect to the coupled antiferromagnetic-ferroelectric order in BFO along with the modulation of interfacial exchange interactions due to ionic displacement of Fe3+ in BFO relative to Mn3 + / 4 + in LSMO.

  18. Seeking to quantify the ferromagnetic-to-antiferromagnetic interface coupling resulting in exchange bias with various thin-film conformations

    SciTech Connect

    Hsiao, C. H.; Wang, S.; Ouyang, H.; Desautels, R. D.; Lierop, J. van; Lin, K. W.

    2014-08-07

    Ni{sub 3}Fe/(Ni, Fe)O thin films with bilayer and nanocrystallite dispersion morphologies are prepared with a dual ion beam deposition technique permitting precise control of nanocrystallite growth, composition, and admixtures. A bilayer morphology provides a Ni{sub 3}Fe-to-NiO interface, while the dispersion films have different mixtures of Ni{sub 3}Fe, NiO, and FeO nanocrystallites. Using detailed analyses of high resolution transmission electron microscopy images with Multislice simulations, the nanocrystallites' structures and phases are determined, and the intermixing between the Ni{sub 3}Fe, NiO, and FeO interfaces is quantified. From field-cooled hysteresis loops, the exchange bias loop shift from spin interactions at the interfaces are determined. With similar interfacial molar ratios of FM-to-AF, we find the exchange bias field essentially unchanged. However, when the interfacial ratio of FM to AF was FM rich, the exchange bias field increases. Since the FM/AF interface ‘contact’ areas in the nanocrystallite dispersion films are larger than that of the bilayer film, and the nanocrystallite dispersions exhibit larger FM-to-AF interfacial contributions to the magnetism, we attribute the changes in the exchange bias to be from increases in the interfacial segments that suffer defects (such as vacancies and bond distortions), that also affects the coercive fields.

  19. New Trends in Magnetic Exchange Bias

    NASA Astrophysics Data System (ADS)

    Mougin, Alexandra; Mangin, Stéphane; Bobo, Jean-Francois; Loidl, Alois

    2005-05-01

    The study of layered magnetic structures is one of the hottest topics in magnetism due to the growing attraction of applications in magnetic sensors and magnetic storage media, such as random access memory. For almost half a century, new discoveries have driven researchers to re-investigate magnetism in thin film structures. Phenomena such as giant magnetoresistance, tunneling magnetoresistance, exchange bias and interlayer exchange coupling led to new ideas to construct devices, based not only on semiconductors but on a variety of magnetic materials Upon cooling fine cobalt particles in a magnetic field through the Néel temperature of their outer antiferromagnetic oxide layer, Meiklejohn and Bean discovered exchange bias in 1956. The exchange bias effect through which an antiferromagnetic AF layer can cause an adjacent ferromagnetic F layer to develop a preferred direction of magnetization, is widely used in magnetoelectronics technology to pin the magnetization of a device reference layer in a desired direction. However, the origin and effects due to exchange interaction across the interface between antiferromagneic and ferromagnetic layers are still debated after about fifty years of research, due to the extreme difficulty associated with the determination of the magnetic interfacial structure in F/AF bilayers. Indeed, in an AF/F bilayer system, the AF layer acts as “the invisible man” during conventional magnetic measurements and the presence of the exchange coupling is evidenced indirectly through the unusual behavior of the adjacent F layer. Basically, the coercive field of the F layer increases in contact with the AF and, in some cases, its hysteresis loop is shifted by an amount called exchange bias field. Thus, AF/F exchange coupling generates a new source of anisotropy in the F layer. This induced anisotropy strongly depends on basic features such as the magnetocrystalline anisotropy, crystallographic and spin structures, defects, domain patterns etc

  20. Exchange bias studied with polarized neutron reflectivity

    SciTech Connect

    te Velthuis, S. G. E.

    2000-01-05

    The role of Polarized Neutron Reflectivity (PNR) for studying natural and synthetic exchange biased systems is illustrated. For a partially oxidized thin film of Co, cycling of the magnetic field causes a considerable reduction of the bias, which the onset of diffuse neutron scattering shows to be due to the loosening of the ferromagnetic domains. On the other hand, PNR measurements of a model exchange bias junction consisting of an n-layered Fe/Cr antiferromagnetic (AF) superlattice coupled with an m-layered Fe/Cr ferromagnetic (F) superlattice confirm the predicted collinear magnetization in the two superlattices. The two magnetized states of the F (along or opposite to the bias field) differ only in the relative orientation of the F and adjacent AF layer. The possibility of reading clearly the magnetic state at the interface pinpoints the commanding role that PNR is having in solving this intriguing problem.

  1. Strong perpendicular exchange bias in epitaxial La(0.7)Sr(0.3)MnO3:BiFeO3 nanocomposite films through vertical interfacial coupling.

    PubMed

    Zhang, Wenrui; Chen, Aiping; Jian, Jie; Zhu, Yuanyuan; Chen, Li; Lu, Ping; Jia, Quanxi; MacManus-Driscoll, Judith L; Zhang, Xinghang; Wang, Haiyan

    2015-09-07

    An exchange bias effect with perpendicular anisotropy is of great interest owing to potential applications such as read heads in magnetic storage devices with high thermal stability and reduced dimensions. Here we report a novel approach for achieving perpendicular exchange bias by orienting the ferromagnetic/antiferromagnetic coupling in the vertical geometry through a unique vertically aligned nanocomposite (VAN) design. Our results demonstrate robust perpendicular exchange bias phenomena in micrometer-thick films employing a prototype material system of antiferromagnetic BiFeO3 and ferromagnetic La0.7Sr0.3MnO3. The unique response of exchange bias to a perpendicular magnetic field reveals the existence of exchange coupling along their vertical heterointerfaces, which exhibits a strong dependence on their strain states. This VAN approach enables a large selection of material systems for achieving perpendicular exchange bias, which could lead to advanced spintronic devices.

  2. Exchange bias mediated by interfacial nanoparticles (invited)

    SciTech Connect

    Berkowitz, A. E.; Sinha, S. K.; Fullerton, E. E.; Smith, D. J.

    2015-05-07

    The objective of this study on the iconic exchange-bias bilayer Permalloy/CoO has been to identify those elements of the interfacial microstructure and accompanying magnetic properties that are responsible for the exchange-bias and hysteretic properties of this bilayer. Both epitaxial and polycrystalline samples were examined. X-ray and neutron reflectometry established that there existed an interfacial region, of width ∼1 nm, whose magnetic properties differed from those of Py or CoO. A model was developed for the interfacial microstructure that predicts all the relevant properties of this system; namely; the temperature and Permalloy thickness dependence of the exchange-bias, H{sub EX}, and coercivity, H{sub C}; the much smaller measured values of H{sub EX} from what was nominally expected; the different behavior of H{sub EX} and H{sub C} in epitaxial and polycrystalline bilayers. A surprising result is that the exchange-bias does not involve direct exchange-coupling between Permalloy and CoO, but rather is mediated by CoFe{sub 2}O{sub 4} nanoparticles in the interfacial region.

  3. Electric Control of Exchange Bias Training

    NASA Astrophysics Data System (ADS)

    Echtenkamp, W.; Binek, Ch.

    2013-11-01

    Voltage-controlled exchange bias training and tunability are introduced. Isothermal voltage pulses are used to reverse the antiferromagnetic order parameter of magnetoelectric Cr2O3, and thus continuously tune the exchange bias of an adjacent CoPd film. Voltage-controlled exchange bias training is initialized by tuning the antiferromagnetic interface into a nonequilibrium state incommensurate with the underlying bulk. Interpretation of these hitherto unreported effects contributes to new understanding in electrically controlled magnetism.

  4. Summary of relationships between exchangeability, biasing paths and bias.

    PubMed

    Flanders, William Dana; Eldridge, Ronald Curtis

    2015-10-01

    Definitions and conceptualizations of confounding and selection bias have evolved over the past several decades. An important advance occurred with development of the concept of exchangeability. For example, if exchangeability holds, risks of disease in an unexposed group can be compared with risks in an exposed group to estimate causal effects. Another advance occurred with the use of causal graphs to summarize causal relationships and facilitate identification of causal patterns that likely indicate bias, including confounding and selection bias. While closely related, exchangeability is defined in the counterfactual-model framework and confounding paths in the causal-graph framework. Moreover, the precise relationships between these concepts have not been fully described. Here, we summarize definitions and current views of these concepts. We show how bias, exchangeability and biasing paths interrelate and provide justification for key results. For example, we show that absence of a biasing path implies exchangeability but that the reverse implication need not hold without an additional assumption, such as faithfulness. The close links shown are expected. However confounding, selection bias and exchangeability are basic concepts, so comprehensive summarization and definitive demonstration of links between them is important. Thus, this work facilitates and adds to our understanding of these important biases.

  5. HAMR media based on exchange bias

    NASA Astrophysics Data System (ADS)

    Elphick, K.; Vallejo-Fernandez, G.; Klemmer, T. J.; Thiele, J.-U.; O'Grady, K.

    2016-08-01

    In this work, we describe an alternative strategy for the development of heat assisted magnetic recording media. In our approach, the need for a storage material with a temperature dependent anisotropy and to provide a read out signal is separated so that each function can be optimised independently. This is achieved by the use of an exchange bias structure where a conventional CoCrPt-SiO2 recording layer is exchange biased to an underlayer of IrMn such that heating and cooling in the exchange field from the recording layer results in a shifted loop. This strategy requires the reorientation of the IrMn layer to allow coupling to the recording layer. This has been achieved by the use of an ultrathin (0.8 nm) layer of Co deposited beneath the IrMn layer. In this system, the information is in effect stored in the antiferromagnetic layer, and hence, there is no demagnetising field generated by the stored bits. A loop shift of 688 Oe has been achieved where both values of coercivity lie to one side of the origin and the information cannot be erased by a magnetic field.

  6. Double exchange bias in ferrimagnetic heterostructures

    NASA Astrophysics Data System (ADS)

    Hebler, B.; Reinhardt, P.; Katona, G. L.; Hellwig, O.; Albrecht, M.

    2017-03-01

    We report on the magnetic reversal characteristics of exchange coupled ferrimagnetic (FI) T b19F e81/T b36F e64 heterostructures. Both layers are amorphous and exhibit strong perpendicular magnetic anisotropy. The investigated heterostructures consist of a Tb-dominated and a Fe-dominated FI layer. Thus, in the magnetic ground state the net moments of the individual layers are oppositely aligned due to antiferromagnetic coupling of Fe and Tb moments. By cooling the system below 160 K, a large positive and negative exchange bias (EB) effect appears for the Tb- and Fe-dominated layers, respectively. The biasing depends only on the initial magnetization state and is neither affected by a cooling field nor by loop cycling. The phenomenon can be explained by the presence of a hard magnetic Fe-dominated interfacial layer, which forms during the sputter deposition process due to interface mixing and resputtering effects. This interfacial layer acts as a pinning layer below a certain temperature, where its coercivity increases to values larger than the accessible magnetic field range. This assumption is further supported by introducing a 0.9-nm-thick Ru spacer layer, which causes the EB effect to vanish. The EB effect was further investigated for a sample series, where the thickness ratio of the two Tb-Fe layers was varied, while keeping the total thickness of the bilayers constant. Only samples where the individual layers are sufficiently thick reveal double shifted loops, indicating the high sensitivity of the observed bias effect with respect to the magnetic properties of the individual layers and their interfacial area.

  7. A CoFeB/MgO/CoFeB perpendicular magnetic tunnel junction coupled to an in-plane exchange-biased magnetic layer

    SciTech Connect

    Zhu, M. Chong, H.; Vu, Q. B.; Vo, T.; Brooks, R.; Stamper, H.; Bennett, S.; Piccirillo, J.

    2015-05-25

    We report a stack structure which utilizes an in-plane exchange-biased magnetic layer to influence the coercivity of the bottom CoFeB layer in a CoFeB/MgO/CoFeB perpendicular magnetic tunnel junction. By employing a thickness wedge deposition technique, we were able to study various aspects of this stack using vibrating sample magnetometer including: (1) the coupling between two CoFeB layers as a function of MgO thickness; and (2) the coupling between the bottom CoFeB and the in-plane magnetic layer as a function of Ta spacer thickness. Furthermore, modification of the bottom CoFeB coercivity allows one to measure tunneling magnetoresistance and resistance-area product (RA) of CoFeB/MgO/CoFeB in this pseudo-spin-valve format using current-in-plane-tunneling technique, without resorting to (Co/Pt){sub n} or (Co/Pd){sub n} multilayer pinning.

  8. Antiferromagnetic spin flop and exchange bias

    NASA Astrophysics Data System (ADS)

    Nogués, J.; Morellon, L.; Leighton, C.; Ibarra, M. R.; Schuller, Ivan K.

    2000-03-01

    The effect of the antiferromagnetic spin flop on exchange bias has been investigated in antiferromagnetic (MnF2)-ferromagnetic (Fe) bilayers. Cooling and measuring in fields larger than the antiferromagnetic spin-flop field, HSF, causes an irreversible reduction of the magnitude of the exchange bias field, HE. This indicates that, contrary to what is normally assumed, the interface spin structure does not remain ``frozen in'' below TN if large enough fields are applied.

  9. Tailoring the magnetization reversal of elliptical dots using exchange bias.

    SciTech Connect

    Sort, J.; Buchanan, K. S.; Pearson, J. E.; Hoffmann, A.; Menendez, E.; Salazar-Alvarez, G.; Baro, M. D.; Miron, M.; Rodamcq, B.; Dieny, B.; ICREA; Univ. Autonoma of Barcelona; Insti. Catala de Nanotecnologia; SPINTEC

    2008-01-01

    Exchange bias effects have been studied in elliptical dots composed of ferromagnetic Ni{sub 80}Fe{sub 20}-antiferromagnetic Ir{sub 20}Mn{sub 80} bilayers. The magnetization reversal mechanisms and magnetic configurations have been investigated by magneto-optic Kerr effect and magnetic force microscopy. Although the obtained bias fields in these dots are relatively small, the magnetization reversal is found to be influenced by the ferromagnetic-antiferromagnetic coupling. Namely, for some off-axis angles of measurement, the magnetization reversal mechanism of the Ni{sub 80}Fe{sub 20}-Ir{sub 20}Mn{sub 80} ellipses depends on whether exchange bias is induced along the minor or major axis of the ellipses. Hence, exchange bias is shown to be an effective means for tailoring the magnetization reversal of elliptical dots after sample fabrication.

  10. Griffiths phase, spin-phonon coupling, and exchange bias effect in double perovskite Pr{sub 2}CoMnO{sub 6}

    SciTech Connect

    Liu, Wenjie; Shi, Lei Zhou, Shiming; Zhao, Jiyin; Li, Yang; Guo, Yuqiao

    2014-11-21

    The ceramic Pr{sub 2}CoMnO{sub 6} of double perovskite structure is prepared by a solid-state reaction and the magnetic properties, phonon behaviors are studied in detail. Two ferromagnetic transitions at T{sub C1} ∼ 172 K and T{sub C2} ∼ 140 K are observed in the temperature-dependent magnetization curves, respectively. Furthermore, a detail analysis on the magnetic susceptibility reveals that a short-range ferromagnetic clustered state exists above T{sub C1}, which can be well described as the Griffiths phase with a well-defined Griffiths temperature T{sub G} ∼ 210 K. The presence of the B-site antisite defects is considered to contribute to the observed Griffiths singularity. Temperature-dependent Raman scattering experiment reveals an obvious softening of the phonon mode involving stretching vibrations of the (Co/Mn)O{sub 6} octahedra in FM temperature regions, indicating a close correlation between magnetism and lattice in Pr{sub 2}CoMnO{sub 6}. On the other hand, it is found that the phonon softening extends up to T{sub G}, which further confirms the preformation of the short-range ferromagnetic clusters up to T{sub G}. Moreover, the field-cooling magnetic hysteresis loop reveals that exchange bias phenomena is present, which is supposed to origin from the exchange coupling between Co/Mn ordered ferromagnetic phases with antiferromagnetic antiphase boundaries caused by the partially Co/Mn antisite disorders. These findings give a systematic understanding on the magnetic interaction in Pr{sub 2}CoMnO{sub 6} which is closely related to the lattice and atomic distribution, and add special interest for application of this material.

  11. Dynamic Response of Exchange Bias in Graphene Nanoribbons

    DTIC Science & Technology

    2012-01-01

    1 Dynamic response of exchange bias in graphene nanoribbons S. Narayana Jammalamadaka a, b* , S. S. Rao c, d, e* , J. Vanacken a , V. V...investigated in exchange-coupled potassium split graphene nanoribbons (GNRs). We find that, at low field sweep rate, the pronounced absolute training... graphene nanoribbons 5a. CONTRACT NUMBER 5b. GRANT NUMBER 5c. PROGRAM ELEMENT NUMBER 6. AUTHOR(S) 5d. PROJECT NUMBER 5e. TASK NUMBER 5f. WORK UNIT

  12. Pseudo exchange bias due to rotational anisotropy

    NASA Astrophysics Data System (ADS)

    Ehrmann, A.; Komraus, S.; Blachowicz, T.; Domino, K.; Nees, M. K.; Jakobs, P. J.; Leiste, H.; Mathes, M.; Schaarschmidt, M.

    2016-08-01

    Ferromagnetic nanostructure arrays with particle dimensions between 160 nm and 400 nm were created by electron-beam lithography. The permalloy structures consist of rectangular-shaped walls around a square open space. While measuring their magnetic properties using the Magneto-Optical Kerr Effect (MOKE), in some angular regions an exchange bias (EB) seemed to appear. This paper gives an overview of possible reasons for this "pseudo exchange bias" and shows experimentally and by means of micromagnetic simulations that this effect can be attributed to unintentionally measuring minor loops.

  13. Perspectives of voltage control for magnetic exchange bias in multiferroic heterostructures

    NASA Astrophysics Data System (ADS)

    Yang, Q.; Zhou, Z.; Sun, N. X.; Liu, M.

    2017-04-01

    Exchange bias, as an internal magnetic bias induced by a ferromagnetic-antiferromagnetic exchange coupling, is extremely important in many magnetic applications such as memories, sensors and other devices. Voltage control of exchange bias in multiferroics provides an energy-efficient way to achieve a rapidly 180° deterministic switching of magnetization, which has been considered as a key challenge in realizing next generation of fast, compact and ultra-low power magnetoelectric memories and sensors. Additionally, exchange bias can enhance dynamic magnetoelectric coupling strength in an external-field-free manner. In this paper, we provide a perspective on voltage control of exchange bias in different multiferroic heterostructures. Brief mechanization and related experiments are discussed as well as future trend and challenges that can be overcome by electrically tuning of exchange bias in state-of-the-art magnetoelectric devices.

  14. Control of quantum magnets by atomic exchange bias.

    PubMed

    Yan, Shichao; Choi, Deung-Jang; Burgess, Jacob A J; Rolf-Pissarczyk, Steffen; Loth, Sebastian

    2015-01-01

    Mixing of discretized states in quantum magnets has a radical impact on their properties. Managing this effect is key for spintronics in the quantum limit. Magnetic fields can modify state mixing and, for example, mitigate destabilizing effects in single-molecule magnets. The exchange bias field has been proposed as a mechanism for localized control of individual nanomagnets. Here, we demonstrate that exchange coupling with the magnetic tip of a scanning tunnelling microscope provides continuous tuning of spin state mixing in an individual nanomagnet. By directly measuring spin relaxation time with electronic pump-probe spectroscopy, we find that the exchange interaction acts analogously to a local magnetic field that can be applied to a specific atom. It can be tuned in strength by up to several tesla and cancel external magnetic fields, thereby demonstrating the feasibility of complete control over individual quantum magnets with atomically localized exchange coupling.

  15. Control of quantum magnets by atomic exchange bias

    NASA Astrophysics Data System (ADS)

    Yan, Shichao; Choi, Deung-Jang; Burgess, Jacob A. J.; Rolf-Pissarczyk, Steffen; Loth, Sebastian

    2015-01-01

    Mixing of discretized states in quantum magnets has a radical impact on their properties. Managing this effect is key for spintronics in the quantum limit. Magnetic fields can modify state mixing and, for example, mitigate destabilizing effects in single-molecule magnets. The exchange bias field has been proposed as a mechanism for localized control of individual nanomagnets. Here, we demonstrate that exchange coupling with the magnetic tip of a scanning tunnelling microscope provides continuous tuning of spin state mixing in an individual nanomagnet. By directly measuring spin relaxation time with electronic pump-probe spectroscopy, we find that the exchange interaction acts analogously to a local magnetic field that can be applied to a specific atom. It can be tuned in strength by up to several tesla and cancel external magnetic fields, thereby demonstrating the feasibility of complete control over individual quantum magnets with atomically localized exchange coupling.

  16. Growth of oxide exchange bias layers

    DOEpatents

    Chaiken, A.; Michel, R.P.

    1998-07-21

    An oxide (NiO, CoO, NiCoO) antiferromagnetic exchange bias layer produced by ion beam sputtering of an oxide target in pure argon (Ar) sputtering gas, with no oxygen gas introduced into the system. Antiferromagnetic oxide layers are used, for example, in magnetoresistive readback heads to shift the hysteresis loops of ferromagnetic films away from the zero field axis. For example, NiO exchange bias layers have been fabricated using ion beam sputtering of an NiO target using Ar ions, with the substrate temperature at 200 C, the ion beam voltage at 1000V and the beam current at 20 mA, with a deposition rate of about 0.2 {angstrom}/sec. The resulting NiO film was amorphous. 4 figs.

  17. Exchange bias in nano-ferrihydrite

    NASA Astrophysics Data System (ADS)

    Balaev, D. A.; Krasikov, A. A.; Dubrovskiy, A. A.; Popkov, S. I.; Stolyar, S. V.; Iskhakov, R. S.; Ladygina, V. P.; Yaroslavtsev, R. N.

    2016-11-01

    We report the results of investigations of the effect of cooling in an external magnetic field starting from the temperature over superparamagnetic blocking temperature TB on the shift of magnetic hysteresis loops in systems of ferrihydrite nanoparticles from ˜2.5 to ˜5 nm in size with different TB values. In virtue of high anisotropy fields of ferrihydrite nanoparticles and open hysteresis loops in the range of experimentally attainable magnetic fields, the shape of hysteresis loops of such objects in the field-cooling mode is influenced by the minor hysteresis loop effect. A technique is proposed for distinguishing the exchange bias effect among the effects related to the minor hysteresis loops caused by high anisotropy fields of ferrihydrite particles. The exchange bias in ferrihydrite is stably observed for particles not less than 3 nm in size or with TB over 40 K, and its characteristic value increases with the particle size.

  18. Ultrafast Optical Magnetization Modulation in Exchange Biased Ferromagnetic Layers

    NASA Astrophysics Data System (ADS)

    Ju, Ganping; Nurmikko, Arto; Farrow, R. F. C.

    1998-03-01

    We have recently shown how the use of femtosecond laser pulses can be employed to study the spin dynamics and magnetization kinetics associated with hot electrons in ferromagnetic thin films on a psec timescale. (G. Ju et al, Phys. Rev. B (Jan. 1998)) Briefly, energetic electrons are promoted by interband excitation and the relaxation process in the nonequilibrium spin system are probed via transient Kerr effect. Here we report our first observations in the MnPt/FeNi antiferromagnetic/ferromagnetic bilayer system by such an experimental approach. The exchange biasing AF layer is selective optically excited with femtosecond laser pulses, while the induced changes in the magnetic properties of the FM layer are probed in real time. We have identified two types of effects: those ( ~300ps) intermediated by ultrafast lattice heating (unpinning of the exchange bias), and those ( ~10ps)which originate from ballistic electron transport within the bilayer. The preliminary results offer some insight for the dynamics of the exchange coupling and open up possibilities for ultrafast optical switching of the exchange biased system. Research supported by NSF.

  19. Experimental comparison of exchange bias measurement methodologies

    SciTech Connect

    Hovorka, Ondrej; Berger, Andreas; Friedman, Gary

    2007-05-01

    Measurements performed on all-ferromagnetic bilayer systems and supported by model calculation results are used to compare different exchange bias characterization methods. We demonstrate that the accuracy of the conventional two-point technique based on measuring the sum of the coercive fields depends on the symmetry properties of hysteresis loops. On the other hand, the recently proposed center of mass method yields results independent of the hysteresis loop type and coincides with the two-point measurement only if the loops are symmetric. Our experimental and simulation results clearly demonstrate a strong correlation between loop asymmetry and the difference between these methods.

  20. Growth of oxide exchange bias layers

    DOEpatents

    Chaiken, Alison; Michel, Richard P.

    1998-01-01

    An oxide (NiO, CoO, NiCoO) antiferromagnetic exchange bias layer produced by ion beam sputtering of an oxide target in pure argon (Ar) sputtering gas, with no oxygen gas introduced into the system. Antiferromagnetic oxide layers are used, for example, in magnetoresistive readback heads to shift the hysteresis loops of ferromagnetic films away from the zero field axis. For example, NiO exchange bia layers have been fabricated using ion beam sputtering of an NiO target using Ar ions, with the substrate temperature at 200.degree. C., the ion beam voltage at 1000V and the beam current at 20 mA, with a deposition rate of about 0.2 .ANG./sec. The resulting NiO film was amorphous.

  1. Angular dependence of exchange bias and magnetization reversal controlled by electric-field-induced competing anisotropies

    NASA Astrophysics Data System (ADS)

    Zhao, Yonggang; Chen, Aitian; Li, Peisen; Zhang, Xu; Peng, Renci; Huang, Haoliang; Zou, Lvkuan; Zheng, Xiaoli; Zhang, Sen; Miao, Peixian; Lu, Yalin; Cai, Jian; Nan, Ce-Wen

    Combination of exchange-biased systems and FE materials gives a new avenue to study angular dependence of exchange bias and achieve reversible electric-field-controlled magnetization reversal. We study the angular dependence of electric-field-controlled exchange bias and magnetization reversal in CoFeB/IrMn/Pb(Mg1/3Nb2/3)0.7 Ti0.3O3. It is demonstrated that the ratio of the exchange-coupled unidirectional anisotropy and the uniaxial anisotropy of the FM layer, as well as their relative orientation can be dramatically and continuously tuned via electric fields. Simulations confirm that the electric-field-controlled exchange bias originates from the competition between the uniaxial anisotropy induced by the piezostrain and the exchange-coupled unidirectional anisotropy. Moreover, electric-field-controlled magnetization reversal was realized at zero magnetic field.

  2. Ferromagnetic resonance studies of exchange-biased Permalloy thin films

    NASA Astrophysics Data System (ADS)

    Stoecklein, W.; Parkin, S. S. P.; Scott, J. C.

    1988-10-01

    Ferromagnetic resonance (FMR) spectra of Permalloy thin films exchange-coupled to iron-manganese films are analyzed. Studies were made on bilayer, ferromagnetic-antiferromagnetic (FA) and trilayer (AFA) structures, as a function of both F and A layer thicknesses in the range 20-800 Å. Data are presented at a frequency of 9.3 GHz for both in-plane and perpendicular directions of the applied field, and at 34.1 GHz, in-plane. Analysis of these data enables extraction of the magnetization, gyromagnetic ratio, and an exchange shift due to spin-wave stiffness and perpendicular-surface anisotropy, as a function of layer thickness. The azimuthal dependence of the in-plane resonance is used to determine the magnitude of the exchange anisotropy (bias field). The magnetization and gyromagnetic ratio show little dependence on the thickness of either the F or A layer down to 50 Å, implying that the interfaces are sharp on a scale of a few lattice constants. Within this interfacial region the magnetization is reduced as a result of interaction with the antiferromagnet. We suggest that the perpendicular-surface anisotropy is created by exchange coupling to the antiferromagnet whose easy axes are not in the plane of the interface. Finally, we suggest a model for exchange anisotropy in which the antiferromagnetic domain pattern is not totally locked, but adjusts in response to the ferromagnetization. Such a model qualitatively explains the bias field exerted by the antiferromagnetic layer deposited before the ferromagnet, the field-training effect, the FMR linewidth, and the magnitude of the bias field.

  3. G Protein-Coupled Receptor Biased Agonism

    PubMed Central

    Hodavance, Sima Y.; Gareri, Clarice; Torok, Rachel D.; Rockman, Howard A.

    2016-01-01

    G protein-coupled receptors (GPCR) are the largest family of targets for current therapeutics. The classic model of their activation was binary, where agonist binding induced an active conformation and subsequent downstream signaling. Subsequently, the revised concept of biased agonism emerged, where different ligands at the same GPCR selectively activate one downstream pathway versus another. Advances in understanding the mechanism of biased agonism has led to the development of novel ligands, which have the potential for improved therapeutic and safety profiles. In this review, we summarize the theory and most recent breakthroughs in understanding biased signaling, examine recent laboratory investigations concerning biased ligands across different organ systems, and discuss the promising clinical applications of biased agonism. PMID:26751266

  4. Intergranular exchange coupling

    NASA Astrophysics Data System (ADS)

    Muller, M. W.; Indeck, R. S.

    1994-02-01

    We evaluate the exchange interaction between neighboring grains of a polycrystalline magnetic material with uniaxial magnetocrystalline anisotropy, based on the energy of the domain wall formed at the portion of the interface in atomic contact. The analysis suggests that previous work [J.-G. Zhu and H. N. Bertram, in Solid State Physics Vol. 46, edited by H. Ehrenreich and T. Turnbull (Academic, San Diego, 1992)] may underestimate the interaction, and it predicts a different dependence on grain size.

  5. Antiferromagnetic exchange bias of a ferromagnetic semiconductor by a ferromagnetic metal

    SciTech Connect

    Olejnik, K.; Wadley, P.; Haigh, J.; Edmonds, K. W.; Campion, R. P.; Rushforth, A. W.; Gallagher, B. L.; Foxon, C. T.; Jungwirth, T.; Wunderlich, J.; Dhesi, S. S.; Cavill, S.; van der Laan, G.; Arenholz, E.

    2009-11-05

    We demonstrate an exchange bias in (Ga,Mn)As induced by antiferromagnetic coupling to a thin overlayer of Fe. Bias fields of up to 240 Oe are observed. Using element-specific x-ray magnetic circular dichroism measurements, we distinguish an interface layer that is strongly pinned antiferromagnetically to the Fe. The interface layer remains polarized at room temperature.

  6. Longitudinal and perpendicular exchange bias in FeMn/(FeNi/FeMn)n multilayers

    NASA Astrophysics Data System (ADS)

    Sun, L.; Zhou, S. M.; Searson, P. C.; Chien, C. L.

    2003-05-01

    Exchange bias in ferromagnetic (FM)/antiferromagnetic (AF) bilayers is usually investigated in the longitudinal configuration with the exchange coupling established in the film plane. In this work, we report on the perpendicular exchange bias in FeMn(8 nm)/[FeNi(2 nm)/FeMn(8 nm)]n multilayers induced by perpendicular field cooling. The thin FeNi layers give rise to large values of the exchange field and coercivity, and n=15 allows a sufficiently large magnetization for the measurements. Even though the soft FeNi layers have an intrinsic in-plane anisotropy, perpendicular exchange bias has been observed after cooling in a perpendicular external field. The exchange field in the perpendicular configuration is about 0.85 that of the longitudinal case. In both the longitudinal and perpendicular configurations, the exchange field decreases quasilinearly with temperature. The squareness of perpendicular hysteresis loops decreases with increasing temperature.

  7. Exchange Bias Effects in Iron Oxide-Based Nanoparticle Systems

    PubMed Central

    Phan, Manh-Huong; Alonso, Javier; Khurshid, Hafsa; Lampen-Kelley, Paula; Chandra, Sayan; Stojak Repa, Kristen; Nemati, Zohreh; Das, Raja; Iglesias, Óscar; Srikanth, Hariharan

    2016-01-01

    The exploration of exchange bias (EB) on the nanoscale provides a novel approach to improving the anisotropic properties of magnetic nanoparticles for prospective applications in nanospintronics and nanomedicine. However, the physical origin of EB is not fully understood. Recent advances in chemical synthesis provide a unique opportunity to explore EB in a variety of iron oxide-based nanostructures ranging from core/shell to hollow and hybrid composite nanoparticles. Experimental and atomistic Monte Carlo studies have shed light on the roles of interface and surface spins in these nanosystems. This review paper aims to provide a thorough understanding of the EB and related phenomena in iron oxide-based nanoparticle systems, knowledge of which is essential to tune the anisotropic magnetic properties of exchange-coupled nanoparticle systems for potential applications. PMID:28335349

  8. Controllable positive exchange bias via redox-driven oxygen migration

    PubMed Central

    Gilbert, Dustin A.; Olamit, Justin; Dumas, Randy K.; Kirby, B. J.; Grutter, Alexander J.; Maranville, Brian B.; Arenholz, Elke; Borchers, Julie A.; Liu, Kai

    2016-01-01

    Ionic transport in metal/oxide heterostructures offers a highly effective means to tailor material properties via modification of the interfacial characteristics. However, direct observation of ionic motion under buried interfaces and demonstration of its correlation with physical properties has been challenging. Using the strong oxygen affinity of gadolinium, we design a model system of GdxFe1−x/NiCoO bilayer films, where the oxygen migration is observed and manifested in a controlled positive exchange bias over a relatively small cooling field range. The exchange bias characteristics are shown to be the result of an interfacial layer of elemental nickel and cobalt, a few nanometres in thickness, whose moments are larger than expected from uncompensated NiCoO moments. This interface layer is attributed to a redox-driven oxygen migration from NiCoO to the gadolinium, during growth or soon after. These results demonstrate an effective path to tailoring the interfacial characteristics and interlayer exchange coupling in metal/oxide heterostructures. PMID:26996674

  9. Controllable positive exchange bias via redox-driven oxygen migration

    SciTech Connect

    Gilbert, Dustin A.; Olamit, Justin; Dumas, Randy K.; Kirby, B. J.; Grutter, Alexander J.; Maranville, Brian B.; Arenholz, Elke; Borchers, Julie A.; Liu, Kai

    2016-03-21

    We report that ionic transport in metal/oxide heterostructures offers a highly effective means to tailor material properties via modification of the interfacial characteristics. However, direct observation of ionic motion under buried interfaces and demonstration of its correlation with physical properties has been challenging. Using the strong oxygen affinity of gadolinium, we design a model system of GdxFe1-x/NiCoO bilayer films, where the oxygen migration is observed and manifested in a controlled positive exchange bias over a relatively small cooling field range. The exchange bias characteristics are shown to be the result of an interfacial layer of elemental nickel and cobalt, a few nanometres in thickness, whose moments are larger than expected from uncompensated NiCoO moments. This interface layer is attributed to a redox-driven oxygen migration from NiCoO to the gadolinium, during growth or soon after. Ultimately, these results demonstrate an effective path to tailoring the interfacial characteristics and interlayer exchange coupling in metal/oxide heterostructures.

  10. Controllable positive exchange bias via redox-driven oxygen migration

    DOE PAGES

    Gilbert, Dustin A.; Olamit, Justin; Dumas, Randy K.; ...

    2016-03-21

    We report that ionic transport in metal/oxide heterostructures offers a highly effective means to tailor material properties via modification of the interfacial characteristics. However, direct observation of ionic motion under buried interfaces and demonstration of its correlation with physical properties has been challenging. Using the strong oxygen affinity of gadolinium, we design a model system of GdxFe1-x/NiCoO bilayer films, where the oxygen migration is observed and manifested in a controlled positive exchange bias over a relatively small cooling field range. The exchange bias characteristics are shown to be the result of an interfacial layer of elemental nickel and cobalt, amore » few nanometres in thickness, whose moments are larger than expected from uncompensated NiCoO moments. This interface layer is attributed to a redox-driven oxygen migration from NiCoO to the gadolinium, during growth or soon after. Ultimately, these results demonstrate an effective path to tailoring the interfacial characteristics and interlayer exchange coupling in metal/oxide heterostructures.« less

  11. Robust isothermal electric control of exchange bias at room temperature.

    PubMed

    He, Xi; Wang, Yi; Wu, Ning; Caruso, Anthony N; Vescovo, Elio; Belashchenko, Kirill D; Dowben, Peter A; Binek, Christian

    2010-07-01

    Voltage-controlled spin electronics is crucial for continued progress in information technology. It aims at reduced power consumption, increased integration density and enhanced functionality where non-volatile memory is combined with high-speed logical processing. Promising spintronic device concepts use the electric control of interface and surface magnetization. From the combination of magnetometry, spin-polarized photoemission spectroscopy, symmetry arguments and first-principles calculations, we show that the (0001) surface of magnetoelectric Cr(2)O(3) has a roughness-insensitive, electrically switchable magnetization. Using a ferromagnetic Pd/Co multilayer deposited on the (0001) surface of a Cr(2)O(3) single crystal, we achieve reversible, room-temperature isothermal switching of the exchange-bias field between positive and negative values by reversing the electric field while maintaining a permanent magnetic field. This effect reflects the switching of the bulk antiferromagnetic domain state and the interface magnetization coupled to it. The switchable exchange bias sets in exactly at the bulk Néel temperature.

  12. Robust isothermal electric control of exchange bias at room temperature

    SciTech Connect

    He, X.; Vescovo, E.; Wang, Y.; Caruso, A.N.; Belashchenko, K.D.; Dowben, P.A.; Binek, C.

    2010-06-20

    Voltage-controlled spin electronics is crucial for continued progress in information technology. It aims at reduced power consumption, increased integration density and enhanced functionality where non-volatile memory is combined with high-speed logical processing. Promising spintronic device concepts use the electric control of interface and surface magnetization. From the combination of magnetometry, spin-polarized photoemission spectroscopy, symmetry arguments and first-principles calculations, we show that the (0001) surface of magnetoelectric Cr{sub 2}O{sub 3} has a roughness-insensitive, electrically switchable magnetization. Using a ferromagnetic Pd/Co multilayer deposited on the (0001) surface of a Cr{sub 2}O{sub 3} single crystal, we achieve reversible, room-temperature isothermal switching of the exchange-bias field between positive and negative values by reversing the electric field while maintaining a permanent magnetic field. This effect reflects the switching of the bulk antiferromagnetic domain state and the interface magnetization coupled to it. The switchable exchange bias sets in exactly at the bulk Neel temperature.

  13. Exchange coupling and its applications in magnetic data storage.

    PubMed

    Li, Kebin; Wu, Yihong; Guo, Zaibing; Zheng, Yuankai; Han, Guchang; Qiu, Jinjun; Luo, Ping; An, Lihua; Zhou, Tiejun

    2007-01-01

    The continuing scaling of magnetic recording is facing more and more scientific and technological challenges because both the read sensor and recording bit are approaching sub-50 nm regime with the ever increasing areal density in hard disk drives. One of the key and indispensable elements for both high-sensitivity sensors and high-density media is the exchange bias between a ferromagnetic and an antiferromagnetic layer or the exchange coupling between two ferromagnets via a non-magnetic spacer. In the nanometer regime, the exchange coupling between ferromagnet and antiferromagnet or two ferromagnets through a conductive spacer is governed by the intergrain exchange interaction which has its origin in electron spins. Interlayer exchange coupling in multilayer or trilayer essentially originates from the quantum confinement effect. In this paper, we first review the physical origin and various theoretical models of the two types of exchange couplings, followed by a review of the applications of the exchange bias and interlayer exchange coupling in data storage with emphasis on the advanced read sensor and advanced media including perpendicular media and patterned media.

  14. Exchange bias and anisotropy analysis of nano-composite Co84Zr16N thin films

    NASA Astrophysics Data System (ADS)

    Singh, Jitendra; Taube, William Ringal; Ansari, Akhtar Saleem; Gupta, Sanjeev Kumar; Kulriya, Pawan Kumar; Akhtar, Jamil

    2015-03-01

    Nano-composite Co84Zr16N (CZN) films were prepared by reactive co-sputter deposition. As-deposited CZN films have not shown any exchange bias effect. But annealed (390 K) and field cooled samples have shown exchange bias phenomena. The observed exchange bias is attributed to inter-cluster exchange coupling between ferromagnetic and antiferromagnetic nano-composite phase. High resolution transmission electron microscope study reveals that, the CZN films are composed of ordered and crystalline ferromagnetic Cobalt nano-clusters embedded in an antiferromagnetic matrix. X-ray diffraction confirms the poly-crystalline growth of the CZN films with a preferred fcc (622) phase formation. In-plane anisotropy of the exchange biased films was investigated by rotational magnetization curve, and the analysis shows that the magnetization reversal behaves according to the coherent rotation of the magnetic moment vector. Effectively, exchange bias effect in such single layer films could be attributed to co-existing antiferromagnetic and ferromagnetic phase within the single layer. Such single layer nano-composite films can be a possible alternative to the bilayer combination of antiferromagnetic/ferromagnetic exchange biased films and are ideally suited for spintronics and tunnel junction applications.

  15. Sign change of exchange bias in [Pt/Co]{sub 3}/IrMn multilayer

    SciTech Connect

    Yoon, Seungha; Kwon, Joonhyun; Cho, B. K.

    2014-05-07

    The properties of exchange bias in a multilayer of [Pt(1.0 nm)/Co(1.0 nm)]{sub 2}/Pt(t{sub Pt} nm)/Co(1.0 nm)/ IrMn(12.0 nm) were investigated with a variation of Pt layer thickness, t{sub Pt}. For t{sub Pt} ≤ 1.6 nm, it was typically observed that Co layers were ferromagnetically coupled while IrMn layer exhibited negative exchange bias. With increasing Pt thickness, antiferromagnetic (AF) interlayer coupling strength increased and caused AF spin configuration between the Co layers. With further increasing of Pt thickness (t{sub Pt} = 2.5 nm), the exchange bias between Co and IrMn layers was changed from negative to positive. Therefore, a large enhancement of AF interlayer coupling induced the sign change of exchange bias from negative to positive and resulted in a drastic change of switching behavior in a magnetization reversal. Both extraordinary Hall-effect and magnetoresistance were measured to verify the exchange bias direction and spin configurations upon magnetization reversal.

  16. Exchange bias in zinc ferrite-FeNiMoB based metallic glass composite thin films

    NASA Astrophysics Data System (ADS)

    R, Lisha; T, Hysen; P, Geetha; B, Aravind P.; Ojha, S.; Avasthi, D. K.; Ramanujan, R. V.; Anantharaman, M. R.

    2015-06-01

    The Exchange bias phenomenon and methods to manipulate the bias field in a controlled manner are thrust areas in magnetism due to its sophisticated theoretical concepts as well as advanced technological utility in the field of spintronics. The Exchange bias effect is observed as a result of ferromagnetic-antiferromagnetic (FM-AFM) exchange interaction, usually observed as a loop shift on field cooling below the Neel temperature of AFM. In the present study, we have chosen zinc ferrite which is a well known antiferromagnet, and FeNiMoB based metallic glass as the ferromagnet. The films were prepared by RF sputtering technique. The thickness and composition was obtained by RBS. The magnetic studies using SQUID VSM indicate exchange bias effect in the system. The effect of thermal annealing on exchange bias effect was studied. The observed exchange bias in the zinc ferrite-FeNiMoB system is not due to FM-AFM coupling but due to spin glass-ferromagnetic interaction.

  17. Exchange bias in zinc ferrite-FeNiMoB based metallic glass composite thin films

    SciTech Connect

    R, Lisha; P, Geetha; B, Aravind P.; Anantharaman, M. R.; T, Hysen; Ojha, S.; Avasthi, D. K.; Ramanujan, R. V.

    2015-06-24

    The Exchange bias phenomenon and methods to manipulate the bias field in a controlled manner are thrust areas in magnetism due to its sophisticated theoretical concepts as well as advanced technological utility in the field of spintronics. The Exchange bias effect is observed as a result of ferromagnetic-antiferromagnetic (FM-AFM) exchange interaction, usually observed as a loop shift on field cooling below the Neel temperature of AFM. In the present study, we have chosen zinc ferrite which is a well known antiferromagnet, and FeNiMoB based metallic glass as the ferromagnet. The films were prepared by RF sputtering technique. The thickness and composition was obtained by RBS. The magnetic studies using SQUID VSM indicate exchange bias effect in the system. The effect of thermal annealing on exchange bias effect was studied. The observed exchange bias in the zinc ferrite-FeNiMoB system is not due to FM-AFM coupling but due to spin glass-ferromagnetic interaction.

  18. Tailoring the magnetization reversal of elliptical dots using exchange bias (invited)

    NASA Astrophysics Data System (ADS)

    Sort, J.; Buchanan, K. S.; Pearson, J. E.; Hoffmann, A.; Menéndez, E.; Salazar-Alvarez, G.; Baró, M. D.; Miron, M.; Rodmacq, B.; Dieny, B.; Nogués, J.

    2008-04-01

    Exchange bias effects have been studied in elliptical dots composed of ferromagnetic Ni80Fe20-antiferromagnetic Ir20Mn80 bilayers. The magnetization reversal mechanisms and magnetic configurations have been investigated by magneto-optic Kerr effect and magnetic force microscopy. Although the obtained bias fields in these dots are relatively small, the magnetization reversal is found to be influenced by the ferromagnetic-antiferromagnetic coupling. Namely, for some off-axis angles of measurement, the magnetization reversal mechanism of the Ni80Fe20-Ir20Mn80 ellipses depends on whether exchange bias is induced along the minor or major axis of the ellipses. Hence, exchange bias is shown to be an effective means for tailoring the magnetization reversal of elliptical dots after sample fabrication.

  19. Exchange bias effect in CoCr2O4/NiO system prepared by two-step method

    NASA Astrophysics Data System (ADS)

    Wang, L. G.; Zhu, C. M.; Chen, L.; Yuan, S. L.

    2017-02-01

    CoCr2O4/NiO has been successfully synthesized through two-step method. X-ray diffraction results present the coexistence of CoCr2O4 and NiO with pure formation. Micrographs measured with scanning electron microscope and transmission electron microscope display the homogeneous and dense morphology with two kinds of nanoparticles. Exchange bias effect is observed in the sample. The exchange bias field is about 872 Oe at 10 K. As measuring temperature increases, exchange bias effect is weakened with decreasing coercive field. In addition, exchange bias field and the shift of magnetization show the linear relationship with increasing cooling field. The exchange bias behavior can be attributed to the exchange coupling at the disordered interfaces in the sample.

  20. Evidence of exchange bias effect originating from the interaction between antiferromagnetic core and spin glass shell

    SciTech Connect

    Zhang, X. K. Yuan, J. J.; Yu, H. J.; Zhu, X. R.; Xie, Y. M.; Tang, S. L.; Xu, L. Q.

    2014-07-14

    Spin glass behavior and exchange bias effect have been observed in antiferromagnetic SrMn{sub 3}O{sub 6−x} nanoribbons synthesized via a self-sacrificing template process. The magnetic field dependence of thermoremanent magnetization and isothermal remanent magnetization shows that the sample is good correspondence to spin glass and diluted antiferromagnetic system for the applied field H < 2 T and H > 2 T, respectively. By detailed analysis of training effect using Binek's model, we argue that the observed exchange bias effect in SrMn{sub 3}O{sub 6−x} nanoribbons arises entirely from an interface exchange coupling between the antiferromagnetic core and spin glass shell. The present study is useful for understanding the nature of shell layer and the origin of exchange bias effect in other antiferromagnetic nanosystems as well.

  1. Setting temperature effect in polycrystalline exchange-biased IrMn/CoFe bilayers

    SciTech Connect

    Fernandez-Outon, L. E.; Araujo Filho, M. S.; Araujo, R. E.; Ardisson, J. D.; Macedo, W. A. A.

    2013-05-07

    We study the effect of atomic interdiffusion on the exchange bias of polycrystalline IrMn/({sup 57}Fe + CoFe) multilayers due to the thermal setting process of exchange coupling during field annealing. Depth-resolved {sup 57}Fe conversion electron Moessbauer spectroscopy was used to quantify atomic interdiffusion. Vibrating sample magnetometry was used to monitor the variation of exchange bias and magnetisation. It was found that interface sharpness is only affected above {approx}350 Degree-Sign C. Three different stages for the setting of exchange bias can be inferred from our results. At the lower setting temperatures (up to 350 Degree-Sign C), the effect of field annealing involves alignment of spins and interfacial coupling due to the setting of both antiferromagnetic (AF) bulk and interface without significant interdiffusion. At a second stage (350-450 Degree-Sign C), where AF ordering dominates over diffusion effects, atomic migration and increased setting of AF spins co-exist to produce a peak in exchange bias field and coercivity. On a third stage (>450 Degree-Sign C), severe chemical intermixing reduces significantly the F/AF coupling.

  2. Setting temperature effect in polycrystalline exchange-biased IrMn/CoFe bilayers

    NASA Astrophysics Data System (ADS)

    Fernandez-Outon, L. E.; Araújo Filho, M. S.; Araújo, R. E.; Ardisson, J. D.; Macedo, W. A. A.

    2013-05-01

    We study the effect of atomic interdiffusion on the exchange bias of polycrystalline IrMn/(57Fe + CoFe) multilayers due to the thermal setting process of exchange coupling during field annealing. Depth-resolved 57Fe conversion electron Mössbauer spectroscopy was used to quantify atomic interdiffusion. Vibrating sample magnetometry was used to monitor the variation of exchange bias and magnetisation. It was found that interface sharpness is only affected above ˜350 °C. Three different stages for the setting of exchange bias can be inferred from our results. At the lower setting temperatures (up to 350 °C), the effect of field annealing involves alignment of spins and interfacial coupling due to the setting of both antiferromagnetic (AF) bulk and interface without significant interdiffusion. At a second stage (350-450 °C), where AF ordering dominates over diffusion effects, atomic migration and increased setting of AF spins co-exist to produce a peak in exchange bias field and coercivity. On a third stage (>450 °C), severe chemical intermixing reduces significantly the F/AF coupling.

  3. Ferromagnetic behavior and exchange bias effect in akaganeite nanorods

    SciTech Connect

    Tadic, Marin; Milosevic, Irena; Motte, Laurence; Kralj, Slavko; Saboungi, Marie-Louise

    2015-05-04

    We report ferromagnetic-like properties and exchange bias effect in akaganeite (β-FeOOH) nanorods. They exhibit a Néel temperature T{sub N} = 259 K and ferromagnetic-like hysteresis behavior both below and above T{sub N}. An exchange bias effect is observed below T{sub N} and represents an interesting behavior for akaganeite nanorods. These results are explained on the basis of a core-shell structure in which the core has bulk akaganeite magnetic properties (i.e., antiferromagnetic ordering) while the shell exhibits a disordered spin state. Thus, the nanorods show ferromagnetic properties and an exchange bias effect at the same time, increasing their potential for use in practical applications.

  4. Perpendicularly magnetized exchange-biased magnetic tunnel junctions

    NASA Astrophysics Data System (ADS)

    Ney, Andreas; van Dijken, Sebastiaan; Parkin, Stuart

    2005-03-01

    Exchange biased magnetic tunnel junctions (MTJs) with perpendicular magnetic anisotropy (PMA) have been studied. The ferromagnetic electrodes were fabricated from either Co/Pt or Co/Pd multilayers and the tunnel barriers were formed from Al2O3. In some cases one of the electrodes was exchange biased with either PtMn or IrMn. We discuss the dependence of the PMA and the exchange bias on the thickness of the Co, Pt and Pd layers. The properties of the MTJs are strongly influenced by the structural morphology of the Co/Pt and the Co/Pd multilayer electrodes, which appear to give rise to rough tunnel barriers with low resistance.

  5. Interfacial spin cluster effects in exchange bias systems

    SciTech Connect

    Carpenter, R. Vallejo-Fernandez, G.; O'Grady, K.

    2014-05-07

    In this work, the effect of exchange bias on the hysteresis loop of CoFe is observed. The evolution of the coercivities and the shift of the hysteresis loop during the annealing process has been measured for films deposited on NiCr and Cu seed layers. Through comparison of the as deposited and field annealed loops, it is clear that for an exchange biased material, the two coercivities are due to different reversal processes. This behaviour is attributed to spin clusters at the ferromagnet/antiferromagnet interface, which behave in a similar manner to a fine particle system.

  6. Exchange bias effect in BiFeO{sub 3}-NiO nanocomposite

    SciTech Connect

    Chakrabarti, Kaushik; Sarkar, Babusona; Dev Ashok, Vishal; Das, Kajari; De, S. K.; Sinha Chaudhuri, Sheli; Mitra, Amitava

    2014-01-07

    Ferromagnetic BiFeO{sub 3} nanocrystals of average size 11 nm were used to form nanocomposites (x)BiFeO{sub 3}/(100 − x)NiO, x = 0, 20, 40, 50, 60, 80, and 100 by simple solvothermal process. The ferromagnetic BiFeO{sub 3} nanocrystals embedded in antiferromagnetic NiO nanostructures were confirmed from X-ray diffraction and transmission electron microscope studies. The modification of cycloidal spin structure of bulk BiFeO{sub 3} owing to reduction in particle size compared to its spin spiral wavelength (62 nm) results in ferromagnetic ordering in pure BiFeO{sub 3} nanocrystals. High Neel temperature (T{sub N}) of NiO leads to significant exchange bias effect across the BiFeO{sub 3}/NiO interface at room temperature. A maximum exchange bias field of 123.5 Oe at 300 K for x = 50 after field cooling at 7 kOe has been observed. The exchange bias coupling causes an enhancement of coercivity up to 235 Oe at 300 K. The observed exchange bias effect originates from the exchange coupling between the surface uncompensated spins of BiFeO{sub 3} nanocrystals and NiO nanostructures.

  7. Observation of an atomic exchange bias effect in DyCo4 film

    PubMed Central

    Chen, Kai; Lott, Dieter; Radu, Florin; Choueikani, Fadi; Otero, Edwige; Ohresser, Philippe

    2015-01-01

    The fundamental important and technologically widely employed exchange bias effect occurs in general in bilayers of magnetic thin films consisting of antiferromagnetic and ferromagnetic layers where the hard magnetization behavior of an antiferromagnetic thin film causes a shift in the magnetization curve of a soft ferromagnetic film. The minimization of the single magnetic grain size to increase the storage density and the subsequent demand for magnetic materials with very high magnetic anisotropy requires a system with high HEB. Here we report an extremely high HEB of 4 Tesla observed in a single amorphous DyCo4 film close to room temperature. The origin of the exchange bias can be associated with the variation of the magnetic behavior from the surface towards the bulk part of the film revealed by X-ray absorption spectroscopy and X-ray magnetic circular dichroism techniques utilizing the bulk sensitive transmission and the surface sensitive total electron yield modes. The competition between the atomic exchange coupling in the single film and the Zeeman interaction lead to an intrinsic exchanged coupled system and the so far highest exchange bias effect HEB = 4 Tesla reported in a single film, which is accommodated by a partial domain wall formation. PMID:26675537

  8. Observation of an atomic exchange bias effect in DyCo4 film.

    PubMed

    Chen, Kai; Lott, Dieter; Radu, Florin; Choueikani, Fadi; Otero, Edwige; Ohresser, Philippe

    2015-12-17

    The fundamental important and technologically widely employed exchange bias effect occurs in general in bilayers of magnetic thin films consisting of antiferromagnetic and ferromagnetic layers where the hard magnetization behavior of an antiferromagnetic thin film causes a shift in the magnetization curve of a soft ferromagnetic film. The minimization of the single magnetic grain size to increase the storage density and the subsequent demand for magnetic materials with very high magnetic anisotropy requires a system with high HEB. Here we report an extremely high HEB of 4 Tesla observed in a single amorphous DyCo4 film close to room temperature. The origin of the exchange bias can be associated with the variation of the magnetic behavior from the surface towards the bulk part of the film revealed by X-ray absorption spectroscopy and X-ray magnetic circular dichroism techniques utilizing the bulk sensitive transmission and the surface sensitive total electron yield modes. The competition between the atomic exchange coupling in the single film and the Zeeman interaction lead to an intrinsic exchanged coupled system and the so far highest exchange bias effect HEB = 4 Tesla reported in a single film, which is accommodated by a partial domain wall formation.

  9. Competing anisotropies in exchange-biased nanostructured thin films

    NASA Astrophysics Data System (ADS)

    Goncalves, F. J. T.; Paterson, G. W.; Stamps, R. L.; O'Reilly, S.; Bowman, R.; Gubbiotti, G.; Schmool, D. S.

    2016-08-01

    The magnetic anisotropies of a patterned, exchange biased Fe50Mn50/Ni80Fe20 system are studied using ferromagnetic resonance, supplemented by Brillouin light scattering experiments and Kerr magnetometry. The exchange biased bilayer is partially etched into an antidot geometry so that the system approximates a Ni80Fe20 layer in contact with antidot structured Fe50Mn50 . Brillouin light scattering measurements of the spin wave frequency dependence on the wave vector reveal a magnonic band gap as expected for a periodic modulation of the magnetic properties. Analysis of the ferromagnetic resonance spectra reveals eightfold and fourfold contributions to the magnetic anisotropy. Additionally, the antidot patterning decreases the magnitude of the exchange bias and modifies strongly its angular dependence. Softening of all resonance modes is most pronounced for the applied magnetic field aligned within 10∘ of the antidot axis, in the direction of the bias. Given the degree to which one can tailor the ground state, the resulting asymmetry at low frequencies could make this an interesting candidate for applications such as selective/directional microwave filtering and multistate magnetic logic.

  10. Influence of magnetic annealing and interdiffusion on the exchange bias of CoFe/IrMn

    NASA Astrophysics Data System (ADS)

    Macedo, Waldemar; Fernandez-Outon, Luis; Araujo Filho, Mario; Araujo, Raphael; Ardisson, Jose

    2013-03-01

    Magnetic annealing is broadly used to set exchange bias (EB). The EB field depends on the magnetic field and the temperature at which the F/AF exchange interaction is set. Atomic interdiffusion is also expected to have strong influence on EB. For systems containing IrMn, different results have been reported regarding the effect of setting EB between 200 and 400 °C. We study the effect of atomic interdiffusion on the exchange bias of polycrystalline IrMn/(57Fe +CoFe) multilayers due to the magnetic annealing between 225 and 500 °C. The samples have been prepared by magnetron sputtering, and 57Fe probe layers (10 Å thick) were grown at the F/AF interface, and 1 nm and 2 nm above it, inside the CoFe layer. Depth-resolved 57Fe conversion electron Mössbauer spectroscopy (CEMS) was used to quantify atomic interdiffusion, and vibrating sample magnetometry was used to monitor the variation of exchange bias and magnetisation. We found that interface sharpness is only affected above ~350 °C. Three different stages for the setting of exchange bias can be inferred from our results. At temperatures < 350 °C, no interdiffusion is observed and the F/AF exchange coupling establishes partial spin alignment of interfacial and bulk AF spins. At intermediate setting temperatures (350-450 °C) interfacial spin order is dominant over chemical intermixing effects, and both exchange field and coercivity increase up to 450 °C. Above 450 °C, severe chemical intermixing reduces significantly (~50%) the F/AF coupling. Work supported by CAPES/PNPD, FAPEMIG, and CNPq

  11. Role of the antiferromagnetic bulk spins in exchange bias

    NASA Astrophysics Data System (ADS)

    Schuller, Ivan K.; Morales, Rafael; Batlle, Xavier; Nowak, Ulrich; Güntherodt, Gernot

    2016-10-01

    This "Critical Focused Issue" presents a brief review of experiments and models which describe the origin of exchange bias in epitaxial or textured ferromagnetic/antiferromagnetic bilayers. Evidence is presented which clearly indicates that inner, uncompensated, pinned moments in the bulk of the antiferromagnet (AFM) play a very important role in setting the magnitude of the exchange bias. A critical evaluation of the extensive literature in the field indicates that it is useful to think of this bulk, pinned uncompensated moments as a new type of a ferromagnet which has a low total moment, an ordering temperature given by the AFM Néel temperature, with parallel aligned moments randomly distributed on the regular AFM lattice.

  12. Vortex chirality in exchange-biased elliptical magnetic rings.

    PubMed

    Jung, W; Castaño, F J; Ross, C A

    2006-12-15

    The flux-closed or "vortex" state in thin-film magnetic rings has been proposed as a data storage token, but it has proven difficult to control the vortex chirality in a simple manner. Here, a model is described that predicts the vortex chirality of an elliptical magnetic ring as a function of the direction of the applied field and of the exchange bias, based on the change in energy of the system as the domain walls move. Experimental measurements of chirality in Co and Co/IrMn magnetic rings with 3.2 microm major axis are in excellent agreement with the model. The vortex circulation direction can therefore be tailored with an appropriate combination of applied field direction and exchange bias direction with respect to the major axis.

  13. Correction of biased climate simulated by biased physics through parameter estimation in an intermediate coupled model

    NASA Astrophysics Data System (ADS)

    Zhang, Xuefeng; Zhang, Shaoqing; Liu, Zhengyu; Wu, Xinrong; Han, Guijun

    2016-09-01

    Imperfect physical parameterization schemes are an important source of model bias in a coupled model and adversely impact the performance of model simulation. With a coupled ocean-atmosphere-land model of intermediate complexity, the impact of imperfect parameter estimation on model simulation with biased physics has been studied. Here, the biased physics is induced by using different outgoing longwave radiation schemes in the assimilation and "truth" models. To mitigate model bias, the parameters employed in the biased longwave radiation scheme are optimized using three different methods: least-squares parameter fitting (LSPF), single-valued parameter estimation and geography-dependent parameter optimization (GPO), the last two of which belong to the coupled model parameter estimation (CMPE) method. While the traditional LSPF method is able to improve the performance of coupled model simulations, the optimized parameter values from the CMPE, which uses the coupled model dynamics to project observational information onto the parameters, further reduce the bias of the simulated climate arising from biased physics. Further, parameters estimated by the GPO method can properly capture the climate-scale signal to improve the simulation of climate variability. These results suggest that the physical parameter estimation via the CMPE scheme is an effective approach to restrain the model climate drift during decadal climate predictions using coupled general circulation models.

  14. Role of anisotropy configuration in exchange-biased systems.

    SciTech Connect

    Jimenez, E.; Camarero, J.; Perna, P.; Mikuszeit, N.; Teran, F. J.; Sort, J.; Nogues, J.; Garcia-Martin, J. M.; Hoffmann, A.; Dieny, B.; Miranda, R.

    2011-01-01

    We present a systematic study of the anisotropy configuration effects on the magnetic properties of exchange-biased ferromagnetic/antiferromagnetic (FM/AFM) Co/IrMn bilayers. The interfacial unidirectional anisotropy is set extrinsically via a field cooling procedure with the magnetic field misaligned by an angle {beta}{sub FC} with respect to the intrinsic FM uniaxial anisotropy. High resolution angular dependence in-plane resolved Kerr magnetometry measurements have been performed for three different anisotropy arrangements, including collinear {beta}{sub FC} = 0 and two opposite noncollinear cases. The symmetry breaking of the induced noncollinear configurations results in a peculiar nonsymmetric magnetic behavior of the angular dependence of magnetization reversal, coercivity, and exchange bias. The experimental results are well reproduced without any fitting parameter by using a simple model including the induced anisotropy configuration. Our finding highlights the importance of the relative angle between anisotropies in order to properly account for the magnetic properties of exchange-biased FM/AFM systems.

  15. Robust isothermal electric control of exchange bias at room temperature

    NASA Astrophysics Data System (ADS)

    Binek, Christian

    2011-03-01

    Voltage-controlled spintronics is of particular importance to continue progress in information technology through reduced power consumption, enhanced processing speed, integration density, and functionality in comparison with present day CMOS electronics. Almost all existing and prototypical solid-state spintronic devices rely on tailored interface magnetism, enabling spin-selective transmission or scattering of electrons. Controlling magnetism at thin-film interfaces, preferably by purely electrical means, is a key challenge to better spintronics. Currently, most attempts to electrically control magnetism focus on potentially large magnetoelectric effects of multiferroics. We report on our interest in magnetoelectric Cr 2 O3 (chromia). Robust isothermal electric control of exchange bias is achieved at room temperature in perpendicular anisotropic Cr 2 O3 (0001)/CoPd exchange bias heterostructures. This discovery promises significant implications for potential spintronics. From the perspective of basic science, our finding serves as macroscopic evidence for roughness-insensitive and electrically controllable equilibrium boundary magnetization in magnetoelectric antiferromagnets. The latter evolves at chromia (0001) surfaces and interfaces when chromia is in one of its two degenerate antiferromagnetic single domain states selected via magnetoelectric annealing. Theoretical insight into the boundary magnetization and its role in electrically controlled exchange bias is gained from first-principles calculations and general symmetry arguments. Measurements of spin-resolved ultraviolet photoemission, magnetometry at Cr 2 O3 (0001) surfaces, and detailed investigations of the unique exchange bias properties of Cr 2 O3 (0001)/CoPd including its electric controllability provide macroscopically averaged information about the boundary magnetization of chromia. Laterally resolved X-ray PEEM and temperature dependent MFM reveal detailed microscopic information of the chromia

  16. Crystal-Orientation-Modulated Exchange Bias in Orthorhombic-YMnO3/La0.6Sr0.4MnO3 Multiferroic Heterostructures.

    PubMed

    Zheng, Dongxing; Gong, Junlu; Jin, Chao; Li, Peng; Bai, Haili

    2015-07-15

    The magnetic properties of the all-oxide multiferroic heterostructures composed of orthorhombic YMnO3 (YMO) with E-type antiferromagnetic and double-exchange ferromagnetic (FM) La0.6Sr0.4MnO3 (LSMO) were studied. An orientation-modulated exchange bias effect, which is related to the interfacial Mn-O-Mn bond angle, was discovered. Because of the large bond angle in YMO/LSMO(100) heterostructures, a strong exchange coupling at the interface is formed. This strong exchange coupling sustains an FM phase in YMO at the interface region. The FM phase with strong magnetocrystalline anisotropy contributes to the vertical shift and exchange bias effect in (100) orientation heterostructures. When LSMO (110) and (111) were layered with YMO, the Mn-O-Mn bond angle was reduced, leading to a weakened exchange coupling at the interface, and only a relatively small exchange bias at low temperatures was visible.

  17. Exchange bias phenomenology and models of core/shell nanoparticles.

    PubMed

    Iglesias, Oscar; Labarta, Amílcar; Batlle, Xavier

    2008-06-01

    Some of the main experimental observations related to the occurrence of exchange bias in magnetic systems are reviewed, focusing the attention on the peculiar phenomenology associated to nanoparticles with core/shell structure as compared to thin film bilayers. The main open questions posed by the experimental observations are presented and contrasted to existing theories and models for exchange bias formulated up to date. We also present results of simulations based on a simple model of a core/shell nanoparticle in which the values of microscopic parameters such as anisotropy and exchange constants can be tuned in the core, shell and at the interfacial regions, offering new insight on the microscopic origin of the experimental phenomenology. A detailed study of the magnetic order of the interfacial spins shows compelling evidence that most of the experimentally observed effects can be qualitatively accounted within the context of this model and allows also to quantify the magnitude of the loop shifts in striking agreement with the macroscopic observed values.

  18. Exchange Bias Tuning for Magnetoresistive Sensors by Inclusion of Non-Magnetic Impurities

    PubMed Central

    Sharma, Parikshit Pratim; Albisetti, Edoardo; Monticelli, Marco; Bertacco, Riccardo; Petti, Daniela

    2016-01-01

    The fine control of the exchange coupling strength and blocking temperature ofexchange bias systems is an important requirement for the development of magnetoresistive sensors with two pinned electrodes. In this paper, we successfully tune these parameters in top- and bottom-pinned systems, comprising 5 nm thick Co40Fe40B20 and 6.5 nm thick Ir22Mn78 films. By inserting Ru impurities at different concentrations in the Ir22Mn78 layer, blocking temperatures ranging from 220 °C to 100 °C and exchange bias fields from 200 Oe to 60 Oe are obtained. This method is then applied to the fabrication of sensors based on magnetic tunneling junctions consisting of a pinned synthetic antiferromagnet reference layer and a top-pinned sensing layer. This work paves the way towards the development of new sensors with finely tuned magnetic anisotropies. PMID:27384565

  19. Exchange Bias Tuning for Magnetoresistive Sensors by Inclusion of Non-Magnetic Impurities.

    PubMed

    Sharma, Parikshit Pratim; Albisetti, Edoardo; Monticelli, Marco; Bertacco, Riccardo; Petti, Daniela

    2016-07-04

    The fine control of the exchange coupling strength and blocking temperature ofexchange bias systems is an important requirement for the development of magnetoresistive sensors with two pinned electrodes. In this paper, we successfully tune these parameters in top- and bottom-pinned systems, comprising 5 nm thick Co40Fe40B20 and 6.5 nm thick Ir22Mn78 films. By inserting Ru impurities at different concentrations in the Ir22Mn78 layer, blocking temperatures ranging from 220 °C to 100 °C and exchange bias fields from 200 Oe to 60 Oe are obtained. This method is then applied to the fabrication of sensors based on magnetic tunneling junctions consisting of a pinned synthetic antiferromagnet reference layer and a top-pinned sensing layer. This work paves the way towards the development of new sensors with finely tuned magnetic anisotropies.

  20. Tuning the Effective Anisotropy in a Voltage-Susceptible Exchange-Bias Heterosystem

    NASA Astrophysics Data System (ADS)

    Echtenkamp, Will; Street, Mike; Mahmood, Ather; Binek, Christian

    2017-03-01

    Voltage- and temperature-tuned ferromagnetic hysteresis is investigated by a superconducting quantum-interference device and Kerr magnetometry in a thin-film heterostructure of a perpendicular anisotropic Co/Pd ferromagnet exchange coupled to the magnetoelectric antiferromagnet Cr2O3 . An abrupt disappearance of exchange bias with a simultaneous more than twofold increase in coercivity is observed and interpreted as a competition between the effective anisotropy of Cr2O3 and the exchange-coupling energy between boundary magnetization and the adjacent ferromagnet. The effective anisotropy energy is given by the intrinsic anisotropy energy density multiplied by the effective volume separated from the bulk through a horizontal antiferromagnetic domain boundary. Kerr measurements show that the anisotropy of the interfacial Cr2O3 can be tuned isothermally and in the absence of an external magnetic field by application of an electric field. A generalized Meiklejohn-Bean model accounts for the change in exchange bias and coercivity as well as the asymmetric evolution of the hysteresis loop. In support of this model, the reversal of the boundary magnetization is experimentally confirmed as a contribution to the magnetic hysteresis loop.

  1. Exchange bias properties of [Co/CoO]n multilayers

    NASA Astrophysics Data System (ADS)

    Öztürk, M.; Sınır, E.; Demirci, E.; Erkovan, M.; Öztürk, O.; Akdoǧan, N.

    2012-11-01

    In this study, the exchange bias properties of four polycrystalline multilayer stack samples of antiferromagnetic (AF) CoO and ferromagnetic (FM) Co in the form of [CoO/Co]n with n = 1, 2, 3, and 5 are reported. The samples were grown on top of Si (001) substrates by using magnetron sputtering method. X-ray photoelectron spectroscopy (XPS) and transmission electron microscopy (TEM) were used to determine the structural properties of the samples. XPS measurements of cobalt oxide layer revealed the coexistence of different phases in cobalt oxide as CoO and Co3O4, the latter of which lowers the blocking temperature. The blocking temperature is also affected by the finite size scaling effects observed in AF layers. In-plane ferromagnetic resonance (FMR) measurements revealed uniaxial in-plane magnetic anisotropy for the samples. Low temperature vibrating sample magnetometer measurements provided exchange bias with a stepwise character. Observed steps are believed to be due to magnetization reversals of individual FM layers with varying thicknesses, each of which is pinned through two interfaces from above and below with two AFM layers, except the uppermost FM Co layer with a single AFM neighbor.

  2. Memory effect versus exchange bias for maghemite nanoparticles

    NASA Astrophysics Data System (ADS)

    Nadeem, K.; Krenn, H.; Szabó, D. V.

    2015-11-01

    We studied the temperature dependence of memory and exchange bias effects and their dependence on each other in maghemite (γ-Fe2O3) nanoparticles by using magnetization studies. Memory effect in zero field cooled process in nanoparticles is a fingerprint of spin-glass behavior which can be due to i) surface disordered spins (surface spin-glass) and/or ii) randomly frozen and interacting nanoparticles core spins (super spin-glass). Temperature region (25-70 K) for measurements has been chosen just below the average blocking temperature (TB=75 K) of the nanoparticles. Memory effect (ME) shows a non-monotonous behavior with temperature. It shows a decreasing trend with decreasing temperature and nearly vanishes below 30 K. However it also decreased again near the blocking temperature of the nanoparticles e.g., 70 K. Exchange bias (EB) in these nanoparticles arises due to core/shell interface interactions. The EB increases sharply below 30 K due to increase in core/shell interactions, while ME starts vanishing below 30 K. We conclude that the core/shell interface interactions or EB have not enhanced the ME but may reduce it in these nanoparticles.

  3. Coupling effects in inductive discharges with radio frequency substrate biasing

    SciTech Connect

    Schulze, J.; Schuengel, E.; Czarnetzki, U.

    2012-01-09

    Low pressure inductively coupled plasmas (ICP) operated in neon at 27.12 MHz with capacitive substrate biasing (CCP) at 13.56 MHz are investigated by phase resolved optical emission spectroscopy, voltage, and current measurements. Three coupling mechanisms are found potentially limiting the separate control of ion energy and flux: (i) Sheath heating due to the substrate biasing affects the electron dynamics even at high ratios of ICP to CCP power. At fixed CCP power, (ii) the substrate sheath voltage and (iii) the amplitude as well as frequency of plasma series resonance oscillations of the RF current are affected by the ICP power.

  4. Exchange bias magnetism in films of NiFe/(Ni,Fe)O nanocrystallite dispersions

    SciTech Connect

    Hsiao, C.-H.; Chi, C.-C.; Wang, S.; Ouyang, H.; Desautels, R. D.; Lierop, J. van; Lin, K.-W.; Lin, T.-L.

    2014-05-07

    Ni{sub 3}Fe/(Ni,Fe)O thin films having a nanocrystallite dispersion morphology were prepared by a reactive ion beam-assisted deposition technique. The crystallite sizes of these dispersion-based films were observed to decrease from 8.4 ± 0.3 nm to 3.4 ± 0.3 nm as the deposition flow-rate increased from 2.78% to 7.89% O{sub 2}/Ar. Thin film composition was determined using selective area electron diffraction images and Multislice simulations. Through a detailed analysis of high resolution transmission electron microscopy images, the nanocrystallites were determined to be Ni{sub 3}Fe (a ferromagnet), NiO, and FeO (both antiferromagnets). It was determined that the interfacial molar Ni{sub 3}Fe ratio in the nanocrystallite dispersions increased slightly at first, then decreased as the oxygen content was increased; at 7.89% O{sub 2}/Ar, the interfacial molar ratio was essentially zero (only NiO and FeO remained). For nanocrystallite dispersion films grown with O{sub 2}/Ar flow-rate greater than 7.89%, no interfacial (intermixed) Ni{sub 3}Fe phase was detected, which resulted in no measurable exchange bias. Comparing the exchange bias field between the nanocrystallite dispersion films at 5 K, we observed a decrease in the magnitude of the exchange bias field as the nanocrystallite size decreased. The exchange bias coupling for all samples measured set in at essentially the same temperature (i.e., the exchange bias blocking temperature). Since the ferromagnetic/anti-ferromagnetic (FM/AFM) contact area in the nanocrystallite dispersion films increased as the nanocrystallite size decreased, the increase in the magnitude of the exchange bias could be attributed to larger regions of defects (vacancies and bond distortions) which occupied a significant portion of the FM/AFM interfaces in the nanocrystallite dispersion films.

  5. Micro-fluid exchange coupling apparatus

    NASA Technical Reports Server (NTRS)

    Johnson, J. E., Jr.; Swartz, P. F. (Inventor)

    1980-01-01

    In a macro-fluid exchange, a hollow needle, such as a syringe needle, is provided for penetrating the fluid conduit of the animal. The syringe needle is coupled to a plenum chamber having an inlet and outlet port. The plenum chamber is coupled to the syringe needle via the intermediary of a standard quick disconnect coupling fitting. The plenum chamber is carried at the end of a drive rod which is coupled to a micrometer drive head. The micrometer drive head is slidably and pivotably coupled to a pedestal for adjusting the height and angle of inclination of the needle relative to a reference base support. The needle is positioned adjacent to the incised trachea or a blood vessel of a small animal and the micrometer drive head is operated for penetrating the fluid conduit of the animal.

  6. Exchange biasing in ferromagnet/antiferromagnet Fe/KMnF 3

    NASA Astrophysics Data System (ADS)

    Celinski, Z.; Lucic, D.; Cramer, N.; Camley, R. E.; Goldfarb, R. B.; Skrzypek, D.

    1999-08-01

    A new ferromagnet/antiferromagnet bilayer system, Fe/KMnF 3, exhibits interesting interfacial exchange properties. The bulk antiferromagnet KMnF 3 has three possible magnetic states: paramagnetic, antiferromagnetic, and weakly ferromagnetic spin-canted. Consequently, the exchange anisotropy in Fe/KMnF 3 is unusual. We examine the exchange bias in Fe/KMnF 3 as a function of the magnetic state. Monocrystalline Fe(0 0 1) and polycrystalline Fe films, 3 nm thick, were grown epitaxially on Ag(0 0 1) templates on GaAs(0 0 1) substrates. Epitaxial KMnF 3 was then grown on both the single-crystal and polycrystal Fe. We measured the low-field, zero-field-cooled and field-cooled magnetizations as functions of temperature. The zero-field-cooled single-crystal Fe magnetization is greatly reduced at liquid-helium temperatures. We see the influence of the transition from the antiferromagnetic to the spin-canted state on the exchange coupling. The blocking temperature is close to the Néel temperature (89 K). From the shift in the hysteresis loop, we estimate the strength of the interfacial exchange coupling to be 4.5×10 -5 J/m 2.

  7. Exchange bias of Ni nanoparticles embedded in an antiferromagnetic IrMn matrix.

    PubMed

    Kuerbanjiang, Balati; Wiedwald, Ulf; Haering, Felix; Biskupek, Johannes; Kaiser, Ute; Ziemann, Paul; Herr, Ulrich

    2013-11-15

    The magnetic properties of Ni nanoparticles (Ni-NPs) embedded in an antiferromagnetic IrMn matrix were investigated. The Ni-NPs of 8.4 nm mean diameter were synthesized by inert gas aggregation. In a second processing step, the Ni-NPs were in situ embedded in IrMn films or SiOx films under ultrahigh vacuum (UHV) conditions. Findings showed that Ni-NPs embedded in IrMn have an exchange bias field HEB = 821 Oe at 10 K, and 50 Oe at 300 K. The extracted value of the exchange energy density is 0.06 mJ m(-2) at 10 K, which is in good accordance with the results from multilayered thin film systems. The Ni-NPs embedded in SiOx did not show exchange bias. As expected for this particle size, they are superparamagnetic at T = 300 K. A direct comparison of the Ni-NPs embedded in IrMn or SiOx reveals an increase of the blocking temperature from 210 K to around 400 K. The coercivity of the Ni-NPs exchange coupled to the IrMn matrix at 10 K is 8 times larger than the value for Ni-NPs embedded in SiOx. We studied time-dependent remanent magnetization at different temperatures. The relaxation behavior is described by a magnetic viscosity model which reflects a rather flat distribution of energy barriers. Furthermore, we investigated the effects of different field cooling processes on the magnetic properties of the embedded Ni-NPs. Exchange bias values fit to model calculations which correlate the contribution of the antiferromagnetic IrMn matrix to its grain size.

  8. Modelling exchange bias in core/shell nanoparticles.

    PubMed

    Iglesias, Oscar; Batlle, Xavier; Labarta, Amílcar

    2007-10-10

    We present an atomistic model of a single nanoparticle with core/shell structure that takes into account its lattice structure and spherical geometry, and in which the values of microscopic parameters such as anisotropy and exchange constants can be tuned in the core, shell and interfacial regions. By means of Monte Carlo simulations of the hysteresis loops based on this model, we have determined the range of microscopic parameters for which loop shifts after field cooling can be observed. The study of the magnetic order of the interfacial spins for different particle sizes and values of the interfacial exchange coupling have allowed us to correlate the appearance of loop asymmetries and vertical displacements to the existence of a fraction of uncompensated spins at the shell interface that remain pinned during field cycling, offering new insight on the microscopic origin of the experimental phenomenology.

  9. Connection between orbital moment enhancement and exchange bias in a [Ni80Fe20/Mn]3 multilayer

    NASA Astrophysics Data System (ADS)

    Su, H.-C.; Huang, M.-J.; Lin, H.-J.; Lee, C.-H.; Chen, C.-T.; Liu, C.-H.; Hsu, H.-F.; Lin, K.-W.; van Lierop, J.

    2013-01-01

    The overall and element specific magnetism in an exchange biased [Ni80Fe20/Mn]3 film system, with film layers 3.5 nm thick, has been studied to examine the magnetism between interfacial Mn, Ni, and Fe spins. Field-cooling the film results in large exchange bias loop shifts at temperatures from 2 to 30 K, and an enhanced coercivity remains until 75 K. The elemental magnetism ascertained from x-ray magnetic circular dichroism measurements shows that Mn appears to be a fully compensated antiferromagnet down to 20 K, and there is clear evidence of an enhanced orbital moment for both Fe and Ni from 20 to 300 K. This magnetism is likely due to overlapping d orbitals between Fe-Mn and Ni-Mn, with this coupling increasing the local anisotropy resulting in the enhanced coercivity and enabling exchange bias.

  10. Micromagnetic simulation of ferrimagnetic TbFeCo films with exchange coupled nanophases

    NASA Astrophysics Data System (ADS)

    Ma, Chung T.; Li, Xiaopu; Poon, S. Joseph

    2016-11-01

    Amorphous ferrimagnetic TbFeCo thin films are found to exhibit exchange bias effect near the compensation temperature by magnetic hysteresis loop measurement. The observed exchange anisotropy is believed to originate from the exchange interaction between the two nanoscale amorphous phases distributed within the films. Here, we present a computational model of phase-separated TbFeCo using micromagnetic simulation. Two types of cells with different Tb concentration are distributed within the simulated space to obtain a heterogeneous structure consisting of two nanoscale amorphous phases. Each cell contains separated Tb and FeCo components, forming two antiferromagnetically coupled sublattices. Using this model, we are able to show the existence of exchange bias effect, and the shift in hysteresis loops is in agreement with experiment. The micromagnetic model developed herein for a heterogeneous magnetic material may also account for some recent measurements of exchange bias effect in crystalline films.

  11. Switching of perpendicular exchange bias in Pt/Co/Pt/α-Cr{sub 2}O{sub 3}/Pt layered structure using magneto-electric effect

    SciTech Connect

    Toyoki, Kentaro; Shiratsuchi, Yu Kobane, Atsushi; Harimoto, Shotaro; Onoue, Satoshi; Nomura, Hikaru; Nakatani, Ryoichi

    2015-05-07

    Switching of the perpendicular exchange bias polarity using a magneto-electric (ME) effect of α-Cr{sub 2}O{sub 3} was investigated. From the change in the exchange bias field with the electric field during the ME field cooling, i.e., the simultaneous application of both magnetic and electric fields during the cooling, we determined the threshold electric field to switch the perpendicular exchange bias polarity. It was found that the threshold electric field was inversely proportional to the magnetic field indicating that the EH product was constant. The high EH product was required to switch the exchange bias for the film possessing the high exchange anisotropy energy density, which suggests that the energy gain by the ME effect has to overcome the interfacial exchange coupling energy to reverse the interfacial antiferromagnetic spin.

  12. Antenna-coupled arrays of voltage-biased superconducting bolometers

    SciTech Connect

    Myers, Michael J.; Lee, Adrian T.; Richards, P.L.; Schwan, D.; Skidmore, J.T.; Smith, A.D.; Spieler, H.; Yoon, Jongsoo

    2001-07-23

    We report on the development of antenna-coupled Voltage-biased Superconducting Bolometers (VSBs) which use Transition-edge Sensors (TES). Antenna coupling can greatly simplify the fabrication of large multi-frequency bolometer arrays compared to horn-coupled techniques. This simplification can make it practical to implement 1000+ element arrays that fill the focal plane of mm/sub-mm wave telescopes. We have designed a prototype device with a double-slot dipole antenna, integrated band-defining filters, and a membrane-suspended bolometer. A test chip has been constructed and will be tested shortly.

  13. Temperature- and magnetic field-dependence of exchange bias in SrCoO2.29 ceramics

    NASA Astrophysics Data System (ADS)

    Xie, L.; Huang, H. L.; Lu, Y. L.

    2017-01-01

    A cation's oxidation state in a transition metal oxide may significantly change its physical and chemical properties. In this work, magnetic properties of both cubic SrCoO2.29 and hexagonal SrCoO2.50 ceramics, annealed following a selected yet simple process, have been studied. The SrCoO2.50 ceramics annealed in air displays an unusual paramagnetic property, and the SrCoO2.29 quenched into water shows a short-range ferromagnetic coupling in the antiferromagnetic background. Exchange coupling at the ferromagnetic/antiferromagnetic interfaces brings out an obvious exchange bias effect in the SrCoO2.29 sample. Due to its complicated magnetic states, the exchange bias effect presents strong temperature and cooling field dependences.

  14. The Origin of Enhanced Coercivity in Exchange-Biased NiCoO/Py/MgO Thin Films

    NASA Astrophysics Data System (ADS)

    Dimitrov, D. V.; Prados, C.; Hadjipanayis, G. C.; Xiao, J. Q.

    1998-03-01

    We have studied the long-standing problem of the origin of enhanced coercivity in exchange coupled ferromagnetic/antiferromagnetic (FM/AF) films in sputtered Si/NiCoO/FeNi/MgO thin films. The angular dependence of the exchange bias and coercivity was studied using magnetometry with two mutually orthogonal pick-up coils. The exchange bias (H_e) was found to follow a simple harmonic angular dependence: H_e=Hm × cos (α). The coercivity (H_c) showed sharp peaks centered at 0, 180, 360^circ, superimposed on a flat background of 27 Oe. Measurements of both the longitudinal and orthogonal magnetization during the hysteresis cycle indicated that the magnetization reversal occurs by magnetization rotation instead of domain wall motion, which is usually observed in magnetically soft films. The random exchange field at the FM/AF boundary may cause the changes in the mechanism of magnetization reversal. We proposed a simple model to explain the angular dependence of H_e, based on the assumption that there is an angular spread in the exchange bias directions. A spread in the local exchange bias leads to uniaxial anisotropy in a narrow angular range and as a consequence to an enhancement in the coercivity. Numerical calculations based on this model are in good agreement with the experimental data.

  15. Long distance coupling of resonant exchange qubits

    NASA Astrophysics Data System (ADS)

    Russ, Maximilian; Burkard, Guido

    We investigate the effectiveness of a microwave cavity as a mediator of interactions between two resonant exchange (RX) qubits in semiconductor quantum dots (QDs) over long distances, limited only by the extension of the cavity. Our interaction model includes the orthonormalized Wannier orbitals constructed from Fock-Darwin states under the assumption of a harmonic QD confinement potential. We calculate the qubit-cavity coupling strength gr in a Jaynes Cummings Hamiltonian, and find that dipole transitions between two states with an asymmetric charge configuration constitute the relevant RX qubit-cavity coupling mechanism. The effective coupling between two RX qubits in a shared cavity yields a universal two-qubit iSWAP-gate with gate times on the order of nanoseconds over distances on the order of up to a millimeter. Funded by ARO through Grant No. W911NF-15-1-0149.

  16. Long distance coupling of resonant exchange qubits

    NASA Astrophysics Data System (ADS)

    Russ, Maximilian; Burkard, Guido

    2015-11-01

    We investigate the effectiveness of a microwave cavity as a mediator of interactions between two resonant exchange (RX) qubits in semiconductor quantum dots (QDs) over long distances, limited only by the extension of the cavity. Our interaction model includes the orthonormalized Wannier orbitals constructed from Fock-Darwin states under the assumption of a harmonic QD confinement potential. We calculate the qubit-cavity coupling strength in a Jaynes-Cummings Hamiltonian and find that dipole transitions between two states with an asymmetric charge configuration constitute the relevant RX qubit-cavity coupling mechanism. The effective coupling between two RX qubits in a shared cavity yields a universal two-qubit iswap gate with gate times on the order of nanoseconds over distances on the order of up to a millimeter.

  17. Fingerprints of surface magnetism in Cr2O3 based exchange bias heterostructures

    NASA Astrophysics Data System (ADS)

    He, Xi; Wang, Yi; Binek, Ch.

    2009-03-01

    Magnetoelectric materials experienced a recent revival as promising components of novel spintronic devices [1, 2, 3]. Since the magnetoelectric (ME) effect is relativistically small in traditional antiferromagnetic (AF) compounds like Cr2O3 (max. αzz 4ps/m) and also cross-coupling between ferroic order parameters is typically small in the modern multiferroics, it is a challenge to electrically induce sufficient magnetization required for the envisioned device applications. In exchange bias systems the bias field depends critically on the AF interface magnetization. Hence, a strong relation between the latter and the surface magnetization of the free Cr2O3 pinning layer can be expected. Our recent research indicates that there are surface magnetic phase transitions in free Cr2O3 (111) films accompanying surface structural phase transitions. Well defined AF interface magnetization is initialized through ME annealing to T=20K. Subsequently, the interface magnetization is thermally driven through phase transitions at T=120 and 210K. Their effects on the exchange bias are studied in Cr2O3 (111)/CoPt films with the help of polar Kerr and SQUID magnetometry. [1] P. Borisov et al. Phys. Rev. Lett. 94, 117203 (2005). [2] Ch. Binek, B.Doudin, J. Phys. Condens. Matter 17, L39 (2005). [3] R. Ramesh et al. 2007 Nature Materials 6 21. Financial support by NSF through Career DMR-0547887, MRSEC DMR-0820521 and the NRI.

  18. Exchange bias effect in Au-Fe3O4 nanocomposites

    NASA Astrophysics Data System (ADS)

    Chandra, Sayan; Frey Huls, N. A.; Phan, M. H.; Srinath, S.; Garcia, M. A.; Lee, Youngmin; Wang, Chao; Sun, Shouheng; Iglesias, Òscar; Srikanth, H.

    2014-02-01

    We report exchange bias (EB) effect in the Au-Fe3O4 composite nanoparticle system, where one or more Fe3O4 nanoparticles are attached to an Au seed particle forming ‘dimer’ and ‘cluster’ morphologies, with the clusters showing much stronger EB in comparison with the dimers. The EB effect develops due to the presence of stress at the Au-Fe3O4 interface which leads to the generation of highly disordered, anisotropic surface spins in the Fe3O4 particle. The EB effect is lost with the removal of the interfacial stress. Our atomistic Monte Carlo studies are in excellent agreement with the experimental results. These results show a new path towards tuning EB in nanostructures, namely controllably creating interfacial stress, and opens up the possibility of tuning the anisotropic properties of biocompatible nanoparticles via a controllable exchange coupling mechanism.

  19. Manipulation by exchange coupling in layered magnetic structures

    SciTech Connect

    Moskalenko, M. A.; Uzdin, V. M.; Zabel, H.

    2014-02-07

    Exchange coupling in magnetic heterostructures can be modified via introduction of additional magnetic spacer layers at the interfaces. The magnetic characteristics and the spacer layer thickness determine the functional properties of the whole system. We show that the hysteresis loop area of trilayer spring magnets with two different soft magnetic layers (s1, s2) and one hard magnetic layer (h) with the sequence s1/s2/h can be increased as compared to both bilayer structures s1/h and s2/h with the same total thickness of the soft layers and for definite thickness ratios of the soft layers and their sequences. For ferrimagnetic spin valves, the perpendicular exchange bias effect can be tuned via the thickness of non-magnetic spacer layers at the interface, which determine the exchange coupling between ferrimagnets. A simple quasi one-dimensional phenomenological model is able to describe the magnetic hysteresis of even complex layered structures and to predict optimal geometrical and magnetic parameters of such heterostructures.

  20. Strain-mediated multiferroic control of spontaneous exchange bias in Ni-NiO heterostructures

    NASA Astrophysics Data System (ADS)

    Domann, John P.; Sun, Wei-Yang; Schelhas, Laura T.; Carman, Greg P.

    2016-10-01

    This paper presents the measurement of strain-mediated multiferroic control of spontaneous exchange bias (SEB) in magnetostrictive nickel/nickel oxide (Ni/NiO) bilayers on ferroelectric lead magnesium niobate-lead titanate (PMN-PT). Electric field control of a positive to negative exchange bias shift was measured, with an overall shift of 40.5 Oe, corresponding to a 325% change. Observed changes in coercivity are also reported and provide insight into the role of competing anisotropies in these structures. The findings in this paper provide evidence that magnetoelastic anisotropy can be utilized to control spontaneous exchange bias (SEB). This control of SEB is accomplished by modifying a bulk anisotropy (magnetoelasticity) that adjusts the mobility of interfacial anti-ferromagnetic spins and, therefore, the magnitude of the exchange bias. The demonstrated magnetoelastic control of exchange bias provides a useful tool in the creation of future magnetoelectric devices.

  1. Exotic exchange bias at epitaxial ferroelectric-ferromagnetic interfaces

    NASA Astrophysics Data System (ADS)

    Paul, Amitesh; Reitinger, Christoph; Autieri, Carmine; Sanyal, Biplab; Kreuzpaintner, Wolfgang; Jutimoosik, Jaru; Yimnirun, Rattikorn; Bern, Francis; Esquinazi, Pablo; Korelis, Panagiotis; Böni, Peter

    2014-07-01

    Multiferroics in spintronics have opened up opportunities for future technological developments, particularly in the field of ferroelectric (FE)-ferromagnetic (FM) oxide interfaces with functionalities. We find strong exchange bias shifts (up to 84 Oe) upon field cooling in metal-oxide (Fe/BaTiO3) films combining FM and FE layers. The saturation magnetic moment of the FM layer is also significantly higher than in bulk (3.0 ± 0.2 μB/atom) and the reversal mechanism occurs via a domain nucleation process. X-ray absorption spectroscopy at the Fe K-edge and Ba L3-edge indicate presence of few monolayers of antiferromagnetic FeO at the interface without the formation of any BaFeO3 layer. Polarized neutron reflectometry corroborates with our magnetization data as we perform depth profiling of the magnetic and structural densities in these bilayers. Our first principles density functional calculations support the formation of antiferromagnetic FeO layers at the interface along with an enhancement of Fe magnetic moments in the inner ferromagnetic layers.

  2. Exotic exchange bias at epitaxial ferroelectric-ferromagnetic interfaces

    SciTech Connect

    Paul, Amitesh Reitinger, Christoph; Kreuzpaintner, Wolfgang; Böni, Peter; Autieri, Carmine; Sanyal, Biplab; Jutimoosik, Jaru; Yimnirun, Rattikorn; Bern, Francis; Esquinazi, Pablo; Korelis, Panagiotis

    2014-07-14

    Multiferroics in spintronics have opened up opportunities for future technological developments, particularly in the field of ferroelectric (FE)-ferromagnetic (FM) oxide interfaces with functionalities. We find strong exchange bias shifts (up to 84 Oe) upon field cooling in metal-oxide (Fe/BaTiO{sub 3}) films combining FM and FE layers. The saturation magnetic moment of the FM layer is also significantly higher than in bulk (3.0 ± 0.2 μ{sub B}/atom) and the reversal mechanism occurs via a domain nucleation process. X-ray absorption spectroscopy at the Fe K-edge and Ba L3-edge indicate presence of few monolayers of antiferromagnetic FeO at the interface without the formation of any BaFeO{sub 3} layer. Polarized neutron reflectometry corroborates with our magnetization data as we perform depth profiling of the magnetic and structural densities in these bilayers. Our first principles density functional calculations support the formation of antiferromagnetic FeO layers at the interface along with an enhancement of Fe magnetic moments in the inner ferromagnetic layers.

  3. Engineered magnetic domain textures in exchange bias bilayer systems

    NASA Astrophysics Data System (ADS)

    Gaul, Alexander; Hankemeier, Sebastian; Holzinger, Dennis; Müglich, Nicolas David; Staeck, Philipp; Frömter, Robert; Oepen, Hans Peter; Ehresmann, Arno

    2016-07-01

    A magnetic domain texture has been deterministically engineered in a topographically flat exchange-biased (EB) thin film system. The texture consists of long-range periodically arranged unit cells of four individual domains, characterized by individual anisotropies, individual geometry, and with non-collinear remanent magnetizations. The texture has been engineered by a sequence of light-ion bombardment induced magnetic patterning of the EB layer system. The magnetic texture's in-plane spatial magnetization distribution and the corresponding domain walls have been characterized by scanning electron microscopy with polarization analysis (SEMPA). The influence of magnetic stray fields emerging from neighboring domain walls and the influence of the different anisotropies of the adjacent domains on the Néel type domain wall core's magnetization rotation sense and widths were investigated. It is shown that the usual energy degeneracy of clockwise and counterclockwise rotating magnetization through the walls is revoked, suppressing Bloch lines along the domain wall. Estimates of the domain wall widths for different domain configurations based on material parameters determined by vibrating sample magnetometry were quantitatively compared to the SEMPA data.

  4. Exchange bias effect in NiMnSb/CrN heterostructures deposited by magnetron sputtering

    NASA Astrophysics Data System (ADS)

    Sharma Akkera, Harish; Barman, Rahul; Kaur, Navjot; Choudhary, Nitin; Kaur, Davinder

    2013-05-01

    Exchange bias has been studied in various Ni50Mn36.8Sb13.2/CrN heterostructures with different CrN thicknesses (15 nm-80 nm), grown on Si (100) substrate using magnetron sputtering. The shift in hysteresis loop up to 51 Oe from the origin was observed at 10 K for Ni-Mn-Sb film without CrN layer. On the other hand, a significant shifting of hysteresis loop was observed with antiferromagnetic (AFM) CrN layer in Ni50Mn36.8Sb13.2/CrN heterostructure. The exchange coupled 140 nm Ni50Mn36.8Sb13.2/35 nm CrN heterostructure exhibited a relatively large exchange coupling field of 148 Oe at 10 K compared to other films, which may be related to uncompensated and pinned AFM spins at FM-AFM interface and different AFM domain structures for different thicknesses of CrN layer. Further nanoindentation measurements revealed the higher values of hardness and elastic modulus of about 12.7 ± 0.38 GPa and 179.83 ± 1.24 GPa in Ni50Mn36.8Sb13.2/CrN heterostructures making them promising candidate for various multifunctional MEMS devices.

  5. Influence of growth conditions on exchange bias of NiMn-based spin valves

    SciTech Connect

    Wienecke, Anja; Kruppe, Rahel; Rissing, Lutz

    2015-05-07

    As shown in previous investigations, a correlation between a NiMn-based spin valve's thermal stability and its inherent exchange bias exists, even if the blocking temperature of the antiferromagnet is clearly above the heating temperature and the reason for thermal degradation is mainly diffusion and not the loss of exchange bias. Samples with high exchange bias are thermally more stable than samples with low exchange bias. Those structures promoting a high exchange bias are seemingly the same suppressing thermally induced diffusion processes (A. Wienecke and L. Rissing, “Relationship between thermal stability and layer-stack/structure of NiMn-based GMR systems,” in IEEE Transaction on Magnetic Conference (EMSA 2014)). Many investigations were carried out on the influence of the sputtering parameters as well as the layer thickness on the magnetoresistive effect. The influence of these parameters on the exchange bias and the sample's thermal stability, respectively, was hardly taken into account. The investigation described here concentrates on the last named issue. The focus lies on the influence of the sputtering parameters and layer thickness of the “starting layers” in the stack and the layers forming the (synthetic) antiferromagnet. This paper includes a guideline for the evaluated sputtering conditions and layer thicknesses to realize a high exchange bias and presumably good thermal stability for NiMn-based spin valves with a synthetic antiferromagnet.

  6. Controllable exchange bias in Fe/metamagnetic FeRh bilayers

    SciTech Connect

    Suzuki, Ippei; Hamasaki, Yosuke; Itoh, Mitsuru; Taniyama, Tomoyasu

    2014-10-27

    We report the studies of tuning the exchange bias at ferromagnetic Fe/metamagnetic FeRh bilayer interfaces. Fe/FeRh(111) bilayers show exchange bias in the antiferromagnetic state of FeRh while no exchange bias occurs at Fe/FeRh(001) interface. The contrasting results are attributed to the spin configurations of FeRh at the interface, i.e., the uncompensated ferromagnetic spin configuration of FeRh appears exclusively for (111) orientation. The exchange bias disappears as the bilayers are warmed above the antiferromagnetic-ferromagnetic transition temperature. The direction of the exchange bias for Fe/FeRh(111) is also found to be perpendicular to the cooling-field direction, in contrast to the commonly observed direction of exchange bias for ferromagnetic/antiferromagnetic interfaces. In view of these results, the exchange bias in Fe/FeRh bilayers with the (111) crystallographic orientation should be useful for the design of rapid writing technology for magnetic information devices.

  7. Angular dependent FORC and FMR of exchange-biased NiFe multilayer films

    NASA Astrophysics Data System (ADS)

    Gallardo, R. A.; Khanal, S.; Vargas, J. M.; Spinu, L.; Ross, C. A.; Garcia, C.

    2017-02-01

    Dynamic ferromagnetic resonance (FMR, X-band 9.8 GHz) and static first-order reversal curve (FORC) techniques are combined to study the intrinsic exchange-bias distribution via measurements of in-plane angular variation in (FeNi/IrMn)n multilayers. The angular dependence of the exchange bias field was qualitatively and quantitatively investigated using both methods, which are sensitive to different couplings between the ferromagnetic layers. We have used the analysis of the angular dependence of first-order reversal curve (AFORC) data, extracted from FORC curves measured from {{0}\\circ} up to {{360}\\circ} in {{10}\\circ} steps. In addition, its counterpart angular dependence of FMR (AFMR) measurements were carried out and correlated with the AFORC results. The AFORC proved to be useful for simultaneously studying the magnetization reversal processes and magnetic interactions between the layers of the (FeNi/IrMn)n. These interactions are related to the structure and interfaces in the (FeNi/IrMn), and the results obtained by AFMR and AFORC are contrasted with a modified theoretical model for domain-wall formation.

  8. Intermartensitic Transformation and Enhanced Exchange Bias in Pd (Pt) -doped Ni-Mn-Sn alloys

    NASA Astrophysics Data System (ADS)

    Dong, S. Y.; Chen, J. Y.; Han, Z. D.; Fang, Y.; Zhang, L.; Zhang, C. L.; Qian, B.; Jiang, X. F.

    2016-05-01

    In this work, we studied the phase transitions and exchange bias of Ni50‑xMn36Sn14Tx (T = Pd, Pt; x = 0, 1, 2, 3) alloys. An intermartensitic transition (IMT), not observed in Ni50Mn36Sn14 alloy, was induced by the proper application of negative chemical pressure by Pd(Pt) doping in Ni50‑xMn36Sn14Tx (T = Pd, Pt) alloys. IMT weakened and was suppressed with the increase of applied field; it also disappeared with further increase of Pd(Pt) content (x = 3 for Pd and x = 2 for Pt). Another striking result is that exchange bias effect, ascribed to the percolating ferromagnetic domains coexisting with spin glass phase, is notably enhanced by nonmagnetic Pd(Pt) addition. The increase of unidirectional anisotropy by the addition of Pd(Pt) impurities with strong spin-orbit coupling was explained by Dzyaloshinsky-Moriya interactions in spin glass phase.

  9. Intermartensitic Transformation and Enhanced Exchange Bias in Pd (Pt) -doped Ni-Mn-Sn alloys.

    PubMed

    Dong, S Y; Chen, J Y; Han, Z D; Fang, Y; Zhang, L; Zhang, C L; Qian, B; Jiang, X F

    2016-05-12

    In this work, we studied the phase transitions and exchange bias of Ni50-xMn36Sn14Tx (T = Pd, Pt; x = 0, 1, 2, 3) alloys. An intermartensitic transition (IMT), not observed in Ni50Mn36Sn14 alloy, was induced by the proper application of negative chemical pressure by Pd(Pt) doping in Ni50-xMn36Sn14Tx (T = Pd, Pt) alloys. IMT weakened and was suppressed with the increase of applied field; it also disappeared with further increase of Pd(Pt) content (x = 3 for Pd and x = 2 for Pt). Another striking result is that exchange bias effect, ascribed to the percolating ferromagnetic domains coexisting with spin glass phase, is notably enhanced by nonmagnetic Pd(Pt) addition. The increase of unidirectional anisotropy by the addition of Pd(Pt) impurities with strong spin-orbit coupling was explained by Dzyaloshinsky-Moriya interactions in spin glass phase.

  10. Cooling field and temperature dependent exchange bias in spin glass/ferromagnet bilayers

    PubMed Central

    Rui, W. B.; Hu, Y.; Du, A.; You, B.; Xiao, M. W.; Zhang, W.; Zhou, S. M.; Du, J.

    2015-01-01

    We report on the experimental and theoretical studies of cooling field (HFC) and temperature (T) dependent exchange bias (EB) in FexAu1 − x/Fe19Ni81 spin glass (SG)/ferromagnet (FM) bilayers. When x varies from 8% to 14% in the FexAu1 − x SG alloys, with increasing T, a sign-changeable exchange bias field (HE) together with a unimodal distribution of coercivity (HC) are observed. Significantly, increasing in the magnitude of HFC reduces (increases) the value of HE in the negative (positive) region, resulting in the entire HE ∼ T curve to move leftwards and upwards. In the meanwhile, HFC variation has weak effects on HC. By Monte Carlo simulation using a SG/FM vector model, we are able to reproduce such HE dependences on T and HFC for the SG/FM system. Thus this work reveals that the SG/FM bilayer system containing intimately coupled interface, instead of a single SG layer, is responsible for the novel EB properties. PMID:26348277

  11. Intermartensitic Transformation and Enhanced Exchange Bias in Pd (Pt) -doped Ni-Mn-Sn alloys

    PubMed Central

    Dong, S. Y.; Chen, J. Y.; Han, Z. D.; Fang, Y.; Zhang, L.; Zhang, C. L.; Qian, B.; Jiang, X. F.

    2016-01-01

    In this work, we studied the phase transitions and exchange bias of Ni50−xMn36Sn14Tx (T = Pd, Pt; x = 0, 1, 2, 3) alloys. An intermartensitic transition (IMT), not observed in Ni50Mn36Sn14 alloy, was induced by the proper application of negative chemical pressure by Pd(Pt) doping in Ni50−xMn36Sn14Tx (T = Pd, Pt) alloys. IMT weakened and was suppressed with the increase of applied field; it also disappeared with further increase of Pd(Pt) content (x = 3 for Pd and x = 2 for Pt). Another striking result is that exchange bias effect, ascribed to the percolating ferromagnetic domains coexisting with spin glass phase, is notably enhanced by nonmagnetic Pd(Pt) addition. The increase of unidirectional anisotropy by the addition of Pd(Pt) impurities with strong spin-orbit coupling was explained by Dzyaloshinsky-Moriya interactions in spin glass phase. PMID:27170057

  12. Thickness dependent exchange bias in martensitic epitaxial Ni-Mn-Sn thin films

    SciTech Connect

    Behler, Anna; Teichert, Niclas; Auge, Alexander; Hütten, Andreas; Dutta, Biswanath; Hickel, Tilmann; Waske, Anja; Eckert, Jürgen

    2013-12-15

    A thickness dependent exchange bias in the low temperature martensitic state of epitaxial Ni-Mn-Sn thin films is found. The effect can be retained down to very small thicknesses. For a Ni{sub 50}Mn{sub 32}Sn{sub 18} thin film, which does not undergo a martensitic transformation, no exchange bias is observed. Our results suggest that a significant interplay between ferromagnetic and antiferromagnetic regions, which is the origin for exchange bias, is only present in the martensite. The finding is supported by ab initio calculations showing that the antiferromagnetic order is stabilized in the phase.

  13. The antiferromagnetic structures of IrMn3 and their influence on exchange-bias

    PubMed Central

    Kohn, A.; Kovács, A.; Fan, R.; McIntyre, G. J.; Ward, R. C. C.; Goff, J. P.

    2013-01-01

    We have determined the magnetic structures of single-crystal thin-films of IrMn3 for the crystallographic phases of chemically-ordered L12, and for chemically-disordered face-centred-cubic, which is the phase typically chosen for information-storage devices. For the chemically-ordered L12 thin-film, we find the same triangular magnetic structure as reported for the bulk material. We determine the magnetic structure of the chemically-disordered face-centred-cubic alloy for the first time, which differs from theoretical predictions, with magnetic moments tilted away from the crystal diagonals towards the face-planes. We study the influence of these two antiferromagnetic structures on the exchange-bias properties of an epitaxial body-centred-cubic Fe layer showing that magnetization reversal mechanism and bias-field in the ferromagnetic layer is altered significantly. We report a change of reversal mechanism from in-plane nucleation of 90° domain-walls when coupled to the newly reported cubic structure towards a rotational process, including an out-of-plane magnetization component when coupled to the L12 triangular structure. PMID:23934541

  14. Perpendicular Exchange-Biased Magnetotransport at the Vertical Heterointerfaces in La(0.7)Sr(0.3)MnO3:NiO Nanocomposites.

    PubMed

    Zhang, Wenrui; Li, Leigang; Lu, Ping; Fan, Meng; Su, Qing; Khatkhatay, Fauzia; Chen, Aiping; Jia, Quanxi; Zhang, Xinghang; MacManus-Driscoll, Judith L; Wang, Haiyan

    2015-10-07

    Heterointerfaces in manganite-based heterostructures in either layered or vertical geometry control their magnetotransport properties. Instead of using spin-polarized tunneling across the interface, a unique approach based on the magnetic exchange coupling along the vertical interface to control the magnetotransport properties has been demonstrated. By coupling ferromagnetic La0.7Sr0.3MnO3 and antiferromagnetic NiO in an epitaxial vertically aligned nanocomposite (VAN) architecture, a dynamic and reversible switch of the resistivity between two distinct exchange biased states has been achieved. This study explores the use of vertical interfacial exchange coupling to tailor magnetotransport properties, and demonstrates their viability for spintronic applications.

  15. Exchange bias effect and glassy-like behavior of EuCrO{sub 3} and CeCrO{sub 3} nano-powders

    SciTech Connect

    Taheri, M. Razavi, F. S.; Kremer, R. K.; Trudel, S.

    2015-09-28

    The magnetic properties of nano-sized EuCrO{sub 3} and CeCrO{sub 3} powders, synthesized by a solution combustion method, were investigated using DC/AC magnetization measurements. An exchange bias effect, magnetization irreversibility and AC susceptibility dispersion in these samples provided evidence for the presence of the spin disorder magnetic phase. The exchange bias phenomenon, which is assigned to the exchange coupling between the glassy-like shell and canted antiferromagnetic core, showed the opposite sign in EuCrO{sub 3} and CeCrO{sub 3} at low temperatures, suggesting different exchange interactions at the interfaces in these compounds. We also observed a sign reversal of exchange bias in CeCrO{sub 3} at different temperatures.

  16. Defect-tuning exchange bias of ferromagnet/antiferromagnet core/shell nanoparticles by numerical study.

    PubMed

    Mao, Zhongquan; Zhan, Xiaozhi; Chen, Xi

    2012-07-11

    The influence of non-magnetic defects on the exchange bias (EB) of ferromagnet (FM)/antiferromagnet (AFM) core/shell nanoparticles is studied by Monte Carlo simulations. It is found that the EB can be tuned by defects in different positions. Defects at both the AFM and FM interfaces reduce the EB field while they enhance the coercive field by decreasing the effective interface coupling. However, the EB field and the coercive field show respectively a non-monotonic and a monotonic dependence on the defect concentration when the defects are located inside the AFM shell, indicating a similar microscopic mechanism to that proposed in the domain state model. These results suggest a way to optimize the EB effect for applications.

  17. Triggering of spin-flipping-modulated exchange bias in FeCo nanoparticles by electronic excitation

    PubMed Central

    Sarker, Debalaya; Bhattacharya, Saswata; Srivastava, Pankaj; Ghosh, Santanu

    2016-01-01

    The exchange coupling between ferromagnetic (FM)-antiferromagnetic (AF) interfaces is a key element of modern spintronic devices. We here introduce a new way of triggering exchange bias (EB) in swift heavy ion (SHI) irradiated FeCo-SiO2 films, which is a manifestation of spin-flipping at high irradiation fluence. The elongation of FeCo nanoparticles (NPs) in SiO2 matrix gives rise to perpendicular magnetic anisotropy at intermediate fluence. However, a clear shift in hysteresis loop is evident at the highest fluence. This reveals the existence of an AF exchange pinning domain in the NPs, which is identified not to be oxide shell from XANES analysis. Thermal spike calculations along with first-principles based simulations under the framework of density functional theory (DFT) demonstrate that spin flipping of 3d valence electrons is responsible for formation of these AF domains inside the FM NPs. EXAFS experiments at Fe and Co K-edges further unravel that spin-flipping in highest fluence irradiated film results in reduced bond lengths. The results highlight the possibility of miniaturization of magnetic storage devices by using irradiated NPs instead of conventionally used FM-AF multilayers. PMID:27991552

  18. Triggering of spin-flipping-modulated exchange bias in FeCo nanoparticles by electronic excitation

    NASA Astrophysics Data System (ADS)

    Sarker, Debalaya; Bhattacharya, Saswata; Srivastava, Pankaj; Ghosh, Santanu

    2016-12-01

    The exchange coupling between ferromagnetic (FM)-antiferromagnetic (AF) interfaces is a key element of modern spintronic devices. We here introduce a new way of triggering exchange bias (EB) in swift heavy ion (SHI) irradiated FeCo-SiO2 films, which is a manifestation of spin-flipping at high irradiation fluence. The elongation of FeCo nanoparticles (NPs) in SiO2 matrix gives rise to perpendicular magnetic anisotropy at intermediate fluence. However, a clear shift in hysteresis loop is evident at the highest fluence. This reveals the existence of an AF exchange pinning domain in the NPs, which is identified not to be oxide shell from XANES analysis. Thermal spike calculations along with first-principles based simulations under the framework of density functional theory (DFT) demonstrate that spin flipping of 3d valence electrons is responsible for formation of these AF domains inside the FM NPs. EXAFS experiments at Fe and Co K-edges further unravel that spin-flipping in highest fluence irradiated film results in reduced bond lengths. The results highlight the possibility of miniaturization of magnetic storage devices by using irradiated NPs instead of conventionally used FM-AF multilayers.

  19. Triggering of spin-flipping-modulated exchange bias in FeCo nanoparticles by electronic excitation.

    PubMed

    Sarker, Debalaya; Bhattacharya, Saswata; Srivastava, Pankaj; Ghosh, Santanu

    2016-12-19

    The exchange coupling between ferromagnetic (FM)-antiferromagnetic (AF) interfaces is a key element of modern spintronic devices. We here introduce a new way of triggering exchange bias (EB) in swift heavy ion (SHI) irradiated FeCo-SiO2 films, which is a manifestation of spin-flipping at high irradiation fluence. The elongation of FeCo nanoparticles (NPs) in SiO2 matrix gives rise to perpendicular magnetic anisotropy at intermediate fluence. However, a clear shift in hysteresis loop is evident at the highest fluence. This reveals the existence of an AF exchange pinning domain in the NPs, which is identified not to be oxide shell from XANES analysis. Thermal spike calculations along with first-principles based simulations under the framework of density functional theory (DFT) demonstrate that spin flipping of 3d valence electrons is responsible for formation of these AF domains inside the FM NPs. EXAFS experiments at Fe and Co K-edges further unravel that spin-flipping in highest fluence irradiated film results in reduced bond lengths. The results highlight the possibility of miniaturization of magnetic storage devices by using irradiated NPs instead of conventionally used FM-AF multilayers.

  20. Study of exchange bias in NiCr2O4 nanoparticles

    NASA Astrophysics Data System (ADS)

    Singh, H.; Chakraborty, T.; Srikanth, K.; Chandra, R.; Mitra, C.; Kumar, U.

    2014-09-01

    We investigated exchange bias as a function of temperature in nanoparticles of ferrimagnetic normal spinel NiCr2O4. The studied bulk compound exhibits ferrimagnetic and canted antiferromagnetic ordering at 68 K and 30 K respectively. Sample characterization was carried out using X-Ray, Field Emission Scanning Electron Microscope (FE-SEM) and Transmission Electron Microscope (TEM) measurements. Magnetization measurements as a function of temperature has revealed interesting features. Magnetic isotherms of bulk and nanoparticle sample were also investigated at different temperatures. It was found that in nanoparticles, with decrease in temperature, exchange bias first increases, attains maximum value and then subsequently decreases. We argue that in nanoparticles, the higher exchange bias at 68 K is because of coexistence of ferrimagnetic and surface spin effect. However, the presence of glassy spin state may be the reason for decreasing exchange bias effect below Tc down to 5 K.

  1. Exchange Bias Realignment Using a Laser-based Direct-write Technique

    NASA Astrophysics Data System (ADS)

    Berthold, I.; Löschner, U.; Schille, J.; Ebert, R.; Exner, H.

    We report on selective realignment of the exchange biased magnetization direction in spintronic layer stacks using rapidly deflected focused laser radiation in a direct-write technique. Laser-based magnetic field cooling by applying either pulsed or continuous wave laser radiation was investigated. The magnetic properties of laser-based field cooled layer stacks were investigated by using magneto optical Kerr effect (MOKE) measurements. The dependencies of the processing parameters peak intensity and external magnetic field strength on the resulting exchange bias field strength were evaluated. In addition, temperature field simulations gain deeper insights into the mechanisms of laser-based field cooling. Our results show significant influence of the laser processing regime. Field cooling induced by continuous laser radiation caused higher exchange bias field strengths, compared to pulsed laser radiation. Moreover, the external magnetic field strength affected the resulting exchange bias field strength only by irradiating low-intensity laser beams.

  2. Voltage Control of Exchange Bias in a Chromium Oxide Based Thin Film Heterostructure

    NASA Astrophysics Data System (ADS)

    Echtenkamp, Will; Street, Mike; Mahmood, Ather; Binek, Christian

    Controlling magnetism by electrical means is a key challenge in the field of spintronics, and electric control of exchange bias is one of the most promising routes to address this challenge. Isothermal electric control of exchange bias has been achieved near room temperature using bulk, single crystal, magnetoelectric Cr2O3. In this study the electrically-controlled exchange bias is investigated in an all thin film Cr2O3/PdCo exchange bias heterosystem where an MBE grown ferromagnetic and perpendicular anisotropic Pd/Co multilayer has been deposited on a PLD grown (0001) Cr2O3 thin film. Prototype devices are fabricated using lithography techniques. Using a process of magnetoelectric annealing, voltage control of exchange bias in Cr2O3 heterostructures is demonstrated with significant implications for scalability of ultra-low power memory and logical devices. In addition, the dependence of the exchange bias on the applied electric and magnetic fields are independently studied at 300K and isothermal voltage-controlled switching is investigated. This project was supported by SRC through CNFD, an SRC-NRI Center, by C-SPIN, part of STARnet, and by the NSF through MRSEC DMR-0820521.

  3. Compensation temperatures and exchange bias in La1.5Ca0.5CoIrO6

    NASA Astrophysics Data System (ADS)

    Coutrim, L. T.; Bittar, E. M.; Stavale, F.; Garcia, F.; Baggio-Saitovitch, E.; Abbate, M.; Mossanek, R. J. O.; Martins, H. P.; Tobia, D.; Pagliuso, P. G.; Bufaiçal, L.

    2016-05-01

    We report on the study of magnetic properties of the La1.5Ca0.5CoIrO6 double perovskite. Via ac magnetic susceptibility we have observed evidence of weak ferromagnetism and reentrant spin glass behavior on an antiferromagnetic matrix. Regarding the magnetic behavior as a function of temperature, we have found that the material displays up to three inversions of its magnetization, depending on the appropriate choice of the applied magnetic field. At low temperature, the material exhibits exchange bias effect when it is cooled in the presence of a magnetic field. Also, our results indicate that this effect may be observed even when the system is cooled at zero field. Supported by other measurements and also by electronic structure calculations, we discuss the magnetic reversals and spontaneous exchange bias effect in terms of magnetic phase separation and magnetic frustration of Ir4 + ions located between the antiferromagnetically coupled Co ions.

  4. Information filtering via biased random walk on coupled social network.

    PubMed

    Nie, Da-Cheng; Zhang, Zi-Ke; Dong, Qiang; Sun, Chongjing; Fu, Yan

    2014-01-01

    The recommender systems have advanced a great deal in the past two decades. However, most researchers focus their attentions on mining the similarities among users or objects in recommender systems and overlook the social influence which plays an important role in users' purchase process. In this paper, we design a biased random walk algorithm on coupled social networks which gives recommendation results based on both social interests and users' preference. Numerical analyses on two real data sets, Epinions and Friendfeed, demonstrate the improvement of recommendation performance by taking social interests into account, and experimental results show that our algorithm can alleviate the user cold-start problem more effectively compared with the mass diffusion and user-based collaborative filtering methods.

  5. Biased imitation in coupled evolutionary games in interdependent networks

    PubMed Central

    Santos, M. D.; Dorogovtsev, S. N.; Mendes, J. F. F.

    2014-01-01

    We explore the evolutionary dynamics of two games—the Prisoner's Dilemma and the Snowdrift Game—played within distinct networks (layers) of interdependent networks. In these networks imitation and interaction between individuals of opposite layers is established through interlinks. We explore an update rule in which revision of strategies is a biased imitation process: individuals imitate neighbors from the same layer with probability p, and neighbors from the second layer with complementary probability 1 − p. We demonstrate that a small decrease of p from p = 1 (which corresponds to forbidding strategy transfer between layers) is sufficient to promote cooperation in the Prisoner's Dilemma subpopulation. This, on the other hand, is detrimental for cooperation in the Snowdrift Game subpopulation. We provide results of extensive computer simulations for the case in which layers are modelled as regular random networks, and support this study with analytical results for coupled well-mixed populations. PMID:24658580

  6. Origin of the asymmetric magnetization reversal behavior in exchange-biased systems: competing anisotropies.

    PubMed

    Camarero, Julio; Sort, Jordi; Hoffmann, Axel; García-Martín, Jose Miguel; Dieny, Bernard; Miranda, Rodolfo; Nogués, Josep

    2005-07-29

    The magnetization reversal in exchange-biased ferromagnetic-antiferromagnetic (FM-AFM) bilayers is investigated. Different reversal pathways on each branch of the hysteresis loop, i.e., asymmetry, are obtained both experimentally and theoretically when the magnetic field is applied at certain angles from the anisotropy direction. The range of angles and the magnitude of this asymmetry are determined by the ratio between the FM anisotropy and the interfacial FM-AFM exchange anisotropy. The occurrence of asymmetry is linked with the appearance of irreversibility, i.e., finite coercivity, as well as with the maximum of exchange bias, increasing for larger anisotropy ratios. Our results indicate that asymmetric hysteresis loops are intrinsic to exchange-biased systems and the competition between anisotropies determines the asymmetric behavior of the magnetization reversal.

  7. Strain engineering induced interfacial self-assembly and intrinsic exchange bias in a manganite perovskite film.

    PubMed

    Cui, B; Song, C; Wang, G Y; Mao, H J; Zeng, F; Pan, F

    2013-01-01

    The control of complex oxide heterostructures at atomic level generates a rich spectrum of exotic properties and unexpected states at the interface between two separately prepared materials. The frustration of magnetization and conductivity of manganite perovskite at surface/interface which is inimical to their device applications, could also flourish in tailored functionalities in return. Here we prove that the exchange bias (EB) effect can unexpectedly emerge in a (La,Sr)MnO3 (LSMO) "single" film when large compressive stress imposed through a lattice mismatched substrate. The intrinsic EB behavior is directly demonstrated to be originating from the exchange coupling between ferromagnetic LSMO and an unprecedented LaSrMnO4-based spin glass, formed under a large interfacial strain and subsequent self-assembly. The present results not only provide a strategy for producing a new class of delicately functional interface by strain engineering, but also shed promising light on fabricating the EB part of spintronic devices in a single step.

  8. Origin of spontaneous exchange bias in Co/NiMn bilayer structure

    NASA Astrophysics Data System (ADS)

    Akbulut, A.; Akbulut, S.; Yildiz, F.

    2016-11-01

    Spontaneous exchange bias (EB) is reported for as deposited Si/Pt(tPt)/Ni45Mn55(tAFM/Co(tFM)/Pt(30 Å) thin film system without requiring any post annealing, deposition with field or field cooling procedures. Magnetic properties of this system were investigated with respect to thicknesses of buffer Pt layer (tPt), antiferromagnetic NiMn layer (tAFM) and ferromagnetic Co layer (tFM). Exchange coupling between NiMn and Co layers enhanced considerably by increasing tPt. In order to observe a spontaneous EB in the system, Pt buffer layer must be thicker than a certain thickness, and NiMn layer must be grown directly on the buffer layer. On the other hand, significant increments in the coercive fields (HC) were reported for thinner Pt buffer layers. The thickness ranges for Co and NiMn layers were also determined to obtain spontaneous EB. This spontaneous EB is discussed to be a result of NiMn (111) texture which is induced by Pt buffer layer. Greater EB fields (HEB) are measured for the samples in the negative field direction by the effect of annealing and field cooling (from 400 K to 300 K at 2 kOe).

  9. Eliminating leakage current in voltage-controlled exchange-bias devices

    NASA Astrophysics Data System (ADS)

    Mahmood, Ather; Echtenkamp, Will; Street, Michael; Binek, Christian; Magnetic Heterostructures Team

    Manipulation of magnetism by electric field has drawn much attention due to the technological importance for low-power devices, and for understanding fundamental magnetoelectric phenomena. A manifestation of electrically controlled magnetism is voltage control of exchange bias (EB). Robust isothermal voltage control of EB was demonstrated near room temperature using a heterostructure of Co/Pd thin film and an exchange coupled single crystal of the antiferromagnetic Cr2O3 (Chromia). A major obstacle for EB in lithographically patterned Chromia based thin-film devices is to minimize the leakage currents at high electric fields (>10 kV/mm). By combining electrical measurements on patterned devices and conductive Atomic Force Microscopy of Chromia thin-films, we investigate the defects which form conducting paths impeding the application of sufficient voltage for demonstrating the isothermal EB switching in thin film heterostructures. Technological challenges in the device fabrication will be discussed. This project was supported by SRC through CNFD, an SRC-NRI Center, by C-SPIN, part of STARnet, and by the NSF through MRSEC Abstract DMR-0820521.

  10. Tuning structure and roughness in exchange biased NiO/permalloy bilayers

    NASA Astrophysics Data System (ADS)

    Thomas, Luc; Negulescu, Béatrice; Dumont, Yves; Tessier, Michel; Keller, Niels; Wack, André; Guyot, Marcel

    2003-05-01

    Polycrystalline NiO thin films have been grown by pulsed laser deposition on quartz substrates. These films exhibit a strong texture, which can be tuned by changing deposition parameters such as substrate temperature or oxygen partial pressure. By varying the deposition temperature from room temperature up to 900 °C, (220), (111), and (200) textured films are prepared. In the temperature zones separating these orientations, competition between different growth directions leads to smaller crystallites, characterized by broader diffraction lines. Surface roughness measured by atomic force microscopy is strongly correlated with these structural features. Roughness is minimum for highly textured samples (about 7Å for 500 Å thick films), and it exhibits two peaks in the intermediate zones, with maximum values of about 40 Å. In order to correlate exchange bias with these structural features, 100 Å thick FeNi layers were deposited by rf sputtering on top of the 500 Å thick NiO films. Hysteresis loops were measured at 10 K by superconducting quantum interference device magnetometry after the samples were cooled in a 100 Oe magnetic field. Exchange bias is maximum for (111) oriented samples. No clear correlation between exchange bias and surface roughness is observed at low temperature. Exchange bias temperature dependence strongly depends upon NiO films deposition temperature. The blocking temperature, for which the exchange bias vanishes, varies between 150 K for (220) oriented samples and 250 K for (111) textured samples, and it exceeds room temperature for (200) films.

  11. Sources of tropical Atlantic coupled model biases derived from initialised hindcasts and partially coupled sensitivity experiments

    NASA Astrophysics Data System (ADS)

    Deppenmeier, Anna-Lena; Hazeleger, Wilco; Haarsma, Rein; Prodhomme, Chloé; Exarchou, Eleftheria; Doblas-Reyes, Francisco J.

    2016-04-01

    State-of-the-art coupled general circulation models (CGCMs) still fail to simulate the mean state and variability of the tropical Atlantic (TA) climate correctly. We investigate the importance of air-sea interaction at different regions in the TA by means of performing partially coupled sensitivity experiments with the state-of-the-art CGCM EC-Earth3.1. All simulations are intialised from the observed climate state. By studying the initial drift in sensitivity experiments we obtain insight into the tropical dynamics and sources of model bias. We test the influence of realistic wind stress forcing over different regions of the TA on the development of SST as well as other oceanic biases. A series of hindcasts fully initialised in May and run until the end of August are performed with prescribed ERA-Interim zonal and meridional wind stresses over three different regions: firstly, we force the entire TA from 15N - 30S. Secondly, we force the equatorial band only between 5N - 5S, and finally we force the coastal area of the Angola Benguela upwelling region between 0W and the coast and between 5S - 30N. Our setup only affects the oceanic forcing and leaves the atmosphere free to adapt, such that we can identify the air-sea interaction processes in the different regions and their effect on the SST bias in the fully coupled system. The differences between forcing the entire TA and the equatorial region only are very small, which hints to the great importance of the relatively narrow equatorial region. The coastal upwelling area does not strongly affect the equatorial region in our model. We identify the equatorial band as most susceptible to errors in the wind stress forcing and, due to the strong atmosphere-ocean coupling, as source of the main biases in our model. The partially coupled experiments with initialised seasonal hindcasts appear to be a powerful tool to identify the sources of model biases and to identify relevant air-sea interaction processes in the TA.

  12. Wealth concentration in a biased asset-exchange model

    NASA Astrophysics Data System (ADS)

    Devitt-Lee, Adrian

    Economic inequality is a significant and dynamic problem throughout the world. Asset-exchange models have been used to model macroeconomic systems based on microeconomic assumptions about how agents exchange wealth in an economy. Previous studies of a certain asset-exchange model, called the Yard-Sale model, have found that trade alone promotes the condensation of wealth to a single individual in an economy [Chakraborti, 2002, Moukarzel et al., 2007, Boghosian, 2014b]. A later study found that a slight modification of the Yard-Sale model seems to allow for the coexistence of both "condensed wealth" and a normal population in an economy [Boghosian et al., 2016a]. This work formalizes the notion of wealth condensation in a macroeconomic system. This can be done by extending Schwartz's theory of distributions to allow for objects which increase at most linearly at infinity, or by considering condensed wealth to be a nonstandard phenomenon, and describing it as such. Numerical simulations indicate that this continuous description of wealth concentration is a valid approximation of wealth concentration in discrete systems with as few as 256 agents. We then study the properties of the steady-state distribution of wealth in such a system, and mention the fit of our system to the distribution of wealth in the United States in 2016.

  13. Mapping motion of antiferromagnetic interfacial uncompensated magnetic moment in exchange-biased bilayers

    NASA Astrophysics Data System (ADS)

    Zhou, X.; Ma, L.; Shi, Z.; Fan, W. J.; Evans, R. F. L.; Zheng, Jian-Guo; Chantrell, R. W.; Mangin, S.; Zhang, H. W.; Zhou, S. M.

    2015-03-01

    In this work, disordered-IrMn3/insulating-Y3Fe5O12 exchange-biased bilayers are studied. The behavior of the net magnetic moment ΔmAFM in the antiferromagnet is directly probed by anomalous and planar Hall effects, and anisotropic magnetoresistance. The ΔmAFM is proved to come from the interfacial uncompensated magnetic moment. We demonstrate that the exchange bias and rotational hysteresis loss are induced by partial rotation and irreversible switching of the ΔmAFM. In the athermal training effect, the state of the ΔmAFM cannot be recovered after one cycle of hysteresis loop. This work highlights the fundamental role of the ΔmAFM in the exchange bias and facilitates the manipulation of antiferromagnetic spintronic devices.

  14. Antisite disorder-induced exchange bias effect in multiferroic Y2CoMnO6

    NASA Astrophysics Data System (ADS)

    Nair, Harikrishnan S.; Chatterji, Tapan; Strydom, André M.

    2015-01-01

    Exchange bias effect in the ferromagnetic double perovskite compound Y2CoMnO6, which is also a multiferroic, is reported. The exchange bias, observed below 8 K, is explained as arising due to the interface effect between the ferromagnetic and antiferromagnetic clusters created by antisite disorder in this material. Below 8 K, prominent ferromagnetic hysteresis with metamagnetic "steps" and significant coercive field, Hc ≈ 10 kOe are observed in this compound which has a Tc ≈ 75 K. A model based on growth of ferromagnetic domains overcoming the elastic energy of structurally pinned magnetic interfaces, which closely resembles martensitic-like transitions, is adapted to explain the observed effects. The role of antisite disorder in creating the domain structure leading to exchange bias effect is highlighted in the present work.

  15. Mapping motion of antiferromagnetic interfacial uncompensated magnetic moment in exchange-biased bilayers

    PubMed Central

    Zhou, X.; Ma, L.; Shi, Z.; Fan, W. J.; Evans, R. F. L.; Zheng, Jian-Guo; Chantrell, R. W.; Mangin, S.; Zhang, H. W.; Zhou, S. M.

    2015-01-01

    In this work, disordered-IrMn3/insulating-Y3Fe5O12 exchange-biased bilayers are studied. The behavior of the net magnetic moment ΔmAFM in the antiferromagnet is directly probed by anomalous and planar Hall effects, and anisotropic magnetoresistance. The ΔmAFM is proved to come from the interfacial uncompensated magnetic moment. We demonstrate that the exchange bias and rotational hysteresis loss are induced by partial rotation and irreversible switching of the ΔmAFM. In the athermal training effect, the state of the ΔmAFM cannot be recovered after one cycle of hysteresis loop. This work highlights the fundamental role of the ΔmAFM in the exchange bias and facilitates the manipulation of antiferromagnetic spintronic devices. PMID:25777540

  16. Exchange bias induced at a Co2FeAl0.5Si0.5/Cr interface

    NASA Astrophysics Data System (ADS)

    Yu, C. N. T.; Vick, A. J.; Inami, N.; Ono, K.; Frost, W.; Hirohata, A.

    2017-03-01

    In order to engineer the strength of an exchange bias in a cubic Heusler alloy layer, crystalline strain has been induced at a ferromagnet/antiferromagnet interface by their lattice mismatch in addition to the conventional interfacial exchange coupling between them. Such interfaces have been formed in (Co2FeAl0.5Si0.5(CFAS)/Cr)3 structures grown by ultrahigh vacuum molecular beam epitaxy. The magnetic and structural properties have been characterised to investigate the exchange interactions at the CFAS/Cr interfaces. Due to the interfacial lattice mismatch of 1.4%, the maximum offset of 18 Oe in a magnetisation curve has been measured for the case of a CFAS (2 nm)/Cr (0.9 nm) interface at 193 K. The half-metallic property of CFAS has been observed to remain unchanged, which agrees with the theoretical prediction by Culbert et al (2008 J. Appl. Phys. 103 07D707). Such a strain-induced exchange bias may provide insight of the interfacial interactions and may offer a wide flexibility in spintronic device design.

  17. Exchange Bias Optimization by Controlled Oxidation of Cobalt Nanoparticle Films Prepared by Sputter Gas Aggregation.

    PubMed

    Antón, Ricardo López; González, Juan A; Andrés, Juan P; Normile, Peter S; Canales-Vázquez, Jesús; Muñiz, Pablo; Riveiro, José M; De Toro, José A

    2017-03-11

    Porous films of cobalt nanoparticles have been obtained by sputter gas aggregation and controllably oxidized by air annealing at 100 °C for progressively longer times (up to more than 1400 h). The magnetic properties of the samples were monitored during the process, with a focus on the exchange bias field. Air annealing proves to be a convenient way to control the Co/CoO ratio in the samples, allowing the optimization of the exchange bias field to a value above 6 kOe at 5 K. The occurrence of the maximum in the exchange bias field is understood in terms of the density of CoO uncompensated spins and their degree of pinning, with the former reducing and the latter increasing upon the growth of a progressively thicker CoO shell. Vertical shifts exhibited in the magnetization loops are found to correlate qualitatively with the peak in the exchange bias field, while an increase in vertical shift observed for longer oxidation times may be explained by a growing fraction of almost completely oxidized particles. The presence of a hummingbird-like form in magnetization loops can be understood in terms of a combination of hard (biased) and soft (unbiased) components; however, the precise origin of the soft phase is as yet unresolved.

  18. Exchange Bias Optimization by Controlled Oxidation of Cobalt Nanoparticle Films Prepared by Sputter Gas Aggregation

    PubMed Central

    Antón, Ricardo López; González, Juan A.; Andrés, Juan P.; Normile, Peter S.; Canales-Vázquez, Jesús; Muñiz, Pablo; Riveiro, José M.; De Toro, José A.

    2017-01-01

    Porous films of cobalt nanoparticles have been obtained by sputter gas aggregation and controllably oxidized by air annealing at 100 °C for progressively longer times (up to more than 1400 h). The magnetic properties of the samples were monitored during the process, with a focus on the exchange bias field. Air annealing proves to be a convenient way to control the Co/CoO ratio in the samples, allowing the optimization of the exchange bias field to a value above 6 kOe at 5 K. The occurrence of the maximum in the exchange bias field is understood in terms of the density of CoO uncompensated spins and their degree of pinning, with the former reducing and the latter increasing upon the growth of a progressively thicker CoO shell. Vertical shifts exhibited in the magnetization loops are found to correlate qualitatively with the peak in the exchange bias field, while an increase in vertical shift observed for longer oxidation times may be explained by a growing fraction of almost completely oxidized particles. The presence of a hummingbird-like form in magnetization loops can be understood in terms of a combination of hard (biased) and soft (unbiased) components; however, the precise origin of the soft phase is as yet unresolved. PMID:28336895

  19. Orbital Reconstruction Enhanced Exchange Bias in La0.6Sr0.4MnO3/Orthorhombic YMnO3 Heterostructures

    PubMed Central

    Zheng, Dongxing; Jin, Chao; Li, Peng; Wang, Liyan; Feng, Liefeng; Mi, Wenbo; Bai, Haili

    2016-01-01

    The exchange bias in ferromagnetic/multiferroic heterostructures is usually considered to originate from interfacial coupling. In this work, an orbital reconstruction enhanced exchange bias was discovered. As La0.6Sr0.4MnO3 (LSMO) grown on YMnO3 (YMO) suffers a tensile strain (a > c), the doubly degenerate eg orbital splits into high energy 3z2 − r2 and low energy x2 − y2 orbitals, which makes electrons occupy the localized x2 − y2 orbital and leads to the formation of antiferromagnetic phase in LSMO. The orbital reconstruction induced antiferromagnetic phase enhances the exchange bias in the LSMO/YMO heterostructures, lightening an effective way for electric-field modulated magnetic moments in multiferroic magnetoelectric devices. PMID:27090614

  20. Exchange bias of the interface spin system at the Fe/MgO interface.

    PubMed

    Fan, Y; Smith, K J; Lüpke, G; Hanbicki, A T; Goswami, R; Li, C H; Zhao, H B; Jonker, B T

    2013-06-01

    The ferromagnet/oxide interface is key to developing emerging multiferroic and spintronic technologies with new functionality. Here we probe the Fe/MgO interface magnetization, and identify a new exchange bias phenomenon manifested only in the interface spin system, and not in the bulk. The interface magnetization exhibits a pronounced exchange bias, and the hysteresis loop is shifted entirely to one side of the zero field axis. However, the bulk magnetization does not, in marked contrast to typical systems where exchange bias is manifested in the net magnetization. This reveals the existence of an antiferromagnetic exchange pinning layer at the interface, identified here as FeO patches that exist even for a nominally 'clean' interface. These results demonstrate that atomic moments at the interface are non-collinear with the bulk magnetization, and therefore may affect the net anisotropy or serve as spin scattering sites. We control the exchange bias magnitude by varying the interface oxygen concentration and Fe-O bonding.

  1. Exchange bias and bistable magneto-resistance states in amorphous TbFeCo thin films

    NASA Astrophysics Data System (ADS)

    Li, Xiaopu; Ma, Chung T.; Lu, Jiwei; Devaraj, Arun; Spurgeon, Steven R.; Comes, Ryan B.; Poon, S. Joseph

    2016-01-01

    Amorphous TbFeCo thin films sputter deposited at room temperature on thermally oxidized Si substrate are found to exhibit strong perpendicular magnetic anisotropy. Atom probe tomography, scanning transmission electron microscopy, and energy dispersive X-ray spectroscopy mapping have revealed two nanoscale amorphous phases with different Tb atomic percentages distributed within the amorphous film. Exchange bias accompanied by bistable magneto-resistance states has been uncovered near room temperature by magnetization and magneto-transport measurements. The exchange anisotropy originates from the exchange interaction between the ferrimagnetic and ferromagnetic components corresponding to the two amorphous phases. This study provides a platform for exchange bias and magneto-resistance switching using single-layer amorphous ferrimagnetic thin films that require no epitaxial growth.

  2. Exchange bias and bistable magneto-resistance states in amorphous TbFeCo thin films

    SciTech Connect

    Li, Xiaopu Ma, Chung T.; Poon, S. Joseph; Lu, Jiwei; Devaraj, Arun; Spurgeon, Steven R.; Comes, Ryan B.

    2016-01-04

    Amorphous TbFeCo thin films sputter deposited at room temperature on thermally oxidized Si substrate are found to exhibit strong perpendicular magnetic anisotropy. Atom probe tomography, scanning transmission electron microscopy, and energy dispersive X-ray spectroscopy mapping have revealed two nanoscale amorphous phases with different Tb atomic percentages distributed within the amorphous film. Exchange bias accompanied by bistable magneto-resistance states has been uncovered near room temperature by magnetization and magneto-transport measurements. The exchange anisotropy originates from the exchange interaction between the ferrimagnetic and ferromagnetic components corresponding to the two amorphous phases. This study provides a platform for exchange bias and magneto-resistance switching using single-layer amorphous ferrimagnetic thin films that require no epitaxial growth.

  3. Electric field induced reversible 180° magnetization switching through tuning of interfacial exchange bias along magnetic easy-axis in multiferroic laminates

    DOE PAGES

    Xue, Xu; Zhou, Ziyao; Peng, Bin; ...

    2015-11-18

    E-field control of interfacial exchange coupling and deterministic switching of magnetization have been demonstrated in two sets of ferromagnetic(FM)/antiferromagnetic(AFM)/ferroelectric(FE) multiferroic heterostructures, including NiFe/NiCoO/glass/PZN-PT (011) and NiFe/FeMn/glass/PZN-PT (011). We designed this experiment to achieve exchange bias tuning along the magnetic easy axis, which is critical for realizing reversible 180° magnetization deterministic switching at zero or small magnetic bias. Strong exchange coupling were established across AFM-FM interfaces, which plays an important role in voltage control of magnetization switching. Through the competition between the E-field induced uniaxial anisotropy in ferromagnetic layer and unidirectional anisotropy in antiferromagnetic layer, the exchange bias was significantly shiftedmore » by up to |ΔHex|/Hex=8% in NiFe/FeMn/glass/PZN-PT (011) and 13% in NiFe/NiCoO/glass/PZN-PT (011). In addition, the square shape of the hysteresis loop, as well as a strong shape tunability of |ΔHex|/Hc=67.5~125% in NiFe/FeMn/glass/PZN-PT and 30~38% in NiFe/NiCoO/glass/PZN-PT were achieved, which lead to a near 180° magnetization switching. Lastly, electrical tuning of interfacial exchange coupling in FM/AFM/FE systems paves a new way for realizing magnetoelectric random access memories and other memory technologies.« less

  4. Electric field induced reversible 180° magnetization switching through tuning of interfacial exchange bias along magnetic easy-axis in multiferroic laminates.

    PubMed

    Xue, Xu; Zhou, Ziyao; Peng, Bin; Zhu, Mingmin; Zhang, Yijun; Ren, Wei; Ren, Tao; Yang, Xi; Nan, Tianxiang; Sun, Nian X; Liu, Ming

    2015-11-18

    E-field control of interfacial exchange coupling and deterministic switching of magnetization have been demonstrated in two sets of ferromagnetic(FM)/antiferromagnetic(AFM)/ferroelectric(FE) multiferroic heterostructures, including NiFe/NiCoO/glass/PZN-PT (011) and NiFe/FeMn/glass/PZN-PT (011). We designed this experiment to achieve exchange bias tuning along the magnetic easy axis, which is critical for realizing reversible 180° magnetization deterministic switching at zero or small magnetic bias. Strong exchange coupling were established across AFM-FM interfaces, which plays an important role in voltage control of magnetization switching. Through the competition between the E-field induced uniaxial anisotropy in ferromagnetic layer and unidirectional anisotropy in antiferromagnetic layer, the exchange bias was significantly shifted by up to |∆Hex|/Hex = 8% in NiFe/FeMn/glass/PZN-PT (011) and 13% in NiFe/NiCoO/glass/PZN-PT (011). In addition, the square shape of the hysteresis loop, as well as a strong shape tunability of |∆Hex|/Hc = 67.5 ~ 125% in NiFe/FeMn/glass/PZN-PT and 30 ~ 38% in NiFe/NiCoO/glass/PZN-PT were achieved, which lead to a near 180° magnetization switching. Electrical tuning of interfacial exchange coupling in FM/AFM/FE systems paves a new way for realizing magnetoelectric random access memories and other memory technologies.

  5. Electric field induced reversible 180° magnetization switching through tuning of interfacial exchange bias along magnetic easy-axis in multiferroic laminates

    PubMed Central

    Xue, Xu; Zhou, Ziyao; Peng, Bin; Zhu, Mingmin; Zhang, Yijun; Ren, Wei; Ren, Tao; Yang, Xi; Nan, Tianxiang; Sun, Nian X.; Liu, Ming

    2015-01-01

    E-field control of interfacial exchange coupling and deterministic switching of magnetization have been demonstrated in two sets of ferromagnetic(FM)/antiferromagnetic(AFM)/ferroelectric(FE) multiferroic heterostructures, including NiFe/NiCoO/glass/PZN-PT (011) and NiFe/FeMn/glass/PZN-PT (011). We designed this experiment to achieve exchange bias tuning along the magnetic easy axis, which is critical for realizing reversible 180° magnetization deterministic switching at zero or small magnetic bias. Strong exchange coupling were established across AFM-FM interfaces, which plays an important role in voltage control of magnetization switching. Through the competition between the E-field induced uniaxial anisotropy in ferromagnetic layer and unidirectional anisotropy in antiferromagnetic layer, the exchange bias was significantly shifted by up to |∆Hex|/Hex = 8% in NiFe/FeMn/glass/PZN-PT (011) and 13% in NiFe/NiCoO/glass/PZN-PT (011). In addition, the square shape of the hysteresis loop, as well as a strong shape tunability of |∆Hex|/Hc = 67.5 ~ 125% in NiFe/FeMn/glass/PZN-PT and 30 ~ 38% in NiFe/NiCoO/glass/PZN-PT were achieved, which lead to a near 180° magnetization switching. Electrical tuning of interfacial exchange coupling in FM/AFM/FE systems paves a new way for realizing magnetoelectric random access memories and other memory technologies. PMID:26576658

  6. Epitaxial exchange-bias systems: From fundamentals to future spin-orbitronics

    SciTech Connect

    Zhang, Wei; Krishnan, Kannan M.

    2016-07-01

    Exchange bias has been investigated for more than half a century and several insightful reviews, published around the year 2000, have already summarized many key experimental and theoretical aspects related to this phenomenon. Since then, due to developments in thin-film fabrication and sophisticated characterization methods, exchange bias continues to show substantial advances; in particular, recent studies on epitaxial systems, which is the focus of this review, allow many long-standing mysteries of exchange bias to be unambiguously resolved. The advantage of epitaxial samples lies in the well-defined interface structures, larger coherence lengths, and competing magnetic anisotropies, which are often negligible in polycrystalline samples. Beginning with a discussion of the microscopic spin properties at the ferromagnetic/antiferromagnetic interface, we correlate the details of spin lattices with phenomenological anisotropies, and finally connect the two by introducing realistic measurement approaches and models. We conclude by providing a brief perspective on the future of exchange bias and related studies in the context of the rapidly evolving interest in antiferromagnetic spintronics.

  7. Size-dependent exchange bias in single phase Mn3O4 nanoparticles

    NASA Astrophysics Data System (ADS)

    Wang, Song-Wei; Zhang, Xin; Yao, Rong; Rao, Guang-Hui

    2016-11-01

    Glassy magnetic behavior and exchange bias phenomena are observed in single phase Mn3O4 nanoparticles. Dynamics scaling analysis of the ac susceptibility and the Henkel plot indicate that the observed glassy behavior at low temperature can be understood by taking into account the intrinsic behavior of the individual particles consisting of a ferrimagnetic (FIM) core and a spin-glass surface layer. Field-cooled magnetization hysteresis loops display both horizontal and vertical shifts. Dependence of the exchange bias field (H E) on the cooling field shows an almost undamped feature up to 70 kOe, indicating the stable exchange bias state in Mn3O4. H E increases as the particle size decreases due to the higher surface/volume ratio. The occurrence of the exchange bias can be attributed to the pinning effect of the frozen spin-glass surface layer upon the FIM core. Project supported by the National Natural Science Foundation of China (Grant No. 11464007), the Natural Science Foundation of Guangxi, China (Grant Nos. 2012GXNSFGA060002 and 2014GXNSFBA118241), the Guangxi Key Laboratory of Information Material Foundation, China (Grant No. 131021-Z), and the Guangxi Department of Education Foundation, China (Grant Nos. YB2014120 and KY2015YB104).

  8. Field dependence of switching currents in an exchange biased spin valve.

    PubMed

    Nguyen, Hoang Yen Thi; Joo, Sung-Jung; Jung, Kuyoul; Shin, Kyung-Ho

    2007-01-01

    Current induced magnetic reversal due to spin transfer torque is a promising candidate in advanced information storage technology. It has been intensively studied. This work reports the field-dependence of switching-currents for current induced magnetization switching in a uncoupled nano-sized cobalt-based spin valve of exchange biased type. The dependency is investigated in hysteretic regime at room temperature, in comparison with that of a trilayer simple spin valve. In the simple spin valve, the switching currents behave to the positive and the negative applied magnetic field symmetrically. In the exchange biased type, in contrast, the switching currents respond to the negative field in a quite unusual and different manner than to the positive field. A negative magnetic field then can shift the switching-currents into either negative or positive current range, dependently on whether a parallel or an antiparallel state of the spin valve was produced by that field. This different character of switching currents in the negative field range can be explained by the effect of the exchange bias pinning field on the spin-polarizer (the fixed Co layer) of the exchange biased spin valve. That unidirectional pinning filed could suppress the thermal magnetization fluctuation in the spin-polarizer, leading to a higher spin polarization of the current, and hence a lower switching current density than in the simple spin valve.

  9. Enhancing the blocking temperature of perpendicular-exchange biased Cr2O3 thin films using buffer layers

    NASA Astrophysics Data System (ADS)

    Shimomura, Naoki; Pati, Satya Prakash; Nozaki, Tomohiro; Shibata, Tatsuo; Sahashi, Masashi

    2017-02-01

    In this study, we investigated the effect of buffer layers on the blocking temperature (TB) of perpendicular exchange bias of thin Cr2O3/Co exchange coupled films with a Ru spacer and revealed a high TB of 260 K for 20-nm-thick Cr2O3 thin films. By comparing the TB values of the 20-nm-thick Cr2O3 films on Pt and α-Fe2O3 buffers, we investigated the lattice strain effect on the TB. We show that higher TB values can be obtained using an α-Fe2O3 buffer, which is likely because of the lattice strain-induced increase in Cr2O3 magnetocrystalline anisotropy.

  10. Defect-induced magnon scattering mechanisms in exchange-coupled bilayers

    NASA Astrophysics Data System (ADS)

    Gallardo, R. A.; Rodríguez-Suárez, R. L.; Landeros, P.

    2016-12-01

    The influence of two-magnon scattering mechanisms, which may be activated by different sorts of defects, is theoretically studied in ferromagnetic/antiferromagnetic exchange-biased bilayers. The spin-wave based model considers the influence of geometrical defects in the ferromagnetic (FM) layer as well as small domains in the antiferromagnetic (AFM) sub-lattice of the FM/AFM interface in such a way that both kinds of defects are randomly distributed over their respective surfaces. The in-plane angular dependence of the ferromagnetic resonance (FMR) linewidth allows detection of the relevant influence of such defects in the relaxation mechanisms, where the role of the exchange-bias field is clearly identified. Typical experimental findings, such as quadratic dependence of the linewidth with the exchange-bias field and the in-plane angular dependence, are well explained within the proposed model. This lends confidence in the model's utility and leads to a better understanding of the role of the magnon-magnon scattering in the magnetization dynamics of exchange-coupled antiferromagnetic/ferromagnetic bilayers.

  11. Design of compensated ferrimagnetic Heusler alloys for giant tunable exchange bias

    NASA Astrophysics Data System (ADS)

    Nayak, Ajaya K.; Nicklas, Michael; Chadov, Stanislav; Khuntia, Panchanana; Shekhar, Chandra; Kalache, Adel; Baenitz, Michael; Skourski, Yurii; Guduru, Veerendra K.; Puri, Alessandro; Zeitler, Uli; Coey, J. M. D.; Felser, Claudia

    2015-07-01

    Rational material design can accelerate the discovery of materials with improved functionalities. This approach can be implemented in Heusler compounds with tunable magnetic sublattices to demonstrate unprecedented magnetic properties. Here, we have designed a family of Heusler alloys with a compensated ferrimagnetic state. In the vicinity of the compensation composition in Mn-Pt-Ga, a giant exchange bias (EB) of more than 3 T and a large coercivity are established. The large exchange anisotropy originates from the exchange interaction between the compensated host and ferrimagnetic clusters that arise from intrinsic anti-site disorder. Our design approach is also demonstrated on a second material with a magnetic transition above room temperature, Mn-Fe-Ga, exemplifying the universality of the concept and the feasibility of room-temperature applications. These findings may lead to the development of magneto-electronic devices and rare-earth-free exchange-biased hard magnets, where the second quadrant magnetization can be stabilized by the exchange bias.

  12. Exchange bias effect in Ti doped nanocrystalline SrFeO{sub 3-δ}

    SciTech Connect

    Sendil Kumar, A. Srinath, S.

    2014-08-15

    Materials of Ti doped nanocrystalline SrFeO{sub 3-δ} were synthesized through solid state reaction. Detailed magnetization measurements were carried out in zero field cooled (ZFC) and field cooled (FC) conditions. Compounds of SrFe{sub 1-x}Ti{sub x}O{sub 3-δ} (x = 0.1 to 0.3) are found to be spin glass and parent compound is a helical antiferromagnet. Non magnetic Ti{sup 4+} reduces the strength of exchange interactions and the curvature of hysteresis is changed towards concave nature. Exchange bias is observed below the peak temperature (irreversibility in magnetization (T{sub Irr})) in ZFC-FC of SrFe{sub 1-x}Ti{sub x}O{sub 3-δ} (x = 0 to 0.3). The coercivity and exchange bias field values are found to be decreases with increase in temperature. Observed exchange bias effect is attributed to competition between antiferromagnetic superexchange and ferromagnetic double exchange interactions.

  13. Exchange interactions in coupled quantum dots observed through polarized photoluminescence

    NASA Astrophysics Data System (ADS)

    Wijesundara, Kushal C.; Garrido, Mauricio; Ramanathan, Swati; Stinaff, Eric; Bracker, Allan; Gammon, Dan

    2009-03-01

    Identification and manipulation of the exchange interaction between different spin configurations may be useful for implementing quantum logic operations. Coupled quantum dots offer the possibility of controlling the exchange interaction by continuously tuning between direct and indirect excitonic configurations. The effect of the anisotropic part of the exchange energy was clearly identified from polarization dependent photoluminescence (PL) results arising from the direct and indirect configurations of the neutral exciton. We also observe direct experimental evidence of the isotropic exchange interaction via PL measurements from positive trion configurations. The isotropic exchange interactions observed to be an order of magnitude larger than the anisotropic splitting as expected. High resolution measurements of this charged exciton configurations are expected to reveal additional insight into the details of the exchange interaction.

  14. Study of exchange bias and training effect in NiCr2O4

    NASA Astrophysics Data System (ADS)

    Barman, Junmoni; Bora, Tribedi; Ravi, S.

    2015-07-01

    Single phase sample of NiCr2O4 crystallized in a tetragonal structure of I41/amd space group was prepared. Ferrimagnetic transition at TC=73 K along with a large irreversibility has been observed from the magnetization measurement. The sample exhibits exchange bias phenomenon and it is explained by considering the anisotropic exchange interaction between the ferrimagnetic and the antiferromagnetic components of magnetic moment. Presence of training effect is also observed. The exchange bias field (HEB) is found to decay exponentially with increase in temperature and however, the coercive field (HCeff) follows the empirical relation HCeff = HCeff [ 1 - T/TC']2 . The maximum experimental values of HEB and HCeff are found to be 313 Oe and 4839 Oe respectively.

  15. Giant exchange bias in Mn2FeGa with hexagonal structure

    NASA Astrophysics Data System (ADS)

    Liu, Z. H.; Zhang, Y. J.; Zhang, H. G.; Zhang, X. J.; Ma, X. Q.

    2016-07-01

    In this study, we present the experimental observation that polycrystalline Mn2+xFe1-xGa (x = -0.2, 0, 0.2, 0.4) compounds can be synthesized to be D019-type (Ni3Sn-type) hexagonal structure with space group P63/mmc. A giant exchange bias field up to 1.32 kOe was achieved in hexagonal Mn2FeGa alloy at 5 K. A cluster glass state is confirmed by ac susceptibility measurement under different driving frequencies. Interestingly, robust horizontal and vertical shifts in magnetic hysteresis loop were simultaneously observed at 5 K under high cooling field up to 90 kOe. The large exchange bias is originated from the large exchange anisotropy between cluster glass phase and ferrimagnetic matrix. The vertical shift is thought to be attributed to the incomplete reversal of frozen cluster spins.

  16. Low-temperature synthesis of K0.5FeF3 with tunable exchange bias

    NASA Astrophysics Data System (ADS)

    Xu, Qiao-Ru; Liu, Yang; Zheng, Yu-Di; Rui, Wenbin; Sheng, Yan; Shen, Xuan; Du, Jun; Xu, Mingxiang; Dong, Shuai; Wu, Di; Xu, Qingyu

    2013-09-01

    Fluorides K0.5FeF3 with tetragonal tungsten bronze structure have been fabricated by solid state reaction at low sintering temperature in the range between 150 °C and 400 °C with the assistance of crystal water during the grinding and sintering processes. Unusual magnetic properties have been observed, including positive exchange bias field (HE) with negative vertical magnetization shift (Mshift), and smaller field cooling (FC) magnetization than the zero field cooling one below 53 K. The results are explained by a core-shell structure consisting of antiferromagnetic core and spin glass (SG) shell with antiferromagnetic interfacial coupling between the pinned interface spins and the SG shell spins. The sign of HE and Mshift can be changed by increasing the cooling field in the FC process, which is attributed to the competition between the antiferromagnetic interfacial coupling and the Zeeman energy of magnetization of the SG shell.

  17. Exchange coupling between ferromagnetic and antiferromagnetic layers via Ru and application for a linear magnetic field sensor

    NASA Astrophysics Data System (ADS)

    Wang, Dexin; Daughton, Jim; Nordman, Cathy; Eames, Pete; Fink, Jon

    2006-04-01

    Exchange coupling is observed in a trilayer structure of ferromagnet-Ru-antiferromagnet and the coupling strength is found to be a function of the thickness of the Ru spacer layer. This is the first observation for such a trilayer structure and may help to shed light on the illusive mechanism of exchange coupling in these systems. This unique coupling is used to bias the sense layer in a magnetic tunnel junction structure so that the magnetization orientations of the sense layer and the pinned layer can be independently controlled. Sensor devices are fabricated with a bipolar output, a medium sensitivity, and a wide field range. The results show that this biasing scheme is well suited for magnetic tunnel junctions used in magnetic field sensors.

  18. Shape-dependent exchange bias effect in magnetic nanoparticles with core-shell morphology

    NASA Astrophysics Data System (ADS)

    Dimitriadis, V.; Kechrakos, D.; Chubykalo-Fesenko, O.; Tsiantos, V.

    2015-08-01

    We study the low-temperature isothermal magnetic hysteresis of cubical and spherical nanoparticles with ferromagnetic-core/antiferromagnetic-shell morphology, in order to elucidate the sensitivity of the exchange bias effect to the shape of the particles and the structural imperfections at the core-shell interface. We model the magnetic structure using a classical Heisenberg Hamiltonian with uniaxial anisotropy and simulate the hysteresis loop using the metropolis Monte Carlo algorithm. For nanoparticles with geometrically sharp interfaces, we find that cubes exhibit a higher coercivity and lower exchange bias field than spheres of the same size. With increasing interface roughness, the shape dependence of the characteristic fields gradually decays, and eventually, the distinction between cubical and spherical particles is lost for moderately rough interfaces. The sensitivity of the exchange bias field to the microstructural details of the interface is quantified by a scaling factor (b ) relating the bias field to the net moment of the antiferromagnetic shell (Heb=b MAF+Ho) . Cubical particles exhibit a lower sensitivity to the dispersed values of the net interfacial moment.

  19. Exchange-biased spin valves with perpendicular magnetic anisotropy based on (Co/Pt) multilayers

    NASA Astrophysics Data System (ADS)

    Garcia, F.; Fettar, F.; Auffret, S.; Rodmacq, B.; Dieny, B.

    2003-05-01

    We have prepared spin valves exhibiting perpendicular magnetic anisotropy [perpendicular spin valves (PSVs)] by sputtering. These PSVs associate a "free" (Co/Pt) multilayer with a "pinned" (Co/Pt)/FeMn multilayer separated by various spacer materials (Pt, Cu, Al2O3). We carried out a comprehensive study of the magnetic and magnetotransport properties of the biased multilayers and of the complete spin valves. When the number of repeats in the (Co/Pt) exchange-biased multilayer is larger than 3, the samples present 100% remnant magnetization in the perpendicular configuration. The major hysteresis cycles exhibit two well-separated loops associated with the free and the exchange-biased (Pt/Co) multilayers. When optimized, the exchange-bias field can be larger than the coercivity of the pinned layer. Metallic PSVs with Cu spacers exhibit giant magnetoresistance but the amplitude is only of the order of 1% due to significant current shunting. In contrast, perpendicularly magnetized tunnel junctions are very promising.

  20. Exchange bias in bulk layered hydroxylammonium fluorocobaltate (NH₃OH)₂CoF₄.

    PubMed

    Jagličić, Z; Zentková, M; Mihalik, M; Arnold, Z; Drofenik, M; Kristl, M; Dojer, B; Kasunič, M; Golobič, A; Jagodič, M

    2012-02-08

    The magnetic properties of layered hydroxylammonium fluorocobaltate (NH(3)OH)(2)CoF(4) were investigated by measuring its dc magnetic susceptibility in zero-field-cooled (ZFC) and field-cooled (FC) regimes, its frequency dependent ac susceptibility, its isothermal magnetization curves after ZFC and FC regimes, and its heat capacity. Effects of pressure and magnetic field on magnetic phase transitions were studied by susceptibility and heat capacity measurements, respectively. The system undergoes a magnetic phase transition from a paramagnetic state to a canted antiferromagnetic state exhibiting a weak ferromagnetic behavior at T(C) = 46.5 K and an antiferromagnetic transition at T(N) = 2.9 K. The most spectacular manifestation of the complex magnetic behavior in this system is a shift of the isothermal magnetization hysteresis loop in a temperature range below 20 K after the FC regime-an exchange bias phenomenon. We investigated the exchange bias as a function of the magnetic field during cooling and as a function of temperature. The observed exchange bias was attributed to the large exchange anisotropy which exists due to the quasi-2D structure of the layered (NH(3)OH)(2)CoF(4) material.

  1. Experimental study of energy exchanges between two coupled granular gases

    NASA Astrophysics Data System (ADS)

    Chastaing, J.-Y.; Géminard, J.-C.; Naert, A.

    2016-12-01

    We report on the energy exchanges between two granular gases of different densities coupled electromechanically by immersed blades attached to dc motors. Zeroing the energy flux between the two subsystems, we demonstrate that an immersed blade is a convenient way to assess the properties of the granular gases, provided that the dissipation in the motor is properly taken into account. In addition, when the two gases have different densities, the fluctuations of the energy flux are asymmetric, very intermittent, and with most probable zero flux. We show that, for weak coupling, the main features of the energy exchanges can be explained considering the fluctuations of the two subsystems.

  2. A Practical Guide to Approaching Biased Agonism at G Protein Coupled Receptors.

    PubMed

    Gundry, Jaimee; Glenn, Rachel; Alagesan, Priya; Rajagopal, Sudarshan

    2017-01-01

    Biased agonism, the ability of a receptor to differentially activate downstream signaling pathways depending on binding of a "biased" agonist compared to a "balanced" agonist, is a well-established paradigm for G protein-coupled receptor (GPCR) signaling. Biased agonists have the promise to act as smarter drugs by specifically targeting pathogenic or therapeutic signaling pathways while avoiding others that could lead to side effects. A number of biased agonists targeting a wide array of GPCRs have been described, primarily based on their signaling in pharmacological assays. However, with the promise of biased agonists as novel therapeutics, comes the peril of not fully characterizing and understanding the activities of these compounds. Indeed, it is likely that some of the compounds that have been described as biased, may not be if quantitative approaches for bias assessment are used. Moreover, cell specific effects can result in "system bias" that cannot be accounted by current approaches for quantifying ligand bias. Other confounding includes kinetic effects which can alter apparent bias and differential propagation of biological signal that results in different levels of amplification of reporters downstream of the same effector. Moreover, the effects of biased agonists frequently cannot be predicted from their pharmacological profiles, and must be tested in the vivo physiological context. Thus, the development of biased agonists as drugs requires a detailed pharmacological characterization, involving both qualitative and quantitative approaches, and a detailed physiological characterization. With this understanding, we stand on the edge of a new era of smarter drugs that target GPCRs.

  3. Ferromagnetic resonance of exchange-coupled perpendicularly magnetized bilayers

    NASA Astrophysics Data System (ADS)

    Devolder, Thibaut

    2016-04-01

    Strong ferromagnetic interlayer exchange couplings J in perpendicularly magnetized systems are becoming increasingly desirable for applications. We study whether ferromagnetic interlayer exchange couplings can be measured by a combination of broadband ferromagnetic resonance methods and magnetometry hysteresis loops. For this, we model the switching and the eigenexcitations in bilayer systems comprising a soft layer coupled to a thicker harder layer that possesses higher perpendicular magnetic anisotropy. For large J > 0, the switching fields are essentially independent of J but the frequency of the optical eigenmode of the bilayer and the linewidth of the acoustical and optical eigenmode are directly sensitive to the coupling. We derive a corpus of compact analytical expressions to analyze these frequencies, their linewidth and discuss the meaning thereof. We illustrate this corpus on a system mimicking the fixed layers of a magnetic tunnel junction meant for spin torque applications.

  4. Spin-orbit torque switching without an external field using interlayer exchange coupling

    NASA Astrophysics Data System (ADS)

    Lau, Yong-Chang; Betto, Davide; Rode, Karsten; Coey, J. M. D.; Stamenov, Plamen

    2016-09-01

    Manipulation of the magnetization of a perpendicular ferromagnetic free layer by spin-orbit torque (SOT) is an attractive alternative to spin-transfer torque (STT) in oscillators and switches such as magnetic random-access memory (MRAM) where a high current is passed across an ultrathin tunnel barrier. A small symmetry-breaking bias field is usually needed for deterministic SOT switching but it is impractical to generate the field externally for spintronic applications. Here, we demonstrate robust zero-field SOT switching of a perpendicular CoFe free layer where the symmetry is broken by magnetic coupling to a second in-plane exchange-biased CoFe layer via a nonmagnetic Ru or Pt spacer. The preferred magnetic state of the free layer is determined by the current polarity and the sign of the interlayer exchange coupling (IEC). Our strategy offers a potentially scalable solution to realize bias-field-free switching that can lead to a generation of SOT devices, combining a high storage density and endurance with a low power consumption.

  5. Magnetic exchange coupling in actinide-containing molecules.

    PubMed

    Rinehart, Jeffrey D; Harris, T David; Kozimor, Stosh A; Bartlett, Bart M; Long, Jeffrey R

    2009-04-20

    Recent progress in the assembly of actinide-containing coordination clusters has generated systems in which the first glimpses of magnetic exchange coupling can be recognized. Such systems are of interest owing to the prospects for involving 5f electrons in stronger magnetic exchange than has been observed for electrons in the more contracted 4f orbitals of the lanthanide elements. Here, we survey the actinide-containing molecules thought to exhibit magnetic exchange interactions, including multiuranium, uranium-lanthanide, uranium-transition metal, and uranium-radical species. Interpretation of the magnetic susceptibility data for compounds of this type is complicated by the combination of spin-orbit coupling and ligand-field effects arising for actinide ions. Nevertheless, for systems where analogues featuring diamagnetic replacement components for the non-actinide spin centers can be synthesized, a data subtraction approach can be utilized to probe the presence of exchange coupling. In addition, methods have been developed for employing the resulting data to estimate lower and upper bounds for the exchange constant. Emphasis is placed on evaluation of the linear clusters (cyclam)M[(mu-Cl)U(Me(2)Pz)(4)](2) (M = Co, Ni, Cu, Zn; cyclam = 1,4,8,11-tetraazacyclotetradecane; Me(2)Pz(-) = 3,5-dimethylpyrazolate), for which strong ferromagnetic exchange with 15 cm(-1) < or = J < or = 48 cm(-1) is observed for the Co(II)-containing species. Owing to the modular synthetic approach employed, this system in particular offers numerous opportunities for adjusting the strength of the magnetic exchange coupling and the total number of unpaired electrons. To this end, the prospects of such modularity are discussed through the lens of several new related clusters. Ultimately, it is hoped that this research will be of utility in the development of electronic structure models that successfully describe the magnetic behavior of actinide compounds and will perhaps even lead to new

  6. Effect of misaligned unidirectional and uniaxial anisotropies on angular dependence of exchange bias

    NASA Astrophysics Data System (ADS)

    Hu, Yong; Wang, Xiaoling; Jia, Ning; Liu, Yan; Du, An

    2015-01-01

    We report a numerical study of the angular dependences of low-temperature exchange bias field (ADEB) and coercivity in the ferromagnetic/antiferromagnetic bilayers with misaligned unidirectional and uniaxial anisotropies. Through choosing a proper antiferromagnet the conventional symmetry in the ADEB may be broken, while the novel behaviors are also dependent on the angle between induced unidirectional and intrinsic uniaxial anisotropies. Finally, we draw conclusions that the two anisotropies with a small misalignment together determine the asymmetric ADEB properties around the easy axis. In contrast, after the magnetically hysteretic measurement rotating through the hard axis, a large misalignment between the anisotropies may change the magnetization reversal mode at the decreasing branch of loop, besides weakening the positive loop shift. Thus the strength of exchange bias field is suppressed while the coercivity is enhanced.

  7. Large exchange-bias in Ni55Mn19Al24Si2 polycrystalline ribbons

    NASA Astrophysics Data System (ADS)

    Singh, Rohit; Ingale, Babita; Varga, Lajos K.; Khovaylo, Vladimir V.; Chatterjee, Ratnamala

    2014-09-01

    The crystal structure, phase transition and exchange bias effect in induction melted polycrystalline ribbons of Ni55Mn19Al24Si2 have been studied using room temperature x-ray diffraction (XRD), differential scanning calorimetry (DSC) and magnetic measurements. The sample was found to show structural transformation temperatures such as austenite start (As)=306 K, austenite finish (Af)=316 K, martensite start (Ms)=305 K and martensite finish (Mf)=294 K all above room temperature. The room temperature structure evaluated as orthorhombic 14 M with lattice parameters a=4.14 Å, b=29.84 Å, and c=5.72 Å. Importantly at 2 K, the sample showed a large exchange bias field of about 2520 Oe, which is the maximum value ever reported among the Heusler alloy samples.

  8. Synthesis and tuning the exchange bias in Ni-NiO nanoparticulate systems

    NASA Astrophysics Data System (ADS)

    Sharma, S. K.; Vargas, J. M.; Knobel, M.; Pirota, K. R.; Meneses, C. T.; Kumar, Shalendra; Lee, C. G.; Pagliuso, P. G.; Rettori, Carlos

    2010-05-01

    We report studies on exchange bias effects in Ni-NiO nanoparticles with different particle diameters/distributions and concentration of metallic nickel, which vary from 0% to 32%. The exchange bias field, Hex, depends strongly upon both particle size and the concentration of metallic Ni, being maximum (˜2.2 kOe) at 5 K for the sample with almost negligible concentration of metallic Ni, whereas the corresponding value for the sample with highest concentration of metallic Ni (˜32±5.0%) is about 0.07 kOe. The structural features of the samples have been investigated thoroughly by using the Reitveld refinement of x-ray diffraction data and high resolution transmission electron microscopy, where as the magnetic properties using superconducting quantum interference device magnetometer.

  9. Exchange bias in polycrystalline magnetite films made by ion-beam assisted deposition

    SciTech Connect

    Kaur, Maninder; Jiang, Weilin; Qiang, You; Burks, Edward; Liu, Kai; Namavar, Fereydoon; Mccloy, John S.

    2014-11-03

    Iron oxide films were deposited onto Si substrates using ion-beam-assisted deposition. The films were ~300 nm thick polycrystalline magnetite with an average crystallite size of ~6 nm. Additionally, incorporation of significant fractions of argon in the films from ion bombardment is evident from chemical analysis, and Fe/O ratios are lower than expected from pure magnetite. However, Raman spectroscopy and x-ray diffraction both indicate that the films are single-phase magnetite. Since no direct evidence of a second phase could be found, exchange bias likely arises due to defects at grain boundaries, possibly amorphous, creating frustrated spins. Since these samples have such small grains, a large fraction of the material consists of grain boundaries, where spins are highly disordered and reverse independently with external field. The high energy deposition process results in an oxygen-rich, argon-containing magnetite film with low temperature exchange bias due to defects at the high concentration of grain boundaries.

  10. Observation of tunable exchange bias in Sr2YbRuO6

    NASA Astrophysics Data System (ADS)

    Singh, R. P.; Tomy, C. V.; Grover, A. K.

    2010-11-01

    The double perovskite compound, Sr2YbRuO6, displays reversal in the orientation of magnetic moments along with negative magnetization due to an underlying magnetic compensation phenomenon. The exchange bias (EB) field below the compensation temperature could be the usual negative or the positive depending on the initial cooling field. This EB attribute has the potential of getting tuned in a preselected manner, as the positive EB field is seen to crossover from positive to negative value above Tcomp.

  11. Temperature evolution of nickel sulphide phases from thiourea complex and their exchange bias effect

    SciTech Connect

    Kumar, Nitesh; Raman, N.; Sundaresan, A.

    2013-12-15

    Considering the very complex phase diagram of nickel sulphide, it is quite challenging to stabilize pure phases from a single precursor. Here, we obtain nanoparticles of various phases of nickel sulphide by decomposing nickel–thiourea complex at different temperatures. The first phase in the evolution is the one with the maximum sulphur content, namely, NiS{sub 2} nanoparticles obtained at 400 °C. As the temperature is increased, nanoparticles of phases with lesser sulphur content, NiS (600 °C) and Ni{sub 3}S{sub 2} (800 °C) are formed. NiS{sub 2} nanoparticles exhibit weak ferromagnetic transition at 30 K and show a large exchange bias at 2 K. NiS nanoparticles are antiferromagnetic and show relatively smaller exchange bias effect. On the other hand, Ni{sub 3}S{sub 2} nanoparticles exhibit very weak temperature dependent magnetization. Electrical measurements show that both NiS{sub 2} and NiS are semiconductors whereas Ni{sub 3}S{sub 2} is a metal. - Graphical abstract: Pure phases of NiS{sub 2}, NiS and Ni{sub 3}S{sub 2} have been obtained by thermal decomposition of nickel–thiourea complex wherein, NiS{sub 2} nanoparticles exhibit remarkable exchange bias effect at 2 K. - Highlights: • NiS{sub 2}, NiS and Ni{sub 3}S{sub 2} nanoparticles are obtained by thermal decomposition of nickel–thiourea complex at different temperatures. • As the temperature is increased, nickel sulphide phase with lesser sulphur content is obtained. • NiS{sub 2} nanoparticles show good exchange bias property which can be explained by antiferromagnetic core and ferromagnetic shell model. • NiS{sub 2} and NiS are semiconducting while Ni{sub 3}S{sub 2} shows metallic behavior.

  12. Probing core and shell contributions to exchange bias in Co /Co3O4 nanoparticles of controlled size

    NASA Astrophysics Data System (ADS)

    De, D.; Iglesias, Óscar; Majumdar, S.; Giri, Saurav

    2016-11-01

    Coupling at the interface of core/shell magnetic nanoparticles is known to be responsible for exchange bias (EB) and the relative sizes of core and shell components are supposed to influence the associated phenomenology. In this work, we have prepared core/shell structured nanoparticles with a total average diameter around ˜27 nm and a wide range of shell thicknesses through the controlled oxidation of Co nanoparticles well dispersed in an amorphous silica host. Structural characterizations give compelling evidence of the formation of Co3O4 crystallite phase at the shells surrounding the Co core. Field cooled hysteresis loops display nonmonotonous dependence of the exchange bias HE and coercive HC fields, that become maximum for a sample with an intermediate shell thickness, at which lattice strain is also maximum for both phases. The EB effects persist up to temperatures above the ordering temperature of the oxide shell. Results of our atomistic Monte Carlo simulations of particles with the same size and composition as in experiments are in agreement with the experimental observations and have allowed us to identify a change in the contribution of the interfacial surface spins to the magnetization reversal, giving rise to the observed maximum in HE and HC.

  13. Emergence of noncollinear anisotropies from interfacial magnetic frustration in exchange-bias systems.

    SciTech Connect

    Jimenez, E.; Camarero, J.; Sort, J.; Nogues, J.; Mikuszeit, N.; Garcia-Martin, J. M.; Hoffmann, A.; Dieny, B.; Miranda, R.; Univ. Autonoma de Madrid; Univ. Autonoma de Barcelona; Inst. de Microelectronica de Madrid; SPINTEC

    2009-01-01

    Exchange bias, referred to the interaction between a ferromagnet (FM) and an antiferromagnet (AFM), is a fundamental interfacial magnetic phenomenon, which is key to current and future applications. The effect was discovered half a century ago, and it is well established that the spin structures at the FM/AFM interface play an essential role. However, currently, ad hoc phenomenological anisotropies are often postulated without microscopic justification or sufficient experimental evidence to address magnetization-reversal behavior in exchange-bias systems. We advance toward a detailed microscopic understanding of the magnetic anisotropies in exchange-bias FM/AFM systems by showing that symmetry-breaking anisotropies leave a distinct fingerprint in the asymmetry of the magnetization reversal and we demonstrate how these emerging anisotropies are correlated with the intrinsic anisotropy. Angular and vectorial resolved Kerr hysteresis loops from FM/AFM bilayers with varying degree of ferromagnetic anisotropy reveal a noncollinear anisotropy, which becomes important for ferromagnets with vanishing intrinsic anisotropy. Numerical simulations show that this anisotropy naturally arises from the inevitable spin frustration at an atomically rough FM/AFM interface. As a consequence, we show in detail how the differences observed for different materials during magnetization reversal can be understood in general terms as originating from the interplay between interfacial frustration and intrinsic anisotropies. This understanding will certainly open additional avenues to tailor future advanced magnetic materials.

  14. Voltage Controlled Exchange Bias in a Cr2O3 based heterostructure

    NASA Astrophysics Data System (ADS)

    Echtenkamp, Will; Street, Mike; Binek, Christian

    2015-03-01

    Controlling magnetism by electrical means is a key challenge in the field of spintronics, and electric control of exchange bias is one of the most promising routes to address this challenge. Isothermal electric control of exchange bias has been achieved near room temperature using bulk, single crystal, magnetoelectric Cr2O3, which has a voltage controlled net magnetization at the (0001) surface. Voltage control of magnetism in a Cr2O3 thin film system has presented significant challenges. In this study we explore the electric control of exchange bias in an all-thin-film system of decreasing chromia film thickness with significant implications for scalability of ultra-low power memory and logical devices. Cross-sectional HRTEM indicates that grain boundaries in the metallic bottom electrode propagate into the Cr2O3 thin film with detrimental effects on leakage currents. We address this issue via a three-step growth method for the deposition of epitaxial Pd on sapphire. The resulting microstructure of the films is analyzed by reflection high-energy electron diffraction, tunneling electron microscopy and x-ray diffraction. This project was supported by SRC through CNFD, an SRC-NRI Center, by C-SPIN, part of STARnet, and by the NSF through MRSEC DMR-0820521.

  15. Enhancement of exchange bias and ferromagnetic resonance frequency by using multilayer antidot arrays

    NASA Astrophysics Data System (ADS)

    Phuoc, Nguyen N.; Lim, S. L.; Xu, F.; Ma, Y. G.; Ong, C. K.

    2008-11-01

    A systematic investigation of the dependences of the exchange bias and the ferromagnetic resonance frequency on the pore size of the antidot arrays fabricated by depositing Permalloy-FeMn multilayer thin films onto self-organized porous anodic aluminum oxide membranes was carried out. The magnetic and microwave properties of the antidot arrays with different pore sizes ranging from 30 to 80 nm are characterized and compared with that of the continuous thin films. It was found that the exchange bias field and the ferromagnetic resonance frequency are increased with the increase of the pore size, which may tentatively be interpreted in the framework of the random field model. It was also found that by using the antidot arrays in the best condition (the FeNi thickness is 20 nm and the pore size is 80 nm), one can enhance the exchange bias field from 65 to 135 Oe and the ferromagnetic resonance frequency from 3.1 to 4.1 GHz accordingly.

  16. The fabrication of ordered arrays of exchange biased Ni/FeF2 nanostructures.

    PubMed

    Kovylina, M; Erekhinsky, M; Morales, R; Schuller, I K; Labarta, A; Batlle, X

    2010-04-30

    The fabrication of ordered arrays of exchange biased Ni/FeF(2) nanostructures by focused ion beam lithography is reported. High quality nano-elements, with controlled removal depth and no significant re-deposition, were carved using small ion beam currents (30 pA), moderate dwell times (1 micros) and repeated passages over the same area. Two types of nanostructures were fabricated: square arrays of circular dots with diameters from 125 +/- 8 to 500 +/- 12 nm and periodicities ranging from 200 +/- 8 to 1000 +/- 12 nm, and square arrays of square antidots (207 +/- 8 nm in edge length) with periodicities ranging from 300 +/- 8 to 1200 +/- 12 nm. The arrays were characterized using scanning ion and electron microscopy, and atomic force microscopy. The effect of the patterning on the exchange bias field (i.e., the shift in the hysteresis loop of ferromagnetic Ni due to proximity to antiferromagnetic FeF(2)) was studied using magneto-transport measurements. These high quality nanostructures offer a unique method to address some of the open questions regarding the microscopic origin of exchange bias. This is not only of major relevance in the fabrication and miniaturization of magnetic devices but it is also one of the important proximity phenomena in nanoscience and materials science.

  17. Improved media performance in optimally coupled exchange spring layer media

    NASA Astrophysics Data System (ADS)

    Berger, A.; Supper, N.; Ikeda, Y.; Lengsfield, B.; Moser, A.; Fullerton, E. E.

    2008-09-01

    We have studied the recording performance of perpendicular exchange spring layer (ESL)-media for hard disk drive recording. In particular, we investigated the role of interlayer coupling by varying the thickness of a nonmagnetic coupling layer (CL). We demonstrate that not only the media writeability is improved upon optimizing the CL thickness, but also that substantial recording performance improvements can be achieved due to improved media noise properties. The potential of these media structures for high areal density recording is demonstrated by performing areal density measurements, which showed a substantial improvement for optimally coupled ESL-media.

  18. Influence of 8-Oxoguanosine on the Fine Structure of DNA Studied with Biasing-Potential Replica Exchange Simulations

    SciTech Connect

    Kara, Mahmut; Zacharias, Martin W.

    2013-03-05

    Chemical modification or radiation can cause DNA damage, which plays a crucial role for mutagenesis of DNA, carcinogenesis, and aging. DNA damage can also alter the fine structure of DNA that may serve as a recognition signal for DNA repair enzymes. A new, advanced sampling replica-exchange method has been developed to specifically enhance the sampling of conformational substates in duplex DNA during molecular dynamics (MD) simulations. The approach employs specific biasing potentials acting on pairs of pseudodihedral angles of the nucleic acid backbone that are added in the replica simulations to promote transitions of the most common substates of the DNA backbone. The sampled states can exchange with a reference simulation under the control of the original force field. The application to 7,8-dihydro-8oxo-guanosine, one of the most common oxidative damage in DNA indicated better convergence of sampled states during 10 ns simulations compared to 20 times longer standard MD simulations. It is well suited to study systematically the fine structure and dynamics of large nucleic acids under realistic conditions, including explicit solvent and ions. The biasing potential-replica exchange MD simulations indicated significant differences in the population of nucleic acid backbone substates in the case of 7,8-dihydro-8oxo-guanosine compared to a regular guanosine in the same sequence context. This concerns both the ratio of the B-DNA substates BI and BII associated with the backbone dihedral angles ε and z but also coupled changes in the backbone dihedral angles a and g. Such differences may play a crucial role in the initial recognition of damaged DNA by repair enzymes.

  19. The effects of exchange bias on Fe-Co/MgO magnetic nanoparticles with core/shell morphology.

    PubMed

    Martinez-Boubeta, C; Balcells, Ll; Monty, C; Martínez, B

    2010-01-20

    The effects of exchange bias on core/shell structured nanoparticles are analyzed. Nanoparticles are integrated with high moment Fe-Co crystallites covered epitaxially with MgO shells. It is observed that the coercive field H(C)(FeCo)>H(C)(Co)>H(C)(Fe); however, the exchange bias field H(E) of the Co sample is higher than that of the FeCo one, while H(E)=0 for the Fe sample. It is suggested that the exchange bias is induced by the formation of a (Co, Mg)O solid solution. In fact, we show that it is possible to modify the exchange bias properties by manipulating the level of Mg dusting at the interface, as recently reported for thin films.

  20. Effect of mechanical strain on magnetic properties of flexible exchange biased FeGa/IrMn heterostructures

    NASA Astrophysics Data System (ADS)

    Zhang, Xiaoshan; Zhan, Qingfeng; Dai, Guohong; Liu, Yiwei; Zuo, Zhenghu; Yang, Huali; Chen, Bin; Li, Run-Wei

    2013-01-01

    We have fabricated flexible exchange biased heterostructures with magnetostrictive Fe81Ga19 alloy as the ferromagnetic layer and Ir20Mn80 as the antiferromagnetic layer on polyethylene terephthalate substrates. The mechanical strain can modify both the strength and the orientation of the uniaxial anisotropy, giving rise to the switching between the easy and hard magnetization directions. Different from the previously reported works on rigid exchange biased systems, a drastic decrease in exchange bias field was observed under a compressive strain with magnetic field parallel to the pinning direction, but only a slightly decrease was shown under a tensile strain. Based on a Stoner-Wohlfarth model calculation, we suggested that the distributions of both ferromagnetic and antiferromagnetic anisotropies be the key to induce the mechanically tunable exchange bias.

  1. Joule Heating Effect on Field-Free Magnetization Switching by Spin-Orbit Torque in Exchange-Biased Systems

    NASA Astrophysics Data System (ADS)

    Razavi, Seyed Armin; Wu, Di; Yu, Guoqiang; Lau, Yong-Chang; Wong, Kin L.; Zhu, Weihua; He, Congli; Zhang, Zongzhi; Coey, J. M. D.; Stamenov, Plamen; Khalili Amiri, Pedram; Wang, Kang L.

    2017-02-01

    Switching of magnetization via spin-orbit torque provides an efficient alternative for nonvolatile memory and logic devices. However, to achieve deterministic switching of perpendicular magnetization, an external magnetic field collinear with the current is usually required, which makes these devices inappropriate for practical applications. In this work, we examine the current-induced magnetization switching in a perpendicularly magnetized exchange-biased Pt /CoFe /IrMn system. A magnetic field annealing technique is used to introduce in-plane exchange biases, which are quantitatively characterized. Under proper conditions, field-free current-driven switching is achieved. We study the Joule heating effect, and we show how it can decrease the in-plane exchange bias and degrade the field-free switching. Furthermore, we discuss that the exchange-bias training effect can have similar effects.

  2. Simultaneous achievement of high perpendicular exchange bias and low coercivity by controlling ferromagnetic/antiferromagnetic interfacial magnetic anisotropy

    NASA Astrophysics Data System (ADS)

    Shiratsuchi, Yu; Kuroda, Wataru; Nguyen, Thi Van Anh; Kotani, Yoshinori; Toyoki, Kentaro; Nakamura, Tetsuya; Suzuki, Motohiro; Nakamura, Kohji; Nakatani, Ryoichi

    2017-02-01

    This study investigates the influence of Pt and Au spacer layers on the perpendicular exchange bias field and coercivity of Pt/Co/(Pt or Au)/Cr2O3/Pt films. When using a Pt-spacer, the perpendicular exchange bias was highly degraded to less than 0.1 erg/cm2, which was about half that of the Au-spacer system. The Au spacer also suppressed the enhancement in coercivity that usually occurs at around room temperature when using Pt. It is suggested that this difference in exchange bias field is due to in-plane interfacial magnetic anisotropy at the Pt/Cr2O3 interface, which cants the interfacial Cr spin from the surface normal and results in degradation in the perpendicular exchange bias.

  3. Epitaxial Growth of Intermetallic MnPt Films on Oxides and Large Exchange Bias

    SciTech Connect

    Liu, Zhiqi; Biegalski, Michael D; Hsu, Mr. S. L.; Shang, Dr. Shunli; Marker, Cassie; Liu, Jian; Li, Li; Fan, Lisha; Meyer, Tricia L; Wong, Anthony T; Nichols, John A; Chen, Deyang; You, Long; Chen, Zuhuang; Wang, Kai; Wang, Kevin; Ward, Thomas Zac; Gai, Zheng; Lee, Ho Nyung; Sefat, Athena Safa; Lauter, Valeria; Liu, Zi-Kui; Christen, Hans M.

    2015-11-05

    We achieved a high-quality epitaxial growth of inter­metallic MnPt films on oxides, with potential for multiferroic heterostructure applications. Also, antisite-stabilized spin-flipping induces ferromagnetism in MnPt films, although it is robustly antiferromagnetic in bulk. Moreover, highly ordered antiferromagnetic MnPt films exhibit superiorly large exchange coupling with a ferromagnetic layer.

  4. Electric field induced reversible 180° magnetization switching through tuning of interfacial exchange bias along magnetic easy-axis in multiferroic laminates

    SciTech Connect

    Xue, Xu; Zhou, Ziyao; Peng, Bin; Zhu, Mingmin; Zhang, Yijun; Ren, Wei; Ren, Tao; Yang, Xi; Nan, Tianxiang; Sun, Nian X.; Liu, Ming

    2015-11-18

    E-field control of interfacial exchange coupling and deterministic switching of magnetization have been demonstrated in two sets of ferromagnetic(FM)/antiferromagnetic(AFM)/ferroelectric(FE) multiferroic heterostructures, including NiFe/NiCoO/glass/PZN-PT (011) and NiFe/FeMn/glass/PZN-PT (011). We designed this experiment to achieve exchange bias tuning along the magnetic easy axis, which is critical for realizing reversible 180° magnetization deterministic switching at zero or small magnetic bias. Strong exchange coupling were established across AFM-FM interfaces, which plays an important role in voltage control of magnetization switching. Through the competition between the E-field induced uniaxial anisotropy in ferromagnetic layer and unidirectional anisotropy in antiferromagnetic layer, the exchange bias was significantly shifted by up to |ΔHex|/Hex=8% in NiFe/FeMn/glass/PZN-PT (011) and 13% in NiFe/NiCoO/glass/PZN-PT (011). In addition, the square shape of the hysteresis loop, as well as a strong shape tunability of |ΔHex|/Hc=67.5~125% in NiFe/FeMn/glass/PZN-PT and 30~38% in NiFe/NiCoO/glass/PZN-PT were achieved, which lead to a near 180° magnetization switching. Lastly, electrical tuning of interfacial exchange coupling in FM/AFM/FE systems paves a new way for realizing magnetoelectric random access memories and other memory technologies.

  5. Exchangers man the pumps: Functional interplay between proton pumps and proton-coupled Ca(2+) exchangers

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Tonoplast-localised proton-coupled Ca(2+) transporters encoded by cation/H(+) exchanger (CAX) genes play a critical role in sequestering Ca(2+) into the vacuole. These transporters may function in coordination with Ca(2+) release channels, to shape stimulus-induced cytosolic Ca(2+) elevations. Recen...

  6. Transient plasma potential in pulsed dual frequency inductively coupled plasmas and effect of substrate biasing

    NASA Astrophysics Data System (ADS)

    Mishra, Anurag; Yeom, Geun Young

    2016-09-01

    An electron emitting probe in saturated floating potential mode has been used to investigate the temporal evolution of plasma potential and the effect of substrate RF biasing on it for pulsed dual frequency (2 MHz/13.56 MHz) inductively coupled plasma (ICP) source. The low frequency power (P2MHz) has been pulsed at 1 KHz and a duty ratio of 50%, while high frequency power (P13.56MHz) has been used in continuous mode. The substrate has been biased with a separate bias power at (P12.56MHz) Argon has been used as a discharge gas. During the ICP power pulsing, three distinct regions in a typical plasma potential profile, have been identified as `initial overshoot', pulse `on-phase' and pulse `off-phase'. It has been found out that the RF biasing of the substrate significantly modulates the temporal evolution of the plasma potential. During the initial overshoot, plasma potential decreases with increasing RF biasing of the substrate, however it increases with increasing substrate biasing for pulse `on-phase' and `off-phase'. An interesting structure in plasma potential profile has also been observed when the substrate bias is applied and its evolution depends upon the magnitude of bias power. The reason of the evolution of this structure may be the ambipolar diffusion of electron and its dependence on bias power.

  7. Effect of bias application to plasma density in weakly magnetized inductively coupled plasma

    SciTech Connect

    Kim, Hyuk; Lee, Woohyun; Park, Wanjae; Whang, Ki-Woong

    2013-07-15

    Independent control of the ion flux and energy can be achieved in a dual frequency inductively coupled plasma (ICP) system. Typically, the plasma density is controlled by the high-frequency antenna radio-frequency (RF) power and the ion energy is controlled by the low-frequency bias RF power. Increasing the bias power has been known to cause a decrease in the plasma density in capacitively coupled discharge systems as well as in ICP systems. However, an applied axial magnetic field was found to sustain or increase the plasma density as bias power is increased. Measurements show higher electron temperatures but lower plasma densities are obtained in ordinary ICP systems than in magnetized ICP systems under the same neutral gas pressure and RF power levels. Explanations for the difference in the behavior of plasma density with increasing bias power are given in terms of the difference in the heating mechanism in ordinary unmagnetized and magnetized ICP systems.

  8. Effect of asymmetric molecule-electrode coupling and molecular bias on rectification in molecular junctions

    NASA Astrophysics Data System (ADS)

    Kaur, Rupan Preet; Sawhney, Ravinder Singh; Engles, Derick

    2016-12-01

    In this research work, we compare the rectification trends of two symmetrical and one asymmetrical molecular junction formed with gold and silver electrodes bridging benzenedithiol molecule. The origin of rectification is attributed to both molecular bias drop and asymmetric molecule-electrode coupling. The electronic transport properties are computed by using semi-empirical extended Huckel method combined with non-equilibrium Green's function framework. The results are fully rationalized by analysing the distribution of molecular orbitals with changing bias voltage, available density of states and area of transmission spectra spanned within bias window, transmission eigenstates and transmission pathways. We deduce through this work that the molecular rectification is not only the property of asymmetric molecule-metal coupling, but molecular bias also plays vital role in stemming asymmetric I- V characteristics. Our results suggest how to realize molecular rectification by using different electrode materials which act as Schottky barriers in molecular junctions that emulate p-n junction diode in semiconductor electronics.

  9. Tailoring interfacial exchange coupling with low-energy ion beam bombardment: Tuning the interface roughness

    SciTech Connect

    Lin, K.-W.; Shueh, C.; Huang, H.-R.; Hsu, H.-F.; Mirza, M.; Lierop, J. van

    2012-03-19

    By ascertaining NiO surface roughness in a Ni{sub 80}Fe{sub 20}/NiO film system, we were able to correlate the effects of altered interface roughness from low-energy ion-beam bombardment of the NiO layer and the different thermal instabilities in the NiO nanocrystallites. From experiment and by modelling the temperature dependence of the exchange bias field and coercivity, we have found that reducing the interface roughness and changing the interface texture from an irregular to striped conformation enhanced the exchange coupling strength. Our results were in good agreement with recent simulations using the domain state model that incorporated interface mixing.

  10. Exchange coupling in metallic multilayers with a top FeRh layer

    NASA Astrophysics Data System (ADS)

    Yamada, S.; Tanikawa, K.; Hirayama, J.; Kanashima, T.; Taniyama, T.; Hamaya, K.

    2016-05-01

    We study magnetic properties of metallic multilayers with FeRh/ferromagnet interfaces grown by low-temperature molecular beam epitaxy. Room-temperature coercivity of the ferromagnetic layers is significantly enhanced after the growth of FeRh, proving the existence of the exchange coupling between the antiferromagnetic FeRh layer and the ferromagnetic layer. However, exchange bias is not clearly observed probably due to the presence of disordered structures, which result from the lattice strain at the FeRh/ferromagnet interfaces due to the lattice mismatch. We infer that the lattice matched interface between FeRh and ferromagnetic layers is a key parameter for controlling magnetic switching fields in such multilayer systems.

  11. Tailoring exchange couplings in magnetic topological-insulator/antiferromagnet heterostructures

    NASA Astrophysics Data System (ADS)

    He, Qing Lin; Kou, Xufeng; Grutter, Alexander J.; Yin, Gen; Pan, Lei; Che, Xiaoyu; Liu, Yuxiang; Nie, Tianxiao; Zhang, Bin; Disseler, Steven M.; Kirby, Brian J.; Ratcliff, William, II; Shao, Qiming; Murata, Koichi; Zhu, Xiaodan; Yu, Guoqiang; Fan, Yabin; Montazeri, Mohammad; Han, Xiaodong; Borchers, Julie A.; Wang, Kang L.

    2017-01-01

    Magnetic topological insulators such as Cr-doped (Bi,Sb)2Te3 provide a platform for the realization of versatile time-reversal symmetry-breaking physics. By constructing heterostructures exhibiting Néel order in an antiferromagnetic CrSb and ferromagnetic order in Cr-doped (Bi,Sb)2Te3, we realize emergent interfacial magnetic phenomena which can be tailored through artificial structural engineering. Through deliberate geometrical design of heterostructures and superlattices, we demonstrate the use of antiferromagnetic exchange coupling in manipulating the magnetic properties of magnetic topological insulators. Proximity effects are shown to induce an interfacial spin texture modulation and establish an effective long-range exchange coupling mediated by antiferromagnetism, which significantly enhances the magnetic ordering temperature in the superlattice. This work provides a new framework on integrating topological insulators with antiferromagnetic materials and unveils new avenues towards dissipationless topological antiferromagnetic spintronics.

  12. Biased ligands at G-protein-coupled receptors: promise and progress.

    PubMed

    Violin, Jonathan D; Crombie, Aimee L; Soergel, David G; Lark, Michael W

    2014-07-01

    Drug discovery targeting G protein-coupled receptors (GPCRs) is no longer limited to seeking agonists or antagonists to stimulate or block cellular responses associated with a particular receptor. GPCRs are now known to support a diversity of pharmacological profiles, a concept broadly referred to as functional selectivity. In particular, the concept of ligand bias, whereby a ligand stabilizes subsets of receptor conformations to engender novel pharmacological profiles, has recently gained increasing prominence. This review discusses how biased ligands may deliver safer, better tolerated, and more efficacious drugs, and highlights several biased ligands that are in clinical development. Biased ligands targeting the angiotensin II type 1 receptor and the μ opioid receptor illustrate the translation of the biased ligand concept from basic biology to clinical drug development.

  13. A Coupled Nonlinear Spacecraft Attitude Controller and Observer with an Unknown Gyro Misalignment and Gyro Bias

    NASA Technical Reports Server (NTRS)

    Thienel, Julie; Sanner, Robert M.

    2002-01-01

    A nonlinear control scheme for attitude control of a spacecraft is combined with a nonlinear gyro misalignment and bias observer for the case of constant gyro misalignment and bias. A persistency of excitation analysis shows the observer gyro bias estimates converge to the true bias values exponentially fast. The convergence of the misalignment estimates is also presented. Then; the resulting coupled, closed loop dynamics are proven by a Lyapunov analysis to be globally stable, with asymptotically perfect tracking. The analysis is extended to consider the effects of noise in addition to the gyro misalignment and bias. A simulation of the proposed observer-controller design is given for a rigid spacecraft tracking a specified, time-varying attitude sequence to illustrate the theoretical claims.

  14. Residual Bias Phenomenon in Air-Coupled Ultrasonic Capacitive Film Transducers

    NASA Astrophysics Data System (ADS)

    Holland, Stephen D.; Song, Jun-Ho; Chimenti, D. E.

    2006-03-01

    We discuss in this paper the underlying physics of a residual bias phenomenon, whereby the metalized Mylar films of air-coupled film transducers accept and retain a residual electrostatic charge. Experimental measurements to demonstrate and quantify this effect are reported here, along with a hypothesis of the mechanism of charge transfer and embedding. The measurements show the amplitude performance of the capacitive film transducers as a function of applied bias voltage and frequency. Factors such as humidity and decay time also play roles in the acquisition and holding of charge on a film. We hypothesize that charge transfers from the conductive backplate and collects on the non-metalized side of the film. The charged films therefore are electrostatically attracted to the transducer backplate even with no applied voltage bias. Typically, an externally applied bias voltage is needed to charge the capacitor. With a persistent residual bias effect, these air-coupled capacitive film transducers could be used like conventional piezoelectric transducers with no biasing required. This effect has substantial implications for the operation of air-coupled film transducers.

  15. Effect of morphology on exchange bias in NiMnSn and NiCoMnIn magnetic shape memory alloys

    NASA Astrophysics Data System (ADS)

    Lapa, Pavel N.; Monroe, James A.; Franco, Brian E.; Karaman, Ibrahim; Roshchin, Igor V.

    2014-03-01

    Exchange bias (EB) is one of puzzling magnetic properties of magnetic shape memory alloys (MSMA). Despite a few attempts to explain the mechanism, there is no comprehensive model describing it. The main obstacle is the lack of information about the magnetic structure of martensitic and austenite phases. In contrast to classical EB systems where the exchange coupling happens at the interface between ferromagnetic and antiferromagnetic layers, the EB in MSMA is attributed to coexistence of ferromagnetic and antiferromagnetic regions. We report the results of structural analysis obtained using wavelength-dispersive X-ray spectroscopy (WDS) and magnetic characterization of these samples. We observe a correlation of EB with the secondary heat treatment for NiCoMnIn alloys. Comparative first order reversal curve (FORC) analysis for NiMnSn samples with different heat treatment suggests a correlation between morphology and distribution of exchange bias values. Additionally, exchange bias in these alloys can be induced even after zero-field cooling by applying a constant field for 2 hours before measuring the magnetization curve. This behavior is consistent with magnetic glassiness observed in these alloys at low temperatures. The work is funded by TAMU and US NSF-DMR MMN program/MWN initiative grant 1108396.

  16. Investigating the mechanisms of seasonal ENSO phase locking bias in the ACCESS coupled model

    NASA Astrophysics Data System (ADS)

    Rashid, Harun A.; Hirst, Anthony C.

    2016-02-01

    The mechanisms of coupled model bias in seasonal ENSO phase locking are investigated using versions 1.0 and 1.3 of the CSIRO-BOM ACCESS coupled model (hereafter, ACCESS1.0 and ACCESS1.3, respectively). The two ACCESS coupled models are mostly similar in construction except for some differences, the most notable of which are in the cloud and land surface schemes used in the models. ACCESS1.0 simulates a realistic seasonal phase locking, with the ENSO variability peaking in December as in observations. On the other hand, the simulated ENSO variability in ACCESS1.3 peaks in March, a bias shown to be shared by many other CMIP5 models. To explore the mechanisms of this model bias, we contrast the atmosphere-ocean feedbacks associated with ENSO in both ACCESS model simulations and also compare the key feedbacks with those in other CMIP5 models. We find evidence that the ENSO phase locking bias in ACCESS1.3 is primarily caused by incorrect simulations of the shortwave feedback and the thermocline feedback in this model. The bias in the shortwave feedback is brought about by unrealistic SST-cloud interactions leading to a positive cloud feedback bias that is largest around March, in contrast to the strongest negative cloud feedback found in ACCESS1.0 simulations and observations at that time. The positive cloud feedback bias in ACCESS1.3 is the result of a dominant role played by the low-level clouds in its modeled SST-cloud interactions in the tropical eastern Pacific. Two factors appear to contribute to the dominance of low-level clouds in ACCESS1.3: the occurrence of a stronger mean descending motion bias and, to a lesser extent, a larger mean SST cold bias during March-April in ACCESS1.3 than in ACCESS1.0. A similar association is found between the positive cloud feedback bias and the biases in spring-time mean descending motion and SST for a group of CMIP5 models that show a seasonal phase locking bias similar to ACCESS1.3. Significant differences are also found

  17. Exchange-bias reversal in magnetically compensated ErFe O3 single crystal

    NASA Astrophysics Data System (ADS)

    Fita, I.; Wisniewski, A.; Puzniak, R.; Markovich, V.; Gorodetsky, G.

    2016-05-01

    An exchange-bias (EB) effect observed in single crystal ErFe O3 compensated ferrimagnet, exhibiting the EB field HEB increasing and diverging upon approaching compensation temperature Tcomp=45 K , and changing sign with crossing Tcomp, is reported. The EB sign may be changed to the opposite one by varying the field-cooling protocol, depending on whether Tcomp is crossed with decreasing or increasing temperature. Namely, a different EB sign with the same | HEB| and coercive field HC values is obtained approaching a given T with increasing and decreasing temperature and the HEB(T ) dependence completed in one way is a mirror image of that completed in another way.

  18. Electrical control of exchange bias via oxygen migration across CoO-ZnO nanocomposite barrier

    NASA Astrophysics Data System (ADS)

    Li, Q.; Yan, S. S.; Xu, J.; Li, S. D.; Zhao, G. X.; Long, Y. Z.; Shen, T. T.; Zhang, K.; Zhang, J.

    2016-12-01

    We proposed a nanocomposite barrier CoO-ZnO for magnetism manipulation in Co/CoO-ZnO/Ag heterojunctions. Both electrical control of magnetism and resistive switching were realized in this junction. An electrical tunable exchange bias of CoO1-v (v denotes O vacancies) on Co films was realized using voltages below 1 volt. The magnetism modulation associated with resistive switching can be attributed to the oxygen ions migration between the insulating CoO1-v layer and the semiconductive ZnO1-v layer, which can cause both ferromagnetic phase and resistance switching of CoO1-v layer.

  19. Exchange bias in finite sized NiO nanoparticles with Ni clusters

    NASA Astrophysics Data System (ADS)

    Gandhi, Ashish Chhaganlal; Lin, Jauyn Grace

    2017-02-01

    Structural and magnetic properties of finite sized NiO nanoparticles are investigated with synchrotron X-ray diffraction (XRD), transmission electron microscopy, magnetometer and ferromagnetic resonance (FMR) spectroscopy. A minor Ni phase is detected with synchrotron XRD, attributed to the oxygen defects in the NiO core. A considerable exchange bias of 100 Oe is observed at 50 K and it drops abruptly and vanishes above 150 K, in association with the reduction of frozen spins. FMR data indicate a strong interaction between ferromagnetic (FM) and antiferromagnetic (AFM) phases below 150 K, consistent with the picture of isolated FM clusters in AFM matrix.

  20. Modification of the saturation magnetization of exchange bias thin film systems upon light-ion bombardment

    NASA Astrophysics Data System (ADS)

    Huckfeldt, Henning; Gaul, Alexander; Müglich, Nicolas David; Holzinger, Dennis; Nissen, Dennis; Albrecht, Manfred; Emmrich, Daniel; Beyer, André; Gölzhäuser, Armin; Ehresmann, Arno

    2017-03-01

    The magnetic modification of exchange bias materials by ‘ion bombardment induced magnetic patterning’ has been established more than a decade ago. To understand these experimental findings several theoretical models were introduced. Few investigations, however, did focus on magnetic property modifications caused by effects of ion bombardment in the ferromagnetic layer. In the present study, the structural changes occurring under ion bombardment were investigated by Monte-Carlo simulations and in experiments. A strong reduction of the saturation magnetization scaling linearly with increasing ion doses is observed and our findings suggest that it is correlated to the swelling of the layer material based on helium implantation and vacancy creation.

  1. Are atmospheric biases responsible for the tropical Atlantic SST biases in the CNRM-CM5 coupled model?

    NASA Astrophysics Data System (ADS)

    Voldoire, A.; Claudon, M.; Caniaux, G.; Giordani, H.; Roehrig, R.

    2014-12-01

    southeastern Atlantic regions, to comprehensively address the Atlantic SST bias. As pointed out in Richter (Clim Dyn, doi:10.1007/s00382-012-1624-5, 2013), the need to improve the atmospheric component of the CNRM-CM model is emphasized, even though strong positive coupling feedbacks are highlighted.

  2. Doping dependent magnetism and exchange bias in CaMn{sub 1−x}W{sub x}O{sub 3} manganites

    SciTech Connect

    Markovich, V. Gorodetsky, G.; Fita, I.; Wisniewski, A.; Puzniak, R.; Naumov, S. V.; Mostovshchikova, E. V.; Telegin, S. V.; Jung, G.

    2014-09-07

    Magnetic properties of CaMn{sub 1−x}W{sub x}O{sub 3} (0 ≤ x ≤ 0.1) have been investigated, and the research was focused on the exchange bias (EB) phenomenon in CaMn{sub 0.93}W{sub 0.07}O{sub 3}. Magnetic ground state was found to be dependent on tungsten doping level and the following states were distinguished: (i) G-type antiferromagnetic (AFM) state with a weak ferromagnetic (FM) component at x = 0 and 0.04; (ii) mostly orbitally ordered C-type AFM at x = 0.07 and 0.1. For the studied manganites, spontaneous magnetization increases sharply with increasing doping level reaching M{sub 0} ≈ 9.5 emu/g at T = 10 K for x = 0.04, and then decreases rapidly reaching zero for x = 0.1. Exchange bias effect, manifested by vertical and horizontal shifts in the hysteresis loop for field cooled sample, has been observed in CaMn{sub 0.93}W{sub 0.07}O{sub 3}. Exchange bias field, coercivity, remanence asymmetry, and magnetic coercivity depend strongly on temperature, cooling field, and maximal measuring field. Horizontal and vertical shifts of magnetization loop sharply decrease with increasing temperature and vanish above 70 K, whereas coercivity and magnetic coercivity disappear only above 100 K (temperature of transition to the G-type AFM state). The exchange bias field H{sub EB} increases with increasing cooling field H{sub cool} and goes through a broad maximum at 40 kOe, while the remanence asymmetry increases monotonously in the entire investigated cooling field range, up to 50 kOe. For the compound with x = 0.07, the size of the FM regions ≈2 nm was estimated from the dependence of exchange bias field H{sub EB} upon H{sub cool}. It is suggested that the exchange bias originates from interface exchange coupling between small FM clusters and the G-type AFM phase inside the primary C-type orbitally ordered AFM phase.

  3. Driven Nonlinear Dynamics of Two Coupled Exchange-Only Qubits

    NASA Astrophysics Data System (ADS)

    Pal, Arijeet; Rashba, Emmanuel I.; Halperin, Bertrand I.

    2014-01-01

    Inspired by the creation of a fast exchange-only qubit [Medford et al., Phys. Rev. Lett. 111, 050501 (2013)], we develop a theory describing the nonlinear dynamics of two such qubits that are capacitively coupled, when one of them is driven resonantly at a frequency equal to its level splitting. We include conditions of strong driving, where the Rabi frequency is a significant fraction of the level splitting, and we consider situations where the splitting for the second qubit may be the same as or different than the first. We demonstrate that coupling between qubits can be detected by reading the response of the second qubit, even when the coupling between them is only of about 1% of their level splittings, and we calculate entanglement between qubits. Patterns of nonlinear dynamics of coupled qubits and their entanglement are strongly dependent on the geometry of the system, and the specific mechanism of interqubit coupling deeply influences dynamics of both qubits. In particular, we describe the development of irregular dynamics in a two-qubit system, explore approaches for inhibiting it, and demonstrate the existence of an optimal range of coupling strength maintaining stability during the operational time.

  4. Interfacial Ferromagnetism and Exchange Bias in CaRuO3/CaMnO3 Superlattices

    DTIC Science & Technology

    2012-11-07

    and the interface region is consistent with double exchange interaction among the Mn ions at the interface. Polarized neutron reflectivity and the...CaMnO3 thickness dependence of the exchange bias field together indicate that the interfacial 1. REPORT DATE ( DD -MM-YYYY) 4. TITLE AND SUBTITLE 13...consistent with double exchange interaction among the Mn ions at the interface. Polarized neutron reflectivity and the CaMnO3 thickness dependence of the

  5. Exchange bias in a mixed metal oxide based magnetocaloric compound YFe0.5Cr0.5O3

    NASA Astrophysics Data System (ADS)

    Sharma, Mohit K.; Singh, Karan; Mukherjee, K.

    2016-09-01

    We report a detailed investigation of magnetization, magnetocaloric effect and exchange bias studies on a mixed metal oxide YFe0.5Cr0.5O3 belonging to perovskite family. Our results reveal that the compound is in canted magnetic state (CMS) where ferromagnetic correlations are present in an antiferromagnetic state. Magnetic entropy change of this compound follows a power law (∆SM∼Hm) dependence of magnetic field. In this compound, inverse magnetocaloric effect (IMCE) is observed below 260 K while conventional magnetocaloric effect (CMCE) above it. The exponent 'm' is found to be independent of temperature and field only in the IMCE region. Investigation of temperature and magnetic field dependence studies of exchange bias, reveal a competition between effective Zeeman energy of the ferromagnetic regions and anisotropic exchange energy at the interface between ferromagnetic and antiferromagnetic regions. Variation of exchange bias due to temperature and field cycling is also investigated.

  6. Exchange bias properties of [Co/CoO]{sub n} multilayers

    SciTech Connect

    Oeztuerk, M.; S Latin-Small-Letter-Dotless-I n Latin-Small-Letter-Dotless-I r, E.; Demirci, E.; Erkovan, M.; Oeztuerk, O.; Akdogan, N.

    2012-11-01

    In this study, the exchange bias properties of four polycrystalline multilayer stack samples of antiferromagnetic (AF) CoO and ferromagnetic (FM) Co in the form of [CoO/Co]{sub n} with n = 1, 2, 3, and 5 are reported. The samples were grown on top of Si (001) substrates by using magnetron sputtering method. X-ray photoelectron spectroscopy (XPS) and transmission electron microscopy (TEM) were used to determine the structural properties of the samples. XPS measurements of cobalt oxide layer revealed the coexistence of different phases in cobalt oxide as CoO and Co{sub 3}O{sub 4}, the latter of which lowers the blocking temperature. The blocking temperature is also affected by the finite size scaling effects observed in AF layers. In-plane ferromagnetic resonance (FMR) measurements revealed uniaxial in-plane magnetic anisotropy for the samples. Low temperature vibrating sample magnetometer measurements provided exchange bias with a stepwise character. Observed steps are believed to be due to magnetization reversals of individual FM layers with varying thicknesses, each of which is pinned through two interfaces from above and below with two AFM layers, except the uppermost FM Co layer with a single AFM neighbor.

  7. NiO/Fe(001): Magnetic anisotropy, exchange bias, and interface structure

    SciTech Connect

    Mlynczak, E.; Luches, P.

    2013-06-21

    The magnetic and structural properties of NiO/Fe epitaxial bilayers grown on MgO(001) were studied using magnetooptic Kerr effect (MOKE) and conversion electron Moessbauer spectroscopy (CEMS). The bilayers were prepared under ultra high vacuum conditions using molecular beam epitaxy with oblique deposition. Two systems were compared: one showing the exchange bias (100ML-NiO/24ML-Fe), ML stands for a monolayer, and another where the exchange bias was not observed (50ML-NiO/50ML-Fe). For both, the magnetic anisotropy was found to be complex, yet dominated by the growth-induced uniaxial anisotropy. The training effect was observed for the 100ML-NiO/24ML-Fe system and quantitatively described using the spin glass model. The composition and magnetic state of the interfacial Fe layers were studied using {sup 57}Fe-CEMS. An iron oxide phase (Fe{sup 3+}{sub 4}Fe{sup 2+}{sub 1}O{sub 7}), as thick as 31 A, was identified at the NiO/Fe interface in the as-deposited samples. The ferrimagnetic nature of the interfacial iron oxide film explains the complex magnetic anisotropy observed in the samples.

  8. NiO/Fe(001): Magnetic anisotropy, exchange bias, and interface structure

    NASA Astrophysics Data System (ADS)

    Młyńczak, E.; Luches, P.; Valeri, S.; Korecki, J.

    2013-06-01

    The magnetic and structural properties of NiO/Fe epitaxial bilayers grown on MgO(001) were studied using magnetooptic Kerr effect (MOKE) and conversion electron Mössbauer spectroscopy (CEMS). The bilayers were prepared under ultra high vacuum conditions using molecular beam epitaxy with oblique deposition. Two systems were compared: one showing the exchange bias (100ML-NiO/24ML-Fe), ML stands for a monolayer, and another where the exchange bias was not observed (50ML-NiO/50ML-Fe). For both, the magnetic anisotropy was found to be complex, yet dominated by the growth-induced uniaxial anisotropy. The training effect was observed for the 100ML-NiO/24ML-Fe system and quantitatively described using the spin glass model. The composition and magnetic state of the interfacial Fe layers were studied using 57Fe-CEMS. An iron oxide phase (Fe3+4Fe2+1O7), as thick as 31 Å, was identified at the NiO/Fe interface in the as-deposited samples. The ferrimagnetic nature of the interfacial iron oxide film explains the complex magnetic anisotropy observed in the samples.

  9. Optimization of exchange bias in Co/CoO magnetic nanocaps by tuning deposition parameters

    NASA Astrophysics Data System (ADS)

    Sharma, A.; Tripathi, J.; Ugochukwu, K. C.; Tripathi, S.

    2017-03-01

    In the present work, we report exchange bias tuning by varying thin film deposition parameters such as synthesis method and underlying layer patterning. The patterned substrates for this study were prepared by self-assembly of polystyrene (PS) latex spheres ( 530 nm) on Si (100) substrate. The desired magnetic nanocaps composed of CoO/Co bilayer film on these patterned substrates were prepared by molecular beam epitaxy technique under ultra-high vacuum conditions. For this, a Co layer of 10 nm thickness was deposited on the substrates and then oxidized in-situ to form CoO/Co/PS in-situ oxidized film or ex-situ in ambiance which also gives CoO/Co/PS naturally oxidized film. Simultaneously, reference thin films of Co ( 10 nm) were also prepared on plane Si substrate and similar oxidation treatments were performed on them respectively. The magnetic properties studied using SQUID technique revealed higher exchange bias ( 1736 Oe) in the in-situ oxidized Co/PS film as compared to that in naturally oxidized Co/PS film ( 1544 Oe) and also compared to the reference film. The observed variations in the magnetic properties are explained in terms of surface patterning induced structural changes of the deposited films and different oxidation methods.

  10. Effect of interfacial iron oxidation on the exchange bias in CoO/Fe bilayers

    NASA Astrophysics Data System (ADS)

    Młyńczak, E.; Gurgul, J.; Przewoźnik, J.; Wilgocka-Ślęzak, D.; Freindl, K.; Spiridis, N.; Korecki, J.

    2014-06-01

    The relation between the interface structure and the exchange bias was studied in the epitaxial CoO/Fe(0 0 1) bilayers that were grown on MgO(0 0 1) using molecular beam epitaxy. Three samples with different interface structures were prepared. The CoO/Fe bilayer, which was prepared using the reactive evaporation of CoO, served as the reference sample. In the other two samples, the CoO/Fe interfaces were modified prior to the CoO growth using either (i) the deposition of a 2 Å thick Co layer or (ii) an exposure to molecular oxygen, which resulted in under- and over-oxidized CoO/Fe interfaces, respectively. The actual structures of the resulting interfaces were revealed using conversion electron Mössbauer spectroscopy. For each sample, an iron oxide was found at the interface, and its amount depended on the sample preparation recipe. The exchange bias effect (EB), as a function of the temperature, was experimentally studied in detail using VSM magnetometry. The coercivity showed a distinct peak near the blocking temperature for all samples; however, the peak's location and its width were diverse. The obtained EB values depended on the interface structure. The largest hysteresis loop shift (HEB = 180 Oe at 4 K) was obtained for the sample with the thickest interfacial iron oxide layer.

  11. Biased ligands for better cardiovascular drugs: dissecting G-protein-coupled receptor pharmacology.

    PubMed

    DeWire, Scott M; Violin, Jonathan D

    2011-07-08

    Drug discovery efforts targeting G-protein-coupled receptors (GPCR) have been immensely successful in creating new cardiovascular medicines. Currently marketed GPCR drugs are broadly classified as either agonists that activate receptors or antagonists that prevent receptor activation by endogenous stimuli. However, GPCR couple to a multitude of intracellular signaling pathways beyond classical G-protein signals, and these signals can be independently activated by biased ligands to vastly expand the potential for new drugs at these classic targets. By selectively engaging only a subset of a receptor's potential intracellular partners, biased ligands may deliver more precise therapeutic benefit with fewer side effects than current GPCR-targeted drugs. In this review, we discuss the history of biased ligand research, the current understanding of how biased ligands exert their unique pharmacology, and how research into GPCR signaling has uncovered previously unappreciated capabilities of receptor pharmacology. We focus on several receptors to illustrate the approaches taken and discoveries made, and how these are steadily illuminating the intricacies of GPCR pharmacology. Discoveries of biased ligands targeting the angiotensin II type 1 receptor and of separable pharmacology suggesting the potential value of biased ligands targeting the β-adrenergic receptors and nicotinic acid receptor GPR109a highlight the powerful clinical promise of this new category of potential therapeutics.

  12. A Practical Guide to Approaching Biased Agonism at G Protein Coupled Receptors

    PubMed Central

    Gundry, Jaimee; Glenn, Rachel; Alagesan, Priya; Rajagopal, Sudarshan

    2017-01-01

    Biased agonism, the ability of a receptor to differentially activate downstream signaling pathways depending on binding of a “biased” agonist compared to a “balanced” agonist, is a well-established paradigm for G protein-coupled receptor (GPCR) signaling. Biased agonists have the promise to act as smarter drugs by specifically targeting pathogenic or therapeutic signaling pathways while avoiding others that could lead to side effects. A number of biased agonists targeting a wide array of GPCRs have been described, primarily based on their signaling in pharmacological assays. However, with the promise of biased agonists as novel therapeutics, comes the peril of not fully characterizing and understanding the activities of these compounds. Indeed, it is likely that some of the compounds that have been described as biased, may not be if quantitative approaches for bias assessment are used. Moreover, cell specific effects can result in “system bias” that cannot be accounted by current approaches for quantifying ligand bias. Other confounding includes kinetic effects which can alter apparent bias and differential propagation of biological signal that results in different levels of amplification of reporters downstream of the same effector. Moreover, the effects of biased agonists frequently cannot be predicted from their pharmacological profiles, and must be tested in the vivo physiological context. Thus, the development of biased agonists as drugs requires a detailed pharmacological characterization, involving both qualitative and quantitative approaches, and a detailed physiological characterization. With this understanding, we stand on the edge of a new era of smarter drugs that target GPCRs. PMID:28174517

  13. Stabilization of magnetic helix in exchange-coupled thin films

    PubMed Central

    Dzemiantsova, L. V.; Meier, G.; Röhlsberger, R.

    2015-01-01

    Based on micromagnetic simulations, we report on a novel magnetic helix in a soft magnetic film that is sandwiched between and exchange-coupled to two hard magnetic layers with different anisotropies. We show that such a confined helix stays stable without the presence of an external magnetic field. The magnetic stability is determined by the energy minimization and is a result of an internal magnetic field created by the exchange interaction. We show that this internal field stores a magnetic energy density of a few kJ/m3. We also find that it dramatically modifies ferromagnetic resonances, such that the helix can be used as a ferromagnetic resonance filter and a fast acting attenuator. PMID:26537574

  14. Interface roughness induced asymmetric magnetic property in sputter-deposited Co/CoO/Co exchange coupled trilayers

    SciTech Connect

    Wang, J.; Sannomiya, T.; Shi, J.; Nakamura, Y.

    2012-04-01

    The effect of interface roughness on magnetic properties of exchange coupled polycrystalline Co/CoO(t{sub AF})/Co trilayers has been investigated by varying antiferromagnetic layer (CoO) thickness. It has been found that the upper CoO/Co interface becomes rougher with increasing CoO layer thickness, resulting in stronger exchange bias of the upper interface than the lower one. The interfacial exchange coupling is strengthened by the increase of defect-generated uncompensated antiferromagnetic spins; such spins form coupling with spins in the Co layer at the interface. As a result, the CoO layer thickness dependence of exchange bias is much enhanced for the upper Co layer. The transition from anisotropic magnetoresistance to isotropic magnetoresistance for the top Co layer has also been found. This could be attributed to the defects, probably partial thin oxide layers, between Co grains in the top Co layer that leads a switch from spin-orbit scattering related magnetoresistance to spin-dependent electron scattering dominated magnetoresistance.

  15. Tuning the exchange bias in NiFe/Fe-oxide bilayers by way of different Fe-oxide based mixtures made with an ion-beam deposition technique.

    PubMed

    Lin, K W; Kol, P H; Guo, Z Y; Ouyang, H; van Lierop, J

    2007-01-01

    We have investigated the structural and magnetic properties of ion-beam deposited polycrystalline NiFe (25 nm)/Fe-oxide (35 nm) bilayers. A film prepared with an assist beam O2 to Ar gas ratio of 0% during deposition had a bottom layer that consisted of pure b.c.c. Fe (a = 2.87 A) whereas films prepared with 19%O2/Ar and 35%O2/Ar had either Fe3O4 (a = 8.47 angstroms) or alpha-Fe2O3 (a = 5.04 angstroms, c = 13.86 angstroms) bottom layers, respectively. Cross-sectional transmission electron microscopy revealed a smooth interface between the top nano-columnar NiFe and bottom nano-columnar Fe-oxide layer for all films. At room temperature, the observed coercivity (Hc approximately 25 Oe) for a film prepared with 19% O2/Ar indicates the existence of a magnetically hard ferrimagnetic Fe3O4 phase that is enhancing the plain NiFe (Hc approximately 2 Oe) by way of exchange coupling. A significant amount of exchange bias is observed below 50 K, and at 10 K the size of exchange bias hysteresis loops shift increases with increasing oxygen in the films. Furthermore, the strongest exchange coupling (H(ex) approximately 135 Oe at 10 K) is with alpha-Fe2O3 (35% O2/Ar) as the bottom film layer. This indicates that the pure antiferromagnetic phases work better than ferrimagnetic phases when in contact with ferromagnetic NiFe. H(ex) (T) is well described by an effective AF domain wall energy that creates an exchange field with a (1 - T/T(crit)) temperature dependence. Hc (T) exhibits three distinct regimes of constant temperature that may indicate the existence of different AF spin populations that couple to the FM layer at different temperatures.

  16. Magnon softening in exchange-coupled hard-soft nanocomposites

    NASA Astrophysics Data System (ADS)

    Belemuk, A. M.; Chui, S. T.

    2013-03-01

    We study spin excitations of the fully aligned state for three-dimensional nanocomposites of exchange coupled hard (SmFeN) and soft (FeCo) phases. The dipolar interaction lowers the magnon energy and controls the spin wave gap at k = 0, which closes when the amount of soft phase exceeds a critical value. With the addition of soft phase or increasing temperature the system moves to another ground state characterized by a tilting of the magnetization at the boundaries between spins of the hard and the soft phases.

  17. Synthesis and controllable oxidation of monodisperse cobalt-doped wüstite nanoparticles and their core-shell stability and exchange-bias stabilization.

    PubMed

    Chen, Chih-Jung; Chiang, Ray-Kuang; Kamali, Saeed; Wang, Sue-Lein

    2015-09-14

    Cobalt-doped wüstite (CWT), Co0.33Fe0.67O, nanoparticles were prepared via the thermal decomposition of CoFe2-oleate complexes in organic solvents. A controllable oxidation process was then performed to obtain Co0.33Fe0.67O/CoFe2O4 core-shell structures with different core-to-shell volume ratios and exchange bias properties. The oxidized core-shell samples with a ∼4 nm CoFe2O4 shell showed good resistance to oxygen transmission. Thus, it is inferred that the cobalt ferrite shell provides a better oxidation barrier performance than magnetite in the un-doped case. The hysteresis loops of the oxidized 19 nm samples exhibited a high exchange bias field (H(E)), an enhanced coercivity field (H(C)), and a pronounced vertical shift, thus indicating the presence of a strong exchange bias coupling effect. More importantly, the onset temperature of H(E) was found to be higher than 200 K, which suggests that cobalt doping increases the Néel temperature (T(N)) of the CWT core. In general, the results show that the homogeneous dispersion of Co in iron precursors improves the stability of the final CWT nanoparticles. Moreover, the CoFe2O4 shells formed following oxidation increase the oxidation resistance of the CWT cores and enhance their anisotropy energy.

  18. Fulfilling the Promise of "Biased" G Protein–Coupled Receptor Agonism

    PubMed Central

    Maudsley, Stuart; Bohn, Laura M.

    2015-01-01

    The fact that over 30% of current pharmaceuticals target heptahelical G protein–coupled receptors (GPCRs) attests to their tractability as drug targets. Although GPCR drug development has traditionally focused on conventional agonists and antagonists, the growing appreciation that GPCRs mediate physiologically relevant effects via both G protein and non–G protein effectors has prompted the search for ligands that can "bias" downstream signaling in favor of one or the other process. Biased ligands are novel entities with distinct signaling profiles dictated by ligand structure, and the potential prospect of biased ligands as better drugs has been pleonastically proclaimed. Indeed, preclinical proof-of-concept studies have demonstrated that both G protein and arrestin pathway-selective ligands can promote beneficial effects in vivo while simultaneously antagonizing deleterious ones. But along with opportunity comes added complexity and new challenges for drug discovery. If ligands can be biased, then ligand classification becomes assay dependent, and more nuanced screening approaches are needed to capture ligand efficacy across several dimensions of signaling. Moreover, because the signaling repertoire of biased ligands differs from that of the native agonist, unpredicted responses may arise in vivo as these unbalanced signals propagate. For any given GPCR target, establishing a framework relating in vitro efficacy to in vivo biologic response is crucial to biased drug discovery. This review discusses approaches to describing ligand efficacy in vitro, translating ligand bias into biologic response, and developing a systems-level understanding of biased agonism in vivo, with the overall goal of overcoming current barriers to developing biased GPCR therapeutics. PMID:26134495

  19. Skin Temperature Analysis and Bias Correction in a Coupled Land-Atmosphere Data Assimilation System

    NASA Technical Reports Server (NTRS)

    Bosilovich, Michael G.; Radakovich, Jon D.; daSilva, Arlindo; Todling, Ricardo; Verter, Frances

    2006-01-01

    In an initial investigation, remotely sensed surface temperature is assimilated into a coupled atmosphere/land global data assimilation system, with explicit accounting for biases in the model state. In this scheme, an incremental bias correction term is introduced in the model's surface energy budget. In its simplest form, the algorithm estimates and corrects a constant time mean bias for each gridpoint; additional benefits are attained with a refined version of the algorithm which allows for a correction of the mean diurnal cycle. The method is validated against the assimilated observations, as well as independent near-surface air temperature observations. In many regions, not accounting for the diurnal cycle of bias caused degradation of the diurnal amplitude of background model air temperature. Energy fluxes collected through the Coordinated Enhanced Observing Period (CEOP) are used to more closely inspect the surface energy budget. In general, sensible heat flux is improved with the surface temperature assimilation, and two stations show a reduction of bias by as much as 30 Wm(sup -2) Rondonia station in Amazonia, the Bowen ratio changes direction in an improvement related to the temperature assimilation. However, at many stations the monthly latent heat flux bias is slightly increased. These results show the impact of univariate assimilation of surface temperature observations on the surface energy budget, and suggest the need for multivariate land data assimilation. The results also show the need for independent validation data, especially flux stations in varied climate regimes.

  20. Magnetic properties of NixFe100-x layers in exchange-coupled FeMn/NixFe100-x film structures

    NASA Astrophysics Data System (ADS)

    Adanakova, Olga; Lepalovskij, Vladimir; Svalov, Andrey; Larrañaga, Aitor; Trubin, Anton; Vas'kovskiy, Vladimir

    2016-09-01

    Thin Fe20Ni80/FeMn/NixFe100-x multilayers were prepared using magnetron sputtering. The influence of composition on crystalline structure, exchange bias, magnetic hysteresis, and spontaneous magnetization of FeNi ferromagnetic layers coupled with the antiferromagnetic FeMn layer was investigated.

  1. Exchange bias in polycrystalline magnetite films made by ion-beam assisted deposition

    SciTech Connect

    Kaur, Maninder; Qiang, You; Jiang, Weilin; Burks, Edward C.; Liu, Kai; Namavar, Fereydoon; McCloy, John S.

    2014-11-07

    Iron oxide films were produced using ion-beam-assisted deposition, and Raman spectroscopy and x-ray diffraction indicate single-phase magnetite. However, incorporation of significant fractions of argon in the films from ion bombardment is evident from chemical analysis, and Fe/O ratios are lower than expected from pure magnetite, suggesting greater than normal disorder. Low temperature magnetometry and first-order reversal curve measurements show strong exchange bias, which likely arises from defects at grain boundaries, possibly amorphous, creating frustrated spins. Since these samples contain grains ∼6 nm, a large fraction of the material consists of grain boundaries, where spins are highly disordered and reverse independently with external field.

  2. Training effects and the microscopic magnetic structure of exchange biased Co/CoO bilayers.

    SciTech Connect

    Berger, A.; Dahlberg, E. D.; Felcher, G. P.; Hill, B. K.; te Velthius, S. G. E.

    1999-09-01

    Exchange bias of a partially oxidized thin film of ferromagnetic Co was studied by magnetization measurements and polarized neutron reflectivity (PNR). The magnetization curve shows strong effects of training with cycling of the magnetic field. Reflectivity measurements with the field parallel to the cooling field showed the onset of spin-dependent diffuse scattering--off the specular reflection--after a training cycle. Such scattering, of the Yoneda type, is due to misaligned Co domains possibly close to the Co/CoO interface. Subjecting the field cooled Co/CoO pair to a field perpendicular to the cooling field causes a rotation of the magnetization. PNR measurements confirmed earlier susceptibility studies by indicating that the rotation of the magnetization is reversible in fields up to 400 Oe. The rotation of the magnetization of Co is uniform across the film thickness.

  3. Selective realignment of the exchange biased magnetization direction in spintronic layer stacks using continuous and pulsed laser radiation

    NASA Astrophysics Data System (ADS)

    Berthold, I.; Müller, M.; Ebert, R.; Schille, J.; Löschner, U.; Exner, H.; Matthes, P.; Albrecht, M.

    2014-03-01

    We report on selective realignment of the magnetization direction of the exchange biased ferromagnetic layer in two different spintronic layer stacks using laser radiation. The exchange bias effect occurs in an antiferromagnetic/ferromagnetic bilayer system when cooled in an external magnetic field below the Néel temperature and results in a shift of the ferromagnetic hysteresis loop with increased coercivity. The effect is utilized to pin the magnetization direction of the reference ferromagnetic layer in spin valve systems. We investigated the realignment of the pinned magnetization direction in a spin valve system with in plane exchange bias and in a Co/Pt multilayer with perpendicular exchange bias. The layer stacks were heated above the Néel temperature in a defined lateral area by using rapidly deflected laser radiation. Two different laser assisted annealing techniques were investigated applying either continuous or pulsed laser radiation. During laser annealing, the sample was subjected to an external magnetic field in order to selectively realign the magnetization direction of the pinned ferromagnetic layer. Magnetic structuring was performed by heating narrow single tracks as well as irradiating single pulses. By using a magneto optical sensor in combination with a polarization microscope, the magnetic structures have been visualized. After laser annealing of larger-scaled areas, the exchange bias field strength and the coercive field strength were analyzed using a magneto optical Kerr effect set up (MOKE). The impact of the processing parameters laser peak intensity, laser pulse duration, scan speed (continuous wave) and magnetic field strength on the resulting reversed exchange bias field was evaluated.

  4. Broadband ferromagnetic resonance characterization of anisotropies and relaxation in exchange-biased IrMn/CoFe bilayers

    NASA Astrophysics Data System (ADS)

    Beik Mohammadi, Jamileh; Jones, Joshua Michael; Paul, Soumalya; Khodadadi, Behrouz; Mewes, Claudia K. A.; Mewes, Tim; Kaiser, Christian

    2017-02-01

    The magnetization dynamics of exchange-biased IrMn/CoFe bilayers have been investigated using broadband and in-plane angle-dependent ferromagnetic resonance spectroscopy. The interface energy of the exchange bias effect in these bilayers exceeds values previously reported for metallic antiferromagnets. A strong perpendicular magnetic anisotropy and a small in-plane uniaxial anisotropy are also observed in these films. The magnetization relaxation of the bilayers has a strong unidirectional contribution, which is in part caused by two-magnon scattering. However, a detailed analysis of in-plane angle- and thickness-dependent linewidth data strongly suggests the presence of a previously undescribed unidirectional relaxation mechanism.

  5. Current-driven non-linear magnetodynamics in exchange-biased spin valves

    SciTech Connect

    Seinige, Heidi; Wang, Cheng; Tsoi, Maxim

    2015-05-07

    This work investigates the excitation of parametric resonance in exchange-biased spin valves (EBSVs). Using a mechanical point contact, high density dc and microwave currents were injected into the EBSV sample. Observing the reflected microwave power and the small rectification voltage that develops across the contact allows detecting the current-driven magnetodynamics not only in the bulk sample but originating exclusively from the small contact region. In addition to ferromagnetic resonance (FMR), parametric resonance at twice the natural FMR frequency was observed. In contrast to FMR, this non-linear resonance was excited only in the vicinity of the point contact where current densities are high. Power-dependent measurements displayed a typical threshold-like behavior of parametric resonance and a broadening of the instability region with increasing power. Parametric resonance showed a linear shift as a function of applied dc bias which is consistent with the field-like spin-transfer torque induced by current on magnetic moments in EBSV.

  6. The exchange bias phenomenon in uncompensated interfaces: theory and Monte Carlo simulations.

    PubMed

    Billoni, O V; Cannas, S A; Tamarit, F A

    2011-09-28

    We performed Monte Carlo simulations of a bilayer system composed of two thin films, one ferromagnetic (FM) and the other antiferromagnetic (AFM). Two lattice structures for the films were considered: simple cubic and body centered cubic (bcc). We imposed an uncompensated interfacial spin structure in both lattice structures; in particular we emulated an FeF2-FM system in the case of the bcc lattice. Our analysis focused on the incidence of the interfacial strength interactions between the films, J(eb), and the effect of thermal fluctuations on the bias field, H(EB). We first performed Monte Carlo simulations on a microscopic model based on classical Heisenberg spin variables. To analyze the simulation results we also introduced a simplified model that assumes coherent rotation of spins located on the same layer parallel to the interface. We found that, depending on the AFM film anisotropy to exchange ratio, the bias field is controlled either by the intrinsic pinning of a domain wall parallel to the interface or by the stability of the first AFM layer (quasi-domain wall) near the interface.

  7. Suppression of exchange bias effect in maghemite nanoparticles functionalized with H2Y

    NASA Astrophysics Data System (ADS)

    Guivar, Juan A. Ramos; Morales, M. A.; Litterst, F. Jochen

    2016-12-01

    The structural, vibrational, morphological and magnetic properties of maghemite (γ-Fe2O3) nanoparticles functionalized with polar molecules EDTA(or H4Y) and H2Y are reported. The samples were functionalized before and after total synthesis of γ-Fe2O3 nanoparticles. The molecules are anchored on the monodentate mode on the nanoparticles surface. Transmission electron microscopy (TEM) revealed the formation of maghemite nanoparticles with small diameter of 4 nm for the sample functionalized upon synthesis and 7.6 and 6.9 nm for the samples functionalized with EDTA and H2Y after the formation of nanoparticles. Exchange bias phenomena were observed in some of the samples functionalized with EDTA at temperatures below 70 K. The presence of the bias effect was discussed in terms of the formation of a thin layer of a secondary phase like lepidocrocite, and the absence of this effect was explained in terms of the chemisorption of carboxylic groups from EDTA which suppressed the canting. Studies of Mössbauer spectroscopy as a function of temperature showed slow relaxation effects and allowed discussion of the secondary phase. In the M-T curves a maximum around 116 K was associated with this secondary phase also in agreement with the Mössbauer studies. The dynamic properties were studied by AC susceptibility, the out of phase signal revealed a spin glass like regime below 36.5 K.

  8. Exchange bias in ferrite hollow nanoparticles originated by complex internal magnetic structure

    NASA Astrophysics Data System (ADS)

    De Biasi, Emilio; Lima, Enio, Jr.; Vargas, Jose M.; Zysler, Roberto D.; Arbiol, Jordi; Ibarra, Alfonso; Goya, Gerardo F.; Ibarra, M. Ricardo

    2015-10-01

    Iron-oxide hollow nanospheres (HNS) may present unusual magnetic behavior as a consequence of their unique morphology. Here, we report the unusual magnetic behavior of HNS that are 9 nm in diameter. The magnetic properties of HNS originate in their complex magnetic structure, as evidenced by Mössbauer spectroscopy and magnetization measurements. We observe a bias in the hysteresis when measured at very low temperature in the field cooling protocol (10 kOe). In addition, dc (static) and ac (dynamic) magnetization measurements against temperature and applied field reveal a frustrated order of the system below 10 K. High-resolution transmission electron microscopy (HRTEM) studies reveal that the HNS are composed of small crystalline clusters of about 2 nm in diameter, which behave as individual magnetic entities. Micromagnetic simulations (using conjugate gradient in order to minimize the total energy of the system) reproduce the experimentally observed magnetic behavior. The model considers the hollow particles as constituted by small ordered clusters embedded in an antiferromagnetic environment (spins localized outside the clusters). In addition, the surface spins (in both inner and outer surfaces of the HNS) are affected by a local surface anisotropy. The strong effective magnetic anisotropy field of the clusters induces the bias observed when the system is cooled in the presence of a magnetic external field. This effect propagates through the exchange interaction into the entire particle.

  9. Exchange-Coupled FePt Nanoparticle Assembly

    NASA Astrophysics Data System (ADS)

    Zeng, Hao; Vedantam, T.; Dai, Z. R.; Wang, Z. L.; Liu, J. P.; Sun, Shouheng

    2002-03-01

    High-performance permanent magnetic materials for energy-related applications need large energy-products. A permanent magnet with large (BH) products should exhibit both a high saturation magnetization , M_s, and a large coercive field, H_c. L10 ordered FePt has high Ms ( ~ 1100 emu/cm^3) and large magnetocrystalline anisotropy constant Ku (> 5e10^7 erg/cm^3), therefore may be a suitable candidates for permanent magnetic materials. We report synthesis of exchange-coupled FePt nanoparticle assemblies via solution phase deposition and controlled thermal annealing. FePt nanoparticles are prepared by high temperature solution phase decomposition of Fe(CO)_5and reduction of Pt(acac)2 in the presence of oleic acid and oleyl amine. The Fe and Pt composition of the nanoparticles is tuned by adjusting the molar ratio of Fe(CO)5 to Pt(acac)_2. The nanoparticles are easily dispersed into alkane solvent. Depositing particle dispersion on a solid substrate and controlling solvent evaporation yield self-organized magnetic nanoparticle assemblies. Magnetic hysteresis loops, remanence curves, and δM measurements show that annealing for short time under nitrogen yields isolated particle assemblies with random crystalline orientations. Prolonged annealing under reducing atmosphere leads to the evaporation of the organic surfactants, and results in grain agglomeration and inter grain exchange coupling. The degree of coupling can be readily controlled by annealing conditions. Changes in the magnetization reversal behavior have also been observed.This work is supported by DARPA No. DAAD 19-01-1-0546.

  10. Exchange bias in (FeNi/IrMn)n multilayer films evaluated by static and dynamic techniques

    NASA Astrophysics Data System (ADS)

    Khanal, Shankar; Diaconu, Andrei; Vargas, Jose M.; Lenormand, Denny R.; Garcia, Carlos; Ross, C. A.; Spinu, Leonard

    2014-06-01

    Exchange bias properties of [FeNi/IrMn]n multilayer films with variable thickness of the ferromagnetic layers and different repetitions n were determined by using static and dynamic measurement techniques. The static magnetic properties were revealed through magnetometry measurements at room temperature following major hysteresis loops and first-order reversal curves protocols. Room temperature x-band ferromagnetic resonance (FMR) and vector network analyser (VNA)-FMR experiments were used to determine dynamically the exchange anisotropy in the FeNi/IrMn multilayers. From the static measurements the exchange anisotropy was determined while dynamic measurements allowed the determination of additional parameters including anisotropy field, saturation magnetization and rotatable anisotropy. The differences between the values of the exchange biased obtained from each technique are discussed.

  11. Permalloy-FeMn exchange-biased multilayers grown on flexible substrates for microwave applications

    NASA Astrophysics Data System (ADS)

    Phuoc, Nguyen N.; Xu, Feng; Ma, Yungui; Ong, C. K.

    2009-09-01

    Permalloy-FeMn multilayers deposited onto flexible substrates oriented for wide-band absorber applications were fabricated using RF sputtering deposition. The ferromagnetic resonance (FMR) frequency was tuned by changing the thickness of the Permalloy layers. Plural FMR frequencies appeared in the multilayer film due to the difference in exchange couple energies at their interfaces. A multilayer thin film with varying thickness of Permalloy layers was also fabricated with the properties of a wide-band absorber. Its range of 1-4 GHz (the absorption width where the reflection loss is less than 10 dB) appears promising for future applications.

  12. Comment on ``Size-dependent scaling of perpendicular exchange bias in magnetic nanostructures''

    NASA Astrophysics Data System (ADS)

    Baltz, V.; Bollero, A.; Rodmacq, B.; Dieny, B.; Sort, J.

    2008-01-01

    From results at one given temperature (300K) , Malinowski [Phys. Rev. B 75, 012413 (2007)] draw the conclusion that lateral confinement of ferromagnetic-antiferromagnetic exchange-biased structures does not enhance thermally activated unpinning of the antiferromagnetic spins, which would thus contrast with a recent report [Phys. Rev. Lett. 94, 117201 (2005)], as explicitly mentioned in their manuscript. In this Comment, we discuss why such a conclusion might need revision above a “crossover temperature,” as evidenced in the literature. The value of such a crossover temperature certainly depends on the magnetic parameters of each system studied, e.g., anisotropy and exchange stiffness. From the above reasons, and contrary to the statement of Malinowski , we rather think that their results might well agree with the report to which they refer to. In our Comment we notably aim at complementing the conclusion of Malinowski by explaining why some differences between the two studies are observed at one given temperature, and why it might be expected to observe similar trends over a whole range of temperatures.

  13. Biased thermohaline exchanges with the Arctic across the Iceland-Faroe Ridge in ocean climate models

    NASA Astrophysics Data System (ADS)

    Olsen, S. M.; Hansen, B.; Østerhus, S.; Quadfasel, D.; Valdimarsson, H.

    2016-04-01

    The northern limb of the Atlantic thermohaline circulation and its transport of heat and salt towards the Arctic strongly modulate the climate of the Northern Hemisphere. The presence of warm surface waters prevents ice formation in parts of the Arctic Mediterranean, and ocean heat is directly available for sea-ice melt, while salt transport may be critical for the stability of the exchanges. Through these mechanisms, ocean heat and salt transports play a disproportionally strong role in the climate system, and realistic simulation is a requisite for reliable climate projections. Across the Greenland-Scotland Ridge (GSR) this occurs in three well-defined branches where anomalies in the warm and saline Atlantic inflow across the shallow Iceland-Faroe Ridge (IFR) have been shown to be particularly difficult to simulate in global ocean models. This branch (IF-inflow) carries about 40 % of the total ocean heat transport into the Arctic Mediterranean and is well constrained by observation during the last 2 decades but associated with significant inter-annual fluctuations. The inconsistency between model results and observational data is here explained by the inability of coarse-resolution models to simulate the overflow across the IFR (IF-overflow), which feeds back onto the simulated IF-inflow. In effect, this is reduced in the model to reflect only the net exchange across the IFR. Observational evidence is presented for a substantial and persistent IF-overflow and mechanisms that qualitatively control its intensity. Through this, we explain the main discrepancies between observed and simulated exchange. Our findings rebuild confidence in modelled net exchange across the IFR, but reveal that compensation of model deficiencies here through other exchange branches is not effective. This implies that simulated ocean heat transport to the Arctic is biased low by more than 10 % and associated with a reduced level of variability, while the quality of the simulated salt

  14. Lamellar magnetism and exchange bias in billion-year-old metamorphic titanohematite with nanoscale ilmenite exsolution lamellae: II. Exchange-bias at 5 K after field-free cooling of NRM and after cooling in a +5 T field

    NASA Astrophysics Data System (ADS)

    Robinson, Peter; McEnroe, Suzanne A.; Jackson, M.

    2016-11-01

    This is the second of three papers investigating properties of titanohematite-bearing quartzo-feldspathic rocks that create a significant remanent magnetic anomaly in the Modum District, South Norway. The first paper provided initial magnetic results, mineralogical characterization and evidence for the presence of lamellar magnetism. In this paper, knowledge of lamellar magnetic properties is explored through experiments where ilmenite lamellae were magnetized below 57 K, and interact magnetically along interfaces with the titanohematite host. Samples with known NRM directions were placed in specific orientations in an MPMS then cooled in zero field to 5 K, where hysteresis loops were measured in fields up to 5 Tesla. This assured that results were ultimately related to the natural lamellar magnetism produced during cooling ˜ 1 billion years ago. In a second set of experiments the same oriented samples, were subjected to a +5 Tesla field then field cooled to 5 K before hysteresis experiments. The first experiments consistently produced asymmetric shifted hysteresis loops with two loop separations, one in a positive field and one in a negative field. Without exception, when the NRM was oriented toward the negative field end of the MPMS, the bimodal loop showed a dominant loop separation in a positive field. By contrast, when the NRM was oriented toward the positive field end of the MPMS, the bimodal loop showed a dominant loop separation in a negative field. Both observations are consistent with antiferromagnetic coupling between the hard magnetization of ilmenite and the more easily shifted lamellar magnetism of the hematite. The bimodal nature of the loops indicates that the NRMs are vector sums of natural lamellar moments, which are oriented both positively and negatively, and that these opposite moments control the orientations of ilmenite magnetizations when cooling through 57 K. Here, extreme exchange biases up to 1.68 Tesla were measured. The second set of

  15. Lamellar magnetism and exchange bias in billion-year-old metamorphic titanohematite with nanoscale ilmenite exsolution lamellae - II: exchange-bias at 5 K after field-free cooling of NRM and after cooling in a +5 T field

    NASA Astrophysics Data System (ADS)

    Robinson, Peter; McEnroe, Suzanne A.; Jackson, Mike

    2017-02-01

    This is the second of three papers investigating properties of titanohematite-bearing quartzo-feldspathic rocks that create a significant remanent magnetic anomaly in the Modum District, South Norway. The first paper provided initial magnetic results, mineralogical characterization and evidence for the presence of lamellar magnetism. In this paper, knowledge of lamellar magnetic properties is explored through experiments where ilmenite lamellae were magnetized below 57 K, and interact magnetically along interfaces with the titanohematite host. Samples with known NRM directions were placed in specific orientations in an MPMS then cooled in zero field to 5 K, where hysteresis loops were measured in fields up to 5 Tesla. This assured that results were ultimately related to the natural lamellar magnetism produced during cooling ˜1 billion years ago. In a second set of experiments the same oriented samples, were subjected to a +5 Tesla (T) field then field cooled to 5 K before hysteresis experiments. The first experiments consistently produced asymmetric shifted hysteresis loops with two loop separations, one in a positive field and one in a negative field. Without exception, when the NRM was oriented toward the negative field end of the MPMS, the bimodal loop showed a dominant loop separation in a positive field. By contrast, when the NRM was oriented toward the positive field end of the MPMS, the bimodal loop showed a dominant loop separation in a negative field. Both observations are consistent with antiferromagnetic coupling between the hard magnetization of ilmenite and the more easily shifted lamellar magnetism of the hematite. The bimodal nature of the loops indicates that the NRMs are vector sums of natural lamellar moments, which are oriented both positively and negatively, and that these opposite moments control the orientations of ilmenite magnetizations when cooling through 57 K. Here, extreme exchange biases up to 1.68 T were measured. The second set of

  16. Room temperature skyrmion ground state stabilized through interlayer exchange coupling

    SciTech Connect

    Chen, Gong Schmid, Andreas K.; Mascaraque, Arantzazu; N'Diaye, Alpha T.

    2015-06-15

    Possible magnetic skyrmion device applications motivate the search for structures that extend the stability of skyrmion spin textures to ambient temperature. Here, we demonstrate an experimental approach to stabilize a room temperature skyrmion ground state in chiral magnetic films via exchange coupling across non-magnetic spacer layers. Using spin polarized low-energy electron microscopy to measure all three Cartesian components of the magnetization vector, we image the spin textures in Fe/Ni films. We show how tuning the thickness of a copper spacer layer between chiral Fe/Ni films and perpendicularly magnetized Ni layers permits stabilization of a chiral stripe phase, a skyrmion phase, and a single domain phase. This strategy to stabilize skyrmion ground states can be extended to other magnetic thin film systems and may be useful for designing skyrmion based spintronics devices.

  17. Energy exchange in strongly coupled plasmas with electron drift

    SciTech Connect

    Akbari-Moghanjoughi, M.; Ghorbanalilu, M.

    2015-11-15

    In this paper, the generalized viscoelastic collisional quantum hydrodynamic model is employed in order to investigate the linear dielectric response of a quantum plasma in the presence of strong electron-beam plasma interactions. The generalized Chandrasekhar's relativistic degeneracy pressure together with the electron-exchange and Coulomb interaction effects are taken into account in order to extend current research to a wide range of plasma number density relevant to big planetary cores and astrophysical compact objects. The previously calculated shear viscosity and the electron-ion collision frequencies are used for strongly coupled ion fluid. The effect of the electron-beam velocity on complex linear dielectric function is found to be profound. This effect is clearly interpreted in terms of the wave-particle interactions and their energy-exchange according to the sign of the imaginary dielectric function, which is closely related to the wave attenuation coefficient in plasmas. Such kinetic effect is also shown to be in close connection with the stopping power of a charged-particle beam in a quantum plasma. The effect of many independent plasma parameters, such as the ion charge-state, electron beam-velocity, and relativistic degeneracy, is shown to be significant on the growing/damping of plasma instability or energy loss/gain of the electron-beam.

  18. Wealth distribution of simple exchange models coupled with extremal dynamics

    NASA Astrophysics Data System (ADS)

    Bagatella-Flores, N.; Rodríguez-Achach, M.; Coronel-Brizio, H. F.; Hernández-Montoya, A. R.

    2015-01-01

    Punctuated Equilibrium (PE) states that after long periods of evolutionary quiescence, species evolution can take place in short time intervals, where sudden differentiation makes new species emerge and some species extinct. In this paper, we introduce and study the effect of punctuated equilibrium on two different asset exchange models: the yard sale model (YS, winner gets a random fraction of a poorer player's wealth) and the theft and fraud model (TF, winner gets a random fraction of the loser's wealth). The resulting wealth distribution is characterized using the Gini index. In order to do this, we consider PE as a perturbation with probability ρ of being applied. We compare the resulting values of the Gini index at different increasing values of ρ in both models. We found that in the case of the TF model, the Gini index reduces as the perturbation ρ increases, not showing dependence with the agents number. While for YS we observe a phase transition which happens around ρc = 0.79. For perturbations ρ <ρc the Gini index reaches the value of one as time increases (an extreme wealth condensation state), whereas for perturbations greater than or equal to ρc the Gini index becomes different to one, avoiding the system reaches this extreme state. We show that both simple exchange models coupled with PE dynamics give more realistic results. In particular for YS, we observe a power low decay of wealth distribution.

  19. Calculation of exchange interaction for modified Gaussian coupled quantum dots

    NASA Astrophysics Data System (ADS)

    Khordad, R.

    2017-03-01

    A system of two laterally coupled quantum dots with modified Gaussian potential has been considered. Each quantum dot has an electron under electric and magnetic field. The quantum dots have been considered as hydrogen-like atoms. The physical picture has translated into the Heisenberg spin Hamiltonian. The Schrödinger equation using finite element method has been numerically solved. The exchange energy factor has been calculated as a functions of electric field, magnetic field, and the separation distance between the centers of the dots (d). According to the results, it is found that there is the transition from anti-ferromagnetic to ferromagnetic for constant electric field. Also, the transition occurs from ferromagnetic to anti-ferromagnetic for constant magnetic field (B>1 T). With decreasing the distance between the centers of the dots and increasing magnetic field, the transition occurs from anti-ferromagnetic to ferromagnetic. It is found that a switching of exchange energy factor is presented without canceling the interactions of the electric and magnetic fields on the system.

  20. Implications of room temperature oxidation on crystal structure and exchange bias effect in Co/CoO nanoparticles

    DOE PAGES

    Feygenson, Mikhail; Formo, Eric V.; Freeman, Katherine; ...

    2015-11-02

    In this study, we describe how the exchange bias effect in Co/CoO nanoparticles depends on the size focusing and temperature treatment of precursor Co nanoparticles before oxidation at ambient conditions. By appealing to magnetization, microscopy, neutron and synchrotron x-ray measurements we found that as-synthesized Co nanoparticles readily oxidize in air only after 20 days. The highest exchange bias field of 814 Oe is observed at T = 2K. When the same nanoparticles are centrifuged and annealed at 70 °C in vacuum prior to oxidation, the exchange bias field is increased to 2570 Oe. Annealing of Co nanoparticles in vacuum improvesmore » their crystallinity and prevents complete oxidation, so that Co-core/CoO-shell structure is preserved even after 120 days. The crystal structure of CoO shell in both samples is different from its bulk counterpart. Implications of such distorted CoO shells on exchange bias are discussed. Coating of Co nanoparticles with amorphous silica shell makes them resistant to oxidation, but ultimately modifies the crystal structure of both Co core and SiO2 shell.« less

  1. Implications of room temperature oxidation on crystal structure and exchange bias effect in Co/CoO nanoparticles

    SciTech Connect

    Feygenson, Mikhail; Formo, Eric V.; Freeman, Katherine; Schieber, Natalie P.; Gai, Zheng; Rondinone, Adam J.

    2015-11-02

    In this study, we describe how the exchange bias effect in Co/CoO nanoparticles depends on the size focusing and temperature treatment of precursor Co nanoparticles before oxidation at ambient conditions. By appealing to magnetization, microscopy, neutron and synchrotron x-ray measurements we found that as-synthesized Co nanoparticles readily oxidize in air only after 20 days. The highest exchange bias field of 814 Oe is observed at T = 2K. When the same nanoparticles are centrifuged and annealed at 70 °C in vacuum prior to oxidation, the exchange bias field is increased to 2570 Oe. Annealing of Co nanoparticles in vacuum improves their crystallinity and prevents complete oxidation, so that Co-core/CoO-shell structure is preserved even after 120 days. The crystal structure of CoO shell in both samples is different from its bulk counterpart. Implications of such distorted CoO shells on exchange bias are discussed. Coating of Co nanoparticles with amorphous silica shell makes them resistant to oxidation, but ultimately modifies the crystal structure of both Co core and SiO2 shell.

  2. Thermally Activated Site Exchange and Quantum Exchange Coupling Processes in Unsymmetrical Trihydride Osmium Compounds.

    PubMed

    Castillo, Amaya; Barea, Guada; Esteruelas, Miguel A.; Lahoz, Fernando J.; LLedós, Agustí; Maseras, Feliu; Modrego, Javier; Oñate, Enrique; Oro, Luis A.; Ruiz, Natividad; Sola, Eduardo

    1999-04-19

    Reaction of the hexahydride complex OsH(6)(P(i)Pr(3))(2) (1) with pyridine-2-thiol leads to the trihydride derivative OsH(3){kappa-N,kappa-S-(2-Spy)}(P(i)Pr(3))(2) (2). The structure of 2 has been determined by X-ray diffraction. The geometry around the osmium atom can be described as a distorted pentagonal bipyramid with the phosphine ligands occupying axial positions. The equatorial plane contains the pyridine-2-thiolato group, attached through a bite angle of 65.7(1) degrees, and the three hydride ligands. The theoretical structure determination of the model complex OsH(3){kappa-N,kappa-S-(2-Spy)}(PH(3))(2) (2a) reveals that the hydride ligands form a triangle with sides of 1.623, 1.714, and 2.873 Å, respectively. A topological analysis of the electron density of 2a indicates that there is no significant electron density connecting the hydrogen atoms of the OsH(3) unit. In solution, the hydride ligands of 2 undergo two different thermally activated site exchange processes, which involve the central hydride with each hydride ligand situated close to the donor atoms of the chelate group. The activation barriers of both processes are similar. Theoretical calculations suggest that the transition states have a cis-hydride-dihydrogen nature. In addition to the thermally activated exchange processes, complex 2 shows quantum exchange coupling between the central hydride and the one situated close to the sulfur atom of the pyridine-2-thiolato group. The reactions of 1 with L-valine and 2-hydroxypyridine afford OsH(3){kappa-N,kappa-O-OC(O)CH[CH(CH(3))(2)]NH(2)}(P(i)Pr(3))(2) (3) and OsH(3){kappa-N,kappa-O-(2-Opy)}(P(i)Pr(3))(2) (4) respectively, which according to their spectroscopic data have a similar structure to that of 2. In solution, the hydride ligands of 3 and 4 also undergo two different thermally activated site exchange processes. However, they do not show quantum exchange coupling. The tetranuclear complexes [(P(i)Pr(3))(2)H(3)Os(&mgr;-biim)M(TFB)](2) [M = Rh

  3. Direct manipulation of the uncompensated antiferromagnetic spins in exchange coupled system by GeV ion irradiation

    SciTech Connect

    Paul, Amitesh; Boeni, P.; Paul, N.; Hoepfner, Britta; Lauermann, Iver; Lux-Steiner, M.; Trautmann, C.; Mattauch, S.

    2012-06-18

    Incident ion energy to matrix electrons of a material is dissipated within a narrow cylinder surrounding the swift heavy ion path. The temperature of the lattice exceeds the melting point and upon quenching causes nanometric modifications. We present here a unique ex situ approach in manipulating the uncompensated spins in antiferromagnetic layers of ferro-/antiferromagnetic exchange coupled systems on a nanometric scale. We use the impact of relativistic heavy ion (1-2 GeV) irradiation on such systems. We find an increase in the bias field and a restoration of the reversal via domain nucleation in the trained state. These are identified as plausible results of ion-induced antiferromagnetic ordering with little or no effect on the layer structure. This study demonstrates, therefore, the possibility of nanoscale tailoring of exchange coupled systems that survive even in the trained state.

  4. Exchange bias in Fe/Fe{sub 3}O{sub 4} core-shell magnetic nanoparticles mediated by frozen interfacial spins.

    SciTech Connect

    Ong, Q. K.; Wei, A.; Lin, X.-M.; Center for Nanoscale Materials; Purdue Univ.

    2009-10-01

    The magnetization curves of monodisperse Fe/Fe{sub 3}O{sub 4} core-shell and Fe{sub 3}O{sub 4} hollow-shell nanoparticles reveal an unusual exchange-bias effect. Hysteresis measurements of core-shell particles at 5 K after field cooling exhibit a large loop shift associated with unidirectional anisotropy whereas Fe{sub 3}O{sub 4} hollow-shell nanoparticles support much smaller shifts. Both core-shell and hollow-shell particles exhibit sharp demagnetization jumps at low fields associated with a sudden switching of shell moments. Temperature-dependent magnetization of core-shell particles at high fields shows a deviation between field-cooled and zero-field-cooled curves below 30 K, suggesting the presence of frozen spins at the interface. These frozen interfacial spins play an important role in mediating the exchange coupling between the ferromagnetic core and ferrimagnetic shell.

  5. Observation of giant exchange bias in bulk Mn{sub 50}Ni{sub 42}Sn{sub 8} Heusler alloy

    SciTech Connect

    Sharma, Jyoti; Suresh, K. G.

    2015-02-16

    We report a giant exchange bias (EB) field of 3520 Oe in bulk Mn{sub 50}Ni{sub 42}Sn{sub 8} Heusler alloy. The low temperature magnetic state of the martensite phase has been studied by DC magnetization and AC susceptibility measurements. Frequency dependence of spin freezing temperature (T{sub f}) on critical slowing down relation and observation of memory effect in zero field cooling mode confirms the super spin glass (SSG) phase at low temperatures. Large EB is attributed to the strong exchange coupling between the SSG clusters formed by small regions of ferromagnetic order embedded in an antiferromagnetic (AFM) matrix. The temperature and cooling field dependence of EB have been studied and related to the change in unidirectional anisotropy at SSG/AFM interface. The training effect also corroborates with the presence of frozen (SSG) moments at the interface and their role in EB.

  6. Orientation-modulated exchange coupling in La0.67Ca0.33MnO3/CaMnO3 bilayer films

    NASA Astrophysics Data System (ADS)

    Wang, F.; Bai, Y.; Liu, W.; Zhang, H. R.; Li, S. K.; Dai, Z. M.; Ma, S.; Zhao, X. G.; Wang, S. C.; Wang, Z. J.; Zhang, Z. D.

    2017-04-01

    Epitaxial La0.67Ca0.33MnO3/CaMnO3 (LCMO/CMO) bilayers and the reference single layers were deposited by pulsed laser deposition on (001)- and (110)-oriented SrTiO3 (STO) substrates, allowing us to perform a detailed study of the dependence of exchange coupling on crystal orientations. It is found that the exchange bias (coercive) field of the (110)-oriented LCMO/CMO bilayer are decreased (increased) compared to that of (001)-oriented bilayer, due to the enhanced (weakened) Mn3+-Mn4+ ferromagnetic double-exchange interaction of LCMO layer. It is clear that the spin flop coupling that leads to the enhanced coercivity and the spin glass state that results in the exchange bias effect can coexist and are determined by the competition between Mn3+-Mn4+ ferromagnetic double-exchange and Mn4+-Mn4+ antiferromagnetic super-exchange interactions at the interface. We propose that strong Mn3+-Mn4+ ferromagnetic double-exchange interaction facilitates the existence of spin flop coupling, not the formation of spin glass state at the LCMO/CMO interface.

  7. Optical conditional gates in laterally coupled quantum dots: the role of electron-hole exchange interaction

    NASA Astrophysics Data System (ADS)

    Economou, Sophia; Reinecke, Thomas

    2008-03-01

    We propose a fast, optically induced two-qubit C-PHASE gate in laterally coupled quantum dots. We use a model potential with two asymmetric local minima to account for the difference in size and composition of the two dots. By making use of the excited bound states of the total potential, which extend over both dots and which gives rise to an effective coupling between the two resident electron spins, we avoid the need for an external bias, such as that typically used in vertically coupled dots. The electron-hole exchange interaction is shown to play an important role in our proposal. By lowering the symmetry of the eigenstates, it allows for a simple design of a fast (about 50 ps) C-PHASE gate. The dissipative dynamics of the excited states have been taken into account in our numerical simulation of the fidelity. The calculated fidelity depends on the values of the decay rates. Our proposal is consistent with the single qubit rotations we proposed [Phys. Rev. Lett. 99, 217401 (2007)], and the combination of the two allows for universal quantum gates.

  8. Magnetic structures at the ferromagnetic NiFe and antiferromagnetic NiMn interface in exchange-biased films: Role of noncollinear magnetism and roughness

    NASA Astrophysics Data System (ADS)

    Nakamura, Kohji; Freeman, A. J.; Wang, Ding-Sheng; Zhong, Lieping; Fernandez-de-Castro, Juan

    2002-01-01

    The magnetic structures at the compensated ferromagnetic/antiferromagnetic (FM/AFM) interface of exchange bias FM NiFe/AFM NiMn films were determined with first-principles full-potential linearized augmented plane-wave calculations including noncollinear magnetism. The results predict that the magnetic moments of the FM NiFe layer lie perpendicular to those of the AFM NiMn layer. The intra-atomic noncollinear magnetism that arises near the interface is found to play an important role in stabilizing the perpendicular coupling that leads to a large biquadratic exchange energy (BEE). The BEE is large enough to require formation of a magnetic domain wall (with an estimated thickness ~370 Å) in the AFM NiMn layers, which may account for the observed large coercivity and exchange bias. We also discuss magnetic structures at a rough FM/AFM interface-as simulated in model calculations with the inclusion of line step defects-which may contribute to a unidirectional magnetic anisotropy.

  9. Microscopic model for exchange bias from grain-boundary disorder in a ferromagnet/antiferromagnet thin film with a nanocrystalline microstructure

    SciTech Connect

    Cortie, D. L.; Biternas, A. G.; Chantrell, R. W.; Wang, X. L.; Klose, F.

    2014-07-21

    Monte Carlo spin simulations were coupled to a Voronoi microstructure-generator to predict the magnitude and behavior of exchange bias in a ferromagnet/antiferromagnet (AF) thin film bilayer with a nanocrystalline microstructure. Our model accounts for the effects of irregular grain-shapes, finite-sized particles, and the possible presence of local random-fields originating from the antiferromagnet's grain-boundary regions. As the grain-boundary represents a crystal-structure distortion, we model the local effect on the exchange constants in the Gaussian approximation which can cause regions resembling a spin glass confined to an unusual 2D topology. Although an ensemble of completely disconnected AF grains isolated by non-magnetic barriers provides a small exchange bias, the introduction of a spin-glass network at the boundaries causes a four-fold enhancement in the magnitude of the loop-shift. This implies the importance of local grain-boundary behavior in defect-engineered antiferromagnets.

  10. CBF/CMRO2 Coupling Measured with Calibrated-BOLD fMRI: Sources of Bias

    PubMed Central

    Leontiev, Oleg; Dubowitz, David J.; Buxton, Richard B.

    2007-01-01

    The coupling between cerebral blood flow (CBF) and cerebral metabolic rate of oxygen (CMRO2) during brain activation can be characterized by an empirical index n, the ratio of fractional CBF changes to fractional CMRO2 changes. Measurements of n have yielded varying results, and it is not known if the observed variability is due to measurement techniques or underlying physiology. The calibrated BOLD approach using hypercapnia offers a promising tool for assessing changes in CBF/CMRO2 coupling in health and disease, but potential systematic errors have not yet been characterized. The goal of this study was to experimentally evaluate the magnitude of bias in the estimate of n that arises from the way in which a region of interest (ROI) is chosen for averaging data, and to relate this potential bias to a more general theoretical consideration of the sources of systematic errors in the calibrated BOLD experiment. Results were compared for different approaches for defining an ROI within the visual cortex based on: 1) retinotopically-defined V1; 2) a functional CBF localizer; and 3) a functional BOLD localizer. Data in V1 yielded a significantly lower estimate of n (2.45) compared to either CBF (n = 3.45) or BOLD (n = 3.18) localizers. Different statistical thresholds produced biases in estimates of n with values ranging from 3.01 (low threshold) to 4.37 (high threshold). Possible sources of the observed biases are discussed. These results underscore the importance of a critical evaluation of the methodology, and the adoption of consistent standards for applying the calibrated BOLD approach to the evaluation of CBF/CMRO2 coupling. PMID:17524665

  11. CBF/CMRO2 coupling measured with calibrated BOLD fMRI: sources of bias.

    PubMed

    Leontiev, Oleg; Dubowitz, David J; Buxton, Richard B

    2007-07-15

    The coupling between cerebral blood flow (CBF) and cerebral metabolic rate of oxygen (CMRO2) during brain activation can be characterized by an empirical index n, the ratio of fractional CBF changes to fractional CMRO2 changes. Measurements of n have yielded varying results, and it is not known if the observed variability is due to measurement techniques or underlying physiology. The calibrated BOLD approach using hypercapnia offers a promising tool for assessing changes in CBF/CMRO2 coupling in health and disease, but potential systematic errors have not yet been characterized. The goal of this study was to experimentally evaluate the magnitude of bias in the estimate of n that arises from the way in which a region of interest (ROI) is chosen for averaging data and to relate this potential bias to a more general theoretical consideration of the sources of systematic errors in the calibrated BOLD experiment. Results were compared for different approaches for defining an ROI within the visual cortex based on: (1) retinotopically defined V1; (2) a functional CBF localizer; and (3) a functional BOLD localizer. Data in V1 yielded a significantly lower estimate of n (2.45) compared to either CBF (n=3.45) or BOLD (n=3.18) localizers. Different statistical thresholds produced biases in estimates of n with values ranging from 3.01 (low threshold) to 4.37 (high threshold). Possible sources of the observed biases are discussed. These results underscore the importance of a critical evaluation of the methodology, and the adoption of consistent standards for applying the calibrated BOLD approach to the evaluation of CBF/CMRO2 coupling.

  12. ESTIMATING GASEOUS EXCHANGES BETWEEN THE ATMOSPHERE AND PLANTS USING A COUPLED BIOCHEMICAL DRY DEPOSITION MODEL

    EPA Science Inventory

    To study gaseous exchanges between the soil, biosphere and atmosphere, a biochemical model was coupled with the latest version of Meyers Multi-Layer Deposition Model. The biochemical model describes photosynthesis and respiration and their coupling with stomatal resistance for...

  13. Biased G Protein-Coupled Receptor Signaling: New Player in Modulating Physiology and Pathology

    PubMed Central

    Bologna, Zuzana; Teoh, Jian-peng; Bayoumi, Ahmed S.; Tang, Yaoliang; Kim, Il-man

    2017-01-01

    G protein-coupled receptors (GPCRs) are a family of cell-surface proteins that play critical roles in regulating a variety of pathophysiological processes and thus are targeted by almost a third of currently available therapeutics. It was originally thought that GPCRs convert extracellular stimuli into intracellular signals through activating G proteins, whereas β-arrestins have important roles in internalization and desensitization of the receptor. Over the past decade, several novel functional aspects of β-arrestins in regulating GPCR signaling have been discovered. These previously unanticipated roles of β-arrestins to act as signal transducers and mediators of G protein-independent signaling have led to the concept of biased agonism. Biased GPCR ligands are able to engage with their target receptors in a manner that preferentially activates only G protein- or β-arrestin-mediated downstream signaling. This offers the potential for next generation drugs with high selectivity to therapeutically relevant GPCR signaling pathways. In this review, we provide a summary of the recent studies highlighting G protein- or β-arrestin-biased GPCR signaling and the effects of biased ligands on disease pathogenesis and regulation. PMID:28035079

  14. Coupling and tuning of modal frequencies in direct current biased microelectromechanical systems arrays

    SciTech Connect

    Kambali, Prashant N.; Swain, Gyanadutta; Pandey, Ashok Kumar; Buks, Eyal; Gottlieb, Oded

    2015-08-10

    Understanding the coupling of different modal frequencies and their tuning mechanisms has become essential to design multi-frequency MEMS devices. In this work, we fabricate a MEMS beam with fixed boundaries separated from two side electrodes and a bottom electrode. Subsequently, we perform experiments to obtain the frequency variation of in-plane and out-of-plane mechanical modes of the microbeam with respect to both DC bias and laser heating. We show that the frequencies of the two modes coincide at a certain DC bias, which in turn can also be varied due to temperature. Subsequently, we develop a theoretical model to predict the variation of the two modes and their coupling due to a variable gap between the microbeam and electrodes, initial tension, and fringing field coefficients. Finally, we discuss the influence of frequency tuning parameters in arrays of 3, 33, and 40 microbeams, respectively. It is also found that the frequency bandwidth of a microbeam array can be increased to as high as 25 kHz for a 40 microbeam array with a DC bias of 80 V.

  15. Field-free magnetization reversal by spin-Hall effect and exchange bias.

    PubMed

    van den Brink, A; Vermijs, G; Solignac, A; Koo, J; Kohlhepp, J T; Swagten, H J M; Koopmans, B

    2016-03-04

    As the first magnetic random access memories are finding their way onto the market, an important issue remains to be solved: the current density required to write magnetic bits becomes prohibitively high as bit dimensions are reduced. Recently, spin-orbit torques and the spin-Hall effect in particular have attracted significant interest, as they enable magnetization reversal without high current densities running through the tunnel barrier. For perpendicularly magnetized layers, however, the technological implementation of the spin-Hall effect is hampered by the necessity of an in-plane magnetic field for deterministic switching. Here we interface a thin ferromagnetic layer with an anti-ferromagnetic material. An in-plane exchange bias is created and shown to enable field-free S HE-driven magnetization reversal of a perpendicularly magnetized Pt/Co/IrMn structure. Aside from the potential technological implications, our experiment provides additional insight into the local spin structure at the ferromagnetic/anti-ferromagnetic interface.

  16. Thermal stability of exchange-biased NiFe/FeMn multilayered thin films

    NASA Astrophysics Data System (ADS)

    Chen, H. Y.; Phuoc, Nguyen N.; Ong, C. K.

    2012-09-01

    A systematic study of the effect of ferromagnetic thickness on magnetic and microwave properties of exchange-biased NiFe/FeMn multilayered thin films was carried out with regards to thermal stability. The temperature-dependent microwave characteristics of the films were obtained from the near-field microwave microscopy technique and analysed based on Landau-Lifshitz-Gilbert equation. The complex microwave permeability spectra of the magnetic thin films up to 5 GHz in the temperature range from room temperature to 420 K were measured. It was found that thicker ferromagnetic layers helped to reduce the dependence of the magnetic properties on temperature, leading to better thermal stability. The saturation magnetization MS, dynamic magnetic anisotropy field HKdyn, and ferromagnetic resonance frequency fFMR were found to decrease with temperature, while the effective damping coefficient αeff was increased with temperature. We also investigate the rotational magnetic anisotropy field HKrot with temperature which gives a measure of the rotatable magnetization of the antiferromagnetic layers and its thermal stability.

  17. Exchange bias in (La,Ca)MnO3 bilayers: influence of cooling process

    NASA Astrophysics Data System (ADS)

    Restrepo-Parra, E.; Agudelo, J. D.; Restrepo, J.

    2012-12-01

    The exchange bias (EB) phenomenon in La2/3Ca1/3MnO3/La1/3Ca2/3MnO3 bilayers was studied using Monte Carlo simulations combined with the Heisenberg model and the Metropolis algorithm. These simulations were carried out using the model proposed by Kiwi for an uncompensated interface. The Hamiltonian considered several terms corresponding to the nearest neighbor interaction, magnetocrystalline anisotropy and Zeeman effect. Several interactions in the ferromagnetic (FM), antiferromagnetic (AFM) and FM/AFM interface were considered, depending on the type of interacting ion (Mn3+eg, Mn3+eg‧ or Mn4+d3). The influence of field cooling and cooling temperature on the EB was analyzed and discussed. Regarding the field cooling, it caused an increase in the EB until a certain critical value was reached. After that, its effect was almost negligible. On the other hand, at low values of cooling temperature, not only the EB but also the coercive field were enhanced.

  18. Manipulation of Superparamagnetic Beads on Patterned Exchange-Bias Layer Systems for Biosensing Applications

    PubMed Central

    Ehresmann, Arno; Koch, Iris; Holzinger, Dennis

    2015-01-01

    A technology platform based on a remotely controlled and stepwise transport of an array arrangement of superparamagnetic beads (SPB) for efficient molecular uptake, delivery and accumulation in the context of highly specific and sensitive analyte molecule detection for the application in lab-on-a-chip devices is presented. The near-surface transport of SPBs is realized via the dynamic transformation of the SPBs’ magnetic potential energy landscape above a magnetically stripe patterned Exchange-Bias (EB) thin film layer systems due to the application of sub-mT external magnetic field pulses. In this concept, the SPB velocity is dramatically influenced by the magnitude and gradient of the magnetic field landscape (MFL) above the magnetically stripe patterned EB substrate, the SPB to substrate distance, the magnetic properties of both the SPBs and the EB layer system, respectively, as well as by the properties of the external magnetic field pulses and the surrounding fluid. The focus of this review is laid on the specific MFL design in EB layer systems via light-ion bombardment induced magnetic patterning (IBMP). A numerical approach is introduced for the theoretical description of the MFL in comparison to experimental characterization via scanning Hall probe microscopy. The SPB transport mechanism will be outlined in terms of the dynamic interplay between the EB substrate’s MFL and the pulse scheme of the external magnetic field. PMID:26580625

  19. Field-free magnetization reversal by spin-Hall effect and exchange bias

    NASA Astrophysics Data System (ADS)

    van den Brink, A.; Vermijs, G.; Solignac, A.; Koo, J.; Kohlhepp, J. T.; Swagten, H. J. M.; Koopmans, B.

    2016-03-01

    As the first magnetic random access memories are finding their way onto the market, an important issue remains to be solved: the current density required to write magnetic bits becomes prohibitively high as bit dimensions are reduced. Recently, spin-orbit torques and the spin-Hall effect in particular have attracted significant interest, as they enable magnetization reversal without high current densities running through the tunnel barrier. For perpendicularly magnetized layers, however, the technological implementation of the spin-Hall effect is hampered by the necessity of an in-plane magnetic field for deterministic switching. Here we interface a thin ferromagnetic layer with an anti-ferromagnetic material. An in-plane exchange bias is created and shown to enable field-free S HE-driven magnetization reversal of a perpendicularly magnetized Pt/Co/IrMn structure. Aside from the potential technological implications, our experiment provides additional insight into the local spin structure at the ferromagnetic/anti-ferromagnetic interface.

  20. Probing boundary magnetization through exchange bias in heterostructures with competing anisotropy

    NASA Astrophysics Data System (ADS)

    Wang, Yi; Binek, Christian

    2013-03-01

    Cr2O3 (chromia) is a magnetoelectric antiferromagnet with a bulk TN of 307 K. It has been utilized for electrically controlled exchange bias (EB) by taking advantage of voltage-controllable boundary magnetization (BM) occurring as a generic property in magnetoelectric single domain antiferromagnets.[2] In the perpendicular Cr2O3(0001)/CoPd EB system the EB-field shows an order parameter type T-dependence close to TN reflecting the T-dependence of the BM. At about 150 K a decrease of the EB-field sets in with decreasing temperature suggesting canting of the BM. To evidence this mechanism we use EB as a probe. Specifically, we investigate EB in Permalloy(5nm)/Cr2O3 (0001)(100nm) with Permalloy and chromia having competing anisotropies. We measure easy axis magnetic hysteresis loops via longitudinal magneto-optical Kerr effect for various temperatures after perpendicular and in-plane magnetic field-cooling. The T-dependence of the EB field supports the canting mechanism. In addition to the all thin film EB system, we explore a Permalloy(10nm)/Cr2O3(0001 single crystal) heterostructure where magnetoelectric annealing allows selecting Cr2O3 single domain states. Here the effect of T-dependent canting of the BM is compared with findings in the complementary perpendicular EB system. Financial support by NSF through MRSEC and the Nanoelectronic Research Initiative.

  1. Spin-Hall Switching of In-plane Exchange Biased Heterostructures

    NASA Astrophysics Data System (ADS)

    Mann, Maxwell; Beach, Geoffrey

    The spin Hall effect (SHE) in heavy-metal/ferromagnet bilayers generates a pure transverse spin current from in-plane charge current, allowing for efficient switching of spintronic devices with perpendicular magnetic anisotropy. Here, we demonstrate that an AFM deposited adjacent to the FM establishes a large in-plane exchange bias field, allowing operation at zero HIP. We sputtered Pt(3nm)/Co(0.9nm)/Ni80Co20O(tAF) stacks at room-temperature in an in-plane magnetic field of 3 kOe. The current-induced effective field was estimated in Hall cross devices by measuring the variation of the out-of-plane switching field as a function of JIP and HIP. The spin torque efficiency, dHSL/dJIP, is measured versus HIP for a sample with tAF =30 nm, and for a control in which NiCoO is replaced by TaOx. In the latter, dHSL/dJIP varied linearly with HIP. In the former, dHSL/dJIP varied nonlinearly with HIP and exhibited an offset indicating nonzero spin torque efficiency with zero HIP. The magnitude of HEB was 600 Oe in-plane.

  2. Martensitic transition, magnetic, magnetocaloric and exchange bias properties of Fe-substituted Mn-Ni-Sn Heusler alloys

    NASA Astrophysics Data System (ADS)

    Sharma, Jyoti; Suresh, K. G.

    2016-12-01

    In this report, effect of Fe substitution on martensitic transition, magnetic, magnetocaloric and exchange bias (EB) properties of Mn50Ni40-xFexSn10 (x=0, 0.5, 1, 1.5, 2 and 3) Heusler alloys series has been investigated systematically. Fe substitution has been found to affect the ferromagnetic/antiferromagnetic interactions significantly in both the martensite and austenite phases. Martensitic transition temperature decreases with increasing Fe content, which is attributed to the decrease in number of average valence electrons per atom (e/a ratio) of these alloys. Large magnetic entropy change (ΔSM) and refrigerant capacity (RC) have been observed in these alloys, as a maximum ΔSM of 12.6 J/kg. K is observed for composition x=0.5. Present alloys have also been found to show large exchange bias properties, as maximum exchange bias fields (HEB) of 890 Oe and 810 Oe are observed for x=0 and 0.5, respectively at 5 K. Composition and temperature dependencies of EB are associated with the change in exchange anisotropy at interfaces of competing magnetic phases. Study of minor loop and training effect also corroborates with the presence of EB in these alloys.

  3. Negative magnetization and exchange bias effect in Ni1.4Mn2Ga0.6

    NASA Astrophysics Data System (ADS)

    Albagami, Abdullah; Khan, Mahmud

    Ni-Mn-X based Heusler alloys have attracted significant interest in recent years due to their multifunctional properties. Exchange bias (EB) is one such property that results from competing magnetic interactions in these alloys. The EB effect is typically observed in materials where ferromagnetic (FM) and antiferromagnetic (AFM) interactions co-exist. Since the discovery of EB effect in CoO (AFM) coated Co (FM) nanoparticles by Meikle John and Bean in 1956, a significant amount of research efforts have been made on this subject. Here, we have performed an experimental study on the magnetic and exchange bias properties of polycrystalline Ni1.4Mn2Ga0.6 alloy by X-ray diffraction, dc magnetization, and ac susceptibility measurements. The material exhibits a ferromagnetic Curie temperature of ~300 K. The magnetization versus field data obtained at 5 K under zero field condition exhibits a double shifted hysteresis loop that disappears at higher temperatures. When the sample is cooled from room temperature to 5 K in applied magnetic fields, exchange bias is observed, whose magnitude is strongly dependent on the cooling field. A maximum exchange bias field of 730 Oe is observed under field cooling condition at 5 K. A negative magnetization is observed in the magnetization versus temperature data obtained at magnetic fields smaller than 75 Oe. The experimental results are explained in terms of the competing ferromagnetic and antiferromagnetic exchange interaction that exist in the materials due to the Mn atoms occupying multiple crystalline sites resulting in a spin glass-type frustrated ground state.

  4. Engineering the interlayer exchange coupling in magnetic trilayers

    PubMed Central

    Chang, Ching-Hao; Dou, Kun-Peng; Chen, Ying-Chin; Hong, Tzay-Ming; Kaun, Chao-Cheng

    2015-01-01

    When the thickness of metal film approaches the nanoscale, itinerant carriers resonate between its boundaries and form quantum well states (QWSs), which are crucial to account for the film’s electrical, transport and magnetic properties. Besides the classic origin of particle-in-a-box, the QWSs are also susceptible to the crystal structures that affect the quantum resonance. Here we investigate the QWSs and the magnetic interlayer exchange coupling (IEC) in the Fe/Ag/Fe (001) trilayer from first-principles calculations. We find that the carriers at the Brillouin-zone center (belly) and edge (neck) separately form electron- and hole-like QWSs that give rise to an oscillatory feature for the IEC as a function of the Ag-layer thickness with long and short periods. Since the QWS formation sensitively depends on boundary conditions, one can switch between these two IEC periods by changing the Fe-layer thickness. These features, which also occur in the magnetic trilayers with other noble-metal spacers, open a new degree of freedom to engineer the IEC in magnetoresistance devices. PMID:26596253

  5. Engineering the interlayer exchange coupling in magnetic trilayers

    NASA Astrophysics Data System (ADS)

    Chang, Ching-Hao; Dou, Kun-Peng; Chen, Ying-Chin; Hong, Tzay-Ming; Kaun, Chao-Cheng

    2015-11-01

    When the thickness of metal film approaches the nanoscale, itinerant carriers resonate between its boundaries and form quantum well states (QWSs), which are crucial to account for the film’s electrical, transport and magnetic properties. Besides the classic origin of particle-in-a-box, the QWSs are also susceptible to the crystal structures that affect the quantum resonance. Here we investigate the QWSs and the magnetic interlayer exchange coupling (IEC) in the Fe/Ag/Fe (001) trilayer from first-principles calculations. We find that the carriers at the Brillouin-zone center (belly) and edge (neck) separately form electron- and hole-like QWSs that give rise to an oscillatory feature for the IEC as a function of the Ag-layer thickness with long and short periods. Since the QWS formation sensitively depends on boundary conditions, one can switch between these two IEC periods by changing the Fe-layer thickness. These features, which also occur in the magnetic trilayers with other noble-metal spacers, open a new degree of freedom to engineer the IEC in magnetoresistance devices.

  6. Engineering the interlayer exchange coupling in magnetic trilayers.

    PubMed

    Chang, Ching-Hao; Dou, Kun-Peng; Chen, Ying-Chin; Hong, Tzay-Ming; Kaun, Chao-Cheng

    2015-11-24

    When the thickness of metal film approaches the nanoscale, itinerant carriers resonate between its boundaries and form quantum well states (QWSs), which are crucial to account for the film's electrical, transport and magnetic properties. Besides the classic origin of particle-in-a-box, the QWSs are also susceptible to the crystal structures that affect the quantum resonance. Here we investigate the QWSs and the magnetic interlayer exchange coupling (IEC) in the Fe/Ag/Fe (001) trilayer from first-principles calculations. We find that the carriers at the Brillouin-zone center (belly) and edge (neck) separately form electron- and hole-like QWSs that give rise to an oscillatory feature for the IEC as a function of the Ag-layer thickness with long and short periods. Since the QWS formation sensitively depends on boundary conditions, one can switch between these two IEC periods by changing the Fe-layer thickness. These features, which also occur in the magnetic trilayers with other noble-metal spacers, open a new degree of freedom to engineer the IEC in magnetoresistance devices.

  7. Observation of pure inverse spin Hall effect in ferromagnetic metals via ferromagnetic/antiferromagnetic exchange-bias structures

    NASA Astrophysics Data System (ADS)

    Wu, H.; Wan, C. H.; Yuan, Z. H.; Zhang, X.; Jiang, J.; Zhang, Q. T.; Wen, Z. C.; Han, X. F.

    2015-08-01

    We report that the spin current generated by the spin Seebeck effect (SSE) in yttrium iron garnet (YIG) can be detected by a ferromagnetic metal (NiFe). By using the ferromagnetic/antiferromagnetic (FM/AFM) exchange bias structure (NiFe/IrMn), the inverse spin Hall effect (ISHE) and planar Nernst effect (PNE) of NiFe can be unambiguously separated, allowing us to observe a pure ISHE signal. After eliminating the in-plane temperature gradient in NiFe, we can even observe a pure ISHE signal without PNE from NiFe itself. It is worth noting that a large spin Hall angle (0.098) of NiFe is obtained, which is comparable with Pt. This work provides a kind of FM/AFM exchange bias structure to detect the spin current by charge signals, and highlights that ISHE in ferromagnetic metals can be used in spintronic research and applications.

  8. Implementation of Coupled Skin Temperature Analysis and Bias Correction in a Global Atmospheric Data Assimilation System

    NASA Technical Reports Server (NTRS)

    Radakovich, Jon; Bosilovich, M.; Chern, Jiun-dar; daSilva, Arlindo

    2004-01-01

    The NASA/NCAR Finite Volume GCM (fvGCM) with the NCAR CLM (Community Land Model) version 2.0 was integrated into the NASA/GMAO Finite Volume Data Assimilation System (fvDAS). A new method was developed for coupled skin temperature assimilation and bias correction where the analysis increment and bias correction term is passed into the CLM2 and considered a forcing term in the solution to the energy balance. For our purposes, the fvDAS CLM2 was run at 1 deg. x 1.25 deg. horizontal resolution with 55 vertical levels. We assimilate the ISCCP-DX (30 km resolution) surface temperature product. The atmospheric analysis was performed 6-hourly, while the skin temperature analysis was performed 3-hourly. The bias correction term, which was updated at the analysis times, was added to the skin temperature tendency equation at every timestep. In this presentation, we focus on the validation of the surface energy budget at the in situ reference sites for the Coordinated Enhanced Observation Period (CEOP). We will concentrate on sites that include independent skin temperature measurements and complete energy budget observations for the month of July 2001. In addition, MODIS skin temperature will be used for validation. Several assimilations were conducted and preliminary results will be presented.

  9. Exchange bias beyond the superparamagnetic blocking temperature of the antiferromagnet in a Ni-NiO nanoparticulate system

    NASA Astrophysics Data System (ADS)

    Roy, Aparna; De Toro, J. A.; Amaral, V. S.; Muniz, P.; Riveiro, J. M.; Ferreira, J. M. F.

    2014-02-01

    We report magnetic and exchange bias studies on Ni-NiO nanoparticulate systems synthesized by a two-step process, namely, chemical reduction of a Ni salt followed by air annealing of the dried precipitate in the temperature range 400-550 °C. Size of Ni and NiO crystallites as estimated from X-ray diffraction line broadening ranges between 10.5-13.5 nm and 2.3-4 nm, respectively. The magneto-thermal plots (M-T) of these bi-magnetic samples show a well developed peak in the vicinity of 130 K. This has been identified as the superparamagnetic blocking temperature "TB" of NiO. Interestingly, all samples exhibit exchange bias even above their respective NiO blocking temperatures, right up to 300 K, the maximum temperature of measurement. This is in contrast to previous reports since exchange bias requires the antiferromagnetic NiO to have a stable direction of its moment in order to pin the ferromagnet (Ni) magnetization, whereas such stability is unlikely above TB since the NiO is superparamagnetic, its moment flipping under thermal activation. Our observation is elucidated by taking into account the core-shell morphology of the Ni-NiO nanoparticles whereby clustering of some of these nanoparticles connects their NiO shells to form extended continuous regions of NiO, which because of their large size remain blocked at T > TB, with thermally stable spins capable of pinning the Ni cores and giving rise to exchange bias. The investigated samples may thus be envisaged as being constituted of both isolated core-shell Ni-NiO nanoparticles as well as clustered ones, with TB denoting the blocking temperature of the NiO shell of the isolated particles.

  10. Enhanced Conformational Sampling Using Replica Exchange with Concurrent Solute Scaling and Hamiltonian Biasing Realized in One Dimension

    PubMed Central

    2015-01-01

    Replica exchange (REX) is a powerful computational tool for overcoming the quasi-ergodic sampling problem of complex molecular systems. Recently, several multidimensional extensions of this method have been developed to realize exchanges in both temperature and biasing potential space or the use of multiple biasing potentials to improve sampling efficiency. However, increased computational cost due to the multidimensionality of exchanges becomes challenging for use on complex systems under explicit solvent conditions. In this study, we develop a one-dimensional (1D) REX algorithm to concurrently combine the advantages of overall enhanced sampling from Hamiltonian solute scaling and the specific enhancement of collective variables using Hamiltonian biasing potentials. In the present Hamiltonian replica exchange method, termed HREST-BP, Hamiltonian solute scaling is applied to the solute subsystem, and its interactions with the environment to enhance overall conformational transitions and biasing potentials are added along selected collective variables associated with specific conformational transitions, thereby balancing the sampling of different hierarchical degrees of freedom. The two enhanced sampling approaches are implemented concurrently allowing for the use of a small number of replicas (e.g., 6 to 8) in 1D, thus greatly reducing the computational cost in complex system simulations. The present method is applied to conformational sampling of two nitrogen-linked glycans (N-glycans) found on the HIV gp120 envelope protein. Considering the general importance of the conformational sampling problem, HREST-BP represents an efficient procedure for the study of complex saccharides, and, more generally, the method is anticipated to be of general utility for the conformational sampling in a wide range of macromolecular systems. PMID:26082676

  11. Exchange bias beyond the superparamagnetic blocking temperature of the antiferromagnet in a Ni-NiO nanoparticulate system

    SciTech Connect

    Roy, Aparna E-mail: aparnaroy15@gmail.com; Ferreira, J. M. F.; De Toro, J. A.; Muniz, P.; Riveiro, J. M.; Amaral, V. S.

    2014-02-21

    We report magnetic and exchange bias studies on Ni-NiO nanoparticulate systems synthesized by a two-step process, namely, chemical reduction of a Ni salt followed by air annealing of the dried precipitate in the temperature range 400–550 °C. Size of Ni and NiO crystallites as estimated from X–ray diffraction line broadening ranges between 10.5–13.5 nm and 2.3–4 nm, respectively. The magneto-thermal plots (M-T) of these bi-magnetic samples show a well developed peak in the vicinity of 130 K. This has been identified as the superparamagnetic blocking temperature “T{sub B}” of NiO. Interestingly, all samples exhibit exchange bias even above their respective NiO blocking temperatures, right up to 300 K, the maximum temperature of measurement. This is in contrast to previous reports since exchange bias requires the antiferromagnetic NiO to have a stable direction of its moment in order to pin the ferromagnet (Ni) magnetization, whereas such stability is unlikely above T{sub B} since the NiO is superparamagnetic, its moment flipping under thermal activation. Our observation is elucidated by taking into account the core-shell morphology of the Ni-NiO nanoparticles whereby clustering of some of these nanoparticles connects their NiO shells to form extended continuous regions of NiO, which because of their large size remain blocked at T > T{sub B}, with thermally stable spins capable of pinning the Ni cores and giving rise to exchange bias. The investigated samples may thus be envisaged as being constituted of both isolated core-shell Ni-NiO nanoparticles as well as clustered ones, with T{sub B} denoting the blocking temperature of the NiO shell of the isolated particles.

  12. Enhanced interlayer exchange coupling in antiferromagnetically coupled ultrathin (Co70Fe30/Pd) multilayers

    NASA Astrophysics Data System (ADS)

    Meng, Zhaoliang; Qiu, Jinjun; Han, Guchang; Teo, Kie Leong

    2015-12-01

    We report the studies of magnetization reversal and magnetic interlayer coupling in synthetic antiferromagnetic (SAF) [Pd/Co70Fe30]9/Ru(tRu)/Pd(tPd)/[Co70Fe30/Pd]9 structure as functions of inserted Pd layer (tPd) and Ru layer (tRu) thicknesses. We found the exchange coupling field (Hex) and perpendicular magnetic anisotropy (PMA) can be controlled by both the tPd and tRu, The Hex shows a Ruderman-Kittel-Kasuya-Yosida-type oscillatory decay dependence on tRu and a maximum interlayer coupling strength Jex = 0.522 erg/cm2 is achieved at tPd + tRu ≈ 0.8 nm in the as-deposited sample. As it is known that a high post-annealing stability of SAF structure is required for magnetic random access memory applications, the dependence of Hex and PMA on the post-annealing temperature (Ta) is also investigated. We found that both high PMA of the top Co70Fe30/Pd multilayer is maintained and Hex is enhanced with increasing Ta up to 350 °C for tRu > 0.7 nm in our SAF structure.

  13. Lamellar magnetism and exchange bias in billion-year-old titanohematite with nanoscale ilmenite exsolution lamellae: I. Mineral and magnetic characterization

    NASA Astrophysics Data System (ADS)

    McEnroe, Suzanne A.; Robinson, Peter; Miyajima, Nobuyoshi; Fabian, Karl; Dyar, Darby; Sklute, Elizabeth

    2016-07-01

    Recent high-resolution aeromagnetic surveys in South Norway have revealed numerous remanent anomalies over Mesoproterozoic metamorphic rocks. Studies on the nature of the minerals that are the remanent carriers has led to discoveries of titanohematite samples with unusual magnetic properties caused by nanoscale exsolution lamellae with their related lamellar magnetism. Here we focus on a rock unit dominated by quartz-plagioclase-biotite granulite containing titanohematite grains with a strong lattice-preferred orientation parallel to regional foliation. When samples with their natural remanent magnetization (NRM), acquired nearly 1 billion years ago, are cooled to 10 K and hysteresis loops measured, these loops show bi-modal exchange bias caused by the magnetism induced within the ilmenite by antiferromagnetic coupling with the adjacent lamellar NRM. By contrast when the samples are cooled in a strong magnetic field (1.5 Tesla), this results in unimodal lamellar magnetism, and, below the TN of ilmenite it adopts a consistent negative orientation, giving rise to unimodal negative exchange bias of >500 mT. The results presented here cover the chemical and magnetic properties, Mossbauer results and transmission electron microscopy of the titanohematite and ilmenite lamellae. Initial magnetic experiments indicated the shifts found in the exchange-bias experiments were directly related to the orientation of the sample to the applied field and the initial state of the NRM. In most samples with these unusual magnetic properties, ilmenite lamellae could not be seen in an optical or a scanning electron microscope. However magnetic experiments gave proof of the presence of ilmenite, later confirmed by Mössbauer spectroscopy. Several attempts were made to identify ilmenite in TEM studies, finally successful in showing ilmenite lamellae parallel to (001) of hematite with thicknesses ˜1.2 to 1.7 nm and aspect ratios 7-13. Here we compare new TEM images and the magnetic

  14. Exchange bias effect in Au-Fe3O4 dumbbell nanoparticles induced by the charge transfer from gold

    SciTech Connect

    Feygenson, Mikhail; Bauer, John C.; Gai, Zheng; Marques, Carlos; Aronson, Meigan C.; Teng, Xiaowei; Su, Dong; Stanic, Vesna; Urban, Volker S.; Beyer, Kevin A.; Dai, Sheng

    2015-08-10

    We have studied the origin of the exchange bias effect in the Au-Fe3O4 dumbbell nanoparticles in two samples with different sizes of the Au seed nanoparticles (4.1 and 2.7 nm) and same size of Fe3O4 nanoparticles (9.8 nm). The magnetization, small-angle neutron-scattering, synchrotron x-ray diffraction, and scanning transmission electron microscope measurements determined the antiferromagnetic FeO wustite phase within Fe3O4 nanoparticles, originating at the interface with the Au nanoparticles. The interface between antiferromagnetic FeO and ferrimagnetic Fe3O4 is giving rise to the exchange bias effect. The strength of the exchange bias fields depends on the interfacial area and lattice mismatch between both phases. We propose that the charge transfer from the Au nanoparticles is responsible for a partial reduction of the Fe3O4 into the FeO phase at the interface with Au nanoparticles. The Au-O bonds are formed, presumably across the interface to accommodate an excess of oxygen released during the reduction of magnetite

  15. Exchange bias effect in Au-Fe3O4 dumbbell nanoparticles induced by the charge transfer from gold

    DOE PAGES

    Feygenson, Mikhail; Bauer, John C; Gai, Zheng; ...

    2015-08-10

    We have studied the origin of the exchange bias effect in the Au-Fe3O4 dumbbell nanoparticles in two samples with different sizes of the Au seed nanoparticles (4.1 and 2.7 nm) and same size of Fe3O4 nanoparticles (9.8 nm). The magnetization, small-angle neutron scattering, synchrotron x-ray diffraction and scanning transmission electron microscope measurements determined the antiferromagnetic FeO wüstite phase within Fe3O4 nanoparticles, originating at the interface with the Au nanoparticles. The interface between antiferromagnetic FeO and ferrimagnetic Fe3O4 is giving rise to the exchange bias effect. The strength of the exchange bias fields depends on the interfacial area and lattice mismatchmore » between both phases. We propose that the charge transfer from the Au nanoparticles is responsible for a partial reduction of the Fe3O4 into FeO phase at the interface with Au nanoparticles. The Au-O bonds are formed across the interface to accommodate an excess of oxygen released during the reduction of magnetite.« less

  16. Bias-Exchange Metadynamics Simulations: An Efficient Strategy for the Analysis of Conduction and Selectivity in Ion Channels.

    PubMed

    Domene, Carmen; Barbini, Paolo; Furini, Simone

    2015-04-14

    Conduction through ion channels possesses two interesting features: (i) different ionic species are selected with high-selectivity and (ii) ions travel across the channel with rates approaching free-diffusion. Molecular dynamics simulations have the potential to reveal how these processes take place at the atomic level. However, analysis of conduction and selectivity at atomistic detail is still hampered by the short time scales accessible by computer simulations. Several algorithms have been developed to "accelerate" sampling along the slow degrees of freedom of the process under study and thus to probe longer time scales. In these algorithms, the slow degrees of freedom need to be defined in advance, which is a well-known shortcoming. In the particular case of ion conduction, preliminary assumptions about the number and type of ions participating in the permeation process need to be made. In this study, a novel approach for the analysis of conduction and selectivity based on bias-exchange metadynamics simulations was tested. This approach was compared with umbrella sampling simulations, using a model of a Na(+)-selective channel. Analogous conclusions resulted from both techniques, but the computational cost of bias-exchange simulations was lower. In addition, with bias-exchange metadynamics it was possible to calculate free energy profiles in the presence of a variable number and type of permeating ions. This approach might facilitate the definition of the set of collective variables required to analyze conduction and selectivity in ion channels.

  17. Competing exchange couplings in Sr2CrReO6 Double Perovskite

    NASA Astrophysics Data System (ADS)

    El Rhazouani, O.; Slassi, A.; Ziat, Y.; Benyoussef, A.

    2017-04-01

    Super Exchange (SE) coupling and Double Exchange (DE) couplings in the Double Perovskite (DP) Sr2CrReO6 have been calculated by using a new approximation method, proposed in this paper, based on a relation between internal energy per site and magnetization per site. Monte Carlo simulation has been performed, as computational method in the framework of Ising model, to find the exchange couplings that verify the experimental Curie temperature measured under an external field h = 1 T. SE exchange coupling has been found equal to -19.992 meV and the DE couplings corresponding respectively to Cr and Re sublattices have been found equal to 18.334 meV and 18.741 meV. Internal energy per site has been calculated.

  18. Lengthscale effects on exchange coupling in Co-Pt L10 + L12 nanochessboards

    NASA Astrophysics Data System (ADS)

    Vetter, Eric P.; Geng, Liwei; Ghatwai, Priya; Gilbert, Dustin A.; Jin, Yongmei; Soffa, William A.; Floro, Jerrold A.

    2016-09-01

    The Co-Pt nanochessboard is a quasi-periodic, nanocomposite tiling of L10 and L12 magnetic phases that offers a novel structure for the investigation of exchange coupling, relevant to permanent magnet applications. Periodicity of the tiling is controlled by the rate of cooling through the eutectoid isotherm, resulting in control over the L10-L12 exchange coupling. First order reversal curve analysis reveals a transition from partial coupling to nearly complete exchange-coupling in a Co40.2Pt59.8 nanochessboard structured alloy as the periodicity is reduced below the critical correlation length. Micromagnetic simulations give insights into how exchange coupling manifests in the tiling, and its impact on microscopic magnetization reversal mechanisms.

  19. Quantifying exchange coupling in f-ion pairs using the diamagnetic substitution method

    SciTech Connect

    Lukens, Wayne W.; Walter, Marc D.

    2010-04-01

    One of the challenges in the chemistry of actinide and lanthanide (f-ion) is quantifying exchange coupling between f-ions. While qualitative information about exchange coupling may be readily obtained using the diamagnetic substitution approach, obtaining quantitative information is much more difficult. This article describes how exchange coupling may be quantified using the susceptibility of a magnetically isolated analog, as in the diamagnetic substitution approach, along with the anisotropy of the ground state as determined by EPR spectroscopy. Several examples are used to illustrate and test this approach.

  20. Quantifying exchange coupling in f-ion pairs using the diamagnetic substitution method.

    PubMed

    Lukens, Wayne W; Walter, Marc D

    2010-05-17

    One of the challenges in the chemistry of actinide and lanthanide (f-ion) complexes is quantifying exchange coupling of f-ions. While qualitative information about exchange coupling may be readily obtained using the diamagnetic substitution approach, obtaining quantitative information is much more difficult. This article describes how exchange coupling may be quantified using the susceptibility of a magnetically isolated analog, as in the diamagnetic substitution approach, along with the anisotropy of the ground state, as determined by EPR spectroscopy. Several examples are used to illustrate and test this approach.

  1. Effect of temperature on magnetization reversal characteristics of ferromagnetic 3 d metal layers within exchange-coupled FeMn-based structures

    NASA Astrophysics Data System (ADS)

    Vas'kovskiy, V. O.; Adanakova, O. A.; Gorkovenko, A. N.; Lepalovskij, V. N.; Svalov, A. V.; Stepanova, E. A.

    2015-12-01

    Multilayer films Fe20Ni80/FeMn/FM (with FM = Ni, Fe11Ni89, Fe20Ni80, Co30Ni70, Fe, Co) have been prepared and their structure has been estimated. Their hysteretic properties and interlayer coupling parameters have been studied in a temperature range of 5-350 K. Regularities of the magnetization reversal of ferromagnetic layers under magnetic exchange-bias conditions have been interpreted.

  2. Time-resolved magnetization dynamics in crystalline ferromagnets and exchange-biased systems

    NASA Astrophysics Data System (ADS)

    Engebretson, David Michael

    Time-resolved ferromagnetic resonance (FMR) measurements are performed using a pump-probe technique with a non-optical pump to observe precession and relaxation of the magnetization in epitaxial magnetic thin films at temperatures down to 5 K. Spatial localization achieved through use of an optical probe allows a direct measurement of spin relaxation, reducing the effects of inhomogeneous dephasing relative to probes of larger areas, while the use of low fields allows a study of dynamics throughout the entire magnetization reversal process. The reversal mechanism of FexCo1-x is probed as a function of cubic and uniaxial anisotropy strengths, using FMR as a direct probe of the free energy surface. A coherent rotation model describes the reversal for fields up through 700 Oe, failing only for fields near 105 Oe applied along the GaAs [01 1¯] direction where nucleation of nearly perpendicular domains is observed. Measurements of the Gilbert damping parameter alpha indicate that it is smaller for fields applied along the [01 1¯] direction than for fields along [011] or [010]. Dynamic interactions between local moments and itinerant carriers are examined in the diluted magnetic semiconductor Ga1-xMn xAs. Holes and local moments are found to precess together on timescales greater than 50 ps. Although previous experiments by other groups have observed a change in the magnetization due to introduction of photoexcited carriers, our measurements indicate no dynamical change in magnetization due to additional optically pumped carriers. The Gilbert damping parameter alpha is observed to increase more than twofold as temperature is raised from 20 K to the Curie temperature, although the decay time remains nearly independent of temperature over this range. Exchange-biased Fe/FeF2 is found to exhibit temperature-dependent anisotropy above its Neel temperature (78 K), while the anisotropy of structurally similar Fe/MnF2 remains independent of temperature above TN = 67 K. Dynamic

  3. Positive exchange-bias and giant vertical hysteretic shift in La0.3Sr0.7FeO3/SrRuO3 bilayers

    PubMed Central

    Rana, Rakesh; Pandey, Parul; Singh, R. P.; Rana, D. S.

    2014-01-01

    The exchange-bias effects in the mosaic epitaxial bilayers of the itinerant ferromagnet (FM) SrRuO3 and the antiferromagnetic (AFM) charge-ordered La0.3Sr0.7FeO3 were investigated. An uncharacteristic low-field positive exchange bias, a cooling-field driven reversal of positive to negative exchange-bias and a layer thickness optimised unusual vertical magnetization shift were all novel facets of exchange bias realized for the first time in magnetic oxides. The successive magnetic training induces a transition from positive to negative exchange bias regime with changes in domain configurations. These observations are well corroborated by the hysteretic loop asymmetries which display the modifications in the AFM spin correlations. These exotic features emphasize the key role of i) mosaic disorder induced subtle interplay of competing AFM-superexchange and FM double exchange at the exchange biased interface and, ii) training induced irrecoverable alterations in the AFM spin structure. PMID:24569516

  4. Brillouin Light Scattering study of the rotatable magnetic anisotropy in exchange biased bilayers of Ni81 Fe19 Ir20 Mn80

    NASA Astrophysics Data System (ADS)

    Rodríguez, Roberto; Oliveira, Alexandre; Estrada, Francisco; Santos, Obed; Azevedo, Antonio; Rezende, Sergio

    It is known that when a ferromagnet (FM) is in atomic contact with an antiferromagnet (AF) the exchange coupling between the FM and AF spins at the interface induces a unidirectional anisotropy in the ferromagnetic film. This effect is known as exchange bias (EB). Despite the large amount of research on this topic there are still several aspects of the EB mechanism that are not well understood. One of this aspects is the origin of the rotatable anisotropy in polycrystalline AFs. By means of Brillouin Light Scattering (BLS) measurements, we investigated the dependence of the rotatable anisotropy field HRA and exchange field HE with the magnitude of the external magnetic field (Ho) in FM/AM bilayers of Ni81Fe19(10nm)/Ir20Mn80(tAF) . We developed an algorithm to numerically fit the in-plane angular dependence of the magnon frequency, at a fixed value of Ho measured by BLS. From the fit parameters we were able to investigate HRA and HE dependency on Ho. The results reveal that HRA value depends on Ho, so we argue that AF grain distribution at the interface is partially modified by the applied field strength. Contrary to this, the relation between HE and Ho is not straightforward, remaining constant at high values of Ho.

  5. Arrestin-biased AT1R agonism induces acute catecholamine secretion through TRPC3 coupling

    PubMed Central

    Liu, Chun-Hua; Gong, Zheng; Liang, Zong-Lai; Liu, Zhi-Xin; Yang, Fan; Sun, Yu-Jing; Ma, Ming-Liang; Wang, Yi-Jing; Ji, Chao-Ran; Wang, Yu-Hong; Wang, Mei-Jie; Cui, Fu-Ai; Lin, Amy; Zheng, Wen-Shuai; He, Dong-Fang; Qu, Chang-xiu; Xiao, Peng; Liu, Chuan-Yong; Thomsen, Alex R. B.; Joseph Cahill, Thomas; Kahsai, Alem W.; Yi, Fan; Xiao, Kun-Hong; Xue, Tian; Zhou, Zhuan; Yu, Xiao; Sun, Jin-Peng

    2017-01-01

    Acute hormone secretion triggered by G protein-coupled receptor (GPCR) activation underlies many fundamental physiological processes. GPCR signalling is negatively regulated by β-arrestins, adaptor molecules that also activate different intracellular signalling pathways. Here we reveal that TRV120027, a β-arrestin-1-biased agonist of the angiotensin II receptor type 1 (AT1R), stimulates acute catecholamine secretion through coupling with the transient receptor potential cation channel subfamily C 3 (TRPC3). We show that TRV120027 promotes the recruitment of TRPC3 or phosphoinositide-specific phospholipase C (PLCγ) to the AT1R-β-arrestin-1 signalling complex. Replacing the C-terminal region of β-arrestin-1 with its counterpart on β-arrestin-2 or using a specific TAT-P1 peptide to block the interaction between β-arrestin-1 and PLCγ abolishes TRV120027-induced TRPC3 activation. Taken together, our results show that the GPCR-arrestin complex initiates non-desensitized signalling at the plasma membrane by coupling with ion channels. This fast communication pathway might be a common mechanism of several cellular processes. PMID:28181498

  6. Peptide modifications differentially alter G protein-coupled receptor internalization and signaling bias.

    PubMed

    Mäde, Veronika; Babilon, Stefanie; Jolly, Navjeet; Wanka, Lizzy; Bellmann-Sickert, Kathrin; Diaz Gimenez, Luis E; Mörl, Karin; Cox, Helen M; Gurevich, Vsevolod V; Beck-Sickinger, Annette G

    2014-09-15

    Although G protein-coupled receptors (GPCRs) are targeted by more clinically used drugs than any other type of protein, their ligand development is particularly challenging. Humans have four neuropeptide Y receptors: hY1R and hY5R are orexigenic, while hY2R and hY4R are anorexigenic, and represent important anti-obesity drug targets. We show for the first time that PEGylation and lipidation, chemical modifications that prolong the plasma half-lives of peptides, confer additional benefits. Both modifications enhance pancreatic polypeptide preference for hY2R/hY4R over hY1R/hY5R. Lipidation biases the ligand towards arrestin recruitment and internalization, whereas PEGylation confers the opposite bias. These effects were independent of the cell system and modified residue. We thus provide novel insights into the mode of action of peptide modifications and open innovative venues for generating peptide agonists with extended therapeutic potential.

  7. Peptide Modifications Differentially Alter G Protein-Coupled Receptor Internalization and Signaling Bias**

    PubMed Central

    Mäde, Veronika; Babilon, Stefanie; Jolly, Navjeet; Wanka, Lizzy; Bellmann-Sickert, Kathrin; Diaz Gimenez, Luis E.; Mörl, Karin; Cox, Helen M.; Gurevich, Vsevolod V.; Beck-Sickinger, Annette G.

    2016-01-01

    Although G protein-coupled receptors (GPCRs) are targeted by more clinically used drugs than any other type of protein, their ligand development is particularly challenging. Humans have four neuropeptide Y receptors: hY1R and hY5R are orexigenic, while hY2R and hY4R are anorexigenic, and represent important anti-obesity drug targets. We show for the first time that PEGylation and lipidation, chemical modifications that prolong the plasma half-lives of peptides, confer additional benefits. Both modifications enhance pancreatic polypeptide preference for hY2R/hY4R over hY1R/hY5R. Lipidation biases the ligand towards arrestin recruitment and internalization, whereas PEGylation confers the opposite bias. These effects were independent of the cell system and modified residue. We thus provide novel insights into the mode of action of peptide modifications and open innovative venues for generating peptide agonists with extended therapeutic potential. PMID:25065900

  8. Realizing topological stability of magnetic helices in exchange-coupled multilayers for all-spin-based system

    PubMed Central

    Fust, Sergej; Mukherjee, Saumya; Paul, Neelima; Stahn, Jochen; Kreuzpaintner, Wolfgang; Böni, Peter; Paul, Amitesh

    2016-01-01

    Topologically stabilized spin configurations like helices in the form of planar domain walls (DWs) or vortex-like structures with magnetic functionalities are more often a theoretical prediction rather than experimental realization. In this paper we report on the exchange coupling and helical phase characteristics within Dy-Fe multilayers. The magnetic hysteresis loops with temperature show an exchange bias field of around 1.0 kOe at 10 K. Polarized neutron reflectivity reveal (i) ferrimagnetic alignment of the layers at low fields forming twisted magnetic helices and a more complicated but stable continuous helical arrangement at higher fields (ii) direct evidence of helices in the form of planar 2π-DWs within both layers of Fe and Dy. The helices within the Fe layers are topologically stabilized by the reasonably strong induced in-plane magnetocrystalline anisotropy of Dy and the exchange coupling at the Fe-Dy interfaces. The helices in Dy are plausibly reminiscent of the helical ordering at higher temperatures induced by the field history and interfacial strain. Stability of the helical order even at large fields have resulted in an effective modulation of the periodicity of the spin-density like waves and subsequent increase in storage energy. This opens broad perspectives for future scientific and technological applications in increasing the energy density for systems in the field of all-spin-based engineering which has the potential for energy-storing elements on nanometer length scales. PMID:27677227

  9. Realizing topological stability of magnetic helices in exchange-coupled multilayers for all-spin-based system

    NASA Astrophysics Data System (ADS)

    Fust, Sergej; Mukherjee, Saumya; Paul, Neelima; Stahn, Jochen; Kreuzpaintner, Wolfgang; Böni, Peter; Paul, Amitesh

    2016-09-01

    Topologically stabilized spin configurations like helices in the form of planar domain walls (DWs) or vortex-like structures with magnetic functionalities are more often a theoretical prediction rather than experimental realization. In this paper we report on the exchange coupling and helical phase characteristics within Dy-Fe multilayers. The magnetic hysteresis loops with temperature show an exchange bias field of around 1.0 kOe at 10 K. Polarized neutron reflectivity reveal (i) ferrimagnetic alignment of the layers at low fields forming twisted magnetic helices and a more complicated but stable continuous helical arrangement at higher fields (ii) direct evidence of helices in the form of planar 2π-DWs within both layers of Fe and Dy. The helices within the Fe layers are topologically stabilized by the reasonably strong induced in-plane magnetocrystalline anisotropy of Dy and the exchange coupling at the Fe-Dy interfaces. The helices in Dy are plausibly reminiscent of the helical ordering at higher temperatures induced by the field history and interfacial strain. Stability of the helical order even at large fields have resulted in an effective modulation of the periodicity of the spin-density like waves and subsequent increase in storage energy. This opens broad perspectives for future scientific and technological applications in increasing the energy density for systems in the field of all-spin-based engineering which has the potential for energy-storing elements on nanometer length scales.

  10. Realizing topological stability of magnetic helices in exchange-coupled multilayers for all-spin-based system.

    PubMed

    Fust, Sergej; Mukherjee, Saumya; Paul, Neelima; Stahn, Jochen; Kreuzpaintner, Wolfgang; Böni, Peter; Paul, Amitesh

    2016-09-28

    Topologically stabilized spin configurations like helices in the form of planar domain walls (DWs) or vortex-like structures with magnetic functionalities are more often a theoretical prediction rather than experimental realization. In this paper we report on the exchange coupling and helical phase characteristics within Dy-Fe multilayers. The magnetic hysteresis loops with temperature show an exchange bias field of around 1.0 kOe at 10 K. Polarized neutron reflectivity reveal (i) ferrimagnetic alignment of the layers at low fields forming twisted magnetic helices and a more complicated but stable continuous helical arrangement at higher fields (ii) direct evidence of helices in the form of planar 2π-DWs within both layers of Fe and Dy. The helices within the Fe layers are topologically stabilized by the reasonably strong induced in-plane magnetocrystalline anisotropy of Dy and the exchange coupling at the Fe-Dy interfaces. The helices in Dy are plausibly reminiscent of the helical ordering at higher temperatures induced by the field history and interfacial strain. Stability of the helical order even at large fields have resulted in an effective modulation of the periodicity of the spin-density like waves and subsequent increase in storage energy. This opens broad perspectives for future scientific and technological applications in increasing the energy density for systems in the field of all-spin-based engineering which has the potential for energy-storing elements on nanometer length scales.

  11. A new reversal mode in exchange coupled antiferromagnetic/ferromagnetic disks: distorted viscous vortex

    SciTech Connect

    Gilbert, Dustin A.; Ye, Li; Varea, Aïda; Agramunt-Puig, Sebastià; del Valle, Nuria; Navau, Carles; López-Barbera, José Francisco; Buchanan, Kristen S.; Hoffmann, Axel; Sánchez, Alvar; Sort, Jordi; Liu, Kai; Nogués, Josep

    2015-04-28

    Magnetic vortices have generated intense interest in recent years due to their unique reversal mechanisms, fascinating topological properties, and exciting potential applications. In addition, the exchange coupling of magnetic vortices to antiferromagnets has also been shown to lead to a range of novel phenomena and functionalities. Here we report a new magnetization reversal mode of magnetic vortices in exchange coupled Ir20Mn80/Fe20Ni80 microdots: distorted viscous vortex reversal. In contrast to the previously known or proposed reversal modes, the vortex is distorted close to the interface and viscously dragged due to the uncompensated spins of a thin antiferromagnet, which leads to unexpected asymmetries in the annihilation and nucleation fields. These results provide a deeper understanding of the physics of exchange coupled vortices and may also have important implications for applications involving exchange coupled nanostructures.

  12. A new reversal mode in exchange coupled antiferromagnetic/ferromagnetic disks: distorted viscous vortex

    DOE PAGES

    Gilbert, Dustin A.; Ye, Li; Varea, Aïda; ...

    2015-04-28

    Magnetic vortices have generated intense interest in recent years due to their unique reversal mechanisms, fascinating topological properties, and exciting potential applications. In addition, the exchange coupling of magnetic vortices to antiferromagnets has also been shown to lead to a range of novel phenomena and functionalities. Here we report a new magnetization reversal mode of magnetic vortices in exchange coupled Ir20Mn80/Fe20Ni80 microdots: distorted viscous vortex reversal. In contrast to the previously known or proposed reversal modes, the vortex is distorted close to the interface and viscously dragged due to the uncompensated spins of a thin antiferromagnet, which leads to unexpectedmore » asymmetries in the annihilation and nucleation fields. These results provide a deeper understanding of the physics of exchange coupled vortices and may also have important implications for applications involving exchange coupled nanostructures.« less

  13. The Influence of temperature and applied magnetic field on the exchange bias effect of La1.5Ca0.5CoIrO6

    NASA Astrophysics Data System (ADS)

    Coutrim, L. T.; Bittar, E. M.; Baggio-Saitovitch, E.; Bufaiçal, L.

    2017-04-01

    La1.5Ca0.5CoIrO6 is a re-entrant spin-glass double-perovskite that exhibits a non-negligible spontaneous exchange bias effect at low temperatures. When performing magnetization as a function of applied field [M(H)] measurements after cooling the sample in the presence of a magnetic field, the exchange bias is greatly enhanced. In this work we report a detailed investigation of the influence of the maximum applied field (Hm) on the exchange bias effect for M (H) curves measured with and without the presence of an applied field on cooling. In both cases the shift in the hysteresis loops decreases for increasing Hm. We have also investigated the influence of the cooling field on the exchange bias effect. By increasing the applied field on cooling there is an initial increase of the exchange bias, followed by a decrease of the effect for larger cooling fields. A detailed study of the magnetic evolution of the system with temperature showed that despite the enhancement of the coercive field observed at temperatures above the freezing of the spin-glass phase, there is no trace of exchange bias effect at these temperatures. We discuss our results in terms of the pinning of the spins at the magnetic interfaces.

  14. Exchange coupled CoPd/TbCo magneto-optic storage films

    SciTech Connect

    Gambino, R.J.; Ruf, R.R.; Rishi, R. )

    1989-09-01

    Films of CoPd with weak perpendicular anisotropy are shown to exchange couple to square loop TbCo films on both the Tb and Co sides of compensation. The exchange is sensitive to reactive impurities at the interface and is broken under conditions that produce as little as one monolayer of paramagnetic compound. Even when the coupling at the interface is strong, the authors show that only a limited thickness of the CoPd layer is spin oriented perpendicular.

  15. Paramagnetic molecule induced strong antiferromagnetic exchange coupling on a magnetic tunnel junction based molecular spintronics device.

    PubMed

    Tyagi, Pawan; Baker, Collin; D'Angelo, Christopher

    2015-07-31

    This paper reports our Monte Carlo (MC) studies aiming to explain the experimentally observed paramagnetic molecule induced antiferromagnetic coupling between ferromagnetic (FM) electrodes. Recently developed magnetic tunnel junction based molecular spintronics devices (MTJMSDs) were prepared by chemically bonding the paramagnetic molecules between the FM electrodes along the tunnel junction's perimeter. These MTJMSDs exhibited molecule-induced strong antiferromagnetic coupling. We simulated the 3D atomic model analogous to the MTJMSD and studied the effect of molecule's magnetic couplings with the two FM electrodes. Simulations show that when a molecule established ferromagnetic coupling with one electrode and antiferromagnetic coupling with the other electrode, then theoretical results effectively explained the experimental findings. Our studies suggest that in order to align MTJMSDs' electrodes antiparallel to each other, the exchange coupling strength between a molecule and FM electrodes should be ∼50% of the interatomic exchange coupling for the FM electrodes.

  16. Magnetic exchange couplings from noncollinear perturbation theory: dinuclear CuII complexes.

    PubMed

    Phillips, Jordan J; Peralta, Juan E

    2014-08-07

    To benchmark the performance of a new method based on noncollinear coupled-perturbed density functional theory [J. Chem. Phys. 138, 174115 (2013)], we calculate the magnetic exchange couplings in a series of triply bridged ferromagnetic dinuclear Cu(II) complexes that have been recently synthesized [Phys. Chem. Chem. Phys. 15, 1966 (2013)]. We find that for any basis-set the couplings from our noncollinear coupled-perturbed methodology are practically identical to those of spin-projected energy-differences when a hybrid density functional approximation is employed. This demonstrates that our methodology properly recovers a Heisenberg description for these systems, and is robust in its predictive power of magnetic couplings. Furthermore, this indicates that the failure of density functional theory to capture the subtle variation of the exchange couplings in these complexes is not simply an artifact of broken-symmetry methods, but rather a fundamental weakness of current approximate density functionals for the description of magnetic couplings.

  17. Current-driven switching of exchange biased spin-valve giant magnetoresistive nanopillars using a conducting nanoprobe

    NASA Astrophysics Data System (ADS)

    Hayakawa, J.; Ito, K.; Fujimori, M.; Heike, S.; Hashizume, T.; Steen, J.; Brugger, J.; Ohno, H.

    2004-09-01

    An array of exchange biased spin-valve giant-magnetoresistance nanopillars was fabricated and the current I dependence of the resistance R was investigated using an electrically conducting atomic-force microscope (AFM) probe contact at room temperature. We observed current induced switching in a MnIr /CoFe/Cu/CoFe/NiFe nanopillar using the AFM probe contact. Current-driven switching using nanoprobe contact is a powerful method for developing nonvolatile and rewritable magnetic memory with high density.

  18. Exchange bias effect in Co(Cr0.925Fe0.075)2O4

    NASA Astrophysics Data System (ADS)

    Padam, R.; Pandya, Swati; Ravi, S.; Grover, A. K.; Pal, D.

    2013-02-01

    Single phase sample of 7.5% Fe doped CoCr2O4 i.e. Co(Cr0.925Fe0.075)2O4 was prepared. Temperature and field variation of magnetization shows that the sample exhibits the novel phenomenon of magnetization reversal at compensation temperature Tcomp ˜ 67.8 K. In addition to this, sample is found to exhibit positive and negative exchange bias (EB) at T > Tcomp and T < Tcomp respectively. This is explained in terms of presence of competing interactions.

  19. Large exchange bias effect in LaCr0.9Ru0.1O3

    NASA Astrophysics Data System (ADS)

    Sarkar, Babusona; Dalal, Biswajit; De, S. K.

    2016-11-01

    The incorporation of tetravalent Ru (10%) into antiferromagnetic spin structure of LaCrO3 leads to mixed valence states of Cr (Cr2+ and Cr3+). Highly delocalized 4d orbital of Ru induces prominent ferromagnetic (FM) component in antiferromagnetic (AFM) matrix of parent compound. The complex magnetic interaction across the interface of FM and AFM regions gives rise to large exchange bias field (HEB) of about 10 kOe. The inverse and normal magnetocaloric effect for magnetic field up to 50 kOe coexists in a single material due to multiple magnetic phase transitions with temperature.

  20. Anisotropic behavior of exchange bias effect in tensile-deformed Pt{sub 3}Fe single crystal

    SciTech Connect

    Kobayashi, Satoru Morita, Ryo

    2015-05-07

    Plastic strain in Pt{sub 3}Fe causes changes in the atomic arrangement around the (111) glide plane and induces ferromagnetism even at room temperature. We have performed detailed magnetization measurements on a Pt{sub 3}Fe single crystal with plastic strains of 11.6% under magnetic fields in various directions with respect to the [100] strain axis in order to elucidate the reversal mechanism of induced ferromagnetic domains. We observed that by decreasing the angle between the magnetization direction and strain axis, hysteresis loops are strongly sheared, which is associated with a large increase in coercivity. We also observed that an exchange bias effect appears for all field orientations, but the exchange field maximizes for an intermediate field direction. On the other hand, both phenomena are insensitive to magnetic fields perpendicular to the [100] strain axis. These observations were explained by a single-domain model with uniaxial anisotropy along the [100] strain axis.

  1. Influence of the Coulomb interaction on the exchange coupling in granular magnets

    NASA Astrophysics Data System (ADS)

    Udalov, O. G.; Beloborodov, I. S.

    2017-04-01

    We develop a theory of the exchange interaction between ferromagnetic (FM) metallic grains embedded into insulating matrix by taking into account the Coulomb blockade effects. For bulk ferromagnets separated by the insulating layer the exchange interaction strongly depends on the height and thickness of the tunneling barrier created by the insulator. We show that for FM grains embedded into insulating matrix the exchange coupling additionally depends on the dielectric properties of this matrix due to the Coulomb blockade effects. In particular, the FM coupling decreases with decreasing the dielectric permittivity of insulating matrix. We find that the change in the exchange interaction due to the Coulomb blockade effects can be a few tens of percent. Also, we study dependence of the intergrain exchange interaction on the grain size and other parameters of the system.

  2. Sign reversal of magnetization and exchange bias in Ni(Cr1-xAlx)2O4 (x=0-0.50)

    NASA Astrophysics Data System (ADS)

    Barman, Junmoni; Ravi, S.

    2017-03-01

    Ni(Cr1-xAlx)2O4 (x=0-0.50) samples were prepared in single phase form by using sol-gel method and their structural and magnetic properties were studied. Al substitution transforms the crystal structure of NiCr2O4 from tetragonal cell with space group I41/amd to cubic cell of Fd 3 barm space group. Magnetization measurements by varying the temperature and magnetic field were carried out to investigate the interesting magnetization reversal and exchange bias behaviors. Magnetization reversal is observed for x=0.10 sample with a magnetic compensation temperature of 40 K and it is explained by considering different temperature dependences of magnetic moments of the two sublattices. Shifting of magnetic hysteresis loops towards the negative magnetic field axis and hence the presence of negative exchange bias field is observed for x=0.15 sample. The x=0.10 sample exhibits the tunable positive and negative exchange bias field. Exchange bias in these samples is explained considering the anisotropic exchange interaction between the ferrimagnetic and the antiferromagnetic components of magnetic spins. However, the sign reversal of exchange bias field is due to the change in domination of one ferrimagnetic sublattice over the other with variation in temperature. Both normal and inverse magnetocaloric effects are observed for x=0.10 sample.

  3. Magnetic susceptibility and exchange coupling in the mineral ardennite

    USGS Publications Warehouse

    Thorpe, A.N.; Senftle, F.E.; Donnay, G.

    1969-01-01

    Ardennite, a rare silicate mineral, contains about 19 wt.% manganese. Some of the manganese atoms are in positions which are close enough to allow negative exchange and hence a reduction of the total magnetic susceptibility. It is shown that the susceptibility can be accounted for approximately by the treatment of Earnshaw and Lewis (1958) for S = 5 2 and a Hamiltonian H = -2g??Hb-2JS1??S2. ?? 1969.

  4. Sign reversal of magnetization and tunable exchange bias field in NdCr1-xFexO3 (x=0.05-0.2)

    NASA Astrophysics Data System (ADS)

    Bora, Tribedi; Ravi, S.

    2015-07-01

    Magnetization reversal and tunable exchange bias behavior are observed in NdCr1-xFexO3 compounds for x=0.05-0.20. The magnetic compensation temperature (Tcomp) is found to increase with increase in Fe concentration and its maximum value is 198 K for x=0.15 sample. The observed magnetization reversal is explained by considering the competition between the weak ferromagnetic component of Cr3+ ions and the paramagnetic moments of Nd3+ and Fe3+ ions under the influence of negative internal magnetic field. The exchange anisotropy between the above two components of magnetic moments give rise to tunable positive and negative exchange bias fields. The sign reversal of exchange bias field also coincides with Tcomp. Bipolar switching of magnetization is demonstrated at T

  5. A Coupled Nonlinear Spacecraft Attitude Controller/Observer With an Unknown Constant Gyro Bias

    NASA Technical Reports Server (NTRS)

    Deutschmann, Julie; Sanner, Robert M.; Bauer, Frank H. (Technical Monitor)

    2001-01-01

    A nonlinear control scheme for attitude control of a spacecraft is combined with a nonlinear gyro bias observer for the case of constant gyro bias. The closed loop system is proven to be globally stable, with zero tracking error, thus proving a separation principle for the given system. The nonlinear observer incorporates persistency of excitation, resulting in exponential convergence of the gyro bias error.

  6. Antisite-disorder driven large exchange bias effect in phase separated La1.5Ca0.5CoMnO6 double perovskite

    NASA Astrophysics Data System (ADS)

    Sahoo, R. C.; Paladhi, D.; Dasgupta, Papri; Poddar, A.; Singh, Ripandeep; Das, A.; Nath, T. K.

    2017-04-01

    Investigations of structural and magnetic properties of polycrystalline hole doped double perovskite La1.5Ca0.5CoMnO6 has clearly revealed the existence of structural antisite-disorder (either, Co-O-Co or Mn-O-Mn) in the system. The ordering of Co2+ and Mn4+ gives rise to a ferromagnetic transition around 157 K. A spin-canted antiferromagnetic transition is found in this material at TCAFM 9 K. The effect of antisite-disorder in the double perovskite structure is most likely the prime reason for antiferromagnetic interaction. The temperature dependent inverse susceptibility exhibits Curie-Weiss like behaviour and it yields an effective paramagnetic moment of 6.49 μB. At very low temperature (Texchange bias (EB) field of HEB 5.5 kOe and can be tuned by the cooling field. The presence of zero-field cooled spontaneous EB effect (P-type and N-type) is confirmed to be not an experimental artefact - an inherent property of this double perovskite material. A phenomenological model has been proposed to explain the exchange coupling between the ferromagnetic and canted-antiferromagnetic interfaces of antisite-disordered La1.5Ca0.5CoMnO6 mainly on the basis of uncompensated interface spins.

  7. Methods for preparing polymer-decorated single exchange-biased magnetic nanoparticles for application in flexible polymer-based films

    PubMed Central

    2017-01-01

    Background: Magnetic nanoparticles (NPs) must not only be well-defined in composition, shape and size to exhibit the desired properties (e.g., exchange-bias for thermal stability of the magnetization) but also judiciously functionalized to ensure their stability in air and their compatibility with a polymer matrix, in order to avoid aggregation which may seriously affect their physical properties. Dipolar interactions between NPs too close to each other favour a collective magnetic glass state with lower magnetization and coercivity because of inhomogeneous and frustrated macrospin cluster freezing. Consequently, tailoring chemically (through surface functionalization) and magnetically stable NPs for technological applications is of primary importance. Results: In this work, well-characterized exchange-biased perfectly epitaxial CoxFe3− xO4@CoO core@shell NPs, which were isotropic in shape and of about 10 nm in diameter, were decorated by two different polymers, poly(methyl methacrylate) (PMMA) or polystyrene (PS), using radical-controlled polymerization under various processing conditions. We compared the influence of the synthesis parameters on the structural and microstructural properties of the resulting hybrid systems, with special emphasis on significantly reducing their mutual magnetic attraction. For this, we followed two routes: the first one consists of the direct grafting of bromopropionyl ester groups at the surface of the NPs, which were previously recovered and redispersed in a suitable solvent. The second route deals with an “all in solution” process, based on the decoration of NPs by oleic acid followed by ligand exchange with the desired bromopropionyl ester groups. We then built various assemblies of NPs directly on a substrate or suspended in PMMA. Conclusion: The alternative two-step strategy leads to better dispersed polymer-decorated magnetic particles, and the resulting nanohybrids can be considered as valuable building blocks for

  8. Exchange bias in sputtered FeNi/FeMn systems: Effect of short low-temperature heat treatments

    NASA Astrophysics Data System (ADS)

    Savin, Peter; Guzmán, Jorge; Lepalovskij, Vladimir; Svalov, Andrey; Kurlyandskaya, Galina; Asenjo, Agustina; Vas'kovskiy, Vladimir; Vazquez, Manuel

    2016-03-01

    Short (5 min) post-deposition thermal treatments under magnetic field at low temperature (up to 200 °C) performed in exchange-coupled FeNi(40 nm)/FeMn(20 nm) bilayer thin films prepared by magnetron sputtering are shown to be effective to significantly modify their exchange field (from around 40 Oe down to 27 Oe) between FeNi and FeMn layers. A similar exchange field decrease was observed for the first deposited FeNi layer of the FeNi(40 nm)/FeMn(20 nm)/FeNi(40 nm) trilayer films after the same thermal treatments. The exchange field value for the second FeNi layer was not substantially changed. The X-ray diffraction patterns indicates that such a heat treatment has no effect on the grain size and crystalline texture of the films, while atomic force microscope studies reveal an increase of the surface roughness after the treatment which is more noticeable in the case of the trilayer film. Analysis of the experimental results leads us to conclude that the variations of the exchange field after heat treatment are likely caused by a modification of interfacial roughness and/or interfacial magnetic structure, but unlikely by the changes in the microstructure and/or changes of composition of the antiferromagnetic FeMn layer.

  9. Microscopic theory of the Coulomb based exchange coupling in magnetic tunnel junctions.

    PubMed

    Udalov, O G; Beloborodov, I S

    2017-05-04

    We study interlayer exchange coupling based on the many-body Coulomb interaction between conduction electrons in magnetic tunnel junction. This mechanism complements the known interaction between magnetic layers based on virtual electron hopping (or spin currents). We find that these two mechanisms have different behavior on system parameters. The Coulomb based coupling may exceed the hopping based exchange. We show that the Coulomb based exchange interaction, in contrast to the hopping based coupling, depends strongly on the dielectric constant of the insulating layer. The dependence of the interlayer exchange interaction on the dielectric properties of the insulating layer in magnetic tunnel junction is similar to magneto-electric effect where electric and magnetic degrees of freedom are coupled. We calculate the interlayer coupling as a function of temperature and electric field for magnetic tunnel junction with ferroelectric layer and show that the exchange interaction between magnetic leads has a sharp decrease in the vicinity of the ferroelectric phase transition and varies strongly with external electric field.

  10. NOAH-GECROS: A coupled land surface - crop growth model for simulating water and energy exchange between croplands and atmosphere

    NASA Astrophysics Data System (ADS)

    Ingwersen, J.; Streck, T.

    2011-12-01

    The current NOAH land surface model (LSM) describes the vegetation dynamics of croplands in a prescribed and generalized way leading under some conditions to a biased energy partitioning of net radiation and disabling the feedback of atmospheric conditions on land surface properties (LS) in coupled weather and climate simulations. The aim of the present study was to couple the NOAH LSM with the generic crop growth model (CGM) GECROS for improving the description of vegetation dynamics over croplands. We tested two different coupling approaches. In the first approach ("data hand-over"- coupling), the two self-contained models simply exchange data between each time step. GECROS hands over data on plant phenology. NOAH delivers the amount of plant available water in the rooting zone and computes the surface exchange fluxes. In the second approach ("cut and merge"- coupling) we cut from the NOAH code the empirical Jarvis scheme for computing canopy transpiration and merged the remaining code with the GECROS CGM. In this way, we introduced a Penman-Monteith approach, in which the stomatal resistance is a function of photosynthesis, for computing canopy transpiration. The coupled model runs were benchmarked against an uncoupled NOAH simulation based on a field-specific parameterization. All simulations were compared with "sensible heat flux"- corrected eddy covariance (EC) flux measurements, which were collected over a winter wheat stand in Southwest Germany during the vegetation period in 2009. The "cut and merge"- coupling significantly outperformed the field-specific uncoupled NOAH simulation. While, for example, the root mean square error (RMSE) of the latent heat (LE) fluxes of the uncoupled NOAH simulation was on average 73.0 W m-2, the RMSE of the coupled LS-CGM was 16.2 W m-2. The simulation of the sensible heat flux was improved in a similar magnitude. The "data hand-over" approach also slightly improved the simulation (RMSE of LE fluxes = 54.3 W m-2) but showed

  11. Quantifying biases in non-steady state chamber measurements of soil-atmosphere gas exchange

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Limitations of non-steady state (NSS) chamber methods for determining soil-to-atmosphere trace gas exchange rates have been recognized for several decades. Of these limitations, the so-called “chamber effect” is one of the most challenging to overcome. The chamber effect can be defined as the inhere...

  12. Unravelling intrinsic efficacy and ligand bias at G protein coupled receptors: A practical guide to assessing functional data.

    PubMed

    Stott, Lisa A; Hall, David A; Holliday, Nicholas D

    2016-02-01

    Stephenson's empirical definition of an agonist, as a ligand with binding affinity and intrinsic efficacy (the ability to activate the receptor once bound), underpins classical receptor pharmacology. Quantifying intrinsic efficacy using functional concentration response relationships has always presented an experimental challenge. The requirement for realistic determination of efficacy is emphasised by recent developments in our understanding of G protein coupled receptor (GPCR) agonists, with recognition that some ligands stabilise different active conformations of the receptor, leading to pathway-selective, or biased agonism. Biased ligands have potential as therapeutics with improved selectivity and clinical efficacy, but there are also pitfalls to the identification of pathway selective effects. Here we explore the basics of concentration response curve analysis, beginning with the need to distinguish ligand bias from other influences of the functional system under study. We consider the different approaches that have been used to quantify and compare biased ligands, many of which are based on the Black and Leff operational model of agonism. Some of the practical issues that accompany these analyses are highlighted, with opportunities to improve estimates in future, particularly in the separation of true agonist intrinsic efficacy from the contributions of system dependent coupling efficiency. Such methods are by their nature practical approaches, and all rely on Stephenson's separation of affinity and efficacy parameters, which are interdependent at the mechanistic level. Nevertheless, operational analysis methods can be justified by mechanistic models of GPCR activation, and if used wisely are key elements to biased ligand identification.

  13. Energy Exchange in Driven Open Quantum Systems at Strong Coupling

    NASA Astrophysics Data System (ADS)

    Carrega, Matteo; Solinas, Paolo; Sassetti, Maura; Weiss, Ulrich

    2016-06-01

    The time-dependent energy transfer in a driven quantum system strongly coupled to a heat bath is studied within an influence functional approach. Exact formal expressions for the statistics of energy dissipation into the different channels are derived. The general method is applied to the driven dissipative two-state system. It is shown that the energy flows obey a balance relation, and that, for strong coupling, the interaction may constitute the major dissipative channel. Results in analytic form are presented for the particular value K =1/2 of strong Ohmic dissipation. The energy flows show interesting behaviors including driving-induced coherences and quantum stochastic resonances. It is found that the general characteristics persists for K near 1/2 .

  14. A hybrid model in inductively coupled plasma discharges with bias source: Description of model and experimental validation in Ar discharge

    NASA Astrophysics Data System (ADS)

    Wen, De-Qi; Liu, Wei; Liu, Yong-Xin; Gao, Fei; Wang, You-Nian

    2015-09-01

    Traditional fluid simulation and Particle-in-Cell/Monte-Carlo collision (PIC/MCC) are very time consuming in inductively coupled plasma. In this work, a hybrid model, i.e. global model coupled bidirectional with parallel Monte-Carlo collision (MCC) sheath model, is developed to investigate inductively coupled plasma discharge with bias source. The global model is applied to calculate plasma density in bulk plasma. The sheath model is performed to consistently calculate the electric field, ion kinetic and the sheath thickness above the bias electrode. Moreover, specific numbers of ions are tracked and ultimately ion energy distribution functions (IEDFs) incident into bias electrode are obtained from MCC module. It is found that as the bias amplitude increases, the energy width of both IEDFs becomes wider, and the total outlines of IEDFs move towards higher energy. The results from the model are validated by experimental measurement and a qualitative agreement is obtained. The advantage of this model is that plasma density, ion flux and IEDF, which are widely concerned in the actual process, could be obtained within an hour. This work was supported by the National Natural Science Foundation of China (NSFC) (Grant No. 11205025 and 11335004) and (Grant No.11405018), the Important National Science and Technology Specific Project (Grant No. 2011ZX02403-001).

  15. Determination of exchange and rotational anisotropies in IrMn /Fe(t)/IrMn exchange coupled structures using dynamic and static techniques: Application to microwave devices

    NASA Astrophysics Data System (ADS)

    Kuanr, Bijoy K.; Maat, Stefan; Chandrashekariaih, S.; Veerakumar, V.; Camley, R. E.; Celinski, Z.

    2008-04-01

    We determined the exchange anisotropy and rotational anisotropy of IrMn(7 nm)/Fe(t=3-20 nm)/IrMn(7 nm) exchange-biased structures using conventional ferromagnetic resonance (FMR) and network analyzer FMR (NA-FMR). Compared to single Fe layer films of identical thickness, we observe an isotropic downward shift and an angular variation of the FMR resonance field in the multilayer structures. The isotropic shift originates from the rotational anisotropy, while the angular variation originates from the exchange anisotropy. Both exchange anisotropy and rotational anisotropy increase with decreasing Fe thickness in the exchange-biased structures. The isotropic downward shift of the resonance field translates to an upward shift of the resonance frequency, and can be used to boost the operational frequency of microwave devices (bandpass/stop filters) by several gigahertz.

  16. Magnetic patterning: local manipulation of the intergranular exchange coupling via grain boundary engineering

    PubMed Central

    Huang, Kuo-Feng; Liao, Jung-Wei; Hsieh, Cheng-Yu; Wang, Liang-Wei; Huang, Yen-Chun; Wen, Wei-Chih; Chang, Mu-Tung; Lo, Shen-Chuan; Yuan, Jun; Lin, Hsiu-Hau; Lai, Chih-Huang

    2015-01-01

    Magnetic patterning, with designed spatial profile of the desired magnetic properties, has been a rising challenge for developing magnetic devices at nanoscale. Most existing methods rely on locally modifying magnetic anisotropy energy or saturation magnetization, and thus post stringent constraints on the adaptability in diverse applications. We propose an alternative route for magnetic patterning: by manipulating the local intergranular exchange coupling to tune lateral magnetic properties. As demonstration, the grain boundary structure of Co/Pt multilayers is engineered by thermal treatment, where the stress state of the multilayers and thus the intergranular exchange coupling can be modified. With Ag passivation layers on top of the Co/Pt multilayers, we can hinder the stress relaxation and grain boundary modification. Combining the pre-patterned Ag passivation layer with thermal treatment, we can design spatial variations of the magnetic properties by tuning the intergranular exchange coupling, which diversifies the magnetic patterning process and extends its feasibility for varieties of new devices. PMID:26156786

  17. Optically induced spin gates in coupled quantum dots using the electron-hole exchange interaction

    NASA Astrophysics Data System (ADS)

    Economou, Sophia E.; Reinecke, T. L.

    2008-09-01

    We propose a fast optically induced two-qubit C-PHASE gate between two resident spins in a pair of coupled quantum dots. An excited bound state which extends over the two dots provides an effective electron-electron exchange interaction. The gate is made possible by the electron-hole exchange interaction, which isolates a single transition in the system. When combined with appropriate single-qubit rotations, this gate generates an entangled state of the two spins.

  18. Mercury vapor air-surface exchange measured by collocated micrometeorological and enclosure methods - Part II: Bias and uncertainty analysis

    NASA Astrophysics Data System (ADS)

    Zhu, W.; Sommar, J.; Lin, C.-J.; Feng, X.

    2015-05-01

    Dynamic flux chambers (DFCs) and micrometeorological (MM) methods are extensively deployed for gauging air-surface Hg0 gas exchange. However, a systematic evaluation of the precision of the contemporary Hg0 flux quantification methods is not available. In this study, the uncertainty in Hg0 flux measured by the relaxed eddy accumulation (REA) method, the aerodynamic gradient method (AGM), the modified Bowen ratio (MBR) method, as well as DFC of traditional (TDFC) and novel (NDFC) designs, are assessed using a robust data set from two field intercomparison campaigns. The absolute precision in Hg0 concentration difference (ΔC) measurements is estimated at 0.064 ng m-3 for the gradient-based MBR and AGM systems. For the REA system, the parameter is Hg0 concentration (C) dependent at 0.069 + 0.022C. During the campaigns, 57 and 62 % of the individual vertical gradient measurements are found to be significantly different from 0, while for the REA technique, the percentage of significant observations is lower. For the chambers, non-significant fluxes are confined to a few night-time periods with varying ambient Hg0 concentrations. Relative bias for DFC-derived fluxes is estimated to be ~ ±10, and ~ 85% of the flux bias is within ±2 ng m-2 h-1 in absolute terms. The DFC flux bias follows a diurnal cycle, which is largely affected by the forced temperature and irradiation bias in the chambers. Due to contrasting prevailing micrometeorological conditions, the relative uncertainty (median) in turbulent exchange parameters differs by nearly a factor of 2 between the campaigns, while that in ΔC measurement is fairly consistent. The estimated flux uncertainties for the triad of MM techniques are 16-27, 12-23 and 19-31% (interquartile range) for the AGM, MBR and REA methods, respectively. This study indicates that flux-gradient-based techniques (MBR and AGM) are preferable to REA in quantifying Hg0 flux over ecosystems with low vegetation height. A limitation of all Hg0 flux

  19. Determination of rotatable and frozen CoO spins and their relationship to exchange bias in CoO/Fe/Ag(001)

    SciTech Connect

    Wu, J.; Park, J.; Kim, W.; Arenholz, E.; Liberati, M.; Scholl, A.; Wu, Y.; Hwang, C.; Qiu, Z.

    2010-02-10

    The exchange bias of epitaxially grown CoO/Fe/Ag(001) was investigated using X-ray Magnetic Circular Dichroism (XMCD) and X-ray Magnetic Linear Dichroism (XMLD) techniques. A direct XMLD measurement on the CoO layer during the Fe magnetization reversal shows that the CoO compensated spins are rotatable at thinner thickness and frozen, i.e. fixed in direction to the lattice, at larger thickness. By a quantitative determination of the rotatable and frozen CoO spins as a function of the CoO film thickness, we find the remarkable result that the exchange bias is well established before frozen spins are detectable in the CoO film, contrary to the common assumption that the majority of antiferromagnetic spins need to be frozen to generate the exchange bias. We further show that the rotatable/frozen CoO spins are uniformly distributed in the CoO film.

  20. Magnetoelectric switching of perpendicular exchange bias in Pt/Co/α-Cr{sub 2}O{sub 3}/Pt stacked films

    SciTech Connect

    Toyoki, Kentaro; Shiratsuchi, Yu Kobane, Atsushi; Nakatani, Ryoichi; Mitsumata, Chiharu; Kotani, Yoshinori; Nakamura, Tetsuya

    2015-04-20

    We report the realization of magnetoelectric switching of the perpendicular exchange bias in Pt/Co/α-Cr{sub 2}O{sub 3}/Pt stacked films. The perpendicular exchange bias was switched isothermally by the simultaneous application of magnetic and electric fields. The threshold electric field required to switch the perpendicular exchange bias was found to be inversely proportional to the magnetic field, which confirmed the magnetoelectric mechanism of the process. The observed temperature dependence of the threshold electric field suggested that the energy barrier of the antiferromagnetic spin reversal was significantly lower than that assuming the coherent rotation. Pulse voltage measurements indicated that the antiferromagnetic domain propagation dominates the switching process. These results suggest an analogy of the electric-field-induced magnetization with a simple ferromagnet.

  1. Impact of orthogonal exchange coupling on magnetic anisotropy in antiferromagnetic oxides/ferromagnetic systems

    NASA Astrophysics Data System (ADS)

    Kuświk, Piotr; Lana Gastelois, Pedro; Głowiński, Hubert; Przybylski, Marek; Kirschner, Jürgen

    2016-10-01

    The influence of interface exchange coupling on magnetic anisotropy in the antiferromagnetic oxide/Ni system is investigated. We show how interfacial exchange coupling can be employed not only to pin the magnetization of the ferromagnetic layer but also to support magnetic anisotropy to orient the easy magnetization axis perpendicular to the film plane. The fact that this effect is only observed below the Néel temperature of all investigated antiferromagnetic oxides with significantly different magnetocrystalline anisotropies gives evidence that antiferromagnetic ordering is a source of the additional contribution to the perpendicular effective magnetic anisotropy.

  2. Impact of orthogonal exchange coupling on magnetic anisotropy in antiferromagnetic oxides/ferromagnetic systems.

    PubMed

    Kuświk, Piotr; Gastelois, Pedro Lana; Głowiński, Hubert; Przybylski, Marek; Kirschner, Jürgen

    2016-10-26

    The influence of interface exchange coupling on magnetic anisotropy in the antiferromagnetic oxide/Ni system is investigated. We show how interfacial exchange coupling can be employed not only to pin the magnetization of the ferromagnetic layer but also to support magnetic anisotropy to orient the easy magnetization axis perpendicular to the film plane. The fact that this effect is only observed below the Néel temperature of all investigated antiferromagnetic oxides with significantly different magnetocrystalline anisotropies gives evidence that antiferromagnetic ordering is a source of the additional contribution to the perpendicular effective magnetic anisotropy.

  3. A facile way to realize exchange coupling interaction in hard/soft magnetic composites

    NASA Astrophysics Data System (ADS)

    Li, Dongyun; Wang, Fan; Xia, Ailin; Zhang, Lijiao; Li, Tingting; Jin, Chuangui; Liu, Xianguo

    2016-11-01

    SrFe12O19/CoFe2O4 and SrFe12O19/Fe-B hard/soft magnetic composites were obtained by using powders synthesized via a hydrothermal and a molten salt method, respectively. The exchange coupling interaction was found to exist in the composites after a facile grinding according to the results of magnetic hysteresis loops and irreversible sloping recoil loops. It can be found that different grinding time affects their magnetic properties slightly. Our study proves that the conditions of realizing exchange coupling interaction may not be so stringent.

  4. Finite-size scaling effect on Néel temperature of antiferromagnetic Cr2O3 (0001) films in exchange-coupled heterostructures

    NASA Astrophysics Data System (ADS)

    Pati, Satya Prakash; Al-Mahdawi, Muftah; Ye, Shujun; Shiokawa, Yohei; Nozaki, Tomohiro; Sahashi, Masashi

    2016-12-01

    The scaling of antiferromagnetic ordering temperature of corundum-type chromia films has been investigated. Néel temperature TN was determined from the effect of perpendicular exchange bias on the magnetization of a weakly-coupled adjacent ferromagnet. For a thick-film case, the validity of detection is confirmed by a susceptibility measurement. Detection of TN was possible down to 1-nm-thin chromia films. The scaling of ordering temperature with thickness was studied using different buffering materials and compared with Monte-Carlo simulations. The spin-correlation length and the corresponding critical exponent were estimated, and they were consistent between experimental and simulation results. The spin-correlation length is an order of magnitude less than cubic antiferromagnets. We propose that the difference is from the change of number of exchange-coupling links in the two crystal systems.

  5. Magnetic properties of exchange biased and of unbiased oxide/permalloy thin layers: a ferromagnetic resonance and Brillouin scattering study.

    PubMed

    Zighem, F; Roussigné, Y; Chérif, S-M; Moch, P; Ben Youssef, J; Paumier, F

    2010-10-13

    Microstrip ferromagnetic resonance and Brillouin scattering are used to provide a comparative determination of the magnetic parameters of thin permalloy layers interfaced with a non-magnetic (Al(2)O(3)) or with an antiferromagnetic oxide (NiO). It results from our microstructural study that no preferential texture is favoured in the observed polycrystalline sublayers. It is shown that the perpendicular anisotropy can be monitored using an interfacial surface energy term which is practically independent of the nature of the interface. In the interval of thicknesses investigated (5-25 nm) the saturation magnetization does not significantly differ from the reported one in bulk permalloy. In-plane uniaxial anisotropy and exchange bias anisotropy are also derived from the study of the dynamic magnetic excitations and compared with our independent evaluations using conventional magnetometry.

  6. Effect of antiferromagnetic layer thickness on exchange bias, training effect, and magnetotransport properties in ferromagnetic/antiferromagnetic antidot arrays

    SciTech Connect

    Gong, W. J.; Liu, W. Feng, J. N.; Zhang, Z. D.; Kim, D. S.; Choi, C. J.

    2014-04-07

    The effect of antiferromagnetic (AFM) layer on exchange bias (EB), training effect, and magnetotransport properties in ferromagnetic (FM) /AFM nanoscale antidot arrays and sheet films Ag(10 nm)/Co(8 nm)/NiO(t{sub NiO})/Ag(5 nm) at 10 K is studied. The AFM layer thickness dependence of the EB field shows a peak at t{sub NiO} = 2 nm that is explained by using the random field model. The misalignment of magnetic moments in the three-dimensional antidot arrays causes smaller decrease of EB field compared with that in the sheet films for training effect. The anomalous magnetotransport properties, in particular positive magnetoresistance (MR) for antidot arrays but negative MR for sheet films are found. The training effect and magnetotransport properties are strongly affected by the three-dimensional spin-alignment effects in the antidot arrays.

  7. Thermodynamics of information exchange between two coupled quantum dots

    NASA Astrophysics Data System (ADS)

    Kutvonen, Aki; Sagawa, Takahiro; Ala-Nissila, Tapio

    2016-03-01

    We propose a setup based on two coupled quantum dots where thermodynamics of a measurement can be quantitatively characterized. The information obtained in the measurement can be utilized by performing feedback in a manner apparently breaking the second law of thermodynamics. In this way the setup can be operated as a Maxwell's demon, where both the measurement and feedback are performed separately by controlling an external parameter. This is analogous to the case of the original Szilard engine. Since the setup contains both the microscopic demon and the engine itself, the operation of the whole measurement-feedback cycle can be explained in detail at the level of single realizations. In addition, we derive integral fluctuation relations for both the bare and coarse-grained entropy productions in the setup.

  8. Positive exchange bias in a Ni 80Fe 20/Ni xFe 1-xO thin-film bilayer

    NASA Astrophysics Data System (ADS)

    Lin, K.-W.; Tzeng, Y.-M.; Guo, Z.-Y.; Liu, C.-Y.; van Lierop, J.

    2006-09-01

    We have measured positive exchange bias in a Ni 80Fe 20/Ni xFe 1-xO thin-film nanocrystallite system. A series of solid solution Ni xFe 1-xO 40 nm thick films capped with 25 nm thick Ni 80Fe 20 were deposited using a range of %O 2/Ar bombardment energies (i.e. End-Hall voltages). Proper tuning of the deposition conditions results in a Ni 80Fe 20/Ni xFe 1-xO (30%O 2/Ar) based bilayer that exhibits a positive exchange bias loop shift of Hex˜60 Oe at 150 K.

  9. O2 activation by binuclear Cu sites: Noncoupled versus exchange coupled reaction mechanisms

    NASA Astrophysics Data System (ADS)

    Chen, Peng; Solomon, Edward I.

    2004-09-01

    Binuclear Cu proteins play vital roles in O2 binding and activation in biology and can be classified into coupled and noncoupled binuclear sites based on the magnetic interaction between the two Cu centers. Coupled binuclear Cu proteins include hemocyanin, tyrosinase, and catechol oxidase. These proteins have two Cu centers strongly magnetically coupled through direct bridging ligands that provide a mechanism for the 2-electron reduction of O2 to a µ-2:2 side-on peroxide bridged species. This side-on bridged peroxo-CuII2 species is activated for electrophilic attack on the phenolic ring of substrates. Noncoupled binuclear Cu proteins include peptidylglycine -hydroxylating monooxygenase and dopamine -monooxygenase. These proteins have binuclear Cu active sites that are distant, that exhibit no exchange interaction, and that activate O2 at a single Cu center to generate a reactive CuII/O2 species for H-atom abstraction from the C-H bond of substrates. O2 intermediates in the coupled binuclear Cu enzymes can be trapped and studied spectroscopically. Possible intermediates in noncoupled binuclear Cu proteins can be defined through correlation to mononuclear CuII/O2 model complexes. The different intermediates in these two classes of binuclear Cu proteins exhibit different reactivities that correlate with their different electronic structures and exchange coupling interactions between the binuclear Cu centers. These studies provide insight into the role of exchange coupling between the Cu centers in their reaction mechanisms.

  10. Self Exchange Bias and Bi-stable Magneto-Resistance States in Amorphous TbFeCo and TbSmFeCo Thin Films

    NASA Astrophysics Data System (ADS)

    Ma, Chung; Li, Xiaopu; Lu, Jiwei; Poon, Joseph; Comes, Ryan; Devaraj, Arun; Spurgeon, Steven

    Amorphous ferrimagetic TbFeCo and TbSmFeCo thin films are found to exhibit strong perpendicular magnetic anisotropy. Self exchange bias effect and bi-stable magneto-resistance states are observed near compensation temperature by magnetic hysteresis loop, anomalous Hall effect and transverse magneto-resistance measurements. Atom probe tomography, scanning transmission electron microscopy, and energy dispersive spectroscopy mapping have revealed two nanoscale amorphous phases with different Tb concentration distributed within the amorphous films. The observed exchange anisotropy originates from the exchange interaction between the two nanoscale amorphous phases. Exchange bias effect is used for increasing stability in spin valves and magnetic tunneling junctions. This study opens up a new platform for using amorphous ferrimagnetic thin films that require no epitaxial growth in nanodevices.. The work was supported by the Defense Threat Reduction Agency Grant and the U.S. Department of Energy.

  11. Optimization of magneto-resistive response of ion-irradiated exchange biased films through zigzag arrangement of magnetization

    SciTech Connect

    Trützschler, Julia; Sentosun, Kadir; McCord, Jeffrey; Langer, Manuel; Fassbender, Jürgen; Mönch, Ingolf; Mattheis, Roland

    2014-03-14

    Exchange coupled ferromagnetic-antiferromagnetic Ni{sub 81}Fe{sub 19}/Ir{sub 23}Mn{sub 77} films with a zigzag alignment of magnetization are prepared by local ion irradiation. The anisotropic magneto-resistive behavior of the magnetic thin film structures is correlated to the magnetic structure and modeled. A unique uniaxial field sensitivity along the net magnetization alignment is obtained through the orthogonally modulated and magnetic domain wall stabilized magnetic ground state. Controlling local thin film magnetization distributions and, thus, the overall magnetization response opens unique ways to tailor the magneto-resistive sensitivity of functional magnetic thin film devices.

  12. Mercury vapor air-surface exchange measured by collocated micrometeorological and enclosure methods - Part II: Bias and uncertainty analysis

    NASA Astrophysics Data System (ADS)

    Zhu, W.; Sommar, J.; Lin, C.-J.; Feng, X.

    2015-02-01

    Dynamic flux chambers (DFCs) and micrometeorological (MM) methods are extensively deployed for gauging air-surface Hg0 gas exchange. However, a systematic evaluation of the precision of the contemporary Hg0 flux quantification methods is not available. In this study, the uncertainty in Hg0 flux measured by relaxed eddy accumulation (REA) method, aerodynamic gradient method (AGM), modified Bowen-ratio (MBR) method, as well as DFC of traditional (TDFC) and novel (NDFC) designs is assessed using a robust data-set from two field intercomparison campaigns. The absolute precision in Hg0 concentration difference (Δ C) measurements is estimated at 0.064 ng m-3 for the gradient-based MBR and AGM system. For the REA system, the parameter is Hg0 concentration (C) dependent at 0.069+0.022C. 57 and 62% of the individual vertical gradient measurements were found to be significantly different from zero during the campaigns, while for the REA-technique the percentage of significant observations was lower. For the chambers, non-significant fluxes are confined to a few nighttime periods with varying ambient Hg0 concentration. Relative bias for DFC-derived fluxes is estimated to be ~ ±10%, and ~ 85% of the flux bias are within ±2 ng m-2 h-1 in absolute term. The DFC flux bias follows a diurnal cycle, which is largely dictated by temperature controls on the enclosed volume. Due to contrasting prevailing micrometeorological conditions, the relative uncertainty (median) in turbulent exchange parameters differs by nearly a factor of two between the campaigns, while that in Δ C measurements is fairly stable. The estimated flux uncertainties for the triad of MM-techniques are 16-27, 12-23 and 19-31% (interquartile range) for the AGM, MBR and REA method, respectively. This study indicates that flux-gradient based techniques (MBR and AGM) are preferable to REA in quantifying Hg0 flux over ecosystems with low vegetation height. A limitation of all Hg0 flux measurement systems investigated

  13. Detection of intermolecular homonuclear dipolar coupling in organic rich shale by transverse relaxation exchange.

    PubMed

    Washburn, Kathryn E; Cheng, Yuesheng

    2017-03-04

    The mechanism behind surface relaxivity within organic porosity in shales has been an unanswered question. Here, we present results that confirm the existence of intermolecular homonuclear dipolar coupling between solid and liquid phases in sedimentary organic matter. Transverse magnetization exchange measurements were performed on an organic-rich shale saturated with liquid hydrocarbon. Liquid and solid constituents were identified through both sample resaturation and through their T1/T2 ratios. Extensive cross peaks are observed in the T2-T2 exchange spectra between the solid and liquid constituents, indicating an exchange of magnetization between the two phases. This result cannot arise from physical molecular diffusion, and the dissolution energies are too high for chemical exchange, such that the magnetization exchange must arise from intermolecular homonuclear dipolar coupling. These results both confirm a possible source of surface relaxivity in organic matter and emphasize caution in the use of standard porous media interpretations of relaxation results in shales because of coupling between different magnetization environments.

  14. Unexpected magnetism, Griffiths phase, and exchange bias in the mixed lanthanide Pr0.6Er0.4Al2

    NASA Astrophysics Data System (ADS)

    Pathak, Arjun K.; Paudyal, D.; Jayasekara, W. T.; Calder, S.; Kreyssig, A.; Goldman, A. I.; Gschneidner, K. A.; Pecharsky, V. K.

    2014-06-01

    We report an unusual coexistence of ferromagnetism and ferrimagnetism, and metamagnetism in Pr0.6Er0.4Al2. In addition, this compound retains a clear Griffiths phase behavior even at 1 kOe magnetic field and shows a large exchange bias after field cooling from the paramagnetic state. The crystal-field excitations and opposite exchange interactions between nearest-neighbor and next-nearest-neighbor rare earth sites explain these behaviors.

  15. Influence of Discharge Parameters on Tuned Substrate Self-Bias in an Radio-Frequency Inductively Coupled Plasma

    NASA Astrophysics Data System (ADS)

    Ding, Zhenfeng; Sun, Jingchao; Wang, Younian

    2005-12-01

    The tuned substrate self-bias in an rf inductively coupled plasma source is controlled by means of varying the impedance of an external LC network inserted between the substrate and the ground. The influencing parameters such as the substrate axial position, different coupling coils and inserted resistance are experimentally studied. To get a better understanding of the experimental results, the axial distributions of the plasma density, electron temperature and plasma potential are measured with an rf compensated Langmuir probe; the coil rf peak-to-peak voltage is measured with a high voltage probe. As in the case of changing discharge power, it is found that continuity, instability and bi-stability of the tuned substrate bias can be obtained by means of changing the substrate axial position in the plasma source or the inserted resistance. Additionally, continuity can not transit directly into bi-stability, but evolves via instability. The inductance of the coupling coil has a substantial effect on the magnitude and the property of the tuned substrate bias.

  16. Tunable exchange bias in dilute magnetic alloys – chiral spin glasses

    PubMed Central

    Hudl, Matthias; Mathieu, Roland; Nordblad, Per

    2016-01-01

    A unidirectional anisotropy appears in field cooled samples of dilute magnetic alloys at temperatures well below the cusp temperature of the zero field cooled magnetization curve. Magnetization measurements on a Cu(13.5 at% Mn) sample show that this anisotropy is essentially temperature independent and acts on a temperature dependent excess magnetization, ΔM. The anisotropy can be partially or fully transferred from being locked to the direction of the cooling field at lower fields to becoming locked to the direction of ΔM at larger fields, thus instead appearing as a uniaxial anisotropy. This introduces a deceiving division of the anisotropy into a superposition of a unidirectional and a uniaxial part. This two faced nature of the anisotropy has been empirically scrutinized and concluded to originate from one and the same exchange mechanism: the Dzyaloshinsky-Moriya interaction. PMID:26817418

  17. Extensive and biased intergenomic nonreciprocal DNA exchanges shaped a nascent polyploid genome, Gossypium (cotton).

    PubMed

    Guo, Hui; Wang, Xiyin; Gundlach, Heidrun; Mayer, Klaus F X; Peterson, Daniel G; Scheffler, Brian E; Chee, Peng W; Paterson, Andrew H

    2014-08-01

    Genome duplication is thought to be central to the evolution of morphological complexity, and some polyploids enjoy a variety of capabilities that transgress those of their diploid progenitors. Comparison of genomic sequences from several tetraploid (AtDt) Gossypium species and genotypes with putative diploid A- and D-genome progenitor species revealed that unidirectional DNA exchanges between homeologous chromosomes were the predominant mechanism responsible for allelic differences between the Gossypium tetraploids and their diploid progenitors. Homeologous gene conversion events (HeGCEs) gradually subsided, declining to rates similar to random mutation during radiation of the polyploid into multiple clades and species. Despite occurring in a common nucleus, preservation of HeGCE is asymmetric in the two tetraploid subgenomes. At-to-Dt conversion is far more abundant than the reciprocal, is enriched in heterochromatin, is highly correlated with GC content and transposon distribution, and may silence abundant A-genome-derived retrotransposons. Dt-to-At conversion is abundant in euchromatin and genes, frequently reversing losses of gene function. The long-standing observation that the nonspinnable-fibered D-genome contributes to the superior yield and quality of tetraploid cotton fibers may be explained by accelerated Dt to At conversion during cotton domestication and improvement, increasing dosage of alleles from the spinnable-fibered A-genome. HeGCE may provide an alternative to (rare) reciprocal DNA exchanges between chromosomes in heterochromatin, where genes have approximately five times greater abundance of Dt-to-At conversion than does adjacent intergenic DNA. Spanning exon-to-gene-sized regions, HeGCE is a natural noninvasive means of gene transfer with the precision of transformation, potentially important in genetic improvement of many crop plants.

  18. Ultrafast spin exchange-coupling torque via photo-excited charge-transfer processes

    SciTech Connect

    Ma, X.; Fang, F.; Li, Q.; Zhu, J.; Yang, Y.; Wu, Y. Z.; Zhao, H. B.; Lüpke, G.

    2015-10-28

    In this study, optical control of spin is of central importance in the research of ultrafast spintronic devices utilizing spin dynamics at short time scales. Recently developed optical approaches such as ultrafast demagnetization, spin-transfer and spin-orbit torques open new pathways to manipulate spin through its interaction with photon, orbit, charge or phonon. However, these processes are limited by either the long thermal recovery time or the low-temperature requirement. Here we experimentally demonstrate ultrafast coherent spin precession via optical charge-transfer processes in the exchange-coupled Fe/CoO system at room temperature. The efficiency of spin precession excitation is significantly higher and the recovery time of the exchange-coupling torque is much shorter than for the demagnetization procedure, which is desirable for fast switching. The exchange coupling is a key issue in spin valves and tunnelling junctions, and hence our findings will help promote the development of exchange-coupled device concepts for ultrafast coherent spin manipulation.

  19. Ultrafast spin exchange-coupling torque via photo-excited charge-transfer processes

    DOE PAGES

    Ma, X.; Fang, F.; Li, Q.; ...

    2015-10-28

    In this study, optical control of spin is of central importance in the research of ultrafast spintronic devices utilizing spin dynamics at short time scales. Recently developed optical approaches such as ultrafast demagnetization, spin-transfer and spin-orbit torques open new pathways to manipulate spin through its interaction with photon, orbit, charge or phonon. However, these processes are limited by either the long thermal recovery time or the low-temperature requirement. Here we experimentally demonstrate ultrafast coherent spin precession via optical charge-transfer processes in the exchange-coupled Fe/CoO system at room temperature. The efficiency of spin precession excitation is significantly higher and the recoverymore » time of the exchange-coupling torque is much shorter than for the demagnetization procedure, which is desirable for fast switching. The exchange coupling is a key issue in spin valves and tunnelling junctions, and hence our findings will help promote the development of exchange-coupled device concepts for ultrafast coherent spin manipulation.« less

  20. Ultrafast spin exchange-coupling torque via photo-excited charge-transfer processes

    PubMed Central

    Ma, X.; Fang, F.; Li, Q.; Zhu, J.; Yang, Y.; Wu, Y. Z.; Zhao, H. B.; Lüpke, G.

    2015-01-01

    Optical control of spin is of central importance in the research of ultrafast spintronic devices utilizing spin dynamics at short time scales. Recently developed optical approaches such as ultrafast demagnetization, spin-transfer and spin-orbit torques open new pathways to manipulate spin through its interaction with photon, orbit, charge or phonon. However, these processes are limited by either the long thermal recovery time or the low-temperature requirement. Here we experimentally demonstrate ultrafast coherent spin precession via optical charge-transfer processes in the exchange-coupled Fe/CoO system at room temperature. The efficiency of spin precession excitation is significantly higher and the recovery time of the exchange-coupling torque is much shorter than for the demagnetization procedure, which is desirable for fast switching. The exchange coupling is a key issue in spin valves and tunnelling junctions, and hence our findings will help promote the development of exchange-coupled device concepts for ultrafast coherent spin manipulation. PMID:26508587

  1. Effects of Exchange Energy and Spin-Orbit Coupling on Bond Energies

    ERIC Educational Resources Information Center

    Smith, Derek W.

    2004-01-01

    Since chemical reactions involve the breaking and making of bonds, understanding the relative strengths of bonds is of paramount importance in the study, teaching, and practice of chemistry. Further, it is showed that free atoms having p(super n) configuration with n = 2,3, or 4 are stabilized by exchange energy, and by spin-orbit coupling for n =…

  2. Exchange coupling in hybrid anisotropy magnetic multilayers quantified by vector magnetometry

    SciTech Connect

    Morrison, C. Miles, J. J.; Thomson, T.; Anh Nguyen, T. N.; Fang, Y.; Dumas, R. K.; Åkerman, J.

    2015-05-07

    Hybrid anisotropy thin film heterostructures, where layers with perpendicular and in-plane anisotropy are separated by a thin spacer, are novel materials for zero/low field spin torque oscillators and bit patterned media. Here, we report on magnetization reversal and exchange coupling in a archetypal Co/Pd (perpendicular)-NiFe (in-plane) hybrid anisotropy system studied using vector vibrating sample magnetometry. This technique allows us to quantify the magnetization reversal in each individual magnetic layer, and measure of the interlayer exchange as a function of non-magnetic spacer thickness. At large (>1 nm) spacer thicknesses Ruderman-Kittel-Kasuya-Yosida-like exchange dominates, with orange-peel coupling providing a significant contribution only for sub-nm spacer thickness.

  3. Modulation of interlayer exchange coupling strength in magnetic tunnel junctions via strain effect

    SciTech Connect

    Jiang, Xin Li, Zhipeng; Zheng, Yuankai; Kaiser, Christian; Diao, Zhitao; Fang, Jason; Leng, Qunwen

    2015-09-15

    Interlayer exchange coupling of two ferromagnetic electrodes separated by a thin MgO tunnel barrier is investigated using magneto-optical Kerr effect. We find that the coupling field can be reduced by more than 40% as the thickness of a top Ta capping layer increases from 0.5 to 1.2 nm. In contrast, a similar film stack with an additional 3 nm Ru capping layer displays no such dependence on Ta thickness. Transmission electron microscopy study shows that the oxidation of the exposed Ta capping layer induces changes in the crystalline structures of the underlying films, giving rise to the observed reduction of the interlayer coupling field.

  4. Effect of interface roughness on exchange coupling in polycrystalline Co/CoO bilayer structure: An in-situ investigation

    NASA Astrophysics Data System (ADS)

    Kumar, Dileep; Singh, Sadhana; Gupta, Ajay

    2016-08-01

    The effect of interface roughness on exchange-bias (EB) properties of polycrystalline Co/CoO bilayer structure has been studied in-situ. Isothermal annealing of a 135 Å thick Co layer under the partial pressure of pure oxygen at 573 K results in the formation of a 35 Å thick CoO layer, the surface roughness of which increases with the increasing annealing time. Bilayers were characterized in-situ using magneto-optic Kerr effect, reflection high energy electron diffraction, and x-ray reflectivity for their magnetic and structural properties during each stage of bilayer growth. Combined analysis revealed that the increase in the roughness from 7 ±0.5 Å to 13 ±Å causes the exchange bias field (HEB) to decrease from 171 Oe to 81 Oe, whereas coercivity (HC) increases up to 616 Oe. In contrast to some earlier studies on polycrystalline films, where HEB increased with roughness due to the increase in the uncompensated spins at ferromagnetic-antiferromagnetic (AFM) layer interface, in the present case, dependence of HEB and HC on the roughness is attributed to the disorder at the interface of AFM layer, which leads to a decrease in HEB due to weakening of the effective spin coupling at the interface. Present in-situ experiments make it possible to study the variations in EB properties with the interface roughness in a single sample, and thus avoiding the possibility of the sample to sample variation in the morphological properties along with the change in the interface roughness.

  5. On the use of a weak-coupling thermostat in replica-exchange molecular dynamics simulations.

    PubMed

    Lin, Zhixiong; van Gunsteren, Wilfred F

    2015-07-21

    In a molecular dynamics (MD) simulation, various thermostat algorithms, including Langevin dynamics (LD), Nosé-Hoover (NH), and weak-coupling (WC) thermostats, can be used to keep the simulation temperature constant. A canonical ensemble is generated by the use of LD and NH, while the nature of the ensemble produced by WC has not yet been identified. A few years ago, it was shown that when using a WC thermostat with particular values of the temperature coupling time for liquid water at ambient temperature and pressure, the distribution of the potential energy is less wide than the canonical one. This led to an artifact in temperature replica-exchange molecular dynamics (T-REMD) simulations in which the potential energy distributions appear not to be equal to the ones of standard MD simulations. In this paper, we re-investigate this problem. We show that this artifact is probably due to the ensemble generated by WC being incompatible with the T-REMD replica-exchange criterion, which assumes a canonical configurational ensemble. We also show, however, that this artifact can be reduced or even eliminated by particular choices of the temperature coupling time of WC and the replica-exchange time period of T-REMD, i.e., when the temperature coupling time is chosen very close to the MD time step or when the exchange time period is chosen large enough. An attempt to develop a T-REMD replica-exchange criterion which is likely to be more compatible with the WC configurational ensemble is reported. Furthermore, an exchange criterion which is compatible with a microcanonical ensemble is used in total energy REMD simulations.

  6. Substituent effects on the vibronic coupling for the phenoxyl/phenol self-exchange reaction.

    PubMed

    Ludlow, Michelle K; Skone, Jonathan H; Hammes-Schiffer, Sharon

    2008-01-17

    The impact of substituents on the vibronic coupling for the phenoxyl/phenol self-exchange reaction, which occurs by a proton-coupled electron transfer mechanism, is investigated. The vibronic couplings are calculated with a grid-based nonadiabatic method and a nuclear-electronic orbital nonorthogonal configuration interaction method. The quantitative agreement between these two methods for the unsubstituted phenoxyl/phenol system and the qualitative agreement in the predicted trends for the substituted phenoxyl/phenol systems provides a level of validation for both methods. Analysis of the results indicates that electron-donating groups enhance the vibronic coupling, while electron-withdrawing groups attenuate the vibronic coupling. Thus, if all other aspects of the reaction are the same, then electron-donating groups will increase the rate, while electron-withdrawing groups will decrease the rate. Correlations between the vibronic coupling and physical properties of the phenol are also analyzed. Negative Hammett constants correspond to higher vibronic couplings, while positive Hammett constants correspond to similar or slightly lower vibronic couplings relative to the unsubstituted phenoxyl/phenol system. In addition, lower bond dissociation enthalpies, ionization potentials, and redox potentials, as well as higher pKa values, tend to correspond to higher vibronic couplings relative to the unsubstituted phenoxyl/phenol system. The observed trends enable the prediction of the impact of general substituents on the vibronic coupling, and hence the rate, for the phenoxyl/phenol self-exchange reaction. The fundamental physical insights obtained from these studies are applicable to other proton-coupled electron transfer systems.

  7. Ferromagnetic resonance studies of exchange coupled ultrathin Py/Cr/Py trilayers

    NASA Astrophysics Data System (ADS)

    Topkaya, R.; Erkovan, M.; Öztürk, A.; Öztürk, O.; Aktaş, B.; Özdemir, M.

    2010-07-01

    Magnetic properties of ultrathin Py/Cr/Py trilayers have been investigated as a function of Cr spacer layer thickness by using ferromagnetic resonance (FMR) and vibrating sample magnetometer (VSM) techniques. The Cr spacer layer thickness was increased from 4 to 40 Å with 1 Å steps to determine the dependence of interlayer exchange coupling between ferromagnetic layers on the spacer layer thickness. Two strong and well resolved peaks were observed which correspond to a strong (acoustic) and weak (optic) modes of magnetization precession in the effective dc field due to the exciting external microwave field as the external dc field orientation comes close to the film normal. The separation of the two modes in the field axis depends on the thickness of Cr spacer layer. An interchange in the relative positions of the acoustic and optic modes has been observed for a particular thickness of Cr spacer layer as well. A computer program for magnetically exchange coupled N magnetic layers was written to simulate the experimental FMR spectra and to obtain the magnetic parameters of ultrathin Py/Cr/Py trilayers. FMR data have been analyzed from every aspect by using this program and interlayer exchange coupling constant was calculated for the prepared structures. It was found that the relative position of the peaks depends on the nature (sign) of the interlayer exchange coupling between ferromagnetic layers through Cr spacer layer. In Py/Cr/Py trilayers, strength of the interlayer exchange coupling constant oscillates and changes its sign with Cr spacer layer thickness with a period of about 11 Å.

  8. Ionic Hamiltonians for transition metal atoms: effective exchange coupling and Kondo temperature

    NASA Astrophysics Data System (ADS)

    Flores, F.; Goldberg, E. C.

    2017-02-01

    An ionic Hamiltonian for describing the interaction between a metal and a d-shell transition metal atom having an orbital singlet state is introduced and its properties analyzed using the Schrieffer-Wolf transformation (exchange coupling) and the poor man’s scaling method (Kondo temperature). We find that the effective exchange coupling between the metal and the atom has an antiferromagnetic or a ferromagnetic interaction depending on the kind of atomic fluctuations, either S\\to S-1/2 or S\\to S+1/2 , associated with the metal-atom coupling. We present a general scheme for all those processes and calculate, for the antiferromagnetic interaction, the corresponding Kondo-temperature.

  9. Magnetic Exchange Couplings in Heterodinuclear Complexes Based on Differential Local Spin Rotations.

    PubMed

    Joshi, Rajendra P; Phillips, Jordan J; Peralta, Juan E

    2016-04-12

    We analyze the performance of a new method for the calculation of magnetic exchange coupling parameters for the particular case of heterodinuclear transition metals complexes of Cu, Ni, and V. This method is based on a generalized perturbative approach which uses differential local spin rotations via formal Lagrange multipiers (Phillips, J. J.; Peralta, J. E. J. Chem. Phys. 2013, 138, 174115). The reliability of the calculated couplings has been assessed by comparing with results from traditional energy differences with different density functional approximations and with experimental values. Our results show that this method to calculate magnetic exchange couplings can be reliably used for heteronuclear transition metal complexes, and at the same time, that it is independent from the different mapping schemes used in energy difference methods.

  10. Accelerated flexible protein-ligand docking using Hamiltonian replica exchange with a repulsive biasing potential

    PubMed Central

    Ostermeir, Katja; Zacharias, Martin

    2017-01-01

    A molecular dynamics replica exchange based method has been developed that allows rapid identification of putative ligand binding sites on the surface of biomolecules. The approach employs a set of ambiguity restraints in replica simulations between receptor and ligand that allow close contacts in the reference replica but promotes transient dissociation in higher replicas. This avoids long-lived trapping of the ligand or partner proteins at nonspecific, sticky, sites on the receptor molecule and results in accelerated exploration of the possible binding regions. In contrast to common docking methods that require knowledge of the binding site, exclude solvent and often keep parts of receptor and ligand rigid the approach allows for full flexibility of binding partners. Application to peptide-protein, protein-protein and a drug-receptor system indicate rapid sampling of near-native binding regions even in case of starting far away from the native binding site outperforming continuous MD simulations. An application on a DNA minor groove binding ligand in complex with DNA demonstrates that it can also be used in explicit solvent simulations. PMID:28207811

  11. Magnetic compensation phenomenon and the sign reversal in the exchange bias field in a single crystal of Nd0.75Ho0.25Al2

    NASA Astrophysics Data System (ADS)

    Kulkarni, P. D.; Thamizhavel, A.; Rakhecha, V. C.; Nigam, A. K.; Paulose, P. L.; Ramakrishnan, S.; Grover, A. K.

    2009-05-01

    In the Nd0.75Ho0.25Al2 alloy system, the magnetic moments of Nd and Ho occupying the same crystallographic site randomly are antiferromagnetically coupled via long-range indirect exchange interaction mediated by the conduction electrons. A single crystal grown at this stoichiometry displays a magnetic compensation behavior (Tcomp~24 K) in all orientations. In the close vicinity of Tcomp, the magnetization hysteresis loops measured for H || [100] assume an asymmetric shape, and the notion of an exchange bias field (Hexch) surfaces. Hexch changes sign across Tcomp as the left shift of the loops transforms to the right shift. This phase reversal appears to correlate with the corresponding reversal in the directions of the local magnetic moments of Nd3+ and Ho3+ ions together with that of the conduction electron polarization (CEP). Near Tcomp, where the opposing contributions to the net magnetization from local magnetic moments are nearly equal, the contribution from CEP assumes an accentuated significance. Interestingly, the width of the M-H loop shows a divergence, followed by a collapse on approaching Tcomp from high- as well as low-temperature ends. The observed behavior confirms a long-standing prediction based on a phenomenological model for ferrimagnetic systems. The field-induced changes in the magnetization data leave an imprint of a quasi-phase transition in the heat capacity data. Magneto-resistance (ΔR/R vs. T) has an oscillatory response, in which onset of magnetic ordering and phase reversal in magnetic orientations can be recognized.

  12. Direct imaging of thermally-activated grain-boundary diffusion in Cu/Co/IrMn/Pt exchange-bias structures using atom-probe tomography

    NASA Astrophysics Data System (ADS)

    Letellier, F.; Lechevallier, L.; Lardé, R.; Le Breton, J.-M.; Akmaldinov, K.; Auffret, S.; Dieny, B.; Baltz, V.

    2014-11-01

    Magnetic devices are often subject to thermal processing steps, such as field cooling to set exchange bias and annealing to crystallize amorphous magnetic electrodes. These processing steps may result in interdiffusion and the subsequent deterioration of magnetic properties. In this study, we investigated thermally-activated diffusion in Cu/Co/IrMn/Pt exchange biased polycrystalline thin-film structures using atom probe tomography. Images taken after annealing at 400 °C for 60 min revealed Mn diffusion into Co grains at the Co/IrMn interface and along Pt grain boundaries for the IrMn/Pt stack, i.e., a Harrison type C regime. Annealing at 500 °C showed further Mn diffusion into Co grains. At the IrMn/Pt interface, annealing at 500 °C led to a type B behavior since Mn diffusion was detected both along Pt grain boundaries and also into Pt grains. The deterioration of the films' exchange bias properties upon annealing was correlated to the observed diffusion. In particular, the topmost Pt capping layer thickness turned out to be crucial since a faster deterioration of the exchange bias properties for thicker caps was observed. This is consistent with the idea that Pt acts as a getter for Mn, drawing Mn out of the IrMn layer.

  13. Direct imaging of thermally-activated grain-boundary diffusion in Cu/Co/IrMn/Pt exchange-bias structures using atom-probe tomography

    SciTech Connect

    Letellier, F.; Lardé, R.; Le Breton, J.-M.; Akmaldinov, K.; Auffret, S.; Dieny, B.; Baltz, V.

    2014-11-28

    Magnetic devices are often subject to thermal processing steps, such as field cooling to set exchange bias and annealing to crystallize amorphous magnetic electrodes. These processing steps may result in interdiffusion and the subsequent deterioration of magnetic properties. In this study, we investigated thermally-activated diffusion in Cu/Co/IrMn/Pt exchange biased polycrystalline thin-film structures using atom probe tomography. Images taken after annealing at 400 °C for 60 min revealed Mn diffusion into Co grains at the Co/IrMn interface and along Pt grain boundaries for the IrMn/Pt stack, i.e., a Harrison type C regime. Annealing at 500 °C showed further Mn diffusion into Co grains. At the IrMn/Pt interface, annealing at 500 °C led to a type B behavior since Mn diffusion was detected both along Pt grain boundaries and also into Pt grains. The deterioration of the films' exchange bias properties upon annealing was correlated to the observed diffusion. In particular, the topmost Pt capping layer thickness turned out to be crucial since a faster deterioration of the exchange bias properties for thicker caps was observed. This is consistent with the idea that Pt acts as a getter for Mn, drawing Mn out of the IrMn layer.

  14. Coupling mechanisms in inductive discharges with RF substrate bias driven at consecutive harmonics with adjustable relative phase

    NASA Astrophysics Data System (ADS)

    Steinberger, Thomas; Berger, Birk; Schulze, Julian; Schuengel, Edmund; Koepke, Mark

    2016-09-01

    Hybrid combinations of inductive and capacitive RF discharges are commonly used for plasma etching because the inductive coupling ensures a high plasma density, while the capacitive coupling allows the control of the ion bombardment energy at the substrate. We experimentally study the coupling mechanisms between the two driving-voltage sources in such a plasma driven inductively at 13.56 MHz and capacitively at 27.12 MHz in argon and neon at low pressure. We find that the resulting DC self-bias can be controlled via the Electrical Asymmetry Effect by adjusting the relative phase between the two driving harmonics in the E-mode. Langmuir probe measurements and Phase Resolved Optical Emission Spectroscopy (PROES) reveal that the addition of the applied RF-bias in the plasma acts as a catalyst for the transition between E- and H-mode. PROES measurements generally show that the electron power absorption dynamics are affected by the relative phase between the two driving voltage waveforms and by the ratio of the inductive to the capacitive driving powers. Finally, the ion flux-energy distribution function is measured at the RF-powered electrode and found also to be affected by coupling effects.

  15. Exchange bias induced by the fully strained La{sub 2/3}Ca{sub 1/3}MnO{sub 3} dead layers

    SciTech Connect

    Xie, Q. Y.; Wu, X. S.; Gao, J.; Jia, Q. J.

    2014-05-07

    A pure compressively strained La{sub 2/3}Ca{sub 1/3}MnO{sub 3} (LCMO) dead layer grown on (001)-oriented LaAlO{sub 3} substrate can show all the rich phenomenon of large bias field shift, coercive field enhancement, and high blocking temperature. The obtained exchange bias field (∼350 Oe) and the enhanced coercivity of about 1160 Oe at 5 K under 500 Oe cooling field are superior to that have been reported in LCMO-based ferromagnetic/antiferromagnetic superlattices or nanoscale systems. Our results clearly demonstrate that the inhomogeneous magnetic dead layer of LCMO can induce a strong exchange bias effect, which may be exploited as a very simple structure for spin-valve device application.

  16. Real-Time PPP Based on the Coupling Estimation of Clock Bias and Orbit Error with Broadcast Ephemeris

    PubMed Central

    Pan, Shuguo; Chen, Weirong; Jin, Xiaodong; Shi, Xiaofei; He, Fan

    2015-01-01

    Satellite orbit error and clock bias are the keys to precise point positioning (PPP). The traditional PPP algorithm requires precise satellite products based on worldwide permanent reference stations. Such an algorithm requires considerable work and hardly achieves real-time performance. However, real-time positioning service will be the dominant mode in the future. IGS is providing such an operational service (RTS) and there are also commercial systems like Trimble RTX in operation. On the basis of the regional Continuous Operational Reference System (CORS), a real-time PPP algorithm is proposed to apply the coupling estimation of clock bias and orbit error. The projection of orbit error onto the satellite-receiver range has the same effects on positioning accuracy with clock bias. Therefore, in satellite clock estimation, part of the orbit error can be absorbed by the clock bias and the effects of residual orbit error on positioning accuracy can be weakened by the evenly distributed satellite geometry. In consideration of the simple structure of pseudorange equations and the high precision of carrier-phase equations, the clock bias estimation method coupled with orbit error is also improved. Rovers obtain PPP results by receiving broadcast ephemeris and real-time satellite clock bias coupled with orbit error. By applying the proposed algorithm, the precise orbit products provided by GNSS analysis centers are rendered no longer necessary. On the basis of previous theoretical analysis, a real-time PPP system was developed. Some experiments were then designed to verify this algorithm. Experimental results show that the newly proposed approach performs better than the traditional PPP based on International GNSS Service (IGS) real-time products. The positioning accuracies of the rovers inside and outside the network are improved by 38.8% and 36.1%, respectively. The PPP convergence speeds are improved by up to 61.4% and 65.9%. The new approach can change the

  17. Real-Time PPP Based on the Coupling Estimation of Clock Bias and Orbit Error with Broadcast Ephemeris.

    PubMed

    Pan, Shuguo; Chen, Weirong; Jin, Xiaodong; Shi, Xiaofei; He, Fan

    2015-07-22

    Satellite orbit error and clock bias are the keys to precise point positioning (PPP). The traditional PPP algorithm requires precise satellite products based on worldwide permanent reference stations. Such an algorithm requires considerable work and hardly achieves real-time performance. However, real-time positioning service will be the dominant mode in the future. IGS is providing such an operational service (RTS) and there are also commercial systems like Trimble RTX in operation. On the basis of the regional Continuous Operational Reference System (CORS), a real-time PPP algorithm is proposed to apply the coupling estimation of clock bias and orbit error. The projection of orbit error onto the satellite-receiver range has the same effects on positioning accuracy with clock bias. Therefore, in satellite clock estimation, part of the orbit error can be absorbed by the clock bias and the effects of residual orbit error on positioning accuracy can be weakened by the evenly distributed satellite geometry. In consideration of the simple structure of pseudorange equations and the high precision of carrier-phase equations, the clock bias estimation method coupled with orbit error is also improved. Rovers obtain PPP results by receiving broadcast ephemeris and real-time satellite clock bias coupled with orbit error. By applying the proposed algorithm, the precise orbit products provided by GNSS analysis centers are rendered no longer necessary. On the basis of previous theoretical analysis, a real-time PPP system was developed. Some experiments were then designed to verify this algorithm. Experimental results show that the newly proposed approach performs better than the traditional PPP based on International GNSS Service (IGS) real-time products. The positioning accuracies of the rovers inside and outside the network are improved by 38.8% and 36.1%, respectively. The PPP convergence speeds are improved by up to 61.4% and 65.9%. The new approach can change the

  18. Anisotropic magnetization relaxation in ferromagnetic multilayers with variable interlayer exchange coupling

    NASA Astrophysics Data System (ADS)

    Kravets, A. F.; Polishchuk, D. M.; Dzhezherya, Yu. I.; Tovstolytkin, A. I.; Golub, V. O.; Korenivski, V.

    2016-08-01

    The ferromagnetic resonance (FMR) linewidth and its anisotropy in F1/f /F2 /AF multilayers, where spacer f has a low Curie point compared to the strongly ferromagnetic F1 and F2, is investigated. The role of the interlayer exchange coupling in magnetization relaxation is determined experimentally by varying the thickness of the spacer. It is shown that stronger interlayer coupling via thinner spacers enhances the microwave energy exchange between the outer ferromagnetic layers, with the magnetization of F2 exchange dragged by the resonance precession in F1. A weaker mirror effect is also observed: the magnetization of F1 can be exchange dragged by the precession in F2, which leads to antidamping and narrower FMR linewidths. A theory is developed to model the measured data, which allows separating various contributions to the magnetic relaxation in the system. Key physical parameters, such as the interlayer coupling constant, in-plane anisotropy of the FMR linewidth, and dispersion of the magnetic anisotropy fields, are quantified. These results should be useful for designing high-speed magnetic nanodevices based on thermally assisted switching.

  19. Environmental noise effects on entanglement fidelity of exchange-coupled semiconductor spin qubits

    NASA Astrophysics Data System (ADS)

    Throckmorton, Robert E.; Barnes, Edwin; Das Sarma, S.

    2017-02-01

    We investigate the effect of magnetic field and charge noise on the generation of entanglement between two Heisenberg exchange-coupled electron spins in a double quantum dot. We focus on exchange-driven evolution that would ideally take an initial unentangled tensor product state to a maximally entangled state in the absence of noise. The presence of noise obviously adversely affects the attainment of maximal entanglement, which we study quantitatively and exactly. To quantify the effects of noise, we calculate two-qubit coherence times and entanglement fidelity, both of which can be extracted from simulations or measurements of the return probability as a function of interaction time, i.e., the time period during which the exchange coupling remains effective between the two spins. We perform these calculations for a broad range of noise strengths that includes the regime of recent experiments. We find that the two types of noise reduce the amount of entanglement in qualitatively distinct ways and that, although charge noise generally leads to faster decoherence, the relative importance of the two types of noise in entanglement creation depends sensitively on the strength of the exchange coupling. Our results can be used to determine the level of noise suppression needed to reach quantum error correction thresholds. We provide quantitative guidance for the requisite noise constraints necessary to eventually reach the >99 % fidelity consistent with the quantum error correction threshold.

  20. Tunability of exchange bias in Ni@NiO core-shell nanoparticles obtained by sequential layer deposition

    SciTech Connect

    D'Addato, Sergio; Spadaro, Maria Chiara; Luches, Paola; Valeri, Sergio; Grillo, Vincenzo; Rotunno, Enzo; Roldan Gutierrez, Manuel A.; Pennycook, Stephen J.; Ferretti, Anna Maria; Capetti, Elena; Ponti, A.

    2015-01-01

    Films of magnetic Ni@NiO core–shell nanoparticles (NPs, core diameter d ≅ 12 nm, nominal shell thickness variable between 0 and 6.5 nm) obtained with sequential layer deposition were investigated, to gain insight into the relationships between shell thickness/morphology, core-shell interface, and magnetic properties. Different values of NiO shell thickness ts could be obtained while keeping the Ni core size fixed, at variance with conventional oxidation procedures where the oxide shell is grown at the expense of the core. Chemical composition, morphology of the as-produced samples and structural features of the Ni/NiO interface were investigated with x-ray photoelectron spectroscopy and microscopy (scanning electron microscopy, transmission electron microscopy) techniques, and related with results from magnetic measurements obtained with a superconducting quantum interference device. The effect of the shell thickness on the magnetic properties could be studied. The exchange bias (EB) field Hbias is small and almost constant for ts up to 1.6 nm; then it rapidly grows, with no sign of saturation. This behavior is clearly related to the morphology of the top NiO layer, and is mostly due to the thickness dependence of the NiO anisotropy constant. The ability to tune the EB effect by varying the thickness of the last NiO layer represents a step towards the rational design and synthesis of core–shell NPs with desired magnetic properties.

  1. Photo-carrier control of exchange bias in BiFeO{sub 3}/La{sub 2/3}Sr{sub 1/3}MnO{sub 3} thin films

    SciTech Connect

    Sung, K. D.; Lee, T. K.; Park, Y. A.; Hur, N.; Jung, J. H.

    2014-06-23

    We report the facile control of exchange bias in BiFeO{sub 3}/La{sub 2/3}Sr{sub 1/3}MnO{sub 3} (BFO/LSMO) thin films on an SrTiO{sub 3} (STO) substrate using light irradiation. Illumination with weak red light (λ: 630 nm, intensity: ∼1 mW/cm{sup 2}) reduced the exchange bias field (H{sub E}) of BFO/LSMO from +30 Oe in the dark to −2 Oe with red light. In accompanying the decrease of H{sub E}, the resistance of BFO/LSMO significantly increased. These results were attributed to the reduction in the hole-doping ratio of LSMO and the weakened exchange coupling between Fe and Mn spins at the interface, resulting from photo-injected electrons from the STO substrate. Successive turning on/off of red light gives rise to cyclical change of corresponding H{sub E}, which should be useful for applications like photo-controlled tunneling magnetoresistance devices.

  2. Interlayer exchange coupling between layers with perpendicular and easy-plane magnetic anisotropies

    NASA Astrophysics Data System (ADS)

    Fallarino, Lorenzo; Sluka, Volker; Kardasz, Bartek; Pinarbasi, Mustafa; Berger, Andreas; Kent, Andrew D.

    2016-08-01

    Interlayer exchange coupling between layers with perpendicular and easy-plane magnetic anisotropies separated by a non-magnetic spacer is studied using ferromagnetic resonance. The samples consist of a Co/Ni multilayer with perpendicular magnetic anisotropy and a CoFeB layer with easy-plane anisotropy separated by a variable thickness Ru layer. At a fixed frequency, we show that there is an avoided crossing of layer ferromagnetic resonance modes providing direct evidence for interlayer coupling. The mode dispersions for different Ru thicknesses are fit to a Heisenberg-type model to determine the interlayer exchange coupling strength and layer properties. The resulting interlayer exchange coupling varies continuously from antiferromagnetic to ferromagnetic as a function of the Ru interlayer thickness. These results show that the magnetic layer single domain ground state consists of magnetizations that can be significantly canted with respect to the layer planes and the canting can be tuned by varying the Ru thickness and the layer magnetic characteristics, a capability of interest for applications in spin-transfer torque devices.

  3. Coupled folding and binding with 2D Window-Exchange Umbrella Sampling

    PubMed Central

    Dickson, Alex; Ahlstrom, Logan S.

    2015-01-01

    Intrinsically disordered regions of proteins can gain structure by binding to a partner. This process, of coupled folding and binding, is a fundamental part of many important biological processes. Structure-based models have proven themselves capable of revealing fundamental aspects of how coupled folding and binding occurs, however typical methods to enhance the sampling of these transitions, such as replica exchange, do not adequately sample the transition state region of this extremely rare process. Here we use a variant of Umbrella Sampling to enforce sampling of the transition states of coupled folding and binding of HdeA monomers at neutral pH, an extremely rare process that occurs over timescales ranging from seconds to hours. Using high resolution sampling in the transition state region we cluster states along the principal transition path to obtain a detailed description of coupled binding and folding for the HdeA dimer, revealing new insight into the ensemble of states that are accessible to client recognition. We then demonstrate that exchanges between umbrella sampling windows, as done in previous work, significantly improve relaxation in variables orthogonal to the restraints used. Altogether, these results show that Window Exchange Umbrella Sampling (WEUS) is a promising approach for systems that exhibit flexible binding, and can reveal transition state ensembles of these systems in high detail. PMID:26250657

  4. Tropical Indian Ocean surface salinity bias in Climate Forecasting System coupled models and the role of upper ocean processes

    NASA Astrophysics Data System (ADS)

    Parekh, Anant; Chowdary, Jasti S.; Sayantani, Ojha; Fousiya, T. S.; Gnanaseelan, C.

    2016-04-01

    In the present study sea surface salinity (SSS) biases and seasonal tendency over the Tropical Indian Ocean (TIO) in the coupled models [Climate Forecasting System version 1 (CFSv1) and version 2 (CFSv2)] are examined with respect to observations. Both CFSv1 and CFSv2 overestimate SSS over the TIO throughout the year. CFSv1 displays improper SSS seasonal cycle over the Bay of Bengal (BoB), which is due to weaker model precipitation and improper river runoff especially during summer and fall. Over the southeastern Arabian Sea (AS) weak horizontal advection associated with East Indian coastal current during winter limits the formation of spring fresh water pool. On the other hand, weaker Somali jet during summer results for reduced positive salt tendency in the central and eastern AS. Strong positive precipitation bias in CFSv1 over the region off Somalia during winter, weaker vertical mixing and absence of horizontal salt advection lead to unrealistic barrier layer during winter and spring. The weaker stratification and improper spatial distribution of barrier layer thickness (BLT) in CFSv1 indicate that not only horizontal flux distribution but also vertical salt distribution displays large discrepancies. Absence of fall Wyrtki jet and winter equatorial currents in this model limit the advection of horizontal salt flux to the eastern equatorial Indian Ocean. The associated weaker stratification in eastern equatorial Indian Ocean can lead to deeper mixed layer and negative Sea Surface Temperature (SST) bias, which in turn favor positive Indian Ocean Dipole bias in CFSv1. It is important to note that improper spatial distribution of barrier layer and stratification can alter the air-sea interaction and precipitation in the models. On the other hand CFSv2 could produce the seasonal evolution and spatial distribution of SSS, BLT and stratification better than CFSv1. However CFSv2 displays positive bias in evaporation over the whole domain and negative bias in

  5. Spin pumping and inverse spin Hall effect in antiferromagnetic exchange coupled [Co/Ru/Co]/Pt heterostructures

    NASA Astrophysics Data System (ADS)

    Avilés-Félix, L.; Butera, A.; Gómez, J. E.

    2017-01-01

    We report the observation of spin pumping and inverse spin Hall effects in antiferromagnetically coupled [Co/Ru/Co]/Pt heterostructures. The "spin-flop" magnetization process observed in antiferromagnetically exchange coupled Co layers combined with spin pumping and inverse spin Hall effects allowed us to detect both transversal and longitudinal charge accumulations. By controlling the exchange coupling strength and the spin flop transition in the magnetization process, it was possible to produce spin currents polarized in different directions.

  6. The role of range-separated Hartree-Fock exchange in the calculation of magnetic exchange couplings in transition metal complexes.

    PubMed

    Phillips, Jordan J; Peralta, Juan E

    2011-01-21

    We assess the dependence of magnetic exchange couplings on the variation of Hartree-Fock exchange (HFX) admixture in global hybrid functionals and the range-separation parameter ω in range-separated hybrid functionals in a set of 12 spin-1/2 binuclear transition metal complexes. The global hybrid PBEh (hybrid Perdew-Burke-Ernzerhof) and range-separated hybrids HSE (Heyd-Scuseria-Ernzerhof) and LC-ωPBE (long-range corrected hybrid PBE) are employed for this assessment, and exchange couplings are calculated from energy differences within the framework of the spin-projected approach. It is found that these functionals perform optimally for magnetic exchange couplings with 35% HFX admixture for PBEh, ω = 0.50 a.u.(-1) for LC-ωPBE, and ω at or near 0.0 a.u.(-1) for HSE (which corresponds to PBEh). We find that in their standard respective forms, LC-ωPBE slightly outperforms PBEh, while PBEh with 35% HFX yields exchange couplings closer to experiment than those of LC-ωPBE with ω = 0.50 a.u.(-1). Additionally, we show that the profile of exchange couplings with respect to ω in HSE is appreciably flat from 0 to 0.2 a.u.(-1). This combined with the fact that HSE is computationally more tractable than global hybrids makes HSE an attractive alternative for the evaluation of exchange couplings in extended systems. These results are rationalized with respect to how varying the parameters within these functionals affects the delocalization of the magnetic orbitals, and conclusions are made regarding the relative importance of range separation versus global mixing of HFX for the calculation of exchange couplings.

  7. Tunable High-Field Magnetization in Strongly Exchange-Coupled Freestanding Co/CoO Core/Shell Coaxial Nanowires.

    PubMed

    Salazar-Alvarez, German; Geshev, Julian; Agramunt-Puig, Sebastià; Navau, Carles; Sanchez, Alvaro; Sort, Jordi; Nogués, Josep

    2016-08-31

    The exchange bias properties of Co/CoO coaxial core/shell nanowires were investigated with cooling and applied fields perpendicular to the wire axis. This configuration leads to unexpected exchange-bias effects. First, the magnetization value at high fields is found to depend on the field-cooling conditions. This effect arises from the competition between the magnetic anisotropy and the Zeeman energies for cooling fields perpendicular to the wire axis. This allows imprinting predefined magnetization states to the antiferromagnetic (AFM) shell, as corroborated by micromagnetic simulations. Second, the system exhibits a high-field magnetic irreversibility, leading to open hysteresis loops attributed to the AFM easy axis reorientation during the reversal (effect similar to athermal training). A distinct way to manipulate the high-field magnetization in exchange-biased systems, beyond the archetypical effects, was thus experimentally and theoretically demonstrated.

  8. Tunable photonic cavity coupled to a voltage-biased double quantum dot system: Diagrammatic nonequilibrium Green's function approach

    NASA Astrophysics Data System (ADS)

    Agarwalla, Bijay Kumar; Kulkarni, Manas; Mukamel, Shaul; Segal, Dvira

    2016-07-01

    We investigate gain in microwave photonic cavities coupled to voltage-biased double quantum dot systems with an arbitrarily strong dot-lead coupling and with a Holstein-like light-matter interaction, by employing the diagrammatic Keldysh nonequilibrium Green's function approach. We compute out-of-equilibrium properties of the cavity: its transmission, phase response, mean photon number, power spectrum, and spectral function. We show that by the careful engineering of these hybrid light-matter systems, one can achieve a significant amplification of the optical signal with the voltage-biased electronic system serving as a gain medium. We also study the steady-state current across the device, identifying elastic and inelastic tunneling processes which involve the cavity mode. Our results show how recent advances in quantum electronics can be exploited to build hybrid light-matter systems that behave as microwave amplifiers and photon source devices. The diagrammatic Keldysh approach is primarily discussed for a cavity-coupled double quantum dot architecture, but it is generalizable to other hybrid light-matter systems.

  9. Tunability of exchange bias in Ni@NiO core-shell nanoparticles obtained by sequential layer deposition

    DOE PAGES

    D'Addato, Sergio; Spadaro, Maria Chiara; Luches, Paola; ...

    2015-01-01

    Films of magnetic Ni@NiO core–shell nanoparticles (NPs, core diameter d ≅ 12 nm, nominal shell thickness variable between 0 and 6.5 nm) obtained with sequential layer deposition were investigated, to gain insight into the relationships between shell thickness/morphology, core-shell interface, and magnetic properties. Different values of NiO shell thickness ts could be obtained while keeping the Ni core size fixed, at variance with conventional oxidation procedures where the oxide shell is grown at the expense of the core. Chemical composition, morphology of the as-produced samples and structural features of the Ni/NiO interface were investigated with x-ray photoelectron spectroscopy and microscopymore » (scanning electron microscopy, transmission electron microscopy) techniques, and related with results from magnetic measurements obtained with a superconducting quantum interference device. The effect of the shell thickness on the magnetic properties could be studied. The exchange bias (EB) field Hbias is small and almost constant for ts up to 1.6 nm; then it rapidly grows, with no sign of saturation. This behavior is clearly related to the morphology of the top NiO layer, and is mostly due to the thickness dependence of the NiO anisotropy constant. The ability to tune the EB effect by varying the thickness of the last NiO layer represents a step towards the rational design and synthesis of core–shell NPs with desired magnetic properties.« less

  10. Interfaces exchange bias and magnetic properties of ordered CoFe2O4/Co3O4 nanocomposites

    NASA Astrophysics Data System (ADS)

    Zhang, B. B.; Xu, J. C.; Wang, P. F.; Han, Y. B.; Hong, B.; Jin, H. X.; Jin, D. F.; Peng, X. L.; Li, J.; Yang, Y. T.; Gong, J.; Ge, H. L.; Wang, X. Q.

    2015-11-01

    Cobalt ferrites (CoFe2O4) nanoparticles were implanted into the ordered mesoporous cobaltosic oxide (Co3O4) nanowires to synthesize magnetic CoFe2O4/Co3O4 nanocomposites. X-ray diffraction (XRD), N2 physical absorption-desorption, transmission electron microscope (TEM) and energy disperse spectroscopy (EDS) were used to characterize the microstructure of mesoporous Co3O4 and CoFe2O4/Co3O4 nanocomposites. The percent of pore-volume of mesoporous Co3O4 nanowires was calculated to be about 41.99% and CoFe2O4 nanoparticles were revealed to exist in the mesopores of Co3O4. The magnetic behavior of both samples were investigated with superconducting quantum interference device (SQUID). Magnetization increased with the doping CoFe2O4 and decreasing temperature, while coercivity hardly changed. The exchange bias effect was obviously observed at 100 K and enhanced with the doping CoFe2O4. CoFe2O4 nanoparticles reinforced the interfaces magnetic interaction between antiferromagnetic Co3O4 and ferrimagnetic CoFe2O4.

  11. Néel walls between tailored parallel-stripe domains in IrMn/CoFe exchange bias layers

    SciTech Connect

    Ueltzhöffer, Timo Schmidt, Christoph; Ehresmann, Arno; Krug, Ingo; Nickel, Florian; Gottlob, Daniel

    2015-03-28

    Tailored parallel-stripe magnetic domains with antiparallel magnetizations in adjacent domains along the long stripe axis have been fabricated in an IrMn/CoFe Exchange Bias thin film system by 10 keV He{sup +}-ion bombardment induced magnetic patterning. Domain walls between these domains are of Néel type and asymmetric as they separate domains of different anisotropies. X-ray magnetic circular dichroism asymmetry images were obtained by x-ray photoelectron emission microscopy at the Co/Fe L{sub 3} edges at the synchrotron radiation source BESSY II. They revealed Néel-wall tail widths of 1 μm in agreement with the results of a model that was modified in order to describe such walls. Similarly obtained domain core widths show a discrepancy to values estimated from the model, but could be explained by experimental broadening. The rotation senses in adjacent walls were determined, yielding unwinding domain walls with non-interacting walls in this layer system.

  12. Negative magnetization and exchange bias in Y1 - x Prx CrO3 with (0>x>0.3)

    NASA Astrophysics Data System (ADS)

    Verdin, E.; Duran, A.; Morales, F.; Escudero, E.

    2015-03-01

    Rare earth orthochromites compounds with perovskite structure have attracted great interest because its potential applications as data storage and spintronic. We report studies of the crystalline structure, thermal, and magnetic properties performed in the compound Y1-xPrxCrO3with 0exchange bias and magnetization reversal when the magnetization-temperature (M-T) curves were measured in field cooled mode (FC). All those changes are attributed to the influence of the Dzialoshinskii-Moriya indirect interaction that we related to the octahedral distortion, because the Pr substitution affecting the Cr-O bond lengths. This work was partially supported by DGAPA-UNAM, IN103213, IN10014, CONACyT-Mexico, Project 129293, BISSNANO, and by the Institute of Sciences Project PICCO 11-7, Distrito Federal, Mexico.

  13. Fe/CoO(001) and Fe/CoO(111) bilayers: Effect of crystal orientation on the exchange bias

    NASA Astrophysics Data System (ADS)

    Młyńczak, E.; Matlak, B.; Kozioł-Rachwał, A.; Gurgul, J.; Spiridis, N.; Korecki, J.

    2013-08-01

    A comparative study of the structure and magnetism of Fe/CoO(111) and Fe/CoO(001) epitaxial bilayers was performed to investigate the role of uncompensated spins in the exchange bias (EB) phenomenon. Low-energy electron diffraction, x-ray photoelectron spectroscopy, conversion electron Mössbauer spectroscopy (CEMS), and the magneto-optic Kerr effect were used to characterize the structural and magnetic properties of the bilayers. Magnetically compensated and uncompensated CoO films were prepared using molecular beam epitaxy through the evaporation of single Co atomic layers and their subsequent oxidation (layer-by-layer technique) on MgO crystals with (001) and (111) orientations. Two-monolayer-thick 57Fe probes located on top of the oxide films and covered with 56Fe allowed for an analysis of the interfacial chemical and magnetic structure using CEMS. For both structures, submonolayer oxidation of the iron detected at the Fe/CoO interface was found to be accompanied by the formation of a mixed FeCo region. The Fe layers showed fourfold magnetocrystalline anisotropy when grown on CoO(001) and weak uniaxial anisotropy when grown on CoO(111). Although the structural quality and composition of the two structures were comparable, they exhibited distinct EB properties. A hysteresis loop shift as high as 354 Oe at 80 K was obtained for the Fe/CoO(111) bilayer, compared to only 37 Oe for the magnetically compensated Fe/CoO(001).

  14. Calculation of adsorption free energy for solute-surface interactions using biased replica-exchange molecular dynamics

    PubMed Central

    Wang, Feng; Stuart, Steven J.; Latour, Robert A.

    2009-01-01

    The adsorption behavior of a biomolecule, such as a peptide or protein, to a functionalized surface is of fundamental importance for a broad range of applications in biotechnology. The adsorption free energy for these types of interactions can be determined from a molecular dynamics simulation using the partitioning between adsorbed and nonadsorbed states, provided that sufficient sampling of both states is obtained. However, if interactions between the solute and the surface are strong, the solute will tend to be trapped near the surface during the simulation, thus preventing the adsorption free energy from being calculated by this method. This situation occurs even when using an advanced sampling algorithm such as replica-exchange molecular dynamics (REMD). In this paper, the authors demonstrate the fundamental basis of this problem using a model system consisting of one sodium ion (Na+) as the solute positioned over a surface functionalized with one negatively charged group (COO−) in explicit water. With this simple system, the authors show that sufficient sampling in the coordinate normal to the surface cannot be obtained by conventional REMD alone. The authors then present a method to overcome this problem through the use of an adaptive windowed-umbrella sampling technique to develop a biased-energy function that is combined with REMD. This approach provides an effective method for the calculation of adsorption free energy for solute-surface interactions. PMID:19768127

  15. Exchange coupling in MnBi/Fe-Co thin film bilayers

    NASA Astrophysics Data System (ADS)

    Fang, Lei; Gao, Tieren; Fackler, Sean; Maruyama, Shingo; Takeuchi, Ichiro; Cui, Jun; Krammer, M. J.; Johnson, Duane; Arenholz, Elke; Borchers, Julie; Kirby, Brian; Ratcliff, William; Skomski, Ralph; Lofland, Samuel

    2014-03-01

    To achieve enhanced energy products of MnBi for rare-earth free permanent magnet applications, we studied the exchange coupled soft/hard bilayers based on MnBi films. By using DC magnetron sputtering, we fabricated pure MnBi films with magnetization of 500 emu/cc and coercivity of 1.6 T. A (BH)max of 6.2 MGOe is obtained for pure MnBi films. A large enhancement in (BH)max due to exchange coupling in MnBi/Fe-Co bilayers is observed with Fe-Co thicknesses between 2 and 5 nm. The highest (BH)max obtained is 14.0 MGOe at room temperature with a single phase magnetization curve for a MnBi (20 nm)/Co (2 nm) bilayer. TEM and XPS studies indicate there is no oxidation between soft/hard interface. The XMCD results show that the soft moments of Fe/Co at a thickness of 2 nm are perpendicular to the MnBi plane, indicating nearly perfect hard-soft coupling. Moreover, a micromagnetic calculation on perpendicularly-coupled MnBi/Fe-Co bilayers suggests a critical coupling thickness of 4 nm of the soft layer. We will also discuss results from polarized neutron reflectometry measurements performed on the bilayers. This work is funded by ARPA-E.

  16. Spin-Wave Modes in Exchange-Coupled FePt/FeNi Bilayer Films

    NASA Astrophysics Data System (ADS)

    Li, Shu-Fa; He, Pan; Cheng, Chu-Yuan; Zhou, Shi-Ming; Lai, Tian-Shu

    2014-01-01

    A simple magnetic modulation structure of the exchange-coupling FePt/FeNi bilayer film is fabricated and studied for its magnetization dynamics using time-resolved magneto-optical polar Kerr spectroscopy. It is found that two spin-wave modes can be excited. One is fixed at ~3.2 GHz in frequency for any external field and may serve as a frequency-stabilized spin-wave filter, while the other is external field dependent. In contrast, only the external field-dependent mode is excited in single-layer FeNi, supporting the localized origin of the mode at ~3.2 GHz, which is confined to a thin exchange-coupling region. The other external field-dependent mode in frequency is attributed to the Kittel mode.

  17. Magnetotransport signatures of the proximity exchange and spin-orbit couplings in graphene

    NASA Astrophysics Data System (ADS)

    Lee, Jeongsu; Fabian, Jaroslav

    2016-11-01

    Graphene on an insulating ferromagnetic substrate—ferromagnetic insulator or ferromagnetic metal with a tunnel barrier—is expected to exhibit large exchange and spin-orbit couplings due to proximity effects. We use a realistic transport model of charge-disorder scattering and solve the linearized Boltzmann equation numerically exactly for the anisotropic Fermi contours of modified Dirac electrons to find magnetotransport signatures of these proximity effects: proximity anisotropic magnetoresistance, inverse spin-galvanic effect, and the planar Hall resistivity. We establish the corresponding anisotropies due to the exchange and spin-orbit couplings, with respect to the magnetization orientation. We also present parameter maps guiding towards optimal regimes for observing transport magnetoanisotropies in proximity graphene.

  18. Inelastic Neutron Scattering and Magnetisation Investigation of an Exchange-Coupled Dy2 SMM

    NASA Astrophysics Data System (ADS)

    Baker, Michael L.; Zhang, Qing; Sarachik, Myriam P.; Kent, Andrew D.; Chen, Yizhang; Butch, Nicholas; Pineda, Eufemio M.; McInnes, Eric

    The strong spin orbit coupling and weak crystal field energies of simple exchange-coupled rare earth SMMs makes the precise evaluation of their magnetic properties nontrivial. Here we report a detailed investigation of the single molecule magnet hqH2Dy2(hq)4(NO3)3MeOH. Inelastic neutron scattering is used to obtain direct access to several low energy crystal field excitations. The INS results display several features that are not found in earlier FIR absorption experiments, while other features found in the latter are absent. Based on the effective point charge model, numerical calculations are currently underway to resolve these apparent discrepancies using complementary magnetisation measurements to resolve the exchange between Dy ions. Work supported by ARO W911NF-13-1-1025 (CCNY) and NSF-DMR-1309202 (NYU).

  19. Switching field distribution of exchange coupled ferri-/ferromagnetic composite bit patterned media

    NASA Astrophysics Data System (ADS)

    Oezelt, Harald; Kovacs, Alexander; Fischbacher, Johann; Matthes, Patrick; Kirk, Eugenie; Wohlhüter, Phillip; Heyderman, Laura Jane; Albrecht, Manfred; Schrefl, Thomas

    2016-09-01

    We investigate the switching field distribution and the resulting bit error rate of exchange coupled ferri-/ferromagnetic bilayer island arrays by micromagnetic simulations. Using islands with varying microstructure and anisotropic properties, the intrinsic switching field distribution is computed. The dipolar contribution to the switching field distribution is obtained separately by using a model of a triangular patterned island array resembling 1.4 Tb/in2 bit patterned media. Both contributions are computed for different thicknesses of the soft exchange coupled ferrimagnet and also for ferromagnetic single phase FePt islands. A bit patterned media with a bilayer structure of FeGd( 5 nm )/FePt( 5 nm ) shows a bit error rate of 10-4 with a write field of 1.16 T .

  20. Tm(iii) complexes undergoing slow relaxation of magnetization: exchange coupling and aging effects.

    PubMed

    Amjad, A; Figuerola, A; Sorace, L

    2017-03-21

    The present study focuses on the dynamic magnetic behaviour of exchange coupled 3d-4f complexes containing the scarcely investigated non-Kramers Tm(3+) center, the 3d metal ions being either the low-spin Fe(3+) (1) or the diamagnetic Co(3+) (2) ion. Both complexes display field-induced slow relaxation of magnetization. The field and temperature dependences of the relaxation rate provided indication of relevant contributions from quantum tunnelling, direct, Orbach and Raman processes, with only minor effects from exchange coupling interactions. Furthermore, the aged sample of 2 exhibited an additional relaxation process, possibly due to structural modifications accompanied by solvent loss, highlighting the importance of a careful consideration of this factor when analysing the magnetization dynamics in solvated systems.

  1. Spin orbital torque driven magnetization switching in magnetic tunnel junction with inter-layer exchange coupling

    SciTech Connect

    Xu, Lei; Ma, Zhongshui; Wei, Dan

    2015-01-14

    The switching processes of elliptically shaped magnetic tunnel junction bits with the structure Ta/CoFeB/MgO/CoFeB have been studied by the micromagnetic models. By comparing the tunneling magneto-resistance minor and major loops calculated by our model with related experimental results, we found that the inter-layer exchange coupling between the two CoFeB layers and a reduced saturation magnetization M{sub s} distribution at the edge of the elliptical bit should be included. The chosen strength of the inter-layer exchange coupling also matches well with experimental observations. The current induced magnetization switching is generated from the spin Hall effect in the Ta layer. The critical switching currents calculated by our model are coincident with experiment. This shows the reliability of our micromagnetic model with the spin orbital torque term.

  2. Ferromagnetic resonance of an heterogeneous multilayer system with interlayer exchange coupling: an accessible model

    NASA Astrophysics Data System (ADS)

    Franco, A. F.; Landeros, P.

    2016-09-01

    We present a general model for the coupled magnetic resonances of an exchange interacting multilayer system, which can be implemented without complex analytical calculations or numerical simulations. The model allows one to study the spin wave modes of a multilayer structure with any number of layers, accounting for individual uniaxial and cubic anisotropies, and (static and dynamic) demagnetizing and external fields as well, assuming that only the interlayer exchange coupling mechanism is relevant between such magnetic layers. This scheme is applied to recent measurements of a NiFe/CoFe bilayer, and to studying the influence of the strength of ferromagnetic and antiferromagnetic exchange interactions and the applied field orientation on the spin wave modes and intensities of the ferromagnetic resonance response. We find that the acoustic oscillation mode tends to stabilize in frequency if the magnetizations of the layers are parallel to each other, while the optical mode stabilizes when the magnetizations are antiparallel. Furthermore, we find that each oscillation mode is governed by either the NiFe or the CoFe. The modes swap the governing layer as the perpendicular field increases, inducing a gap between their frequencies, which appears to be proportional to the exchange coupling. Finally, we find that the field linewidth of the bilayer due to Gilbert damping has a dependence on the frequency very similar to the linear dependence of the linewidth in single layers. The theoretical scheme presented here can be further used to explore magnetization dynamics in different multilayer architectures—such as exchange springs, structures with perpendicular magnetic anisotropy, and complex compositions of layer stacks—and can be useful as a basis to study multilayers with chiral and dipolar interactions.

  3. Exchange coupling driven omnidirectional rotatable anisotropy in ferrite doped CoFe thin film.

    PubMed

    Chai, Guozhi; Phuoc, Nguyen N; Ong, C K

    2012-01-01

    Isotropic magnetic materials with high resonant frequencies are useful for applications in microwave devices. Undoped CoFe thin films, as common soft magnetic materials with high saturation magnetization, show isotropic characteristics but no high frequency response. Here, we use ferrite doped CoFe thin film to realize a resonant frequency higher than 4.5 GHz at all orientations. The exchange coupling between ferrimagnet and ferromagnet is assumed to play a key role on the omnidirectional rotatable anisotropy.

  4. Exchange coupling driven omnidirectional rotatable anisotropy in ferrite doped CoFe thin film

    PubMed Central

    Chai, Guozhi; Phuoc, Nguyen N.; Ong, C. K.

    2012-01-01

    Isotropic magnetic materials with high resonant frequencies are useful for applications in microwave devices. Undoped CoFe thin films, as common soft magnetic materials with high saturation magnetization, show isotropic characteristics but no high frequency response. Here, we use ferrite doped CoFe thin film to realize a resonant frequency higher than 4.5 GHz at all orientations. The exchange coupling between ferrimagnet and ferromagnet is assumed to play a key role on the omnidirectional rotatable anisotropy. PMID:23145323

  5. Influence of temperature on structure and magnetic properties of exchange coupled TbCo/FeNi bilayers.

    PubMed

    Svalov, A V; Balymov, K G; Fernández, A; Orue, I; Larrañaga, A; Vas'kovsky, V O; Gutiérrez, J; Kurlyandskaya, G V

    2012-09-01

    Among amorphous films of rare earth-transition metal (RE-TM) alloys as exchange-biasing layers in magnetoresistive heads and spin-valve sensors, the amorphous Tb-Co films have most high practical potential. In the present work the influence of the temperature and the heat treatment parameters on the structure and magnetic properties was studied for exchange bias FeNi/Tb35Co65 bilayers annealed in vacuum or a nitrogen flow. A simple explanation of the dependence of the magnetic properties on the temperature and the heat treatment parameters connected with structural changes in each one of the layers was proposed.

  6. Quantum interference and correlations in single dopants and exchange-coupled dopants in silicon

    NASA Astrophysics Data System (ADS)

    Salfi, Joe

    2015-03-01

    Quantum electronics exploiting the highly coherent states of single dopants in silicon invariably requires interactions between states and interfaces, and inter-dopant coupling by exchange interactions. We have developed a low temperature STM scheme for spatially resolved single-electron transport in a device-like environment, providing the first wave-function measurements of single donors and exchange-coupled acceptors in silicon. For single donors, we directly observed valley quantum interference due to linear superpositions of the valleys, and found that valley degrees of freedom are highly robust to the symmetry-breaking perturbation of nearby (3 nm) surfaces. For exchange-coupled acceptors, we measured the singlet-triplet splitting, and from the spatial tunneling probability, extracted enough information about the 2-body wavefunction amplitudes to determine the entanglement entropy, a measure of the quantum inseparability (quantum correlations) generated by the interactions between indistinguishable particles. Entanglement entropy of the J=3/2 holes was found to increase with increasing dopant distance, as Coulomb interactions overcome tunneling, coherently localizing spin towards a Heitler-London singlet, mimicing S=1/2 particles. In the future these capabilities will be exploited to peer into the inner workings of few-dopant quantum devices and shed new light on multi-dopant correlated states, engineered atom-by-atom. Work done collaboratively with J. A. Mol, R. Rahman, G. Klimeck, M. Y. Simmons, L. C. L. Hollenberg, and S. Rogge. Primary financial support from the ARC.

  7. Advanced Reactors-Intermediate Heat Exchanger (IHX) Coupling: Theoretical Modeling and Experimental Validation

    SciTech Connect

    Utgikar, Vivek; Sun, Xiaodong; Christensen, Richard; Sabharwall, Piyush

    2016-12-29

    The overall goal of the research project was to model the behavior of the advanced reactorintermediate heat exchange system and to develop advanced control techniques for off-normal conditions. The specific objectives defined for the project were: 1. To develop the steady-state thermal hydraulic design of the intermediate heat exchanger (IHX); 2. To develop mathematical models to describe the advanced nuclear reactor-IHX-chemical process/power generation coupling during normal and off-normal operations, and to simulate models using multiphysics software; 3. To develop control strategies using genetic algorithm or neural network techniques and couple these techniques with the multiphysics software; 4. To validate the models experimentally The project objectives were accomplished by defining and executing four different tasks corresponding to these specific objectives. The first task involved selection of IHX candidates and developing steady state designs for those. The second task involved modeling of the transient and offnormal operation of the reactor-IHX system. The subsequent task dealt with the development of control strategies and involved algorithm development and simulation. The last task involved experimental validation of the thermal hydraulic performances of the two prototype heat exchangers designed and fabricated for the project at steady state and transient conditions to simulate the coupling of the reactor- IHX-process plant system. The experimental work utilized the two test facilities at The Ohio State University (OSU) including one existing High-Temperature Helium Test Facility (HTHF) and the newly developed high-temperature molten salt facility.

  8. Speciation of trace elements in human serum by micro anion exchange chromatography coupled with inductively coupled plasma mass spectrometry.

    PubMed

    Malavolta, Marco; Piacenza, Francesco; Basso, Andrea; Giacconi, Robertina; Costarelli, Laura; Pierpaoli, Sara; Mocchegiani, Eugenio

    2012-02-01

    Speciation analysis of essential trace elements in human serum provides important information on nutritional status and homeostatic mechanisms regulating transport processes, acute phase reactions, and protection against oxidative damage. Anion exchange high-performance liquid chromatography (HPLC) combined with inductively coupled plasma mass spectrometry (ICP-MS) has proved to be a useful tool in speciation. Here we describe a fast method that can be applied to carry out the speciation of Fe, Cu, Zn, and Se in as little as 1 microl [corrected] of serum. The method employs monolithic anion exchange micro columns installed on a tandem HPLC system coupled on-line with an ICP-MS detector. The chromatographic separation is similar to those reported previously but with considerable gain in terms of time and sample requirement. Reproducibility is acceptable for most species. Using our method, we were able to find species-specific differences between different commercially available trace element reference materials. Because the method chosen to collect blood might interfere with speciation, the proposed methodology was used to compare heparinized plasma, ethylenediaminetetraacetic acid (EDTA) plasma, and serum from adult healthy volunteers. As expected, EDTA strongly affects speciation analysis (especially for Fe and Zn), whereas changes due to the use of lithium-heparin (Li-He) as anticoagulant appear to be minimized.

  9. Shape anisotropy and exchange bias in magnetic flattened nanospindles with metallic/oxide core/shell structures.

    PubMed

    Mendoza-Reséndez, Raquel; Luna, Carlos

    2012-09-01

    A preliminary study of the magnetic phenomenology of Fe and Fe90Co10 nanospindles with axial ratio equal to 5 is presented. These nanospindles are constituted by single-domains single-crystals coated by oxide surface layer and assembled in chains into the nanospindle. The thermal dependence of the coercive field and the saturation magnetization in the temperature range from 4 K up to room temperature indicates that the coercive field is roughly proportional to the saturation magnetization (which follows the T3/2 Bloch law) at temperatures above the blocking temperature of the oxide. This suggests that the predominant source of magnetic anisotropy in this temperature range is the shape anisotropy. However, at temperatures below the oxide blocking temperature, the magnetic coupling between the spins of the oxide and the nanocrystals is produced at the interface. This exchange coupling enhances the effective anisotropy of the nanospindles and the coercive field increases more abruptly than the saturation of magnetization as temperature decreases.

  10. Seeking Ligand Bias: Assessing GPCR Coupling to Beta-Arrestins for Drug Discovery.

    PubMed

    Bohn, Laura M; McDonald, Patricia H

    2010-01-01

    G protein-coupled receptors (GPCR) are the major site of action for endogenous hormones and neurotransmitters. Early drug discovery efforts focused on determining whether ligands could engage G protein coupling and subsequently activate or inhibit cognate "second messengers." Gone are those simple days as we now realize that receptors can also couple βarrestins. As we delve into the complexity of ligand-directed signaling and receptosome scaffolds, we are faced with what may seem like endless possibilities triggered by receptor-ligand mediated events.

  11. Theory of proximity-induced exchange coupling in graphene on hBN/(Co, Ni)

    NASA Astrophysics Data System (ADS)

    Zollner, Klaus; Gmitra, Martin; Frank, Tobias; Fabian, Jaroslav

    2016-10-01

    Graphene, being essentially a surface, can borrow some properties of an insulating substrate (such as exchange or spin-orbit couplings) while still preserving a great degree of autonomy of its electronic structure. Such derived properties are commonly labeled as proximity. Here we perform systematic first-principles calculations of the proximity exchange coupling, induced by cobalt (Co) and nickel (Ni) in graphene, via a few (up to three) layers of hexagonal boron nitride (hBN). We find that the induced spin splitting of the graphene bands is of the order of 10 meV for a monolayer of hBN, decreasing in magnitude but alternating in sign by adding each new insulating layer. We find that the proximity exchange can be giant if there is a resonant d level of the transition metal close to the Dirac point. Our calculations suggest that this effect could be present in Co heterostructures, in which a d level strongly hybridizes with the valence-band orbitals of graphene. Since this hybridization is spin dependent, the proximity spin splitting is unusually large, about 10 meV even for two layers of hBN. An external electric field can change the offset of the graphene and transition-metal orbitals and can lead to a reversal of the sign of the exchange parameter. This we predict to happen for the case of two monolayers of hBN, enabling electrical control of proximity spin polarization (but also spin injection) in graphene/hBN/Co structures. Nickel-based heterostructures show weaker proximity effects than cobalt heterostructures. We introduce two phenomenological models to describe the first-principles data. The minimal model comprises the graphene (effective) pz orbitals and can be used to study transport in graphene with proximity exchange, while the pz-d model also includes hybridization with d orbitals, which is important to capture the giant proximity exchange. Crucial to both models is the pseudospin-dependent exchange coupling, needed to describe the different spin

  12. Interfacial exchange coupling and magnetization reversal in perpendicular [Co/Ni]N/TbCo composite structures.

    PubMed

    Tang, M H; Zhang, Zongzhi; Tian, S Y; Wang, J; Ma, B; Jin, Q Y

    2015-06-15

    Interfacial exchange coupling and magnetization reversal characteristics in the perpendicular heterostructures consisting of an amorphous ferrimagnetic (FI) TbxCo(100-x) alloy layer exchange-coupled with a ferromagnetic (FM) [Co/Ni]N multilayer have been investigated. As compared with pure TbxCo(100-x) alloy, the magnetization compensation composition of the heterostructures shift to a higher Tb content, implying Co/Ni also serves to compensate the Tb moment in TbCo layer. The net magnetization switching field Hc⊥ and interlayer interfacial coupling field Hex, are not only sensitive to the magnetization and thickness of the switched TbxCo(100-x) or [Co/Ni]N layer, but also to the perpendicular magnetic anisotropy strength of the pinning layer. By tuning the layer structure we achieve simultaneously both large Hc⊥ = 1.31 T and Hex = 2.19 T. These results, in addition to the fundamental interest, are important to understanding of the interfacial coupling interaction in the FM/FI heterostructures, which could offer the guiding of potential applications in heat-assisted magnetic recording or all-optical switching recording technique.

  13. Correlation between Barrier Width, Barrier Height, and DC Bias Voltage Dependences on the Magnetoresistance Ratio in Ir-Mn Exchange Biased Single and Double Tunnel Junctions

    NASA Astrophysics Data System (ADS)

    Saito, Yoshiaki; Amano, Minoru; Nakajima, Kentaro; Takahashi, Shigeki; Sagoi, Masayuki; Inomata, Koichiro

    2000-10-01

    Dual spin-valve-type double tunnel junctions (DTJs) of Ir-Mn/CoFe/AlOx/Co90Fe10/AlOx/CoFe/Ir-Mn and spin-valve-type single tunnel junctions (STJs) of Ir-Mn/CoFe/AlOx/CoFe/Ni-Fe were fabricated using an ultrahigh vacuum sputtering system, conventional photolithography and ion-beam milling. The STJs could be fabricated with various barrier heights by changing the oxidization conditions during deposition and changing the annealing temperature after deposition, while the AlOx layer thickness remained unchanged. There was a correlation between barrier width, height estimated using Simmons’ expressions, and dc bias voltage dependence on the MR ratio. The VB dependence on the tunneling magnetoresistance (TMR) ratio was mainly related to the barrier width, and the decrease in the TMR ratio with increasing bias voltage is well explained, taking into account the spin-independent two-step tunneling via defect states in the barrier, as a main mechanism, at room temperature. Under optimized oxidization and annealing conditions, the maximum TMR ratio at a low bias voltage, and the dc bias voltage value at which the TMR ratio decreases in value by half (V1/2) were 42.4% and 952 mV in DTJs, and 49.0% and 425 mV in STJs, respectively.

  14. Element Specific Observation of Ferromagnetic Interlayer Exchange Coupled Dual Vortex Core Nano Systems

    NASA Astrophysics Data System (ADS)

    Pulecio, Javier; Arena, Dario; Warnicke, Peter; Im, Mi-Young; Pollard, Shawn; Fischer, Peter; Zhu, Yimei

    2013-03-01

    We report on the magnetic evolution of magnetic vortices in nanoscale and multilayer disk structures. The tri-layer structure consists of Co and Permalloy (Py) layers, coupled across a thin (1nm) Cu spacer that provides strong coupling between the Co and Py layers. Element-resolved full-field XMCD microscopy is combined with ultra-high resolution Lorentz transmission electron microscopy, permitting measurement of both layer-resolved domain patterns and the vortex structure averaged across the tri-layer. We examine the evolution of the vortex structure while the nanostructure is cycled through the M-H hysteresis loop. In particular we will discuss the effects of strong interlayer exchanged coupling on a dual vortex core system, including analysis of the layer-resolved coercivity, and the evolution, deformation, annihilation, and nucleation of the vortices.

  15. Non-collinear magnetization configuration in interlayer exchange coupled magnetic thin films

    NASA Astrophysics Data System (ADS)

    Choi, J.; Min, B.-C.; Kim, J.-Y.; Park, B.-G.; Park, J. H.; Lee, Y. S.; Shin, K.-H.

    2011-09-01

    Element specific magnetic hysteresis loops of the interlayer exchange coupled CoFeB/Ru/[Co/Ni]4 structure were measured utilizing x-ray magnetic circular dichroism. It was found that the Co/Ni multilayer and the CoFeB layer have Ru thickness dependent oscillatory interlayer coupling. Due to its interlayer coupling with the perpendicularly magnetized Co/Ni multilayer, the CoFeB magnetization direction is slightly tilted out-of-plane from its in-plane magnetic easy axis. Quantitative measurements show that the tilting angle is small (<12°) and that a small in-plane magnetic field (˜50 Oe) applied to this structure will result in a completely in-plane CoFeB magnetization.

  16. Magnetic proximity effect and interlayer exchange coupling of ferromagnetic/topological insulator/ferromagnetic trilayer

    NASA Astrophysics Data System (ADS)

    Li, Mingda; Cui, Wenping; Yu, Jin; Dai, Zuyang; Wang, Zhe; Katmis, Ferhat; Guo, Wanlin; Moodera, Jagadeesh

    2015-01-01

    The magnetic proximity effect between the topological insulator (TI) and ferromagnetic insulator (FMI) is considered to have great potential in spintronics. However, a complete determination of interfacial magnetic structure has been highly challenging. We theoretically investigate the interlayer exchange coupling of two FMIs separated by a TI thin film, and show that the particular electronic states of the TI contributing to the proximity effect can be directly identified through the coupling behavior between two FMIs, together with a tunability of the coupling constant. Such an FMI/TI/FMI structure not only serves as a platform to clarify the magnetic structure of the FMI/TI interface, but also provides insights in designing the magnetic storage devices with ultrafast response.

  17. Coupling of lever arm swing and biased Brownian motion in actomyosin.

    PubMed

    Nie, Qing-Miao; Togashi, Akio; Sasaki, Takeshi N; Takano, Mitsunori; Sasai, Masaki; Terada, Tomoki P

    2014-04-01

    An important unresolved problem associated with actomyosin motors is the role of Brownian motion in the process of force generation. On the basis of structural observations of myosins and actins, the widely held lever-arm hypothesis has been proposed, in which proteins are assumed to show sequential structural changes among observed and hypothesized structures to exert mechanical force. An alternative hypothesis, the Brownian motion hypothesis, has been supported by single-molecule experiments and emphasizes more on the roles of fluctuating protein movement. In this study, we address the long-standing controversy between the lever-arm hypothesis and the Brownian motion hypothesis through in silico observations of an actomyosin system. We study a system composed of myosin II and actin filament by calculating free-energy landscapes of actin-myosin interactions using the molecular dynamics method and by simulating transitions among dynamically changing free-energy landscapes using the Monte Carlo method. The results obtained by this combined multi-scale calculation show that myosin with inorganic phosphate (Pi) and ADP weakly binds to actin and that after releasing Pi and ADP, myosin moves along the actin filament toward the strong-binding site by exhibiting the biased Brownian motion, a behavior consistent with the observed single-molecular behavior of myosin. Conformational flexibility of loops at the actin-interface of myosin and the N-terminus of actin subunit is necessary for the distinct bias in the Brownian motion. Both the 5.5-11 nm displacement due to the biased Brownian motion and the 3-5 nm displacement due to lever-arm swing contribute to the net displacement of myosin. The calculated results further suggest that the recovery stroke of the lever arm plays an important role in enhancing the displacement of myosin through multiple cycles of ATP hydrolysis, suggesting a unified movement mechanism for various members of the myosin family.

  18. Heat transfer from earth-coupled heat exchangers-Experimental and analytical results

    SciTech Connect

    Edwards, J.A.; Vitta, P.K.

    1985-01-01

    Experimental heat transfer results obtained with tubular heat transfer coils buried in soil are presented along with a finite difference simulation model that predicts the heat transfer to or from the buried pipes and the temperature distribution in the soil surrounding the buried pipes. The results were obtained with two different earth-coupled coils. Each coil was fabricated from 2.2 in. (5.6 cm) ID nominal 2 in. diameter cast iron pipe. The length of the heat exchanger for each earth-coupled system was 90 ft. (27.4 m). The earth-coupled coils were buried at a depth of 2.75 ft. (0.84 m) below the surface of the earth. The experimental data cover a time span of seven months and represent operation of the earth-coupled coils at various heat rates. Some of the prime quantities measured on a continuous basis are the earth's temperature at several locations in the vicinity of the buried coils, the far earth temperature, the solar insolation, moisture content of the soil, and the heat transferred to or from the buried coils to the surrounding soil. The finite difference model tracks the temperature distribution in the earth surrounding the coils on a continuous basis and predicts the earth's temperature at many locations adjacent to the earth-coupled coil with a maximum error of 4/sup 0/F (2.2/sup 0/C) during the seven month test. As parameters, the finite difference model included the moisture content of the soil, convection at the surface of the earth, emissivity of the soil, radiation exchange at the air-soil interface, as well as all of the pertinent parameters related to the flow of the heat transfer fluid through the buried pipes. The results presented, both experimental and simulated, have direct application in the design of earth-coupled water-source heat pump systems.

  19. Reentrant spin-glass behavior and bipolar exchange-bias effect in "Sn" substituted cobalt-orthotitanate

    NASA Astrophysics Data System (ADS)

    Nayak, S.; Joshi, D. C.; Krautz, M.; Waske, A.; Eckert, J.; Thota, S.

    2016-01-01

    We report the co-existence of longitudinal ferrimagnetic behavior with Néel temperature TN ˜ 46.1 K and reentrant transverse spin-glass state at 44.05 K in Tin (Sn) doped cobalt-orthotitanate (Co2TiO4). The ferrimagnetic ordering is resulting from different magnetic moments of Co2+ on the A-sites (3.87 μB) and B-sites (5.069 μB). The magnetic compensation temperature (TCOMP) shifts from 31.74 K to 27.1 K when 40 at. % of "Sn4+" substitutes "Ti4+" at B-sites where the bulk-magnetization of two-sublattices balance each other. For T > TN, the dc-magnetic susceptibility (χdc = M/Hdc) fits well with the Néel's expression for the two-sublattice model with antiferromagnetic molecular field constants NBB ˜ 15.44, NAB ˜ 32.01, and NAA ˜ 20.88. The frequency dependence of ac-magnetic susceptibility χac data follows the Vogel-Fulcher law, and the power-law of critical slowing-down with "zν" = 6.01 suggests the existence of spin-clusters (where "z" and "ν" being dynamic critical-exponent and correlation length of critical-exponent, respectively). This system exhibits unusual hysteresis loops with large bipolar exchange-bias effect (HEB ˜ 13.6 kOe at 7 K) after zero-field cooling process from an un-magnetized state, and a dramatic collapse of remanence (MR) and coercive field (HC) across TCOMP. The possible origins of such anomalous characteristics were discussed.

  20. A direct measurement of rotatable and frozen CoO spins in exchange bias system of CoO/Fe/Ag(001)

    SciTech Connect

    Wu, J.; Park, J. S.; Kim, W.; Arenholz, E.; Liberati, M.; Scholl, A.; Wu, Y. Z.; Hwang, C.; Qiu, Z. Q.

    2010-03-10

    The exchange bias of epitaxially grown CoO/Fe/Ag(001) was investigated using x-ray magnetic circular dichroism and x-ray magnetic linear dichroism (XMLD) techniques. A direct XMLD measurement on the CoO layer during the Fe magnetization reversal shows that the CoO compensated spins are rotatable at thinner thickness and frozen at larger thickness. By a quantitative determination of the rotatable and frozen CoO spins as a function of the CoO film thickness, we find the remarkable result that the exchange bias is well established before frozen spins are detectable in the CoO film. We further show that the rotatable and frozen CoO spins are uniformly distributed in the CoO film.

  1. Giant spontaneous exchange bias triggered by crossover of superspin glass in Sb-doped Ni50Mn38Ga12 Heusler alloys

    PubMed Central

    Tian, Fanghua; Cao, Kaiyan; Zhang, Yin; Zeng, Yuyang; Zhang, Rui; Chang, Tieyan; Zhou, Chao; Xu, Minwei; Song, Xiaoping; Yang, Sen

    2016-01-01

    A spontaneous exchange bias (SEB) discovered by Wang et al. [Phys. Rev. Lett. 106 (2011) 077203.] after zero-field cooling (ZFC) has attracted recent attention due to its interesting physics. In this letter, we report a giant SEB tuned by Sb-doping in Ni50Mn38Ga12-xSbx Heusler alloys. Such an SEB was switched on below the blocking temperature of approximately 50 K. The maximum exchange bias HE can arrive at 2930 Oe in a Ni50Mn38Ga10Sb2 sample after ZFC to 2 K. Further studies showed that this SEB was attributable to interaction of superspin glass (SSG) and antiferromagnetic matix, which was triggered by the crossover of SSG from canonical spin glass to a cluster spin glass. Our results not only explain the underlying physics of SEB, but also provide a way to tune and control the SEB performance. PMID:27478090

  2. Large exchange bias enhancement in (Pt(or Pd)/Co)/IrMn/Co trilayers with ultrathin IrMn thanks to interfacial Cu dusting

    SciTech Connect

    Vinai, G.; Moritz, J.; Bandiera, S.; Prejbeanu, I. L.; Dieny, B.

    2014-04-21

    The magnitude of exchange bias (H{sub ex}) at room temperature can be significantly enhanced in IrMn/Co and (Pt(or Pd)/Co)/IrMn/Co structures thanks to the insertion of an ultrathin Cu dusting layer at the IrMn/Co interface. The combination of trilayer structure and interfacial Cu dusting leads to a three-fold increase in H{sub ex} as compared to the conventional IrMn/Co bilayer structure, with an increased blocking temperature (T{sub B}) and a concave curvature of the temperature dependence H{sub ex}(T), ideal for improved Thermally Assisted-Magnetic Random Access Memory storage layer. This exchange bias enhancement is ascribed to a reduction of the spin frustration at the IrMn/Co interface thanks to interfacial Cu addition.

  3. Charge transfer-induced magnetic exchange bias and electron localization in (111)- and (001)-oriented LaNiO3/LaMnO3 superlattices

    NASA Astrophysics Data System (ADS)

    Wei, Haoming; Barzola-Quiquia, Jose Luis; Yang, Chang; Patzig, Christian; Höche, Thomas; Esquinazi, Pablo; Grundmann, Marius; Lorenz, Michael

    2017-03-01

    High-quality lattice-matched LaNiO3/LaMnO3 superlattices with monolayer terrace structure have been grown on both (111)- and (001)-oriented SrTiO3 substrates by pulsed laser deposition. In contrast to the previously reported experiments, a magnetic exchange bias is observed that reproducibly occurs in both (111)- and (001)-oriented superlattices with the thin single layers of 5 and 7 unit cells, respectively. The exchange bias is theoretically explained by charge transfer-induced magnetic moments at Ni atoms. Furthermore, magnetization data at low temperature suggest two magnetic phases in the superlattices, with Néel temperature around 10 K. Electrical transport measurements reveal a metal-insulator transition with strong localization of electrons in the superlattices with the thin LaNiO3 layers of 4 unit cells, in which the electrical transport is dominated by two-dimensional variable range hopping.

  4. Ledge-type Co/L10-FePt exchange-coupled composites

    NASA Astrophysics Data System (ADS)

    Speliotis, Th.; Giannopoulos, G.; Niarchos, D.; Li, W. F.; Hadjipanayis, G.; Barucca, G.; Agostinelli, E.; Laureti, S.; Peddis, D.; Testa, A. M.; Varvaro, G.

    2016-06-01

    FePt-based exchange-coupled composites consisting of a magnetically hard L10-FePt phase exchange-coupled with a soft ferromagnetic material are promising candidates for future ultra-high density (>1 Tbit/in2) perpendicular magnetic recording media, also being of interest for other applications including spin torque oscillators and micro-electro-mechanical systems, among others. In this paper, the effect of the thickness of a soft Co layer (3 < thCo < 20 nm) on the magnetic behavior of ledge-type fcc(100)-Co/L10(001)-FePt composites deposited on an MgO (100) substrate is systematically studied by combining morpho-structural analyses and angular magnetization measurements. Starting from a film consisting of isolated L10(001)-FePt islands, the ledge-type structure was obtained by depositing a Co layer that either covered the FePt islands or filled-up the inter-island region, gradually forming a continuous layer with increasing Co thickness. A perpendicular anisotropy was maintained up to thCo ˜ 9.5 nm and a significant reduction in the coercivity (about 50% for thCo ˜ 3 nm) with the increase in thCo was observed, indicating that, by coupling hard FePt and soft Co phases in a ledge-type configuration, the writability can be greatly improved. Recoil loops' measurements confirmed the exchange-coupled behavior, reinforcing a potential interest in these systems for future magnetic recording media.

  5. Study of angular dependence of exchange bias and misalignment in uniaxial and unidirectional anisotropy in NiFe(111)/FeMn(111)/CoFeB(amorphous) stack

    NASA Astrophysics Data System (ADS)

    Singh, Braj Bhusan; Chaudhary, Sujeet

    2015-07-01

    We report the investigation of the in-plane azimuthal angular dependence of the magnetization reversal in the ion beam sputtered exchanged biased NiFe(111)/FeMn(111)/CoFeB(amorphous) stack. Compared to the as-deposited case, the magnetic annealing resulted in 3 fold enhancement in exchange bias but decrease in coercivity. The observed cosine dependence of exchange biased CoFeB layer on the in-plane azimuthal angle of applied field is corroborated with Meiklejohn and Bean model. The training effect associated with the exchange bias showed unconventional increase in coercivity after first cycle of hysteresis loop, while the exchange bias decreases sharply, and for subsequent cycles the exchange bias follows the empirical relation based on the energy dissipation in the AF layer. The ferromagnetic resonance (FMR) measurements also exhibited the in-plane azimuthal angle dependence of the magnetic resonance field indicating that the uniaxial and unidirectional anisotropies are not collinear, although they lie in the same plane. However, no misalignment between the unidirectional anisotropy and the exchange bias direction is observed. The misalignment angle between the uniaxial and unidirectional anisotropy, as measured by FMR, is found to be 10° and 14° for CoFeB and NiFe, respectively. This misalignment is attributed to the interface roughness as revealed by x-ray reflectance measurements.

  6. Influence of time dependent longitudinal magnetic fields on the cooling process, exchange bias and magnetization reversal mechanism in FM core/AFM shell nanoparticles: a Monte Carlo study

    NASA Astrophysics Data System (ADS)

    Yüksel, Yusuf; Akıncı, Ümit

    2016-12-01

    Using Monte Carlo simulations, we have investigated the dynamic phase transition properties of magnetic nanoparticles with ferromagnetic core coated by an antiferromagnetic shell structure. Effects of field amplitude and frequency on the thermal dependence of magnetizations, magnetization reversal mechanisms during hysteresis cycles, as well as on the exchange bias and coercive fields have been examined, and the feasibility of applying dynamic magnetic fields on the particle have been discussed for technological and biomedical purposes.

  7. Chemical trend of exchange coupling in II-VI diluted magnetic semiconductors

    NASA Astrophysics Data System (ADS)

    Chanier, Thomas; Hayn, Roland; Virot, François

    2010-03-01

    We present an ab-initio study of the magnetic couplings in Mn- and Co-doped II-VI DMS ZnA (A=O,S,Se,Te). We show the necessity of taking into account the strong electron correlation on the transition metal (TM) 3d level to reproduce correctly the experimental chemical trend. Within the LSDA+U (local spin density approximation with a Hubbard-type correction to TM 3d electrons), we find (i) the d-d exchange couplings between nearest-neighbor magnetic ions to be antiferromagnetic (AFM) of the order of -1 meV and (ii) the sp-d exchange constants between magnetic ions and conduction (valence) band electrons (holes) Nα (Nβ) to be FM (AFM) of the order of 0.1 eV (-1 eV). In ZnMnO and ZnCoO, the strong p-d hybridisation leads to the presence of a bound state above the valence band, the failure of the commonly-used Larson perturbation theory formulae for p-d and d-d exchange interactions [1] and prevents high-Tc ferromagnetism [2]. [1] B. Larson et al. , PRB 37, 4137 (1988) [2] T. Chanier et al. , PRB 79, 205204 (2009)

  8. Modulated exchange bias in NiFe/CoO/α-Fe2O3 trilayers and NiFe/CoO bilayers

    NASA Astrophysics Data System (ADS)

    Li, X.; Lin, K.-W.; Yeh, W.-C.; Desautels, R. D.; van Lierop, J.; Pong, Philip W. T.

    2017-02-01

    While the exchange bias in ferromagnetic/antiferromagnetic (FM/AF) bilayer and FM1/AF/FM2 trilayer configurations has been widely investigated, the role of an AF2 layer in FM/AF1/AF2 trilayer configurations is still not well understood. In this work, the magnetic properties of NiFe/CoO, NiFe/α-Fe2O3 bilayers, and NiFe/CoO/α-Fe2O3 trilayer were studied comparatively. The microstructure and chemical composition were characterized. Temperature dependent magnetometry reveals increased irreversibility temperature in NiFe/CoO/α-Fe2O3 trilayer compared with NiFe/CoO bilayer. The magnetic hysteresis loops show that the exchange bias (Hex) and coercivity (Hc) depend strongly on the anisotropy of AF layer (CoO, α-Fe2O3 and CoO/α-Fe2O3). Our work shows that the AF1/AF2 interfacial interactions can be used effectively for tuning the exchange bias in FM/AF1/AF2 trilayers.

  9. Exchange bias effect in Au-Fe3O4 dumbbell nanoparticles induced by the charge transfer from gold

    SciTech Connect

    Feygenson, Mikhail; Bauer, John C; Gai, Zheng; Marques, Carlos; Aronson, Meigan C.; Teng, Xiaowei; Su, Dong; Stanic, Vesna; Urban, Volker S; Kevin, Beyer; Dai, Sheng

    2015-08-10

    We have studied the origin of the exchange bias effect in the Au-Fe3O4 dumbbell nanoparticles in two samples with different sizes of the Au seed nanoparticles (4.1 and 2.7 nm) and same size of Fe3O4 nanoparticles (9.8 nm). The magnetization, small-angle neutron scattering, synchrotron x-ray diffraction and scanning transmission electron microscope measurements determined the antiferromagnetic FeO wüstite phase within Fe3O4 nanoparticles, originating at the interface with the Au nanoparticles. The interface between antiferromagnetic FeO and ferrimagnetic Fe3O4 is giving rise to the exchange bias effect. The strength of the exchange bias fields depends on the interfacial area and lattice mismatch between both phases. We propose that the charge transfer from the Au nanoparticles is responsible for a partial reduction of the Fe3O4 into FeO phase at the interface with Au nanoparticles. The Au-O bonds are formed across the interface to accommodate an excess of oxygen released during the reduction of magnetite.

  10. Overcoming Bias toward Same-Sex Couples: A Case Study from inside an MFT Ethics Classroom

    ERIC Educational Resources Information Center

    Charles, Laurie L.; Thomas, Dina; Thornton, Matthew L.

    2005-01-01

    This article illustrates a teaching case in which a marriage and family therapy (MFT) trainee learned to develop cultural sensitivity toward same-sex couples despite religious beliefs that put her at risk of discriminating against that population. The case took place during a marriage and family therapy ethics course in the spring of 2003. From…

  11. Joint perpendicular anisotropy and strong interlayer exchange coupling in systems with thin vanadium spacers

    SciTech Connect

    Devolder, T. Le Goff, A.; Eimer, S.; Adam, J.-P.

    2015-04-28

    We study the influence of the insertion of a vanadium spacer layer between an FeCoB layer and a [Co/Ni] multilayer in an MgO substrate-based system mimicking the reference system of a perpendicular anisotropy magnetic tunnel junction. The anisotropy of the [Co/Ni] multilayer gradually improves with the vanadium thicknesses t, up to an optimized state for t = 8 Å, with little influence of the thermal annealing. The interlayer exchange coupling is ferromagnetic and very strong for t≤6 Å. It can be adjusted by thermal treatment at t = 8 Å from no coupling in the as-grown state to more than 2 mJ/m{sup 2} after 250 °C annealing. For this spacer thickness, the magnetic properties are consistent with the occurrence of a bcc (001) to an fcc (111) crystalline structure transition at the vanadium spacer. The remaining interlayer exchange coupling at t = 8 Å is still substantially higher than the one formerly obtained with a Tantalum spacer, which holds promise for further optimization of the reference layers of tunnel junctions meant for magnetic random access memories.

  12. Effect of exchange coupling on magnetic property in Sm-Co/α-Fe layered system

    NASA Astrophysics Data System (ADS)

    C, X. Sang; G, P. Zhao; W, X. Xia; X, L. Wan; F, J. Morvan; X, C. Zhang; L, H. Xie; J, Zhang; J, Du; A, R. Yan; P, Liu

    2016-03-01

    The hysteresis loops as well as the spin distributions of Sm-Co/α-Fe bilayers have been investigated by both three-dimensional (3D) and one-dimensional (1D) micromagnetic calculations, focusing on the effect of the interface exchange coupling under various soft layer thicknesses ts. The exchange coupling coefficient Ahs between the hard and soft layers varies from 1.8 × 10-6 erg/cm to 0.45 × 10-6 erg/cm, while the soft layer thickness increases from 2 nm to 10 nm. As the exchange coupling decreases, the squareness of the loop gradually deteriorates, both pinning and coercive fields rise up monotonically, and the nucleation field goes down. On the other hand, an increment of the soft layer thickness leads to a significant drop of the nucleation field, the deterioration of the hysteresis loop squareness, and an increase of the remanence. The simulated loops based on the 3D and 1D methods are consistent with each other and in good agreement with the measured loops for Sm-Co/α-Fe multilayers. Project supported by the National Natural Science Foundation of China (Grant Nos. 11074179 and 10747007), the National Basic Research Program of China (Grant No. 2014CB643702), the Zhejiang Provincial Natural Science Foundation of China (Grant No. LY14E010006), the Construction Plan for Scientific Research Innovation Teams of Universities in Sichuan Province, China (Grant No. 12TD008), the Scientific Research Foundation for the Returned Overseas Chinese Scholars of the Education Ministry, China, and the Program for Key Science and Technology Innovation Team of Zhejiang Province, China (Grant No. 2013TD08).

  13. Magnetoimpedance exchange coupling in different magnetic strength thin layers electrodeposited on Co-based magnetic ribbons

    NASA Astrophysics Data System (ADS)

    Jamilpanah, L.; Hajiali, M. R.; Morteza Mohseni, S.; Erfanifam, S.; Majid Mohseni, S.; Houshiar, M.; Ehsan Roozmeh, S.

    2017-04-01

    A systematic study of the effect of the deposition of cobalt (Co) and nickel (Ni) layers of various thicknesses on the magnetoimpedance (MI) response of a soft ferromagnetic amorphous ribbon (Co68.15Fe4.35Si12.5B15) is performed. The Co and Ni layers with thicknesses of 5, 10, 20 and 40 nm were grown on both sides of the amorphous ribbons by the electrodeposition technique. Microstrutures determined by x-ray diffraction (XRD) and field emission scanning electron microscopy (FESEM) showed higher crystallinity of Ni-deposited layers and the amorphous ferromagnetic nature of Co-deposited. The vibrating sample magnetometry (VSM) does not represent significant changes between samples because of the small contribution of such a thin layer deposited on thick ribbons, but the MI response dictates that the magnetic coupling effect occurred at the interface of such bilayers, which is sensitive to the skin effect. The MI response of Co-deposited ribbons showed MI hysteretic behavior depending on the deposited layer thicknesses with an optimum response for the thickness of 20 nm whereas no hysteretic behavior was measured for Ni-deposited ribbons. This behavior is explained according to the exchange coupling between magnetization of electrodeposited layers and magnetic ribbons with respect to different magnetic properties of Co and Ni at different thicknesses. Also the MI response of Ni- and Co-deposited ribbons enhanced significantly at low thicknesses relative to bare ribbon. By increasing the thickness of deposited layers, MI response decreases considerably. Differences in MI ratios of Co- and Ni-deposited ribbons are explained according to exchange length, crystallinity and roughness of deposited layers. Our results could address a simple way to achieve a higher MI response, and explains physical aspects of exchange coupling in MI response all towards a better performance of magnetic field sensors.

  14. Magnetic and microstructural properties of nanocrystalline exchange coupled PrFeB permanent magnets

    NASA Astrophysics Data System (ADS)

    Goll, D.; Seeger, M.; Kronmüller, H.

    1998-05-01

    Nanocrystalline exchange coupled Pr 2Fe 14B single-phase and Pr 2Fe 14B+α-Fe two-phase magnets with grain sizes of about 20 nm were produced using the melt-spinning procedure. In the stoichiometric Pr 2Fe 14B composition a significantly enhanced remanence of JR=0.95 T was achieved in comparison with conventional Pr-rich and therefore decoupled isotropic PrFeB magnets ( JR⩽0.5 JS=0.78 T). In the composite magnets with overstoichiometric Fe a further enhancement of the remanence is possible. Values up to JR=1.42 T and ( BH) max=180.7 kJ/m 3 were obtained. As there exists no spin reorientation in PrFeB magnets, our attention was not only directed to the magnetic behaviour at room temperature but also to the magnetic properties in the whole ferromagnetic temperature range. The microstructural parameters Neff, αK and αex describing the influence of the non-ideal microstructure and the effect of the exchange coupling on the coercive field were determined within the framework of the nucleation model from the temperature dependence of the coercive field. Furthermore, reversibility measurements of the demagnetization curves in the second quadrant give important information about the magnetization processes in exchange coupled magnets. Moreover, we have investigated the law of approach to ferromagnetic saturation of the single-phase magnet in comparison with the decoupled one. The magnetic results are correlated with TEM investigations of the real microstructure.

  15. Photoregenerative I-/I3- couple as a liquid cathode for proton exchange membrane fuel cell

    NASA Astrophysics Data System (ADS)

    Liu, Zhen; Wang, Yadong; Ai, Xinping; Tu, Wenmao; Pan, Mu

    2014-10-01

    A photoassisted oxygen reduction reaction (ORR) through I-/I3- redox couple was investigated for proton exchange membrane (PEM) fuel cell cathode reaction. The I-/I3--based liquid cathode was used to replace conventional oxygen cathode, and its discharge product I- was regenerated to I3- by photocatalytic oxidation with the participation of oxygen. This new and innovative approach may provide a strategy to eliminate the usage of challenging ORR electrocatalysts, resulting in an avenue for developing low-cost and high-efficiency PEM fuel cells.

  16. Calculation of the exchange coupling in Si:P donor systems

    NASA Astrophysics Data System (ADS)

    Starling, Timothy R.; Wellard, Cameron J.; Quiney, Harry M.; Haig, Wayne; Hollenberg, Lloyd C. L.

    2005-02-01

    We examine exchange coupling in the Kate quantum computer, which consists of isolated spin-1/2 31P donors in a pure Si lattice. A calculation is made using full configuration interaction, a reasonably large basis set, and a simple physical model. Basis set convergence was not obtained, and increasing the size of the matrix further appears to be computationally impractical. We therefore consider a Gaussian basis set approach. A brief description of the McMurchie-Davidson algorithm for the expansion of SGTF functions into Hermite polynomials is given. We also give the results of a single-donor computation in this basis.

  17. Interfacial exchange-coupling induced chiral symmetry breaking of spin-orbit effects

    NASA Astrophysics Data System (ADS)

    Perna, P.; Ajejas, F.; Maccariello, D.; Fernandez Cuñado, J. L.; Guerrero, R.; Niño, M. A.; Bollero, A.; Miranda, R.; Camarero, J.

    2015-12-01

    We demonstrate that the interfacial exchange coupling in ferromagnetic/antiferromagnetic (FM/AFM) systems induces symmetry breaking of the spin-orbit (SO) effects. This has been done by studying the field and angle dependencies of anisotropic magnetoresistance and vectorial-resolved magnetization hysteresis loops, measured simultaneously and reproduced with numerical simulations. We show how the induced unidirectional magnetic anisotropy at the FM/AFM interface results in strong asymmetric transport behaviors, which are chiral around the magnetization hard-axis direction. Similar asymmetric features are anticipated in other SO-driven phenomena.

  18. Influence of interface exchange coupling in perpendicular anisotropy [Pt/Co]50/TbFe bilayers

    SciTech Connect

    Mangin, S.; Hauet, T.; Fischer, P.; Kim, D.H.; Kortright, J.B.; Chesnel, K.; Arenholz, E.; Fullerton, Eric E.

    2007-10-10

    We present the magnetization evolution of perpendicular anisotropy TbFe and [Co/Pt]{sub 50} thin films either in direct contact resulting in antiferromagnetic interfacial coupling or separated by a thick Pt layer. Magnetometry and x-ray magnetic circular dichroism spectroscopy determine the spatially averaged magnetic properties. Resonant magnetic x-ray small-angle scattering and magnetic soft X-ray transmission microscopy probed the domain configurations and correlations in the reversal processes. While the Co/Pt multilayer reverses by domain propagation, the TbFe magnetization reversal is found to be dominated either by coherent magnetization reversal processes or by lateral domain formation depending on the interface exchange coupling. In the presence of lateral domains, dipolar field induced domain replication phenomena are observed.

  19. Sexual Satisfaction in Spanish Heterosexual Couples: Testing the Interpersonal Exchange Model of Sexual Satisfaction.

    PubMed

    Sánchez-Fuentes, María del Mar; Santos-Iglesias, Pablo

    2016-01-01

    The study of sexual satisfaction in Spain is scarce and has proceeded atheoretically. This study aimed at examining sexual satisfaction in 197 Spanish heterosexual couples based on the Interpersonal Exchange Model of Sexual Satisfaction. Men and women reported equal satisfaction. Men's sexual satisfaction was predicted by their own relationship satisfaction, balance of sexual rewards and costs, and comparison level of sexual rewards and costs. Women's sexual satisfaction was predicted by their own relationship satisfaction, balance of sexual rewards and costs, comparison level of sexual rewards and costs, equality of sexual costs, and their partner's balance of sexual rewards and costs. These results provide with a better understanding of the mechanisms that explain sexual satisfaction in Spanish couples. Implications for research and therapy are discussed.

  20. Very strong antiferromagnetic interlayer exchange coupling with iridium spacer layer for perpendicular magnetic tunnel junctions

    NASA Astrophysics Data System (ADS)

    Yakushiji, Kay; Sugihara, Atsushi; Fukushima, Akio; Kubota, Hitoshi; Yuasa, Shinji

    2017-02-01

    We systematically studied the interlayer exchange coupling (IEC) in a perpendicular synthetic antiferromagnetically coupled structure having an Ir spacer layer for perpendicular magnetic tunnel junctions (p-MTJs). We found a broader peak in IEC energy density (Jex) versus spacer thickness (tIr) compared with the case of using a Ru spacer. The highest IEC energy density was 2.6 erg/cm2 at a tIr of about 5 nm. The p-MTJ nanopillars had a high magnetoresistance ratio (131%) as well as a high spin-transfer torque (STT) switching efficiency (about 2). An Ir spacer can be used to make a stable reference layer for STT magnetoresistive random access memory.

  1. Reentrant spin-glass behavior and bipolar exchange-bias effect in “Sn” substituted cobalt-orthotitanate

    SciTech Connect

    Nayak, S.; Joshi, D. C.; Thota, S.; Krautz, M.; Waske, A.; Eckert, J.

    2016-01-28

    We report the co-existence of longitudinal ferrimagnetic behavior with Néel temperature T{sub N} ∼ 46.1 K and reentrant transverse spin-glass state at 44.05 K in Tin (Sn) doped cobalt-orthotitanate (Co{sub 2}TiO{sub 4}). The ferrimagnetic ordering is resulting from different magnetic moments of Co{sup 2+} on the A-sites (3.87 μ{sub B}) and B-sites (5.069 μ{sub B}). The magnetic compensation temperature (T{sub COMP}) shifts from 31.74 K to 27.1 K when 40 at. % of “Sn{sup 4+}” substitutes “Ti{sup 4+}” at B-sites where the bulk-magnetization of two-sublattices balance each other. For T > T{sub N}, the dc-magnetic susceptibility (χ{sub dc} = M/H{sub dc}) fits well with the Néel's expression for the two-sublattice model with antiferromagnetic molecular field constants N{sub BB} ∼ 15.44, N{sub AB} ∼ 32.01, and N{sub AA} ∼ 20.88. The frequency dependence of ac-magnetic susceptibility χ{sub ac} data follows the Vogel-Fulcher law, and the power-law of critical slowing-down with “zν” = 6.01 suggests the existence of spin-clusters (where “z” and “ν” being dynamic critical-exponent and correlation length of critical-exponent, respectively). This system exhibits unusual hysteresis loops with large bipolar exchange-bias effect (H{sub EB} ∼ 13.6 kOe at 7 K) after zero-field cooling process from an un-magnetized state, and a dramatic collapse of remanence (M{sub R}) and coercive field (H{sub C}) across T{sub COMP}. The possible origins of such anomalous characteristics were discussed.

  2. Exchange bias effect in epitaxial La{sub 0.67}Ca{sub 0.33}MnO{sub 3}/SrMnO{sub 3} thin film structure

    SciTech Connect

    Yu, T.; Ning, X. K.; Liu, W. Feng, J. N.; Zhao, X. G.; Zhang, Z. D.

    2014-08-28

    Bilayers consisting of La{sub 0.67}Ca{sub 0.33}MnO{sub 3} (LCMO) and SrMnO{sub 3} (SMO) have been prepared by pulsed-laser deposition on SrTiO{sub 3} (001) substrates. Unconventional magnetic coupling was found after cooling in a small field. The LCMO/SMO bilayers exhibit an exchange bias field of 209 Oe, which vanishes as the temperature rises above 90 K. A small magnetization has been found above the Curie temperature of the pure LCMO thin films. Spin-cluster-like antiferromagnetic (AFM)/ferromagnetic (FM) clusters have been deduced to exist at the interface due to the competing types of magnetic order at the interface. The magnetic relaxation is found to follow a double-exponential equation and a slow relaxation process is observed due to the strong exchange coupling between AFM/FM clusters and the LCMO layer. We speculate that the short-range high-temperature FM order of the Mn{sup 3+} and Mn{sup 4+} moments above the Curie temperature at the interface gives rise to the magnetic regions that pin the FM LCMO layer as the temperature decreases.

  3. Using Ensemble Short-Term Initialized Coupled NASA GEOS5 Climate Model Integrations to Study Convective Bias Growth

    NASA Technical Reports Server (NTRS)

    Cohen, Charlie; Robertson, Franklin; Molod, Andrea

    2014-01-01

    The representation of convective processes, particularly deep convection in the tropics, remains a persistent problem in climate models. In fact structural biases in the distribution of tropical rainfall in the CMIP5 models is hardly different than that of the CMIP3 versions. Given that regional climate change at higher latitudes is sensitive to the configuration of tropical forcing, this persistent bias is a major issue for the credibility of climate change projections. In this study we use model output from integrations of the NASA Global Earth Observing System Five (GEOS5) climate modeling system to study the evolution of biases in the location and intensity of convective processes. We take advantage of a series of hindcast experiments done in support of the US North American Multi-Model Ensemble (NMME) initiative. For these experiments a nine-month forecast using a coupled model configuration is made approximately every five days over the past 30 years. Each forecast is started with an updated analysis of the ocean, atmosphere and land states. For a given calendar month we have approximately 180 forecasts with daily means of various quantities. These forecasts can be averaged to essentially remove "weather scales" and highlight systematic errors as they evolve. Our primary question is to ask how the spatial structure of daily mean precipitation over the tropics evolves from the initial state and what physical processes are involved. Errors in parameterized convection, various water and energy fluxes and the divergent circulation are found to set up on fast time scales (order five days) compared to errors in the ocean, although SST changes can be non-negligible over that time. For the month of June the difference between forecast day five versus day zero precipitation looks quite similar to the difference between the June precipitation climatology and that from the Global Precipitation Climatology Project (GPCP). We focus much of our analysis on the influence of

  4. Positive to negative zero-field cooled exchange bias in La0.5Sr0.5Mn0.8Co0.2O3 ceramics

    PubMed Central

    Shang, Cui; Guo, Shaopu; Wang, Ruilong; Sun, Zhigang; Xiao, Haibo; Xu, Lingfang; Yang, Changping; Xia, Zhengcai

    2016-01-01

    Exchange bias effect obtained after zero-field cooling from unmagnetized state usually exhibits a shift of hysteresis loop negative to the direction of the initial magnetic field, known as negative zero-field cooled exchange bias. Here, positive zero-field cooled exchange bias is reported in La0.5Sr0.5Mn0.8Co0.2O3 ceramics. In addition, a transition from positive to negative exchange bias has been observed with increasing initial magnetization field and measurement temperature. Based on a simple spin bidomain model with variable interface, two type of interfacial spin configuration formed during the initial magnetization process are proposed to interpret the observed phenomenon. PMID:27168382

  5. Coupling of phytoplankton uptake and air-water exchange of persistent organic pollutants

    SciTech Connect

    Dachs, J.; Eisenreich, S.J.; Baker, J.E.; Ko, F.C.; Jeremiason, J.D.

    1999-10-15

    A dynamic model that couples air-water exchange and phytoplankton uptake of persistent organic pollutants has been developed and then applied to PCB data from a small experimental lake. A sensitivity analysis of the model, taking into account the influence of physical environmental conditions such as temperature, wind speed, and mixing depth as well as plankton-related parameters such as biomass and growth rate was carried out for a number of PCBs with different physical-chemical properties. The results indicate that air-water exchange dynamics are influenced not only by physical parameters but also by phytoplankton biomass and growth rate. New phytoplankton production results in substantially longer times to reach equilibrium. Phytoplankton uptake-induced depletion of the dissolved phase concentration maintains air and water phases out of equilibrium. Furthermore, PCBs in phytoplankton also take longer times to reach equilibrium with the dissolved water phase when the latter is supported by diffusive air-water exchange. However, both model analysis and model application to the Experimental Lakes Area of northwestern Ontario (Canada) suggest that the gas phase supports the concentrations of persistent organic pollutants, such as PCBs, in atmospherically driven aquatic environments.

  6. Overcoming bias toward same-sex couples: a case study from inside an MFT ethics classroom.

    PubMed

    Charlés, Laurie L; Thomas, Dina; Thornton, Matthew L

    2005-07-01

    This article illustrates a teaching case in which a marriage and family therapy (MFT) trainee learned to develop cultural sensitivity toward same-sex couples despite religious beliefs that put her at risk of discriminating against that population. The case took place during a marriage and family therapy ethics course in the spring of 2003. From two first-person perspectives, the authors illustrate the processes that facilitated the student's change, addressing the class activities, discussions, and pivotal moments of teaching and learning that promoted the student's cultural competency and helped her to resolve this personal and ethical dilemma. A set of classroom techniques (creating a safe environment, using a stance of curiosity, finding alternative learning formats, extrapolating ideas from multiple sources, and capitalizing on students' experiences outside of class) used in the case are detailed throughout the article.

  7. Simulation of land-atmosphere gaseous exchange using a coupled land surface-biogeochemical model

    NASA Astrophysics Data System (ADS)

    Gu, C.; Riley, W. J.; Perez, T. J.; Pan, L.

    2009-12-01

    It is important to develop and evaluate biogeochemical models that on the one hand represent vegetation and soil dynamics and on the other hand provide energy and water fluxes in a temporal resolution suitable for biogeochemical processes. In this study, we present a consistent coupling between a common land surface model (CLM3.0) and a recently developed biogeochemical model (TOUGHREACT-N). The model TOUGHREACT-N (TR-N) is one of the few process-based models that simulate green house gases fluxes by using an implicit scheme to solve the diffusion equations governing soil heat and water fluxes. By coupling with CLM3.0, we have significantly improved TR-N by including realistic representations of surface water, energy, and momentum exchanges, through the use of improved formulations for soil evaporation, plant transpiration, vegetation growth, and plant nitrogen uptake embedded in CLM3.0. The coupled CLMTR-N model is a first step for a full coupling of land surface and biogeochemical processes. The model is evaluated with measurements of soil temperature, soil water content, and N2O and N2 gaseous emission data from fallow, corn, and forest sites in Venezuela. The results demonstrate that the CLMTR-N model simulates realistic diurnal variation of soil temperature, soil water content, and N gaseous fluxes. For example, mean differences between predicted and observed midday near-surface soil water content were 8, 11, and 4 % in July, August, and September. The sensitivity of the biogeochemical processes and resulting N emissions to variation in environmental drivers is high, which indicates the need to calculate biogeochemical processes in, at least, two hourly time steps using dynamically updated (rather than daily averaged) soil environmental conditions. The development in CLMTR-N of such a complex representation of processes will allow us to characterize relevant processes and simplifications appropriate for regional to global-scale coupled biogeochemical and

  8. EXCHANGE

    SciTech Connect

    Boltz, J.C.

    1992-09-01

    EXCHANGE is published monthly by the Idaho National Engineering Laboratory (INEL), a multidisciplinary facility operated for the US Department of Energy (DOE). The purpose of EXCHANGE is to inform computer users about about recent changes and innovations in both the mainframe and personal computer environments and how these changes can affect work being performed at DOE facilities.

  9. Mechanisms of perpendicular magnetic anisotropy and interlayer exchange coupling in MgO-based tunnel junctions

    NASA Astrophysics Data System (ADS)

    Chshiev, Mairbek

    2013-03-01

    Magnetic tunnel junctions (MTJ) comprising ferromagnetic (FM) electrodes with MgO spacer have been an object of high interest for spintronics due to Bloch states symmetry spin filtering leading to high tunnel magnetoresistance (TMR) and due to observation of antiferromagnetic (AF) coupling between FM electrodes across MgO spacer. This attention have been strongly reinforced in a view of a huge interest in MTJs with perpendicularly magnetized magnetic layers (p-MTJs) originating from large values of interfacial perpendicular magnetic anisotropy (PMA) first observed at Pt|Co|MOx interfaces (M =Ta, Mg, Al, Ru...) and later reported for Co|MgO and CoFeB|MgO p-MTJs. In this talk we will elucidate mechanisms responsible for the PMA from first-principles and report the effect of interfacial oxidation conditions on the PMA in Fe(Co)|MgO p-MTJs. In particular, we found very large PMA values for MTJs with pure interfaces in agreement with recent experiments. Furthermore, it will be demonstrated that oxidation conditions strongly affect the PMA which strongly correlates with TMR in agreement with experiments. Finally, we will discuss the origin of AF coupling in Co|MgO p-MTJs which oscillates as a function of FM layer thickness in agreement with theories of interlayer exchange coupling in MTJ. We acknowledge support of Grenoble Nanosciences Foundation.

  10. Negative magnetization and the tunable exchange bias field in LaCr0.8Mn0.2O3

    NASA Astrophysics Data System (ADS)

    Bora, Tribedi; Ravi, S.

    2014-05-01

    Manganese substituted Lanthanum chromite LaCr0.8Mn0.2O3 exhibits negative magnetization with decrease in temperature under the field cooled (FC) condition for the applied field H≤2000 Oe. The maximum magnetic compensation temperature, (Tcomp) was 147 K. A reentrant positive magnetization was observed at T≤50 K due to low temperature transition. The negative magnetization is explained by considering the paramagnetic moment of Mn ions under the influence of negative internal field. Measurement of magnetic hysteresis loops under FC condition shows the presence of exchange bias field at T

  11. Thermally driven asymmetric responses of grains versus spin-glass related distributions of blocking temperature in exchange biased Co/IrMn bilayers

    SciTech Connect

    Baltz, V.

    2013-02-11

    Controlling ferromagnetic/antiferromagnetic blocking temperatures in exchange biased based devices appears crucial for applications. The blocking temperature is ascribed to the ability of both antiferromagnetic grains and interfacial spin-glass-like phases to withstand ferromagnetic magnetization reversal. To better understand the respective contributions of grains versus spin-glass, blocking temperature distributions were measured after various thermal treatments for cobalt/iridium-manganese bilayers. The high-temperature contribution linked to antiferromagnetic grains shifts towards lower temperatures above a threshold thermal annealing. In contrast, the occurrence and evolution of training effects for the low-temperature contribution only agree with its inferred interfacial spin-glass-like origin.

  12. In-plane magnetic anisotropies in Ni/FeMn and Ni90Fe10/FeMn exchange biased bilayers

    NASA Astrophysics Data System (ADS)

    Pires, M. J. M.; de Oliveira, R. B.; Martins, M. D.; Ardisson, J. D.; Macedo, W. A. A.

    2007-12-01

    The in-plane magnetic anisotropy in Ni/FeMn and Ni90Fe10/FeMn exchange-biased bilayers prepared by co-evaporation under molecular beam epitaxy conditions is investigated employing longitudinal magneto-optical Kerr effect (MOKE) and ferromagnetic resonance (FMR). The exchange anisotropy was induced by a magnetic field cooling immediately after the deposition of the bilayers. Besides the induced term, the presence of an additional uniaxial anisotropy in the FM layers was detected both by MOKE and FMR, and the characteristic directions of these two anisotropy terms are not coincident. The interplay between the anisotropy contributions is discussed considering micromagnetic simulations and the in-plane resonance condition for different magnetic field orientation. X-ray diffraction, X-ray photoelectron spectroscopy, and Mössbauer spectroscopy were used to complement the characterization of the samples.

  13. NMR study of the exchange coupling in the trinuclear cluster of the multicopper oxidase Fet3p

    PubMed Central

    Zaballa, María-Eugenia; Ziegler, Lynn; Kosman, Daniel J.; Vila, Alejandro J.

    2010-01-01

    Fet3p from Saccharomyces cerevisiae is a multicopper oxidase (MCO) which oxidizes Fe2+ to Fe3+. The electronic structure of the different copper centers in this family of enzymes has been extensively studied and discussed for years with a particular focus on the exchange coupling regime in the trinuclear cluster (TNC). Using NMR spectroscopy we have quantified the exchange coupling constant in the type 3 center in a fully metallated oxidase; this value in Fet3p is significantly higher than that reported for proteins containing isolated type 3 centers as in tyrosinase. We also provide evidence of exchange coupling between the type 2 and the type 3 Cu2+ ions, which supports the crystallographic evidence of dioxygen binding to the TNC. This work provides the foundation for the application of NMR to these complex systems. PMID:20698686

  14. Origin of anomalously high exchange field in antiferromagnetically coupled magnetic structures: Spin reorientation versus interface anisotropy

    NASA Astrophysics Data System (ADS)

    Ranjbar, M.; Piramanayagam, S. N.; Wong, S. K.; Sbiaa, R.; Song, W.; Tan, H. K.; Gonzaga, L.; Chong, T. C.

    2011-11-01

    Magnetization reorientation from in-plane to perpendicular direction, observed in Co thin film coupled antiferromagnetically to high perpendicular magnetic anisotropy (Co/Pd) multilayers, is studied systematically for Co thickness ranging from 0 to 2.4 nm. The sample with 0.75 nm thick Co showed an exchange coupling field (Hex) exceeding 15 kOe at room temperature and 17.2 kOe at 5 K. With an increase of Co thickness, Hex decreased as expected and beyond certain thickness, magnetization reorientation was not observed. Indeed, three regions were observed in the thickness dependence of magnetization of the thin layer; one in which the thin layer (in the thickness range up to 0.8 nm) had a perpendicular magnetic anisotropy due to interface effects and antiferromagnetic coupling, another in which the thin layer (0.9-1.2 nm) magnetization had no interface or crystallographic anisotropy but was reoriented in the perpendicular direction due to antiferromagnetic coupling, and the third (above 1.2 nm) in which the magnetization was in-plane. In addition, Hall effect measurements were carried out to observe the anomalous and planar Hall voltages and to quantify the perpendicular and in-plane components of magnetization. The sample with thicker Co layer (2.4 nm) showed an in-plane component of magnetization, whereas the sample with 0.75 nm Co showed no in-plane component. The high value of Hex observed in 0.75 nm Co samples can have important implications in spintronics and bit patterned media.

  15. New avenues to efficient chemical synthesis of exchange coupled hard/soft nanocomposite magnet.

    PubMed

    Lee, Don Keun; Cha, Hyun Gil; Kim, Young Hwan; Kim, Chang Woo; Ji, Eun Sun; Kang, Young Soo

    2009-07-01

    Nd-Fe-B ultrafine amorphous alloy particles were prepared by reaction of metal ions with borohydride in aqueous solution. Monodispersed Fe nanoparticles were synthesized under an argon atmosphere via thermal decomposition of Fe(2+)-oleate2. Exchange coupled Nd2Fe14B/Fe nanocomposite magnets have been prepared by self-assembly using surfactant. The crystal structure of the synthesized nanoparticles was identified by using X-ray powder diffraction (XRD). The size and shape of nanoparticles were obtained by transmission electron microscope (TEM). Thermogravimetry using a microbalance with magnetic field gradient positioned below the sample was used for the measurement of a thermomagnetic analysis (TMA) curve showing the downward magnetic force versus temperature.

  16. Resonant magnetization switching conditions of an exchange-coupled bilayer under spin wave excitation

    NASA Astrophysics Data System (ADS)

    Zhou, W.; Yamaji, T.; Seki, T.; Imamura, H.; Takanashi, K.

    2017-02-01

    We systematically investigated spin wave-assisted magnetization switching (SWAS) of a L10-FePt/Ni81Fe19 (permalloy; Py) exchange-coupled bilayer by using a pulse-like rf field (hrf) and mapped the switching events in the magnetic field (H)-hrf frequency (f) plane in order to reveal the switching conditions. Switching occurred only in a limited region followed by the dispersion relationship of the perpendicular standing spin wave modes in the Py. The results indicate that SWAS is a resonant magnetization switching process, which is different from the conventional microwave assisted switching and has the potential to be used for selective switching in multilevel recording media.

  17. Asymmetric kinetics of magnetization reversal of thin exchange-coupled ferromagnetic films

    NASA Astrophysics Data System (ADS)

    Uspenskaya, L. S.

    2010-11-01

    This paper reports on the results of the investigation of the kinetics of magnetization reversal in FeNi-FeMn ferromagnet-antiferromagnet thin hybrid films grown by magnetron sputtering on silicon substrates in the presence of in-plane magnetic field, which provided unidirectional in-plane magnetic anisotropy in the ferromagnetic layer and a single-domain structure of the ferromagnet in the absence of an external magnetic field. The constructed hysteresis loops and magnetization loci have made it possible to reveal the specific features of the magnetization reversal process of an exchange-coupled ferromagnet, to establish new types of asymmetry, and to obtain new proofs for the existence of a spin spring at the ferromagnet-antiferromagnet interface. The visualization of the magnetization reversal process has allowed one to establish a one-to-one correspondence between the macrocharacteristics of the material and the real processes occurring in ferromagnet-antiferromagnet hybrid structures.

  18. Characterization of L10-FePt/Fe based exchange coupled composite bit pattern media

    NASA Astrophysics Data System (ADS)

    Wang, Hao; Li, Weimin; Rahman, M. Tofizur; Zhao, Haibao; Ding, Jun; Chen, Yunjie; Wang, Jian-Ping

    2012-04-01

    L10-FePt exchange coupled composite (ECC) bit patterned media has been considered as a potential candidate to achieve high thermal stability and writability for future high density magnetic recording. In this paper, FePt based ECC bit patterned structures with 31 nm bit size and 37 nm pitch size were fabricated using di-block copolymer lithography on 3 inch wafer. Remanant states were tracked using magnetic force microscopy (MFM). DC demagnetization (DCD) curves were plotted by counting the reversed bits in the MFM images. Magnetic domains in which the magnetizations of the neighboring bits were aligned to the same direction were observed in the MFM patterns. Thermal decay measurement was performed for the samples to obtain the thermal stability and gain factor. The thermal barrier was found around 210 kBT with a gain factor up to 1.57 for the bit patterned structure FePt(4 nm)/Fe(4 nm).

  19. Exchange-coupled nanoscale SmCo/NdFeB hybrid magnets

    SciTech Connect

    Wang, Dapeng; Poudyal, Narayan; Rong, Chuanbing; Zhang, Ying; Kramer, Matthew J.; Liu, J. Ping

    2012-05-11

    Nanoscalehybridmagnets containing SmCo5 and Nd2Fe14B hard magnetic phases have been produced via a novel “in-one-pot” processing route. The grain size of the processed bulk composite materials is controlled below 20 nm. The refinement of the nanoscale morphology leads to effective inter-phase exchange coupling that results in single-phase like magnetic properties. Energy product of 14 MGOe was obtained in the isotropic nanocomposite magnets at room temperature. At elevated temperatures, the hybridmagnets have greatly improved thermal stability compared to the Nd2Fe14B single-phase counterpart and have substantially increased magnetization and energy products compared to the single-phase SmCo5 counterpart.

  20. Exchange coupling and noncollinear magnetic states in Ni/Fen/Ni(1 0 0) multilayers

    NASA Astrophysics Data System (ADS)

    Malonda-Boungou, B. R.; Stojić, N.; Binggeli, N.; M'Passi-Mabiala, B.

    2015-01-01

    The Ni interlayer exchange coupling (IEC) and the atomic-scale magnetic configurations in fcc Ni /Fen /Ni (1 0 0) multilayers, with ultrathin Fe spacers, are investigated using first-principles density-functional theory including the noncollinear spin formalism. The trends with changing Fe thickness (n) between 3 and 5 monolayers (MLs) are examined. For n = 3 and 4 MLs, we find the ground state to display antiferromagnetic IEC between the Ni films, while for the 5-ML Fe spacer, the IEC changes into ferromagnetic. Upon reversal of the magnetization alignment, from antiparallel to parallel, between the Ni films with 3- and 4-ML thick Fe spacer, we find noncollinear magnetic configurations in the Fe layer as the lowest-energy states, which are related to the magnetic instability towards noncollinear solutions in bulk γ -Fe.

  1. Indirect exchange interaction in Rashba-spin-orbit-coupled graphene nanoflakes

    NASA Astrophysics Data System (ADS)

    Nikoofard, Hossein; Semiromi, Ebrahim Heidari

    2016-10-01

    We study the indirect exchange interaction, named Ruderman-Kittel-Kasuya-Yosida (RKKY) coupling, between localized magnetic impurities in graphene nanoflakes with zig-zag edges in the presence of the Rashba spin-orbit interaction (RSOI). We calculate the isotropic and anisotropic RKKY amplitudes by utilizing the tight-binding (TB) model. The RSOI, as a gate tunable variable, is responsible for changes of the RKKY amplitude. We conclude that there is not any switching of the magnetic order (from ferro- to antiferro-magnetic and vice versa) in such a system through the RSOI. The dependence of the RKKY amplitude on the positions of the magnetic impurities and the size of the system is studied. The symmetry breaking, which can occur due to the Rashba interaction, leads to spatial anisotropy in the RKKY amplitude and manifests as collinear and noncollinear terms. Our results show the possibility of control and manipulation of spin correlations in carbon spin-based nanodevices.

  2. Controlled Under Pressure: Understanding Spin Orbit Coupling and Exchange Anisotropy in Organic Magnets

    NASA Astrophysics Data System (ADS)

    Hill, Stephen

    2015-03-01

    The application of high pressure in the study of molecule-based materials has gained considerable interest, in part due to their high compressibilities, but also because the relevant electronic/magnetic degrees of freedom are often very sensitive to pressure. For example, small changes in the coordination environment around a magnetic transition metal ion can produce quite dramatic variations in both the on-site spin-orbit anisotropy as well as the exchange interactions between such ions when assembled into clusters or 3D networks. This has spurred the development of sophisticated spectroscopic tools that can be integrated with high-pressure instrumentation. The study of magnetic structure/property relations requires not only precise crystallographic data, but also detailed spectroscopic information concerning the unpaired electrons that give rise to the magnetic properties. This invited talk will begin with a brief description of the development and application of methods enabling EPR studies of oriented single-crystal samples subjected to hydrostatic pressures of up to 3.5 GPa. After an introductory example, the remainder of the talk will focus on a family of heavy atom organic radical ferromagnets (containing S and Se heteroatoms) that hold records for both the highest transition temperature and coercivity (for organic magnets). The latter is the result of an unexpectedly high magnetic anisotropy, attributable to spin-orbit-mediated exchange (hopping) processes., Ferromagnetic resonance (FMR) measurements reveal a continuous increase in the magnetic anisotropy with increasing pressure in the all Se compound, in excellent agreement with ab initio calculations based on the known pressure-dependence of its structure. The large value of anisotropic exchange terms in this heavy atom organic ferromagnet emphasizes the important role of spin-orbit coupling in a wide range of organics where this effect is usually considered to be small. This work was supported by the

  3. Ionosphere-exosphere coupling through charge exchange and momentum transfer in hydrogen-proton collisions

    NASA Technical Reports Server (NTRS)

    Hodges, R. R., Jr.; Breig, E. L.

    1991-01-01

    The implications of a traditional assumption of exospheric physics, that collisions of hydrogen atoms and protons preferentially result in charge exchange with negligible momentum transfer are examined. Initially adopted as a necessary convenience to accommodate limited computer resources in exosphere model calculations, this approximation results in a direct transformation of the proton velocity distribution into a hot component of neutral hydrogen. With expanding computational facilities, the need for the approximation has passed. As the first step toward its replacement with a realistic, quantum mechanical model of the H - H(+) collision process, differential and cumulative cross sections were calculated for quantum elastic scattering of indistinguishable nuclei for a fine grid of encounter energies and scattering angles. These data are used to study the nature of ionosphere-exosphere coupling through H - H(+) collisions, and to demonstrate that the distribution of velocities of scattered H produced in the traditional exospheric charge exchange approximation, as well as that arising from an alternative, fluid dynamic approach, leads to unacceptable abundances of coronal atoms in long-term, highly elliptic trajectories.

  4. Coupling groundwater modeling and biological indicators for identifying river/aquifer exchanges.

    PubMed

    Graillot, Didier; Paran, Frédéric; Bornette, Gudrun; Marmonier, Pierre; Piscart, Christophe; Cadilhac, Laurent

    2014-01-01

    Future climate changes and the resulting modifications in anthropogenic activities will alter the interactions between rivers and groundwater. The quantification of these hydraulic interactions is absolutely necessary for achieving sustainable water use and requires accurate analytical methodologies. This report proposes an interdisciplinary approach to the quantitative and qualitative characterization of hydraulic interactions between rivers and shallow aquifers, wherein it outlines the advantages of coupling groundwater modeling with biological markers. As a first step, we built independent diagnostic maps of hydrological exchanges at the sector scale on the basis of hydrogeological modeling and biological indicators. In a second step, these maps were compared to provide a quantitative and qualitative understanding of exchanges between groundwater and surface water. This comparison significantly improved the calibration of groundwater models through a better assessment of boundary zones. Our approach enabled us to identify the conditions under which it could be possible to use biological indicators instead of a large set of piezometric measures. The integration of such combined tools in a future decision support system will assist governmental authorities in proposing appropriate long-term water policies for the preservation of groundwater resources, such as for supplying potable water and/or mitigating pollution risks.

  5. Magnetization reversal mechanism in perpendicular exchange-coupled Fe/L10-FePt bilayers

    NASA Astrophysics Data System (ADS)

    Varvaro, G.; Albertini, F.; Agostinelli, E.; Casoli, F.; Fiorani, D.; Laureti, S.; Lupo, P.; Ranzieri, P.; Astinchap, B.; Testa, A. M.

    2012-07-01

    The magnetization reversal mechanism in perpendicular soft/hard Fe/FePt exchange-coupled bilayers has been investigated as a function of the soft layer thickness (tFe = 2, 3.5, 5 nm) combining magnetization loops at variable angle, magnetic domain analysis by magnetic force microscopy and numerical micromagnetic simulations. The analytical model proposed in the literature can properly account for some features of the reversal mechanism, such as positive nucleation fields and the reduction of the perpendicular coercive field and remanence by increasing the soft layer thickness, but cannot satisfactorily describe the magnetization process of real systems. We showed that for a thickness of the soft layer exceeding the FePt exchange length (˜2 nm), numerical micromagnetic calculations are needed to reproduce experimental observations. Indeed, just above the coercive field, the magnetization reversal does not proceed in single step switching, as predicted by the analytical model, but according to a more complex process: evolution of nucleated magnetic domains whose magnetization is approximately along the surface normal in the hard layer and slightly out of the film plane in the soft layer, followed by rotation of Fe moments along the field direction.

  6. Influence of the Fe-Co ratio on the exchange coupling in TbFeCo/[Co/Pt] heterostructures

    NASA Astrophysics Data System (ADS)

    Hebler, B.; Böttger, S.; Nissen, D.; Abrudan, R.; Radu, F.; Albrecht, M.

    2016-05-01

    We report on a systematic study of exchange coupled heterostructures, consisting of ferromagnetic [Co/Pt] multilayers and ferrimagnetic (FI) T bxF e100 -x -yC oy (20 nm) alloy thin films with varying composition exhibiting strong perpendicular magnetic anisotropy. In particular, the impact of the Tb content and ratio of Fe and Co of the amorphous FI alloy on the exchange interaction at the interface was investigated. In this paper, the magnetic properties of single ternary TbFeCo thin films were analyzed in a broad composition range and compared to coupled TbFeCo/[Co/Pt] heterostructures. While a rather linear dependence of the exchange coupling strength was observed for Fe/Co-dominated ferrimagnets with increasing amount of Co, a nonlinear behavior is observed for Tb-dominated alloys. The latter behavior is governed by the variation of the exchange stiffness of the ferrimagnet. Additionally, by using element-specific x-ray magnetic circular dichroism measurements, the thickness of the interface domain wall (IDW) in the ferrimagnet, which is formed during the reversal of the ferromagnet, can be extracted. An inverse correlation between the IDW thickness and the exchange coupling strength at the interface was deduced.

  7. Magnetoresistance and planar Hall effects in submicron exchange-coupled NiO/Fe19Ni81 wires

    NASA Astrophysics Data System (ADS)

    Nemoto, A.; Otani, Y.; Kim, S. G.; Fukamichi, K.; Kitakami, O.; Shimada, Y.

    1999-06-01

    Magnetization reversal processes of submicron NiO/Fe19Ni81 exchange-coupled Hall cross with a variable width in the range from 0.2 to 0.4 μm were studied by the magnetoresistivity and the planar Hall effect measurements. The magnetization reversal was found to take place via a coherent rotation in the Hall cross, suggesting that the size of the antiferromagnetic domain is regulated by the wire width. The magnitude of the exchange coupling field Hex varied in proportion to the inverse wire width.

  8. Fast computation of close-coupling exchange integrals using polynomials in a tree representation

    NASA Astrophysics Data System (ADS)

    Wallerberger, Markus; Igenbergs, Katharina; Schweinzer, Josef; Aumayr, Friedrich

    2011-03-01

    The semi-classical atomic-orbital close-coupling method is a well-known approach for the calculation of cross sections in ion-atom collisions. It strongly relies on the fast and stable computation of exchange integrals. We present an upgrade to earlier implementations of the Fourier-transform method. For this purpose, we implement an extensive library for symbolic storage of polynomials, relying on sophisticated tree structures to allow fast manipulation and numerically stable evaluation. Using this library, we considerably speed up creation and computation of exchange integrals. This enables us to compute cross sections for more complex collision systems. Program summaryProgram title: TXINT Catalogue identifier: AEHS_v1_0 Program summary URL:http://cpc.cs.qub.ac.uk/summaries/AEHS_v1_0.html Program obtainable from: CPC Program Library, Queen's University, Belfast, N. Ireland Licensing provisions: Standard CPC licence, http://cpc.cs.qub.ac.uk/licence/licence.html No. of lines in distributed program, including test data, etc.: 12 332 No. of bytes in distributed program, including test data, etc.: 157 086 Distribution format: tar.gz Programming language: Fortran 95 Computer: All with a Fortran 95 compiler Operating system: All with a Fortran 95 compiler RAM: Depends heavily on input, usually less than 100 MiB Classification: 16.10 Nature of problem: Analytical calculation of one- and two-center exchange matrix elements for the close-coupling method in the impact parameter model. Solution method: Similar to the code of Hansen and Dubois [1], we use the Fourier-transform method suggested by Shakeshaft [2] to compute the integrals. However, we heavily speed up the calculation using a library for symbolic manipulation of polynomials. Restrictions: We restrict ourselves to a defined collision system in the impact parameter model. Unusual features: A library for symbolic manipulation of polynomials, where polynomials are stored in a space-saving left-child right

  9. Intriguing photo-control of exchange bias in BiFeO3/La2/3Sr1/3MnO3 thin films on SrTiO3 substrates.

    PubMed

    Sung, Kil Dong; Lee, Tae Kwon; Jung, Jong Hoon

    2015-01-01

    To date, electric fields have been widely used to control the magnetic properties of BiFeO3-based antiferromagnet/ferromagnet heterostructures through application of an exchange bias. To extend the applicability of exchange bias, however, an alternative mechanism to electric fields is required. Here, we report the photo-control of exchange bias in BiFeO3/La2/3Sr1/3MnO3 thin films on an SrTiO3 substrate. Through an ex situ pulsed laser deposition technique, we successfully synthesized epitaxial BiFeO3/La2/3Sr1/3MnO3 thin films on SrTiO3 substrates. By measuring magnetoresistance under light illumination, we investigated the effect of light illumination on resistance, exchange bias, and coercive field in BiFeO3/La2/3Sr1/3MnO3 thin films. After illumination of red and blue lights, the exchange bias was sharply reduced compared to that measured in the dark. With increasing light intensity, the exchange bias under red and blue lights initially decreased to zero and then appeared again. It is possible to reasonably explain these behaviors by considering photo-injection from SrTiO3 and the photo-conductivity of La2/3Sr1/3MnO3. This study may provide a fundamental understanding of the mechanism underlying photo-controlled exchange bias, which is significant for the development of new functional spintronic devices.

  10. Statistical exchange-coupling errors and the practicality of scalable silicon donor qubits

    NASA Astrophysics Data System (ADS)

    Song, Yang; Das Sarma, S.

    2016-12-01

    Recent experimental efforts have led to considerable interest in donor-based localized electron spins in Si as viable qubits for a scalable silicon quantum computer. With the use of isotopically purified 28Si and the realization of extremely long spin coherence time in single-donor electrons, the recent experimental focus is on two-coupled donors with the eventual goal of a scaled-up quantum circuit. Motivated by this development, we simulate the statistical distribution of the exchange coupling J between a pair of donors under realistic donor placement straggles, and quantify the errors relative to the intended J value. With J values in a broad range of donor-pair separation ( 5 <|R |<60 nm), we work out various cases systematically, for a target donor separation R0 along the [001], [110] and [111] Si crystallographic directions, with |R0|=10 ,20 or 30 nm and standard deviation σR=1 ,2 ,5 or 10 nm. Our extensive theoretical results demonstrate the great challenge for a prescribed J gate even with just a donor pair, a first step for any scalable Si-donor-based quantum computer.

  11. Effect of hydrogen on the interlayer exchange coupling in Fe/V superlattices

    SciTech Connect

    Ostanin, S.; Uzdin, V. M.; Demangeat, C.; Wills, J. M.; Alouani, M.; Dreysse, H.

    2000-02-15

    Electronic and magnetic structures of Fe/V superlattices with and without hydrogen in the vanadium spacer are investigated using a relativistic full-potential linear muffin-tin orbital method. We obtained short-range induced spin polarization in V as well as reduced Fe polarization at the Fe/V interface. The value of the magnetic moment induced on the vanadium atoms depends strongly on the distortion caused by the lattice mismatch and hydrogen loading whereas the total moment of the Fe and V interface layers remains almost unchanged. Hydrogenation of the V spacer leads to the decrease of the interface magnetic moment on the V atoms and to a reduction of the density of states (DOS) at the Fermi level. A low DOS could be one of the reasons for the experimental increase of the resistivity of the samples under hydrogen loading and leads to the disappearance of the antiferromagnetic exchange coupling in the Fe/(VH) superlattices for large hydrogen concentration. Doping the V film by a gold monolayer increases the DOS at the Fermi level and could recover the antiferromagnetic coupling. (c) 2000 The American Physical Society.

  12. Pulsed electron spin nutation spectroscopy for weakly exchange-coupled multi-spin molecular systems with nuclear hyperfine couplings: a general approach to bi- and triradicals and determination of their spin dipolar and exchange interactions

    NASA Astrophysics Data System (ADS)

    Ayabe, Kazuki; Sato, Kazunobu; Nakazawa, Shigeaki; Nishida, Shinsuke; Sugisaki, Kenji; Ise, Tomoaki; Morita, Yasushi; Toyota, Kazuo; Shiomi, Daisuke; Kitagawa, Masahiro; Suzuki, Shuichi; Okada, Keiji; Takui, Takeji

    2013-10-01

    Weakly exchange-coupled biradicals have attracted much attention in terms of their dynamic nuclear polarisation application in NMR spectroscopy for biological systems or the use of synthetic electron-spin qubits in quantum information processing/quantum-computing technology. Analogues multi-partite molecular systems are important in entering a new phase of the relevant fields. Many stable organic biradicals known so far have nitrogen nuclei at their electron spin sites, where singly occupied molecular orbitals are dominating and large hyperfine couplings occur. A salient feature of such weakly exchange-coupled molecular systems in terms of electronic spin structures is underlain by small zero-field splitting (ZFS) parameters comparable with nuclear hyperfine and/or exchange interactions. Pulse-based electron spin nutation (ESN) spectroscopy of weakly exchange-coupled biradicals, applicable to oriented or non-oriented media, has proven to be a useful and facile approach to the determination of ZFS parameters, which reflect relatively short distances between unpaired electron spins. In the present study, we first treat two-dimensional single-crystal ESN spectroscopy (Q-band) of a 15N-labelled weakly exchange-coupled biradical, showing the nuclear hyperfine effects on the ESN phenomena from both the experimental and theoretical side. ESN spectroscopy is transition moment spectroscopy, in which the nutation frequency as a function of the microwave irradiation strength ω1 (angular frequency) for any cases of weakly exchange-coupled systems can be treated. The results provide a testing ground for the simplified but general approach to the ESN analysis. In this study, we have invoked single-crystal electron-electron double resonance measurements on a typical biradical well incorporated in a diamagnetic host lattice and checked the accuracy of our ESN analysis for the spin dipolar tensor and exchange interaction. Next, we extend the general approach to analogues multi

  13. Pulse-biased etching of Si3N4-layer in capacitively-coupled plasmas for nano-scale patterning of multi-level resist structures.

    PubMed

    Lee, Hyelim; Kim, Sechan; Choi, Gyuhyun; Lee, Nae-Eung

    2014-12-01

    Pulse-biased plasma etching of various dielectric layers is investigated for patterning nano-scale, multi-level resist (MLR) structures composed of multiple layers via dual-frequency, capacitively-coupled plasmas (CCPs). We compare the effects of pulse and continuous-wave (CW) biasing on the etch characteristics of a Si3N4 layer in CF4/CH2F2/O2/Aretch chemistries using a dual-frequency, superimposed CCP system. Pulse-biasing conditions using a low-frequency power source of 2 MHz were varied by controlling duty ratio, period time, power, and the gas flow ratio in the plasmas generated by the 27.12 MHz high-frequency power source. Application of pulse-biased plasma etching significantly affected the surface chemistry of the etched Si3N4 surfaces, and thus modified the etching characteristics of the Si3N4 layer. Pulse-biased etching was successfully applied to patterning of the nano-scale line and space pattern of Si3N4 in the MLR structure of KrF photoresist/bottom anti-reflected coating/SiO2/amorphous carbon layer/Si3N4. Pulse-biased etching is useful for tuning the patterning of nano-scale dielectric hard-mask layers in MLR structures.

  14. Oxygen Gas Barrier Properties of Hydrogenated Amorphous Carbon Thin Films Deposited with a Pulse-Biased Inductively Coupled Plasma Chemical Vapor Deposition Method

    NASA Astrophysics Data System (ADS)

    Baek, Sang-min; Shirafuji, Tatsuru; Cho, Sung-pyo; Saito, Nagahiro; Takai, Osamu

    2010-08-01

    Hydrogenated amorphous carbon (a-C:H) films have been deposited on poly(ethylene terephthalate) (PET) films with an pulse-biased inductively coupled plasma chemical vapor deposition method using CH4 and C2H2 gases. We have investigated the effects of the pulse-bias frequency on the oxygen transmission rate (OTR) of the a-C:H-coated PET sample, and discussed relationship between the OTR characteristics and the structure of the films based on the results of Raman and infrared absorption spectroscopy. In case of CH4 plasmas, the OTR of the sample has been reduced down to 1.12 cm3/(m2·day·atm) by increasing the bias-frequency to 2 kHz, and the structure of the a-C:H films has been modified from polymer-like to tetrahedral one. In case of C2H2 plasmas, the OTR of the samples has been 1.18 cm3/(m2·day·atm) with the lower bias frequency of 0.5 kHz, and has not shown strong dependence on the pulse-bias frequency. This has been explained by the fact that the films prepared with C2H2 plasma can be modified to tetrahedral structures by applying the bias with the lower frequency.

  15. Towards quantifying the role of exact exchange in the prediction hydrogen bond spin-spin coupling constants involving fluorine

    NASA Astrophysics Data System (ADS)

    San Fabián, J.; Omar, S.; García de la Vega, J. M.

    2016-08-01

    The effect of a fraction of Hartree-Fock exchange on the calculated spin-spin coupling constants involving fluorine through a hydrogen bond is analyzed in detail. Coupling constants calculated using wavefunction methods are revisited in order to get high-level calculations using the same basis set. Accurate MCSCF results are obtained using an additive approach. These constants and their contributions are used as a reference for density functional calculations. Within the density functional theory, the Hartree-Fock exchange functional is split in short- and long-range using a modified version of the Coulomb-attenuating method with the SLYP functional as well as with the original B3LYP. Results support the difficulties for calculating hydrogen bond coupling constants using density functional methods when fluorine nuclei are involved. Coupling constants are very sensitive to the Hartree-Fock exchange and it seems that, contrary to other properties, it is important to include this exchange for short-range interactions. Best functionals are tested in two different groups of complexes: those related with anionic clusters of type [F(HF)n]- and those formed by difluoroacetylene and either one or two hydrogen fluoride molecules.

  16. Ex situ synthesis of magnetically exchange coupled SrFe12O19/Fe-Co composites

    NASA Astrophysics Data System (ADS)

    Xu, Xia; Hong, Yang-Ki; Park, Jihoon; Lee, Woncheol; Lane, Alan M.

    2016-05-01

    Magnetically exchange coupled SrFe12O19/Fe-Co composites with different mass percentage of Fe-Co were synthesized through an ex situ process. The morphology, magnetic properties, and crystallization of SrFe12O19/Fe-Co composites were investigated. Lower mass percentage of Fe-Co presented an even distribution of Fe-Co nanoparticles on the surface of SrFe12O19, and effective magnetic exchange coupling between Fe-Co and SrFe12O19. Higher mass percentage of Fe-Co leads to an agglomeration of Fe-Co nanoparticles on SrFe12O19 surface, and a weak magnetic exchange coupling between Fe-Co and SrFe12O19. This ex situ process proposed a new method to synthesize magnetically exchange coupled SrFe12O19/Fe-Co core/shell composites with precise control of the magnetic properties. This method can also be potentially used for other hard/soft magnetic composite synthesis.

  17. Magnetic self-assembly for the synthesis of magnetically exchange coupled MnBi/Fe–Co composites

    SciTech Connect

    Xu, Xia; Hong, Yang-Ki; Park, Jihoon; Lee, Woncheol; Lane, Alan M.; Cui, Jun

    2015-11-15

    Exchange coupled hard/soft MnBi/Fe–Co core/shell structured composites were synthesized using a magnetic self-assembly process. MnBi particles were prepared by arc-melting, and Fe–Co nanoparticles were synthesized by an oleic acid assisted chemical reduction method. Grinding a mixture of micron-sized MnBi and Fe–Co nanoparticles in hexane resulted in MnBi/Fe–Co core/shell structured composites. The MnBi/Fe–Co (95/5 wt%) composites showed smooth magnetic hysteresis loops, enhanced remanent magnetization, and positive values in the ΔM curve, indicating exchange coupling between MnBi and Fe–Co particles. - Graphical abstract: Both MnBi and Fe–Co particles were dispersed in hexane for grinding. Because of the oleic acid used during the Fe–Co nanoparticle synthesis, they could be well dispersed in hexane. During the grinding, the size of MnBi particles was decreased, hexane was evaporated, and the Fe–Co nanoparticles were concentrated in the solvent and magnetically attracted by MnBi particles, forming a core/shell structure. - Highlights: • Exchange coupled MnBi/Fe–Co composites are synthesized through magnetic selfassembly. • Magnetic exchange coupling is demonstrated by smooth magnetic hysteresis loops, enhanced remanent magnetization, and dominant positive peak in the ΔM curve. • The experimental results in magnetic properties are close to the theoretical calculation results.

  18. Effect of lattice deformation on exchange coupling constants in Cr{sub 2}O{sub 3}

    SciTech Connect

    Kota, Yohei; Imamura, Hiroshi; Sasaki, Munetaka

    2014-05-07

    We studied lattice deformation effect on exchange interaction in the corundum-type Cr{sub 2}O{sub 3} theoretically. First-principles electronic structure calculations were performed to evaluate the total energy and exchange coupling constants of Cr{sub 2}O{sub 3} under lattice deformation. We found that a few percent elastic deformation is expected via misfit strain and that the first- and second-nearest neighbor exchange coupling constants of Cr{sub 2}O{sub 3} strongly depend on the lattice deformation. These results imply a possibility for improving the thermal stability of Cr{sub 2}O{sub 3} based magnetoelectric devices by lattice deformation.

  19. Exchange coupling in P(VDF-TrFE) copolymer based all-organic composites with giant electrostriction.

    PubMed

    Li, JiangYu

    2003-05-30

    In this Letter, we discuss the dramatically enhanced electrostriction and dielectric constant in an all-organic composite consisting of polyvinylidene fluoride trifluoroethylene [P(VDF-TrFE)] copolymer matrix and copper-phthalocyanine (CuPc) particles, which could not be explained by traditional composite theory. Using a Landau-type potential energy combined with energy minimization, we demonstrate that the dramatic property enhancement is due to the exchange coupling between the dielectrically hard P(VDF-TrFE) and dielectrically soft CuPc, which becomes dominant when the heterogeneity size of the composite is comparable to the exchange length. The exchange coupling is a very effective mechanism for the enhancement of functional properties in ferroelectric and dielectric systems, and its variation with various material parameters is demonstrated and discussed.

  20. Kinetic Monte Carlo simulations of thermally activated magnetization reversal in dual-layer Exchange Coupled Composite recording media

    NASA Astrophysics Data System (ADS)

    Plumer, M. L.; Almudallal, A. M.; Mercer, J. I.; Whitehead, J. P.; Fal, T. J.

    The kinetic Monte Carlo (KMC) method developed for thermally activated magnetic reversal processes in single-layer recording media has been extended to study dual-layer Exchange Coupled Composition (ECC) media used in current and next generations of disc drives. The attempt frequency is derived from the Langer formalism with the saddle point determined using a variant of Bellman Ford algorithm. Complication (such as stagnation) arising from coupled grains having metastable states are addressed. MH-hysteresis loops are calculated over a wide range of anisotropy ratios, sweep rates and inter-layer coupling parameter. Results are compared with standard micromagnetics at fast sweep rates and experimental results at slow sweep rates.

  1. Detection of the dynamic magnetic behavior of the antiferromagnet in exchange-coupled NiFe/IrMn bilayers.

    PubMed

    Spizzo, F; Tamisari, M; Bonfiglioli, E; Del Bianco, L

    2013-09-25

    The magnetothermal behavior of antiferromagnetic IrMn layers of different thickness (3, 6, 10 nm) has been studied by exploiting the exchange coupling with a ferromagnetic 5 nm-thick NiFe layer. A procedure has been devised for the measurement of the magnetization of the NiFe/IrMn bilayers as a function of temperature and time at different values of an external magnetic field, Hinv, antiparallel to the unidirectional exchange anisotropy. This analysis allows one to probe the effective distribution of anisotropy energy barriers of the antiferromagnetic phase, as sensed by the ferromagnetic layer. Two magnetic regimes have been distinguished. At temperature T < 100 K, the interfacial IrMn spins are frozen in a glassy state and are collectively involved in the exchange coupling with the NiFe spins. At T ∼ 100 K the collective state breaks up; thus, above this temperature, only the interfacial IrMn spins which are tightly polarized by the IrMn nanograins, forming the bulk of the layer, are effectively involved in the exchange coupling mechanism. Due to that, for T > 100 K the exchange coupling is ruled by the anisotropy energy barriers of the bulk IrMn nanograins, namely by the layer thickness. The thermal evolution of the exchange field and of the coercivity in the three samples is coherently explained in the framework of this description of the dynamic magnetic behavior of the IrMn phase.

  2. Roles of land surface albedo and horizontal resolution on the Indian summer monsoon biases in a coupled ocean-atmosphere tropical-channel model

    NASA Astrophysics Data System (ADS)

    Samson, Guillaume; Masson, Sébastien; Durand, Fabien; Terray, Pascal; Berthet, Sarah; Jullien, Swen

    2017-03-01

    The Indian summer monsoon (ISM) simulated over the 1989-2009 period with a new 0.75° ocean-atmosphere coupled tropical-channel model extending from 45°S to 45°N is presented. The model biases are comparable to those commonly found in coupled global climate models (CGCMs): the Findlater jet is too weak, precipitations are underestimated over India while they are overestimated over the southwestern Indian Ocean, South-East Asia and the Maritime Continent. The ISM onset is delayed by several weeks, an error which is also very common in current CGCMs. We show that land surface temperature errors are a major source of the ISM low-level circulation and rainfall biases in our model: a cold bias over the Middle-East (ME) region weakens the Findlater jet while a warm bias over India strengthens the monsoon circulation over the southern Bay of Bengal. A surface radiative heat budget analysis reveals that the cold bias is due to an overestimated albedo in this desertic ME region. Two new simulations using a satellite-observed land albedo show a significant and robust improvement in terms of ISM circulation and precipitation. Furthermore, the ISM onset is shifted back by 1 month and becomes in phase with observations. Finally, a supplementary set of simulations at 0.25°-resolution confirms the robustness of our results and shows an additional reduction of the warm and dry bias over India. These findings highlight the strong sensitivity of the simulated ISM rainfall and its onset timing to the surface land heating pattern and amplitude, especially in the ME region. It also illustrates the key-role of land surface processes and horizontal resolution for improving the ISM representation, and more generally the monsoons, in current CGCMs.

  3. Calculation of vibronic couplings for phenoxyl/phenol and benzyl/toluene self-exchange reactions: implications for proton-coupled electron transfer mechanisms.

    PubMed

    Skone, Jonathan H; Soudackov, Alexander V; Hammes-Schiffer, Sharon

    2006-12-27

    The vibronic couplings for the phenoxyl/phenol and the benzyl/toluene self-exchange reactions are calculated with a semiclassical approach, in which all electrons and the transferring hydrogen nucleus are treated quantum mechanically. In this formulation, the vibronic coupling is the Hamiltonian matrix element between the reactant and product mixed electronic-proton vibrational wavefunctions. The magnitude of the vibronic coupling and its dependence on the proton donor-acceptor distance can significantly impact the rates and kinetic isotope effects, as well as the temperature dependences, of proton-coupled electron transfer reactions. Both of these self-exchange reactions are vibronically nonadiabatic with respect to a solvent environment at room temperature, but the proton tunneling is electronically nonadiabatic for the phenoxyl/phenol reaction and electronically adiabatic for the benzyl/toluene reaction. For the phenoxyl/phenol system, the electrons are unable to rearrange fast enough to follow the proton motion on the electronically adiabatic ground state, and the excited electronic state is involved in the reaction. For the benzyl/toluene system, the electrons can respond virtually instantaneously to the proton motion, and the proton moves on the electronically adiabatic ground state. For both systems, the vibronic coupling decreases exponentially with the proton donor-acceptor distance for the range of distances studied. When the transferring hydrogen is replaced with deuterium, the magnitude of the vibronic coupling decreases and the exponential decay with distance becomes faster. Previous studies designated the phenoxyl/phenol reaction as proton-coupled electron transfer and the benzyl/toluene reaction as hydrogen atom transfer. In addition to providing insights into the fundamental physical differences between these two types of reactions, the present analysis provides a new diagnostic for differentiating between the conventionally defined hydrogen atom

  4. Interlayer exchange coupling dependence of thermal stability parameters in synthetic antiferromagnetic free layers

    NASA Astrophysics Data System (ADS)

    Saito, Y.; Sugiyama, H.; Inokuchi, T.; Inomata, K.

    2006-08-01

    We conducted a detailed comparative study of thermal stability properties over a thermal excitation of switching of the free layer in a magnetic tunnel junction (MTJ) with Ni 81Fe 19, Co 90Fe 10, and synthetic antiferromagnetic (Syn-AF) free layers with several strengths of interlayer exchange coupling ( JEX). The thermal stability properties were investigated using the junction magnetoresistance of current-perpendicular MTJ devices with a word line as probes. The observed sweep-rate-dependent coercivities were analyzed using the Sharrock formula. The results confirmed strong JEX dependence on thermal stability parameters (KV/kT) in Syn-AF free layers. The values of KV/kT for MTJs with Syn-AF free layers decreased with a decrease in the strength of JEX, and the increase in the effective volume of the Syn-AF free layer disappeared at J⩽0.52 erg/cm. The Syn-AF free layer with JEX>0.52 erg/cm 2 is relevant for high-density spin electronic nanodevices with a low aspect ratio.

  5. Recovery and nonrecovery of the untrained state in an exchange-coupled system

    NASA Astrophysics Data System (ADS)

    Jutimoosik, Jaru; Yimnirun, Rattikorn; Setzer, Annette; Esquinazi, Pablo; Stahn, Jochen; Paul, Amitesh

    2015-06-01

    We report depth sensitive investigations of the magnetic interaction between exchange-coupled stacked CoO and ferromagnetic Co bilayers (separated by thick Au layers) as we explore the degree of recovery of the untrained state after the first two field cycles. Such a recovery is expected by field cycling a reorientation field (HRE) along a direction (ΩRE) away from the initial field cooling direction. Measurements as a function of ΩRE and the strength of HRE (along each direction) map the influence of ΩRE on the reversal mechanism in the layers and thereby the degree of recovery. Our results are consistent with the earlier observations in similar systems that was realized with ΩRE=90∘ . We ascribe these partial and/or significant recoveries to the unchanged sense of rotation after initial field cooling of the ferromagnetic magnetization upon each field cycling. Furthermore, in our system, we find that this recovery can be regulated by choosing various other HRE and ΩRE values without changing the rotational sense. The best recipe for recovery is identified for ΩRE=45∘ , that can be achieved partially with HRE=3.0 kOe and remain significant even with HRE=10.0 kOe. In this study we not only understand the fundamental mechanism in the recovery of training, but also instigate its technological prospects by lifting the directional restrictions of the reorientation field.

  6. Shaping nanoscale magnetic domain memory in exchange-coupled ferromagnets by field cooling

    DOE PAGES

    Chesnel, Karine; Safsten, Alex; Rytting, Matthew; ...

    2016-06-01

    The advance of magnetic nanotechnologies relies on detailed understanding of nanoscale magnetic mechanisms in materials. Magnetic domain memory (MDM), that is, the tendency for magnetic domains to repeat the same pattern during field cycling, is important for magnetic recording technologies. Here we demonstrate MDM in [Co/Pd]/IrMn films, using coherent X-ray scattering. Under illumination, the magnetic domains in [Co/Pd] produce a speckle pattern, a unique fingerprint of their nanoscale configuration. We measure MDM by cross-correlating speckle patterns throughout magnetization processes. When cooled below its blocking temperature, the film exhibits up to 100% MDM, induced by exchange-coupling with the underlying IrMn layer.more » The degree of MDM drastically depends on cooling conditions. If the film is cooled under moderate fields, MDM is high throughout the entire magnetization loop. Lastly, if the film is cooled under nearly saturating field, MDM vanishes, except at nucleation and saturation. Our findings show how to fully control the occurrence of MDM by field cooling.« less

  7. Online deuterium hydrogen exchange and protein digestion coupled with ion mobility spectrometry and tandem mass spectrometry.

    PubMed

    Donohoe, Gregory C; Arndt, James R; Valentine, Stephen J

    2015-05-19

    Online deuterium hydrogen exchange (DHX) and pepsin digestion (PD) is demonstrated using drift tube ion mobility spectrometry (DTIMS) coupled with linear ion trap (LTQ) mass spectrometry (MS) with electron transfer dissociation (ETD) capabilities. DHX of deuterated ubiquitin, followed by subsequent quenching and digestion, is performed within ∼60 s, yielding 100% peptide sequence coverage. The high reproducibility of the IMS separation allows spectral feature matching between two-dimensional IMS-MS datasets (undeuterated and deuterated) without the need for dataset alignment. Extracted ion drift time distributions (XIDTDs) of deuterated peptic peptides are mobility-matched to corresponding XIDTDs of undeuterated peptic peptides that were identified using collision-induced dissociation (CID). Matching XIDTDs allows a straightforward identification and deuterium retention evaluation for labeled peptides. Aside from the mobility separation, the ion trapping capabilities of the LTQ, combined with ETD, are demonstrated to provide single-residue resolution. Deuterium retention for the c- series ions across residues M(1)-L(15) and N(25)-R(42) are in good agreement with the known secondary structural elements within ubiquitin.

  8. Shaping nanoscale magnetic domain memory in exchange-coupled ferromagnets by field cooling

    PubMed Central

    Chesnel, Karine; Safsten, Alex; Rytting, Matthew; Fullerton, Eric E.

    2016-01-01

    The advance of magnetic nanotechnologies relies on detailed understanding of nanoscale magnetic mechanisms in materials. Magnetic domain memory (MDM), that is, the tendency for magnetic domains to repeat the same pattern during field cycling, is important for magnetic recording technologies. Here we demonstrate MDM in [Co/Pd]/IrMn films, using coherent X-ray scattering. Under illumination, the magnetic domains in [Co/Pd] produce a speckle pattern, a unique fingerprint of their nanoscale configuration. We measure MDM by cross-correlating speckle patterns throughout magnetization processes. When cooled below its blocking temperature, the film exhibits up to 100% MDM, induced by exchange-coupling with the underlying IrMn layer. The degree of MDM drastically depends on cooling conditions. If the film is cooled under moderate fields, MDM is high throughout the entire magnetization loop. If the film is cooled under nearly saturating field, MDM vanishes, except at nucleation and saturation. Our findings show how to fully control the occurrence of MDM by field cooling. PMID:27248368

  9. Characterisation of brewpub beer carbohydrates using high performance anion exchange chromatography coupled with pulsed amperometric detection.

    PubMed

    Arfelli, Giuseppe; Sartini, Elisa

    2014-01-01

    High performance anion exchange chromatography (HPAEC) coupled with pulsed amperometric detection (PAD) was optimised in order to quantify mannose, maltose, maltotriose, maltotetraose, maltopentaose, maltohexaose and maltoheptaose content of beer. The method allows the determination of above mentioned oligosaccharides, in a single chromatographic run, without any pre-treatment. Limit of detection and limit of quantification were suitable for beer. Accuracy and repeatability were good for the entire amount considered. Once optimised HPAEC PAD for the specific matrix, the second goal of this research was to verify the possibility to discriminate beers, depending on their style. The carbohydrates content of brewpub commercial beers was very variable, ranging from 19.3 to 1469mg/L (mannose), 34.5 to 2882mg/L (maltose), 141.9 to 20731mg/L (maltotriose), 168.5 to 7650mg/L (maltotetraose), 20.1 to 2537mg/L (maltopentaose), 22.9 to 3295mg/L (maltohexaose), 8.5 to 2492mg/L (maltoeptaose), even in the same style of beer. However, the carbohydrates content was useful, jointed with other compounds amount, to discriminate different styles of beer. As a matter of fact, principal component analysis put in evidence beer differences considering some fermentation conditions and colour.

  10. Shaping nanoscale magnetic domain memory in exchange-coupled ferromagnets by field cooling

    SciTech Connect

    Chesnel, Karine; Safsten, Alex; Rytting, Matthew; Fullerton, Eric E.

    2016-06-01

    The advance of magnetic nanotechnologies relies on detailed understanding of nanoscale magnetic mechanisms in materials. Magnetic domain memory (MDM), that is, the tendency for magnetic domains to repeat the same pattern during field cycling, is important for magnetic recording technologies. Here we demonstrate MDM in [Co/Pd]/IrMn films, using coherent X-ray scattering. Under illumination, the magnetic domains in [Co/Pd] produce a speckle pattern, a unique fingerprint of their nanoscale configuration. We measure MDM by cross-correlating speckle patterns throughout magnetization processes. When cooled below its blocking temperature, the film exhibits up to 100% MDM, induced by exchange-coupling with the underlying IrMn layer. The degree of MDM drastically depends on cooling conditions. If the film is cooled under moderate fields, MDM is high throughout the entire magnetization loop. Lastly, if the film is cooled under nearly saturating field, MDM vanishes, except at nucleation and saturation. Our findings show how to fully control the occurrence of MDM by field cooling.

  11. Probing the ground state and zero-field cooled exchange bias by magnetoresistance measurement in Mn50Ni41Sn9 ribbon

    NASA Astrophysics Data System (ADS)

    Chen, Jiyun; Tu, Ruikang; Fang, Xiaoting; Gu, Quanchao; Zhou, Yanying; Cui, Rongjing; Han, Zhida; Zhang, Lei; Fang, Yong; Qian, Bin; Zhang, Chengliang; Jiang, Xuefan

    2017-03-01

    Recently, a new type of exchange bias (EB) after zero-field cooling has attracted considerable interest mainly in bulk magnetic competing systems. Here, we use a detailed magnetotransport investigation to probe the ground state and zero-field cooled EB (ZEB) in Mn50Ni41Sn9 ribbon. Both ZEB and field cooled EB were detected in magnetoresistance results consistent with magnetic measurement. A pure spin-glass ground state is proposed based on parabolic shape of low-field magnetoresistance combined with AC magnetization, memory effect. The appearance of ZEB is attributed to the field-induced nucleation and growth of ferromagnetic domains in the spin glass matrix forming unidirectional anisotropy at the interface.

  12. Non-collinear magnetism and exchange bias at the FM NiFe/AFM NiMn interface: local spin density FLAPW study

    NASA Astrophysics Data System (ADS)

    Nakamura, K.; Freeman, A. J.; Wang, D.-S.; Zhong, L.; Fernandez-de-Castro, J.

    2001-03-01

    Magnetism at interfaces, such as the exchange bias between ferromagnetic (FM) and antiferromagnetic (AFM) materials, has attracted great attention because of technological applications. In order to investigate magnetic structures at the FM/AFM interface, we have implemented the FLAPW (E. Wimmer, H. Krakauer, M. Weinert and A.J. Freeman, PRB 24, 864(1981)) methodologies including non-collinear magnetism, in which the magnetic moment direction as well as the magnitude can vary continuously all over space. We first demonstrate this approach to determine the structure of a magnetic structure at an interface between FM NiFe and AFM NiMn. Although both bulk systems each show collinear FM and AFM structures, we found that a perpendicular magnetic orientation at their interface is energetically favorable, where the magnetic moments of the FM NiFe tend to lie perpendicular to those of AFM NiMn.

  13. Phase separation and exchange biasing in the ferromagnetic IV-VI semiconductor Ge{sub 1-x}Mn{sub x}Te

    SciTech Connect

    Lechner, R. T.; Springholz, G.; Hassan, M.; Groiss, H.; Kirchschlager, R.; Stangl, J.; Hrauda, N.; Bauer, G.

    2010-07-12

    Ferromagnetic Ge{sub 1-x}Mn{sub x}Te grown by molecular beam epitaxy with Mn content of x{sub Mn}approx =0.5 is shown to exhibit a strong tendency for phase separation. At higher growth temperatures apart from the cubic Ge{sub 0.5}Mn{sub 0.5}Te, a hexagonal MnTe and a rhombohedral distorted Ge{sub 0.83}Mn{sub 0.17}Te phase is formed. This coexistence of antiferromagnetic MnTe and ferromagnetic Ge{sub 0.5}Mn{sub 0.5}Te results in magnetic exchange-bias effects.

  14. Micromagnetic finite element study for magnetic properties of nanocomposite exchange coupled Nd2Fe14B/α-Fe multilayer systems

    NASA Astrophysics Data System (ADS)

    Ryo, Hyok-Su; Hu, Lian-Xi; Kim, Jin-Guk; Yang, Yu-Lin

    2017-03-01

    In this study, magnetic properties of exchange coupled nanocomposite multilayer thin films constructed alternately with magnetic hard Nd2Fe14B layers and soft α-Fe layers have been studied by micromagnetic finite element method (FEM). According to the results, effects of the thicknesses of layers and the magneto-crystalline anisotropy on the magnetic properties of the Nd2Fe14B/α-Fe multilayer systems have been estimated. On the other hand, the results have been analyzed by means of efficiency of interphase exchange coupling, which can be estimated by volume ratios of exchange coupled areas between magnetically hard Nd2Fe14B and soft α-Fe phase layers. The results show that the magnetic properties of exchange coupled Nd2Fe14B/α-Fe multilayer systems can be enhanced by efficient interphase exchange coupling between magnetically hard Nd2Fe14B layers and soft α-Fe layers.

  15. Effect of L1{sub 2} ordering in antiferromagnetic Ir-Mn epitaxial layer on exchange bias of FePd films

    SciTech Connect

    Chang, Y. C.; Duh, J. G. E-mail: lin.yg@nsrrc.org.tw; Hsiao, S. N. E-mail: lin.yg@nsrrc.org.tw; Liu, S. H.; Su, S. H.; Chiu, K. F.; Hsieh, W. C.; Chen, S. K.; Lin, Y. G. E-mail: lin.yg@nsrrc.org.tw; Lee, H. Y.; Sung, C. K.

    2015-05-07

    Two series of samples of single-layer IrMn and IrMn/FePd bilayer films, deposited on a single-crystal MgO substrate at different IrMn deposition temperatures (T{sub s} = 300–700 °C), were investigated using magnetron sputtering. L1{sub 2} ordering was revealed for the 30 nm-thick IrMn epitaxial (001) films with T{sub s} ≥ 400 °C, determined by synchrotron radiation x-ray diffractometry (XRD). XRD results also provide evidence of the epitaxial growth of the IrMn films on MgO substrate. Increasing T{sub s} from 400 to 700 °C monotonically increases the ordering parameter of L1{sub 2} phases from 0.17 to 0.81. An in-plane exchange bias field (H{sub eb}) of 22 Oe is obtained in a 10 nm-thick FePd film that is deposited on the disordered IrMn films. As the L1{sub 2} ordering of the IrMn layers increases, the H{sub eb} gradually decreases to 0 Oe, meaning that the exchange bias behavior vanishes. The increased surface roughness, revealed by atomic force microscopy, of the epitaxial IrMn layers with increasing T{sub s} cannot be the main cause of the decrease in H{sub eb} due to the compensated surface spins regardless of the disordered and ordered (001) IrMn layers. The change of antiferromagnetic structure from the A1 to the L1{sub 2} phase was correlated with the evolution of H{sub eb}.

  16. Phase diagram in exchange-coupled CoTb/[Co/Pt] multilayer-based magnetic tunnel junctions

    NASA Astrophysics Data System (ADS)

    Bersweiler, M.; Lacour, D.; Dumesnil, K.; Montaigne, F.; Hehn, M.

    2015-12-01

    Magnetic and magneto-transport properties of [Co/Pt]/MgO/[Co/Pt]CoTb magnetic tunnel junctions have been investigated. Depending on the thickness of the Pt layer, temperature, and field history, the [Co/Pt]CoTb hard layer shows complex behaviors that can be reproduced by micromagnetic calculations. The magnetic tunnel junctions appear to exhibit conventional behavior but also exchange bias and spring magnet and domain duplication phenomena that have been observed combining magnetometry and interface-sensitive spin-dependent tunnel transport.

  17. Interface effects on the magnetic properties of exchange coupled Co/Fe multilayers studied by Brillouin light scattering

    NASA Astrophysics Data System (ADS)

    D'Orazio, F.; Lucari, F.; Carlotti, G.; Gubbiotti, G.; Carbucicchio, M.; Ruggiero, G.

    2001-05-01

    Exchange-coupled 5[Co ( x) /Fe (3 x) ]/Co ( x) with x=5, 10, 15 nm multilayers were grown by UHV electron-beam evaporation. The influence of the interface magnetic anisotropy and interlayer exchange interaction on the magnetic properties was studied by means of Brillouin light scattering from thermally excited spin waves. Both the Damon-Eshbach surface mode of the total multilayer and bulk standing modes are present in the BLS spectra. A careful study of spin waves frequency dependence on the applied magnetic field allowed the determination of the magnetic parameters of the Co/Fe multilayers.

  18. A density functional theory study of the magnetic exchange coupling in dinuclear manganese(II) inverse crown structures.

    PubMed

    Vélez, Ederley; Alberola, Antonio; Polo, Víctor

    2009-12-17

    The magnetic exchange coupling constants between two Mn(II) centers for a set of five inverse crown structures have been investigated by means of a methodology based on broken-symmetry unrestricted density functional theory. These novel and highly unstable compounds present superexchange interactions between two Mn centers, each one with S = 5/2 through anionic "guests" such as oxygen, benzene, or hydrides or through the cationic ring formed by amide ligands and alkali metals (Na, Li). Magnetic exchange couplings calculated at B3LYP/6-31G(d,p) level yield strong antiferromagnetic couplings for compounds linked via an oxygen atom or hydride and very small antiferromagnetic couplings for those linked via a benzene molecule, deprotonated in either 1,4- or 1,3- positions. Analysis of the magnetic orbitals and spin polarization maps provide an understanding of the exchange mechanism between the Mn centers. The dependence of J with respect to 10 different density functional theory potentials employed and the basis set has been analyzed.

  19. Exchange couplings for Mn ions in CdTe: Validity of spin models for dilute magnetic II-VI semiconductors

    NASA Astrophysics Data System (ADS)

    Linneweber, Thorben; Bünemann, Jörg; Löw, Ute; Gebhard, Florian; Anders, Frithjof

    2017-01-01

    We employ density-functional theory (DFT) in the generalized gradient approximation (GGA) and its extensions GGA +U and GGA+Gutzwiller to calculate the magnetic exchange couplings between pairs of Mn ions substituting Cd in a CdTe crystal at very small doping. DFT(GGA) overestimates the exchange couplings by a factor of 3 because it underestimates the charge-transfer gap in Mn-doped II-VI semiconductors. Fixing the nearest-neighbor coupling J1 to its experimental value in GGA +U , in GGA+Gutzwiller, or by a simple scaling of the DFT(GGA) results provides acceptable values for the exchange couplings at second-, third-, and fourth-neighbor distances in Cd(Mn)Te, Zn(Mn)Te, Zn(Mn)Se, and Zn(Mn)S. In particular, we recover the experimentally observed relation J4>J2,J3 . The filling of the Mn 3 d shell is not integer, which puts the underlying Heisenberg description into question. However, using a few-ion toy model the picture of a slightly extended local moment emerges so that an integer 3 d -shell filling is not a prerequisite for equidistant magnetization plateaus, as seen in experiment.

  20. Divergent transducer-specific molecular efficacies generate biased agonism at a G protein-coupled receptor (GPCR).

    PubMed

    Strachan, Ryan T; Sun, Jin-peng; Rominger, David H; Violin, Jonathan D; Ahn, Seungkirl; Rojas Bie Thomsen, Alex; Zhu, Xiao; Kleist, Andrew; Costa, Tommaso; Lefkowitz, Robert J

    2014-05-16

    The concept of "biased agonism" arises from the recognition that the ability of an agonist to induce a receptor-mediated response (i.e. "efficacy") can differ across the multiple signal transduction pathways (e.g. G protein and β-arrestin (βarr)) emanating from a single GPCR. Despite the therapeutic promise of biased agonism, the molecular mechanism(s) whereby biased agonists selectively engage signaling pathways remain elusive. This is due in large part to the challenges associated with quantifying ligand efficacy in cells. To address this, we developed a cell-free approach to directly quantify the transducer-specific molecular efficacies of balanced and biased ligands for the angiotensin II type 1 receptor (AT1R), a prototypic GPCR. Specifically, we defined efficacy in allosteric terms, equating shifts in ligand affinity (i.e. KLo/KHi) at AT1R-Gq and AT1R-βarr2 fusion proteins with their respective molecular efficacies for activating Gq and βarr2. Consistent with ternary complex model predictions, transducer-specific molecular efficacies were strongly correlated with cellular efficacies for activating Gq and βarr2. Subsequent comparisons across transducers revealed that biased AT1R agonists possess biased molecular efficacies that were in strong agreement with the signaling bias observed in cellular assays. These findings not only represent the first measurements of the thermodynamic driving forces underlying differences in ligand efficacy between transducers but also support a molecular mechanism whereby divergent transducer-specific molecular efficacies generate biased agonism at a GPCR.

  1. Exchange coupling controlled ferrite with dual magnetic resonance and broad frequency bandwidth in microwave absorption.

    PubMed

    Jia, Jingguo; Liu, Chuyang; Ma, Ning; Han, Gaorong; Weng, Wenjian; Du, Piyi

    2013-08-01

    Ti-doped barium ferrite powders BaFe12-x Ti x O19 (x = 0, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7 and 0.8) were synthesized by the sol-gel method. The phase structure and morphology were analyzed by x-ray diffraction (XRD) and scanning electron microscopy, respectively. The powders were also studied for their magnetic properties and microwave absorption. Results show that the Ti-doped barium ferrites (BFTO) exist in single phase and exhibit hexagonal plate-like structure. The anisotropy field Ha of the BFTO decreases almost linearly with the increase in Ti concentration, which leads to a shift of the natural resonance peak toward low frequency. Two natural resonance peaks appear, which can be assigned to the double values of the Landé factor g that are found to be ∼2.0 and ∼2.3 in the system and can be essentially attributed to the existence of Fe(3+) ions and the exchange coupling effect between Fe(3+) and Fe(2+) ions, respectively. Such a dual resonance effect contributes a broad magnetic loss peak and thus a high attenuation constant, and leads to a dual reflection loss (RL) peak over the frequency range between 26.5 and 40 GHz. The high attenuation constants are between 350 and 500 at peak position. The optimal RL reaches around -45 dB and the practicable frequency bandwidth is beyond 11 GHz. This suggests that the BFTO powders could be used as microwave absorbing materials with extraordinary properties.

  2. Exchange coupling controlled ferrite with dual magnetic resonance and broad frequency bandwidth in microwave absorption

    PubMed Central

    Jia, Jingguo; Liu, Chuyang; Ma, Ning; Han, Gaorong; Weng, Wenjian; Du, Piyi

    2013-01-01

    Ti-doped barium ferrite powders BaFe12−xTixO19 (x = 0, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7 and 0.8) were synthesized by the sol–gel method. The phase structure and morphology were analyzed by x-ray diffraction (XRD) and scanning electron microscopy, respectively. The powders were also studied for their magnetic properties and microwave absorption. Results show that the Ti-doped barium ferrites (BFTO) exist in single phase and exhibit hexagonal plate-like structure. The anisotropy field Ha of the BFTO decreases almost linearly with the increase in Ti concentration, which leads to a shift of the natural resonance peak toward low frequency. Two natural resonance peaks appear, which can be assigned to the double values of the Landé factor g that are found to be ∼2.0 and ∼2.3 in the system and can be essentially attributed to the existence of Fe3+ ions and the exchange coupling effect between Fe3+ and Fe2+ ions, respectively. Such a dual resonance effect contributes a broad magnetic loss peak and thus a high attenuation constant, and leads to a dual reflection loss (RL) peak over the frequency range between 26.5 and 40 GHz. The high attenuation constants are between 350 and 500 at peak position. The optimal RL reaches around −45 dB and the practicable frequency bandwidth is beyond 11 GHz. This suggests that the BFTO powders could be used as microwave absorbing materials with extraordinary properties. PMID:27877595

  3. Spin-wave excitations: the main source of the temperature dependence of interlayer exchange coupling in nanostructures.

    PubMed

    Schwieger, S; Kienert, J; Lenz, K; Lindner, J; Baberschke, K; Nolting, W

    2007-02-02

    Quantum mechanical calculations based on an extended Heisenberg model are compared with ferromagnetic resonance experiments on prototype trilayer systems Ni(7)/Cu(n)/Co(2)/Cu(001) in order to determine and separate for the first time quantitatively the sources of the temperature dependence of interlayer exchange coupling. Magnon excitations are responsible for about 75% of the reduction of the coupling strength from zero to room temperature. The remaining 25% are due to temperature effects in the effective quantum well and the spacer-magnet interfaces.

  4. On the Importance of Exchangeable NH Protons in Creatine for the Magnetic Coupling of Creatine Methyl Protons in Skeletal Muscle

    NASA Astrophysics Data System (ADS)

    Kruiskamp, M. J.; Nicolay, K.

    2001-03-01

    The methyl protons of creatine in skeletal muscle exhibit a strong off-resonance magnetization transfer effect. The mechanism of this process is unknown. We previously hypothesized that the exchangeable amide/amino protons of creatine might be involved. To test this the characteristics of the creatine magnetization transfer effect were investigated in excised rat hindleg skeletal muscle that was equilibrated in either H2O or D2O solutions containing creatine. The efficiency of off-resonance magnetization transfer to the protons of mobile creatine in excised muscle was similar to that previously reported in intact muscle in vivo. Equilibrating the isolated muscle in D2O solution had no effect on the magnetic coupling to the immobile protons. It is concluded that exchangeable protons play a negligible role in the magnetic coupling of creatine methyl protons in muscle.

  5. Giant Exchange Coupling Evidenced with a Magnetization Jump at 52 T for a Gadolinium-Nitroxide Chelate.

    PubMed

    Kanetomo, Takuya; Kihara, Takumi; Miyake, Atsushi; Matsuo, Akira; Tokunaga, Masashi; Kindo, Koichi; Nojiri, Hiroyuki; Ishida, Takayuki

    2017-03-20

    The Gd-radical complex [Gd(III)(hfac)3(6bpyNO)] (6bpyNO = 2,2'-bipyridin-6-yl tert-butyl nitroxide; Hhfac = 1,1,1,5,5,5-hexafluoropentane-2,4-dione) showed a magnetization jump at 52 T observed in a pulsed-field facility, corresponding to an exchange coupling constant of -17.4 K. Furthermore, hysteretic behavior due to a relatively slow magnetization reversal was recorded around 2 T. From the high-frequency EPR study, the exchange coupling between Gd and radical spins accompanies an anisotropic character, which is responsible for both the broad jump and the slow magnetization reversal.

  6. Exchange coupling interaction in L10-FePd/α-Fe nanocomposite magnets with large maximum energy products.

    PubMed

    Sakuma, Noritsugu; Ohshima, Tsubasa; Shoji, Tetsuya; Suzuki, Yoshihito; Sato, Ryota; Wachi, Ayako; Kato, Akira; Kawai, Yoichiro; Manabe, Akira; Teranishi, Toshiharu

    2011-04-26

    Nanocomposite magnets (NCMs) consisting of hard and soft magnetic phases are expected to be instrumental in overcoming the current theoretical limit of magnet performance. In this study, structural analyses were performed on L1(0)-FePd/α-Fe NCMs with various hard/soft volume fractions, which were formed by annealing Pd/γ-Fe(2)O(3) heterostructured nanoparticles and pure Pd nanoparticles. The sample with a hard/soft volume ratio of 82/18 formed by annealing at 773 K had the largest maximum energy product (BH(max) = 10.3 MGOe). In such a sample, the interface between the hard and soft phases was coherent and the phase sizes were optimized, both of which effectively induced exchange coupling. This exchange coupling was directly observed by visualizing the magnetic interaction between the hard and soft phases using a first-order reversal curve diagram, which is a valuable tool to improve the magnetic properties of NCMs.

  7. Tuning of interlayer exchange coupling in Ni80Fe20/Ru/Ni80Fe20 nanowires

    NASA Astrophysics Data System (ADS)

    Liu, X. M.; Lupo, P.; Cottam, M. G.; Adeyeye, A. O.

    2015-09-01

    In this work, we demonstrate how the static and dynamic properties of Ni80Fe20/Ru/Ni80Fe20 nanowires can be tuned by varying the Ru spacer layer thickness. Specifically, changing the Ru thickness we have tuned the Ruderman-Kittel-Kasuya-Yosida exchange interaction, and thus the antiferromagnetic (AFM) strength between the Ni80Fe20 layers. We show that there is a strong correlation between the interlayer coupling and features in ferromagnetic resonance (FMR) modes. We found different mode-softening degree of the FMR curves as function of the strength of AFM coupling, together with a clear frequency gap at around zero field. These experimental results are in qualitative agreement with presented micromagnetic simulations that also include biquadratic interface exchange. Understanding these characteristics may offer insights for reconfigurable vertical magnetic logic devices and microwave filters.

  8. The influence of interlayer exchange coupling in giant-magnetoresistive devices on spin diode effect in wide frequency range

    SciTech Connect

    Ziętek, Sławomir Skowroński, Witold; Wiśniowski, Piotr; Czapkiewicz, Maciej; Stobiecki, Tomasz; Ogrodnik, Piotr; Barnaś, Józef

    2015-09-21

    Spin diode effect in a giant magnetoresistive strip is measured in a broad frequency range, including resonance and off-resonance frequencies. The off-resonance dc signal is relatively strong and also significantly dependent on the exchange coupling between magnetic films through the spacer layer. The measured dc signal is described theoretically by taking into account magnetic dynamics induced by Oersted field created by an ac current flowing through the system.

  9. Strong Exchange Coupling Between the Lanthanide Ions and Phthalocyaniato Ligand Radical in Bis(phthalocyaninato)Lanthanide Sandwich Compounds

    DTIC Science & Technology

    1992-07-06

    trstonQeai n Report ~1 ,fero 4. TITLE AND SUBTITLE 5. FUNDING NUMBERS Strong Exchange Coupling Between the Lanthanide Ions and Phthalocyaniato Ligand...Radical in N00014-92-J-1637 Bis(phthalocyaninato) lanthanide Sandwich Compoun s 6. AUTHOR(S) Kathleen L. Trojan, Jonathan L. Kendall, Keith Kepler and...200 words) A series of lanthanide phthalocyanine sandwich compounds with the formula [ (Pc 2")Ln 1 (Pc ’ ) ] have been synthesized and characterized

  10. Multipeak self-biased magnetoelectric coupling characteristics in four-phase Metglas/Terfenol-D/Be-bronze/PMN-PT structure

    NASA Astrophysics Data System (ADS)

    Huang, Dongyan; Lu, Caijiang; Bing, Han

    2015-04-01

    This letter develops a self-biased magnetoelectric (ME) structure Metglas/Terfenol-D/Be-bronze/PMN-PT (MTBP) consisting of a magnetization-graded Metglas/Terfenol-D layer, a elastic Be-bronze plate, and a piezoelectric 0.67Pb(Mg1/3Nb2/3)O3-0.33PbTiO3 (PMN-PT) plate. By using the magnetization-graded Metglas/Terfenol-D layer and the elastic Be-bronze plate, multi-peak self-biased ME responses are obtained in MTBP structure. The experimental results show that the MTBP structure with two layers of Metglas foil has maximum zero-biased ME voltage coefficient (MEVC). As frequency increases from 0.5 to 90 kHz, eleven large peaks of MEVC with magnitudes of 0.75-33 V/(cm Oe) are observed at zero-biased magnetic field. The results demonstrate that the proposed multi-peak self-biased ME structure may be useful for multifunctional devices such as multi-frequency energy harvesters or low-frequency ac magnetic field sensors.

  11. Automatic segmentation for brain MR images via a convex optimized segmentation and bias field correction coupled model.

    PubMed

    Chen, Yunjie; Zhao, Bo; Zhang, Jianwei; Zheng, Yuhui

    2014-09-01

    Accurate segmentation of magnetic resonance (MR) images remains challenging mainly due to the intensity inhomogeneity, which is also commonly known as bias field. Recently active contour models with geometric information constraint have been applied, however, most of them deal with the bias field by using a necessary pre-processing step before segmentation of MR data. This paper presents a novel automatic variational method, which can segment brain MR images meanwhile correcting the bias field when segmenting images with high intensity inhomogeneities. We first define a function for clustering the image pixels in a smaller neighborhood. The cluster centers in this objective function have a multiplicative factor that estimates the bias within the neighborhood. In order to reduce the effect of the noise, the local intensity variations are described by the Gaussian distributions with different means and variances. Then, the objective functions are integrated over the entire domain. In order to obtain the global optimal and make the results independent of the initialization of the algorithm, we reconstructed the energy function to be convex and calculated it by using the Split Bregman theory. A salient advantage of our method is that its result is independent of initialization, which allows robust and fully automated application. Our method is able to estimate the bias of quite general profiles, even in 7T MR images. Moreover, our model can also distinguish regions with similar intensity distribution with different variances. The proposed method has been rigorously validated with images acquired on variety of imaging modalities with promising results.

  12. Examination of Arabian Sea SST biases in the HiGEM high resolution coupled climate model and the CMIP3 multi-model dataset

    NASA Astrophysics Data System (ADS)

    Marathayil, Deepthi; Shaffrey, Len; Turner, Andrew; Slingo, Julia

    2010-05-01

    The Arabian Sea region undergoes a pronounced seasonal cycle relating to upwelling, mixing and monsoon dynamics. Any variations in high temperatures of the region may affect the availability of moisture supply to the Indian summer monsoon. Seasonal analysis has been performed for various ocean and atmosphere data from a present day control run in the Indian Ocean region of the HiGEM High Resolution Global Environment Model. When compared with observed and reanalysis datasets such as HadISST, SODA reanalysis and ARGO floats for SST and ocean potential temperature, we find a significant cold bias of around 2°C in HiGEM boreal winter SST. This bias persists through springtime in the northern Arabian Sea, potentially to the detriment of the subsequent Indian summer monsoon which is deficient in this model. Meridional cross-sections of ocean potential temperature and salinity along 65°E also reveal the existence of a deeper mixed layer extending to 300m with highly saline water in the same area. Near-surface winds in HiGEM reveal very strong northeasterly wind biases during boreal winter, which may be the result of a strong north-south air temperature gradient. Compared to estimates from CRU and ERA40, a large cold bias of more than 8°C is observed in HiGEM surface air temperature over northern India during the same season. We suspect that the cold SST bias in the northern Arabian Sea is due to coupling with the strong wind and evaporation biases in HiGEM. Seasonal analysis of modelled latent heat flux in comparison with NOCS (National Oceanographic Centre Southampton) data also suggests that the evaporation rate in HiGEM is too strong over the northern Arabian Sea during winter. Similar analysis was also carried out for the 20th century simulations from the CMIP3 multi-model dataset. Most of the models show a similar cold bias in the Arabian Sea SST and in northern Indian air temperature during boreal winter. However the mixed layer depth biases show wide variations

  13. Cooling field tuned magnetic phase transition and exchange bias-like effect in Y{sub 0.9}Pr{sub 0.1}CrO{sub 3}

    SciTech Connect

    Deng, Dongmei E-mail: dyu@ansto.gov.au Feng, Zhenjie; Jing, Chao; Ren, Wei; Cao, Shixun; Zhang, Jincang E-mail: dyu@ansto.gov.au; Zheng, Jiashun; Yu, Dehong E-mail: dyu@ansto.gov.au Sun, Dehui; Avdeev, Maxim; Wang, Baomin; Lu, Bo

    2015-09-07

    Cooling magnetic field dependence of magnetic phase transition has been observed in Y{sub 0.9}Pr{sub 0.1}CrO{sub 3}. G{sub z}F{sub x} order (spin structure of PrCrO{sub 3}) is dominant after zero field cooling (ZFC), whereas G{sub x}F{sub z} order (spin structure of YCrO{sub 3}) is dominant after cooling under a field higher than 100 Oe. Positive/negative exchange bias-like effect, with large vertical shift and small horizontal shift, has been observed after FC/ZFC process. The vertical shift can be attributed to the frozen ordered Pr{sup 3+} and Cr{sup 3+} spins in magnetic domains, because of the strong coupling between Pr{sup 3+} and Cr{sup 3+} sublattices; while the horizontal shift is a result of the pinning of spins at the interfaces. The frozen structure is generated by the field used for the measurement of the initial magnetization curve of M(H) for the ZFC cooled sample, while it is generated by the cooling field for the sample cooled under a cooling field higher than 100 Oe.

  14. G-Protein/β-Arrestin-Linked Fluctuating Network of G-Protein-Coupled Receptors for Predicting Drug Efficacy and Bias Using Short-Term Molecular Dynamics Simulation

    PubMed Central

    Ichikawa, Osamu; Fujimoto, Kazushi; Yamada, Atsushi; Okazaki, Susumu; Yamazaki, Kazuto

    2016-01-01

    The efficacy and bias of signal transduction induced by a drug at a target protein are closely associated with the benefits and side effects of the drug. In particular, partial agonist activity and G-protein/β-arrestin-biased agonist activity for the G-protein-coupled receptor (GPCR) family, the family with the most target proteins of launched drugs, are key issues in drug discovery. However, designing GPCR drugs with appropriate efficacy and bias is challenging because the dynamic mechanism of signal transduction induced by ligand—receptor interactions is complicated. Here, we identified the G-protein/β-arrestin-linked fluctuating network, which initiates large-scale conformational changes, using sub-microsecond molecular dynamics (MD) simulations of the β2-adrenergic receptor (β2AR) with a diverse collection of ligands and correlation analysis of their G protein/β-arrestin efficacy. The G-protein-linked fluctuating network extends from the ligand-binding site to the G-protein-binding site through the connector region, and the β-arrestin-linked fluctuating network consists of the NPxxY motif and adjacent regions. We confirmed that the averaged values of fluctuation in the fluctuating network detected are good quantitative indexes for explaining G protein/β-arrestin efficacy. These results indicate that short-term MD simulation is a practical method to predict the efficacy and bias of any compound for GPCRs. PMID:27187591

  15. 90° magnetic coupling in a NiFe/FeMn/biased NiFe multilayer spin valve component investigated by polarized neutron reflectometry

    SciTech Connect

    Callori, S. J. Bertinshaw, J.; Cortie, D. L.; Cai, J. W. Zhu, T.; Le Brun, A. P.; Klose, F.

    2014-07-21

    We have observed 90° magnetic coupling in a NiFe/FeMn/biased NiFe multilayer system using polarized neutron reflectometry. Magnetometry results show magnetic switching for both the biased and free NiFe layers, the latter of which reverses at low applied fields. As these measurements are only capable of providing information about the total magnetization within a sample, polarized neutron reflectometry was used to investigate the reversal behavior of the NiFe layers individually. Both the non-spin-flip and spin-flip neutron reflectometry signals were tracked around the free NiFe layer hysteresis loop and were used to detail the evolution of the magnetization during reversal. At low magnetic fields near the free NiFe coercive field, a large spin-flip signal was observed, indicating magnetization aligned perpendicular to both the applied field and pinned layer.

  16. Interlayer exchange coupling, dipolar coupling and magnetoresistance in Fe/MgO/Fe trilayers with a subnanometer MgO barrier

    NASA Astrophysics Data System (ADS)

    Kozioł-Rachwał, A.; Skowroński, W.; Frankowski, M.; Chęciński, J.; Ziętek, S.; Rzeszut, P.; Ślęzak, M.; Matlak, K.; Ślęzak, T.; Stobiecki, T.; Korecki, J.

    2017-02-01

    Fe/MgO/Fe trilayers with a subnanometer MgO tunnel barrier were grown by molecular beam epitaxy. Longitudinal magnetooptic Kerr effect measurements confirmed the existence of the antiferromagnetic interlayer exchange coupling (IEC) between the Fe layers for 2 Åcoupling was enhanced for the trilayer grown on a homoepitaxial MgO buffer layer, and its IEC constant was estimated to be -3.3 erg/cm2 at a MgO thickness of 2.7 Å. After magnetic characterization, the sample was patterned into circular-shaped pillars with diameters ranging from 200 nm to 520 nm. We showed that the dipolar coupling that appeared after the nanofabrication process modified the effective coupling between layers, and we determined dependence of the dipolar coupling on the pillar diameter. Finally, magnetoresistance (MR) was measured as a function of MgO thickness (dMgO), and a non-zero MR was found for the MgO as thin as 3.4 Å. Extrapolation of the MR (dMgO) dependence to MR=0 allowed us to determine the length of the pinholes in our sample, which was estimated to be (3.2±0.5) Å.

  17. Exchange coupling and anisotropy effects on the low temperature magnetization dynamics in rare-earth dioxolene complexes

    NASA Astrophysics Data System (ADS)

    Amjad, Asma; Poneti, Giordano; Sottini, Silvia; Dei, Andrea; Sorace, Lorenzo

    The prelude of relevant magnetic coupling in f-element based complexes is actively pursued to improve the single-molecule magnetic features. However, a quantitative analysis of magnetic properties of exchange-coupled anisotropic rare-earth based complexes is often hampered owing to the comparable magnitude of the crystal field with the magnetic coupling. In this study, we investigated the properties of complexes containing different ligands with comparable molecular structures and ligand field strengths. Comparative low-temperature magnetic and EPR study of homologous LnIIISemiquinonate (LnSQ) and LnIIITropolonate (LnTrp) complexes, where Ln = Dy, Tb is investigated. Single-crystal EPR revealed that the direct exchange coupling in DySQ resulted in a highly anisotropic pseudo-triplet state. An out-of-phase susceptibility signal was observed for TbTrp only in the presence of an external magnetic field. Furthermore, the dynamics revealed slow relaxation of magnetization in the DySQ at low temperature which upon comparative study with the dynamics of the related DyTrp revealed a not so simple dependence on the crystal field effects of the coordination sphere of the lanthanide.

  18. The Exchange Coupling of Gd3+- and Cr3+-Ions in Paramagnetic GdCrO3 (In German)

    NASA Astrophysics Data System (ADS)

    Dräger, K.

    1986-03-01

    Polycrystalline samples of stoichiometric GdCrO3 have been investigated by ESR at 9.4 GHz. In the temperature range between 175 K and 520 K one broad absorption with a Lorentzian line shape and a g-factor of 2.024 has been observed. Attributing the absorption exclusively to the Gd -ion it can be shown that the temperature dependence of the ESR-intensity follows the predictions of a cluster-model. The energy describing the coupling of a single Gd3+-ion to the surrounding Cr3+-ions is found to be ΔE(Gd) = 170 cm-1. Taking advantage of the similarity within the orthochromites it is possible to determine at the same time the exchange - coupling of Cr3+-ions to their identical nearest neighbours as ΔE(Cr) = 293 cm-1. The relative strength of these couplings given by 0.60 is compatible with other experimental issues.

  19. Kinetics and stoichiometry of coupled Na efflux and Ca influx (Na/Ca exchange) in barnacle muscle cells

    PubMed Central

    1989-01-01

    Coupled Na+ exit/Ca2+ entry (Na/Ca exchange operating in the Ca2+ influx mode) was studied in giant barnacle muscle cells by measuring 22Na+ efflux and 45Ca2+ influx in internally perfused, ATP-fueled cells in which the Na+ pump was poisoned by 0.1 mM ouabain. Internal free Ca2+, [Ca2+]i, was controlled with a Ca-EGTA buffering system containing 8 mM EGTA and varying amounts of Ca2+. Ca2+ sequestration in internal stores was inhibited with caffeine and a mitochondrial uncoupler (FCCP). To maximize conditions for Ca2+ influx mode Na/Ca exchange, and to eliminate tracer Na/Na exchange, all of the external Na+ in the standard Na+ sea water (NaSW) was replaced by Tris or Li+ (Tris-SW or LiSW, respectively). In both Na-free solutions an external Ca2+ (Cao)-dependent Na+ efflux was observed when [Ca2+]i was increased above 10(-8) M; this efflux was half-maximally activated by [Ca2+]i = 0.3 microM (LiSW) to 0.7 microM (Tris-SW). The Cao-dependent Na+ efflux was half-maximally activated by [Ca2+]o = 2.0 mM in LiSW and 7.2 mM in Tris-SW; at saturating [Ca2+]o, [Ca2+]i, and [Na+]i the maximal (calculated) Cao-dependent Na+ efflux was approximately 75 pmol#cm2.s. This efflux was inhibited by external Na+ and La3+ with IC50's of approximately 125 and 0.4 mM, respectively. A Nai-dependent Ca2+ influx was also observed in Tris-SW. This Ca2+ influx also required [Ca2+]i greater than 10(-8) M. Internal Ca2+ activated a Nai-independent Ca2+ influx from LiSW (tracer Ca/Ca exchange), but in Tris-SW virtually all of the Cai-activated Ca2+ influx was Nai-dependent (Na/Ca exchange). Half-maximal activation was observed with [Na+]i = 30 mM. The fact that internal Ca2+ activates both a Cao-dependent Na+ efflux and a Nai- dependent Ca2+ influx in Tris-SW implies that these two fluxes are coupled; the activating (intracellular) Ca2+ does not appear to be transported by the exchanger. The maximal (calculated) Nai-dependent Ca2+ influx was -25 pmol/cm2.s. At various [Na+]i between 6 and 106 m

  20. Investigations on Ni-Co-Mn-Sn thin films: Effect of substrate temperature and Ar gas pressure on the martensitic transformations and exchange bias properties

    SciTech Connect

    Machavarapu, Ramudu Jakob, Gerhard

    2015-03-15

    We report the effect of substrate temperature (T{sub S}) and Ar gas pressure (P{sub D}) on the martensitic transformations, magnetic and exchange bias (EB) properties in Heusler type Ni-Co-Mn-Sn epitaxial thin films. Martensitic transformation temperatures and EB fields at 5 K were found to increase with increasing T{sub S}. The observed maximum EB value of 320 Oe after field cooling in the film deposited at 650 {sup ∘}C is high among the values reported for Ni-Mn-Sn thin films which is attributed to the coexistence of ferromagnetic (FM) and antiferromagnetic (AF) phases in the martensitic state. In the case of P{sub D} variation, with increase in P{sub D}, martensitic transformation temperatures were increased and a sharp transformation was observed in the film deposited at 0.06 mbar. Magnetization values at 5 K were higher for increasing P{sub D}. These observations are attributed to the compositional shift. EB effect is also present in these films. Microstructural features observed using atomic force microscopy (AFM) shows a fine twinning and reduced precipitation with increase in P{sub D}, which is also confirmed from the scanning electron microscopy (SEM) images. EB effects in both series were confirmed from the training effect. Target ageing effect has been observed in the films deposited before and after ninety days of time interval. This has been confirmed both on substrate temperature and Ar gas pressure variations.